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0Zusammenfassung

Ein Graph ist eine Datenstruktur bestehend aus einer Menge von Objekten (die Knoten

genannt werden) und einer Menge von Beziehungen (die Kanten genannt werden) zwischen

Paaren von Objekten. Graphen modellieren verschiedene Arten von Netzwerken. Zum

Beispiel entsprechen in sozialen Netzwerken die Knoten Personen und die Kanten stellen ihre

Freundschaftsbeziehungen dar. Weitere Beispiele sind neurologische Netzwerke, Straßennetze,

UML-Diagramme, die alle durch Graphen dargestellt werden können. Um verschiedene

Probleme auf solchen Netzwerken zu lösen, können häufig Standard-Graphalgorithmen

verwendet werden. Ein Navigationssystem kann zum Beispiel eine Route zwischen zwei

Orten auf einer Karte finden, indem es einen kürzesten Weg zwischen zwei Knoten im

Graphen berechnet.

Um die Struktur eines Graphen zu verdeutlichen, ist es hilfreich den Graphen zu visuali-

sieren. Das Forschungsgebiet der Visualisierung von Graphen heißt Graphenzeichnen. Es

gibt viele Möglichkeiten, wie ein Graph visualisiert werden kann. Eine klassische Visual-

isierungsmethode für Graphen sind sogenannte Node-Link-Diagramme. Bei dieser Darstel-

lung werden die Knoten als Punkte gezeichnet und für jedes Paar von Knoten, die im Graph

benachbart sind, werden die entsprechenden Punkte durch eine Kurve verbunden. Die Kanten

können durch Strecken, Polygonzüge, Kreisbögen oder allgemeine Jordankurven repräsentiert

werden.

Bei solchen Darstellungen möchte man Kreuzungen zwischen Kanten vermeiden, weil

Kreuzungen die Lesbarkeit einer Zeichnung verringern. Graphen, die ohne Kreuzungen

gezeichnet werden können, heißen planare Graphen. Planare Graphen sind intensiv unter-

sucht worden. Zum Beispiel können planare Graphen effizient erkannt und auf einem kleinen

Gitter gezeichnet werden. Wenn hingegen viele Kreuzungen nötig sind, um einen Graphen

zu zeichnen, gibt es wenig Hoffnung auf eine lesbare Zeichnung. Darüber hinaus gibt es, in

vielen Fällen, für solche Graphen keine effiziente Algorithmen, um sie zu erkennen oder zu

zeichnen. Deswegen ist Kreuzungsminimierung ein fundamentales Thema im Graphenzeich-

nen. Graphen, die mit wenig Kreuzungen gezeichnet werden können, heißen beyond-planar.

Das Thema, das sich mit Definition und Analyse von beyond-planaren Graphen beschäftigt,

heißt Beyond Planarity und ist ein wichtiges, noch recht junges Forschungsgebiet im Graphen-

zeichnen.

Generell gilt für beyond-planare Graphen, dass sie eine Zeichnung besitzen, bei der die Art

der Kreuzungen irgendwie eingeschränkt ist; zum Beispiel, wenn die Anzahl der Kreuzungen

durch eine Konstante beschränkt ist (unabhängig von der Größe des Graphen). Kreuzungen

können auch lokal beschränkt werden, indem wir zum Beispiel höchstens eine konstante

Anzahl von Kreuzungen pro Kante erlauben oder höchstens eine konstante Anzahl von

sich paarweise kreuzenden Kanten erlauben. Kreuzungen können auch dadurch beschränkt

werden, dass wir den Winkel, unter dem sich kreuzende Kanten schneiden, nach unten

beschränken. Diese Dissertation beschäftigt sich mit Klassen von beyond-planaren Graphen,

die durch solche lokalen Einschränkungen von Kreuzungen definiert sind.

v
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1 Introduction

A graph is an abstract network that represents a set of objects, called vertices, and relations

between these objects, called edges. Graphs can model various networks. For example, a

social network where the vertices correspond to users of the network and the edges represent

relations between the users. Neural networks, road networks, integrated circuit networks,

UML diagrams can all be modeled as graphs. Graph algorithms can be used then to efficiently

solve a wide range of problems on these networks. For example, a navigation system can

compute a route between two locations by finding a shortest path in the corresponding graph

that models the road network.

Graph drawing. Essentially a graph is just a data structure consisting of vertices and edges

between these vertices. For a human to get more insight into the structure of the graph it

is sometimes helpful to represent it visually. The field of visualizing graphs is called Graph

Drawing. There are many ways to visualize a graph. A standard visualization is a node-link

diagram in the Euclidean plane. In such a representation the vertices are drawn as points,

or possibly other geometric objects like disks or polygons, in the plane and edges are drawn

as Jordan curves between every two vertices connected by an edge. The Jordan curves used

for edges can be straight-line segments, polygonal lines, circular-arcs, or piece-wise smooth

curves. Another classical visualization is a contact representationwhere vertices are represented

as geometric objects in the Euclidean plane (disks, polygons, as well as 1-dimensional objects

like Jordan curves) such that for any two objects representing two vertices connected by an

edge in the graph these objects must have a non-empty intersection in the representation. The

various choices that influence the appearance of the drawing, vertices, or edges are usually

referred to as the drawing style.

A readable drawing is a drawing that can be easily visually perceived by a human eye. In a

readable drawing, simple tasks can be answered quickly by a human, for example, tracing an

edge or a path between two vertices, finding a node with the largest degree etc.

Various measures for readability of a drawing have been studied such as the angular resolu-

tion (that is, the minimum angle between any two adjacent edges), the number of crossings in

a drawing, crossing angle resolution (that is, the minimum crossing angle in the drawing), the

area of the drawing etc. Such measures are called quality measures of a drawing. It is one of

the main goals of Graph Drawing to define and study quality measures to produce readable

drawings of graphs.

Beyondplanarity. A crossing between two edges can make it difficult for a user to trace an

edge, as the user might accidentally jump to another edge while tracing one. Thus, crossings

might adversely affect the readability of a drawing. This hypothesis was confirmed by a series

of cognitive experimental studies [Pur00, PCA02, WPCM02]. Thus, ideally we would like to

draw graphs without crossings. Graphs that can be drawn without crossings are known in

1



1 Introduction

literature as planar graphs. However, many graphs cannot be drawn without crossings, for

example, those that have more than 3n−6 edges, where n is the number of vertices. Therefore,

it is a natural problem to find drawings of graphs with as few crossings as possible or drawings

where crossings affect the readability as little as possible. This problem is called crossing

optimization.

Some graphs require a lot of crossings to be drawn [ACNS82] which makes it difficult

to find readable drawings for these graphs. Moreover, a lot of graph problems that can be

solved efficiently on planar graphs become intractable on general graphs. Thus, it is natural

to consider graphs that are “close” to planar graphs, that is, graphs that admit drawings with

restrictions on crossings, these graphs are known as beyond-planar graphs. One type of such

restrictions can be on a crossing pattern, for example, graphs that admit a drawing where

there are no edge intersected more than k times, k pairwise crossing edges, two adjacent

edges that cross a third one etc. Another known type of restrictions is on the crossing angle

resolution of the drawing of a graph, for example, by requiring it to be 90
○
. Studying graphs

that admit drawings with such restrictions on crossings is the aim and scope of the area of

Graph Drawing Beyond Planarity. For a more comprehensive introduction to the topic see

the survey by Didimo et al. [DLM18].

1.1 Outline of the Book

This book consists of two parts. In part Part I we study Crossing Optimization in circular-arc

drawings. First we consider crossing-free circular-arc drawings of graphs in Chapter 3. Then

in Chapter 4 we introduce right-angle crossings between circular arcs by studying properties

of circles that intersect at right angles only. Finally, in Chapter 5, we turn to graphs that can be

drawn with circular arcs and right-angle crossings only. Part I consists of three peer reviewed

papers.

In Part II we study Crossing Optimization in circular layouts. In Chapter 6 we consider

edge crossing minimization and then in Chapter 7 we turn our attention to bundled crossing

minimization in circular layouts. Part II consists of two peer reviewed papers.

1.1.1 Optimizing Crossings in Circular-Arc Drawings

The idea of drawing graphs with circular arcs dates back to at least the work of the artist

Mark Lombardi who drew social networks, featuring players from the political and financial

sector [LH03]. Indeed, user studies [PHNK13, XRPH12] state that users prefer edges drawn

with curves of small curvature; not necessarily for performance but for aesthetics. Moreover,

drawing graphs with circular arcs can help to improve certain quality measures of a drawing.

Cheng et al. [CDGK01] showed, in particular, that using C1
-continuous curves consisting

of at most three circular arcs, a graph can be drawn in small area and with optimal angular

resolution. Aichholzer [AAA
+
12] also studied angular resolution optimization in circular-arc

drawings of triangulations. Recently, a new type of quality measure was introduced: the

number of geometric objects that are needed to draw a graph given a certain style; note that

two edges can belong to the same geometric object. Schulz [Sch15] coined this measure the

2



1.1 Outline of the Book

(a) an affine cover of the graph G (b) a spherical cover of the graph G

Figure 1.1: Affine and spherical covers of the same graph I (the icosahedron). Note, that the drawing

(a) is segment optimal and the drawing (b) is circular-arc optimal; see Chapter 3.

visual complexity of a drawing and provided algorithms yielding circular-arc drawings with

better visual complexity than those known for straight-line drawings.

Covering Graphs with Few Circles and Few Spheres

When optimizing crossings in Graph Drawing, the first question that we might ask ourselves

is “Can the given graph be drawn without crossings?”. So if the graph is planar, we should also

aim for a planar drawing. If the graph is not planar it still can be drawn without crossings in

3D but this might come at some other expense. Chaplick et al. [CFL
+
16] introduced a quality

measure for the visual complexity, the affine cover number, which is the minimum number of

lines (or planes) that together cover a crossing-free straight-line drawing of a graph G in 2D

(3D). Note that this quality measure considers crossing-free drawings of graphs, in particular,

in 2D it is defined only for planar graphs, whereas in 3D it is also defined for non-planar

graphs. For non-planar graphs, however, it is natural that the affine cover number increases

with the density of a graph as well as with the number of crossings that a graph needs to be

drawn in a single plane. Therefore, drawing graphs in 3D may reduce the number of crossings

but increase the visual complexity.

In Chapter 3, we introduce the spherical cover number, which is the minimum number of

circles (or spheres) that together cover a crossing-free circular-arc drawing in 2D (or 3D). (See

for an example of an affine cover and a spherical cover of the same graph Figures 1.1a and 1.1b,

respectively.) It turns out that spherical covers are sometimes significantly smaller than affine

covers. For graphs from certain graph classes, we analyze their spherical cover numbers and

compare them to their affine cover numbers. We also link the spherical cover number to other

graph parameters (which we define in Section 2.1) such as treewidth and linear arboricity.

This chapter is based on joint work with Alexander Ravsky and Alexander Wolff [KRW19].

On Arrangements of Orthogonal Circles

In Chapter 4, we analyze properties of orthogonal circles, that is, circles that intersect at right

angles only as well as properties of arrangements of such circles, that is, arrangements of circles

3



1 Introduction

Figure 1.2: Apollonian circles. Figure 1.3: An arc-RAC drawing.

where every pair of circles must either be disjoint or orthogonal. A classical arrangement of

orthogonal circles based on Apollonian circles (see Chapter 4 for definition) is illustrated in

Figure 1.2. Using geometric arguments, we show that arrangements of orthogonal circles have

only a linear number of intersections. This implies that orthogonal circle intersection graphs

(that is, the graphs that have a vertex for each circle and an edge for each pair of orthogonal

circles) have only a linear number of edges. When we restrict ourselves to orthogonal unit

circles, the resulting class of intersection graphs is a subclass of penny graphs (that is, contact

graphs of unit circles). We show that, similarly to penny graphs, recognizing orthogonal unit

circle intersection graphs is as hard as many other problems for which no efficient algorithm

is known. Such problems are calledNP-hard. We define the complexity class of such problems

more formally in Section 2.3.

This chapter is based on joint work with Steven Chaplick, Henry Förster, and Alexander

Wolff [CFKW19].

Drawing Graphs with Circular Arcs and Right-Angle Crossings

In contrast to Chapter 3, in Chapter 5 we turn to drawing graphs with circular arcs allowing

crossings, but only with optimal crossing angle resolution, that is, we insist that any two

crossing edges must cross at a right angle.

In aRACdrawing [DEL11] of a graph, vertices are represented by points in the plane, adjacent

vertices are connected by line segments, and crossings must form right angles. Graphs that

admit such drawings are called RAC graphs. RAC graphs are beyond-planar graphs and have

been studied extensively. In particular, it is known that a RAC graph with n vertices has at

most 4n − 10 edges. We introduce a superclass of RAC graphs, which we call arc-RAC graphs.

In an arc-RAC drawing, edges are drawn as circular arcs (we consider a straight-line segment

to be a circular-arc of infinite radius) and crossings must still form right angles; see Figure 1.3.

We prove that an arc-RAC graph with n vertices has at most 14n − 12 edges and that there are

n-vertex arc-RAC graphs with 4.5n − O(
√
n) edges.

This chapter is based on joint work with Steven Chaplick, Henry Förster, and Alexander

Wolff [CFKW20].

4



1.1 Outline of the Book

1.1.2 Optimizing Crossings in Circular Layouts

Crossing minimization is a fundamental problem in graph drawing. Like many problems in

Graph Drawing, crossing minimization in general graphs is NP-hard [GJ83]. It also remains

NP-hard under some restrictions [Hli06]. But plenty of variants of the problem are known.

The minimum number of crossings that a graph can be drawn with is known as the crossing

number of the graph. In his seminal survey [Sch17] Schaefer recorded at least 89 different

notions of crossing numbers. In Part II we deal with some of them. We drop the restriction

that edges are drawn as circular arcs but insist instead on circular layouts of graphs, that is,

that the vertices lie in convex position, for example on a circle, and the edges are drawn inside

the disk of this circle. Such drawings are also known as convex drawings.

Edge CrossingMinimization in Circular Layouts

In Chapter 6 we consider edge crossing minimization in circular layouts, in particular, we

study the following two beyond-planar graph classes:

• outer k-planar graphs, that is, graphs that admit a circular layout where each edge is

crossed by at most k other edges; and

• outer k-quasi-planar graphs, that is, graphs that admit a circular layout where no k

edges cross pairwise;

see for example in Figure 1.4a a drawing which is outer 3-quasi-planar but not outer 12-planar.

We show that outer k-planar graphs always have a vertex of degree at most ⌊3.5
√
k⌋ and

consequently that every outer k-planar graph with n vertices has at most ⌊3.5
√
k⌋n edges.

This also means that the vertices of every outer k-planar graph can always be colored with

⌊3.5
√
k⌋ + 1 colors so that no two endpoints of the same edge have the same color. Such

problem is known as the coloring problem and it is one of the fundamental problems in graph

theory. To complement our upper bound we show that an outer k-planar complete graph can

have at most (⌊
√
4k + 1⌋ + 2) vertices, therefore, (⌊

√
4k + 1⌋ + 2) colors is necessary to color

the complete graph.

We show further that each outer k-planar graph has a balanced vertex separator of size at

most 2k+3, that is, it has a subset of vertices of size at most 2k+3 such that after removing this

subset the graph falls apart into components of roughly equal sizes; we define this notionmore

formally in Section 2.1. We further show that for each fixed k, we can test outer k-planarity

in quasi-polynomial time. Our recognition algorithm uses the fact that each outer k-planar

graph has a balanced separator of size at most 2k + 3. According to the Exponential Time

Hypothesis (ETH), no quasi-polynomial algorithm exists for a problem which is NP-hard,

therefore, our algorithm implies that testing outer k-planarity is not NP-hard.

We compare the class of outer k-quasi-planar graphs to other graph classes, in particular,

to the class of planar graphs. In addition, we observe simple bounds on the page number of

outer k-quasi-planar graphs, that is, the minimum number of half-planes, called pages, to

draw the graph planarly if all the vertices are on a line where all the pages intersect.

Finally, we restrict outer k-planar and outer k-quasi-planar drawings to full drawings (where

no crossing appears on the boundary), and to closed drawings (where the vertex sequence

5



1 Introduction

(a) a circular layoutwhich is outer 3-quasi-planar

but not outer 12-planar

(b) a bundled drawing of the drawing in Fig-

ure 1.4a; each crossing occurs between two

bundles, that is, as a bundled crossing

Figure 1.4: A circular layout and its bundled drawing.

on the boundary is a cycle in the graph). For each k, we express closed outer k-planarity and

closed outer k-quasi-planarity in extended monadic second-order logic; see Section 2.4 for the

definition. Thus, since outer k-planar graphs have bounded treewidth (many problems on

graphs with bounded treewidth are efficiently solvable, for the definition of the parameter

see Section 2.1), closed outer k-planarity is linear-time testable by Courcelle’s Theorem (see

Section 2.4). We leverage this result to further show that full outer k-planarity can also be

tested in linear time.

This chapter is based on joint work with Steven Chaplick, Giuseppe Liotta, Andre Löffler,

and Alexander Wolff [CKL
+
18].

Bundled CrossingMinimization in Circular Layouts

Sometimes a graph may require a lot of crossings to be drawn, and no matter how we optimize

the edge crossings (minimize the number of crossings or optimize the crossing angle), the

drawing may still look cluttered and messy. With this in mind, in Chapter 7 we consider an

effective way to reduce clutter in a drawing that has (many) crossings, by grouping edges

that travel in parallel into bundles. Each edge can participate in many such bundles. Any

crossing in this bundled drawing occurs between two bundles, i.e., as a bundled crossing;

see for example Figure 1.4b. In this context we consider the problem of bundled crossing

minimization: A graph is given and the goal is to find a bundled drawing with at most k

bundled crossings.

We show that the problem is NP-hard when we require a simple drawing (that is, edges are

not allowed to self-intersect and any two edges are not allowed to intersect twice), settling an

open question by Fink et al. [FHSV16]. Our main result is an algorithm that, given a graph G

and a natural number k, computes a simple circular layout with k bundled crossings if one

exists. This algorithm is fixed parameter tractable (FPT) in k, that is, it has runtimeO( f (k)nc),
where n is the size of the graph, c is a constant, and f (⋅) is a computable function which only

depends on k; see Section 2.3 for a formal definition. This answers an open question by Alam

et al. [AFP16].

6



1.1 Outline of the Book

These results make use of the connection between bundled crossings and graph genus (the

parameter that characterizes the surface that the graph needs to be drawnwithout crossings; for

a formal definition see Section 2.1) and, as well as Chapter 6, extended monadic second-order

logic (see Section 2.4).

We also consider bundling crossings in a given drawing, in particular, for storyline visual-

izations, that is, a set of x-monotone curves where each curve cannot self-intersect, but a pair

of curves is allowed to intersect each other multiple times. The storyline literature considers

the number of characters m to be small and the number of crossings to be large. We show that

computing the bundled crossing number (that is, the minimum number of bundled crossings

in the drawing) of a given storyline visualization is fixed parameter tractable in m.

This chapter is based on joint work with Steven Chaplick, Thomas C. van Dijk, Ji-won Park,

Alexander Ravsky, and Alexander Wolff [CvDK
+
19].
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2 Preliminaries

This chapter provides some basic terminology, definitions, and concepts in graph theory,

graph drawing, and algorithms used in this book. For a comprehensive introduction into

these topics we refer to books designated to this matter.

2.1 Graphs

In this section we initially define graph theory concepts which are common in most graph

theory areas and then we define graph parameters which are more specific but still relevant to

several chapters of this book. A basic introduction to graph theory can be found in the book

Introduction to Graph Theory by Trudeau [Tru93]. For introduction to graph algorithms we

refer the reader to Algorithmic Graph Theory by Gibbons [Gib85].

A graph G is defined as a pair (V , E) where V is a non-empty set of vertices and E ⊆
V × V = {(u, v) ⊆ V ∣ u ≠ v} is a non-empty set of edges. Here we consider (u, v) to be

the same as (v , u). For a graph G we denote its set of vertices as V(G) and its set of edges

as E(G). A multi-graph is a graph G where there can be multiple edges between the same

two vertices or edges between one vertex, called loops, that is, edges of type (v , v), v ∈ V(G).
The set of edges E(G) ⊆ V(G) × V(G) = {(u, v) ⊆ V(G)} of a multi-graph is a multi-set,

that is, its elements can repeat. A graph which is not a multi-graph is sometimes also called a

simple graph. In this book we mostly deal with simple graphs, therefore, whenever we say a

graph we mean a simple graph, unless stated otherwise. For an edge e = (u, v) we call u and v

the endpoints of e. A graph with n vertices can contain at most (n
2
) = n(n − 1)/2 edges. Two

vertices u and v of a graph G such that (u, v) ∈ E(G) are called adjacent or neighbors. For an

edge e = (u, v) we say that the vertices u and v are incident to e. For a vertex v of the graph G,

the degree deg (v) ∶= ∣{u ∈ V ∣ (u, v) ∈ E(G)}∣ is the number of vertices adjacent to v.

A graph G is said to be directed if the set of edges E(G) ⊆ V(G)×V(G) = {(u, v) ⊆ V(G)}
consists of ordered pairs of vertices. In this case we distinguish between (u, v) and (v , u). We

call an edge e = (u, v) outgoing for vertex u and incoming for vertex v. In this book we mostly

deal with undirected graphs (that is, graphs that are not directed), thus, whenever we say a

graph we mean an undirected graph unless stated otherwise.

We call G′ a subgraph of a graph G if V(G′) ⊆ V(G) and E(G′) ⊆ E(G). The subgraph G′

is induced by V(G′) if E(G′) contains exactly the edges of G whose endpoints are both

in V(G′). The induced graph is denoted by G[V ′] for V ′ = V(G′).
A subdivision of a graph G is a graph G′ obtained by replacing every edge by a path of

some length. We say that we contract an edge (u, v) if we replace it by a single vertex w that is

adjacent to the neighbors of u and v.

A path is a graph P with V(P) = {v0 , v1 , . . . , vk}, k > 0, and E(P) = {(v i , v i+1) ∣ 0 ≤ i ≤
k − 1} and P is called a cycle if v0 = vk , k is called the length of P. The path P is called simple if

all vertices are pairwise different (with the exception of v0 = vk , if P is a cycle).

9
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A Hamiltonian path in a graph G is a path visiting every vertex of G exactly once. Similarly

a Hamiltonian cycle in a graph G is a cycle visiting every vertex of G exactly once. A graph is

called Hamiltonian if it has a Hamiltonian cycle.

A graph G is called connected if for every two vertices u, v ∈ V(G) there exists a path

from u to v in G; otherwise, G is called disconnected. A connected component of G is a

connected subgraph G[V ′] induced by a maximal subset V ′ ⊆ V(G), that is, no other

vertex u in V(G) ∖ V ′ can be added to V ′ so that G[V ′ ∪ {u}] is connected.

A graph G is called k-vertex-connected if after the removal of any k − 1 vertices it still is

connected. Similarly G is k-edge-connected if after the removal of any k − 1 edges it still is

connected. If we do not specify whether a graph is vertex or edge connected and simply say

that a graph is k-connected we mean that it is k-vertex-connected. A cutvertex of a graph G is

a vertex v of G such that after its removal the graph is disconnected. We say that a graph G is

biconnected or triconnected if it is 2-connected or 3-connected respectively.

In the following we list some of the most classic graphs in graph theory.

A graph with n vertices and with n(n − 1)/2 edges is called a complete graph and denoted

as Kn . On the other end a connected graph with no cycle is called a tree and it contains

exactly n − 1 edges. A graph which is a collection of trees is called a forest. Each tree has a

unique simple path between every pair of vertices. For a tree T a vertex v ∈ V(T) is called a

leaf if deg (v) = 1. A caterpillar is a tree that consists of a path, called spine, and leaves that

are connected to the spine. A path (that we defined above) can be regarded as a special type

of a tree or a caterpillar.

A graph G is called bipartite if the set of vertices consists of two disjoint sets A and B

with V(G) = A∪ B and A∩ B = ∅ and each edge is incident to a vertex of each set, that is,

E(G) = {(u, v) ⊆ V(G) ∣ u ∈ A, v ∈ B}. A bipartite graph with maximum degree 1 is called a

matching and a bipartite graph with the maximum number, that is, nm of edges where n = ∣A∣
and m = ∣B∣ is called a complete bipartite graph and denoted as Kn ,m .

Coloring and degeneracy. One of the most fundamental problems in graph theory is the

coloring problem, where a graphG is given and we have to find the minimum number of colors

to color the vertices of G so that no edge of G is incident to vertices of the same color. Such

number is called the chromatic number of G. Providing bounds on the chromatic number of

graphs from a certain graph class is one of the classical ways to characterize the graph class.

Graphs in which every subgraph has a vertex of degree at most d can be inductively d + 1

colored by simply removing a vertex of degree at most d. Thus, this property is of particular

interest when dealing with coloring problems and such graphs are called d-degenerate [LW70].

Note that outerplanar graphs are 2-degenerate, and planar graphs are 5-degenerate; for defini-

tions of planar and outerplanar graphs see Section 2.2.

Treewidth. Aparameter treewidth, well known in algorithmic graph theory, was introduced

by Bertelé and Brioschi [BB72] and then later rediscovered (and popularized) by Robertson

and Seymour [RS84]. A tree decomposition of a graph G is a pair (X , T), where T is a tree and

X = {X i ∣ i ∈ V(T)} is a family of subsets of V(G), called bags, such that (1) for all v ∈ V(G),
the set of nodes Tv = {i ∈ V(T) ∣ v ∈ X i} induces a non-empty connected subtree of T , and

(2) for each edge uv ∈ E(G) there exists i ∈ V(T) such that both u and v are in X i . The
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2.2 Graph Drawing

maximum of ∣X i ∣ − 1, i ∈ V(T), is called the width of the tree decomposition. The treewidth,

tw(G), of a graph G is the minimum width over all tree decompositions of G.

Graphs with bounded treewidth are of special interest because many problems on such

graphs can be solved efficiently. In particular, for such graphs we can test efficiently graph

properties that have a compact formulation in MSO2 logic (see the definition of MSO2 logic

and Theorem 2.1 in Section 2.4).

Separators. Another useful concept that we utilize in several chapters is that of a vertex

separator. Unfortunately, the precise definition of the concept is inconsistent throughout the

literature. An attempt to unify the existing definitions was done by Harvey andWood [HW17].

We use their notation. We will consider two different types of vertex separators; one in

Chapter 3 and the other one in Chapter 6.

For a graph G, a set W ⊆ V(G), and c ∈ [ 1
2
, 1), a (k,W , c)∗-separator is a subset of vertices

S ⊂ V(G), with ∣S∣ ≤ k, such that each connected component of G − S contains at most c∣W ∣
vertices ofW . The number ∣S∣ is the size of the separator.

For the purpose of Chapter 3 we need a type of the (k,W , c)∗-separator as used by Flum

and Grohe [FG06]. If c = 1

2
, then a (k,W , c)∗-separator S is called a balanced W-separator.

TheW-separation number sepW(G) is theminimum k such thatG has a balancedW-separator

S with ∣S∣ = k. This separation number is related to treewidth. According to [FG06, Theorem

11.17], sepW(G) ≤ tw(G) + 1 for any W ⊆ V(G) and, on the other hand, tw(G) ≤ 3k + 2 if

sepW(G) ≤ k for everyW with ∣W ∣ = 2k + 3.

In Chapter 6 we define the separation number similarly to that defined by Fox [Fox11].

For a given graph G the separation number sn(G) is the minimum integer k such that, for

each subgraph H of G, there exists a (k,V(H), 2

3
)∗-separator for H. Such a separator is

called a balanced separator; note that, unlike for balanced W-separators, the factor here is
2

3
instead of

1

2
. For a graph G the separation number sn(G) is also related to the treewidth

tw(G) of G, namely, sn(G) ≤ tw(G) + 1 [HW17] and, as Dvořák and Norin [DN14] recently

showed, tw(G) ≤ 105sn(G).

2.2 Graph Drawing

In this section we define some of the Graph Drawing concepts. For a reference we suggest the

booksGraphDrawing: Algorithms for theVisualization of Graphs byDi Battista et al. [DETT99],

Drawing Graphs: Methods and Models edited by Kaufmann and Wagner [KW01], Planar

Graph Drawing by Nishizeki and Rahman [NR04], and the Handbook of Graph Drawing and

Visualization edited by Tamassia [Tam13].

A drawing D of a graph G is a mapping that maps each vertex v ∈ V(G) to a point in

some surface and each edge uv ∈ E(G) to a simple open Jordan curve on the surface such

that the endpoints of this curve are D(u) and D(v). For convenience, our notation will not

distinguish between the entities (vertices and edges) of an abstract graph and the geometric

objects (points and curves) representing them in a drawing. A crossing of two edges is the

common point of their interior. A shared endpoint of two edges is not considered a crossing.

In general, we assume that no three edges cross in a single point; edges do not pass through

vertices; if two edges share a point, they must cross at this point, that is, they cannot touch

11
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at this point; and there is only a finite number of crossing points in the drawing. If any two

edges share at most one point in their interior and no edge is allowed to self-intersect, then

the drawing is called simple. Since in this book we mostly deal with simple drawings whenever

we say a drawing, we mean a simple drawing unless stated otherwise.

If a graph G can be drawn without crossings it is called planar. The planarization G′ of

a drawing D with crossings is a planar graph obtained from D by creating a vertex at each

crossing point and connecting two such vertices or vertices of the graph if they are consecutive

along an edge in D.

The drawing D in a surfaceS subdivides this surface into topologically connected regions

ofS ∖ D. These regions are called faces of D. IfS is unbounded, the unbounded face of D is

called the outer face. A vertex or an edge is called incident to a face f if it lies on the boundary

of f . A planar graph where all vertices are incident to the outer face is called outerplanar.

A planar graph can have many different drawings but some of them might have a lot of

common features. To capture the similarity between drawings the notion of embedding is

introduced. An embedding of a planar graph is a rotation system, that is, the circular order of

the incident edges around a vertex in some drawing of this graph together with a specified

outer face in this embedding. Drawings with the same embedding are called equivalent.

Equivalent drawings share some essential properties, for example, they have the same set

of faces. An embedding of a graph which is not necessarily planar is an equivalence class of

drawings whose planarizations have the same planar embedding.

To specify a drawing of a graph beyond the embedding the notions of the drawing style

or layout are introduced which determine how the edges or vertices are drawn. The most

common style is to draw edges as straight-line segments. One of the generalizations of straight-

line drawings is poly-line drawings where an edge is drawn as a finite sequence of straight-line

segments touching at endpoints, these endpoints are called bends. Another generalization

is circular-arc drawings where each edge is drawn as a circular arc, a straight-line edge is

considered an arc of infinite radius.

Once a drawing style is fixed we can evaluate qualitative properties of a drawing which in

turn allows us to compare different drawings in the same style. Such qualitative properties of

a drawing are called quality measures. A quality measure of a graph is the best value of the

measure over all drawings of the graph in some fixed style. For example, a classic measure

is the drawing area. If the vertices of a graph are drawn on a grid, the area is determined by

the width and the height of the grid. If the vertices in the drawing are not necessarily on a

grid, the area can be determined by the ratio between the maximum distance among all pairs

of vertices to the smallest distance among all pairs of vertices. Drawings with small area are

preferable as they can fit into a small drawing canvas or screen. Another common quality

measure is angular resolution of a drawing which is the smallest angle formed by any pair of

edges incident to the same vertex. Drawings with large angular resolution are preferable as

then it is easier to distinguish incident edges from each other. A drawing has perfect angular

resolution if the edges are equally spaced around each vertex.

Recently, a new type of quality measure was introduced: the number of geometric objects

that are needed to draw a graph given a certain style. This measure is also known as the the

visual complexity [Sch15] of a drawing. Note that several edges of a graph can be drawn on

the same geometric object. Drawings of large visual complexity tend to be difficult to perceive

visually [KMS18], thus the goal is to minimize visual complexity. Two classical examples of
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quality measures regarding visual complexity are the segment number [DESW07], that is, the

minimum number of straight-line segments over all straight-line drawings of a graph and

the arc number [Sch15], that is, the minimum number of circular arcs over all circular-arc

drawings of a graph.

Since the fundamental topic of Beyond Planarity is crossing optimization a lot of quality

measures deal with crossings. The most direct way to tackle crossings is to avoid them

completely. This is however impossible in the plane for a non-planar graph. Thus for non-

planar graphs we need either to allow multiple surfaces to contain the drawing or to modify

the surface of the drawing.

One of the parameters that is related to the first approach is called the thickness of a graph,

which, for a given graph G, is the smallest number of planar graphs whose union is G. Given

decomposition of G into k planar subgraphs we can draw it on k surfaces so that each planar

subgraph is in a different surface and these surfaces intersect only in the vertices of the graph

that are, for example, in the same plane. A similar but more specific parameter is the smallest

number of outerplanar graphs whose union is G. This parameter is called the book thickness

of a graph. The name comes from an alternative representation, called book embedding, where

the vertices of G lie on some common line, called the spine of the book, and the edges of G

are drawn in some halfplanes that all intersect at the spine, called the pages of the book. Book

thickness is also sometimes called page number. It is known that planar graphs have page

number 4 [Yan89] and there are planar graphs that require 4 pages [Yan20, BKK
+

20]. Note

that these parameters are similar to visual complexity, in that, they record the smallest number

of surfaces (the objects regarded by visual complexity) containing the drawing.

Further if we specify the type of edges that we use in the drawing and the type of surfaces

containing a drawing we obtain different quality measures. The affine cover number [CFL+16]

is the minimum number of l-dimensional affine subspaces that together cover a crossing-free

straight-line drawing of the given graph in d-dimensional space, for integers l and d such

that 0 < l < d. Note that if d = 2 and l = 1, the affine cover number is defined for planar graphs

only and it is similar to the segment number, with the difference that the attention is on the

number of lines containing the drawing rather than segments (several different segments can

be contained in the same line). It is also worth mentioning that for d = 2 and l = 1 the optimal

affine covers are related tominimum-line drawings [DMNW11], that is, minimum-segment

drawings whose edges lie in the union of the smallest number of straight lines (among all

minimum-segment drawings). However, the minimum-line drawings are essentially different

from ρ1

2
-optimal drawings since there are graphs that do not have a ρ1

2
-optimal cover with the

minimum number of segments; see Section 3.6.

Similarly to the affine cover number the spherical cover number of a graphG is theminimum

number of l-dimensional spheres in Rd
such that G has a crossing-free circular-arc drawing

that is contained in the union of these spheres, for integers l and d such that 0 < l < d. Again
if d = 2 and l = 1, the spherical cover number is defined for planar graphs only and is similar

to the arc number.

In contrast to allowing multiple planes or spheres in order to draw a non-planar graph

without crossings another approach is to modify the surface on which the graph is drawn. This

can be done by adding handles to the surface. The number of handles on a surface is called the

genus of the surface. Alternatively genus of a surface can be defined as an integer represent-

ing the maximum number of cuttings along non-intersecting closed simple curves without
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rendering the resulting surface disconnected. A genus of a graph is the minimum number of

handles on a surface where the graph can be drawn without crossings. This parameter has

been known for much longer than the affine and spherical cover numbers [FMR79, Tho89].

If a graph admits a drawing with only few crossings, then there is hope to draw this graph

with crossings so that these crossings do not affect the readability of the drawing too much.

Thus, quality measures regarding crossings are considered. Restrictions on such quality

measures also define different graph classes, that is, classes of graphs that can be drawn so

that the crossings are restricted in some way.

For example, graphs that can be drawn with at most k crossings per edge are called k-planar

graphs. Graphs that can be drawn with no k pairwise crossing edges are called k-quasi-planar

graphs. Further these restrictions can be combined with a layout. If all the vertices in a

drawing are in a convex position, for example on a circle, and the edges are drawn inside the

disk of the circle, then the drawing is called a circular layout. Such drawings are also known

as convex drawings. If we in addition insist that the drawing is planar, then the drawing (and

the corresponding graph) is outerplanar. If instead we require that the drawing is k-planar

or k-quasi-planar, then it (and the corresponding graph) is called outer k-planar or outer

k-quasi-planar respectively.

Another common quality measure regarding crossings is called crossing angle resolution,

which is the smallest angle formed by any pair of crossing edges at any of their crossings.

Again, restrictions on a measure yield different graph classes. For example, graphs that have

straight-line drawings with crossing angle resolution bounded from below by some constant

or with right-angle crossings only. The latter are known as RAC graphs. Requirements on a

measure can also be combined with other different drawing styles obtaining classes of graphs

that can be drawn with poly-line edges and right-angle crossings or circular-arc edges and

right-angle crossings.

A different approach to handle crossings was introduced by Holten [Hol06] where edges

that travel in parallel in a drawing with (many) crossings are grouped into bundles. A crossing

of two bundles can involve a lot of edge crossings but we count it as one bundled crossing.

For certain drawings the number of bundled crossings can be significantly smaller than the

number of edge crossings. Interestingly bundled crossings are related to genus, as we can

resolve a crossing of two bundles by routing the edges of one bundle via a handle going over

the other bundle in the surface of the drawing. We discuss this relation in more detail in

Chapter 7.

2.3 Complexity

In this section we provide some of the the basics of algorithm complexity and parameterized

complexity theories used in this book. For an introduction to algorithm theory we refer to

Introduction to Algorithms by Cormen et al. [CLRS09]. An introduction to complexity theory

can be found in Computers and Intractability: A Guide to the Theory of NP-Completeness by

Garey and Johnson [GJ79] and for an introduction to parameterized complexity theory we

refer to the book Invitation to Fixed-Parameter Algorithms by Niedermeier [Nie06].

Runtime of an algorithm is the amount of resources required to execute it on an instance

of certain size. It is measured in the number of steps that the algorithm takes to solve the
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instance. When analyzing runtime of an algorithm, we usually analyze the asymptotic runtime,

which is described by the big O notation. Let f ∶ N → N be a function that maps the input

size of a problem to the time that the algorithm needs to solve the problem. Then the class of

functions that asymptotically grow at most as fast as f is denoted by

O( f ) = {д ∶ N→ N ∣ ∃c > 0, n0 ∈ N ∀n ≥ n0 ∶ д(n) ≤ c f (n)}.

We say that the runtime д of an algorithm is in O( f ), if д ∈ O( f ). If the runtime of an

algorithm is in O(nc) where c is some constant, then the algorithm is called a polynomial-

time or efficient algorithm. If the runtime is of the form 2
polylog(n)

then the corresponding

algorithm is called quasi-polynomial.

The class of problems for which there exists a deterministic algorithm that solves the

problem in polynomial time is denoted as P. Similarly the class of problems for which there

exists a nondeterministic algorithm that solves the problem in polynomial time is denoted

as NP. It holds that P ⊆ NP, however, it is not known whether P = NP or P ⊊ NP.
A problem A is called NP-hard if every problem B ∈ NP can be transformed to A in

polynomial time. Such a transformation from B to Amapping any instance X of B to an

instance Y of A so that there is a valid solution for X if and only if there is a valid solution

for Y is called reduction. Therefore, if at least one problem in NP can be solved efficiently, then

we can solve every other problem efficiently. The current conjecture, though, is that P ≠ NP,
and thus, we do not expect that an NP-hard problem can be solved efficiently. A problem is

called NP-complete if it is NP-hard and in NP.

Usually, NP-hardness is proved by reduction from a known NP-hard problem. In the

following we list some of the known NP-hard problems used in this book.

3SAT (3-Satisfiability)
Given: a set of Boolean variables U and a set C of clauses such that

each clause contains three literals from U .

Find: a truth assignment to the variables so that

each clause is satisfied.

The problem 3SAT is one of the “core”, as listed by Garey and Johnson [GJ79], NP-complete

problems most frequently used for reduction. It has a lot of variants that are particularly

applicable in Graph Drawing. Below we state one of these variants.

NAE3SAT (Not-All-Equal-3-Satisfiability)
Given: a set of Boolean variables U and a set C of clauses such that

each clause contains three literals from U .

Find: a truth assignment to the variables so that each clause contains at least

one true literal and at least one false literal.

The problem NAE3SAT can be mechanically simulated by a paradigm called the “Logic

Engine” [DETT99, Section 11.2]. This paradigm is often used to prove complexity of Graph

Drawing problems.

GENUS (Determining graph genus)
Given: a graph G.

Find: the genus of the graph G.
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The problem GENUS is known to be NP-hard even though if the genus is fixed, there exists an

algorithm with linear runtime with respect to the size of the input [Tho89, Moh99, KMR08].

As a way to deal with NP-hard problems there are several complexity classes defined for

problems that can be solved in time depending not only on the size n of the instance but also

on some parameter of the instance k so that the runtime of the algorithm is dominated by the

parameter k and is polinomial in n if k is fixed.

A problem A is called fixed parameter tractable or FPT if there is an algorithm that correctly

decides, for input X and the parameter k, whether X is a solution to A in time O( f (k)nc),
where n is the size of the input, that is, n = ∣X∣, c is a constant, and f (⋅) is a computable

function which only depends on k. The algorithm with such a runtime is called an FPT

algorithm.

A problem A is in the class XP if there is an algorithm that correctly decides, for input X

and the parameter k, whether X is a solution to A in time O(n f (k)), where n is the size of the

main part of the input, that is, n = ∣X∣ and f (⋅) is a computable function which only depends

on k. The algorithm with such a runtime is called an XP algorithm.

For some problems, however, it is believed that algorithms with exponential runtime

are unavoidable. The Exponential Time Hypothesis (ETH) [IP01] is a complexity theoretic

assumption defined as follows. For k ≥ 3, let sk = inf{δ : there is an O(2δn)-time algorithm

to solve k-SAT}. ETH states that for k ≥ 3, sk > 0, e.g., there is no quasi-polynomial time

algorithm that solves 3SAT. So, finding a problem that can be solved in quasi-polynomial

time and is also NP-hard, would contradict the ETH. In recent years, the ETH has become a

standard assumption fromwhichmany conditional lower bounds have been proven [CFK
+
15].

2.4 Monadic Second-Order Logic

In Chapters 6 and 7 we design several algorithms based on extended monadic second-order

logic (MSO2). In this section we introduce some basic definitions of the concept. For back-

ground on monadic second-order logic, we refer to the textbook of Courcelle and Engel-

friet [CE12].

The class of formulas expressible in MSO2 is defined as follows. Extended monadic second-

order logic (MSO2) is a subset of second-order logic that can be used to express certain graph

properties. It is built from the following primitives:

• variables for vertices, edges, sets of vertices, and sets of edges;

• binary relations for: equality (=), membership in a set (∈), subset of a set (⊆), and
edge–vertex incidence (I);

• standard propositional logic operators: ¬, ∧, ∨,→, and↔;

• standard quantifiers (∀, ∃) which can be applied to all types of variables.

Note that MSO2 differs from full second order logic in that it does not allow quantification

over sets of sets, such as sets of pairs of vertices that are not subsets of the given edges. If we

drop the “2” then we havemonadic second-order logic (MSO) where the only difference is that

we are now not allowed to quantify over edge sets. Additionally, the convention for MSO
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formulas is to use a binary adjacency function (ad jG) instead of the incidence function as in

the definition of MSO2 above.

For a graph G and an MSO2 (or MSO) formula ψ, we use G ⊧ ψ to indicate that ψ can be

satisfied by G in the obvious way.

Another tool that will be useful for us in Chapter 7 is an L-transduction, which is the

operation of constructing the model of one graph/structure from the model of another

graph/structure in the language of the logic L. A formal treatment on transductions is given

in the book of Courcelle and Engelfriet [CE12, Section 1.7.1, and Definitions 7.6 and 7.25]. For

example, an MSO-transduction that constructs a graph G′ (modelled for MSO, using a vertex

set V(G′) and adjacency function ad jG′) by adding a universal vertex x to a given graph G

(modelled for MSO2, using a vertex set V(G), edge set E(G), and incidence function IG) can

be written as follows:

V(G′) ∶= {x} ∪ V(G)
ad jG′(u, v) ∶= (u ≠ v)∧

(((∃e ∈ E(G)) (IG(e , v) ∧ IG(e , u))) ∨ (x = u) ∨ (x = v)).

Graph properties that can be expressed as an MSO2 formula of bounded size can be

efficiently tested using Courcelle’s theorem, provided that the given graph has bounded

treewidth.

Theorem 2.1 (Courcelle [Cou90, CE12]). For any integer t ≥ 0 and any MSO2 formula ψ

of length ℓ, an algorithm can be constructed which takes a graph G with n vertices, m edges,

and treewidth at most t and decides in O( f (t, ℓ) ⋅ (n + m)) time whether G ⊧ ψ where the

function f from this time bound is a computable function of t and ℓ.
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Part I

Optimizing Crossings

in Circular-Arc Drawings





3

Covering Graphs

with Few Circles and Few Spheres

A drawing of a given graph can be evaluated by many different quality measures depending

on the concrete purpose of the drawing. Classical examples are the number of crossings,

the ratio between the lengths of the shortest and the longest edge, or the angular resolution.

Clearly, different layouts (and layout algorithms) optimize different measures. Hoffmann et

al. [HvKKR14] studied ratios between optimal values of quality measures implied by different

graph drawing styles. For example, there is a circular-arc drawing of the icosahedron with

perfect angular resolution (that is, the edges are equiangularly spaced around each vertex),

whereas the best straight-line drawing has an angular resolution of at most 15
○
, which yields a

ratio of 72
○/15○ = 4.8. Hoffmann et al. also constructed a family of graphs whose straight-line

drawings have unbounded edge–length ratio, whereas there are circular-arc drawings with

edge–length ratios arbitrarily close to 3 [HvKKR14, Figures 4 and 6].

A few years ago, a new type of quality measure was introduced: the number of geometric

objects that are needed to draw a graph given a certain style. Schulz [Sch15] coined this

measure the visual complexity of a drawing. More concretely, Dujmović et al. [DESW07]

defined the segment number seg(G) of a graph G to be the minimum number of straight-line

segments over all straight-line drawings ofG. Similarly, Schulz [Sch15] defined the arc number

arc(G) with respect to circular-arc drawings of G and showed that circular-arc drawings

are an improvement over straight-line drawings not only in terms of visual complexity but

also in terms of area consumption; see Schulz [Sch15, Theorem 1]. Mondal et al. [MNBR13]

showed how to minimize the number of segments in convex drawings of 3-connected planar

graphs both on and off the grid. Igamberdiev et al. [IMS17] fixed a bug in the algorithm

of Mondal et al. and compared the resulting algorithm to two other algorithms in terms of

angular resolution, edge length, and face aspect ratio. Hültenschmidt et al. [HKMS18] studied

the visual complexity of drawings of planar graphs. For example, they showed upper bounds

for the number of segments and arcs in drawings of trees, triangulations, and general planar

graphs. Recently, Kindermann et al. [KMS18] presented a user study showing that people

without mathematical or computer science background prefer drawings that consist of few

line segments, that is, drawings of low visual complexity. (Users with such a background had

a slight tendency to prefer drawings that are more symmetric.) The study, however, was done

for trees only.

Durocher et al. [DMNW11] investigated the complexity of computing minimum-segment

drawings (and related problems). Among others, they showed that it is NP-hard to compute

the segment number of plane graphs (that is, planar graphs with fixed embedding), even if

the graphs have maximum degree 4. As an open problem, the authors suggested to study

minimum-line drawings, which they define to be minimum-segment drawings whose edges lie

in the union of the smallest number of straight lines (among all minimum-segment drawings).

Chaplick et al. [CFL
+
16] defined a similar quality measure, which they call the affine cover

number. Given a graph G and two integers l and d with 0 < l < d, they defined ρ l
d(G) to be

the minimum number of l-dimensional affine subspaces that together cover a crossing-free
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3 Covering Graphs with Few Circles and Few Spheres

straight-line drawing of G in d-dimensional space. It turned out that it suffices to consider

l ≤ 2 because otherwise ρ l
d(G) = 1. In [CFL

+
16] the authors also show that every graph

can be drawn in 3-space as effectively as in high dimensional spaces, i.e., for any integers

1 ≤ l ≤ 3 ≤ d and for any graph G, it holds that ρ l
d(G) = ρ l

3
(G). Note that, in general, (as

already mentioned in Chapter 2) the minimum-line drawings mentioned above are different

from ρ1

2
-optimal drawings since there are graphs that do not have a ρ1

2
-optimal cover with the

minimum number of segments; see Example 3.1 in Section 3.6.

Among others, Chaplick et al. showed that the affine cover number can be asymptotically

smaller than the segment number, constructing an infinite family of triangulations (Tn)n>1
such that Tn has n vertices and ρ1

2
(Tn) = O(

√
n), but seg(Tn) = Ω(n). On the other hand,

they showed that seg(G) = O(ρ1

2
(G)2) for any connected planar graph G. In a companion

paper [CFL
+
17], Chaplick et al. show thatmost variants of the affine cover number areNP-hard

to compute.

Our contribution. Combining the approaches of Schulz and Chaplick et al., we introduce

the spherical cover number σ l
d(G) of a graph G to be the minimum number of l-dimensional

spheres in Rd
such that G has a crossing-free circular-arc drawing that is contained in the

union of these spheres. Note that σ 1

2
(G) is defined for planar graphs only.

Firstly, we provide some basic observations and preliminary results that our work heavily

relies on.

We obtain bounds for the spherical cover number σ 2

3
of the complete and complete bipartite

graphs which show that spherical covers can be asymptotically smaller than affine covers; see

Table 3.1 and Section 3.2.

Then we turn to platonic graphs, that is, to 1-skeletons of platonic solids; see Section 3.3.

These graphs possess several nice properties: they are regular, planar and Hamiltonian. We

use them as indicators to compare the above-mentioned measures of visual complexity; we

provide bounds for their segment and arc numbers (see Table 3.2) as well as for their affine

and spherical cover numbers (see Table 3.3). For the upper bounds, we present straight-line

drawings with (near-) optimal affine cover number ρ1

2
and circular-arc drawings with optimal

spherical cover number σ 1

2
; see Figures 3.4–3.6. We note that sometimes optimal spherical

covers are more symmetric than optimal affine covers. For example, it seems that there is no

symmetric drawing of the cube that is ρ1

2
-optimal, whereas there are symmetric σ 1

2
-optimal

drawings; see Fig. 3.4.

For general graphs, we present lower bounds for the spherical cover numbers by means of

some combinatorial graph characteristics, in particular, by treewidth, balancedW-separator

size, linear arboricity, and bisection width; see Section 3.4.

We decided to start with our more concrete (and partially stronger) results and postpone

the structural observations to Section 3.4, although this means that we’ll sometimes have to

use forward references to Theorem 3.3, our main result in Section 3.4. Finally, we formulate

a mixed-integer linear program (MIP) that yields lower bounds for the segment number

of embedded planar graphs; see Section 3.5. For the platonic solids, the lower bounds (see

Table 3.4) that we computed using the MIP turned out to be tight. We conclude with a few

open problems.
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3.1 Preliminary Results

3.1 Preliminary Results

In this section we state some preliminary results. Firstly, we note that any drawing with

straight-line segments and circular arcs can be transformed into a drawing that uses circular

arcs only.

Proposition 3.1. Given a graph G and a drawing Γ of G that represents edges as straight-line

segments or circular arcs on r l-dimensional planes or spheres in Rd , there is a circular-arc

drawing Γ′ of G on r l-dimensional spheres inRd . In particular, σ l
d(G) ≤ ρ l

d(G) for any graph G

and 1 ≤ l < d.

Proof: Take an arbitrary sphere S ⊂ Rd
that does not intersect any of the r spheres or planes

that support the given drawing Γ of G. Without loss of generality, assume that S is centered

at the origin. This implies that none of the spheres supporting Γ goes through the origin.

Let ρ be the radius of S. Invert the drawing with respect to S by the map x ↦ ρx/∥x∥. (For

a more formal definition of inversion see Chapter 4.) The resulting drawing is a circular-

arc drawing of G on r l-dimensional spheres in Rd
. Indeed, using basic properties of the

inversion (see, for instance, [Ede06] or [BEG11, Chapter 5.1]), it can be proved that this inver-

sion transforms planes into spheres of the same dimension and preserves spheres, in other

words, the set of images of points on a sphere forms another sphere of the same dimension.

Therefore, we may consider any line a “circle of infinite radius”, any plane a “sphere of

infinite radius”, and any affine cover a spherical cover. By “line” we always mean a straight line.

Trivial bounds on σ 1

3
(G) follow from the fact that every circle is contained in a plane and

that we have more flexibility when drawing in 3D than in 2D. Note again that σ 1

2
(G) and

σ 1

3
(G) are only defined when G is planar.

Proposition 3.2. For any graph G, it holds that ρ2

3
(G) ≤ σ 1

3
(G). If G is planar, we additionally

have σ 1

3
(G) ≤ σ 1

2
(G).

The spherical cover number σ 2

3
(G) can be considered a characteristic of a graph G that lies

between its thickness θ(G), which is the smallest number of planar graphs whose union is G,

and its book thickness bt(G), which is the minimum number of pages (halfplanes) needed to

draw the edges of G when the vertices lie on the spine of the book (the line that bounds all

halfplanes).

Proposition 3.3. For every graph G, it holds that θ(G) ≤ σ 2

3
(G) ≤ ⌈bt(G)/2⌉.

Proof: Each sphere covers a planar subgraph of G, so σ 2

3
(G) is bounded from below by θ(G).

On the other hand, given a book embedding of a graph G with the minimum number of

pages (equal to bt(G)), we put the vertices from the spine along a circle which is the common

intersection of ⌈bt(G)/2⌉ spheres; see Fig. 3.1a. Then, for each page, we draw all its edges as

arcs onto a hemisphere. Thus, we obtain a drawing witnessing σ 2

3
(G) ≤ ⌈bt(G)/2⌉.

To bound σ 1

2
(G) and σ 1

3
(G) for the platonic solids in Section 3.3 from below we use a

combinatorial argument similar to that in Lemma 7(a) and Lemma 7(b) in [CFL
+
16] which is

based on the fact that each vertex of degree at least 3 must be covered by at least two lines
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3 Covering Graphs with Few Circles and Few Spheres

and two lines can cross at most once, therefore, providing a lower bound on the number of

lines given the number of vertices. We use a similar argument together with the fact that two

circles can cross at most twice.

Proposition 3.4. For any integer d ≥ 1 and any graph G with n vertices and m edges, the

following bounds hold:

(a) σ 1

d(G) ≥
1

2
(1 +
√

1 + 2∑v∈V(G) ⌈
deg v

2
⌉ (⌈ deg v

2
⌉ − 1));

(b) σ 1

d(G) ≥
1

2
(1 +
√

2m2/n − 2m + 1) for any graph G with m ≥ n ≥ 1.

3.2 Complete and Complete Bipartite Graphs

In this section we investigate the spherical cover numbers of complete graphs and complete

bipartite graphs. We first cover these graphs by spheres then by circular arcs, in 3D (and

higher dimensions).

Theorem 3.1.

(a) For any n ≥ 3, it holds that ⌊(n + 7)/6⌋ ≤ σ 2

3
(Kn) ≤ ⌈n/4⌉.

(b) For any 1 ≤ p ≤ q, it holds that pq/(2p + 2q − 4) ≤ σ 2

3
(Kp ,q) ≤ p and, if additionally

q > p(p − 1), it holds that σ 2

3
(Kp ,q) = ⌈p/2⌉.

Proof: (a) By Proposition 3.3, θ(Kn) ≤ σ 2

3
(Kn) ≤ ⌈bt(Kn)/2⌉. It remains to note that, e.g.,

Duncan [Dun11] showed that θ(Kn) ≥ ⌊(n + 7)/6⌋ and Bernhart and Kainen [BK79] showed

that bt(Kn) = ⌈n/2⌉.
(b) Again, it suffices to bound the values of the graph’s thickness and book thickness.

It can be easily shown that bt(Kp ,q) ≤ min{p, q}. On the other hand, Harary [Har15,

Section 7, Theorem 8] showed that θ(Kp ,q) ≥ pq/(2p + 2q − 4). Due to Proposition 3.3,

θ(Kp ,q) ≤ σ 2

3
(Kp ,q) ≤ min{p, q} ≤ p. In particular, if q > p(p − 1) then bt(Kp ,q) = p, due to

Bernhart and Kainen [BK79, Theorem. 3.5], and ⌈pq/(2p + 2q − 4)⌉ = ⌈p/2⌉, so in this case

σ 2

3
(Kp ,q) = ⌈p/2⌉.

Theorem 3.1 implies that any n-vertex graph G has σ 2

3
(G) ≤ ⌈n/4⌉.

On the other hand, given a graph G, we can bound σ 1

3
(G) from below in terms of the

bisection width bw(G) of G, that is, the minimum number of edges between the two sets

(W1 ,W2) of a bisection of G that is, a partition of the vertex set V(G) of G into two sets W1

andW2 with ∣W1∣ = ⌈n/2⌉ and ∣W2∣ = ⌊n/2⌋.

Proposition 3.5. For any graph G and d ≥ 2, it holds that σ 1

d(G) ≥ bw(G)/2.

Proof: The proof is similar to the proof in Theorem 9(a) in [CFL
+
16]. It is based on the fact

that for any finite set of points in Rd
, there is a hyperplane that bisects the point set into two

almost equal subsets (that is, one subset may have at most one point more than the other).
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3.2 Complete and Complete Bipartite Graphs

Given a drawing of G with σ arcs, a hyperplane bisecting V(G) can cross at most 2σ edges

since a hyperplane can cross an arc at most twice.

Next we analyze the bisection width of the complete (bipartite) graphs.

Proposition 3.6. For any n, p, and q, bw(Kn) = ⌊n2/4⌋ and bw(Kp ,q) = ⌈pq/2⌉.

Proof: Let (W ,W ′) be a bisection of Kn such that ∣W ∣ = ⌊n/2⌋. Then the width of this

bisection is ⌊n2/4⌋.
Now let P ∪Q = V(Kp ,q) be the bipartition of Kp ,q , and let (W ,W ′) be a bisection of Kp ,q

that contains r vertices from P and s vertices from Q (with r + s = ⌊(p + q)/2⌋). Then the

width of this bisection is r(q − s) + s(p − r). The minimum of this value can be found by a

routine calculation of the minimum of a quadratic polynomial on the grid over the possible

values of r and s.

Theorem 3.2. For any positive integers n, p, and q, it holds that

(a) ⌊n2/8⌋ ≤ σ 1

3
(Kn) ≤ (n2 + 5n + 6)/6 and

(b) ⌈pq/4⌉ ≤ σ 1

3
(Kp ,q) ≤ ⌈p/2⌉⌈q/2⌉.

Proof: The lower bounds follow from Proposition 3.5 and 3.6.

To show the upper bound for σ 1

3
(Kn), we use a partition of Kn into (mutually edge-disjoint)

subgraphs of K3 (that is, copies of K3, paths of length 2, and single edges). Using Steiner

triple systems, one can show that (n2 + 5n + 6)/6 subgraphs suffice [CFL
+
16, Theorem 12].

For distinct points a, b, and c, let L(a, b) be the line through a and b and let C(a, b, c) be
the (unique) circle through a, b, and c. For n ≤ 3, it is clear how to draw Kn . For n ≥ 4, we
iteratively construct a set P of n points in R3

satisfying the following conditions:

• no four distinct points of P are coplanar,

• for any five distinct points p1 , . . . , p5 ∈ P, it holds that C(p1 , p2 , p5) ∩ C(p3 , p4 , p5) =
{p5} and L(p1 , p2) ∩ C(p3 , p4 , p5) = ∅,

• for any six distinct points p1 , . . . , p6 ∈ P, it holds that C(p1 , p2 , p3)∩C(p4 , p5 , p6) = ∅.

It can be checked that these conditions forbid only a so-called nowhere dense set of R3
to

place the next point of P, so we can always continue. Finally, we map the vertices of Kn to the

distinct points of the set P. Consider our partition of Kn into subgraphs of K3. Each subgraph

of K3 with at least two edges uniquely determines a circle or a circular arc, which we draw. For

each subgraph that consists of a single edge, we draw the line segment that connects the two

vertices. The above conditions ensure that the drawings of no two subgraphs have a crossing.

The upper bound for σ 1

3
(Kp ,q) can be seen as follows. Let p′ = ⌈p/2⌉ ≥ p/2 and q′ =

⌈q/2⌉ ≥ q/2. Draw a bipartite graph K2p′ ,2q′ ⊃ Kp ,q in 3D as follows; see Fig. 3.1b. Let

V(K2p′ ,2q′) = P ∪ Q be the natural bipartition of its vertices. Fix any family of p′ distinct

spheres with a common intersection circle. Place the 2q′ vertices of Q on q′ distinct pairs

of antipodal points on the circle. Consider a line going through the center of the circle and

orthogonal to its plane. Place the 2p′ vertices of P into p′ pairs of distinct intersection points
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3 Covering Graphs with Few Circles and Few Spheres

(a) σ 2

3 (K5) ≤ ⌈θ(K5)/2⌉ = 2 (b) σ 2

3 (K4,4) ≤ 2

Figure 3.1: Upper bounds for the spherical cover number of complete (bipartite) graphs.

of the line with the circles of the family, the points from each pair belonging to the same

sphere. Now each pair of antipodal points in Q together with each pair of cospheric points

in P determine a unique circle that contains all these points and provides a drawing of the

four edges between them. The union of all these circles is the desired drawing of K2p′ ,2q′

onto p′q′ circles.

We remark that Proposition 3.3 and all the bounds for 3D in this section also hold for

higher dimensions.

G Kn Kp ,q references

ρ1

3
(G) (n

2
) pq − ⌊ p

2
⌋ − ⌊ q

2
⌋ [CFL

+
16, Expl. 10 & 25(c)]

ρ2

3
(G) n2−n

12
∼ n2+5n+6

6
⌈min{p ,q}

2
⌉ [CFL

+
16, Thm. 12, Expl. 11]

σ 1

3
(G) ⌊ n

2

8
⌋ ∼ n2+5n+6

6
⌈ pq

4
⌉ ∼ ⌈ p

2
⌉ ⌈ q

2
⌉ Theorem 3.2

σ 2

3
(G) ⌊ n+7

6
⌋ ∼ ⌈ n

4
⌉ ⌈ pq

2(p+q−2)⌉ ∼ ⌈
min{p ,q}

2
⌉ Theorem 3.1

Table 3.1: Lower and upper bounds on the three-dimensional line, plane, circle, and sphere cover

numbers of Kn for any n ≥ 1 and of Kp ,q for any p, q ≥ 3. The cells with only one entry contain tight

bounds.

Table 3.1 summarizes the known bounds for the affine cover numbers [CFL
+
16] and the

new bounds for the spherical cover numbers of complete (bipartite) graphs in 3D.
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3.3 Platonic Graphs

G = (V , E) ∣V ∣ ∣E∣ ∣F∣ seg upp. bd. arc lower bd. upp. bd.

tetrahedron 4 6 4 6 Fig. 3.2a 3 Prop. 3.4(a) Prop. 3.8(a)

octahedron 6 12 8 9 Fig. 3.3a 3 Prop. 3.4(a) Prop. 3.8(b)

cube 8 12 6 7 Fig. 3.4a 4 [DESW07, Lem. 5] Prop. 3.8(c)

dodecahedron 20 30 12 13 Fig. 3.5a 10 [DESW07, Lem. 5] Prop. 3.8(d)

icosahedron 12 30 20 15 Fig. 3.6a 7 Prop. 3.4(a) Prop. 3.8(e)

Table 3.2: Bounds on the segment and arc numbers of the platonic graphs. We obtained the

lower bounds on the segment number with the help of an integer linear program; see Table 3.4 in

Section 3.5. The upper bounds for the segment numbers of the dodecahedron and icosahedron

have been established by Schulz [Sch15] and Scherm [Sch16, Fig. 2.1(c)].

graph ρ1

2
ρ1

3
lower bd. upp. bd. σ 1

2
σ 1

3
upp. bd.

tetrahedron 6 6 [CFL
+

16, Expl. 10] Fig. 3.2a 3 3 Fig. 3.2b

octahedron 9 9 Prop. 3.7(b) Fig. 3.3a 3 3 Fig. 3.3c

cube 7 7 Prop. 3.7(c) Fig. 3.4a 4 4 Fig. 3.4d

dodecahedron 9 . . . 10 9 . . . 10 Prop. 3.7(d) Fig. 3.5a 5 5 Fig. 3.5d

icosahedron 13 . . . 15 13 . . . 15 Prop. 3.7(e) Fig. 3.6a 7 7 Fig. 3.6c

Table 3.3: Bounds on the affine cover numbers ρ l
d and the spherical cover numbers σ l

d for platonic

graphs. The lower bounds on σ 1

2 and σ 1

3 stem from Proposition 3.4(a).

3.3 Platonic Graphs

In this section we analyze the segment numbers, arc numbers, affine cover numbers, and

spherical cover numbers of platonic graphs. We provide upper bounds via the corresponding

drawings; see Figures 3.2–3.6.

To bound the spherical cover numbers σ 1

2
and σ 1

3
of the platonic graphs from below, we

use a single combinatorial argument—Proposition 3.4(a); see Section 3.4. For the affine

cover number ρ1

2
, a similar combinatorial argument fails [CFL

+
16, Lemma 7(a)]. Therefore,

we bound ρ1

3
(and, hence, also ρ1

2
) from below for each platonic graph individually; see

Proposition 3.7. For an overview of our results, see Tables 3.2 and 3.3. We abbreviate every

platonic graph by its capitalized initial; for example, C for the cube.

Proposition 3.7. (a) ρ1

3
(T) ≥ 6; (b) ρ1

3
(O) ≥ 9; (c) ρ1

3
(C) ≥ 7; (d) ρ1

3
(D) ≥ 9; (e) ρ1

3
(I) ≥ 13.

Proof: (a) Follows from [CFL
+
16, Ex. 10].

(b) Consider a straight-line drawing of the octahedron O covered by a family L of ρ lines.

Observe that every vertex of the octahedron is adjacent to every other except the opposite

vertex. Therefore, no line in L can cover more than three vertices, otherwise the edges on the

line would overlap. Hence, every line covers at most two edges, and these must be adjacent.

Moreover, the two end vertices of these length-2 paths cannot be adjacent. Since there are only

three pairs of such vertices, at most three lines cover two edges each. Since the octahedron

has twelve edges, ρ ≥ 9.
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3 Covering Graphs with Few Circles and Few Spheres

(a) 6 segm. (b) 3 arcs

Figure 3.2: Drawings of

the tetrahedron.

(a) 9 segm. / lines (b) 4 arcs / circles (c) 3 arcs / circles

Figure 3.3: Drawings of the octahedron.

(a) 7 segm. / lines (b) 8 segm. / lines (c) 6 arcs / 4 circles (d) 4 arcs

Figure 3.4: Drawings of the cube.

(a) 13 segm. / 10 lines (b) 10 arcs / 10 circ. (c) 13 arcs / 8 circ. (d) 10 arcs / 5 circles

Figure 3.5: Drawings of the dodecahedron: (a), (c)[Sch16]; (b)[Sch15].

(a) 15 segments / lines (b) 10 arcs / 7 circles (c) 7 arcs / 7 circles

Figure 3.6: Drawings of the icosahedron.
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(c) Now consider a straight-line drawing of the cube C covered by a family L of ρ lines. We

distinguish two cases.

Assume first that the drawing of the cube lies in a single plane. Each embedding of the

cube contains two nested cycles, namely, the boundary of the outer face and the innermost

face. We consider three cases depending on the shape of the outer face. (i) If the outer cycle is

drawn as the boundary of a (strictly) convex quadrilateral, then none of the lines covering its

sides can be used to cover the edges of the innermost cycle, therefore, it needs three additional

lines. (ii) If the outer cycle is drawn as the boundary of a non-convex quadrilateral, then we

need three additional lines to cover the three edges going from its three convex angles to the

innermost cycle. (iii) Now assume that the outer cycle is drawn as a triangle. Then none of the

lines covering its sides can be used to cover the edges of the innermost cycle. If this cycle is

drawn as a quadrilateral, then we need four additional lines to cover its sides. If the innermost

cycle is drawn as a triangle, then we need three lines for the triangle and an additional line

to cover the edge incident to the vertex of the innermost cycle which is not a vertex of the

triangle. In each of the three cases (i)–(iii), we need at least seven lines to cover the cube.

Now assume that the drawing of the cube is not contained in a single plane. Then its convex

hull has (at least) four extreme points. In order to cover the cube, we need at least one pair of

intersecting lines ofL for each vertex of the cube and at least three such pairs for each extreme

point, that is, at least 4 + 4 ⋅ 3 = 16 pairs of intersecting straight lines in total. So, (ρ
2
) ≥ 16 and

ρ ≥ 7.

(d) Consider a straight-line drawing of the dodecahedron D covered by a family L of ρ

lines. Again, we distinguish two cases.

Assume first that the drawing of the dodecahedron lies in a single plane. Again we make a

case distinction depending on the shape of the outer cycle. (i) If the outer cycle is drawn as

the boundary of a convex polygon, let L0 ⊆ L be the family of lines that support the edges

on the outer cycle. This family consists of at least three lines. None of them covers any of

the at most 15 vertices remaining in the interior of the convex polygon. Thus each of these

vertices is an intersection point of two lines of L ∖ L0. Since L ∖ L0 ≤ ρ − 3, this family of

lines can generate at most (ρ−3

2
) intersection points. Therefore, (ρ−3

2
) ≥ 15 and, hence, ρ ≥ 9.

(ii) Assume that the outer cycle is drawn as a non-convex quadrilateral. Then the drawing is

contained in a convex angle opposite to the reflex angle. To cover the angle sides, we need

a family L0 consisting of at least two lines. None of them covers any of the at least 15 + 1

vertices remaining in the interior of the angle. Similarly to the previous paragraph, we obtain

(ρ−2

2
) ≥ 16 and, hence, ρ ≥ 9. (iii) Assume that the outer cycle is drawn as a pentagon P. Since

the angle sum of a pentagon is 3π, P has at most two reflex angles, and therefore, at least

three convex angles. Each vertex of D drawn as a vertex of a convex angle is an intersection

point of (at least) three covering lines, because it has degree 3. There exists an edge e of P

such that P is contained in one of the half-planes created by the line ℓ spanned by e (see, for

instance, [Mos60]). It is easy to check that ℓ can cover only edge e of the outer face of D. Then

the family L ∖ {ℓ} covers all edges of G but e. The angles of P incident to e are convex. Let v

be a vertex of D drawn as a vertex of a convex angle not incident to e. In order to cover D, we

need at least one pair of intersecting lines from L ∖ {ℓ} for each vertex of D different from v

and at least three such pairs for v, that is, at least 19 + 3 = 22 pairs of intersecting lines in

total. Therefore, (ρ−1
2
) ≥ 22 and, hence, ρ ≥ 9. Note that, in each of the three cases (i)–(iii), we

have ρ ≥ 9.
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3 Covering Graphs with Few Circles and Few Spheres

Now assume that the drawing of D is not contained in a single plane. Then its convex hull

has (at least) four extreme points. In order to cover D, we need at least one pair of intersecting

lines of L for each vertex of D and at least three such pairs for each extreme point, that is,

at least 16 + 4 ⋅ 3 = 28 pairs of intersecting lines in total. Therefore, (ρ
2
) ≥ 28. But if we have

equality then any two lines of L intersect. So all of them share a common plane or a common

point. In the first case the drawing is contained in a single plane; in the second case the family

L cannot cover the drawing. Thus (ρ
2
) > 28, and, hence, ρ ≥ 9.

(e) If the drawing of the icosahedron I is not contained in a single plane, then we can pick

four extreme points of the convex hull of the drawing. Each of these points represents a vertex

of degree 5, so we need five lines to cover edges incident to this vertex, that is, 20 lines in

total, but we have double-counted the lines that go through pairs of the extreme points that

we picked. Of these, there are at most (4
2
) = 6. Thus we need at least 20 − 6 = 14 lines to

cover the drawing.

v u

w

Q

LvLu



Figure 3.7: The families of linesLu andLv .

Now assume that there exists a straight-line drawing of the icosahedron in a single plane

covered by a family L of twelve lines. Let u, v, w be the vertices of the outer face of I. Clearly,

three distinct lines in L form the triangle uvw. For s ∈ {u, v ,w}, we denote by Ls the

lines in L that go through s and do not cover edges of the outer face. Since I is 5-regular,

∣Ls ∣ = deg(s) − 2 = 3. Consider the set P of intersection points between the line families Lu

and Lv . The set P lies in the triangle uvw and is bounded by the quadrilateral Q formed by

the outer pairs of lines in Lv and Lu ; see Fig. 3.7.

The quadrilateral Q is convex and eight of the nine points in P lie on the boundary of Q,

hence, for any line ℓ in Lw , we have ∣ℓ ∩ P∣ ≤ 3. Observe that ∣ℓ ∩ P∣ = 3 implies that ℓ goes

through the only point of P that lies in the interior of Q. Thus the lines in Lw can create at

most seven triple intersection points with the lines in Lu and Lv .

The icosahedron is 5-regular, so all vertices must be placed at the intersection of at least

three lines. We need at least nine triple intersection points in order to place all 12 − 3 inner

vertices of the icosahedron—a contradiction.

Proposition 3.8. (a) arc(T)≤ 3; (b) arc(O)≤ 3; (c) arc(C)≤4;

(d) arc(D)≤ 10; (e) arc(I) ≤ 7.

Proof: For the upper bounds for (a)–(d) see the drawings of the graphs in Figures 3.2b,

3.3c, 3.4d, and 3.5d respectively. While it is easy to see that these drawings are valid, we

argue more carefully that the icosahedron does indeed admit a drawing with seven arcs. To
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B1 C2
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B2

D0
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(a) symmetric path partition: the black

and gray arcs are in L, the light and

dark blue arcs inM, and the red cy-

cle is K

B0

C0
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c(L0)

c(M0)

M0
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D1
A1

A2

B1
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C2

π/3

π/6

−π/6
M1

K

L0

L2

L1

(b) illustration of the proof of Proposition 3.8(e)

Figure 3.8: Bounding the arc number of the icosahedron.

construct the drawing in Fig. 3.6c (for details see Fig. 3.8), we first cover the edges of the

icosahedron by seven objects, grouped into a single cycle K and two sets L = {L0 , L1 , L2}
andM = {M0 ,M1 ,M2}, where K is a cycle of length 6 and all elements of L andM are simple

paths of length 4; see Fig. 3.8a. We identify the paths and cycles with their drawings as arcs

and circles. For a set S ∈ {{K}, L,M} and a number i ∈ {0, 1, 2}, let (dS , αS i
) be the polar

coordinates of the center c(S i) of the circle of radius rS that covers arc S i ∈ S (see Fig. 3.8b).

We set the coordinates and radii as follows:

αK = 0 dK = 0 rK = 1

αL i
= i ⋅ 2π/3 dL = (3 +

√
3)/2 rL =

√
5/2 +

√
3

αM i
= π/2 + i ⋅ 2π/3 dM = (3 −

√
3)/2 rM =

√
5/2 −

√
3

Using the law of cosines, it is easy to compute the intersection points:

{A i} ∶= L i ∩ L i+1 ∩M i ⇒ A i = (i ⋅ 2π/3, (1 +
√

3)/2);
{B i} ∶= L i ∩ L i+1 ∩ K ⇒ B i = (i ⋅ 2π/3, 1);
{C i} ∶= M i ∩M i+2 ∩ K ⇒ C i = (π/3 + i ⋅ 2π/3, 1);

{D i} ∶= L i ∩M i ∩M i+1 ⇒ D i = (π/2 + i ⋅ 2π/3, (
√

3 − 1)/2).

For i = 0, 1, 2, let L i be the larger arc of the covering circle between the points A i and B i ,

let M i be the larger arc of the covering circle between the points C i+1 and D i+2 (with indices

modulo 3), and let K be the whole unit circle.
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3 Covering Graphs with Few Circles and Few Spheres

3.4 Lower Bounds for σ 1
d

Given a graphG, we obtain lower bounds for σ 1

d(G) via standard combinatorial characteristics

of G in the same way as for the bounds for ρ1

d(G) [CFL
+
16]. In particular, we show that

σ 1

d(G) is bounded from below by theW-separation number sepW(G); see Section 2.1 for the

definition. Moreover, we prove a general lower bound for σ 1

d(G) in terms of the treewidth

tw(G) (see Section 2.1 for the definition) ofG, which follows from the fact that graphs with low

parameter σ 1

d(G) have small separators. This fact is interesting by itself and has yet another

consequence: graphs with bounded vertex degree can have a linearly large value of σ 1

d(G)
(hence, the factor of n in the trivial bound σ 1

d(G) ≤ m ≤ n ⋅ ∆(G)/2 is best possible).

In addition, for any graph G we provide a lower bound with respect to the linear arboricity

la(G), that is, the minimum number of linear forests that partition the edge set of G [Har70].

The proofs for the lower bounds are similar to those regarding the affine cover num-

ber [CFL
+
16]. We restate Proposition 3.5 as item (a) to make the following theorem more

self-contained.

Theorem 3.3. For any integer d ≥ 1 and any graph G with n vertices and m edges, the following

bounds hold:

(a) σ 1

d(G) ≥ bw(G)/2;

(b) σ 1

d(G) > n/10 for almost all cubic graphs with n vertices;

(c) ⌈ 3

2
σ 1

d(G)⌉ ≥ la(G);

(d) σ 1

d(G) ≥ sepW(G)/2 for every W ⊆ V(G);

(e) σ 1

d(G) ≥ tw(G)/6 − 1.

Proof: For the proof of (a) see Proposition 3.5.

(b) The claim follows from (a) and from the fact that a random cubic graph on n vertices

has bisection width at least n/4.95 with probability 1 − o(1) [KM93].

(c) Given the drawing of the graph G on r = σ 1

d(G) circles, we remove an edge from each

of the circles (provided such an edge exists), obtaining at (most) r linear forests. The removed

edges we group into (possible, degenerated) pairs, obtaining at most ⌈r/2⌉ additional linear

forests. So, la(G) ≤ r + ⌈r/2⌉.
(d) The proof is similar to Theorem 9(c) in [CFL

+
16]. The difference of a factor of 1/2 is

due to the fact that a straight line pierces the plane at most once whereas and a circle pierces

the hyperplane at most twice.

(e) follows from (d) and the fact that tw(G) ≤ 3k + 2 if sepW(G) ≤ k for every W with

∣W ∣ = 2k + 3 (see Chapter 2).

Corollary 3.1. σ 1

d(G) cannot be bounded from above by a function of la(G) or v≥3(G) or

tw(G), where v≥3(G) is the number of vertices with degree at least 3.
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Proof: la(G): Akiyama et al. [AEH80] showed that, for any cubic graph G, la(G) = 2. On the

other hand, v≥3(G) = n, so σ 1

3
(G) >

√
n by Proposition 3.4(a). Theorem 3.3(b) yields an even

larger gap.

v≥3(G): LetG be the disjoint union of k cycles. Then v≥3(G) = 0. Clearly, an arrangement A

of ℓ circles has at most ℓ2
vertices. Each cycle of G “consumes” at least two vertices of A or a

whole circle, so σ 1

d(G) = Ω(
√
k).

tw(G): Let G be a caterpillar with linearly many vertices of degree 3. Then, tw(G) = 1. On
the other hand, by Proposition 3.4(a), we have σ 1

d(G) = Ω(
√
n).

Lemma 3.1. A circular-arc drawing Γ ⊂ R of a graph G that contains k nested cycles cannot be

covered by fewer than k circles.

Proof: Fix any point inside the closed Jordan curve in Γ that corresponds to the innermost

cycle of G. Let ℓ be an arbitrary line through this point. Then ℓ crosses at least twice each

of the Jordan curves that correspond to the nested cycles in G. Hence, there are at least 2k

points where ℓ crosses Γ.

On the other hand, consider any set of r circles whose union covers Γ. Then it is clear that

ℓ crosses each of these r circles in at most two points, so there are at most 2r points where ℓ

crosses Γ. Putting together the two inequalities, we get r ≥ k as desired.

At last we remark that there are graphs whose σ 1

3
-value is a lot smaller than their σ 1

2
-value.

Theorem 3.4. For infinitely many n there is a planar graph G on n vertices with σ 1

2
(G) = Ω(n)

and σ 1

3
(G) = O(n2/3).

Proof: We use the same family (G i)i≥1 of graphs as Chaplick et al. [CFL
+
16, Theorem 24(b)]

with G i = C3 × Pi and Pi a path with i vertices. Then G i has n i = 3i vertices, ρ1

2
(G i) = Ω(n i),

and ρ1

3
(G i) = O(n2/3

i ). The lower bound on σ 1

2
(G i) follows from Lemma 3.1. The upper

bound on σ 1

3
(G i) follows from Proposition 3.1 for l = 1 and d = 3, which states that, for any

graph G, σ 1

3
(G) ≤ ρ1

3
(G).

3.5 AnMIP for Estimating the Segment Number

In this section, we exploit a mixed-integer programming formulation for locally consistent

angle assignments [DETT99], which we define below, to obtain lower bounds on the segment

numbers of planar graphs. Our MIP determines a locally consistent angle assignment with the

maximum number of π-angles between incident edges. Note that such angle assignments are

not necessarily realizable with straight-line edges in the plane. This is why the MIP yields only

an upper bound for the number of π-angles—and a lower bound for the segment number.

For the platonic graphs, however, it turns out that the bounds are tight; see Tables 3.2 and 3.4.

Let G be a 3-connected graph with fixed embedding given by a set F of faces and an outer

face f0. Denote the set of vertices V(G) ofG as V and the set of edges E(G) ofG as E. For any

vertex v ∈ V and any face f ∈ F , we introduce a fractional variable xv , f ∈ (0, 2) whose value

33



3 Covering Graphs with Few Circles and Few Spheres

is intended to express the size of the angle at v in f , divided by π. Thus, (π ⋅ xv , f )v∈V , f ∈F is an

angle assignment for G. The following constraints guarantee that the assignment is locally

consistent. (For a vertex v and a face f , we write v ∼ f to express that v is incident to f .)

∑
f∼v

xv , f = 2 for each v ∈ V ;

∑
v∼ f

xv , f = deg( f ) − 2 for each f ∈ F ∖ { f0};

∑
v∼ f0

xv , f0 = deg( f0) + 2.

For any vertex v, let Lv = ⟨v1 , . . . , vk⟩ be the list of vertices adjacent to v, in clockwise order as

they appear in the embedding. Due to the 3-connectivity of G, any two vertices vt and vt+1
that are consecutive in Lv (and adjacent to v) uniquely define a face f (v , t) incident to v, vt ,

and vt+1. For two vertices v i and v j with i < j, we express the angle∠(v ivv j) as the sum of the

angles at v in the faces between v i and v j . As shorthand, we use yv , i , j = ∠(v ivv j)/π ∈ (0, 2):

yv , i , j =
j−1

∑
t=i

xv , f (v ,t) for each v ∈ V , 1 ≤ i < j ≤ deg(v).

We want to maximize the number of π-angles between any two edges incident to the same

vertex. To this end, we introduce a 0–1 variable sv , i , j for any vertex v and 1 ≤ i < j ≤ deg(v).
The intended meaning of sv , i , j = 1 is that ∠(v ivv j) = π. We add the following constraints to

the MIP:

sv , i , j ∈ {0, 1}
sv , i , j ≤ yv , i , j

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

for each v ∈ V , 1 ≤ i < j ≤ deg(v).
sv , i , j ≤ 2 − yv , i , j

If yv , i , j < 1, the second constraint will force sv , i , j to be 0 and the third constraint will not be

effective. If yv , i , j > 1, the third constraint will force sv , i , j to be 0, and the second constraint

will not be effective. Only if yv , i , j = 1 (and∠(v ivv j) = π), both constraints will allow sv , i , j to

be 1. This works because we want to maximize the total number of π-angles between incident

edges in a locally consistent angle assignment. To this end, we use the following objective:

Maximize ∑
v∈V

∑
1≤i< j≤deg(v)

sv , i , j .

Every π-angle between incident edges saves a segment; hence, in any straight-line drawing

of G, the number of segments equals the number of edges minus the number of π-angles. In

particular, this holds for a drawing that minimizes the number of segments (and simultane-

ously maximizes the number of π-angles). Thus,

seg(G) = ∣E∣ − angπ(G).

Since

angπ(G) ≤ ∑
v∈V

∑
1≤i< j≤deg(v)

sv , i , j ,
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graph G octahedron cube dodecahedron icosahedron

angπ(G) ≤ 3 5 17 15

seg(G) ≥ 9 7 13 15

variables 60 48 120 180

constraints 137 114 277 395

runtime [s] 0.011 0.009 0.015 0.066

Table 3.4: Upper bounds on the number of π-angles and corresponding lower bounds on the

segment numbers of the platonic graphs (except for the tetrahedron) obtained by the MIP and sizes

of the MIP formulation for these instances. Running times were measured on a 64-bit machine with

7.7 GB main memory and four Intel i5 cores with 1.90 GHz, using the MIP solver IBM ILOG CPLEX

Optimization Studio 12.6.2.

the above relationship provides the lower bound

seg(G) ≥ ∣E∣ − ∑
v∈V

∑
1≤i< j≤deg(v)

sv , i , j

for the segment number, which can be computed by solving the MIP.

Our MIP has O(n3) variables and constraints. The experimental results for the platonic

graphs (which are 3-connected and thus have a unique planar embedding) are displayed in

Table 3.4.

In addition, to check the capabilities of the MIP, we have tested it on a family of trian-

gulations (Gk)k≥2 constructed by Dujmović et al. [DESW07, Lemma 17]; a variant of the

nested-triangles graph (see Fig. 3.9a). The graph G2 is the octahedron. For k > 2, the trian-

gulation Gk is created by recursively nesting a triangle into the innermost triangle of Gk−1
and connecting its vertices to the vertices of the triangle it was nested into. Note that Gk has

nk = 3k vertices. Dujmović et al. showed a lower bound of 2nk − 6 on the segment number

ofGk and a tight lower bound of 2nk −3 (see the proof of [DESW07, Lemma 17] and Fig. 3.9a)

on the number of segments given the fixed embedding. Figure 3.9b shows the runtime of the

MIP in logarithmic scale for the triangulations G2 ,G3 , . . . ,G8. As expected, the runtime is

(at least) exponential. Interestingly, for each of these (embedded) graphs, our MIP finds a

solution with 2nk − 3 “segments”, thus matching the tight lower bound of Dujmović et al. for

the fixed-embedding case.

3.6 Discussions and Open Problems

As mentioned in the introduction, we now show that minimum-line drawings are indeed

different from ρ1

2
-optimal drawings. Then we state some open problems regarding affine and

spherical cover numbers.
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Gk−2

Gk−1

Gk

(a) optimal drawing of the triangula-

tion Gk (with nk = 3k vertices)

of Dujmović et al. [DESW07] using

2nk − 3 segments

(b) runtimeof theMIP applied to thegraphsG2 ,G3 , . . . ,G8

of Dujmović et al. [DESW07]; the numbers of vertices

of the graphs are on the x-axis; the runtime in seconds

is on the y-axis; note the log-scale at the y-axis

Figure 3.9: Testing the MIP: instances and runtime.

Example 3.1. Minimum-line drawings are different from ρ1

2
-optimal drawings.

Proof: We provide a graph G with ρ1

2
(G) = 5 and seg(G) ≤ 6; see Fig. 3.10a. Then we show

that every embedding of G on any arrangement of five straight lines consists of at least seven

segments.

v

(a) a ρ1

2-optimal drawing of G

on 5 lines and 7 segments

v

(b) aminimum-line drawing ofG

on 6 lines and 6 segments

(c) a star-shaped arrange-

ment of 5 straight lines

Figure 3.10: A graph G that shows that ρ1

2-optimal drawing and minimum-line drawings are indeed

different.

Chaplick et al. [CFL
+
16] defined a vertex of a planar graph to be essential if it has degree

at least 3 or belongs to a cycle of length 3. They observe that in any drawing of a graph any

essential vertex is shared by two edges not lying on the same line. Observe that G has nine

essential vertices. Hence, any arrangement of straight lines that cover a drawing of G consists

of at least five straight lines (with potentially ten intersection points). Moreover, for the same
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reason, an arrangement of five straight lines covering a drawing of G must be simple, that

is, every two straight lines intersect and no three straight lines have a point in common.

There is only one such arrangement of five straight lines in the projective plane [Gru72]. This

combinatorially unique arrangement is star-shaped; see Fig. 3.10c.

The graph G has three triangles that are attached via one vertex in a chain-like fashion.

These triangles can only be embedded into faces of the arrangement; otherwise there would

be a triangle that consumes two additional intersection points of the arrangement. Therefore,

there is only one way to embed the three triangles on the arrangement, namely on some three

consecutive spikes of the star. This forces the degree-2 vertex v (see Fig. 3.10a) to be on a bend

(incident to two segments in the drawing) and makes the embedding combinatorially unique.

In this embedding of G we have seven segments, but seg(G) ≤ 6; see Fig. 3.10b.

Finally, if a graph does not have a drawing with six segments covered by five straight lines in

the projective plane, it also does not have one in the Euclidean plane, because we can embed

a line arrangement in the Euclidean plane into one in the projective plane preserving the

number of segments. So we need at least six straight lines for a drawing with six segments.

We close with some open problems.

We conjecture that our drawings in Figures 3.5a and 3.6a are optimal. This would mean

that ρ1

3
(D) = 10 and ρ1

3
(I) = 15, but we have no proof for this.

Is there a family G of graphs such that the affine cover number ρ l
d(G) of every graph G ∈ G

can be bounded by a function of the spherical cover number σ l
d(G)? For example in the

plane (recall that we only consider planar graphs there), ρ1

2
(G) ∈ O(n), since we can use a

different line for each single edge, moreover, according to Proposition 3.4(a) σ 1

2
(G) ∈ Ω(

√
n),

therefore, we have that ρ1

2
(G) ∈ O(σ 1

2
(G)2). For the given family of graphs can this relation

be tightened? For example, Chaplick et al. [CFL
+
16, Example 22] showed that there are

triangulations for which O(
√
n) lines suffice. It would be even more interesting to find

families of graphs where there is an asymptotic difference between the two cover numbers.

We have already seen that σ 2

3
(Kn) grows asymptotically more slowly than ρ2

3
(Kn). Is there

a family of planar graphs where σ 1

2
grows asymptotically more slowly than ρ1

2
?

Chaplick et al. [CFL
+
16] showed that the hierarchy of affine cover numbers collapses in

the following sense: For every graph G, for every integer d > 3, and for every integer l with

1 ≤ l ≤ d, it holds that ρ l
d(G) = ρ l

3
(G). The proof of this fact is based on affine maps, which

transform planes into planes, but not spheres into spheres, so we don’t know whether the

hierarchy of spherical cover numbers collapses, too.
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4

On Arrangements of

Orthogonal Circles

For the purpose of this chapter, an arrangement is a (finite) collection of curves such as lines

or circles in the plane. The study of arrangements has a long history; for example, Grün-

baum [Gru72] studied arrangements of lines in the projective plane. Arrangements of circles

and other closed curves have also been studied extensively [AAS03, ALPS01, FS18, KM14,

Pin02]. An arrangement is simple if no point of the plane belongs to more than two curves

and every two curves intersect. A face of an arrangementA in the projective or Euclidean

plane P is a connected component of the subdivision induced by the curves inA, that is, a

face is a component of P ∖⋃A.
For a given type of curves, people have investigated the maximum number of faces that

an arrangement of such curves can form. In 1826, Steiner [Ste26] showed that a simple

arrangement of straight lines can have at most (n
2
) + (n

1
) + (n

0
) faces while an arrangement of

circles can have at most 2 ((n
2
) + (n

0
)) faces.

Alon et al. [ALPS01] and Pinchasi [Pin02] studied the number of digonal faces, that is, faces

that are bounded by two edges, for various kinds of arrangements of circles. For example,

any arrangement of n unit circles has O(n4/3
log n) digonal faces [ALPS01] and at most n + 3

digonal faces if every pair of circles intersects [Pin02], whereas arrangements of circles with

arbitrary radii have at most 20n − 2 digonal faces if every pair of circles intersects [ALPS01].

The same arrangements can, however, have quadratically many triangular faces, that is,

faces that are bounded by three edges. A lower bound example with quadratically many

triangular faces can be constructed from a simple arrangementA of lines by projecting it on a

sphere (disjoint from the plane containingA) and having each line become a great circle. This

is always possible since the line arrangement is simple; for more details see [Fel04, Section

5.1]. In this process we obtain 2p3 triangular faces, where p3 is the number of triangular

faces in the line arrangement. The great circles on the sphere can then be transformed into a

circle arrangement in a different plane using the stereographic projection. This gives rise to

an arrangement of circles with 2p3 triangular faces in this plane. Füredi and Palásti [FP84]

provided simple line arrangements with n2/3 + O(n) triangular faces. With the argument

above, this immediately yields a lower bound of 2n2/3 + O(n) on the number of triangular

faces of arrangements of circles. Felsner and Scheucher [FS18] showed that this lower bound is

tight by proving that an arrangement of pseudocircles (that is, closed curves that can intersect

at most twice and no point belongs to more than two curves) can have at most 2n2/3 + O(n)
triangular faces.

One can also specialize circle arrangements by fixing an angle (measured as the angle

between the two tangents at either intersection point) at which each pair of intersecting circles

intersect; this was recently discussed by Eppstein [Epp18a]. An arrangement of circles in

which each intersecting pair intersect at a right angle is called orthogonal. Note that in any

arrangement of orthogonal circles no two circles can touch and no three circles can intersect

at the same point.
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Themain result of this chapter is that arrangements of n orthogonal circles have at most

14n intersection points and at most 15n + 2 faces; see Theorem 4.1. This is different from

arrangements of orthogonal circular arcs, which can have quadratically many quadrangular

faces; see the arcs inside the blue square in Figure 4.5. In Section 4.3 we also consider small

(that is, digonal and triangular) faces and provide bounds on the number of such faces in

arrangements of orthogonal circles.

Given a set of geometric objects, their intersection graph is a graphwhose vertices correspond

to the objects and whose edges correspond to the pairs of intersecting objects. Restricting the

geometric objects to a certain shape restricts the class of graphs that admit a representation

with respect to this shape. For example, graphs represented by disks in the Euclidean plane

are called disk intersection graphs. The special case of unit disk graphs—intersection graphs

of unit disks—has been studied extensively. Recognition of such graphs as well as many

combinatorial problems restricted to these graphs such as coloring, independent set, and

domination are all NP-hard [CCJ90]; see also the survey of Hliněný and Kratochvíl [HK01].

Instead of restricting the radii of the disks, people have also studied restrictions of the type

of intersection. If the disks are only allowed to touch, the corresponding graphs are called

coin graphs. Koebe’s classical result says that the coin graphs are exactly the planar graphs.

If all coins have the same size, the represented graphs are called penny graphs. These graphs

have been studied extensively, too [DP11, CFFP11, Epp18b]. For example, they are NP-hard to

recognize [BK98, DETT99].

As with the arrangements above, we again consider a restriction on the intersection angle.

We define the orthogonal circle intersection graphs as the intersection graphs of arrangements

of orthogonal circles. In Section 4.4, we investigate properties of these graphs. For example,

similar to the proof of our linear bound on the number of intersection points for arrangements

of orthogonal circles (Theorem 4.1), we observe that such graphs have only a linear number

of edges.

We also consider orthogonal unit circle intersection graphs, that is, orthogonal circle intersec-

tion graphs with a representation that consists only of unit circles. We show that these graphs

are a proper subclass of penny graphs. It is NP-hard to recognize penny graphs [EW96]. We

modify the NP-hardness proof of Di Battista et al. [DETT99, Section 11.2.3], which uses the

logic engine, to obtain the NP-hardness of recognizing orthogonal unit circle intersection

graphs (Theorem 4.4).

4.1 Preliminary Results

Circles crossing at right angles are most commonly known from inversive geometry. Inversive

geometry is the study of properties of geometric objects that are preserved after a certain

type of transformation called inversion. To define inversion more precisely let us define some

helpful notation first. For any circle γ, let C(γ) be its center and let r(γ) be its radius. The

inversion with respect to α is a mapping that maps any point P ≠ C(α) to a point P′ on

the ray C(α)P so that ∣C(α)P′∣ ⋅ ∣C(α)P∣ = r(α)2
. Inversion maps each circle not passing

through C(α) to another circle and a circle passing through C(α) to a line; see Figure 4.1.

Thus, one property that inversion preserves is that every circle in the preimage is still a circle

in the image (we consider each line a circle of infinite radius). Another useful property of
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α

C(α)

(a) a circle passing through

C(α) is mapped to a line

(and vice versa)

α

C(α)

(b) a circle not passing

through C(α) is

mapped to another

circle

α

C(α) P P ′

βX

Y

(c) constructing the inversion P′ of

a point P w.r.t. α via a circle β

orthogonal to α

Figure 4.1: Examples of inversion.

α
β

r(α) r(β)

X

C(α) C(β)

Y

Figure 4.2: Circles α and β are orthogonal if and only if△XC(α)C(β) is right-angled.

inversion, is that it preserves angles. So we can transform geometric objects into different

possibly more convenient settings where the underlying properties are still preserved. In

fact, some difficult problems in geometry become much easier to solve after an inversion is

applied [Dör65, Ogi69].

Let us now define orthogonal circles. An angle at which two circles intersect is the angle

between the two tangents to each of the circles at an intersection point. Two circles intersecting

at a right angle are called orthogonal. The following observation follows from the Pythagorean

theorem.

Observation 4.1. Let α and β be two circles. Then α and β are orthogonal if and only if

r(α)2 + r(β)2 = ∣C(α)C(β)∣2; see Figure 4.2.
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α β

γ

σ

Y

X

(a)

α′

β′

γ′

Y ′

(b)

Figure 4.3: (a) Three pairwise intersecting circles, the red inversion

circle is centered at X; (b) image of the inversion.

α′

β′

δ′

γ′

C(γ′)

C(β′) O

X

Figure 4.4: Illustration for

Lemma 4.2.

In addition we note the following.

Observation 4.2. Given a pair of orthogonal circles, the tangent to one circle at one of the

intersection points goes through the center of the other circle; see Figure 4.2. In particular, a line

is orthogonal to a circle if the line goes through the center of the circle.

Inversion and orthogonal circles are closely related. For example, in order to construct

the image P′ of some point P that lies inside the inversion circle α, consider the intersection

points X and Y of α and the line that is orthogonal to the line through C(α) and P in P; see

Figure 4.1c. The point P′ then is simply the center of the circle β that is orthogonal to α and

goes through X and Y . This follows from the similarity of the orthogonal triangles△C(α)XP′
and△C(α)XP. Using inversion we can easily show several properties of orthogonal circles.

Lemma 4.1 ([Ogi69]). In an arrangement of orthogonal circles there cannot be four pairwise

orthogonal circles.

Proof: Assume that there are four pairwise orthogonal circles α, β, γ, and δ. Let X and

Y be the intersection points of α and β. Consider the inversion with respect to a circle σ

centered at X. The images of α and β are orthogonal lines α′ and β′ that intersect at Y ′, which

is the image of Y ; see Figure 4.3. The image of γ is a circle γ′ centered at Y ′ but so is the

image δ′ of δ. Thus γ′ and δ′ are either disjoint or equal, but not orthogonal to each other, a

contradiction.

Lemma 4.2. In an arrangement of orthogonal circles there cannot be two pairs of circles such

that each circle of one pair is orthogonal to each circle of the other pair and the circles within the

pairs are not orthogonal.

Proof: Assume there are two pairs (α, β) and (γ, δ) of circles such that the circles within

each pair do not intersect each other and each circle of one pair intersects both circles of the

other pair. Consider an inversion via a circle σ centered at one of the intersection points of

the circles α and δ. In the image they will become lines α′ and δ′. The image β′ of the circle

β must intersect δ′ but not α′, therefore, its center must lie on the line δ′ and it should be

to one side of the line α′; see Figure 4.4. Similarly the center of the image γ′ of the circle γ

must lie on the line α′ and γ′ should be to one side of the line δ′. Shift the drawing so that

the intersection of α′ and δ′ is at the origin O and observe that the triangle△C(β′)OC(γ′)
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Figure 4.5: Apollonian circles

consisting of two parabolic

pencils of circles.

A B

(a)

B′A

(b)

Figure 4.6: (a) Apollonian circles consisting of an elliptic (in gray)

and hyperbolic (in black) pencil of circles; (b) its inversion via a

circle centered at A (in red).

is orthogonal, where C(β′) and C(γ′) are the centers of the circles β′ and γ′. Let X be the

intersection point of these circles that is closer to the origin. This point X is contained in the

triangle △C(β′)OC(γ′). Therefore the triangle △C(β′)XC(γ′) cannot be orthogonal—a

contradiction.

A pencil is a family of circles who share a certain characteristic. In a parabolic pencil all

circles have one point in common, and thus are all tangent to each other; see Figure 4.5. In an

elliptic pencil all circles go through two given points; see the gray circles in Figure 4.6a. In a

hyperbolic pencil all circles are orthogonal to a set of circles that go through two given points,

that is, to some elliptic pencil; see the black circles in Figure 4.6a.

For an elliptic pencil whose circles share two points A and B and the corresponding hy-

perbolic pencil, the circles in the hyperbolic pencil possess several properties useful for our

purposes [Ogi69]. Their centers are collinear and they consist of non-intersecting circles that

form two nested structures of circles, one containing A, the other one containing B in its

interior; see Figure 4.6a.

Two pencils of circles such that each circle in one pencil is orthogonal to each circle in the

other are called Apollonian circles. There can be two such combinations of pencils, that is,

one with two parabolic pencils and one with an elliptic and a hyperbolic pencil. We focus on

the latter since such Apollonian circles contain arbitrarily large arrangements of orthogonal

circles, that is, two orthogonal circles from the elliptic pencil and arbitrary many circles from

the hyperbolic pencil. Equivalently, such Apollonian circles are an inversion image of a family

of concentric circles centered at some point X and concurrent lines passing through X; see

Figure 4.6b. We use this equivalence in the next proof.

Lemma 4.3. Three circles such that one is orthogonal to the two others belong to the same family

of Apollonian circles. Two sets of circles such that each circle in one set is orthogonal to each

circle in the other set and each set has at least two circles belong to the same family of Apollonian

circles. In particular, if the two sets form an arrangement of orthogonal circles, then the set

belonging to the elliptic pencil can contain at most two circles.

Proof: Consider three circles such that one is orthogonal to two others. If all three are pairwise

orthogonal, then their inversion via a circle centered at one of their intersection points (see
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Figure 4.3a) is two perpendicular lines and a circle centered at their intersection point (see

Figure 4.3b), therefore, they belong to the same family of Apollonian circles. If two circles

do not intersect, then by [Ogi69, Theorem 13], it is always possible to invert them into two

concentric circles. Since inversion preserves angles, the image of the third circle must be

orthogonal to both concentric circles and therefore it must be a straight line passing through

the center of both circles. Therefore, the three circles belong to the same family of Apollonian

circles.

Consider now two sets S1 and S2 of circles such that each circle in one set is orthogonal to

each circle in the other set and each set has at least two circles. By Lemma 4.2 there must be

two circles α and β in one of the sets, say S1, that are orthogonal. Consider an inversion via a

circle σ centered at one of the intersection points X of the circles α and β. In the image they

will become orthogonal lines α′ and β′ intersecting at a point Y . Because inversion preserves

angles, the image of each circle in S2 is a circle centered at Y . Since S2 contains at least two

circles, the image of each circle in S1 must be orthogonal to two circles centered at Y , therefore,

it must be a straight line passing through Y . Thus, the circles in S1 and S2 belong to the same

family of Apollonian circles and, if S1 and S2 form an arrangement of orthogonal circles, then

the set S1, whose circles belong to the elliptic pencil, can contain at most two circles.

4.2 Bounding the Number of Faces

LetA be an arrangement of orthogonal circles in the plane. By a slight abuse of notation, we

will say that a circle α contains a geometric object o and mean that the disk bounded by α

contains o. We say that a circle α ∈ A is nested in a circle β ∈ A if α is contained in β. We

say that a circle α ∈ A is nested consecutively in a circle β ∈ A if α is nested in β and there

is no other circle γ ∈ A such that α is nested in γ and γ is nested in β. Consider a subset

S ⊆ A of maximum cardinality such that for each pair of circles one is nested in the other. The

innermost circle α in S is called a deepest circle inA; see Figure 4.7.

Lemma 4.4. Let α be a circle, and let S be a set of circles orthogonal to α. If S does not contain

nested circles and each circle in S has radius at least r(α), then ∣S∣ ≤ 6. Moreover, if ∣S∣ = 6, then

all circles in S have radius r(α) and α is contained in the union of the circles in S.

Proof: Consider any two circles β and γ in S. Since r(β) ≥ r(α) and r(γ) ≥ r(α), the edge

C(β)C(γ) is the longest edge of the triangle△C(β)C(α)C(γ); see Figure 4.8. So the angle

∠C(β)C(α)C(γ) is at least π/3. Thus, ∣S∣ ≤ 6.

Moreover, if ∣S∣ = 6 then, for each pair of circles β and γ in S that are consecutive in the

circular ordering of the circle centers around C(α), it holds that ∠C(β)C(α)C(γ) = π/3.
This is only possible if r(β) = r(γ) = r(α). Thus, all the circles in S have radius r(α) and α is

contained in the union of the circles in S; see Figure 4.9b.

Theorem 4.1. Every arrangement of n orthogonal circles has at most 14n intersection points

and 15n + 2 faces.
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Figure 4.7: Deepest circles in bold.

C(γ) C(β)

α

γ β

C(α)

Figure 4.8:∠C(β)C(α)C(γ) ≥ π/3.

The above theorem (whose formal proof is at the end of the section) follows from the fact

that any arrangement of orthogonal circles contains a circle α with at most seven neighbors

(that is, circles that are orthogonal to α).

Lemma 4.5. Every arrangement of orthogonal circles has a circle that is orthogonal to at most

seven other circles.

Proof: If no circle is nested within any other, Lemma 4.4 implies that the smallest circle has

at most six neighbors, and we are done.

So, among the deepest circles inA, consider a circle α with the smallest radius. Note that α

is nested in at least one circle. Let β be a circle such that α and β are consecutively nested.

Denote the set of all circles inA that are orthogonal to α but not to β by Sα . All circles in Sα

are nested in β. Since α is a deepest circle, Sα contains no nested circles; see Figure 4.9a. Since

the radius of every circle in Sα is at least r(α), Lemma 4.4 ensures that Sα contains at most

six circles. Given the structure of Apollonian circles (Lemma 4.3), there can be at most two

circles that intersect both α and β. This together with Lemma 4.4 immediately implies that α

cannot be orthogonal to more than eight circles. In the following we show that there can be at

most seven such circles.

If there is only one circle intersecting both α and β, then α is orthogonal to at most seven

circles in total, and we are done.

Otherwise, there are two circles orthogonal to both α and β. Let these circles be γ1 and γ2.

We assume that Sα contains exactly six circles. Hence, by Lemma 4.4, all circles in Sα have

radius r(α). Let Sα = (δ0 , . . . , δ5) be ordered clockwise around α so that every two circles δ i
and δ j with i ≡ j + 1 mod 6 are orthogonal.

Let X and Y be the intersection points of γ1 and γ2; see Figure 4.9a. Note that, by the

structure of Apollonian circles, one of the intersection points, say X, must be contained

inside α, whereas the other intersection point Y must lie in the exterior of β. Since the circles

in Sα are contained in β, none of them contains Y . Further, no circle δ i in Sα contains X, as

otherwise the circles δ i , α, γ1, and γ2 would be pairwise orthogonal, contradicting Lemma 4.1.

Recall that, by Lemma 4.4, α is contained in the union of the circles in Sα . Since X is not

contained in this union, γ1 intersects two different circles δ i and δ j , and γ2 intersects two

different circles δk and δ l . Note that γ1 and γ2 cannot intersect the same circle ε in Sα ,

because ε, α, γ1, and γ2 would be pairwise orthogonal, contradicting Lemma 4.1. Therefore,

the indices i, j, k, and l are pairwise different.

We now consider possible values of the indices i, j, k, and l , and show that in each case we

get a contradiction to Lemma 4.1 or Lemma 4.2. If j ≡ i+ 1 mod 6, then γ1, α, δ i , and δ j would

be pairwise orthogonal, contradicting Lemma 4.1; see Figure 4.9b. If j ≡ i + 2 mod 6, then
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Figure 4.9: Illustrations to the proof of Lemma 4.5.

γ1, δ i , δ i+1, and δ j would form an induced C4 in the intersection graph; see Figure 4.9c. This

would contradict Lemma 4.2. If j ≡ i+3 mod 6 and k ≡ l+3 mod 6, then either k ≡ i+1 mod 6

or i ≡ l + 1 mod 6; see Figure 4.9d. W.l.o.g., assume the latter and observe that then γ2, δ i , γ1,

δ l would form an induced C4, again contradicting Lemma 4.2.

We conclude that Sα contains at most five circles. Together with γ1 and γ2, at most seven

circles are orthogonal to α.

Using the lemma above and Euler’s formula, we now can prove Theorem 4.1.

Proof of Theorem 4.1: Let A be an arrangement of orthogonal circles. By Lemma 4.5, A
contains a circle α orthogonal to atmost seven circles. The circle α yields atmost 14 intersection

points. By induction, the whole arrangement has at most 14n intersection points.

Consider the planarizationG′ ofA, and let n′,m′, f ′, and c′ denote the numbers of vertices,

edges, faces, and connected components ofG′, respectively. Since every vertex in the planariza-

tion corresponds to an intersection, the resulting graph is 4-regular and thereforem′ = 2n′. By

Euler’s formula, we obtain f ′ = n′+1+c′. This yields f ′ ≤ 15n+1 since n′ ≤ 14n and c′ ≤ n.

4.3 Bounding the Number of Small Faces

In the following we study the number of faces of each type, that is, the number of digonal,

triangular, and quadrangular faces. We begin with some notation. LetA be an arrangement of

orthogonal circles in the plane. Let S be some subset of the circles ofA. A face in S is called a

region inA formed by S; see for instance Figure 4.10. Note that each face ofA is also a region.

Let s be the region formed by some circular arcs a1 , a2 , . . . , ak enumerated in counter-

clockwise order around s. For an arc a i with i ∈ {1, . . . , k}, let α be the circle that sup-

ports a i . If C(α) = (xα , yα) is the center of α and r(α) its radius, we can write α as

{C(α) + r(α)(cos t, sin t)∶ t ∈ [0, 2π]}. Let u and v be the endpoints of a i so that we

meet u first when we traverse s counterclockwise when starting outside of a i . Let u =
C(α) + r(α)(cos t1 , sin t1) and v = C(α) + r(α)(cos t2 , sin t2). We say that the region s

subtends an angle in the circle α of size ∠(s, a i) = t2 − t1 with respect to the arc a i . Note

that ∠(s, a i) is negative if a i forms a concave side of s. If the circle α forms only one side
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s

Figure 4.10: Region s is a face in the ar-

rangement of the bold circles.

s1
s2

α

β

γ

Figure 4.11: Angles subtended by the regions s1 and

s2 in the circle α;∠(s1 , α) = −∠(s2 , α).

of the region s, then we just say that the region s subtends an angle in the circle α of size

∠(s, α) = t2 − t1. Moreover, if s is a digonal region, that is, it is formed by only two circles α

and β, then we simply say that β subtends an angle of∠(β, α) = t2 − t1 in α to mean∠(s, α).
By total angle we denote the sum of subtended angles by s with respect to all the arcs that

form its sides, that is,∑k
i=1∠(s, a i).

We now give an upper bound on the number of digonal and triangular faces in an arrange-

mentA of n orthogonal circles. The tool that we utilize in this section is the Gauss–Bonnet

formula [Wei19] which, in the restricted case of orthogonal circles in the plane, states that, for

every region s formed by some circular arcs a1 , a2 , . . . , ak , it holds that

k

∑
i=1
∠(s, a i) +

kπ

2
= 2π.

This formula implies that each digonal or triangular face subtends a total angle of size π and

of size π/2, respectively. Thus, we obtain the following bounds.

Theorem 4.2. Every arrangement of n orthogonal circles has at most 2n digonal faces and at

most 4n triangular faces.

Proof: Because faces do not overlap, each digonal or triangular face uses a unique convex arc

of a circle bounding this face. Therefore, the sum of angles subtended by digonal or triangular

faces formed by the same circle must be at most 2π. Analogously, the sum of total angles over

all digonal or triangular faces cannot exceed 2nπ. By the Gauss–Bonnet formula each digonal

or triangular face subtends a total angle of size π or π/2, respectively. This gives an upper

bound of 2n on the number of digonal faces and an upper bound of 4n on the number of

triangular faces.

Theorem 4.2 can be generalized to all convex orthogonal closed curves since the Gauss–

Bonnet formula does not require curves to be circular. In contrast to this, for example, a grid

made of axis parallel rectangles has quadratically many quadrangular faces. This makes circles

a special subclass of convex orthogonal closed curves.

The Gauss–Bonnet formula does not help us to get an upper bound on the number of

quadrangular faces. Because each triangular or quadrangular face consists of either three

circles such that one is orthogonal to two others or two pairs of circles such that each circle in

one pair is orthogonal to each circle in the other pair, we obtain the following observation

from Lemma 4.3.
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Observation 4.3. In any arrangement of orthogonal circles, each triangular and each quadran-

gular face is formed by Apollonian circles.

Using Observation 4.3, however, it is possible to restrict the types of quadrangular faces

to several shapes and obtain bounds on the number of faces of each type. Apart from being

interesting in its own right, such a bound also provides a bound on the total number of

faces in an arrangement of orthogonal circles. Namely, since the average degree of a face

in an arrangement of orthogonal circles is 4, a bound on the number of faces of degree at

most 4 gives a bound on the number of all faces in the arrangement (via Euler’s formula).

Unfortunately, the bound on the number of quadrangular faces that we achieved was 17n

and thus higher than the bound 15n + 2 that we now have for the number of all faces in an

arrangement of n orthogonal circles.

4.4 Intersection Graphs of Orthogonal Circles

Given an arrangement A of orthogonal circles, consider its intersection graph, which is

the graph with vertex set A that has an edge between any pair of intersecting circles in A.
Lemmas 4.1 and 4.2 imply that such a graph does not contain any K4 and any induced C4.

We show that such graphs can be non-planar (Lemma 4.6), then we bound their edge density

(Theorem 4.3), and finally we consider the intersection graphs arising from orthogonal unit

circles (Theorem 4.4).

Lemma 4.6. For every n, there is an intersection graph of orthogonal circles that contains Kn

as a minor. The representation uses circles of three different radii.

Proof: Let a chain be an arrangement of orthogonal circles whose intersection graph is a path.

We say that two chains C1 and C2 cross if two disjoint circles α and β of one chain, say C1, are

orthogonal to the same circle γ of the other chain C2; see Figure 4.12a (left). If two chains

cross, their paths in the intersection graph are connected by two edges; see the dashed edges

in Figure 4.12a (right).

Consider an arrangement of n rectilinear paths embedded on a grid where each pair of

curves intersect exactly once; see the inset in Figure 4.12b. We convert the arrangement of

paths into an arrangement of chains such that each pair of chains crosses; see Figure 4.12b.

Now consider the intersection graph of the orthogonal circles in the arrangement of chains. If

we contract each path in the intersection graph that corresponds to a chain, we obtain Kn .

Next, we discuss the density of orthogonal circle intersection graphs. Gyárfás et al. [GHS02]

have shown that any C4-free graph on n vertices with average degree at least a has clique

number (that is, the number of vertices in the maximum clique of the graph) at least a2/(10n).
Due to Lemma 4.1, we know that orthogonal circle intersection graphs have clique number

at most 3. Thus, their average degree is bounded from above by

√
30n, leading to at most√

7.5n
3

2 edges in total. However, Lemma 4.5 implies the following stronger bound.

Theorem 4.3. The intersection graph of a set of n orthogonal circles has at most 7n edges.

Proof: The geometric representation of an orthogonal circle intersection graph is an arrange-

ment of orthogonal circles. By Lemma 4.5, an arrangement of n orthogonal circles always has
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γ

α β
γα β

(a) a chain crossing and its intersection graph (b) pairwise intersecting paths (see inset)

and the corresponding chains in an or-

thogonal circle representation

Figure 4.12: Construction of an orthogonal circle intersection graph that contains Kn as a minor

(here n = 5).

(a) all orthogonal unit circle intersection

graphs are penny graphs

(b) penny graphs that aren’t orthogonal

unit circle intersection graphs

Figure 4.13: Penny graphs vs. orthogonal unit circle intersection graphs.

a circle orthogonal to at most seven circles. Therefore, the corresponding intersection graph

always has a vertex of degree at most seven. Thus, it has at most 7n edges.

We also consider a natural subclass of orthogonal circle intersection graphs, the orthogonal

unit circle intersection graphs. Recall that these are orthogonal circle intersection graphs with

a representation that consists of unit circles only. As Figure 4.13a shows, every representation

of an orthogonal unit circle intersection graph can be transformed (by scaling each circle by a

factor of

√
2/2) into a representation of a penny graph, that is, a contact graph of equal-size

disks. Hence, every orthogonal unit circle intersection graph is a penny graph – whereas the

converse is not true. For example, C4 or the 5-star are penny graphs but not orthogonal unit

circle intersection graphs (see Figure 4.13b).

Orthogonal unit circle intersection graphs being penny graphs implies that they inherit the

properties of penny graphs, e.g., their maximum degree is at most six and their edge density

is at most ⌊3n −
√
12n − 6⌋, where n is the number of vertices [PA95, Theorem 13.12, p. 211].

Because triangular grids are orthogonal unit circle intersection graphs, this upper bound is

tight.
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4.5 Recognizing Orthogonal Unit Circle
Intersection Graphs

As it turns out, orthogonal unit circle intersection graphs share another feature with penny

graphs: their recognition is NP-hard. The hardness of penny-graph recognition can be shown

using the logic engine [DETT99, Section 11.2], which simulates an instance of the Not-All-

Equal-3-Sat (NAE3SAT) problem. We establish a similar reduction for the recognition of

orthogonal unit circle intersection graphs.

In this section, we show how to realize the logic engine with orthogonal unit circle intersec-

tion graphs. The logic engine simulates the Not-All-Equal-3-Sat (NAE3SAT) problem where

a set C of clauses each containing three literals from a set of Boolean variables U is given and

the question is to find a truth assignment to the variables so that each clause contains at least

one true literal and at least one false literal.

Figure 4.14: Orthogonal unit circle representation of the universal part of the logic engine; only half

of the drawing is present, the other half is symmetric.

Theorem 4.4. It is NP-hard to recognize orthogonal unit circle intersection graphs.

Proof: We closely follow the description from [DETT99, Section 11.2] and use their notations

and definitions. The logic engine consists of the following parts (we will mostly refer to

Figures. 4.14 and 4.16 to explain how the parts of the logic engine are connected). The frame
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(a) hexagonal

block

(b) its representation (c) flagged link graph (d) its representation

(e) chain graph (f) its representation

Figure 4.15: Gadgets for the logic engine.

and armatures (drawn blue and black respectively in Figure 4.14, only half of the drawing is

illustrated, the other half is symmetric with respect to the shaft of the logic engine, which

is defined below) for the logic graph are built of hexagonal blocks, as shown in Figure 4.15a

whose orthogonal unit circle intersection representation is shown in Figure 4.15b. It is easy to

see that they are uniquely drawable (up to rotation, reflection, and translation) since K3 has a

unique orthogonal unit circle intersection representation. Each armature corresponds to a

variable in U .

A chain graph (represented by gray circles in Figure 4.14) is a sequence of links, as shown in

Figure 4.15e whose orthogonal unit circle intersection representation is shown in Figure 4.15f.

The number of links in a chain corresponds to the number of clauses in C. The shaft (green in

Figure 4.14) is a simple path and serves as an axle for the armatures, that is, the armatures can

be flipped around the shaft. Each armature corresponding to a variable x j has two chains a j

and ā j each suspended between one of the ends of the armature and the shaft. For that reason

in an orthogonal unit circle intersection representation each chain is taut.

So far we have described the universal part of the logic engine, that is, the part that only

depends on the number of clauses in C and the number of variables in U ; it is illustrated in

Figure 4.14. The frame, armatures, and chain graphs have a unique orthogonal unit circle

intersection representation up to flipping armatures (see Figure 4.14), since they are built up

of hexagonal blocks which are uniquely drawable. We still need to show that the shaft is taut.

This is enforced by the bottom part of the frame. Consider the middle horizontal sequence of

circles in the bottom part of the frame that spans the frame from the left side to the right; in

light blue in Figure 4.14. It is easy to see that the shaft must be drawn as this sequence, because

it consists of the same number of circles and must also span the frame from the left side to the

right. Since the sequence is taut, the shaft is also taut. Notice that there is still the freedom

of flipping each armature together with its chains around the shaft, that is, it can take two

51



4 On Arrangements of Orthogonal Circles

possible positions where one part of the armature is either above or below the shaft. This is

the flexibility that allows our logic engine to encode a solution of a NAE3SAT instance.

Figure 4.16: Orthogonal unit circle representation of a customized logic engine; only half of the

drawing is present. The neighboring flagged links demarcated by the dashed rectangle collide if

and only if they are flipped so that they point towards each other; see Figure 4.17.

Now let us show how to customize the logic engine according to an instance of NAE3SAT.

A chain link graph can be extended to a flagged link by the addition of three new vertices as

shown in Figure 4.15c whose orthogonal unit circle representation is shown in Figure 4.15d.

Note that it also has a unique drawing. To simulate the given NAE3SAT instance we replace

link graphs with flagged link graphs according to the incidence between literals and clauses.

If the literal x j ∈ U appears in clause c i ∈ C, then link i of chain a j is unflagged. If the literal

x̄ j ∈ U appears in clause c i ∈ C, then link i of of chain ā j is unflagged. For an example see

Figure 4.16.

It is easy to see that by adjusting the sizes of the frame and the armatures we can ensure

that in an orthogonal unit circle intersection representation of the logic engine two flagged

links which lie in the same row and are attached to chains of adjacent armatures collide if and

only if they are flipped so that they point towards each other; see Figure 4.17. Similarly we

can ensure that any flag attached to the chain of the outermost armature collides with the

frame if it points toward the front edge of the frame, and any flag attached to the chain of the

innermost armature collides with that armature if it points toward the rear. Therefore, we can

use [DETT99, Theorem 11.2] to show that the corresponding customized logic engine has an

52



4.6 Discussions and Open Problems

Figure 4.17: The neighboring flagged links collide if and only if they are flipped so that they point

towards each other.

(a) 2(n − 1) digonal faces (b) 3(n − 1) triangular faces (c) 4(n − 3) quadrangular faces

Figure 4.18: Arrangements of n orthogonal circles with many digonal, triangular, and quadrangular

faces.

orthogonal unit circle representation if and only if the corresponding instance of NAE3SAT

is a yes-instance.

4.6 Discussions and Open Problems

In Section 4.2 we have provided upper bounds for the number of faces of an orthogonal circle

arrangement. As for lower bounds on the number of faces, we found arrangements with n

circles containing 2n − 2 digonal, 3n − 3 triangular, and 4(n − 3) quadrangular faces; see

Figures 4.18a, 4.18b, and 4.18c, respectively. Note that the number of digonal faces in the

arrangement in Figure 4.18a matches the upper bound in Theorem 4.2. Can we construct

better lower bound examples or improve the upper bounds?

Recognizing (unit) disk intersection graphs is ∃R-complete [KM12]. But what is the com-

plexity of recognizing (general) orthogonal circle intersection graphs?
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5

Drawing Graphs with Circular Arcs

and Right-Angle Crossings

Once equipped with properties of orthogonal circles from Chapter 4 we can go on to study

drawing graphs with circular arcs and right-angle crossings.

A prominent beyond-planar graph class that concerns the crossing angles is the class of

k-bend right-angle-crossing graphs [DEL11], or RACk graphs for short, that admit a drawing

where all crossings form 90
○
angles and each edge is a poly-line with at most k bends. Using

right-angle crossings and few bends is motivated by several cognitive studies suggesting a

positive correlation between large crossing angles or small curve complexity and the readability

of a graph drawing [Hua07, HEH14, HHE08]. Didimo et al. [DEL11] studied the edge density

of RACk graphs. They showed that RAC0 graphs with n vertices have at most 4n − 10 edges

(which is tight), that RAC1 graphs have at most O(n4/3) edges, that RAC2 graphs have at most

O(n7/4) edges and that all graphs are RAC3. Dujmović et al. [DGMW10] gave an alternative

simple proof of the 4n − 10 bound for RAC0 graphs using charging arguments similar to

those of Ackerman and Tardos [AT07] and Ackerman [Ack09]. Arikushi et al. [AFK
+
12]

improved the upper bounds to 6.5n − 13 for RAC1 graphs and to 74.2n for RAC2 graphs. The

bound of 6.5n − 13 for RAC1 graphs was also obtained by charging arguments. They also

provided a RAC1 graph with 4.5n − O(
√
n) edges. The best known lower and upper bound

for the maximum edge density of RAC1 graphs of 5n − 10 and 5.5n − 11, respectively, are due

to Angelini et al. [ABFK18].

We extend the class of RAC0 graphs by allowing edges to be drawn as circular arcs but still

requiring 90
○
crossings.

Two circular arcs α and β are orthogonal if they intersect and the underlying circles (that

contain the arcs) are orthogonal. For the remainder of this chapter, all arcs will be circular

arcs. We consider any straight-line segment to be an arc with infinite radius. Note, though,

that Observations 4.1 and 4.2 do not hold for (pairs of) circles of infinite radius. As in the

case of circles, for any arc γ of finite radius, let C(γ) be its center.

We call a drawing of a graph an arc-RAC drawing if the edges are drawn as arcs and any pair

of intersecting arcs is orthogonal; see Figure 5.1. A graph that admits an arc-RAC drawings is

called an arc-RAC graph.

An immediate restriction on the edge density of arc-RAC graphs follows from the fact that

there are no four pairwise orthogonal circles; see Lemma 4.1.

Lemma 5.1. In an arc-RAC drawing, there cannot be four pairwise orthogonal arcs.

It follows from Lemma 5.1 that arc-RAC graphs are 4-quasi-planar, that is, an arc-RAC

drawing cannot have four edges that pairwise cross. This implies that an arc-RAC graph with

n vertices can have at most 72(n − 2) edges [Ack09].

Our main contribution is that we reduce this bound to 14n − 12 using charging arguments

similar to those of Ackerman [Ack09] and Dujmović et al. [DGMW10]; see Section 5.1. For

us, the main challenge was to apply these charging arguments to a modification of an arc-RAC
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5 Drawing Graphs with Circular Arcs and Right-Angle Crossings

Figure 5.1: An arc-RAC drawing of a graph; this graph is not RAC0 [BBH
+

17].

drawing and to exploit, at the same time, geometric properties of the original arc-RAC drawing

to derive the bound. We also provide a lower bound of 4.5n − O(
√
n) on the maximum

edge density of arc-RAC graphs based on the construction of Arikushi et al. [AFK
+
12]; see

Section 5.2. We conclude with some open problems in Section 5.3.

As usual, we forbid vertices to lie in the relative interior of an edge and we do not allow

edges to touch, that is, to have a common point in their relative interiors without crossing each

other at this point. Hence an intersection point of two edges is always a crossing. When we say

that two edges share a point, we mean that they either cross each other or have a common

endpoint.

5.1 An Upper Bound for theMaximum Edge Density

LetG be a 4-quasi-planar graph, and let D be a 4-quasi-planar drawing ofG. In his proof of the

upper bound on the edge density of 4-quasi-planar graphs, Ackerman [Ack09] first modified

the given drawing so as to remove faces of small degree. We use a similar modification that

we now describe.

Consider two edges e1 and e2 in D that intersect multiple times. A region in D bounded by

pieces of e1 and e2 that connect two consecutive crossings or a crossing and a vertex of G is

called a lens. If a lens is adjacent to a crossing and a vertex of G, then we call such a lens a

1-lens, otherwise a 0-lens. A lens that does not contain a vertex of G is empty. Every drawing

with 0-lenses has a smallest empty 0-lens, that is, an empty 0-lens that does not contain any

other empty 0-lenses in its interior. We can swap [PRT06, Ack09] the two curves that bound

a smallest empty 0-lens; see Figure 5.2. We call such a swap a simplification step. Since a

simplification step resolves a smallest empty lens, we observe the following.

Observation 5.1. A simplification step does not introduce any new pairs of crossing edges or

any new empty lenses.

We exhaustively apply simplification steps to our drawing and refer to this as the sim-

plification process. Observation 5.1 guarantees that applying the simplification process to a

drawing D terminates, that is, it results in an empty-0-lens-free drawing D′ of G. We call
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e

e0 e1
e2

e

e0 e2 e1

Figure 5.2: A simplification step resolves a smallest empty 0-lens; if two edges e1 and e2 change the

order in which they cross the edge e, they form an empty 0-lens intersecting e before the step, and

thus, in the original 4-quasi-planar drawing.

the resulting drawing D′ simplified; it is a simplification of D. Observation 5.1 implies the

following important property of any simplification step.

Observation 5.2. Applying a simplification step to a 4-quasi-planar drawing yields a 4-quasi-

planar drawing.

As mentioned above, Ackerman [Ack09] used a similar modification to prepare a 4-quasi-

planar drawing for his charging arguments; note, that unlike Ackerman, we do not resolve

1-lenses. We look at the simplification process in more detail, in particular, we consider how it

changes the order in which edges cross.

Lemma 5.2. Let D be an arc-RAC drawing, and let D′ be a simplification of D. If two edges e1
and e2 cross another edge e in D′ in an order different from that in D, then e1 and e2 form an

empty 0-lens intersecting e in D.

Proof: Let e1 and e2 be two edges as in the statement of the lemma. Then there is a simpli-

fication step i where the order in which e1 and e2 cross e changes. Let D i be the drawing

immediately before simplification step i, and let D i+1 be the drawing right after step i. By

construction, the order in which e1 and e2 cross e is different in D i and in D i+1. Since D i is

4-quasi-planar (see Observation 5.2) and since we always resolve a smallest empty 0-lens, the

edges e1 and e2 form a smallest empty 0-lens inD i ; see Figure 5.2. Given that the simplification

process does not introduce new empty lenses (see Observation 5.1), e1 and e2 form an empty

0-lens in the original 4-quasi-planar drawing.

We now focus on the special type of 4-quasi-planar drawings we are interested in. Suppose

that G is an arc-RAC graph, D is an arc-RAC drawing of G, and D′ is a simplification of D.

Note that, in general, D′ is not an arc-RAC drawing. If two edges e1 and e2 cross in D′, then

they do not form an empty 0-lens in D. This holds because for any two edges forming an

empty 0-lens in D, the simplification process removes both of their crossings; therefore, in

D′ the two edges do not have any crossings. If e1 and e2 are incident to the same vertex, they

also do not form an empty 0-lens in D, as otherwise they would share three points in D (the

two crossing points of the lens and the common vertex of G). Thus, we have the following

observation.

Observation 5.3. Let D be an arc-RAC drawing, and let D′ be a simplification of D. If two

edges e1 and e2 share a point in D′, then they do not form an empty 0-lens in D.
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5 Drawing Graphs with Circular Arcs and Right-Angle Crossings

In the following, we first state the main theorem of this section and provide the structure

of its proof (deferring one small lemma and the main technical lemma until later). Then, we

prove the remaining technical details in Lemmas 5.3 to 5.7 to establish the result.

Theorem 5.1. An arc-RAC graph with n vertices can have at most 14n − 12 edges.

Proof: Let G be an arc-RAC graph with a vertex set V and an edge set E, let D be an arc-RAC

drawing of G, let D′ be a simplification of D, and let G′ be the planarization of D′, denote the

vertices of G′ as V ′ and the edges of G′ as E′. Our charging argument consists of three steps.

First, each face f of G′ is assigned an initial charge ch( f ) = ∣ f ∣ + v( f ) − 4, where ∣ f ∣ is the

degree of f in the planarization and v( f ) is the number of vertices of G on the boundary

of f . Applying Euler’s formula several times, Ackerman and Tardos [AT07] showed that

∑ f ∈G′ ch( f ) = 4n − 8, where n is the number of vertices of G. In addition, we set the charge

ch(v) of a vertex v ofG to 16/3. Hence the total charge of the system is 4n−8+16n/3 = 28n/3−8.
In the next two steps (described below), similarly to Dujmović et al. [DGMW10], we

redistribute the charges among faces of G′ and vertices of G so that, for every face f , the

final charge chfin( f ) is at least v( f )/3 and the final charge of each vertex is non-negative.

Observing that

28n/3 − 8 ≥ ∑
f ∈G′

chfin( f ) ≥ ∑
f ∈G′

v( f )/3 = ∑
v∈G

deg(v)/3 = 2∣E∣/3

yields that the number of edges of G is at most 14n − 12 as claimed. (The second-last equality

holds since both sides count the number of vertex–face incidences in G′.)

After the first charging step above, it is easy to see that ch( f ) ≥ v( f )/3 holds if ∣ f ∣ ≥ 4.
We call a face f of G′ a k-triangle, k-quadrilateral, or k-pentagon if f has the corresponding

shape and v( f ) = k. Similarly, we call a face of degree two a digon. Note that any digon is a

1-digon since all empty 0-lenses have been simplified.

After the first charging step, each digon and each 0-triangle has a charge of −1, and each
1-triangle has a charge of 0. Thus, in the second charging step, we need to find 4/3 units of

charge for each digon, one unit of charge for each 0-triangle, and 1/3 unit of charge for each

1-triangle. Note that all other faces including 2- and 3-triangles already have sufficient charge.

To charge a digon d incident to a vertex v of G, we decrease ch(v) by 4/3 and increase

ch(d) by 4/3; see Figure 5.3a. We say that v contributes charge to d.

To charge triangles, we proceed similarly to Ackerman [Ack09] and Dujmović et

al. [DGMW10, Theorem 7].

Consider a 1-triangle t1. Let v be the unique vertex incident to t1, and let s1 ∈ E′ be the edge

of t1 opposite of v; see Figure 5.3b. Note that the endpoints of s1 are intersection points in D′.

Let f1 be the face on the other side of s1. If f1 is a 0-quadrilateral, then we consider its edge

s2 ∈ E′ opposite to s1 and the face f2 on the other side of s2. We continue iteratively until we

meet a face fk that is not a 0-quadrilateral. If fk is a triangle, then all the faces t1 , f1 , f2 , . . . , fk
belong to the same empty 1-lens l incident to the vertex v of t1. In this case, we decrease

ch(v) by 1/3 and increase ch(t1) by 1/3; see Figure 5.3a. Otherwise, fk is not a triangle and

∣ fk ∣ + v( fk) − 4 ≥ 1 (see Figure 5.3b). In this case, we decrease ch( fk) by 1/3 and increase

ch(t1) by 1/3. We say that the face fk contributes charge to the triangle t1 over its side sk .

For a 0-triangle t0, we repeat the above charging over each side. If the last face on our path

is a triangle t′, then t0 and t′ are contained in an empty 1-lens (recall that D′ does not contain
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Figure 5.3: Transferring charge from vertices and high-degree faces to small-degree faces.

empty 0-lenses) and t′ is a 1-triangle incident to a vertex v of G. In this case, we decrease

ch(v) by 1/3 and increase ch(t0) by 1/3; see Figure 5.3c.

Thus, at the end of the second step, the charge of each digon and triangle f is at least v( f )/3.
Note that the charge of f comes either from a higher-degree face or from a vertex v incident

to an empty 1-lens containing f .

In the third step, we do not modify the charging any more, but we need to ensure that

(i) ch( f ) ≥ v( f )/3 still holds for each face f of G′ with ∣ f ∣ ≥ 4 and

(i) ch(v) ≥ 0 for each v of G.

We first show statement (i). Ackerman [Ack09] noted that a face f with ∣ f ∣ ≥ 4 can

contribute charges over each of its edges at most once. Moreover, f can contribute at most one

third unit of charge over each of its edges. Therefore, if ∣ f ∣ + v( f ) ≥ 6, then in the worst case

(that is, f contributes charge over each of its edges) f still has a charge of ∣ f ∣+v( f )−4−∣ f ∣/3 ≥
v( f )/3. Thus, it remains to verify that 1-quadrilaterals and 0-pentagons, which initially had

only one unit of charge, have a charge of at least 1/3 unit or zero, respectively, at the end of the

second step.

A 1-quadrilateral q can contribute charge to at most two triangles since the endpoints of

any edge of G′ over which a face contributes charge must be intersection points in D′; see

Figure 5.3d and recall that q now plays the role of fk in Figure 5.3b.

A 0-pentagon cannot contribute charge to more than three triangles; see Lemma 5.7.

Now we show statement (ii). Recall that a vertex v can contribute charge to a digon incident

to v or to at most two triangles contained in an empty 1-lens incident to v. Observe that

two empty 1-lenses with either triangles or a digon taking charge from v cannot overlap; see

Figure 5.3a. We show in Lemma 5.3 that v cannot be incident to more than four such empty

1-lenses. In the worst case, v contributes 4/3 units of charge to each of the at most four incident

digons representing these empty 1-lenses. Thus, v has non-negative charge at the end of the

second step.

Lemma 5.3. In any simplified arc-RAC drawing, each vertex is incident to at most four non-

overlapping empty 1-lenses.
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Figure 5.4: The edges of an empty

1-lens form a π/2 angle at the ver-

tex of the lens.
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Figure 5.5: Π(⋅ ; ⋅) describes some intersections along

an edge. Here, e.g., Π(e; e1 , e2 , e3 , e4 , e3 , e5 , e6) and

Π(e; e1 , e3 , e4 , e5) both hold.

Proof: Let v be a vertex incident to some non-overlapping empty 1-lenses. Consider a small

neighborhood of the vertex v in the simplified drawing and notice that in this neighborhood

the simplified drawing is the same as the original arc-RAC drawing. Let l be one of the

non-overlapping empty 1-lenses incident to v. Then l forms an angle of 90
○
between the two

edges incident to v that form l ; see Figure 5.4. This is due to the fact that the other “endpoint”

of l is an intersection point where the two edges must meet at 90
○
. Thus v is incident to at

most four non-overlapping empty 1-lenses.

We now set the stage for proving Lemma 5.7, which shows that a 0-pentagon in a simpli-

fied drawing does not contribute charge to more than three triangles. The proof goes by a

contradiction. Consider a 0-pentagon that contributes charge to at least four triangles in the

simplified drawing. First, we examine which edges of this 0-pentagon cross; see Lemma 5.4.

We then describe the order in which these edges share points in the simplified drawing and

show that the original arc-RAC drawing must adhere to the same order; see Lemma 5.5.

Finally, we use geometric arguments to show that, under these order constraints, an arc-RAC

drawing of the edges does not exist; see Lemma 5.6.

Let D be an arc-RAC drawing of some arc-RAC graph G with V = V(G) and E = E(G),
let D′ be its simplification, and let p be a 0-pentagon that contributes charge to at least four

triangles. Let s0 , s1 , . . . , s4 be the sides of p in clockwise order and denote the edges of G that

contain these sides as e0 , e1 , . . . , e4 so that edge e0 contains side s0 etc. Since p contributes

charge over at least four sides, these sides are consecutive around p. Without loss of generality,

we assume that s4 is the side over which p does not necessarily contribute charge.

For i ∈ {0, 1, 2, 3}, let t i be the triangle that gets charge from p over the side s i . The triangle

t i is bounded by the edges e i−1 and e i+1. (Indices are taken modulo 5.) Note that all faces

bounded by e i−1 and e i+1 that are between t i and pmust be 0-quadrilaterals. If t i is a 1-triangle,

then e i−1 and e i+1 are incident to the same vertex of the triangle. Otherwise, t i is a 0-triangle

and e i−1 and e i+1 cross at a vertex of the triangle. Let A′i−1, i+1 denote this common point of

e i−1 and e i+1, and let Ep = {e0 , . . . , e4}; see Figure 5.6a.
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(b) Also in D, it holds that Π(e0; e4 , e1 , e2),

Π(e3; e1 , e2 , e4), and, for i ∈ {1, 2, 4},

Π(e i ; e i−2 , e i−1 , e i+1 , e i+2)

Figure 5.6: A 0-pentagon cannot contribute charge to more than three triangles.

We now describe the order in which the edges in Ep share points in D′. To this end, we

orient the edges in Ep so that this orientation conforms with the orientation of a clockwise

walk around the boundary of p inD′. In addition, wewrite Π(ek ; e i1 , e i2 , . . . , e i l ) if the edge ek
shares points (either crossing points or vertices of the graph) with the edges e i1 , e i2 , . . . , e i l
in this order with respect to the orientation of ek ; see Figure 5.5. (Note that we can have

Π(ek ; e i , e j , e i) as edges may intersect twice. We will not consider more than two edges

sharing the same endpoint.) Due to the order in which we numbered the edges in Ep , it holds

in D′ that Π(e0; e4 , e1 , e2), Π(e3; e1 , e2 , e4), and, for i ∈ {1, 2, 4}, Π(e i ; e i−2 , e i−1 , e i+1 , e i+2);
see Figure 5.6a. Now we show that in D the order is the same. Obviously every pair of edges

(e i−1 , e i+1) that shares an endpoint in D′ also shares an endpoint in D. Furthermore, every

pair (e i , e i+1) or (e i−1 , e i+1) of crossing edges crosses in D, too, because the simplification

process does not introduce new pairs of crossing edges; see Observation 5.1.

Lemma 5.4. In the drawing D, the edges e0 and e3 do not cross.

Proof: Assume that the edges e0 and e3 cross in D and notice that each of the pairs of edges

(e0 , e1), (e1 , e2), and (e2 , e3) forms a crossing in D′ (see Figure 5.6a), and hence in D, too.

For any arc e, let ē denote the circle containing e. Recall that a family of Apollonian circles

[Ogi69, CFKW19] consists of two sets of circles such that each circle in one set is orthogonal

to each circle in the other set. Thus, the pairs of circles (ē1 , ē3) and (ē0 , ē2) belong to such

a family; the pair (ē1 , ē3) belongs to one set of the family and (ē0 , ē2) belongs to the other

set. If the family does not consist of two parabolic pencils, that is, not all of the circles in the

family share the same point, which is the case for the circles ē0, ē1, ē2, and ē3, then one such

set consists of hyperbolic pencil, that is, disjoint circles. So either the pair (ē0 , ē2) or the pair
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(ē1 , ē3)must be in the hyperbolic pencil. This is a contradiction because each of the two pairs

shares a point in D′ (see Figure 5.6a), and thus, in D.

Lemma 5.5. In the drawing D, it holds that Π(e0; e4 , e1 , e2), Π(e3; e1 , e2 , e4), and, for each

i ∈ {1, 2, 4}, Π(e i ; e i−2 , e i−1 , e i+1 , e i+2).

Proof: Recall that in the drawing D′, it holds that Π(e0; e4 , e1 , e2), Π(e3; e1 , e2 , e4), and,
for each i ∈ {1, 2, 4}, Π(e i ; e i−2 , e i−1 , e i+1 , e i+2); see Figure 5.6a. Consider distinct indices

i , j, k ∈ {0, 1, 2, 3, 4} so that the edges e i and e j share points with ek in this order in D′, that

is, Π(ek ; e i , e j) in D′. We will show that the edges e i and e j share points with ek in the same

order in D, that is, Π(ek ; e i , e j) in D. In other words, the order in which the edges in Ep share

points in D is the same as in D′.

First, note that if the edge e i or the edge e j shares an endpoint with ek , then e i and e j
do not change the order in which they share points with ek . This is due to the fact that the

simplification process does not modify the graph. Therefore, e i and e j share points with ek in

the same order in D as in D′, that is, Π(ek ; e i , e j) in D.

Assume now that both e i and e j cross ek .

If (i , j) ∈ {(0, 3), (3, 0)}, then, according to Lemma 5.4, the edges e i and e j do not cross

in D, so they do not form an empty 0-lens in D, and thus, by Lemma 5.2, e i and e j cross ek in

the same order in D as in D′, that is, Π(ek ; e i , e j) in D.

Otherwise, the edges e i and e j share a point in D′; see Figure 5.6a. Therefore, by Observa-

tion 5.3, e i and e j do not form an empty 0-lens in D, and thus, by Lemma 5.2, e i and e j cross

ek in the same order in D as in D′, that is, Π(ek ; e i , e j) in D.

Thus, we have shown that the order in which the edges in Ep share points in D is the same

as in D′, see Figure 5.6b. We show now that an arc-RAC drawing with this order does not

exist; see Lemma 5.6. This is the main ingredient to prove Lemma 5.7, which says that a

0-pentagon in a simplified arc-RAC drawing contributes charge to at most three triangles.

For simplicity of presentation and without loss of generality, we assume that the points

A′i−1, i+1 are vertices of G, which we denote by v i−1, i+1.

Lemma 5.6. The edges in Ep do not admit an arc-RAC drawing where it holds that

Π(e0; e4 , e1 , e2), Π(e3; e1 , e2 , e4), and, for i ∈ {1, 2, 4}, Π(e i ; e i−2 , e i−1 , e i+1 , e i+2).

Proof: Assume that the edges in Ep admit an arc-RAC drawing where they share points in the

order indicated above. For i ∈ {0, . . . , 4}, let Pi , i+1 be the intersection point of e i and e i+1; see

Figure 5.6b. Note that on e i , the point Pi−1, i is before the point Pi , i+1 (due to Π(e i ; e i−1 , e i+1)).
Recall that an inversion [Ogi69] with respect to a circle α, the inversion circle, is a mapping

that takes any point P ≠ C(α) to a point P′ on the straight-line ray from C(α) through P

so that ∣C(α)P′∣ ⋅ ∣C(α)P∣ = r(α)2
. Inversion maps each circle not passing through C(α) to

another circle and each circle passing through C(α) to a line. The center of the inversion

circle is mapped to the “point at infinity”. It is known that inversion preserves angles.

We invert the drawing of the edges in Ep with respect to a small inversion circle centered

at v24. Let e○i be the image of e i , v
○
i−1, i+1 be the image of v i−1, i+1 (v

○
24
is the point at infinity),
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Figure 5.7: Illustration for the proof of Lemma 5.6 when e2 and e4 belong to two different circles.

Image of the inversion with respect to the red circle in Figure 5.6b.

and P○i , i+1 be the image of Pi , i+1. Because in the pre-image the arcs e2 and e4 pass through v24,

in the image e○
2
and e○

4
are straight-line rays. We assume that in the image e○

2
meets e○

4
at the

point at infinity, that is, at v○
24
. Then, taking into account that inversion is a continuous and

injective mapping, the order in which the edges in Ep share points is the same in the image.

We consider two cases regarding whether the edges e2 and e4 belong to two different circles

or not.

Case I: e2 and e4 belong to two different circles.

One of the intersection points of their circles is v24, and we let X denote the other intersec-

tion point. Here we have that e○
2
and e○

4
are two straight-line rays meeting at infinity at v○

24
.

Their supporting lines are different and intersect at X○, which is the image of X; see Figure 5.7.

We now assume for a contradiction that the arc e○
1
forms a concave side of the triangle

∆1 = P○12v○41X○; see Figure 5.7a where the triangle is filled gray. (Symmetrically, we can show

that the arc e○
0
cannot form a concave side of the triangle ∆0 = P○40v○02

X○.) By Observation 4.2,

C(e○
1
) must lie on the ray e○

2
. Since we assume that the arc e○

1
forms a concave side of the

triangle ∆1, C(e○1 ) and v○
02
are separated by P○

12
on e○

2
. Consider the tangent l0 to e○

0
at P○

01
.

Again in light of Observation 4.2, l0 has to go through C(e○
1
) because e○

0
and e○

1
are orthogonal.

On the one hand, v○
02
is to the same side of l0 as P○

12
; see Figure 5.7a. On the other hand, l0

separates P○
12
and v○

41
due to Π(e1; e4 , e0 , e2). Moreover, l0 does not separate v○

41
and P○

40
since

it intersects the line of e○
4
when leaving the gray triangle ∆1. So the two points v○

02
and P○

40
of

the same arc e○
0
are separated by l0, which is a tangent of this arc; contradiction.

Thus, the arc e○
1
forms a convex side of the triangle ∆1, and e○

0
forms a convex side of ∆0;

see Figure 5.7b. Now, due to Observation 4.2, C(e○
0
) is between v○

41
and P○

40
, and C(e○

1
) is

between v○
02
and P○

12
, because that is where the tangents l1 of e

○
1
and l0 of e

○
0
in P○

01
intersect the

lines of e○
4
and e○

2
, respectively. Taking into account that C(e○

3
) = X○, because e○

3
is orthogonal

to both e○
2
and e○

4
, we obtain that the points C(e○

3
), C(e○

1
), P○

12
, P○

23
appear on the line of e○

2
in

this order. Thus, the circle of e○
1
is contained within the circle of e○

3
. This is a contradiction

because e○
3
and e○

1
must share a point; namely v○

13
.
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Figure 5.8: Illustration to the proof of Lemma 5.6 when e2 and e4 belong to the same circle. Image

of the inversion with respect to the red circle in Figure 5.6b.

Case II: e2 and e4 belong to the same circle.

Here e○
2
and e○

4
are two disjoint straight-line rays on the same line l (meeting at infinity at

v○
24
); see Figure 5.8. We direct l as e○

4
and e○

2
(from right to left in Figure 5.8). Because e○

0
, e○

1
,

and e○
3
are orthogonal to l , their centers have to be on l . Due to our initial assumption, we

have Π(e4; e2 , e3 , e0 , e1) and Π(e2; e0 , e1 , e3 , e4). Hence, along l , we have P○34, P○40, v○41, (on e○
4
)

and then v○
02
, P○

12
, P○

23
(on e○

2
). Therefore, the circle of e○

1
is contained in that of e○

3
. Hence, e○

1

does not share a point with e○
3
; a contradiction.

Lemma 5.7. A 0-pentagon in a simplified arc-RAC drawing contributes charge to at most three

triangles.

Proof: As discussed above, if a 0-pentagon formed by edges e0 , e1 , . . . , e4 contributes charge

to more than three triangles in a simplified drawing (see Figure 5.6a), then this implies

the existence of an arc-RAC drawing where it holds that Π(e0; e4 , e1 , e2), Π(e3; e1 , e2 , e4)
and, for i ∈ {1, 2, 4}, Π(e i ; e i−2 , e i−1 , e i+1 , e i+2); see Figure 5.6b. This, however, contradicts

Lemma 5.6.

With the proofs of Lemmas 5.3 and 5.7 now in place, the proof of Theorem 5.1 is complete.

5.2 A Lower Bound for theMaximum Edge Density

In this section, we construct a family of arc-RAC graphs with high edge density. Our construc-

tion is based on a family of RAC1 graphs of high edge density that Arikushi et al. [AFK
+
12]

constructed. Let G be an embedded graph whose vertices are the vertices of the hexagonal

lattice clipped inside a rectangle; see Figure 5.9a. The edges of G are the edges of the lat-

tice and, inside each hexagon that is bounded by the cycle (P0 , . . . , P5), six additional edges

(Pi , Pi+2 mod 6) for i ∈ {0, 1, . . . , 5}; see Figure 5.9b. We refer to a part of the drawing made

up of a single hexagon and its diagonals as a tile. In Theorem 5.2 below, we show that each

hexagon can be drawn as a regular hexagon and its diagonals can be drawn as two sets of arcs

A = {α0 , α1 , α2} and B = {β0 , β1 , β2}, so that the arcs in A are pairwise orthogonal, the arcs

in B are pairwise non-crossing, and for each arc in B intersecting another arc in A the two
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(a) the hexagonal lattice

P0

P3

P1

P2 P4

P5

α2

α0

β0

β2

α1

β1

d

(b) a tile

Figure 5.9: Tiling used for the lower-bound construction.

arcs are orthogonal; we use this construction to establish the theorem. In particular, the arcs

in A form the 3-cycle (P0 , P2 , P4), and the arcs in B form the 3-cycle (P1 , P3 , P5).
We first define the radii and centers of the arcs in a tile and show that they form only

orthogonal crossings. We use the geometric center of the tile as the origin of our coordinate

system in the following analysis. We now discuss the arcs in A; then we turn to the arcs

in B. For each j ∈ {0, 1, 2}, the arc α j has radius rA = 1 and center C(α j) = (dA cos(π/6 +
j 2π

3
), dA sin(π/6 + j 2π

3
)), where dA =

√
2/3 is the distance of the centers from the origin; see

Figure 5.10a.

Lemma 5.8. The arcs in A are pairwise orthogonal.

Proof: Consider the equilateral triangle△C(α0)C(α1)C(α2) formed by the centers of the

three arcs in A. Because the origin is in the center of the triangle, the edge length of the

triangle is 2dA cos π/6 =
√

2, and so the distance between the centers of any two arcs is

√
2.

The radii of the arcs are 1, hence by Observation 4.1, every two arcs are orthogonal.

As in Figure 5.10b, for each j ∈ {0, 1, 2}, the arc β j has radius rB =
√

70+40
√

3

6
and center

C(β j) = (dB cos( π
2
+ ( j+1)2π

3
), dB sin( π

2
+ ( j+1)2π

3
)), where dB =

√
1

6
+
√

73+40
√

3

6
is the

distance of the centers from the origin.

Lemma 5.9. If an arc in B intersects an arc in A, then the two arcs are orthogonal.

Proof: Let i , j ∈ {0, 1, 2}. If j ≠ i, ∥C(α i) − C(β j)∥2 = 76+40
√

3

6
= 1 + 70+40

√
3

6
= r2

A + r2

B , so

by Observation 4.1 α i and β j are orthogonal. Otherwise, for i ∈ {0, 1, 2}, ∥C(α i) − C(β i)∥ =√
112+64

√
3

6
> 1 +

√
70+40

√
3

6
= rA + rB , so α i and β i do not intersect.

Theorem 5.2. For infinitely many values of n, there exists an n-vertex arc-RAC graph with

4.5n − O(
√
n) edges.

Proof: We first construct a tile and show that its drawing is indeed a valid arc-RAC drawing.

Then it is easy to draw an embedded graph G with the claimed edge density.
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C(α1) C(α0)

C(α2)

P0

P2 P4

dA

(a) circles covering the arcs in A

C(β0) C(β1)

C(β2)

P1 P5

P3

dB

(b) circles covering the arcs in B

Figure 5.10: Construction for the lower bound on the maximum edge density of arc-RAC graphs.

Consider two circles α and β that intersect in two points of different distance from the origin.

Let X−αβ be the intersection point that is closer to the origin, and let X+αβ be the intersection

point further from the origin.

Let the vertices of the hexagon in a tile be P0 = X+α0α1
, P1 = X−β2β0

, P2 = X+α1α2
, P3 = X−β0β1 ,

P4 = X+α2α0
, and P5 = X−β1β2

. Due to the symmetric definitions of the arcs, the angle between

two consecutive vertices of the hexagon is π/3. Moreover, by a simple computation, we see

that for each j ∈ {0, 1, 2} and with d =
√
1/2 +

√
1/6 being the distance of the vertices of the

hexagon from the origin, we have:

P2 j = X+α jα j+1 mod 3
= (d cos( π

2
+ j 2π

3
), d sin( π

2
+ j 2π

3
))

P2 j+3 mod 6 = X−β jβ j+1 mod 3

= (d cos( π
6
+ ( j + 2) 2π

3
), d sin( π

6
+ ( j + 2) 2π

3
)).

Thus, all the vertices of the hexagon are equidistant from its center, so the hexagon is regular.

According to Lemmas 5.8 and 5.9 all crossings of the arcs that belong to the same tile are

orthogonal. Now we argue that the arcs in A and B are contained in the regular hexagon. To

this end, we show that the arcs do not intersect the relative interior of the edges of the hexagon.

To see this, take, for example, the arc α2, which connects P2 and P4. The line segment P2P4
is orthogonal to the side P1P2 of the hexagon. As the center of α2 is below P2P4, the tangent

of α2 in P2 enters the interior of the hexagon in P2. Thus, α2 does not intersect the relative

interior of the edge P1P2 (or of any other edge) of the hexagon. Similarly we can show that the

arcs in B do not intersect the relative interior of an edge of the hexagon. Therefore, each tile is

an arc-RAC drawing, and G is an arc-RAC graph.

Almost all vertices of the lattice with the exception of at most O(
√
n) vertices at the lattice’s

boundary have degree 9 [AFK
+
12]. Hence G has 4.5n − O(

√
n) edges.

As any n-vertex RAC graph has at most 4n − 10 edges [DEL11], we obtain the following.

Corollary 5.1. The arc-RAC graphs are a proper superclass of the RAC0 graphs.

66



5.3 Discussions and Open Problems

5.3 Discussions and Open Problems

An obvious open problem is to tighten the bounds on the edge density of arc-RAC graphs in

Theorems 5.1 and 5.2.

Another immediate question is the relation to RAC1 graphs, which also extend the class of

RAC0 graphs. This is especially intriguing as the best known lower bound for the maximum

edge density of RAC1 graphs is indeed larger than our lower bound for arc-RAC graphs

whereas there may be arc-RAC graphs that are denser than the densest RAC1 graphs.

The relation between RACk graphs and 1-planar graphs is well understood [AFK
+
12,

BBH
+
17, BDL

+
17, BDE

+
16, CLWZ19, EL13]. What about the relation between arc-RAC graphs

and 1-planar graphs? In particular, is there a 1-planar graph which is not arc-RAC?

We are also interested in the area required by arc-RAC drawings. Are there arc-RAC graphs

that need exponential area to admit an arc-RAC drawing? (A way to measure this off the grid

is to consider the ratio between the longest and the shortest edge in a drawing.)

Finally, the complexity of recognizing arc-RAC graphs is open, but likely NP-hard.
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6

Edge Crossing Minimization

in Circular Layouts

In contrast to crossing angle optimization in Chapter 5 another way to impose restrictions on

crossings is to introduce forbidden patterns on crossing edges in a drawing of a graph. Two

commonly studied beyond-planar graph classes with forbidden edge crossing patterns are:

1. k-planar graphs, that is, the graphs which can be drawn so that each edge is crossed by

at most k other edges.

2. k-quasi-planar graphs, that is, the graphs which can be drawn so that no k edges cross

pairwise.

Note that the 0-planar graphs and 2-quasi-planar graphs are precisely the planar graphs.

Additionally, the 3-quasi-planar graphs are simply called quasi-planar.

In this chapter we study these two families of classes of graphs by restricting the drawings

to circular layouts, that is, so that the vertices are placed in convex position, for example on

a circle, and edges routed inside the circle, i.e., we apply the above two generalizations of

planar graphs to outerplanar graphs and study outer k-planarity and outer k-quasi-planarity.

For the corresponding graph classes we analyze the following graph parameters (defined

in Section 2.1): balanced separators, treewidth, degeneracy, coloring, and edge density. In

addition, we consider the recognition problems for these graph classes.

Related work. Ringel [Rin65] was the first to consider k-planar graphs by showing that

1-planar graphs are 7-colorable. This was later improved to 6-colorable by Borodin [Bor84].

This is tight since K6 is 1-planar. Many additional results on 1-planarity can be found in a

recent survey paper [KLM17]. Generally, each n-vertex k-planar graph has at most 3.81n
√
k

edges [Ack19] and treewidth O(
√
kn) [DEW17].

Outer k-planar graphs have been considered mostly for k ∈ {0, 1, 2}. Of course, the outer

0-planar graphs are the classic outerplanar graphs which are well-known to be 2-degenerate

and have treewidth at most 2. It was shown that essentially every graph property is testable

on outerplanar graphs [BKN16]. Outer 1-planar graphs are a simple subclass of planar graphs

and can be recognized in linear time [ABB
+
16, HEK

+
15]. Full outer 2-planar graphs, which

form a subclass of outer 2-planar graphs, can been recognized in linear time [HN16]. General

outer k-planar graphs were considered by Binucci et al. [BGHL18], who showed (among other

results) that, for every k, there is a 2-tree which is not outer k-planar. Wood and Telle [WT07]

considered a slight generalization of outer k-planar graphs in their work and showed that

these graphs have treewidth O(k).
The k-quasi-planar graphs have been heavily studied from the perspective of edge density.

The goal here is to settle a conjecture of Pach et al. [PSS96] stating that every n-vertex k-

quasi-planar graph has at most ckn edges, where ck is a constant depending only on k. This

conjecture is true for k = 3 [AT07] and k = 4 [Ack09]. The best known upper bound is
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(n log n)2α(n)ck
[FPS13], where α is the inverse of the Ackermann function. Edge density

was also considered in the “outer” setting: Capoyleas and Pach [CP92] showed that any

outer k-quasi-planar graph with n vertices has at most 2(k − 1)n − (2k−1
2
) edges. Dress et

al. [DKM02] and Nakamigawa [Nak00] showed that there are outer k-quasi-planar graphs

meeting this bound (if n ≥ 2k − 1). Actually, the outer k-quasi-planar graphs that meet this

bound are exactly the maximal outer k-quasi-planar graphs. (Recall that a graph is maximal

with respect to a given graph property if adding any edge to the graph destroys the property.)

Dress et al. [DKM02] and Nakamigawa [Nak00] showed that for every two maximal outer k-

quasi-planar drawings G = (V , E) and G′ = (V , E′) whose corresponding vertices are in the

same positions, there is a sequence of local edge exchange operations (called flips) producing

drawings G = G1 ,G2 , . . . ,Gt = G′ such that each intermediate drawing is a maximal k-quasi-

planar drawing. More recently, it was shown that the semi-bar k-visibility graphs are outer

(k + 2)-quasi-planar [GKT14]. Apart from these results, the outer k-quasi-planar graphs do

not seem to have received much attention.

The relationship between k-planar graphs and k-quasi-planar graphs was considered re-

cently. While any k-planar graph is clearly (k + 2)-quasi-planar, Angelini et al. [ABB
+
17]

showed that any k-planar graph is (k + 1)-quasi-planar.

The convex (or 1-page book) crossing number of a graph [Sch17] is the minimum number

of crossings which occur in any convex drawing. This concept has been introduced several

times (see [Sch17] for more details). The convex crossing number is NP-complete to com-

pute [MKNF87]. However, recently Bannister and Eppstein [BE18] used treewidth-based

techniques (via extended monadic second-order logic or MSO2, see Section 2.4) to show that

it can be computed in linear FPT time, i.e., O( f (c) ⋅ n) time where c is the convex crossing

number and f is a computable function. Thus, for any k, the outer k-crossing graphs can be

recognized in time linear in n +m.

Our contribution. In Section 6.1, we consider outer k-planar graphs. We show that the

largest outer k-planar complete graph has (⌊
√
4k + 1⌋ + 2) vertices. Further we show that

each outer k-planar graph is ⌊3.5
√
k⌋-degenerate. This provides bounds of ⌊3.5

√
k⌋n and

⌊3.5
√
k⌋ + 1 on the edge density and the chromatic number of an n-vertex outer k-planar

graph respectively. We further show that every outer k-planar graph has separation number

at most 2k + 3. For each fixed k, we use the corresponding balanced separators to obtain a

quasi-polynomial time algorithm to test outer k-planarity, i.e., these recognition problems are

not NP-hard unless ETH fails.

In Section 6.2, we consider outer k-quasi-planar graphs. We relate outer k-quasi-planar

graphs to other graph classes, in particular, planar graphs.

Finally, in Section 6.3, we restrict outer k-planar and outer k-quasi-planar drawings to full

drawings (where no crossing appears on the boundary), and to closed drawings (where the

vertex sequence on the boundary is a cycle in the graph). As we have already mentioned, the

class of full outer 2-planar graphs have been considered by Hong and Nagamochi [HN16] who

showed that full outer 2-planarity testing can be performed in linear time. We first observe

that a graph is full outer k-planar (k-quasi-planar) if and only if its maximal biconnected

components are closed outer k-planar (k-quasi-planar), this was observed for full outer 2-

planar graphs by Hong and Nagamochi [HN16]. Then, for each k, we express both closed
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outer k-planarity and closed outer k-quasi-planarity in extended monadic second-order logic

(MSO2; see Section 2.4). Thus, since outer k-planar graphs have bounded treewidth, full outer

k-planarity is testable in O( f (k) ⋅ n) time, for a computable function f . We note that this

result greatly generalizes the work of Hong and Nagamochi [HN16].

6.1 Outer k-Planar Graphs

In this section we consider outer k-planar graphs. We study their structural properties such

as degeneracy and separation number. Based on these structural properties we obtain bounds

on the colorability of outer k-planar graphs as well as a quasi-polynomial time recognition

algorithm.

Degeneracy. In this section we focus on the degeneracy of outer k-planar graphs. First we

consider outer k-planar complete graphs. We show that the largest outer k-planar complete

graph has ⌊
√
4k + 1⌋ + 2 vertices; see Observation 6.1. This implies that there are outer k-

planar graphs whose minimum degree is ⌊
√
4k + 1⌋ + 1. We then bound the degeneracy of

outer k-planar graphs by ⌊3.5
√
k⌋; see Theorem 6.1.

Observation 6.1. For every k, the largest outer k-planar complete graph has atmost ⌊
√
4k + 1⌋+

2 vertices. Moreover, for every k, the complete graph with ⌊
√
4k + 1⌋+2 vertices is outer k-planar.

Proof: Let r be the size of the largest outer k-planar complete graph. Consider such a complete

graph and its outer k-planar drawing. Let e be an edge that splits the complete graph so that

there are (r − 2)/2 many vertices on both sides if r is even, or (r − 1)/2 on one side and

(r − 3)/2 on the other if r is odd. Then the edge e has the largest number of crossings among

all the edges in the drawing, namely ((r − 2)/2)2
if r is even and ((r − 3)(r − 1))/4 if r is

odd. Taking into account the fact that no edge is crossed more than k times, we obtain that

r ≤ ⌊
√
4k + 1⌋ + 2. Similarly, if r = ⌊

√
4k + 1⌋ + 2 the drawing is outer k-planar.

Before we proceed further we introduce some helpful notation. Let G be an outer k-planar

graph. Consider some outer k-planar embedding of G. Without loss of generality we can

assume that the vertices are on a circle and the edges are drawn straight-line. We say that an

edge ab splits off l ∈ N vertices of G to one side if one of the open half-planes defined by the

edge ab contains exactly l vertices (not including a and b). From the context it will be clear

which of the two half-planes we mean.

Theorem 6.1. For each k let δ⋆ be the largest minimum degree among all outer k-planar graphs.

Then δ⋆ ≤ ⌊ck
√
k⌋ where

ck =
5

4

√
k
+ 3

4

√
1

k
+ 8.

The sequence (ck)k≥1 is monotonically decreasing with c1 = 3.5 and the limit 3

√
2/2.

Proof: Let G be an outer k-planar graph whose minimum degree is δ⋆. Consider some outer

k-planar embedding of G. Assume that there exists an edge e that splits off t ∈ N vertices
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in the embedding of G to one side, then there are at least δ⋆t − t(t − 1) + 2t = δ⋆t − t(t + 1)
edges crossing the edge e (on the left-hand side of the equality the second term stands for the

sum of the degrees of a clique on t vertices and the third term for the number of edges incident

to the endpoints of e and to t many vertices). Because G is outer k-planar, we have that δ⋆t −
t(t + 1) ≤ k. Therefore, either t ≤ t1 or t2 ≤ t, where t1 , t2 = ((δ⋆ − 1) ±

√
(δ⋆ − 1)2 − 4k) /2,

if δ⋆ ≥ 2

√
k + 1. Assume for contradiction that δ⋆ ≥ c

√
k for some c > ck where

ck =
5

4

√
k
+ 3

4

√
1

k
+ 8.

Then t1 and t2 are well defined because ck > 1/
√
k + 2. Call an edge that splits off at least t2

vertices to both sides long. Observe that each vertex is incident to at least δ⋆ − 2(t1 + 1) long
edges. Then the number l of long edges incident to each vertex is at least δ⋆ − 2(t1 + 1) =
δ⋆ − δ⋆ − 1 +

√
(δ⋆ − 1)2 − 4k ≥

√
(c2 − 4)k − 2c

√
k + 1 − 1. Take a smallest long edge e′

in the outer k-planar embedding of G, that is, in one of the open half-planes h defined by

e′ there is no long edge that is completely contained in h. Let Vh be the set of vertices of

the graph that are contained in the half-plane h. Because e′ is a long edge, ∣Vh ∣ ≥ t2 =
((δ⋆ − 1) +

√
(δ⋆ − 1)2 − 4k) /2. Because it is a smallest long edge all the long edges incident

to the vertices in Vh must cross e′, therefore, the number of edges that cross e′ is at least

ℓt2 ≥
1

2
(
√
(c2 − 4)k − 2c

√
k + 1 − 1)((c

√
k − 1) +

√
(c2 − 4)k − 2c

√
k + 1) .

Let

f (c, k) = 1
2
(
√
(c2 − 4)k − 2c

√
k + 1 − 1)((c

√
k − 1) +

√
(c2 − 4)k − 2c

√
k + 1) − k.

Consider the equation f (c, k) = 0 for any k ∈ N and c in the interval (1/
√
k + 2,∞). It can

be simplified to the following quadratic equation

2c2k − 5c
√
k + 2 − 9k = 0. (6.1)

For each k ∈ N the only root of equation (6.1) with respect to c in the interval (1/
√
k + 2,∞)

is ck . Therefore, because c > ck the number of edges that cross e′ is strictly larger than k;

contradiction.

Thus, for each k ∈ N the largest maximumminimum degree of any outer k-planar graph

is at most ck
√
k. Observe that, (ck)k≥1 is a monotonically decreasing sequence with c1 = 3.5

and the limit 3

√
2/2.

It is worth pointing out that the lower bound from Observation 6.1 differs from the upper

bound from Theorem 6.1 by at most one for k up to 54. As a direct consequence of Theorem 6.1,

we obtain the following.

Corollary 6.1. Every outer k-planar graph has at most ⌊3.5
√
k⌋n edges.

Note that for, outer k-planar graphs, Corollary 6.1 provides a better upper bound than the

upper bound [Ack19] of 3.81

√
kn for general n-vertex k-planar graphs (k ≥ 4).

By combining Observation 6.1 and Theorem 6.1, we obtain the following.
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Figure 6.1: Left: the pair of parallel edges b lb
′

l and ara
′

r ; center: case 1; right: case 2.

Corollary 6.2. Every outer k-planar graph can be colored with ⌊3.5
√
k⌋ + 1 colors. There exist

outer k-planar graphs that need at least ⌊
√
4k + 1⌋ + 2 colors.

Quasi-polynomial time recognition via balanced separators. We show that outer k-

planar graphs have separation number at most 2k+3 (Theorem 6.2). Via a result of Dvořák and

Norin [DN14], this implies they have O(k) treewidth. However, Proposition 8.5 of [WT07]

implies that every outer k-planar graph has treewidth at most 3k + 11, i.e., a better bound on

the treewidth than applying the result of Dvořák and Norin to our separators. The treewidth

3k + 11 bound also implies a separation number of 3k + 12, but our bound is better. Our

separators also allow outer k-planarity testing in quasi-polynomial time (Theorem 6.3).

Theorem 6.2. Each outer k-planar graph has separation number at most 2k + 3.

Proof: Consider an outer k-planar drawing. If the graph has an edge that splits off [n/3, 2n/3]
vertices to one side, we can use this edge to obtain a balanced separator of size at most k + 2,

i.e., by choosing the endpoints of this edge and a vertex cover of the edges crossing it. So,

suppose no such edge exists. Consider a pair of vertices (a, b) such that the line ab divides the

drawing into left and right sides having an almost equal number of vertices (with a difference

at most one). If the edges which cross the line ab also mutually cross each other, there can be

at most k of them. Thus, we again have a balanced separator of size at most k+2. So, it remains

to consider the case when we have a pair of edges that cross the line ab, but do not cross each

other. We call such a pair of edges parallel. We now pick a pair of parallel edges in a specific

way. Starting from b, let b l be the first vertex along the boundary in clockwise direction such

that there is an edge b lb
′
l that crosses the line ab. Symmetrically, starting from a, let ar be

the first vertex along the boundary in clockwise direction such that there is an edge ara
′
r that

crosses the line ab; see Fig. 6.1 (left). Note that the edges ara
′
r and b lb

′
l are either identical or

parallel. In the former case, we see that all other edges crossing the line ab must also cross the

edge ara
′
r = b lb′l , and as such there are again at most k edges crossing the line ab. In the latter

case, there are two subcases that we treat below. For two vertices u and v, let [u, v] be the set

of vertices that starts with u and, going clockwise, ends with v. Let (u, v) = [u, v] ∖ {u, v}.
Case 1. The edge b lb

′
l splits off µ ≤ n/3 vertices to the top; see Fig. 6.1 (center).

In this case, either [b′l , b] or [b, b l ] has [n/3, n/2] vertices. We claim that neither the line bb l
nor the line bb′l can be crossed more than k times. Namely, each edge that crosses the line
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Figure 6.2: Shapes of separators, special separator S in blue, regions in different colors (red, orange,

and pink), components connected to blue vertices in green: (a) closest-parallels case; (b) single-edge

case; (c) special case for single-edge separators.

bb l also crosses the edge b lb
′
l . Similarly, each edge that crosses the line bb′l also crosses the

edge b lb
′
l . Thus, we have a separator of size at most k + 2, regardless of whether we choose

bb l or bb′l to separate the graph. As we observed above, one of them is balanced.

Case 1′. The edge ara
′
r splits off at most n/3 vertices to the bottom.

This is symmetric to case 1.

Case 2. The edge b lb
′
l splits off at most n/3 vertices to the bottom, and the edge ara

′
r splits

off at most n/3 vertices to the top; see Fig. 6.1 (right).

We show that we can always find a pair of parallel edges such that one splits off at most

n/3 vertices to the bottom and the other splits off at most n/3 vertices to the top, and no

edge between them is parallel to either of them. We call such a pair close. If there is an edge

e between b lb
′
l and ara

′
r , we form a new pair by using e and ara

′
r if e splits off at most n/3

vertices to the bottom or by using e and b lb
′
l if e splits off at most n/3 vertices to the top. By

repeating this procedure, we always find a close pair. Hence, we can assume that b lb
′
l and ara

′
r

actually form a close pair. Let α = ∣(a′r , ar)∣, β = ∣(b′l , b l)∣, γ = ∣(ar , b
′
l)∣, and δ = ∣(b l , a′r)∣;

see Fig. 6.1 (right).

Suppose that a′r = b l or ar = b′l . We can now use both edges b lb
′
l and ara

′
r (together with

any edges crossing them) to obtain a separator of size at most 2k+3. The separator is balanced

since α + β ≤ 2n/3 and γ + δ ≤ 2n/3.
So, now ar , a

′
r , b l , b

′
l are all distinct. Note that γ, δ ≤ n/2 since each side of the line ab

has at most n/2 vertices. We separate the graph along the line b l ar . Namely, all the edges

that cross this line must also cross b lb
′
l or a′rar . Therefore, we obtain a separator of size at

most 2k + 2.

To see that the separator is balanced, we consider two cases. If δ ≥ n/3 (or γ ≥ n/3), then

α+β+γ ≤ 2n/3 (or α+β+δ ≤ 2n/3). Otherwise δ < n/3 and γ < n/3. In this case δ+α ≤ 2n/3
and γ + β ≤ 2n/3. In both cases the separator is balanced.

Theorem6.3. For fixed k, testing the outer k-planarity of an n-vertex graph takes O(2polylog(n))
time.

Proof: Our approach is to leverage the structure of the balanced separators as described in

the proof of Theorem 6.2. Namely, we enumerate the sets which could correspond to such
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6.1 Outer k-Planar Graphs

a separator, pick an appropriate outer k-planar drawing of these vertices and their edges,

partition the components arising from this separator into regions, and recursively test the

outer k-planarity of the regions.

To obtain quasi-polynomial runtime, we need to limit the number of components on which

we branch. To do so, we group them into regions defined by special edges of the separators.

By the proof of Theorem 6.2, if our input graph has an outer k-planar drawing, there must

be a separator which has one of the two shapes depicted in Fig. 6.2 (a) and (b). Here we are

not only interested in the up to 2k + 3 vertices of the balanced separator, but in the set S of

up to 4k + 3 vertices that one obtains by taking both endpoints of the edges used to find the

separator. Note: S is also a balanced separator. We use a brute force approach to find such an S.

Namely, we first enumerate vertex sets of size up to 4k + 3. We then consider two possibilities,

i.e., whether this set can be drawn similar to one of the two shapes from Fig. 6.2. So, we now

fix this set S. Note that since S has O(k) vertices, the subgraph GS induced by S can have

at most a function of k different outer k-planar drawings. Thus, we further fix a particular

drawing of GS .

We now consider the two different shapes separately. In the first case, in S, we have three

special vertices v ,w1 and w2 and in the second case we will have two special vertices v and

w. These vertices will be called boundary vertices and all other vertices in S will be called

regional vertices. Note that, since we have a fixed drawing of GS , the regional vertices are

partitioned into regions by the specially chosen boundary vertices. Now, from the structure

of the separator which is guaranteed by the proof of Theorem 6.2, no component of G ∖ S can

be adjacent to regional vertices which live in different regions with respect to the boundary

vertices.

We first discuss the case of using GS as depicted in Fig. 6.2 (a). Here, we start by picking

the three special vertices v ,w1 and w2 from S to take the role as shown in Fig. 6.2 (a). The

following arguments regarding this shape of separator are symmetric with respect to the pair

of opposing regions.

Notice that if there is a component connected to regional vertices of different regions, we

can reject this configuration. From the proof of Theorem 6.2, we further observe that no

component can be adjacent to all three boundary vertices. Namely, this would contradict

the closeness of the parallel edges or it would contradict the members of the separator, i.e., it

would imply an edge connecting distinct regions. We now consider the four possible different

types of components c1 , c2 , c3 and c4 in Fig. 6.2 (a) that can occur in a region neighboring w1.

Components of type c1 are connected to (possibly many) regional vertices of the same region

and may be connected to boundary vertices as well. In any valid drawing, they will end up in

the same region as their regional vertices. Components of type c2 are not connected to any

regional vertices and only connected to one of the three boundary vertices. Since they are

not connected to regional vertices, they can not interfere with other parts of the drawing, so

we can arbitrarily assign them to an adjacent region of their boundary vertex. Components

that are connected to two boundary vertices appear at first to have two possible placements,

e.g., as c3 or c4 in Fig. 6.2 (a). However, c4 is not a valid placement for this type of component

since it would contradict the fact that this separator arose from two close parallel edges as

argued in the proof of Theorem 6.2. From the above discussion, we see that from a fixed

configuration (i.e., set S, drawing of GS , and triple of boundary vertices), if the drawing of GS

has the shape depicted in Fig. 6.2 (a), we can either reject the current configuration (based

77



6 Edge Crossing Minimization in Circular Layouts

on having bad components), or we see that every component of G ∖ S is either attached to

exactly one boundary vertex or it has a well-defined placement into the regions defined by

the boundary vertices. For those components which are attached to exactly one boundary

vertex, we observe that it suffices to recursively produce a drawing of that component together

with its boundary vertex and to place this drawing next to the boundary vertex. For the other

components, we partition them into their regions and recurse on the regions. This covers all

cases for this separator shape.

The other shape of our separator can be seen in Fig. 6.2 (b). Note that we now have two

boundary vertices v and w and thus only have two regions. Again we see the two component

types c1 and c2 and can handle them as above. We also have components connected to both v

and w but no regional vertices. These components now truly have two different placement

options c3 , c4. If we have an edge v iw i (as in Fig. 6.2 (b)) of the separator that is not vw, we

now observe that there cannot be more than k such components. Namely, in any drawing,

for each component, there will be an edge connecting this component to either v or w which

crosses v iw i . Thus, we now enumerate all the different placements of these components as

type c3 or c4 and recurse accordingly.

However, the separator may be exactly the pair (v ,w). Note that there are no components

of type c1 and the components of type c2 can be handled as before. We will now argue that

we can have at most a function of k different components of type c3 or c4 in a valid drawing.

Consider the components of type c3 (the components of type c4 can be counted similarly). In

a valid drawing, each type c3 component defines a sub-interval of the left region spanning

from its highest to its lowest vertex such that these vertices are adjacent to one of v or w. Two

such intervals relate in one of three ways: They overlap, they are disjoint, or one is contained

in the other. We group components with either overlapping or disjoint intervals into layers.

We depict this situation in Fig. 6.2 (c) where, for simplicity, for every component we only

draw its highest vertex and its lowest vertex and they are connected by one edge.

Let a1b1 be the bottommost component of type c3 (i.e., a1 is the clockwise-first vertex from

v in a component of type c3). The first layer is defined as the component a1b1 together with

every component whose interval either overlaps or is disjoint from the interval of a1b1. Now

consider the green edge b1w (see Fig. 6.2 (c)), note we may have that this edge connects a1 to

w instead. Now, for every component of this layer which is disjoint from the interval of a1b1,

this edge is crossed by at least one edge connecting it to v. Furthermore, for every component

of this layer which overlaps the interval of a1b1, there is an edge connecting b1 to either v or

w which is crossed by at least one edge within that component. So in total, there can only be

O(k) components in this first layer. New layers are defined by considering components whose

intervals are contained in a1b1. To limit the total number of layers, let aℓ be the bottommost

vertex of the first component of the deepest layer and consider the purple edge vaℓ . This edge

is crossed by some edge of every layer above it and as any edge can only have k crossings,

there can only be O(k) different levels in total. This leaves us with a total of at most O(k2)
components per region and again we can enumerate their placements and recurse accordingly.

The above algorithm provides the following recurrence regarding its runtime. Let T(n)
denote the runtime of our algorithm for an outer k-planar graph with n vertices. Then,

T(n) ≤
⎧⎪⎪⎨⎪⎪⎩

nO(k) ⋅ f (4k + 3) ⋅ n3 ⋅ n ⋅ T(2n/3) for n > 5k,
f (n) otherwise,
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(a) (b)

Figure 6.3: A vertex-minimal 23-vertex planar 3-tree which is not outer quasi-planar: (a) planar

drawing; (b) deleting the blue vertex makes the drawing outer quasi-planar.

where f (s) denotes the number of different outer k-planar drawings of a graph with s vertices.

The factor nO(k)
stands for finding all possible separators of size 4k + 3, f (4k + 3) is the

number of different outer k-planar drawings of such a separator, n3
is the time needed to

partition the remaining vertices of the graph into regions, n is the largest number of different

regions, and T(2n/3) is the runtime of the recursive call on a region.

Thus, the algorithm runs in quasi-polynomial time, i.e., T ∈ 2
polylog(n)

.

6.2 Outer k-Quasi-Planar Graphs

In this section we consider outer k-quasi-planar graphs. We first describe some classes of

graphs which are outer quasi-planar (outer 3-quasi-planar) and some classes of graphs that

are not outer quasi-planar. In particular, we show that there are planar graphs which are

not outer quasi-planar what yields the fact that planar graphs and quasi-planar graphs are

incomparable; see Theorem 6.4.

Proposition 6.1. The following graphs are outer 3-quasi-planar: (a) K4,4; (b) K5; (c) planar

3-tree with three complete levels; (d) square-grids of any size.

Proof: (a) and (b) are easily observed. (c) was experimentally verified by constructing a

Boolean expression and using MiniSat to check it for satisfiability; see Section 6.4. (d) follows

from square-grids being sub-Hamiltonian.

Correspondingly, we note complete and complete bipartite graphs which are not outer-quasi

planar. Furthermore, not all planar graphs are outer quasi-planar, e.g., the vertex-minimal

planar 3-tree in Figure 6.3 (a) is not outer quasi-planar, this was verified by checking for

satisfiability the corresponding Boolean expression; see Section 6.4. A drawing of the graph

in Figure 6.3 (b) was constructed by removing the blue vertex and drawing the remaining

graph in an outer quasi-planar way.

Proposition 6.2. The following graphs are not outer 3-quasi-planar: (a) Kp ,q , p ≥ 3, q ≥ 5;

(b) Kn , n ≥ 6; (c) planar 3-trees with at least four complete levels.

Together, Propositions 6.1 and 6.2 immediately yield the following.
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Theorem 6.4. Planar graphs and outer 3-quasi-planar graphs are incomparable under contain-

ment.

Remark 6.1. For outer k-quasi-planar graphs (k > 3) containment questions become more

intricate. Every planar graph is outer 5-quasi-planar because planar graphs have page number 4

[Yan89]. We also know a planar graph that is not outer 3-quasi-planar. It is open whether

every planar graph is outer 4-quasi-planar.

6.3 Testing for Full Convex Drawings via MSO2

The class of full outer k-planar graphs was first introduced by Hong and Nagamochi [HN16].

They are defined as having a convex drawing which is k-planar and additionally there is no

crossing on the outer boundary of the drawing. Hong and Nagamochi gave a linear-time

recognition algorithm for full outer 2-planar graphs. They state that a graph G is (full) outer

2-planar, if and only if its biconnected components are (full) outer 2-planar and that the outer

boundary of a full outer 2-planar embedding of a biconnected graph G is a Hamiltonian cycle

of G. We call the subclasses of outer k-planar and outer k-quasi-planar graphs that have a

convex drawing where the circular order forms a Hamiltonian cycle closed outer k-planar and

closed outer k-quasi-planar respectively and observe that the property stated by Hong and

Nagamochi also carries over to general outer k-planar and outer k-quasi-planar graphs; see

Observation 6.2.

Observation 6.2. A graph G is full outer k-planar (outer k-quasi-planar), if and only if its

biconnected components are closed outer k-planar (closed outer k-quasi-planar).

We show that we can encode closed outer k-planarity and closed outer k-quasi-planarity

using monadic second-order logic (MSO2; see Section 2.4) and Courcelles’ Theorem (stated

as Theorem 2.1 in Section 2.4). First, we design MSO2 formulas expressing crossing patterns

of closed k-planar and closed k-quasi-planar drawings. Thus, using Observation 6.2, we can

test full outer k-planarity (full outer k-quasi-planarity) of a graph G by testing its biconnected

components for closed outer k-planarity (closed outer k-quasi-planarity) using the MSO2

formulas. Based on this together with the Courcelles’ theorem and the fact that outer k-

planar graphs have bounded treewidth (see Proposition 8.5 of [WT07]) we give a linear time

algorithm for testing full outer k-planarity.

The challenge in expressing outer k-planarity or outer k-quasi-planarity in MSO2 is that

MSO2 does not allow quantification over sets of pairs of vertices which involve non-edges.

Namely, it is unclear how to express a set of pairs that forms the circular order of vertices on

the boundary of our convex drawing. However, if this circular order forms a Hamiltonian

cycle in our graph, i.e., the given graph is closed, then we can indeed express this in MSO2.

With the edge set of a Hamiltonian cycle of our graph in hand, we can then ask that this cycle

was chosen in such a way that the other edges satisfy either k-planarity or k-quasi-planarity.

Any formula presented here assumes that a graph G is given and uses edges, vertices and

incidences of G. In the following, e , f are edges, F is a set of edges, u, v are vertices and U a

set of vertices (also including sub- and superscripted variants). In addition to the quantifiers

above we also use a logical shorthand ∃=x for the existence of exactly x elements satisfying

the property, that all are unequal and that no x + 1 such elements exist.
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The following formula allows us to describe connectedness of subgraphs induced by an

edge set F.

Connected-Edges(F) ≡(∀F′ ⊂ F)[∃e , f ∶ e ∈ F′ ∧ f ∈ F ∖ F′] ∧ (

(∃ f , e , e∗ ∈ F ∶ e ∈ F′ ∧ f /∈ F′)(∃u, v)

[I(u, f ) ∧ I(v , e) ∧ I(v , e∗) ∧ I(u, e∗)])

It states that for every proper subset F′ of our edge set F, we can find three edges e , f , e∗ –

one in F′, one not in F′ and one connecting the two.

These formulas are used to describe Hamiltonicity of G. Cycle-Set implies that the edges

of F form cycles, Cycle implies maximality of the cycle and Span forces the cycle to have an

edge incident to every vertex of G.

Cycle-Set(F) ≡ (∀e)[e ∈ F ⇒ (∃=2 f )[ f ∈ F ∧ e ≠ f ∧ (∃v)[I(e , v) ∧ I( f , v)]]]

Cycle(F) ≡ Cycle-Set(F) ∧Connected-Edges(F)
Span(F) ≡ (∀v)(∃e)[e ∈ F ∧ I(e , v)]

Hamiltonian(F) ≡ [Cycle(F) ∧ Span(F)]

Vertex-Partition implies the existence of a partition of the vertices of G into k disjoint

subsets.

Vertex-Partition(U1 , . . . ,Uk) ≡ (∀v)
⎡⎢⎢⎢⎢⎣
(

k

⋁
i=1

v ∈ Uk) ∧
⎛
⎝⋀i≠ j

¬(v ∈ U i ∧ v ∈ U j)
⎞
⎠

⎤⎥⎥⎥⎥⎦
For a closed outer k-planar or closed outer k-quasi-planar graph G, we want to express that

two edges e and e i cross. To this end, we assume that there is a Hamiltonian cycle E∗ of G

that defines the outer face. We partition the vertices of G into three subsets C, A, and B, as

follows: C is the set containing the endpoints of e, whereas A and B are connected subgraphs

on the remaining vertices that use only edges of E∗. In this way, we partition the vertices

of G into two sets, one left and the other one right of e. For such a partition, e i must cross e

whenever e i has one endpoint in A and one in B.

Crossing(E∗ , e , e i) ≡ (∀A, B,C)[(Vertex-Partition(A, B,C)
∧ (I(e , x) ↔ x ∈ C) ∧Connected(A, E∗) ∧Connected(B, E∗))
→ (∃a ∈ A)(∃b ∈ B)[I(e i , a) ∧ I(e i , b)]]

Now we can describe the crossing patterns for closed outer k-planarity and closed outer

k-quasi-planarity as follows:

Closed Outer k-PlanarG ≡ (∃E∗)[Hamiltonian(E∗)∧

81



6 Edge Crossing Minimization in Circular Layouts

(∀e)[(∀e1 , . . . , ek+1)[(
k+1
⋀
i=1

e i ≠ e ∧⋀
i≠ j

e i ≠ e j) →
k+1
⋁
i=1
¬Crossing(E∗ , e , e i)]]]

Here we insist that G is Hamiltonian and that, for every edge e and any set of k + 1 distinct

other edges, at least one among them does not cross e.

Closed Outer k-Quasi-PlanarG ≡ (∃E∗)[Hamiltonian(E∗)∧

(∀e1 , . . . , ek)[(⋀
i≠ j

e i ≠ e j) → ⋁
i≠ j
¬Crossing(E∗ , e i , e j)]]

Again, we insist that G is Hamiltonian and further that, for any set of k distinct edges, there

is at least one pair among them that does not cross.

The formulas above give us the following.

Theorem 6.5. Closed outer k-planarity and closed outer k-quasi-planarity can be expressed in

MSO2 with a formula whose size depends only on k.

Theorem 6.6. We can test whether a graph G is full outer k-planar in linear time.

Proof: Recall that in a full outer k-planar drawing there is no crossing on the outer boundary

of the drawing and each biconnected component of the graph with such a drawing is a closed

outer k-planar graph (Observation 6.2). Thus, in order to test full outer k-planarity for a

given graph G it suffices to test whether each of its biconnected components admits a closed

outer k-planar drawing. We can brake up G into biconnected components in linear time

by obtaining the set of cutvertices of the graph in linear time. Checking each biconnected

component for closed outer k-planarity can be done via the above MSO2 formula in time

linear in the size of the component. The formula also guarantees that the Hamiltonian cycle (if

present) is placed on the outer boundary of the drawing of each component. Putting together

the individual drawings of the components crossing free by reidentifying the cutvertices can

also be done in linear time. Thus, the total runtime is linear in the size of the input graphG.

Alternatively, we could encode the recognition of full outer k-planar and k-quasi planar

graphs directly using an MSO2 formula. This, however, will be more time consuming than

the above approach.

6.4 SAT Formula for Testing Outer Quasi-Planarity
of a Graph

In this section, we describe a logical formula for testing whether a given graph is outer quasi-

planar. We present the formula in first-order logic. After transformation to Boolean logic, we

solve the formula using MiniSat [ES18].

A quasi outer-planar embedding corresponds to a circular order of the vertices. If we

cut a circular order at some vertex to turn the circular into a linear order, the edge crossing

pattern remains the same. Therefore, we look for a linear order. For any pair of vertices

u ≠ v ∈ V , we introduce a Boolean variable xu ,v that expresses that vertex u is before v in
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the linear order. In addition, for any pair of edges e ≠ e′ ∈ E we introduce a Boolean vari-

able ye ,e′ that expresses that edge e crosses edge e′. Nowwe list the clauses of our SAT formula.

xu ,v ∧ xv ,w ⇒ xu ,w for each u ≠ v ≠ w ∈ V ; (6.2)

xu ,v ⇔¬xv ,u for each u ≠ v ∈ V ; (6.3)

xu ,u′ ∧ xu′ ,v ∧ xv ,v′ ⇒ ye ,e′ for each e = (u, v) ≠ e′ = (u′ , v′) ∈ E; (6.4)

¬(ye1 ,e2
∧ ye1 ,e3

∧ ye2 ,e3
) for each e1 , e2 , e3 ∈ E with different endpoints. (6.5)

The first two sets of clauses describe the linear order. Clause (6.2) ensures transitivity,

and clause (6.3) anti-symmetry. Clause (6.4) realizes the intended meaning of variable ye ,e′ .

Finally, clause (6.5) ensures that no three edges pairwise cross.

6.5 SAT Formula for Testing the PageNumber of a Graph

A similar SAT solver has been implemented by Pupyrev [Pup17]. For a given graph G and

integer k > 0, we provide a SAT formula that has a satisfying truth assignment if and only

if G has page number k. We find a linear order of the vertices that corresponds to a k-page

embedding. For every pair of vertices u ≠ v ∈ V , we introduce a Boolean variable xu ,v (as in

Section 6.4) that expresses that u is before v in the linear order. For every edge e ∈ E and page

i ∈ P = {1, . . . k}, we introduce a Boolean variable p i ,e that expresses that edge e is on page i.

Now we list the clauses of our SAT formula.

xu ,v ∧ xv ,w ⇒ xu ,w for each u ≠ v ≠ w ∈ V ;

xu ,v ⇔¬xv ,u for each u ≠ v ∈ V ;

⋁
i∈P

p i ,e for each e ∈ E; (6.6)

¬(p i ,e ∧ p j ,e) for each i ≠ j ∈ P , e ∈ E; (6.7)

p i ,e∧i ,e′ ⇒ ¬(xu ,u′ ∧ xu′ ,v ∧ xv ,v′) for each i ∈ P , e ≠ e′ ∈ E ∶ (6.8)

e = (u, v) and e′ = (u′ , v′).

The first two sets of clauses are the same as Clauses (6.2)–(6.3) since they describe the linear

order. Clauses (6.6)– (6.7) guarantee that every edge is on a unique page. Clause (6.8) ensures

that two edges do not cross on the same page.

6.6 Discussions and Open Problems

Every planar graph is outer 5-quasi-planar because planar graphs have page number 4 [Yan89]

(planar graphs that require 4 pages have also been discovered recently [Yan20, BKK
+

20]).

There are also planar graphs that are not outer 3-quasi-planar. It is open whether every planar

graph is outer 4-quasi-planar.

So far the trivial upper bound on degeneracy of outer k-quasi-planar graphs comes from

the edge density, that is, every outer k-quasi-planar graph has at most 2(k − 1)n − (2k−1
2
)
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6 Edge Crossing Minimization in Circular Layouts

edges [CP92], thus, every outer k-quasi-planar graph has a vertex of degree at most 4(k − 1).
Can this bound be improved?

We now discuss the relation between our crossing-restricted convex drawings and the class

of intersection graphs of chords of a circle, i.e., circle graphs. Such representations are called

chord diagrams. Here, a convex drawing D of a graph G can be seen as a chord diagram

and as such provides a corresponding graph H where each adjacency between two vertices

corresponds to a crossing between the edges of our drawing. Independent sets inH correspond

to collections of pairwise non-crossing edges in D, i.e., outerplanar sub-drawings of D. Thus,

k-coloring H corresponds to partitioning D into edge sets E1 , . . . , Ek such that each sub-

drawing of D formed by the edges of E i is outerplanar. That is, the partition E1 , . . . , Ek forms

a book embedding of G with k pages. So, k-coloring the chord diagram provides a k-page

book embedding of G. Interestingly, it is NP-complete to test whether a chord diagram can

be 4-colored [GJGP80], but testing whether it can be 3-colored [Wik16] is still open. On the

other hand, circle graphs are χ-bounded [KK97], i.e., the chromatic number χ(G) of a circle
graph G is bounded by a function of the clique number ω(G) of G, that is, the number of

vertices in the maximum clique of G. The best known bound is 21 ⋅ 2ω − 24ω − 24 and is due

to Černý [Č07]. In particular, this means that every outer k-quasi planar drawing can be

partitioned into 21 ⋅ 2k−1 − 24k pages (since we cannot have k mutually crossing edges, i.e.,

there is no k-clique in the corresponding intersection graph). For quasi-planar graphs (k = 3)

however a better bound is known. Ageev [Age96] showed that any triangle-free circle graph

has chromatic number at most 5. Because for a fixed drawing of an outer quasi-planar graph

its corresponding circle graph is triangle-free it has chromatic number at most 5, and thus, we

can embed the outer quasi-planar graph in a book with 5 pages. An immediate open question

is to improve this bound on the page number.

Ageev [Age96] constructed a circle graph GAgeev with χ(GAgeev) = 5. The drawing of the

outer quasi-planar graph G corresponding to the circle graph GAgeev cannot be embedded

on four pages because the circle graph has chromatic number 5. It turns out, however, that

there exists a linear order of the vertices under which G can be embedded on four pages, even

if we add edges to make it maximal, but there does not exist such an order that the drawing

in addition is outer quasi-planar. We have verified this experimentally by constructing a

logical formula that tests outer quasi-planarity and 4-page embeddability at the same time;

see Sections 6.4 and 6.5.
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7

Bundled Crossing Minimization

in Circular Layouts

So how can we tell that a drawing with crossings is close to planar, in other words, beyond-

planar? In Chapter 5 we identified such drawings as drawings where edges have small com-

plexity and cross at right angles only and in Chapter 6 we considered a drawing beyond-planar

if it does not have too many crossings, that is, at most k crossings per edge or at most k

pairwise crossing edges. But for large and dense graphs traditional node–link diagrams tend

to contain a lot of crossings [ACNS82]. For this reason, Holten [Hol06] introduced bun-

dled drawings, where edges that are close together and roughly go into the same direction

are drawn using Bézier curves such that the grouping becomes visible. Due to the practi-

cal effectiveness of this approach, it has quickly been adopted by the InfoVis community

[CZQ
+
08, PNBH16, GHNS11, HET12, HEF

+
14]. However, recently bundled drawings have

also attracted study from a theoretical point of view [AFP16, FHSV16, FPW15, vDFF
+
17].

The natural family of beyond-planar graphs in the bundled variant is graphs with few

crossings of bundles or bundled crossings; see Definition 7.1 for the formalization of a bundled

crossing. In fact, in his survey on crossing minimization, Schaefer lists the bundled crossing

minimization problem as a variant of the crossing minimization problem and suggests to

study it [Sch17, page 35].

Related work. Fink et al. [FPW15] considered bundled crossings (which they called block

crossings) in the context of drawing metro maps. A metro network is a planar graph where

vertices are stations and metro lines are simple paths in this graph. These paths representing

metro lines can share edges. They enter an edge at one endpoint in some linear order, follow

the edge as x-monotone curves (considering the edge as horizontal), and then leave the edge

at the other endpoint in some linear order. In order to improve the readability of metro

maps, the authors suggested to bundle crossings. The authors then studied the problem of

minimizing bundled crossings in such metro maps. Fink et al. also introduced monotone

bundled crossing minimization where each pair of lines can intersect at most once. Later, Fink

et al. [vDFF
+
17] applied the concept of bundled crossings to drawing storyline visualizations.

A storyline visualization is a set of x-monotone curves where the x-axis represents time in a

story. Given a set ofmeetings (subsets of the curves that must be consecutive at given points

in time), the task is to find a drawing that realizes the meetings and minimizes the number

of bundled crossings. Fink et al. showed that, in this setting, minimizing bundled crossings

is fixed-parameter tractable (FPT) in the number of curves and can be approximated in a

restricted case. Van Dijk et al. [vDLMW18] gave ILP and SAT formulations of the problem

and evaluated these experimentally.

Our research builds on recent works of Fink et al. [FHSV16] and Alam et al. [AFP16], who

extended the notion of bundled crossings from sets of x-monotone curves to general drawings

of graphs. We discuss their results in more detail soon.
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The degenerate crossing number is defined by allowing more than two edges to intersect at

the same point; several variants (one of which is also called the genus crossing number) have

been studied [Moh09, PT09, AP13, SŠ15]. The degenerate crossing number and the bundled

crossing number might look completely different, but it turns out that the degenerate crossing

number is closely related to the non-orientable genus [Moh09] while the bundled crossing

number is closely related to the orientable genus as we will see.

Notation and definitions. In graph drawing, it is common to define a drawing of a graph

as a function that maps vertices to distinct points in the plane and edges to Jordan arcs that

connect the corresponding points. In this chapter, we are less restrictive; we sometimes allow

edges to self-intersect. However, we forbid any three edges to share the same point. We will

often identify vertices with their points and edges with their curves. Moreover, we assume

that each pair of edges shares at most a finite number of points, that edges can touch (that is,

be tangent to) each other only at endpoints, and that any point of the plane that is not a vertex

is contained in at most two edges. A drawing is simple if any two edges intersect at most once

and no edge self-intersects. We consider both simple and non-simple drawings; look ahead at

Figure 7.2 for a simple and a non-simple drawing of K3,3.

Definition 7.1 (Bundled Crossing). Let D be a drawing, not necessarily simple, and let I(D)
be the set of intersection points among the edges (not including the vertices) in D. We say

that a bundling of D is a partition of I(D) into bundled crossings, where a set B ⊆ I(D) is a
bundled crossing if the following holds (see Figure 7.1).

• B is contained in a closed region R(B) of the plane whose boundary consists of four

Jordan arcs ẽ1, ẽ2, ẽ3, and ẽ4 that are pieces of edges e1, e2, e3, and e4 in D (with

ẽ i = e i ∩ R(B) for i ∈ {1, 2, 3, 4}).

• The pieces of the edges cut out by the region R(B) can be partitioned into two sets

Ẽ1 and Ẽ2 such that ẽ1 , ẽ3 ∈ Ẽ1, ẽ2 , ẽ4 ∈ Ẽ2, and each pair of edge pieces in Ẽ1 × Ẽ2 has

exactly one intersection point in R(B), whereas no two edge pieces in Ẽ1 intersect and

no two edge pieces in Ẽ2 intersect.

Our definition is similar to that of Alam et al. [AFP16] but defines the Jordan region R(B)
more precisely. We call the sets Ẽ1 and Ẽ2 of edge pieces bundles and the Jordan arcs ẽ1 , ẽ3 ∈ Ẽ1

and ẽ2 , ẽ4 ∈ Ẽ2 frame arcs of the bundles Ẽ1 and Ẽ2, respectively. For simple drawings, we

accordingly call the edges that bound the two bundles of a bundled crossing frame edges. We

say that a bundled crossing is degenerate if at least one of the bundles consists of only one edge

piece; see Figure 7.1b. In this case, the region of the plane associated with the crossing coincides

with that edge piece. In particular, any point in I(D) by itself is a degenerate bundled crossing.

Hence, every drawing admits a trivial bundling.

We use bc(G) to denote the bundled crossing number of a graphG, i.e., the smallest number

of bundled crossings over all bundlings of all simple drawings of G. When we do not insist

on simple drawings, we denote the corresponding number by bc
′(G). In the circular setting,

where vertices are required to lie on the boundary of a disk and edges inside this disk, we

consider the analogous circular bundled crossing numbers bc
○(G) and bc

○′(G) of a graph G.

If, in addition, the vertices are required to be in a prescribed circular order π, we consider
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ẽ3

ẽ1

ẽ2 ẽ4R(B)

(a)

ẽ3
ẽ1ẽ2

ẽ4

(b)

Figure 7.1: (a) A non-degenerate bundled crossing B and (b) a degenerate bundled crossing B′;

crossings belonging to a bundled crossing are marked with crosses.

the circular bundled crossing number with a fixed vertex order π and denote this number

as bc
○(G , π).

By bc(G ,D) we denote the bundled crossing number of a specific simple drawing D

of G. We say fixed drawing for this case. Similarly, by bc
′(G ,D) we denote the bundled

crossing number of a specific, not necessarily simple drawing D of a graph G. By bc
○(G ,D)

we denote the bundled crossing number of a simple circular drawing D of a graph G. As

Fink et al. [FHSV16] observed in this variant of the problem, we can assume the graph to

be a matching. They [FHSV16] used “embedding” and bc(E) where we use “drawing” and

bc(G ,D), respectively.

Fink et al. [FHSV16] showed that it is NP-hard to compute the minimum number bc(G ,D)
of bundled crossings that a given drawing D of a graph G can be partitioned into. They also

showed that this problem generalizes the problem of partitioning a rectilinear polygon with

holes into the minimum number of rectangles, and they exploited this connection to construct

a 10-approximation for computing the number bc
○(G ,D) of bundled crossings in the case

of a circular drawing. They left open the computational complexity of the general and the

circular bundled crossing number for the case that the drawing is not fixed.

Alam et al. [AFP16] showed that bc
′(G) equals the orientable genus ofG, which in general is

NP-hard to compute [Tho89]. They also showed that there is a graph G with bc
′(G) ≠ bc(G)

by proving that bc
′(K6) = 1 < bc(K6). As it turns out, the two problem variants differ in the

circular setting, too (see Figure 7.2 and Observation 7.2). For computing bc(G) and bc
○(G),

Alam et al. [AFP16] gave an algorithm whose approximation factor depends on the density of

the graph. They posed the existence of an FPT algorithm for bc
○(G) as an open question.

Our contribution. As some graphs G have bc
′(G) ≠ bc(G) (see Figure 7.2), Fink et

al. [FHSV16] posed the complexity of computing the bundled crossing number bc(G) of a
given graph G as an open problem. We settle this in Section 7.1 as follows:

Theorem 7.1. Given a graph G, it is NP-hard to compute bc(G).
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Our main result, which we prove in Section 7.2, resolves an open question of Alam et

al. [AFP16] concerning the fixed-parameter tractability of bundled crossing minimization in

circular layouts as follows:

Theorem7.2. There is a computable function f such that, for any n-vertex graphG and integer k,

we can check, in O( f (k)n) time, whether bc
○(G) ≤ k, i.e., whether G admits a circular layout

with k bundled crossings. Within the same time bound, such a layout can be computed.

To prove this, we again, as in Chapter 6, use an approach similar to that of Bannister and

Eppstein [BE18] for 1-page crossing minimization (that is, edge crossing minimization in a

circular layout). Bannister and Eppstein observe that the set of crossing edges of a circular

layout with k edge crossings of a graph G forms an arrangement of curves that partition the

drawing into O(k) subgraphs, each of which occurs in a distinct face of this arrangement.

The subgraphs are obviously outerplanar. This means that G has bounded treewidth. So, by

enumerating all ways to draw the crossing edges of a circular layout with k edge crossings,

and, for each such way, expressing the edge partition problem (into crossing edges and

outerplanar components) in extended monadic second-order logic (MSO2; see Section 2.4),

Courcelle’s Theorem [Cou90] (stated as Theorem 2.1 in Section 2.4) can be applied (leading

to fixed-parameter tractability).

The difficulty in using this approach for bundled crossing minimization is in showing how

to partition the graph into a set of O(k) “crossing edges” (our analogy will be the frame edges)

and a collection of O(k) outerplanar graphs. This is where we exploit the connection to genus.

Moreover, constructing an MSO2 formula is somewhat more difficult in our case due to the

more complex way our regions interact with our special set of edges.

Again using the above-mentioned connection, here between genus and the circular bundled

crossing number bc
○′
, we can decide whether bc

○′(G) = k in 2
O(k)n time. In other words, if

non-simple drawings are allowed, the problem is also FPT in k; see Section 7.2 (Theorem 7.4).

We also consider the setting where we are given a drawing and the task is to bundle the

existing edge crossings into as few bundled crossings as possible, that is, computing bc(G ,D)
for a given drawing D of a graph G. We show in Section 7.3 that we can use an algorithm of

Marx and Philipczuk [MP15, Theorem 1.3] (see page 102) to test whether bc(G ,D) ≤ k in

mO(
√

k)
time for any simple drawing D withm edges. This yields an FPT-algorithm for testing

whether bc
○(G ,D) ≤ k in 2

O(
√

k log k) + O(m) time and for testing whether bc
○(G , π) ≤ k

in 2
O(k2) + O(m) time, improving on an (2O(k2

log k) + O(m))-time algorithm of Alam et

al. [AFP16].

In Section 7.4 we consider storyline visualizations. In contrast to the above results, the

storyline literature considers the number of characters m to be small and the number of

crossings to be large. (Recall that storyline visualizations are non-simple.) We show that

computing the bundled crossing number bc
s(D) of a given storyline visualization D can be

done in O(φ2m
poly(m+ c)) time, where c is the number of crossings in D and φ is the golden

ratio. Note that this is fixed parameter tractable in m.

For an overview of existing and new results see Table 7.1.
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Table 7.1: Algorithmic and complexity results concerning bundled crossing minimization for an

m-edge graph G with restrictions such as vertex order π, drawing D, edge density δ, and k bundled

crossings. We omit polynomial terms, and φ is the golden ratio. Our results are in boldface.

General layout Circular layout

bc(G) 6δ
δ−3

-approx. for δ>3 [AFP16] bc
○(G) 6δ

δ−2
-approx. for δ>2 [AFP16]

NP-hard (Thm. 7.1) FPT (Thm. 7.2)

bc
′(G) NP-hard [FHSV16] bc

○′(G) FPT: 2O(k) (Thm. 7.4)

bc(G ,D) NP-hard [FHSV16] bc
○(G ,D) 10-approximation [FHSV16]

XP:mO(
√

k)
(Thm. 7.5(b)) FPT: kO(

√
k)

(Thm. 7.5(c))

bc
′(G ,D) XP: cO(

√
k)

(Thm. 7.5(a))

Storyline layout bc
○(G , π) 16-approx., FPT: kO(k

2)
[AFP16]

bc
s
(D) FPT: φ2m

(Thm. 7.7)
FPT: 2O(k

2)
(Thm. 7.5(d))

7.1 Computing bc(G) Is NP-Hard

For a given graphG, finding a drawing with the fewest bundled crossings resembles computing

the orientable genus g(G) of G, that is, computing the fewest handles to attach to the sphere so

thatG can be drawn on the resulting surface without any crossings. In fact, Alam et al. [AFP16]

showed that bc
′(G) = g(G). Thus, deciding whether bc

′(G) = k for some k is NP-hard and

FPT in k since the same holds for deciding whether g(G) = k [Tho89, Moh99, KMR08].

Theorem 7.3 ([AFP16]). For every graph G with genus k, it holds that bc
′(G) = k.

To show this, Alam et al. [AFP16] first showed that a drawing with k bundled crossings can

be lifted onto a surface of genus k, and thus bc
′(G) ≥ g(G):

Observation 7.1 ([AFP16]). A drawing D with k bundled crossings can be lifted onto a surface

of genus k via a one-to-one correspondence between bundled crossings and handles, i.e., at

each bundled crossing, we attach a handle for one of the two edge bundles, thus providing a

crossing-free lifted drawing; see Figure 7.8.

Then, to see that bc
′(G) ≤ g(G), Alam et al. [AFP16] used the fundamental polygon

representation (or polygonal schema) [de 17] of a drawing on a genus-д surface. More precisely,

the sides of the polygon are numbered in circular order a1 , b1 , a
′
1
, b′

1
, . . . , aд , bд , a

′
д , b
′
д ; for

1 ≤ k ≤ д, the pairs (ak , a′k) and (bk , b
′
k) of sides are identified in opposite direction, meaning

that an edge leaving side ak appears on the corresponding position of side a′k ; see Figure 7.3

and Figure 7.4a for an example showing K6 drawn in a fundamental square, which models a

drawing on the torus. In such a representation, all vertices lie in the interior of the fundamental

polygon and all edges leave the polygon avoiding vertices of the polygon. Alam et al. [AFP16]

showed that such a representation can be transformed into a non-simple bundled drawing

with д many bundled crossings. It is not clear, however, when such a representation can be

transformed into a simple bundled drawing with д bundled crossings, as this transformation

89



7 Bundled Crossing Minimization in Circular Layouts

can produce drawings with self-intersecting edges and pairs of edges crossing multiple times,

e.g., Alam et al. [AFP16, Lemma 1] showed that bc(K6) = 2 while bc
′(K6) = g(K6) = 1.

We now show that computing the bundled crossing number remains NP-hard for simple

drawings.

Proof of Theorem 7.1: Let G′ be the graph obtained from G by subdividing each edge

O(∣E(G)∣2) times. We reduce from the NP-hardness of computing the genus g(G) of G
by showing that bc(G′) = g(G), with Observation 7.1 in mind.

Consider the embedding of G onto the genus-g(G) surface. By a result of Lazarus et

al. [LPVV01, Theorem 1], we can construct a fundamental polygon representation of the

embedding so that its boundary intersects with edges of the graph O(g(G)∣E(G)∣) times.

Note that each edge piece outside the polygon between the sides of the polygon (ak , a′k)
intersects each other edge piece outside the polygon between the sides of the polygon (bk , b′k)
at most once and does not have any other intersection points; see Figure 7.3. We then subdi-

vide the edges by adding a vertex to each intersection of an edge with the boundary of the

fundamental polygon. This process of subdividing edges ensures that no edge intersects itself

or intersects another edge more than once in the corresponding drawing of the graph on

the plane; hence, the drawing is simple. Since g(G) ≤ ∣E(G)∣, by subdividing edges further

whenever necessary, we obtain a drawing of G′. Our subdivisions keep the integrity of all

bundled crossings, so bc(G′) ≤ g(G). On the other hand, since subdividing edges does not

affect the genus, g(G) = g(G′) = bc′(G′) ≤ bc(G′).

7.2 Computing bc○′(G) and bc○(G) Is FPT

We now consider circular layouts, where vertices are placed on a circle and edges are routed

inside the circle. We note that bc
○(G) and bc

○′(G) can be different.

Observation 7.2. bc
○′(K3,3) = 1 but bc

○(K3,3) > 1.

Proof: Let V(K3,3) = {a, b, c} ∪ {a′ , b′ , c′}. A drawing with bc
○′(K3,3) = 1 is obtained by

placing the vertices a, a′ , b, b′ , c, c′ in clockwise order around a circle; see Figure 7.2b. If a

graph G has bc
○(G) = 1 then G is planar because we can embed edges for one bundle outside

the circle. Hence, bc
○(K3,3) > 1.

Similarly to computing bc
′(G), we compute bc

○′(G) via computing genus. To show this

we first prove the following.

Lemma 7.1. Given a graph G, let G⋆ be the graph obtained from G by adding a new vertex v⋆

adjacent to every vertex of G. Then bc
○′(G) = g(G⋆).

Proof: Let G be the given graph with V = V(G) and E = E(G). Similarly as in [AFP16,

Theorem 1], it is easy to see that bc
○′(G) is an upper bound for the genus of G⋆, because,

according to Observation 7.1, we can lift any circular drawing of G onto a surface S of genus

bc
○′(G) and then we can add v⋆ using the outside of the circle. Clearly, this produces a

crossing-free drawing of G⋆ on the surface S .
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(G) and bc
○

(G) Is FPT

a′ b

cc′

a b′

(a)

a
a′ b

b′

cc′

(b)

Figure 7.2: bc○(K3,3) ≠ bc
○′

(K3,3); see Ob-

servation 7.2

ak a′k
bk

b′k

Figure 7.3: A single bundled crossing outside the

fundamental polygon [AFP16, Figure 3].

v?

(a) K6 drawn in a fundamental square; the self-

intersecting edge is bold [AFP16, Figure 2]

v?

(b)modifying the representation

Figure 7.4: Obtaining a circular drawing with k bundled crossings of G from the embedding of G⋆

on a surface of genus k.

It remains to show that given a crossing-free drawing of G⋆ on a surface of genus k, we can

construct a circular drawing of G with at most k bundled crossings. Consider a drawing of

G⋆ on a surface S of genus k.

We use the fundamental polygon representation [AFP16, Theorem 1] to the drawing of G⋆

on the surface S of genus k; see Figure 7.4a. Then we modify this representation so that all

the neighbors N(v⋆) of v⋆ in G⋆ are placed in an є-neighborhood of v⋆. We now explain the

modification in more detail. Consider all the edges incident to v⋆ in the representation and

drag each neighbor u of v⋆ along the edge uv⋆ (as illustrated in Figure 7.4b) until it reaches

the є-neighborhood N(v⋆) of v⋆. Since for each u ∈ N(v⋆) the edges uw ∈ E with w ≠ v⋆
are bundled together at the position where u was in the representation and dragged together

with u along the edge uv⋆, this does not change the number of bundled crossings. Since

all the vertices are located on the boundary of the є-neighborhood of v⋆ in the modified

representation, all the edges between v⋆ and V ∖ v⋆ are drawn inside the polygon. After

removing the vertex v⋆ from the representation, we obtain a circular drawing of G with at

most k bundled crossings.
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Theorem 7.4. Testing whether bc
○′(G) = k can be done in 2

kO(1)n time.

Proof: By Lemma 7.1, bc
○′(G) = g(G⋆), where G⋆ is a graph with a vertex v⋆ adjacent to

every vertex of G. Applying the (2дO(1)
n)-time algorithm for computing genus [KMR08]

completes the proof.

To prove ourmain result (Theorem7.2) we develop an algorithm that tests whether bc
○(G) =

k in FPT time with respect to k. As in Chapter 6 our algorithm is inspired by the recent work

on circular layouts with at most k crossings [BE18]. In Chapter 6 as well as in the algorithm

of Bannister and Eppstein [BE18], it is first observed that the graphs admitting such circular

layouts have treewidth O(k), and then algorithms are developed using Courcelle’s theorem

(see Theorem 2.1 in Section 2.4), which establishes that expressions in MSO2 logic can be

evaluated efficiently. (For the definition of treewidth see Section 2.1 and for formalization of

MSO2 logic see Section 2.4.)

We proceed along the lines of Bannister and Eppstein [BE18], who used a similar approach

to show that edge crossing minimization in a circular layout is in FPT (as mentioned in the

introduction). We start by very carefully describing a surface (in the spirit of Observation 7.1)

onto which we will lift our drawing. We will then examine the structure of this surface (and

our algorithm) for the case of one bundled crossing and finally for k bundled crossings.

7.2.1 Constructing the Surface Determined by a Bundled Drawing

Consider a bundled circular drawing D. Note that adding parallel edges to the drawing (i.e.,

making our graph a multi-graph) allows us to assume that every bundled crossing has four

distinct frame edges and can be done without modifying the number of bundled crossings;

see Figure 7.8. Each bundled crossing B defines a Jordan curve made up of the four Jordan arcs

ẽ1, ẽ2, ẽ3, ẽ4 in clockwise order taken from its four frame edges e1 , . . . , e4, respectively, where

(e1 , e3) and (e2 , e4) frame the two bundles and e i = v2i−1v2i . Similarly to Observation 7.1,

we can construct a surface S by creating a flat handle (note that this differs from the usual

definition of a handle since our flat handles have a boundary) on top of D which connects ẽ2

to ẽ4 and doing so for each bundled crossing. We then lift the drawing D onto S by rerouting

the edges of one of the bundles over its corresponding handle for each bundled crossing B

obtaining the lifted drawing DS . To avoid the crossings in DS of the frame edges that can

occur at the foot of the handle of B, we can make the handle a bit wider and add corner-cuts

(as illustrated in Figure 7.5b) to preserve the topology of the surface. Thus, DS is crossing-free.

We now cut S into components (maximal connected subsets) along the frame edges and

corner-cuts of each bundled crossing, resulting in a subdivision Ω of S .
We use DΩ to denote the sub-drawing of DS on Ω, i.e., DΩ is missing the frame edges

since these have been cut out. We now consider the components of Ω. Notice that every edge

of DΩ is contained in one component of Ω. In order for a component s of Ω to contain an

edge e of DΩ , s must have both endpoints of e on its boundary. With this in mind we focus on

certain components of Ω. Namely, we call a component a region if it contains a vertex of G on

its boundary. Observe that a crossing in D which does not involve a frame edge corresponds,

in DΩ , to a pair of edges where one goes over a handle and the other goes underneath.
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Figure 7.5: (a) Bundled crossing; (b) regions, corner-cuts in blue; (c),(d) the augmented graphs G∗r1
and G∗r3

consist of the edges of Gr1 and Gr3
(in the blue regions) as well as augmentation vertices

and edges (drawn in black).

7.2.2 Recognizing a Graph with One Bundled Crossing

We now discuss how to recognize if an n-vertex graphG withV = V(G) and E = E(G) can be
drawn in a circular layout with one bundled crossing. Consider a bundled circular drawing D

of G consisting of one bundled crossing. The bundled crossing consists of two bundles, which

are bounded by the set F = {e1 , e2 , e3 , e4} of frame edges. By V(F) we denote the set of

vertices incident to frame edges. Via the construction above, we obtain the subdivided surface

Ω; see Figure 7.5. Let r1 and r2 be the regions that are each bounded by a pair of frame edges

corresponding to one of the bundles, and let r3 , . . . , r6 be the regions each bounded by one

edge from one pair and one from the other pair; see Figure 7.5b. These are all the regions

of Ω. Since, as mentioned before, each of the non-frame edges of G (i.e., each e ∈ E(G) ∖ F)

along with its two endpoints is contained in exactly one of these regions, each component of

G ∖ V(F) and each edge connecting it to vertices of V(F) is drawn in DΩ in some region

of Ω. In this sense, for each region r of Ω, we use Gr to denote the subgraph of G induced by

the components of G ∖ V(F) contained in r and the edges connecting them to vertices in

V(F). Additionally, each vertex of G is either incident to an edge in F (in which case it is on

the boundary of at least two regions) or it is on the boundary of exactly one region.

Note that there are two types of regions: those in {r1, r2} and those in {r3, r4, r5, r6}.
Consider a region of the first type, say r1; see Figure 7.5b. Observe that Gr1 is outerplanar.

Moreover, Gr1 has a special outerplanar drawing where, on the boundary of r1, we see (in

clockwise order) the frame edge e1, the vertices mapped to the (v1 , v5)-arc, the frame edge e3,

and then the vertices mapped to the (v6 , v2)-arc. We now describe how to augment Gr1 to a

planar graph G∗r1 where in every planar embedding of G∗r1 the sub-embedding of Gr1 has this

special outerplanar form; this augmentationmay sound overly complicated, but is written as to

easily generalize to more bundled crossings. The vertex set ofG∗r1 is V(Gr1)∪{h, b1 , b2}where

we call h hub vertex and b1 and b2 boundary vertices (one for each arc of the boundary of r1 to

which vertices can bemapped); see Figure 7.5c. The graphG∗r1 has four types of edges; the edges

in E(Gr1), edges that make h the hub of a wheel whose cycle is C = (v6 , b2 , v2 , v1 , b1 , v5 , v6),
edges from b1 to the vertices on the (v1 , v5)-arc, and edges from b2 to the vertices on the

(v6 , v2)-arc (both including the endpoints). Clearly, we can obtain a planar embedding of G∗r1
by drawing the elements of G∗r1 ∖Gr1 “outside” of the outerplanar drawing of Gr1 described

before. Moreover, every planar embedding of G∗r1 contains an outerplanar embedding of Gr1
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that can be drawn in the special form needed to “fit” into r1, in the sense that all of Gr1 lies (or

can be put) inside the simple cycle C. (For example, if, say, b1 is a cut vertex, the component

hanging off b1 can be embedded in the face (h, b1 , v1 , h). But then it can easily be moved

into C. Similarly, a component that is incident only to v5 and v6 can end up in the face

(h, v5 , v6 , h), but again, the component can be moved inside C.)

Similarly, for a region of the second type, say r3, the graph Gr3
is outerplanar with a special

drawing where all the vertices must be on the (v3 , v5)-arc of the disk subtended by the two

frame edges e3 and e2 bounding the region r3. We augment r3 similarly as r1; see Figure 7.5d.

For the augmented graph G∗r3
, we add to Gr3

a boundary vertex b neighboring all vertices on

the (v3 , v5)-arc and a hub vertex h adjacent to v3, b, and v5. Again, G
∗
r3
is planar since Gr3

is outerplanar. Moreover, as b is adjacent to all vertices of Gr3
, in every planar embedding

of G∗r3
, Gr3

is embedded outerplanarly and, since b occurs on one side of the triangle v3v5h,

the edge v3v5 occurs on the boundary of this outerplanar embedding ofGr3
. Thus, each planar

embedding of G∗r3
provides an outerplanar embedding of Gr3

that fits into r3.

Note that each Gr i fits into r i because its augmented graph G∗r i is planar (⋆). Moreover, as

outerplanar graphs have treewidth at most two [Mit79], each graph Gr is outerplanar, and

adding the (up to) eight frame vertices raises the treewidth by at most 8, we see that the

treewidth ofG is at most 10. Namely, in order for G to have bc
○(G) = 1, it must have treewidth

at most 10 (and this can be checked in linear time using an algorithm of Bodlaender [Bod96]).

To sum up, G has a circular drawing D with at most one bundled crossing because it has

treewidth at most 10 and there exist (i) β ≤ 4 frame edges e1 , e2 , . . . , eβ (this set is denoted F)

and v1 , . . . , vξ frame vertices (this set is denoted VF), (ii) a particular circular drawing DF of

frame edges, (iii) the drawing of the one bundled crossing B, and (iv) γ ≤ 6 corresponding

regions r1 , . . . , rγ of the subdivided surface Ω so that the following properties hold. (Note

that the frame vertices partition the boundary of the disk underlying Ω into η ≤ 8 (possibly

degenerate) arcs p1 , . . . , pη where each such p j is contained in a unique region r i j of Ω. Let

V0(r i) be the frame vertices incident to region r i .)

1. E(G) is partitioned into E0 , E1 , . . . , Eγ , where E0={ f1 , . . . , fβ}.

2. V(G) is partitioned into V0 ,V1 , . . . ,Vη , where V0={w1 , . . . ,wξ}.

3. The mapping w i ↔ v i and f i ↔ e i defines an isomorphism between the subgraph of G

formed by (V0 , E0) and the graph (VF , F).

4. For each v ∈ V0 and each edge e incident to v, exactly one of the following conditions

holds: (i) e ∈ E0, or (ii) e ∈ E i and v is on the boundary of r i .

5. For each v ∈ Vj , j ≠ 0, all edges incident to v belong to E i j .

6. For each region r i , let Gr i be the graph (V0(r i) ∪ ⋃ j∶i j=i Vj , E i) (i.e., the subgraph that

is to be drawn in r i), and let G∗r i be the corresponding augmented graph (i.e., as in ⋆
above). Each G∗r i is planar.

We now describe the algorithm that tests whether a given graph G admits a simple circular

drawing with one bundled crossing. First we check that the treewidth of G is at most 10. We

then enumerate drawings of up to four edges in the circle. For the drawing DF that is valid
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for the set F of frame edges of one bundled crossing, we define our surface and its regions

(whichmakes the augmentation well-defined). We have intentionally phrased these properties

so that it is clear that they are expressible in MSO2 (see Section 7.2.4). The only property

that is not obviously expressible is the planarity of G∗r i . To this end, recall that planarity is

characterized by two forbidden minors (i.e., K5 and K3,3) and that, for every fixed graph

H, there is an MSO formula minorH so that for all graphs G, it holds that G ⊧ minorH if

and only if G contains H as a minor [CE12, Corollary 1.14]. Additionally, each G∗r i can be

expressed as an MSO-transduction (see Section 2.4) of G and our variables. Thus, by [CE12,

Theorem 7.10] using the transduction and theMSO formula testing planarity, we can construct

an MSO2 formula ι so that when G ⊧ ι, G∗r i is planar for every i. Therefore, Properties 1–6

can be expressed as an MSO2 formula ψ and, by Courcelle’s theorem, there is a computable

function f such that we can test (in O( f (ψ, t)n) time) whether G ⊧ ψ for an input graph G

of treewidth at most t. Thus, since our graph has treewidth at most 10, applying Courcelle’s

theorem completes our algorihtm.

7.2.3 Recognizing a Graph with k Bundled Crossings

We now generalize the above approach to k bundled crossings. In a drawing D of G together

with a solution consisting of k bundled crossings, there are 2k bundlesmaking (up to) 4k frame

edges F. As described above, these bundled crossings provide a surface S , its subdivision Ω,

and the corresponding set of regions. The key ingredient above was that every region r

contained an outerplane graphGr . However, that is now non-trivial as our regions can go over

and under many handles. To show this property, we first consider the following two partial

drawings DA(p) and DB(p) of a matching with p + 1 edges f0 , f1 , . . . , fp (see Figure 7.6) such

that

• edge f i crosses only f i−1 mod p+1 and f i+1 mod p+1 for i = 0, . . . , p;

• the endpoints of each edge f i , i = 1, . . . , p − 1, are inside the closed curve C formed by

the crossing points and the edge-pieces between these crossing points;

• only one endpoint of f0, and only one endpoint of fp are contained in C in the drawing

DA(p);

• both endpoints of f0 and fp are contained in C in the drawing DB(p).

Note that the partial drawings DA(p) and DB(p) differ only in how the last edge is drawn

with respect to the first one. Arroyo et al. [ABR20, Theorem 1.2] showed that such partial

drawings are obstructions for pseudolinearity, that is, they cannot be part of any pseudoline

arrangement. Therefore, neither of these partial drawings can be completed to a simple circular

drawing, that is, the endpoints of the edges cannot be extended so that they lie on a circle

which contains the drawing. We highlight this fact in the following lemma.

Lemma 7.2 ([ABR20]). For a matching with p + 1 edges f0 , f1 , . . . , fp, neither the partial

drawing DA(p) nor the partial drawing DB(p) can be completed to a simple circular drawing.

Using this lemma, we can now prove the following statement.
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Figure 7.6: The two types of partial drawings (for p = 6) and the closed curve C (light green) that

they induce.

Lemma 7.3. Let r be a region of the surface subdivision Ω, and let r′ be its projection onto

the plane. Then both r′ and r are topological disks, that is homeomorphic to a disk (with the

boundary). Moreover, the projection map is injective.

Proof: Note that the boundary of r is formed by pieces of frame edges that were lifted on

the surface S as described above and by additional corner-cuts as illustrated in Figure 7.5b

in blue. This means that the boundary of r is a (closed) Jordan curve since we have only

finitely many crossings in G. Then, we show that r does not include part of both a handle

and its undertunnel, that is, the part of the surface over which the handle was built. This

guarantees that the projection of r onto the plane is injective, and thus the boundary of r′ is a

Jordan curve. We will also show that r does not include holes. Then we can conclude that r′

is homeomorphic to a disk using the Jordan–Schoenflies theorem, which says that for any

closed Jordan curve there is a homeomorphism of the plane that maps the curve to the unit

circle.

Suppose now, for a contradiction, that there are bundled crossings for which r contains both

the handle and its undertunnel; see Figure 7.7a. Then there exists a non-intersecting Jordan

arc γ ⊂ r going over and under some of these handles. Consider the orthogonal projection γ′ of

γ on the disk of the drawing D (see Figure 7.7b) and notice that it self-intersects where it went

over and under some handle in r. Choose the piece γ′
1
of γ′ separated by the self-intersection

point XQ , corresponding to some bundled crossing Q, such that γ′
1

starts and ends in XQ and

no intersection point (except XQ ) is met twice when walking along γ′
1
once; see Figure 7.7b.

Let P be the planarization of the projected drawing, and let P′ be a copy of P without the

edges that intersect γ′
1
. Consider the edges of P′ in the interior of the closed curve γ′

1
(see

Figure 7.7c) that can be seen from γ′
1
, that is, for each of such edges, we can draw a curve

β from some point of γ′
1

so that β does not intersect γ′
1
and any other edge of P′. We call

the edges of the drawing D that contain the edges of the planarization P′ seen from γ′
1

the

profile of γ′
1
; see Figure 7.7d. These edges form a partial drawing DA(p) for some p > 0; see

Figure 7.6a. According to Lemma 7.2, however, such a partial drawing cannot be completed to

a valid simple circular drawing; contradiction.

As for holes, it is easy to see that if r had a hole, the profile of any curve around this hole

would yield a partial drawing DB(p) for some p > 0; see Figure 7.6b. Again, according to

Lemma 7.2, such a partial drawing cannot be completed to a valid simple circular drawing;

contradiction.

Note that since r′ is a topological disk, its lifting r is also a topological disk.
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ings anda curve γ that goes over andunder
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(b) projection of the region r and projection γ′ of

the curve γ on the drawing D in the plane; the

curve γ′1 (light red) is a part of γ′ that starts and

ends in XQ

XQ

γ′1

γ′

(c) the planarization P′

γ′1

γ′

(d) the profile of the curve γ′1 (light blue); these

edges form a partial drawing DA(p)

Figure 7.7: Illustration to the proof of Lemma 7.3.

In particular, since our projection is injective, a drawing on r can be regarded as a drawing

on r′ and vice versa.

The next lemma concerning treewidth is a direct consequence of Lemma 7.3.

Lemma 7.4. If a graph G admits a circular layout with k bundled crossings then its treewidth is

at most 8k + 2.

Proof: If the graph G can be drawn in a circular layout with k bundled crossings then there

exist at most 4k frame edges. According to Lemma 7.3, the removal of their endpoints breaks

up the graph into outerplanar components. The treewidth of an outerplanar graph is at most

two [Mit79]. Moreover, adding a vertex to a graph raises its treewidth by at most one. Thus,

since deleting at most 8k frame vertices leaves behind an outerplanar graph, G has treewidth

at most 8k + 2.

We now prove Theorem 7.2, which says that deciding whether bc
○(G) ≤ k is FPT in k.

Proof of Theorem 7.2: We use Lemma 7.3 and extend the algorithm of Section 7.2.2.

Suppose that G has a circular drawing D with at most k bundled crossings. Then D contains

a set F of (up to) 4k frame edges of these bundled crossings. As discussed before, F together

with D defines a subdivided topological surface Ω containing a set R of regions. As in the

case of one bundled crossing, each edge of G not in F is contained in exactly one such region,
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Figure 7.8: (a) A bundled drawing D with six bundled crossings (pink); parallel (blue) edges can

be inserted to avoid degenerate bundled crossings; (b) the corresponding surface of genus 6; the

components of the surface that are not regions are marked in green; the region r (light blue) has a

boundary consisting of the arcs of the disk (red) and the arcs c1 , c2 , c3 , and c4 (traced in orange).

and each vertex of G either is incident to an edge in F (in which case it belongs to at least two

regions) or belongs to exactly one region.

Throughout the proof we refer the reader to Figure 7.8 for an example. By Lemma 7.3, each

region r in R is a topological disk. Therefore, the graph Gr whose vertices lie on the boundary

of r and whose edges lie in the interior of r is outerplane with respect to the given order of the

vertices along the boundary. This boundary consists, in clockwise order, of arcs p1 , . . . , pα of

the outer boundary of S (marked in red in Figure 7.8b) and Jordan arcs c1 , . . . , cα (traced in

orange in Figure 7.8b), each of which connects two consecutive arcs of S . For i ∈ {1, . . . , α},
let u i and u′i be the endpoints of p i , in clockwise order. The arc p i can degenerate to a single

point; then u i = u′i ; see Figure 7.9. So u′i and u i+1 (where uα+1 is u1) are the endpoints of c i .

No vertex of Gr lies in the interior of c i .

We now describe G∗r . First, we add a hub vertex h. Then, for each i ∈ {1, . . . , α}, if u′i
and u i+1 (where uα+1 is u1) are not adjacent, we add an edge between them. If the arc p i is

non-degenerate, we add a boundary vertex b i adjacent to all vertices on p i (including u i

and u′i) and make h adjacent to u i , b i , and u′i . Otherwise, we make h adjacent to u i = u′i
and identify b i with u i and u′i . The reason for this identification is technical; it allows us to

iterate over all (degenerate or non-degenerate) arcs and address their boundary vertices; see

Section 7.2.4.

Observe that the resulting graph G∗r is planar due to the special outerplanar drawing of Gr

in r. Moreover, in every planar embedding of G∗r , there is an outerplanar embedding of Gr

where the cyclic order of the arcs c i and the sets of vertices mapped to the p i ’s match their

cyclic order in r, implying that Gr fits into r. This is due to the fact that the simple cycle C′

around h must be embedded planarly, with all of Gr inside (with the possible and easy-to-fix

exceptions described in Section 7.2.2 concerning the cycle C there). Then the order of the
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Figure 7.9: The augmented graph G∗r for a complex region r. The arc p3 is degenerate.

vertices in an outerplanar embedding of Gr is the order of the vertices incident to b1 , . . . , bα
in a planar embedding of G∗r . So the planarity of G∗r guarantees that Gr fits into r as needed.

The reason why G has a circular drawing D with at most k bundled crossings is that there

is a β-edge k-bundled crossing drawing DF (of the graph formed by F), whose corresponding

surface S consists of regions r1 , . . . , rγ (note: γ ≤ 2β ≤ 8k) so that Properties 1–6 hold.

Our algorithm first checks that the treewidth of G is at most 8k + 2. Recall that this can be

done in linear time (FPT in k) [Bod96]. The algorithm then enumerates all possible simple

drawings of at most 4k edges in the circle, i.e., at most 4k curves extending to infinity in

both directions where each pair of curves cross at most once. The number of such drawings

is proportional to k, and efficient enumeration has been done for the case when every pair

of curves cross exactly once [Fel97]. For each drawing, it further enumerates the possible

ways to form at most k bundled crossings so that every edge is a frame edge of at least one

bundled crossing. Then, for each such bundled drawing DF , we build an MSO2 formula φ

(see Section 7.2.4) to express Properties 1–6. Finally, since G has treewidth at most 8k + 2, we

can apply Courcelle’s theorem on (G , φ).

7.2.4 MSO2: Definitions andOur Formula for a Specific Layout of the
Frame Edges

In this section we describe how to express the needed condition of our algorithm (as given by

Properties 1–6) in MSO2 logic (see Section 2.4).

We will describe our augmented graphs (from Property 6) as an MSO-transduction (see

Section 2.4) and this will allow us (via [CE12, Theorem 7.10]) to have an MSO2 formula

to implicitly check the planarity of our augmented graphs inline within our (main) MSO2

formula (where our formula is applied only to the graph prior to augmentation).
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The formula for DF . Wenow construct anMSO2 formula to express the following problem:

• Given a graph G with V = V(G) and E = E(G) and a simple circular drawing DF with

k bundled crossings so that F = {e1 , . . . , eβ} is the set of frame edges (and DF has no

other edges) and VF = {v1 , . . . , vξ} is the set of frame vertices (and DF has no other

vertices);

• determine whether G has a simple circular drawing with k bundled crossings so that

the frame edges and vertices occur as in DF .

This is based on Properties 1–6 on page 94: we express them as MSO2 formulas.

Properties 1 and 2 simply state that a set of elements is partitioned into a certain number of

disjoint subsets. We use a formula stated by Bannister and Eppstein [BE18] to express this in

MSO2. For example, partitioning of a set E into E0 , E1 , . . . , Eγ disjoint subsets can be done in

the following way.

Partition(E; E0 , . . . , Eγ) = (∀e ∈ E)[(
γ

⋁
i=0

e ∈ E i) ∧ (⋀
i≠ j
¬(e ∈ E i ∧ e ∈ E j))].

We will additionally use the following formula to state that a vertex set V ′ is the set of

endpoints of an edge set E′:

Incident(V ′ , E′) = (∀e ∈ E′) (∀v ∈ V(G)) [I(e , v) ⇔ v ∈ V ′].

We now turn to the properties more specific to our fixed drawing DF of β ≤ 4k frame edges

F = {e1 , e2 , . . . , eβ} whose endpoints are V(F) = {v1 , v2 , . . . , vξ}, where ξ ≤ 2β. As discussed

in Section 7.2.1 and Lemma 7.3, this drawing induces a corresponding set of regions r1 , . . . , rγ .

Property 3 ensures that certain edges E0 = { f1 , f2 , . . . , fβ} and their endpoints V0 =
{w1 ,w2 , . . . ,wξ} of the graphG induce a graph isomorphic to (V(F), F). This can bemodeled

by the following formula.

θ3(V0 , E0) = (∀i , j ∈ {1, 2, . . . , ξ})

[((∃ f ∈ E0) I(e ,w i) ∧ I( f ,w j)) ⇔ ((∃e ∈ F) I(e , v i) ∧ I(e , v j))]

To express Properties 4 about the adjacencies of the frame vertices, we introduce the

following piece of notation. For each vertex v i ∈ V(F) with i ∈ {1, 2, . . . , ξ}, we denote

by σ(i) the set of indices of the regions incident to v i in the drawing DF . For example, in the

case of one bundled crossing (see Figure 7.5), σ(1) = {1, 6}. Then Property 4 can be expressed

in MSO2 as follows:

θ4(V0 , E0) = (∀i ∈ {1, 2, . . . , ξ}) (∀e ∈ E)

[I(e ,w i) ⇒ [e ∈ E0 ∨ (∃ j ∈ σ(i)) [e ∈ E j] ]].

Property 5 expresses that, for each non-frame vertex v ∈ Vj , all edges incident to v are

contained in E i j (recall that i j is the index of the region containing the set Vj of non-frame

vertices and that E i j is the set of non-frame edges of this region):

θ5(V1 , . . . ,Vη) = (∀ j ∈ {1, 2, . . . , η}) (∀v ∈ Vj) (∀e ∈ E) [I(e , v) ⇒ e ∈ E i j].
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7.2 Computing bc
○′

(G) and bc
○

(G) Is FPT

Finally, we turn to Property 6. First, note that testing planarity of a graphG can be expressed

as follows where the formula for MinorH(G) does not need edge set quantification (i.e., it is

in MSO) [CE12, Corollaries 1.14 and 1.15]:

Planar(G) = ¬MinorK5
(G) ∧ ¬MinorK3,3

(G).

Now, we describe the MSO-transduction τ i ofG toG∗r i (for each region r i ; see Section 7.2.3)

subject to the variables w1 , . . . ,wξ , V1 , . . . ,Vη , f1 , . . . , fβ , E1 , . . . , Eγ . Note that in our trans-

duction, the input uses the format allowing for edge set quantification (i.e., where we have the

objects V ∪E and the binary incidence function I), but our output involves the format without

edge set quantifications (i.e., where we have the objects V and the binary adjacency function

ad j). Let j1 , . . . , jζ be the indices of the frame vertices incident to region r i and suppose these

are ordered cyclically as in DF . Further, let Vl1 , . . . ,Vlα be the sets corresponding to the arcs

of the boundary of r i (in order). With this notation, we can now set up the transduction τ i

which describes our graph G∗r i in terms of our variables (note that in the statement of [CE12,

Theorem 7.10] our variables are the parameters). Note that the symbols h, b1 , b2 , . . . , bα are

new objects that are added in the construction (namely, the hub and boundary vertices of

G∗r i ). Further, let C be the cycle of the wheel, that is, V(C) = {v j1 , . . . , v jζ , b1 , . . . , bα}. For

each vertex x ∈ V(C), let NC(x) be the set consisting of the two neighbors of x in C.

Now we can describe the transduction τ i as follows.

V(G∗r i ) ∶= {h} ∪ V(C) ∪
α

⋃
j=1

Vl j

ad jG∗r i
(u, v) ∶=(u ≠ v) ∧

(((∃e ∈ E i) (I(e , v) ∧ I(e , u)))

∨ ((h = u) ∧ (v ∈ V(C))) ∨ ((h = v) ∧ (u ∈ V(C)))

∨
⎛
⎝

α

⋁
j=1

u = b j ∧ v ∈ Vl j

⎞
⎠
∨
⎛
⎝

α

⋁
j=1

v = b j ∧ u ∈ Vl j

⎞
⎠

∨ ((u ∈ V(C)) ∧ (v ∈ NC(u)))

∨ ((v ∈ V(C)) ∧ (u ∈ NC(v)))).

With this transduction τ i and the expression Planar(G), we can now apply [CE12, Theorem

7.10] to obtain the MSO2 formula ι i which, when applied to G (together with our variables),

allows us to express that G∗r i is planar. Namely, by taking the conjunction of all of these ι i , we

obtain the needed MSO2 formula ι (which can be applied to G and our variables) to express

that all of the G∗r i ’s are planar.
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7 Bundled Crossing Minimization in Circular Layouts

Nowwe construct theMSO2 formula corresponding to Properties 1–6. The formula depends

on the drawing DF of the set of frame edges F.

realizableDF
(G) ≡
(∃ f1 , . . . , fβ , E0 , E1 , . . . , Eγ ,w1 ,w2 , . . . ,wξ ,V0 ,V1 , . . . ,Vη)

[E0 = { f1 , . . . , fβ} ∧ V0 = {w1 ,w2 , . . . ,wξ}

∧ Partition(E; E0 , E1 , . . . , Eγ)
∧ Partition(V ;V0 ,V1 , . . . ,Vη)
∧ Incident(V0 , E0)
∧ θ3(V0 , E0) ∧ θ4(V0 , E0) ∧ θ5(V1 , . . . ,Vη)

∧ ι( f1 , . . . , fβ , E1 , . . . , Eγ ,w1 ,w2 , . . . ,wξ ,V1 , . . . ,Vη)].

7.3 Bundling a Drawing

We now establish the following parameterized results for bundling a given drawing.

Theorem 7.5. Let G be a graph with n vertices and m ≥ n edges, and let D be a drawing of G.

(a) If D has c crossings, we can test whether bc
′(G ,D) ≤ k in cO(

√
k) + O(m + c) time.

(b) If D is simple, we can test whether bc(G ,D) ≤ k in mO(
√

k) + O(m) time.

(c) If D is simple and circular, testingwhether bc
○(G ,D) ≤ k is FPT in k; it takes 2

O(
√

k log k)+
O(m) time.

(d) For a permutation π of V(G), testing whether bc
○(G , π) ≤ k is FPT in k; it takes

2
O(k2) + O(m) time.

To prove this theorem, we will examine the number of combinatorially different bundled

crossings we can make in our given fixed drawing D. Namely, let B(D) be the entire family of

subsets of crossings in D such that each subset corresponds to a bundled crossing in D, that is,

for each bundled crossing, the subset S of the crossings in D contained in it is an element of

B(D). We show that ∣B(D)∣ ∈ O(c4) where c is the number of crossings in D; see Lemma 7.6.

For the case when D is simple, we show that ∣B(D)∣ ∈ O(m4) wherem is the number of edges

in D; see Lemma 7.5.

Note that each element of B(D) forms a connected subgraph in the planarization of the

drawing. So, by finding k such connected subgraphs that are pairwise disjoint and together

cover the crossings of D, we can bundle the drawing to have at most k crossings. Marx and

Pilipczuk [MP15] studied exactly this type of disjoint covering problem. Their result is as

follows.

Theorem 7.6 ([MP15, Theorem 1.3]). Let G be a planar graph, let B be a family of connected

vertex sets in G, let C ⊆ V(G) be a set of vertices, and let k be an integer. In time ∣B∣O(
√

k)nO(1),

we can find a set S of at most k pairwise disjoint objects in B that maximizes the number of

vertices of C in the union of the vertex sets in S.
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7.3 Bundling a Drawing

We use Theorem 7.6 and an algorithm of Alam et al. [AFP16] to prove Theorem 7.5.

Proof of Theorem 7.5: (a) Consider a drawing D of G with c crossings, and let B = B(D). By
Lemma 7.6, ∣B∣ ∈ O(c4). Let D′ be the plane graph obtained from D by creating a vertex at

each crossing point in D (note that D′ does not contain the vertices of G), and connecting

two such vertices if they are consecutive along an edge in D. Clearly, each element in B forms

a connected subgraph of D′. Thus, applying Theorem 7.6 with G = D′ , B = B(D),C = V(D′)
establishes (a).

(b) This follows as in (a). Namely, since D is simple, by Lemma 7.5, ∣B∣ ∈ O(m4). This

establishes (b).

(c) Alam et al. [AFP16] showed that testing bc
○(G , π) ≤ k can be kernelized down to an

instance with at most 16k edges (or report that (G , π) is a no-instance) in O(m) time. This

also applies to a given simple circular drawing. Thus, by applying their kernelization and

using (b) with m ≤ 16k, we establish (c).

(d) Here, we use (b) to improve the FPT algorithm of Alam et al. [AFP16] for determining

whether bc
○(G , π) ≤ k. (Their algorithm runs in time kO(k

2) + O(m) and proceeds in three

stages). First, it applies a kernelization step to obtain a graph with at most 16k edges in

O(m) time; second, it enumerates all possible O(20.657k2

) weak pseudoline arrangements

of 16k pseudolines [Fel97]; and third, for each such weak pseudoline arrangement it parti-

tions the crossings into the minimum number of bundled crossings by exhaustive search

in time O(k128k
2

). For this last step, we apply (b) instead (now with m ≤ 16k), leading to

(16k)O(
√

k) = 2
O(
√

k log k)
time, and 2

O(k2) + O(m) time in total.

Note that since the number of crossings in a non-simple drawing is not bounded by a

function of the number of edges m in the drawing, we do not obtain an analogous result

for the circular layout as in Theorem 7.5(c) by using the kernelization technique of Alam

et al. [AFP16]. On the other hand, we present a 2
O(m)

-time algorithm for not necessarily

simple drawings in circular layouts in the context of storyline visualization; see Section 7.4.

We now discuss the size of the family B(D) for some drawing D. Note that each bundled

crossing in D involves two pairs of frame arcs, and, conversely, two pairs of frame arcs can

determine at most one bundled crossing. We show that if D is simple, then this is also true for

frame edges, that is, two pairs of frame edges can determine at most one bundled crossing; see

Lemma 7.5. This allows us to bound the number of distinct bundled crossings by the number

of edges from above, and thus, the size of the family B(D).

Lemma 7.5. Let D be a simple drawing D with m edges. Each bundled crossing determines at

most two pairs of frame edges, and, conversely, two pairs of frame edges can determine at most

one bundled crossing. In particular, ∣B(D)∣ ≤ m4.

Proof: Consider two bundles that form a given bundled crossing. Each bundle has at most two

not necessarily distinct frame edges. For the reverse direction, consider a bundled crossing

B and let (e2 , e4), (e1 , e3) be the two pairs of frame edges each corresponding to a bundle.

Let c i j , for i = 1, 3, j = 2, 4 be the frame crossing of e i and e j (if it exists). There are three

cases how these two pairs can determine a bundled crossing: (a) e1 = e3 and e2 = e4: then

B is a single crossing, clearly there cannot be another bundled crossing determined by the
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7 Bundled Crossing Minimization in Circular Layouts

same pairs; (b) e1 = e3 and e2 ≠ e4 (the case where e1 ≠ e3 and e2 = e4 is symmetric): then B

consists of all crossings on e1 between c12 and c14, since e1 and e2 can cross e1 at most once,

there cannot be another bundled crossing; or (c) the edges are pairwise different, then all the

crossings c i j exist and are distinct and any other bundled crossing would imply that for some

fixed i and j the crossings c i j occurred twice, which is impossible in a simple drawing.

In the case of a not necessarily simple drawing D, the number c of crossings cannot be

bounded in terms of the number m of edges. But if we define the size of an instance in terms

of the number of crossings, it is easy to see that B(D) is of size polynomial in c.

Lemma 7.6. For any not necessarily simple drawing D with c crossings ∣B(D)∣ ∈ O(c4).

Proof: Every bundled crossing can be determined by two pairs of frame arcs. Since each

crossing can be incident to at most four arcs, four crossings can determine at most 4
4
different

bundled crossings. Therefore, the total number of bundled crossings is polynomially bounded

by the number of crossings, namely ∣B(D)∣ ≤ 16c4.

7.4 Bundling Storyline Visualisations Is FPT

For our purposes, a storyline drawing D is a set of m x-monotone curves. Such curves cannot

self-intersect, but a pair of curves is allowed to intersect each other multiple times; we only

forbid the existence of digonal faces, that is, two curves intersecting each other twice in a row.

Finally, we assume here that all curves start on distinct points of a vertical line vleft and end

on distinct points of a vertical line vright. This is common in storyline visualizations, but this

restriction can be dropped with additional care. We prove the following.

Theorem 7.7. Given a storyline drawing D with m characters and c crossings, bc
s(D) can be

computed in O(φ2mmc) ⊂ O(2.62
mmc) time, where φ is the golden ratio. This runtime is fixed

parameter tractable in m. An optimal bundling can be constructed in the same time.

Recall that I(D) is the set of crossings. Each curve, being x-monotone, gives a left-to-right

order of its incident crossings. These orders give a partial order on I(D). Let π be an arbitrary

linear extension of these partial orders, which can be found in polynomial time given D. Then

we subdivide D into columns according to π: see Definition 7.2 and Figure 7.10. We call a

face of this subdivision a cell. In this section we define a way to label the cells to describe any

bundling of the drawing. The algorithm for Theorem 7.7 is based on dynamic programming

over such labelings.

Definition 7.2. A subdivision S(D) consists of the drawing D together with: horizontal lines

htop and hbot above and below all curves; vertical lines vleft and vright going through the left

and right endpoints of the curves, respectively; and a set of c y-monotone curves with the

following properties:

• for each crossing X in I(D), there is a unique curve going through X,

• each curve crosses htop, hbot and all curves of D,
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7.4 Bundling Storyline Visualisations Is FPT

1

2

3

4

5

a

b

c

d

e

1 2 3 4 5

vrightvleft

htop

hbot

(a) bundling of D with order π

a

b

c

d

e

◦
◦
◦

S

◦
◦ ◦

S

◦

◦

◦
◦ ◦

◦

◦ ◦

◦
◦

◦
◦
◦
◦
◦
◦

× × × ×
↑ ↑ ↑ ↑

↓ ↓ ↓ ↓

1 2 3 4 5vleft vright

(b) corresponding real labeling of S(D)

Figure 7.10: Bundling of a storyline drawing: curves added in S(D) are dashed and a bundling of

the crossings is indicated in gray. Note the degenerate bundled crossing at crossing 2.

• the curves do not intersect each other, and they are totally ordered from left to right

according to π.

See Figure 7.10a for an example of a drawing D with its subdivision S(D). Let C be the set

of bounded faces of S(D); we call the elements of C the cells in order to distinguish them

from the faces of D. A drawing of S(D) in Figure 7.10b helps to understand its structure. (This

drawing is stretched similarly to a wiring diagram [FG18].) Note that the subdivision consists

of ∣I(D)∣ + 1 columns, each with m + 1 cells, and all cells are either triangular or quadrangular:

there are triangles to the left and right of each intersection, and all other cells are quadrangles.

The cells in a column are numbered from top to bottom, starting at 1. These numbers are their

row numbers.

We use the set L = {×, S , ○, ↓, ↑, ↕} of labels. In a fixed bundling of D, each cell satisfies

exactly one of the following conditions.

× This cell is inside a bundled crossing. (This can only happen if the cell is part of a

quadrangular face.)

For cells not inside a bundled crossing, there are five options.

S This cell is directly left of the π-earliest crossing of a bundled crossing: it “starts” a

bundled crossing.

○ This cell does not touch the boundary of a bundled crossing, except possibly in a point.

↓ Only the lower boundary of this cell bounds a bundled crossing.

↑ Only the upper boundary of this cell bounds a bundled crossing.

↕ Both the upper and lower boundary of this cell bound a bundled crossing.

We call a function from the set C of cells to the set L of labels a labeling. A labeling is called

real if there exists a bundling of D where each cell satisfies the condition of its label. We

now observe four necessary properties of real labelings. Afterward, we prove that they are

sufficient.
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7 Bundled Crossing Minimization in Circular Layouts

Crossing property Any crossing must be part of a bundled crossing (though possibly a

degenerate one). Consider the six cells surrounding a crossing in S(D). If the crossing lies in

the interior of a bundled crossing, all six cells are labeled × in the real labeling. Otherwise it

lies on the boundary of a bundled crossing. Enumeration reveals the finite set of ways to label

these cells that can possibly be real: see Figure 7.11. Any other way to label the six cells around

the crossing directly contradicts the conditions for the labels.

Column property Note that in a real labeling, a column of S(D) can have at most one cell

labeled ‘S’, since by construction only one cell per column is left of a crossing. Now consider

the sequence of labels encountered top to bottom in a column, for example [○, ○, ↓,×, ↑, ○] in
the third column of Figure 7.10b. For any real labeling, this sequence describes being inside

(×) and outside (○) of bundled crossings, with ↓, ↑ and ↕marking the transitions, and possibly

the label ‘S’ in place of ○ in one particular cell (left of the crossing). Such sequences without ‘S’

are walks through the directed graph in Figure 7.12; the Column property says that precisely

these sequences are allowed, with the addition of also allowing ‘S’ in the appropriate cell (and

only there).

Row property In any real labeling, horizontally adjacent cells have the same label unless

they share a crossing on their boundary (and in that case the change is governed by the

Crossing property), where ○ and ‘S’ are considered the same: the labels ○ and ‘S’ both describe

a cell that does not touch the boundary of a bundled crossing. Such pairs of horizontally

adjacent cells must have the same label, because they have the same incidences to any bundled

crossings: these incidences can only change at crossings.

Consider for example the sequence of labels encountered left to right in the third row for

Figure 7.10b: [○, ↓, ↓, ↓, ↓, ○]. For the Row property, the third and fourth labels must be the

same; the other pairs are exempt due to sharing a crossing. The ‘S’ in the second row is allowed

to the right of ○ since the two labels are considered equal for the Row property.

Quadrangle property In any real labeling, all faces inside a bundled crossing are quad-

rangles. Therefore, only cells contained in a quadrangular face of D can have the label ×.

These properties are necessary for real labelings (as argued above) and, once we fix the

leftmost and rightmost columns of the labeling, they are also sufficient.

Lemma 7.7. A labeling C → L is real if and only if:

1. the first column contains ‘S’ left of its crossing and ○ everywhere else,
2. the last column contains ○ everywhere, and
3. the Crossing, Column, Row, and Quadrangle properties hold everywhere.

The number of bundled crossings in the corresponding bundling equals the number of cells with

label ‘S’.

Proof: First observe that in any real labeling, the first column consists of all ○ except the label

‘S’ in the unique cell adjacent to a crossing: none of the cells bound (or are in) a bundled

crossing except that the ‘S’ cell necessarily touches one in a point.
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S ◦

S ×

× ◦

↓

×

↓

×

×

↑ ↑

×

single crossing

start

end

bottom cornertop corner

×

continue up (↑)

× ×

continue down (↑)

×

continue up (↓)

××

↓

continue down (↓)

××

× ↓

↑×

×

×↑

S ↓

δ2

start linear down

S ↑

start linear up

γ2

↑ ◦

end linear down

↓

δ2

◦

end linear up

β β

α α α α

β β

γ1

α α

γ1

γ1

γ1

α α

γ1 γ1

δ1δ1

δ1

δ1

β β

δ1

β β

δ1

γ2

δ2

γ2 γ2

γ2

δ2 δ2δ2

↓ ↑

continue linear up

γ1

δ2 δ1

↑ ↓

δ2

continue linear down

γ2 γ1

δ1

γ2 γ2

Figure 7.11: All possible configurations of labels around a crossing on the boundary of a bundled

crossing, where the Greek variables may be substituted as follows: α ∈ {○, ↑}, β ∈ {○, ↓}, γ1γ2 ∈ {○↓

, ↑ ↕}, δ1δ2 ∈ {○↑, ↓ ↕}. Multiple occurrences of the same variable within one configuration must be

substituted consistently, so for example the two α in the top left configuration must both be ○ or

both be ↑. (If the crossing is in the interior of a boundled crossing, all six cells must be ×.)
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↓

×

↑

◦ l

Figure 7.12: Directed graph for the Column property, reading a column top to bottom; starting

nodes are ○ and ↓. (Further legal columns can be obtained by replacing one occurrence of ○ by ’S’.)

Only the gray state corresponds to cells inside of a bundled crossing.

Similarly in any real labeling the last column cannot have cells that are contained in a bundled

crossing or adjacent to a crossing on their right, so they are all labeled ○. As argued above, the

Crossing, Column, Row, and Quadrangle properties hold everywhere in any real labelling.

This establishes one direction of the lemma.

We now show that if a labelling satisfies the three conditions of the lemma, then it is

real. Consider a connected component of cells labeled ×. Based on the Row and Crossing

properties, the surrounding cells are correctly labeled with arrows and an ‘S’ label. Call such

a connected component a blob. We show that each blob is indeed a bundled crossing by

Definition 7.1. (Note that blobs are nondegenerate bundled crossings; we handle degenerate

bundled crossings later.)

Let B be a blob. Call a crossing on the boundary of B a convex corner if no curve in this

crossing goes into the interior of the blob; a side if one curve goes into the interior, or; a reflex

corner if two curves go into the interior. Notice that the “start”, “top corner”, “bottom corner”,

and “end” configurations of the Crossing property represent convex corners, and the other

configurations with × represent sides. Therefore, a blob cannot have reflex corners. Thus, a

blob is a topological disk. Moreover, the first column of S(D) contains no × labels, so a blob

has a unique “start” configuration.

Now we trace the boundary of B, starting at its π-earliest crossing X, and we will find

the four frame arcs. Start from X and follow the boundary along one of the curves and call

this frame arc e1. We switch to the next frame arc whenever we encounter a convex corner.

This process is repeated until we get back to X, which must happen because the blob is a

topological disk and bounded on the right by the last column (which does not contain any ×).
Let e1 , e2 , . . . , ek be the frame arcs encountered. We only switched from a frame arc to the

next at convex corners, and according to the Quadrangle property all faces in the blob are

quadrangles. Then k = 4, since that is the only way to close a loop around quadrangles using

only convex corners. In fact, since all faces in the blob are quadrangles, the crossings inside B

form a grid and therefore B is a bundled crossing.

Consider a cell labeled ‘S’ that does not precede a blob. If the “single crossing” configuration

of the Crossing property applies, this correctly describes a singleton bundled crossing. Other-

wise, a “start linear up” or “start linear down” configuration must apply (Crossing property).

Because of the “continue linear” configurations and the Row property, this must propagate

and can only end in an “end linear up” or “end linear down” configuration. This correctly

describes a linear bundled crossing.
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7.4 Bundling Storyline Visualisations Is FPT

Therefore, a labeling that starts correctly in the first column, where the properties hold

everywhere, and that arrives correctly in the final column, is real.

In preparation for the runtime bound of Theorem 7.7, we now bound the number of ways

to label a column that are consistent with the Column property.

Lemma 7.8. Thenumber of length-n strings overL that are consistent with the Column property

is O(φ2n) ⊂ O(2.62
n), where φ is the golden ratio. The strings can be enumerated with linear-

time overhead.

Proof: Enumerating the walks in the graph from Figure 7.12, with the additional option of

having ‘S’ in place of ○ in one particular cell, can be achieved in depth-first fashion using a

stack. The optional ‘S’ at most doubles the number of accepted strings, so we ignore it for the

asymptotic analysis and consider only the walks in the graph. We also ignore that there are

two starting nodes (○ and ↓), since again this only involves a factor two.

Now consider the adjacency matrix A of the graph; here the nodes are given in the order

○, ↓, ↑,×, ↕.

A =

⎛
⎜⎜⎜⎜⎜
⎝

1 1 0 0 0

0 0 1 1 1

1 1 0 0 0

0 0 1 1 1

0 0 1 1 1

⎞
⎟⎟⎟⎟⎟
⎠

The characteristic polynomial det(A− λI) of the matrix A is −λ5 + 3λ4 − λ3
. Its roots are 0

of multiplicity three,
1

2
(3+
√
5) = φ2

, and φ−2
, where φ is the golden ratio. Since the root with

the largest absolute value is φ2 > 1 and it has multiplicity one, the number of walks of length

n is O(φ2n). The lemma follows. (See, for example, Ardila’s treatment [Ard15] of algebraic

methods for counting walks.)

Proof of Theorem 7.7: We use dynamic programming, moving from left to right by column

of S(D): with L ∈ Lm+1
and i a column, let f (L, i) be the minimum number of ‘S’ labels

in any labeling of the columns up to column i, ending with the labels L for column i. By

Lemma 7.8, there are only O(φ2m) values of L that satisfy the Column property and they

can be enumerated with linear overhead. Each individual f (L, i) can be computed with a

constant number of lookups of f ( ⋅ , i − 1): by the Row property only the three rows adjacent

to the crossing between the columns can change and the Crossing property gives a finite set

of options for how they can change.

See pseudocode below, where F(L, i) is used to store and look up values of f (L, i); we
use the convention that accessing F(L, i) returns ∞ if that value has not been stored yet.

The values can be accessed in O(m) time by storing them in a prefix tree (indexed by L) per

column. This leads to a total runtime of O(φ2mmc).

If desired, the bundling itself can be read from F. In that case, the algorithmuses O(φ2mmc)
space: the c prefix trees each store O(φ2m) items and have height m + 1. If only the bundled

crossing number is required, space usage can be improved to O(φ2mm) by storing only two

columns at a time.
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7 Bundled Crossing Minimization in Circular Layouts

Input: Drawing D.

Output: Bundled crossing number bc
s
(D).

C ← Columns of S(D) numbered 0 to c

Lstart ← Entire column is ○, except ‘S’ left of the crossing of C[0]
F(Lstart , 0) ← 1 // Dynamic programming data structure
for i ← 1 to c do // O(c) times

foreach L ∈ Enum-Single-Columns(C[i]) do // O(φ2m) times
foreach L′ ∈ Enum-Valid-Predecessors(C[i − 1],C[i], L) do

F(L, i) ← min{F(L, i), F(L′ , i − 1)} // ↷O(1) times

if L contains ‘S’ then F(L, i) ← F(L, i) + 1

Lend ← Entire column is ○
return F(Lend , c)

Subroutine: Enum-Single-Columns(c)

Input: A single column c of S(D).
Output: Enumerates all ways to label the column according to the Column

property.

Subroutine: Enum-Valid-Predecessors(cpred , ccurr , L)

Input: Adjacent columns cpred and ccurr of S(D), labeling L for ccurr.

Output: Enumerates all ways to label cpred according to the four properties,

given that ccurr is labeled L.

7.5 Discussions and Open Problems

Given our new FPT algorithm for simple circular layouts, it would be interesting to improve

its runtime and to investigate whether a similar result can be obtained for general simple

layouts. A starting point could be the FPT algorithm of Kawarabayashi et al. [KR07] for

computing the usual crossing number of a graph. We also conjecture that it is NP-hard to

compute bc
○(G , π), given a graph G and a vertex order π. It seems plausible to reduce from

SortingByTranspositions, but it is difficult to keep the resulting drawings simple.

We remind the reader of the open problem posed by Alam et al. [AFP16] and Fink et

al. [FHSV16] concerning the computational complexity of bc
○(G).
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7
Conclusion

In this book, we have investigated two areas of Beyond Planarity: crossing optimization in

circular-arc drawings and crossing optimization in circular layouts. For crossing optimization

in circular-arc drawings we have first considered a way to draw graphs without crossings

while at the same time optimizing quality measures that affect the readability of a drawing

like the visual complexity. Then we have analyzed properties of orthogonal circles as well

as properties of arrangements of such circles. Lastly we have introduced and studied a new

class of beyond-planar graphs, namely, graphs that can be drawn with circular-arc edges and

right-angle crossings.

For crossing optimization in circular layouts we have considered several classes of beyond-

planar graphs with forbidden edge crossing patterns, that is, graphs that have circular layouts

where each edge is crossed at most k times and graphs that have circular layouts where there

are no k pairwise crossing edges. We have studied their properties and designed recognition

algorithms. Finally we have considered an effective way to reduce clutter in a graph drawing

that has (many) crossings, that is, to group edges that travel in parallel into bundles. Each edge

can participate in many such bundles. Any crossing in this bundled graph occurs between

two bundles, i.e., as a bundled crossing. We have considered different variants of bundled

crossing minimization, in particular, in circular layouts.

We will now recap the main results from individual chapters of this book and state some

selected problems that are still open.

We have introduced (in Chapter 3) the spherical cover number σ l
d(G) of a graph G, that

is, the minimum number of l-dimensional spheres in Rd
such that G has a crossing-free

circular-arc drawing that is contained in the union of these spheres. We have compared the

spherical cover number to some other graph parameters, in particular, to its close relative the

affine cover number ρ l
d(G), the minimum number of l-dimensional affine subspaces in Rd

that together cover a crossing-free straight-line drawing of G. Obviously σ l
d(G) ≤ ρ l

d(G). On
the other hand we have seen that ρ1

2
(G) ∈ O(σ 1

2
(G)2). Furthermore, we have already seen

that σ 2

3
(Kn) grows asymptotically more slowly than ρ2

3
(Kn). Families of graphs where there

is an asymptotic difference between the two cover numbers would be particularly interesting

for l = 1 and d = 2 (recall that then we consider only planar graphs).

Open Problem 1. Is there a family of planar graphs where σ 1

2
grows asymptotically more

slowly than ρ1

2
?

As a first step to study circular-arc drawings with crossings we have analyzed properties of

orthogonal circles (in Chapter 4), in particular, properties of arrangements of such circles.

We have shown that every arrangement of n orthogonal circles has at most 14n intersection

points and 15n + 2 faces. In addition we have provided upper bounds for the maximum

number of faces with small degree, that is, for digonal faces and triangular faces. Namely,

every arrangement of n orthogonal circles has at most 2n digonal faces and 4n triangular
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faces. For the lower bounds we have only obtained arrangements with 2n − 2 digonal, 3n − 3

triangular, and 4(n − 3) quadrangular faces. Note that the lower and upper bounds are tight

only for the number of digonal faces. Thus, an immediate open question is to improve the

bounds that are not tight, in particular, the lower bounds for the triangular and quadrangular

faces.

Open Problem 2. Is there a better upper bound on the number of faces in an arrangement

of orthogonal circles with n circles than 15n + 2?

Open Problem 3. Are there arrangements of orthogonal circles with n circles and more than

3n − 3 triangular or 4(n − 3) quadrangular faces?

We have introduced a new class of beyond-planar graphs, called arc-RAC graphs, that is,

graphs that can be drawn with circular arcs and right-angle crossings; see Chapter 5. The

class of arc-RAC graphs generalizes the known class of RAC graphs, where the crossings also

occur at right angles only but the edges are drawn straight-line. We have provided a linear

upper bound on the maximum edge density of the arc-RAC graphs of 14n − 12. In addition

we have constructed a family of n-vertex arc-RAC graphs with 4.5n − O(
√
n) edges, which

shows that arc-RAC graphs is a proper superclass of RAC graphs.

Open Problem 4. Can we improve the upper or the lower bound on the maximum edge

density of arc-RAC graphs?

The relationship of the families of RAC and RAC1 graphs (that is, graphs with drawings

where edges are poly-lines with only one bend and the crossings are still right-angle only) to

k-planar graphs (that is, graphs that can be drawn with at most k crossings per edge) is well

understood. In particular, it is known that there are 1-planar graphs that are not RAC and

that every 1-planar graph is RAC1. Thus, it is intriguing to find out what is the relationship

between arc-RAC and 1-planar graphs.

Open Problem 5. Is there a 1-planar graph which is not arc-RAC?

After studying circular-arc drawings we turned to crossing optimization in circular layouts

(in Chapter 6), in particular, we have considered the following classes of beyond-planar graphs

with forbidden edge crossing patterns: outer k-planar graphs, that is, the graphs that admit a

circular layout where each edge is crossed by at most k other edges; and outer k-quasi-planar

graphs, that is, the graphs that admit a circular layout where no k edges cross pairwise. For

outer k-planar graphs we have given bounds with respect to k on several graph parameters for

these graphs, in particular, the balanced separation number and the chromatic number. For

each fixed k, we have shown, using small balanced separators, how to test outer k-planarity in

quasi-polynomial time. For outer k-quasi-planar graphs we have compered them to other

graph classes, in particular, to planar graphs.

We have considered restrictions of outer k-planar and outer k-quasi-planar drawings to

full drawings (where no crossing appears on the boundary), and to closed drawings (where

the vertex sequence on the boundary is a cycle in the graph) and provided linear recognition

algorithms based on extended monadic second-order logic and Courcelle’s Theorem (see

Section 2.4 for definitions).
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One of the open problems that stems from this chapter is on the relation of quasi-planar

graphs and planar graphs. Every planar graph is outer 5-quasi-planar because planar graphs

have page number 4 [Yan89] (planar graphs that require 4 pages have also been discovered

recently [Yan20, BKK
+

20]). There are also planar graphs that are not outer 3-quasi-planar.

Open Problem 6. Is every planar graph outer 4-quasi-planar?

Another open problem arises from the closeness of outer k-quasi-planar with the class

of circle graphs, that is, the class of intersection graphs of chords of a circle (also known as

chord diagrams). An outer k-quasi-planar drawing D of a graph G can be seen as a chord

diagram and as such provides a corresponding graphH where each adjacency between vertices

corresponds to a crossing between edges of our drawing. Thus, k-coloring H corresponds

to partitioning D into a k-page book embedding of G, that is, a drawing in k half-planes,

called pages, that all intersect at the same line where the vertices are drawn. A q-clique in

H with q < k corresponds to some q pairwise crossing edges in the corresponding outer

k-quasi-planar drawing D. Ageev [Age96] showed that any triangle-free circle graph has

chromatic number at most 5. Therefore, any outer quasi-planar graph G has page number at

most 5. This immediately gives rise to the following question.

Open Problem 7. Is there an outer quasi-planar graph with page number 5?

Finally, we have considered bundled crossing minimization in Chapter 7. A graph is given

and the goal is to find a bundled drawing with at most k bundled crossings. We have shown

that the problem is NP-hard when we require a simple drawing, resolving an open problem

by Fink et al. [FHSV16]. Our main result is an FPT algorithm (in k) for simple (that is, no

edge self-intersects and no two edges intersect twice) circular layouts, which answers an open

question by Alam et al. [AFP16]. The algorithm is based on extended monadic second-order

logic and Courcelle’s Theorem (see Section 2.4 for definitions). Even though the runtime of

testing a graph property expressed via a monadic second-order logic formula of bounded size

is linear in the size of the graph (if the graph has bounded treewidth) it is notoriously large

with respect to the parameters (that is, the treewidth and the size of the formula). Thus, a

faster algorithm is desirable.

Open Problem 8. Is there a faster FPT algorithm that for a given graph G and a natural

number k computes a simple circular layout with k bundled crossings if one exists?

So far we still do not know whether the aforementioned problem is NP-hard.

Open Problem 9 (Alam et al. [AFP16] and Fink et al. [FHSV16]). What is the complexity of

deciding whether for a given graph G and a natural number k there is a simple circular layout

with k bundled crossings?

113





7Acknowledgments

My first acknowledgments go to my supervisor Alexander “Sascha” Wolff. I met him the

first time at a Computational Geometry block course as a master student and I was inspired

by his lectures, the slides, and the way how he presented the material. When I started at

Sascha’s chair he gave me immense support researchwise and not only. Sascha gave me lots

of interesting research ideas and helped me to persevere with our research plan. Sascha also

provided a research-friendly diverse and multi-sided environment at his chair which helped

me to develop as a researcher. I want to thank Sascha for making research fun and for giving

his students a possibility to travel around the world to different conferences and workshops.

I would also like to thank Steve Chaplick and Thomas vanDijk for a helpful cooperation and

mentoring, in particular, for their readiness to answer my questions whenever I knocked at

their doors. Further, I would like to thankmy (former) colleagues for interesting conversations

and for having fun when traveling together to conferences or just on our way to Mensa.

I would also like to especially thank Alexander “Sasha” Ravsky for his help, mentoring, and

inspiring conversations that we had during our evening strolls.

Further, I would like to express my gratitude to co-authors and researchers from other

universities that I had a pleasure to work with : Giuseppe Liotta, André Schulz, Herny Förster,

and Ji-won Park. Also I would like to acknowledge Alon Efrat and Bruno Courcelle for their

advice.

I am especially grateful to my parents for inspiring in me the love for science from my early

age and my older brother and sister who I can always look up to.

Finally, I would like to thank the supervisor of my master thesis, Prof. Dr. Roman Chapko,

for helping to obtain the DAAD scholarship for my PhD studies. The financial support of

DAAD and their coordination is greatly acknowledged.

115





7Bibliography

[AAA
+
12] Oswin Aichholzer, Wolfgang Aigner, Franz Aurenhammer, Kateřina Čech Do-

biášová, Bert Jüttler, and Günter Rote. Triangulations with circular arcs. In

Marc vanKreveld and Bettina Speckmann, editors, Proc. GraphDrawing (GD’11),

volume 7034 of Lecture Notes Comput. Sci., pages 296–307. Springer, 2012. [see

page 2]

[AAS03] Pankaj K. Agarwal, Boris Aronov, and Micha Sharir. On the complexity of

many faces in arrangements of pseudo-segments and circles. In Boris Aronov,

Saugata Basu, János Pach, andMicha Sharir, editors,Discrete andComputational

Geometry: The Goodman–Pollack Festschrift, pages 1–24. Springer, 2003. [see

page 39]

[ABB
+
16] Christopher Auer, Christian Bachmaier, Franz J. Brandenburg, Andreas

Gleißner, Kathrin Hanauer, Daniel Neuwirth, and Josef Reislhuber. Outer

1-planar graphs. Algorithmica, 74(4):1293–1320, 2016. [see page 71]

[ABB
+
17] Patrizio Angelini, Michael A. Bekos, Franz J. Brandenburg, Giordano Da Lozzo,

Giuseppe Di Battista, Walter Didimo, Giuseppe Liotta, Fabrizio Montecchiani,

and Ignaz Rutter. On the relationship between k-planar and k-quasi planar

graphs. In Hans Bodlaender and GerhardWoeginger, editors,WG 2017, volume

10520 of Lecture Notes Comput. Sci., pages 59–74, 2017. [see page 72]

[ABFK18] Patrizio Angelini, Michael A. Bekos, Henry Förster, and Michael Kaufmann.

On RAC drawings of graphs with one bend per edge. In Therese Biedl and

Andreas Kerren, editors, Proc. Graph Drawing & Network Vis. (GD’18), volume

11282 of LNCS, pages 123–136. Springer, 2018. [see page 55]

[ABR20] Alan Arroyo, Julien Bensmail, and R. Bruce Richter. Extending drawings of

graphs to arrangements of pseudolines. In Sergio Cabello and Danny Z. Chen,

editors, SoCG, 2020. To appear. [see page 95]

[Ack09] Eyal Ackerman. On the maximum number of edges in topological graphs with

no four pairwise crossing edges. Discrete Comput. Geom., 41(3):365–375, 2009.

[see pages 55, 56, 57, 58, 59, and 71]

[Ack19] Eyal Ackerman. On topological graphs with at most four crossings per edge.

Computational Geometry, 85:101574, 2019. [see pages 71 and 74]

[ACNS82] M. Ajtai, V. Chvátal, M.M. Newborn, and E. Szemerédi. Crossing-Free Sub-

graphs. In Peter L. Hammer, Alexander Rosa, Gert Sabidussi, and Jean Turgeon,

editors, Theory and Practice of Combinatorics, volume 60 of North-Holland

Mathematics Studies, pages 9 – 12. North-Holland, 1982. [see pages 2 and 85]

117



Bibliography

[AEH80] Jin Akiyama, Geoffrey Exoo, and Frank Harary. Covering and packing ingraphs

III: Cyclic and acyclic invariants. Math. Slovaca, 30:405–417, 1980. [see page 33]

[AFK
+
12] Karin Arikushi, Radoslav Fulek, Baláazs Keszegh, Filip Morić, and Csaba D.

Tóth. Graphs that admit right angle crossing drawings. Comput. Geom.,

45(4):169–177, 2012. [see pages 55, 56, 64, 66, and 67]

[AFP16] Md. Jawaherul Alam, Martin Fink, and Sergey Pupyrev. The bundled crossing

number. In Yifan Hu and Martin Nöllenburg, editors, GD, volume 9801 of

Lecture Notes Comput. Sci., pages 399–412. Springer-Verlag, 2016. [see pages 6,

85, 86, 87, 88, 89, 90, 91, 103, 110, and 113]

[Age96] A.A. Ageev. A triangle-free circle graph with chromatic number 5. Discrete

Math., 152(1):295–298, 1996. [see pages 84 and 113]

[ALPS01] N. Alon, H. Last, R. Pinchasi, andM. Sharir. On the complexity of arrangements

of circles in the plane. Discrete Comput. Geom., 26(4):465–492, 2001. [see

page 39]

[AP13] Eyal Ackerman and RomPinchasi. On the degenerate crossing number. Discrete

Comput. Geom., 49(3):695–702, 2013. [see page 86]

[Ard15] Federico Ardila. Algebraic and geometric methods in enumerative combina-

torics. InMiklós Bóna, editor,Handbook of Enumerative Combinatorics, chapter

1.4. CRC Press LLC, Boca Raton, FL, USA, 2015. [see page 109]

[AT07] Eyal Ackerman and Gábor Tardos. On the maximum number of edges in quasi-

planar graphs. J. Combin. Theory, Ser. A, 114(3):563–571, 2007. [see pages 55, 58,

and 71]

[BB72] Umberto Bertelè and Francesco Brioschi. Nonserial dynamic programming,

volume 91 ofMathematics in Science & Engineering. Academic Press, New York,

1972. [see page 10]

[BBH
+
17] Christian Bachmaier, Franz J. Brandenburg, Kathrin Hanauer, Daniel Neuwirth,

and Josef Reislhuber. NIC-planar graphs. Discrete Appl. Math., 232:23–40, 2017.

[see pages 56 and 67]

[BDE
+
16] Franz J. Brandenburg, Walter Didimo, William S. Evans, Philipp Kindermann,

Giuseppe Liotta, and Fabrizio Montecchiani. Recognizing and drawing IC-

planar graphs. Theoretical Computer Science, 636:1–16, 2016. [see page 67]

[BDL
+
17] Michael A. Bekos,WalterDidimo, Giuseppe Liotta, SaeedMehrabi, and Fabrizio

Montecchiani. On RAC drawings of 1-planar graphs. Theoretical Comput. Sci.,

689:48–57, 2017. [see page 67]

[BE18] Michael J. Bannister and David Eppstein. Crossing minimization for 1-page

and 2-page drawings of graphs with bounded treewidth. J. Graph Algorithms

Appl., 22(4):577–606, 2018. [see pages 72, 88, 92, and 100]

118



Bibliography

[BEG11] DavidA. Brannan,MatthewF. Esplen, and Jeremy J. Gray. Geometry. Cambridge

Univ. Press, 2nd edition, 2011. [see page 23]

[BGHL18] Carla Binucci, Emilio Di Giacomo, Md. Iqbal Hossain, and Giuseppe Liotta.

1-page and 2-page drawings with bounded number of crossings per edge. Eur. J.

Comb., 68(Supplement C):24–37, 2018. Combinatorial Algorithms, Dedicated

to the Memory of Mirka Miller. [see page 71]

[BK79] Frank Bernhart and Paul C Kainen. The book thickness of a graph. J. Combin.

Theory Ser. B, 27(3):320–331, 1979. [see page 24]

[BK98] Heinz Breu and David G. Kirkpatrick. Unit disk graph recognition is NP-hard.

Comput. Geom. Theory Appl., 9(1-2):3–24, 1998. [see page 40]

[BKK
+

20] Michael A. Bekos, Michael Kaufmann, Fabian Klute, Sergey Pupyrev, Chrysan-

thi Raftopoulou, and Torsten Ueckerdt. Four pages are indeed necessary for

planar graphs, 2020. [see pages 13, 83, and 113]

[BKN16] Jasine Babu, Areej Khoury, and Ilan Newman. Every property of outerplanar

graphs is testable. In Klaus Jansen, Claire Mathieu, José D. P. Rolim, and Chris

Umans, editors, APPROX/RANDOM 2016, volume 60 of LIPIcs, pages 21:1–

21:19, Dagstuhl, 2016. Schloss Dagstuhl, Leibniz-Zentrum für Informatik. [see

page 71]

[Bod96] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions

of small treewidth. SIAM J. Comput., 25(6):1305–1317, 1996. [see pages 94

and 99]

[Bor84] O. V. Borodin. Solution of the Ringel problem on vertex-face coloring of planar

graphs and coloring of 1-planar graphs. Metody Diskret. Analiz., 41:12–26, 108,

1984. [see page 71]

[CCJ90] Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs.

Discrete Mathematics, 86(1–3):165–177, 1990. [see page 40]

[CDGK01] C. C. Cheng, Christian A. Duncan, Michael T. Goodrich, and Stephen G.

Kobourov. Drawing planar graphs with circular arcs. Discrete Comput. Geom.,

25:405–418, 2001. [see page 2]

[CE12] Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-

Order Logic: A Language-Theoretic Approach. Cambridge Univ. Press, 2012. [see

pages 16, 17, 95, 99, and 101]

[CFFP11] Márcia R. Cerioli, Luérbio Faria, Talita O. Ferreira, and Fábio Protti. A note on

maximum independent sets and minimum clique partitions in unit disk graphs

and penny graphs: complexity and approximation. RAIRO Theor. Inf. Appl.,

45(3):331–346, 2011. [see page 40]

119



Bibliography

[CFK
+
15] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel

Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized

Algorithms, chapter Lower Bounds Based on the Exponential-Time Hypothesis,

pages 467–521. Springer-Verlag, 2015. [see page 16]

[CFKW19] Steven Chaplick, Henry Förster, Myroslav Kryven, and Alexander Wolff. On

arrangements of orthogonal circles. In Daniel Archambault and Csaba D. Tóth,

editors, Proc. Graph Drawing and Network Visualization (GD’19), volume 11904

of Lecture Notes Comput. Sci., pages 216–229. Springer, 2019. [see pages 4 and 61]

[CFKW20] Steven Chaplick, Henry Förster, Myroslav Kryven, and Alexander Wolff. Draw-

ing graphs with circular arcs and right angle crossings. In Susanne Albers, editor,

17th Scandinavian SymposiumandWorkshops onAlgorithmTheory (SWAT 2020),

volume 162 of LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

To appear. [see page 4]

[CFL
+
16] Steven Chaplick, Krzysztof Fleszar, Fabian Lipp, Alexander Ravsky, Oleg Verbit-

sky, and Alexander Wolff. Drawing graphs on few lines and few planes. In Yifan

Hu and Martin Nöllenburg, editors, Proc. 24th Int. Symp. Graph Drawing &

Network Vis. (GD’16), volume 9801 of Lecture Notes Comput. Sci., pages 166–180.

Springer-Verlag, 2016. [see pages 3, 13, 21, 22, 23, 24, 25, 26, 27, 32, 33, 36,

and 37]

[CFL
+
17] Steven Chaplick, Krzysztof Fleszar, Fabian Lipp, Alexander Ravsky, Oleg Ver-

bitsky, and Alexander Wolff. The complexity of drawing graphs on few lines

and few planes. In Faith Ellen, Antonina Kolokolova, and Jörg-Rüdiger Sack,

editors, Proc. Algorithms Data Struct. Symp. (WADS’17), volume 10389 of Lecture

Notes Comput. Sci., pages 265–276. Springer-Verlag, 2017. [see page 22]

[CKL
+
18] Steven Chaplick, Myroslav Kryven, Giuseppe Liotta, Andre Löffler, and Alexan-

der Wolff. Beyond outerplanarity. In Fabrizio Frati and Kwan-Liu Ma, editors,

GD, volume 10692 of Lecture Notes Comput. Sci., pages 546–559. Springer-Verlag,

2018. [see page 6]

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. MIT Press and McGraw-Hill, 3rd edition, 2009.

[see page 14]

[CLWZ19] Steven Chaplick, Fabian Lipp, Alexander Wolff, and Johannes Zink. Compact

drawings of 1-planar graphs with right-angle crossings and few bends. Comput.

Geom., 84:50–68, 2019. Special issue on EuroCG 2018. [see page 67]

[Cou90] Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable

sets of finite graphs. Inform. Comput., 85(1):12–75, 1990. [see pages 17 and 88]

[CP92] Vasilis Capoyleas and János Pach. A Turán-type theorem on chords of a convex

polygon. J. Combin. Theory Ser. B, 56(1):9–15, 1992. [see pages 72 and 84]

120



Bibliography

[CvDK
+
19] Steven Chaplick, Thomas C. van Dijk, Myroslav Kryven, Ji-Won Park, Alexan-

der Ravsky, and Alexander Wolff. Bundled crossings revisited. In Daniel

Archambault and Csaba D. Tóth, editors, GD, volume 11904 of Lecture Notes

Comput. Sci., pages 63–77. Springer-Verlag, 2019. [see page 7]

[CZQ
+
08] Weiwei Cui, Hong Zhou, Huamin Qu, Pak Chung Wong, and Xiaoming Li.

Geometry-based edge clustering for graph visualization. IEEE Trans. Vis. Com-

put. Graph., 14(6):1277–1284, 2008. [see page 85]

[de 17] Éric Colin de Verdière. Computational topology of graphs on surfaces. In

Csaba D. Tóth, Joseph O’Rourke, and Jacob E. Goodman, editors, Handbook of

Discrete and Computational Geometry, chapter 23. CRC Press LLC, Boca Raton,

FL, USA, 3rd edition, 2017. [see page 89]

[DEL11] Walter Didimo, Peter Eades, and Giuseppe Liotta. Drawing graphs with right

angle crossings. Theoret. Comput. Sci., 412(39):5156–5166, 2011. [see pages 4, 55,

and 66]

[DESW07] Vida Dujmović, David Eppstein, Matthew Suderman, and David Wood. Draw-

ings of planar graphs with few slopes and segments. Comput. Geom. Theory

Appl., 38:194–212, 2007. [see pages 13, 21, 27, 35, and 36]

[DETT99] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis.

Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Upper

Saddle River, NJ, 1999. [see pages 11, 15, 33, 40, 50, and 52]

[DEW17] Vida Dujmović, David Eppstein, and David R. Wood. Structure of graphs with

locally restricted crossings. SIAM J. Discrete Math., 31(2):805–824, 2017. [see

page 71]

[DGMW10] Vida Dujmović, Joachim Gudmundsson, Pat Morin, and Thomas Wolle. Notes

on large angle crossing graphs. In A. Potanin and A. Viglas, editors, Proc.

Comput. Australasian Theory Symp. (CATS’10), volume 109 of CRPIT, pages

19–24. Australian Computer Society, 2010. [see pages 55 and 58]

[DKM02] Andreas W. M. Dress, Jack H. Koolen, and Vincent Moulton. On line arrange-

ments in the hyperbolic plane. Eur. J. Comb., 23(5):549–557, 2002. [see page 72]

[DLM18] Walter Didimo, Giuseppe Liotta, and FabrizioMontecchiani. A survey on graph

drawing beyond planarity. ACM Computing Surveys, 52, 04 2018. [see page 2]

[DMNW11] Stephane Durocher, Debajyoti Mondal, Rahnuma Islam Nishat, and Sue White-

sides. A note on minimum-segment drawings of planar graphs. J. Graph

Algorithms Appl., 17:301–328, 2011. [see pages 13 and 21]

[DN14] Zdeněk Dvořák and Sergey Norin. Treewidth of graphs with balanced separa-

tions. ArXiv, 2014. [see pages 11 and 75]

[Dör65] H. Dörie. 100 Great Problems of Elementary Mathematics: Their History and

Solutions. Dover, New York, 1965. [see page 41]

121



Bibliography

[DP11] Adrian Dumitrescu and János Pach. Minimum clique partition in unit disk

graphs. Graphs & Combin., 27(3):399–411, 2011. [see page 40]

[Dun11] Christian A. Duncan. On graph thickness, geometric thickness, and separator

theorems. Comput. Geom. Theory Appl., 44(2):95–99, 2011. [see page 24]

[Ede06] Herbert Edelsbrunner. Lecture notes for Computational Topology (CPS296.1).

https://www.cs.duke.edu/courses/fall06/cps296.1/Lectures/sec-III-3.pdf, 2006.

[see page 23]

[EL13] Peter Eades and Giuseppe Liotta. Right angle crossing graphs and 1-planarity.

Discrete Appl. Math., 161(7):961–969, 2013. [see page 67]

[Epp18a] David Eppstein. Circles crossing at equal angles. https://11011110.github.io/

blog/2018/12/22/circles-crossing-equal.html, 2018. Accessed: 2019-06-11. [see

page 39]

[Epp18b] David Eppstein. Triangle-free penny graphs: Degeneracy, choosability, and

edge count. In Fabrizio Frati and Kwan-Liu Ma, editors, Proc. Graph Drawing

& Network Vis. (GD’17), volume 10692 of Lecture Notes Comput. Sci. Springer-

Verlag, 2018. [see page 40]

[ES18] Niklas Eén and Niklas Sörensson. The Minisat Page. http://minisat.se/, 2018.

Accessed: 2020-06-26. [see page 82]

[EW96] Peter Eades and Sue Whitesides. The logic engine and the realization problem

for nearest neighbor graphs. Theoretical Computer Science, 169(1):23–37, 1996.

[see page 40]

[Fel97] Stefan Felsner. On the number of arrangements of pseudolines. Discrete Comput.

Geom., 18:257–267, 1997. [see pages 99 and 103]

[Fel04] Stefan Felsner. Geometric Graphs and Arrangements: Some Chapters from

Combinatorial Geometry. Vieweg Verlag, 2004. [see page 39]

[FG06] Jörg Flum andMartin Grohe. Parametrized Complexity Theory. Springer-Verlag,

2006. [see page 11]

[FG18] S. Felsner and J.E. Goodman. Pseudoline arrangements. In J.E. Goodman,

J. O’Rourke, and Cs. D. Tóth, editors, Handbook of Discrete and Computational

Geometry, chapter 5. CRC Press LLC, Boca Raton, FL, USA, 3rd edition, 2018.

[see page 105]

[FHSV16] Martin Fink, John Hershberger, Subhash Suri, and Kevin Verbeek. Bundled

crossings in embedded graphs. In Evangelos Kranakis, Gonzalo Navarro, and

Edgar Chávez, editors, LATIN, volume 9644 of Lecture Notes Comput. Sci.,

pages 454–468. Springer-Verlag, 2016. [see pages 6, 85, 87, 89, 110, and 113]

122

https://www.cs.duke.edu/courses/fall06/cps296.1/Lectures/sec-III-3.pdf
https://11011110.github.io/blog/2018/12/22/circles-crossing-equal.html
https://11011110.github.io/blog/2018/12/22/circles-crossing-equal.html
http://minisat.se/


Bibliography

[FMR79] I. S. Filotti, Gary L. Miller, and John Reif. On Determining the Genus of a

Graph in O(vO(д)) Steps(Preliminary Report). In Proceedings of the Eleventh

Annual ACM Symposium on Theory of Computing, STOC ’79, page 27–37, New

York, NY, USA, 1979. Association for Computing Machinery. [see page 14]

[Fox11] Jacob Fox. Constructing dense graphs with sublinear hadwiger number. ArXiv,

abs/1108.4953, 2011. [see page 11]

[FP84] Z. Füredi and I. Palásti. Arrangements of lines with a large number of triangles.

Proc. Amer. Math. Soc., 92(4):561–566, 1984. [see page 39]

[FPS13] Jacob Fox, János Pach, and Andrew Suk. The number of edges in k-quasi-planar

graphs. SIAM J. Discrete Math., 27(1):550–561, 2013. [see page 72]

[FPW15] Martin Fink, Sergey Pupyrev, and Alexander Wolff. Ordering metro lines by

block crossings. J. Graph Algorithms Appl., 19(1):111–153, 2015. [see page 85]

[FS18] Stefan Felsner and Manfred Scheucher. Arrangements of pseudocircles: Trian-

gles and drawings. In Fabrizio Frati and Kwan-Liu Ma, editors, Proc. Graph

Drawing & Network Vis. (GD’17), volume 10692 of Lecture Notes Comput. Sci.,

pages 127–139. Springer, 2018. [see page 39]

[GHNS11] Emden R. Gansner, Yifan Hu, Stephen North, and Carlos Scheidegger. Multi-

level agglomerative edge bundling for visualizing large graphs. In Giuseppe Di

Battista, Jean-Daniel Fekete, and Huamin Qu, editors, PACIFICVIS, pages

187–194. IEEE, 2011. [see page 85]

[GHS02] András Gyárfás, Alice Hubenko, and József Solymosi. Large cliques in C4-free

graphs. Combinatorica, 22(2):269–274, 2002. [see page 48]

[Gib85] Alan Gibbons. Algorithmic Graph Theory. Camb. Univ. Press, 1985. [see page 9]

[GJ79] M. Garey andD. Johnson. Computers and Intractability: A Guide to theTheory of

NP-Completeness. Series of Books in theMathematical Sciences. W. H. Freeman,

first edition edition, 1979. [see pages 14 and 15]

[GJ83] Michael R. Garey and David Johnson. Crossing number is NP-complete. SIAM

J. Algebr. Discrete Meth., 4:312–316, 1983. [see page 5]

[GJGP80] M. R. Garey, D. S. Johnson, L. Miller Gary, and C. H. Papadimitriou. The

complexity of coloring circular arcs and chords. SIAM J. Alg. Disc. Meth.,

1(2):216–227, 1980. [see page 84]

[GKT14] Jesse Geneson, Tanya Khovanova, and Jonathan Tidor. Convex geometric

(k + 2)-quasiplanar representations of semi-bar k-visibility graphs. Discrete

Math., 331:83–88, 2014. [see page 72]

[Gru72] Branko Gruenbaum. Arrangements and Spreads, volume 10 of CBMS Regional

Conf. Ser. Math. AMS, Providence, RI, U.S.A., 1972. [see pages 37 and 39]

123



Bibliography

[Har70] Frank Harary. Covering and packing in graphs I. Ann. N.Y. Acad. Sci., 175:198–

205, 1970. [see page 32]

[Har15] Frank Harary. A Seminar on Graph Theory. Dover Publications, New York,

2015. [see page 24]

[HEF
+
14] C. Hurter, O. Ersoy, S. I. Fabrikant, T. R. Klein, and A. C. Telea. Bundled

visualization of dynamicgraph and trail data. IEEE Trans. Vis. Comput. Graphics,

20(8):1141–1157, 2014. [see page 85]

[HEH14] Weidong Huang, Peter Eades, and Seok-Hee Hong. Larger crossing angles

make graphs easier to read. J. Vis. Lang. Comput., 25(4):452–465, 2014. [see

page 55]

[HEK
+
15] Seok-Hee Hong, Peter Eades, Naoki Katoh, Giuseppe Liotta, Pascal Schweitzer,

and Yusuke Suzuki. A linear-time algorithm for testing outer-1-planarity. Algo-

rithmica, 72(4):1033–1054, 2015. [see page 71]

[HET12] C. Hurter, O. Ersoy, and A. Telea. Graph bundling by kernel density estimation.

Comput. Graph. Forum, 31:865–874, 2012. [see page 85]

[HHE08] Weidong Huang, Seok-Hee Hong, and Peter Eades. Effects of crossing angles.

In Proc. IEEE VGTC Pacific Visualization (PacificVis’08), pages 41–46, 2008.

[see page 55]

[HK01] Petr Hliněný and Jan Kratochvíl. Representing graphs by disks and balls (a

survey of recognition complexity results). Discrete Math., 229(1–3):101–124,

2001. [see page 40]

[HKMS18] Gregor Hültenschmidt, Philipp Kindermann, Wouter Meulemans, and An-

dré Schulz. Drawing planar graphs with few geometric primitives. J. Graph

Algorithms Appl., 22(2):357–387, 2018. [see page 21]

[Hli06] Petr Hliněný. Crossing number is hard for cubic graphs. Journal of Combinato-

rial Theory, Series B, 96(4):455 – 471, 2006. [see page 5]

[HN16] Seok-Hee Hong and Hiroshi Nagamochi. Testing full outer-2-planarity in linear

time. In Ernst W. Mayr, editor,WG 2016, volume 9224 of Lecture Notes Comput.

Sci., pages 406–421. Springer-Verlag, 2016. [see pages 71, 72, 73, and 80]

[Hol06] Danny Holten. Hierarchical edge bundles: Visualization of adjacency relations

in hierarchical data. IEEE Trans. Vis. Comput. Graphics, 12(5):741–748, 2006.

[see pages 14 and 85]

[Hua07] Weidong Huang. Using eye tracking to investigate graph layout effects. In

Seok-Hee Hong and Kwan-Liu Ma, editors, Proc. Asia-Pacific Symp. Visual.

(APVIS’07), pages 97–100. IEEE, 2007. [see page 55]

124



Bibliography

[HvKKR14] Michael Hoffmann, Marc van Kreveld, Vincent Kusters, and Günter Rote. Qual-

ity ratios of measures for graph drawing styles. In Proc. 26th Canadian Conf.

Comput. Geom. (CCCG’14), pages 33–39, 2014. [see page 21]

[HW17] Daniel J. Harvey and David R. Wood. Parameters Tied to Treewidth. Journal of

Graph Theory, 84(4):364–385, 2017. [see page 11]

[IMS17] Alexander Igamberdiev,WouterMeulemans, andAndré Schulz. Drawing planar

cubic 3-connected graphs with few segments: Algorithms & experiments. J.

Graph Algorithms Appl., 21(4):561–588, 2017. [see page 21]

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J.

Comput. Syst. Sci., 62(2):367–375, 2001. [see page 16]

[KK97] Alexandr Kostochka and Jan Kratochvíl. Covering and coloring polygon-circle

graphs. Discrete Math., 163(1):299–305, 1997. [see page 84]

[KLM17] Stephen G. Kobourov, Giuseppe Liotta, and Fabrizio Montecchiani. An an-

notated bibliography on 1-planarity. Computer Science Review, 25:49–67, 2017.

ArXiv: http://arxiv.org/abs/1703.02261. [see page 71]

[KM93] Alexandr V. Kostochka and Leonid S. Melnikov. On a lower bound for the

isoperimetric number of cubic graphs. In Proc. 3rd Int. Petrozavodsk Conf.

Probabilistic Methods in Discrete Mathematics, pages 251–265. Moskva: TVP;

Utrecht: VSP, 1993. [see page 32]

[KM12] Ross J. Kang and Tobias Müller. Sphere and dot product representations of

graphs. Discrete Comput. Geom., 47(3):548–568, 2012. [see page 53]

[KM14] Ross J. Kang and Tobias Müller. Arrangements of pseudocircles and circles.

Discrete Comput. Geom., 51(4):896–925, 2014. [see page 39]

[KMR08] Ken-ichi Kawarabayashi, Bojan Mohar, and Bruce A. Reed. A simpler linear

time algorithm for embedding graphs into an arbitrary surface and the genus

of graphs of bounded tree-width. In FOCS, pages 771–780. IEEE, 2008. [see

pages 16, 89, and 92]

[KMS18] Philipp Kindermann, Wouter Meulemans, and André Schulz. Experimental

analysis of the accessibility of drawings with few segments. J. Graph Algorithms

Appl., 22(3):501–518, 2018. [see pages 12 and 21]

[KR07] Ken-ichi Kawarabayashi and Bruce Reed. Computing crossing number in linear

time. In STOC, pages 382–390. ACM, 2007. [see page 110]

[KRW19] Myroslav Kryven, Alexander Ravsky, and Alexander Wolff. Drawing Graphs

on Few Circles and Few Spheres. J. Graph Algorithms Appl., 23(2):371–391, 2019.

[see page 3]

125



Bibliography

[KW01] Michael Kaufmann and Dorothea Wagner. Drawing Graphs: Methods and

Models, volume 2025 of Lecture Notes Comput. Sci. Springer-Verlag, 2001. [see

page 11]

[LH03] Mark Lombardi and Robert Hobbs, editors. Mark Lombardi: Global Networks.

Independent Curators, 2003. [see page 2]

[LPVV01] F. Lazarus, M. Pocchiola, G. Vegter, and A. Verroust. Computing a canonical

polygonal schema of an orientable triangulated surface. In SoCG, pages 80–89.

ACM, 2001. [see page 90]

[LW70] Don R. Lick and Arthur T. White. k-degenerate graphs. Canadian J. Math.,

22:1082–1096, 1970. [see page 10]

[Mit79] Sandra L. Mitchell. Linear algorithms to recognize outerplanar and maximal

outerplanar graphs. Inform. Process. Lett., 9(5):229–232, 1979. [see pages 94

and 97]

[MKNF87] SumioMasuda, Toshinobu Kashiwabara, KazuoNakajima, and Toshio Fujisawa.

On the NP-completeness of a computer network layout problem. In Proc. IEEE

Int. Symp. Circuits and Systems, pages 292–295, 1987. [see page 72]

[MNBR13] Debajyoti Mondal, Rahnuma Islam Nishat, Sudip Biswas, and Md. Saidur Rah-

man. Minimum-segment convex drawings of 3-connected cubic plane graphs.

J. Comb. Opt., 25(3):460–480, 2013. [see page 21]

[Moh99] Bojan Mohar. A linear time algorithm for embedding graphs in an arbitrary

surface. SIAM J. Discrete Math., 12(1):6–26, 1999. [see pages 16 and 89]

[Moh09] Bojan Mohar. The genus crossing number. ARS Mathematica Contemporanea,

2(2):157–162, 2009. [see page 86]

[Mos60] Moscow Mathematical Olympiad, problem no. 78223. http://www.problems.

ru/view_problem_details_new.php?id=78223, 1960. In Russian. [see page 29]

[MP15] Dániel Marx and Michał Pilipczuk. Optimal parameterized algorithms for

planar facility location problems using Voronoi diagrams. In Nikhil Bansal and

Irene Finocchi, editors, ESA, volume 9294 of Lecture Notes Comput. Sci., pages

865–877. Springer, 2015. [see pages 88 and 102]

[Nak00] Tomoki Nakamigawa. A generalization of diagonal flips in a convex polygon.

Theor. Comput. Sci., 235(2):271–282, 2000. [see page 72]

[Nie06] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University

Press, 2006. [see page 14]

[NR04] Takao Nishizeki and Md. Saidur Rahman. Planar Graph Drawing, volume 12 of

Lecture Notes Comput. Sci. World Sci. Pub., 2004. [see page 11]

126

http://www.problems.ru/view_problem_details_new.php?id=78223
http://www.problems.ru/view_problem_details_new.php?id=78223


Bibliography

[Ogi69] C. Stanley Ogilvy. Excursions in Geometry. Oxford Univ. Press, New York, 1969.

[see pages 41, 42, 43, 44, 61, and 62]

[PA95] János Pach andK. PankajAgarwal. Combinatorial Geometry. Wiley-Interscience

Series in Discrete Mathematics and Optimization. John Wiley & Sons, 1995.

[see page 49]

[PCA02] Helen Purchase, David Carrington, and Jo-Anne Allder. Empirical evaluation

of aesthetics-based graph layout. Empirical Software Engineering, 7, 09 2002.

[see page 1]

[PHNK13] Helen C. Purchase, John Hamer, Martin Nöllenburg, and Stephen G. Kobourov.

On the usability of Lombardi graph drawings. In Walter Didimo and Maurizio

Patrignani, editors, Proc. Graph Drawing (GD’12), volume 7704 of Lecture Notes

Comput. Sci., pages 451–462. Springer, 2013. [see page 2]

[Pin02] Rom Pinchasi. Gallai–Sylvester theorem for pairwise intersecting unit circles.

Discrete Comput. Geom., 28(4):607–624, 2002. [see page 39]

[PNBH16] Sergey Pupyrev, Lev Nachmanson, Sergey Bereg, and Alexander E. Holroyd.

Edge routing with ordered bundles. Comput. Geom. Theory Appl., 52:18–33,

2016. [see page 85]

[PRT06] János Pach, Radoš Radoičić, and Géza Tóth. Relaxing planarity for topological

graphs. In Ervin Győri, Gyula O. H. Katona, László Lovász, and Tamás Fleiner,

editors,More Sets, Graphs and Numbers: A Salute to Vera Sós and András Hajnal,

pages 285–300. Springer Berlin Heidelberg, 2006. [see page 56]

[PSS96] J. Pach, F. Shahrokhi, and M. Szegedy. Applications of the crossing number.

Algorithmica, 16(1):111–117, 1996. [see page 71]

[PT09] János Pach and Géza Tóth. Degenerate crossing numbers. Discrete Comput.

Geom., 41(3):376, 2009. [see page 86]

[Pup17] Sergey Pupyrev. Mixed linear layouts of planar graphs. CoRR, abs/1709.00285,

2017. [see page 83]

[Pur00] H.C Purchase. Effective information visualisation: a study of graph drawing

aesthetics and algorithms. Interacting with Computers, 13(2):147–162, 2000. [see

page 1]

[Rin65] Gerhard Ringel. Ein Sechsfarbenproblem auf der Kugel. Abhandlungen aus

demMathematischen Seminar der Universität Hamburg, 29(1):107–117, 1965. [see

page 71]

[RS84] Neil Robertson and Paul D Seymour. Graph minors. III. Planar tree-width. J.

Combin. Theory Ser. B, 36(1):49–64, 1984. [see page 10]

[Sch15] André Schulz. Drawing graphs with few arcs. J. Graph Algorithms Appl.,

19(1):393–412, 2015. [see pages 2, 12, 13, 21, 27, and 28]

127



Bibliography

[Sch16] Ursula Scherm. Minimale Überdeckung von Knoten und Kanten in Graphen

durchGeraden. Bachelor’s Thesis, Institut für Informatik, UniversitätWürzburg,

2016. [see pages 27 and 28]

[Sch17] Marcus Schaefer. The graph crossing number and its variants: A survey. Electr.

J. Combin., Dynamic Survey DS21, 2017. [see pages 5, 72, and 85]

[SŠ15] Marcus Schaefer and Daniel Štefankovič. The degenerate crossing number and

higher-genus embeddings. In Emilio Di Giacomo and Anna Lubiw, editors, GD,

volume 9411 of Lecture Notes Comput. Sci., pages 63–74. Springer, 2015. [see

page 86]

[Ste26] Jakob Steiner. Einige Gesetze über die Theilung der Ebene und des Raumes.

Journal für die reine und angewandteMathematik, 1:349–364, 1826. [see page 39]

[Tam13] Roberto Tamassia. Handbook of Graph Drawing and Visualization, volume 81

of Discrete Appl. Math. Chapman & Hall/CRC, 2013. [see page 11]

[Tho89] Carsten Thomassen. The graph genus problem is NP-complete. J. Algorithms,

10(4):568–576, 1989. [see pages 14, 16, 87, and 89]

[Tru93] Richard J. Trudeau. Introduction to Graph Theory. New York: Dover Pub, 1993.

[see page 9]

[Č07] Jakub Černý. Coloring circle graphs. Electr. Notes Discrete Math., 29:457–461,

2007. EUROCOMB’07. [see page 84]

[vDFF
+
17] Thomas C. van Dijk, Martin Fink, Norbert Fischer, Fabian Lipp, Peter Mark-

felder, Alexander Ravsky, Subhash Suri, and Alexander Wolff. Block crossings

in storyline visualizations. J. Graph Algorithms Appl., 21(5):873–913, 2017. [see

page 85]

[vDLMW18] Thomas C. van Dijk, Fabian Lipp, Peter Markfelder, and Alexander Wolff. Com-

puting storylines with few block crossings. In Fabrizio Frati and Kwan-Liu

Ma, editors, GD, volume 10692 of Lecture Notes Comput. Sci., pages 365–378.

Springer-Verlag, 2018. [see page 85]

[Wei19] Eric W. Weisstein. Gauss–Bonnet formula. http://mathworld.wolfram.com/

Gauss-BonnetFormula.html, 2019. Accessed: 2019-07-25. [see page 47]

[Wik16] Wikipedia. Circle graph — wikipedia, the free encyclopedia, 2016. [Online;

accessed 10-June-2017]. [see page 84]

[WPCM02] Colin Ware, Helen Purchase, Linda Colpoys, and Matthew McGill. Cognitive

measurements of graph aesthetics. Information Visualization, 1:103–110, 06 2002.

[see page 1]

[WT07] David R. Wood and Jan Arne Telle. Planar decompositions and the crossing

number of graphs with an excluded minor. New York J. Math., 13:117–146, 2007.

[see pages 71, 75, and 80]

128

http://mathworld.wolfram.com/Gauss-BonnetFormula.html
http://mathworld.wolfram.com/Gauss-BonnetFormula.html


Bibliography

[XRPH12] Kai Xu, Chris Rooney, Peter Passmore, and Dong-Han Ham. A user study on

curved edges in graph visualisation. In Philip Cox, Beryl Plimmer, and Peter

Rodgers, editors, Proc. Theory Appl. Diagrams (DIAGRAMS’10), volume 7352 of

Lecture Notes Comput. Sci., pages 306–308. Springer, 2012. [see page 2]

[Yan89] Mihalis Yannakakis. Embedding planar graphs in four pages. J. Comput. Syst.

Sci., 38(1):36–67, 1989. [see pages 13, 80, 83, and 113]

[Yan20] Mihalis Yannakakis. Planar graphs that need four pages. Journal of Combinato-

rial Theory, Series B, 145:241–263, Nov 2020. [see pages 13, 83, and 113]

129









M
yr
os

la
v
K
ry
ve
n

O
pt
im

iz
in
g
Cr
os
si
ng

s
in

Ci
rc
ul
ar
-A
rc

D
ra
w
in
gs

an
d
Ci
rc
ul
ar

La
yo

ut
s

Würzburg University Press

Optimizing Crossings in Circular-Arc
Drawings and Circular Layouts

Myroslav KryvenA graph is an abstract network that represents a set of objects, called
vertices, and relations between these objects, called edges.
Graphs can model various networks. For example, a social network
where the vertices correspond to users of the network and the edges
represent relations between the users. To better see the structure of
a graph it is helpful to visualize it. A standard visualization is a node-
link diagram in the Euclidean plane. In such a representation the ver-
tices are drawn as points in the plane and edges are drawn as Jordan
curves between every two vertices connected by an edge. Edge cros-
sings decrease the readability of a drawing, therefore, Crossing Op-
timization is a fundamental problem in Computer Science. This book
explores the research frontiers and introduces novel approaches in
Crossing Optimization.
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