
Overlapping Architecture: Implementation of

Impossible Spaces in Virtual Reality Games

Rafael Epplée1 and Eike Langbehn3,2

1 Universität Hamburg, Germany
2 Curvature Games, Germany
https://curvaturegames.com

3 Hamburg University of Applied Sciences, Germany
eike.langbehn@haw-hamburg.de

Abstract. Natural walking in virtual reality games is constrained by
the physical boundaries defined by the size of the player’s tracking space.
Impossible spaces, a redirected walking technique, enlarge the virtual en-
vironment by creating overlapping architecture and letting multiple lo-
cations occupy the same physical space. Within certain thresholds, this
is subtle to the player. In this paper, we present our approach to im-
plement such impossible spaces and describe how we handled challenges
like objects with simulated physics or precomputed global illumination.

Keywords: Virtual Reality · Games · Locomotion.

1 Introduction

Virtual Reality (VR) enables immersive gaming experiences which provide more
natural spatial cues than games on a 2D screen. Natural locomotion further in-
creases the sense of presence when exploring these virtual environments (VEs) [8],
but is limited by the size of the physical tracking space of the player.

Since VEs are often larger than the available tracking space, di↵erent lo-
comotion techniques have been employed to help the user navigate these VEs.
Among these are joystick-based continuous motion [12], teleportation [1], and
redirected walking (RDW) [9].

Impossible spaces are another technique that leverages self-overlapping archi-
tecture to build layouts that would be impossible in the real world. By making
virtual rooms partially overlap with each other, the available virtual space can
be enlarged without users noticing. However, if the overlap is too large, some
users will start to detect it [11]. Figure 1 shows an example room layout using
impossible spaces.

By using impossible spaces, players can explore larger virtual worlds in con-
fined real-world play spaces by natural walking which is known to be more
presence-enhancing and causes less disorientation [12]. Hence, the whole player
experience can be improved with impossible spaces. However, there are some
technical obstacles in the implementation of this technique.

37

This document is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0): http://creativecommons.org/licenses/by/4.0
This CC license does not apply to third party material (attributed to another source) in this publication.

In this paper, we present our approach of implementing impossible spaces in
the Unity engine. There are a couple of studies that evaluate the perceptibility
of impossible spaces, but to our knowledge there is no publication that discusses
benefits and drawbacks of di↵erent implementations. Section 2 describes related
work in the field. Section 3 outlines our actual implementation of impossible
spaces, detailing interesting edge cases and how we handled them. Section 4
concludes the paper.

interior area transition area wall

left room overlap right room

Fig. 1. An illustration of two overlapping rooms with their respective interior and
transition areas.

2 Related Work

Impossible spaces were introduced by Suma et al. [11,10], who demonstrated
their e↵ectiveness in two experiments that investigated the possible amount of
overlap.

In their experiments, Suma et al. reported that participants without prior
knowledge of impossible spaces noticed them hardly ever, even with overlaps of
75% (which exceeds the absolute detection threshold mentioned in the experi-
ment by far) [11]. Even when participants noticed the overlap, they only referred
to them as ”weird“ or ”strange“, and none reported a negative e↵ect on their
experience.

In terms of manipulation detection, a corridor with additional turns is even
more e↵ective than a longer corridor [13], and curved corridors between the
overlapping rooms are more beneficial than right-angled corridors [14].

In addition, there were also approaches to generate overlapping rooms auto-
matically at runtime, called flexible spaces [15], and experiments that combined
impossible spaces and redirected walking techniques [2].

38

Impossible spaces have already been used in games as well, for example by
the VR game Unseen Diplomacy [6]. It arranges the (self-overlapping) rooms
in such a way that the player does not recognize that she is only walking back
and forth in a 3m x 4m large area. The game Tea for God even creates their
impossible spaces procedurally for each run and can handle flexible tracking
space sizes [7]. There is a toolkit for the Unity engine that enables procedural
environment generation and manual world-building for impossible spaces4.

2.1 Implementation with Portals

A popular technique for implementing impossible spaces are portals, virtual
”windows“ that teleport users to a di↵erent location when stepped through.
This technique was used to great e↵ect in the 2007 video game ”Portal“5, which
made portals an explicit gameplay element used for solving puzzles. It is also the
technique underlying the TraVRsal toolkit for building worlds with impossible
spaces [16] which uses portals imperceptibly to maintain the illusion of a nor-
mal, non-overlapping world. Previously, non-VR games such as the 2013 video
game ”Antichamber“ used portals like this as well to create unusual, challenging
puzzles [4].

While portals promise a conceptually simple, elegant implementation of im-
possible spaces, they are technically complex and hard to implement. The game
”Portal“ and the TraVRsal toolkit implemented them using the stencil bu↵er
[3], essentially having a fragment shader render pixels depicting portals’ sur-
faces using a camera with a transformed location. This needs additional work
to correctly simulate light and objects traveling through portals. Tricks such as
duplicating light sources on both sides of the portal help, but often still leave
deficiencies, such as the lack of support for light transfer when precomputing
global illumination [17]. Stereographic rendering can lead to rendering artifacts
that require further workarounds ([17]). Portals visible through other portals
require special consideration and are usually limited in their depth. For this rea-
son, the TraVRsal toolkit places tight constraints on the locations and number of
portals, and does not support portals visible through other portals at all ([18]).

In summary, it is di�cult to implement portals in a truly imperceptible way.
There are many situations and interactions with other parts of the application
that need to be considered, e.g. other shaders, objects controlled by players,
lighting, rendering of portals visible through other portals, and more. Stylized
graphics as found in the earlier mentioned game Antichamber might make it
easier, making it favorable for certain scenarios. But even Antichamber contained
some situations in which the limitations of the implementation became apparent,
breaking the illusion of a continuous non-euclidean space ([4]). Removing other
features like physics simulation from an application might make implementing
portals easier as well, but this limits the technique to certain environments.

4 https://blog.wetzold.com/2020/07/02/an-editor-for-impossible-spaces-in-virtual-
reality/

5
https://en.wikipedia.org/wiki/Portal_(video_game)#Gameplay

39

Implementations usually work by repeating the render process to render the view
into a portal, which incurs a manageable, but significant performance overhead.
Using portals requires overlapping rooms to be placed at a di↵erent location
than the rest of the level, causing inconvenience for level designers.

3 Implementation

Besides portals, which work by imperceptibly teleporting users, there are also
other methods of implementing impossible spaces. The following section outlines
our approach to implement impossible spaces along with its advantages and
disadvantages: manipulating room visibility, which works by dynamically hiding
geometry that would reveal an overlap to users. We provide the rationale for
choosing this approach for our implementation and describe the way it works,
including special cases it handles and limitations of its capabilities. We explain
the mechanics behind additional features, namely the handling of objects with
simulated physics, precomputed global illumination (GI), and room doors. The
source code is permissively licensed and available for download.6

3.1 Overview

Our implementation method of impossible spaces is to remove overlapping rooms
from the world when the player is not near them. By keeping track of the player’s
current location in the world, which overlapping rooms are visible from that loca-
tion, and which overlapping rooms that location is inside of, the implementation
can reveal and hide the appropriate rooms at the right time.

To achieve this, the space from which an overlapping room is visible, and the
space encompassing its interior, are marked by the level designer. Detecting the
player entering and leaving these spaces and hiding rooms from view have a neg-
ligible performance impact, making this technique feasible in many scenarios,
even with lots of overlapping rooms. Implementing this technique is straight-
forward compared to the portal technique. A mechanism for designating room
boundaries makes no assumptions of a project’s rendering pipeline and level lay-
out, making it more flexible and easier to integrate than fragment shaders using
stencil bu↵ers.

The show-and-hide approach has some drawbacks as well. Similar to the por-
tal technique, hiding rooms requires some additional work to correctly handle
objects with simulated physics, and when precalculating global illumination us-
ing path tracing, overlapping rooms have to be considered in isolation from the
rest of the level to prevent artifacts in areas where they overlap. This imposes
some restrictions on developers’ workflows. Additionally, level designers have to
be careful to prevent situations in which users witness rooms suddenly appearing
or disappearing.

While portals might be a favorable approach for some specific virtual expe-
riences, we wanted a generic solution usable for a wide range of applications.

6
https://gitlab.com/raffomania/impossible-spaces

40

The use of portals imposes restrictions performance budgets, render pipelines
and development workflows, and easily leads to edge cases where the technique
breaks down. Because the reveal-and-hide approach imposes fewer restrictions
and is more robust, we chose it for our implementation.

player position

(a) none visible (b) left visible (c) both visible (d) right visible

interior area transition area wall

left room overlap right room

Fig. 2. Examples of di↵erent player positions relative to overlapping rooms and their
respective visibility states.

3.2 Transition between rooms

In our implementation, overlapping rooms are represented by three components.

A transition area A trigger collider covering the area outside the room. This
is the area in which the room should still be visible to the player. When the
player leaves this area, it is considered safe to hide the associated room.

An interior area A trigger collider covering the interior of the room. When
the player enters this collider, they are considered to be inside the room.

A room container An object containing everything in the room that should
be hidden.

See Figure 1 for an example of two overlapping rooms with their interior
and transition areas. Figure 2 shows the di↵erent visibility states of the same
rooms for some player positions. To detect which area the player is currently
in, an arbitrary object associated with the player is assigned a collider that
triggers collision events when entering and leaving overlapping room areas. An
accompanying script processes these events to keep track of the player’s location,
which room they are currently in and which rooms they can see, activating
and deactivating them appropriately. To function correctly, it is important to
distinguish when a player is inside a room and when they are outside. Simply
looking at one area collision event at a time results in ambiguous situations: for
example, figure 2 (d), the player is in the interior area of both rooms. To know

41

interior area transition area wall

left room overlap right room

Left
visible

player movement

Left
visible

Left
visible

Left
visible

Left
visible

Left
visible

Left
visible

Both
visible

Right
visible

None
visible

None
visible

Left
visible

Both
visible

Right
visible

Right
visible

Right
visible

Right
visible

Right
visible

Right
visible

Right
visible

Fig. 3. The behavior of our implementation for a simple case. Execution starts at the
node labeled “none visible.” Depending on which room’s interior players enter first,
the top or the bottom graph is traversed, with each node indicating the visibility for
both rooms.

which one to show and which one to hide, the implementation has to keep track
of the entrance through which a player entered a room. This is why both figure
1 and 2 show the transition area overlapping with part of the interior area of the
rooms. This way, the overlap between transition and interior area is treated as
the entrance to the room. The implementation knows that a player has entered
when they are in the interior area of a room while they are simultaneously in its
transition area.

42

Figure 3 details the implementation’s behavior in the context of a simple
example. Depending on which room’s interior area players enter first, one of
the two graphs depicted becomes “active,” determining the visibility of both
rooms. As the graphs show, once players enter an interior area of a room, that
room stays visible until players exit via the corresponding transition area. This
behavior is a design decision coming with advantages and disadvantages which
we discuss later in this section.

Note that nodes in the overlapping transition areas have less outgoing edges
than most other nodes. The player position is determined by discrete events sent
to the script by the Unity engine, signaling whether the player has entered or
left a specific area. Since only one of these events can arrive at a time, it is not
possible to enter or exit two areas at once, e.g. going directly from the “none
visible” node to the node labeled “both visible.” Specifically, if players moved
straight between those two locations, it would result in two successive events,
and for a short time only one of the two rooms would be visible.

So far, we have only covered “legal” transitions, that is, transitions where
players obey the rules of the physical world when inside the virtual environ-
ment. However, in VR, players can move through walls. This means that figure
3 doesn’t show every possible transition our implementation had to handle. Fig-
ure 4 adds highlighted transitions and their resulting nodes that occur when
players move their head across the defined areas in ways that are considered
exceptions to the normal behavior. This doesn’t necessarily have to be malicious
action. Since VR can be disorienting, in some moments players might fail to
recognize walls and move through them. At other times, they might be unaware
of the volume of their heads, not noticing it intersecting with a wall. In these
situations, hiding a room from view the instant a player moves their head out-
side its boundaries would only add to their confusion. Hence, we decided to keep
a room always visible as long as players are inside, meaning as long as they
didn’t exit via the corresponding transition area. As figure 4 shows, this can
have some unfavorable consequences. Once players are outside a room’s interior
area, if they move towards a di↵erent part of the world, e.g. a di↵erent room,
the implementation is now “stuck,” not showing any other room than the one
players originally entered. However, we consider this behavior highly unlikely in
real-world situations.

A solution to this problem might be to “reset” the state and show a di↵erent
room once players enter its transition area. However, since transition areas might
overlap with interiors of rooms they don’t belong to (see figure 4), if a player is
inside one room and walks into the transition area of another, this would lead
to undesired behavior. As mentioned above, simply hiding rooms once players
exit their interior areas would cause undesired states as well. Considering the
alternative choices, we judge the current behavior to be an acceptable tradeo↵.

3.3 Handling Objects With Simulated Physics

When a room gets hidden, it is temporarily removed from the game. This means
that any behavioral components such as bounding boxes for physics simulation

43

interior area transition area wall

left room overlap right room

Left
visible

player movement

Left
visible

Left
visible

Left
visible

Left
visible

Left
visible

Left
visible

Left
visible

Left
visible

Left
visible

Left
visible

Left
visible

Both
visible

Fig. 4. The behavior of our implementation in the case that players walk through walls.
Transitions that lead through walls are highlighted in deep black. States that result
from these transitions are highlighted in deep red.

get disabled as well, which poses a problem for dynamic physics objects players
can carry around with them. As these are not children of the overlapping room
in the scene tree, they won’t get hidden along with the room, and might react
to the removal of the room. For example, a flashlight left on a table by a player
might drop onto the floor. Additionally, objects at the overlapping space between
two rooms might react to another room returning to existence.

To prevent this, each overlapping room tracks objects with simulated physics
entering and exiting the room, hiding them when another room becomes visible
or when the room itself gets hidden.

3.4 Precomputed Global Illumination

A popular technique for modern games is precomputed global illumination (GI).
Performance-intense ray tracing computations are executed during development,
before running the application. They are encoded in “lightmaps,” textures that
allow performance-e�cient rendering of indirect lighting at runtime. This process
is also known as “baking” lightmaps. Baking lightmaps for overlapping rooms
can introduce artifacts in the areas they overlap. Since lightmaps do not get
updated at runtime, when one room gets hidden from view, the indirect lighting
still looks as if both rooms were visible at the same time.

To prevent this, overlapping rooms have to be baked separately. In the Unity
engine, this means putting them into di↵erent scenes, since that is the only way
to restrict the baking process to the subset of the virtual world. This doesn’t
mean that each and every room needs its own scene, but rather that each area

44

where rooms overlap requires two scenes, one for each room. Rooms that don’t
overlap with each other can then be grouped in the same scene. As a result, the
number of scenes needed for overlapping rooms is equal to the maximum number
of rooms that overlap each other in any given situation.

During development, care was taken to support applications with multiple
simultaneously loaded scenes by not relying on any compile-time references be-
tween rooms or the player component, as these are not supported across scenes
in Unity. Users of our implementation will have to be careful about cross-scene
references as well if they want to use precomputed GI, which we consider a
limitation of our current implementation. To allow per-room lightmap baking
without separate scenes, we investigated Unity’s render layers. They can be
used to draw objects only on certain cameras and restrict physics ray casting
to specific groups of objects. We tried to apply this restriction to the lightmap
calculation process, but GI calculation is based on path tracing, a completely
di↵erent implementation from physics ray casting and the camera drawing logic,
without support for the render layer functionality.

A notable consequence of restricting lightmap baking to a single scene is
that no lights from other scenes will contribute to the GI calculated for that
scene. This means that a corridor between two overlapping rooms might need its
lightmaps to be baked together with both rooms first, to prevent seams at the
entrances of rooms, where light might shine from the rooms’ interiors into the
corridor. Afterwards, lightmaps for both rooms will have to be baked separately,
overriding the lightmaps previously generated when baking all scenes at the
same time. As a result, lights from inside a room can a↵ect GI in a corridor
through entrances, but rays from lights in a corridor will not a↵ect GI inside an
overlapping room. Following this procedure might require an additional scene to
accommodate the geometry outside overlapping rooms.

4 Conclusion

In this paper, we described problems and challenges related to the implemen-
tation of impossible spaces in VR games. We presented our approaches that is
available as an open source plugin for Unity and was already used for two di↵er-
ent projects: a scientific study 7 and a commercial VR game 8. The experiences
of working with the implementation on this game are documented by Paulmann
et al. [5].

References

1. Bozgeyikli, E., Raij, A., Katkoori, S., Dubey, R.: Point & teleport locomotion
technique for virtual reality. In: Proceedings of ACM Symposium on Computer-
Human Interaction in Play (CHI Play). pp. 205–216 (2016)

7 https://www.xrdrn.org/2020/12/dead-science-orientation-and-minimaps-in-small-
spaces/

8 https://www.youtube.com/watch?v=eBXya LiwFY/

45

2. Langbehn, E., Steinicke, F.: Space walk: a combination of subtle redirected walking
techniques integrated with gameplay and narration. In: ACM SIGGRAPH 2019
Emerging Technologies, pp. 1–2 (2019)

3. Murray, T., Vigentini, L.: A study protocol to research and improve presence and
vection in vr with a non-euclidean approach. In: 2019 IEEE International Confer-
ence on Engineering, Technology and Education (TALE). pp. 1–5 (2019)

4. Möller, H.: Antichamber: A strange world, https://hendrik.fam-moe.de/wp-

content/uploads/2019/02/Antichamber_Analysis.pdf

5. Paulmann, H., Mayer, T., Barnes, M., Briddigkeit, D., Steinicke, F., Langbehn,
E.: Combining natural techniques to achieve seamless locomotion in consumer vr
spaces. In: 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Ab-
stracts and Workshops (VRW). pp. 383–384. IEEE (2021)

6. Pixels, T.: Unseen Diplomacy. Game [HTC Vive] (April 2016), triangular Pixels.
Played November 2016.

7. Room, V.: Tea for God. Game [SteamVR] (October 2018), void Room. Played
October 2018.

8. Slater, M.: Place illusion and plausibility can lead to realistic behaviour in im-
mersive virtual environments. Philosophical Transactions of the Royal Society B:
Biological Sciences 364(1535), 3549–3557 (2009)

9. Suma, E.A., Bruder, G., Steinicke, F., Krum, D.M., Bolas, M.: A taxonomy for
deploying redirection techniques in immersive virtual environments. 2012 IEEE
Virtual Reality Workshops (VRW) pp. 43–46 (2012)

10. Suma, E.A., Clark, S., Krum, D.M., Finkelstein, S., Bolas, M., Wartell, Z.: Lever-
aging change blindness for redirection in virtual environments. 2011 IEEE Virtual
Reality Conference pp. 159–166 (2011)

11. Suma, E.A., Lipps, Z., Finkelstein, S., Krum, D.M., Bolas, M.: Impossible spaces:
Maximizing natural walking in virtual environments with self-overlapping archi-
tecture. IEEE Transactions on Visualization and Computer Graphics 18, 555–564
(2012)

12. Usoh, M., Arthur, K., Whitton, M.C., Bastos, R., Steed, A., Slater, M., Brooks,
Jr., F.P.: Walking > Walking-in-Place > Flying, in Virtual Environments. In:
Proceedings of ACM SIGGRAPH. pp. 359–364 (1999)

13. Vasylevska, K., Kaufmann, H.: Influence of path complexity on spatial overlap
perception in virtual environments. In: Proceedings of the 25th International Con-
ference on Artificial Reality and Telexistence and 20th Eurographics Symposium
on Virtual Environments. pp. 159–166. Eurographics Association (2015)

14. Vasylevska, K., Kaufmann, H.: Towards e�cient spatial compression in self-
overlapping virtual environments. In: Symposium on 3D User Interfaces (3DUI)
(2017)

15. Vasylevska, K., Kaufmann, H., Bolas, M., Suma, E.A.: Flexible spaces: Dynamic
layout generation for infinite walking in virtual environments. In: 3D User Inter-
faces (3DUI), 2013 IEEE Symposium on. pp. 39–42. IEEE (2013)

16. Wetzold, R.: An editor for impossible spaces in virtual reality, https:

//blog.wetzold.com/2020/07/02/an-editor-for-impossible-spaces-in-

virtual-reality/

17. Wetzold, R.: Non-euclidean stencil portals in virtual reality, https:

//blog.wetzold.com/2020/01/04/non-euclidean-stencil-portals-in-

virtual-reality/

18. Wetzold, R.: Stencils sorting geometry, https://blog.wetzold.com/2019/11/03/
stencils-sorting-geometry/

46

