
Veaceslav Dombrovski

B
a

n
d

 2
3

Würzburger Forschungsberichte
in Robotik und Telematik

Institut für Informatik
Lehrstuhl für Robotik und Telematik

Prof. Dr. K. Schilling
Prof. Dr. A. Nüchter

Software Framework to
Support Operations of
Nanosatellite Formations

Uni Wuerzburg Research Notes
in Robotics and Telematics

Dissertation an der Graduate School
of Science and Technology

Julius-Maximilians-Universität Würzburg
Graduate School of Science and Technology

Doctoral thesis / Dissertation
for the doctoral degree / zur Erlangung des Doktorgrads

Doctor rerum naturalium (Dr. rer. nat.)

Software Framework to Support Operations of Nanosatellite
Formations

Software Framework für die Unterstützung des Betriebs
von Nanosatelliten-Formationen

Submitted by / Vorgelegt von
Veaceslav Dombrovski

from / aus
Chisinau

Würzburg, 2021

Submitted on / Eingereicht am: 11.06.2021

Members of thesis committee / Mitglieder des Promotionskomitees

Chairperson / Vorsitz : Prof. Dr. Bert Hecht

1. Reviewer and Examiner / 1. Gutachter und Prüfer : Prof. Dr. Klaus Schilling

2. Reviewer and Examiner / 2. Gutachter und Prüfer : Prof. Dr. Sergio Montenegro

3. Examiner / 3. Prüfer : Prof. Dr. Jens Eickhoff

Day of thesis defense / Tag des Promotionskolloquiums: 03.11.2021

Abstract
Since the first CubeSat launch in 2003, the hardware and software complexity of the
nanosatellites was continuosly increasing with the aim to realize capabilities that are nor-
mally offered by bigger satellites. To keep up with the continuously increasing mission
complexity and at the same time retain the primary advantages of a CubeSat mission
(cost-effectiveness, small development teams, fast development times), a new approach for
the overall space and ground software architecture and protocol configuration is elaborated
in this work.

The aim of this thesis is to propose a uniform software and protocol architecture
as a basis for software development, test, simulation and operation of multiple pico-
/nanosatellites based on ultra-low power components. In contrast to single-CubeSat mis-
sions, current and upcoming nanosatellite formation missions (NetSat, TIM/TOM and
CloudCT) require faster and more straightforward development, pre-flight testing and
calibration procedures as well as simultaneous operation of multiple satellites.

A dynamic and decentral Compass mission network was established in multiple active
CubeSat missions, consisting of uniformly accessible Compass nodes. Compass middleware
was elaborated to unify the communication and functional interfaces between all involved
mission-related software and hardware components: operation workstations, ground sta-
tions, mission servers, test facilities, simulations and ultra-low power satellite subsystems.
All systems can access each other via dynamic routes to perform service-based M2M com-
munication. Standard services were implemented to support all required tasks during the
software development, testing, simulation and in-orbit operations.

With the proposed model-based communication approach, all states, abilities and func-
tionalities of a system are accessed in a uniform way. The Tiny scripting language was
designed to allow dynamic code execution on ultra-low power components as a basis for
constraint-based in-orbit scheduler and experiment execution. The implemented Compass
Operations front-end enables far-reaching monitoring and control capabilities of all ground
and space systems of the mission network. Its integrated constraint-based operations task
scheduler allows the recording of complex satellite operations, which are conducted auto-
matically during the overpasses.

The outcome of this thesis (Compass middleware, Compass OS, Tiny and Compass
Operations front-end) became an enabling technology for UWE-3, UWE-4 and NetSat
CubeSat missions in which it was successfully tested in-orbit.

Zusammenfassung
Seit dem Launch des ersten CubeSats im Jahr 2003, hat die Komplexität der Nanosatel-
liten stetig zugenommen, mit dem Ziel sie mit Fähigkeiten auszustatten, die zuvor nur
größeren Satelliten vorbehalten waren. Um mit den wachsenden Anforderungen Schritt zu
halten und gleichzeitig nicht auf die Hauptvorteile einer CubeSat Mission zu verzichten
(Kosteneffektivität, schnelle Entwicklung, kleine Entwicklungsteams), wird eine einheitli-
che Protokoll- und Softwarearchitektur für den gesamten Weltraum- und Bodensegment
einer Mission vorgeschlagen.

Diese Arbeit schlägt eine einheitliche Software- und Protokoll-Architektur vor als Ba-
sis für Softwareentwicklung, Tests und Betrieb von mehreren Pico-/Nanosatelliten, die
auf extrem energiesparenden Komponenten aufbauen. Im Gegensatz zu Missionen mit nur
einem CubeSat, erfordern künftige Nanosatelliten-Formationen (wie NetSat, TIM/TOM
und CloudCT) eine schnellere und einfachere Entwicklung, Vorflug-Tests, Kalibrierungs-
vorgänge sowie die Möglichkeit mehrere Satelliten gleichzeitig zu betreiben.

Ein dynamisches und dezentrales Compass Missionsnetzwerk wurde in mehreren Cube-
Sat Missionen realisiert, bestehend aus einheitlich zugänglichen Compass Knoten. Die
Compass-Middleware wurde entwickelt, um sowohl die Kommunikation als auch funk-
tionale Schnittstellen zwischen allen beteiligten Software und Hardware Systemen in einer
Mission zu vereinheitlichen: Rechner des Bedienpersonals, Bodenstationen, Mission-Server,
Testeinrichtungen, Simulationen und Subsysteme aller Satelliten. Alle Systeme können
aufeinander über dynamische Routen zugreifen, um Service-basierte Machine-to-Machine
Prozess-Kommunikation zu betreiben. Standardisierte Services wurden definiert, um al-
le Aufgaben im Bereich der Softwareentwicklung, Tests, Simulationen und des in-orbit
Betriebs zu unterstützen.

Mit dem Ansatz der modellbasierten Kommunikation wird auf alle Zustände, Fähigkei-
ten und Funktionen eines Systems einheitlich zugegriffen. Die entwickelte Tiny Skriptspra-
che ermöglicht die Ausführung von dynamischem Code auf energiesparenden Systemen, um
so in-orbit Scheduler zu realisieren. Das Compass Operations Front-End bietet zahlreiche
grafische Komponenten, mit denen alle Weltraum- und Bodensegment-Systeme einheit-
lich überwacht, kontrolliert und bedient werden können. Der integrierte Betrieb-Scheduler
ermöglicht die Aufzeichnung von komplexen Satellitenbetrieb-Aufgaben, die dann beim
Überflug automatisch ausgeführt werden.

Die Ergebnisse dieser Arbeit (Compass Middleware, Compass OS, Tiny und Operations
Front-End) wurden zur Enabling-Technologie für UWE-3, UWE-4 und NetSat Missionen
und wurden erfolgreich im Orbit getestet.

Acknowledgements
This thesis would not happen to be possible without the guidance and the help of several
individuals who contributed their assistance in the preparation of this thesis.

I would like to express the deepest appreciation to Prof. Dr. Klaus Schilling, Chair of
Robotics and Telematics at the University Würzburg, for giving me the opportunity to be
a part of the space-team family. Also special thanks to Prof. Dr. Sergio Montenegro and
Prof. Dr. Jens Eickhoff for supporting my thesis and giving me interesting and helpful
insights into their fields of research. Many thanks to Dr. Schröder-Köhne for supporting
me in administrative affairs and for organizing wonderful and informative get-together
events.

I cannot find words to express my gratitude to Stephan Busch whose guidance, patience
and encouragement I will never forget. Mr. Busch has been my inspiration during my
studies. I share the credit of my work with Dieter Ziegler, for the technical insights he has
shared and interesting discussions during the break – and some good laughs. I consider
it an honor to have worked with Philip Bangert and Alexander Kramer – at times it
was an amazing experience to see how fast and how far we could get in close collaboration
backed by our will and stamina. Also special thanks to the ZfT family – Oliver Ruf, Julian
Scharnagl, Florian Kempf and other wonderful colleagues who supported me during this
thesis.

I am forever indebted to my parents for giving me love and inspiration throughout
my life. A very special word of thanks goes to my fiance and best friend Lisa for the
unconditional support and for lifting my spirits. Many thanks to my friend Martin for
motivation and our numerous adventures in the nature. Though they can’t possible know
how much of a help they have been, I’d like to thank Cookie and Ginger for keeping my
feet warm during the long thesis writing sessions.

Acronyms
ADCS Attitude Determination and Control System

AOCS Attitude and Orbit Control System

AIT Assembly, Integration and Test

AIV Assembly, Integration and Verification

API Application Programming Interface

ARR Automatic Record and Report

ATF Along Track Formation

CAN Controller Area Network

CDMA Code Division Multiple Access

CollExp Collect and Expand

COTS Commercial Off-The-Shelf

CRC Cyclic Redundancy Check

CSP Cubesat Protocol

CSMA Carrier Sense Multiple Access

DB Database

DLR Deutsches Zentrum für Luft- und Raumfahrt e.V.

DCE Dynamic Code Execution

DevKit Development Kit

DNS Domain Name System

DTN Delay Tolerant Network

ELISA Electronic Intelligence by Satellite

ECC Error Correction Code

EPS Electrical Power System

ESA European Space Agency

FDMA Frequency Division Multiple Access

FDIR Fault-Detection, Fault-Isolation and Recovery

FEC Forward Error Correction

FFS Fast File System

i

FSK Frequency Shift Keying

GCS Ground Control Segment

GBO Goal Based Operations

GEO Geostationary Orbit

GCC GNU Compiler Collection

GDS Generic Data System

GS Ground Station

GPIO Generic Purpose Input Output

GRACE Gravity Recovery and Climate Experiment

GRACE-FO GRACE-Follow-On

GSN Ground Station Network

GSS Ground Station Server

GUI Graphical User Interface

HAL Hardware Abstraction Layer

HEO High Elliptical Orbit

HIL Hardware in the Loop

HW Hardware

I2C Inter-integrated Circuit protocol

IDE Integrated Development Environment

IoT Internet of Things

IPN Inter-Planetary Network

ISL Inter-Satellite Link

JPL NASA Jet Propulsion Laboratory

LEO Low Earth Orbit

LEOP Launch and Early Orbit Phase

MCC Mission Control Center

MCS Mission Control System

MEO Medium Earth Orbit

MBD Model Based Design

ii

MCC Mission Control Center

MDE Model Driven Development

MIL Model in the Loop

MLT Mixed Loop Testing

MMS Magnetospheric Multiscale Mission

MO Mission Operations service

MQTT Message Queuing Telemetry Transport

MS Mission Server

MTBA Model Tree Based Architecture

MVC Model View Controller

NanoFEEP Nanosatellite Field Emission Electric Propulsion

NASA National Aeronautics and Space Administration

NetSat Networked Satellite Formation Flying Mission

NFS Network File System

NSP Nanosatellite Protocol

OBDH On-Board Data Handling

OBC On-Board Computer

OCS Orbit Control System

OCC Operations Control Center

OSI model Open Systems Interconnection model

OSIRIS Optical Space Infrared Downlink System

PIL Processor in the Loop

PPU Thruster Power Processing Unit

PUS ECSS Packet Utilisation Standard

Prisma Prototype Research Instruments and Space Mission technology
Advancement

RCP Rich Client Platform

RTOS Real Time Operating System

SCOS Space Control And Operating System

iii

SDMA Space Division Multiple Access

SDR Software Defined Radio

SIDS Simple Downlink Sharing Convention

SIL Software in the Loop

SOC System On a Chip

SPB Subsystem Prototyping Board

SPI Serial Peripheral Interface

SW Software

SVN Apache Subversion

TC Telecommand

TDMA Time Division Multiple Access

TIM Telematics International Mission

TM Telemetry

TNC Terminal Node Controller

TLE Two Line Element set

TOM Telematics Earth Observation Mission

TT/C Telemetry, Tracking and Control

TU Thruster Control unit

UFS UWE File System

UHF Ultra High Frequency

UHF GS Ultra High Frequency Groundstation

UWE University Würzburg Experimental satellite

UWE-3 University Würzburg Experimental satellite 3

UWE-4 University Würzburg Experimental satellite 4

XTEA eXtended Tiny Encryption Algorithm

ZfT Zentrum für Telematik

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Baseline Mission . 4
1.3 Contributions . 5
1.4 Thesis Outline . 7

2 State of the Art 9
2.1 Requirements . 10

2.1.1 Baseline Mission . 10
2.1.2 Protocol . 12
2.1.3 Services . 15
2.1.4 Space Segment software . 18
2.1.5 Ground Segment software . 20

2.2 Formation Missions . 21
2.2.1 CanX-4 & 5 . 21
2.2.2 Prisma . 21
2.2.3 GRACE . 22
2.2.4 HawkEye 360 Pathfinder . 22
2.2.5 MMS . 23
2.2.6 NetSat . 23
2.2.7 PROBA-3 . 23
2.2.8 CloudCT . 23

2.3 On-board Autonomy in Constellations . 24
2.3.1 SWARM . 24
2.3.2 TerraSAR-X and TanDEM-X . 24
2.3.3 Galileo . 25
2.3.4 Planet . 26
2.3.5 OneWeb . 26

2.4 IoT/M2M Missions . 27
2.4.1 Starlink . 28
2.4.2 Myriota . 28
2.4.3 Astrocast . 28
2.4.4 Kepler . 29
2.4.5 Swarm . 29
2.4.6 kineis . 29

2.5 OPS-SAT and MO services . 30

v

2.6 Protocols . 31
2.6.1 CCSDS Recommendations . 31
2.6.2 Packet Utilization Standard services 35
2.6.3 Ground Segment Protocols . 36
2.6.4 Ground-Space Protocols . 38
2.6.5 Inter Satellite Link . 40

2.7 Considerations on Satellite Development and Operations 41
2.7.1 Satellite Software Development . 41
2.7.2 Testing and Verification . 43
2.7.3 Distributed Dynamic Mission Network 44
2.7.4 Operations . 44

2.8 Roundup . 45

3 Approach 47
3.1 Uniform Model Interface . 49

3.1.1 Model Tree Based Architecture . 51
3.1.2 Model Tree shadowing and Model-based communication 53
3.1.3 Model buffering . 53
3.1.4 Model swapping . 54
3.1.5 Implementation . 54
3.1.6 Testability . 55

3.2 Uniform Communication . 57
3.2.1 Addressing . 59
3.2.2 Channels . 60
3.2.3 Routing . 63
3.2.4 Advanced Protocol Functions . 64

3.3 High-level Functionality . 66
3.3.1 Services . 66
3.3.2 Network Features . 66
3.3.3 Telemetry, Tracking and Control (TT&C) 67
3.3.4 Testing and Fault Diagnostics . 67
3.3.5 File Link . 68
3.3.6 Dynamic Code Execution . 69

3.4 Summary . 71

4 Compass Protocol 73
4.1 Overview . 74
4.2 Packet Definition . 75

4.2.1 Addressing . 77
4.2.2 Payload size . 78
4.2.3 Time field . 78
4.2.4 Route Format . 78
4.2.5 Route . 80
4.2.6 SGN . 80
4.2.7 CRC . 81
4.2.8 Error . 81
4.2.9 Urgent . 81

vi

4.2.10 Encryption . 81
4.2.11 Zip Compression . 82

4.3 Services . 83
4.3.1 Network . 86
4.3.2 Echo . 90
4.3.3 Command . 91
4.3.4 Downlink . 93
4.3.5 Uplink . 95
4.3.6 Log . 96
4.3.7 Unit-Test . 97
4.3.8 Network File System . 99
4.3.9 Tiny script . 102
4.3.10 Model . 107
4.3.11 Recording and Reporting . 114
4.3.12 Database . 117
4.3.13 Registry . 117
4.3.14 Tunnel . 119

4.4 Channels . 120
4.4.1 Generic Byte Stream Channels . 120
4.4.2 TCP or UDP . 122
4.4.3 I2C . 122

5 Space Segment 125
5.1 Hardware environment . 126

5.1.1 Microcontrollers . 127
5.1.2 Payload . 127

5.2 Communication . 128
5.2.1 Satellite bus . 128
5.2.2 Space-Ground . 129
5.2.3 Inter Satellite Link . 130

5.3 Compass OS . 130
5.3.1 Hardware Abstraction Layer . 131
5.3.2 Embedded File Systems . 131
5.3.3 Channels . 132

5.4 Compass services . 134
5.4.1 Network service . 134
5.4.2 Command service . 136
5.4.3 Model service . 137
5.4.4 Unit Testing . 139
5.4.5 File service . 139

5.5 Dynamic Code Execution with Tiny . 140
5.5.1 Tiny Language . 141
5.5.2 Tiny IDE . 144
5.5.3 External Functions . 147
5.5.4 Compass bonding . 147
5.5.5 Remote Function Execution . 148

vii

6 Ground Segment 151
6.1 Environment . 152

6.1.1 Before this thesis . 152
6.1.2 During this thesis . 153

6.2 Java Implementation . 154
6.2.1 Fire Framework . 155

6.3 Ground Station Server . 156
6.4 Mission Server . 160
6.5 External Ground Stations . 161
6.6 Compass Operations front-end . 162

6.6.1 Node selection . 166
6.6.2 Nodes View . 167
6.6.3 Packet View . 168
6.6.4 Command View . 171
6.6.5 Model View . 173
6.6.6 Uplink and Downlink View . 175
6.6.7 Unit Testing . 177
6.6.8 Value Monitors . 177
6.6.9 Schedule View . 178
6.6.10 Echo View . 179
6.6.11 Tiny View . 181

6.7 Auto-Operations . 183
6.7.1 Task Creation . 184
6.7.2 Task recording . 185
6.7.3 File Links . 186

7 Testing and Live System Experience 187
7.1 Protocol Performance . 189

7.1.1 Serial communication . 189
7.1.2 Local TCP . 189
7.1.3 Remote TCP . 191
7.1.4 Radio Link . 191

7.2 TOM Scenario . 191
7.3 UWE-4 Sensor Calibration . 193
7.4 In-Orbit Dynamic Code Execution . 197
7.5 UHF Ground Stations . 199
7.6 Multi Satellite Operations . 201

8 NetSat Experience 205
8.1 External Tests and Verification . 205
8.2 Pre-flight LEOP exercises . 206
8.3 Launch and Early Orbit Phase . 208
8.4 Auto-Operations . 210
8.5 Dynamic Code Execution with Tiny . 211
8.6 ISL . 213
8.7 Outlook . 215

viii

9 Conclusions 219
9.1 Ground Segment . 219
9.2 Multi-Satellite Operations . 220
9.3 Space Segment and In-Orbit Autonomy . 222
9.4 Compass Protocol usage . 223
9.5 Future Work . 224
9.6 Publications . 226

Appendices 229
Compass Node Creation . 231

Matlab . 231
Java . 232

Front-End Examples . 235
Traffic comparison . 237
Examples from NetSat Operations . 241

ix

x

1 | Introduction

This work addresses challenges of space and ground segment systems of pico- and nanosatel-
lite formation missions with respect to the communication, functional interfaces and oper-
ation. A model-based approach to unify the access to the functionality of ground systems
and ultra-low power satellite subsystems will be presented. After pointing out challenges
of single space and ground communication segments, the Compass protocol is elaborated.
Based on the identified common responsibilities and tasks of every particular system in an
exemplary formation mission, a set of segment-agnostic standard services is defined with
special attention being paid to their suitability for ultra-low power satellite subsystems.
The Compass middleware was implemented to support both extremely limited micro-
controllers and high-power workstations, and it is demonstrated how this framework was
used as a basis for all space and ground systems in the University Würzburg Experimental
satellite 4 (UWE-4) and Networked Satellite Formation Flying Mission (NetSat) missions
to span a uniform and decentralized mission network consisting of satellite subsystems,
ground stations, mission servers, test equipment and operator’s workstations. It will be
shown how the model-approach has enabled model-based machine-to-machine communi-
cation and how the entirety of all distributed system models forms a top-level digital twin
of the mission. The Tiny script service is presented, which enables execution of dynamic
code on ultra-low power satellite subsystems and was demonstrated on board the UWE-3,
UWE-4 and NetSat satellites to execute experiments and run constraint-based task sched-
ules. Furthermore, the Compass Operations front-end has been developed to monitor,
control and operate all systems within the mission network without a priori knowledge,
and is also presented in this work with examples from the NetSat operations. The in-
herent IoT capabilities of the Compass middleware and the model-based communication
approach open up possibilities for further forward-looking studies, such as anomaly detec-
tion based on machine learning methods or super-missions, where satellites from different
missions perform cooperative tasks.

1.1 Motivation
In 1999, Bob Twiggs from Stanford University and Jordi Puig-Suari from California Poly-
technic State University elaborated the first CubeSat reference design with the aim of pro-
moting skills required for design and implementation of small LEO satellites as a platform
for the scientific research and exploration of new space approaches[Pro14]. First CubeSats
launched four years later, in June 2003. Initially, the specification was used mainly by the
academia – the majority of all launched CubeSats until 2013 was for academic purposes
until they have been superseded by commercial and amateur missions (figure 1.1). At this

1

2 Chapter 1. Introduction

point also the 3U CubeSats, measuring 10x10x30 cm, began to displace the previously
favored 1U size.

Figure 1.1: Launched CubeSats, grouped by mission types. Image source: [Swa21]

Since the first CubeSat launch, the complexity of the nanosatellites was continuosly
increasing. Today, some CubeSats offer capabilities that formerly were in the domain
of much larger satellites: global communication, Earth observation, formations, etc. In
addition to that, the amount of nanosatellite constellations and formations is steadily
increasing. At the same time, the majority of all CubeSat missions are based on spacecrafts
up to 3U[Swa21], i.e. most of the satellite subsystems (satellite bus) are still constrained
by the size and power limitations. To keep up with the continuously increasing mission
complexity and at the same time retain the primary advantages of a CubeSat mission
(cost-effectiveness, small development teams, fast development times), a new approach for
the overall space and ground software architecture is elaborated in this work.

The initial motivation of this work originated from the Launch and Early Orbit
Phase (LEOP) phase of the University Würzburg Experimental satellite 3 (UWE-3) mis-
sion in January 2014. The UWE mission line began in 2005 and is intended for educational
purposes at the University of Würzburg, Chair VII Robotics and Telematics, where stu-
dents can participate on the satellite development and contribute to the scientific, software
or hardware work packages and thus gradually obtain a big picture of real satellite mis-
sions.

The UWE-1 CubeSat was the first German CubeSat and was successfully launched
2005 from Plesetsk Cosmodrome, Russia, and was used to test Internet protocols in space
[SPS07]. The UWE-2 CubeSat was designed to test attitude determination techniques
and was launched 2009 from Satish Dhawan Space Centre, India [Sch+09]. Its successor,
UWE-3, launched 2013 in Dombarovsky Air Base, Russia, was completely redesigned
and equipped with attitude control capabilities. With UWE-3 a new UNISEC Electrical
Interface Bus was introduced[BS17], which since then became the standard subsystem

1.1. Motivation 3

Figure 1.2: Mission roadmap of the University of Würzburg (left) and Zentrum für
Telematik (right)

hardware interface for all following satellite missions at Zentrum für Telematik (ZfT).
Even though the ground segment and the satellite software of the UWE-3 mission was
improved as compared to the former UWE missions, several flaws – with respect to the
reusability – were existing:

• space segment software:
– Missionlink protocol used for satellite communication supported only one ground

and one space node
– different custom protocols between the main On-Board Data Handling (OBDH)

and other subsystems – panels and Attitude Determination and Control Sys-
tem (ADCS)

– all satellite subsystems were represented by one OBDH node
– the OBDH was the only subsystem that could actively initiate packet trans-

mission or communicate with other subsystems
– the software of all subsystems had no common basis
– no abstraction of different physical interfaces

• ground segment software:
– different protocols were used during the development (DebugComm, SixPack)

and in-orbit phase (Missionlink)
– the software of the UHF ground station was based on several components with

different monitoring and control interfaces
– no auto-operation capabilities – operations could only be performed manually
– no interface for externally received packets – e.g. from radio amateurs

It became evident that to keep up with the continuously increasing mission com-

4 Chapter 1. Introduction

plexity, a new approach must be elaborated to optimize the entire satellite and ground
software architecture of the upcoming missions. More specifically, the software and proto-
cols of the next UWE-4 and NetSat missions had to be designed and implemented based
on the new approach. The goal of the UWE-4 1U CubeSat mission was to perform or-
bit maneuvers with four Nanosatellite Field Emission Electric Propulsion (NanoFEEP)
thrusters. It contains 11 cooperative microcontrollers: 2x on-board computer (On-Board
Computer (OBC)), Attitude and Orbit Control System (AOCS), 2x Thruster Power Pro-
cessing Unit (PPU) and 6x panels – all of which need to be separately monitored, con-
trolled and updated from ground. UWE-4 was also intended to be used as a test plat-
form to gain knowledge for subsequent nanosatellite missions, such as NetSat [Sch+15],
Telematics Earth Observation Mission (TOM) [Sch+17; Sch+18] and CloudCT[KS19a;
KS19c; KS19b] missions – all being developed at ZfT, Würzburg.

With formation missions being in queue of the ZfT’s development timeline, it became
clear that challenges, as compared to a single satellite mission, will significantly increase
with respect to the development, testing, pre-flight sensor calibration, communication and
operations. In addition to the increased complexity of the satellite and ground segment
software development, auxiliary mission work packages also need to be harmonized in
order to remain maintainable by smaller CubeSat teams, such as:

• software-based testing
• hardware-in-the-loop tests
• calibration and sensor testing procedures with test facilities (e.g. turntables, sun

simulator)
• orbit and system simulation (Orekit, Matlab)
• utilization of multiple ground stations
• receive data from external ground stations (radio amateurs)
• uniform operability of all mentioned mission components

So, in addition to the established UNISEC hardware interface, a new uniform software
and protocol standard for both space and ground systems had to be elaborated.

1.2 Baseline Mission
The ZfT’s NetSat formation, consisting of four 3U CubeSats, was defined as an exemplary
baseline mission, as it contains all common space and ground systems that are present
in comparable pico- and nanosatellite constellation and formation missions. A simplified
overview of the NetSat space and ground systems is depicted in figure 1.3. Most of the
NetSat’s subsystems are based on ultra-low power microcontrollers, thus enforcing very
low hardware requirements of the new framework. To prove the feasibility of the proposed
approaches, also the UWE-3 and UWE-4 1U CubeSat missions were used for testing –
both have microcontroller specifications very similar to NetSat. During the kick-off of this
thesis, the UWE-3 CubeSat was already in orbit. Therefore, it could only be used to test
single space software components (via in-orbit software update). The launch date of the
UWE-4 CubeSat was at the same time the deadline at which the technical realization of
this work had to be finished. That is, the software of all UWE-4 subsystems and of the
entire ground segment had to be based solely on the developed framework/middleware.
The time between the UWE-4 and the NetSat launch could then be used to improve the

1.3. Contributions 5

overall system. As in UWE-4 CubeSat, the software of all NetSat subsystems is based on
the developed middleware. So, by the end of this work five Compass-enabled satellites,
with almost 60 separately accessible systems, and numerous ground systems are combined
into one dynamic and decentralized mission network.

Figure 1.3: Ground and space segment of the exemplary NetSat formation mission

1.3 Contributions
This dissertation proposes a novel approach for the unification of common space and
ground systems of a nanosatellite mission with respect to the communication protocol
configuration, functional interfaces and operation. It is applicable both on very low-power
embedded devices and on high-power workstations.

Compass protocol and services
The elaborated Compass protocol unifies the communication between all space and ground
systems and forms a decentralized and dynamic mission network, consisting of satellite
subsystems, test equipment, ground stations, mission servers, simulations, operator’s work-
stations and further Compass-enabled devices. Hence, standard protocol and services are
used between the satellite’s subsystems (intra satellite link), between the satellites (ISL),
for space-ground communication and between the ground nodes. With Model Tree Based
Architecture (MTBA) approach the functionality of all systems is made uniformly acces-
sible, hence introducing model-based communication approach. That is, every node can
propagate on-demand its internal states, parameters, functions, sensor and control values
as a hierarchically ordered model via the Model service. With Compass used as a carrier,
all remote system models form a mission model (i.e. top-level digital twin), which repre-
sents the functionality, knowledge and current state of the entire mission. Standardized

6 Chapter 1. Introduction

Compass services were implemented to enable commanding, model access and modifica-
tion, file transmission, unit testing and dynamic code execution on remote systems. The
protocol design was inspired by several existing protocols and standards, such as CCSDS
PUS and MO services, CCSDS File Delivery Protocol and MQTT.

Tiny scripting service
The Tiny scripting language was designed to support dynamic code execution on ultra-low
power microcontrollers, thus eliminating the need to perform hazardous in-orbit software
updates, which otherwise would be required to enable the execution of on-demand designed
experiments. A script can be used to read and modify local or remote model values, execute
commands locally or remotely and perform local file system modifications. Due to its very
low memory requirements (1 kB), the interpreter was enabled on all subsystems of the
UWE-3, UWE-4 and NetSat satellites and is accessed via the Tiny service. Tiny scripts
are used on the always-on OBC subsystems to enable constraint-based on-board scheduler
and to execute in-orbit experiments.

Compass OS and CompassNode
The protocol core and services were implemented for ultra-low power satellite subsystems
(Compass OS) and for high-level machines (CompassNode). Minimum hardware require-
ments to run the Compass OS are: 16 bit architecture, 2 kB RAM and 10 kB ROM – thus
allowing every existing satellite subsystem of the exemplary NetSat mission to enter the
network as a discrete node. In the context of Compass, a satellite formation is an inter-
ruptive available subnetwork consisting of satellite subsystem nodes. Autonomous in-orbit
formation control can be performed by the satellites using model-based communication,
i.e. via mutual modification of particular model values (formation parameters).

Compass Operations front-end
The Compass Operations front-end was designed to allow operators to access an existing
Compass network and to monitor, control and operate all available nodes in the same
way: satellites, ground stations, mission servers, test equipment and simulations. It pro-
vides numerous arrangeable views for accessing remote services for model modifications,
commanding, file transmission, unit testing, Tiny script execution, etc. The integrated
constraint-based operations task scheduler allows visual recording of complex satellite op-
erations, which are automatically conducted during the overpasses. The front-end was
extensively used during all phases of the UWE-4 and NetSat mission by test engineers,
simulation designers, satellite software developers, ground station advisers and satellite
operators.

Realization
Based on the lessons learned from the UWE-3 mission and active work on the UWE-4,
NetSat, QUBE, TOM and CloudCT missions, the philosophy of this work was to thor-
oughly verify theoretical considerations and approaches against their practical feasibility
in an exemplary baseline mission. The modus operandi was a combination of top-down

1.4. Thesis Outline 7

and bottom-up approaches, i.e. continuous attempts to link the top-down path starting
with mission aims (what must be done?) with bottom-up path beginning with low-level
feasibility on specific hardware components (what can be done?).

The theoretical work and all implementations were applied to the existing satellite mis-
sions at ZfT and University of Würzburg, Chair VII Robotics and Telematics. Throughout
this document references are made to the mission in which the mentioned approach, tech-
nique or implementation was successfully tested in-orbit (UWE-3, UWE-4 and NetSat).
The UWE-4 CubeSat was launched in December 2018 and has successfully demonstrated
its orbit control capabilities [KBS20]. Four 3U NetSat CubeSats were successfully launched
in September 2020 and are used to date for in-orbit experiments. The satellite and ground
software of both missions is based entirely on the technical outcome of this thesis:

• Compass protocol with numerous services
• Compass OS as C implementation of the Compass middleware for embedded devices;

is currently active in-orbit on almost 60 individually accessible nodes
– UWE-4: all subsystems of one flight and one engineering model – each con-

taining 2x OBC, AOCS, 2x PPU and 6x Panels
– NetSat: all subsystems of four flight and two engineering models – each con-

taining 2x OBC, 2x AOCS, 2x Thruster Control unit (TU), Computing board
and 5x Panels

– numerous Satellite Development Kits (flat-sat)
– controllers for ZfT’s high-precision motion simulators (turntables)

• Tiny interpreter as a part of the Compass OS used for in-orbit experiment execution
and constraint-based task scheduling

• CompassNode as Java implementation of the Compass middleware for high-level
nodes

– Compass Operations front-end
– UHF Ground Station server – one located at the University of Würzburg and

one at ZfT
– Mission Server – one for UWE-4 and one for NetSat mission
– MatlabNode and OrekitNode for Matlab and Orekit simulation nodes respec-

tively

1.4 Thesis Outline
Following chapters are organized in three groups: theory, implementation and testing&results.
In the State of the Art chapter issues and challenges in an exemplary CubeSat formation
mission (NetSat) are addressed along with existing common solutions for particular areas.
Based on the gained insight and the practical constraints given by the ZfT (mission time-
line, reuse of existing in-house satellite subsystems, available finances and workforce, etc.),
a theoretical background for the new Compass protocol and software framework is elabo-
rated in the Approach chapter: unification of communication and access to component’s
functionality.

The theory chapters are followed by three implementations chapters and are depicted
in figure 1.4. Referring to the stated requirements, the specification of the Compass
protocol and standard Compass services is described in Protocol chapter. The protocol

8 Chapter 1. Introduction

specification is used as a basis for the implementation of software for space and ground
systems. So, the implementation of Compass middleware for satellite subsystems, which
is runnable on ultra-low power microcontrollers, is described in Space Segment chapter.
The implementation of the Compass functionality for ground systems is described in the
Ground Segment chapter: UHF ground stations, mission server and eventually Compass
Operations front-end.

The eligibility of the proposed framework – both for space and ground systems – for the
targeted exemplary CubeSat formation mission is handled in the Testing and Live System
Experience chapter: protocol performance, in-the-loop testing, ground station performance
and experience with single-CubeSat missions (UWE-3 and UWE-4).

The NetSat Experience chapter describes how all proposed approaches and implemen-
tations were used to enable operations of four 3U NetSats nanosatellites in-orbit: LEOP,
recording-based auto-operations and in-orbit scheduler.

Eventually, a summary of all achievements and an outlook are presented in the Con-
clusions chapter.

Figure 1.4: Coverage of the implementation chapters: Protocol Chapter (green),
Space Chapter (red) and Ground Chapter (blue)

2 | State of the Art

In this Chapter challenges in an exemplary baseline satellite formation mission, more
specifically the NetSat formation mission, and several selected state-of-the art solutions
are discussed.

It is obviously not possible to propose a framework basis for ground and space systems
for any possible current and future missions. Instead, the NetSat mission is used as a
baseline, thus making the proposed solution best suitable for comparable missions with
respect to the communication requirements, satellite with multiple individually accessible
subsystems with one or more subsystems offering radio relay capabilities, suitability of
the model-based approach for functional interfaces, and comparable composition of the
ground-segment. Furthermore, the proposed framework aims at realization of all ground
and space systems without the usage of external services, such as external ground station
networks, external cloud-based solutions for Telemetry, Tracking and Control (TT/C)
operations, etc. The concept is not to exclude external services per se, but to show the self-
contained nature of the framework, which can practically be used as a basis for all mission-
relevant systems. A framework-enabled infrastructure can nevertheless be modified or
extended with further externally offered services, e.g. if a satellite provider does not
possess own ground stations and is therefore relying on Ground Station Network (GSN)
services.

A formation mission does not only introduce formation-specific issues, instead it also
inherits challenges from a multi-satellite and single-satellite missions:

• single-satellite
– Ground Station (GS) set-up: antenna, transceiver, server, mission server
– Mission Control Center (MCC) set-up
– satellite hardware development, testing, calibration and verification
– satellite software development, testing and verification
– ground-ground and ground-space communication paths
– LEOP and operations

• multi-satellite
– multiple satellites tracking
– multiple satellites operation
– multiple ground stations (optional)

• formation
– formation simulation environment
– Inter-Satellite Link (ISL)
– formation-specific operation tasks

9

10 Chapter 2. State of the Art

– autonomous in-orbit formation handling (depending on mission)

Challenges with respect to the hardware development are not handled in the scope of this
thesis. Most of the mentioned challenges cannot be addressed in solely exclusive way, e.g.
ISL may intersect with ground-space communication, if the same transceiver module is
used for both segments – as a result of hardware (e.g. space, power) or project constraints
(e.g. time, funds).

Several smaller and bigger formation and constellation missions have been performed
until present. After top-level requirements in an exemplary baseline mission (NetSat) are
defined, some existing formation missions will be shown, followed by a short discussion
about on-board autonomy in five selected missions. Thereafter, an overview of current
Internet of Things (IoT) network providers will be presented to emphasize the fact that IoT
approach is gradually moving into the space segment, thus underlying the forward-looking
inherent IoT nature of the Compass middleware. Eventually, some selected protocols and
approaches used in ground and space segment will be discussed.

2.1 Requirements

The aim of the following state-of-the-art research is to find currently existing solutions for
particular tasks mentioned in the Overview section. The state-of-the-art is ordered in three
sections: communication protocols, ground segment and space segment. The suitability
of the existing solutions is examined based on the defined requirements of the baseline
mission, which must first be stated in more detail.

2.1.1 Baseline Mission
Since this work is focused on nanosatellite formation missions being conducted by small
teams (UWE-4 mission was developed on average by three and NetSat formation mission
by four full-time co-workers), the NetSat mission will be used as an example in the further
discussion. Most of the hardware nodes (systems) involved in the NetSat mission are
depicted in figure 2.1:

A) four satellite flight models, each containing twelve programmable (2x OBC, 2x
AOCS, 2x TU, Computing board and 5x Panels) and six non-programmable sub-
system nodes: Thruster, 2x AX100 Radio and 3x EPS

B) two satellite engineering models
C) multiple operator’s workstations as a part of the distributed MCC
D) UHF ground stations, one located at the ZfT and another at the University of

Würzburg – each consisting of a server, rotator, UHF transmitter and Terminal
Node Controller (TNC)

E) Orekit-based orbit simulator
F) Matlab environment for simulating algorithms and post-processing of scientific data
G) ZfT’s dynamic test bench facility consisting of two precise motion simulators

2.1. Requirements 11

Figure 2.1: Simplified overview of the components involved in the NetSat mission.
(A) NetSat flight models, (B) NetSat engineering models, (C) operator’s worksta-
tions, (D) GS server, (E) orbit simulator, (F) algorithms simulator, (G) hardware
test facility

In the scope of this work the latter three (E, F, G) are called auxiliary nodes, as they
are mainly involved in the pre-orbit phase of the mission. Nonetheless, the integration
of the auxiliary nodes during the in-orbit phase may strongly improve the quality and
the outcome of the satellite operations. For instance, test facilities in combination with
simulations may be used to partially test high-level formation commands before they are
uplinked. All of the listed systems clearly have very different responsibilities and therefore
different functionalities, e.g.:

• UHF GS: orbit propagation, hardware control (rotator, transmitter) and radio pro-
tocol selection during the overpass

• Mission server (MS): store relevant traffic in the database, act as a bridge between
operators and multiple ground stations, accept packets received by the radio ama-
teurs, etc.

• Operator’s workstation (or MCC): monitor satellite housekeeping data, provide
tools for satellite control, monitor the ground station(s) status, provide tools to
control auto-operations and visualize received data

• OBC: act as a communication relay between subsystems and other ground and space
(ISL) formation nodes, keep track of the satellite’s healthiness, logging, beacon
transmission

In comparable missions, the software of a particular system is typically realized either
by using available software libraries or full-fledged software solutions for particular tasks,
whereas mission-specific and satellite-specific functions (application code) require more in-
house software development. This approach leads to an inhomogeneous software landscape

12 Chapter 2. State of the Art

or to multiple enclosed software and protocol islands for particular task areas, which is
a manageable in missions where single systems are maintained and operated by several
specialized companies (e.g. mission control, ground station, space segment software) –
but introduces too much overhead for smaller missions, where smaller development teams
must take care of all these system by their own. That is, to ensure the robust operation
of the entire mission, all involved systems must be continuously monitored and controlled.
For example, a wrong orientation of the UHF antenna can be the result of either too old
Two Line Element set (TLE) data, time offset on the GS server or broken interface to the
rotator. If different software solutions are used to fulfil these tasks, the operator is forced
to check multiple logs or use different monitoring front-ends provided by the solution
developer. Hence, glue code is required to unify the monitoring for fault-detection and to
enable automatic recovery. The main goal of this work is to propose a middleware solution
to homogenize software and protocols on all systems involved in a satellite mission. It on
the one hand does not require to implement everything from scratch and on the other
hand minimizes or even eliminates glue code.

2.1.2 Protocol
The desired protocol must appear in the protocol configuration of all space and ground
systems (see figure 2.2) and possess inherent network capabilities. That is, irrespective of
the – possibly inescapable – protocols on lower (OSI) layers of any particular system, all
systems must be capable to communicate with each other using the same common proto-
col (requirement in addressability, decentralized network and built-in routing capabilities).
This implies that the same protocol is used between ground nodes, for ground-space links,
for ISL and for communication between satellite subsystems. The process communica-
tion between all systems must solely rely on standard services, i.e. the services must be
designed to support any possible action and data exchange required in a satellite mission.

Figure 2.2: Desired common protocol configuration

2.1. Requirements 13

All satellite subsystems must be individually accessible in the network – in contrast
to the UWE-3 CubeSat, where the functionality of all subsystems is represented by the
OBDH subsystem. To promote the logical cohesion of multiple nodes, e.g. multiple satel-
lite subsystems being part of a satellite, the addressability must either support subnetting
or some grouping concept. The routing within the (virtual) network should happen au-
tomatically, i.e. no manually created routing tables are mandatory to enter an existing
network – requirement in dynamic network, auto-routing capabilities and network aware-
ness. The network awareness must be able to detect neighbors as well as the maximum
speed and maximum packet size a neighbor can handle, since both values can highly vary
– depending on the node’s hardware (speed, available memory) and channel capabilities.
To ensure the scalability of the network, the network awareness should only be exchanged
between direct neighbors.

If more than one route exists between two nodes it may become important to be able
to override default routes (auto-evolved shortest or fastest routes) for single packets (per-
packet route override). This feature can, for example, be used for traffic load-balancers or
when multiple formation nodes are currently directly accessible from the ground station,
the operator can enforce ISL packet forwarding (for testing reasons) – without the need
to manually change routing tables on all intermediate hops.

Due to the speed and packet size limitations of the satellite bus (I2C), the protocol
overhead must be as low as possible, i.e. header fields should be in numeric format instead
of text-based (numeric address field, service designator, optional route entries). To further
decrease the overhead, the protocol should have built-in header compression functionality,
i.e. protocol fields that become obsolete under particular circumstances, should not be
transmitted, e.g. avoid transmitting subnet identifier between two systems within the
same subnetwork or use number compression techniques if a value can be transmitted
with less bytes, than defined in the header. The address range must on the one hand
keep the protocol overhead minimal, and on the other hand enable unique addressability
of all available systems in current and future satellite missions. More specifically, the
protocol should provide at least 16 bit – better 32 bit global address range, whereat it
is advantageous when less address bytes are transmitted for small address values. Since
the packets may also be transmitted via channels without integrated error detection, such
as I2C and serial, the packet header should provide an optional/switchable CRC field.
Integrated forward error correction mechanisms are not required, since for error-prone links
the correction is usually performed by the transceiver hardware itself on lower protocol
layers. From experience with UWE satellite hardware, other low-level channels, such as
serial or I2C, have extremely low packet loss ratio – here a CRC check is enough to avoid
processing of broken packets.

From experience with UWE-3 operations, a dedicated and optional/switchable times-
tamp field is required in the packet header. The availability of a timestamp field has sev-
eral use-cases: detection of remote time deviation during the satellite operations, service-
independent round-trip time calculation, and reconstruction of the recorded traffic. Fur-
thermore, in UWE-3, UWE-4 and NetSat only the OBC subsystem has a real-time clock.
Since most of the subsystems are only powered up on-demand, they wake up without
any time knowledge. With timestamp in the header of an incoming packet (e.g. periodic
network knowledge packet from OBC), a receiving subsystem can decide to synchronize
its time knowledge up to some degree of accuracy.

14 Chapter 2. State of the Art

Topic Requirement Ref.

Network Addressability (32bit) R-PRT-1

Auto-Routing capabilities R-PRT-2

Subnetting R-PRT-3

Decentralized and dynamic network R-PRT-4

Scalability R-PRT-5

Per-packet route override R-PRT-6

Per-packet DTN capabilities R-PRT-7

Network-awareness Neighborhood detection R-PRT-8

Maximum packet size a neighbor can handle R-PRT-9

Maximum speed a neighbor can handle R-PRT-10

DTN-ability of a neighbor R-PRT-11

Header Compress-able or dynamic R-PRT-12

Low overhead R-PRT-13

Source and Target address fields (up to 32 bit) R-PRT-14

Optional intermediate addresses (route override) R-PRT-15

Service-id (or upper-protocol identifier) R-PRT-16

Timestamp field R-PRT-17

CRC field R-PRT-18

Implementation C version, runnable on 16 bit system, 2Kb RAM R-PRT-19

C version, same code-base for multiple platforms R-PRT-20

Java version for all ground systems R-PRT-21

Table 2.1: Summary of protocol requirements

2.1. Requirements 15

The protocol must offer Delay Tolerant Network (DTN) capabilities (store-and-forward),
which can be switched on and off on packet-level. This functionality can obviously only be
offered by systems with enough non-volatile memory, thus the network awareness should
also automatically provide information about DTN-ability of every node within the net-
work. The projected DTN-activated systems are: UHF ground stations (practically un-
limited capabilities) and OBC subsystems in space (limited to N storable packets). The
former is used to forward packets to satellites during the overpass, the latter to store pack-
ets and forward them later to currently inactive subsystems or another formation node
via ISL.

Finally there are implementation requirements, i.e. the protocol stack and all relevant
services must be runnable on embedded satellite subsystems (C) and on all ground systems
(Java). The most limited subsystem is the UWE’s PPU subsystem and NetSat’s Thruster
Control subsystem, both having only 4 kB of RAM and 64 kB of code space – from which
at least 50% must be reserved for application code. Since several different microcontroller
types are used (e.g. TI MSP430x and AtmelSAM families), the implementation must
provide a proper hardware abstraction layer (HAL) to enable the reuse of the common
code-base in all subsystem software implementations.

2.1.3 Services
The functionality of all space and ground nodes must be realized solely by using common
services listed in table 2.2. In other words: the ground systems must be accessed and
controlled in the same way as satellite systems, i.e. using the same services and front-end.
The consequence is that all common services must be suitable for demanding space-ground
links: low transmission rate (e.g. 9600 bauds UHF), possible high packet loss ratio, half
duplex channels with comparable long up-down switching times, and highly asymmetric
link properties (good downlink, bad uplink) – as has been frequently experienced in UWE
and NetSat missions. Furthermore, all service protocols must be designed to support
small packet sizes. Due to the memory and buffer size limitations of UWE and NetSat
subsystems as well as limitations dictated by the satellite’s radio, a maximum packet size
of 200 bytes has been selected, at which the service protocols must be able to achieve their
tasks. Services may use the network awareness information to select a suitable packet size
for a particular remote network node.

In general a service should perform without per-packet acknowledgements, as it would
drastically reduce the protocol performance via routes containing half-duplex links with
long up-down switching times or highly asymmetric up-down packet loss ratio. Instead,
where applicable, the service should request a bulk-acknowledgement for multiple packets.

To increase the performance of a service protocol without packet ACKs, the protocol
should be designed without dedicated session start/end packets. A classic session based
service interaction can be divided into three steps: send start session, perform actual
service task, and send stop session. To reduce the service protocol overhead, the start
session packet usually contains additional information that is indispensable for the actual
task. In case the receiver misses the start session packet, all further incoming session
packets become unusable. The solution is to design the service protocol in such a way
that the receiver can always reconstruct the session from every service packet.

16 Chapter 2. State of the Art

Example: File upload without dedicated start/stop session packets
System A is going to upload a file (D:Test.xml, 400 bytes) to system B. A transmits:

1. start upload session D:Test.xml
2. 200 bytes content ([0− 200])
3. 200 bytes content ([200− 400])
4. stop session

If B misses the start session packet, it cannot process incoming file content. This
transmission scheme can only work properly, if every packet is acknowledged by the
receiver.

Without dedicated start/stop session the transmission can be designed as follows:

1. write to D:Test.xml at 0: 200 bytes content ([0− 200])
2. write to D:Test.xml at 200: 200 bytes content ([200− 400])

Now, if B misses a packet, it can still process received ones – at the cost of higher
protocol overhead. The receiver should also keep track of missing packets and use this
information to send back a bulk acknowledgement – ether on request or after some
defined time period.

The goal is that any action on ground and space systems can be achieved with a
combination of:

• remote command calls and either directly receive answers or pipe the answers to
remote files (Command service)

• file exchange (File service, file operations can either be handled here or in the Com-
mand service).

• access remote variables, states or any entity that is representable as a key-value
pair, and subscribe to value changes (Model service)

• remote execution of scripts, which in-turn can access other local and remote services
(Script service)

• remote unit-test execution (Unit-Test service)
• receive (and store) incoming log messages (Log service)

Specific requirements for every service are listed in table 2.2.
The Model service should, for example, be used to access and/or modify satellite’s

state, modes, sensor values, actuator control values, calibration matrices, RTC time, bea-
con transmission rate, etc. Also actions, for which Command service initially comes to
mind as a solution, can be achieved in more straightforward way with Model service.
For instance, instead of sending switch-on AOCS command to the main OBC system, a
Boolean AOCS variable can be set to true. Same service can also be used to monitor and
control the ground station: current tracked satellite, loaded TLEs, camera image of the
antenna, current frequency setting, etc. Another projected use-case of the Model service
is to control other services.

The File service is used to exchange data amounts larger than the maximum possible
packet size, e.g. download data or images recorded in orbit, download log files, upload
scripts and software updates.

More complex operations must be enabled by the Script service: time-tagged and
constraint-based actions. A script executed on a satellite subsystem must be able to access

2.1. Requirements 17

Service Requirement Ref.

Overall No per-packet ACKs R-SRV-1

No dedicated session start/stop packets R-SRV-2

200 bytes packet limit R-SRV-3

low overhead R-SRV-4

Command service Remote command (-batch) execution R-SRV-5

Answer piping to a local or remote file R-SRV-6

Answer piping as payload of user-defined service packet R-SRV-7

File service File upload and download R-SRV-8

Support for bulk-acknowledgements R-SRV-9

File system operations: format R-SRV-10

File operations: delete, write, read, size R-SRV-11

Model service Read and modify remote variables R-SRV-12

Variables are hierarchically structured R-SRV-13

Support for listener registration R-SRV-14

Supports value recording R-SRV-15

Supports groups, arrays, strings and binaries R-SRV-16

Supports on-demand structure request R-SRV-17

Script service Sand-box dynamic code execution R-SRV-18

Suitable for on-board task scheduler R-SRV-19

Ability to access other local and remote services R-SRV-20

Unit-Test service Remote execution of unit tests R-SRV-21

Log service Store local and incoming log messages R-SRV-22

Table 2.2: Summary of protocol service requirements for space and ground systems

local and remote variables, perform file operations, generate log messages and create user-
defined packets to access remote services. As soon as a script can access all available
local and remote services, it is capable of performing any possible task of an operator.
The aim of this thesis is to find a proper balance between ground-based and script-based
operations.

The Unit-Test service should provide a list of available tests and return results of
requested test executions. Unit tests can be used to verify the correct operation of the
satellite software on different abstraction levels: sensor read-out, file access, output of an
algorithm execution, satellite bus communication, etc. Dedicated Unit-Test service would
allow the realization of a well-arranged operator’s front-end, with hierarchically ordered
available tests, progress bars, etc. Furthermore, the service would theoretically allow
automatic test execution of newly inserted satellite subsystems during the development
process.

18 Chapter 2. State of the Art

2.1.4 Space Segment software
Space segment software represents a summary of all satellite subsystem software images:
OBC, AOCS, active panels, auxiliary high-power computing board, and thruster control.

In the baseline mission, several different microcontroller types with different capabili-
ties are used, such as Texas Instruments MSP430x and Atmel SAM families. To optimize
the process of the satellite software development and to improve the software maintain-
ability, all subsystems must share the same software baseline, i.e. the implementation of
the protocol core functions and services (middleware) must be runnable on all subsystems.
As a consequence of this, the middleware must be runnable on most limited subsystem
microcontrollers of the baseline mission: 16 bit architecture, 4 kB RAM and 32 kB ROM.
On such limited systems the middleware may be configured to provide minimal support
for particular functions, such as limited or deactivated DTN support or ability to hold
only few routing entries (limited network awareness).

All protocol functions and services mentioned in table 2.1 and table 2.2 must be imple-
mented in a common middleware code-base. Since the hardware of the baseline satellite
subsystems is already given, further requirements towards the software implementation
can be derived based on the protocol requirements – the top-level ones are shown in table
2.3. These requirements are not bonded to specific service implementations, i.e. specific
protocol scheme, instead they are resulting either from the actual functionality the proto-
col or service must offer or indirectly from the functionality the service must have access to.
This is important for the state-of-the-art analysis, as existing protocol implementations
must be compatible with satellite hardware used in the baseline mission.

The limitations of the communication channels have already been mentioned in the
previous section. The agreement is to support a packet size of at least 200 bytes, i.e. all
internal and channel buffers must be designed in such a way, that every satellite subsystem
is capable of forwarding a packet of that size. The ability of a satellite subsystem to be
connected either directly to a workstation or be inserted into a flat-sat evolves from the
core protocol capabilities (requirements R-PRT-2, R-PRT-2 and R-PRT-8) – presupposed
the subsystem offers the corresponding connector (serial, USB).

To allow the same code basis to be runnable on different platforms, all low-level system
and hardware interfaces calls must be performed against a hardware abstraction layer
(HAL): local time, interrupt service routines and hardware interfaces. In order to achieve
its basic functionality, the implementation of the protocol core must have HAL-enabled
access to local time and to all available hardware (communication) interfaces: I2C bus,
serial interface and radio transceivers (via serial). Since the software of all UWE and most
of the NetSat subsystems is implemented on bare-metal without multi-tasking support, the
protocol and services must be runnable in a single-threaded environment. The projected
middleware must also be runnable on a Linux and Windows operating systems to support
software-in-the-loop tests.

Several services must have access to locally available file systems. The OBDH subsys-
tem of the UWE-3 CubeSat had access to one SPI connected NAND flash chip. Due to
RAM and ROM limitations, a dedicated UWE File System (UFS) file system was designed
specifically for that flash chip. The updated version of the OBDH, is the OBC subsystem
used in the UWE-4 and NetSat satellites. It has the same microcontroller but now has
access to 6 FRAM and 2 NAND flash memory chips. In addition to that, every UWE-4
and NetSat panel is equipped with a microcontroller and a dedicated NAND chip. Hav-

2.1. Requirements 19

Component Derived Requirement Ref.

Protocol core Access to local time R-SW-1

Abstraction layer for available communication channels R-SW-2

Channel support for: I2C, serial, TCP/IP, UHF transmitter R-SW-3

Support for single-threaded software R-SW-4

Support Linux and Windows as host OS R-SW-5

Command service Concept for creating new commands R-SW-6

File system access to support answer-piping R-SW-7

File service Abstraction of persistent data storage (e.g. NAND, FRAM) R-SW-8

File system abstraction (drive and file concept) R-SW-9

File system implementation R-SW-10

Model service Concept for creating new model values R-SW-11

Model values must be hierarchically ordered R-SW-12

Concept for optional GUI hints (ranges, limits) R-SW-13

Script service Sand-box design with own stack R-SW-14

Support for multiple concurrent scripts R-SW-15

File system access to save/load persistent scripts R-SW-16

Ability to access existing C-functions R-SW-17

Unit-Test service Concept for creating new unit-tests R-SW-18

Unit tests must be hierarchically ordered R-SW-19

Log service File system access to store local and incoming logs R-SW-20

Table 2.3: Embedded software requirements as derived from protocol requirements

20 Chapter 2. State of the Art

ing different memory storage technologies (FRAM, NAND) and multiple available chips
from different manufacturers, new abstraction layers for data storage and drive/file access
become requirements.

The in-space script execution must be performed in a sand-box to ensure that the
overall system stability is not harmed by faulty scripts. The interpreter must support
concurrent execution of multiple scripts, i.e. execute a predefined amount of instructions in
multiple scripts in round-robin manner. It must not rely on the multi-threading capabilities
of the underlying operating system. The interpreter should also not be a closed system
– the scripts must be able to access existing C functions, which could be registering at
compile time.

Aside from some examples, the application code of particular satellite subsystems is
not handled in this thesis. Instead, the projected middleware is intended to offer a basis for
subsystem-specific application code that rely solely on the services defined in this chapter.

2.1.5 Ground Segment software

In the NetSat mission the ground segment consists of: two UHF ground stations, mission
server, operator workstations, Matlab simulations, Orekit-based orbit simulation and two
high-precision motion simulators (turntables). Satellite engineering models and flat-sats
belong software-wise to the space-segment, as they are equipped with space software. The
responsibility of every ground system is shown in the Overview section.

Some of the mentioned ground systems were already present (before this thesis) to
support the UWE-3 CubeSat mission: one UHF ground station, several operator worksta-
tions and a Matlab workstation. The software on all systems was lacking a common basis,
i.e. there existed no common way to access the functionality of the ground systems, nor
was it possible to monitor their current state in a common way. During the UWE-3 LEOP
phase the small UWE team (three co-workers) had great issues to point out the cause of
the very poor communication. In addition to that, the mission network was consisting of
only two nodes: one operator node and UWE-3’s OBC subsystem. Neither was it possible
to access further subsystems in the assembled satellite, nor was it possible for the ground
and space systems to interact with each other. Nonetheless, the existing hardware and
software infrastructure had to be used as a starting point of the transition towards a new
set-up.

Aside from the Operations front-end, the actual application implementation for par-
ticular ground systems is not discussed in detail. Instead, the aim is to put the software
of all ground systems on-top of a common middleware basis, such that all systems can be
monitored, controlled and maintained with default services listed in Protocol and Services
sections. Same services are also used by ground systems to access all other ground and
space systems within the network, e.g. to perform cooperative processes. The middleware
for the ground segment must fulfil all protocol and service requirements and must be made
available as a library that can easily be integrated in the software of all ground nodes.

2.2. Formation Missions 21

Component Derived Requirement Ref.

All ground systems Share same middleware code-base (library) R-GSW-1

Can be monitored with default services R-GSW-2

Can be controlled with default services R-GSW-3

Persistent knowledge cache for remote systems R-GSW-4

Ability to connect to different mission networks R-GSW-5

Operations front-end Offer GUI for all available services R-GSW-6

Offer advanced GUI for specific model values R-GSW-7

Monitor current mission network state R-GSW-8

Simultaneous operation of multiple ground/space systems R-GSW-9

Auto-operations scheduler R-GSW-10

Table 2.4: Ground middleware requirements

2.2 Formation Missions
Until present, several formation mission were flown or are currently in development. Some
have a direct emphasis on a formation control (research formation control) – others are
using formation control to realize the actual mission goals. A detailed survey of formation
missions can be found in [D’E13].

2.2.1 CanX-4 & 5
CanX-4 and CanX-5 is a dual 8U CubeSat mission developed by the University of Toronto,
Institute for Aerospace Studies/Space Flight Laboratory, and were launched in 2014 into
Low Earth Orbit (LEO) orbit (635 km). The aim was to demonstrate autonomous forma-
tion control without required operations from ground. The projected maximum separation
was defined at 1 km – whereas the S-band inter satellite link (10 kbps) was designed to
cover up to 5 km separation.

Details on the satellite subsystems composition are described in [Orr+08]. An overview
of the UHF and S-Band ground station can be found in [Kek06]. The operations are based
on the Nanosatellite Protocol (NSP), which was developed at the University of Toronto
specifically for CanX missions. In its usability it is rather comparable to the Cubesat
Protocol from Gomspace (e.g. limited 8 bit address range). The NSP header consists
of destination and source address (8 bit range), five command bits, ACK bit, Package
correlation bit, Reply bit and up to 255 Bytes payload. Operations are performed with the
GNBControl (Generic Nanosatellite Bus Ground Control Application) operations software,
which entirely relies on the NSP protocol [Cho10].

2.2.2 Prisma
Prototype Research Instruments and Space Mission technology Advancement (Prisma) is
a two satellite technology demonstrator mission led by the Swedish Space Corporation
(SSC). Both satellites, TARGET (40 kg) and MAIN (140 kg), were launched in near-
circular 720-780 km orbit on June 2010 and stayed coupled until the separation two months

22 Chapter 2. State of the Art

later – more details can be found in [PDH10]. The primary aim was to demonstrate satellite
formation flight, whereat the larger MAIN satellite is approaching the smaller one[D’E13].

Since TARGET has no dedicated ground link, only MAIN was controlled directly from
ground. The communication is performed in S-band with 1 Mbit downlink rate and 4 Kbit
uplink rate. The communication protocol is based on the CCSDS standard.

The ground segment consists of (more details can be found in [HPL09]):

• Operations Control Center (OCC) located in SSC Esrange (Kiruna/Sweden) and is
responsible for routine operations and surveillance, and for TM/TC upload/down-
load according to MCC instructions.

• MCC located in Solna (Sweden) and is responsible for the preparation of operations
as well as for the simulation and validation of flight procedures.

• ECC (Experiment Control Centers) is not fixed to one location. ECCs prepare
experiment scenarios for MCC and post-process experiment data.

Operations are conducted in RAMSES (Rocket and Multi Satellite EMCS Software),
which has been developed by OHB Sweden. It supports CCSDS and ECSS standards and
can, to some extent, be viewed as a middleware for ground systems. However, RAMSES
protocol does not offer (virtual) network protocol capabilities and therefore relies entirely
on the underlying UDP protocol [BS12]. RAMSES LAN is also used for the communica-
tion with the SATSIM satellite simulator, which was developed to validate the on-board
software by generating code from Matlab/Simulink models[BNB12].

2.2.3 GRACE
Gravity Recovery and Climate Experiment (GRACE) joint-mission has been developed
by National Aeronautics and Space Administration (NASA) and Deutsches Zentrum für
Luft- und Raumfahrt e.V. (DLR) to measure Earth’s gravitational field. For that purpose
two identically designed satellites (GRACE-1 and GRACE-2), each weighing 487 kg, were
launched into 500 km orbit in 2002 and were separated by 220 km along their orbit track.
The decommissioning started 2017, GRACE-2 and GRACE-1 performed atmospheric re-
entry in 2017 and 2018 respectively. The successor GRACE-Follow-On (GRACE-FO) was
launched in 2018 and was equipped with a laser ranging interferometer.

An overview of all ground systems can be found in [Pot21] and [AA02]. The TT&C is
based on the CCSDS standard, whereat high-priority commands are handled directly by
the telecommand decoder, thus surpassing entirely the OBC on-board software.

2.2.4 HawkEye 360 Pathfinder
HawkEye 360 Pathfinder Cluster Mission is developed by built by Deep Space Industries
(DSI) and SFL for the HawkEye 360 company[36017]. The formation is composed of three
20x20x44 cm satellites, each weighing 13.4 kg. The satellites were launched into 580 km
orbit in 2018 and eventually acquired an along track formation with 125 km satellite-to-
satellite distance. The aim of the mission is to use RF technology for signal geolocation.

The satellites are based on the NEMO (Nanosatellite for Earth Monitoring) platform
– an evolution of the GNB (Generic Nanosatellite Bus) used in CanX-4&5 mission.

2.2. Formation Missions 23

The spacecrafts are operated from Multi-mission Spacecraft Control Center (MSCC)
in Bangalore (India). The communication system, the protocol (NSP) and the operations
software is tailored from the SFL standards (see CanX-4&5 mission).

2.2.5 MMS
The Magnetic Multiscale Mission (MMS) is developed by NASA with the aim to study
the Earth’s magnetosphere [Bur+16; Fus+16]. It consists of four 320x120 cm satellites
(1360 kg each), which were launched into high elliptical orbit in 2015.

A detailed description of the ground segment is shown in [Bak+16]. The Deep Space
Network (DSN) is the primary high-bandwidth communication link and is used to downlink
scientific data to observatories. The Universal Space Network (USN) is used as a backup
network in case DSN becomes unavailable. TT&C is performed via the low bandwidth
Tracking and Data Relay Satellite System (TDRSS). MMS supports file communication
based on the CCSDS CFDP protocol, which will be described in more detail in section
2.6.

2.2.6 NetSat
The NetSat mission consists of four 3U satellites, developed by ZfT, and are intended to
be used for nanosatellite formation experiments. The satellites were successfully launched
into LEO orbit in September 2020.

NetSat is the first nanosatellite formation mission (and the second nanosatellite mission
after UWE-4) where all space and ground systems are based on the same uniform Compass
middleware, thus promoting the IoT protocol approach for the entire mission landscape.

2.2.7 PROBA-3
The ESA Project for On-Board Autonomy-3 (PROBA-3) mission consists of CSC (Corono-
graph Spacecraft, 320 kg) and OSC (Occulter Spacecraft, 180 kg) minisatellites. The pri-
mary objective is to demonstrate technologies for high-precision formation flying, required
for space science, Earth observation and surveillance. The launch into an elliptical orbit
is planned for 2022.

Details of the spacecraft design are shown in [Pen+20] and [Gal+19]. The inter satel-
lite link will be enabled by TEKEVER’s GAMALINK Software Defined Radio (SDR)
transceivers (S-band). The ground segment is built upon heritage from previous PROBA
missions (see [San+13] for more details), with Mission Operation Center being located in
Redu (Belgium) and the ground station in Santa-Maria (Portugal).

2.2.8 CloudCT
The CloudCT mission is consisting of 10 3U nanosatellites and is developed by ZfT in
cooperation with the Israel Institute of Technology. The aim is to perform tomography of
clouds; the launch is planned in 2022 [SA20].

As in the previous NetSat and UWE missions, all satellite subsystems and ground
segment systems will be based on the Compass system. The Compass protocol enables

24 Chapter 2. State of the Art

a seamless combination of multiple existing mission networks into one super-mission net-
work, thus allowing satellites from different missions to cooperate.

2.3 On-board Autonomy in Constellations
In this section operations strategies of five selected constellation missions are shortly dis-
cussed. Even though the solutions in “bigger” missions may be an overkill for smaller
CubeSat satellite missions, they were nonetheless used as an inspiration for the design of
the Compass middleware.

Notice: The content of this section was published in the Background chapter of
[Nog+17].

2.3.1 SWARM
The Swarm three satellite constellation is operated from ESA’s operations centre ESOC.
The Swarm Mission Control System (MCS) is based on SCOS-2000, deployed with one
prime and one backup server per satellite. The MCS clients are connected to all prime/backup
servers, and are configured in multi-domains, allowing an operator to quickly change be-
tween views to control the three satellites simultaneously from a single client. In routine
operations only one satellite is commanded at a time [Die+16]. To minimise the chance
of operator errors, each domain is clearly identified with a different colour.

Mission planning is performed weekly, and generates as output a set of time-tagged
commands to be uploaded to the on-board queue for deferred execution, and another set
to be executed directly from the MCS. The latter automates the activities that need to be
performed at every ground-station contact. The current operations approach gives Swarm
a nominal on-board autonomy of seven days.

On-board, the software is designed around the standard ECSS Packet Utilisation Stan-
dard (PUS) services for nominal operations and fault management, as for TSX-TDX. In
case of a failure the satellites are placed in a safe configuration and the recovery is con-
ducted by operators on the ground.

2.3.2 TerraSAR-X and TanDEM-X
TerraSAR-X (TSX) and TanDEM-X (TDX) are two satellites commissioned and oper-
ated by DLR. The satellites fly in close formation in low Earth orbit with inter-satellite
distances varying between 150 and 500 meters [Mau+12]. The formation conducts radar
measurements that are used to create an altitude map of the Earth [D’E13, p. 387ff.].

For TSX-TDC there is no real master/slave configuration, but instead an equal level
of operations for each satellite. Each has a dedicated TT&C link and an MCS based on
the generic SCOS-2000 software. Apart from one specific telemetry packet sent from TSX
to TDX over the ISL, there is no Telecommand (TC) or Telemetry (TM) packet routing
between the satellites. Mission planning is combined for both satellites, as the master
timelines for TSX and TDX depend on each other. For example, bi-static acquisitions
must be executed simultaneously on both satellites and sequential downlinks pose inter-
satellite constraints that need to be respected. Modifications to the master timeline must
therefore be synchronised between the two spacecrafts [Mau+12].

2.3. On-board Autonomy in Constellations 25

TDX carries an autonomous formation flying package (TAFF) able to perform au-
tonomous formation control using TDX’s cold gas propulsion system, and the navigation
data transmitted by TSX over the ISL. To cope with this extra level of autonomy, the
TDX Fault-Detection, Fault-Isolation and Recovery (FDIR) had to be extended to handle
formation-level feared events, including indications of collision risk and unavailability of
TSX navigation data over the ISL. While already successfully tested in closed-loop in-
flight, the TAFF is not nominally used in operations [SGU12]. The on-board software is
based on the ECSS PUS standard.

Both TSX and TDX use time-based on-board command queues for nominal operations
(PUS service 11), complemented by the traditional set of services allowing to configure,
monitor and execute on-board failure identification and recovery: PUS services 5, 12, 18
and 19 [SGU12].

2.3.3 Galileo
The Galileo Ground Control Segment (GCS) provides for overall monitoring and control,
mission planning, flight dynamics and operations preparation for the 24+ GNSS constella-
tion. The GCS is composed of several components, including the Spacecraft Constellation
Control Facility (SCFF) and the Spacecraft Planning Facility (SCPF).

The SCCF, based on ESA’s SCOS-2000 system, is responsible for the typical monitor-
ing and control tasks, including: telemetry processing, command preparation, transmission
and verification, on-board command queue management, limit checking and on-board soft-
ware management. To ease day-to-day operations, the SCCF includes a component that
automates many of the routine tasks. This component automatically processes telemetry,
uplinks the command schedules to the satellites’ on-board command queues and executes
the ground-based schedules with the activities to setup the TM and TC links at each
ground-station pass [Lor+08]. The automation logic is encoded in PLUTO procedures
that interface with SCOS-2000 via SMF. The SCCF automation component interfaces
with the SCPF to receive the latest constellation Short Term Plan (STP) and to provide
the status of the schedules currently being executed. The STP is then used to generate
all on-board and ground schedules.

Planning for the constellation is centralised in the SCPF that generates, among other
products, the STP to be sent to the SCCF for execution. The STP covers typically a
seven days window and contains all the operations that need to be performed on ground
and on board for all the satellites in the constellation [HMF08]. This centralised planning
system takes into account planning requests from different sources and with different
priorities, from nominal operations (e.g. TT&C contacts) to manoeuvres and other special
activities. The planner tries to maximise the contact time per satellite and has to guarantee
a minimum number of contacts per satellite per day. In a typical week the SCPF plans
more than 300 ground-station contacts and about 1500 tasks [HMF08].

The Operations Progress Monitoring (OPM) display is the entry point for constellation
monitoring. The OPM provides an overview of the current status of the whole constel-
lation, allowing as well to monitor the execution of the automated tasks on each of the
satellites. The OPM introduces a Gantt view allowing to quickly browse the schedules on
each of the satellites [Lor+08].

On the on-board software side, Galileo makes use of the standard set of ECSS PUS
services for telecommand on-board queue, software management and FDIR[RSW12].

26 Chapter 2. State of the Art

2.3.4 Planet
Planet’s Flock 3p constellation consists of 88 nanosatellites. Mission operations are highly
automated with the ground and space operated over interfaces based on microservices.
Software updates are reviewed weekly and tested on a limited number of satellites in
orbit before being deployed to the rest of the constellation. The satellites run Ubuntu
Linux on a x86 cpu, making it possible to easily share software between the space and the
ground segments. Command and control is done using the so called Ops Scripts, which
are typically deployed to the satellites one or more times per week [Zim+17].

In routine operations the satellites follow a simple pattern: (a) when over land point
towards nadir and take images; (b) whenever a ground-station contact is scheduled switch
on the X-band transmitter and downlink the images. When not in one of the previous
modes, the satellites are either doing some periodic housekeeping activities (e.g. optical
calibration) or are placed in a predefined attitude such as to make use of the differential
drag to control the satellites’ relative orbits [Zim+17; CK16; FHM15]. From the available
literature it is not clear how these operations are actually scheduled on board, and whether
they make use for example of time-based or position-based scheduling. Given that the Ops
Scripts are updated regularly, it is reasonable to assume that every update contains a new
schedule generated by a centralised planning engine on the ground, and that is valid for
the next few days to one week.

To make a satellite operational requires a series of commissioning activities that in-
clude, among other things, the calibration of the attitude determination and control system
(ADCS). The speed with which new satellites are commissioned and made operational is
important from the business perspective, but also to test as fast as possible new software
and hardware in time so that any corrections can be injected in the next batch of satellites
[Zim+17]. Independently of potential issues found during commissioning, the speed with
which a new satellite can be commissioned is mostly constrained by the limited number of
ground station passes and the limited number of operators. To speed up these activities
the satellites in Flock 3p were launched with on-board software scripts that automate the
initial configuration and checkout, reducing the number of required passes for commis-
sioning under nominal conditions to two.

In case a failure is found during execution, the satellite is placed in a safe configu-
ration and waits for ground [Zim+17]. From the available literature these scripts seem
to be in all akin to the typical on-board control procedures (OBCP), that execute a pre-
programmed set of instructions (commands) against a pre-programmed set of criteria (e.g.
telemetry checks). These scripts are then run on-board as part of a periodic automated
task [Zim+17].

2.3.5 OneWeb
The OneWeb 600+ broadband small satellite constellation [Azz16] is planned to be op-
erated from two centres, one in the United Kingdom and one in the United States. The
satellites are built by Airbus and make use as well of the pus standard [GMV16]. The
operations centre is composed of the typical elements, including command and control,
flight dynamics and mission planning [Mor+17].

The Command & Control element is developed by GMV, and its based on GMV’s
hifly system with some key updates to efficiently manage the constellation. At an archi-

2.4. IoT/M2M Missions 27

Network Company IoT Payload S/Cs (planned)

Starlink SpaceX, USA Ku, Ka band at 100 Mbit per user 1081 (30000)
Myriota Myriota, Australia VHF/UHF, 20 Bytes per message 4 (50)
Astrocast Astrocast, Switzerland L-band, 1 kB per day 5 (80)
Kepler Kepler Communications, Canada Ku band 3 (140)
Swarm Swarm Technology, USA VHF, 196 Bytes per message 36 (150)
kineis France UHF, 30 Bytes per message 8

Table 2.5: Overview of IoT missions

tectural level functions have been split into two groups: fleet and single satellite. The
fleet level functions, deployed as one redundant set of tools for the complete fleet, includes
components for fleet-level scheduling and awareness, and fleet-level MMIs that allow an
operator to monitor and control multiple satellites simultaneously. At the single satellite
level is the classical telemetry, telecommand and out-of-limit functions, deployed as one
redundant hifly core instance per satellite [Mor+17]. The main panel for quick fleet status
monitoring is the fleetDashboard. This view provides in a glance the status of each of the
satellites using coloured cards. The cards can be further stacked to save space, providing
then summary information on all the satellites in the stack [Mor+17]. A scheduler panel
provides a Gantt view of the executed and scheduled tasks for each satellite.

The mission planning element is provided by SciSys, and is based on their Pleniter®
software [Sci16]. Planning is done daily and is mostly automated. For planning efficiency
purposes the satellites are divided into different groups depending on the current activities
being carried, e.g. LEOP, routine operations or orbit raising manoeuvres.

For the OneWeb system no sources could be found that detail the on-board software
design and to what extend the standard PUS services are actually implemented. It is
to expect that they make use of the standard set of services based on a timetagged com-
mand queue, complemented with configurable parameter and event-based monitoring that
triggers pre-defined on-board control procedures for failure handling.

2.4 IoT/M2M Missions

In recent time nanosatellite IoT missions gained in popularity. In contrast to this work,
these missions are not aiming at using IoT technologies to realize the actual mission.
Instead, they are offering IoT-enabled communication services to other existing systems
distributed on ground. Several selected missions are discussed here – a more comprehensive
overview can be found in [Hof+19] and [BP19]. A detailed comparison between Starlink,
OneWeb and Telesat is shown in [PCC18]. A detailed survey on recent advances and
future challenges of CubeSat communication is described in [Sae+20].

Aside from Starlink network, which is mainly aimed at Internet from Space, most of the
mentioned IoT satellite missions are designed for smaller packets (circa 30-200 Bytes) and
are thus only suitable for rather simple TT&C tasks. Nonetheless, in-orbit IoT services
may in future become a game-changer for nanosatellite missions, as they can drastically
reduce the complexity of the required ground segment.

28 Chapter 2. State of the Art

2.4.1 Starlink

SpaceX Starlink is a large constellation mission, which provides almost worldwide high-
speed satellite Internet access. It is currently the largest constellation with 1081 satellites
(March 2021) and is planned to be enlarged to up to 30000 units. All satellites were
launched into LEO orbit (550 km). Each Starlink spacecraft is equipped with Ka and Ku
band transceivers, weighs 260 kg and is orbiting in 550 km LEO [McD20].

The mission is not aimed at IoT devices per se – the required ground terminals are
comparable large, consisting of an 59 cm phased-array dish antenna, a router and a power
supply. Due to the size of the terminal and the very high power consumption (over
100 W), the system is currently not suitable for CubeSats. Apart from reddit Ask Me
Anything sessions offered by the SpaceX software development team, it is hard to find
any information about the Starlink’s on-board software design. Every spacecraft has
multiple computers running realtime-optimized Linux operating system, which in parts is
shared with Falcon and Dragon. Also the alerting system is shared between Starlink and
Dragon. So, it seems that SpaceX has chosen a very unconventional way to implement
the software of space and ground segment and reuses many existing solutions from Falcon
and Dragon[tea21].

2.4.2 Myriota

Myriota is a planned constellation of 50 3U LEO CubeSats, each equipped with in-house
SDR-based VHF/UHF payload transceivers. By now, the company has purchased four
in-orbit satellites from exactEarth to start initial service operations and plans to expand
to 25 spacecrafts by 2022. Customer’s ground IoT end nodes can be equipped with small
form-factor (34x21 mm) transmitters (currently uplink-only) and can expect 4 Myriota
passes per day and transmit 20 Bytes messages with up to 3 hours delivery time [Myr21].

The satellites are developed by Tyvak Nano-Satellites Systems (US) – and will probably
be based on the Trestles platform [Sys21b]. The ground segment is currently consisting
of 6 ground stations from exactEarth and are located in Canada, US, Norway, Singapore,
Panama and Antarctica. Unfortunately, no software or protocol details could be found for
the space and ground segment.

2.4.3 Astrocast

The Swiss Astrocast LEO (550 km) constellation is currently consisting of 5 3U nanosatel-
lites and is planned to be enlarged to up to 80 satellites. The bi-directional communi-
cation to customer’s IoT ground nodes, which must be equipped with tiny Astronode S
transceivers, is performed in L-band [Ast21].

The ground segment is developed by Leaf Space and is consisting of 12 antennas.
The mission operations are controlled by the Elveti Mission Control System from Solenix
[Sol21]. Elveti uses CCSDS and PUS protocols, an overview of the systems is shown in
figure 2.3.

2.4. IoT/M2M Missions 29

Figure 2.3: Solenix Elveti Mission Control System overview. Image source: www.
solenix.ch

2.4.4 Kepler
The Canadian Kepler Communication company is planning to launch up to 120 3U and
6U nanosatellite into LEO (575 km), from which 5 spacecrafts are currently in space. The
aim of Kepler is to provide communication links to other satellites. With ISL capabilities
and store-and-forward approach the data is transmitted with much lower latency as, for
example, compared to Myriota.

The satellites are developed by SFL (University of Toronto), based on their SPARTAN
6U-XL platform[Tor21], and are equipped with SDR-based Ku band transmitters. The
ground stations are installed by the company itself, some being already set-up in Inuvik
(Canada), Svalbard (Sweden) and Awarua (New Zealand). No further details on the
software or protocol for the space and ground segment could be found.

2.4.5 Swarm
Swarm is a constellation of currently 36 (150 are planned) 1/4U SpaceBEE spacecrafts,
each weighing only 400 g. Ground nodes that are equipped with a small form-factor Swarm
Tile, can transmit up to 196 Bytes in a single packet and up to 25 packets per day in the
VHF band (bi-directional). Some minor information about the ground station set-up can
be found in the obligatory FCC form under [Inc17]. The plans were to bring the total
amount of ground stations to 30 by the end of 2020. Also here, no further details on the
software or protocols used for the mission operations could be found.

2.4.6 kineis
The kineis constellation will consist of 25 nanosatellites by 2023 and will be served by 20
ground stations around the globe. It will provide bi-directional communication to ground
IoT nodes and offer location services down to 150 m accuracy.

The satellite development is performed by Nexeya (platform), Syrlinks (payload) and
Thales Alenia Space[Kin18]. The demonstrator satellite ANGELS (Argos Neo on a Generic

www.solenix.ch
www.solenix.ch

30 Chapter 2. State of the Art

Economical and Light Satellite) is currently in orbit and is used to verify the flight soft-
ware. It is operated in S-Band with CCSDS protocol. Details on the ground segment are
described in [Sal+18].

2.5 OPS-SAT and MO services
Mission Operations (MO) is a service-oriented approach for operation of spacecrafts and
payloads[Sec10]. It includes:

• managing of the on-board software
• monitoring and control of satellite subsystems
• scheduling and execution of mission operations
• satellite performance analysis and reporting
• attitude and orbit determination, prediction and manoeuvre preparation

The OPS-SAT mission is funded by the ESA General Support Technology Programme.
The satellite was successfully launched in December 2019 into 515 km LEO orbit and is
controlled from the ESOC. The goal of the mission is to engage the new MO service-based
software architecture in space[CEK15; Eva+16; Coe17]. For this purpose a new NanoSat
MO Framework was developed by the Graz University of Technology in partnership with
the European Space Agency. The framework is Java-based, i.e. it can only be used on
high-power satellite subsystems and is therefore not suitable for subsystems based on ultra-
low power microcontrollers. In OPS-SAT only the payload computer, which is powered by
the MitySOM system-on-a-chip (performance comparable to Raspberry PI zero), can be
operated with MO services. Most satellite bus components are from Gomspace (NanoCom,
NanoMind, EPS) and are accessed with the Cubesat Protocol (CSP)[Alm14].

Figure 2.4: Overview of the MO Service Framework (image source: [Sec10], p.19)

2.6. Protocols 31

As soon as the NanoSat framework has been extensively tested in space, it may become
an option for advanced MO-based operations executed on a high-power computation sub-
system, which is only activated on demand (cf. Computing Board in the NetSat mission).

Even though the OPS-SAT mission is not a CubeSat formation, it shows the “agency-
way” to combine modern nanosatellite approaches with the existing agency’s software
and ground infrastructure. A more detailed description of the spacecraft and the ground
segment composition can be found in the [Coe17, p.128-129]. Compass framework was
therefore designed with OPS-SAT approach in mind. OPS-SAT is focusing on MO-based
operation of a single high-power satellite computing subsystem, whereas Compass – with
its inherent IoT nature – is targeted at bringing all ground and space system to the same
basis.

2.6 Protocols
Every satellite mission is composed systems distributed along the ground segment and
space segment, thus resulting in different types of communication paths:

• ground-ground: link between an operation workstation (or MCC) and the actual
ground relay (ground station)

• ground-space: connection between a ground relay and a satellite, plus an optional
payload-specific link between the payload provider and the payload’s transmitter

• space-space: inter-satellites communication (ISL)

In addition, following auxiliary ground-ground paths may be in use:

• radio amateurs: receive packets from external ham radios
• orbit simulation environment: e.g. communication between a satellite engineering

model and Orekit to perform in-the-loop simulations
• Matlab simulation environment: e.g. communication between Matlab and a satellite

panel to perform sun-sensor calibration
• test equipment: e.g. communication between a Matlab calibration algorithm and

motion simulators (turntables)

In the following, only protocols beginning with the OSI Layer 2 (Data link layer) are
discussed as well as protocols that are constrained by the available COTS transceivers.
For wireless communication paths only those protocols are considered that are also feasible
for UHF transmission, as only UHF-based communication was of particular interest in all
satellite missions (UWE-3, UWE-4 and NetSat) at ZfT during this thesis. This chapter
is mainly focused on protocols that are usable on pico/nano satellites, i.e. realizable
on very low-power components (cf. requirements in table 2.1). Also the space protocol
recommendations by the Consultative Committee for Space Data Systems [AA14](figure
2.5) were taken into account during the elaboration of a new protocol.

2.6.1 CCSDS Recommendations
The CCSDS recommendations propose several stack configurations with following proto-
cols as a common base for ground and space systems ([AA14], p.4-5,6,7):

32 Chapter 2. State of the Art

Figure 2.5: Overview of space protocols recommended by the CCSDS (image source:
[AA14], p. 2-4)

2.6. Protocols 33

1. Space Packet Protocol (figure 2.6)
2. IP protocol (figure 2.7)
3. CFDP protocol (figure 2.8)

Figure 2.6: CCSDS recommendation with Space Packet Protocol as End-to-End
forwarding (image source: [AA14], p. 4-3)

Space Packet Protocol (SPP) is designed to support all possible space applications
– even to the point of fractionated spacecrafts[Sec20]. SPP relies on predefined data-
layer protocols – either TM, TC, AOS, Proximity-1 or USLP[Sec15c; Sec15b; Sec15a;
Sec13a; Sec; Sec13b]. However, the SPP lacks the definition of path, network or routing
functionality – these functions must be provided by the underlying protocols.

The IP protocol is not an option for many low-power nanosatellite subsystems for sev-
eral reasons. The implementation of the full IP specifications would consume too much
program and main memory space. For example, the segmentation and routing capabil-
ities would by far exceed the 4KB main memory limitations of some UWE and NetSat
subsystems (Thruster control, Power Processing Unit and OBC). Using a very limited
implementation of the IP protocol would ruin its main advantage – compatibility with
available IP driven networks. Using the full implementation only on higher-powered sys-
tems would require another common protocol to allow low-powered systems being a part
of a uniform common network. Nonetheless, using IP or TCP/IP protocol as a carrier
between ground systems is from the practical point of view the only available option.

CCSDS File Delivery Protocol (CFDP) is similar to FTP protocol and is also suitable for
file-based communication. Several ESA and NASA missions were equipped with CFDP,
such as Deep Impact, MESSENGER, James Webb Space Telescope[Wil12]. CFDP intro-
duces a concept of a Virtual Filesystem, which avoids requirement for traditional disks
or file systems [Ray03]. File based communication may not be suitable best for any kind
of ground-space communication – as every possible transaction would need to be reduced

34 Chapter 2. State of the Art

Figure 2.7: CCSDS recommendation with IP protocol as End-to-End forwarding
(image source: [AA14], p. 4-5)

Figure 2.8: CCSDS recommendation with CFDP protocol as End-to-End forwarding
(image source: [AA14], p. 4-5)

2.6. Protocols 35

No. Service name

1 Telecommand Verification Service
2 Device Command Distribution Service
3 Housekeeping and Diagnostic Data Reporting Service
4 Parameter Statistics Reporting Service
5 Event Reporting Service
6 Memory Management Service
8 Function Management Service
9 Time Management Service
11 On-board Operations Scheduling Service
12 On-board Monitoring Service
13 Large Data Transfer Service
14 Packet Forwarding Control Service
15 On-board Storage and Retrieval Service
17 Test Service
18 On-board Operations Procedure Service
19 Event-Action Service

Table 2.6: Standard PUS services

to file operations. That is, CFDP is rather not suitable as the only service for uniform
service-based communication, but can still be in use for file-specific transactions. The
protocol relies on the dedicated session start and stop messages, which contradicts the
requirement R-SRV-2 (see table 2.2). Despite this limitation, CFDP specification was
used as an inspiration to define a File Service on top of the common protocol.

2.6.2 Packet Utilization Standard services
ESA Packet Utilization Standard (PUS) standard addresses the utilization of telecommand
and telemetry packets to support monitoring and control of remote satellite subsystems
and payloads[Sec03b]. The standard aims to satisfy fundamental operational requirements
and is not intended to be used for video or audio data, nor is it designed to be used for
monitoring and control of ground systems. All standard PUS services are shown in table
2.6. A service specification defines:

• requests that can be handled by the service
• success or failure notification as well as event reporting during the service execution
• internal service activities required to process a request or to detect and process

service-related events

The company 12G Flight Systems, founded in 2018 in Sweden, offers commercial im-
plementation of PUS services usable for CubeSats [Sys21a]. Using a commercial version
(provided by a newcomer company) is too risky, especially given the fact that the software
will be used on all ground and space systems in all current and future mission of ZfT. New
implementation of PUS services was considered as a not forward-looking option, since PUS
is slowly superseded by Mission Operations (MO) services[Mer+10].

36 Chapter 2. State of the Art

2.6.3 Ground Segment Protocols
In contrast to the space segment, ground systems are in general not suffering from com-
munication problems. TCP/IP can be assumed as a standard transport+network protocol
combination between distributed WAN-activated ground systems, i.e. all further mission
specific protocols are practically always placed on top of TCP/IP. Since TCP/IP is not
the best choice for the space-segment, it can not be used to realize the same network capa-
bilities in space. That is, if common (virtual) network is desired that combines all ground
and space systems, an additional virtual network (and transport) protocol is required.

The actual process-communication between network activated space and ground sys-
tems is performed via protocols that are placed above the network/transport protocol.
There is no common higher-level ground segment protocol that supports all mentioned
tasks, such as distributed ground station control, simulation access, etc. – and at the
same time support space systems. Instead, several protocol stacks are used for different
system types to enable particular functionalities. For distributed ground stations, the
GENSOO [SK07] software module and the corresponding GS Remote Operation Web Ser-
vice (GROWS) exist to support remote ground station control. The GENSO idea of GSN
was proposed in 1998 by the University Space Systems Symposium (USSS). After the
construction of the stand-alone ground stations with no common compatibility between
1998-2006, a working group started under the support of UNISEC. Eventually, software
was released in 2007, consisting of Ground Station Management Service (GMS, figure 2.10)
and GS Remote Operation Web Service (GROWS, figure 2.11). The GROWS service can
be activated only on Windows-based systems and it lacks ground station scheduling capa-
bilities, thus limiting its usability.

Another mentionable communication path is between the radio amateurs and the satel-
lite providers (operators). Especially when satellite providers have no access to a world-
wide ground station network, incoming packets from radio amateurs all around the world
may drastically improve the outcome of a mission. At the beginning of this work there
existed no common standard for automatic reception of ham radio packets – instead either
mission specific applications were made available that had to be executed by the radio am-
ateurs, or the packets were transmitted via e-mails. For example, the AMSAT-UK offered
a FunCube Dongle, which could be purchased by any person to receive and decode data
from the FunCube satellite [Sch13].

To improve the scientific outcome of the UWE missions, one of the results of this
thesis was the Simple Downlink Share Convention (SiDS)[Dom15b], which is used by
radio amateurs to automatically pass received raw satellite packets (UWE-3 and UWE-4)
to the UWE Mission Server. Throughout this thesis the SatNOGS platform increased in
popularity in the radio amateur community. It is used as a central storage platform for
satellite packets received by external ground stations all around the world. SatNOGS also
provides SiDS interface for packet reception.

The SONATE 3U CubeSat, which was developed under the supervision of Prof. Hakan
Kayal at the University of Würzburg, Chair VIII, was successfully launched in 2019. One of
the main goals of SONATE was to show extended autonomy with its ASAP payload. The
development of the mission was supported by a client-server based simulation software,
which used a custom protocol on top of the TCP/IP [Her17]. It is one further example

2.6. Protocols 37

Figure 2.9: GENSOO: Participating and Related Universities (image source
UNISEC global)

Figure 2.10: GENSOO: Ground Station Management Service (image source
UNISEC global)

38 Chapter 2. State of the Art

Figure 2.11: GENSOO: GS Remote Operation Web Service (right) (image source
UNISEC global)

of the common concept in the satellite development community to elaborate different
protocols for different tasks.

2.6.4 Ground-Space Protocols
The ground-space communication is usually to some degree constrained by the transceiver
being used in the space segment. For example the Lithium UHF transceiver from Astrodev
(used in UWE-3 and UWE-4) supports the transmission of any byte-array, therefore en-
abling the use of any Layer 2 protocol. In contrast to that, NanoCom AX100 transceiver
from Gomspace, which was selected for NetSat, is limited to Gomspace’s in-house CubeSat
protocol (CSP)[GOM11], thus a ground station must use CSP to contact the satellites.
Since the CSP configuration of the AX100 radio only supports 5 routing entries and lacks
broadcasting capabilities, it cannot be used to cover the entire NetSat mission.

On higher OSI layers, space protocols as recommended by the CCSDS can be estab-
lished to enable ground-space communication[Sec03a]. So the promising CCSDS Mission
Operation services approach has been shown in the ESA’s OPS-SAT mission as a service
protocol (MO-services) [CEK15]. However, the implementation is aiming at compara-
ble high-power satellite subsystems and can therefore not be used for all satellite (bus)
subsystems.

For the sake of simplicity and to meet specific mission requirements, many CubeSat
providers (e.g. Universities) implement their own space protocols. The MOVE-II satellite
from the Technical University of Munich (TUM) is equipped with their in-house Nanolink
protocol, which has been designed for ground-space links with high asymmetry and weak
signal quality [Lan+15]. The Missionlink protocol of the UWE-3 satellite has very dense

2.6. Protocols 39

Figure 2.12: Available DTN protocols

overhead but lacks addressability (no network possible). The UNISAT-6 satellite from
GAUSS Srl [DR18] and the SOMP2 from the Technical University of Dresden use the AX25
protocol to enable data reception by the radio amateur community. An counterexample
is the Flying Laptop from the University of Stuttgart, which is equipped with CCSDS
protocol and is operated from a SCOS-2000 enabled MCC [Kli16] – but being a bigger
satellite (60x70x87cm3) it is not representative for most pico-/nanosatellite missions.

In general all ground-space links suffer from higher error-susceptibility and from the
limited availability of space nodes during specific time periods. For this purpose sev-
eral available Delay-Tolerant-Networking protocols can be utilized (figure 2.12)[AA14], for
example:

• Licklider Transport Protocol [AA15b]
• Saratoga Convergence Layer Protocol (figure 2.13), e.g. used on-board the Disaster

Monitoring Constellation (DMC) satellites for image transmission[Woo+07]
• Bundle Protocol [AA15a]
• CCSDS File DeliveryProtocol (CFDP)[AA20], e.g. used partially (CFDP-Lite[Mes])

by NASA’s MESSENGER to transmit data to Earth

All these protocols were designed exclusively for interruptible paths and are not suitable
as a common protocol for the entire mission network. Nonetheless, the idea of store-
and-forward mechanism and hop acknowledgement was picked for further considerations
regarding the design of a uniform network-wide Compass protocol.
To tackle the problem of bit errors, error correcting code (ECC) can be applied during the

transmission, more specifically the forward error correction. For this purpose the Viterbi
decoder or Polar Code can be applied. The limiting factor of these correction techniques is,
that they are usually implemented in the radio hardware. Especially correction algorithms
that rely on the probability of a current baud being a 0 or 1 (soft bits), are dependent on the
information from Layer 1 (physical layer). The Nanocom AX100 from Gomspace, which
has been selected for the NetSat satellites, supports Viterbi algorithm out-of-the-box.

40 Chapter 2. State of the Art

Figure 2.13: Convergence Protocol

2.6.5 Inter Satellite Link
During the development phase of NetSat mission, the decision was made to use the
same communication protocols between the satellites (ISL) and between the satellites
and ground relays. Thus, satellite transceivers that are used for ground communication,
can also be used for ISL. In addition, the satellites can access ground systems and other
satellites in the same way.

Having multiple satellites in orbit raises the problem of concurrent access of satellites
to the same radio channel. The issue of concurrent access can be solved using several
approaches (see figure 2.14):

• Time Division Multiple Access (TDMA): different time slots for different data streams
• Frequency Division Multiple Access (FDMA): different frequencies
• Code Division Multiple Access (CDMA): simultaneous transmission over a single

communication channel using special coding schemes for every channel/node
• Space Division Multiple Access (SDMA): use beam forming or beam orientation

change to spatially separate channels
• Carrier Sense Multiple Access (CSMA): verifies the absence of other traffic before

transmitting

All these techniques can only be applied in the OSI layer 1 (physical layer) and are
therefore in general handled by the radio hardware itself, thus if one of the option is de-
sired, appropriate transceiver hardware must be selected and integrated into the satellite.
Additionally, a compatible solution for the ground segment must be elaborated if the same
channel type is used for the ground-space communication.

2.7. Considerations on Satellite Development and Operations 41

Figure 2.14: Multiple Access techniques (image sources: nature.com and max-
iustech.com)

2.7 Considerations on Satellite Development and
Operations

In this section several non-communication related challenges and possible solutions are dis-
cussed. In the scope of this work, the ground segment consists not only of essential nodes,
such as ground stations, mission servers and operation workstations (or mission control
center), but also of auxiliary nodes: simulations, test facilities and satellite engineering
models.

2.7.1 Satellite Software Development
In general, several software developers are working on different satellite subsystems at the
same time. In this development phase the subsystems are in different network environ-
ments (from the point of view of the subsystem) compared to the environment in the final
flight state. That is, in practice during the development, all subsystems are located at
different places and cannot interact with each other as they should do later in the final
assembly. As a consequence, the developers need to periodically get together, insert all
relevant satellite subsystems into one flat-sat or the engineering model and test the coop-
erative processes. It is highly beneficial to enable the communication between distantly
located subsystems during the development stage, as it improves the overall quality of the
development due to the constant testability of the cooperative processes. A solution is the
proposed distributed sat approach as an extension of the flat-sat approach, i.e. a dynamic
mission network that is established in the early development phase and remains active

42 Chapter 2. State of the Art

throughout the whole mission.

Dynamic Code Execution

To enable more sophisticated and customizable mission goals achievements, every nanosatel-
lite in a formation must offer an interface for dynamic code execution as a basis for
constraint-based on-board scheduler. Depending on the mission, the scheduler tasks can
either be uplinked from ground or be generated in-orbit. Especially the latter use is im-
portant for autonomous in-orbit formation control, which dynamically calculates thrust
maneuvers depending on the selected target orbit and currently measured orbit parame-
ters. The execution must be therefore performed on a continuosly running satellite sub-
system. Since this thesis covers pico- and nanosatellite formation missions, the dynamic
code execution capability must be available on very low-power subsystems, as those are
usually the only continuosly running components – such as the NetSat’s OBC, which is
powered by a 16 bit microcontroller with only 16kb RAM.

Common Code Base

The hardware of every satellite subsystem is designed in such a way, as to fulfil its particular
tasks and at the same time to minimize space and power consumption requirements as well
as development cost. This usually results in subsystems with different microcontrollers.
Since all subsystems offer the same basic functionalities, such as common protocols and
services, it is highly advantageous to reuse the implementation of those libraries in all
subsystem software images. This way, a corrected software bug or new features in a library
will be automatically applied to all other subsystem software implementations. To achieve
this, the software must be designed with appropriate abstraction layers, i.e. to make
the entire code hardware-independent (except the code in the hardware abstraction layer
itself). Further advantage of the abstraction is the ability to compile and test subsystem
code on workstations, which in turn enables straightforward design of SIL, PIL and HIL
tests.

Embedded Operating Systems

Depending on the real-time requirements, the projected software complexity and the avail-
able hardware resources, the satellite software can be implemented on top of an existing
embedded operating system. Some of the prominent examples are:

• VxWorks used, for example, on board the NASA’s Mars Pathfinder, Spirit, Oppor-
tunity and Curiosity rovers[Mui96].

• FreeRTOS open-source operating system, whose core was for example used in StudSat-
2 nanosatellite [Lam+15].

• SmartOS was developed for distributed (ground) applications by Marcel Baunach
[Bau12].

• Rodos – successor of BOSS operating system, developed by DLR and University of
Würzburg and was flown on TET-1, BIROS, BeeSat 1 and BeeSat 2.

• µCLinux is a stripped down Linux system, which was flown on UWE-1 and UWE-2
nanosatellites

2.7. Considerations on Satellite Development and Operations 43

Unfortunately most of the embedded OS either do not support 16 bit MCUs (VxWorks,
SmartOS, Rodos) or have comparable high memory requirements (µCLinux) and are there-
fore not suitable for all subsystems in the UWE-3, UWE-4 and NetSat satellites. One
exception to that is FreeRTOS, which will be considered for the follow-up missions at
Zentrum für Telematik. The ”downgrade” from the Linux-based UWE-2 to the non-Linux
missions UWE-3, UWE-4 and NetSat is due to the decision to simplify the on-board data
handling subsystem: minimize potential area for single event upsets (no external RAM)
and to optimize the on-board software back to bare-metal. In retrospect this step back
considerable improved the in-orbit performance of both non-Linux UWEs in comparison
to their predecessors. Nonetheless, a full-fledged Linux operating system is now used as a
base of the NetSat’s Computing Board, which is activated on-demand.

Despite their advantages, real-time operating systems also introduce a new complexity
layer: process synchronisation, prioritization, proper resource management and mutual
exclusions. Furthermore, the available main memory must be split and assigned to all
available processes, thus limiting available memory resources even more. Another option is
to implement common middleware in OS-agnostic way, i.e. make the middleware runnable
on bare-metal or on top of some operating system. This approach was selected for the
implementation of the embedded Compass middleware.

2.7.2 Testing and Verification
Some of the satellite subsystems cannot be fully tested using just software (e.g. unit-
tests). Instead, some of the components need to be tested in an environment that is
comparable to the environment expected in-orbit: launch conditions, temperature and
radiation. Furthermore, many sensors and actuators need to be tested and calibrated in
the appropriate test facilities. For example, to calibrate a sun sensor of a satellite panel,
the panel can be mounted in a motion simulator and oriented towards a light source
at different angles. This task is accomplished with at least three components: satellite
panel, motion simulator and a calibration conductor. The staff involved in the calibration
procedure has two options:

1. Manually perform the calibration, i.e. periodically control the motion simulator,
read-out the sun-sensor values and note them down along with the currently set
orientation.

2. Write a calibration algorithm (e.g. in Matlab) and glue-code that enables the algo-
rithm to access both the motion simulator and the satellite panel.

In the first case, the calibration conductor is a person and in the second one some developed
algorithm. Due to the non-uniform access to the test facilities and the satellite subsystem,
the glue code is mainly used to translate between the desired action and the specific
protocol. Now, the same test facility can also be used to calibrate other sensors, such as
inertial measurement units. But it would either require at least two specialists for manual
execution or another glue-code designed to perform the test automatically. The same issue
occurs in any other testing or verification scenario with non-compatible test equipment.

For a single satellite mission, the manual approach may be an adequate solution. For
the development of many satellites in a comparable short time period, the automatic
testing solution is the preferable scenario, as it reduces the complexity, the required time
and the amount of required personnel.

44 Chapter 2. State of the Art

Before the eventual launch, the satellites (flight models or equivalent engineering mod-
els) must undergo verification tests at external test facilities, such as shaker tests or
temperature-controlled vacuum chambers. These procedures are in general very cost in-
tensive and limited in time, e.g. contract over 24 hours. The ability to remotely access
the satellites ”from home” may considerable improve the outcome of the test procedures,
as it allows non-attendant co-workers to offer remote support – especially in case of unde-
sired anomalies. This has been shown multiple times during the vacuum chamber tests of
UWE-4 and NetSat in the iABG test facilities in Munich. The satellites were connected
to the ZfT’s Compass mission network via mobile connections during the test procedures.

2.7.3 Distributed Dynamic Mission Network
All communication paths that are present in a satellite mission, can be combined to a
decentralized virtual mission network. That is, some of the systems are only accessible
via other systems, which is for example the case when the ground station can only access
satellite B via the satellite A. Ideally, all systems in a mission network should be able to
communicate with each other in a uniform way. In this context a system is, for example,
a ground station (ground relay), an operator’s workstation, a motion simulator, a Matlab
simulation and all particular satellite subsystems. This requirement implies a uniform and
unique addressability of all systems within the network, i.e. every system must have a
common protocol baseline that allows them to communicate with each other. The desired
protocol must be optimally usable in all mission segments – ground-ground, ground-space,
space-space and between the satellite’s subsystems (intra-satellite communication). The
protocol must offer enough capabilities to handle inhomogeneous paths (routing, DTN
etc.) and at the same time minimize the overhead on paths where these functionalities
are not required.

The dynamic requirement implies that every system can access the network at any time
and gain knowledge about the entire network without a priori knowledge – comparable to
the functionality of the Internet. This is an alternative concept to statically structured
networks, where every node is equipped with a static routing map that needs to be modified
manually every time the structure of the mission network is changed. In addition, the
dynamic nature of the network allows nodes to enter the network at different places (e.g.
satellites passing over different ground relays) or yet unknown nodes to enter the network
(e.g. new operator’s workstation).

2.7.4 Operations
The operations phase begins after one or multiple satellites were launched into orbit, so
the Launch and Early Orbit phase (LEOP) is the starting point. The operations can
be divided into two parts that can theoretically be performed by two independent teams
(satellite bus and satellite payload provider):

• Basic satellite operations (carrier): TT&C (Telemetry, Tracking, and Command) –
keep track of the entire system healthiness

• Payload or mission operations: perform mission specific tasks being enabled by the
payload (e.g. Earth imaging)

2.8. Roundup 45

The operations software can either be some in-house solution or can be based on existing
frameworks, such as ESA’s Spacecraft Control and Operating System (SCOS 2000) or
more generic ESA’s Ground Operation Software Systems (EGOS) [Pec05], whereat both
are limited to the CCSDS frame standard, thus creating a constraint on the protocol used
between the operations workstation (or mission control center) and the in-orbit satellites.
There also exist solutions from the industry, such as the Pleniter Modular Control Center
Software Suite from SCISYS, which, for example, will be used to control the satellites of
the OneWeb mission. However, the Pleniter suite is expensive, is aimed at larger missions
and is not publicly available. In addition, the frameworks can be an overkill for smaller
nanosatellite teams.

Figure 2.15: SCOS 2000 TC History Display (image sources: esa.int)

2.8 Roundup
All discussed solutions to the common satellite mission challenges were used as the input
and inspiration to fulfil the main goal of this thesis: unify the functional and communica-
tion interfaces of all ground and space systems. Since the modus operandi of this thesis
was to proof the feasibility of all proposed approaches in a real-life CubeSat mission, the

46 Chapter 2. State of the Art

Figure 2.16: Pleniter Software Suite (image sources: pleniter.com)

realization had to be performed during the active satellite development at the University
of Würzburg, Chair VII, and ZfT. Therefore, additional practical limitations were present:

1. very limited manpower, e.g. 2-3 full-time employees for the whole UWE-4 mission
2. since the hardware of the UWE-3 subsystems was proven in-orbit, most of it had to

be reused in the UWE-4 and NetSat missions
3. gradually transformation of the UWE-4 mission software baseline (initially cloned

from UWE-3) towards the new system
The first limitation is the most crucial one, as the small team had to perform all

mission-relevant tasks: develop satellite hard- and software, maintain the UHF ground
station, implement software for all ground systems (Operations front-end, ground sta-
tion, mission server, protocols and services), scientific work, tests and verification, launch
organization and eventually satellite operations.

The second limitation dictated the software-follows-hardware paradigm, i.e. the com-
mon software and protocol solution for all satellite subsystems had to be suitable for the
smallest microcontroller (16 bit, 4 kB RAM, 32 kB ROM).

Due to the third limitation the new software framework for ground and space systems
could not first be fully implemented and then used to replace the existing infrastructure
at one go. Instead, the realization of the proposed approach had to be orchestrated in
such a way that:

• the recently developed component is capable of running in the currently active
software and/or protocol environment

• the time range is maximized, during which the most crucial parts of the new devel-
opment are in-use (real-life tests)

• parts of the embedded software are finished on a par with the corresponding hard-
ware development (software driven hardware testing)

3 | Approach

The perimeter of this thesis has been deliberately chosen to embrace as many relevant areas
as possible: ground and space segment, communication, operations, software interfaces,
testing, experiment execution and cooperative machine behaviour. Exclusive focus on a
particular area, without taking all other relevant areas into account, will lead to results
that very likely may become unsuitable at some point during the mission.

This thesis was started during the early LEOP phase of the UWE-3 mission in Jan-
uary 2014. This work was initially motivated by the very poor outcome of the UWE-3
operations: extremely low communication throughput, no auto-operations capabilities,
inflexible maintainability of the ground stations, and the inability of the satellite to ex-
ecute dynamic software (new experiments required hazardous in-orbit software updates).
The realization of the thesis’ approaches was performed in such a way that not only the
follow-up missions will be improved but also as many new implemented components as
possible are used to augment the currently active UWE-3 mission.

The protocol configuration of the UWE-3 mission, which was technically the starting
point of this work, is depicted in figure 3.1. It shows four different system types:

• UWE-X Operations front-end
• Ground Station Server (ground relay) based on several (open-source) software com-

ponents
• OBC as the only satellite subsystem with Missionlink support
• ADCS, Panels subsystems that could only be accessed using specific protocols during

the development phase

Due to the nature of the UWE-3’s Missionlink protocol (1-to-1 network only), the
protocol configuration was only allowing two peers: space node (represented by the OBDH
subsystem) and ground node (all operation front-end instances and the ground server acted
as one node). Further auxiliary systems, such as Matlab instances, for data post-processing
or software components used for conducting calibrations of magnetorquers, sun-sensors
and acceleration sensors were not part of this scheme. In the UWE-3 mission, no common
protocol was used during both the development and in-orbit phase. As the functionality
of the ADCS and the panels could not be accessed directly (e.g. using forwarding on
the OBC), the access had to be implemented in OBC for every single function (facade
methods). That is, if one of these subsystems had to offer some new routines to the
operator, the OBC had to be extended.

During the development and the AIT/AIV phase of the UWE-3 mission the team had
access to several non-inter-compatible systems. That is, different software artifacts and
protocols were used to fulfil specific tasks: testing, communication with engineering mod-
els, operation of flight models etc. With the raising requirements in the following missions,

47

48 Chapter 3. Approach

such as the UWE-4 (cooperative implementation with TU Dresden and yet multiple active
satellites in space), NetSat (cooperating formation of four in-house nanosatellites), QUBE
(cooperative development with partners from LMU, DLR and Max-Planck Institute) and
TOM (cooperative satellites from different partners) missions and with the limitations
in mind, such as the available manpower, time-frame and financial resources, it became
evident that a new approach for the entire mission design and development must be elab-
orated.

Due to the limitations described in 2.8, the realization order of this thesis was:

1. Design unification approach for space or ground system functionalities (MTBA).
Motivation: theoretical basis for all new software module implementations.

2. Re-implement UHF Ground station software: propagator, hardware low-level control
(rotor, transmitter, modem). Motivation: improve the flexibility and prepare for
auto-operations component.

3. Implement first version of the auto-operator (not mentioned in this thesis, as it has
been superseded by a new version later). Motivation: improve the outcome of the
UWE-3 mission and enable new experiments.

4. Design Tiny scripting language, implement it as a service and perform in-orbit
UWE-3 software update. Motivation: dynamic attitude determination and con-
trol experiments, in-orbit frequency noise measurements to find better UHF base
frequency

5. Design Compass protocol and Compass services. Motivation: specification of the
communication unification between all systems and current UWE-3 and future
(UWE-4, NetSat) tasks.

6. Implement Compass middleware for ground nodes (CompassNode). Create Compass-
Missionlink bridge to support the UWE-3 satellite. Motivation: equip with new soft-
ware Matlab nodes, Compass Operation front-end, ground station, mission server
and Compass gateways

7. Implement Compass middleware for embedded nodes (Compass OS) as a final trans-
formation step. Motivation: unify ground and space protocols, unify access to all
satellite subsystems (UWE-4, NetSat) and enable ISL.

8. Include Compass middleware in further auxiliary systems: Matlab instances, Orekit
simulations, test equipment (motion simulators, sun simulators) and satellite devel-
opment kits. Motivation: integrate auxiliary systems in the Compass ecosystem.

9. Use the completed Compass ecosystem for the UWE-4 and NetSat development,
verification, software testing and simulation of LEOP operations.

10. Combine all space (UWE-3, UWE-4, NetSat) and all ground systems to one super-
mission Compass network. Motivation: (auto-)operate all satellites at the same
time.

11. Implementation of the final auto-operations technology with recording capabilities.
12. Throughout the thesis: In-orbit experience with the UWE-3, UWE-4 and NetSat

(LEOP) missions.

The Compass Operations front-end was continuously developed during all these steps.

3.1. Uniform Model Interface 49

Figure 3.1: Protocol configuration of the UWE-3 mission (before this thesis)

3.1 Uniform Model Interface

This section proposes an approach for the unification of the functionality of distributed
hard- and software components. First, the theoretical background without implementa-
tion details is addressed, followed by particular implementations shown in the following
chapters.

What is functionality? The definition in the Oxford dictionary is: “The range of
operations that can be run on a computer or other electronic system”. This work is
focused only on software-based functionalities, i.e. any capability that can be accessed or
enabled by a microcontroller or a computer. The high-level functionality (e.g. satellite
tracking) is mostly based on low-level functions (e.g. propagation, antenna movement
etc.), whereat both levels should be individually accessible. A discrete access to different
levels is highly beneficial, as it allows to implement new high-level capabilities based on
already available low-level ones.

For the sake of convenience, an instance that offers a range of functional capabilities
is called a Node and the totality of all nodes relevant to a mission is called a Mission
Network. In most cases a node is a microcontroller or CPU based hardware component.
For example, a satellite subsystem with computational capabilities is considered a node.
Furthermore, multiple nodes can be logically grouped to a System, e.g. a satellite is a
system based on multiple subsystem nodes. A node must be discretely addressable within
the mission network – similar to a workstation being accessible in the intranet or Internet
via its IP address.

Example:
A simplified example of the NetSat formation mission network with:

• four in-orbit nanosatellites, each based on multiple different subsystem nodes:
OBC, AOCS, Panels and Thruster control.

• one satellite engineering model for test purposes
• multiple development models, which are used during the development phase
• developer’s and test engineer’s workstations

50 Chapter 3. Approach

• operator’s workstations
• in-house servers: ground station server, mission server
• external ground stations
• test facilities, e.g. turntables, sun simulator
• simulation environments: Matlab, Orekit

Developers
Test Engineers

Remote GS ServerIn-house GS Server

Operators

Dev. Satellite Eng. Model

Flight Model Flight Model Flight Model Flight Model

Test Facilities

Figure 3.2: Simplified NetSat formation Mission Network

Consider the example above. All of the nodes have obviously very exclusive duties,
which are commonly accessed via very different interfaces, thus forming adjacent interface
islands. As a consequence, many different – mostly non inter-compatible tools – must be
used to access different nodes, which in turn leads to either unnecessary high man-power
demand for simple tasks (many experts are required to enable a cooperative task) or un-
necessary high training overhead for one-time procedures – see example below. Usually the
glue code dominates the development process, i.e. software development that is necessary
to combine different interfaces and protocols to fulfil some specific task.

Example:
A test engineer needs to calibrate the sun sensor of a satellite flight model. During the

test procedure following components must be operated:
• satellite panel subsystem
• sensor model in the simulation environment (Matlab)
• test facilities: sun simulator and motion simulator

3.1. Uniform Model Interface 51

Three to four experts must be involved in the process: subsystem developer, simulation
expert, test engineer and communication expert. For this specific test procedure specific
software must be prepared by multiple responsible person in order to provide access to
different interfaces and to ensure a proper test life-cycle (timing, error recognition etc.).

This concept is obviously not feasible for smaller teams (cf. 2-4 full-time co-workers in
the UWE and NetSat missions) and is not suitable for agile development. Instead every
team-member should be able to access as much functionality as possible in the entire
mission network with as less as possible effort. To face this challenge, a Model Tree Based
Architecture (MTBA) approach has been developed, which considerably decreased the
overall complexity of the mission development and improved the development quality and
richness by allowing all team members to focus on their particular tasks but still be able
to uniformly access the functionality implemented by other members.

3.1.1 Model Tree Based Architecture

The Model Tree Based Architecture (MTBA) is inspired by similar, but more limited
approaches, such as the Model-based design (MBD) or the E4 Application Model of the
Eclipse Development Platform. Model-based design is widely used to develop complex
controls or visually design signal processing chains. The E4 Application Model is used to
describe the junction of multiple plugins or visual components to form a RCP-based E4
application. However, all of the studied approaches are designed to fulfil some very specific
task, such as signal processing or RCP application. In addition, all of these techniques
are bundled with further components – such as Eclipse or Simulink – that are not usable
on all present nodes. Therefore, the design of a new software unification approach was
decided that can cover all nodes with as less as possible prerequisites.

The basic idea of the MTBA is that any software component can be represented by
its Model Tree. The model tree consists of hierarchically ordered branches, with each
branch containing functions, states, variables, and other sub-branches. Multiple software
components or libraries can now be combined to form a larger model tree, such that the
entire software landscape of a satellite mission can be viewed as a distributed mission
model tree [DS14]. Instead of using specific software interfaces (e.g. via file interface
or sockets) or protocols, any component can be accessed or monitored via its model.
For example, to set some specific UHF antenna orientation, the angle values are set in
the corresponding model location (see Figure 3.4 under GS/Server/Rotator path). This
way the vast majority of the inter-system communication and system monitoring can be
reduced to the task of a modification of a (remote) model and propagation of model
changes – therefore dramatically abating the amount of the required glue code.

In order to make an existing library or a software solution MTBA-able, the developer
needs to implement a Model Tree Bridge. This portion of code is required to reflect the
software states, parameters and functions in the model tree and vice versa. It is up to
the developer to decide the level of the abstraction, i.e. which states and functions should
remain invisible to the network and how the model tree is organized.

52 Chapter 3. Approach

Figure 3.3: MTBA Bridge

Example:

Figure 3.4: Simplified view of the NetSat mission MTBA model

A simplified distributed model tree of the NetSat nodes is shown in figure 3.4. Two
satellite models are depicted in the upper part of the figure. Each of the satellite
branches contains the model of all available subsystem nodes, where every node exposes

3.1. Uniform Model Interface 53

its subsystem-specific parameters, states and functions. The Orekit simulation system
provides 6 virtual panel nodes, which can be used to substitute the actual panel hardware
and thus enabling Software-in-the-Loop testing.

3.1.2 Model Tree shadowing and Model-based communica-
tion

In the previous section a concept of a distributed mission model tree has been shown. From
the logical point of view, this tree is always present and describes the composition of the
entire software landscape. However, from the technical point of view the presence or the
availability of single branches may vary with time, e.g. when a satellite is out of range.
Therefore it is necessary to introduce the concept of model knowledge. In practice a single
node does not require the knowledge of the entire mission network – instead only a subset
of the remote model tree is required to realize cooperative processes.

Figure 3.5: Model Shadowing

For example, an operator’s workstation node can hold its last knowledge about the
model of a NetSat satellite (see figure 3.5). Any change in the local model copy leads to
its synchronization with the real model. With this Model-based communication technique
and supposed that the mission model is properly designed, most of the cooperative tasks
and tasks that rely on multiple nodes can be implemented in a communication agnostic
way, i.e. without taking care of the communication process.

3.1.3 Model buffering
Another advantage of the Model shadowing is the ability to buffer model knowledge
on high-performance nodes, such as mission server nodes, to minimize communication
throughput to the model’s origin. Since every model change event is implicitly transferred
as a communication packet between the model’s origin and its listener, it most proba-
bly passes some high-performance intermediate node, such as a mission or ground station

54 Chapter 3. Approach

server, where it can be cached for later use. Every model entry holds not only the value
itself but also a timestamp at which the value was created in its origin. If some model
read request contains a maximum age constraint and on its way to the target the packet
passes a node that possesses a recent enough value of the desired model entry, the request
can be satisfied without reaching the target. This dramatically reduces the required com-
munication throughput induced by multiple operator’s workstations, as the request of one
operator can indirectly fulfil the future requests of other operators.

3.1.4 Model swapping
In the context of the mission model tree, every node-specific model branch must contain
some sort of information about its origin, such as address, name or any other addressing
information supported by the used communication interface. Every time a local model
knowledge is synchronized with its origin, a request or update packets are created with
the origin’s or listener’s address. Now every physical (i.e. “real”) node can be represented
in the mission network by some hardware or software simulated one. This is of particular
interest for in-the-loop tests, where real hardware nodes can be substituted with hardware
and software simulations. This is described in more detail in the section 3.1.6.

3.1.5 Implementation
A MTBA-able software component can be included at any time in the entire mission
software model without additional software or glue code. During this thesis Compass
middleware was developed, which provides Model interfaces, and Compass Model service
for model requests, modification and propagation on the upper Compass service layers. It
is available for Java (CompassNode) and C/C++ (Compass OS) and can be deployed both
to high-end workstations as well as to ultra-low power microcontrollers (min. requirement
16 bit MCU, 500B RAM, 10+ KB ROM).

By the end of this thesis, all relevant nodes for current and planned missions at the
University Würzburg (Chair VII, Robotics and Telematics) and ZfT were made accessible
via the Model service:

• Compass Operations front-end
• Embedded software for all satellite subsystems
• Mission Server
• GS Server
• Matlab environment
• Distributed simulation environment (Orekit-driven)
• Test facilities

The proposed Model approach does not dictate how to implement a functionality – it
rather describes how the functionality should be seen and accessed from the outside. The
Model representation can either be achieved by creating a bridge (see section 3.1.1) using
the now available middleware or by adding the support at the protocol level (see section
4.3.10). Further implementation details are described in more detail in the Chapter 5 and
Chapter 6.

3.1. Uniform Model Interface 55

3.1.6 Testability

As mentioned in the section 3.1.4, model-swapping forms a base for in-the-loop testing
and is therefore a suitable tool for Model-driven engineering (MDE). Model-driven devel-
opment is extensively used in the automotive industry [Wae16]. The basic idea of the
Model-driven engineering is to thoroughly test a newly designed component in several
development stages (Model → Software → Processor → Hardware) against a plant simu-
lation, which represents all related dynamic systems of the counterpart. During the test,
the behaviour and interaction of the implementation is tested against the simulation of
the future environment. On success, the development stage is shifted to the next level.
There exist four different stages (see figure 3.6):

• Model-in-the-Loop. Test the model (e.g. Simulink) of the component.
• Software-in-the-Loop. Test the software of the component running on a development

Workstation.
• Processor-in-the-Loop. Test the software running on a platform that is compatible

to the final one (e.g. on a Development Kit).
• Hardware-in-the-Loop. Test the final component against the plant.

Figure 3.6: Model Based Development

In the MTBA context, the plant is a network being populated with simulated nodes.
The functionality of a new node is first implemented as a Model (e.g. in Matlab), then
implemented in a software framework compatible with the final node hardware (e.g. GCC),
followed by the software being executed on the compatible and later on final hardware
platform.

However, the Model-driven engineering concept is limited to a plant simulation be-
ing the counterpart of the test procedure. Thus, a more generalized Mixed-Loop-Testing
concept is proposed as described in the following section.

56 Chapter 3. Approach

Mixed-Loop-Testing

As stated before, the MDE testing requires a simulation of the entire plant. In the
nanosatellite context, all satellite subsystems, all environmental inputs and dynamics must
be modelled and simulated in a proper environment. This implies tremendous efforts for
small teams, as not only the functionality but also the response behaviour of all relevant
nodes must be simulated, which in-turn requires to some extent the simulation of the
microcontroller behaviour (frequency) and the behaviour of (error-prone) links, such as
I2C, serial, radio etc. Moreover, many satellite subsystems or major hardware components
(transmitters, propulsion system, etc.) are purchased from other companies.

Usually, the teams create models for very specific areas that rather belong in the
Model-based design category. The MDE testing concept is a great opportunity to improve
the development organization and has the potential to significantly improve the quality of
the developed components. With some modifications it becomes a useful tool in realistic
development conditions.

Mixed-Loop-Testing (MLT) proposes a generalization of the MDE testing concept, by
introducing a mode of the plant itself. Now also the plant nodes (network) can be in the
model, software, processor or hardware stage. The abbreviations MIL, SIL, PIL and HIL
are now extended by an additional plant stage letter: AIBL with A is the stage of the test
component and B is the stage of the plant. Using the proposed terminology, a test can be
described more precisely – see examples below. The MIL, SIL, PIL and HIL tests become
special cases of the Mixed-Loop-tests.

Figure 3.7: Development stages

Example: Mixed-Loop-Tests

• Software-in-the-Software-Loop (SISL): run ADCS and OBC (plant) software on
separate workstations

• Software-in-the-Processor-Loop (SIPL): same but with OBC software executed
on a hardware development kit

3.2. Uniform Communication 57

• Hardware-in-the-Model-Loop (HIML): feed ADCS subsystem with values from an
Orekit instance

• Model-in-the-Hardware-Loop (MIHL): run sun sensor calibration algorithm in
Matlab with plant consisting of a flight model in the turntable.

From experience with the in-house and external (TU Munich, TU Dresden, DLR,
LMU) nanosatellite projects, a subsystem implementation begins mostly in a software
development environment that is provided by the microcontroller’s manufacturer – such
as Code Composer Studio for Texas Instruments MCUs or Atmel Studio for Atmel MCUs.
One exception to that is the implementation of Linux-based subsystems – here usually a
standard GCC compiler or higher (script) languages are involved. The testing procedures
of the cooperative behaviour are mostly executed using either hardware development kits
or the final satellite hardware (e.g. PIPL or HIHL).

Figure 3.8: Mixed-Loop-Testing

In order to enable the software stage of the plant, the software of all relevant plant
nodes must be runnable on a workstation (see figure 3.7). The hereby achieved testing
environment is not identical to the real hardware with respect to the timing behaviour
– but considering the comparable low effort, such a system gives a great opportunity to
perform cooperative functional tests without additional hardware. One of the tasks during
the thesis was therefore to convert the software implementation of all satellite subsystems
– see Chapter 5. In the consequence, many formation-relevant in-the-loop tests could be
performed, which is described in more detail in Chapter 7.

3.2 Uniform Communication
In the previous section a method was proposed that was applied in the current Cube-
Sat missions at the ZfT and University of Würzburg to uniformly describe and release
mission-relevant functionality of all components involved in the mission network. After
the functionality interface is settled down, a problem arises of how to remotely access

58 Chapter 3. Approach

the desired functions. In real-world missions, many hardware and software components
are connected to the mission network via heterogeneous communication links with respect
to the utilized protocols (e.g. TCP/IP via LAN or WAN, local Sockets, Serial interface,
SPI, Two-line Interface (I2C) or Radio) and physical links (wire, wireless LAN or UHF
communication). A simplified example of the network composition of the NetSat mission
can be seen in the figure 3.9. As can be seen in the example, numerous protocol islands
are existent in such a network. Thus special protocols/software must be utilized to access
some specific component. The communication gets even more complex if it must be es-
tablished along multiple islands – for example if a Matlab script needs to access satellite’s
values to perform a calibration task.

Figure 3.9: Protocols in a simplified NetSat mission network. (A) embedded intra-
system protocol, (B) wireless inter satellite protocol, (C) protocol between work-
stations, (D) engineering link protocol, (E) orbit simulation handling protocol, (F)
Matlab simulation protocol, (G) test facility control

A common way to face the problem of the communication inhomogeneity is to im-
plement a protocol tunnel, which implies that every component between two end-points
must be able to detect some incoming packets as tunnel communication and forward them
as specified by the configuration. Another option is to add a common protocol on top
of the protocol stack of all involved components. Such protocol must at least fulfil the
requirements.

1. Runability on low-performance components (satellite subsystems), max. hardware
requirement in the scope of this thesis is: 16 bit architecture with 32 KB flash and
4 kB RAM.

3.2. Uniform Communication 59

2. Provide global addressing and built-in routing capabilities on all components.
3. Usability on asymmetric lines, i.e. where the transmission quality (drastically) dif-

fers from the receive quality. From in orbit experience with UWE-3 and UWE-4,
the packet loss during the uplink can be much higher than the downlink (acknowl-
edgment problem).

4. Dynamic network spanning: new components must be added with zero configura-
tion. E.g. if a satellite is in range, it should appear in the network.

5. Advanced functions: encryption, DTN, extendability and compression.

A more detailed requirement overview is shown in the Requirements section. With
experience in mind from UWE-1 [SPS07] and UWE-3 [Bus+15] new Compass protocol
was elaborated that meets all set requirements and can either be placed on-top of existing
protocol stacks or replace already existing protocols, thus reducing the overhead and the
complexity of systems. If required, Compass can be used on some network segments
as a transport protocol for other specialized protocols, such as ESA’s CCSDS Mission
Operation Services (MO Services) [Reg+16].

Following sections show summarized approaches for specific requirements. A detailed
description of protocol functions are shown in Chapter 4.

3.2.1 Addressing
The required protocol must span a dynamic mission network and offer globally unique
addresses. In the section 3.1 a concept of Node and System was introduced. Compass is
designed to support three hierarchical domains (also see figure 3.10):

• Node domain: communication between different services within a node. In the
satellite context, this corresponds to a communication within some subsystem.

• System domain: communication between nodes, which are grouped to a System.
• Global domain: communication between any nodes within the network.

Therefore every node has an address of this form:

SystemID : SubsystemID

whereat software on each node is organized in standard services. A service has a unique
ID and can therefore be accessed from any node via:

SystemID : SubsystemID : ServiceID

Technically every node is a subsystem, i.e. there is no separate hardware component,
which represents the system as a whole. Thus a system is always an emergent entity
formed by selected subsystems. Nonetheless, in real world there is usually an entry sub-
system (Entry node) in every selected system that is usually conditioned by the available
communication links (see example below). It is also possible to have different system entry
nodes for different physical communication interfaces.

60 Chapter 3. Approach

Figure 3.10: Compass Domains Approach

Example:
The NetSat-1 satellite is built up of OBC, AOCS, Panels and a Thruster Control subsys-
tem. Every subsystem has a globally unique address: NetSat-1:OBC, NetSat-1:AOCS
and so forth. The radio transceiver (off-the-shelf component) is connected via serial
interface with the OBC. Therefore any radio-based communication from the mission
network to the NetSat-1 subsystems always passes OBC. So, for radio communication
OBC is the entry node of the NetSat-1 system.

A Compass node address consists of 4-bytes SystemID and 1-Byte SubsystemID, thus
allowing 240 unique nodes within one mission network. Depending on the domain of the
communication, more or less address parts are transmitted within the Compass packet
header (intrinsic compression). With special System or Subsystem IDs a packet can be
transmitted as flat or deep broadcast. Depending on the network shape, a broadcast can
be utilized as multicast or anycast (see section 4.2.5).

3.2.2 Channels
A node can have multiple physical communication channels. For example the OBC of the
NetSat mission has following practically used physical interfaces: 2x serial and 2x I2C.
A common workstation has a (W)LAN connection (TCP) and multiple serial connections
that can be used during the engineering phase to access the satellite’s hardware.

A Compass enabled node can handle an arbitrary number of channels, which are used
to send, receive and forward Compass packets and also automatically detect nodes in the

3.2. Uniform Communication 61

neighborhood by analysing the traffic. In the context of Compass, a channel is not nec-
essarily a low-level physical interface (such as serial), i.e. depending on the requirements
the Compass protocol can be placed on different OSI-layers. On the software level new
channels can easily be implemented using the provided interfaces – for both Java and C
Compass implementations. During the thesis channel support for the following interfaces
was implemented: TCP/IP sockets, Serial, I2C, AX25, KISS and for several transceiver
modules used in ZfT’s missions – see the description of different link types for further
details.

Ground-Ground Links

Ground links are connections between hardware and software nodes on ground, such as: op-
erations workstations, development workstations, ground station servers, mission servers,
simulation instances (Matlab, Orekit), test facilities or radio amateurs. Since there exist
lesser limitations on ground with respect to power, space or computation speed, these
nodes are in most cases based on more powerful machines and can therefore offer more
advanced Compass services. They are called high-level nodes in contrast to low-level
satellite nodes. Under realistic conditions ground nodes are inter-connected via local
(LAN/WLAN) or wide area network (Internet) – both using TCP/IP sockets. One ex-
ception to that is the development/engineering satellite model, as it is usually connected
using the serial interface during the development and later is tested using the same radio
interface, as used after the launch.

Due to the dynamic nature of the Compass network, a satellite can be seamlessly
switched from the serial connection to the radio based – instead of being connected via
the serial channel to the developer’s workstation it is then available via the GS server.
Similar to that, all high-level nodes can be seamlessly switched from one server connection
to another. From experience with ZfT’s satellite projects, the dynamic feature significantly
speeds up the cooperative development, as zero configuration is required to perform dif-
ferent types of tests or other cooperative processes.

Furthermore, the Compass protocol provides intrinsic basic GSN capabilities. Multiple
Compass activated GS servers automatically provide the information about the availability
of a satellite (overpass) by receiving satellite beacons. A Compass-based GSN network
will be a basis for the ZfT’s TOM/TIM mission and combine the partner’s ground stations
to one Compass mission network.

Ground-Space Links

Ground-space links are communication channels between the ground relays and the in-
orbit satellite systems. Beginning with the UWE-1 mission, all UWE missions rely on the
UHF-communication. For several reasons the team at ZfT decided to keep the UHF-link
as a main communication channel:

• Never change a running system: keep the UHF channel – even if an additional
faster channel will be implemented for the first time, such as S-Band (TOM), Laser
communication (QUBE).

• Simplicity: the ground station hardware, required for the UHF communication, is
comparable simple and inexpensive.

62 Chapter 3. Approach

• External help: many radio amateurs with UHF ground stations may provide help –
especially during the LEOP phase.

During the UWE-3 project, the Simple Downlink Sharing Convention (SIDS) was in-
troduced in the scope of this thesis. It is used to date by the radio amateur community
to forward received satellite packets towards the operator. The protocol was also imple-
mented by Mike Ruprecht (callsign DK3WN) in his decoder software, which is widely used
in the radio amateur community. The standard was also used by other Universities (e.g.
UNISAT-6 from GAUSS Srl) and became the main interface of the SatNOGS platform,
which is also well established in the radio amateur and CubeSat community. Since this
convention introduces a downlink-only GSN, many ham radios participate, who would
otherwise opt-out if the proposed interface would open-up their hardware to external op-
erators for uplink. Nonetheless, a new Compass-based full GSN convention would be a
helpful follow-up standard.

To enable ground-space communication, it was necessary to separately face the task
from both directions, as both sides are composed of entirely different hardware compo-
nents. For the satellite a radio Compass channel was implemented in the embedded Com-
pass OS, as well as a software interface was defined to allow straightforward implemen-
tation of future radio channels (e.g. S-Band). On the ground side the Compass-enabled
ground station server accesses the TNC via a serial channel to send and receive radio
packets.

The Compass based ground-space communication has been tested extensively since
December 2018 with UWE-4 and since September 2020 with all four NetSat satellites.
Therefore, along with ground-ground Links, this type of communication is now considered
space proven.

Space-Space Links (ISL)

In the NetSat mission, ISL is performed via the same UHF-channel and frequency as used
for the ground-space communication. The disadvantage of the frequency sharing is lower
communication throughput of the formation and higher probability of packet collisions.
The advantages are:

• A satellite can broadcast its states to multiple neighbor satellites with a single
packet.

• Using multiple frequencies simultaneously (Frequency Division) would require much
more sophisticated radio hardware, which is currently not available off-the-shelf for
nanosatellites and would also not scale with higher amount of formation satellites
that are planned for future missions.

• Using multiple frequencies successively (Time Division) may introduce additional
delays as the result of the frequency switching.

To decrease the probability of collisions, the radio channel implementation of the
Compass software utilizes Carrier Sense Multiple Access (CSMA) and Collision Avoidance
(CA).

• Carrier Sense: do not send if somebody is currently sending
• Collision Avoidance: use random break times before sending after sensed carrier or

before resending

3.2. Uniform Communication 63

These techniques may not work for all available off-the-shelf satellite radios, as many of
them do not offer an interface to detect the carrier. In fact, CSMA/CD methods are
usually offered by the radio hardware itself – such as the radio subsystem used in ZfT’s
missions (Gomspace AX100).

The Compass channels also support constrained-availability, i.e. a channel or a distant
node can only become reachable under certain conditions. For example, the ISL can be
realized using comparable high-gain antennas, which first need to be pointed towards the
desired target satellite. This can be done both using a priori knowledge of the relative
position of the target satellite or using a scanning-scheme if the desired orientation is
not known (yet). Using high-gain antennas would also introduce the ability to use space
division as a multiple access technique. The disadvantage of this type of communication
is that it relies on many components, such as determination or scanning algorithms, at-
titude detection and attitude control, and the required communication constrains may
collide with other tasks (e.g. Earth observation). Furthermore, since it takes comparable
long time to establish a (high speed) link between two satellites, this technique is not
appropriate for tasks where one satellite needs to exchange data at higher frequency with
multiple formation siblings.

Intra-Satellite Links

Two bus technologies are common for the communication between nanosatellite subsys-
tems: Controller Area Network (CAN) bus used for example in the BeeSat-2 to BeeSat-4
from TU Berlin [Kap+16] and I2C-bus used for example on UWE, NetSat, TOM and
QUBE missions. For one-to-one communication, e.g. to connect the OBC with the radio
subsystem, serial or SPI connections are usually an option – but those are design-wise not
multiple access buses (even though they can be extended to star-shaped topology using
slave-selection lines). In the scope of this thesis, I2C and serial channels were implemented
to support the communication between Compass-enabled subsystems. The intra-satellite
interfaces are described in more detail in section 4.4.

3.2.3 Routing
One of the major aims of this work was to enable decentralized and dynamic Compass
networks, i.e. the network can be extended without configuration, such that newly ap-
peared systems are accessible by all other existing systems without a priori knowledge. To
reach this goal, every node in such a network needs to broadcast its own identity (network
beacons) via its connection channels. A node that receives a network beacon, gains knowl-
edge about its neighborhood and can therefore detect new nodes or detect the inactivity
of an already known node if no beacon was received from that node for some period of
time (e.g. one minute).

A network beacon is only sent to direct channel neighbors and is not forwarded to
nodes further away (hop number > 1) for several reasons:

• Scalability: a newly inserted node would only increase traffic in its direct neighbor-
hood. With deep broadcasting, a node would increase the global traffic proportional
to the global amount of nodes.

• Protection of low-throughput channels, e.g. ground-space channels are used as less
as possible for the communication of meta data (beacons).

64 Chapter 3. Approach

• Reduction of the network load
A node gains deeper knowledge of the entire network from beacons, which contain the

network knowledge (routing map) of the beacon’s sender. This way the knowledge about
a new node is indirectly transported beacon-by-beacon into the deeper network. If a new
node accesses the network, its network knowledge will be increased with the first received
beacon. Please approach the example below. It is evident that the speed of the knowledge
propagation depends on the beacon rates (e.g. every 10s) and their timings with respect
to each other.

Example:
A satellite has several interconnected (I2C bus) subsystem nodes (see blue boxes in
the figure 3.11), whereat the network knowledge of every subsystem is only limited to
its siblings, thus resulting in a satellite-only subnetwork. The ground segment consists
of a radio-activated ground server, company’s mission server and several workstations
(orange boxes). During the overpass, the OBDH subsystem receives a network beacon
from the ground segment and instantly gains knowledge about the entire ground segment
subnetwork. This knowledge will be later transferred to other subsystems as soon as the
NetSat:OBDH broadcasts its beacon via the I2C bus. On the ground side the situation
is similar: first the GS:Server is aware of new space nodes, then its knowledge is
transported as beacons toward ZfT:Server and so forth.

Figure 3.11: Routing Example, connection of two subnetworks

Due to the dynamic nature of the network knowledge, the routing map must be stored
in the random access memory – which can become a problem for nodes with very limited
resources (e.g. only 4kB of RAM). As can be seen in the example, a real-life mission
network contains both high-dynamic parts (e.g. workstations, test facilities) and static
parts (satellite’s subsystems). Compass allows to predefine a priori network knowledge
for a node, e.g. every subsystem of the satellite’s flight model “knows” about its direct
neighborhood without receiving any beacon. This static knowledge can be stored in the
program memory, thus reducing the consumption of the dynamic main memory.

3.2.4 Advanced Protocol Functions
In addition to the mentioned basic protocol capabilities used for the unification of the
communication, more advanced functions are necessary depending on the specific channel

3.2. Uniform Communication 65

properties. Here only the major functions are mentioned – a full list of functions can be
found in section 4.2.

Delay Tolerant Networking (DTN)

DTN describes a protocol architecture that is used to overcome technical problems with
sparsely connected heterogeneous networks. One prominent example is the Interplanetary
Internet (IPN) developed by NASA [ABH18]. In the scope of Compass, DTN is the ability
to store-and-forward, i.e. a packet can be sent to a currently not available node along the
last known path, whereat the packet is stored by the last node with DTN capabilities and
remains there until the next hop becomes available again. Every Compass packet can
either be configured as DTN-activated or as burst packet. The former will enforce the
so called hop-acknowledgements, i.e. the packet reception is acknowledged by every node
along its way to the target and, if possible, stored on a DTN-activated node if the target
is not currently accessible. The latter non-acknowledged mode is used for broadcasting or
enable communication with very asymmetric links with respect to the packet loss. From
experience with UWE-3, UWE-4 and NetSat there are usually time periods where the
downlink is much better than the uplink. In this case relying on the acknowledgement from
ground would massively decrease the downlink throughput. Thus, for data transmission
tasks bulk-acknowledgements are utilized by the File service – see section 4.3.4 for more
details.

Encryption

The Compass protocol supports the built-in XTEA symmetric encryption. XTEA has
been chosen, as it can be implemented on very low-level hardware and it does not require
handshaking or key exchange, which would become unusable in some realistic (i.e. expe-
rienced) scenarios. It supports the encryption using either the sender’s or the receiver’s
key. The former provides also an intrinsic packet signing functionality.

Tunneling

With the tunneling unknown protocol packets can be forwarded to any node within the
Compass mission network. The tunneling is provided by the Compass Tunnel service.

Example: Tunneling
A Compass-enabled ground station has been configured to track a non-Compass UNISAT-
6 satellite. For this task the satellite receives a logical Compass address UNIS:1 and
an address of the node to which all packets must be forwarded (GS:Operator). From
now on, all incoming packets from the UNISAT-6 satellite will be enveloped by Com-
pass packets and forwarded to GS:Operator. The operator’s workstation can extract
the original data from the payload and visualize the data using satellite-specific GUI
components.

Tunnel service is also used to tunnel (not forward) local Compass traffic to some distant
node. During the satellite operations at ZfT the traffic between the satellites and the
current (auto-)operator is additionally tunnelled to all other operators in the network. The

66 Chapter 3. Approach

Compass Operations front-end handles ”real” incoming packets and tunnelled-in Compass
packets differently (it remains passive).

During the NetSat operations two Compass-enabled Software Defined Radio (SDR)
receivers were used as redundant downlink channels. Both radios were running on separate
workstations and used the Tunnel service to pass received raw-bytes to the ground station
server that in-turn decodes the packets depending on the protocol configuration of the
currently tracked satellites.

3.3 High-level Functionality
After a standard for functional and communication interfacing is established, the next step
is to enrich the nodes with higher-level functionality. In context of Compass, some specific
functionality is offered as Compass service. In the following sections the basic approach is
shown, of how single tasks are realized with different services – a more detailed description
can be found in the Chapter 4.

3.3.1 Services

The Compass protocol supports up to 216 different Service IDs, whereat the first 200 IDs
are reserved for current and future standard services and are therefore globally unique
along all satellite missions. In the scope of this work only globally unique services are
described, thus the Chapter 4 is at the same time the documentation of the current
Compass protocol definition. IDs above 200 are freely defined by the satellite developers
and are therefore unique only within a specific mission.

Regarding the OSI model, a Compass service is located on the Layer 5 (Session Layer).
One exception to that is the default Network Service (ServiceID=0), which is used for
network features and therefore affects Layers 2-4: Data Link, Network and Transport.

3.3.2 Network Features
All available Compass network features are implemented in the default Network service:

• network beacon propagation
• DTN acknowledgements
• DTN packet buffering and flushing
• beacon consumption

A more detailed description can be found in the section 4.3.1. Depending on the available
memory and computational resources of a (low-powered) node, the Network service func-
tionality may be limited – e.g. lacking DTN capabilities or limited memory for network
knowledge. Nonetheless, the information about those limitations are indirectly propagated
to the entire network via the network beacons – see section 4.3.1.

Due to the in-build Compass header compression, the ID (0) of the Network service is
not transmitted in the protocol header, thus reducing the overhead.

3.3. High-level Functionality 67

3.3.3 Telemetry, Tracking and Control (TT&C)
All TT&C tasks are performed based on the uniform Model interface, i.e.:

• the telemetry is received as a model update packet
• the control is achieved by changing values of the remote model tree and by calling

remote commands
• the tracking is conducted by the ground station node, where all values (current satel-

lite, overpass, distance, Doppler etc.) are also represented in the ground station’s
model tree

All model changes are synchronized – either automatically or manually – via the Model
service. Model update packets from the satellites are automatically updating the model
knowledge on the receiving node. The operator can either subscribe to all or to some
specific model changes on the remote node.

The console-like commanding is enabled by the Command service, which is used as a
simple text-based interface to execute commands remotely. In UWE-3 commanding inter-
face was used much often than in UWE-4 and NetSat missions, e.g. to run experiments,
activate processes or prepare file transmission. In the latter two, Model service has re-
placed most of the former commands. The Command service is nonetheless useful for TC
tasks that cannot be made (meaningfully) controllable via Model service.

The remote data acquisition is offered by the Automatic Record and Report service
(ARR service). Being an extension of the Model service, it is capable of storing all model
changes to a file and can later be (automatically) downlinked via the File service to the
(auto-)operator’s workstation. Satellite subsystems without local file storage can store
their recordings in remote files, located on a different subsystem – provided that they offer
Compass Network drives.

More advanced tele-control activities are enabled by utilizing the Tiny script executor
service. Compiled scripts can either be sent directly as a packet to the remote Tiny service,
or the remote service is pointed to some previously uploaded file via File Link service.

3.3.4 Testing and Fault Diagnostics
It is highly advantageous to have testing tools during all mission stages:

• Logging: receive information about the current state of one or multiple processes
• Unit-testing: tree-ordered list of automatic self-testing routines
• Network testing: capability to test a specific network route

The logging is provided by the Log service, which is deactivated by default to reduce the
network load. A log message can be created at any point in the embedded code and
is automatically transmitted towards the current operator’s address via the Log service.
If a node has local file storage, this service offers file storage capabilities for local and
incoming log messages. During the NetSat operations, the OBC was storing messages
from all subsystems to a local file, which was periodically downloaded at night by the auto-
operator. On the receiver’s side (operations node), the log message must be visualized in
a clearly arranged view.

A unit test is a set of routines that are used to determine whether the current imple-
mentation is faultless and suitable with respect to its task. Usually, a unit test has multiple

68 Chapter 3. Approach

subordinated tests, which all need to become “green” in order to proof the correctness of
the parent entry. A common way is to create unit tests on different complexity levels,
i.e. first to test the low-level functionality and then move one abstraction layer higher to
test software portions that rely on the already tested ones. With the Unit Test service
the operator can enquire a tree of all available tests of a remote system and selectively
execute them. Even though unit tests are extensively used by the ZfT’s team, in the
scope of this thesis it will not be described how to implement a unit test (as it is very
implementation specific), instead a way is proposed of how to provide access to existing
unit test implementations.

At times it may be necessary to test the quality of some specific connection route,
i.e. to derive the round-trip time and packet loss ratio. With Echo service all incoming
messages are bounced back as-is to the sender. An echo packet can either be created
manually in a console-like window or multiple packets can be generated automatically
using a network testing GUI (Echo View). The Echo View can visualize the packet loss
and mean round-trip time along with some additionally selected model variables, such
as current antenna orientation, distance to the satellite, frequencies etc. Using the CSV
export function all gathered values can be used to derive the correlation between the link
quality and the selected conditions. Please consider section 6.6 for more details on the
front-end GUI implementation.

3.3.5 File Link
Beginning with the UWE-3 mission, many operation tasks are file-based. In-orbit record-
ings on different subsystems are stored in the corresponding local files, e.g. magnetic field
measurements on AOCS or S-values of the UHF transmitter on the OBDH subsystem –
both actively performed in the UWE-3 mission [Bus+15]. The files are then downlinked
using the Downlink service to ground during one or multiple overpasses.

Numerous scripts were uplinked as files using the Uplink service and were for example
used to perform several attitude control experiments with UWE-3 satellite and to execute
Orbit control experiments with NanoFEEP thrusters in the UWE-4 mission. In the NetSat
mission, several Tiny scripts were uploaded to fix some unexpected misbehavior and to
perform experiments over several orbits, e.g. capture values from the GPS, magnetic field
and other sensors. The files were automatically downloaded by the auto-operator during
the night overpasses.

File storage

The OBC and the AOCS subsystems in the UWE-4 and NetSat satellites have only 16
kB RAM – too limited to hold memory files with a size of 200 to 1200 Kb (commonly
experienced sizes). Memory files are also non persistent and are lost after a reset. Due to
file storage requirements, the OBC was equipped with 2 NAND plus 8 FRAM chips and
the AOCS with a single NAND flash chip. Unfortunately no open-source file system could
be found that fits in the OBC’s program memory and supports more than one chip. In
the scope of this work a file operating system was implemented, which both can be used
locally on very low-powered devices to access SPI-connected NAND and FRAM chips
(Uwe File System – UFS) and can also be accessed via the Network File System (NFS)
Compass service. It is the re-implementation of the UWE-3’s UFS file system, which has

3.3. High-level Functionality 69

been developed by Artur Gasparyan [Gas12]. The original version had only support for
one drive and only one specific flash memory type.

Weak Asymmetric Links

The UHF communication in both directions with UWE and NetSat satellites has several
demanding problems. The down- and uplink cannot be performed simultaneously, as both
modes use the same frequency and the same communication path. In the University’s
UHF ground station configuration the switch between the downlink and the uplink lasts
300-500 ms (transceiver, amplifier and TNC switching times). From experience with the
UWE-3 and the UWE-4, it is highly advantageous to use radio protocols that can be
handled by external amateur radio stations: FSK 9k6 for the physical layer (9600 bauds
per second) and either Compass or AX.25 for the layer above. If possible, a single UHF
radio packet should not exceed 200-250 bytes (roughly 1600 bauds). Now, if every packet
would need to be acknowledged, 300-500 ms delay (depending on the UHF hardware) will
be added after every packet – thus drastically reducing the throughput.

In addition to that, the UWE team usually experienced large differences with respect
to the uplink and downlink performance. Thus, resulting in usually non-received acknowl-
edgements – leading to repeated transmission, additional transmitter switching times and
so forth. This is comparable minor issue for the standard human operations (such as
commands), but becomes unbearable for the file transmission.

For the file transmission the so called bulk acknowledgement was introduced. That is,
before the transmission, the file is logically separated into chunks, whereat each chunk has
a (selectable) size of 50-200 bytes. After the downlink or uplink has been initiated, all
chunks are transmitted without acknowledgements. The opposite party detects the gaps
during the reception and enquires missing chunks by sending a chunk bit-map – which can
be interpreted as a bulk acknowledgement. The entire communication process must be
handled automatically by the File service, so that the operator only needs to specify which
files needs to be uplinked or downlinked either directly or in the operations-scheduler.

3.3.6 Dynamic Code Execution
In the context of this work, the Dynamic Code Execution (DCE) is the ability of a node
to execute code/scripts/algorithms – without the need to re-flash the entire subsystem
software image. Even though the on-board software may be re-flashed in space (which has
been done multiple times with UWE-3 and UWE-4), this process is highly hazardous and
requires time-consuming software image testing.

The ability to run dynamic code was a large step forward with UWE-3, as it allowed
to test many attitude control algorithms with comparable low efforts and without affecting
the robustness of the satellite. In satellite formations, the DCE becomes a requirement
for many reasons:

• Formation control can be realized by distributing (generated) orbit control scripts
– either from ground or from a master satellite (autonomous formation control).

• Task scheduling to perform dynamic mission tasks, e.g. capture images depending
on constraints (orbit, time).

• Goal-based operations: a promising operations approach, profoundly researched by
Tiago Nogueira in his on-going dissertation [NFS17].

70 Chapter 3. Approach

• Experiment execution: new experiments can be realized without flashing numerous
affected subsystems on several satellites.

There exist multiple common ways to enable DCE on high-level machines, i.e. by uti-
lizing available script languages, such as python or java-script. However, these languages
require comparable powerful systems and are not runnable on ultra-low power microcon-
trollers. There also exist more humble languages, such as the Lua [IFC10], Pike, Pawn or
Jim TcL [Ben10]. Unfortunately, they are also not suitable for very low-power subsystems,
as they all require at least 50 kB (Lua in the most basic configuration) ROM space and
also do not fulfil requirements that will be stated later.

A second option is to design an additional satellite subsystem that is capable of ex-
ecuting higher languages. All four NetSat satellites carry a Raspberry based Payload
Computer Subsystem, which can be activated by the OBC on demand to pre-compute
some algorithms, values or schedules (which would otherwise be computed on ground).
This Linux-based Computing subsystem is included as a test platform for advanced in-
orbit autonomy experiments in NetSat but it does not fulfil the requirement of DCE being
executed on any specific subsystem (at any time).

It became evident that there were only two options to enable the DCE on all sub-
systems: upgrade the hardware of all subsystems or to design a new scripting language.
Since the first option was out of the question (due to the fixed hardware design), a new
scripting language called Tiny was introduced as a part of this thesis’ realization. Based
on the experience during this work, numerous features were implemented:

• sandbox interpreter with own stack – no stack overflow of the subsystem possible
• program and data share the same space with very dense byte code and extremely

low stack consumption
• runs also on 16 bit microcontrollers and consumes 10 kB ROM and 0.1 to 1 kB

RAM (depending on needs)
• automatic pause and resume – does not affects the reactivity of a single-threaded

system
• introduces Tiny multi-threading on a single-threaded system
• external C functions with variable number of arguments
• integrated exception handling
• support for asynchronous external functions
• a standalone Tiny IDE, which is used to compose, compile, decompile and debug

Tiny scripts
• Matlab and Java-Script support in the Tiny IDE to mimic functions for debugging

purposes that are not available on the local machine
• a set of Compass-related external functions to access local/remote models, execute

local/remote commands and create custom packets

A simple Tiny script can have a size of under 10 bytes, whereat in more realistic
scenarios the script size varies between 100 and 800 bytes (attitude control algorithm). All
satellite subsystems developed by the ZfT and the University’s UWE team support Tiny
execution, which is offered by the Tiny service.

3.4. Summary 71

Database Support

It is common practice to store all relevant outgoing and incoming traffic during the ground-
space communication in a mission database. A mission database is used for many purposes,
e.g. to:

• perform post-processing of incoming satellite data
• reconstruct the communication during a defined time period, e.g. to tackle occurred

problems
• load traffic for some time span (e.g. last 24 hours) into a newly started Compass

Operations front-end

The structure of a mission database cannot be easily standardized, as it is dictated by
mission aims. At ZfT separate databases are installed for every satellite mission. Every
database contains tables for Compass packets, model updates and raw data received from
radio amateurs.

Since the Compass network can be used for multiple satellite missions, the operator’s
node would need to have several separate database connections in order to get access to
the historical data of a specific mission. With the Database service the database com-
munication is also handled by Compass, thus avoiding further side channels and provide
historical data in SQL-agnostic way. That is, any Compass node can check if some other
node (e.g. mission server node) offers database functionality – and if so, request stored
packets with desired properties, such as time, addresses etc.

3.4 Summary
In this chapter approaches were shown that have been used to realize the thesis’ goals.
The elaborated protocol configuration for the UWE-4 and NetSat missions is shown in
figure 3.12 (see figure 3.1 for comparison). The software of the ground station server
(ground relay) was designed in such a way that all active missions (UWE-3, UWE-4 and
NetSat) are manageable in the same (super) mission network – it chooses different Layer
2 protocols depending on the currently passing satellite. All satellite subsystems became
independent from the OBC and can be accessed directly from the mission network. For
example a panel subsystem can be unplugged from the EM satellite, connected via Serial
interface to a developer’s Compass Operations front-end node and gain access to the entire
mission network again – with zero configuration.

72 Chapter 3. Approach

Figure 3.12: Protocol configuration of the UWE-4 and NetSat missions.

4 | Compass Protocol

The Compass protocol was designed to sort out multiple problems that were experienced
with previous UWE missions and to face additional challenges in multi-satellite missions.
An overview of all defined requirements is shown in section 2.1.

Figure 4.1: Coverage of the protocol chapter

In a nutshell, the main aims of the protocol are:

• Dynamic self-configuring and decentral Compass network, which bonds all space and
ground mission nodes.

• Offer standard services for all common communication tasks: commanding, moni-
toring, file transfer, etc.

• Minimize overhead but at the same time offer numerous core functions for different
scenarios.

• Solutions for error prone links: re-transmission, CRC, DTN.
• Operability on asymmetric links (up vs. down) with respect to the speed and the

packet loss rate
• Network scalability similar to the Internet
• The middleware must be runnable both on high-end workstations and on 16 bit

microcontrollers (min 2 kb RAM, 10 kb ROM).

73

74 Chapter 4. Compass Protocol

Channel Description CompassNode Compass OS Compass OS (guest)
TCP/IP client Connects to remote servers x x
TCP/IP server Accepts incoming connections x x
Serial Serial interface x x x
I2C Any-master I2C ongoing x ongoing
Lithium-1 radio Channel to Lithium-1 UHF x x
AX100 radio Channel to Gomspace AX100 x x

Table 4.1: Supported channels on different platforms

The Compass Middleware is a collective term for the implementation of the protocol
core functionality and services. In order to unfold its full capabilities, the middleware is
dependent on platform specific functionalities, such as available file system or access to
hardware interfaces.

For high-level systems (Windows, Linux, OSX) Java was selected for the implemen-
tation of CompassNode. The entire implementation is available as a single file and can
be included in any Java-based application to gain access to existing Compass networks.
Beside the application specific code, the CompassNode covers all layers shown in figure
3.12 (ground nodes). At ZfT it is used as a base for: the Compass Operations front-end,
two UHF ground stations, several Mission servers, Matlab simulations, the Orekit orbit
simulation framework, SDR nodes and custom nodes used for in-the-loop testing.

The implementation for satellite subsystems (Compass OS) is a more demanding task,
as the minimum hardware requirements are dictated by the smallest available microcon-
troller (UWE-4’s power processing unit and NetSat’s Thruster control): 16 bit, 4 kB RAM,
64 kB ROM. Even though it was projected to implement the embedded middleware with
compile switches and thereby control its hardware requirements (e.g. to activate File ser-
vice only on systems with connected flash chips), the full-fledged configuration must be
made runnable on the OBC subsystem: 16 bit, 16 kB RAM, 256 kB ROM – from which
at least 50% are reserved for application code. Embedded Compass OS was implemented
during this thesis to meet the requirements and is described in detail in Chapter 5. It can
either be executed on bare-metal or run as guest OS on another operating systems (e.g.
FreeRTOS, Windows, Linux, OSX). Currently it supports:

• TI MSP430 and MSP430x family
• Atmel SAM
• Linux, Windows, OSX

4.1 Overview
Inspired by different studied protocols, shown in section 2.6, the Compass protocol was
designed to harmonize the communication between all involved mission space and ground
systems. It fulfills the requirements of a large formation mission and provides an abundant
set of functions:

• DTN support: buffer and forward, retransmission, etc.
• Burst mode, i.e. non acknowledged communication, e.g. for broadcasting data –

similar to UDP.

4.2. Packet Definition 75

• Hierarchical addressing, covers the global domain (4B system address – similar to
IPv4), the system domain (1B sub-system address) and the subsystem domain (2B
Service ID – similar to TCP port).

• Payload encryption based on XTEA algorithm with variable number of rounds.
• Switchable GZIP payload compression for large packets between nodes with high

computation power.
• All functions, except the payload compression, are available on very low-power 16

bit nodes.
• Automatic and manual per-packet routing with the ability to partially pre-define

routing segments.
• Network Awareness based on passive and active neighborhood discovery and failure

detection.
• Automatic header compression.

Compass is currently running on all UWE-4 and NetSat subsystems as well as on all
ground segment nodes, resulting in a homogeneous mission network. Since the NetSat
launch in September 2020, the number of distinctly accessible Compass-enabled subsys-
tems in-orbit was raised to 58. All accessible nodes can communicate with each other using
the same common protocol, thus offering new beneficial concepts. For example, in the pre-
launch phase the cameras of the NetSat flight-models were calibrated autonomously by
three cooperating nodes: motion simulator node, panel subsystem node and Compass
Operations node (visualization). The Compass protocol was designed in such a way that
the entire network structure is derived automatically using passive (listen to packets on
hardware channels) and active methods (broadcast and request network beacons), thus
forming local network knowledge. This knowledge is used during the transmission to au-
tomatically find the best active route to the target node by taking in account the number
of hops and the maximum speed along the route.

4.2 Packet Definition
This section describes in detail the composition of a Compass packet header. The overview
of the packet structure is shown in table 4.2. Every header field is described in more detail
in the corresponding section.
The basic idea is to use a dynamic header, i.e. first one to four header description bytes

are used to switch on/off or configure the optional protocol fields. Besides the comparable
complex parsing, this approach has several advantages: compactness, feature richness and
expandability. Every header description byte has a HALT bit, which denotes if another
header description byte follows (HALT = 1 =⇒ no more bytes). In the current Compass
version (September 2020) only the first three bytes are described.

The header description bytes were designed in such a way that in most common sce-
narios only the first byte is transmitted. Further bytes are transmitted for more advanced
packet configurations, i.e. included timestamps, signature, larger payloads etc. Therefore
the most used header fields are activated in the first byte, the lesser used in the second
and the most seldom fields in the third. The absence of a header description byte implies,

76 Chapter 4. Compass Protocol

Flags PID From . . . To PID API Time Size Payload SGN CRC
Sys Sub Sys Sub

Field Description Size [B] Mandatory

Flags header definition bytes 1-4 x
PID ID of the Packet 2 x
From . . . To Source, up to 6 intermediate nodes and target 2-40
API Target Service ID 1-2
Time Absolute time (UNIX, ms) or duration 2-6
Size Payload size in bytes 1-4
Payload Payload bytes
SGN Signature 2
CRC Fletcher pseudo-checksum 2

Table 4.2: Compass packet description

Byte1 HALT Route Fmt. set Size Len1 ABuf Buf API set REF set PID set
Byte2 HALT 16bit API set Size Len2 Time RSV CRC SGN
Byte3 HALT - - - Is Error Is Urgent Is Zipped Is Encr.

Table 4.3: Header bytes, with only first byte being mandatory

Bit Description

HALT True if no more header bytes will follow
Route Fmt. set If set, the routing definition byte is available
Size Len1 First bit of the Size-field configuration
Use ADTN True if the answer packet must be delivered using DTN
Use DTN True if the packet must be delivered using DTN
API set True if the service ID is set
REF set True if the packet is referenced to another Packet ID
PID set True if the Packet ID value is set

Table 4.4: First header byte (mandatory)

4.2. Packet Definition 77

Bit Description

HALT True if no more header bytes will follow
16bit API set If set, the API field is 2 bytes long instead of 1
Size Len2 Optional second bit of the Size-field configuration
Time Time included
RSV Reserved
CRC Set True if CRC is set (see CRC section)
SGN Set True if the signature is set (see SGN section)

Table 4.5: Second header byte (optional)

Bit Description

HALT True if no more header bytes will follow
. . . -
Is Error True if the payload is a service error message
Is Urgent True if the packet is urgent
Is Encrypted True if the payload is encrypted using XTEA
Is ZIPped True if the payload is compressed using gzip

Table 4.6: Third header byte (optional, advanced functions)

that all functions/bits described there are considered 0.
In the most compact configuration the packet consists only of two (header) bytes:

• First header byte: only address format field is activated.
• Second header byte: address format byte with Hops#=0 (no address entries).

However such a packet does not have any data or addresses, so it can only be used for
some meta-communication between two hops – or to handle multiple link access.

If a field has been deactivated, it is not transmitted and the corresponding value is
considered 0. Conversely, header fields with 0 values are deactivated during the encoding,
i.e. 0 values are not transmitted. For example, deactivated PID and API implies PID=0,
API=0. The route with size 0 implies two equal addresses (from, to) with SystemID=0 and
SubsystemID=0 – and is usable for inter-process communication within one subsystem.

4.2.1 Addressing
A Compass Address consists always of two fields: SystemID (1-4 bytes) and SubsystemID
(1 byte). To improve the readability of IDs, it is a good practice to have number-to-
text mappings in the front-end software. The Compass Operations front-end provides
the ability to create such mappings and synchronizes them with the mission network via
Registry service. It is entirely up to the mission designed to decide the logical meaning of
system and subsystem. For instance:

• A satellite as a whole is a system with its subsystems being subsystem nodes in the
context of Compass.

78 Chapter 4. Compass Protocol

• The mission operations division can be a system, whereat single workstations are
subsystem nodes.

The system ID can also be viewed as a logical group of multiple subsystems, whereat the
subsystems can be distributed freely across the Compass network.

In contrast to the classic from-to addressing approach, a Compass packet can hold up
to 8 addresses, where the first denotes the sender, the last the receiver and the remaining
optional (up to 6) addresses are the desired intermediate nodes. In nominal mode, a newly
created Compass packet contains only the local and desired receiver’s address.

Even though only 8 addresses can be set in a packet, the real route length is unlimited.
For further nodes (hops number > 8) the sender only knows the first 6 intermediate hops
of the route, whereas the remaining nodes are discovered during the transmission as the
target node gets closer and closer. Please read section Route for more information.

4.2.2 Payload size
Compass supports both small and very large packets up to theoretical 4 GB. To reduce
the overhead for small packets, the size of the payload size field is set by two bits Size
Len1 and Size Len2 in the header byte.

Size Size Size Description
Len1 Len2 [B]

0 0 0 No payload included
0 1 4 Large payload (>65535 bytes)
1 0 1 Small payload (<256 bytes)
1 1 2 Mid-sized payload (<65536 bytes)

Table 4.7: Payload size field setting

In UWE and NetSat missions all ground-space and space-space packets are below 256
bytes, thus only first bit is used. However, between ground nodes the packet size can
reach several megabytes – for example when a Compass Operations front-end node polls
via Model Service the current antenna camera image from the ground station node.

4.2.3 Time field
The Time is used to activate the time field, which is used to carry an absolute timestamp
(UNIX format in milliseconds, beginning with January 1, 1970 00:00:00.000 GMT). The
absolute time is used by many Compass services do denote: last change of the requested
model value (Model Service), creation time of the log message (Log Service), and creation
time of the beacon (Network Service).

4.2.4 Route Format
If the routing bit is disabled, the route-field consists only of two addresses, whereat
each system’s address is 1 byte long. The unchecked route-Bit is suited best for packets

4.2. Packet Definition 79

without manually defined intermediate nodes and system addresses below 256 – and should
therefore be the default mode for small missions. If the routing bit is checked, a routing
format byte is defined right after the PID:

SYS size Hop counter # of Hops
Bit 7 6 5 4 3 2 1 0

From To
System Subsystem System Subsystem

1B 1B 1B 1B

Table 4.8: Routing Entry if Routing bit is disabled

The amount of hops describes the number of contained addresses (system-subsystem
duplets), and the hop counter shows the number of already passed hops. Using the counter:

• a receiver can identify if it is intended to be the next hop for the received packet
(the counter is used as a 0-based pointer to one of the stored hops)

• which hop is intended to be the next receiver
• each hop increases the hop counter
• a hop that is not in the routing list, does not increase the counter

During the answer creation, the stored hops are reversed and the counter begins with
0. Now the answer packet will take the same route in the opposite order back to the origin
of the referenced packet.

The SYS size describes the amount of bytes used to encode the system address (0, 1,
2 or 4 bytes). If set to 0, only subsystem IDs are set for transmission (inter-subsystem
communication). If no format byte is available, the default values are:

• System and subsystem address size: 1 byte each
• Amount of addresses: 2 (sender, receiver)

Example:
A packet from A:1 is designed to reach D:3 via B:0 and C:0:

A : 1→ B : 0→ C : 0→ D : 3

So the routing byte is:
0x03 (0b00000011, Hop counter=0, Hops=3) during the creation
0x13 (0b00010011, Hop counter=1, Hops=3) when received by B
0x23 (0b00100011, Hop counter=2, Hops=3) when received by C
0x33 (0b00110011, Hop counter=3, Hops=3) at its destination

80 Chapter 4. Compass Protocol

4.2.5 Route
A route can contain:

• 0 addresses. The system assumes that sender and receiver addresses are both
{SYS=0, SUB=0}.

• 1 address. Only sender is defined, the receiver is {SYS=0, SUB=0}.
• 2 addresses. Sender and receiver are defined (default).
• >2 addresses. Some intermediate nodes are manually defined.

SystemID=0 (flat system broadcast)

The SystemID=0 is a special undefined system name, which matches any SystemID. If a
node receives a packet with zero SystemID, it considers itself as a target as long as there
is a subsystem ID match.

SubsystemID=0 (flat subsystem broadcast)

The SubsystemID=0 is also a special subsystem address and has a similar meaning to a
SystemID=0. If a node receives a packet with zero Subsystem, it considers itself as a target
as long as there is a system ID match.

4.2.6 SGN
If the SGN-flag is set in the header, a 2-byte signature of the payload must be placed
after the payload area. If the given senders signature of the payload does not match the
calculated signature of the receiver, the packet is immediately refused.

Listing 4.1: Signature Calculation
1 const char STR_SECRET_KEY [] = " SecretCode123 ";
2 const uint8_t STR_SECRET_KEY_LEN = (sizeof (STR_SECRET_KEY) / sizeof (char) - 1);
3 void calcSGN (unsigned const char *data , uint16_t size , uint8_t *sgn , uint8_t clear)

{
4 if(clear)
5 sgn [0] = sgn [1] = 0;
6 uint16_t i;
7 char c;
8 for(i = 0; i < size; i++) {
9 c = data[i] ˆ (STR_SECRET_KEY [i% STR_SECRET_KEY_LEN]);

10 sgn [0] = sgn [0] + c + sgn [1];
11 sgn [1] = sgn [1] + (255 - c) + sgn [0];
12 }
13 }

The signature calculation is shown in listing 4.1. Obviously, the secret key must be
same on both nodes. This functionality can for example be used to avoid accidental
execution of specific commands, i.e. execution is only possible if the command packet is
properly signed and not signed packets are omitted. So, signing is rather used for safety
and not for security reasons. For critical tasks the more sophisticated signing can be
achieved with XTEA encryption.

4.2. Packet Definition 81

4.2.7 CRC
If the CRC-flag is set in the header, a Fletcher’s checksum of the entire packet (incl.
signature) must be placed at the very end of the packet. If the given checksum does not
match the calculated checksum, the packet is immediately refused.

Listing 4.2: Pseudo CRC Fletcher algorithm
1 void Buffer_calcCRC (const uint8_t *data , uint16_t size , uint8_t *crc , uint8_t clear

) {
2 if(clear)
3 crc [0] = crc [1] = 0;
4 uint16_t i;
5 for(i = 0; i < size; i++) {
6 crc [0] += data[i];
7 crc [1] += crc [0];
8 }
9 }

4.2.8 Error
The error flag can be optionally used by services to denote the answer as error. In case of
an exceptional handling, a service usually uses its payload section to mark packets error
packets – e.g. by using special service packet types. With the error flag the answer receiver
can detect in a standardized way, whether the answer contains enquired data or some error
message/code. The error flag can also be used as a service-to-service NACK.

4.2.9 Urgent
This flag is used by the receiver to engage faster (immediate) consumption. Depending
on the Compass implementation, the packet handler may have a queue of packets from
numerous hardware channels and sequentially handle the packets depending on their pri-
ority. To ensure the stability, the process of reading packets from channels and the process
of packet handling is done separately, e.g. in different threads.

In some situations the packet handling should be processed as fast as possible to achieve
real-time like execution. It is entirely up to the receiver’s implementation to decide how to
handle urgent packets. So, depending on the implementation the urgent packet handling
can begin directly in a task that is only responsible for the channel read-out. However, for
some channels – such as I2C – this would imply that the packet handling must be performed
inside the I2C interrupt/transaction, which may lead to long bus occupancy/stall.

Urgent packets are not a replacement for packet priorities. In Compass the service ID
denotes packet priority, therefore NetworkAPI packets have the highest priority.

For example in the UWE-4 mission, urgent packets were used by the OBC to disable
magnetorquers on all panels shortly before magnetic field measurements.

4.2.10 Encryption
The Compass protocol supports symmetrical XTEA payload encryption with variable
number of rounds (in the default configuration 64 encryption rounds are used). XTEA
has been chosen to also support encryption on extremely hardware limited devices. The

82 Chapter 4. Compass Protocol

7 Key 0=receiver, 1=senders key
6 - Reserved5
4 Rounds Number of rounds: 0 = 32, 1 =

64, 2 = 128, 3 = 2563
2

Padded Number of padded bytes: [0-7]1
0

Table 4.9: Encryption info byte

payload can either be encrypted with the sender’s or the receiver’s 128 bit key. There are
several security options for how to set-up an encrypted communication link:

• Low (group key): only one critical node A (e.g. a satellite subsystem) becomes a
key. All other nodes use that key to communicate with A.

• Middle (node key): every node becomes one Key and uses that key for the trans-
mission. The receiver must possess the key from the sender in order to be able to
decrypt. In this scenario, the encryption is also an authentication of sender.

• High (link key): every node-node pair becomes a key, i.e. a node holds up to (n−1)
unique keys for every other node within the network. This can lead to n× (n− 1)
keys in a network of n nodes.

Encryption process is conducted as follows:

• The payload is first padded to achieve its length being a multiple of 8 bytes.
• The payload is encrypted using the appropriate key.
• Encryption-info byte (table 4.9) is added at the beginning of the payload.

4.2.11 Zip Compression
The ZIP compression is advantageous for large Compass packets and is automatically
activated between high-power nodes if the payload size exceeds 50 kB – presupposed that
all nodes along the route can handle the forwarding of large packets. If a packet is flagged
with ZIP, the payload block is compressed using the gZIP algorithm (see Java example in
listing 4.3).

Listing 4.3: Signature Calculation
1 public static byte [] decompress (byte [] data) throws IOException {
2 GZIPInputStream gzip = new GZIPInputStream (new ByteArrayInputStream (data));
3 data = Util. toBytes (gzip); // Convert InputStream to bytes
4 gzip. close ();
5 return data;
6 }
7
8 public static byte [] compress (byte [] data) throws IOException {
9 ByteArrayOutputStream baos = new ByteArrayOutputStream ();

10 GZIPOutputStream zop = null;

4.3. Services 83

11 try {
12 zop = new GZIPOutputStream (baos);
13 zop. write (data);
14 zop. flush ();
15 } catch (Exception ex) {
16 } finally {
17 if(zop != null) try {
18 zop. close ();
19 } catch (Exception ex) {}
20 }
21 return baos. toByteArray ();
22 }

4.3 Services
In the previous section core capabilities of the Compass protocol were described that are
sufficient for an application to enter an existing network and handle all upper layer traffic
in the application code. In addition to the basic functionality, a set of Compass services
were defined and implemented during this thesis. An overview of all available standard
services is shown in table 4.10. All three missions (UWE-3, UWE-4 and NetSat), including
auxiliary nodes, were successfully realized using only these services. That is, no further
side-channels, services or higher protocols are used between any mission-relevant systems.
This is due to the fact, that the services were designed in such a way that any desired
complex high-level functionality can be traced back to the usage of one or more standard
services. At ZfT one common mission super-network is used for UWE-3, UWE-4 and
NetSat missions. An overview of all services used between ground and space systems is
shown in figure 4.2. Services between ground systems are shown in figure 4.3.

Figure 4.2: Overview of all services used between ground and space systems in the
common UWE-3, UWE-4 and NetSat mission network

84 Chapter 4. Compass Protocol

Figure 4.3: Overview of all services used between ground systems in the common
UWE-3, UWE-4 and NetSat mission network

Most of the monitor and control tasks of the space and ground systems is performed
with Model service – an implementation of the MTBA approach described in chapter 3.1.
A model is a hierarchically ordered set of name-value pairs: parameters, control values,
sensor values, configurations and any other entity that can be represented as such pairs.
The model service can deliver the entire model structure on request, offers full access to
model values and offers subscriptions to model changes.

Command service offers human-readable interface for remote command execution.
Technically many commands can also be represented as model values, e.g. instead of
sending Thruster activate command to the OBC system an equivalent OBC’s control
model value can be changed to 1 (Thruster/Activity=1). In NetSat commands are used
mostly for debugging purposes, e.g. scan the I2C bus and output the report or output the
current network knowledge.

All file-related tasks are performed with delay-tolerant File service (a combination of
Downlink and Uplink services). From the point of view of a user it is similar to FTP:
list remote drives and files, upload or download file, delete files or format drives. On
the implementation level it is inspired by the CCSDS File Delivery Protocol (CFDP) and
provides robust file transfer over several orbits. In UWE-3 and UWE-4 the protocol was
mainly used to upload Tiny-script based experiments and download experiment results
(model value recordings). On NetSat this service is used to download log files, upload
Tiny-based schedules and Tiny-based experiment execution.

The Tiny service offers on-demand execution of incoming scripts, which are transmit-
ted as compiled Tiny byte code in payload of Tiny service packets. If local file storage
is available, it additionally supports Tiny-Threads – scripts that are automatically loaded
on start-up from the file system and executed concurrently.

4.3. Services 85

Service Name Description
0 Network Receive and consume network beacons,

build-up network awareness
1 Echo Bounce back received payload to the sender

with updated timestamp
2 Command Execute human-readable commands (i.e. re-

mote console)
3 Uplink Auto transmission of files. Handles retrans-

mission of file chunks
4 Downlink Auto receipt of files. Handles re-request of

file chunks
5 Log Processes log messages from other nodes
8 Unit-Test Execute remote tests or offer local tests
11 NFS Network File Interface. Write to remote file

systems. No auto re-transmission
13 Tiny script Execute Tiny script and control Tiny threads
14 Model Access and modify remote node models
16 ARR Automatic model Recording and Reporting

service
18 Database Used to load or store Compass packets

from/to a database
21 Tunnel Used to establish user-defined protocol con-

nection between two nodes
22 File Delay-tolerant file transmission

Table 4.10: Currently Implemented services

86 Chapter 4. Compass Protocol

In the following sections only the service packet payload is described in detail, i.e. for
the sake of readability the Compass protocol header is omitted.

4.3.1 Network
Many advanced core functions of the protocol are enabled by the Network service. It gains
knowledge of the current network state (available nodes etc.) and promotes this knowledge
to the neighbors via network beacons.

The embedded Compass OS middleware implementation contains basic and advanced
Network service functions, which can be activated if the host system has enough storage
and computation capabilities. In the high-level CompassNode implementation all available
functions are activated by default. The Network service offers:

• ACK handling: generate and process acknowledge packets for packets marked with
DTN bit. That is, send back an ACK if the packet has reached its destination or
the to-forward packet has been stored locally and will be transmitted later (store-
and-forward).

• Network Beacon creation. Periodically transmit own network knowledge via all local
channels.

• Auto-Routing-Table: build up a routing table using the processed traffic and incom-
ing network beacons.

• DTN (advanced mode): store packets marked with DTN bit and take over the
responsibility for further delivery. Requires local file system.

Routing table

An example shown in the figure 4.4 shows principles of the routing table generation.
Initially, all routing tables contain only the local address (grey). For the sake of simplicity,
all nodes in the example transmit their beacons simultaneously. The colors denote the
source of the information: blue = from first beacon, green = second beacon and so on.
A network beacon contains the sender’s routing table and is transmitted only to direct
neighbors. Every received network beacon is used to update the local routing map, thus
leading to subsequent propagation of new information along the network. This scheme
enables very good network scalability, i.e. the amount of transmitted beacons between
direct neighbors stays same independent of the node number. For devices with very
limited memory resources a single-entry routing map can be used to pass all packets to a
more capable neighbor (cf. Gateway).

Network packets

The first byte of a Network packet payload denotes the service packet type. One exception
to that is the ACK packet, which does not have any payload. An overview of all available
Network service packet types is shown in table 4.11.

4.3. Services 87

Figure 4.4: Routing table example

Type Description
- ACK message (no payload). Is received if a buffered Packet was

successfully received by a hop.
0 Beacon. Contains the routing map of the sender. Is sent periodi-

cally (default 10s) to all direct neighbors
1 Request beacon. Can be used to manually request a beacon from

a node
5 Extended Beacon with additional information for every routing en-

try: max. speed and max. packet size

Table 4.11: Network service packets

Payload
1

Table 4.12: Network service: beacon request

88 Chapter 4. Compass Protocol

Network Beacons

A node periodically transmits beacons to all direct neighbors. It contains densely packed
local routing map with additional known information about the nodes (see table 4.13).
The payload starts with a type byte (value = 0), followed by a list of routing entries. The
first entry denotes the local node itself and is the only entry with Hops=0. Both service
implementations (CompassNode and Compass OS) support simple and extended beacons
with additional routing entry info bytes (max. speed and max. packet size).

The order of the entries appearance is important for the reproduction of the network’s
tree structure – see example below.

Example:
A beacon contains 5 entries in that order:

Received Entries Visually indented
[GS:Server, hops=0, ...] [GS:Server, hops=0, ...]
[NetSat:OBDH, hops=1, ...] [NetSat:OBDH, hops=1, ...]
[NetSat:PPU1, hops=2, ...] [NetSat:PPU1, hops=2, ...]
[NetSat:PPU2, hops=2, ...] [NetSat:PPU2, hops=2, ...]
[GS:Operator, hops=1, ...] [GS:Operator, hops=1, ...]

The beacon is apparently from GS:Server, as it is the first entry, followed by 4 entries
that are reachable via GS:Server. For clarity, the hop number of each entry is used
for tabular indentation in the right column. The indent now results in a tree structure,
which represents the entire route to every node. In this example both PPUs are reachable
via the OBDH subsystem, which in turn is reachable via the GS:Server. An example of
the routing table visualization is shown in figure 4.5.

Static and dynamic routing entries

The Compass protocol definition does not force nodes to transmit or handle incoming
network beacons. For example in UWE or NetSat only the OBC has a direct channel to
the radio connection and is therefore considered a space relay. Hence only the OBC needs
to keep track of the dynamic network neighborhood, whereas the remaining subsystems
only have static routing entries pointing to the sibling subsystems and use OBC as a
gateway to transmit packets to unknown targets.

Depending on the particular system software implementation, the local routing map
may consist either only of statically defined entries or also contain space for dynamic
entries. For dynamic maps, the incoming beacons are used either to update existing
knowledge or to expand the knowledge with new nodes. The local routing map is also
automatically updated without incoming beacons, i.e on packet reception or forwarding
the packet’s sender and all previous nodes in the packet’s route list are considered active
and are placed into the routing map.

In both Compass implementations (Compass OS and CompassNode) a new derived
routing entry E′ replaces an existing one E if one of this is true:

• E′ has a lesser hop-number (shorter route)
• E′ has the same hop-number but higher speed

4.3. Services 89

Type Node Entry 1 . . . Entry N
0 DTN Active Size mode Addr size Hops Age Addr Info . . .

1B 1bit 1bit 1bit 1bit 1bit 1bit 1bit 1bit 1B 1-5B 1B . . .
1B

Info byte
HALT DL only Speed Packet Size

1 1bit 1bit 1bit 1bit 1bit 1bit 1bit

Field Description
DTN If 1, the node supports packet buffering
Active 1 if the node is currently reachable. Depending on the implementa-

tion a node can be considered reachable if for example:

• a packet was received from that node in the last 60 s
• the routing entry is flagged as always active

Size mode 0=normal mode, 1=micro mode. In micro mode, only one byte is
required to encode system and subsystem ID

Addr size Normal mode: address stored in 2-5 bytes
00 1B System 1B Subsystem. For SystemID < 256
01 2B System 1B Subsystem. For SystemID < 216

10 3B System 1B Subsystem. For SystemID < 224

11 4B System 1B Subsystem. For SystemID < 232

Micro mode: address stored in a single byte
00 xxxxxxxx| 8 bit System (0-255), Subsystem=0
01 xxxxxx|xx 6 bit System (0-63), Subsystem (0-3)
10 xxxx|xxxx 4 bit System (0-15), Subsystem (0-15)
11 xx|xxxxxx 2 bit System (0-3), Subsystem (0-63)

Hops Distance in hops. Hops=0 stands for the local node (first entry).
Hops=7 means > 7 (or unknown) distance.

Age Time elapsed since the last packet was received from the node. Con-
nection age as a multiple of 5 s, i.e. Age=2 means 10 s. Depending
on the implementation, some of entries may have always Age=0 (e.g.
those flagged as always active)

Address Address bytes as defined by the size mode and name size
Info Node info byte (only in extended beacons)
DL only Downlink only entry, e.g. one-way S-Band channel
Speed Speed in bauds: 0=1200, 1=9600, 2=38400, 3=57600, 4=EDGE

(59200), 5=1 Mbit, 6=10 Mbit, 7=100+ Mbit
Packet size Maximum allowed packet size: 0=50B, 1=100B, 2=150B, 3=200B,

4=500B, 5=1Kb, 6=100Kb, 7=1+Mb

Table 4.13: Network service: (extended) beacon

90 Chapter 4. Compass Protocol

• E is inactive (entry too old), i.e. no packets were received from the node for longer
time

Figure 4.5: Visualization of the local routing map in the Compass Operations front-
end. Green and red lines denote active and inactive routes respectively. The width
of the lines is denoting the corresponding maximum speed. The age of the knowledge
is visualized with fading line color.

4.3.2 Echo
The Echo service has a very simple functionality: the payload of every received packet is
bounced back to the sender. The header of the answer packet contains the local absolute
time and is referenced to the ID of the received packet. This service is mainly used to
qualify the communication towards some specific node. The Compass Operations front-
end provides a view (Echo View, described in section 6.6.10), which periodically transmits

4.3. Services 91

Payload
“CommandName Param1 Param2 . . . ”

Answer Case
’BAD CMD’ + error flag if command not found
[readable return value] if answer not empty
’OK’ if answer is empty

Table 4.14: Command service: command request and possible answers

echo packets to a selected node and visualizes mean packet round-trip time and packet
loss ratio.

4.3.3 Command
The Command service offers a text-based interface to the node’s commanding system and
is used for remote consoles. The Compass Operations front-end provides the Command
View to access remote command service (figure 4.6). On UWE and NetSat this service is
mainly used for debugging, conduction of in-orbit software updates and as a redundant
access to essential functions of other services, such as commands to perform file operations
(cd, delete, dir, etc.) that are normally handled by the File service, or to read or write
model values with get and set, instead of using the Model service. In order to receive
a list of available commands, an empty command packet is sent to the remote system
(table 4.15). The format of a command packet and possible answers are shown in table
4.14. The command service is not intended to be used for time-tagged commands. For this
purpose the Tiny service is utilized, as it supports the execution of scripts with complex
constraints and time checks.

Payload
[EMPTY]

Payload
’CMD: Command1, Command2 ...’

Table 4.15: Command service: command list request and the corresponding answer

Command list execution

The Command service supports the execution of multiple semicolon-separated commands,
i.e. multiple commands can be invoked with one single packet. For example with

delete A : \1\1; write A : \1\1 hello

the remote node will first delete the A:\1\1 file and afterwards create it again with hello
content. For every command in the list separate answer packet is created by the execution
node.

92 Chapter 4. Compass Protocol

Figure 4.6: Command service front-end in the Compass Operations front-end – here
showing a commanding session with the NetSat 1:OBC.

4.3. Services 93

Answer piping

With piping the command answer can either be written to a file, transmitted to some
other node or be omitted. Piping is activated with > character at the end of the command,
followed by:

• NUL, to omit answer creation. Example: hello>NUL
• SystemID:SubsystemID:ServiceID to send the answer to a service of the defined

node. Example: hello>1:9:5 would result in Hi being sent to the Log service
(ID=5) of the node 1:9.

• Drive:\Dir \File writes the answer to the defined file. Example: hello>J:\4\5

4.3.4 Downlink
The Downlink service was specifically designed for low-power devices with limited re-
sources. The file communication is actively controlled by the file receiver (ground node).
It is feasible for channels with small possible packet sizes (e.g. 200 bytes in UWE and
NetSat missions) and long downlink ↔ uplink switching times. It has been successfully
tested in space on board the UWE-3, UWE-4 and NetSat satellites.

This service is responsible for handling file downlink requests. It relies on the file system
of the underlying operating system – in the implemented UFS file system of the Compass
OS a file is denoted by two numbers: directory number (1-255) and file number (1-255).
To overcome long downlink/uplink switching times of the ground relay, the downlink is
conducted in burst mode. That is, the service splits the requested file into chunks of given
size and transmits them all without checking the receipt acknowledgements. At the same
time, the receiver detects all missing chunks and requests them later using a chunk bitmap,
whose bits represent missing chunks. This technique allows short single-packet requests
of multiple chunks.

A downlink request contains: target file name and desired chunk size (0-255 B). The
chunk size is selected in such a way, that it can be transmitted in a single packet through
the entire node chain. Due to the limitation of the OBC hardware, maximum packet size
for UWE and NetSat missions has been set to 250 bytes.

Dir File Chunk size offset map
1B 1B 1B 2B NB

Table 4.16: Downlink API request

Every received chunks contains the file name (directory+file number), the correspond-
ing 0-based chunk index, number of all chunks and the data itself.

Dir File Chunk# Chunks Data
1B 1B 2B 2B NB

Table 4.17: Downlink API answer

94 Chapter 4. Compass Protocol

Figure 4.7: Downlink API front-end

Downlink Process

In UWE-3, UWE-4 and NetSat the downlink process was automatically conducted by
the Downlink View of the Compass Operations front-end. The operator has to select
target node and desired file name (directory+file numbers) and start the download. The
automatic process is then performed as follows:

1. send get all chunks request
2. wait until the sender stops sending chunks (5s timeout)
3. if some chunks are missing, request them with generated chunk-map and go to 2)

Example:
The file system of UWE-4 contains the file 7 in the directory 4. The file size is 10000
bytes. The downlink receiving process requests the file with chunk size 100:

[COMPASS-HEADER 04dec 07dec 100dec COMPASS-FOOTER]

After no further packets were received, the process discovers that chunks 65, 68 and
87 are missing and prepares an additional chunk-mapped request. Since the first lost
packet is 65, the offset is set to 65. The range between the last and first lost chunk is
87− 65 = 22, therefore ceil(22/8) = 3 bytes are required to build up the request chunk
bitmap: [10010000 00000000 00000010]. The new request packet is therefore:

[HEADER 04dec 07dec 100dec 65dec 10010000bin 00000000bin 00000010bin FOOTER]

4.3. Services 95

4.3.5 Uplink
This service provides reversed functionality of the Downlink service. The file commu-
nication is actively controlled by the file sender (ground node). The uplink service is
responsible for receiving remote files. Similar to the Downlink service, it abstains from
packet acknowledgements. All incoming chunks are first saved in the incoming order in a
temporary file and combined later after all file chunks have been received. The chunks bit
map is used to hold the information about the received chunk numbers. This map is used
for three operations:

1. To decide if an incoming chunk has already been saved in the temporary file.
2. The sending process request the map to discover which chunks need to be retrans-

mitted.
3. To detect if the file transmission is finished, i.e. all desired chunks have been received.

Figure 4.8: Uplink API front-end

Uplink process

An uplink packet contains six fields: link id, target file (directory+file numbers), contained
chunk id, total number of chunks and the actual chunk data. The Link ID is used to
distinguish uplink sessions, i.e. the uploading process generates new Link ID for every file
transmission. In Compass OS implementation, if the receiving uplink service discovers a
shift in the Link ID it deletes all already received chunks and creates a new uplink session.
In theory the Link ID can be used to perform multiple simultaneous uplinks to one node.

96 Chapter 4. Compass Protocol

Link# Dir File Chunk# Chunks Chunk data
1-255 1B 1B 2B 2B N bytes

Table 4.18: Uplink API Chunk

To decide retransmission, the uplink process periodically request the receipt chunk-
map of the remote node. A state request contains three fields: 0-field to make the packet
distinguishable from other uplink packets, from chunk field and to chunk field.

Link# Chunk from Chunk to
0 2B 2B

Table 4.19: Uplink API State request

Dir File Chunks Received Map from Map len Map
1B 1B 2B 2B 2B 2B N bytes

Table 4.20: Uplink API State answer

When all chunks were received, the temporary file is merged into the desired target
file. Hereby, the service traverses the temporary file and writes the chunks in the right
order into the target file. Depending on the storage technology, this process may take
from 1s (UWE-4 and NetSat using FRAM storage) up to several minutes (UWE-3 using
NAND storage). After a successful merge, a Merged Status Packet is transmitted.

Dir File
1B 1B 0xFF 0xFF (2B)

Table 4.21: Merge finished packet

At ZfT the uplink process is handled in the Uplink View of the Compass Operations
front-end, in which the operator selects target node, desired file location, local file contents
and starts the transmission.

4.3.6 Log
The Log service is used to process incoming or forwarded log messages. In Compass
OS many processes (file access, detected communication errors) create log messages. In
default mode all UWE and NetSat subsystems suppress the transmission of own log mes-
sages. If the transmission is activated (via Model service, figure 4.9), all log messages are
transmitted either to a default recipient node (mission server) or to the current operator’s
node. In addition the OBC (space relay) can be set-up to store own and forwarded logs
from other subsystems to a local file.

4.3. Services 97

The log service supports four different severity levels: Debug, Info, Warning and Error.
The prefix of a log message can either be ’Debug:’, ’Info:’, ’Warning:’ or ’Error:’.
If none of those is found, the severity of the message is considered Info. The log service
does not produce any answer to incoming log messages.

Payload
’Debug/Info/Warning/Error: ...’

Table 4.22: Log service: Message with optional Severy-String

Figure 4.9: Log service: activation of log transmission and log storage using Model
service

4.3.7 Unit-Test
The Unit-Test service is used to execute unit tests, inform listeners about the current test
progress and the test result. In Compass OS unit tests are created with special macros that
are collected during the compile process and become accessible by the Unit-Test service.
In the current implementation up to 255 tests are supported. The Unit-Test service has
following tasks:

• list available tests as a tree ordered list of id-name mappings
• execute selected tests on request
• stop test execution on request
• deliver current test progress

98 Chapter 4. Compass Protocol

Type Description Parameters

0 Request a list of available tests
1 Execute selected tests N ID1 ...IDN
2 Stop testing
3 List entry ID ID-P PROG-LEN NAME
5 Test result ID PROG SUCCESS MSG

Figure 4.10: Unit-Test service: user front-end

Request available tests

To receive available tests from a remote node a service packet with type 0 is transmit-
ted. The target node answers with multiple packets, whereat each packet contains the
description of one test (see table 4.23).

Test execution

To execute remote tests a list of desired IDs is transmitted to the Unit-Test service. In
the Compass OS implementation only one list can be executed at a time, i.e. if a new list
arrives during the test execution, all current tests are canceled and the new list is processed.
The payload of the request packet starts with packet type, followed by a number of IDs
and a list of the actual IDs.

4.3. Services 99

Payload
0

Type ID Parent ID Progress Len Name
3 1B 1B 1B remaining

Field Description
Payload 3 (= List entry)
Parent ID ID of the parent test. Is used to hierarchically order tests
Progress len Amount of the progress steps 0− 255. During the test execu-

tion this number is used to calculate the progress percentage
Name Remaining payload bytes represent the readable name of the

test (ASCII)

Table 4.23: Unit-Test service: test entry description

Type Number N ID1 . . . IDN
1 1B 1B . . . 1B

Type
2

Table 4.24: Unit-Test service: execute selected tests and stop execution

During the execution, the service generates progress packets, which are transmitted
to the requester. A test generates as many packets as are necessary to properly inform
the user, i.e. larger tests generate intermediate progress messages with uprising progress
numbers.

Type ID Progress Success Message
5 1B 1B 1B remaining

Field Description
Type 5 (= Test progress)
ID ID of the test
Progress In the range of Progress length (see Test list

entry). Used for progress percentage calcu-
lation

Success 1 for success, 0 for failure
Message The remaining payload bytes represent the

progress/info/error message

Table 4.25: Unit-Test service: progress packet

4.3.8 Network File System
The Network File System (NFS) provides global write access to the local file system. This
service is not a replacement for the File service, as it does not support delay-tolerant deliv-
ery. Therefore this service is feasible on robust links: subsystem-subsystem, workstation-
workstation or for communication during the development process. It is for example used
on the OBC subsystem to provide storage to subsystems without own persistent memory.

100 Chapter 4. Compass Protocol

The service provides up to 255 logical drives. In Compass OS a drive is either backed
by a memory chip (embedded systems) or is represented by a selected directory on a
workstation (Windows, Linux, OSX). Every NFS packet starts with a packet type, followed
by further parameters. The service never creates an answer, i.e. if acknowledged service
communication is desired, DTN can be activated for NFS packets.

In the current ZfT missions the NFS service is never used directly by the operators.
Compass OS offers a file system abstraction layer, which is used by embedded software
components to uniformly access files on different local drives, i.e. drives based on different

• memory technologies (FRAM, NAND)
• chip vendors (different low-level drivers)
• file systems (Uwe File System and Fast File System – both implemented during this

thesis)

In addition, Compass OS allows the definition of remote drives, which forward all file
operations to a remote NFS service and are used (in software) in the same way as local
drives. Since the AOCS subsystem of the NetSat does not have local persistent storage,
three remote drives were defined in its software to enable persistent value storage (e.g. for
logging the changes in the AOCS’ model) – see figure 4.11.

Figure 4.11: NFS service: drive configuration example

Create file

This packet type is used to create a new file on the given drive. If the file already exists,
it is only recreated if Recreate is set to 1. The file name is represented by the remaining
payload bytes.

4.3. Services 101

Type DriveID Recreate File Name
0 1B 1B remaining

Table 4.26: NFS service: Create file

Append file

With this packet binary data is appended at the end of the given file on the specified drive.
If the file is not existent, it is automatically created. The file name is stored along with
the file name size and the remaining bytes are used as appending data. For example, for
a 2-bytes file name format the Name Size is set to 2, followed by 2 file name bytes.

Type DriveID Name Size M File Name Data
1 1B 1B MB remaining

Table 4.27: NFS service: Append file

Delete file

With this packet a specified file can be deleted. The file name is represented by the
remaining payload bytes. The request is ignored if the file does not exist.

Type DriveID File Name
2 1B remaining

Table 4.28: NFS service: Delete file

Format drive

This packet can be used to clear the specified drive. If the logical drive is backed by a
directory on a workstation, all directory contents are deleted. If the drive does not exist,
the request is ignored.

Type DriveID
3 1B

Table 4.29: NFS service: Format drive

Close file

With this message a remote file is denoted as closed, which can be very useful for file
consumers. For example, some local file is filled with image data by a remote node – as
soon as the file is denoted as closed, the image is used for post-processing.

Type DriveID File Name
4 1B remaining

Table 4.30: NFS service: Close file

102 Chapter 4. Compass Protocol

Cut file

With this request a file can be truncated either from the beginning (From Head = 1) or
from the end (From Head = 0). Depending on the receiver’s underlying file system, the
implementation may not support one of the truncation modes. The Length specifies the
amount of bytes to be removed (up to 232 bytes). The NFS service acts progressively, i.e.
if the Length is larger than the file size, then entire file is truncated.

Type DriveID From head Length File Name
5 1B 1B 4B remaining

Table 4.31: NFS service: Cut file

4.3.9 Tiny script
The Tiny service is used for live execution of compiled Tiny scripts as well as for creation
and control of persistent Tiny threads. This service was extensively used in all three
missions:

• UWE-3: test of several attitude detection and control algorithms
• UWE-4: multiple cooperating Tiny threads were used to perform orbit maneuver

experiments
• NetSat: support LEOP operations, preliminary in-orbit bug fixes, scheduling of

payload experiments (thruster, camera)

The service itself does not have any dynamic code execution capabilities. Instead, it
acts as a bridge towards the Tiny interpreter component (see section 5.5 for more details)
that has been developed in the scope of this thesis. The interpreter was deliberately
implemented as a stand-alone component in order to make it runnable on the UWE-3
satellite, which at the beginning of this thesis was already in orbit. However, in UWE-4
and NetSat the interpreter was configured with external Compass-related functions, thus
enabling the byte code to access local and remote models, create custom Compass packets,
etc.

An overview of all currently implemented service functions is shown in table 4.32.

Live Execution

The most straightforward functionality of the Tiny service is the live execution, i.e. the
byte code in the payload is executed right-away with subsequent answer containing either
the execution result or some error code.

Type Byte-Code
61 (=) remaining

Table 4.33: Tiny service: Execute Tiny byte-code

4.3. Services 103

Type as ASCII Description
Get List of available functions.

58 : List of available functions.
61 = Execute Tiny byte-code
62 > Answer
63 ? List current Tiny threads
76 L List of Tiny threads
65 A Tiny thread answer
45 − Delete Tiny thread
43 + Create Tiny thread
83 S Save Tiny thread to file
70 F Load Tiny thread from file
85 U Modify Tiny thread

Table 4.32: Tiny service packets

The answer contains the return value of the execution, which either can be a single
value (return value or exception code) or a pointer to a Tiny value array. In latter case
the content of the array is additionally placed at the end of the return packet.

Type Value Type Value (Data)
62 (>) 1B 1-8B remaining

Type Size [B] Description
0 1 int8
1 1 uint8
2 2 int16
3 2 uint16
4 4 int32
5 4 uint32
6 4 32bit float
7 4 error code
8 8 int64
9 8 uint64
10 8 64bit double
10 4 pointer to tiny array

Table 4.34: Tiny service: Execution Answer and Value Types

Function listing

To properly compile Tiny script for some target node, Tiny compiler requires a list of
available functions on that node. A list of available functions IDs is requested with an
empty Tiny service packet. Function IDs must be unique within the mission network,

104 Chapter 4. Compass Protocol

i.e. functions with the same ID on different machines must perform equally (input-output
interface). Since only function IDs are listed by the Tiny service, the Registry service can
be utilized to obtain their textual representation.

0B
Type FunID1 . . . FunIDN
58 (:) 2B . . . 2B

Table 4.35: Model service: Get function list (left) and list answer (right)

Thread listing

Every Tiny-enabled node can be set-up to offer memory for so called Tiny threads. The
memory can be filled with any number of threads until the memory is exceeded. In the
Compass OS implementation every thread consumes:

• 20 bytes header data: file location, CRC and settings
• thread stack, e.g. 100b
• space to fit the byte-code

If local file storage is available the service can automatically load Tiny threads from
files during the boot-up. All OBC and Panel subsystems of UWE-4 and NetSat missions
support up to 5 persistent Tiny threads. For example on NetSat one persistent Tiny script
is used to fix some detected misbehavior during the LEOP operations.

With packet type 63, the list of all currently available threads can requested. The
answer contains: number of threads, auto-load settings and multiple thread information
blocks (see table 4.37). Auto-load settings describe a file range from which persistent
threads are loaded during the node’s boot-up. This technique allows to create or delete
persistent Tiny threads, i.e. threads that are automatically loaded during the boot-up
process.

Type
63 (?)

Table 4.36: Tiny service: List Tiny threads

Thread Control

A Tiny thread can either be created using a single packet or using the File service capa-
bilities. The former procedure is applicable to smaller code fragments (under 250B) that
can fit in a single Compass packet. For larger scripts, the script can be uploaded using
the File service.

Type CycleMS RepeatS Flags Byte-Code
43 (+) 2B 2B 1B remaining

Table 4.38: Tiny service: Add thread

4.3. Services 105

Type Num N Free Space Drive Dir FileFrom FileTo Thread1 . . . ThreadN
76 (L) 1B 2B 1B 1B 1B 1B 19-26B . . . 19-26B
ThreadID CRC Drive Dir File Size Cycles CycleMS RepeatS Flags State ValType Value

1B 2B 1B 1B 1B 2B 2B 2B 2B 1B 1B 1B 1-8B

Field Description
Num N Number of threads
Free Space Free memory for threads
Drive

Auto-load settingsDir
FileFrom
FileTo
ThreadN see rows below
ThreadID Local ID of the thread
CRC CRC of the loaded script
Drive

Script location (if any)Dir
File
Size Size of the script
Cycles Number of cycles until execution pause
CycleMS Resume execution after pause of
RepeatS If not zero, repeat execution if finished after
Flags Flags: 0b00000LRA

L Log active
R Repeat active
A Active (script disabled on 0)

State 0=finished, 1=in progress
ValType Last returned value or error (see table 4.3.9)Value

Table 4.37: Tiny service: Tiny threads List

106 Chapter 4. Compass Protocol

Every currently available thread can be deleted with a Delete packet. With DeleteFile=1,
the thread is not only deleted from the execution memory but also from the file system
(if existent).

Type ThreadID DeleteFile
45 (−) 1B 1B

Table 4.39: Tiny service: Delete thread

With Update-Packet settings of an existent thread can be changed: refresh rate, CPU
load, repeating and enable-parameter.

Type ThreadID CycleMS RepeatS Flags
85 (U) 1B 2B 2B 1B

Table 4.40: Tiny service: Update thread

When a thread execution is finished, the service creates an answer packet, which is
sent to the last operator’s address. A thread answer is very similar to the direct exe-
cution answer – it additionally contains the thread ID. In repeated threads answers are
transmitted periodically.

Type ThreadID Value Type Value (Data)
62 (>) 1B 1B 1-8B remaining

Table 4.41: Tiny service: Thread result

File Access

The file access capabilities of the Tiny service can be used for multiple scenarios:

• Create persistent threads that are loaded during the boot-up.
• Load larger threads that do not fit into one single Compass packet.
• Dynamic script loading, i.e. a script loads another script on demand.
• Store existent thread for later use.

Type Drive Dir File
70 (F) 1B 1B 1B

Table 4.42: Tiny service: Load thread from file

An existing script can be saved using the Save-Packet – it is particularly useful for
smaller scripts that were uplinked using the Add-packet.

Type ThreadID Drive Dir File
83 (S) 1B 1B 1B 1B

Table 4.43: Tiny service: Save thread to file

4.3. Services 107

4.3.10 Model
The Model service represents a tree of system’s variables that can be remotely read or
modified. The basic idea is that every node contains a local model – a hierarchically
ordered set of name-value pairs: parameters, control values, sensor values, configurations,
etc. The Model service can deliver the entire model structure on request, offers full access
to values and offers subscriptions to model changes.

Figure 4.12: Model service: example of the UHF ground station model

The advantage of the model-based approach is that most remotely cooperating tasks
can be realized exclusively by performing mutual model modification – presupposed that
the models are properly designed. For example, the AOCS subsystem can activate sun
sensors on all panels by remotely setting the value Sunsensor\Active=true and subse-
quently read out remote Sunsensor\Angle values. Another example, the ground station
configures during the overpass remote SDR nodes by changing their model values for
modulation and frequency.

In order to reduce the communication overhead of the Model service, a model is logi-
cally separated into two parts:

• Model structure describes time invariant properties: model IDs, data types, value
names, values ranges, critical limits, parent-child relationships and optional visual-
ization hints

• Data describes current value content along with a time-stamp of the last change

108 Chapter 4. Compass Protocol

Type Short length Length

1B 1/4B

Short Length Description
0-12 Array of length 0-12
0xE Array of length 16
0xF Length is defined in next byte

(or 4 Bytes for binary type)

Table 4.44: Model type+length encoding

The Model structure of a yet unknown node needs to be requested only once. All
further model-based communication is performed by using only the model ID and actual
data. All CompassNode-activated workstation software components (Compass Operations
front-end, ground station, mission server, etc.) cache remote structures and persist this
knowledge to the local file system. The caching mechanism also processes passing-by
(forwarded) service packets to increase own knowledge. The totality of all known remote
models is called mission model knowledge. Intermediate nodes that are always in the
route of ground-space communication packets, such as the mission server, obtain over
time most complete and most recent mission model knowledge. The workstation version
of the Model service is implemented in such a way that the modification of a remote model
copy automatically leads to the synchronization of the changed values in the copy with
the corresponding target node (model owner).

Data Types

The Model service supports several single and array data types, whereat a single value is
realized as an array with size=1. All values are stored in little endian byte order.

The data type and array length are encoded with compact format shown in table 4.44.
The upper 4 bits of the first byte represent the type as shown in the table 4.45. The lower
4 bits of the first byte either directly denote the number of array elements or denote, that
there is an additional byte. The special handling of length 16 is due to the often occurring
of arrays with length 16 (4x4 matrices).

Packet Types

Several service packet types exist in two versions: local version and addressed version.
Since a node can also hold a cached copy of some remote model, this copy can also be re-
quested or modified. For example, the ZfT’s mission server has model caching capabilities,
i.e. over time it gains model knowledge of all nodes within the network, thus forming a
mission model. It does so by processing detected Model service packets in the forwarded
traffic. Due to the fact, that all ground-satellite packets are passing the mission server it
obtains the most complete and most recent knowledge of the satellite states. The model

4.3. Services 109

Code Type Size Description Range Range
[B] from to

0 void 0 Entry without a value, usu-
ally a group

1 uint8 1 Unsigned integer 0 255
2 int8 1 Signed integer −128 127
3 uint16 2 Unsigned integer 0 65535
4 int16 2 Signed integer −32768 32767
5 uint32 4 Unsigned integer 0 232 − 1
6 int32 4 Signed integer −231 231 − 1
7 uint64 8 Unsigned integer 0 264 − 1
8 int64 8 Signed integer −263 263 − 1
9 dynamic N Dynamic model created on

demand
10 group N Byte array of all values

within a group
11 char 1 character array
12 bin 1 Byte array
13 address 5 Remote model root 0, 0 232 − 1, 255
14 float 4 Float with 6 decimal places

precision
1.2× 10−38 3.4× 1038

15 double 8 Float with 15 decimal places
precision

2.3× 10−308 1.7× 10308

Table 4.45: Data Types

110 Chapter 4. Compass Protocol

caching drastically reduces the required communication to space systems, as many satellite
model requests can be handled by the server itself.

Type Answer Description
1/10 11 Get value list
11 Value definition

5/50 Set value
2/20 Set without time
3/30 5/50 Get
6/60 5/50 Get to
4/40 5/50 Set and get
7/70 Set group
8/80 7/70 Get group

Table 4.46: Model service: local (left) and addressed (right) packet types

Request Model Structure

The structure of the remote model can be requested using the Get value list packet. The
remote system generates N answers with N being the number of model entries – see table
4.48.

Type
1

Type Sys Sub
10 4B 1B

Table 4.47: Model service: Get local (left) and addressed model list

Model Entry

Model entries are transmitted as answers to Get value list packet. The format of an
entry packet and the field description is shown in table 4.48. It provides all necessary
information to allow a reconstruction of the whole model tree. In addition to the required
fields in this packet, auxiliary semicolon-separated GUI hints can be placed between the
name string and the 0-byte terminator: edit type, view type, unit, value range, limits and
description. The format of GUI hints for a value with N elements is defined as follows
(field descriptions are shown in table 4.49):

”EditType1, . . . ,EditTypeN;
ViewType1, . . . ,ViewTypeN;
Unit1, . . . ,UnitN;
Ranges1, . . . ,RangesN;
Limits1, . . . ,LimitsN;
Description1, . . . ,DescriptionN”

4.3. Services 111

Example: Names with GUI hints
Numeric Selection value, whereat one element viewed as choice (e.g. drop down):

”Selection;;Ch;;One Two Three”

Numeric Flags read-only value with two elements viewed as bit-fields:

”Flags;R,R;Bit,Bit;;;;some flags”

since all elements should be viewed in the same way, its enough to define it once

”Flags;R;Bit;;;;some flags”

Type LID Entries PUID Name UID Type Short Len Len Time Data

11 2B 2B 2B . . . 0 2B 1B (1B) 6B Len*Type

Field Description
11 Entry list
LID Local index of the value
Entries Number of model values
PUID Parent UID
Name 0-terminated value name
UID Unique value ID
Type

see 4.44Short Len
Len
Time UNIX timestamp in ms
Data Data bytes, size = Len ∗ SizeOfType

Table 4.48: Model service: Model list entry

Set

Set packet is used to modify remote model values. It contains the target model ID, data
and Type+Len of the included data (table 4.50). The latter is included for safety reasons
to avoid wrong parsing if the included data does not match the type of the target value.
The receiver of the set command change the last-updated timestamp of the updated value
either to time defined in the packet or uses current local timestamp if no time is included
or time=0. The remote machine does not answer to this packet – in contrast to Set and
Get packets.

112 Chapter 4. Compass Protocol

Hint Value
EditType W (read/write), R (read-only)
ViewType Hex, Bit, Bool (check-box), Addr (Address), Time,

Dur(duration), Ch (choice as defined in range)
Unit e.g. mW, mV
Range ViewType != Ch: FROM TO

DataType is number : ChoiceStr1 ChoiceStr2 . . .
DataType is number : 0=ChoiceStr1 7=ChoiceStr2 . . .
DataType is char : ChoiceStr1 ChoiceStr2 . . .

Limit LowAlarm LowWarning HighWarning HighAlarm
Description any text

Table 4.49: Model service: GUI hints of a list entry

Type Sys Sub UID Type Short Len Len Data

2/20 4B 1B 2B 1B (1B) Len*Type

Type Sys Sub UID Type Short Len Len Time Data

5/50 4B 1B 2B 1B (1B) 6B Len*Type

Field Description
5/50 Addressed/local model set
2/20
Sys Addressed system (only if type=2/5)
Sub Addressed subsystem (only if type=2/5)
UID Unique value ID
Type

see 4.44Short Len
Len
Time Last-update UNIX timestamp in ms
Data Data bytes, size = Len ∗ SizeOfType

Table 4.50: Model service: set addressed (2/5) or local (20/50) value with or without
updating time

4.3. Services 113

Get (to)

Get packet is used to receive a remote model value and its children (recursive). The packet
contains the desired model ID and Max Age in [ms]. If for example a value represents some
sensor read-out, Max Age is used to decide either the last read-out is recent enough to
deliver an answer or a new one is required.

Type (Sys) (Sub) UID Max Age
3/30 4B 1B 2B 4B

Table 4.51: Model service: get addressed (3) or local (30) value

Type (Sys) (Sub) UID Max Age RUID
6/60 4B 1B 2B 4B 2B

Table 4.52: Model service: get addressed (6) or local (60) value

The answer is a Set packet with either the same model ID as in the request packet
(type 3/30) or the specified RUID (remote model ID, type 6/60). The latter is useful for
synchronization of two model values with the same data type but with different IDs. If
the requested model contains children, then multiple Set responses are generated for every
child entry.

Set and Get

This packet has the same functionality as the Set packet. In addition a response Set packet
is generated for the changed value.

Set Group

Besides the packet type (7/70), the format of the Set Group packet is equal to Set packet.
The defined value type is always group and the length represents the number of included
data bytes. The data bytes represent recursively all values in the specified value/group. To
avoid malfunctions, the receiver of the packet first checks whether the number of included
bytes in the packet matches the number of value bytes in the corresponding model group.
The values are updated recursively in the order of their appearance in the tree structure.

Type Sys Sub UID Type Short Len Len Time Data

7/70 5B 1B 2B 1B (1B) 6B Len*Type

Table 4.53: Model service: set addressed (7) or local (70) group

114 Chapter 4. Compass Protocol

Get Group

Get Group request is used to receive a compact value representation of a target value
branch. The answer is a Set Group packet with the model ID being set to the specified
RUID.

Type (Sys) (Sub) UID RUID
6/60 4B 1B 2B 2B

Table 4.54: Model service: get addressed (8) or local (80) group value

4.3.11 Recording and Reporting
The Automatic Recording and Reporting service (ARR) is an extension for Model service
and is used to either record local model changes (recording task) or to automatically report
model changes to remote nodes (reporting task). This service was utilized extensively in
UWE-3, UWE-4 and NetSat missions to record model entries for: AOCS sensors, GPS,
system states, etc. The recorded files were automatically downloaded during night passes
by the auto-operator and later post-processed with Matlab.

Clear

With a Clear request packet all currently existing ARR tasks are deleted. On success the
node answers with a Clear Done packet.

Type
112

Type
113

Table 4.55: ARR service: Clear request (left) and Clear Done packet (right)

List tasks

The list of the currently active service tasks is requested with the List packet. Currently
up to 255 simultaneous tasks are supported. A separate Entry answer packet is generated
for every existing task (see table 4.56).

Get Task

With Get Task packet the information of one specific task can be requested. Despite the
packet type (33), the answer is the same as for List requests (see table 4.56).

Type TaskID Flag Settings ConfigID MUID SamplePeriod Last-Exec
33 1B 1B 1B 1B 2B 4B 4-8B

Table 4.57: ARR service: single task entry

4.3. Services 115

Type
16

Type TaskID Flag Settings ConfigID MUID SamplePeriod Last-Exec
- GF FS

17 1B 1B 1B 1B 2B 4B 4-8B

Field Description
17 List tasks
TaskID local ID of the task
Flag 1=recording, 2=reporting task
GF Group flag
FS Force sampling
ConfigID ID of the active recording/reporting config
MUID UID of to be recorded/reported model
SamplePeriod Sampling period of the active sampler [ms]
Last-Exec Time of the last sampler execution, UNIX ms

Table 4.56: ARR service: request tasks (left) and task entry (right) packet

Create Reporting Task

New reporting tasks are created with Create Reporting packets. On success, the remote
node answers with newly created TaskID.

Type MUID FS SamplePeriod RUID Sys Sub
48 2B 1B 4B 2B 4B 1B

Field Description
48 Create new reporting task
MUID UID of the model to be reported
FS Force sampling: force model GET Hook execution
SamplePeriod Sampling period of the active sampler [ms]
RUID Remote model UID to which the variable shall be

reported on
Sys System+Subsystem Address to report to
Sub

Table 4.58: ARR service: create new reporting task

Type TaskID
49 1B

Table 4.59: ARR service: Successfully created reporting task

116 Chapter 4. Compass Protocol

Create Recording Task

With this packet type, a new file recording task can be created. In contrast to the re-
porting tasks, the model updates are written to the system’s local file system and can be
downloaded later. During the recordings, one of two files is used for storage, i.e. as soon
as the current file size exceeds Max. file size alternative file is re-created and selected for
further recordings. This technique solves the problem of concurrent read (download) and
write (recording) access.

The recording is often used in ZfT satellite missions to store data during in-orbit
measurements and experiments. If successful, the remote node answers with newly created
TaskID.

Type MUID FS SamplePeriod File1 File2 Drive FileSize Start Duration
File Dir File Dir

64 2B 1B 4B 1B 1B 1B 1B 1B 4B 8B 4B

Table 4.60: ARR service: create new recording task

Field Description

64 Create new recording task
File1 Primary File
File2 Secondary File
Drive Local file drive number
FileSize Max. file size
Start Start time as UNIX timestamp in ms
Duration Recording duration in ms

Type TaskID
65 1B

Table 4.61: ARR service: Successfully created recording task

Task Deletion

Any existing task can either be deleted using its TaskID or using the ID of the model, to
which the task is targeted. In latter case the value of the Flag field is used to define which
task types should be deleted:

• 1: delete only recording tasks
• 2: delete only reporting tasks
• 3: delete all tasks

On success, the answer contains either the removed TaskID or the model UID of the
removed task.

4.3. Services 117

Type TaskID
80 1B

Type TaskID
81 1B

Table 4.62: ARR service: delete Task by its TaskID (left) and answer on success
(right)

Type Flag MUID
96 1B 2B

Type MUID
97 2B

Table 4.63: ARR service: delete Task by the model ID (left) and answer on success
(right)

4.3.12 Database
The Database service is accessed to receive desired Compass traffic from a database-
activated node. In UWE and NetSat missions the entire ground-space traffic is stored by
the ground station and mission server nodes. The Compass Operations front-end provides
a dialog (figure 4.13) to receive Compass packets from remote database-activated nodes.
The format of the request and the corresponding answer is shown in table 4.64. Retrieved
history packets are handled passively by the Compass implementation, that is:

• forwarding is deactivated
• no answer packets are generated
• services treat the packets differently (commands are not executed, etc.)

4.3.13 Registry
The Registry service provides synchronization capabilities for key-value mappings. It is
used to store textual representation for different ID types: addresses, service names, com-
mand names, tiny functions etc. Therefore, it is similar to the functionality of a DNS
(Domain Name Service) but is defined in more generic way.

Example:
New operator wants to access an existing mission network using Compass Operations
front-end. To do so, some non-existing Compass address must be specified for the local
node: 13:122. As soon as the node is connected to the mission network, every other
operator would see 13:122 appearing in the nodes view. To improve the recognizability,
the new operator decides to enter a new address-text mapping in the local address
map: 13:122=Operator:Dombrovski. Now, the local Registry service will automatically
synchronize the new value with the mission server. After some time the Compass
Operations front-end of other operators will also synchronize maps and receive the new
address mapping – resulting in a more understandable representation of the 13:122 node.

118 Chapter 4. Compass Protocol

Type Source Target Service Time
Sys Sub Sys Sub from until

1 4B 1B 4B 1B 2B 8B 8B

Type Source Target Service Time Amount Packet 1 . . .
Sys Sub Sys Sub from until DB time Size bytes

2 4B 1B 4B 1B 2B 8B 8B 4B 8B 4B NB

Field Description
Sender Desired packet source or 0 for any
Receiver Desired packet target or 0 for any
Service Desired service ID or 0 for any
Time from Lower age limit, or 0 for no limit. Format

yyyy-MM-dd HH:mm
Time until Upper age limit, or 0 for no limit
Amount Number of contained packets
DB time Time at which the packet was stored in the

database
Size Packet size
bytes Raw packet bytes

Table 4.64: Database service: request and answer packet

Figure 4.13: Database service: loading remote history packets with Compass Oper-
ations front-end

4.3. Services 119

Every map has a MapID, which is unique (with respect to its type) in the entire
Compass network. The Registry service is able to synchronize local maps with any re-
mote Compass node with Registry support. The synchronisation follows the master-slave
scheme, e.g. values on common nodes (mission server, compass gateway) have higher
priority that the values on operators nodes.

Type
0

Type MapID
1 4B

Type MapID Key Len N Key
2 4B 1B NB

Table 4.65: Registry service: list all, list map and list value

Type MapID
3 4B

Type MapID Key Len N Key
4 4B 1B NB

Type MapID Key Len N Key Len M Value
4 4B 1B NB 2B MB

Table 4.66: Registry service: clear map, delete value and create/update value

Currently map IDs [0-20] are reserved for default maps shown in table 4.67.

ID Key Value Description

0 MapID Name;Key0,. . . ,KeyN;Col0,. . . ,ColM;Target Names of all maps are listed here
1 ApiID Name;Description;Color(;ID;. . .) All known Services
2 SysID(:SubID) SysID;SubID;Name;Info;Color(;ID;. . .) All known Compass nodes
3 SysID:SubID Cmd0;. . . ;CmdN List of all known Commands of a node
4 CmdName Arg0,. . . ,Arg1;Help Command usage help
6 SysID:SubID FncID0;. . . ;FncIDN List of known tiny functions of a node
7 FncID FncName;Arg0(type),. . . ,ArgN(type);Help Functation usage help
8 FncName JavaScript Tiny function simulator
9 SysID:SubID APIID0;. . . ;APIIDN List of known APIs of a node
. . .
20 reserved reserved

Table 4.67: Registry service: reserved table IDs

Registry service is currently only available in the CompassNode implementation, as
there was no need to provide it on embedded devices (Compass OS). In the current mission
network configuration, the mission server and the main Compass gateway are configured as
master and all remaining nodes (Compass Operations nodes, simulations, etc.) as slaves.
The registry update is performed automatically during the connection to the mission
network and then repeated every 10 minutes.

4.3.14 Tunnel
The Tunnel service can be used to establish user-defined protocol connections between
two Compass nodes. Some usage examples are:

• Make a non-Compass satellite accessible in to the Compass mission network.
• Forward packet traffic of a node to one or multiple nodes for monitoring purposes.

120 Chapter 4. Compass Protocol

Figure 4.14: Registry service: example of the local Service map (Compass Opera-
tions front-end)

• Low-level access to remote hardware channels, e.g. tunneling of raw I2C messages
from a sensor to the operator for debugging purposes.

At ZfT, Tunnel service is used between ground nodes for several purposes. So, during
the satellite (auto-)operations all non-involved operators can see the entire traffic in their
Compass Operations front-end. Without a tunnel this would only be possible for nodes
that are located in the route between the satellite and the current (auto-)operator. The
service is also used by multiple Software Defined Radios (SDR), which are implemented
as separate nodes and act as backup receivers during the satellite overpasses. They use
Tunnel service to inject all demodulated RF traffic to a predefined ground station for
further higher-protocol decoding.

Type Tunnel# Type Len M Type Len N Bytes
1 2B 2B MB 2B NB

Table 4.68: Tunnel service packet

4.4 Channels
This section describes the handling of stream-based channels and channels used in UWE-3,
UWE-4 and NetSat systems.

4.4.1 Generic Byte Stream Channels
In general every protocol provides either stream (e.g. serial interface, TCP) or pack-
et/message oriented (e.g. I2C, UDP, CSP, Compass) communication. If a packet-oriented
protocol is located on top of a stream-oriented one, several problems occur during the
conversion of stream bytes to packets/messages:

1. Packet detection, i.e. find the start and end of a packet within the stream

4.4. Channels 121

2. Re-Synchronization of packet detection on

(a) Packet loss
(b) Packet corruption due to bit flips
(c) Packet corruption due to bit loss

Three basic techniques can be defined for detection of a packet start and end in a
stream – see table 4.69. The last strategy is the simplest one, as it does not require a
second channel or advanced control in the physical layer (e.g. transmitter hardware). The
Serial Line Internet Protocol (SLIP) is a good candidate for encapsulation, as it has been
utilized for TCP/IP protocol via serial channels and is also widely used in extended KISS
format for communication with Terminal Node Controllers (TNC).

Strategy Limitations

Using a second sync-channel Complex and not applicable to all streams

Timing: longer transmission delay
between two bytes is equal to packet
start/end

Requires access to the physical layer and timing
knowledge of the neighbor nodes

Use special separator byte Packet bytes must be modified to avoid the oc-
currence of the separator byte

Table 4.69: Packet detection strategies

With SLIP a packet is initially transformed into a byte array, then all occurrences of
END and ESC are converted to ESC ESC END or ESC ESC ESC respectively. Eventually, the
end (and optionally the start) of the byte array is denoted with END byte. On the other
end of the line the process is performed in reverse.

SLIP byte Meaning
0xC0 END
0xDB ESC
0xDC ESC END
0xDD ESC ESC

Byte Encoding
0xC0 0xDB 0xDC
0xDB 0xDB 0xDD

Table 4.70: SLIP Protocol (left) and encoding rules (right)

During the implementation of different channels types in CompassNode and Compass
OS, the decision to use SLIP was made when:

• the channel is stream-oriented: serial connection, TCP
• the channel is packet-oriented and

– a channel packet may be too small for common Compass packet sizes: I2C,
CAN

– a channel packet can transport multiple Compass packets: UDP

122 Chapter 4. Compass Protocol

A SLIP byte stream is a stream that contains packets being encoded using SLIP.
The bytes of the SLIP stream can also be transmitted as payload of another packets, thus
allowing large Compass packets being transmitted via packet-oriented channels with much
smaller packet sizes (e.g. AX.25 or Cubesat protocol).

4.4.2 TCP or UDP
Since TCP is stream oriented and UDP can potentially carry multiple Compass packets,
both implemented channels in CompassNode and Compass OS utilize SLIP for transmis-
sion.

4.4.3 I2C
I2C channels are widely used in embedded systems for communication with sensors and
between microcontrollers. It can handle up to 127 nodes in 7-bit address mode (default)
and is typically set-up in master-slave mode. Only master nodes can actively begin an
I2C transaction, whereas only slave nodes can accept incoming transactions. Therefore
the I2C standard defines addresses only for slave nodes.

A classic I2C network consists of one master and multiple slaves – for example a
MCU and multiple sensors. There is also a concept of multi-master systems that enables
multiple masters to be in the same I2C network. Depending on the implementation,
master systems have to negotiate the permission on send (e.g. via separate wires). The
I2C channel implementation in the Compass OS follows the slave-only approach. That
is, every node is slave and every node can become a master. Since the I2C standard was
specified with a focus on single-master networks, there is no I2C standardized way for a
slave to detect the address of the master node. This addressing issue is solved by Compass
devices in the I2C message payload. Since every I2C enabled Compass node is master and
slave, they all possess an I2C address.

On very memory-limited devices the I2C buffer can be too small to carry one full
mission-common Compass packet. Therefore, multiple transactions are performed to
transmit a Compass packet. To do so it is first converted to SLIP bytes and then trans-
mitted segment-wise in separate transactions.

Figure 4.15: Advanced I2C communication

4.4. Channels 123

Standard Communication

In the default transmission mode Compass packet transmission via I2C is performed asyn-
chronously. That is, answers from Compass services are transmitted in separate I2C master
transactions. The aim of this approach is to release the I2C bus as fast as possible, thus
improving the entire network reactivity. For exceptional situations the urgent transmission
mode is used.

In Compass OS the master communication is conducted by the I2C channel imple-
mentation as follows:

1. Convert Compass packet to SLIP bytes
2. Begin transaction with the target node
3. Put own I2C address and SLIPed bytes into the I2C message payload.
4. Read-in the answer of the remote I2C channel handler in the same I2C transaction

and

• If Received=0. The packet was rejected, as the receivers waits for another
master.

– Wait (200 + RND)ms with RND being a random number in the range
[0-64].

– Restart transmission.
– Cancel after 3 tries.

• If 1<Received<Transmitted. The receiver was not able to store all bytes.

– Wait 100ms.
– Start new transaction with non-received bytes.
– Cancel transmission if no additional data bytes could be transmitted

during the last 3 direct subsequent tries (reset try counter if at least 1
byte received).

• If Received=Transmitted and Response Len > 0. Urgent answer.

– Read in answer bytes.
– Check if a full packet is included (ends with SLIP END).
– Add received Compass packet into the receive buffer.

I2C Address Data
2B N bytes

Table 4.71: I2C Master Packet

The slave communication procedure performs the following:

1. Read-in masters address from the I2C message.
2. Reject the packet (return an answer with Received=0), if the channel waits for

another master.
3. Copy data bytes from the I2C message into the buffer.

124 Chapter 4. Compass Protocol

4. Check if the payload ends with SLIP END.

• If false, consider the current transmission as not finished. That is

– Answer in the same transaction with the number of received bytes.
(address length + data length) and Response Len = 0x0000 (see Table
4.72)

– Wait until the next packet with remaining contents from the same
sender.

– Reject other masters during this time.
– Cancel waiting after a specified period of time (e.g. 500ms).

• If true, check if the Urgent header flag is set in the received Compass packet.
If so

– Immediately pass the packet to the local Compass packet handler
– Convert Compass service answer packet to SLIP bytes.
– Answer in the same transaction with the number of received bytes (ad-

dress length + data length), Response Len and response data (see Table
4.73).

• If true, and no Urgent flag

– Answer in the same transaction with the number of received bytes (ad-
dress length + data length) and Response Len = 0x0000 (see Table
4.72).

Received Response Len
2B 0x0000 (2B)

Table 4.72: I2C Slave Response

Urgent Communication

As already stated, the urgent communication mode is only used in exceptional situations.
In this mode answers from Compass services are transferred in the same I2C transaction,
i.e. the bus remains stalled during the packet handling, thus making the reliability of the
entire satellite bus being depended on service and user code.

Received Response Len N Data
2B 2B N bytes

Table 4.73: I2C Slave Urgent Response

5 | Space Segment

In Chapter 4 the definition of all services was shown that were used to establish all required
functionalities in ground and space systems during the UWE and NetSat missions. Even
though all space and ground nodes appear as uniform nodes in the mission network, they
are implemented using entirely different hardware. Ground systems are rather based on
high-powered machines, for which higher languages and operating systems are available.
Many satellite subsystems are running 24/7 and are restricted by power, space, heat
dissipation, and communication constraints. Due to these restrictions space systems offer
lesser high-level functionalities compared to the ground systems. They, for instance, do
not offer database support, model variables with large data blocks or services that are not
feasible in space.

Figure 5.1: Coverage of the space segment chapter

The Compass middleware (protocol, services and execution environment) was imple-
mented in Java as CompassNode and in C as Compass OS. The former is used for ground
systems, as it allows much faster implementation of new services, straightforward extension
of GUI elements and is runnable on any Java-enabled platform (Windows, Linux, MacOS,

125

126 Chapter 5. Space Segment

Raspberry PI etc.). The Compass OS implementation is designed in such a way, that it
is compilable with any GCC compiler, and is therefore not only runnable on embedded
microcontrollers but also on workstations – presupposed there exist an implementation of
the Compass OS’ Hardware Abstraction Layer (HAL). During this thesis, HAL was im-
plemented for 16 bit MSP430, 32 bit Atmel ARM microcontrollers as well as for Windows
and Linux based systems. The runability of the embedded code on a workstation enables
in-the-loop testing as proposed in section 3.1.6.

Details of the low-level implementation are not shown in this chapter, as it would go
far beyond the scope of this document. Instead, it will be shown how Compass and ser-
vices were stitched together to enable the required functionality (see Requirements section
and Approach chapter) and how the implementations were made runnable on multiple
platforms. Thereafter, a description will follow of how dynamic code invocation was en-
abled on virtually any relevant microcontroller with the new Tiny scripting language. All
examples are based on the NetSat mission.

5.1 Hardware environment
Since UWE-3 the ZfT’s and Universities team has a module satellite platform with a
standardized UNISEC satellite bus [BS17]. All subsequent missions (UWE-4, NetSat,
TOM, QUBE, CloudCT etc.) are based on the UNISEC standard and share many of the
(updated) subsystems from the UWE missions.

Figure 5.2: Modular pico-satellite bus (image source: [BS17])

All ZfT’s missions can be split into two categories: 1U (UWEs) and 3U UNISEC-
enabled satellites (NetSat, QUBE, TOM). For all missions a variety of subsystems was
designed, which are selected depending on the specific mission requirements. Some of the
subsystems, such as radios, were purchased off-the-shelf.

5.1. Hardware environment 127

Subsystem Hardware Amount µC

On Board Computer (OBC) 16 bit MSP430 1 2
Attitude Determination And Control (ADCS) 16 bit MSP430
Attitude and Orbit Control (AOCS) 32 bit AtmelSAM 1 2
Power Processing Unit, NanoFEEP (PPU) 16 bit MSP430
Propulsion Control Unit, Enpulsion IFM 16 bit MSP430 1 2
Electronic Power System v1 (UWE)
Electronic Power System v2 (3U EPS) 3
1U Panel 32 bit AtmelSAM 1 1
3U Panel 32 bit AtmelSAM 4 4
Communication Module 1 (Lithium 1)
Communication Module 2 (Gomspace AX100) 2
Computing Module Raspberry PI 0 1 1
Computing Module supervisor 16 bit MSP430 1 1

Table 5.1: Currently developed satellite subsystems and their amount in one NetSat
satellite. µC shows total number of Compass OS enabled microcontrollers on one
subsystem

As can be seen in the table 5.1, one single NetSat satellite contains 13 programmable
microcontrollers. Since all of them are running Compass OS, the NetSat formation mission
with 4 satellites forms a space network with 52 nodes. Since UWE-3 and UWE-4 satellites
are also operated in the same mission super network, over 60 discretely accessible Compass
nodes are currently in space. Every subsystem is embodied in a separate PCB board with
a UNISEC connector and a hot-swap controller, which is approached by the OBC to power
on or off the subsystem. One exception to that is the OBC itself – since it must be active
24/7, it does not have a hot-swap.

5.1.1 Microcontrollers
In the scope of this work there is a separation between three microcontroller types:

• Low-power Node: 16 bit microcontrollers (e.g. MSP430)
• Mid-power Node: 32 bit microcontrollers (e.g. AtmelSAM S70)
• High-level Node: computation modules with high-level operating system (e.g. Rasp-

berry Pi) and all ground systems.

Since the approach is to enable advanced Compass functionality on every single node
in the mission network, the software implementation had to be performed in such a way
as to enable its runability on both: nodes with only 2 kB of RAM and high-level systems.

5.1.2 Payload
Depending on the mission goals, a payload of one mission can be a part of the satellite’s
bus system of another mission. For example the ADCS system was seen as a payload in
the UWE-3 mission. Since then, its updated version is viewed as a part of the satellite’s

128 Chapter 5. Space Segment

Style Arch Speed RAM ROM

Low-power 16 bit RISC 16 MHz 2-16 kB 32-256 kB
Mid-power 32 bit ARM 300 MHz 384 kB 2 MB
High-level 32/64 bit ARM 1+ GHz 512-2048 MB 64+ GB

Table 5.2: Different MCU types

bus in the ZfT’s formation missions, with new payload being a to-be-tested component:
imager, laser communication and so forth.

Furthermore, there is a distinction between two payload types: Compass-enabled and
custom payload. With respect to the communication, accessibility and operability a
Compass-enabled payload does not differ from any other subsystem, i.e. in ideal case
any Compass-activated system can be inserted into the satellite without any change in
the remaining subsystems. Custom non-Compass subsystems cannot be directly accessed
from ground, instead some other Compass-enabled subsystem needs to care about the
communication with the payload. Depending on the mission, the payload may also have
own communication links that are operated separately by the payload provider – as is the
case in the QUBE mission[Hab+18].

5.2 Communication

The satellite communication links can be divided into three domains: intra-satellite, inter-
satellite (space-space) and space-ground, whereat every domain has its limitations and
difficulties.

5.2.1 Satellite bus

In NetSat, all subsystems can communicate with each other via two redundant I2C inter-
faces. UWE-1, UWE-2 and UWE-3 satellites followed a static master-slave communication
scheme, i.e. only the OBC could act as a bus master. Thus, all other subsystems could
only communicate on demand when asked by the master. As a consequence, the satellites
were represented by a single OBC subsystem. Moreover, since other subsystems (ADCS,
active panels) could not be directly accessed by the operator, the functionality of those
subsystems had to be reflected in the OBC’s code, thus unnecessarily bloating its code
and software complexity.

Starting with Compass, an any-master approach was introduced in all post UWE-3
missions: initially all subsystems act as slaves on the I2C bus but every subsystem can
temporarily become a master to approach any other one. Every subsystem became a
full-fledged mission network node. Since the I2C standard does not define addresses for
master devices, the communication scheme has to be extended as described in the section
4.4.

5.2. Communication 129

Figure 5.3: Subsystem configuration of one NetSat satellite. Yellow boxes denote
Compass OS enabled components

5.2.2 Space-Ground

Beginning with UWE-3, half-duplex communication space-ground links were introduced,
with uplink and downlink being operated in the UHF band (435 MHz). The UWE satellites
were equipped with AstroDev Lithium and the NetSat satellites with Gomspace AX100
transceivers. Unfortunately, the Gomspace transceivers compel usage of Cubesat Protocol
(CSP) on Layer 2, which is suitable for smaller networks but could not support large
dynamic networks as provided by Compass. Therefore, on all space-ground hops Compass
communication needs to be enveloped in CSP, which fortunately does not introduce too
much overhead.

UHF

From experience with UWE satellites, the UHF communication is very error prone. Some-
times only 5 − 15% packet success rate can be achieved. Moreover, the packet success
rate was mostly asymmetric – at times the downlink rate was much higher than the up-
link. Since uplink and downlink are performed on the same frequency, the communication
throughput is also highly affected by the switching time of the ground relay hardware. For
full-duplex communication, different radio bands are required, thus extensively increasing
the complexity of the communication hardware: doubled number of transceivers, different
antennas etc. These problems render classic acknowledgement-based communication (also
Compass DTN) practically impossible. The solution was to use the bulk-acknowledgment
technique in the Compass File service, which drastically improved the throughput during
the file transmissions.

130 Chapter 5. Space Segment

Laser communication

In the QUBE mission quantum key distribution (QKD) on board of a single 3U satellite
will be shown in 2021[Hab+18]. The mission is performed in collaboration with DLR
Institute of Communication and Navigation (DLR-IKN), Max Planck Institute for the
Science of Light (MPL) and Ludwig Maximilian University (LMU) Munich. One of the
payload components is the DLR’s Optical Space Infrared Downlink System (OSIRIS). The
first iteration the OSIRIS was tested on board the Flying Laptop and BIROS satellites.
In the current iteration the system now takes only 0.3U of space and provides up to 100
MBit/s by consuming only 8 W. In QUBE mission the optical links will not carry Compass
packets, instead the additional payload optical link is established directly to the Optical
Ground Station (OGS) located in Munich. Nonetheless, the housekeeping and experiment
activation will be performed via Compass links.

5.2.3 Inter Satellite Link
The ISL communication can be realized in different ways. The simplest approach is to
use already existing hardware for space-ground communication. This approach has been
selected for the NetSat mission, as the data throughput requirements are comparable low.
For all other missions the space-ground transceivers will act as a backup for dedicated ISL
links.

Compass-based ISL communication was successfully proven in the NetSat mission dur-
ing the first weeks until the distance between the satellites became too long in November
2020. For future formation missions with higher throughput requirements, development
of a small S-Band transceiver is currently in progress. Ideally, if small enough, every
panel will be equipped with a separate S-Band transceiver, thus bypassing the problem
of unsuitable relative orientation of the sender and receiver during the inter-satellite com-
munication.

5.3 Compass OS
Before this thesis, separate software projects were implemented for every single subsystem
(in UWE-3), whereat only limited library functions were shared among those projects (no
hardware abstraction layer). At that time this modus operandi was maintainable, as all
subsystems were enabled by the same microcontroller family. Beginning with UWE-4,
some of the UWE’s subsystems were upgraded (ADCS, Panels), such that a new addi-
tional microcontroller family was introduced. Having the formation missions in mind, a
maintainable way had to be elaborated for small development teams to implement software
for numerous different subsystems.

One of the outputs of this thesis is the Compass OS, which bundles all embedded
implementations to a single package. An overview of the structure is shown in figure 5.4
– where it is also compared with the Java implementation of the middleware. Compass
OS can also be used on top of an existing embedded operating systems – in later mis-
sion FreeRTOS will be considered as context-switching (“multi-threading”) system for the
Compass OS.

5.3. Compass OS 131

Figure 5.4: Comparison of the embedded and Java-based Compass implementations

5.3.1 Hardware Abstraction Layer
A common way to make embedded software runnable on multiple platforms is to detach
the code from the platform-dependent low-level system calls. This mechanism is called
Hardware Abstraction Layer (HAL), it creates a layer between the written software and
the low-level system calls, such as:

• bus access: I2C, SPI, serial
• GPIO access
• time functions

In the scope of this thesis several HAL abstraction implementations were made for
MSP430 and AtmelSAM families as well as for Windows and Linux based devices (GCC).
Please consider figure 5.5, which shows the conversion scheme. In addition to the low-
level calls, there are further abstraction blocks on higher layers. The File System API
enables uniform file access, independent of the underlying storage technology and the
utilized file system. The Channels API allows uniform byte-oriented communication via
any supported channel (I2C, Serial, Radio etc.).

5.3.2 Embedded File Systems
In the current hardware design, the OBC microcontroller is connected via SPI interface
to 10 non-volatile storage chips of different types (8x FRAM and 2x NAND). The FRAM

132 Chapter 5. Space Segment

Figure 5.5: Conversion from UWE-3 software to Compass middleware

chips can be accessed byte-wise, both in read and write mode. In contrast, NAND chips
offer more storage (4 Mb vs. 500 Kb per chip) but require more complex data handling
(e.g. block-wise delete) and more sophisticated file systems with Page Utilization Tables
(PUT) etc. The developed drive abstraction layer enables uniform access to different
storage chips (see figure 5.6). Different file systems were designed and implemented to
exploit the advantages of the specific storage technology:

• UFS (Uwe File System), file-oriented read and write data access for NAND chips.
Has been extensively tested in-orbit on board the UWE-3, UWE-4 and NetSat
satellites. UFS is best suited for growing files that are rarely (or never) deleted,
such as logs or recordings.

• FFS (Fast File System), file-oriented read and write access for FRAM chips. Sup-
ports only static file sizes. Offers byte-wise read/write and overwrite access. Best
choice for short-lived files, e.g. for buffering Compass packets (DTN), file upload
location and Tiny scripts.

• NFS (Network File System), offers file interface to remotely located file systems. It
redirects all file operations toward a remote NFS service. Is used on all subsystems
without flash storage (e.g. on the AOCS), e.g. to log model value changes.

All three file system types were extensively used on UWE-4 and NetSat satellites. On
UWE-3 only UFS was available on the OBC subsystem. In NetSat satellites the OBC,
Panels and Computing Board have physical access to storage chips. In all other subsystems
NFS drives are configured to point to different OBC’s drives (figure 5.7).

5.3.3 Channels
A channel is, in the context of Compass, a communication pipe, which can be used for
byte-oriented communication. The Compass OS Channel interface enables uniform access
to any existing (and implemented) channel type. This is of particular interest for the
routing functionality of the Network service, as its routing table is dynamically filled with

5.3. Compass OS 133

Figure 5.6: Different domains of the Compass OS File System implementation

Figure 5.7: Available drives on the NetSat OBC subsystem visualized in the File
View of the Compass Operations front-end

134 Chapter 5. Space Segment

Name Embedded Windows, Linux
Serial x x
I2C x
AX100 Radio x
Lithium1 Radio x
TCP/IP x x

Table 5.3: Available channels in Compass OS

Compass addresses and channels via which they are accessible. That is, the Compass
implementation can receive and transmit packets via any channel without knowing its
actual type.

In practice all available and desired channels are registered in the Compass OS con-
figuration file. The protocol handler checks at runtime all available channels for incoming
data. If a packet has been detected on some specific channel, new routing entry is created
with the sender’s address, timestamp and channel identifier. All implemented channels
are listed in the table 5.3.

5.4 Compass services

The implementation of the Compass services was performed based on the Compass defi-
nition in Chapter 4.3 and on specific requirements mentioned in section 2.1. For several
reasons some of the defined services were not implemented in the Compass OS – Database,
Registry and Tunnel services are only offered in the CompassNode version of the mid-
dleware (see table 5.4). The Registry service is only of particular use on systems with
GUI capabilities and systems with Database service require access to a full-fledged SQL
database.

The functionality of the services will not be explained in detail in the following sub-
sections, as it has already been done in Chapter 4.3. Instead, a brief description will be
shown about how the services were engaged to reach specific mission aims.

5.4.1 Network service
The Network service offers advanced communication capabilities, such as DTN, neigh-
borhood detection, network beacon transmission, incoming beacon parsing and routing.
Depending on to the memory restrictions of a subsystem, some of the functions must be
limited. For instance the DTN store-and-forward technique can only be offered by subsys-
tems with enough memory (RAM) or directly connected fast persistent memory (FRAM,
Flash). For the dynamic routing, a subsystem requires enough memory to hold the routing
entries.

5.4. Compass services 135

Service ID Name Embedded Java
0 Network x x
1 Echo x x
2 Command x x
3 Uplink x x
4 Downlink x x
5 Log x x
8 UnitTest x x
11 NFS x x
13 Tiny x x
14 Model x x
16 ARR x x
18 Database x
19 Registry x
21 Tunnel x
22 File Link x x

Table 5.4: Services implemented in Compass OS and in CompassNode

Example:
A satellite is built up of the following systems: OBC, AOCS and 6 panels. The OBC
is the only subsystem with access to the radio hardware and the only one with acti-
vated dynamic routing map. The routing table of every subsystem is pre-filled with
static entries pointing to other subsystems, in which the OBC acts as a gateway. The
table below shows routing entries of all subsystems during the operations, which are
simultaneously performed by two operators (GS:Alex and GS:Slavi).

Subsystem Routing-Entry Channel Flags
OBC GS:Server radio static, gateway

AOCS I2C static
PanelX I2C static
. . .
PanelZ I2C static
GS:Alex radio dynamic
GS:Slavi radio dynamic

AOCS OBC I2C static, gateway
PanelX I2C static
. . .
PanelZ I2C static

Panel 1-6 OBC I2C static, gateway
AOCS I2C static

Table 5.5: Routing entries example

136 Chapter 5. Space Segment

In Compass OS the subsystem software developer must make a decision at compile time
about how much memory should be reserved for the Compass routing map. A number
between 10 and 20 turned out to be a sufficient value for NetSat satellites. The routing
map can also be pre-filled with static routing entries, which always remain in the routing
map (i.e. are never replaced) but still receive an inactive flag if no packets were received
during some specified time period (60 seconds). By definition, the first static entry is a
gateway, i.e. if a subsystem needs to transmit data to an unknown address (no suitable
routing entry available), it passes the packet to the gateway node. Current routing table
configuration of the NetSat OBC subsystems is shown in figure 5.8.

Figure 5.8: Configuration of the NetSat OBC routing table with static entries

5.4.2 Command service
The Command service and the Model service are the most used services, as they allow
straightforward implementation of the majority of functions that must be accessible from
the outside. For example, in the flight software of the NetSat satellites the OBC offers 78,
AOCS 36 and Panels 38 different commands – from which 34 are built-in Compass OS
commands for file system operations, software module control, model modification and
debugging (e.g. I2C bus scan report).

New command can be created by using the COMMAND DEFINE macro (figure 5.9) at any
place in any software source file. During the compilation the Collect and Expand (CollExp)
pre-compiler checks all included sources, detects the macro and registers the newly defined
command in a central command list of the Command service. From now on the command
can be executed from any node in the mission network. The CollExp-enabled definition
technique is also used by the Model service to collect all defined Model variables, Unit-Test

5.4. Compass services 137

service to collect defined Tests and Tiny service to collect all defined external functions.
Some examples of the existing standard commands are:

• File access: cd, dir, format, cut, copy, append (append), merge and delete.
Example: append text to a file: append A:\1\2 Hello World

• File links: dwc/upc (cancel current down- and uplink), dwstat/upstat (link status)
• MCU functions: mcustat (get current MCU status and sw version), tmcu (toggle

MCU on reduntant subsystems, such as OBC)
• Beacon functions: bcn (request beacon)

Figure 5.9: Command definition one-liner

During the satellite software development an appropriate balance had to be found
between using commands and using the model, i.e. to decide either some functionality
should be available via the command interface or via the node’s model tree. The Command
service can be accessed via the dedicated Command View in the Compass Operation front-
end.

5.4.3 Model service
The Model service is extensively used in all subsystem software implementations to max-
imize the outcome of the MTBA approach. The service not only allows to request or
set single values, but also entire value groups using extremely compact representation.
During the subsystem software development it had to be continuosly decided either some
value should be implemented as a normal C variable or rather be stored as a model value.
Similar to commands, a model variable is created with a special GDS DEFINE macro. An
optional get-hook and set-hook can be assigned to a model variable. In the example below
a model value is created along with a group and a get hook.

Figure 5.10: Model group and value definition with a get hook

138 Chapter 5. Space Segment

The get-hook is called every time the value is read via the Model service and is useful
for values that should only be updated on demand. The set-hook is called when the value
has been set via the Model service and can for example be used to control an actuator
depending on the value.

Figure 5.11: Model examples of NetSat-2 OBC and Panel +X subsystems

In the subsystem implementations model values are created for any monitor, parameter
or control value that needs to be accessible from the outside – either by an operator or
another node. Therefore, numerous model values are created for sensor values (e.g. gyro,
sun vector, temperatures), internal values (e.g. time, states) or control values (e.g. gyro,
attitude). Within a satellite the Model service is used by subsystems for cooperating tasks.
The AOCS subsystem, for instance, continuously reads sun sensor values from all panels
and calculates the attitude.

In a formation the Model service is used by the master satellite to periodically re-
ceive the states of all formation partners and to distribute calculated orbit control values.
Model service significantly simplifies cooperative tasks, reduces the complexity of code by
decoupling the task implementation from the communication process.

The model reporting functionality (ARR service) can be used to create multiple model
reporting task, which automatically transmit model values to the defined address for the
defined period of time and frequency. So a node can avoid frequent value polling and
create a remote listener for any model value in the mission network.

With model recording task (ARR service) one or multiple model values can be selected
for storage. During the define time period every value change is then automatically stored
in the defined file. Nodes without own file system, can access the Network File System

5.4. Compass services 139

capabilities of the OBC or the AOCS.
UWE-3, UWE-4 and NetSat satellites periodically (once per minute) transmit house-

keeping beacons with current mode, states, temperatures etc. In contrast to UWE-3 and
its specific beacon format (i.e. beacon service), a Compass-enabled satellite transmits a
model group value and can therefore be automatically parsed by the receiver’s Model ser-
vice. In the Compass OS the Model service supports so called logic groups, which allows
a value to be present in multiple groups. In UWE-4 and NetSat satellites a Beacon logic
group was defined (on the OBC) with all panel temperatures, power system parameters,
uptime and status flags.

5.4.4 Unit Testing
In the context of Compass, a unit test is a function that can be remotely called to test
some specific functionality. A unit test can generate multiple progress messages during
the execution and eventually transmits a success or fail message. Similar to commands
and model values, unit tests are created with a EUNIT DEFINE macro.

Figure 5.12: Unit test definition

Some of the basic tests are present on every subsystem: I2C communication test, file
system tests (if present), clock tests etc. Unit tests are employed for multiple reasons:

• To test a recently assembled satellite. For this task a specific unit test group is
defined. Test examples: I2C, spi, clock.

• To test some specific (higher-level) functionality, e.g. antenna deployment, file sys-
tem healthiness, network file access.

• To identify the source of some problems (in-space unit testing).

5.4.5 File service
The Downlink service and the Uplink service are only available on nodes with connected
persistent flash memory (NAND, FRAM) – OBC and Panels on NetSat. The operator can
perform basic file operations using the file commands, such as list files, change directory,
get file information etc. Thereafter a file downlink or uplink can be initiated.

140 Chapter 5. Space Segment

Figure 5.13: UnitTest example

Both services engage the bulk acknowledgement technique, which solves the problem
of half-duplex links with highly asymmetric packet error rates. However, this technique
requires memory to hold a list of already received file chunks (chunk bitmap). Thus, the
maximum file size for an uplink is dictated by the memory allocated for chunks bitmap at
the receiving side. In the NetSat OBC and Panel implementations the embedded Uplink
service can handle files with a maximum of 1600 chunks. Having a chunks size of 200 bytes,
this results in a maximum file size of 320 kB. Larger files are split into sub-files, uplinked
separately and merged in-orbit using the merge command. The Downlink service does not
have these limitations, as the received chunk bitmap is hold by the receiver (high-powered
ground system).

In UWE and NetSat missions the Uplink service was used to either uplink comparable
large software update images (up to 300 kB) or smaller Tiny scripts (1-2 kB). With
Downlink service logged sensor data, sun sensor images or stored model values (ARR
service) are downloaded.

During this thesis Uplink and Downlink Views were created in the Compass Opera-
tions front-end. Both support file link by automatically requesting missing chunks during
the downlink or retransmitting chunks during the uplink. In addition a File View was im-
plemented to combine both services and to provide further file operations that otherwise
were conducted via the Command service (see figure 5.14).

5.5 Dynamic Code Execution with Tiny
In contrast to machine code that is directly executed by the target machine, an interpreter
is used to either directly execute human-readable scripts or to execute pre-compiled in-
termediate code. Moreover, large amount of the pre-compiled code can be stored in the

5.5. Dynamic Code Execution with Tiny 141

Figure 5.14: Download remote files with File View in the Compass Operations front-
end

external flash memory, thereby overcoming the program memory limitations.
Due to the extensive memory and computing power limitations of the UWE and NetSat

subsystems, the required interpreter must have a footprint of maximum several kilobytes
and process pre-compiled intermediate code. Available script languages such as Lua, Squir-
rel and Hedgehog have been discarded either due to the size, lack of required functions
or complex integrability into the existing software image. Therefore, a new Tiny script
language was designed and implemented during this thesis. The language was improved
multiple times by adding support for advanced functionalities, such as 64 bit support, ad-
vanced external functions and exception handling. Tiny is currently running in space on
board the UWE-3, UWE-4 and NetSat satellites and will also be used in future formation
missions (TOM and CloudCT).

5.5.1 Tiny Language
Tiny is a script language for which following components were developed: compiler, decom-
piler, interpreter, debugger and a compact Java-based integrated development environment
– Tiny IDE. The compiler is used to translate human-readable scripts into the intermedi-
ate Tiny byte-code. This approach is beneficial, as the byte-code is much more compact
and the target platform does not need to directly parse and interpret the readable script
(which would result in a much higher computation overhead).

The byte-code is platform independent and can be executed on any system for which
a Tiny interpreter exists. Sometimes it is highly advantageous to make byte-code human
readable again. For this purpose, a decompiler has been developed to enable reversing of
the compilation process and reconstruct the source code. Even though the variable and

142 Chapter 5. Space Segment

Figure 5.15: Tiny development cycle

5.5. Dynamic Code Execution with Tiny 143

function names cannot be restored (due to the nature of the compilation process), the gen-
erated script remains readable and offers the developer a comfortable tool to understand
given byte-code.

Tiny interpreter has been successfully tested in-space on board the UWE-3, UWE-4
and NetSat satellites[DB15]. It is a part of the On Board Data Handling (OBDH) and At-
titude Determination and Control (ADCS) software. It enables complex tele-commanding
and continuous execution of high-level attitude control algorithms [Ban+15][Ban+16]. In
2020 Tiny was used to execute NanoFEEP thruster experiments on board the UWE-4
satellite. In NetSat mission, Tiny was as yet (November 2020) used to enable on-board
activity scheduling and payload experiment execution.

The interpreter has a footprint of several kilobytes and extends the functionality of
a low-power 16 bit microcontroller without the need of the hazardous in-space software
image update. The sand-box design eliminates the threat of the potential software crashes.
This concept has dramatically improved the outcome of the scientific research - since more
algorithms (ADCS and orbit control) could be tested during the UWE missions. Therefore
the idea of a sand-box interpreter was expanded to fulfil the requirements of the NetSat,
TOM, CloudCT and further formation flying missions with respect to the distributed
formation control, in-space database and operations.

The generated byte-code can be executed using the Tiny interpreter. Currently there
exist two implementations: a GNU-C based and a Java based interpreter. The former
can be used for any platform for which the software is developed in C language – for
instance Atmel or TI microcontrollers. In the nominal setup the interpreter contains ˜600
lines of code (without defines). The Java version supports more advanced development
tools and is included in the Compass Operations front-end. The debugger, for example,
is used to test the script on a workstation before uploading it to the embedded node.
Usually, many external functions that are called within the script, are available only
on the target platform (e.g. read sensor values, actuator feedback etc.). In order to
make the written code testable on a workstation, these functions can be implemented
as Matlab or JavaScript functions, which are automatically called by the workstation’s
interpreter/debugger via the Matlab or JavaScript interface respectively.

The compiler, decompiler and debugger are available within the Java-based Tiny IDE
(see figure 5.17). As there are no external dependencies, the IDE can be started and used
right away. Nonetheless, it is also integrated in the Tiny View of the Compass Operations
front-end.

Tiny supports out-of-the-box signed/unsigned (8, 16, 32 and 64 bits) and floating point
numbers, character strings and arrays. It offers various internal instructions:

• Arithmetic operations: addition, subtraction, multiplication, division, increment,
decrement and modulus

• Boolean operations: equal, not-equal, larger than, smaller than
• Control structures: if, while, do, try, yield
• Variable declaration: u8, u16, u32, u64, s8, s16, s32, s64, float and their array form
• Variable access and conversion: cast, clear, memcopy, ptr
• Internal function call
• External function call with variable number of arguments

Depending on the requirements, various number of external C functions can be registered
in the compiler and thereby made accessible within the Tiny code. Currently one, two and

144 Chapter 5. Space Segment

variable argument functions are supported. The former two can be used to call standard
C-library functions (e.g. arithmetic functions), the latter to implement any other custom
functionality. Additionally an unregistered function can be called during runtime by using
its absolute memory address pointer as a parameter for vcallv (no parameter, no return)
or dcalld (float parameter, float return) instruction. However, this kind of external
function access is highly discouraged as it cannot be guaranteed at runtime in the sand-
box that the target function meets the defined conventions, thus violating the sand-box
nature.

Figure 5.16: Tiny instruction set shown in the IDE’s help window

5.5.2 Tiny IDE
The Tiny IDE is a very light-weight Java-based development environment. It offers com-
pilation, de-compilation, execution and local debugging abilities. The Tiny IDE can either

5.5. Dynamic Code Execution with Tiny 145

Figure 5.17: Tiny IDE with a source editor (top left), compiled byte-code (bottom)
and de-compiled code (top right)

146 Chapter 5. Space Segment

be used as a stand-alone application for creating executable Tiny byte-code or be used in
the Tiny View of the Compass Operations front-end.

Tiny IDE supports syntax highlighting, live compilation and de-compilation during
the script editing and can access existing embedded software implementations (Tiny con-
figuration files) to identify registered non-standard functions. The interface of the Tiny
IDE has been designed in such a way, as to enable its usage in other Java-based applica-
tions. This way Tiny IDE was integrated in the Operations software, which combines the
functionality of the IDE with the Tiny service (see Chapter 6):

• Uplink compiled scripts to a distant node.
• Fetch remote byte-code for revision (de-compilation).
• Use Tiny service to receive a list of available external functions, which are then

offered in the Tiny IDE.

Tiny Compiler

The compiler is used to convert human readable scripts into the corresponding inter-
mediate byte-code. To some extent the Tiny byte-code instructions are similar to the
assembler language, whereat some instructions have higher-level characteristics allowing
much smaller program foot prints.

The instructions were designed in such a way, that the byte-code can be easily created
without the use of the compiler. For example, mission planning tools can generate runnable
Tiny code directly – the operator does not need to write any script, instead the tasks can
be created using graphical user interface (time-line, boxes etc.).

Tiny Decompiler

Tiny byte-code is intrinsic, i.e. besides function and variable names, the conversion be-
tween byte-code and source-code is one-to-one. The decompiler is an assistant tool to view
already existing byte-code in a human readable and more understandable form.

Tiny Interpreter

This component is responsible for the execution of the byte-code on the underlying hard-
ware and software platform. The Java-based Tiny development environment contains
an interpreter, which is used to test the designed scripts. If external functions are used
within the script, a corresponding emulation function can be additionally written in Java
or Matlab to mimic the functionality of the target node’s hardware. Additionally a cross-
compilable GCC interpreter exists to execute Tiny byte-code on arbitrary hardware.

The interpreter uses a dedicated stack for every concurrent process. This technique
has multiple advantages compared to the system’s stack. First, all memory accesses are
checked in advance and thus memory overflows are detected without compromising the
stability of the whole system. Second, the interpretation process can be paused and
continued later using the preserved stack state. The interpretation can either be paused
automatically after a predefined number of instructions or by using the yield instruction
within the script itself. The yield instruction is of particular interest if the developer needs
to avoid the interruption of certain code sections. Moreover, multiple Tiny processes can
be executed in parallel, i.e. each process periodically receives some predefined amount of

5.5. Dynamic Code Execution with Tiny 147

CPU time (number of instructions to execute) – whereat major processes receive more
than the subordinated ones.

5.5.3 External Functions
Tiny provides numerous built-in functions for Boolean, arithmetic and trigonometric oper-
ations. However, the language was not designed to replace the entire (on-board) software
implementation. Instead, up to some specific abstraction level the on-board software is
implemented in a classic way. The developer needs to keep in mind, that some of the func-
tions should be made accessible by the Tiny functions. An appropriate implementation
style is to design a hardware accessing function in pure C (sensor read, actuator handling,
handling hardware interfaces) and offer a more abstract interface function for Tiny scripts.

In the scope of the current missions all hardware interfaces (I2C, serial, SPI) are
handled in pure C by the Compass OS. Hence, to initiate the communication (e.g. value
request from a remote node) inside a Tiny script, only the target (sub)system address
and the desired payload is passed to an external function that in turn decides via which
hardware interface the packet must be transmitted (Compass routing).

All external functions must conform to the following signature:

Value functionName(VarArgs params)

Whereat the return Value-struct holds a data-type along with the corresponding value
(reflective data types). The content can either be one single numeric value (of type u8-u64,
s8-s64, float) or some exception code number (exception type). The VarArgs incoming
struct is generated by the interpreter and contains a pointer to the Interpreter instance
(= context) and a variable number of parameters.

All external functions are registered in the Tiny interpreter header file along with
the corresponding function IDs. By convention all functions should have unique IDs
throughout all systems within a project, thus making any compiled byte-code runnable on
all systems – provided that all external functions called from the byte-code are present on
the corresponding system. The Tiny-IDE can either be pointed to such a header file to
read-in registered function or the list of the available functions are fetched via Compass
using the Tiny service.

5.5.4 Compass bonding
The Tiny IDE can either be used in an entirely Compass-agnostic way as a standalone
application or be integrated into another GUI-application to extend its functionality. The
IDE is a part of the Compass Operations software and can be utilized for nodes with Tiny
execution capabilities. The Tiny service offers:

• Receive list of available functions
• Direct byte-code execution (one-time execution)
• Creation and control of one or multiple Tiny threads
• Load Tiny threads from the local file system
• Store threads to the local file system
• Auto-load Tiny threads on boot-up (persistent threads)

Please approach section 4.3.9 for more detailed information about the Tiny service.

148 Chapter 5. Space Segment

5.5.5 Remote Function Execution
Due to the sand-box nature of the interpreter and depending on the configuration, the
execution may be done at one stroke or be interrupted multiple times to transfer the
CPU resources to other tasks. Since Tiny has its own virtual stack, the execution can
be interrupted periodically after the pre-set number of instructions. This enables concur-
rent execution of multiple scripts without the need of a multi-threading operating system
(such as Rodos [BGM14], Free RTOS or Compass OS threads). After the execution is
accomplished, the last interpreter value is returned – in most cases it is the value after the
return-statement at the end of the script.

Tiny service provides a basis for distributed computing:

• Divide-and-Conquer, divide a complex problem into smaller ones, distribute the
sub-problems (multiple Tiny scripts) and combine the (asynchronously) received
results

• A low-power satellite subsystem can call a (switchable) more powerful subsystem
to calculate essential data – e.g. orbit dynamics, re-plan current mission tasks or
complex database operations.

Figure 5.18: Tiny distributed execution

In the current working design the distributed computation is enabled by using the
external compass send() function (Figure 5.18). The function is called with a node’s
address and service ID as well as the desired payload. Due to the asynchronous nature
of the communication, the incoming answer is detected by polling the waiting variable.
The yield instruction provokes an intermission of the script interpretation and releases
the CPU resources to other system tasks (non-blocking wait).

In most cases the remote computation is done by calling a service that offers some
dedicated functionalities (such as variable access). However, to perform custom-made

5.5. Dynamic Code Execution with Tiny 149

computations a pre-compiled Tiny byte-code can be sent to the remote Tiny service with
subsequent result handling (Figure 5.19).

Figure 5.19: Tiny remote code execution

150 Chapter 5. Space Segment

6 | Ground Segment

In contrast to space nodes, ground systems are much less restricted by power, space, com-
munication throughput and computational constraints. As a consequence, higher (non-
embedded) operating systems and more capable programming languages, such as Java,
can be used as a basis for the Compass implementation.

Approach chapter and Protocol chapter describe the general approaches, solutions and
protocol interfaces that were followed to implement a distributed and uniform infrastruc-
ture. This Chapter shows an overview of all mission-relevant ground systems, how they
were combined to a uniform Compass mission network and the implementation details of
the Compass Operations front-end, which not only is capable of operating satellites, but
is rather used to monitor and control the entire mission network.

Figure 6.1: Coverage of the ground chapter

151

152 Chapter 6. Ground Segment

6.1 Environment
Since the software conversion to Compass, the same software configuration is used to
control all satellites – UWE-3, UWE-4 and NetSat formation. That is, a mission super
network was established, which is capable of tracking multiple satellites with different pro-
tocol configurations. From the communication point of view and in the scope of Compass,
a satellite formation is a space-located Compass sub-network, consisting of multiple nodes
with dynamic communication links. All formation and mission-specific tasks are based
on standard services: satellite models (Model service), commands (Command service),
scripts (Tiny service) and GUI components (Compass Operations front-end).

6.1.1 Before this thesis
After the launch of the UWE-3 satellite in November 2013, the ground segment was
scarcely populated (figure 6.2). The protocol configuration is shown in figure 3.1. The
satellite tracking, Doppler correction, Terminal Node Controller (TNC) handling and satel-
lite communication were handled by a UHF ground station Linux server. At that time all
these tasks were performed with different software modules – Linux built-in functionality
(KISS ports), software from the amateur radio community and separate Java modules for
other specific tasks, such as Fault Detection and Recovery component (FDIR).

Figure 6.2: Ground systems overview before this thesis (spring 2014)

The workstations of the UWE team members were used for operations, development
and simulation. However, the realization of the communication during the operations was
different from the communication with the engineering satellite model (green and blue
links in figure 6.2). In both cases a logical one-to-one (operator to satellite) network
topology was established, whereat the developer was required to switch manually between
the radio link for operations and serial interface for the development. Due to the one-to-
one limitation it was not possible to establish communication to multiple satellite models
at the same time – which at that time was not a requirement.

6.1. Environment 153

There existed several simulations in Matlab for ADCS algorithms, visualizations of
sensor values (magnetometer, sun sensors etc.) and experiment scripts that have been
used during the engineering phase to measure the performance of sensors and to calibrate
sensors (sun, magnetic) and actuators (magnetorquer). During the in-orbit phase Matlab
was used to post-process recorded values. The required satellite values were either injected
using files that were downlinked from the satellite or by creating a direct Matlab-satellite
link with special scripts (engineering model only).

6.1.2 During this thesis
The elaborated uniform network topology and protocol configuration are shown in figure
6.3 and 3.12 respectively. All relevant ground systems were made accessible in the Com-
pass network. Instead of using specific communication link implementations between two
counterparts, every node can now access any other node in the decentralized and dynamic
network. If a new software or hardware component needs to access some remote node’s
values, it enters the network as a node – and can therefore also be accessed from the
outside.

Figure 6.3: Ground systems overview at the time of writing (mid 2019). Left:
University’s sub-network, right: ZfT’s sub-network

All available ground segment systems can be separated in following types:

• Ground station server instance (UHF, S-band etc.): satellite tracking, ground sta-
tion hardware monitoring and control.

• Developer’s instance: execute unit tests, run IDEs to implement software for sub-
systems.

154 Chapter 6. Ground Segment

• Compass Operations instance: monitor and control any remote node, commanding,
file transfer, create Tiny scripts, visualization of multiple satellites and creation of
auto-operations schedule

• Mission server instance: store satellite traffic in a mission-specific database, cache
model knowledge from all nodes with the entire network.

• Matlab instance: post-process satellite data, execute simulations and calibration
algorithms.

• Orekit instance: perform orbit simulations, simulate maneuvers vs. propellant con-
sumption etc.

• Gateway instance: used to access remote Compass sub-networks via secured chan-
nels, reduces the amount of TCP/IP channels between Compass sub-networks.

• Test facility: e.g. two high precision motion simulators at ZfT, which are low-level
controlled by a dedicated workstation.

• Radio amateur : injects received satellite packets via a web service into the mission
database.

• Satellite development kit (DevKit): simplifies software development for single satel-
lite subsystems and makes them available in the mission network.

In the list above the word instance is used intentionally to accentuate the possibility of
running multiple instances on the same workstation, i.e. create multiple Compass nodes
on the same machine. A team member with multiple duties can for example run one
Matlab and one Operation node on the same machine. In addition, all Compass-related
development tasks (e.g. unit testing, logging) can be performed using the Operations
front-end instance, as it already offers GUI for all standard services.

6.2 Java Implementation
As described in the section 5.4, the Compass protocol was implemented in C and in
Java. Most of the mentioned ground systems are capable of running Java, thus drastically
simplifying the implementation and version distribution procedures. Driven by the keep it
simple and stupid (KISS) philosophy, the entire Java Compass middleware implementation
is packed in a single CompassNode.jar-file (10Mb size), which is runnable out-of-the-box
with only Java Runtime Environment (JRE) as a prerequisite. The same CompassNode.jar
file can be used in Matlab, Orekit and any other instances listed in the table 6.1 to enter
the Compass network and make use of all available services.

In Matlab only several lines of code are required to enter a Compass network, register
service listeners and to transmit packets. An example of node creation is shown in the
appendix 9.6. This technique is used to connect Matlab models with live data from
satellites and test facilities. For example, during the calibration of the camera-based sun-
sensors of the UWE-4 satellite, a Matlab node, the turntable node and the satellite node
(installed in the turntable) are connected to the mission network. All these nodes were
interacting with each other, whereat the calibration procedure was delegated by a Matlab
node: set the orientation of the turntable, read out the sun sensor value from the satellite
and update the calibration matrix (see section 7.3 for more details).

Any Java-based application can also easily enter the Compass network with less code
– see appendix 9.6. This technique is used in Java-based Orekit simulations, operations

6.2. Java Implementation 155

Name CompassNode Compass OS
Ground station server x
Developer’s workstation x x
Operations workstation x
Mission server x
Matlab instance x
Orekit instance x
Gateway instance x
Test facility x
DevKit x
Satellite engineering model x

Table 6.1: Java-ability of ground systems

software, small experiments and student projects, which later become part of the live-
system.

Non Java-enabled systems are: DevKits, satellite engineering models and amateur
radio stations. The DevKit is the implementation of the Flat Sat-approach, it contains an
embedded microcontroller running Compass OS and acts as a USB-to-UNISEC gateway for
all inserted satellite subsystems. An engineering model has the same software configuration
as a flight model – the Compass multi-channel capability allows any flight model to become
an engineering one when connected via the serial interface.

6.2.1 Fire Framework
The implementation of the CompassNode was performed using the Java-based Fire Frame-
work, which was developed at privateflag and is now distributed by Embedded Smartware.
It strictly follows the Model-Tree-Based-Architecture (MTBA) concept and provides in-
terfaces for modules and wires [Dom15a]. A module is a software component with defined
inputs and outputs, which are used to communicate with other modules via dynamic wires
(changeable at runtime). A software solution is achieved by instantiating multiple modules
for dedicated tasks, connecting them via wires and configuring the modules by changing
their parameters. All instantiated modules, wires, preferences and values are then accessi-
ble in the model tree. The model tree can be partially or fully injected (and continuously
synchronized) into the model tree of one or many remote Fire instances (model ghosting).
With this technique a module from one Fire instance can be connected to a module (or
multiple modules) in a remote instance, thus forming a distributed software implemen-
tation (distributed super instance). The entire development process can either be done
entirely programmatically or by using the Fire GUI, which is able to securely access Fire
instances all around the world. Fire does not distinguish design from runtime, instead the
solution is composed (e.g. using the Fire GUI) at runtime and is later loaded from the
automatically stored XML file.

Multiple module implementations are grouped to task-specific Toolkits, e.g. commons
toolkit, space toolkit, raspberry toolkit and so forth. Once written, a module can be
reused in any software project by dragging the module from the toolkit palette to the

156 Chapter 6. Ground Segment

model drawer. The Fire framework runtime (without toolkits) is closed source and free
of charge. The toolkits can be directly purchased from the company or through the soon
available Fire toolkit store in the Fire GUI.

Figure 6.4: Structure of the CompassNode software

During this thesis all Java-based implementations were made on top of the Fire frame-
work, thus enabling the re-usage of all available modules in a straightforward way: Com-
pass protocol, services, Channels, GS hardware control, satellite tracking, auto-operations,
e-mail service, web front-end and so forth.

6.3 Ground Station Server
Since all current ZfT’s missions rely on the UHF communication, the S-Band ground
station at ZfT is currently not in use. Therefore, only the UHF ground station from the
University of Würzburg is described in detail. A simplified hardware architecture of the
ground station is shown in figure 6.5. A more detailed information about the involved
components is described in [Dom10].

The ground station software is based on the CompassNode and has following duties:

• Hold a configuration list for multiple satellite: name, NORAD-ID, frequency, RF
modulation, Compass address, protocol chain and tracking priority.

• Propagation: automatically update TLEs, run SGP4 propagation, calculate Doppler
shift.

• Network-update: create and propagate new active routing entries when one or more
satellites are in sight; deactivate afterwards.

• GS hardware control, that is monitor and control:

6.3. Ground Station Server 157

Figure 6.5: Ground Station of the University of Würzburg

– antenna rotator
– transceiver’s band, frequency and amplification
– remote Software Defined Radio (SDR) nodes
– send and receive packets to/from the terminal node controller (TNC)

Before this work the tasks were performed using several non-interconnected software
solutions. The first implementation step was to create software modules for all relevant
tasks shown in figure 6.6:

• Satellite Configurator holds a list of desired satellites configured with: name, NORAD-
ID, frequency, RF modulation, Compass address, protocol chain and tracking pri-
ority

• Propagator calculates overpasses and current Doppler shift for all satellites listed in
the Satellite Configurator and performs periodic TLE updates from defined sources.

• GS Manager : configures Radio, Amplifier, Rotator, TNC and remote SDR compo-
nents to enable communication with currently overpassing satellites.

• Radio driver for ICOM IC910, ICOM IC9100 and Kenwood radios, which are con-
nected via serial interface. Converts modulation and frequency configuration from
GS Manager to low-level control messages.

• Amplifier driver for BEKO amplifier. Converts transmission strength configuration
from GS Manager to control the amplifier hardware.

• UHF Rotator and Dish Rotator driver for antenna rotator at the University Würzburg
and ZfT respectively. Uses relative satellite position from GS Manager to orient the
antenna appropriately.

• SDR: uses RF and modulation configuration from GS Manager to set-up remote

158 Chapter 6. Ground Segment

Compass-enabled SDR receivers and injects received raw-data from SDRs to the
GS Manager’s packet decoder.

• Encoder/Decoder : decodes received raw-data using the protocol configuration of
the currently tracked satellite and injects them as Compass packets into the mission
network.

• SiDS interface: receives raw-data from external radio amateur ground stations and
injects them to the GS Manager’s packet decoder.

• Heuristic Decoder : decodes raw-data without knowledge about its source. Tries
all protocol stack configurations from the Satellite Configurator for decoding and
perform plausibility checks.

Figure 6.6: Software structure of the Ground Station server

Initially, the UHF GS server implementation was running on a dedicated high-power
workstation. Due to the lightweight nature of the CompassNode component and to sim-
plify the hardware set-up, the entire server implementation is running since 2017 on a
single Raspberry PI (currently Raspberry Pi 3) with only 4− 20% CPU load. Due to its
modular structure, the same implementation with another Rotator configuration is also
used to control the hardware of the second (backup) UHF ground station at ZfT.

The satellite tracking algorithm was significantly improved to support formation oper-
ations and was made traffic-sensitive. The basic idea of the tracking is: if multiple listed
satellites are in range, then the one with the highest priority is selected for tracking. In a
formation, all satellites are prioritized equally – if multiple satellites with the same priority
are in-range then the first ascending one is selected. During the operations, the GS server
scans outgoing (ground-space) traffic and detects whether another in-range satellite with
the same priority as the currently tracked one is desired by the (auto-)operations and

6.3. Ground Station Server 159

automatically switches the antenna tracking. The encoding of the outgoing ground-space
Compass packets is performed as follows:

1. The target address is used to find the corresponding satellite in the Satellite Con-
figurator list.

2. If found: the protocol chain configuration is used for the encoding.
3. If not found: the protocol chain of the currently tracked satellite is used.
All software components of the GS server are accessible for monitoring and control via

the Model server. An example of the GS server model visualization in the Model View
of the Compass Operations front-end is shown in figure 6.7. In addition to the Model
View the front-end also provides different monitoring components, which can be used to
visualize remote model values in a convenient way. In the current missions the Hardware
model branch of the GS server is mainly used for monitoring, i.e. the values are only
changed manually for testing purposes. The Satellite model branch contains all currently
configured satellites. The operator can change satellite priorities, protocol chains (for
testing purposes) or the transmission signal strength.

Figure 6.7: Model service used to monitor and control a ground station

160 Chapter 6. Ground Segment

6.4 Mission Server
In contrast to the Ground Station server, the Mission Server is decoupled from the ground
station’s hardware. The software is based on the CompassNode and was created without
additional code, i.e. already available Compass services and channels were configured to
support its responsibilities:

• Traffic Database: store relevant incoming and outgoing Compass traffic in the Traffic
database and offer Database service to enable other nodes to request history packets.

• Model Database: store all detected model changes (by processing forwarded Model
server packets) in the Model database.

• Gateway between multiple ground stations on the one side and operation nodes on
the other

• Model caching of all nodes within the mission network
• Registry service hosting
• Command service for to restart channel connectors or to repair SQL database con-

nection.
• Connect multiple Compass sub-networks (e.g. ZfT and University of Würzburg,

Chair 7) via secure SSH channel to one common mission network

Currently one Mission Server instance is used for UWE and NetSat satellites. For all
ongoing missions separate Mission server instances were created. The Compass Operations
front-end provides a selector for mission network entry points (see figure 6.8), which is used
by the operators to connect to different networks.

Figure 6.8: Compass Operations front-end: selection of a mission network entry
point.

All relevant monitoring and control values of the Mission Server are accessible via the
Model service – see figure 6.9 for more details. In practice only the Added today entry is
monitored at ZfT to get informed about the amount of written model values.

6.5. External Ground Stations 161

Figure 6.9: Model service used to monitor and control a mission server

6.5 External Ground Stations

Shortly after the UWE-3 launch, the UWE team was facing very high packet loss ratio
in both uplink and downlink directions. After a long-lasting in-orbit software update,
frequency sweep tests were performed to detect frequency ranges with comparable less
noise, such that a frequency with tolerable performance could be selected. Nevertheless,
many communication windows were missed during the LEOP phase of the UWE-3 mission.
In a formation mission this situation may lead to a mission fail.

During the last year of the UWE-3 mission, options were investigated in the scope of
this thesis for accessing external ground stations as a backup for UWE ground station and
to increase the amount of communication windows. At that time many radio amateurs
supported the UWE team by sending e-mails with received satellite packets (KISS frames).
Thus, as a part of this thesis realization, a new interface was defined that can be used
to automate the process of packet forwarding, called Simple Downlink Share Convention
(SiDS, can be downloaded under [Dom15b]). The interface is not limited to a specific
satellite – instead it can be used to forward packets from any satellite to the corresponding
satellite provider’s server.

As already described in section 3.2.2, Mike Rupprecht has implemented the proposed
interface in his widely used software for visualization of received satellite beacons. Later
the convention was ported by Daniel Estévez to GNURadio. Today SiDS is also one of
the incoming data interfaces of the open-source SatNOGS platform – a global network
of satellite ground-stations, which continuously attracts worldwide attention in the satel-
lite community [Whi+15]. In contrast to the default decentralized SiDS application, all
received satellite packets are additionally forwarded by the radio amateurs to a central
SatNOGS server. So instead of creating a separate SiDS server, satellite providers can
log into the SatNOGS web interface and configure the Grafana-based visualization dash-
board, which is fed with packets forwarded by external ground stations. Our team started
to use SatNOGS as an additional visualization tool for UWE-4 and NetSat beacons and
it is planned to use the platform as backup for future ZfT’s missions. A screenshot of the

162 Chapter 6. Ground Segment

Figure 6.10: Visualization of UWE-4 beacons with SatNOGS dashboard

dashboard that has been elaborated by Philip Bangert to visualize UWE-4 data, is shown
in the figure 6.10.

In contrast to other available ground station network solution, such as Genso [SK07],
the hardware of SiDS ground stations is not accessible from the outside. Therefore a radio
amateur never looses the control over the hardware, making the SiDS concept spread fast
in the community.

To date over 440.000 UWE-3 and UWE-4 packets were received from external ground
stations as direct SiDS packets (see figure 6.12). Also live data was received during the
local overpasses, therefore reducing the downlink packet loss ratio. Since the SiDS interface
is intentionally designed to be protocol-agnostic, all packets are forwarded as Layer 2
byte streams. Nevertheless, the SiDS server component of the GS software automatically
generates Compass address for all external ground stations based on their callsigns. Every
time a packet is received from a radio amateur, its auto-generated Compass address is
added to the packet’s route list. An example of how these packets were visualized in the
Compass Operations front-end is shown in the screenshot 6.11.

6.6 Compass Operations front-end
Before Compass, the UWE team used the UWE-X Operations Software, which was build
on top of the Eclipse Rich Client Platform and was runnable on Windows and OSX. The
protocol configuration (shown in figure 3.1) included Missionlink, which was used between
the ground relay and the UWE-3’s space relay (OBDH subsystem). Several views were
provided by the UWE-X GUI to access remote Missionlink services. The protocol and
the views are described in more detail in [Dom12]. Missionlink allowed only one-to-one

6.6. Compass Operations front-end 163

Figure 6.11: Compass packets injected by external ground stations

Figure 6.12: Receive locations of UWE-3 packets submitted by radio amateurs

164 Chapter 6. Ground Segment

communication scheme, i.e. the entire Missionlink network consisted only of one ground
node and one space node (UWE-3 OBDH). The protocol lacked intrinsic capabilities to
hold the sender’s and receiver’s addresses, i.e. the packets from different UWE-X GUI
instances could not be distinguished. So, the UWE-X GUI was only capable of providing
operation functions for only one remote satellite.

With Compass, a node concept was introduced with all mission network participants
being uniformly accessible. The Missionlink has become obsolete, as the Compass protocol
was designed with all Missionlink advantages in mind. As a part of this dissertation the
UWE-X GUI was used as a template to create a new Compass Operations front-end (or
just Operations software) to support dynamic Compass networks and uniform operation
of all nodes within the network. As any other Compass-enabled Java software, the new
front-end is based on the CompassNode and offers additional graphical interface for all
available services.

A Compass Operations instance is represented as a node in the mission network, i.e.
the software enters the network by connecting itself to some existing node. Out-of-the box
the software supports 5 configurable channels:

• 3 serial channels, which can be used to directly connect multiple Compass-enabled
satellite subsystems or UNISEC Development Kits.

• A TCP client channel is used to enter an existing mission network via a TCP entry
point.

• A TCP server channel offers a TCP entry point for other nodes.

The operator can configure all channels depending on needs and decide to either span a
local-only Compass network, or to (additionally) connect to an existing Compass network.
At ZfT two separate Compass networks are in use: the common network and the NetSat
network. The former is used for simulation nodes, test facilities, development nodes, etc.
The latter consists of ground stations, mission server and operator nodes. As yet most
of the time both networks are connected together (for convenience) but since the number
of Compass nodes continuously rises and further missions are ongoing, at some point in
future both networks will be disconnected.

The Operations Software is based on dynamically selectable and arrangeable views.
The software offers default Compass views, i.e. views provide GUI interface for existing
services:

• Nodes View
• Packet View
• Command View
• Model View
• Uplink View and Downlink View
• Unit Test View
• Tiny View
• Echo View
• Value Monitors

In addition to that the software also provides more specialized views that were designed
for specific tasks:

• Scheduler View is used to record auto-operations schedules.

6.6. Compass Operations front-end 165

• Schedule visualizes satellite overpasses and current auto-operation tasks.
• Formation View: visualizes the orbit position of all formation nodes.
• Attitude View: visualizes the attitude of all formation nodes.

Figure 6.13: Compass Operations front-end

Since the Operations Software was designed to control any Compass-enabled node,
most of the existing and recently created hardware and software components at ZfT were
enriched with Compass capabilities. For example, both high precision motion simulators
(turntables) are now represented as separate nodes in the mission network, such that all
other Compass-enabled simulation nodes can gain access to their monitor and control val-
ues [Ruf+17][DRS18]. The turntables can also be controlled directly from the Operations
Software via the Model service.

To speed up the process of changing the preferences, most of the basic Compass settings
are accessible via the Compass Drop-Down Button, located in the main toolbar near the
global node selector (see figure 6.14). All other settings are done in the corresponding
views.

166 Chapter 6. Ground Segment

Figure 6.14: Compass Drop-Down Button with some of the available preferences

6.6.1 Node selection
The Compass Operations front-end contains multiple views, whereat most of them can
be configured to control or view some selected Compass node (e.g. NetSat1:OBC). By
clicking on the node-address, a node selector appears, thus allowing the change of the
desired address (see figure 6.15). The functionality of the correspondent view is then
targeted at the selected node.

Figure 6.15: Node selector in a single view

To simplify the selection of the node in multiple views, the node selection of the desired
views can be set to parent. From now on these views will listen to the global node selector
shown in figure 6.16. The node selection can also be performed in the Nodes View by
right-clicking on the desired node (figure 6.6.2) and selecting the desired function in the

6.6. Compass Operations front-end 167

appeared pop-up menu, which in turn brings up the corresponding view and preselect its
target.

Figure 6.16: Global node selector

6.6.2 Nodes View
The Nodes View shows the local knowledge of the Compass network, which is dynamically
derived from the incoming packets and network beacons. The View directly accesses
the rows in the Network table of the Compass implementation and gets automatically
informed about its changes. All nodes can be right-clicked to allow fast operations, e.g.
model monitoring/control or commanding. Green lines denote an active and red lines yet
inactive connections. In the tree-styled visualization, the local node appears on top of the
network tree. Compass network can have more than one connection route to some specific
node but only shortest routes are visualized.

Figure 6.17: Network View with direct right-click node control

The connection lines blink every time a compass packet is transferred via the corre-
sponding route. If no packet was transferred from a specific node within 60 s, the connec-
tion is considered inactive (red). Every Compass node automatically transmits network

168 Chapter 6. Ground Segment

beacons every 10 s, thus holding the line active. The line thickness denotes the maximum
possible speed of the connection – on mouse over the actual speed value is shown in a
tooltip.

The view’s toolbar contains following buttons (figure 6.18, from left to right):

1. Show connection age. Connection colors fade out with time if no packet is received,
thus signalizing its age.

2. Show packets. Nodes and connection lines blink on packet transmission.
3. Visualization style: auto-arrangement of nodes. Available styles are: None, Spring,

Radial, Tree (default).

Figure 6.18: Nodes View buttons

6.6.3 Packet View
This view is used for the monitoring of the incoming and outgoing Compass traffic. It is
divided into four collapsible tabs:

• API stats: packet statistics grouped by the service.
• Packet creator : create a user defined packet or view/modify a selected one.
• DTN buffer : shows all currently buffered packets that were set with DTN flag and

could not be delivered yet
• Packets: here all incoming and outgoing packets are listed. Answer packets are dis-

played as child elements of the request packets (see command packet in the screen-
shot 6.19).

The view’s toolbar contains the following buttons (figure 6.20, from left to right):

1. Node selector. Can be used to show traffic from/to specific node
2. Tools (figure 6.21, left)

• Load packets from DB: load packet history from remote node
• Load packets from File: load packets from existing traffic file
• Packet wizard: tools to decode HEX of any packet
• Post-process traffic file: loads all packets from a traffic file and creates text

files and model folders with CSV. The created folder is shown when finished.

3. Recording (figure 6.21, right): can be used to record traffic

• Auto-Start. If set the recording is started automatically after reboot. Always
active recording

• Use separate files for started recordings

6.6. Compass Operations front-end 169

Figure 6.19: Packet View with three collapsible groups: service statistics, packet
creator and packet list

• Path target path into which the recordings should be stored

4. Show/hide selected API packets
5. Settings
6. Clear entries in the packet view

Figure 6.20: Compass Packet View buttons

Figure 6.21: Packet View: tools and recording menus

170 Chapter 6. Ground Segment

The Packet View can for example be used to create user-defined packets for testing
purposes, view incoming log messages or to investigate malfunctions by analysing the
service traffic. Several actions can be performed on one or multiple selected packets by
opening a context menu with the right mouse button:

• Ignore API : hide all packets from the service defined in the selection.
• Ignore API from sender
• Copy content to clipboard – the format and type is selected in the sub-menu (figure

6.22)

Figure 6.22: Packet View: available actions for selected packets

DTN functionality

Since NetSat, both Compass OS and CompassNode-enabled systems support per-packet
DTN functionality. DTN guarantees that packets marked with DTN flag:

• will be delivered to the target either now or as soon as the target becomes available
• packets will be delivered in the same order as they were created/sent (ordered DTN

mode)
• Pass To Next DTN (deactivated by default): if the target is not accessible, but on

the way to the target there exist another DTN-able node, the responsibility will be
shifted from local to that node.

If Pass To Next DTN is active and an embedded DTN node (e.g. OBC) is in the route
towards an inactive node, the embedded node will take over the responsibility of the DTN
retransmission. In this case the local buffer will become empty, i.e. it is the remote node
guarantees that the packets are now in its buffer. Embedded nodes with activated DTN
may only hold limited amount of packets (100 in the NetSat:OBC) in the buffer as the
result of RAM/Flash limitations.

Example: Pass to Next DTN
Current communication route between the operator and target node is:

Local(DTN − able)→ GS → NetSat2 : OBC(DTN − able)→ Panel(inactive)

With activated DTN the operator can send DTN-packets to yet inactive Panel, which
initially will be buffered on local machine and after some Local ↔ OBC interaction

6.6. Compass Operations front-end 171

(ACK) will be buffered on the OBC. As soon as Panel becomes active, the OBC will flush
all buffered Packets to Panel.

The DTN functionality is activated with the DTN button in the main toolbar (figure
6.23). This enables DTN for all user-created packets, such as commands or model access.
Local DTN buffer can be viewed and controlled in the Packet View, thus allowing the
operator to see the current state and to delete either single packets or all packets for a
specific target. As soon as the target node becomes reachable, the local DTN handler
tries every second to transmit a packet until an ACK is received. The repeating process
is not limited in time – but since the operator can comfortably control the buffer, this is
the best compromise as compared to complex per-packet configuration (max repeat etc.).

Figure 6.23: DTN Activation and configuration

6.6.4 Command View

This view provides access to human-readable services, e.g. to execute commands on remote
nodes. Remote commands can also be executed in the Model View (figure 6.25). The
view’s toolbar contains following buttons (figure 6.24, from left to right):

1. Node selector
2. Service selector : Command (default), Chat, Tiny and Echo. Depending on the

selection the entered text is sent either as Command service packet or any other
selected. Echo is the fastest way to test if the remote node is really accessible.

3. Clear console

172 Chapter 6. Ground Segment

Figure 6.24: Command View with selectable human-readable services: Command
service, Chat service, Tiny service, Echo service

A list of available commands can be received from the target node by sending an empty
command, i.e. press ENTER without any text in the command line (see section 4.3.3 for
more details). The Command View will make proposals on CTRL+Space and automatically
fix the letter case of the entered commands before the transmission (Command service is
case sensitive in the current implementation). All received command lists are cached in
the view and are available after restart, thus a command list request is normally required
only for new remote nodes and for nodes with changed commands.

In the Tiny mode the entered text line is compiled with the integrated Tiny compiler,
followed by the transmission of the byte-code. This way more complex or constrained
operation commands can be created, for example: delete a file if it is larger than 100 kB
or switch off the propulsion system if the energy level is below 10%.

Figure 6.25: Command execution using the Model View

6.6. Compass Operations front-end 173

6.6.5 Model View
The Model View is used to monitor and to modify remote model values. It does not need
any a priori knowledge, instead it can request yet unknown models and cache them for
later use – also after the restart. It can be used to control one or many models at the
same time, as shown in the figure 6.27. By selecting the target node in the view’s toolbar,
the current cached model of the node is shown. If not available, the model scheme can be
requested with the corresponding button in the view’s toolbar.

The model values can be modified directly in the Value column. This generates an
appropriate model packet, which is transmitted to the selected node. Until the remote
node acknowledges the modification, the value is displayed as pending....

Figure 6.26: Model View buttons

Most view’s functions are accessed in the toolbar (see figure 6.26, from left to right):

1. Node-selector
2. Poll once selected values
3. Poll periodically selected values
4. Remote subscription menu
5. Settings (e.g. polling period)
6. Automatically fetch history data for selected values
7. Open a simple graph for selected values
8. Delete selected elements from the view (not from the remote system)
9. Request target’s entire model knowledge

10. Request target’s own model only

With the Model View the entire Compass network can be monitored and controlled
at the same place. All Compass Operations front-end users can access nodes without
having a deeper knowledge of their particular implementation. At ZfT all satellite-related
functional interfaces between cooperating nodes are entirely described by the global model
path (Compass address plus local model path) and the corresponding value range.

Advanced Visualization

If the remote node provides GUI hints for its model values as described in section 4.3.10,
the value representation is enriched with colors (current limits), read-only handling, units
and convenient controls: check-box, drop-down, date/time selector or address resolution
(see comparison in figure 6.28).

174 Chapter 6. Ground Segment

Figure 6.27: Model View with currently known (cached) Compass network model

Figure 6.28: Model View: NetSat OBC model shown with (left) and without (right)
GUI hints

Value Recording

The view also provides support for value recording, which can be started and stopped with
a single click on the red recording-circle of the desired value (see figure 6.27). Depending

6.6. Compass Operations front-end 175

on the current view’s settings, all value recordings are stored either in a CSV or a binary
file. The recorded files can then, for example, be post-processed or visualized in Microsoft
Excel or Matlab.

Model Update Subscriptions

With model subscriptions value updates are automatically received from remote nodes.
The subscription and un-subscriptions functions are accessible in the view’s menu (figure
6.29). Following subscription types are possible:

• selected subscription to single values
• local subscription all local values of the target node
• global subscription to the entire knowledge of the target node

The subscriptions are persistent, that is the target node memorizes the subscription perma-
nently. At ZfT it is common to use one global subscription to the Mission Server knowledge.
The Mission Server caches models from all available nodes and has local subscriptions to all
ground stations, thus all Compass Operations front-ends receive automatically all monitor
and control value updates of all mission-relevant space and ground nodes.

Figure 6.29: Model View: model subscription menu

6.6.6 Uplink and Downlink View
The Uplink and Downlink Views have both a very similar appearance. Both can have
multiple file tabs, whereat every tab shows the link data and the status of the transmission.
The views were ported from the UWE-X GUI and extended with Compass functions –
more in-depth details of both views is described under [Dom12].

New link is created by pressing the plus-button, which opens a dialog with all required
information. The view is composed of (please approach figure 6.31):

1. Target node
2. General information: file, chunk size.
3. Chunk visualization. Every chunk is displayed by one outer and one inner circle.

The outer circle indicates the send state, and the inner circle indicates the receive
state (see figure 6.30). A chunk row corresponds to a byte in the chunk bitmap.
Multiple rows can be selected by the user.

176 Chapter 6. Ground Segment

4. File buttons: save, save-to and show contents, which opens up a dialog with file
content.

5. Send buttons: transmit all, selected or unreceived chunks.
6. Request buttons: manually request the receive state to update the chunk visualiza-

tion.
7. Link monitor : indicates the current data rate and the link activity.

Figure 6.30: Available Chunk States

Figure 6.31: Uplink dialog and Uplink View (left), Downlink dialog and Downlink
View (right)

6.6. Compass Operations front-end 177

6.6.7 Unit Testing
With the UnitTest View a list of all available unit tests can be requested from the selected
node. Afterwards the tests and test groups can be individually selected for execution. The
test execution is performed one-by-one and the received test process packets (see section
4.3.7 for more details) are used internally for test status visualization.

Figure 6.32: Unit Testing View with several executed tests

This view can also be utilized to perform all relevant tests after a satellite has been
fully assembled. In addition, unit tests are frequently executed on flight-spare models to
test software updates before uplinking the software image. During the development a unit
test is a handy tool to try out different techniques and algorithms.

6.6.8 Value Monitors
The operator can create multiple Value Views, whereat every view shows a list of desired
values being cached by the Model service. As soon as the Model service receives value
updates, all corresponding value monitors become an update event. A value monitor
visualizes the current value status (green, warning, alarm), if the corresponding model
value contains GUI hints.

Figure 6.33: Visualization of the ground station parameters

178 Chapter 6. Ground Segment

A value monitor is created in the Model View for one or multiple selected values.
A monitor supports the visualization of numbers, text and images (binary model values
with image extensions in their names). One or multiple views can be arranged depending
on the particular responsibilities or needs of the operator. So, a person responsible for
the ground station, can monitor GS parameters (see example in figure 6.33), whereat a
formation operator is rather interested in satellite-specific values (figure 6.34).

Figure 6.34: Visualization of the satellite’s values

6.6.9 Schedule View
The Schedule View visualizes all detected TLE values in the local model knowledge. To
do so it scans the entire model knowledge, finds TLE entries and creates local SGP4
propagators. Whenever a remote TLE is updated and received (subscription or manual
model poll), the propagators are recreated. The name of the TLE object is the name of the
parent model value – see example in figure 6.35. If multiple entries are detected with the
same name, then the one with the most recent TLE value is preferred. Below the overpass
rows, this view also shows all currently available jobs and tasks from the Scheduler View.
The depth of the visualized tasks can be changed in the menu. By double-clicking on an
active task, its state can be toggled between Paused and Active. In addition, if the task
has some execution time constraints, the period can be resized and moved with mouse
buttons.

The Schedule menu (figure 6.36) can be used to:

• Horizontally align satellite and task entries in the view
• Show tasks only up to some specific depth
• Generate future overpass report
• Change current satellite selection, i.e. add further TLEs from the known models

6.6. Compass Operations front-end 179

Figure 6.35: Auto-detected TLEs by the Schedule View

• Change the propagation period in days (past and future)
• Show durations of current overpass and duration until next overpass in the entries

headers
• Hide inactive or deactivated tasks

Figure 6.36: Schedule View: configuration menu

6.6.10 Echo View
The Echo View uses the Echo service to perform communication experiments. It is config-
ured with: desired packet rate, payload size and the total number of packets. During the
experiment all echo answers are detected and the round-trip time is measured, whereas
both values are additionally visualized in two separate graphs. Eventually, a comma-
separated report is generated, which can be used for post-processing. The report can
contain additional freely selectable model values. For example, every report row can addi-
tionally contain the orientation of the antenna, radio frequencies, wind speed and distance

180 Chapter 6. Ground Segment

Figure 6.37: Visualization of overpasses and auto-operations tasks

6.6. Compass Operations front-end 181

to the satellite during the answer reception. These values can then be used to detect
correlations between the link quality and the ground station parameters.

Figure 6.38: Echo View with determined round-trip times and generated report in
the second view’s tab

6.6.11 Tiny View
This view provides support for writing, testing, compiling, uploading as well as for mon-
itoring and control of remotely running tiny scripts. For simple one-liner scripts the
Command view is a simpler interface – Tiny View is rather designed to support more
complex scripting tasks. All functions are accessed in the toolbar (see figure 6.39, from
left to right):

1. Node-selector
2. Create new script. By clicking on this a New Script Dialog appears (first dialog in

figure 6.40)
3. Open Tiny IDE for the selected script (figure 6.41)
4. Delete selected script (locally)
5. Run script locally
6. Run script remotely. Is only active if the script is small enough to fit in a single

Compass packets (e.g. 200 B)
7. Upload without header. Uploads the script as-is to the remote file system
8. Upload with header. Same as above, but the file contains further execution param-

eters
9. Create remote thread. Generates a Script uplink with selected thread preferences

(second dialog in figure 6.40)
10. Save remote thread. Stores selected remotely existent thread to a file (third dialog

in figure 6.40)
11. Load remote thread from a file (third dialog in figure 6.40)

182 Chapter 6. Ground Segment

12. Configure existing thread (last dialog in figure 6.40)
13. Local Tiny settings
14. Request a list of remote Tiny threads.

Tiny was extensively used to perform different in-orbit attitude control algorithms on
the UWE-3 satellite. On the UWE-4 satellite Tiny is used for propulsion experiments. In
NetSat, TIM/TOM and CloudCT mission the language will become even more fundamen-
tal technology for supporting dynamic cooperative behavior. Even though the Tiny GUI
(Tiny View and Tiny IDE) is well usable for current in-orbit and future formation tasks,
improvements are continuously elaborated to provide better support in more complex
Tiny-based solutions.

Figure 6.39: Tiny View

Figure 6.40: Tiny View dialogs

6.7. Auto-Operations 183

Figure 6.41: Opened Tiny compiler

6.7 Auto-Operations
As the last implementation of this thesis, a novel auto-operation system was designed,
which drastically simplifies the creation of operations jobs for multiple satellites of the
NetSat formation mission. The entire functionality is offered by the Scheduler View of the
Compass Operations front-end. The approach is: instead of manually creating operation
scripts or use some building task blocks the operation schedule is mostly recorded.

Figure 6.42: Scheduler View buttons

The Scheduler executes enabled and active tasks from top to down (one exception to
that is the ParallelJob). A task is considered active, if the desired target node is currently
available. The tasks can be grouped in jobs and sub-jobs. The view provides following
buttons (figure 6.42, from left to right):

• Reset selected tasks, i.e. stop execution, reset states and bring it to Paused mode

184 Chapter 6. Ground Segment

• Pause selected tasks
• Start/continue selected tasks
• Move task up/down to change its priority
• Add new job or task at the scheduler’s root
• Settings: save/load schedule to/from a XML file
• Delete selected tasks

Figure 6.43: Scheduler View used for auto operations

6.7.1 Task Creation

At the time of writing (November 2020) supported jobs and tasks are:

• Job: contains several tasks and sub-jobs, which are executed sequentially top-down.
It supports task recording function, which detects user communication and auto-
matically creates PacketTasks and detected answers

• ParallelJob: same as job but all included tasks are executed in parallel
• PacketTask: send a packet. In most cases PacketTasks are created by the task

recording function of a job.
• ScriptTask: locally run JavaScript
• SleepTask: sleep given time of milliseconds
• TinyUpload: performs robust (remote node can reboot inbetween) file upload by

just using the remote TinyAPI

6.7. Auto-Operations 185

Figure 6.44: Scheduler View: task creation in the scheduler’s root (left) and inside
an existing job

Figure 6.45: Scheduler View: task modification options

With the mouse activated context-menu, one or multiple selected tasks and jobs can
be modified (figure 6.45): move to another job, copy, disable, delete and reset current task
state. With modify time, re-activation of the selected task can be enabled as well as the
execution time can be limited either in one or in both directions. Some tasks support finish
constraints, which can be used to describe the finish-condition of a task. Currently only
Answer Constraints can be added to PacketTasks to decide whether the task execution is
considered finished/successful or not.

6.7.2 Task recording
A job can hold multiple tasks, which are either created manually, copied from another
job or are generated with the recording function. The task recording can be activated by
right-clicking on the job and selecting start record. After the recording has been started,
all user actions in the Compass Operations front-end are recorded – more specifically the
outgoing traffic is stored in the job as separate PacketTasks along with the detected an-
swers, which are added to these tasks as disabled Answer Constraints. After the recording

186 Chapter 6. Ground Segment

these constraints can either be activated, deleted or replaced by a new constraint. Even-
tually the recording is stopped and tasks are modified where appropriate (change target
address, rearrange, etc). Since the NetSat launch in September 2020, the vast majority of
operations are performed with the auto-scheduler – more details are shown in Chapter 8.

Figure 6.46: Scheduler View: recorded tasks

An existing task can be modified by right clicking on it and select modify. Alternatively,
the corresponding info-field of the task in the Scheduler View can be double-clicked to open
the modify dialog. In the dialog repeat time and packet bytes can be selected. Repeat time
describes the delay between consecutive transmissions if the task is constrained (Answer
Constraint) and there was no match. By clicking on the status field in the table view, the
task state is toggled between paused and active. The target of the packet can be changed
by clicking on the Target field in the table view. The entered value is checked and shown as
a legal address – so it is possible to add numeric address and see its textual representation
after the entry.

6.7.3 File Links
New file uploads and downloads cannot be created directly in the Scheduler View – instead
they are created in the corresponding File View. However, all new file links appear in the
root of the Scheduler and can be moved to any job.

7 | Testing and Live System Expe-
rience

Due to the far-reaching influence of this work on all mission-relevant software and hardware
components and limitations described in section 2.8, the integration of the implemented
components in the ZfT’s live system was not performed at once. Instead, all approaches
were designed, implemented, tested and finally integrated in the live system in multiple
milestones. Since this work was aimed to support nanosatellite formations, the thesis
realization had to be finished before the NetSat launch. Thus, all of the formation-relevant
component tests had to be performed individually using already existing hardware and
in-orbit satellites. All implementation milestones were realized in this order (see Chapter
3 for more details):

• Design unification approach for space or ground system functionalities (MTBA).
• Re-implementation of the ground station software.
• Implement Tiny language.
• Design Compass protocol and Compass services.
• Start with Compass Operations front-end implementation.
• Implementation of middleware (CompassNode) for ground nodes
• Implementation of middleware (Compass OS) for space/embedded nodes.
• Include Compass middleware in auxiliary systems: Matlab instances, Orekit simu-

lations, motion simulators, and satellite development kits.
• Use the completed Compass ecosystem for UWE-4 and NetSat development, verifi-

cation, software testing, LEOP operation simulation.
• Combine all space and ground systems to one super-mission Compass network.
• Implementation of new Auto Operator to improve the outcome of simultaneously

operated satellites.
• Gain in-orbit experience with UWE-3, UWE-4 and NetSat.

Throughout the work several updates and improvements were made, based on the prac-
tical experience and colleagues’ feedback. So, the auto-operations module was completely
re-designed based on the experience with UWE-3 and UWE-4 operations to drastically
simplify the schedule creation.

The agile software development was the driving philosophy (figure 7.1) – it implies
very tight collaboration with all team members and comparable early integration if devel-
oped software milestones. The update procedure was simplified, since all implementation
changes were applied to only three software components:

• Compass OS (C). Used by all satellite subsystems and embedded hardware compo-
nents, such as e.g. satellite development kits and turntable low-level controllers.

187

188 Chapter 7. Testing and Live System Experience

• CompassNode (Java). Used by all Java-based components: Matlab, Orekit, mission
server, GS server, Compass Operations front-end and subsystem emulators.

• Compass Operations front-end. Used by all ZfT team members to access the mission
network and control components for which the person is responsible.

All components were stored in a dedicated versioning system server. All updates were
automatically applied to all projects that rely on the mentioned artifacts. Using this
strategy most of the implemented solutions could already be in practical use for years by
the end of this thesis.

Figure 7.1: Agile Software Development

To validate the usability of the achievements for the ongoing nanosatellite formation
missions, the entire path from the operator towards the desired satellite as well as the
ability for cooperation between multiple nodes had to be tested. Most of the implemented
technologies were tested during the agile development rounds and during further under-
takings that provided proof of the applied concepts to be usable in formations (e.g. tests
described in 7.2, 7.3).

In the following sections, several procedures and experiences will be shown that are
transferable to specific areas of a formation mission and in total cover all formation relevant
aims:

• Protocol Performance. Test low-level performance of the Compass implementation.
• TOM Scenario. Cooperation of multiple satellite subsystems.
• UWE-4 Sensor Calibration. Cooperation of distributed subsystems.
• In-Orbit Experience with Tiny. In-orbit usability of Tiny.
• UHF Ground Station and Mission Server. Robustness of the mission network. Abil-

ity to track and auto-operate multiple satellites.

7.1. Protocol Performance 189

Test Target Type Speed

1 NetSat:OBC Serial slow
2 Local TCP (C) TCP fast
3 Local TCP (Java) TCP fast
4 ZfT:Gateway LAN fast
5 GS:Server WAN fast
6 UWE-4 EM:OBC Radio slowest

Table 7.1: Tests with different channel types and the theoretical speed

• Multi-satellite operations. Use Compass Operations front-end to operate multiple
satellites.

7.1 Protocol Performance

The performance of the Compass protocol was tested with the Echo View (Echo service).
The aim of this test was to determine round-trip times for different channel types and
thereby identify the performance of the Compass stack with respect to the packet creation
and respond-ability. More specifically, the round trip time was measured between the
echo packet transmission and the answer reception. For this experiment several different
connection types were used to identify the bottlenecks with respect to the packet rate (see
table 7.1). To ensure the comparability of the results, all tests were performed with a
packet rate of 500 ms and 10 B of random generated payload. For all tests a local instance
of the Compass Operations front-end was used. The results are shown in figures 7.2 and
7.3.

7.1.1 Serial communication
In this test the OBC of the NetSat mission was connected locally via the serial cable (9600
baud/s). Thus, the test shows the performance of the embedded Compass implementation.
The round trip time is best as compared to all other channels: 2ms – even with the low
baud-rate, this communication type provides the highest respond-ability.

7.1.2 Local TCP
Here the performance of the TCP channel was tested without physical lines between the
nodes. In the first local test, a second C-based node was started on the same machine. In
the second test, the target node was replaced by a Java-based node. The communication
was performed in both cases using the local TCP stack (localhost → localhost). The
measured mean round-trip-time in both cases was similar: 4ms for the Java and 6ms for
the C target.

190 Chapter 7. Testing and Live System Experience

Figure 7.2: Test results: serial (right), local TCP/C (middle), local TCP/Java
(right)

Figure 7.3: Test results: LAN (right), WAN (middle), Radio (right)

7.2. TOM Scenario 191

The larger trip-time, as compared to the serial communication, results from the usage
of the operating system’s TCP stack implementation. The performance of the Compass
implementation itself – both Java and C – cannot be the source of the additional delay,
since Compass does not distinguish between different channel types (channel abstraction)
and both entirely different implemented C and Java versions perform very similar.

7.1.3 Remote TCP
With this test the performance of remote TCP channels was examined. In contrast to the
local TCP test, both nodes were either connected via local area network (first test, LAN)
or via Internet (second test, WAN).

In the first test the receiver was a full-fledged Compass-gateway Debian server, the
measured mean round-trip time was 49ms. It can be seen that the first answer takes
notably longer – also in the second remote test, which is most probably the result of the
TCP/IP build-up process.

In the second test the Compass Operations front-end node (located at ZfT) was con-
nected to the UHF ground station node (located at the University) via Internet. Here the
round-trip time is much higher – 82ms. Possible explanations for higher delays are:

• SSH tunnel used to built-up secure TCP/IP connection.
• UHF GS node is currently powered by a Raspberry PI 3 board.
• Longer distance between the nodes with several servers in between.

Nonetheless, this configurations is currently present in the ZfT’s mission network, such
that the results will be considered in future decisions.

7.1.4 Radio Link
In this test the performance of the communication between the UHF GS server and the
UWE-4:OBC was measured. The ground part of the hardware link is described in more
detail in section 6.1. The round trip-time is worst among all performed communication
tests (934ms) for several reasons:

• The terminal node controller (TNC) adds a 300ms TX-delay before send, so that
the transceiver (ICOM 910H) and amplifier (BECO) have enough time to prepare
the transmission.

• Continuous transmission is impossible in this test, as the radio hardware must be
able to receive the answer in the same frequency band.

• The satellite’s radio (tested with Astrodev Lithium-1) is considered a black-box in
this test, as only byte-streams can be accessed via its serial interface – i.e. no further
information is available about the internal processes of the transmitter

7.2 TOM Scenario
In the Telematics Earth Observation Mission (TOM), a core of 3 nanosatellites will per-
form coordinated photogrammetric observations from different viewing angles [Kle+19].

192 Chapter 7. Testing and Live System Experience

Test Target Type mean RTT

1 NetSat:OBC Serial 2 ms
2 Local TCP (C) TCP 6 ms
3 Local TCP (Java) TCP 4 ms
4 ZfT:Gateway LAN 49 ms
5 GS:Server WAN 82 ms
6 UWE-4 EM:OBC Radio 934 ms

Table 7.2: Round-trip-time (RTT) results of the communication channels

One of the challenges is to achieve precise relative orientation of multiple satellites using
the camera. All satellites concurrently take a picture of the Earth surface, detect features
and exchange them to determine the relative angular offset. Maros Hladky worked on the
image feature detection part and performed several in-the-loop tests[Hla18]. His software
is based on the Compass OS and was running on an Odroid single-board computer, the
performance of which is comparable to the Raspberry-based Computing Board used in
NetSat satellite. The basic idea of the imaging subsystem is:

1. read-in camera image
2. detect appropriate features with feature-detection algorithms provided by the Open

CV library
3. compare detected features with features from the master satellite and calculate offset
4. set control values in the attitude control subsystem depending based on the offset

Figure 7.4: 3D model of the Marienberg Fortress in Würzburg being moved on top
of the Stäbli mobile platform

7.3. UWE-4 Sensor Calibration 193

During his work two prominent tests were performed. In the first test the imaging sub-
system was mounted in the ZfT’s high-precision motion simulators, which substituted the
attitude control subsystem by receiving all generated attitude control values followed by
a corresponding axis movement. In the second test the imaging subsystem was fixed and
was pointing to a moving platform with a 3D printed model of the Marienberg Fortress
(figure 7.4). Both tests proved the usability of Compass for machine-to-machine com-
munication and cooperative behaviour. With this project Compass was used for entirely
different systems in order to build-up a complex interactive network.

Figure 7.5: Development stages as formalized by the modified MDB approach from
section 3.1.6

The development process was driven by the proposed modified MDB (Model-Based-
Development) approach as described in the section 3.1.6. That is, depending on the
maturity of the algorithm, it was executed either on a workstation or on hardware that is
compatible to the subsystem design. The loop was either closed by using a turntable con-
trol simulator or by real turntables. Irrespective of the constellation, the communication
and mutual control processes (service-based control) remained same, i.e. every node in the
network could be replaced live by another implementation stage (simulation → software
→ processor → final hardware).

7.3 UWE-4 Sensor Calibration
Before the UWE-4 nanosatellite was handed over to the launch provider, several tests
and calibration procedures were performed with ZfT’s high precision motion simulators.
The motion test facility consists of two turntable actuators (see figure 7.6), low-level
hardware control and two higher-level control nodes, each powered by an Atmel SAM
microcontroller with Compass OS running on top. As soon as the turntables are powered
on, both controller nodes become accessible in the mission network as:

• TTU:main: turntable with U-shaped outer frame (figure 7.6 in the foreground).
• TTC:main: turntable with C-shaped outer frame (figure 7.6 in the background).

In this configuration both motion simulators can be utilized for extensive test procedures,
e.g. as a part of a forward-thinking rapid satellite assembly [Mar+18].

194 Chapter 7. Testing and Live System Experience

Figure 7.6: “U-shaped” (front) and “C-shaped” (back) motion simulators

During the calibration of the sun-sensors, the fully assembled UWE-4 flight model was
mounted in the U-shaped turntable as shown in the figure 7.9. The ZfT’s sun simulator,
which almost exactly replicates the sun’s spectrum, was placed in front of the turntable
with light being pointed to its inner axis. The calibration process itself was delegated by
a Matlab node (see figure 7.7) successively for all six panels:

• Set desired orientation of the satellite by changing the control values of the turntable
(TTU node).

• Wait until the desired attitude is adjusted by continuously reading the current
turntable orientation values.

• Read-in the sun sensor values from the currently selected panel (e.g. UWE-4:Panel
+X) and add it into the list of real-vs-measured values.

• Repeat until enough measure points are collected for the calculation of the calibra-
tion matrix.

Figure 7.7: Communication loop during the sensor calibration

The entire calibration procedure was performed autonomously by three cooperating
nodes, whereat the communication was based solely on the Compass model service. Even-

7.3. UWE-4 Sensor Calibration 195

tually, a calibration matrix for all six sun-sensors was determined and stored in the cor-
respondent panel. Besides the Matlab instance, all attendant team members utilized the
same version of the Compass Operations front-end to observe the node of their particu-
lar interest: satellite subsystems, communication process and turntable values. Though,
different view arrangements were made depending on the specific needs, e.g. additional
visualization and control views for the motion simulators (figure 7.8).

Figure 7.8: Turntable visualisation in the Compass Operations front-end with the
Nodes View showing the mission network during the calibration. The 3D visualiza-
tion of the turntables was developed by Oliver Ruf

In contrast to former calibration undertakings (e.g. with UWE-3), the communication
and the mutual control was performed uniformly, thus drastically reducing the complexity
and the required preparations as well as eliminating the need of “glue-code”. The process
has proven the correctness of all Compass implementations (C, Java, GUI), distributed net-
work, decentral communication process and high-level functionality of Compass services.
Moreover it has proven the eligibility of Compass for the machine-to-machine communi-
cation and the cooperative behaviour.

196 Chapter 7. Testing and Live System Experience

Figure 7.9: UWE team performing pre-flight sensor calibration of the UWE-4
nanosatellite

7.4. In-Orbit Dynamic Code Execution 197

7.4 In-Orbit Dynamic Code Execution
The Tiny language was introduced with this thesis as a main driver for the in-orbit dynamic
code execution. It was designed and implemented to run permanently on extremely limited
microcontrollers – such as the OBC in UWE and NetSat missions. The projected usage
of the Tiny is:

• in-orbit execution of experiments, which can be modified on demand
• execute constraint-based actions using the model knowledge of the local and remote

systems
• on-board scheduler execution

Due to the importance of this component, it was decided to design, implement and
evaluate Tiny as fast as possible before the remaining goals of this thesis become finished
(transition of all mission-relevant systems towards the new Compass-enabled approach).
Thus, the implementation of Tiny was started with highest priority and could be suc-
cessfully tested in-space for the first time on board the UWE-3 satellite. The following
content of this section was published in the 66th International Astronautical Congress in
Jerusalem [DB15] and is placed here as-is with permission of Philip Bangert as the
co-author of the publication.

First in-orbit experience with Tiny was gained after a software update of the OBDH
in June 2014. In the first introduction of the scripting language on board the satellite only
a few interfaces and functions have been made available to the scripts in order to ensure
safe first tests.

Having shown its efficiency and reliability during this time, in a consequent update
the script’s functionality on board the OBDH was highly increased. Especially write and
read access to the mass memory together with the string based access to the satellite’s
commanding interface have opened up unpreceded possibilities for advanced script based
satellite operations. These features for instance allow switching between uploaded Tiny
scripts based on events, time, or the satellite’s state.

While the deployment on the satellite’s OBDH rendered new operation modes possible,
the usage in the context of flexible attitude control experiments could only be achieved
when the scripts are executed on the ADCS. Therefore, in February 2015 a software update
for the entire satellite (OBDH, ADCS, and six side-panels) was uploaded and installed.
Since then, Tiny plays an important role in experimenting with attitude control algorithms,
which will be further described in the following section.

The UWE-3 ADCS features an attitude determination based on magnetic field sen-
sors, sun-sensors and gyroscopes, that has previously been characterized extensively as
described in [BBS14a], [BBS14b], and [Bus+15]. Attitude control is achieved using mag-
netic torquers primarily and a single-axis reaction wheel for fast slew manoeuvres.

While the attitude determination’s accuracy could be demonstrated, the attitude con-
trol’s performance has been heavily disturbed by an un-modelled residual magnetic dipole
moment in the order of the satellite’s magnetic torquers’ strength. Therefore, new atti-
tude control algorithms needed to be developed and were updated in February 2015 to the
satellite. Due to the challenge to control the satellite with limited actuation possibilities,
a flexible software architecture was in the focus in order to adapt the control algorithms
based on experiment results.

198 Chapter 7. Testing and Live System Experience

Figure 7.10: Attitude Control architecture implemented on the ADCS and the panels
with appropriate timescales. Tiny is employed as flexible high-level controller. Image
used with permission from Philip Bangert

7.5. UHF Ground Stations 199

Attitude control is now organized in a multi-layered architecture in order to account for
the different time-scales involved in the task as shown in a schematic overview in Figure 3.
In this architecture Tiny is used as high-level controller that ensures the accomplishment
of a given objective by providing input in form of a desired angular acceleration to the
underlying generic control law. The generic controller has dedicated knowledge about the
satellite’s dynamics and its residual dipole moment. Therefore, it computes the required
torque to cancel unwanted dynamical behaviour and in order to achieve the angular ac-
celeration given as input by Tiny. On a lower level, the required torque is split into a
magnetic control and reaction wheel control and distributed to the according actuators.

Using this architecture, plenty of different control logics can be experimented with, such
as pointing controllers, spin-stabilized, and spin-pointing algorithms. The uncomplicated
exchange and safe execution of the high-level Tiny controller enables that even students
can implement their controllers and experiment with the satellite.

For this purpose, Tiny scripts of up to 1kB can be uploaded into the satellite’s mass
memory and are then transferred to the ADCS’ RAM. Each of these steps is ensured using
checksums and scripts can only be executed when the checksum matches the according
command. The interpreter is configured with a start time, duration, task update period,
and maximum number of allowed interpreting steps. The task update period defines at
which rate the interpreter is given time to operate. This further facilitates the script
implementation, since precisely timed execution does not have to be implemented in Tiny
but is ensured by the surrounding program.

The ADCS implementation currently features about 50 functions provided to Tiny
scripts. This includes timing functionalities, basic attitude determination adapters such as
reading the current quaternion from the Kalman Filter, sensor sampling and actuator ac-
tivation functions, and useful mathematical algorithms (e.g. to normalize vectors/quater-
nions, calculate direction cosine matrices from quaternions, inversion of quaternions and
quaternion products). Furthermore, all necessary adapters in order to feed the generic
controller and to set the control update rates, as well as dedicated functions to record
Tiny variables are implemented.

The usage of Tiny in the context of the ADCS has shown that variable declaration
in the code section and specific data types such as vectors are useful extensions. In
the future Tiny versions the support of code optimization before compilation will allow
even more complicated scripts, for instance to make Tiny implementations of attitude
determination algorithms possible. Already now it is evident, that the introduction of the
highly efficient scripting language Tiny has made flexible and fast execution of attitude
control experiments possible and will further be intensified in the future.

7.5 UHF Ground Stations
Since 2017 the ground station server is powered by a single Raspberry Pi – currently Pi 3
Model B+ with 1 GB of RAM and four 1.4 GHz cores. There are several reasons, why it
was decided to do a long term test on that platform:

• The ability to have multiple low-cost spare units, which can be replaced within
minutes.

• Fast and low-cost development platform for colleagues and students – a copy of the
entire GS server software is obtained by copying the SD-card.

200 Chapter 7. Testing and Live System Experience

• Raise the awareness of resource-humble development.

With all the numerous tasks (tracking, database access, web server, handling of space links
and hardware control) the CPU load of the server is between 4 and 20 percent, such that
there was no need yet to replace the hardware with a full-fledged computer.

The ground station server acts as a ground relay and is a gateway between all ground
nodes and the space nodes. The network remained stable during the last years and many
improvements were implemented to optimize the connectivity: “tracking” support for
satellite EM models, traffic based satellite tracking, etc. Table 7.3 shows all recorded
ground-space Compass traffic during the UWE-3, UWE-4 and NetSat missions. A more
detailed visualization is shown in Appendix 9.6. The comparable high uplink data traffic
in UWE-3 is due to several in-orbit software updates that were also performed to test
new approaches developed in this thesis: Tiny interpreter and Tiny-based experiment
execution.

Beginning with UWE-4 the space-segment was entirely based on Compass-enabled
nodes. During the in-orbit phase of the UWE-4 mission the ground segment was perform-
ing fully autonomous, such that a single Operator could conduct in-orbit experiments.
Within only one and a half years more downlink traffic was received in UWE-4 as in
more than six years in the UWE-3 mission (58 vs. 46 MB). At the same time much less
uplink traffic was required to achieve mission goals (7 vs. 49 MB). That is, with the Com-
pass auto-operations and with the Tiny-based in-orbit experiment execution the mission
outcome (received in-orbit data) could be significantly improved.

With improved recording-based auto-operation capabilities that were introduced before
the NetSat launch, the data outcome of the NetSat mission will be even higher. In only one
and a half months of NetSat operations 8.4 MB of downlink traffic was processed – it makes
67 MB (versus 38 MB in UWE-4) per year. This is due to the fact, that the vast majority of
operations are now performed with recorded operations schedules, thus eliminating human-
induced breaks between the transmissions. Many operation tasks that were formerly
initiated from ground (manually or by the auto-operator), were performed in-space with
Tiny-based task scheduling scripts – thus reducing the required uplink communication
even more.

Mission Launch Down Up Down, MB Up, MB Ext

UWE-3 11/2013 235’731 576’187 46 48.6 215’568
UWE-4 12/2018 323’304 240’760 57.7 7 229’052
NetSat 09/2020 80’876 77’983 8.4 3.3
NetSat-1 15’571 18’769 1.8 0.7
NetSat-2 38’792 23’524 3.3 0.9
NetSat-3 17’327 18’205 2.4 1.0
NetSat-4 9’186 17’485 0.9 0.8

Total 639’911 894’930 112.1 58,9 444’620

Table 7.3: Ground Station Server: stored ground-space traffic for all three missions
(2020/11/13). Ext denotes packets being received from remote stations

With the Compass dynamic routing, the server automatically propagates its ability
to communicate with currently reachable satellites. The communication between the Op-

7.6. Multi Satellite Operations 201

erations nodes and the desired satellites were handled entirely by Compass – also when
the satellite node jumps from server to server as a result of a successive overflight over
multiple ground stations. This is a foundation stone for a simple and decentralized ground
station network – all reachable satellites within a larger mission network (as will be the
case in TIM/TOM mission) pop-up in the network view behind the corresponding ground
station nodes.

7.6 Multi Satellite Operations
After the successful launch of the UWE-4 CubeSat in December 2018, yet multiple concur-
rently controllable ZfT satellites were in orbit (UWE-3 and UWE-4). So, this constellation
could be used to verify the ability of ground systems to support multiple satellites – an
important step before NetSat formation launch. Before the launch the Ground Station
and the Mission Server were modified to support a large number of satellites with respect
to:

• Prioritized satellite tracking.
• Updating Compass routing entries depending on the availability of the satellites.
• Extension of the auto-operations scheduler to support multiple satellites.
• Implementation of Tunnel service to support Compass-based communication with

non-Compass satellites (UWE-3).

As described in detail in section 6.6, the graphical user interface of the Compass
Operations front-end was designed in such a way, as to enable straightforward operation
of multiple satellites. That is, all available views can be targeted to the desired satellite
node, whereat multiple instances of the same view type can be used – for example to
simultaneously visualize the model of several nodes.

Since the software of the UWE-3 satellite was developed in the pre-Compass era, it
could only be operated with the Missionlink protocol. A Missionlink ↔ Compass bridge
was implemented in the Ground Station server, which automatically converts Missionlink
packets to Compass packets and vice-versa. The Ground Station server supports multiple
protocol conversions, which can be selected in the Protocol-setting of the corresponding
satellite (figure 7.11) – please approach section 6.3 for further details. Eventually the
UWE-3 satellite could be accessed in the mission network in the same way as any other
Compass-enabled node.

Following the decentralized mission control approach, the operations were performed
with multiple distributed instances of the Compass Operations front-end: ZfT, University
of Würzburg (Chair 7) and home-office. Every instance is configured individually with
views depending on the specific operator’s interests. For example, UWE-4 team members
use the Compass Operations front-end to access the satellite’s model and to create sched-
ules for long lasting auto-operation activities (file links). In contrast to that, a person
who is responsible for the ground segment uses the software to keep track of the entire
mission network, view all satellite-related traffic, supervise the healthiness of all servers
(Ground Station server and Mission server in particular). In addition to desktop worksta-
tions, wall-mounted smart TVs with integrated remote-desktop function were installed in

202 Chapter 7. Testing and Live System Experience

Figure 7.11: Protocol settings for satellite modules in the Ground Station server
software (section 6.3)

Figure 7.12: Wall-mounted monitor in all ZfT’s offices as a part of the distributed
mission control approach

7.6. Multi Satellite Operations 203

all ZfT’s offices. The TVs are connected to separate virtual machines running Compass
Operations – as exemplary shown in picture 7.12.

Even though a separate mission control center room is currently in progress, the
distributed approach remained the main control tool, as all team members continuously
remain in the satellite operation loop. From experience with the UWE-3, UWE-4 and
NetSat missions, which were conducted by small teams – whereat every team member
had multiple duties, a distributed mission control system has significantly increased the
outcome and the quality of the satellite operations.

With two active satellites in orbit, multi-satellite operations could be performed:

• Arrange views in the Compass Operations front-end to access multiple satellites.
• Monitor the status/healthiness of multiple satellites (Model View, Monitor Views).
• Perform fast command execution.
• Manual file downlink and uplink.
• Create auto-operation tasks for multiple satellites.

Only one UHF Ground Station was used for uplink, thus if multiple satellites were passing
at the same time, the one with higher priority was selected for tracking and became
available in the mission network via the GS node. The auto-operation task in Compass
Operations scheduler became active, as soon as the desired satellite appeared in the mission
network. In that configuration only one satellite could be operated at the same time –
both manually or via scheduler. In future multiple UHF ground station nodes will be
utilized, such that theoretically multiple satellites can be operated at the same time.

In the NetSat formation mission multiple satellites use the same frequency and are
initially close enough to each other to “fit” into the beam of the Ground Station UHF
antenna (21 elements, 18.2 dBi, ˜21°-23° angular beam width). Thus, after NetSat launch
multiple satellites can be served with broadcast packets using only one directed antenna.
The configuration of all NetSat satellites in the GS server has the same priority, thus all
of them can be made accessible in the mission network at the same time.

204 Chapter 7. Testing and Live System Experience

8 | NetSat Experience

All four NetSat 3U satellites have been successfully launched in 28 September 2020 by Sojus
rocket from Kosmodrom Plessezk, Russia. Before launch all approaches and components
developed in this thesis were tested in-depth during the precursor mission, such that most
of the implementations, the mission network and all participating Compass nodes were
already running for years in the ZfT’s live system.

8.1 External Tests and Verification
The assembly of all four NetSat CubeSats was finished in May 2020. Besides the verifica-
tion tests performed at ZfT, the engineering and flight models were also tested at external
facilities:

• Temperature regulated vacuum chamber tests: iABG Industrieanlagen Betriebsge-
sellschaft mbH in Munich

• Acceptance shaker test: EXO Launch in Berlin
• Propulsion system tests: IRS, University of Stuttgart.

During most of the tests the satellites were connected with serial cables to the Compass
Operations front-end. The connection was used to access the internal values of all subsys-
tems to monitor temperatures, power consumption and possible communication problems
in the satellite (e.g. due to high currents during the active propulsion).

With Compass the test execution and outcome was dramatically enriched as compared
to the pre-Compass era. So, the entire traffic between the satellites and the front-end nodes
was continuously recorded using the build-in record function of the Compass Operations
software (described in section 6.6.3). The recordings can easily be imported in the Packet
View to reproduce the visualization of the satellite’s state at some specific time. Further-
more, the auto post-process function, which can also be activated in the Packet View, can
be pointed to a recording to generate a traffic report: summary, log file with all detected
Log service entries and separate CSV files for every model element containing all data
changes (see 8.1).

Another advancement of Compass was the ability of test conductors to additionally
connect their Operations front-ends via mobile connection with the “home network” .
Due to organizational reasons (and the COVID-19 situation) not all experts were able
to support the test procedure on site – but they were able to access remotely connected
satellites and supervise all subsystems during the test. Figure 8.2 shows the Operations
front-end of an expert at ZfT accessing the NetSat EM model at IRS. In this example

205

206 Chapter 8. NetSat Experience

Figure 8.1: Browsing the report directory (Traffic Post-Processing) created by
the automatic post-processing function of the Compass Operations front-end

the Fire:1 Compass gateway (used to offer access to external nodes) was temporary
disconnected from the remaining mission network for security reasons.

8.2 Pre-flight LEOP exercises
Before the satellites were handed over to the launch provider, numerous tests were per-
formed on component, subsystem and system level. Eventually LEOP simulation was
conducted multiple times, that is all flight models were brought to the final flight mode
(no wires, antennas rolled-up) placed on separate desks – as shown in figure 8.3 – and
the remove-before-flight pins simultaneously removed. The testing team was composed
of: one operator per satellite, one reporter and one operations supervisor. The operators
and other observing team members were connected to the mission network with separate
Compass Operations front-ends, i.e. all front-end nodes were connected to the Mission
server, which in turn had a connection to the UHF ground station node.

The deployment of all antennas started after the mandatory 30 minutes. From then
on the satellites were waiting for the arrival of the first ground packet via the radio
channel. After the satellites have received a broadcast command from an operator (simple
Hello command), the downlink on the satellites was permanently activated leading to the
transmission of network and housekeeping model beacons. With every network beacon
being received by the UHF ground station, the corresponding satellite appeared in the
mission network and became available for operations. Figure 8.4 shows the whole mission
network after all network beacons were received by the ground station:

• The Mission server node is shown in the middle with all front-end nodes (upper-right
area) being connected to it

8.2. Pre-flight LEOP exercises 207

Figure 8.2: Operations front-end of an expert at ZfT accessing the NetSat EM model
at IRS

Figure 8.3: Pre-flight LEOP exercise: all four NetSat satellites shortly after the
antenna deployment

208 Chapter 8. NetSat Experience

• The ground station node (black, since it was blinking to signalize packet transmis-
sion) is accessible by the Mission server

• The satellite nodes are shown in the outer areas: NetSat 1 (orange), NetSat 2 (red),
NetSat 3 (pink) and NetSat 4 (blue)

• Active satellite subsystems are perceptible with green lines

During the exercise the Model and the Command service were used to check the in-
ternal states of all subsystems as well as the overall satellite behavior: auto-activation of
subsystems depending on the current mode, power consumption, inter-satellite commu-
nication. In addition, all file-based (Link service) tasks were tested in-depth: software
image upload to the OBC for all subsystems with subsequent software update execution,
maintenance of remote drives, download of large files from all subsystems with storage
capabilities (OBC, Panels, Computing Board) and so on. By the end of the tests the fea-
sibility of the Compass Operations front-end, ground station node, mission network and
all Compass services for all imaginable tasks was ultimately consolidated and the satellites
were ready for launch.

Figure 8.4: Pre-flight LEOP exercise: appearance of all four NetSat satellites in the
Node View after beacon reception

8.3 Launch and Early Orbit Phase
The NetSat operations were started one day after the launch on 29 September 2020.
At that time all satellites were very close to each other, thus the beam width of the
UHF ground station antenna could enclose the entire formation. During the first operated

8.3. Launch and Early Orbit Phase 209

Figure 8.5: All four NetSat CubeSats ready for launch

overpass a Hello command was uplinked as a broadcast packet, which permanently turned
on the downlink capabilities on all four satellites. Initially an unnamed TLE list of all
satellites from the launch event was provided. So, during the first week all feasible TLE
combinations were tried to properly map the NORAD-IDs with the corresponding NetSat.
To improve the downlink capabilities, an additional SDR radio node was installed and
connected as remote Compass-enabled radio node to the ground station server. As has
been shown by Tim Horst in [Hor+20], the recorded RF traffic during the first days could
be used to identify the Doppler shift of the downstream, which in turn was used to find a
proper mapping between the provided TLEs and the satellites.

As has been described in more detail in section 6.3, the implemented antenna tracking
and radio packet encoding of the Compass ground station server was made traffic-sensitive.
During the formation overpass all satellites were handled with same priority and the first
ascending one was initially selected for antenna tracking. By processing the outgoing
Compass packets, the GS software detects required hardware parameters for every packet:
antenna orientation, uplink frequency, Doppler shift and protocol configuration. Presup-
posed the satellites are close enough, all hardware parameters can be changed fast without
problems, thus allowing disordered operations of multiple satellites at the same time.

Two weeks after launch, the NetSat formation became wider and it became neces-
sary for the ground station server to move the antenna between the single satellites, thus
increasingly baffling disordered satellite operations. Since the vast majority of the opera-
tions in NetSat are performed with auto-operations capabilities of the Compass Operations
front-end, all required tasks are grouped in satellite-specific jobs, i.e. during the overpass
first all tasks for NetSat-1 are executed, then for NetSat-2 and so forth.

Unfortunately on 27 October 2020 the contact to NetSat-1 was lost and could not
be recovered yet. Since the software on all four satellites is identical and the remaining

210 Chapter 8. NetSat Experience

satellites are still accessible and perform well, most probable explanation is a hardware
failure.

8.4 Auto-Operations
As soon as the orbital elements for all formation satellites were finalized and verified, the
operations team could start with ordered operations. The auto-operations scheduler is
accessible in the Scheduler View of the Compass Operations front-end. In general any
node of the mission network can be auto-operated – though to date it was only actively
used for space nodes. During the NetSat operations following modus operandi has proven
itself:

1. Activate NetSat EM model in the ZfT’s lab, such that it becomes accessible by the
UHF ground station

2. Create new Job in the Scheduler View
3. Select the new Job and activate recording
4. Perform all desired operations with NetSat EM as target, e.g. send commands in the

Command View, change its model values in the Model View, create Tiny threads
and so on.

5. Stop recording and change the target of the Job from NetSat EM to the desired
satellite – e.g. to NetSat-1

6. If the same operations are required for other satellites, copy the Job and rename
the target or create a new Job and copy single tasks.

7. Optionally change the time constraints of the Job execution in the Schedule
8. Store schedule to a XML file on a common network drive for possible later use and

retraceability.

The recording function does not require the target node to be available. Using the
engineering model during the recordings has the advantage, that also the satellite answers
are recorded and inserted as Answer Constraints into the corresponding tasks. During
the recording all auto-generated tasks appear live in the corresponding Job, for which the
recording was activated. As soon as the satellites that are specified in the Target field
of the jobs/tasks become available, the scheduler activates the tasks one-by-one. A task
is considered finished, if it does not have any constraints or the defined constraints are
fulfilled, e.g. an answer was received and was matched by the answer constraint. As soon
as a task is finished, the scheduler activates the next one and so forth.

A simple example of recorded tasks is shown in figure 8.6. For NetSat-4, for example,
the remote Tiny thread with ID=0 will be replaced with a new one, followed by a download
of a J:\1\1 log file and eventually the log file will be deleted.

Over time a set of former operation jobs was aggregated, such that many higher-level
tasks (i.e. tasks with multiple sub-tasks) could be copied in the Scheduler View into a new
schedule. So, for example, tasks exist for: GPS experiment execution, download all current
log files and delete them afterwards, activate Linux-based Computing Board and perform
in-orbit processing, etc. To speed up schedule creation, operators leave processed jobs in
the schedule and deactivated them instead of deleting them. This way new operation jobs
can be populated fast with tasks copied from the deactivated ones.

8.5. Dynamic Code Execution with Tiny 211

In theory multiple Compass front-ends can perform auto-operations at the same time.
Nevertheless, the operations team decided to use one discrete front-end for auto-operating
NetSat satellites.

8.5 Dynamic Code Execution with Tiny
In the realization roadmap of this thesis, the Tiny interpreter was the first implemented
component. The decision was motivated by the initially poor performance of the UWE-
3 mission. As a consequence of this, the interpreter became an enabling technology for
three missions. Tiny was used in UWE-3 and UWE-4 to perform in-orbit experiments,
thus leading to achievements of mission goals. Philip Bangert describes in his PhD thesis,
how Tiny was used to design and execute several attitude determination and control
algorithms on board the UWE-3 1U nanosatellite[Ban20]. In the follow-up UWE-4 1U
nanosatellite mission, Alexander Kramer used Tiny to successfully perform NanoFEEP
propulsion experiments[KBS20].

The main advantage of Tiny is – as the name implies – its tiny size in the program
memory and very compact byte code used for the execution. It was specifically designed
to enable its execution on very low-powered 16 bit microcontrollers – such as the OBC on
all UWE and NetSat satellites. Since the OBC is the only subsystem that is guaranteed
to run permanently, it has been selected as a primary host platform for Tiny interpreter.
The interpreter supports parallel execution of multiple scripts in a sand-box on a single-
threaded system, without affecting the system’s respond-ability. The functionality of the
Tiny interpreter is accessed via the Compass Tiny service.

On NetSat the interpreter is available on all subsystems – except the Thruster Control
subsystem. On the OBC it has been configured to support up to 5 persistent Tiny threads,
i.e. up to 5 scripts can be executed in parallel. Persistent scripts are automatically loaded
on boot-up, which turned out to be an essential feature during the NetSat’s LEOP phase.

Besides its baseline features, listed in section 5.5.1, Tiny was equipped with external
functions used to access local and remote model values, generate user-defined Compass
packets and to perform local file operations (see table 8.1). Due to the drive abstraction
of the Compass OS, Tiny can be used to write data to remote files, which is of particular
interest for the AOCS system (since it does not have own file storage).

During the early operations, several undesired behaviors were detected on all NetSats
that either were not observed or were overlooked during the test phase on-ground. One
solution was to perform in-orbit software updates on all four satellites, which in turn
would require long-lasting file uplinks to all four satellites using only one UHF ground
station. Since most of the OBC’s capabilities are controllable via its model (e.g. by using
the Compass Model service) and Tiny scripts can be used to control local and remote
models, a preliminary bug-fixing script (figure 13 in the Appendix) could be designed and
uploaded to all four satellites. Since the size of the compiled script was only 97 bytes, it
could be delivered via Tiny service with only one packet and configured as persistent with
a second one. The scripts will be removed as soon as the first on-orbit software update is
performed.

212 Chapter 8. NetSat Experience

Figure 8.6: Top: Real-life example of auto-operations recorded for all NetSat satel-
lites (NS4 job is shown in recording mode). Bottom: Visualization of all overpasses
and auto-operations tasks

8.6. ISL 213

Function Description
gds get read local model value
gds set set local model value
gds getRemote read remote model value
gds setRemote set remote model value
send send compass packet to a target
command execute command locally or remotely
file delete delete file
file write write to a file
file read read from local file

Table 8.1: Tiny interpreter: available external functions on all UWE-4 and NetSat
subsystems

In NetSat, the Tiny interpreter is also used to execute constraint-based schedules.
During the LEOP phase multiple scripts were designed to switch on and off multiple
subsystems during several orbits and periodically create reports, e.g. results of the I2C
bus scanning or power consumption of subsystems during the specific time periods. The
logs were then automatically downloaded by the auto-operator and were used to evaluate
the overall system performance. It became evident that Tiny is increasingly used to execute
actions that are otherwise conducted from ground. To date (November 2020) several ZfT
experts are designing Tiny scripts to:

• evaluate the performance of thrusters
• improve the performance of the AOCS subsystem
• execute GPS experiments (e.g. measurements during different satellite orientations)
• establish cooperative behavior between the always-running Tiny interpreter and the

on-demand switchable Linux-based Computing Board (e.g. to test the Goal-based
Operations approach – as has been proposed by Tiago Nogueira in [NFS17]).

• perform in-orbit experiments to support on-going nanosatellite missions

So, apart from the mission goal achievement, NetSat will serve as a multi-satellite testing
platform for software approaches.

8.6 ISL
On the satellite level (intra-satellite) the cooperating behavior of several subsystems be-
came a standard process. With the Compass OS the complexity of the satellite software
development was dramatically simplified, such that most cooperative tasks could be im-
plemented based on the Compass Model service (model-based communication). Some
examples for model-based cooperative processes are:

• all panels periodically promote their temperature values to the OBC
• panels with activated GPS periodically send current measurements to the AOCS
• the AOCS accesses all panels to read current magnetic field and sun-vector mea-

surements and to control magnetorquers

214 Chapter 8. NetSat Experience

Due to Compass, from the software point of view, the only difference between the
intra-satellite and inter-satellite model-based communication is the system-address used
in the corresponding calls. In NetSat AOCS is the only subsystem that is intended to use
inter-satellite (model-based) communication to perform the formation control. However,
the formation control could not be activated yet, as the requirements could not be fulfilled
(yet). So, for example, thrusters, GPS sensors, sun-sensors and gyros are either:

• newly developed
• used for the first time in-orbit (by ZfT)
• were never used in that depth

Thus, all these components need first to be characterized in-space before a satellite can
autonomously control its orbit. As soon as every satellite is able to autonomously or
semi-autonomously change its orbit, the cooperative formation control can be activated.

The only difference between packets from different Compass services is the packet
payload. Thus to prove the eligibility of the Compass protocol to carry out inter-satellite
communication of cooperating processes, it is sufficient to show that the packets from
any service could be successfully transmitted between the satellites. For this task packets
from the Network service, more specifically network beacons, were selected to show proof.
All satellites periodically (every minute) broadcast network beacons, which contain the
current network knowledge of the sender. If one satellite receives a network beacon from
another satellite, it automatically updates its internal routing table with entries included
in the beacon. During the overpass network beacons from satellites are also received by the
UHF ground station and stored in the traffic database. Since the Compass network is self-
configuring, sometimes when only one satellite was accessible by the UHF ground station
(e.g. during the ascension phase of the first satellite of the formation) other satellites were
shown in the mission network “behind” the active one. So, with the first network beacon
the active satellite informed the ground station, that it either had a currently active link
to another formation nodes or it had it in the past. The example in figure 14 in the
Appendix shows an active connection to NetSat-4 via NetSat-2 during the active tracking
of the latter. The satellites were close enough for ISL but distant enough to not fit into
the UHF antenna beam at the same time.

The self-configuration of the Compass network relies on network beacons, i.e. if the
downlink is weak and no network packets were received from the satellites, they do not
appear in the mission network. For this reason the Compass ground station server supports
the auto-creation of active routing entries for all currently passing satellites. That is,
as soon as a Compass-enabled satellite is theoretically reachable by a ground station, it
appears in the network as an active (= accessible) node. Due to occasional communication
issues with the UHF ground station, this functionality was activated. The downside of this
approach is the de facto deactivation of ISL forwarding for ground → satellite packets.
Nonetheless, network beacons that have been received and stored in the traffic database
could be used for post-processing to visualize ISL accessibility of the formation nodes.

Over 4500 received network beacons were processed to detect ISL activities. An ex-
ample of a satellite network beacon is shown in figure 8.7. The results are shown in figure
8.9 and the shape of the formation at different time points is depicted in figure 8.8. Ev-
ery graph shows whether the corresponding satellite has directly received packets from
other satellites within the last 60 seconds before the overpass. Multi-hop availability is

8.7. Outlook 215

Figure 8.7: Left: Visualization of NetSat-3 network knowledge in the Operations
front-end by using the received network beacon (2020/10/10 09:59). Right: Contents
of the same beacon converted to human-readable form

not shown in the graph for the sake of simplicity. Since the satellite network beacons
were only received by the ground station during the overpasses, the data available for the
post-processing is limited to time ranges shortly before and during the satellites became
accessible from ground. Nonetheless, the derived data samples show the general ISL abil-
ity at different time points and can be used for comparison. The graphs do not contain
false positives but may contain false negatives: if no ISL was performed between two par-
ticular satellites during the last 60 s before the overpass (i.e. before a network beacon was
received by the ground station), it is still possible that packets were successfully transmit-
ted between these satellites shortly before. The following can be derived from the graphs
(please use figure 8.8 to compare the shape of the formation at different time points):

• Until 19-21 October almost all satellites could directly communicate with each other.
• From 20 October NetSat-1 was not received by other satellites anymore – nor was

it received by the ground station.
• From 8 November NetSat-2 has not received packets from other satellites – but

is still received sporadically by NetSat-3 and NetSat-4. At this date the distance
between NetSat-2 and the nearest active satellite (NetSat-3) surpassed the 1000 km
mark.

• NetSat-3 and NetSat-4 have both to date working ISL communication to each other
(˜790 km distance at the time of writing).

8.7 Outlook
With the successful NetSat launch the final goal of this thesis was achieved – an in-orbit
demonstration of the Compass protocol and the middleware being suitable for extremely
demanding mission environment:

• limited radio link: single 9k6 half-duplex radio link to monitor and control over 60
individually accessible satellite subsystems

• limited hardware resources: fully equipped Compass embedded software is capa-
ble of running on subsystems with extremely limited 16 bit microcontrollers, thus
minimizing memory area for potential SEU effects

216 Chapter 8. NetSat Experience

• limited workforce: nominal operations, such as TT&C, record auto-operations, mon-
itor ground station, etc., can be performed by one operator

Nonetheless, the NetSat mission is only in its beginning and many fascinating devel-
opments and achievements will be presented in future. Fortunately the technical outcome
of this thesis has provided a basis that is now used by other scientists at ZfT to realize
their research. So Julian Scharnagl and Panayiotis Kremmydas are elaborating forma-
tion control algorithms that will be executed on NetSat. Anna Aumann is working on
the improvements of the attitude determination and control system. Together with Eric
Jäger she is developing formation control software on the AOCS subsystem. Roland Haber
will execute ISL experiments and elaborate a more in-depth analysis compared to the one
performed in this thesis.

8.7. Outlook 217

Figure 8.8: NetSat formation at four different time points: 19 October 2020, 31
October 2020, 8 November 2020 and 15 November 2020. Visualized in the Formation
View of the Compass front-end

218 Chapter 8. NetSat Experience

Figure 8.9: Detected ISL activity from the point of view of the NetSat-1, NetSat-2,
NetSat-3 and NetSat-4 respectively

9 | Conclusions

The proposed approaches and the corresponding implementations of this thesis have been
tested in depth in multiple CubeSat missions on board the: 1U UWE-3, 1U UWE-4 and
four 3U NetSat satellites. The complexity of all ZfT’s current and future satellite missions
has been dramatically reduced with respect to the interfacing, software implementation,
realization of cooperative processes, testing and operations. With standard interfaces all
team members can focus on their specific tasks, thus considerably reducing overhead. All
proposed and tested technologies are suitable for the fulfilment of common nanosatellite
formation objectives, such as formation control, in-the-loop testing and forward-looking
operation approaches. Due to the permanent switching between theory and practice, all
mentioned methods and implementations are now part of the live-system at ZfT and are
actively used for all satellite-related activities.

9.1 Ground Segment
This work has shown, that a common Compass protocol and a small set of standard
services is sufficient to generalize the functionality of all space and ground systems. This
approach not only greatly simplifies the interfaces between multiple systems, it also allows
a single set of GUI components in a front-end to be used both to control satellites and
to control ground systems. At ZfT both ground stations and mission servers are actively
used to support operations of multiple in-orbit satellites and have been prepared for further
satellites in the ongoing missions. Due to the applied model-based approach, these ground
systems are now monitored, controlled and operated in the same manner as the satellites.
For example, the Model service is used to access both ground stations to:

• view the live image of the antenna
• view current antenna orientation, transceiver parameters, etc.
• change the tracking priority of the satellites
• change satellite protocol chain for test purposes
• point antenna to an engineering model on ground for RF tests

Both ZfT’s high-precision motion control simulators (turntables) are running on top
of the Compass middleware and are actively used for flight model testing and sensor
calibration, and to test cooperative image acquisition and feature detection with two 3U
CubeSats. Each CubeSat can access the turntable, into which it is mounted, to change its
own orientation. That is, the model-based approach allows a turntable to take over the
responsibility of the satellite’s attitude control system.

219

220 Chapter 9. Conclusions

The Compass middleware is also used as basis for the ZfT’s formation simulators. A
simulation is consisting of multiple cooperating Compass nodes, with each node being
responsible for a particular simulation task. All simulation nodes are accessed in the same
way as other Compass-enabled systems – via standard services. That is, a simulation node
can substitute a real satellite subsystem for which it was designed, and vice versa.

Regarding the software complexity – the software of all ground nodes at ZfT and
University of Würzburg, Chair VII Robotics and Telematics, is based on the Compass
middleware library (CompassNode), which has dramatically simplified the implementation
process and the ability to add new ground systems, such as new SDR radios, future S-band
ground station, etc.

A comparable middleware for most ground systems is the OHB’s RAMSES (Rocket
and Multi Satellite EMCS Software), which was utilized in the Prisma mission. However,
it was designed solely for ground systems and relies on a proprietary UDP protocol – and
is therefore limited to IP-activated devices. In contrast to RAMSES, the Compass proto-
col supports all space and ground systems and provides dynamic and decentral network
capabilities without further network protocols on lower OSI layers.

The developed Simple Downlink Share Convention was the first successful attempt to
standardize the forwarding of satellite packets from the radio amateur community towards
the satellite providers. This interface was initially tested with UWE-3 and is now an
interface of the reputable SatNOGS platform. SiDS hat considerable improved the output
of the UWE-3, UWE-4 and NetSat missions and will definitely be appreciated in ongoing
and future nanosatellite missions.

9.2 Multi-Satellite Operations
At ZfT and the University of Würzburg, Chair VII Robotics and Telematics, the software
of all ground stations, mission servers and the Operations front-end is designed to support
multiple satellites. A ground station is configured (via Model service) to track multiple
satellites, whereat every satellite entry contains: NORAD-ID, protocol chain, Compass
address, formation identifier and priority. It can autonomously track multiple satellites
and automatically switch tracking based on the current uplink traffic.
The Compass Operations front-end became a standard application at ZfT for monitoring,

control and operations of all mission nodes and provides auxiliary satellite-specific views
to support operations of multiple satellites and satellite formations. At ZfT the Compass
Operations became the only front-end used to operate all mission-relevant systems:

• ground stations
• mission servers
• high precision motion simulators
• flat-sat tests and operations
• orbit simulations
• all satellite subsystems, independent of their location: flat-sat, engineering model,

connected via serial line or via RF communication (ground and space)

In contrast to ESA’s SCOS 2000, the Compass front-end was designed in a more univer-
sal way and therefore supports operations of all space and ground systems. Furthermore,

9.2. Multi-Satellite Operations 221

Figure 9.1: Example of the dynamic mission network, shown in the Operations
front-end, during the NetSat overpass.

the front-end goes far beyond and offers advanced GUI components, which automatically
detect remote model entries and visualize them accordingly (model-based GUI), such as:

• detected TLE model values (e.g. from ground stations) are automatically shown in
the Schedule View

• detected latitude, longitude and altitude values are automatically shown in the Earth
View

• detected ECI values (from satellites) are automatically shown in the Formation View

That is, the Operations front-end automatically configures itself depending on the current
model state of the entire mission (top-level digital twin of the mission).

The Compass front-end is highly customizable at runtime, i.e. single GUI compo-
nents (views) can be arranged depending on the operator’s responsibilities: ground sta-
tion maintenance, simulation control, pre-flight tests and verification, formation analysis,
AOCS control, TT/C, operations scheduling, experiment design, etc. It offers views for
all available services: commanding, file transfer, model access, unit-testing, etc. All GUI
components can either be pointed individually to one or multiple target systems, or be
configured altogether with the main target address. Some examples of the same front-end
but with different view arrangements are shown in the Appendix.

After the NetSat launch in September 2020, all four satellites were operated with
multiple distributed front-end instances. The majority of the operations was executed
automatically by the operations schedule, which is part of the Compass front-end and
allows visual recording of complex operations for one or multiple targets. During the
overpass, the recorded operations were automatically executed – including the check of
the desired/correct satellite responses.

To prepare operations, numerous front-end GUI components were used to: design and
control remote Tiny scripts, perform file transfer (both uplink and downlink), read and
change remote model values and execute commands. Over time, more and more operation
tasks were moved from ground into space, i.e. instead of running recorded operations from
ground, they were uploaded as generated Tiny scripts to all four satellites. For example,

222 Chapter 9. Conclusions

the OBC’s Tiny-based scheduler was conducting the acquisition of Earth images at specific
time points (see example in 9.2). The recorded operations approach has greatly improved
the operations procedures and enabled the ZfT’s team to control four satellites using only
one half-duplex UHF link – also for image downloads. However, if more than one image
download per day is desired, faster downlink channels must be considered (S-band and
above).

Figure 9.2: Image showing snowy Alps. Taken by NetSat-3 on 13 December 2020

9.3 Space Segment and In-Orbit Autonomy
The embedded Compass middleware implementation has been tested in orbit with the
UWE-4 and NetSat on almost 60 separately accessible nodes and is now the base for all
currently available in-house satellite subsystems at ZfT.

All Compass services were designed to support very slow ground-space links with
highly asymmetric packet loss ratios in the up- and down directions. During the UWE-4
and NetSat operations the uplink was usually much worse than the downlink. In this
case, the File service could achieve better download throughput as it would for example
be possible with CCSDS CFDP service, which requires separate session start and stop
packets. At the cost of slightly larger service overhead, every single service packet carries
all information that is required by the receiver to successfully process the packet (session-
less communication).

The cooperative utilization of the Compass protocol, the Tiny interpreter and the
storage device abstraction layer is the first available all-in-one solution for distributed
computing for very low-power 16 bit microcontrollers. Currently there exist no other
script interpreter with comparable capabilities and such low hardware requirements (16
bit architecture, 1 kB RAM, 9 kB ROM). Virtually any C-programmable microcontroller
can now be used to offer its functionality to other nodes or be connected to an existing
Compass network to gain access to already existing functionality.

9.4. Compass Protocol usage 223

The Tiny script service has enabled far-reaching autonomy in the UWE-3, UWE-4
and NetSat satellites. Due to its very low memory requirements, the service is offered
by all satellite subsystems – in contrast to comparable missions, where the autonomy is
either achieved by using much more powerful microcontrollers or by utilizing a separate
high-power subsystem that is designed exclusively for in-orbit scheduling and executing
high-level script languages (Java, Python, etc.). Thus, the script service can be used to
distribute dynamic tasks to all subsystems, instead of focusing these tasks to one single
subsystem.

In the UWE-3 1U CubeSat mission the interpreter was utilized to execute several
attitude determination and control algorithms that were developed on-demand. The ex-
periment designer, Philip Bangert, was able to react to the observed behaviour of the
satellite in space and gradually improve ADCS algorithms, and eventually fulfil the mis-
sion goals[BBS14a].

In the follow-up UWE-4 1U CubeSat mission, the Compass middleware was for the
first time installed on all satellite subsystems. All subsystems became accessible as distinct
nodes in the mission network and offered all standard Compass services. As a consequence
of this, Tiny scripts could be executed on several subsystems simultaneously, thus enabling
distributed and dynamic code execution. Alexander Kramer has utilized Tiny service to
perform numerous in-orbit experiments to characterize the NanoFEEP propulsion system
and eventually demonstrate the first electric propulsion on a 1U CubeSat[KBS20].

After the launch of the first ZfT’s formation mission, NetSat – consisting of four 3U
CubeSats, in September 2020, further 52 individually accessible Compass nodes were
added into space. The Tiny service was utilized to perform numerous experiments in
different areas: ISL characterization, Earth image acquisition, characterization of new re-
action wheels and attitude detection, etc. Many tasks that were previously executed from
ground by the (auto) operators, have been shifted into space. So, many operation sched-
ules were auto-converted to Tiny scripts in the Operations front-end and automatically
uploaded to all four satellites. The main Tiny code was mostly running on the always-on
OBC. From there, the main code has automatically deployed smaller code fragments to
other subsystems for further subsystem-specific actions, such as image acquisition that
has been performed by the high-power Computing Board.

Since the Tiny language was designed to produce extremely dense byte-code, the oper-
ations of all active satellites could be performed with a single half-duplex 9600 baud UHF
connection.

9.4 Compass Protocol usage
To quantify the influence of the Compass protocol, the complete ground-space traffic of
the UWE-3, UWE-4 and NetSat missions was compared. The results are shown in figure
9.3 (more detailed graphs are shown in the Appendix). The upper graph shows relative
packet numbers used in the corresponding service for uplink and downlink in relation to
the number of all recorded packets in the mission. The lower graph shows the relative
data traffic in relation to the entire traffic of the mission (see table 7.3). For the sake
of convenience, the Variable service of the UWE-3 was put in comparison to the Model
service.

It is clearly visible, that the command traffic (the amount of packets and aggregated

224 Chapter 9. Conclusions

data) was dramatically reduced after the transition towards the Compass-based commu-
nication. With model-based approach most of the functions became accessible in the
system’s model via Model service. In the NetSat mission, model-based operations became
even more prominent – as can be seen in the relative data traffic of the Model service.
The increased traffic of the Log and Network services shows an improved ability of the
operators to reproduce the state of the mission at some specific time point in the past. The
UWE-4 was configured to omit the transmission of network beacons and logs. The usage
of the Tiny service was also improved in the NetSat mission with new auto-operations
capabilities – compared to the UWE-4, the data traffic of the service was increased and at
the same time the packet traffic was considerable reduced, i.e. less control packets were
required to achieve similar results.

9.5 Future Work
Based on the now available distributed computing capabilities, different distributed for-
mation control mechanisms will be evaluated. Since the Tiny interpreter is permanently
active in the low-power mode, continuous formation control with more frequent update
rates can now be established.

Since the established Compass-based system can be viewed as a mission-global mid-
dleware, many existing standards and technologies will be adopted in order to make them
available in the ZfT’s mission networks. So CCSDS protocols and ECSS-standardized pro-
tocols will be utilized either on top or below the Compass stack. This will be of particular
importance for missions that require these standardized protocols. Such missions will still
benefit from the existing dynamic mission network (routing, DTN) and uniform access to
all existing Compass-enabled nodes.

The outcome of this work can be used as a guideline for new (formation) satellite
missions. It provides support for satellite mission planning, as it proposes a way of how
the overall mission basis can be built-up: structure of the space and ground segments,
testing, access to functionality and protocols.

Since the basis of this work is not limited to satellite missions, the uniformity ap-
proaches will be expanded to other departments of Zentrum für Telematik: Robotics,
Mobile Systems and Industry 4.0 Production and remote Maintenance. The theory be-
hind Compass and MTBA as well as the elaborated solutions (Compass OS, CompassNode
and Compass Operations front-end) are well suitable to approach many challenges that
are structurally comparable to those existing in the space industry.

One of the future research aims is to enable Goal-based operations (GBO) to control
the mission operations of a nano-satellite formation [Nog+17]. Here a goal defines what to
do and not how to achieve it [DAS08]. The goal-based approach has already been tested
on “big” satellites, such as the AEGIS software on MER and MSL rovers or ASE on EO-
1 [Est+12]. In a GBO-activated mission the operator defines goals for the entire space
segment. The breakdown of the goals into tasks and its distribution is handled by the
Planner, which requires comparable high computation resources due to the nature of the
planning optimization problem. The resulting plans and sub-plans are distributed as Tiny
scripts along the formation nodes via Compass and executed by the on-board executives.
With the Linux-based Computing Board on all NetSat satellites, GBO could be generated

9.5. Future Work 225

Figure 9.3: Comparison of the relative packet and data traffic of different services
used in UWE-3, UWE-4 and NetSat missions. The analysis was performed using
the entire recorded space-ground traffic – in total over 1.5 million packets – of the
corresponding missions.

226 Chapter 9. Conclusions

in space.
The established Simple Downlink Share Convention can be extended with uplink func-

tionality – without the need to hand over hardware control to other network members –
instead a new Compass-enabled standard can be established, which enables satellite up-
link by offering Internet API to the satellites in range, thus additionally converting all
uplink-able external stations to Internet access points.

9.6 Publications
The advances of this thesis were presented in the following publications (in descending
chronological order):

• Horst, T. and Kleinschrodt, A. and Freimann, A. and Jaeger, E. and Dombrovski, S.
and Haber, R. “Extended Ground Station Concept and its Impact on the In-Orbit
Communication with the Four-Nano-Satellite Formation NetSat”. In IEEE Radio
and Wireless Week 2021, 2020[Hor+20].

• S. Dombrovski and K. Schilling. “Control of Multi-Picosatellite Systems: Tiny
Scripting Language and Multi-Layer Compass Protocol”. In SpaceOps, Marseille,
France, 2018 [DomSpaceOps˙18].

• S. Dombrovski, O. Ruf and K. Schilling. “Uniform, Multi-Level protocol for Ground
and Space Segment Operations and Testing”. In 4S Symposium, Sorrento, Italy,
2018 [DRS18].

• S. Dombrovski and K. Schilling. “In-Orbit Database and Distributed Computing
based on Tiny 2 Language”. In 68th International Astronautical Congress, Adelaide,
Australia, 2017 [DS17].

• T. Nogueira, S. Dombrovski, S. Busch, A. Gasparyan and K. Schilling. “Monitor-
ing and Control of the NetSat Formation: Concepts and Tools for Operations of
Multi-satellite Systems”. In 68th International Astronautical Congress, Adelaide,
Australia, 2017 [Nog+17].

• O. Ruf, S. Busch, S. Dombrovski and K. Schilling, “Challenges and Novel Ap-
proaches for Testing Large Number of Small Satellites”. In 68th International As-
tronautical Congress, Adelaide, Australia, 2017 [Ruf+17].

• T. Nogueira, S. Dombrovski, S. Busch, K. Schilling, K. Zakšek and M. Hort. “Pho-
togrammetric Ash Cloud Observations by Small Satellite Formations”. In IEEE
Metrology, Florence, Italy, 2016 [Nog+16].

• P. Bangert, S. Dombrovski, A. Kramer and K. Schilling. “UWE-4: Advances in
the Attitude and Orbit Control of a Pico-Satellite”. In Small Satellites, System and
Services Symposium (4S), Valetta, Malta, 2016 [Ban+16].

• P. Bangert, S. Busch, S. Dombrovski, A. Kramer and K. Schilling. “UWE – Lessons
Learned and Future Perspectives”. In 3rd IAA Conference On University Satellite
Missions and Cubesat Workshop, 2015 [Ban+15].

• S. Dombrovski and P. Bangert. “Introduction of a new sandbox interpreter ap-
proach for advanced satellite operations and safe on-board code execution”. In 66th
International Astronautical Congress, Jerusalem, Israel, 2015 [DB15].

• S. Dombrovski. “Introduction of a new Framework for Intuitive and Rapid Soft-
ware Evolution”. In European Ground System Architecture Workshop, Darmstadt,
Germany, 2015 [Dom15a].

9.6. Publications 227

• S. Busch, P. Bangert, S. Dombrovski and K. Schilling. “UWE-3, In-Orbit Perfor-
mance and Lessons Learned of a Modular and Flexible Satellite Bus for Future
Picosatellite Formations”. In Acta Astronautica, Volume 117, Pages 73-89, 2015
[Bus+15].

• S. Dombrovski. “Simple Downlink Share Convention v0.9”. University of Würzburg,
2015 [Dom15b]. Publicly accessible standard.

• S. Dombrovski and K. Schilling. “Approaches for Efficient Global Ground Station
Networks for Multiple Small Satellites”. In Second UNISEC-Global Meeting, Tokyo,
Japan, 2014 [DS14].

• S. Busch, P. Bangert, S. Dombrovski and K. Schilling. “UWE-3, In-Orbit Perfor-
mance and Lessons Learned of a Modular and Flexible Satellite Bus for Future
Picosatellite Formations”. In 65th International Astronautical Congress, Toronto,
Canada, 2014 [Bus+14].

Also advances that were elaborated during the undergraduate and postgraduate studies
were used as inputs and knowledge base at the beginning of this thesis:

• S. Dombrovski. “UWE-3 Communication and Operation Capabilities”. MSc. Thesis
in Space Master and Technology at University of Würzburg, 2012 [Dom12].

• S. Dombrovski. “Automatische Kalibrierung einer Bodenstationsantenne für Satel-
litenkommunikation”. BSc. Thesis in IT Science at University of Würzburg, 2010
[Dom10].

228 Chapter 9. Conclusions

Appendices

229

Compass Node Creation

Matlab

Listing 1: Compass Node Creation in Matlab
1 %% Compass
2 % CompassMatlabNode node = new CompassMatlabNode ();
3 % node. setup ('GS:Philip ', '132.187.9.173 ' , 'COM1 ', 9600) ;
4 % % node. setup ('GS:Philip ', [], [], 0); // use no server and no serial
5 % node. register (' matlabCallbackGDS ', 14); // 14 =

GDS api
6 % node. sendPacket (new CompassPacket (...));
7 % node. sendPacket ('UWE4:OBDH ', 2, String); // send

String
8 % node. sendPacket ('UWE4:OBDH ', 2, String , 'matlabCallback ', 2000) ; // send

String (2000 = timeout ms)
9 % node. sendPacket ('UWE4:OBDH ', 14, BYTE_ARRAY); // send

byte array to GDS
10 % node. sendPacket ('UWE4:OBDH ', 14, BYTE_ARRAY , 'matlabCallback ', 2000) ; // send

byte array to GDS (2000 = timeout ms)
11 % node. unregister (' matlabCallbackGDS ', 14); //

unregister single
12 % node. unregister (); //

unregister all
13 % node. start ();
14 % node.stop ();
15
16 % ==== Available APIs ====
17 % API_NETWORK 0
18 % API_ECHO 1
19 % API_COMMAND 2
20 % API_UPLINK 3
21 % API_DOWNLINK 4
22 % API_LOG 5
23 % API_DEBUG 6
24 % API_VARIABLES 7
25 % API_EUNIT 8
26 % API_GMS 9
27 % API_GLS 10
28 % API_NFS 11
29 % API_FIRE 12
30 % API_TINY 13
31 % API_GDS 14
32 % API_TURNTABLE 20
33 % API_CHAT 99
34 % ========================
35
36
37 %% Add Matlab jar to dynamic path
38 javaaddpath (char(java.io.File('CompassNode .jar '). getAbsolutePath ()));
39 eval('import de.uwe. compass . matlab . CompassMatlabNode ');
40

231

232

41 %% Create one or multiple compass node(s)
42 node = CompassMatlabNode ('Slav:i', '132.187.9.173 ', [], 0);
43 % ('GS: Student 1', [], [], 0); % No

Server , no COM
44 % ('GS: Student 1', '132.187.9.173 ' , 'COM1 ', 9600) ; % Uni (

ZfT: '172.25.1.121 ')
45 % ('1:5', [], [], 0); % Use

numerical address
46 % ('Phil:M', [], [], 0); % Use

4/1 ASCII address (recommended)
47 %node. setup ('GS: Student 1', '172.25.1.121 ' , [], 0); %

change settings of an existing node:
48
49 %% Register callbacks and Start Compass
50 node. register ('CompassCallback ', 99); % chat service
51 node. register ('GDSCallback ', 14); % Beta
52 node. register ('NFSCallback ', 11); % NFS Callback example
53 node. start ();
54
55 %% Send messages (Address can be numerical string , e.g. '1:5 ')
56 node. sendPacket ('GS: Slavi ', 99, 'This is a chat message '); % string
57 node. sendPacket ('GS: Slavi ', 99, int8(zeros (10 ,1))); % byte array
58 node. sendPacket ('GS: Slavi ', 1, 'echo ', 'CompassCallback ', 2000) ;
59
60 %% Stop Compass
61 %node.stop ();
62 % node. unregister (' CompassCallback '); % unregister one callback - not necessary
63 % node. unregister (); % unregister all callbacks - not necessary

Listing 2: Compass Callback Creation in Matlab
1 function CompassCallback (error , node , packet)
2 c = node. getCompass (); % used to convert numbers (API , Address) to strings
3
4 from = char(packet . getFrom (). toString (c));
5 api = char(c. getAPI (packet . getAPI). getNodeName ());
6 value = char(packet . getPayload ());
7 fprintf ('[%s] %s: %s\n', api , from , value);
8
9 %disp(packet . getPayload ());

10 end

Java

Listing 3: Compass Node Creation in Java
1 package de.uwe. compass ;
2
3 import de. dombrovski .fire. module . OnReceiveException ;
4 import de.uwe. compass . packet . Address ;
5 import de.uwe. compass . packet . CompassPacket ;
6
7 public class Example {
8 public static void main(String [] args) throws Exception {
9 example ();

10 }
11
12 public static final void example () throws Exception {
13 // Create a Node with local address "GS: Student 3", ZfT Server as Compass

Gateway and no Serial connection

233

14 final CompassClient client = new CompassClient ("GS: Student 3", "
172.25.1.121 ", null , 0);

15 client . start ();
16
17 // Do stuff
18 final Compass c = client . getCompass ();
19 final Address to = new Address ("GS: Slavi ", c);
20 final CompassPacket cp = new CompassPacket (c. getLocalAddress () , to);
21 cp. setAPI (Registry . API_TURNTABLE);
22 cp. setPayload (new byte [] {1, 2, 3, 4});
23 // Alternativ (gibt es noch nicht)
24 // cp. setPayload (TurntableAPI . createSetCommand (x, y, z));
25
26 // Send test packet to Slavi , when he is available
27 // Wait until some specific system is available
28 c. addCompassListener (new CompassAdapter () {
29 @Override
30 public void onRouteAction (RouteAction a, Address target) {
31 if(a == RouteAction . ESTABLISHED && target . equals (to)) {
32 try {
33 client . sendPacket (cp);
34 } catch (OnReceiveException e) {
35
36 }
37 }
38 }
39 }, true);
40
41 // Stop client
42 // client .stop ();
43 }
44 }

234

Front-End Examples

Figure 4: Compass Operations set-up for Ground Support

235

236

Figure 5: Compass Operations set-up of a Test Engineer

Figure 6: Compass Operations set-up of a Attitude/Orbit Control Engineer

Traffic comparison

Following figures show a summary of the entire traffic of the UWE-3, UWE-4 and NetSat
missions, which has been recorded from September 2013 until 14 November 2020.

Figure 7: Recorded packet traffic of the UWE-3 mission

237

238

Figure 8: Recorded data traffic of the UWE-3 mission in bytes

Figure 9: Recorded packet traffic of the UWE-4 mission

239

Figure 10: Recorded data traffic of the UWE-4 mission in bytes

Figure 11: Recorded packet traffic of the NetSat mission

240

Figure 12: Recorded data traffic of the NetSat mission in bytes

Examples from NetSat Operations

241

242

Figure 13: Tiny script used to fix minor bugs on all four NetSat satellites

243

Figure 14: NetSat-4 accessible via NetSat-2 during the active tracking of the NetSat-
2 satellite

244

Bibliography

[36017] HawkEye 360. “HawkEye 360 Pathfinder Cluster – Technical Informa-
tion”. In: Herndon, USA, 2017.

[AA02] National Aeronautics and Space Administration. “GRACE Launch -
Press Kit”. In: 2002.

[AA14] National Aeronautics and Space Administration. “Overview of Space
Communication Protocols”. In: Green Book. Washington, DC, USA:
CCSDS Secretariat, 2014.

[AA15a] National Aeronautics and Space Administration. “CCSDS Bundle Pro-
tocol Specification”. In: Blue Book. Washington, DC, USA: CCSDS Sec-
retariat, 2015.

[AA15b] National Aeronautics and Space Administration. “Licklider Transmis-
sion Protocol (LTP) for CCSDS”. In: Blue Book. Washington, DC, USA:
CCSDS Secretariat, 2015.

[AA20] National Aeronautics and Space Administration. “CCSDS FILE DE-
LIVERY PROTOCOL (CFDP)”. In: Blue Book, Issue 4. Washington,
DC, USA: CCSDS Secretariat, 2020.

[ABH18] A. Alhilal, T. Braud, and P. Hui. “The Sky is NOT the Limit Anymore:
Future Architecture of the Interplanetary Internet”. In: 1810.01093v1.
Hong Kong University of Science and Technology - Hong Kong, Univer-
sity of Helsinki - Finland: arXiv, 2018.

[Alm14] Lars K. Alminde. “OPSSAT PHASE A-B1”. In: European Space Agency,
2014.

[Ast21] Astrocast. Astronode S. https : / / www . astrocast . com / products /
astronode-tm-s/. [Online; accessed January-2021]. 2021.

[Azz16] T Azzarelli. “OneWeb Access for Everyone”. In: Geneve, Switzerland:
Global Conference on Space and Information Society (GLIS 2016), 2016.

[Bak+16] D.N. Baker, L. Riesberg, C.K. Pankratz, R.S. Panneton, et al. “Mag-
netospheric Multiscale Instrument Suite Operations and Data System”.
In: Springer (open access), 2016.

[Ban20] P. Bangert. “Magnetic attitude control of miniature satellites and its
extension towards orbit control using an electric propulsion system”.
PhD thesis. Würzburg, Germany: University of Würzburg, 2020.

245

https://www.astrocast.com/products/astronode-tm-s/
https://www.astrocast.com/products/astronode-tm-s/

246 Bibliography

[Ban+15] P. Bangert, S. Busch, S. Dombrovski, A. Kramer, et al. “UWE – Lessons
Learned and Future Perspectives”. In: Rome, Italy: 3rd IAA Conference
On University Satellite Missions and Cubesat Workshop, 2015.

[BBS14a] P. Bangert, S. Busch, and K. Schilling. “Performance Characteristics
of the UWE-3 Miniature Attitude Determination and Control System”.
In: Rome, Italy: 2nd IAA Conference on Dynamics and Control of Space
Systems (DYCOSS), 2014.

[Ban+16] P. Bangert, S. Dombrovski, A. Kramer, and K. Schilling. “UWE-4: Ad-
vances in the Attitude and Orbit Control of a Pico-Satellite”. In: Valetta,
Malta: Small Satellites, System and Services Symposium (4S), 2016.

[BGM14] M.F. Barschke, K. Großekatthöfer, and S. Montenegro. “Implementa-
tion of a Nanosatellite On-Board Software Based on Building-Blocks”.
In: Potro Petro, Spain: 4S Symposium, 2014.

[BS12] M. Battelino and C. Svard. “RAMSES - A modern and flexible checkout
and operational ground system for small satellite projects”. In: Solna,
Sweden: American Institute of Aeronautics and Astronautics, 2012.

[Bau12] M. Baunach. “Advances in Distributed Real-Time Sensor/Actuator Sys-
tems Operation”. PhD thesis. Würzburg, Germany: University of Würz-
burg, 2012.

[Ben10] S. Bennett. “Effective Scripting in Embedded Devices”. In: Mansfield,
Australia: WorkWare Systems, 2010.

[BP19] R. Birkeland and D. Palma. “An assessment of IoT via satellite: Tech-
nologies, Services and Possibilities”. In: Washington D.C., USA: 70 th
International Astronautical Congress, 2019.

[BNB12] Per Bodin, Matti Nylund, and Milan Battelino. “SATSIM—A real-
time multi-satellite simulator for test and validation in formation fly-
ing projects”. In: Acta Astronautica 74 (2012), pp. 29–39. issn: 0094-
5765. doi: https://doi.org/10.1016/j.actaastro.2011.11.015.
url: https : / / www . sciencedirect . com / science / article / pii /
S009457651100350X.

[Bur+16] J.L. Burch, T.E. Moore, R.B. Torbert, and B.L. Giles. “Magnetospheric
Multiscale Overview and Science Objectives”. In: Springer (open ac-
cess), 2016.

[Bus+14] S. Busch, P. Bangert, S. Dombrovski, and K. Schilling. “UWE-3, In-
Orbit Performance and Lessons Learned of a Modular and Flexible
Satellite Bus for Future Picosatellite Formations”. In: Toronto, Canada:
65th International Astronautical Congress, 2014.

[Bus+15] S Busch, P. Bangert, S. Dombrovski, and K. Schilling. “UWE-3, In-Orbit
Performance and Lessons Learned of a Modular and Flexible Satellite
Bus for Future Picosatellite Formations”. In: Acta Astronautica, Volume
117, Pages 73-89, 2015. Acta Astronautica, 2015.

https://doi.org/https://doi.org/10.1016/j.actaastro.2011.11.015
https://www.sciencedirect.com/science/article/pii/S009457651100350X
https://www.sciencedirect.com/science/article/pii/S009457651100350X

Bibliography 247

[BBS14b] S. Busch, P. Bangert, and K. Schilling. “Attitude Control Demonstration
for Pico-Satellite Formation Flying by UWE-3”. In: Mallorca, Spain: 4S-
Symposium, 2014.

[BS17] S. Busch and K. Schilling. “CubeSat Subsystem Interface Definition”.
In: Würzburg, Germany: UNISEC Europe, 2017.

[Cho10] M. Choi. “Design and Development of Generic Nanosatellite Bus Ground
Control Software Suite”. MA thesis. Toronto, Canada: University of
Toronto, 2010.

[Coe17] C. Coelho. “A Software Framework for Nanosatellites based on CCSDS
Mission Operations Services with Reference Implementation for ESA’s
OPS-SAT Mission”. PhD thesis. Graz, Austria: Graz University of Tech-
nology, 2017.

[CEK15] C. Coelho, D. Evans, and O. Koudelka. “CCSDS Mission Operations
Services on OPS-SATs”. In: Berlin, Germany: 10th IAA Symposium on
Small Satellites for Earth Observation, 2015.

[CK16] K. Colton and B. Klofas. “Supporting the Flock: Building a Ground Sta-
tion Network for Autonomy and Reliability”. In: Logan, USA: AIAA/USU
Conference on Small Satellites, 2016.

[D’E13] M. D’Errico. Distributed Space Missions for Earth System Monitoring.
Space Technology Library, 2013. isbn: 9781461445418.

[DR18] R. Di Roberto. “GAUSS Approach To The Lean-Satellite Methodol-
ogy”. In: Kitakyushu, Japan: International Workshop on Lean Satellites,
2018.

[Die+16] F.-J. Diekmann, I. Clerigo, G. Albini, and L. Malleville. “A Challenge
Trio in Space: ”Routine” Operations of the Swarm Satellite Constella-
tion”. In: Prague, Czech Republic: Living Planet Symposium, 2016.

[Dom10] S. Dombrovski. “Automatische Kalibrierung einer Bodenstationsantenne
für Satellitenkommunikation”. MA thesis. University of Würzburg, 2010.

[Dom12] S. Dombrovski. “UWE-3 Communication and Operation Capabilities”.
MA thesis. University of Würzburg, 2012.

[Dom15a] S. Dombrovski. “Introduction of a new Framework for Intuitive and
Rapid Software Evolution”. In: Darmstadt, Germany: European Ground
System Architecture Workshop, 2015.

[Dom15b] S. Dombrovski. Simple Downlink Share Convention v0.9. University of
Würzburg. 2015.

[DB15] S. Dombrovski and P. Bangert. “Introduction of a new sandbox in-
terpreter approach for advanced satellite operations and safe on-board
code execution”. In: Jerusalem, Israel: 66th International Astronautical
Congress, 2015.

248 Bibliography

[DRS18] S. Dombrovski, O. Ruf, and K. Schilling. “Uniform, Multi-Level protocol
for Ground and Space Segment Operations and Testing”. In: Sorrento,
Italy: 4S Symposium, 2018.

[DS14] S. Dombrovski and K. Schilling. “Approaches for Efficient Global Ground
Station Networks for Multiple Small Satellites”. In: Tokyo, Japan: The
Second UNISEC-Global Meeting, 2014.

[DS17] S. Dombrovski and K. Schilling. “In-Orbit Database and Distributed
Computing based on Tiny 2 Language”. In: Adelaide, Australia: 68th
International Astronautical Congress, 2017.

[DAS08] D.L.D. Dvorak, A.V. Amador, and T.W. Starbird. “Comparison of Goal-
based Operations and Command Sequencing”. In: Heidelberg, Germany:
SpaceOps, 2008.

[Est+12] T.A. Estlin, B.J. Bornstein, D.M. Gaines, R.C. Anderson, et al. “AEGIS
Automated Science Targeting for the MER Opportunity Rover”. In:
ACM Transactions on Intelligent Systems and Technology (TIST), vol.
3, no. 3, pp. 1-19, 2012.

[Eva+16] D. Evans, A. Lange, J.L. Feiterinha, J. Nörtemann, et al. “OPS-SAT:
Preparing for the Operations of ESA’s First NanoSat”. In: Daejeon,
Korea: SpaceOps Conference, 2016.

[FHM15] C. Forster, H. Hallam, and J. Mason. “Orbit Determination and Differ-
ential Drag Control of Planet Labs CubeSat Constellations”. In: arXiv:
1509.03270v1, 2015.

[Fus+16] S.A. Fuselier, W.S. Lewis, C. Schiff, R. Ergun, et al. “Magnetospheric
Multiscale Science Mission Profile and Operations”. In: Springer (open
access), 2016.

[Gal+19] Damien Galano, Delphine Jollet, Karim Mellab, Jose Villa, et al. “Proba-
3 Precise Formation Flying Mission”. In: July 2019.

[Gas12] A. Gasparyan. UWE File System documentation. University of Würz-
burg. 2012.

[GMV16] GMV. “OneWeb Awards GMV the Contract to Develop OneWeb’s Satel-
lite Constellation Command and Control”. In: http://www.gmv.com/
en/Company/Communication/News/2016/12/satelitesoneweb.html,
2016.

[GOM11] GOMSpace. “CubeSat Space Protocol”. In: GOMSpace, 2011.
[Hab+18] R. Haber, D. Garbe, K. Schilling, and W. Rosenfeld. “QUBE - A Cube-

Sat for Quantum Key Distribution Experiments”. In: Utah, USA: 32nd
Annual AIAA/USU Conference on Small Satellites, 2018.

[HMF08] S. Hall, F. Moreira, and T. Franco. “Operations Planning for the Galileo
Constellation”. In: Heidelberg, Germany: SpaceOps, 2008.

http://www.gmv.com/en/Company/Communication/News/2016/12/satelites oneweb.html
http://www.gmv.com/en/Company/Communication/News/2016/12/satelites oneweb.html

Bibliography 249

[HPL09] H. Hellman, S. Persson, and B. Larsson. “PRISMA – a Formation Flying
Mission on the Launch Pad”. In: Daejeon, Korea: 60th International
Astronautical Congress, 2009.

[Her17] N. Hermannsdörfer. “Mission Analysis of the Nanosatellite Sonate”. MA
thesis. Würzburg, Germany: University of Würzburg, 2017.

[Hla18] M. Hladky. “Vision Based Attitude Control”. MA thesis. Würzburg,
Germany: Lulea University of Technology, 2018.

[Hof+19] J. Hof, V. Karunanithib, S. Speretta, C. Verhoeven, et al. “Low Latency
IoT/M2M Using Nano-Satellites”. In: Washington D.C., USA: 70th In-
ternational Astronautical Congress, 2019.

[Hor+20] T. Horst, A. Kleinschrodt, A. Freimann, E. Jaeger, et al. “Extended
Ground Station Concept and its Impact on the In-Orbit Communication
with the Four-Nano-Satellite Formation NetSat”. In: Radio and Wireless
Week 2021. IEEE, 2020.

[IFC10] R. Ierusalimschy, L. Henrique de Figueiredo, and W. Celes. “The Im-
plementation of Lua 5.0”. In: Rio de Janeiro, Brazil: Pontifical Catholic
University of Rio de Janeiro, 2010.

[Inc17] Swarm Technology Inc. Exhibit A to FCC Form 442. https://apps.
fcc.gov/els/GetAtt.html?id=191177. [Online; accessed January-
2021]. 2017.

[KS19a] I. Koren; K. Schilling Y. Schechner. “CloudCT – Computed Tomography
of Clouds by a Small Satellite Formation”. In: Proceedings 12th IAA
symposium on Small Satellites for Earth Observation. IFAC, 2019.

[KS19b] I. Koren; K. Schilling Y. Schechner. “CloudCT: A formation of cooperat-
ing nano-satellites for cloud characterisation by computed tomography”.
In: Proceedings 70th International Astronautical Congress 2019, IAC-19
D1.6.54792. 2019.

[KS19c] I. Koren; K. Schilling Y. Schechner. “Small Satellite Formations to Char-
acterize 3D Cloud Properties: TOM and CloudCT”. In: Proceedings 4th
COSPAR Symposium on Small satellites for sustainable Science And
Development. 2019.

[Kap+16] S. Kapitola, S. Weiß, N. Korn, and K. Brieß. “Von BEESAT-2 zu BEE-
SAT-4: Weiterführende Nutzng als In-Orbit Testplattform”. In: Doc-
umentID: 420270. Technische Universität Berlin, Germany: Deutscher
Luft- und Raumfahrtkongress, 2016.

[Kek06] D.D. Kekez. “Development of Flight Software and Communications Sys-
tems for the CanX-2 Nanosatellite”. MA thesis. University of Toronto,
2006.

[Kin18] Kineis. Press Release 2018/09/10. https://www.nexeya.com/wp-
content/uploads/2018/09/dossier_de_presse_lancement_kineis_
uk.pdf. [Online; accessed January-2021]. 2018.

https://apps.fcc.gov/els/GetAtt.html?id=191177
https://apps.fcc.gov/els/GetAtt.html?id=191177
https://www.nexeya.com/wp-content/uploads/2018/09/dossier_de_presse_lancement_kineis_uk.pdf
https://www.nexeya.com/wp-content/uploads/2018/09/dossier_de_presse_lancement_kineis_uk.pdf
https://www.nexeya.com/wp-content/uploads/2018/09/dossier_de_presse_lancement_kineis_uk.pdf

250 Bibliography

[Kle+19] A. Kleinschrodt, I. Motroniuk, A. Aumann, I. Mammadov, et al. “TIM:
An International Formation for Earth Observation with CubeSats”. In:
12th IAA Symposium on Small Satellites for Earth Observation. Berlin,
Germany, 2019.

[Kli16] S. Klinkner. “Flying Laptop: Academic Small Satellite Flying Laptop”.
In: University of Stuttgart, Institute of Space Systems, Stuttgart, Ger-
many: https : / / www . irs . uni - stuttgart . de / dokumente / fact _
sheet.pdf, 2016.

[KBS20] A. Kramer, P. Banger, and K. Schilling. “UWE-4: First Electric Propul-
sion on a 1U CubeSat—In-Orbit Experiments and Characterization”.
In: Aerospace 2020 no.7. Aerospace, 2020.

[Lam+15] K. Lamichhane, M. Kiran, T. Kannan, D. Sahay, et al. “Embedded
RTOS implementation for Twin Nano-satellite STUDSAT-2”. In: IEEE
Metrology for Aerospace. Benevento, Italy: IEEE, 2015.

[Lan+15] M. Langer, N. Appel, M. Dziura, C. Fuchs, et al. “MOVE-II – der zweite
Kleinsatellit der Technischen Universität München”. In: Rostock, Ger-
many: Deutscher Luft- und Raumfahrtkongress 2015, 2015.

[Lor+08] A. Loretucci, F. Groce, K. Davies, and L. Demonceau. “The GALILEO
SCCF”. In: Heidelberg, Germany: SpaceOps, 2008.

[Mar+18] T.W. Martins, A. Pereira, T. Hulin, O. Ruf, et al. “Space Factory
4.0 - New processes for the robotic assembly of modular satellites on
an in-orbit platform based on ”Industie 4.0” approach”. In: IAC-18-
D1.1.9.x44546. Bremen, Germany: 69th International Astronautical Con-
gress, 2018.

[Mau+12] E. Maurer, S. Zimmermann, F. Mrowka, and H. Hofmann. “Dual Satel-
lite Operations in Close Formation Flight”. In: Stockholm, Sweden:
SpaceOps, 2012.

[McD20] J. McDowell. “The Low Earth Orbit Satellite Population and Impacts
of the SpaceX Starlink Constellation”. In: The Astrophysical Journal
Letters (ApJL), 2020.

[Mer+10] M. Merri, S. Cooper, B. Behal, D. Feliot, et al. “What has CCSDS
SM&C to do with ECSS PUS?” In: Huntsville, Alabama, USA: Space-
Ops 2010, 2010.

[Mor+17] E.F. Moreira, A. Ceballos, C. Estevez, J.C Gil, et al. “Architecting
OneWeb’s Massive Satellite Constellation Ground System”. In: Los An-
geles, USA: Ground Segment Architecture Workshop (GSAW), 2017.

[Mui96] B. K. Muirhead. “Mars Pathfinder Flight System Design and Implemen-
tation”. In: IEEE Aerospace Applications Conference. Pasadena, Cali-
fornia, USA: Jet Propulsion Laboratory, 1996.

[Myr21] Myriota. Products and Common Questions. https://myriota.com.
[Online; accessed January-2021]. 2021.

https://www.irs.uni-stuttgart.de/dokumente/fact_sheet.pdf
https://www.irs.uni-stuttgart.de/dokumente/fact_sheet.pdf
https://myriota.com

Bibliography 251

[Nog+17] T. Nogueira, S. Dombrovski, S. Busch, A. Gasparyan, et al. “Moni-
toring and Control of the NetSat Formation: Concepts and Tools for
Operations of Multi-satellite Systems”. In: Adelaide, Australia: 68th In-
ternational Astronautical Congress, 2017.

[Nog+16] T. Nogueira, S. Dombrovski, S. Busch, K. Schilling, et al. “Photogram-
metric Ash Cloud Observations by Small Satellite Formations”. In: Flo-
rence, Italy: IEEE Metrology, 2016.

[NFS17] T. Nogueira, S. Fratini, and K. Schilling. “Planning and Execution to
Support Goal-based Operations for NetSat: a Study”. In: Pittsburgh,
USA: 10th International Workshop on Planning and Scheduling for
Space (IWPSS), 2017.

[Orr+08] N.G. Orr, J.K. Eyer, B.P. Larouche, and R.E. Zee. “Precision Forma-
tion Flight: The CanX-4 and CanX-5 Dual Nanosatellite Mission”. In:
Toronto, Canada: Space Flight Laboratory, University of Toronto Insti-
tute for Aerospace Studies, 2008.

[Pec05] N.M. Peccia. “EGOS: ESA/ESOC ground operations software system”.
In: Big Sky, MT, USA: IEEE Aerospace Conference, 2005.

[Pen+20] Luis Penin, Yann Scoarnec, José Ibarz, Carolina Cazorla, et al. “Proba-
3: ESA’s small satellites precise formation flying mission to study the
Sun’s inner corona as never before”. In: Aug. 2020.

[PDH10] S. Persson, S. D’Amico, and J. Harr. “Flight Results From Prisma For-
mation Flying and Rendezvous Demonstration Mission”. In: Prague,
Czech Republic: 61th International Astronautical Congress, 2010.

[PCC18] I. del Portillo, B.G. Cameron, and E.F. Crawley. “A Technical Com-
parison of Three Low Earth Orbit Satellite Constellation Systems to
Provide Global Broadband”. In: Bremen, Germany: 69 th International
Astronautical Congress, 2018.

[Pot21] GFZ Helmholtz Centre Potsdam. Mission Operations System and Mis-
sion Phases. https://www.gfz-potsdam.de/en/section/global-
geomonitoring-and-gravity-field/projects/gravity-recovery-
and-climate-experiment-follow-on-grace-fo-mission/mission-
operations-system. [Online; accessed January-2021]. 2021.

[Pro14] The CubeSat Program. “CubeSat Design Specification”. In: California
Polytechnic State University, 2014.

[Ray03] T. Ray. “CCSDS FILE DELIVERY PROTOCOL (CFDP) - WHY IT’S
USEFUL AND HOW IT WORKS”. In: NASA/Goddard Space Flight
Center, 2003.

[Reg+16] V. Reggestad, K. Symonds, T. Nogueira, M. Stanciu-Manolescu, et al.
“ESA Constellation Coordination System – Development made easy
by CCSDS Mission Operation Services”. In: Long Beach, California:
American Institute of Aeronautics and Astronautics, 2016.

https://www.gfz-potsdam.de/en/section/global-geomonitoring-and-gravity-field/projects/gravity-recovery-and-climate-experiment-follow-on-grace-fo-mission/mission-operations-system
https://www.gfz-potsdam.de/en/section/global-geomonitoring-and-gravity-field/projects/gravity-recovery-and-climate-experiment-follow-on-grace-fo-mission/mission-operations-system
https://www.gfz-potsdam.de/en/section/global-geomonitoring-and-gravity-field/projects/gravity-recovery-and-climate-experiment-follow-on-grace-fo-mission/mission-operations-system
https://www.gfz-potsdam.de/en/section/global-geomonitoring-and-gravity-field/projects/gravity-recovery-and-climate-experiment-follow-on-grace-fo-mission/mission-operations-system

252 Bibliography

[RSW12] M. Robichaud, E. Sandjaya, and C. Wagner. “Contribution of the On
Board Software Management Tool to the Galileo Operations”. In: Stock-
holm, Sweden: SpaceOps, 2012.

[Ruf+17] O. Ruf, S. Busch, S. Dombrovski, and K. Schilling. “Challenges and
Novel Approaches for Testing Large Number of Small Satellites”. In:
Adelaide, Australia: 68th International Astronautical Congress, 2017.

[Sae+20] Nasir Saeed, Ahmed Elzanaty, Heba Almorad, Hayssam Dahrouj, et
al. CubeSat Communications: Recent Advances and Future Challenges.
2020. arXiv: 1908.09501 [eess.SP].

[Sal+18] S. Salas, H. Darnes, L. Gillot, F. Viaud, et al. “ANGELS SmallSat:
Demonstrator for new French product line”. In: Marseille, France: Space-
Ops, 2018.

[San+13] S. Santandrea, K. Gantois, K. Strauch, Frederic Teston, et al. “PROBA2:
Mission and Spacecraft Overview”. In: solphys 286 (Apr. 2013). doi:
10.1007/s11207-013-0289-5.

[Sch13] Nils Schiffhauer. “FunCube Dongle Pro+ V2.0 on Shortwave”. In: Pub-
lished under http://ratzer.at/pdf/Funcube2 DK8OK.pdf, 2013.

[SA20] K. Schilling and A. Aumann. “CloudCT: Design Challenges for a For-
mation of 10 Nano-Satellites”. In: (2020).

[Sch+15] K. Schilling, P. Bangert, S. Busch, S. Dombrovski, et al. “NetSat: A
Four Pico/Nano-Satellite Mission for Demonstration of Autonomous
Formation Flying”. In: Jerusalem, Israel: 66th International Astronau-
tical Congress, 2015.

[Sch+18] K. Schilling, I. Motroniuk, A. Aumann, I. Mammadov, et al. “TOM – A
Pico-Satellite Formation for 3D Earth Observation”. In: Sorrento, Italy:
4S Symposium, 2018.

[Sch+17] K. Schilling, T. Tzschichholz, I. Motroniuk, A. Aumann, et al. “TOM:
A Formation For Photogrammetric Earth Observation By Three Cube-
sats”. In: Rome, Italy: International Academy of Astronautics, 2017.

[SPS07] M. Schmidt, R.S. Priya, and K. Schilling. “The Pico-Satellite UWE-1
And IP Based Telecommunication Experiments”. In: Proceedings Vol-
umes, Volume 40, Issue 7, Pages 721-725. IFAC, 2007.

[Sch+09] M. Schmidt, K. Ravandoor, O. Kurz, S. Busch, et al. “Attitude Deter-
mination for the Pico-Satellite UWE-2”. In: Space Technology 28 (2009),
pp. 67–74.

[SGU12] A. Schwab, G. Giese, and D. Ulrich. “TDX-TSX - On-board autonomy
and FDIR of whispering brothers”. In: Stockholm, Sweden: SpaceOps,
2012.

https://arxiv.org/abs/1908.09501
https://doi.org/10.1007/s11207-013-0289-5

Bibliography 253

[Sci16] SciSys. “SciSys PLENITER Product to Support OneWeb’s Deployment
of the Word’s Largest Satellite Constellation”. In: http://www.scisys.
co.uk/who-we-are/media-centre/detailed-news/article/801.
html, 2016.

[Sec] CCSDS Secretariat. “Proximity-1 Space LinkProtocol—Rationale, Ar-
chitecture, and Scenarios”. In:

[Sec03a] CCSDS Secretariat. “CCSDS Recommendation for Space Packet Pro-
tocol”. In: Washington, DC 20546, USA: Consultative Committee for
Space Data Systems, 2003.

[Sec03b] CCSDS Secretariat. “Ground systems and operations - Telemetry and
telecommand packet utilization”. In: Washington, DC, USA: Consulta-
tive Committee for Space Data Systems, 2003.

[Sec10] CCSDS Secretariat. “MISSION OPERATIONS SERVICES CONCEPT”.
In: Green Book. Washington, DC, USA: Consultative Committee for
Space Data Systems, 2010.

[Sec13a] CCSDS Secretariat. “Proximity-1 Space Link Protocol —- Data Link
Layer”. In: Recommendation for Space Data System Standards (Blue
Book). Washington, DC, USA: Consultative Committee for Space Data
Systems, 2013.

[Sec13b] CCSDS Secretariat. “Proximity-1 Space LinkProtocol - Coding and
Synchronization Sublayer”. In: Recommendation for Space Data System
Standards (Blue Book). Washington, DC, USA: Consultative Commit-
tee for Space Data Systems, 2013.

[Sec15a] CCSDS Secretariat. “AOS Space Data Link Protocol”. In: Recommen-
dation for Space Data System Standards (Blue Book). Washington, DC,
USA: Consultative Committee for Space Data Systems, 2015.

[Sec15b] CCSDS Secretariat. “TC Space Data Link Protocol”. In: Recommenda-
tion for Space Data System Standards (Blue Book). Washington, DC,
USA: Consultative Committee for Space Data Systems, 2015.

[Sec15c] CCSDS Secretariat. “TM Space Data Link Protocol”. In: Recommen-
dation for Space Data System Standards (Blue Book). Washington, DC,
USA: Consultative Committee for Space Data Systems, 2015.

[Sec20] CCSDS Secretariat. “Space Packet Protocol”. In: Blue Book. Washing-
ton, DC 20546, USA: Consultative Committee for Space Data Systems,
2020.

[SK07] G. Shirville and B. Klofas. “GENSO: A Global Ground Station Net-
work”. In: San Luis Obispo, CA, USA: Electrical Engineering, Cal Poly
State University, 2007.

[Sol21] Solenix. Solenix’s Elveti to Power Ground Segment of Astrocast. https:
//www.solenix.ch/blog/2016-11-28/solenix’s-elveti-power-
ground-segment-astrocast. [Online; accessed January-2021]. 2021.

http://www.scisys.co.uk/who-we-are/media-centre/detailed-news/article/801.html
http://www.scisys.co.uk/who-we-are/media-centre/detailed-news/article/801.html
http://www.scisys.co.uk/who-we-are/media-centre/detailed-news/article/801.html
https://www.solenix.ch/blog/2016-11-28/solenix's-elveti-power-ground-segment-astrocast
https://www.solenix.ch/blog/2016-11-28/solenix's-elveti-power-ground-segment-astrocast
https://www.solenix.ch/blog/2016-11-28/solenix's-elveti-power-ground-segment-astrocast

254 Bibliography

[Mes] “Special Delivery: NASA’s MESSENGER Sends Flyby Data to Earth
Using CCSDS File Delivery Protocol Developed for Deep Space by In-
ternational Team”. In: CCSDS press release, 2005.

[Swa21] M. Swartwout. CubeSat database. https://sites.google.com/a/slu.
edu/swartwout/home/cubesat-database. [Online; accessed January-
2021]. 2021.

[Sys21a] 12G Flight Systems. PUSOpen – RELIABLE ECSS PUS / CCSDS
COMMUNICATION FOR YOUR MISSION. 2021.

[Sys21b] Tyvak Nano-Satellites Systems. Tyvak Platforms. https://www.tyvak.
com/platforms/. [Online; accessed January-2021]. 2021.

[tea21] SpaceX software team. Ask Me Anything – reddit session. https://
www.reddit.com/r/spacex/comments/gxb7j1/we_are_the_spacex_
software_team_ask_us_anything/. [Online; accessed March-2021].
2021.

[Tor21] Space Flight Laboratory University of Toronto. SFL Satellite Platforms.
https : / / www . utias - sfl . net / ?page _ id = 89. [Online; accessed
January-2021]. 2021.

[Wae16] P. Waeltermann. “Hardware-in-the-Loop: The Technology for Testing
Electronic Controls in Vehicle Engineering”. In: Paderborn, Germany:
dSpace GmbH, 2016.

[Whi+15] D.J. White, I. Giannelos, A. Zissimatos, E. Kosmas, et al. “SatNOGS:
Satellite Networked Open Ground Station”. In: Valparaiso, IN, USA:
Valparaiso University, 2015.

[Wil12] J. Willmot. “Use of CCSDS File Delivery Protocol (CFDP) in NASA-
/GSFC’s Flight Software Architecture”. In: 6th ESA Workshop on Avion-
ics, Data, Control and Software Systems - ADCSS, 2012.

[Woo+07] L. Wood, W. Eddy, W. Ivancic, J. McKim, et al. “Saratoga: a Delay-
Tolerant Networking convergence layer with efficient link utilization”.
In: Salzburg, Austria: International Workshop on Satellite and Space
Communications, 2007.

[Zim+17] R. Zimmermann, D. Doan, L. Leung, J. Mason, et al. “Commissioning
the World’s Largest Satellite Constellation”. In: Logan, USA: AIAA/USU
Conference on Small Satellites, 2017.

https://sites.google.com/a/slu.edu/swartwout/home/cubesat-database
https://sites.google.com/a/slu.edu/swartwout/home/cubesat-database
https://www.tyvak.com/platforms/
https://www.tyvak.com/platforms/
https://www.reddit.com/r/spacex/comments/gxb7j1/we_are_the_spacex_software_team_ask_us_anything/
https://www.reddit.com/r/spacex/comments/gxb7j1/we_are_the_spacex_software_team_ask_us_anything/
https://www.reddit.com/r/spacex/comments/gxb7j1/we_are_the_spacex_software_team_ask_us_anything/
https://www.utias-sfl.net/?page_id=89

List of Figures

1.1 Launched CubeSats, grouped by mission types. Image source: [Swa21] . . . 2
1.2 Mission roadmap of the University of Würzburg (left) and Zentrum für

Telematik (right) . 3
1.3 Ground and space segment of the exemplary NetSat formation mission . . . 5
1.4 Coverage of the implementation chapters: Protocol Chapter (green), Space

Chapter (red) and Ground Chapter (blue) 8

2.1 Simplified overview of the components involved in the NetSat mission. (A)
NetSat flight models, (B) NetSat engineering models, (C) operator’s work-
stations, (D) GS server, (E) orbit simulator, (F) algorithms simulator, (G)
hardware test facility . 11

2.2 Desired common protocol configuration . 12
2.3 Solenix Elveti Mission Control System overview. Image source: www.solenix.

ch . 29
2.4 Overview of the MO Service Framework (image source: [Sec10], p.19) . . . 30
2.5 Overview of space protocols recommended by the CCSDS (image source:

[AA14], p. 2-4) . 32
2.6 CCSDS recommendation with Space Packet Protocol as End-to-End for-

warding (image source: [AA14], p. 4-3) . 33
2.7 CCSDS recommendation with IP protocol as End-to-End forwarding (image

source: [AA14], p. 4-5) . 34
2.8 CCSDS recommendation with CFDP protocol as End-to-End forwarding

(image source: [AA14], p. 4-5) . 34
2.9 GENSOO: Participating and Related Universities (image source UNISEC

global) . 37
2.10 GENSOO: Ground Station Management Service (image source UNISEC

global) . 37
2.11 GENSOO: GS Remote Operation Web Service (right) (image source UNISEC

global) . 38
2.12 Available DTN protocols . 39
2.13 Convergence Protocol . 40
2.14 Multiple Access techniques (image sources: nature.com and maxiustech.com) 41
2.15 SCOS 2000 TC History Display (image sources: esa.int) 45
2.16 Pleniter Software Suite (image sources: pleniter.com) 46

3.1 Protocol configuration of the UWE-3 mission (before this thesis) 49
3.2 Simplified NetSat formation Mission Network 50

255

www.solenix.ch
www.solenix.ch

256 List of Figures

3.3 MTBA Bridge . 52
3.4 Simplified view of the NetSat mission MTBA model 52
3.5 Model Shadowing . 53
3.6 Model Based Development . 55
3.7 Development stages . 56
3.8 Mixed-Loop-Testing . 57
3.9 Protocols in a simplified NetSat mission network. (A) embedded intra-

system protocol, (B) wireless inter satellite protocol, (C) protocol between
workstations, (D) engineering link protocol, (E) orbit simulation handling
protocol, (F) Matlab simulation protocol, (G) test facility control 58

3.10 Compass Domains Approach . 60
3.11 Routing Example, connection of two subnetworks 64
3.12 Protocol configuration of the UWE-4 and NetSat missions. 72

4.1 Coverage of the protocol chapter . 73
4.2 Overview of all services used between ground and space systems in the

common UWE-3, UWE-4 and NetSat mission network 83
4.3 Overview of all services used between ground systems in the common UWE-

3, UWE-4 and NetSat mission network . 84
4.4 Routing table example . 87
4.5 Visualization of the local routing map in the Compass Operations front-

end. Green and red lines denote active and inactive routes respectively.
The width of the lines is denoting the corresponding maximum speed. The
age of the knowledge is visualized with fading line color. 90

4.6 Command service front-end in the Compass Operations front-end – here
showing a commanding session with the NetSat 1:OBC. 92

4.7 Downlink API front-end . 94
4.8 Uplink API front-end . 95
4.9 Log service: activation of log transmission and log storage using Model service 97
4.10 Unit-Test service: user front-end . 98
4.11 NFS service: drive configuration example 100
4.12 Model service: example of the UHF ground station model 107
4.13 Database service: loading remote history packets with Compass Operations

front-end . 118
4.14 Registry service: example of the local Service map (Compass Operations

front-end) . 120
4.15 Advanced I2C communication . 122

5.1 Coverage of the space segment chapter . 125
5.2 Modular pico-satellite bus (image source: [BS17]) 126
5.3 Subsystem configuration of one NetSat satellite. Yellow boxes denote Com-

pass OS enabled components . 129
5.4 Comparison of the embedded and Java-based Compass implementations . . 131
5.5 Conversion from UWE-3 software to Compass middleware 132
5.6 Different domains of the Compass OS File System implementation 133
5.7 Available drives on the NetSat OBC subsystem visualized in the File View

of the Compass Operations front-end . 133
5.8 Configuration of the NetSat OBC routing table with static entries 136

List of Figures 257

5.9 Command definition one-liner . 137
5.10 Model group and value definition with a get hook 137
5.11 Model examples of NetSat-2 OBC and Panel +X subsystems 138
5.12 Unit test definition . 139
5.13 UnitTest example . 140
5.14 Download remote files with File View in the Compass Operations front-end 141
5.15 Tiny development cycle . 142
5.16 Tiny instruction set shown in the IDE’s help window 144
5.17 Tiny IDE with a source editor (top left), compiled byte-code (bottom) and

de-compiled code (top right) . 145
5.18 Tiny distributed execution . 148
5.19 Tiny remote code execution . 149

6.1 Coverage of the ground chapter . 151
6.2 Ground systems overview before this thesis (spring 2014) 152
6.3 Ground systems overview at the time of writing (mid 2019). Left: Univer-

sity’s sub-network, right: ZfT’s sub-network 153
6.4 Structure of the CompassNode software . 156
6.5 Ground Station of the University of Würzburg 157
6.6 Software structure of the Ground Station server 158
6.7 Model service used to monitor and control a ground station 159
6.8 Compass Operations front-end: selection of a mission network entry point. . 160
6.9 Model service used to monitor and control a mission server 161
6.10 Visualization of UWE-4 beacons with SatNOGS dashboard 162
6.11 Compass packets injected by external ground stations 163
6.12 Receive locations of UWE-3 packets submitted by radio amateurs 163
6.13 Compass Operations front-end . 165
6.14 Compass Drop-Down Button with some of the available preferences 166
6.15 Node selector in a single view . 166
6.16 Global node selector . 167
6.17 Network View with direct right-click node control 167
6.18 Nodes View buttons . 168
6.19 Packet View with three collapsible groups: service statistics, packet creator

and packet list . 169
6.20 Compass Packet View buttons . 169
6.21 Packet View: tools and recording menus . 169
6.22 Packet View: available actions for selected packets 170
6.23 DTN Activation and configuration . 171
6.24 Command View with selectable human-readable services: Command ser-

vice, Chat service, Tiny service, Echo service 172
6.25 Command execution using the Model View 172
6.26 Model View buttons . 173
6.27 Model View with currently known (cached) Compass network model 174
6.28 Model View: NetSat OBC model shown with (left) and without (right) GUI

hints . 174
6.29 Model View: model subscription menu . 175
6.30 Available Chunk States . 176

258 List of Figures

6.31 Uplink dialog and Uplink View (left), Downlink dialog and Downlink View
(right) . 176

6.32 Unit Testing View with several executed tests 177
6.33 Visualization of the ground station parameters 177
6.34 Visualization of the satellite’s values . 178
6.35 Auto-detected TLEs by the Schedule View 179
6.36 Schedule View: configuration menu . 179
6.37 Visualization of overpasses and auto-operations tasks 180
6.38 Echo View with determined round-trip times and generated report in the

second view’s tab . 181
6.39 Tiny View . 182
6.40 Tiny View dialogs . 182
6.41 Opened Tiny compiler . 183
6.42 Scheduler View buttons . 183
6.43 Scheduler View used for auto operations . 184
6.44 Scheduler View: task creation in the scheduler’s root (left) and inside an

existing job . 185
6.45 Scheduler View: task modification options 185
6.46 Scheduler View: recorded tasks . 186

7.1 Agile Software Development . 188
7.2 Test results: serial (right), local TCP/C (middle), local TCP/Java (right) . 190
7.3 Test results: LAN (right), WAN (middle), Radio (right) 190
7.4 3D model of the Marienberg Fortress in Würzburg being moved on top of

the Stäbli mobile platform . 192
7.5 Development stages as formalized by the modified MDB approach from

section 3.1.6 . 193
7.6 “U-shaped” (front) and “C-shaped” (back) motion simulators 194
7.7 Communication loop during the sensor calibration 194
7.8 Turntable visualisation in the Compass Operations front-end with the Nodes

View showing the mission network during the calibration. The 3D visual-
ization of the turntables was developed by Oliver Ruf 195

7.9 UWE team performing pre-flight sensor calibration of the UWE-4 nanosatel-
lite . 196

7.10 Attitude Control architecture implemented on the ADCS and the panels
with appropriate timescales. Tiny is employed as flexible high-level con-
troller. Image used with permission from Philip Bangert 198

7.11 Protocol settings for satellite modules in the Ground Station server software
(section 6.3) . 202

7.12 Wall-mounted monitor in all ZfT’s offices as a part of the distributed mission
control approach . 202

8.1 Browsing the report directory (Traffic Post-Processing) created by the
automatic post-processing function of the Compass Operations front-end . . 206

8.2 Operations front-end of an expert at ZfT accessing the NetSat EM model
at IRS . 207

8.3 Pre-flight LEOP exercise: all four NetSat satellites shortly after the antenna
deployment . 207

List of Figures 259

8.4 Pre-flight LEOP exercise: appearance of all four NetSat satellites in the
Node View after beacon reception . 208

8.5 All four NetSat CubeSats ready for launch 209
8.6 Top: Real-life example of auto-operations recorded for all NetSat satel-

lites (NS4 job is shown in recording mode). Bottom: Visualization of all
overpasses and auto-operations tasks . 212

8.7 Left: Visualization of NetSat-3 network knowledge in the Operations front-
end by using the received network beacon (2020/10/10 09:59). Right: Con-
tents of the same beacon converted to human-readable form 215

8.8 NetSat formation at four different time points: 19 October 2020, 31 October
2020, 8 November 2020 and 15 November 2020. Visualized in the Formation
View of the Compass front-end . 217

8.9 Detected ISL activity from the point of view of the NetSat-1, NetSat-2,
NetSat-3 and NetSat-4 respectively . 218

9.1 Example of the dynamic mission network, shown in the Operations front-
end, during the NetSat overpass. 221

9.2 Image showing snowy Alps. Taken by NetSat-3 on 13 December 2020 . . . 222
9.3 Comparison of the relative packet and data traffic of different services used

in UWE-3, UWE-4 and NetSat missions. The analysis was performed using
the entire recorded space-ground traffic – in total over 1.5 million packets
– of the corresponding missions. 225

4 Compass Operations set-up for Ground Support 235
5 Compass Operations set-up of a Test Engineer 236
6 Compass Operations set-up of a Attitude/Orbit Control Engineer 236
7 Recorded packet traffic of the UWE-3 mission 237
8 Recorded data traffic of the UWE-3 mission in bytes 238
9 Recorded packet traffic of the UWE-4 mission 238
10 Recorded data traffic of the UWE-4 mission in bytes 239
11 Recorded packet traffic of the NetSat mission 239
12 Recorded data traffic of the NetSat mission in bytes 240
13 Tiny script used to fix minor bugs on all four NetSat satellites 242
14 NetSat-4 accessible via NetSat-2 during the active tracking of the NetSat-2

satellite . 243

260 List of Figures

List of Tables

2.1 Summary of protocol requirements . 14
2.2 Summary of protocol service requirements for space and ground systems . . 17
2.3 Embedded software requirements as derived from protocol requirements . . 19
2.4 Ground middleware requirements . 21
2.5 Overview of IoT missions . 27
2.6 Standard PUS services . 35

4.1 Supported channels on different platforms 74
4.2 Compass packet description . 76
4.3 Header bytes, with only first byte being mandatory 76
4.4 First header byte (mandatory) . 76
4.5 Second header byte (optional) . 77
4.6 Third header byte (optional, advanced functions) 77
4.7 Payload size field setting . 78
4.8 Routing Entry if Routing bit is disabled . 79
4.9 Encryption info byte . 82
4.10 Currently Implemented services . 85
4.11 Network service packets . 87
4.12 Network service: beacon request . 87
4.13 Network service: (extended) beacon . 89
4.14 Command service: command request and possible answers 91
4.15 Command service: command list request and the corresponding answer . . 91
4.16 Downlink API request . 93
4.17 Downlink API answer . 93
4.18 Uplink API Chunk . 96
4.19 Uplink API State request . 96
4.20 Uplink API State answer . 96
4.21 Merge finished packet . 96
4.22 Log service: Message with optional Severy-String 97
4.23 Unit-Test service: test entry description . 99
4.24 Unit-Test service: execute selected tests and stop execution 99
4.25 Unit-Test service: progress packet . 99
4.26 NFS service: Create file . 101
4.27 NFS service: Append file . 101
4.28 NFS service: Delete file . 101
4.29 NFS service: Format drive . 101
4.30 NFS service: Close file . 101

261

262 List of Tables

4.31 NFS service: Cut file . 102
4.33 Tiny service: Execute Tiny byte-code . 102
4.32 Tiny service packets . 103
4.34 Tiny service: Execution Answer and Value Types 103
4.35 Model service: Get function list (left) and list answer (right) 104
4.36 Tiny service: List Tiny threads . 104
4.38 Tiny service: Add thread . 104
4.37 Tiny service: Tiny threads List . 105
4.39 Tiny service: Delete thread . 106
4.40 Tiny service: Update thread . 106
4.41 Tiny service: Thread result . 106
4.42 Tiny service: Load thread from file . 106
4.43 Tiny service: Save thread to file . 106
4.44 Model type+length encoding . 108
4.45 Data Types . 109
4.46 Model service: local (left) and addressed (right) packet types 110
4.47 Model service: Get local (left) and addressed model list 110
4.48 Model service: Model list entry . 111
4.49 Model service: GUI hints of a list entry . 112
4.50 Model service: set addressed (2/5) or local (20/50) value with or without

updating time . 112
4.51 Model service: get addressed (3) or local (30) value 113
4.52 Model service: get addressed (6) or local (60) value 113
4.53 Model service: set addressed (7) or local (70) group 113
4.54 Model service: get addressed (8) or local (80) group value 114
4.55 ARR service: Clear request (left) and Clear Done packet (right) 114
4.57 ARR service: single task entry . 114
4.56 ARR service: request tasks (left) and task entry (right) packet 115
4.58 ARR service: create new reporting task . 115
4.59 ARR service: Successfully created reporting task 115
4.60 ARR service: create new recording task . 116
4.61 ARR service: Successfully created recording task 116
4.62 ARR service: delete Task by its TaskID (left) and answer on success (right) 117
4.63 ARR service: delete Task by the model ID (left) and answer on success (right)117
4.64 Database service: request and answer packet 118
4.65 Registry service: list all, list map and list value 119
4.66 Registry service: clear map, delete value and create/update value 119
4.67 Registry service: reserved table IDs . 119
4.68 Tunnel service packet . 120
4.69 Packet detection strategies . 121
4.70 SLIP Protocol (left) and encoding rules (right) 121
4.71 I2C Master Packet . 123
4.72 I2C Slave Response . 124
4.73 I2C Slave Urgent Response . 124

List of Tables 263

5.1 Currently developed satellite subsystems and their amount in one NetSat
satellite. µC shows total number of Compass OS enabled microcontrollers
on one subsystem . 127

5.2 Different MCU types . 128
5.3 Available channels in Compass OS . 134
5.4 Services implemented in Compass OS and in CompassNode 135
5.5 Routing entries example . 135

6.1 Java-ability of ground systems . 155

7.1 Tests with different channel types and the theoretical speed 189
7.2 Round-trip-time (RTT) results of the communication channels 192
7.3 Ground Station Server: stored ground-space traffic for all three missions

(2020/11/13). Ext denotes packets being received from remote stations . . . 200

8.1 Tiny interpreter: available external functions on all UWE-4 and NetSat
subsystems . 213

Major parts of this work was supported by the European Research Council (ERC) Grant
“NetSat” under the Grant Agreement No. 320377. The author also appreciated the
support for UWE-4 by German national space agency DLR by funding from the Fed-
eral Ministry of Economic Affairs and Energy by approval from German Parliament with
reference 50 RU 1501.

Die Schriftenreihe

wird vom Lehrstuhl für Informatik VII: Robotik und
Telematik der Universität Würzburg herausgegeben und
präsentiert innovative Forschung aus den Bereichen der
Robotik und der Telematik.

Ÿ Robotik und Mechatronik: Kombination von Infor-
matik, Elektronik, Mechanik, Sensorik, Regelungs-
und Steuerungstechnik, um Roboter adaptiv und
flexibel ihrer Arbeitsumgebung anzupassen.

Anwendungsschwerpunkte sind u.a. mobile Roboter, Tele-
Robotik, Raumfahrtsysteme und Medizin-Robotik.

Die Kombination fortgeschrittener Informationsverar-
beitungsmethoden mit Verfahren der Regelungstechnik
eröffnet hier interessante Forschungs- und Anwendungs-
perspektiven. Es werden dabei folgende interdisziplinäre
Aufgabenschwerpunkte bearbeitet:

Ÿ Telematik: Integration von Telekommunikation, Infor-
matik und Steuerungstechnik, um Dienstleistungen
an entfernten Standorten zu erbringen.

D-97074 Würzburg

ISBN: 978-3-945459-38-6 (online)

https://opus.bibliothek.uni-wuerzburg.de

ISSN: 1868-7466 (print)

Tel.: +49 (0) 931 - 31 - 85906

opus@bibliothek.uni-wuerzburg.de

Am Hubland

ISSN: 1868-7474 (online)

Robotik und Telematik

D-97074 Wuerzburg

Tel.: +49 (0) 931 - 31 - 86678

http://www7.informatik.uni-wuerzburg.de
schi@informatik.uni-wuerzburg.de

Dieses Dokument wird bereitgestellt
durch den Online-Publikationsservice
der Universität Würzburg.

Universitätsbibliothek Würzburg

Lehrstuhl Informatik VII

Am Hubland

Fax: +49 (0) 931 - 31 - 86679

Zitation dieser Publikation

DOMBROVSKI, V. (2021). Software Framework to
Support Operations of Nanosatellite Formations.
Schriftenreihe Würzburger Forschungsberichte in Robotik
und Telematik, Band 23. Würzburg: Universität Würzburg.
DOI: 10.25972/OPUS-24931

Dissertation an der Universität Würzburg im Rahmen der
Graduate School of Science and Technology

	Introduction
	Motivation
	Baseline Mission
	Contributions
	Thesis Outline

	State of the Art
	Requirements
	Baseline Mission
	Protocol
	Services
	Space Segment software
	Ground Segment software

	Formation Missions
	CanX-4 & 5
	Prisma
	GRACE
	HawkEye 360 Pathfinder
	MMS
	NetSat
	PROBA-3
	CloudCT

	On-board Autonomy in Constellations
	SWARM
	TerraSAR-X and TanDEM-X
	Galileo
	Planet
	OneWeb

	IoT/M2M Missions
	Starlink
	Myriota
	Astrocast
	Kepler
	Swarm
	kineis

	OPS-SAT and MO services
	Protocols
	CCSDS Recommendations
	Packet Utilization Standard services
	Ground Segment Protocols
	Ground-Space Protocols
	Inter Satellite Link

	Considerations on Satellite Development and Operations
	Satellite Software Development
	Testing and Verification
	Distributed Dynamic Mission Network
	Operations

	Roundup

	Approach
	Uniform Model Interface
	Model Tree Based Architecture
	Model Tree shadowing and Model-based communication
	Model buffering
	Model swapping
	Implementation
	Testability

	Uniform Communication
	Addressing
	Channels
	Routing
	Advanced Protocol Functions

	High-level Functionality
	Services
	Network Features
	Telemetry, Tracking and Control (TT&C)
	Testing and Fault Diagnostics
	File Link
	Dynamic Code Execution

	Summary

	Compass Protocol
	Overview
	Packet Definition
	Addressing
	Payload size
	Time field
	Route Format
	Route
	SGN
	CRC
	Error
	Urgent
	Encryption
	Zip Compression

	Services
	Network
	Echo
	Command
	Downlink
	Uplink
	Log
	Unit-Test
	Network File System
	Tiny script
	Model
	Recording and Reporting
	Database
	Registry
	Tunnel

	Channels
	Generic Byte Stream Channels
	TCP or UDP
	I2C

	Space Segment
	Hardware environment
	Microcontrollers
	Payload

	Communication
	Satellite bus
	Space-Ground
	Inter Satellite Link

	Compass OS
	Hardware Abstraction Layer
	Embedded File Systems
	Channels

	Compass services
	Network service
	Command service
	Model service
	Unit Testing
	File service

	Dynamic Code Execution with Tiny
	Tiny Language
	Tiny IDE
	External Functions
	Compass bonding
	Remote Function Execution

	Ground Segment
	Environment
	Before this thesis
	During this thesis

	Java Implementation
	Fire Framework

	Ground Station Server
	Mission Server
	External Ground Stations
	Compass Operations front-end
	Node selection
	Nodes View
	Packet View
	Command View
	Model View
	Uplink and Downlink View
	Unit Testing
	Value Monitors
	Schedule View
	Echo View
	Tiny View

	Auto-Operations
	Task Creation
	Task recording
	File Links

	Testing and Live System Experience
	Protocol Performance
	Serial communication
	Local TCP
	Remote TCP
	Radio Link

	TOM Scenario
	UWE-4 Sensor Calibration
	In-Orbit Dynamic Code Execution
	UHF Ground Stations
	Multi Satellite Operations

	NetSat Experience
	External Tests and Verification
	Pre-flight LEOP exercises
	Launch and Early Orbit Phase
	Auto-Operations
	Dynamic Code Execution with Tiny
	ISL
	Outlook

	Conclusions
	Ground Segment
	Multi-Satellite Operations
	Space Segment and In-Orbit Autonomy
	Compass Protocol usage
	Future Work
	Publications

	Appendices
	Compass Node Creation
	Matlab
	Java

	Front-End Examples
	Traffic comparison
	Examples from NetSat Operations

