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Notations

Here we indicate some of the notations and conventions used in this thesis,
most of them are standard. However, this list is not complete; we omit notions
which only appear in one section where they are de�ned in situ or which are
standard.

As usual, we denote by N = {1, 2, 3, . . .} the set of positive integers. The sets
of integers, rational numbers, real numbers, and complex numbers are denoted
by Z,Q,R, and C, respectively. Following an old tradition in the theory of the
zeta-function, the complex variable is given by a mixture of greek and latin
letters: we write s = σ + it, where σ, t ∈ R, and i is the imaginary unit

√
−1

in the upper half-plane.

The letter p, with and without a subscript, denotes a prime number. The
symbol ≡ stands either for some congruence or it denotes that a function is
constant. The number of elements of a �nite set A is denoted by #A.

The logarithm is, as usual in number theory, always taken to the basis
e = exp(1). The integer part and fractional part of a real number x are indi-
cated by [x] and {x}, respectively. Very convenient is the use of the Landau-
and Vinogradov-symbols. Given two functions f(x) and g(x), both de�ned for
x ∈ X, where g(x) is positive for all x ∈ X, we write

� f(x) = O(g(x)) and f(x) ≪ g(x), respectively, if there exists a constant
C ≥ 0 such that

|f(x)| ≤ Cg(x) for all x ∈ X;

here X is speci�ed either explicitly or implicitly. Usually, the set X is an
interval [ξ,∞) for some real number ξ.

� f(x) = o(g(x)) if the following limit exists and is equal to zero:

lim
x→∞

|f(x)|
g(x)
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Introduction and statement of the main results

�Aller Anfang ist schwer.�

Johann Wolfgang von Goethe (1749-1832)

The Epstein zeta-function is an interesting object in number theory. It can
be considered as one of many di�erent ways to generalize the Riemann zeta-
function. Likewise the distribution of zeros of Epstein zeta-functions is a natu-
ral topic to study. Given its connection to quadratic forms it is no surprise that
the Epstein zeta-function contains information about primes and irreducibles
of number �elds. Apart from the famous interest into the distribution of real
parts of the zeros of zeta-functions, which leads for example to the question
posed in the Riemann hypothesis, also the vertical dictribution of the zeros
has been under constant scrutiny. Here uniform distribution modulo one en-
ters the picture. In 1916 Hermann Weyl gave the famous characterization of
uniform distribution via his equivalent criteria, which was amongst numer-
ous other advances key in establishing uniform distribution modulo one for
the imaginary parts of nontrivial zeros of the Riemann zeta-function decades
later.

The main scope of this thesis is to investigate the wide class of Epstein zeta-
functions. We want to know if the imaginary parts of nontrivial zeros are
uniformly distributed modulo one.

In this introductory chapter section 1.1 introduces the Epstein zeta-function.
Section 1.2 states brie�y the de�nition of uniform distribution modulo one and
section 1.3 explores Landau's theorem from 1912, which plays an important
role. Section 1.4 outlines this thesis and states the main results.



1 Introduction and statement of the main results

1.1 The Epstein zeta-function

1903 Paul Epstein [18] introduced zeta-functions associated with quadratic
forms. If Q is a positive de�nite n× n matrix with integer values and Q[x] =
xtQx the associated quadratic form, then

ζ(s;Q) =
∑

0̸=x∈Zn

Q[x]−s (1.1)

is called the associated Epstein zeta-function. This Dirichlet series con-
verges absolutely for Re s > n

2 and there exists an analytic continuation to
the whole complex plane except for a simple pole at s = n

2 . It is also well
known, see for example Steuding [65], that it satis�es the functional equation

π−sΓ (s)ζ(s;Q) = (detQ)−
1
2πs−

n
2 Γ
(
n
2 − s

)
ζ
(
n
2 − s;Q−1

)
(1.2)

with Q−1 the inverse matrix of Q and Γ (s) the Gamma-function. The trivial
zeros lie for m ∈ N at s = −m, though we are interested in the remaining
zeros, the nontrivial ones denoted by ϱ = β + iγ.

Let N(T ;Q) count the number of nontrivial zeros with |γ| < T . There exists
an analogue of the Riemann von-Mangoldt formula, i.e.

N(T ;Q) =
2T

π
log

T

πe
√

m(Q)m(Q−1)
+O(log T ), (1.3)

see for example Steuding [66]. Here

m(Q) = min{m ∈ R | ∃x ∈ Zn : Q[x] = m} (1.4)

is the minimum value attained by the quadratic form, an important invariant
of Q frequently used in what follows.

We will explore many more properties of Epstein zeta-functions throughout
this thesis but would like to close this section with a brief remark about where
we �nd them. They are interesting analytical objects playing an important role
in algebraic number theory and in the theory of modular forms, see for example
Siegel [63]. We also �nd Epstein zeta-functions in chemistry and physics, see
for instance the articles of Buhler and Crandall [8], Elizalde and Romeo [15],
and Elizalde [16].

1.2 Uniform distribution modulo one

As far back as in the middle ages observations were made which in the mod-
ern language of mathematics can be connected to uniform distribution modulo
one. For example around 1360 the French mathematician Nicole Oresme con-
sidered two bodies on a circle with uniform but incommensurable velocities
and claimed that

6



1.4 Statement of the main results and outline of the thesis

�No sector of a circle is so small that two such bodies could not
conjunct in it at some future time, and could not have conjuncted in
it some time in the past.�

This can be interpreted in a way that the multiples of an irrational number
lie dense in the unit interval. Centuries later the basic de�nition where we can
build on runs as follows:
A sequence of real numbers (xn)n∈N is uniformly distributed modulo one
if for every pair α, β of real numbers with 0 ≤ α < β ≤ 1, the proportion of
the fractional parts of the xn in the half open interval [α, β) tends to its length
in the following sense:

lim
N→∞

#{1 ≤ n ≤ N : {xn} ∈ [α, β)}
N

= β − α. (1.5)

1.3 Landau's theorem for the Riemann zeta-function

In 1912 Edmund Landau published his paper "Über die Nullstellen der Zeta-
funktion" [43]. In this he proved for the nontrivial zeros ϱ = β + iγ of the
Riemann zeta-function

ζ(s) =

∞∑
n=1

1

ns

the following estimate: For an arbitrary real parameter x > 1 we have∑
0<γ<T

xϱ = −Λ(x) T
2π

+O(log T ), (1.6)

where the von Mangoldt Λ-function is de�ned by

Λ(n) =

{
log p if n = pk with k ∈ N,
0 otherwise.

If 0 < x < 1, Λ(x) needs to be replaced by x · Λ( 1x ) due to the symmetrical
distribution of nontrivial zeros.

1.4 Statement of the main results and outline of the

thesis

The main focus of this thesis is to investigate the distribution of imaginary
parts of nontrivial zeros of Epstein zeta-functions. In particular we want to
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1 Introduction and statement of the main results

explore the subset of Epstein zeta-functions where we can show that the imag-
inary parts are uniformly distributed modulo one. For the Riemann zeta-
function ζ(s), the simplest form of an Epstein zeta-function, Rademacher [55]
proved this in 1956 under the assumption of the Riemann hypothesis. He
showed that for any positive real number z ̸= 1, the sequence

(
log z
2π γ

)
γ
is

uniformly distributed modulo one. Here γ ranges through the set of positive
imaginary parts of the nontrivial zeros of ζ(s) in ascending order. Uncondi-
tionally this was �rst shown by Elliott [17] in 1972.

In Chapter 2 we introduce the concept of uniform distribution modulo one and
connect it to the question of distribution of imaginary parts of zeta-functions.
The central elements to achieve this are Weyl's criterion and Landau's the-
orem. Usually there exist di�erent real parts in the set of nontrivial zeros of
a general Epstein zeta-function, to illustrate this we recall several results in
section 3.5.
Therefore a natural question is to ask to which extent in this general case
a weighted version of Weyl's criterion exists such that uniform distribution
modulo one can be derived directly from a Landau type theorem. This we in-
vestigate in section 2.4 where we prove in Lemma 2.4 the following: Assuming
the sequence β̃k = e2πβk takes only two di�erent values β̃min and β̃max, and

lim
N→∞

1

N

N∑
k=1

(β̃k)
m · e2πmiγk = 0 (1.7)

holds for all m ∈ Z \ {0}, then the sequence (γk)k∈N is uniformly distributed
modulo one. That Lemma can help in some cases of Epstein zeta-functions
to prove uniform distribution modulo one of the zero ordinates without fur-
ther assumptions, we provide examples in section 5.5.2. This method comes
quickly to an end though. For already three di�erent weights β̃k we provide a
counterexample in section 2.5, i.e. a sequence which ful�lls the limit conditions
(1.7) without being uniformly distributed modulo one.

In Chapter 3 we look at the theory of Epstein zeta-functions and their al-
gebraic foundation in general. We �rst explore fundamental properties of bi-
nary quadratic forms. For all those it will turn out that the zero ordinates
of the associated Epstein zeta-function are uniformly distributed modulo one
which will be shown in section 5.5.1. We recall the connection between bi-
nary quadratic forms and quadratic number �elds and introduce generating
functions associated with forms and ideals. We give various examples of forms
where Epstein zeta-functions can be represented as a linear combination of
more familiar objects like Dedekind zeta-functions and Hecke L-functions. The
chapter closes with a summary of known results about the zero distribution
of Epstein zeta-functions.

Chapter 4 deals with Landau's theorem in more detail. We recall some appli-
cations and generalizations of the theorem including uniform versions in both
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1.4 Statement of the main results and outline of the thesis

variables x and T . We study in particular the result of Akbary and Murty [1],
which is based on Landau's theorem for a class of Dirichlet series more general
than the Selberg class, called S̃. From this, uniform distribution modulo one
of the zero ordinates is derived with help of an average density hypothesis,
i.e. assuming an upper bound for the number of zeros NF (σ, T ) with F ∈ S̃
in the strip 0 ≤ γ ≤ T and 1/2 ≤ σ ≤ T . This result is important for the
context of this thesis since we use a similar density hypothesis to prove a quasi
equivalent result for Epstein zeta-functions in Chapter 5.

Chapter 5 contains the main results of this thesis. We prove the analogue
version of Landau's theorem valid for all Epstein zeta-functions, Theorem
5.3. In essence we shall see that for an arbitrary parameter x ∈ R+ \ {1}, as
T → ∞,∑

|γ|<T

xϱ =
T

π

(
δlk(Q),x · bk(Q)− x

n
2 δlk(Q−1), 1x

· bk(Q−1)
)
+O(log T ).

Here the coe�cients lk(Q) and bk(Q) can be explicitly de�ned which we show
in Lemma 5.1. They occur in the following relation of the logarithmic deriva-
tive of the slightely modi�ed Epstein zeta-function Z(s;Q), de�ned in (5.1),
which carries the same zeros as ζ(s;Q):

Z ′(s;Q)

Z(s;Q)
=

∞∑
n=1

bn(Q)

ln(Q)s
.

For these results we use ideas of Steuding ([67], [65]) and evaluate a contour
integral of Z′(s;Q)

Z(s;Q) . Some added complexity stems from the fact that for the
logarithmic derivative of the general Epstein zeta-function we have to deal
with a general Dirichlet series where the coe�cients are related to non integer
values. By demanding the density hypothesis∑

|γ|<T

∣∣∣β − n

4

∣∣∣ = o (N(T ;Q)) (1.8)

to the imaginary parts of the nontrivial zeros we conclude uniform distribution
modulo one of the zero ordinates, see Corollary 5.4. In section 5.5.1 we apply
this result to the case where a binary quadratic form is governing the Epstein
zeta-function. We are able to show that the density hypothesis is ful�lled
by using methods from Levinson [47], Steuding (see [65],[69]) and the mean-
square estimate∫ T

0

∣∣∣∣ζ(12 + it;Q)

∣∣∣∣2 dt = C(Q)T (log T )2 +O(T log T ),

holding with some constant C(Q), which was shown by Müller [49]. Leveraging
Lemma 2.4 we show in Corollary 5.5 that uniform distribution modulo one can
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1 Introduction and statement of the main results

also be derived for the zero ordinates, if the real parts of zeros cluster around
two di�erent lines. Examples of Epstein zeta-functions where the associated
quadratic form carries more than two variables and for which this is valid are
given in section 5.5.2. We conclude the chapter with an alternative recursive
representation of the logarithmic derivative of Z(s;Q).

In Chapter 6 we approach a quantitative view of the distribution of nontrivial
zero ordinates of Epstein zeta-functions. The discrepancy measures how good
a sequence is distributed modulo one. We postulate the natural condition of
a clustering of zeros around the critical line, i.e. (1.8) at a certain speed. In

particular we demand
∑

|γ|<T
∣∣β − n

4

∣∣ = O
(
T log T
log log T

)
, which holds for the

Riemann zeta-function as shown by Levinson [47]. Then we shall see that the
estimate for the discrepancy DT for Epstein zeta-functions is

DT ≪ |log z|
log log log T

.

for all positive z ̸= 1. To prove this we apply the Theorem of Erdös and
Turán while using ideas of Rehberg [56], as well as Baluyot and Gonek [3].

So what is really new?

Lemma 2.4 gives a new possibility to derive uniform distribution modulo one
for any sequence satisfying the stated limit conditions with two arbitrary
weights. Further the construction of the counterexample in section 2.5 for
three weights. Theorem 5.3 generalizes Landau's theorem for all Epstein zeta-
functions. Corollaries 5.4 and 5.5 provide the opportunity to apply it to a cer-
tain class of Epstein zeta-functions. The recursive representation arose from
the analysis of Theorem 5.3 and the respective Lemma 5.1. Finally the dis-
crepancy estimate in Chapter 6 is new. The proof uses certain properties of
Epstein zeta-functions represented by general Dirichlet series.
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2

Uniform distribution modulo one

�Besides language and music mathematics is one of the primary
manifestations of the free creative power of the human mind.�

Hermann Weyl (1885-1955)

In this chapter we introduce uniform distribution modulo one from the point
of view of this thesis in more detail. We start by stating Weyl's criterion in
section 2.1. In section 2.3 we show how it is used to prove uniform distribu-
tion modulo one of the Riemann zeta zero ordinates by applying well-known
results of Levinson [47] about the clustering of the zeros around the critical
line. Moreover, we recall in section 2.2 a result of Akbary and Murty [1], which
highlights that the ordered �nite union of uniform distributed sequences mod-
ulo one is again uniformly distributed modulo one. This can later be applied
in section 5.5 when we investigate more general Epstein zeta-functions.

In section 2.4 we explore Weyl's criterion for our purpose by allowing powers
of di�erent weights to appear. We prove that if just two arbitrary real num-
bers occur as weights in the exponential sum, this yields another criterion
for uniform distribution modulo one. Moreover, in section 2.5 we see on the
other hand that for powers of three di�erent weights there exists a counterex-
ample of a sequence obeying the limit conditions, but not being uniformly
distributed modulo one. Essentially this is because the third weight adds an-
other degree of freedom. We construct a sequence which approximates three
di�erent density functions with non-zero Fourier coe�cients and still obeys
all limit conditions. We conclude that in case of more than two di�erent real
parts occurring in the set of nontrivial zeros more information about the zeta-
functions is required in order to derive uniform distribution modulo one for
their zero ordinates.



2 Uniform distribution modulo one

2.1 Weyl's criterion

In his famous articles [78], [79] and [80] HermannWeyl developed an important
criterion which is equivalent to uniform distribution modulo one as de�ned in
(1.5). He �rst proved the following

Theorem 2.1. The sequence (xn)n∈N is uniformly distributed modulo one if,
and only if, for any Riemann integrable function f : [0, 1] → C

lim
N→∞

1

N

N∑
n=1

f({xn}) =
∫ 1

0

f(x)dx. (2.1)

The proof, see for example the classic reference on uniform distribution from
Kuipers and Niederreiter [42], uses the indicator function 1[α,β) and the fact
that

∫ 1

0
1[α,β)(x)dx = β − α holds obviously. Linear combinations of those

indicator functions lead to the statement for step and �nally for all Riemann
integrable functions. This brings us to the celebrated Weyl criterion which
can be stated as follows:

Theorem 2.2 (Weyl's criterion). The sequence (xn)n∈N is uniformly dis-
tributed modulo one if, and only if, for all m ∈ Z \ {0}

lim
N→∞

1

N

N∑
n=1

e2πmixn = 0. (2.2)

To prove this Weyl utilized the Weierstrass approximation theorem for
trigonometric polynomials and Theorem 2.1 above; see for instance again
Kuipers and Niederreiter [42], Theorem 2.1.

Weyl's criterion is often used to establish uniform distribution modulo one and
was applied and extended in various ways. Just to name a few, Weyl himself
extended results on sequences of the form nkα with irrational α, mathematical
billards and the three body problem, see [79]. Also Vinogradov [76] applied
it in his proof of the ternary Goldbach conjecture, which states that any
su�ciently large odd integer can be represented as a sum of three primes.

One of many applications of criterion 2.2 was to investigate the distribution
of zero ordinates of �rst the Riemann zeta-function and later zeta-functions
in general. The structure of Landau's theorem (1.6) with the free parameter
x shows similarities to the exponential sum in Weyl's theorem and we will
consider the connection in the next section.

But �rst we explore a simple possibility to derive uniform distribution modulo
one for unions of sequences which are already uniformly distributed.
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2.3 Ordinates of zeros of the Riemann zeta-function

2.2 Composition of uniformly distributed sequences

Akbary and Murty showed in [1], proposition 12 the following consequence of
Weyl's criterion.

Theorem 2.3. i) Let (an)n∈N and (bn)n∈N be two monotonically increasing
sequences of positive real numbers and let (cn)n∈N be the union of these two se-
quences ordered according to the absolute value of its elements. If (an)n∈Nand
(bn)n∈N are uniformly distributed modulo one, then (cn)n∈N is also uniformly
distributed modulo one.
ii) Let F,G be general Dirichlet series. If the sequences (αγF,n)n∈N and
(αγG,n)n∈N, with α ̸= 0, formed from imaginary parts of zeros of F and G
are uniformly distributed modulo one, then the same is true for the sequence
(αγFG,n)n∈N of imaginary parts of zeros of F ·G.

Proof:With t > 0 let nc(t) be the number of elements of (cn)n∈N not exceeding
t. Hence nc(t) = na(t) + nb(t). By denoting a general term of (cn)n∈N with c
we get

∣∣∣∑c≤t e
2πimc

∣∣∣
nc(t)

=

∣∣∣∑a≤t e
2πima +

∑
b≤t e

2πimb
∣∣∣

na(t) + nb(t)

≤

∣∣∣∑a≤t e
2πima

∣∣∣
na(t)

+

∣∣∣∑b≤t e
2πimb

∣∣∣
nb(t)

.

Therefore (i) follows from Weyl's criterion. (ii) is straightforward from (i),
since the set of zeros of F ·G is the union of the set of zeros of F and the set
of zeros of G. □

For our purpose this simple result is very useful since it transfers uniform
distribution modulo one to products of zeta-functions. We will return to this
fact when we discuss more general Dirichlet series.

2.3 Ordinates of zeros of the Riemann zeta-function

We �rst consider how Landau's theorem (1.6) and Weyl's criterion Theorem
2.2 play together in case of the Riemann zeta-function. For this we need an
asymptotic formula about the number of nontrivial zeros ϱ = β + iγ up to a
given height T , denoted by N(T ). As conjectured by Riemann and famously
proven by von Mangoldt in 1895, the Riemann von-Mangoldt formula gives

N(T ) =
T

2π
log

T

2πe
+O(log T ). (2.3)

Now starting with Landau's theorem (1.6), dividing by the number of non-
trivial zeros using (2.3) above, this yields for x > 1

13



2 Uniform distribution modulo one

1

N(T )

∑
0<γ<T

xϱ ≪ log x

log T
. (2.4)

Next we aim to leverage results of the clustering of zeros around the critical
line. Therefore we observe that

∣∣∣x( 1
2+iγ) − x(β+iγ)

∣∣∣ = ∣∣xiγ∣∣ ∣∣∣x 1
2 − xβ

∣∣∣
=
∣∣∣xβ (x( 1

2−β) − 1
)∣∣∣

≤ xβ
∣∣∣∣exp((1

2
− β

)
log x

)
− 1

∣∣∣∣
≤
∣∣∣∣β − 1

2

∣∣∣∣ |log x|max {xβ , x 1
2 }.

Hence

1

N(T )

∑
0<γ<T

∣∣∣x( 1
2+iγ) − x(β+iγ)

∣∣∣ (2.5)

≤ max{xβ , x 1
2 } |log x|

N(T )

∑
0<γ<T

∣∣∣∣β − 1

2

∣∣∣∣ .
To proceed we need an estimate for

∑
0<γ<T

∣∣β − 1
2

∣∣. Without assuming the
Riemann hypothesis we could now use the following results. Littlewood [48]
showed that ∑

0<γ≤T

∣∣∣∣β − 1

2

∣∣∣∣≪ T log log T.

Selberg [61] improved on this by integration of his density theorem getting∑
0<γ≤T

∣∣∣∣β − 1

2

∣∣∣∣≪ T.

Weaker than those two results but still a su�cient asymptotic formula was
proven by Levinson [47]. It has the advantage that it can be generalized to
other zeta-functions. We will use it since this is more in the scope of what
follows. His result was dealing with general a-points of the Riemann zeta-
function. Applied to the nontrivial zeros, Levinson showed∑

0<γ≤T

∣∣∣∣β − 1

2

∣∣∣∣≪ T (log log T )2. (2.6)

Putting (2.6) into (2.5) and using (2.3), we obtain

14



2.4 Lemma for uniform distribution modulo one

1

N(T )

∑
0<γ≤T

(
x(

1
2+iγ) − x(β+iγ)

)
≪ (log log T )2

log T
.

Here and in the following the implied constant depends on the parameter x.
Bearing in mind that (2.4) holds we can further conclude

1

N(T )

∑
0<γ≤T

x(
1
2+iγ) ≪ (log log T )2

log T
.

Now setting the free parameter x = zm for some real number z > 1 and
m ∈ Z \ {0} we see that

1

N(T )

∑
0<γ≤T

e(log z·miγ) ≪ (log log T )2

log T
.

For T → ∞ this tends to zero, so according to Weyl's criterion 2.2 the sequence
of numbers αγ with α = log z

2π is uniformly distributed modulo one.

2.4 Lemma for uniform distribution modulo one

In this section we want to explore to what extent we can draw a conclusion
about the distribution of a sequence already from a formula like (2.4). It
is a natural question in our context since analogous results exist for many
zeta-functions. In Chapter 3 we will investigate those variants in more detail.

We start with the Landau type formula (2.4) and denote by N = N(T ) the
number of zeros up to a given height T . Since the right-hand side of (2.4)
tends to zero as T → ∞, we can write

lim
N→∞

1

N

N∑
k=1

xβk+iγk = 0

which holds for x ∈ R+ \ {1}. Then, by setting x = e2πm, we obtain for all
m ∈ Z \ {0}

lim
N→∞

1

N

N∑
k=1

e2πmβk · e2πmiγk = 0. (2.7)

Without adding any hypothesis on the distribution of the real parts βk of
the nontrivial zeros, we consider in the following what this implies already
for the distribution of the imaginary parts γk. In particular, we prove that
if there are only two di�erent values for the real parts, say βmin and βmax,
then the imaginary parts are uniformly distributed modulo one.

15



2 Uniform distribution modulo one

Nevertheless for already three di�erent real parts of zeros this is not the case
anymore in general if no further assumptions are made for the real parts
βk. In order to show this we provide in section 2.5 an explicit example of a
sequence where the imaginary parts γk are not uniformly distributed modulo
one, although (2.7) holds for all m ∈ Z \ {0}.

Lemma 2.4. Assume the sequence β̃k = e2πβk takes only two di�erent real
values β̃min, β̃max and let

lim
N→∞

1

N

N∑
k=1

(β̃k)
m · e2πmiγk = 0 (2.8)

for all m ∈ Z \ {0}. Then the imaginary parts γk are uniformly distributed
modulo one.

Proof:We assume that the γk are not uniformly distributed modulo one. Then
there exists an m̃ ∈ Z \ {0} and an accumulation point not equal to zero, i.e.
a sequence of natural numbers N1, N2... and an α ∈ C with α ̸= 0 such that

lim
i→∞

1

Ni

Ni∑
k=1

e2πm̃iγk = α. (2.9)

Now we consider (2.8) for the values m̃ and −m̃ and split the sum into two
parts where γk is an imaginary part belonging to either β̃min and β̃max. Hence,
we get

lim
N→∞

(β̃min)
m̃ 1

N

N∑
k=1

β̃k=β̃min

e2πm̃iγk + (β̃max)
m̃ 1

N

N∑
k=1

β̃k=β̃max

e2πm̃iγk

 = 0

and

lim
N→∞

(β̃min)
−m̃ 1

N

N∑
k=1

β̃k=β̃min

e−2πm̃iγk + (β̃max)
−m̃ 1

N

N∑
k=1

β̃k=β̃max

e−2πm̃iγk

 = 0.

We observe that by de�ning for all N ∈ N the complex numbers

γNmin =:
1

N

N∑
k=1

β̃k=β̃min

e2πm̃iγk

and

16



2.4 Lemma for uniform distribution modulo one

γNmax =:
1

N

N∑
k=1

β̃k=β̃max

e2πm̃iγk ,

the equations above become

lim
N→∞

(
(β̃min)

m̃γNmin + (β̃max)
m̃γNmax

)
= 0

and

lim
N→∞

(
(β̃min)

−m̃γNmin + (β̃max)
−m̃γNmax

)
= 0.

Therefore, if we separate γNmin and γNmax into real and imaginary parts with
γNmin =: γmin,Nreal + iγmin,Nimg and γNmax =: γmax,Nreal + iγmax,Nimg , we �nd for all
ϵ1 > 0 an N0(ϵ1) ∈ N such that for all N ≥ N0(ϵ1)

−ϵ1 < (β̃min)
−m̃γmin,Nreal + (β̃max)

−m̃γmax,Nreal < +ϵ1 (2.10)

−ϵ1 < (β̃min)
m̃γmin,Nreal + (β̃max)

m̃γmax,Nreal < +ϵ1,

as well as for the imaginary parts

−ϵ1 < (β̃min)
−m̃γmin,Nimg + (β̃max)

−m̃γmax,Nimg < +ϵ1

−ϵ1 < (β̃min)
m̃γmin,Nimg + (β̃max)

m̃γmax,Nimg < +ϵ1.

Equations (2.10) can be written in matrix form as(
−ϵ1
−ϵ1

)
<

(
(β̃min)

−m̃ (β̃max)
−m̃

(β̃min)
m̃ (β̃max)

m̃

)(
γmin,Nreal

γmax,Nreal

)
<

(
+ϵ1
+ϵ1

)
.

The occurring matrix

B =:

(
(β̃min)

−m̃ (β̃max)
−m̃

(β̃min)
m̃ (β̃max)

m̃

)
is invertible with

B−1 =
1

(β̃min)−m̃(β̃max)m̃ − (β̃min)m̃(β̃max)−m̃

(
(β̃max)

m̃ −(β̃max)
−m̃

−(β̃min)
m̃ (β̃min)

−m̃.

)
Therefore, with the usual matrix norm of absolute row sums, i.e.

∥A∥∞ := max
i

n∑
j=1

|aij |,

we obtain from (2.10) the inequalities

17



2 Uniform distribution modulo one

−ϵ1 ·
∥∥B−1

∥∥
∞ < γmin,Nreal < +ϵ1 ·

∥∥B−1
∥∥
∞ (2.11)

−ϵ1 ·
∥∥B−1

∥∥
∞ < γmax,Nreal < +ϵ1 ·

∥∥B−1
∥∥
∞ .

Now looking at (2.9) we assume without loss of generality that the real part
αreal of the accumulation point α ∈ C is nonzero. Hence, we obtain

lim
i→∞

1

Ni

Ni∑
k=1

e2πm̃iγk = lim
i→∞

(
γmin,Ni

real + γmax,Ni

real

)
= αreal ̸= 0.

That means for all ϵ2 > 0 and for all n ∈ N, in particular also for N0(ϵ1),
there exists an N1 ∈ N with N1 > N0(ϵ1) such that

αreal − ϵ2 < γmin,N1

real + γmax,N1

real < αreal + ϵ2.

Setting ϵ2 = |αreal|
4 we get∣∣∣∣34 · αreal

∣∣∣∣ < ∣∣∣γmin,N1

real + γmax,N1

real

∣∣∣ < ∣∣∣∣54 · αreal
∣∣∣∣ . (2.12)

But now by choosing in (2.11)

ϵ1 =
|αreal|

4 · ∥B−1∥∞

we see that
∣∣∣γmin,Nreal

∣∣∣ < ∣∣αreal

4

∣∣ and ∣∣∣γmax,Nreal

∣∣∣ < ∣∣αreal

4

∣∣, which implies

∣∣∣γmin,N1

real + γmax,N1

real

∣∣∣ < ∣∣∣∣12 · αreal
∣∣∣∣ .

This gives a contradiction to (2.12) and concludes the proof of the Lemma. □

An application of Lemma 2.4 to Epstein zeta-functions is provided in section
5.5.2. We will now continue to show that for three or more weights a statement
like Lemma 2.4 is wrong.

2.5 Counterexample for more than two weights

The situation changes if more than two di�erent weights occur in (2.8). In
particular, we can construct a sequence (βk + iγk)k∈N where the βk take on
three di�erent values β1, β2, β3 and {γk} is not uniformly distributed modulo
one, although (2.8) holds for all m ∈ Z \ {0}. Our idea is to approximate
three di�erent densities f1, f2, f3 of absolutely continuous distribution func-
tions with certain Fourier coe�cients. We construct an overall sequence with

18



2.5 Counterexample for more than two weights

equally one third of its elements approximating f1, f2, f3 which carry di�erent
weights. The functions fi : T → C, where T denotes as usual the unit interval,
should have the property that their only nonzero Fourier coe�cients appear
for values m = 0,+1,−1. This will ensure that for values m /∈ {+1,−1}
equation (2.8) holds automatically for any linear combination of the fi.
We �rst recall the de�nition of an absolutely continuous distribution function
and its density. The terminology stems from probability theory but can be
applied to uniform distribution theory, see for instance section 1.6. and 1.7.
in Strauch and Porubsky [70].

A non-decreasing function g ([0, 1]) → [0, 1] with g(0) = 0 and g(1) = 1 is
called a distribution function of the sequence xn mod 1 if an increasing
sequence of positive integers N1, N2, ... exists such that for any 0 ≤ x ≤ 1 the
equality

g(x) = lim
k→∞

A([0, x);Nk;xn mod 1)

Nk

holds at every point x of continuity of g(x) and therefore almost everywhere
on [0, 1]. Here A denotes, for any subset I of [0, 1], the usual counting function
de�ned by

A(I;N ;xn mod 1) := #{1 ≤ n ≤ N : {xn} ∈ I}

The following theorem describes the decomposition of any distribution func-
tion.

Theorem 2.5 (Lebesgue decomposition theorem). Any distribution
function g(x) can be uniquely expressed as

g(x) = α1gd(x) + α2gs(x) + α3gac(x)

where α1, α2, α3 are non-negative constants, α1 + α2 + α3 = 1, and

(i) gd(x) is a discrete distribution function, i.e.
∑
tn<x

hn, where tn is the
sequence of points of discontinuity of g(x) with jumps hn at these points,

(ii) gs(x) is a singular distribution function, i.e. continuous, strictly increasing
and having zero derivative almost everywhere,

(iii) gac(x) is an absolute continuous distribution function, i.e. gac =∫ x
0
h(t)dt for some non-negative Lebesgue integrable function h(t) such

that
∫ 1

0
h(t)dt = 1. The function h(t) is called the density of gac(x).

For a proof see for example Kolmogorov and Fomin [41].
In our construction we only consider the case with α3 = 1, i.e. the distribution
function of the sequence consists only of the absolute continuous part with a
density.
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2 Uniform distribution modulo one

Now starting in this setup with (2.8) we obtain for m = −1,+1

lim
N→∞

β−1
1

1

N

N∑
k=1

βk=β1

e−2πiγk + β−1
2

1

N

N∑
k=1

βk=β2

e−2πiγk+

+β−1
3

1

N

N∑
k=1

βk=β3

e−2πiγk

 = 0

and

lim
N→∞

β1 1

N

N∑
k=1

βk=β1

e2πiγk + β2
1

N

N∑
k=1

βk=β2

e2πiγk + β3
1

N

N∑
k=1

βk=β3

e2πiγk

 = 0.

Given we had approximated the densities f1, f2, f3, fi ([0, 1]) → [0, 1], for the
distribution of the imaginary parts, we get from that the following equations
for m = −1,+1:

lim
N→∞

β−1
1

1

N

N∑
k=1

βk=β1

f1({γk})e−2πiγk + β−1
2

1

N

N∑
k=1

βk=β2

f2({γk})e−2πiγk+

+β−1
3

1

N

N∑
k=1

βk=β3

f3({γk})e−2πiγk

 = 0,

lim
N→∞

β1 1

N

N∑
k=1

βk=β1

f1({γk})e2πiγk + β2
1

N

N∑
k=1

βk=β2

f2({γk})e2πiγk+

+β3
1

N

N∑
k=1

βk=β3

f3({γk})e2πiγk

 = 0.

Therefore assuming convergence of the Fourier coe�cients, this yields

β−1
1 f̂1(−1) + β−1

2 f̂2(−1) + β−1
3 f̂3(−1) = 0 (2.13)

β1 · f̂1(+1) + β2 · f̂2(+1) + β3 · f̂3(+1) = 0.

By setting f̂i(+1) = f̂i(−1) := ci ∈ R we ensure that the density distribution
functions fi become real valued. Postulating f̂i(0) = 1 for the Fourier coef-
�cients yields

∫ 1

0
fi(t)dt = 1, which is necessary to obtain proper densities.
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2.5 Counterexample for more than two weights

Hence, the aim is to �nd solutions to the system above where the resulting
functions are non-negative. Now (2.13) is simply the linear system

(
β−1
1 β−1

2 β−1
3

β1 β2 β3

) c1
c2
c3

 =

(
0
0

)
. (2.14)

For a free parameter t ∈ R the solution to this system is given by c1
c2
c3

 =

 t
1

β−1
2 β3−β2β

−1
3

t · (β−1
3 β1 − β3β

−1
1 )

1
β−1
2 β3−β2β

−1
3

t · (β−1
1 β2 − β1β

−1
2 )

 . (2.15)

Taking as an example β1 = 1, β2 = 2, β3 = 3 and choosing t = 1
10 we get

c1 = 1
10 , c2 = − 16

50 , c3 = 9
50 and therefore the density distribution functions

become
fi(x) = 1 + 2ci · cos(2πx),

hence explicitly

f1(x) = 1 +
1

5
· cos(2πx)

f2(x) = 1− 16

25
· cos(2πx)

f3(x) = 1 +
9

25
· cos(2πx).

We see in this case that all functions fi take only positive values. Now we have
all ingredients to construct the sequence (βk, γk)k∈N explicitly. We de�ne three
subsequences (f1k)k∈N, (f2k)k∈N, (f3k)k∈N which approximate the distribution
functions fi and de�ne for k ∈ N

βk :=


1 if k ≡ 0 mod 3

2 if k ≡ 1 mod 3

3 if k ≡ 2 mod 3.

The elements of the imaginary parts γk are de�ned as follows for k = 0, 1, 2, .. :

γ3k : = f1k

γ3k+1 : = f2k

γ3k+2 : = f3k.

According to these de�nitions the sequence {γk}k∈N is not uniformly dis-
tributed modulo one since its density distribution function is
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2 Uniform distribution modulo one

1

3

3∑
i=1

fi(x) = 1− 2

75
· cos(2πx) ̸≡ 1.

It remains to explicitly construct the approximation sequences (fik)k∈N. All
three sequences are de�ned in the same manner. For each N ≥ 1 with N ∈ N
we take rational approximations j0

MN
, ..., jN−1

MN
to fi

(
0
N

)
, fi
(

1
N

)
..., fi

(
N−1
N

)
with ji ∈ Z ≥ 0 for each i and MN ∈ N a common denominator. Let sN
denote a block of length TN := j0 + ... + jN−1 that has t

N appearing jt

times. De�ne the sequence (fik)k∈N by 22
1+T1 consecutive s1's followed by

22
2+T2consecutive s2's followed by 22

3+T3 consecutive s3's and so on. Then, if
N is large enough, this yields for all m ∈ Z{0}:

1

N

N∑
k=1

e2πiγkm ≈ 1

N

N−1∑
t=0

fi

(
t

N

)
e2πi

t
Nm ≈

∫ 1

0

fi(x)e
2πixmdx = f̂i(m).

Hence, for all ϵ1 > 0 we �nd an Ni ∈ N such that for all N ≥ Ni∣∣∣∣∣ 1N
N−1∑
t=0

fi

(
t

N

)
e2πi

t
Nm − f̂i(m)

∣∣∣∣∣ < ϵ1.

Taking Nmax = max{N1, N2, N3} we see that (2.13) is valid. Thus the se-
quence (γk)k∈N is not uniformly distributed modulo one although (2.8) holds
for the two dimensional sequence (βk, γk)k∈N. □

From the construction above it is clear that there are several possibilities to
obtain similar sequences with di�erent parameters chosen in (2.15). Consid-
ering more than three di�erent weights it is also straightforward that such
counterexamples exist, since in this case we add even more degrees of freedom
to the linear system in (2.14).
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3

Theory of Epstein zeta-functions

�Die ganze Theorie der Formen vom zweiten Grade, mit zwei
Variablen, kann nämlich als Theorie der complexen Zahlen von der

Form x+ y
√
D aufgefasst werden.�

Eduard Kummer (1810-1893)

In this chapter we explore the theory of Epstein zeta-functions, mainly those
associated with binary quadratic forms. For this purpose we introduce the
concept of equivalent forms, the discriminant and a principal form. The class
number will be a central quantity to classify quadratic forms. We show the
intimate connection to quadratic number �elds and the concepts of ideals,
unique factorization and the class group. This leads the way to generating
functions like Epstein and Dedekind zeta-functions. We explore further repre-
sentations of general Epstein zeta-functions via Hecke L-functions. In the end
of the chapter we consider Epstein zeta-functions associated with quadratic
forms of more than two variables. We review recent results about the location
of nontrivial zeros, in particular on the existence of zeros o� the critical line.

3.1 Binary quadratic forms

3.1.1 Basic de�nitions

We de�ne a quadratic form as a homogeneous quadratic polynomial q in
several but at least two variables, i.e. q ∈ k[x] with λ2q(x) = q(λx) for all
x ∈ kn, where x = (X1, ..., Xn) and k is a �eld or a commutative ring.
It is convenient to rewrite quadratic forms as

q =
∑

1≤i,j≤n

aijXiXj = xtQx,



3 Theory of Epstein zeta-functions

where Q = (aij) is a symmetric matrix. As mentioned above, we are speci�-
cally interested in quadratic forms of two variables, X,Y in place of X1, X2.
Those so-called binary quadratic forms are given by

q = aX2 + bXY + cY 2, (3.1)

or in matrix form via

Q :=

(
a b

2
b
2 c

)
.

Here a, b, c are integers in the sequel and we can therefore denote q for short
also by (a, b, c).
Two binary quadratic forms q and q′ with integer coe�cients are called
weakly equivalent, if the associated symmetric matrices Q and Q′ are sim-
ilar, that means

Q′ = P tQP for some P ∈ GL2(Z).

If P ∈ SL2(Z), then q and q′ are said to be equivalent which we shall denote
by

q ∼ q′.

We recall that the general linear group above is de�ned to be the set of all
2× 2 matrices with integral entries and determinant equal to ±1 in order to
have an inverse with integral entries, hence

GL2(Z) =
{(

r s
t u

)
∈ Z2×2 : ru− st = ±1

}
.

The special linear group SL2(Z) is the subgroup of matrices with determi-
nant 1. It is straightforward that both weak equivalence and equivalence are
indeed equivalence relations.
The following classical result due to Lagrange shows why equivalence is an
important notion in the context of quadratic forms.

Theorem 3.1. Equivalent binary quadratic forms represent the same inte-
gers.

Proof: Assuming that m = xtQ′ x for some x ∈ Z2 and Q′ = P tQP we get

m = xtP tQPx = ytQy

with y = Px ∈ Z2. Obviously the converse is true by symmetry. □

In order to classify the equivalence classes we de�ne the discriminant of
q = (a, b, c) by
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3.1 Binary quadratic forms

D := b2 − 4ac (3.2)

which equals −4 · det
(
a b

2
b
2 c

)
but of course the factor −4 doesn't carry any

information about q. Equivalent forms have the same discriminant whereas
the converse is not true in general.
In the following we shall assume without loss of generality that a > 0 since
(a, b, c) ∼ (−a,−b,−c). We can now represent a binary quadratic form in
terms of its discriminant as

aX2 + bXY + cY 2 = a(X − ξY )(X − ξ̄Y )

with

ξ =
−b+

√
D

2a
, ξ̄ =

−b−
√
D

2a
.

That means the form (a, b, c) splits into a product of two rational linear forms
if, and only if, the discriminant D is a square. If D < 0 and a > 0, then

4a · q(x) = 4a2X2 + 4abXY + 4acY 2 = (2aX + bY )2 −DY 2 ≥ 0.

So q takes only non-negative values and does not vanish except for x = 0, so
in this case q is said to be positive de�nite. However, if D > 0, then

q

(
1
0

)
= a > 0 > −aD = q

(
b

−2a

)
.

In this case q takes both, positive and negative values, and q is said to be
inde�nite. In the sequel we shall assume that D is not a square and satis�es
D ≡ 0 or 1 mod 4. Any such integer is called a fundamental discriminant.

3.1.2 Class number

For each fundamental discriminant there exists indeed at least one equivalence
class, represented by the so-called principal form

(
1, 0,

−D
4

)
= X2 − 1

4
DY 2 if D ≡ 0 mod 4 (3.3)(

1, 0,−D − 1

4

)
= X2 +XY − 1

4
(D − 1)Y 2 if D ≡ 1 mod 4.

Given a fundamental discriminant D, the number h(D) of equivalence classes
with discriminant D is said to be the class number of D. Looking at (3.3)
we surely have h(D) ≥ 1. In order to answer the question how large h(D) can
be we follow again Lagrange.
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3 Theory of Epstein zeta-functions

Theorem 3.2. Every equivalence class to a fundamental discriminant
D = b2 − 4ac contains at least one form (a, b, c) satisfying

|b| ≤ |a| ≤ |c|.

We omit the proof but note as an example, that for the form (5, 4, 1) we can
�nd the equivalent principal form (1, 0, 1). From Theorem 3.2 one can as well
show that the class number is �nite, i.e.

h(D) <∞.

In particular by leveraging Theorem 3.2 again, one can derive an explicit
though poor bound for the class number in case of positive de�nite forms, i.e.
D < 0. It follows that

h(D) ≤ 2 +
√
3

3
|D|.

For example if we look at D = −4 we obtain with this bound h(−4) ≤ 4.976....
However using Theorem 3.2 directly we get

−D = 4ac− b2 ≥ 4a2 − b2 ≥ 3a2,

therefore

|b| ≤ |a| ≤
√

−D
3
,

hence for D = −4 we obtain

|b| ≤ |a| ≤ 1.

In view of −4 = D = b2 − 4ac it follows that b is even, hence b = 0 and
a = c = 1. So we have

h(−4) = 1,

and every form with discriminant −4 is equivalent to the principal form
(1, 0, 1). As a nice number-theoretical application this can be used to show
the Two-Square Theorem, i.e. that every prime p ≡ 1 mod 4 can be writ-
ten as a sum of two integer squares. Fermat proved this with his method of
in�nite descent, Gauss on the other hand obtained the following re�nement
of Theorem 3.2 for positive de�nite forms.

Theorem 3.3. For every form (A,B,C) to a fundamental discriminant
D < 0 there exists a unique equivalent form (a, b, c) satisfying either

−a < b ≤ a < c

or
0 ≤ b ≤ a = c,

and such a form is said to be reduced.
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3.1 Binary quadratic forms

Next we show a few cases of small negative fundamental discriminants. For
D = −3 we have h(−3) = 1, the reduced form being (1, 1, 1). The caseD = −4
we already discussed above and for D = −7 we see, since b has to be odd and
7 ≥ 4ac − b2 ≥ 3a2, that h(−7) = 1 with the reduced form (1, 1, 2). For
D = −15 a more elaborated but straightforward analysis shows h(−15) = 2,
where the two reduced forms are given by (1, 1, 4) and (2, 1, 2). In general the
class number is a rather chaotic function of D.
It was again Gauss who claimed that in case of negative D, that is for positive
de�nite forms, the class number is one, i.e. h(D) = 1 only for nine values,
namely

−D = 3, 4, 7, 8, 11, 19, 43, 67, 163.

He conjectured moreover that, as −D → ∞,

h(D) → ∞.

The latter conjecture was proved by Heilbronn in 1934, whereas the �rst
claim was shown by Baker and independently by Stark 1966/67. An essentially
correct proof by the amateur Heegener from 1952 had been ignored by the
community for long.

3.1.3 Connection to quadratic number �elds

In 1847 Kummer was the �rst to note that the theory of binary quadratic
forms can be translated into the language of quadratic number �elds.

A quadratic number �eld is a sub�eld K of C which has, considered as
a Q−vector space, dimension two. In this case, for α ∈ K \ Q, there exist
rationals r, s such that

α2 = r + s · α,

respectively

aα2 + bα+ c = 0

or

α =
−b
2a

± 1

2a

√
D

with D := b2−4ac where a ∈ N and b, c ∈ Z are coprime. We denote by Q[
√
d]

all linear combinations Q + Q
√
d. Writing D = m2d with squarefree d, this

shows that α ∈ Q+Q
√
d, i.e. K ⊂ Q[

√
d]. Since also Q+Q

√
d ⊂ Q+Qα = K,

it follows that

K = Q+Q
√
d = Q[

√
d].
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3 Theory of Epstein zeta-functions

Higher powers of
√
d can be written as rational linear combinations of 1 and√

d. It is straightforward to verify the �eld axioms, for example, given
a+ b

√
d ̸= 0,

1

a+ b
√
d
=

1

a+ b
√
d
· a− b

√
d

a− b
√
d
=
a− b

√
d

a2 − db2

is the multiplicative inverse in Q[
√
d], here a2 − db2 does not vanish since

√
d

is irrational and dimQ K = 2.
This describes already all quadratic number �elds, however, we prefer to
denote them by Q(

√
d) as the smallest sub�eld of C that contains Q and√

d. For squarefree d this de�nition coincides with Q[
√
d] but we want to

distinguish from polynomial rings in general.

The concept of algebraic integers as analogue for the rational integers in al-
gebraic extensions of Q has been established by Dedekind in the 1870's gen-
eralizing work of Gauss, Dirichlet and others.
A complex number α is said to be an algebraic number if it is a root of
a monic polynomial with rational coe�cients. If there is a monic polynomial
with root α and integer coe�cients, α is an algebraic integer, i.e.

P (α) = 0 for P = Xd + ad−1X
d−1 + ...+ a1X + a0

with ad−1, ..., a1, a0 ∈ Z. In the case of quadratic number �elds it su�ces to
consider quadratic polynomials thanks to Gauss' lemma, that means

P = (X − α)(X − α′) = X2 − (α+ α′)X + αα′,

where α′ is the conjugate root of α. For α being an algebraic integer it is
therefore needed that both the trace

tr(α) := α+ α′ (= tr(α′))

and the norm

N(α) := α · α′ (= N(α′))

are rational integers. First examples of algebraic integers are i =
√
−1 for

the monic polynomial X2 + 1 = (X − i)(X + i) and ϱ = 1
2 (1 +

√
−3) for the

polynomial (X − ϱ)(X − ϱ′) respectively.
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3.1 Binary quadratic forms

Theorem 3.4. The set Od of algebraic integers in the quadratic number �eld
Q(

√
d) has the structure of a commutative ring and is called the ring of

algebraic integers in Q(
√
d). Moreover,

Od = Z[ϑ],

where

ϑ =

{
1
2 (1 +

√
d) if d ≡ 1 mod 4√

d otherwise.

Here d is supposed to be a squarefree integer, hence d ̸≡ 0 mod 4. According
to this theorem we have the rings O−1 = Z[i] and O−3 = Z[ 12 (1 +

√
−3)] of

Gaussian and Eisenstein integers, respectively, corresponding to the examples
of algebraic integers above.

Elements of norm ±1 are called units, they are determined by the equation

A2 − dB2 = ±1

if d is congruent to 2, 3 mod 4 or

A2 − dB2 = ±4

if d is congruent to 1 mod 4.

If d > 0, then Q(
√
d) ⊂ R and Q(

√
d) is said to be a real quadratic number

�eld and in that case there exist in�nitely many units, which can be found
by solving the corresponding Pell equation. Otherwise, if d < 0, then Q(

√
d)

is an imaginary quadratic number �eld and there are only �nitely many
units, namely

� ±1,±i for d = −1,
� ±1± ω ± ω2 with ω = exp

(
2πi
6

)
for d = −3,

� ±1 in all other cases of negative d.

In general there is no unique factorization into irreducible elements in rings
of integers, for example,

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5) (3.4)

are two di�erent factorizations into products of algebraic integers in O−5. Here
all factors are irreducible which means that in every further factorization there
appears a unit.
In order to overcome this di�culty in the arithmetic of quadratic number
�elds, Dedekind introduced the notion of an 'ideal' in the 1870's.
Given a commutative ring R, a subset I ⊂ R is called an ideal of R, if
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3 Theory of Epstein zeta-functions

� I is an additive subgroup of R,
� I is multiplicatively closed with respect to multiplication with ring ele-

ments, i.e., ri ∈ I for all r ∈ R, i ∈ I.

In the following we shall consider ideals in the ring R = Od of integers of
some quadratic number �eld Q(

√
d).

If α1, ..., αm are integers, then

I = α1Od + ...+ αmOd

is an ideal of Od, which we denote by [α1, ..., αm] and we say that I is
generated by α1, ..., αm. Indeed every ideal of Od is �nitely generated, hence
of this form.

An ideal [α] generated by a single integer is called a principal ideal, for
example [1] = Od, or

[1 + i] = (1 + i)O−1 = {a+ bi ∈ Z[i] : a ≡ b mod 2} .

However as seen in (3.4), [2, 1 +
√
−5] cannot be a principal ideal of O−5.

Given ideals a = [α1, ..., αm] and b = [β1, ..., βn], both of some Od, their
product is de�ned by

ab = [..., αiβj , ...].

This de�nition is independent of the choice of basis elements αi, βj .
Then, if c = ab, we say a divides c or a is a divisor of c. This is denoted by
a | c although it means c ⊂ a. Now divisibility of ideals is quite similar to its
counterpart for integers.

Theorem 3.5. Every ideal has �nitely many distinct divisors.

This allows to prove unique factorization of ideals. For this aim we call an
ideal a prime ideal if its only divisors are the whole ring Od and the ideal
itself. Then, given any two ideals a, b of Od, there exists a unique ideal c such
that

� c | a and c | b,
� d | a and d | b, ⇒ d | c.

Hence, this ideal c is called the greatest common divisor of a and b, similar
to the classical arithmetic of the rational integers. Moreover, if p is a prime
ideal satisfying p | ab, then p | a or p | b. This is essentially the 'Lemma of
Euclid' and follows by the same reasoning as for the rational primes. With
this we get to the fundamental theorem for ideals.

Theorem 3.6. Every ideal a ⊊ Od can be factorized into a product of prime
ideals which is unique up to the ordering of the factors.
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3.1 Binary quadratic forms

As an example in Z[i] we have

[15] = [3][2 + i][2− i]

since 15 = 3 · 5 = 3 · (2 + i)(2− i).

Now we describe the prime ideals in more detail. For this purpose we simplify
the notation a | [n] by writing a | n and saying that a divides n which means
n ⊂ a. Moreover, we generalize modular arithmetic by writing

α ≡ β mod a

if a | (α − β). This notion of congruence modulo an ideal a implies an
equivalence relation on Od and the equivalence classes are the residue classes
modulo a. Their number N(a) is �nite and called the norm of a.

By division with remainder every ideal a of Od = Z+Zϑ with ϑ according to
Theorem 3.4 is of the form

a = aZ+ (b+ cϑ)Z = [a, b+ cϑ]

providing an 'integral' basis for this module or lattice in the ringOd of integers.
Hence, there are

N(a) = |ac| =
∣∣∣∣det(a 0

b c

)∣∣∣∣
residue classes mod a. In general, if α1, ..., αn is any basis of an ideal a of
some ring R = [ω1, ..., ωn] and αi =

∑
1≤j≤n aijωj for i = 1, ..., n, then

N(a) = |det(aij)| .

The norm is multiplicative, i.e. N(ab) = N(a)N(b). In order to determine the
unique prime ideal factorization the following statement is crucial.

Theorem 3.7. Every prime ideal p must divide a rational prime number p.
Moreover, p is the least rational positive integer in p, hence p is unique.

For a rational prime p, let

[p] = p1 · ... · pe
be the prime ideal factorization. Taking the norm, we get

pn = N([p]) = N(p1) · ... ·N(pe),

where n = dimQ K is the degree of the underlying number �eld K, so n = 2
in the case of a quadratic number �eld K = Q(

√
d). It thus follows that the

norm of a prime ideal must be a prime power, say N([p]) = pf , where f is
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3 Theory of Epstein zeta-functions

called the degree of p.

Let
(

·
p

)
be the Kronecker symbol, for a precise de�nition see for instance

[12], which is equal to the Legendre symbol in case of odd p, and de�ne

∆ :=

{
d if d ≡ 1 mod 4

4d if d ≡ 2, 3 mod 4

to be the discriminant of K = Q(
√
d). We then can state the following

important theorem about the splitting of rational primes in quadratic number
�elds.

Theorem 3.8. For a rational prime p and a quadratic number �eld K =
Q(

√
d) we have

[p] =


p

pq with p ̸= q, N(p) = N(q) = p

p2 with N(p) = p

if, and only if

(
∆

p

)
=


−1

+1

0

.

Next we suppose that a and b are two ideals and that there exist two principal
ideals [α] and [β] such that

[α]a = b[β].

Then we say that a and b belong to the same ideal class and we write a ∼ b.
This de�nition implies an equivalence relation on the set of ideals and the
ideal classes are the equivalence classes. We deduce further

� a ∼ Od ⇔ a is principal
� a ∼ b, c ∼ d ⇒ ac ∼ bd
� ac ∼ bc ⇒ a ∼ b.

Hence, the ideals of Od can be partitioned into equivalence classes, the so-
called ideal-classes. By showing that every ideal class contains an ideal b
satisfying N(b) ≤ M with some absolute constant M one can prove the fol-
lowing.

Theorem 3.9. The number of ideal classes is �nite.
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3.1 Binary quadratic forms

This reminds us of the �niteness of the class number and both sets of equi-
valence classes are indeed closely related. To see that we consider a ring of
integers Od of a quadratic number �eld Q(

√
d). Let a = [α1, α2] be an ideal

of Od with basis elements α1, α2 and their conjugates α′
1, α

′
2 satisfying

α1α
′
2 − α′

1α2 = N(a) ·
√
∆

where ∆ is the discriminant as de�ned above. Corresponding to a we can now
de�ne a quadratic form (a, b, c) by setting

aX2 + bXY + cY 2 =
N(α1X + α2Y )

N(a)
=

1

N(a)
(α1X + α2Y )(α′

1X + α′
2Y ).

It follows quickly that then a, b, c are integers since a = N(α1)
N(a) and so forth,

and the discriminant of (a, b, c) is given by

b2 − 4ac =
1

N(a)2
(α1α

′
2 − α′

1α2)
2 = ∆,

which is equal to d if d ≡ 1 mod 4, or equal to 4d otherwise. If ∆ < 0,
the quadratic �eld Q(

√
d) is imaginary so that a > 0 and (a, b, c) is positive

de�nite. Varying the basis yields equivalent forms.

Theorem 3.10. Every positive de�nite quadratic form (a, b, c) of discrimi-
nant ∆ belongs to an ideal a with basis α1, α2.

This holds since it is not di�cult to show that a, 12 (b−
√
∆) form a basis for

the ideal a = [a, 12 (b−
√
∆)]. □

We can deduce that equivalent quadratic forms belong to equivalent ideals
and conversely. The corresponding number of classes are therefore equal to
the class number h(D) as introduced for forms. Dirichlet achieved with his
analytic class number formula a closed expression for this quantity. Another
way of computing h(D) is by the reduction Theorems 3.2 and 3.3 of Lagrange
and Gauss above.
Now given a ring of integers Od, we denote by Id the set of all ideals and
by Pd the subset of all principal ideals. Unique factorization in Od is then
equivalent to Pd = Id but this doesn't hold often. In order to quantify the
extent to which it fails we consider fractional ideals.

A fractional ideal of Od is a subset of the underlying �eld Q(
√
d) which is

of the form 1
γ c, where c is an ideal of Od and γ is a non-zero element of Od,

such an ideal is said to be principal if c is principal.

Then the set of fractional ideals forms an abelian group and the inverse a−1

of an ideal a of Od is given by
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3 Theory of Epstein zeta-functions

a−1 =
{
α ∈ Q(

√
d) : αa ⊂ Od

}
.

Moreover, writing Fd for this set/group of fractional ideals and PFd for its
subset/subgroup of principal fractional ideals, the quotient

cd = Fd/PFd

is again a group and called the class group of Q(
√
d) respectively Od. Its

elements are given by the di�erent ideal classes corresponding to the equiva-
lence of ideals ∼ de�ned above.
Hence, the order of the class group is the class number h(D), and its size
measures the deviation from unique factorization in Od.
In fact, if cd is trivial, then Fd = PFd and intersecting with the set of genuine
ideals of Od leads to Id = Pd which implies unique factorization. In any case
we know at least that

#cd = h(d) <∞.

3.2 Generating functions associated with forms and

ideals

Now we consider generating functions associated with forms and ideals. For
forms building on the fundament described above we recall de�nition (1.1) of
the Epstein zeta-function given for a positive de�nite form with symmetric
matrix Q by

ζ(s;Q) =
∑

0 ̸=x∈Zn

xtQx−s.

On the other hand given a number �eld k = Q(
√
d) the Dedekind zeta-

function is de�ned by

ζk(s) :=
∑
a

N(a)−s =
∏
p

(1−N(p)−s)−1

where the summation is over all ideals a ̸= {0} of Od and the product runs
over all prime ideals. The identity between the Dirichlet series and the Euler
product follows from unique prime ideal factorization, i.e. Theorem 3.6 in just
the same way as in the case of the Riemann zeta-function

ζ(s) :=
∑
n≥1

n−s =
∏
p

(1− p−s)−1,

which can be considered as the Dedekind zeta-function associated with the
�eld Q of rational numbers and unique prime number factorization.
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3.2 Generating functions associated with forms and ideals

Case k = Q(i): As the most straight forward example we have the case of
k = Q(i) with i =

√
−1, the Gaussian �eld. The discriminant ∆ of this �eld is

−4. Since h(−4) = 1, the ring of integers O−1 = Z[i] is a unique factorization
domain and all ideals are principal ideals. In view of the splitting of primes
according to Theorem 3.8 it follows that

ζk(s) =
∏
p

(1−N(p)−s)−1 (3.5)

=
∏
p|∆

(1− p−s)−1 ·
∏

p:(∆
p )=+1

(1− p−s)−2 ·
∏

p:(∆
p )=−1

(1− p−s)−1

= ζ(s) · L(s;χ∆)

where n 7→ χ∆(n) :=
(
n
∆

)
is the Kronecker symbol de�ned in the previous

section and

L(s;χ∆) :=
∏
p

(1− χ∆(p)p
−s)−1 =

∑
n≥1

χ∆(n)n
−s

is the Dirichlet L-function to the character χ∆. Here χ∆ is the Legendre-
Kronecker character, see for example Narkiewicz [53] for precise de�nitions.
The character which is identically one, is called the principal character and
is denoted by χ0. In the special case k = Q(i) we have χ4 = χ mod 4 ̸= χ0

mod 4 and

L(s;χ−4) := 1− 3−s + 5−s − 7−s + 9−s ∓ ... .

Now every quadratic form (a, b, c) of discriminant D = −4 is equivalent to the
principal form (1, 0, 1) = X2+Y 2 which is the norm of x+ iy in Q(i). Taking
into account that Z[i] carries four units +1,−1, i,−i we �nd

ζ (s; (1, 0, 1)) = 4 · ζQ(i)(s) = 4ζ(s)L(s;χ−4). (3.6)

Hence, this Epstein zeta-function is essentially the Dedekind zeta-function of
a quadratic number �eld.

Case k = Q(
√
−5): However if we take the example k = Q(

√
−5), the ring

of integers O−5 = Z[
√
−5] does not have unique prime factorization. In this

case we �nd via ∆ = −20 that h(−20) = 2 and the two equivalence classes of
quadratic forms are represented by the principal form

q1 = (1, 0, 5) = X2 + 5Y 2

and

q2 = (2, 2, 3) = 2X2 + 2XY + 3Y 2.

Using quadratic reciprocity one can show that
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3 Theory of Epstein zeta-functions

� q1 represents all primes p with(
−1

p

)
=

(
5

p

)
= +1, i.e. p ≡ 1, 9 mod 20,

� q2 represents all primes p with(
−1

p

)
=

(
5

p

)
= −1, i.e. p ≡ 3, 7 mod 20.

Thus, in this case the Epstein zeta-function cannot coincide with the corre-
sponding Dedekind zeta-function of this �eld. In view of

χ−20(p) =

(
−20

p

)
=

(
−4

p

)(
5

p

)
= χ−4(p)χ5(p)

it follows from (3.5) that

ζQ(
√
−5)(s) = ζ(s) · L(s;χ−20)

with

L(s;χ−20) = 1 + 3−s + 7−s + 9−s − 11−s − 13−s − 17−s − 19−s ± ... .

Employing so-called Hecke characters ψ of the related class group C−20, one
can de�ne a Hecke L-function L(s;ψ) such that

ζ(s; q1) =
∑

(X,Y )̸=0

(X2 + 5Y 2)−s

= 2 + 2 · 4−s + 2 · 5−s + 2 · 6−s...
= ζQ(

√
−5)(s) + L(s;ψ)

and

ζ(s; q2) =
∑

(X,Y )̸=0

(2X2 + 2XY + 3Y 2)−s

= 2 · 2−s + 4 · 3−s...
= ζQ(

√
−5)(s)− L(s;ψ).

For exact de�nitions of Hecke characters and Hecke L-functions we refer again
for instance to Narkiewicz [53]. Indeed this yields

L(s;ψ) = 1− 2−s − 2 · 3−s + 4−s ± ... . (3.7)

Here the coe�cients count how many integer pairs (X,Y ) lead to a value n
represented by q1 or q2. Since the equivalence classes of the class group or
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3.3 Epstein zeta-functions for n ≤ 2

the equivalence classes of the two forms are disjoint and their union covers
everything, we have

ζ(s; q1) + ζ(s; q2) = 2 · ζQ(
√
−5)(s)

where the factor 2 denotes the two units in O−5 = Z[
√
−5].

3.3 Epstein zeta-functions for n ≤ 2

We have now developed the tools to describe Epstein zeta-functions more
thoroughly. The simplest case is obviously n = 1, where the Epstein zeta-
function coincides up to a constant factor with the Riemann zeta-function,
that is

ζ(s; I1) = 2ζ(2s) (3.8)

with I1 the 1 × 1 identity matrix. For n = 2, i.e. binary quadratic forms,
any Epstein zeta-function can be written as a linear combination of Hecke L-
functions associated to the class group of the corresponding number �eld, and
its class number provides the length of those linear combinations. If the class
number equals one, then the associated Epstein zeta-function is a constant
multiple of the Dedekind zeta-function to the related imaginary quadratic
number �eld Q(

√
−d) and has an Euler product representation, as seen in

(3.6) for the Gaussian �eld. Generally, i.e. also valid for a class number larger
than one, we get

ζ(s,Q) =
ϵ

h

∑
1≤j≤h

χj(I)L(s, χj), (3.9)

where h is the class number, ϵ the number of units in the ring of integers of
Q(

√
−d), and the Hecke characters χj are evaluated at the ideals I generated

by a, b−
√
−d/2. L(s, χj) is the associated Hecke L-function which is de�ned

by

L(s, χ) =
∑
n

χ(n)

N(n)s
=
∏
p

(
1− χ(p)

N(p)s

)−1

.

In general the L-functions in (3.9) are not distinct. We can rewrite (3.9) by
noting that according to Theorem 3.8 for each rational prime p, a principal
ideal [p] is a prime ideal p or a product of two prime ideals p1p2. If [p] = p,
then χ(p) = 1 and

∏
p|p

(
1− χ(p)

N(p)s

)−1

=

(
1− 1

p2s

)−1

.
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3 Theory of Epstein zeta-functions

If [p] = p1p2, then χ(p1)χ(p2) = 1. Hence, we have χ(p1) = χ(p2) and

∏
p|p

(
1− χ(p)

N(p)s

)−1

=

(
1− χ(p1) + χ(p2)

ps
+

1

p2s

)−1

=

(
1− 2Re (χ(p1))

p2s
+

1

p2s

)−1

.

Therefore L(s, χ) = L(s, χ). If we now let J be the number of real characters
plus one-half the number of complex characters, and list the characters as
χ1, ..., χJ such that χj ̸= χk and χj ̸= χk for j ̸= k, we can rewrite (3.9) as

ζ(s,Q) =

J∑
j=1

cj · L(s, χj), (3.10)

where
cj =

ϵ

h
· χj(I)

for real characters χj , and

cj =
ϵ

h
· 2Re (χj(I))

for complex characters χj . Here we note that J > 1 if and only if h > 1.

For the above mentioned examples q1 = X2+5Y 2 and q2 = 2X2+2XY +3Y 2

of two di�erent forms in k = Q(
√
−5) the linear combinations are

ζ(s; q1) = L(s, χ0) + L(s, χ1)

and

ζ(s; q2) = L(s, χ0)− L(s, χ1),

where L(s, χ0) = ζQ(
√
−5)(s) = 2ζ(s)L(s, χ−20) is again the Dedekind zeta-

function of this number �eld. L(s, χ1) is the Hecke L-function to the non-
trivial Hecke character which coincides with L(s;ψ), the series de�ned in
(3.7).
Hence, all Epstein zeta-functions for n ≤ 2 can be represented in the for-
mat described in this section, essentially via (3.9), or equivalently (3.10). The
situation gets more complex for n > 2, this is what we will consider now.

3.4 Epstein zeta-functions for n ≥ 2

For n > 2 the structure of an arbitrary Epstein zeta-function becomes much
more di�cult to describe. We follow Steuding [66], Nakamura and Pa«kowski
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3.4 Epstein zeta-functions for n ≥ 2

[52] and start with some examples. If In is the n×n identity matrix we obtain
for n = 4

ζ(s; I4) = 8(1− 22−s)ζ(s)ζ(s− 1) (3.11)

and for higher dimensions n = 6 and n = 10

ζ(s; I6) = −4 (ζ(s)L(s− 2, χ−4)− 4ζ(s− 2)L(s, χ−4)) ,

ζ(s; I10) =
4

5

(
ζ(s)L(s− 2, χ−4)− 42ζ(s− 2)L(s, χ−4)

)
− 2

∑
0̸=λ∈Z[i]

λ4

(λλ̄)s
.

For n = 12 we need more de�nitions. Let

L(s,∆) :=

∞∑
m=1

τ(m)m−s

be the L-function attached to Ramanujan's τ -function, given by

∆(q) =

∞∑
m=1

τ(m)qm = q

∞∑
m=1

(1− qm)24

with q := e2πiτ and τ from the upper half-plane. Then we get

ζ(s; I12) = c1(2
6 − 26−s)ζ(s)ζ(s− 4) + c2L(s,

√
∆)

with some constants c1 and c2.
Leaving the identity matrices we mention two further examples of explicitly
described Epstein zeta-functions. For the matrix

S8 =

(
2 · I4 A
−A 2 · I4

)
with A :=


0 1 1 1
−1 0 −1 1
−1 1 0 −1
−1 −1 1 0


we get

ζ(s;S8) = 240 · 2−sζ(s)ζ(s− 3). (3.12)

Another example, as described in [10] and [40], is related to the Leech lattice
of dimension n = 24. If L24 denotes the 24× 24 matrix given by

L24 =

(
4 · I12 B − 2 · I12
Bt 4 · I12

)
where B :=

(
0 et

−e C

)
,

e = (1, ..., 1)t, C :=
((
k−l
11

))
1≤k,l≤11

and
( ·
11

)
is the Legendre symbol mod 11

we obtain

39



3 Theory of Epstein zeta-functions

ζ(s;L24) =
65520

691
(ζ(s)ζ(s− 11)− L(s,∆)) . (3.13)

For a more general representation of Epstein zeta-functions we only sketch an
approach. In particular for de�nitions of Eisenstein series, modular forms and
cusp forms we refer to Iwaniec [37]. We �rst de�ne the number

r(m;Q) := #{x ∈ Zn : Q[x] = m}, (3.14)

counting how often the associated quadratic form Q takes on a certain value
m. Then we can express an Epstein zeta-function by

ζ(s;Q) =

∞∑
k=1

r(m;Q)

ks
.

Now it is known, see for example Fomenko [20], that the corresponding theta
series

θ(z;Q) =

∞∑
k=0

r(m;Q) · e2πikz

in this case becomes a modular form of weight n
2 , which decomposes into the

summation of an Eisenstein series and a cusp form. To give some more detail
we have

θ(z;Q) = EQ(z) + SQ(z),

where EQ(z) :=
∑∞
k=0 eQ(k) · e2πikz is an Eisenstein series and SQ(z) :=∑∞

k=1 sQ(k) ·e2πikz is a cusp form. It is also known that the coe�cients sQ(k)
obey

sQ(k) ≪

{
k

n
4 − 1

2+ϵ if n is even
k

n
4 − 1

4+ϵ if n is odd.

So the Epstein zeta-function can be expressed by

ζ(s;Q) = ÊQ(s) + ŜQ(s), (3.15)

with ÊQ(s) and ŜQ(s) de�ned as

ÊQ(s) :=

∞∑
k=1

eQ(k)

ks
, ŜQ(s) :=

∞∑
k=1

sQ(k)

ks
.

Therefore ζ(s;Q) is decomposable into the summation of the L-function
associated to the Eisenstein series and the L-function associated to the cusp
form. We leave the analysis at this point, further details on the decomposition
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3.5 Zero distribution of Epstein zeta-functions

of the Eisenstein series occurring in (3.15) can be found in [52], [34] and [37].

To summarize, there exists an Euler product representation only for the Ep-
stein zeta-functions associated with binary quadratic forms and class number
one (n=2) or the Riemann zeta-function corresponding to the trivial case
(n=1). For more than two variables of the associated quadratic form we get
in general at most an additive structure of more well-known objects. In the
last section of this chapter we take a look at the zero distribution in general,
�rst concentrating on the real parts of the zeros.

3.5 Zero distribution of Epstein zeta-functions

In this section we recall results of the zero distribution of Epstein zeta-
functions. Naturally we are again concerned with the nontrivial zeros
ϱ = β + iγ. The trivial ones for any Epstein zeta-function are located at
s = −m, m ∈ N, which can be derived by the functional equation (1.2), see
Chapter 1.

3.5.1 Zero distribution for n ≤ 2

We start again with the simplest case n = 1. Here we deal essentially with
the Riemann zeta-function, see (3.8). Given the Riemann hypothesis is true,
we expect all nontrivial zeros of ζ(s) to have real part 1/2. Therefore, with
s = σ+ it denoting the complex variable, the associated Epstein zeta-function
should have all nontrivial zeros on the critical line σ = 1/4. If additionally
the analogue of the Riemann hypothesis for Dirichlet L-functions is true, also
(3.6), i.e. the Epstein zeta-function related to the Gaussian �eld, will carry all
nontrivial zeros on the critical line, which is since we have moved to n = 2,
the line σ = 1/2. Unconditionally we know that a positive proportion of the
nontrivial zeros of ζ(s;Q) lie on these critical lines following from the same
fact for the Riemann zeta-function ζ(s), see [72], and the formula for the
number of zeros for Epstein zeta-functions overall (1.3).
For binary quadratic forms the functions ζ(s;Q) and ζ(s;Q−1) are equal up
to a constant factor. Their zero-distribution was �rst investigated by Potter
and Titchmarsh [54] who proved that in�nitely many zeros lie on the critical
line σ = 1/2. Also for n = 2 Bateman and Grosswald [4] showed that ζ(s;Q)
has a real zero between 1/2 and 1 if

k :=

√
|D|
2a

> 7.00556

with D and a de�ned as in (3.2) and (3.1). We note that this result was
also announced by Chowla and Selberg [9] but they never published a proof.
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3 Theory of Epstein zeta-functions

Other examples of zeros o� the critical line were found by Arenstorf and
Brewer [2], who studied the form (3.1) with a = 1, b = 0 and c varying
between 1 and 6. Deuring [13] and Stark [64] showed that all zeros of Epstein
zeta-functions for n = 2 in the rectangle −1 < Re s < 2, |Im s| ≤ 2k lie on
the critical line σ = 1/2 and are simple with the exception of two real zeros
between 0 and 1, provided k is su�ciently large.

If the class number is larger than one, ζ(s,Q) has an in�nitude of zeros in the
half-plane Re s > 1 as was shown by Davenport and Heilbronn [11]. Hejhal
[35] and Bombieri and Hejhal [6] showed that almost all zeros of Epstein
zeta-functions associated with binary quadratic forms lie on the critical line
provided that the Generalized Riemann hypothesis and a widely accepted
conjecture on the spacing of zeros of L-functions for ideal class characters
is true. Recently, Rezyakova [57] showed that a positive proportion of the
zeros of any ζ(s,Q) with a binary quadratic form Q independent of the class
number lie on the critical line. For class number 2, Bombieri and Müller [7]
obtained upper and lower bounds for the asymptotic rate of approach of zeros
to the boundary of the zero-free half-plane for certain Epstein zeta-functions.
For class number greater than 1 and negative discriminant, Gonek and Lee
[30] derived, building on results of Lee [45] and Voronin [77], an estimate for
N(σ1, σ2;T ), the number of nontrivial zeros ϱ = β + iγ with |γ| ≤ T and
σ1 < β < σ2. They showed that for any pair σ1, σ2 with 1/2 < σ1 < σ2 < 1
the asymptotic formula

N(σ1, σ2;T ) = c1T +O
(
T · e−c2

√
log log T

)
holds with a constant c1 depending on the form Q and σ1, σ2; c2 being an
absolute constant. Finally for class number greater than one Lee [46] gave
recently an asymptotic for the number of zeros in the region σ > 1/2+log T−θ

for T < Im s < 2T with 0 < θ < 1.

3.5.2 Zero distribution for n > 2

The nature of the distribution of zeros for Epstein zeta-functions changes
if we consider quadratic forms for more than two variables. In general the
clustering around the critical line falls apart, but we also need to note that
in many cases little can be said about the distribution at all. In case of the
above mentioned examples (3.11) for n = 4 and (3.12) for n = 8 we expect,
due to the Riemann zeta-function as main ingredient, zeros on the lines
σ = 1/2 and σ = 3/2, respectively σ = 1/2 and σ = 7/2. In the former
example in�nitely many zeros lie additionally on the line σ = 2. For both
examples there are no zeros on the respective critical lines σ = 1 and σ = 2
since all nontrivial zeros of ζ(s) are in the critical strip 0 < Re s < 1, see for
example [72]. Looking at example (3.13) nothing de�nite can be said about
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3.5 Zero distribution of Epstein zeta-functions

the location of the zeros.

For n = 4 Fujii [21] investigated the real zeros of Epstein zeta-functions
with Q[x] = x21 + x22 + d(x23 + x24). Terras [71] gave examples which
have real zeros o� the critical line σ = n/4 for arbitrary n. Furthermore
Trav�enec and �Samaj [73] recently derived a method to generate o�-critical
zeros for all su�ciently large dimensions of hypercubic Epstein zeta-functions.

Thanks to results from Steuding [65] we know that the mean value of the
real parts of the nontrivial zeros is equal to the abscissa of the critical line
σ = n/4. More precisely, recalling the de�nition for the minimum value m(Q)
of a quadratic form (1.4) and with N(Q) counting the number of x for which
Q[x] = m(Q), we have∑

|γ|<T

(
β − n

4

)
= −T

π
Σ(Q) +O(log T ) (3.16)

with

Σ(Q) := log

(
(detQ)

1
2
N(Q)

N(Q−1)

(
m(Q−1)

m(Q)

)n
4

)
.

Σ(Q) measures the asymmetries in the zero-distribution with respect to the
critical line. For binary quadratic forms this quantity is always zero, on the
other hand for instance for the matrix

Q =

1 0 0
0 2 0
0 0 3


we �nd Σ(Q) = 1

4 log
4
3 ̸= 0. Generally, if Σ(Q) is nonzero, ζ(s;Q) has in-

�nitely many zeros o� the critical line σ = n/4. Compared to the number of
zeros overall, the possible asymmetries are small. We see this by combining
(1.3) and (3.16) to obtain

1

N(T ;Q)

∑
|γ|<T

β =
n

4
+O(

1

log T
).

Another result about the zero-distribution for Epstein zeta-functions is from
Nakamura and Pa«kowski [52]. They showed that under certain conditions for
Q, if n ≥ 4 is even, the Epstein zeta-function has at least CT zeros for some
positive constant C in the region σ > n−1

2 . As a corollary they derived for the
2k-dimensional unit matrix I2k with k ∈ N and k ̸= 1, 2, 4 that ζ(s; I2k) have
complex zeros in the strip k − 1

2 < σ < k, also located o� the critical line.
We close this section with an interesting result based on Siegel [62] and im-
proved by Steuding [66]. It says that for certain functions related to the unit
matrix in higher dimensions ζ(s;Q) has only a small number of zeros around
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3 Theory of Epstein zeta-functions

the critical line σ = n/4. In particular, almost all zeros of ζ(s; In) with n ≥ 12
lie in the strips 0 ≤ σ < 2 and n

2 − 2 < σ ≤ n−1
2 ϵ for any ϵ > 0.
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4

Landau's theorem

�Wir Mathematiker sind alle ein biÿchen meschugge.�

Edmund Landau (1877-1938)

As indicated already in Chapter 1, Landau's theorem plays an important role
in this thesis. We will �rst take a closer look at his original paper [43] and
sketch the idea of proof. Then, in sections 4.2 and 4.3, we will brie�y recall
variants and generalizations of the theorem with an emphasis on uniform
versions which will become more signi�cant in the analysis of discrepancy in
Chapter 6. Finally, in section 4.4 we explore known results of zeta-functions
where the theorem was used to derive uniform distribution modulo one of zero
ordinates, respectively similar results from value distribution theory.

4.1 Landau's theorem in his original paper

Landau published his paper "Über die Nullstellen der Zetafunktion" [43] in
1912. He referred to von Mangoldts famous result, that for the nontrivial zeros
ϱ = β + γi of the Riemann zeta-function the series∑

ϱ

xϱ

ϱ
(4.1)

converges for all x ∈ R+ \ {1}. Taking this as a starting point he introduces
the three series ∑

ϱ

xϱ

ϱν
,
∑
γ>0

xϱ

ϱν
,
∑
γ<0

xϱ

ϱν

with a new parameter ν ∈ (0, 1]. His aim is to study their asymptotic
behaviour. The sums, as usual, run in ascending order of the absolute value
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of the imaginary parts γ of the zeros. In the �rst of these series he excludes
the case ν = 1 since this is the same as (4.1). He then puts the analysis down
to study the divergence of the series in the limiting case ν = 0. Since the
zeros of the Riemann zeta-function occur in conjugate complex pairs, Landau
can restrict the analysis to the series

∑
γ>0 x

ϱ.

This is where the theorem arises in his paper. Equivalent to (1.6), the original
formulation runs

Theorem 4.1 (Landau, 1912). For a �xed x > 1 there is

∑
0<γ≤T

xϱ =

{
− T

2π log p+O(log T ) for x a prime power pm,

O(log T ) for x not a prime power pm.
(4.2)

If 1 < x0 < x1 and the interval [x0, x1] is free of a prime power pm, then for
x0 ≤ x ≤ x1 ∑

0<γ≤T

xϱ = O(log T )

holds uniformly.

The proof employs Cauchy's theorem applied to∫
xs
ζ ′(s)

ζ(s)
ds.

The integration path is the counterclockwise oriented rectangle with edges
2 + qi, 2 + Ti, z + Ti, z + qi, where z < 0, 0 < q < 2 and T ≥ 2. Here q is
chosen less than the smallest ordinate γ of ϱ. Assuming that the parameter
T avoids zeros of ζ(s), which translate to poles of the logarithmic derivative
ζ′(s)
ζ(s) , he obtains

∫ 2+Ti

2+qi

xs
ζ ′(s)

ζ(s)
ds =

{∫ z+qi

2+qi

+

∫ z+Ti

z+qi

+

∫ 2+Ti

z+Ti

}
xs
ζ ′(s)

ζ(s)
ds+ 2πi

∑
0<γ<T

xϱ.

Landau �nds that the �rst and second integral on the right-hand side stay
bounded for growing T by taking the logarithmic derivative of the functional
equation of ζ(s) and showing that∣∣∣∣xs ζ ′(s)ζ(s)

∣∣∣∣ = O (xσ log(−σ + t))

holds in the area σ ≤ 1, t ≥ q of the complex plane. He further proves that∫ 2+Ti

z+Ti

xs
ζ ′(s)

ζ(s)
ds = O(log T )
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for any �xed z < 0 and that the integral on the right-hand side delivers the
asymptotic of the theorem. In particular he obtains

xs
ζ ′(s)

ζ(s)
= xs

∑
p,m

− log p

pms
= −

∑
p,m

(
x

pm

)s
log p.

Hence, by case di�erentiation for the parameter x between prime powers and
non-prime powers, the integrand becomes constant exactly when x equals a
prime power pm. Therefore, he gets∫ 2+Ti

2+qi

xs
ζ ′(s)

ζ(s)
ds =

{
−Ti log p+O(1) for x = pm,

O(1) for x ̸= pm.

In principle similar techniques are often applied to prove generalizations of
Landau's theorem. Some of them we will consider in the rest of this chapter
and beyond, when we will turn our attention back to Epstein zeta-functions.

4.2 Applications and generalizations

Landau's theorem and variations of it have been used, for example by Fujii
[22], in a series of papers. He evaluates discrete moments of the zeta-function
or its derivative near or at its zeros, for instance

∑
0<γ<T ζ

′( 12 + iγ) with
precise error terms under the assumption of the Riemann hypothesis. Fujii
[23] used it also to investigate the sequence γ+ γ′ with both γ and γ′ ranging
through the set of positive ordinates of zeta zeros in ascending order. Again
assuming the Riemann hypothesis, he obtained the asymptotic formula

∑
0<γ,γ′<T
γ+γ′<T

xi(γ+γ
′) =

Λ(x)2

x

T 2

8π2
+

xiT

log x

T (log T )2

4π2i
+ o

(
T 2(log T )2

)
. (4.3)

Since the number of terms γ+γ′ < T is asymptotically equal to T 2(log T )2

8π2 one
can divide (4.3) by the number of zeros and apply Weyl's criterion Theorem
2.2. It follows that the sequence of γ + γ′ is uniformly distributed modulo
one. Egami and Matsumoto [14] used this to motivate a related conjecture on
distances between zero ordinates in order to show that a certain multiple zeta-
function has a natural boundary. Another path of generalization was followed
by Kaczorowski, Languasco and Perelli, who introduced weights in order to
obtain an error term of more �exible shape, see [38].

4.3 Uniform versions of Landau's theorem

Since Landau's theorem lacks uniformity in x, the use of it is somehow limited.
Therefore we are interested in a version that is uniform in both variables x
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and T , which will for instance enable us to study discrepancy, see Chapter
6. Gonek [28], [29] obtained �rst results in this direction and proved that for
T > 1

∑
0<γ≤T

xϱ = − T

2π
Λ(x) +O(x log(2xT ) log log 3x) (4.4)

= O

(
log xmin

{
T ;

x

⟨x⟩

})
+O

(
log(2T )min

{
T ;

1

log x

})
.

Here ⟨x⟩ denotes the distance between x and the nearest prime power other
than x itself. Provided x is �xed Landau's theorem 4.1 follows from (4.4) by
letting T → ∞. If x = n ∈ N and T ≫ n, then the last two error terms in
(4.4) are absorbed in the �rst one and (4.4) becomes∑

0<γ≤T

nϱ = − T

2π
Λ(n) +O(n log(2nT ) log log 3n).

The last two error terms in (4.4) exhibit the contribution of the spikes of the
sum of zeta-zeros when x is a real number near to a prime power.

Additionally, assuming the Riemann hypothesis, Fujii [24], [25] gave a stronger
version of (4.4).

4.4 Uniform distribution modulo one for various

zeta-functions

As shown in section 2.3 uniform distribution modulo one of zero ordinates
holds for the Riemann zeta-function. Due to the structure of Landau's
theorem 4.1, giving an asymptotic for the sum over the exponential function
elog x(β+iγ), it is natural to search for similar results for further functions and
derive uniform distribution from Weyl's criterion Theorem 2.2.

Already Hlawka [36] noticed that the results for the Riemann zeta-function
carry over to Dirichlet L-functions of residue class characters. Landau himself
initiated another direction of research, again starting with the analysis of
ζ(s) concerning value-distribution. At the �fth International Mathematical
Congress in Cambridge in 1912 he put up the question of where the roots
of ζ(s) = a lie for an arbitrary complex number a. This of course includes
the case of zeros for a = 0. Steuding [67] showed that the ordinates of these
a-points, denoted by ϱa = βa+ iγa, are also uniformly distributed modulo one
by proving the following variant of Landau's theorem. For x ∈ R+ \ {1} and
T → ∞ we have
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∑
0<γa≤T

xϱa =

(
α(x)− xΛ

(
1

x

))
T

2π
+O(T

1
2+ϵ).

Here α(x) equal, if x = n or x = 1/n for some integer n ≥ 2, the Dirichlet
series coe�cients de�ned for a ̸= 0 via

ζ ′(s)

ζ(s)− a
=
∑
n≥2

α(n)

ns
,

and zero otherwise.

Furthermore Garunk²tis, �im
enas and Steuding [31] showed the equivalent
result for the a-points of the Selberg function associated with a compact
Riemann surface.

For the remainder of this chapter we will recall an important result for our
purpose from the paper of Akbary and Murty [1]. They studied a broader
class of Dirichlet series generalizing the Selberg class, for which they were
also able to show that the zero ordinates γn are uniformly distributed
modulo one. A crucial necessary assumption for this result is a hypoth-
esis concerning the density of the zeros on average, which we will de�ne below.

Let S̃ be the class of Dirichlet series

F (s) =

∞∑
k=1

an
ns
, a1 = 1

which satisfy the following conditions:

� (Euler product) F (s) has multiplicative coe�cients and is absolutely con-
vergent for Re s > 1, i.e.

F (s) =

∞∑
n=1

an
ns

=
∏
p

( ∞∑
k=0

apk

pks

)
=
∏
p

Fp(s), for Re s > 1.

� Fp(s) ̸= 0 on Re (s) > 1, for any p.
� (Analytic continuation) For some integer m ≥ 0, (s− 1)mF (s) extends to

an entire function of �nite order.
� (Functional equation) There are numbers Q > 0, αj > 0, rj ∈ C such that

Φ(s) = Qs
d∏
j=1

Γ (αjs+ rj)F (s)

satis�es the functional equation

Φ(s) = ϵΦ(1− s)

where ϵ is a complex number with |ϵ| = 1 and Φ(s) = Φ(s).
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From these conditions it follows that logFp(s) has a Dirichlet series represen-
tation of the form

logFp(s) =

∞∑
k=1

bpk

pks
, for Re (s) > cp,

where cp is a positive number which depends on p. The coe�cients bpk are
given by the recursion

bpk = apk − 1

k

k−1∑
j=1

j · bpj · apk−j ,

where bp = ap, see Lemma 1 in [1].

Then there exists the following generalization of Landau's theorem to F ∈ S̃,
see [50]: For x > 1 and T → ∞∑

0<γ≤T

xϱ = − T

2π
ΛF (x) +OF,x(log T )

where

ΛF (x) =

{
bx log x if x = pk

0 otherwise.

Now F ∈ S̃ satis�es the Average Density Hypothesis if for T → ∞∑
0≤γ≤T

β> 1
2

(β − 1

2
) = o(NF (T )) (4.5)

where NF (T ) denotes the number of zeros of F with 0 ≤ β ≤ 1 and 0 ≤ γ ≤ T .

Building on these de�nitions Akbary and Murty arrive at their main result,
Theorem 6:

Theorem 4.2. Let F ∈ S̃. Suppose that F satis�es the Average Density Hy-
pothesis, then for α ̸= 0, (αγn)n∈N is uniformly distributed modulo one.

The Average Density Hypothesis ensures that most of the zeros lie on the
critical line. This property is of course valid for the Riemann zeta-function, see
section 2.3 and the proof for uniform distribution modulo one runs analogously
to what we recalled there. Additionally Akbary and Murty introduced the so-
called Moment Hypothesis which is satis�ed if there exists a real k > 0
such that

MF (k, T ) =
1

T

∫ T

0

|F (1/2 + it)|2kdt = Ok,F

(
eψ(T )

)
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for some ψ(T ), where ψ(T ) is a positive real function such that
ψ(T ) = o(log T ). The Average Density Hypothesis and therefore Theo-
rem 4.2 follows from the Moment Hypothesis. As examples of functions in S̃
for which the Moment Hypothesis holds for k = 1 we recall the remarks from
section 5 of Akbary and Murty [1], the exact de�nitions can be found in the
mentioned references: For a primitive Dirchlet character mod q its associated
Dirichlet L-series L(s, χ), the L-series L(s, f) associated to a holomorphic
cusp newform of weight k and level N with nebentypus ϕ, and the L-series
L(s, g) associated to an even Maas cusp newform of weight zero and level
N with nebentypus ϕ. The su�cient asymptotics are stated for L(s, χ) in
Motohashi [51], for L(s, f) in Zhang [81] and for L(s, g) in Zhang [82].

In the next chapter we will use the concept of a density assumption plus a
variant of Landau's theorem to derive similar results for the general Epstein
zeta-function.

51





5

Uniform distribution of imaginary parts of zeros

of Epstein zeta-functions

�Die Mehrheit bringt der Mathematik Gefühle entgegen, wie sie nach
Aristoteles durch die Tragödie geweckt werden sollen, nämlich Mitleid
und Furcht. Mitleid mit denen, die sich mit der Mathematik plagen
müssen, und Furcht: daÿ man selber mal in diese gefährliche Lage

geraten könne.�

Paul Epstein (1883-1966)

Chapter 5 contains the main results of this thesis. First we introduce support-
ing quantities and properties about Epstein zeta-functions. In Lemma 5.1 we
gain an explicit representation of the logarithmic derivative of the modi�ed
Epstein zeta-function Z(s;Q). We continue to prove the central result Theo-
rem 5.3, the analogue of Landau's theorem. Incorporating the results of Chap-
ter 2 we prove Corollaries 5.4 and 5.5 in order to show uniform distribution
modulo one of the zero ordinates under the according density assumptions.
We further apply these results to binary quadratic forms, Corollary 5.6, and
expose examples where the necessary conditions hold for quadratic forms in
more than two variables. We derive a recursive representation of the logarith-
mic derivative of Z(s;Q) and close the chapter by discussing shortly open
questions. Except Corollaries 5.5 and 5.6 these results can be found in [59].

5.1 Preliminaries

In order to facilitate the analysis we �rst de�ne the function

Z(s;Q) :=
m(Q)s

N(Q)
ζ(s;Q) (5.1)

where N(Q) again counts the number of x for whichQ[x] = m(Q), the minimal
non-zero value of the quadratic form, see de�nitions in (1.4) and section 3.5.2.



5 Uniform distribution of imaginary parts of zeros of Epstein zeta-functions

It is important that Z(s;Q) carries the same zeros as ζ(s;Q), i.e. Z(s;Q) = 0
is equivalent to ζ(s;Q) = 0. In view of the functional equation (1.2),

Z(s;Q) =
m(Q)s

N(Q)
· (detQ)−

1
2 ·π2s−n

2 ·
Γ (n2 − s)

Γ (s)
· N(Q−1)

m(Q−1)
n
2 −s ·Z(

n

2
−s;Q−1).

(5.2)

We also need to take a look at the Dirichlet series expansions of Z(s;Q) and
also at Z ′(s;Q), as we will have to deal with the logarithmic derivative of
Z(s;Q). Recalling de�nition (3.14)

r(m;Q) := #{x ∈ Zn : Q[x] = m}

and by de�ning

a(n) :=
r(n,Q)

N(Q)

we observe that

Z(s;Q) =
m(Q)s

N(Q)
ζ(s;Q) = 1 +

∑
n>m(Q)

a(n)

(
m(Q)

n

)s
(5.3)

and

Z ′(s;Q) =
∑

n>m(Q)

a(n) log

(
m(Q)

n

)(
m(Q)

n

)s
. (5.4)

Before we analyse the logarithmic derivative further we establish a zero-free
region of Z(s;Q). Following section 2 of Steuding [65], we denote by m2(Q)
the second minimum of Q, i.e. the least value > m(Q) of Q[y] for y ∈ Zn.
Setting

λ :=
m2(Q)

m(Q)

for σ > n
2 , we then have, as σ → ∞,

Z(s;Q) = 1 + cλ−s + o(λ−σ), (5.5)

where c is a positive constant depending only on Q. Therefore there exists a
zero-free half plane to the right. The same argument yields a zero-free region
for Z(s;Q−1), so from the functional equation (5.2) we deduce the existence of
a positive constant B1 such that neither Z(s;Q) nor Z(s;Q−1) have nontrivial
zeros outside the strip −B1 < σ < B1. It also follows from (5.5) that there
exists a constant B2 such that Z(σ+it;Q) > 1

2 for σ > B2. Additionally , if we
consider the supremum and the in�mum of the real parts βi of the nontrivial
zeros, we certainly �nd a constantB3 where both inequalities 1 ≤ |B3 − supβi|
and 1 ≤ |B3 − inf βi| hold. By de�ning B3 := max{| supβi|, | inf βi|} + 1 we
ensure that these inequalities hold also for all constants larger than B3. The
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5.1 Preliminaries

properties of the constants Bi are prerequisites for the proof of our main
result.
The following construction is essentially due to Landau [44]. According to
Garunk²tis, Steuding and �im
enas [31] we consider the unbounded sequence

1 <
m(Q) + 1

m(Q)
<

m(Q) + 2

m(Q)
< ... (5.6)

of real numbers belonging to the general Dirichlet series Z(s;Q), see (5.3). We
can de�ne S as the set of all possible products of elements of this sequence
and obtain an ordered sequence of all di�erent numbers of S as

ln(Q) =

h∏
ν=1

m(Q) + kν
m(Q)

(5.7)

with h ≥ 0, kν ∈ N.
Therefore Lemma 8 of [31] applied to the two general Dirichlet series

Z(s;Q) and Z ′(s;Q) ensures that the quotient Z′(s;Q)
Z(s;Q) is again a general

Dirichlet series which converges absolutely in a right half-plane and carries
the numbers ln(Q), see (5.7), as its de�ning unbounded sequence. In particu-
lar we can prove the following Lemma giving an explicit representation.

Lemma 5.1. For Z(s;Q) and Z ′(s;Q) de�ned as above the quotient Z′(s;Q)
Z(s;Q)

is again a general Dirichlet series and there exists a constant B4 such that
Z′(s;Q)
Z(s;Q) converges absolutely for σ > B4. We have

Z ′(s;Q)

Z(s;Q)
=

∞∑
n=1

bn(Q)

ln(Q)s

where the ln(Q)'s are de�ned in (5.7) with ln(Q) → ∞ for n→ ∞. Moreover,
the coe�cients bn(Q) are given explicitly as

bn(Q) =
∑

distinct ki

a(m(Q) + ki) log

(
m(Q)

m(Q) + ki

)
× (5.8)

×
∑

k1,...,kh∈N
g1+...+gr=h

(−1)h−1

(
h− 1

g1, · · · , gj−1, gj − 1, gj+1, · · · gr

)
×

×a(m(Q) + k1) · . . . · a(m(Q) + ki−1) · a(m(Q) + ki+1)

· . . . · a(m(Q) + kh).

Here g1, . . . , gr are the multiplicities of the distinct values of the k1, . . . , kh,
hence r ≤ h and g1 + . . .+ gr = h, gj is the multiplicity of ki.
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5 Uniform distribution of imaginary parts of zeros of Epstein zeta-functions

Proof: Since Z(s;Q) starts with a constant term 1, there exists an inverse of
the Dirichlet series

1

Z(s;Q)
=

N(Q)

m(Q)sζ(s;Q)

and we can apply the method of Landau [44] provided that Re s is su�ciently
large. More precisely, the inverse of Z(s;Q), i.e.

1

Z(s;Q)
=

∞∑
n=1

cn(Q)

ln(Q)
s ,

is a general Dirichlet series with the ln(Q) of the form (5.7) and some
cn(Q). This follows immediately from the �rst consideration in the Ap-
pendix of Landau [44] where in our case we set m = m(Q), f(s) = ζ(s;Q)

N(Q) =∑∞
n=1

a(n)
ns and a(m(Q)) = 1, the �rst non-zero coe�cient. Hence, the product

Z ′(s;Q) × 1
Z(s;Q) of two general Dirichlet series is again a Dirichlet series of

the form
Z ′(s;Q)

Z(s;Q)
=

∞∑
n=1

bn(Q)

ln(Q)s
.

Taking into account the uniqueness theorem for Dirichlet series, there exists
a zero-free half-plane. Accordingly, we may �nd a positive number B4 such
that the abscissa of absolute convergence of the Dirichlet series above is less
than or equal to B4. Explicitly we obtain

1

Z(s;Q)
=

∞∑
h=0

(−1)h

 ∞∑
n>m(Q)

a(n)

(
m(Q)

n

)sh

=

∞∑
h=0

(−1)h
∑

k1,...,kh∈N
g1+...+gr=h

(
h

g1 . . . gr

)
×

×a(m(Q) + k1) · . . . · a(m(Q) + kh)×

×
(

m(Q)h

(m(Q) + k1) · . . . · (m(Q) + kh)

)s
with the tuple g1, . . . , gr ∈ N running through all partitions P (h) of h . Hence,

Z ′(s;Q)

Z(s;Q)
=

∑
n>m(Q)

a(n) log

(
m(Q)

n

)(
m(Q)

n

)s
×

×
∞∑
h=0

(−1)h
∑

k1,...,kh∈N
g1+...+gr=h

(
h

g1 . . . gr

)
× (5.9)

×a(m(Q) + k1) · . . . · a(m(Q) + kh)×

×
(

m(Q)h

(m(Q) + k1) · . . . · (m(Q) + kh)

)s
.
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5.2 Landau's theorem for Epstein zeta-functions

Now for a given ln(Q) we see that the coe�cient bn(Q) takes the form as
stated above. This holds since in (5.9), which shows the factors of the prod-
uct Z ′(s;Q) · 1

Z(s;Q) separately, for a distinct ki always the coe�cient of one
summand of Z ′(s;Q) and the coe�cient of(

m(Q)h−1

(m(Q) + k1) · . . . · (m(Q) + ki−1)(m(Q) + ki+1) · . . . · (m(Q) + kh)

)s
contribute to bn(Q). From this we obtain the representation of the Lemma
concluding the proof. □

Since the Dirichlet series representing the logarithmic derivative of Z(s;Q)
converges we are now able to choose the constant

B = max(B1, B2, B3, B4) (5.10)

carrying all properties needed for the proof of our main result. We also recall
Lemma 5 from [31] which will be very useful.

Lemma 5.2. If f(s) is analytic and f(s0) ̸= 0 with∣∣∣∣ f(s)f(s0)

∣∣∣∣ < eM

in {s : |s− s0| ≤ r} with M > 1, then∣∣∣∣∣ f(s)f(s0)
−
∑
ϱ

1

s− ϱ

∣∣∣∣∣ < C
M

r

for |s − s0| ≤ r
4 , where C is some constant and ϱ runs through the zeros of

f(s) such that |ϱ− s0| ≤ r
2 .

Finally in this section we recall a well-known result from paragraph 3 of Steud-
ing [66] which gives information about the growth of the Epstein zeta-function.
Following from the functional equation (1.2) it is based on an application of
the Phragmén-Lindelöf principle : As |t| → ∞, we have

ζ(s;Q) ≪ |t|max{n
2 −σ,0}+ϵ. (5.11)

5.2 Landau's theorem for Epstein zeta-functions

We are now in a position to give the analogue of Landau's theorem for Epstein
zeta-functions.
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5 Uniform distribution of imaginary parts of zeros of Epstein zeta-functions

Theorem 5.3. Let x ∈ R+ \ {1}. As T → ∞,∑
|γ|<T

xϱ =
T

π

(
δlk(Q),x · bk(Q)− x

n
2 δlk(Q−1), 1x

· bk(Q−1)
)
+O(log T ) (5.12)

for all Epstein zeta-functions where lk(Q) and bk(Q) are explicitly de�ned in
Lemma 5.1.

Here δa,b is the Kronecker symbol, equal to 1 if a = b and zero otherwise.
Before we turn to the proof we shall deduce from Theorem 5.3 the following
two corollaries.

5.3 Corollaries

The �rst one requires a density hypothesis similar to (4.5). With the critical
line at n/4 + it ∈ C, t ∈ R for an arbitrary Epstein zeta-function ζ(s;Q)
associated to a quadratic form Q, we obtain

Corollary 5.4. If
∑

|γ|<T
∣∣β − n

4

∣∣ = o (N(T ;Q)), then the ordinates of non-

trivial zeros of the Epstein zeta-function ζ(s;Q) are uniformly distributed mod-
ulo one.

The proof will be provided below in section 5.4.2, it follows very closely the
reasoning recalled for the Riemann zeta-function in section 2.3.
We can say a little bit more. In the next corollary we want to leverage the
results of Chapter 2, in particular Lemma 2.4, which allows two di�erent
weights to appear in the limit conditions (2.8).

Corollary 5.5. Let (βk + iγk)k∈N be the sequence of nontrivial zeros of the
Epstein zeta-function ζ(s;Q) ordered in ascending absolute values of the imag-
inary parts. Let A = {a1, a2, ...} and B = {b1, b2, ...} be disjoint subsets of N
with A ∪ B = N. If (βk + iγk)k∈N can be separated into two subsequences
(βak + iγak)k∈N, (βbk + iγbk)k∈N and there exists two real numbers βmin, βmax
such that ∑

|γak |<T
|βak − βmin| = o (N(T ;Q))

and ∑
|γbk |<T

|βbk − βmax| = o (N(T ;Q)) ,

then the ordinates of the nontrivial zeros are uniformly distributed modulo
one.

This enables us to have basically two possible clustering lines of zeros where a
density assumption can be applied. The proof for Corollary 5.5 is provided in
5.4.3. Examples of applications for some speci�c Epstein zeta-functions follow
in section 5.5.2.
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5.4 Proof of the main results

5.4 Proof of the main results

5.4.1 Proof of Theorem 5.3

We aim to prove the theorem by using an appropriate contour integral and
residue calculus. By choosing b > B and in view of the functional equation
(1.2) we ensure that all nontrivial zeros of ζ(s;Q) lie inside Re s > n

2 − b. We
further note that the logarithmic derivative of ζ(s;Q) and therefore also of
Z(s;Q) has simple poles at each zero with residue equal to the order. Therefore∑

|γ|<T

xϱ =
1

2πi

∫
∂R

xs
Z ′(s;Q)

Z(s;Q)
ds+O(1), (5.13)

where the error term arises from the pole at s = n
2 . Here the integration

path is the counterclockwise oriented closed rectangle ∂R with points B− iT ,
B + iT , n2 − b+ iT and n

2 − b− iT . We have∫
∂R

xs
Z ′(s;Q)

Z(s;Q)
ds =

{∫ B+iT

B−iT
+

∫ n
2 −b+iT

B+iT

+

+

∫ n
2 −b−iT

n
2 −b+iT

+

∫ B−iT

n
2 −b−iT

}
xs
Z ′(s;Q)

Z(s;Q)
ds

=:

4∑
j=1

Ij , (5.14)

say. The idea is now to estimate all integral paths piecewise and show that each
integral is O(T ). I1 we evaluate directly in the area of absolute convergence,
for I3 we achieve the same by using the functional equation (1.2). I2 and
I4 can be estimated by means of techniques from [31], essentially by using
Lemma 5.2.
We begin with

I1 =

∫ B+iT

B−iT
xs
Z ′(s;Q)

Z(s;Q)
ds.

Since summation and integration can be interchanged in the area of absolute
convergence, we deduce from Lemma 5.1 that

I1 = i

∫ +T

−T
xB+itZ

′(B + it;Q)

Z(B + it;Q)
dt

= i

∫ +T

−T
xB+it

∞∑
n=1

bn(Q)

ln(Q)
(B+it)

dt

= i

∞∑
n=1

bn(Q)

(
x

ln(Q)

)B ∫ +T

−T

(
x

ln(Q)

)it
dt.
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5 Uniform distribution of imaginary parts of zeros of Epstein zeta-functions

The integral
∫ +T

−T

(
x

ln(Q)

)it
dt is unbounded, if and only if x

ln(Q) = 1, that is,

for x = ln(Q) ; otherwise it is bounded and in this case we have∫ +T

−T

(
x

ln(Q)

)it
dt = O(1). (5.15)

Putting all this together we get

I1 = 2i · δlk(Q),x · bk(Q) · T +O(1)

with the bk(Q) de�ned in Lemma 5.1.

Now we consider

I2 =

∫ B+iT

n
2 −b+iT

xs
Z ′(s;Q)

Z(s;Q)
ds. (5.16)

In order to estimate this integral, we �rst apply Lemma 5.2. By setting the
parameters

f(s) = Z(s;Q), s0 = B + iT, M = C · log T, r = 4(B − (
n

2
− b))

with an appropriate constant C we are able to meet the conditions of the
Lemma since B is large enough to ensure that s0 = B + iT is from the
zero-free right half plane essentially due to (5.5). Also (5.11) ensures that∣∣∣ f(s)f(s0)

∣∣∣ < eM is ful�lled. We note that the constant M may depend on n and
Q. Hence we get

Z ′(s;Q)

Z(s;Q)
=

∑
|ϱ0−s0|≤ r

2

1

s− ϱ0
+O(log T )

for |s− s0| ≤ r
4 = (B − (n2 − b)). With ϱ0 = β0 + iγ0 it follows that

I2 =

∫ B+iT

n
2 −b+iT

xs
Z ′(s;Q)

Z(s;Q)
ds≪ xB

∫ B

n
2 −b

∣∣∣∣Z ′(σ + iT ;Q)

Z(σ + iT ;Q)

∣∣∣∣ dσ
≤ xB

∫ B

n
2 −b

∑
|ϱ0−s0|≤ r

2

∣∣∣∣ 1

σ + iT − ϱ0

∣∣∣∣ dσ +O(log T )

= xB
∑

|ϱ0−s0|≤ r
2

∫ B

n
2 −b

1√
(σ − β0)2 + (T − γ0)2

dσ +O(log T )

= xB
∑

|ϱ0−s0|≤ r
2

(
log
(
B − β0 +

√
(T − γ0)2 + (B − β0)2

)
− log

(
n

2
− b− β0 +

√
(T − γ0)2 + (

n

2
− b− β0)2

))
+O(log T ).
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5.4 Proof of the main results

Now we observe that the number of zeros with |ϱ− (B+ iT )| ≤ r
2 is bounded

by C̃ log T for another constant C̃ > 0. This is true since the number of zeros
for ζ(s;Q) and accordingly Z(s;Q) is given by (1.3), hence we get

N(T +
r

2
;Q) − N(T − r

2
;Q)

=
2(T + r

2 )

π
log

(T + r
2 )

πe
√
m(Q)m(Q−1)

−
2(T − r

2 )

π
log

(T − r
2 )

πe
√

m(Q)m(Q−1)

=
2T

π

(
log

(T + r
2 )

πe
√

m(Q)m(Q−1)
− log

(T − r
2 )

πe
√

m(Q)m(Q−1)

)

+
r

π
log

(T + r
2 )

πe
√
m(Q)m(Q−1)

+
r

π
log

(T − r
2 )

πe
√

m(Q)m(Q−1)︸ ︷︷ ︸
O(log T )

=
2T

π

(
log

(T + r
2 )

(T − r
2 )

)
+O(log T ) = O(log T ).

Furthermore all summands are bounded by a constant C as

log(B − β0 +
√

(T − γ0)2 + (B − β0)2)

− log(
n

2
− b− β0 +

√
(T − γ0)2 + (

n

2
− b− β0)2)

= log
(B − β0 +

√
(T − γ0)2 + (B − β0)2)

(n2 − b− β0 +
√
(T − γ0)2 + (n2 − b− β0)2)

.

Since we can choose b, B3 such that for B > B3 we have 1 ≤ |B− supβ0| and
1 ≤ |B− inf β0|, we also �nd constants c1, c2 with c1|n2 − b− β0| ≤ |B− β0| ≤
c2|n2 −b−β0| and hence c1 ≤ |B−β0|

|n2 −b−β0| ≤ c2. Therefore there exists a constant
C such that

log
(B − β0 +

√
(T − γ0)2 + (B − β0)2)

(n2 − b− β0 +
√
(T − γ0)2 + (n2 − b− β0)2)

≤ C.

With this, we have shown

I2 =

∫ B+iT

n
2 −b+iT

xs
Z ′(s;Q)

Z(s;Q)
ds = O(log T ).

Thus we can turn to

I3 =

∫ n
2 −b+iT

n
2 −b−iT

xs
Z ′(s;Q)

Z(s;Q)
ds. (5.17)
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5 Uniform distribution of imaginary parts of zeros of Epstein zeta-functions

To get the logarithmic derivative of Z(s;Q), we �rst take logarithms on both
sides of (5.2), that is,

logZ(s;Q) = s logm(Q)− logN(Q) + log (detQ)−
1
2 + (2s− n

2
) log π

+ logΓ (
n

2
− s)− logΓ (s) + logN(Q−1)

−(
n

2
− s) logm(Q−1) + logZ(

n

2
− s;Q−1),

so we obtain

Z ′(s;Q)

Z(s;Q)
=
[
logm(Q) + 2 log π + logm(Q−1)

]
−
Γ ′(n2 − s)

Γ (n2 − s)
− Γ ′(s)

Γ (s)
−
Z ′(n2 − s;Q−1)

Z(n2 − s;Q−1)
.

Therefore we have

I3 =

∫ n
2 −b+iT

n
2 −b−iT

xs
[
c3 −

Γ ′(n2 − s)

Γ (n2 − s)
− Γ ′(s)

Γ (s)
−
Z ′(n2 − s;Q−1)

Z(n2 − s;Q−1)

]
ds

with
c3 := logm(Q) + 2 log π + logm(Q−1).

We observe that Z′(n
2 −s;Q−1)

Z(n
2 −s;Q−1) is again a Dirichlet series, and with another

application of Lemma 5.1, we gain the representation

Z ′(n2 − s;Q−1)

Z(n2 − s;Q−1)
=

∞∑
k=1

bk(Q−1)

lk(Q−1)(
n
2 −s) ,

which converges for Re s > n
2 . We can now divide the integral as follows:

I3 = −
∫ n

2 −b+iT

n
2 −b−iT

xs
[
Z ′(n2 − s;Q−1)

Z(n2 − s;Q−1)

]
ds

+

∫ n
2 −b+iT

n
2 −b−iT

xs
(
c3 −

Γ ′(n2 − s)

Γ (n2 − s)
− Γ ′(s)

Γ (s)

)
ds

=: I3a + I3b .

For the �rst integral we get in the area of absolute convergence

I3a = −
∫ n

2 −b+iT

n
2 −b−iT

xs
∞∑
k=1

bk(Q−1)

lk(Q−1)
(n
2 −s) ds

= −
∞∑
k=1

bk(Q−1)

lk(Q−1)
n
2

∫ n
2 −b+iT

n
2 −b−iT

1

(x · lk(Q−1))−s
ds

= −ixn
2 −b

∞∑
k=1

bk(Q−1)

lk(Q−1)
b

∫ T

−T

(
x · lk(Q−1)

)it
dt.
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5.4 Proof of the main results

Now repeating the argument of the calculation of I1, we see that for x ̸=
1

lk(Q−1) the integral I3a is O(1). Taking into account the contribution for
x = 1

lk(Q−1) we obtain overall

I3a = −ixn
2 δlk(Q−1), 1x

· bk(Q−1) · 2T +O(1).

It remains to estimate I3b . Here we �rst apply Stirling's formula for the gamma
function yielding

|Γ (σ + it)| =
√
2π · e−

π|t|
2 · |t|σ− 1

2

(
1 +O

(
1

|t|

))
and, for the logarithm,

logΓ (s) = (s− 1

2
) · log s− s+

1

2
log 2π +O

(
1

|s|

)
for | arg s| < π and |s| ≥ 1 . Therefore we get for the logarithmic derivative
the following asymptotics:

Γ ′(s)

Γ (s)
= log s− 1

2s
+O

(
1

|s|2

)
= log s+O

(
1

|s|

)
;

see e.g. Karatsuba and Voronin [39]. To handle the branch cut of the logarithm
we further separate the integral into

I3b =

{∫ n
2 −b+i

n
2 −b−i

+

∫ n
2 −b+iT

n
2 −b+i

+

∫ n
2 −b−i

n
2 −b−iT

}
xs
(
c3 −

Γ ′(n2 − s)

Γ (n2 − s)
− Γ ′(s)

Γ (s)

)
ds

=: L1 + L2 + L3.

Clearly we have L1 = O(1). Next we consider

L2 =

∫ n
2 −b+iT

n
2 −b+i

xs
[
c3 − log s+O

(
1

|s|

)
− log

(n
2
− s
)
+O

(
1

|n2 − s|

)]
ds.

We see that∫ n
2 −b+iT

n
2 −b+i

xs
[
c3 +O

(
1

|s|

)
+O

(
1

|n2 − s|

)]
ds

= ix
n
2 −b

∫ T

1

xit
[
c3 +O

(
1

|n2 − b+ it|

)
+O

(
1

|b− it|

)]
dt = O(log T ).

Moreover,

−
∫ n

2 −b+iT

n
2 −b+i

xs
[
log s+ log

(n
2
− s
)]
ds

= −ixn
2 −b

∫ +T

1

xit
[
log(

n

2
− b+ it) + log(b− it)

]
dt.
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5 Uniform distribution of imaginary parts of zeros of Epstein zeta-functions

Now we apply partial integration to derive∫ +T

1

xit
[
log(

n

2
− b+ it) + log(b− it)

]
dt

=
xit

i log x

[
log(

n

2
− b+ it) + log(b− it)

]∣∣∣T
1

−
∫ +T

1

xit

log x

(
1

n
2 − b+ it

− 1

b− it

)
dt.

Both summands on the right hand side are clearly O(log T ), hence L2 =
O(log T ) and the same argument yields L3 = O(log T ). Putting the pieces
together we get

I3 = I3a +I3b = I3a +L1+L2+L3 = −ixn
2 δlk(Q−1), 1x

·bk(Q−1) ·2T +O(log T ).

Finally

I4 =

∫ B−iT

n
2 −b−iT

xs
Z ′(s;Q)

Z(s;Q)
ds

can be estimated exactly like I2, therefore we gain I4 = O(log T ). This con-
cludes the proof of the Theorem. □

5.4.2 Proof of Corollary 5.4

Taking into account

exp(y)− 1 =

∫ y

0

exp(t)dt≪ |y|max {1, exp(y)},

we get by setting y =
(
β − n

4

)
log x with positive x ̸= 1 the estimate∣∣∣x(n

4 +iγ) − x(β+iγ)
∣∣∣ = ∣∣xiγ∣∣ ∣∣xn

4 − xβ
∣∣

=
∣∣∣xβ (x(n

4 −β) − 1
)∣∣∣ (5.18)

≤ xβ
∣∣∣exp((n

4
− β

)
log x

)
− 1
∣∣∣

≤
∣∣∣β − n

4

∣∣∣ |log x|max {xβ , xn
4 }.

In the following we use Theorem 5.3 and Weyl's criterion Theorem 2.2 to de-
duce uniform distribution of the imaginary parts. We proceed like in Steuding
[68] and obtain

1

N(T ;Q)

∑
|γ|<T

∣∣∣x(n
4 +iγ) − x(β+iγ)

∣∣∣ ≤ X

N(T ;Q)

∑
|γ|<T

∣∣∣β − n

4

∣∣∣
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5.4 Proof of the main results

with
X = max {xD, 1}| log x| (5.19)

and D as an upper bound for the real parts of the zeros. Such a positive
number D exists since ζ(s;Q), having a Dirichlet series representation for
Re s > n

2 , is non-vanishing in some right half plane. Using the assumption∑
|γ|<T

∣∣β − n
4

∣∣ = o (N(T ;Q)) of Corollary 5.4 we now get

1

N(T ;Q)

∑
|γ|<T

(
x(

n
4 +iγ) − x(β+iγ)

)
= o(1)

where we dropped the dependency on X. Hence, applying the asymptotics of
Theorem 5.3, that is

∑
|γ|<T x

ϱ = O(T ), yields

1

N(T ;Q)

∑
|γ|<T

x(
n
4 +iγ) = o(1).

Dividing by x
n
4 and setting x = zm with positive real z ̸= 1 and m ∈ N, we

obtain
lim
T→∞

1

N(T ;Q)

∑
|γ|<T

exp(imγ log z) = 0.

NowWeyl's criterion implies the uniform distribution of the sequence 1
2πγ log z

and �nally the Epstein zeta ordinates. □

5.4.3 Proof of Corollary 5.5

The proof proceeds very similarly to that of Corollary 5.4 and leverages
Lemma 2.4. We introduce two di�erent real parts βmin, βmax in the expo-
nent of x and consider the term

1

N(T ;Q)

∑
|γak

|,|γbk |,|γk|<T

xβmin+iγak + xβmax+iγbk − xβk+iγk . (5.20)

Separating (βk + iγk)k∈N into the two disjoint subsequences (βak + iγak)k∈N
and (βbk + iγbk)k∈N, this equals

1

N(T ;Q)

∑
|γak

|,|γbk |<T

xβmin+iγak − xβak
+iγak + xβmax+iγbk − xβbk

+iγbk .

Analogue to (5.18) we get the estimates∣∣∣x(βmin+iγ) − x(β+iγ)
∣∣∣ ≤ |β − βmin| |log x|max {xβ , xβmin}
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5 Uniform distribution of imaginary parts of zeros of Epstein zeta-functions

and ∣∣∣x(βmax+iγ) − x(β+iγ)
∣∣∣ ≤ |β − βmax| |log x|max {xβ , xβmax}.

Hence we can use the common bound X = max {xD, 1}| log x| from (5.19).
Due to our assumptions

∑
|γ1k|<T

|βak − βmin| = o (N(T ;Q)) and
∑

|γ2k|<T

|βbk − βmax| = o (N(T ;Q))

we obtain

1

N(T ;Q)

∑
|γak

|,|γbk |<T

xβmin+iγak − xβak
+iγak + xβmax+iγbk − xβbk

+iγbk

≤ X

N(T ;Q)

 ∑
|γak |<T

|βak − βmin|+
∑

|γbk |<T
|βbk − βmax|

 = o(1).

By dropping again the dependency on X we see that (5.20) tends to zero for
T → ∞. Using once more Theorem 5.3 we get

1

N(T ;Q)

∑
|γak

|,|γbk |<T

xβmin+iγak + xβmax+iγbk = o(1).

Now applying Lemma 2.4 concludes the proof. □

5.5 Application of the main results

5.5.1 The density hypothesis for binary quadratic forms

In order to apply Corollary 5.4 we are now able to prove that Epstein zeta-
functions associated with a binary quadratic form ful�ll the assumptions of
the density hypothesis. Hence the imaginary parts of the nontrivial zeros are
uniformly distributed modulo one. That means regardless of the class number
of the corresponding number �eld all functions based on binary quadratic
forms, which are described in section 3.1, share this property. To show this
we take the approach of Levinson [47] and follow closely Steuding [69]. Key
will also be a mean square estimate for Dirichlet series by Müller [49].

Corollary 5.6. For binary quadratic forms, i.e. in the case n = 2, the density
hypothesis

∑
|γ|<T

∣∣β − 1
2

∣∣ = o (N(T ;Q)) holds, and the ordinates of nontrivial

zeros of the associated Epstein zeta-function ζ(s;Q) are uniformly distributed
modulo one.
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5.5 Application of the main results

Proof: We start by stating Littlewood's Lemma relating the zeros of an ana-
lytic function f(s) with a contour integral over log f(s).

Lemma 5.7 (Littlewood). Let b < a and let f(s) be analytic on R := {s ∈
C : b ≤ σ ≤ a, |t| ≤ T}. Let δR be the border of the rectangle R. Suppose that
f(s) does not vanish on the right edge σ = a of R. Let R′ be R minus the
union of the horizontal cuts from the zeros of f in R to the left edge of R,
and choose a single-valued branch of log f(s) in the interior of R′. Denote by
ν(σ, T ) the number of zeros σ = β+ iγ of f(s) inside the rectangle with β > σ
including zeros with γ = T but not those with γ = −T . Then∫

δR
log f(s)ds = −2πi

∫ a

b

ν(σ, T )dσ.

For the proof we refer to Titchmarsh [72], �9.9, or Littlewood's original paper
[48]. We apply the lemma to f(s) = ζ(s;Q) and to the rectangle R with
vertices a+ iT, a+ 2iT, b+ iT, b+ 2iT . This gives∑

β>b
T<γ≤2T

(β − b) =
−1

2πi

∫
δR

log ζ(s;Q)ds, (5.21)

since for the number of zeros∫ a

b

ν(σ, T ) dσ =
∑
β>b

T<γ≤2T

∫ β

b

dσ =
∑
β>b

T<γ≤2T

(β − b)

holds. Here we can chose T such that

min
γ

|γ − T | ≫ 1

log T
, min

γ
|γ − 2T | ≫ 1

log T
(5.22)

to ensure distance from the zeros to the boundary of R. This is possible since
the number of zeros is given by (1.3), i.e. is of the order O(T log T ). Hence we
can replace this T later by an arbitrary T > 0 which is allowed at the expense
of an error term O(log T ). Here in any interval [T ′, T ′ + 1] for an arbitrary T∑

β>b
T ′<γ≤T ′+1

(β − b) ≪ N(T ′ + 1;Q)−N(T ′;Q) ≪ log T

holds. Therefore we can �nd a T satisfying (5.22) where the di�erence between
the sum of interest with respect to T ′ and the one with respect to T is only
O(log T ).
Continuing with the contour integral in (5.21) we now set b ≥ 1/2 arbitrary
and a > 1 so that a > max{b, 1 + A} with A := supβ. A is �nite thanks to
the existence of a zero-free half plane to the right, see (5.5). We obtain from
(5.21) that
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5 Uniform distribution of imaginary parts of zeros of Epstein zeta-functions

2π
∑
β>b

T<γ≤2T

(β − b) =

∫ 2T

T

log |ζ(b+ it;Q)|dt

−
∫ 2T

T

log |ζ(a+ it;Q)|dt

−
∫ a

b

arg ζ(σ + iT ;Q)dσ +

∫ a

b

arg ζ(σ + 2iT ;Q)dσ

=:

4∑
j=1

Ij .

We start with I2 which is the integral over the vertical line segment on the right
edge. We recall the de�nitions (1.4) and (3.14) and set c := r(m(Q);Q) ̸= 0,
so we can express the general Epstein zeta-function as

ζ(s;Q) = c ·m(Q)−s

1 +
∑

n>m(Q)

r(n;Q)

ns
m(Q)s

c

 . (5.23)

Hence we have

log |ζ(a+ it;Q)| = log |c ·m(Q)−a−it|

+ log

∣∣∣∣∣∣1 +
∑

n>m(Q)

r(n;Q)

c

(
m(Q)

n

)a+it∣∣∣∣∣∣ .
Here the absolute value of the series is less than 1 for su�ciently large a.
Therefore we �nd by the Taylor expansion of the logarithm

∫ 2T

T

log

∣∣∣∣∣∣1 +
∑

n>m(Q)

r(n;Q)

c

(
m(Q)

n

)a+it∣∣∣∣∣∣ dt
=

∫ 2T

T

Re

 ∞∑
l=1

(−1)l+1

l

 ∑
n>m(Q)

r(n;Q)

c

(
m(Q)

n

)a+itl
 dt

= Re

∞∑
l=1

(−1)l+1

l · cl
∑

n1>m(Q)

. . .
∑

nl>m(Q)

r(n1;Q) · . . . · r(nl;Q)

×
(

m(Q)l

n1 · . . . · nl

)a
·
∫ 2T

T

(
m(Q)

n1 · . . . · nl

)it

= B ·
∞∑
l=1

1

l

 ∑
n>m(Q)

(
m(Q)

n

)al

≪ 1
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5.5 Application of the main results

for a constant B. It follows that

I2 =

∫ 2T

T

log |ζ(a+ it;Q)|dt = T · log
∣∣∣ c
ma

∣∣∣+O(1).

Considering the integral I1 over the vertical line segment on the left we obtain
�rst via Jensen's inequality

I1 =

∫ 2T

T

log |ζ(b+ it;Q)|dt ≤ 1

2
T · log

(
1

T

∫ 2T

T

|ζ(b+ it;Q)|2dt

)
.

Next we use a result by Müller [49]. He showed in the second part of Theorem
6.2. that for binary quadratic forms there exists a positive constant A(Q) such
that ∫ T

0

|ζ(1
2
+ it;Q)|2dt ≤ A(Q) · T (log T )2 +O(T log T ).

Adjusted for the integration limits we can �nd another constant C(Q) with∫ 2T

T

|ζ(1
2
+ it;Q)|2dt ≤ C(Q) · T (log T )2 +O(T log T ).

So all in all we have for a positive constant C

I1 =

∫ 2T

T

log |ζ(1
2
+ it;Q)|dt < C · T log log T.

Now we can start estimating the horizontal integrals I3, I4. Suppose that
Re ζ(σ+iT ;Q) has N zeros for b ≤ σ ≤ a. We can divide the interval [b, a] into
at most N + 1 subintervals in each of which Re ζ(σ + iT ;Q) shows constant
sign. Then

| arg ζ(σ + iT ;Q)| ≤ (N + 1)π. (5.24)

To estimate N let

g(z) =
1

2

(
ζ(z + iT ;Q) + ζ(z + iT ;Q)

)
.

Then we have g(σ) = Re ζ(σ+iT ;Q). Let now R = a−b and choose T so large
that T > 2R. We obtain Im (z + iT ) > 0 for |z − a| < T . Thus ζ(z + iT ;Q),
and hence g(z) is analytic for |z−a| < T . Let n(r) denote the number of zeros
of g(z) in |z − a| ≤ r. Obviously, we have∫ 2R

0

n(r)

r
dr ≥ n(R)

∫ 2R

R

dr

r
= n(R) log 2.

With Jensen's formula (see for example Titchmarsh [72], �3.61),
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5 Uniform distribution of imaginary parts of zeros of Epstein zeta-functions∫ 2R

0

n(r)

r
dr =

1

2π

∫ 2π

0

log
∣∣g (a+ 2Reiθ

)∣∣ dθ − log |g(a)|,

we deduce

n(R) ≤ 1

2π log 2

∫ 2π

0

log
∣∣g (a+ 2Reiθ

)∣∣ dθ − log |g(a)|
log 2

.

By (5.23) it follows that log |g(a)| is bounded. By (5.11), in any vertical strip
of bounded width,

ζ(s;Q) ≪ |t|B

as |t| → ∞ with a certain positive constant B. Obviously, the same estimate
holds for g(z). Thus, the integral above is ≪ log T , and n(R) ≪ log T . Since
the interval (b, a) is contained in the disc |z − a| ≤ R, the number N is less
than or equal to n(R). Therefore, with (5.24), we get

|I3| ≤
∫ a

b

| arg ζ(σ + iT ;Q)|dσ ≪ log T.

Obviously, I4 can be bounded in the same way.
Considering all estimates this yields∑

β> 1
2

T<γ≤2T

(
β − 1

2

)
≪ T · log log T = o(N(T ;Q)).

Due to the functional equation (1.2) we now observe that the same estimate
also applies to the zeros left of the critical line. Every zero ϱ = β+iγ of ζ(s;Q)
with real part less than 1/2 corresponds to a zero of ζ(s;Q−1) with real part
greater than 1/2 and vice-versa. Also for binary quadratic forms ζ(s;Q) and
ζ(s;Q−1) are equal up to a constant factor, as mentioned in section 3.5.1.
Hence ∑

β< 1
2

T<γ≤2T

∣∣∣∣β − 1

2

∣∣∣∣ = ∑
β∗> 1

2
T<−γ∗≤2T

(
β∗ − 1

2

)
≪ T · log log T,

where β∗ + iγ∗ = n
2 − (β + iγ) for n = 2. This �nishes the proof of Corollary

5.6. □

5.5.2 Application to Epstein zeta-functions for n = 4 and n = 8

Corollary 5.5 can be applied to speci�c examples of Epstein zeta-functions
where the associated quadratic form carries more than two variables to es-
tablish uniform distribution modulo one of the zero ordinates. It provides an
alternative proof for instance for the functions introduced in (3.11) and (3.12).
We recall their structure. For
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5.5 Application of the main results

ζ(s; I4) = 8(1− 22−s)ζ(s)ζ(s− 1)

we can divide the nontrivial zeros into two disjoint sets

{ϱak ∈ C | ζ(ϱak) = 0 or 1− 22−ϱak = 0}ak∈N

and
{ϱbk ∈ C | ζ(ϱbk − 1) = 0}bk∈N.

If we order the union of these two sets by the absolute values of their imaginary
parts we obtain two disjoint subsets A = {a1, a2, ...} and B = {b1, b2, ...} of N
with A∪B = N. Hence (βk+ iγk)k∈N can be separated into two subsequences
(βak + iγak)k∈N, (βbk + iγbk)k∈N. We set βmin = 1/2 and βmax = 3/2 and
observe that the solutions of 1− 22−ϱak = 0 are only of the magnitude of CT
for a constant C with respect to the imaginary axis. Therefore due to Levinson
[47], see section 2.6 for the Riemann zeta-function, the density assumptions
are ful�lled, i.e.∑

|γak |<T

∣∣∣∣βak − 1

2

∣∣∣∣ = O(T ) +O
(
T (log log T )2

)
= o (N(T ;Q))

and ∑
|γbk |<T

∣∣∣∣βbk − 3

2

∣∣∣∣ = O
(
T (log log T )2

)
= o (N(T ;Q)) ,

so the zero ordinates are uniformly distributed. The same reasoning applies
to

ζ(s;S8) = 240 · 2−sζ(s)ζ(s− 3).

with βmin = 1/2 and βmax = 7/2. Here, of course, there are no other zeros
than those implied by the Riemann zeta-function.

As indicated these are only alternative proofs. We know already from the
properties of the Riemann zeta-function and Theorem 2.3 that the zero
ordinates are uniformly distributed modulo one. Nevertheless in general
it is possible that examples exist where two clustering lines can be estab-
lished to apply Corollary 5.5 without having a simple product form of ζ(s;Q).

Finally we remark that Corollary 5.5 is valid also for all other zeta-functions
where an equivalent of Landau's theorem can be established, hence for exam-
ple for functions discussed in Chapter 4.
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5 Uniform distribution of imaginary parts of zeros of Epstein zeta-functions

5.6 Recursion formula for the logarithmic derivative

In this section we will derive a recursive representation for the logarithmic
derivative Z′(s;Q)

Z(s;Q) . We will also show that it agrees with Lemma 5.1. We will

split Z′(s;Q)
Z(s;Q) into two summands depending on if the ln(Q) as de�ned in (5.7)

consists of only one factor (h = 1) or is the product of at least two factors
(h ≥ 2). The �rst summand of this representation will equal Z ′(s;Q) and
for the second summand we will de�ne quantities ck and qk recursively. The
qk will run through all possible products of the form (5.7) with at least two
factors. The ck will be the corresponding coe�cients. In particular we claim

Lemma 5.8. For the logarithmic derivative of Z(s;Q) as de�ned in previous
sections we have the following recursive relation:

Z ′(s;Q)

Z(s;Q)
=

∑
n>m(Q)

a(n) log

(
m(Q)

n

)(
m(Q)

n

)s
+

∞∑
k=0

ck · qk−s. (5.25)

For k ≥ 0 the qk are de�ned in increasing order as

q0 =
l1

2

m(Q)2

qk = min
i≤k−1

{(
qi ·

l2
m(Q)

)
,

(
l3

m(Q)
· l4
m(Q)

)}
with qk > qk−1, l1 = m(Q) + 1 and in general all numbers li ∈ N are greater
than m(Q). For the corresponding ck's, we have, with ij < k and l2j > m(Q),

ck =


−a(l21)ci1 − . . .− a(l2α)ciα if qk = qi1

l21
m(Q) = . . . = qiα

l2α
m(Q)

−a(l3)2 log m(Q)
l3

if qk = l3
m(Q) ·

l4
m(Q) and l3 = l4

−a(l4)a(l3) log m(Q)
l3

− a(l3)a(l4) log
m(Q)
l4

if qk = l3
m(Q) ·

l4
m(Q) and l3 ̸= l4.

Proof: First we note that obviously Z′(s;Q)
Z(s;Q) × Z(s;Q) = Z ′(s;Q), and from

this product representation we can derive the coe�cients recursively by com-
parison of the series. Now the �rst sum of (5.25) is equal to Z ′(s;Q) and
stems from the fact that Z(s;Q) starts with the constant term 1. In the sec-
ond term, q0 is the �rst base, which needs to occur since the lowest base

of Z′(s;Q)
Z(s;Q) is

(
l1

m(Q)

)−s
. Hence we need to de�ne c0 as above to cancel out

a(l1) log
m(Q)
l1

× a(l1).
Now we consider the qk de�ned in increasing order. The construction of the
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5.7 Open questions

qk ensures to represent all possible products with at least two factors, which
are clearly of the form of the ln(Q); see (5.7) . In each step of the recur-
sion, either the next larger qk is a new product l3

m(Q) ·
l4

m(Q) , or it is a prod-

uct of an already existing qi with one new factor l4
m(Q) . The ck are de�ned

such that by multiplication with Z(s;Q) the coe�cient of the lowest base is
cancelled out. This means that if qk is of the form qi · l2

m(Q) , then we have
ck = −a(l21)ci1 − . . .− a(l2α)ciα since the qk can equal several di�erent prod-
ucts of this form and we need to cancel out all the contributions. If we have
new products of the form qk = l3

m(Q) ·
l4

m(Q) , then we again achieve the cancella-
tion by the previous de�nitions. Here we note that the last case di�erentiation
occurs if either l3 = l4 where there is only one term to be cancelled or if l3 ̸= l4
where the two symmetric coe�cients need to be wiped out.
To see that both representations from Lemma 5.1 and Lemma 5.8 coincide we
�rst note that the number of weights li

m(Q) in the ck grows according to the
multinomial coe�cient which is the essential part of the bn(Q) de�ned in (5.8).
Further the recursive identity ck = −a(l21)ci1 − . . . − a(l2α)ciα corresponds
with that of the multinomial coe�cient(

ν

k1 . . . kr

)
=

r∑
i=1

(
ν − 1

k1 . . . ki−1, ki − 1, ki+1 . . . kr

)
.

Finally the factors a(m(Q) + ki) log
(

m(Q)
m(Q)+ki

)
in bn(Q) arise from the multi-

plication with Z ′(s;Q). □

5.7 Open questions

The central natural open question remains: Does uniform distribution mod-
ulo one of the zero ordinates hold for all Epstein zeta-functions? At least
no good argument against it has been found during the work of this thesis.
We have seen in this chapter that for more than two clustering lines of ze-
ros the argumentation via a Landau type theorem doesn't su�ce and that
there are de�nitely many Epstein zeta-functions with a more complex zero
distribution, see Chapter 3. On the other hand the author is not aware of a
zeta-function where the ordinates of the nontrivial zeros ϱ = β + iγ share a
di�erent distribution property modulo one.

A di�erent approach to gain uniform distribution results had been suggested
by Elliott [17]. His reasoning relies on a careful analysis of the argument of the
Riemann zeta-function. However, its not clear if this method can be applied
to the general case.

Another interesting open question �tting into this thesis is: For which type of
zeta-function can we establish a Landau type theorem, or, at least, a bound
of the form

∑
0<γ≤T x

ϱ = O(T )?
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5 Uniform distribution of imaginary parts of zeros of Epstein zeta-functions

We mentioned a couple of examples throughout previous chapters. In order to
use the same technique of contour integration as we did, it looks reasonable
to demand that the zeta-function obeys a functional equation, the Phragmén-
Lindelöf principle and comes along with a zero-free half plane.
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6

Discrepancy estimate for zero ordinates of

Epstein zeta-functions

�A mathematician is a device for turning co�ee into theorems.�

Paul Erdös (1913-1996)

In this last chapter we shall investigate into the discrepancy of the sequence
of zero ordinates of Epstein zeta-functions. We �rst will give basic de�nitions
and recall some results valid for the Riemann zeta-function. For a discrepancy
estimate we need a uniform version of Theorem 5.3. To prove this we will use
the Theorem of Erdös and Turán and ideas of Rehberg [56], as well as Baluyot
and Gonek [3].

6.1 Preliminaries

So far we studied uniform distribution modulo one purely from a qualitative
point of view. One measure to describe the quantitative distribution prop-
erty of a sequence is the so-called discrepancy. It was �rst introduced by
Bergström [5] and van der Corput and Pisot [75]. If x1, ..., xN is a �nite se-
quence of real numbers, then the number

DN = DN (x1, ..., xN )

= sup
0≤α<β≤1

∣∣∣∣#{1 ≤ n ≤ N : {xn} ∈ [α, β)}
N

− (β − α)

∣∣∣∣
is called the discrepancy of the sequence. If the sequence (xn)n≥1 is in�nite
or contains at least N terms, DN is de�ned to be the discrepancy of the �rst
N terms of the sequence. The discrepancy measures the deviation between the
distribution of the sequence and uniform distribution modulo one. A sequence
is uniformly distributed modulo one if, and only if, its discrepancy tends to
zero for N → ∞.



6 Discrepancy estimate for zero ordinates of Epstein zeta-functions

We brie�y want to examine what bounds this quantity has to obey. The
convergence cannot be arbitrarily fast, for every sequence of N numbers we
have

1

N
≤ DN ≤ 1.

According to a result of van Aardenne-Ehrenfest [74] in 1945 every sequence
satis�es for some positive constant k the lower bound

DN ≥ k · log log logN
N

for in�nitely many N , but not for all. This has been improved by Roth [58]
to

DN ≥
√
logN

16N

for in�nitely many N and further by Schmidt [60] to

DN ≥ 1

66 log 4

logN

N
.

We will concentrate on upper bounds in the sequel though. A useful method
to estimate the discrepancy is by means of exponential sums appearing in
Weyl's criterion (2.2). This allows techniques from analytic number theory to
be applied for the estimates. One important result in this direction, which we
will leverage, is the Theorem of Erdös and Turán [19]: Let x1, ..., xN be
a �nite sequence of real numbers and m any positive integer. Then

DN ≤ 6

m+ 1
+

4

π

m∑
h=1

(
1

h
− 1

m+ 1

) ∣∣∣∣∣ 1N
N∑
n=1

e2πihxn

∣∣∣∣∣ .
In particular we will use the following simpli�ed version: There exists an
absolute constant C such that

DN ≤ C ·

(
1

m
+

m∑
h=1

1

h

∣∣∣∣∣ 1N
N∑
n=1

e2πihxn

∣∣∣∣∣
)
, (6.1)

see for example equation (2.42) in Kuipers and Niederreiter [42]. Here it is
important that the parameterm can be chosen freely to optimize the estimate.

We will now recall some results about the discrepancy of the Riemann zeta
ordinates which are uniformly distributed modulo one. In 1990 Hlawka [36]
was the �rst to prove the following: Let z > 1 be a real number and DT the
discrepancy of the sequence

(
log z
2π γ

)
γ
. Then, for T → ∞

DT = O

(
log z

log log T

)
, (6.2)
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6.1 Preliminaries

and by assuming the Riemann hypothesis

DT = O

(
log z

log T

)
.

In the proof Hlawka used the Theorem of Erdös and Turán (6.1) and an im-
proved error term from Landau's theorem (1.6) determining the x-dependency.
He was able to replace O(log T ) with O(x2 log T ) which enabled him to choose
an optimal parameter m in (6.1). In 1993 Fujii [26] obtained an improved dis-
crepancy estimate, he replaced (6.2) with

DT = O

(
log log T

log T

)
where the implied constant depends on z. For further re�nements see also
Fujii [27].

We turn our attention back to the general case of Epstein zeta-functions
though. To ensure uniform distribution modulo one of the zero ordinates we
needed the average density hypothesis. Hence this assumption is still neces-
sary to explore the discrepancy, and we additionally require a certain speed
of convergence. We will therefore demand∑

|γ|<T

∣∣∣β − n

4

∣∣∣ = O

(
T log T

log log T

)
(6.3)

for the real parts β of ζ(s;Q). This, as recalled in (2.6), was proven by Levin-
son [47] for the Riemann zeta-function. It is a natural assumption to make,
since this result generalizes to a broader class of zeta-functions, see also Levin-
son [47].
Finally in this section we provide an estimate of the coe�cients bn(Q) oc-
curring in the general representation of the logarithmic derivative of Z(s;Q),
de�ned in Lemma 5.1. This will be used to derive the statement about the
discrepancy in the following sections.

Lemma 6.1. Let Z
′(s;Q)
Z(s;Q) =

∑∞
n=1

bn(Q)
ln(Q)s . There is a constant B > 0 such that

for all n ∈ N we have
bn(Q) = O

(
ln(Q)B

)
Proof: Z

′(s;Q)
Z(s;Q) =

∑∞
n=1

bn(Q)
ln(Q)s converges absolutely for σ > B with B > 0 the

constant de�ned in (5.10). It is known, see for instance Hardy and Riesz [33],
that the abscissa of convergence satis�es

σ = lim sup
N→∞

log
∑N
n=1 |bn(Q)|

log ln(Q)
,

respectively
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6 Discrepancy estimate for zero ordinates of Epstein zeta-functions

σ = lim sup
N→∞

log
∑∞
n=N+1 |bn(Q)|
log ln(Q)

according to whether
∑N
n=1 |bn(Q)| is divergent or not. That implies in the

latter case ln(Q)B + ϵ ≥
∑∞
n=N+1 |bn(Q)| for all ϵ > 0 and su�ciently large

N ∈ N. Therefore

|bN+1(Q)| =
∞∑

n=N+1

|bn(Q)| −
∞∑

n=N+2

|bn(Q)| ≤ ln(Q)B .

The case when
∑∞
n=N+1 |bn(Q)| is divergent can be treated in the same way

which implies bn(Q) = O
(
ln(Q)B

)
. □

6.2 Uniform version of Theorem 5.3

Our aim is now to derive a uniform version of Theorem 5.3 by exploring the
dependency on the parameter x. For this we need to recall the ordered set S
of elements

ln(Q) =

h∏
ν=1

m(Q) + kν
m(Q)

with h ≥ 0, kν ∈ N, see (5.7). For x ∈ R+ \ {1} we de�ne

⟨x⟩ =

{
nearest distance to a ln(Q) if x > 1

nearest distance to a 1
ln(Q−1) if x < 1.

Looking at the dependency on the parameter x we will prove the following
variant of Theorem 5.3:

Theorem 6.2. Let x ∈ R+ \ {1} and B as de�ned in (5.10), b > B. As
T → ∞ there exists a constant B̃ > 0 such that∑

|γ|<T

xϱ =
T

π

(
δlk(Q),x · bk(Q)− x

n
2 δlk(Q−1), 1x

· bk(Q−1)
)

(6.4)

+O(xB log T )1{x>1} +O(x
n
2 −b log T )1{0<x<1}

+O

(
xB̃ ·min

(
T,

x

⟨x⟩

))
1{x>1}

+O

(
x−B̃ ·min

(
T,

x

⟨x⟩

))
1{0<x<1}

for all Epstein zeta-functions.
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6.2 Uniform version of Theorem 5.3

Proof: We use the same setup as for Theorem 5.3 and integrate via the path
of the counterclockwise oriented closed rectangle ∂R with points B − iT ,
B + iT , n2 − b + iT and n

2 − b − iT . All nontrivial zeros of ζ(s;Q) lie inside
n
2 − b < Re s < B and we consider, as in (5.13),∑

|γ|<T

xϱ =
1

2πi

∫
∂R

xs
Z ′(s;Q)

Z(s;Q)
ds+O(1).

Again like in (5.14) we split the integral into four parts

∫
∂R

xs
Z ′(s;Q)

Z(s;Q)
ds =

{∫ B+iT

B−iT
+

∫ n
2 −b+iT

B+iT

+

+

∫ n
2 −b−iT

n
2 −b+iT

+

∫ B−iT

n
2 −b−iT

}
xs
Z ′(s;Q)

Z(s;Q)
ds

=:

4∑
j=1

Ij .

First we show that

I1 = i

∞∑
n=1

bn(Q)

(
x

ln(Q)

)B ∫ +T

−T

(
x

ln(Q)

)it
dt

= 2i · δlk(Q),x · bk(Q) · T +O

xB ∞∑
n=1

|bn(Q)|
ln(Q)B

·min

T, 1∣∣∣log ( x
ln(Q)

)∣∣∣

 .

Here the �rst term on the right stems from the case x = ln(Q). The error
term arises for x ̸= ln(Q) where we get

∫ +T

−T

(
x

ln(Q)

)it
dt = i · 1

log
(

x
ln(Q)

) (e− log ( x
ln(Q) )iT − elog (

x
ln(Q) )iT

)
which cannot grow larger than O(T ). This can be seen by inserting the Taylor
approximation of the exponential function. Now to estimate the sum in the
error term we note that for ln(Q) ≤ 1

2x or ln(Q) ≥ 2x we have∣∣∣∣log( x

ln(Q)

)∣∣∣∣≫ 1.

Thus, due to the absolute convergence of
∑∞
n=1

bn(Q)
ln(Q)s , this part is
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6 Discrepancy estimate for zero ordinates of Epstein zeta-functions

≪
∞∑
n=1

|bn(Q)|
ln(Q)B

· xB ≪ xB .

On the other hand the part with 1
2x < ln(Q) < x is

≪
∑

1
2x<ln(Q)<x

|bn(Q)| ·min

T, 1∣∣∣log ( x
ln(Q)

)∣∣∣
 .

Since ln(Q) → ∞ there are only �nitely many ln(Q) below any �xed x. Also
there exists an α ∈ N such that lα(Q) < x < lα+1(Q). Thus, since

log

(
x

ln(Q)

)
= − log

(
1− x− ln(Q)

x

)
>
lα(Q)− ln(Q)

x

we get by applying Lemma 6.1

∑
1
2x<ln(Q)<x

|bn(Q)| · min

T, 1∣∣∣log ( x
ln(Q)

)∣∣∣


≪ #{n ∈ N : ln(Q) < x} · lα(Q)B ·min

{
T,

x

x− lα(Q)

}
≪ #{n ∈ N : ln(Q) < x} · xB ·min

{
T,

x

⟨x⟩

}
.

It remains to consider the number of elements in S with ln(Q) < x. We
use a crude estimate su�cient to bound this number with a power of x. The
denominator of a number ln(Q), see de�nition (5.7), is a power of m(Q). From
ln(Q) < x it follows that the largest possible power h1 ∈ R occurring in the
representation of ln(Q) ful�lls(

m(Q) + 1

m(Q)

)h1

< x,

hence

h1 <
log x

log
(

m(Q)+1
m(Q)

) .
Further to any denominator m(Q)h there exist at most x ·m(Q)h numbers less
than x. Therefore we can bound the number of elements in {n ∈ N : ln(Q) <
x} by x ·m(Q)h1 · h1. De�ning

D1 :=

 logm(Q)

log
(

m(Q)+1
m(Q)

)
 + 2
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6.2 Uniform version of Theorem 5.3

we arrive at

#{n ∈ N : ln(Q) < x} ≪ xD1 .

An analogous argument holds for the part x < ln(Q) < 2x. Putting pieces
together we see that

I1 = 2i · δlk(Q),x · bk(Q) · T +O

(
xB · xD1 ·min

{
T,

x

⟨x⟩

})
.

Looking at I2 we follow closely the arguments of Chapter 5, in particular
(5.16), to arrive at

I2 =

∫ B+iT

n
2 −b+iT

xs
Z ′(s;Q)

Z(s;Q)
ds≪

∫ B

n
2 −b

xσ
∣∣∣∣Z ′(σ + iT ;Q)

Z(σ + iT ;Q)

∣∣∣∣ dσ
≪ (log T )xB1{x>1} + (log T )x

n
2 −b1{0<x<1}

= O(xB log T )1{x>1} +O(x
n
2 −b log T )1{0<x<1}.

Likewise we get

I4 =

∫ B−iT

n
2 −b−iT

xs
Z ′(s;Q)

Z(s;Q)
ds = O(xB log T )1{x>1} +O(x

n
2 −b log T )1{0<x<1}.

Now we consider I3 and decompose as above, see (5.17) onwards, into

I3 = −
∫ n

2 −b+iT

n
2 −b−iT

xs
[
Z ′(n2 − s;Q−1)

Z(n2 − s;Q−1)

]
ds

+

∫ n
2 −b+iT

n
2 −b−iT

xs
(
c3 −

Γ ′(n2 − s)

Γ (n2 − s)
− Γ ′(s)

Γ (s)

)
ds

=: I3a + I3b .

For I3a we repeat basically the argument of the estimate of I1. We obtain by
case di�erentiation of x = 1

lk(Q−1) and x ̸= 1
lk(Q−1) the representation

I3a = −ixn
2 −b

∞∑
k=1

bk(Q−1)

lk(Q−1)
b

∫ T

−T

(
x · lk(Q−1)

)it
dt

= −ixn
2 δlk(Q−1), 1x

· bk(Q−1) · 2T

+O

(
x

n
2 −b

∞∑
k=1

bk(Q−1)

lk(Q−1)
b
·min

{
T,

1

|log (x · lk(Q−1))|

})
.
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6 Discrepancy estimate for zero ordinates of Epstein zeta-functions

Again for 1
lk(Q−1) ≤ x

2 or 1
lk(Q−1) ≥ 2x we have

∣∣log (x · lk(Q−1)
)∣∣ ≫ 1 and

the error term on the right hand side in this case is

x
n
2 −b

∞∑
k=1

bk(Q−1)

lk(Q−1)
b
≪ x

n
2 −b.

Now there exists a β ∈ N with 1
lβ+1(Q−1) < x < 1

lβ(Q−1) . Hence, by renewed

application of Lemma 6.1, the part where x
2 <

1
lk(Q−1) < x becomes

∑
1
2x<

1

lk(Q−1)
<x

|bk(Q−1)| ·min

{
T,

1

|log (x · lk(Q−1))|

}

≪ #{k ∈ N : 1 >
1

lk(Q−1)
>
x

2
} ·
(

1

lβ+1(Q−1)

)B′

·min

{
T,

x

x− 1
lβ+1(Q−1)

}

≪ #{k ∈ N : 1 >
1

lk(Q−1)
>
x

2
} · x−B

′
·min

{
T,

x

⟨x⟩

}
for a constant B′ > 0. Now we can estimate #{k ∈ N : 1 > 1

lk(Q−1) >
x
2}

analogously by 2
x ·m(Q−1)h2 · h2 with

h2 =
− log x+ log 2

log
(

m(Q−1)+1
m(Q−1)

) .
Therefore setting

D2 :=

 − logm(Q−1)

log
(

m(Q−1)+1
m(Q−1)

)
 − 2

we obtain

I3a = −ixn
2 δlk(Q−1), 1x

· bk(Q−1) · 2T +O

(
x−B

′
· xD2 ·min

{
T,

x

⟨x⟩

})
.

It remains to look at I3b with the decomposition

I3b =

{∫ n
2 −b+i

n
2 −b−i

+

∫ n
2 −b+iT

n
2 −b+i

+

∫ n
2 −b−i

n
2 −b−iT

}
xs
(
c3 −

Γ ′(n2 − s)

Γ (n2 − s)
− Γ ′(s)

Γ (s)

)
ds

=: L1 + L2 + L3

Now L1 is clearly O(x
n
2 −b). L2 we decompose further according to
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6.2 Uniform version of Theorem 5.3

L2 =

∫ n
2 −b+iT

n
2 −b+i

xs
[
c3 − log s+O

(
1

|s|

)
− log

(n
2
− s
)
+O

(
1

|n2 − s|

)]
ds

=

∫ n
2 −b+iT

n
2 −b+i

xs
[
c3 +O

(
1

|s|

)
+O

(
1

|n2 − s|

)]
ds

−
∫ n

2 −b+iT

n
2 −b+i

xs
[
log s+ log

(n
2
− s
)]
ds

= : L2a + L2b .

We get

L2a =

∫ n
2 −b+iT

n
2 −b+i

xs
[
c3 +O

(
1

|s|

)
+O

(
1

|n2 − s|

)]
ds

= ix
n
2 −b

∫ T

1

xit
[
c3 +O

(
1

|n2 − b+ it|

)
+O

(
1

|b− it|

)]
dt

= O(x
n
2 −b · log T ),

as well as for the remainder part

L2b = −
∫ n

2 −b+iT

n
2 −b+i

xs
[
log s+ log

(n
2
− s
)]
ds

= −ixn
2 −b

∫ +T

1

xit
[
log(

n

2
− b+ it) + log(b− it)

]
dt.

Applying once more partial integration we arrive at

L2b =
xit

i log x

[
log(

n

2
− b+ it) + log(b− it)

]∣∣∣T
1

−
∫ +T

1

xit

log x

(
1

n
2 − b+ it

− 1

b− it

)
dt = O

(
x

n
2 −b

|log x|
· log T

)
.

The same argument yields L3 = O
(
x

n
2

−b

|log x| · log T
)
.

Putting all pieces together and setting B̃ = max{B,B′} + max{D1, D2} we
obtain
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6 Discrepancy estimate for zero ordinates of Epstein zeta-functions

I1 = 2i · δlk(Q),x · bk(Q) · T +O

(
xB̃ ·min

(
T,

x

⟨x⟩

))
,

I2 = O(xB̃ log T )1{x>1} +O(x
n
2 −b log T )1{0<x<1},

I3 = −ixn
2 δlk(Q−1), 1x

· bk(Q−1) · 2T +O

(
x−B̃ ·min

(
T,

x

⟨x⟩

))
+O

(
x

n
2 −b

|log x|
· log T

)
,

I4 = O(xB̃ log T )1{x>1} +O(x
n
2 −b log T )1{0<x<1},

which concludes the proof of Theorem 6.2. □

6.3 Discrepancy for zero ordinates of Epstein

zeta-functions

Based on Theorem 6.2 we are now in a position to state the main result of
this chapter.

Theorem 6.3. Let z ̸= 1 be a positive real number. Let the sequence γ range
through the set of positive imaginary parts of the nontrivial zeros of the Epstein
zeta-function ζ(s;Q) in ascending order and let∑

|γ|<T

∣∣∣β − n

4

∣∣∣ = O

(
T log T

log log T

)
.

Let DT be the discrepancy of the sequence
(

log z
2π γ

)
γ
. Then, as T → ∞

DT ≪ |log z|
log log log T

Proof: According to (5.18) we start with

∑
|γ|<T

∣∣∣x(n
4 +iγ) − x(β+iγ)

∣∣∣ ≤ max {xβ , xn
4 } |log x|

∑
|γ|<T

∣∣∣β − n

4

∣∣∣ ,
hence, using the density assumption (6.3), we get

∑
|γ|<T

x(
n
4 +iγ) =

∑
|γ|<T

x(β+iγ) +O

(
max {xβ , xn

4 } |log x| · T log T

log log T

)
.

Now inserting the asymptotic of Theorem 6.2 and dividing by x
n
4 we obtain
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∑
|γ|<T

xiγ =
T

π

(
δlk(Q),x · bk(Q)− x

n
2 δlk(Q−1), 1x

· bk(Q−1)
)

+O

(
xB̃ · T log T

log log T

)
1{x>1} +O

(
x−B̃ · T log T

log log T

)
1{0<x<1}.

Here the latter two terms absorb all error terms occurring in Theorem 6.2.
Now we set x = zh with a positive z ̸= 1 and h being a positive integer.
Dividing by the number of zeros N(T ;Q), which is O(T log T ), we obtain

1

N(T ;Q)

∑
|γ|<T

eih log zγ

= O

(
1

log T
· 1
π

(
δlk(Q),zh · bk(Q)− z

hn
2 δlk(Q−1), 1

zh
· bk(Q−1)

))
+O

(
zhB̃ · 1

log log T

)
1{zh>1} +O

(
z−hB̃ · 1

log log T

)
1{0<zh<1}.

We continue by looking at the terms containing zh and case di�erentiate. For
zh > 1 we consider the case zh = lk(Q) and get

δlk(Q),zh · bk(Q)− z
hn
2 δlk(Q−1), 1

zh
· bk(Q−1) = bk(Q) ≪ zhB̃

due to Lemma 6.1. Another application of Lemma 6.1 to the case 0 < zh < 1,
where we consider zh = 1

lk(Q−1) , yields

δlk(Q),zh · bk(Q)− z
hn
2 δlk(Q−1), 1

zh
· bk(Q−1) = z

hn
2 bk(Q−1) ≪ z−hB̃ .

Hence, in light of 1
log T < 1

log log T for su�ciently large T , we arrive at the
following common bound:

1

N(T ;Q)

∑
|γ|<T

eih log zγ = O

(
zhB̃ · 1

log log T

)
1{zh>1}

+O

(
1

zhB̃
· 1

log log T

)
1{0<zh<1}.

Using this and the Erdös-Turan inequality (6.1) we obtain a bound for the
discrepancy DT :
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6 Discrepancy estimate for zero ordinates of Epstein zeta-functions

DT ≪ 1

m

m∑
h=1

1

h

∣∣∣∣∣∣ 1

N(T ;Q)

∑
|γ|<T

eih log zγ

∣∣∣∣∣∣
≪ 1

m
+

1

log log T

m∑
h=1

max{zhB̃ , z−hB̃}
h

.

Once more we distinguish zh > 1 and 0 < zh < 1. We use the general estimate

m∑
n=1

ωn ≪ ωm

m

which holds for any real ω > 1. Applying it to ω = zB̃ yields in case of zh > 1

DT ≪ 1

m
+

1

log log T
· z

mB̃

m
.

To optimize the parameter m we observe that 1 = zmB̃

log log T implies

m = log log log T

B̃ log z
. Hence we chose

m =

[
log log log T

B̃ log z

]
+ 1

to obtain for z > 1, T → ∞

DT ≪ 1[
log log log T

B̃ log z

]
+ 1

≪ B̃ log z

log log log T
≪ log z

log log log T
.

Similarly for 0 < zh < 1 we have ω−B̃ > 1 and get

DT ≪ 1

m
+

1

log log T
· z

−mB̃

m
.

Now 1 = 1
zmB̃ log log T

implies m = −B̃ · log log log T
log z , so baring in mind log z < 0

we take

m =

[
−B̃ · log log log T

log z

]
+ 1

to arrive at

DT ≪ 1[
−B̃ · log log log T

log z

]
+ 1

≪ −B̃ log z

log log log T
≪ |log z|

log log log T

for 0 < z < 1, T → ∞. Combining the two cases proves the discrepancy
estimate of the Theorem, since we obtain for all z ∈ R+ \ {1}, T → ∞
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6.3 Discrepancy for zero ordinates of Epstein zeta-functions

DT ≪ |log z|
log log log T

where the implied constant may depend on B̃. □
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