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Chapter 1

Motivation

1.1 Magnetic Resonance Imaging

The �eld of medical imaging o�ers an abundance of options for obtaining anatomical or functional

information about the human body. These methods include Computed Tomography (CT), ultrasound,

Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT),

and Magnetic Resonance Imaging (MRI). While each of the techniques mentioned here is non-invasive,

only MRI o�ers both high resolution and soft tissue contrast without employing ionizing radiation

(unlike CT, PET, or SPECT). MRI allows the operator to select a desired contrast in an arbitrarily

positioned slice, and can be used to generate dynamic image series which show anatomical motion.

Angiography (MRA), functional imaging (fMRI), and spectroscopy (MRS) are also possible with MR,

o�ering the opportunity to obtain, for instance, late-enhancement perfusion images, signals indicating

brain activity, or information about chemical composition in tissues. These properties make MRI an

attractive imaging modality.

However, MRI is plagued by a number of drawbacks. One major problem is that performing a full

clinical MR protocol is relatively time-consuming in comparison to other imaging modalities, especially

ultrasound and CT. This di�culty has many practical consequences. The �rst is that due to the high

costs of building (i.e. buying) and maintaining an MR scanner, the long measurement times required

for many studies lead to a high cost per patient. Secondly, the narrow bore of the MR scanner can

potentially lead to feelings of discomfort or even claustrophobia. Thus, uncooperative patients, children,

or even impatient test subjects often �dget or struggle when they must lie still in the scanner for a

long time. This patient motion can lead to artifacts or misregistration problems in the subsequent MR

images, which must then be reacquired, further increasing the total scan time. For these reasons, it

would be highly desirable to reduce the total amount of time a patient spends in the MR scanner.

The long acquisition time for single images also causes problems in MRI. As stated above, patient

motion can lead to unwanted e�ects in MR images. Thus, in addition to voluntary patient motion,

breathing, cardiac or smooth muscle motion, and blood �ow must be minimized during the scan to

avoid blurring or other artifacts. While breath-hold techniques, cardiac gating, �ow compensated or

saturation methods, and/or segmentation can be used to improve image quality, these options cannot
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be employed in all cases. Ideally, it would be possible to acquire data from a complete 2D slice or 3D

volume fast enough to generate an image on a time scale not a�ected by the motion. This would allow

one to depict, for instance, the movement of the beating heart at a real-time frame rate. However, even

in cases where such a fast acquisition is possible, the image contrast options are then restricted, thereby

compromising a major advantage of MRI. Another challenge is that distortions and signal cancellation

can also occur when attempting to acquire an entire image especially quickly in what is known as a

�single shot� method. For functional MRI (fMRI), the need for fast imaging is additionally motivated by

the desire to capture changes in the brain quickly. Thus, it is advantageous to shorten MR scan times

not only for cost e�ectiveness, patient comfort, and artifact reduction, but also to acquire dynamic

information about structure or function at a frame rate fast enough to depict the relevant changes.

In the past, options for the reduction of scan time while maintaining a given image contrast were

available, but limited. Unfortunately, the spatial resolution and time resolution are inversely related in

MRI; a higher resolution image requires more time to acquire than a lower resolution image. Thus, to

reduce the total imaging time, the resolution can be decreased. However, high resolution images are

often needed for the detection and classi�cation of disease, making this option less attractive. Another

option is the use of advanced reconstruction techniques which rely on the conjugate symmetry of MR

data. Such methods, while viable in many cases, allow for a maximum time reduction factor of 2.

Thus, with the increasing use of MR in a clinical setting in the late 1990's, the search for alternative

acceleration options was well underway.

1.2 New Options for Fast MR Imaging

With advances in MR technology at the end of the last century, several new options for MR imaging

which ameliorate some of the above mentioned di�culties have become available. The �rst major

advance was the development of multi-coil arrays and multi-channel MR scanners. Such arrays and

scanners allow the simultaneous acquisition of the image information at di�erent spatial locations

around the object. While the primary reason for building these multi-coil arrays was to increase the

SNR in the resulting image, an interesting side-e�ect is that each coil in such an array �sees� the object

to be imaged di�erently. It did not take long for many researchers to realize that this additional spatial

information could be used to reduce the amount of spatial information which must be acquired by the

MR scanner, in turn reducing the amount of time needed for the scan. The �rst major breakthrough

in this new �eld of �parallel imaging� came in 1997 with the introduction of SMASH by Sodickson

et al. [1]. Other techniques, such as AUTO-SMASH [2], SENSE [3], SPACE RIP [4], PILS [5], VD-

AUTO-SMASH [6], and GRAPPA [7], closely followed. These techniques all allow one to generate an

artifact-free image using an undersampled (i.e. not fully-sampled) dataset. The most commonly used

techniques in the clinic today are SENSE and GRAPPA, both of which can allow for time reductions

of up to a factor of 8, given an appropriate array coil set-up.

Another technological advance which led to new options for image acquisition is the increasingly

robust gradient systems used in MR scanners. Although MR data is usually acquired in a rectilinear (or
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Cartesian) fashion, advanced gradients allow one to acquire data along �non-Cartesian� trajectories.

Such non-Cartesian datasets, which are generally made up of data acquired along a star- or spiral-

shaped trajectory, have some speed advantages over standard Cartesian imaging. Some trajectories are

also inherently motion insensitive, meaning that motion such as blood �ow does not result in strong

artifacts in the resulting images. In addition, specialized trajectories can be used to correct for patient

motion, and can be helpful when working with uncooperative patients or children. Thus, non-Cartesian

imaging is another tool which can be used in some applications to reduce imaging time and improve

image quality.

The combination of parallel imaging and non-Cartesian imaging would allow for additional bene�ts.

As an example, accelerated �single-shot� non-Cartesian datasets often contain fewer distortion artifacts

than their Cartesian counterparts. However, a number of obstacles make this combination non-trivial.

One major hurdle is the di�culty in general when working with non-Cartesian data. Because the

datapoints do not lie on a rectilinear grid and a simple Fourier transformation cannot be used for image

processing, they are much more di�cult to work with non-Cartesian than Cartesian data. Similarly,

many basic assumptions for Cartesian parallel imaging are not ful�lled in the non-Cartesian data, and

each of the methods listed above must be modi�ed before it can be applied to non-Cartesian data

(if it can be used at all). Both of these challenges have been addressed by a number of researchers,

and a plethora of di�erent solutions have been proposed, many of which are di�cult to employ without

signi�cant experience in non-Cartesian imaging. For instance, many algorithms exist which convert non-

Cartesian to Cartesian data, known as gridding algorithms, but they require input parameters which,

when selected non-optimally, can lead to image artifacts. Non-Cartesian parallel imaging reconstruction

methods are also often time consuming and complicated, and require additional datasets which can

be di�cult or inconvenient to acquire. Thus, straight-forward and parameter-free methods for non-

Cartesian data reconstruction, both for data gridding and for non-Cartesian parallel imaging, are

currently the subject of intensive research.

1.3 Goals of this Thesis

This thesis gives a summary of my work combining non-Cartesian MRI and parallel imaging. Chapters

2 and 3 o�er overviews of Magnetic Resonance Imaging, including non-Cartesian imaging and parallel

imaging, respectively. Chapter 4 details my work in developing a novel data gridding technique us-

ing parallel imaging, which simpli�es the gridding process for datasets acquired along non-Cartesian

trajectories. This new method, GRAPPA Operator Gridding (GROG), has a number of advantages

over standard gridding methods, making it both robust and easy to implement and use. Following

the introduction to GROG, a method of determining the few parameters intrinsic to GROG using the

non-Cartesian datapoints themselves is discussed in Chapter 5. Self-Calibrating GROG (SC-GROG) is

a interesting development for non-Cartesian data gridding, because it requires no information besides

the non-Cartesian trajectory. Other gridding methods are much more unwieldy, as many input param-

eters must be optimized in order to arrive at the �nal gridded image. Thus, with the introduction of
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SC-GROG, one of the major di�culties in non-Cartesian imaging has been removed.

Once the concept of GROG has been developed, the thesis turns to the use of special properties

of GROG to simplify non-Cartesian parallel imaging. Unlike Chapters 4 and 5, which discuss grid-

ding fully-sampled non-Cartesian datasets, the next two chapters deal with reconstructing artifact-free

images from undersampled non-Cartesian datasets. Chapter 6 introduces a new method of reconstruct-

ing arbitrarily undersampled datasets using a modi�ed version of Cartesian GRAPPA. By �rst using

GROG to grid the undersampled non-Cartesian data (a feat which cannot be accomplished by other

gridding techniques), the GRAPPA reconstruction process is greatly simpli�ed. In Chapter 7, the use

of GROG to mimic a trajectory known as Bunched Phase Encoding is described. The basic idea is

to generate bunches of points around each acquired point by shifting the acquired data in a manner

similar to gridding with GROG. Unfortunately, shifts large enough to completely reconstruct the miss-

ing datapoints cannot be performed with GROG. However, by exploiting the Generalized Sampling

Theorem of Papoulis, one can perform an iterative reconstruction using the arti�cial bunched points to

generate artifact-free images. It is important to note that the two non-Cartesian image reconstruction

methods described here depend on GROG, and cannot be performed without this technique.

Finally, Chapter 8 contains a summary of the work presented in this thesis, as well as a discussion

of future directions that could be explored using the ideas presented here.



Chapter 2

MRI Basics

2.1 Larmor Frequency

The idea of nuclear spin and the resulting spin angular momentum is a familiar concept in nuclear

physics [8]. The spin of an atomic nucleus can be characterized by its quantum number, which for

protons (and many other nuclei, such as 13C, 15N , 19F , and 31P ) is s = 1
2 . The relationship between

the spin of a nucleus and the magnetic moment ~µ that arises from it can be described as

~µ = γ~~S (2.1)

where the parameter γ is known as the gyromagnetic ratio, which is speci�c to the nucleus in question

(approximately 2.674×108 rad/Ts for protons), ~ is Planck's constant divided by 2π, and ~S is the total

spin angular momentum operator.

Descriptions of the interaction between nuclei and an external magnetic �eld, i.e. Nuclear Magnetic

Resonance (NMR), �rst appeared as early as 1946 [9, 10]. When an outside magnetic �eld, B0, is

applied to a nucleus with a non-zero magnetic moment, the spin will seek to align itself either parallel

or anti-parallel to the �eld in accordance with the quantization of angular momentum. For a nucleus

of spin 1
2 , this creates two distinct energy levels:

E± = ±γ~B0

2
(2.2)

This phenomenon of energy splitting is known as the Zeeman e�ect [11]. If radiation (in NMR or

Magnetic Resonance Imaging (MRI), generally in the form of a radio-frequency pulse) is applied to the

aligned spins with an energy equal to the energetic di�erence between the two states, or ∆E = γ~B0,

a transition between the two energy levels occurs. The characteristic resonance frequency of this

transition is known as the Larmor frequency:

νL =
∆E
h

=
γ ·B0

2π
(2.3)
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This resonance frequency can also be thought of as the frequency at which the spins precess around

the axis of the magnetic �eld. As seen in the equations above, the Larmor frequency is directly

proportional to the magnetic �eld strength, and is speci�c to a chemical species. For instance, the

Larmor frequency for 1H nuclei (i.e. protons) is 42.5781 MHz at a �eld strength of 1 T. Because of the

large amount of water in the human body and their relatively high gyromagnetic ratio, protons are the

most commonly observed nuclei in both NMR and MRI.

As stated above, the z-component of the angular momentum, Sz, of nuclei with s = 1
2 aligns itself

to be parallel or anti-parallel to an applied magnetic �eld; these spins are generally spoken of as being

parallel or anti-parallel to the magnetic �eld. Because the spins which are parallel have a slightly lower

energy than those that are anti-parallel, there is a slight excess of these parallel spins. The resulting

di�erence in the population leads to a net macroscopic magnetic moment in the direction of the external

magnetic �eld. In order to detect the signal from this macroscopic magnetization vector, it must be

tipped away from the z-direction (i.e. the axis of the main magnetic �eld B0) into the transverse plane.

An RF excitation pulse, B1(t), of the appropriate resonance frequency applied perpendicular to the

magnetic �eld B0 will cause the magnetic moment to experience a torque, which in turn causes the

magnetization to tip away from the axis of the �eld. The �ip angle, α, is de�ned as the angle through

which the magnetization is rotated by the radiofrequency (RF) pulse after it has been applied for a

time τ :

α = γ

τ∫
0

|B1(t)| · dt (2.4)

Thus, the pulse forces the net magnetization to move away from the longitudinal direction and into the

transverse plane, i.e. the x-y plane. The resulting precession of the spins leads to signal which can be

detected by a receiver coil through magnetic induction.

2.2 The Fourier Transform and Signal Sampling

There is usually more than one resonance frequency in a sample due to either the presence of di�erent

chemical species or spatially dependent magnetic �eld gradients. In this case, the signal that results

from the rotating magnetization is a combination of these frequencies weighted by their respective

amplitudes. In order to obtain a spectrum which can be used to gather information about the sample,

the signal must be deconvolved into its component frequencies. The Fourier transform is ideal for

accomplishing this task.

The continuous Fourier Transform f(t) of a function F (ν)and its reciprocal, the inverse Fourier

transform, can be written as follows:

f(t) =

∞∫
−∞

F (ν)e−i2πνtdν (2.5)
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Figure 2.1: An example of two frequencies sampled at di�erent rates. The frequency of the
signal shown in black is twice that of the signal shown in gray. When the sampling rate is
chosen to be 1

∆t1
, the points on the curves labeled as black circles are acquired. Note that

the two frequencies cannot be distinguished from one another when this sampling rate is
chosen, and a Fourier transform would represent them as a single peak. This phenomenon
is called aliasing. However, when the sampling rate is chosen to be 1

∆t2
, i.e. twice the

highest frequency present, the points depicted as gray squares are also acquired. With this
information, the two frequencies can be distinguished from one another, and no aliasing
occurs after the Fourier transform.

F (ν) =

∞∫
−∞

f(t)ei2πνtdt (2.6)

Unlike as depicted in the equations above, the data collected by the spectrometer are discrete, and a

number n data points are collected in intervals of ∆t. The Shannon sampling theorem [12] states that

a continuous signal can be properly reconstructed from a discretely sampled function given that the

sampling rate is at least equal to two times the highest frequency in the signal being sampled:

|νmax| =
1

2∆t
(2.7)

This theorem can be understood by examining the discrete Fourier transform:

FD(ν) =
N−1∑
n=0

fD(n∆t)e2πiν n∆t
N (2.8)

where t has been replaced with n∆t to denote the discrete nature of the sampled points. It is clear

that only frequencies which fall between the range of [−νmax, νmax] can be uniquely distinguished due

to the periodicity of the exponential function, and any frequencies that appear outside of this range

will be replicated, or aliased, in this interval. This maximum sampling frequency is often called the

Nyquist sampling rate [13], and the sampling law is also known as the Nyquist criterion.

The consequences of violating the Nyquist criterion can be seen in Figure 2.1. As stated above, if

the sampling frequency is less than the Nyquist rate, frequencies at fractional multiples of the original
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frequency cannot be properly distinguished. This leads to signal aliasing, where two or more signal

components appear at the same frequency due to the insu�cient sampling rate. Aliasing is an important

concept in MRI and speci�cally parallel imaging, and will be discussed in more detail in Chapter 3.

Although the Nyquist criterion is generally accepted as a strict rule for the sampling of MRI dat-

apoints, exceptions and extensions to this rule are possible. For instance, some sampling schemes are

less prone to aliasing artifacts; such trajectories are discussed in Section 2.7. In addition, research into

the sampling of continuous functions has shown that there are cases in which the Nyquist criterion can

be violated without aliasing. The Generalized Sampling Theorem of Papoulis [14] states that as long

as the average sampling rate is equal to the Nyquist rate, the continuous signal can be reconstructed,

given that the signal is bandlimited (which is the case in MRI). While this theorem is not often used

when sampling MRI data, it is important to remember that the appearance of aliasing artifacts is not

always dictated by the Nyquist criterion.

2.3 Spatial Encoding using Gradients

As described in Section 2.2, nuclei under the in�uence of di�erent magnetic �elds precess with di�erent

frequencies and lead to distinguishable peaks in a spectrum. This property can be used to make a

distinction between nuclei present at di�erent spatial locations. If the magnetic �eld varies in space,

the spins will precess with frequencies that depend on their locations in the sample. Such a spatial

dependency in the magnetic �eld can be created using magnetic �eld gradients; a typical gradient has

the form

Gx =
∂Bz
∂x

(2.9)

where Gx would be referred to as the gradient strength in the x-direction. The application of such a

linear gradient yields the following spatially-dependent magnetic �eld:

B(x) = B0 + xGx (2.10)

Thus, by applying a magnetic �eld gradient, spins at di�erent locations can be di�erentiated by exam-

ining their resonance frequencies. The use of gradients for spatial encoding in this manner is known as

Magnetic Resonance Imaging (MRI), and the basic concepts of gradient encoding are described below.

For a more detailed explanation of MRI and gradient encoding, Reference [8] is recommended to the

reader.

2.3.1 Read Encoding Gradient

A read gradient is a gradient that is applied during the acquisition time, or read-out time, of an

experiment. In the simplest 1D imaging experiment (described by the Nobel laureate Paul Lauterbur

in 1973 [15]), an RF pulse is applied to the magnetization, which rotates it into the x-y plane. At this

point, given that there is only one chemical species present in the sample and that B0 is constant over

the FoV, all the spins would precess at the same frequency. However, if a linear, time-independent
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gradient is applied during the read-out, spins will precess at frequencies which depend linearly on their

location in the sample:

ω(x) = γ(B0 + xGx) (2.11)

or, moving into the �rotating frame,� where the x and y axes precess around the z-axis at a frequency

ω0 with respect to the laboratory frame:

ωrot(x) = γxGx (2.12)

where x is the position of the magnetization on the x-axis, and Gx is de�ned as above. In standard

Cartesian imaging, this gradient is applied during the entire acquisition time, which results in spatially

dependent resonance frequencies along one axis.

After the data have been acquired, a Fourier transform can be performed to yield peaks whose

frequencies show the one-dimensional spatial distribution of the spins in the sample. The amplitude of

each of the peaks describes the amount of magnetization in each location.

2.3.2 Phase Encoding Gradient

For a one-dimensional experiment, encoding with a read gradient alone would su�ce. However, to

create two or three-dimensional images, a phase encoding gradient is a practical approach to encode

the information in the second or third dimension. The phase encoding gradient is a gradient applied

in a direction perpendicular to the read direction, after the excitation pulse but before the acquisition.

Let x be the read encoding direction and y be the phase encoding direction. The application of such

a phase encoding gradient, Gy, causes the spins to precess with spatially dependent frequencies in the

y-direction, i.e. the e�ect is the same as that of the read gradient:

ωrot(y) = γyGy (2.13)

When the gradient is turned o�, the spins have acquired a phase, which depends on their location along

the y-axis of the sample:

φy = γyGyt (2.14)

where t is the total amount of time the phase gradient has been applied. This phase modulation is not

a�ected by gradients applied in perpendicular directions during the rest of the experiment, including

the read gradient. However, unlike in one-dimensional read encoding, one data acquisition period no

longer supplies enough information to create an image, as only one phase shift has been induced in the

y-axis. Thus, the experiment must be repeated Ny times, where Ny is the desired number of points in

the y direction. With each experiment, either the phase gradient strength, Gy, or the amount of time

the phase gradient is applied, t, is changed, giving the spins a di�erent phase shift for each experiment.

Once the data is acquired, a 2D Fourier transform can be performed, yielding a two-dimensional image

of spin density.
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2.4 K-Space

Up to this point, only linear gradients have been discussed. For a generalized gradient, the signal

induced by the spins at a time t during the application of the gradient can be written as:

S(t) ∝
∫
ρ(~x) · e−i

∫ t
0 γ· ~G(t′)~xdt′d~x (2.15)

where ρ(~x) is the spin density at the location ~x, and ~G(t) is a gradient in an arbitrary direction with

any functional form. A useful simpli�cation is

~k(t) =

t∫
0

γ · ~G(t′)dt′ (2.16)

where, for the usual case of a linear (i.e. time-independent) encoding gradient:

~k(t) = γ · ~Gt (2.17)

With the parameter ~k, the signal acquired during an experiment can be better understood. For one

value of ~k, the signal can be written as:

S(~k) =
∫
ρ(~x) · e−i~k~xd~x (2.18)

which is exactly the Fourier transform of the spin density. Inversely,

ρ(~x) =
1

2π

∫
S(~k) · ei~k~xd~x (2.19)

Thus, for a Cartesian sampling of the values of S(~k), otherwise known as k-space, the spin density in

each location can be calculated using the inverse fast Fourier transform, as discussed in Section 2.2.

K-space has the same dimensional order as the image to be acquired, i.e. a two-dimensional image

has a two dimensional k-space, one dimension for the read encoding direction and one for the phase

encoding direction. The idea of employing k-space to describe gradient encoding was introduced by

Twieg [16], and this convention greatly simpli�es the concept of the time-domain signal in MRI.

In an actual experiment, only a �nite number of k-space points can be acquired. Thus, a two-

dimensional k-space is made up of a grid of points. The Nyquist criterion presented in Section 2.2

can be understood to imply that the distance between each point in k-space is inversely related to the

�eld-of-view (FoV) of the experiment:

FoV ∝
1

∆k
(2.20)
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Figure 2.2: A representation of the relationships between parameters in k-space and in the
image domain. The FoV in the image domain is proportional to the inverse of the distance
between k-space points; when the points are closely spaced, the FoV is larger than when
the k-space points are farther apart. If the k-space points sampled lie too far apart, the
FoV becomes smaller than the object to be imaged, and aliasing occurs. The resolution in
the image domain is proportional to the inverse of the maximum k-space point sampled.
If only the center portion of k-space were sampled, the image that results would have the
same FoV, but a lower resolution.

Any spin density that exists outside this range will lead to fold-over artifacts, or aliasing, in the

image. This is due to the fact that the k-space domain must be sampled at a rate fast enough to separate

each of the frequencies present in the acquired signal. Thus, for standard imaging experiments, the

entire object must fall into the �eld-of-view de�ned by the gradients. An exception to this rule is

discussed in depth in Chapter 3, where parallel imaging is examined. When using the reconstruction

methods described there, it is possible to use a �eld-of-view that is not large enough to cover the entire

object to be imaged.

The resolution, on the other hand, is given by the extent of the k-space sampled:

4x ∝
1

2 · kx,max
(2.21)

The relationship between the image dimensions and the k-space parameters is shown in Figure 2.2.

The k-space location in an experiment can also be understood as the momentum of a gradient pulse;

for a linear gradient, the gradient strength multiplied by the length of the gradient is applied. The idea

of gradient momentum is important when examining refocusing and defocusing of magnetization using

gradients, as described in the next section.
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Figure 2.3: A schematic of the pulse sequence for a gradient echo experiment. The top
line shows the RF and acquisition channel, and the following three lines show the phase,
read, and slice gradient axes, respectively. The events in the gradient echo experiment,
and their timing, are explained in detail in the text.

2.5 Cartesian Imaging Experiment

This section describes how the acquisition of an image is performed in standard 2D Cartesian MRI.

The basic gradient echo sequence (i.e. spin warp [17, 18]) is used as an example, and is made up of the

following fundamental steps:

� application of an α pulse coupled with the slice-selection gradient

� application of a slice rephasing gradient

� dephasing of the spins in the read direction by a negative read gradient for a time t1

� application of the phase encoding gradient

� refocusing of the spins by a positive read gradient for a time t2

� simultaneous acquisition

Each of these steps can be seen in the pulse sequence for the gradient echo experiment, shown in 2.3.

This pulse sequence diagram shows what occurs on each gradient axis, as well as when RF pulses are

given and when data is acquired during the sequence.
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In a standard 2D imaging experiment, two dimensions of k-space must be acquired. However, before

the magnetization can be encoded as described above, it must be �rst transferred from the longitudinal

axis to the transverse axis. This is performed by applying an RF pulse, as described in Section 2.1.

For example, a 90◦ excitation pulse brings the magnetization completely into the x-y plane, whereas

a pulse with less energy, generally denoted as α, tips the magnetization vector only partially into the

transverse plane. This excitation pulse has a speci�c bandwidth, i.e. it only excites frequencies in a

certain interval. In order to select the 2D slice within the three-dimensional object to be imaged, a

gradient (GSS) is applied simultaneously with the pulse, such that only the spins within the selected

slice will be in the appropriate frequency interval and therefore tip into the x-y plane. The slice

thickness 4s is calculated from the pulse bandwidth 4f and the gradient strength GSS by employing

the following equation:

4s =
4f

γ ·GSS
(2.22)

In order to rephase the magnetization, a slice rephasing gradient (GSR) with half the momentum of

the original slice selection gradient is applied after the slice gradient has been completed.

Once the magnetization has been brought into the transverse plane, it is completely unencoded in

the kx and ky directions (although it is encoded in the slice direction). Thus, it can be said to be at

the center of k-space, where kx = ky = 0. The next portion of the experiment is to apply the �rst

gradient along the read direction, namely GD for time τ1, which causes the magnetization to dephase.

This can also be seen as a movement away from the center of k-space in the kx direction (the horizontal

axis) as shown in Figure 2.4. A phase encoding gradient (GP ) is applied (in this pulse sequence, at

the same time as the read dephasing gradient) in the phase encoding direction, which is orthogonal to

the read encoding direction. This gradient can also be seen as a movement in k-space, this time in the

ky direction. The strength and length of the phase encoding direction determines the k-space location,

as described in Section 2.4. The simultaneous application of these gradients leads to the movement in

k-space between t1 and t2 shown in Figure 2.4.

At this point in the experiment, the magnetization has been properly prepared, and signal acqui-

sition can take place. To this end, another gradient, GR, is applied in the read direction, this time

opposite in sign to the �rst gradient. This second gradient causes the magnetization to rephase, which

can also be seen as a movement towards the center of k-space in the read direction. A complete rephas-

ing of the spins results in a magnetization echo, and the continued application of the read gradient

results in a further dephasing of the spins. The magnetization echo occurs at the point where the

momentum of the �rst gradient is exactly cancelled by that of the second gradient; given that τ1 = τ2
2 ,

and the magnitudes of the gradients are equal (GR = −GD), then the echo occurs in the middle of

the second gradient. Thus, in this case, the echo appears in the center of the read-out line in k-space,

and the echo time TE can be de�ned as the time between the center of the excitation pulse and the

appearance of the echo. The use of such an echo allows the acquisition of one half of a line of k-space

during the rephasing of the magnetization and the other half of the line during the further dephasing

of the spins.
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Figure 2.4: A schematic of the k-space trajectory and the timings for the gradient echo
experiment. At time t1, the magnetization has been brought into the transverse plane by
the RF pulse, but no encoding has occurred. Both the read dephase and the phase gradients
are applied between t1and t2, which can be represented as a movement in k-space in the
kx and ky directions, respectively. The combination of the two yields a diagonal path in
k-space. At time t2, the phase gradient is turned o�, and the read gradient started, which
is opposite in direction to the read dephase gradient. In k-space, this results in a movement
from left to right. During this time, data is acquired. Given that the strengths of the read
and the read dephasing gradients are equal but opposite, the gradient echo occurs at time
t3, in the middle of k-space. The acquisition is continued until time t4, when the read
gradient is turned o� and the entire k-space line has been acquired. Note that one k-space
line is acquired during this process, and other lines with di�erent phase encoding gradient
strengths must be acquired to completely �ll the k-space.

As can be seen in Figure 2.4, only one line of k-space is acquired during such an experiment. In

order to obtain a 2D image, multiple phase encoding steps must be applied to cover the entire k-space.

Thus, for a �nal matrix size of 128 × 128, 128 points must be acquired in the read-direction during

the magnetization echo, and 128 phase encoding steps must be performed. Given that the repetition

time, or the time between subsequent excitation pulses, of the experiment is denoted as TR, the total

experiment time is equal to 128 · TR. Once the entire k-space has been acquired, a two-dimensional

inverse Fourier transform is applied to arrive at the �nal image.

In a three-dimensional imaging experiment, two separate phase encoding directions are used, and

the third dimension is encoded using a read gradient, as in the 2D case. Thus, if a �nal matrix of

128× 128× 128 is desired, a total of 128× 128 phase encoding steps must be performed. After the 3D

k-space has been acquired, a three dimensional Fourier transform is used to obtain the 3D image.
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2.6 Signal-to-Noise Ratio and Fast Imaging

An important indicator of the image quality in MRI is the Signal-to-Noise Ratio (SNR), which can be

de�ned as the signal level divided by the standard deviation of the image noise:

SNR =
S

σN
(2.23)

The SNR depends on a number of factors, the most important of which are discussed below.

The SNR in Equation 2.23 can broadly be written for a 2D experiment as:

SNR ∝ ∆x ·∆y ·∆z ·
√
Nx ·Ny ·Nrep/

√
BW (2.24)

where ∆x and ∆y denote the size of the voxels in the x- and y-directions, ∆z is the slice thickness,

Nx and Ny the number of points acquired in the respective directions, Nrep the number of averages

performed, and BW the acquisition bandwidth (equal to 1
∆t). The SNR is seen as a fundamental limit

in MRI, as it is generally not possible to accelerate the imaging process without decreasing the SNR

of the resulting image. However, for applications where the SNR is high enough to accommodate such

losses, possibilities for increasing the imaging speed can be examined.

As stated in the previous section, the total experiment time can be written as:

Texp = TR ·Ny ·Nrep (2.25)

where Ny is the total number of phase encoding lines that must be acquired. Thus, the simplest way

to shorten the total experiment time is to decrease the number of signal averages, Nrep. However,

assuming that this value is already at a minimum, i.e. Nrep = 1, another option must be chosen. The

next parameter which one can reduce is the number phase encoding steps, Ny. This can be done in

two ways; either the distance between adjacent phase encoding lines can be increased, or the outer

phase encoding lines can be left unsampled. In the former case, the FoV of the image in the phase

encoding direction is decreased, and in the latter case, the resolution of the image will be decreased

(see Figure 2.2). However, if the FoV is reduced such that it is smaller than the object to be imaged,

fold-over artifacts will appear as a result of the violation of the Nyquist criterion described in Section

2.2. Conversely, a reduction in resolution can make it more di�cult to distinguish small features in the

image. Thus, before the advent of parallel imaging, decreasing the number of phase encoding steps was

not a viable way of signi�cantly decreasing the total experiment time. The topic of parallel imaging is

discussed in great detail in Chapter 3.

Finally, one could also decrease the repetition time, TR. For the gradient echo sequence shown in

above, the shortest TR possible is dictated by the gradient strengths and lengths. In order to shorten

the minimum TR by a factor of two and keep the same FoV and resolution, the gradient lengths must

be decreased, and the strengths increased, each by a factor of two. In addition, the gradient ramp

times, the so-called switching times, must be increased by a factor of four. This has indeed been done;

while gradient strengths of 10mT/m and switching times of more than 1 ms were common in the 1980s,
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modern scanners work with gradient strengths of 120 mT/m and switching times of less than 50µs.

However, further increases in the area of gradient technology appear unfeasible due to the massive

power needed to ramp and apply such gradients. In addition, physiological stimulation of the patient

caused by fast gradient switching forms an absolute boundary for the development of powerful gradient

systems. Current MR scanners often operate at the limit of acceptable gradient speed, which means

that a further decrease in the total experiment time using faster gradients is not expected.

Naturally, one can also change the way the data are acquired in order to accelerate the collection of

data. One possibility is to acquire multiple echoes during the same acquisition window, as in the RARE

sequence [19]. The most extreme example is the single shot experiment, where the entire k-space is

acquired using only one excitation, which is performed when using EPI [20]. However, these experiments

necessarily change the contrast of the image and are often plagued by undesirable relaxation e�ects

and image distortions, although the total experiment time can indeed be decreased.

However, there are a number of other options for increasing the speed of an imaging experiment.

These methods generally rely on decreasing the number of phase encoding steps needed to acquire an

image without changing the resolution or FoV. One class of methods for reconstructing an unaliased

image from an incomplete dataset, namely partial Fourier methods [21, 22], is an option for the acceler-

ation of data acquisition. These methods are generally limited to time reductions of less than one-half.

However, three other methods which allow for larger time reductions are examined and combined in this

work; they are non-Cartesian trajectories, parallel imaging, and the Generalized Sampling Theorem of

Papoulis. The �rst of these options, non-Cartesian imaging, is discussed below, and parallel imaging

is the subject of Chapters 3 and 6. The Generalized Sampling Theorem, and its implementation as

Bunched Phase Encoding in MRI [23, 24, 25], is treated in detail in Chapter 7.

2.7 Non-Cartesian Imaging

2.7.1 Trajectories

As stated above, one possibility for further decreasing imaging time is the use of non-Cartesian tra-

jectories. Such trajectories do not traverse k-space as described in Section 2.5, i.e. in a line-by-line

fashion, but instead take di�erent paths which are dictated by the gradient applied. One can imagine

altering the gradient in Equation 2.17 from a linear gradient to a time varying waveform, which would

result in a k-space trajectory which di�ers from the straight read-out trajectories used in Cartesian

imaging. Examples of the most often used non-Cartesian trajectories and their gradient waveforms are

shown in Figure 2.5. For reference, the standard Cartesian acquisition scheme is shown at the top of

this �gure. While these trajectories can sometimes be used to decrease imaging time, each also has ad-

ditional characteristics which can be exploited to perform tasks which are not possible using Cartesian

trajectories.

The most common non-Cartesian trajectory (and �rst MR trajectory implemented) is the radial

trajectory [15, 26] (see Figure 2.5), which is generated using the gradient waveform depicted in the

second row, center. The radial (otherwise known as projection reconstruction (PR)) trajectory is ad-
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Figure 2.5: Depictions of several important non-Cartesian trajectories, their gradient wave-
forms, and typical undersampling artifacts.
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vantageous because the center of k-space is sampled multiple times during the acquisition, making such

a dataset relatively robust against motion or �ow artifacts. In addition, although πD
2 radial projections

are strictly required to ful�ll the Nyquist criterion at the edges of k-space (where D is the diameter

of the radial k-space), undersampling artifacts appear incoherent, i.e. as noise-like structures, or at

worst as streaks in the image domain. Thus, the number of repetitions needed can be greatly reduced,

especially in applications such as angiography, where the image domain contains sparse information.

The most common 3D non-Cartesian trajectory, 3D radial [27], is based on the radial trajectory.

Another commonly used non-Cartesian trajectory is the spiral trajectory [28, 29], also shown in

Figure 2.5. The advantage of this trajectory is that the complete k-space can be covered in a single

shot, i.e. only one excitation is required to obtain the entire image. Although the spiral trajectory can

be used for rapid image acquisitions (50 to 100 ms), the long read-out of this trajectory means that the

resolution can be limited by the T ∗2 relaxation parameters of the sample. If this parameter is short, high

resolution images cannot be obtained due to the lack of signal in the outer portions of k-space, and image

distortion can occur due to o�-resonance e�ects. Another possibility is to employ a multi-shot spiral

sequence, where each spiral arm has a shorter read out time than the single shot spiral, although more

excitations are needed. In addition to the number of shots, the actual acquisition of the points along the

spiral can also be varied. Two di�erent spiral trajectories are commonly employed: the constant-linear-

velocity trajectory and the constant-angular-velocity trajectory. While the constant-linear-velocity

spiral has signal-to-noise advantages [30], the constant-angular-velocity spiral contains a quasi-radial

symmetry [28], which is useful when post-processing steps are required for image reconstruction. One

disadvantage of the spiral trajectory is that undersampling leads to coherent artifacts throughout the

image, unlike the undersampled radial trajectory. These strong artifacts can be reduced by using a

dual-density spiral, where the center of k-space is sampled at the Nyquist rate, and the outer portions

are undersampled by increasing the spiral gradient velocity.

A third non-Cartesian trajectory is the PROPELLER or BLADE trajectory [31, 32]. This trajectory

is made up of a number of Cartesian blades which are rotated to cover the entire k-space. Because

multiple blades run through the center of k-space, and each blade can be reconstructed separately to

form a low-resolution image, this trajectory can be used for motion correction. Similar to the radial

trajectory, a large degree of undersampling can be performed with PROPELLER without obtaining

coherent aliasing artifacts. While this trajectory can be more demanding in terms of acquisition time,

its added motion correction advantages make it a popular acquisition scheme.

Two trajectories which are used in speci�c fast imaging applications, namely the zig-zag trajectory

[24, 33] and the 1D non-Cartesian (1D NC) trajectory [34], are also depicted in Figure 2.5. The zig-zag

trajectory, or Bunched Phase Encoding (BPE), while not widely used, has been demonstrated to have

properties which make it unique. This trajectory allows the acquisition of groups of closely spaced points

in the phase encoding direction, although the k-space overall is strictly undersampled. By making use

of the Generalized Sampling Theorem discussed in Section 2.2, an unaliased image can be reconstructed

despite the violation of the Nyquist criterion. This trajectory and the use of the Generalized Sampling

Theorem for image reconstruction are the topics of Chapter 7, and will not be further discussed here.
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The 1D NC, or variable density, trajectory is similar to the zig-zag trajectory in that it is often used in

conjunction with parallel imaging. This trajectory is advantageous because it exhibits artifacts which

are more incoherent than a purely Cartesian trajectory when it is undersampled; because the trajectory

has few uses outside of parallel imaging, it will be discussed in more detail in Chapter 3.

Two �nal trajectories, rosette [35, 36, 37] and stochastic [38], have similar properties. The rosette

trajectory is shown at the bottom of Figure 2.5, and the stochastic trajectory, which is random, is

not depicted. Both of these trajectories can be used for spectral selection due to the overlapping

points in k-space. While these acquisitions schemes are not as commonly used as the other non-

Cartesian trajectories depicted here, they are interesting due to their lack of simple radial symmetry,

and relatively incoherent aliasing artifacts. They are added as examples of exotic trajectories which

are generally di�cult to post-process, as will be seen in the following sections.

The list of non-Cartesian trajectories presented here is not meant to be comprehensive; many other

trajectories such as Lissajou [39], twirl [40], and STAR [41] (all 2D trajectories), as well as cones [42],

3D stack of spirals or stars, and spherical shells [43] (all 3D) also exist. However, this work will focus

primarily on the trajectories described here.

On the right-hand side of Figure 2.5, examples of the images resulting from Nyquist undersampling

for each of the trajectories described are shown. It is important to note that the standard aliasing

artifacts described in Section 2.2 do not appear in undersampled non-Cartesian data. This is because

the undersampling present along such trajectories changes in severity and direction throughout k-space.

These complex undersampling patterns lead to unusual aliasing in the image domain, as each pixel in

the image can potentially alias with every other pixel, unlike in standard Cartesian imaging [44, 45].

The e�ects of undersampling in non-Cartesian data generally appear as a blurring or streaking in both

(or all three) directions in the image, especially for trajectories with a radial symmetry. Speci�cally for

the radial, rosette, and PROPELLER trajectories, very few artifacts are present because the center of

k-space is still Nyquist sampled, leaving the contrast and structure of the image intact. Trajectories

with a more Cartesian structure, namely 1D NC or zig-zag, lead to more traditional fold-over artifacts;

in the case of 1D NC, such artifacts are not as pronounced as in Cartesian imaging, while in zig-zag they

are spread into both directions. The unusual artifacts that are present in undersampled non-Cartesian

images, and the fact that they are the result of irregular undersampling in k-space, are important ideas

for non-Cartesian parallel imaging, discussed in detail in Section 3.3 and Chapter 6.

Although non-Cartesian trajectories often have advantages over Cartesian acquisitions, namely

reduced scan time, insensitivity to motion artifacts and undersampling, and additional information

such as spectral resolution, they also have disadvantages. The largest di�culty with such acquisition

schemes is the need to perform data gridding, discussed in the next section. However, other di�culties

such as ill-de�ned FoVs, location dependent resolution and signal-to-noise ratios, and o�-resonance

e�ects are problems that must be considered when choosing to use a non-Cartesian trajectory. However,

for certain applications, the advantages of employing non-Cartesian imaging outweigh the di�culties

inherent in such trajectories.
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2.7.2 Applications of Non-Cartesian Imaging

As stated above, each non-Cartesian trajectory has speci�c properties which can be exploited to improve

certain imaging applications. Several common clinical uses of non-Cartesian trajectories are described

here to demonstrate the advantages of selecting the appropriate trajectory for a given application.

Radial trajectories are often implemented due to the fact that no gradient encoding is performed

before the data acquisition begins, making such sequences valuable for imaging tissues with fast re-

laxation parameters. For instance, imaging of the lung parenchyma using radial trajectories has been

demonstrated as early as 1993, and this research has been followed up by many groups [46, 47, 48]. 3D

radial trajectories in the form of ultra-short echo time (UTE) sequences can also be used to image bone

or cartilage tissues. The visualization of articular cartilage [49], the spine [50], entheses (the point at

which a tendon inserts into the bone) [51], periostium [52], and the Achilles tendon [53] have all been

demonstrated using UTE. In addition, UTE can be used to image sodium in the heart [54] as well as

in the brain and skeletal muscle [55]. Functional sodium imaging has also been performed with UTE

[56].

Spiral trajectories are used in order to generate images quickly due to their fast coverage of large

portions of k-space. Functional MRI is an application where such fast image acquisition is desirable;

thus, the spiral trajectory is often implemented for fMRI [57, 58, 59, 60].

Radial and spiral trajectories are also often used in fast cardiac imaging. One advantage of these

trajectories is that they can be employed to acquire real-time cardiac data without requiring k-space

segmentation (i.e. images from all heart phases can be acquired in a single R-R interval) [61, 62, 63, 64].

For instance, radial and spiral trajectories have used to detect cardiac masses without ECG triggering

[65], to quantify cardiovascular �ow [66], to examine coronary vessel walls [67], etc. A three dimensional

version of radial imaging is often employed in MR angiography due to the e�ective k-space coverage

per time and potential for isotropic voxel sizes [68, 69, 70].

The PROPELLER trajectory has the advantage that signi�cant motion artifacts can be corrected

by examining the low resolution images made from each of the blades. Thus, when working with

children or uncooperative patients, this trajectory can be employed, and any movement in the plane of

the image can be subsequently removed with dedicated reconstruction algorithms [71, 72]. Additionally,

PROPELLER in various forms is well-suited to di�usion tensor imaging (DTI) because this sequences

displays less severe distortion artifacts than EPI [73, 74, 75].

2.8 Data Gridding

The most obvious di�culty with non-Cartesian trajectories is that the points acquired no longer lie

on a Cartesian grid. Thus, before a fast Fourier Transform (FFT) can be applied to the k-space to

generate an image, the non-Cartesian datapoints must be assigned to Cartesian grid points. There are

a number of methods available for performing this data gridding; the most common will be examined

here.



2.8. DATA GRIDDING 27

Figure 2.6: A 1D schematic of the convolution used in standard convolution gridding. The
left-hand side shows the result of convolving a single non-Cartesian point, shown as the
black circle in the center, with the Kaiser-Bessel (KB) function (the dotted line indicates
that the KB function is centered around the non-Cartesian point). The resampling in-
tensities at each of the regularly spaced Cartesian points, shown as white squares, can be
calculated by multiplying the value of the non-Cartesian point with the appropriate value
of the KB function (shown as solid vertical lines). The Cartesian point shown as a gray
square receives some contribution from the non-Cartesian point because it is within the KB
resampling window. The right-hand side shows all of the contributions to the Cartesian
point shown in gray from the non-Cartesian points (white). The sum of these contribution
yields the total value of the Cartesian point. These non-Cartesian points contribute to the
Cartesian point because they fall in the KB window centered around the Cartesian point
(solid line)

2.8.1 Convolution Gridding

The gold-standard gridding method in non-Cartesian MRI is convolution gridding [76]. This method

involves convolving each non-Cartesian sampling point with a dedicated kernel and resampling the result

at the appropriate Cartesian grid locations (see Figure 2.6). While O'Sullivan et al. [77] concluded

that the optimal convolution kernel is a sinc function of in�nite extent, the use of such a kernel is

computationally unfeasible. Thus, the standard kernel used in MRI is a Kaiser-Bessel window, usually

with a width of 3 or 5, extended to two (or three) dimensions [76]. The convolution gridding method

also requires an oversampled gridding matrix in order to accurately determine the values of the grid

points; grid oversampling factors of at least two, but as much as 16, are usually employed, depending

on the time available and accuracy needed for the reconstruction. After the data have been resampled,

a Fourier transform of the k-space data yields the image multiplied by the convolution kernel. A roll-o�

correction, which involves dividing the intermediate image by the Fourier transform of the convolution

kernel, must then be performed to arrive at the �nal gridded image. A schematic of the convolution

gridding method is shown in Figure 2.7.

Another requirement for convolution gridding is a density compensation function (DCF), which

takes the variations in sampling density into account for the gridding process. While this DCF can

be analytically calculated for closed form trajectories, such as radial or spiral, DCFs for more exotic

trajectories must be determined iteratively or numerically. Thus, for trajectories such as rosette or

stochastic sampling, convolution gridding is non-trivial to perform, and the choice of the DCF can

greatly in�uence the �nal image.
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While the convolution gridding method is the gold-standard for data resampling in MRI, it has

a number of drawbacks. The �rst is, as stated above, the need for a DCF. Secondly, there are a

number of parameters that must be determined before the data can be gridded, such as the optimal

convolution kernel, the kernel width, and the grid oversampling size. In addition, the gridding process

is computationally intensive, especially if large kernels or oversampling factors are chosen. Finally, it

is not possible to accurately grid non-Cartesian data that have not be acquired at the Nyquist rate, as

the convolution method assumes that the region of support is at least ∆k. Any areas of data density

which do not meet the Nyquist criterion will lead to errors in the roll-o� correction discussed above.

Due to these di�culties, a number of additional methods have also been proposed for data gridding,

some of which will be discussed below.

2.8.2 Inversion Methods

URS/BURS (Uniform Resampling/Block Uniform Resampling) [78] are methods which perform data

resampling by transforming the gridding problem into a linear equation which can be solved using

singular value decomposition (SVD). An advantage of this method is that no grid oversampling is

employed for the gridding process and no DCF is required. However, this family of methods has several

drawbacks. In the URS method, the large number of data samples leads to an inconveniently large linear

equation. The BURS method is somewhat more practical, although it is highly sensitive to noise due

to the need for a matrix inversion in the SVD. The extension to these approaches, rBURS (regularized

Block Uniform Resampling) [79], addresses this noise sensitivity problem, although the results are

strongly dependent on the parametrization of the matrix inversion problem, i.e. the regularization and

the size of the region of support.

2.8.3 Iterative Methods

Several iterative methods have also been proposed for the data gridding problem. One such approach

is INNG (Iterative Nearest Neighbor Gridding) [80], which di�ers from convolution gridding in that a

multiplication in the image domain is substituted for a convolution in k-space. In this way, an e�ective

sinc convolution can be performed in k-space (through the multiplication of a box-car function with the

image in the frequency domain) instead of using an approximation (such as a Kaiser-Bessel window).

However, a number of iterations of the INNG algorithm are required before an artifact-free image

results from the non-Cartesian data. Each iteration involves one Fourier transformation and one inverse

Fourier transformation, which becomes quite time-consuming when large oversampling factors are used.

A second iterative gridding algorithm is DING (Deconvolution/Interpolation Gridding) [81], which also

formulates the gridding problem as a linear equation. Unlike the URS family, this linear equation is

solved using a conjugate gradient optimization method which is discussed in Section 3.3.2. Because

no grid oversampling is used, this method is less computationally intensive than INNG, although each

iteration requires the same number of Fourier transformations. However, the convolution window used

in DING must be optimized, again leading to potential di�culties in parametrization.
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2.8.4 Non-Uniform Fourier Transform

Another option for the reconstruction of non-Cartesian MRI data is the group of non-uniform Fourier

Transform methods. Because the non-uniform Fourier Transform still requires hours of computational

time, even with modern computers [82], the focus in MRI reconstructions has been the non-uniform fast

Fourier transform (NUFFT). A one-dimensional version of the NUFFT was introduced by Dutt and

Rokhlin in 1993 [83], which employs approximation theory to allow the non-uniform case to be reduced

to a combination of simple fast Fourier transforms. Because of this approximation, the 1D NUFFT

leads to errors in the �nal result, although the magnitude of these errors can be minimized by selecting

appropriate values of several parameters which appear in the approximation. The corresponding two-

dimensional NUFFT, otherwise known as the generalized fast Fourier transform (GFFT), was described

by Sarty [82]. In his paper on the GFFT, Sarty also noted that this method is equivalent to convolution

gridding using a Gaussian kernel, instead of the Kaiser-Bessel kernel generally used in convolution

gridding (see Section 2.8.1). Thus, there is no fundamental di�erence between the use of the non-uniform

Fourier transform and a convolution gridding method; both have similar strengths and weaknesses,

including the need for additional gridding parameters, the variability of the DCF, and the inability to

grid non-Nyquist sampled data. Other methods which attempt to perform the NUFFT without these

additional parameters, such as the least-squares NUFFT ( LS_NUFFT) [84], have been shown to be

less accurate than the Kaiser-Bessel convolution gridding [85]. Thus, although the NUFFT method

is available for the gridding of non-Cartesian data, it has been shown to be equivalent to convolution

gridding, which is still the gold-standard for data gridding in MRI.
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Figure 2.7: A schematic depiction of convolution gridding. Center left: The acquired
radial dataset, shown in color to emphasize to the decreasing k-space sampling density as
the distance between sampled points in the center of k-space increases, must be multiplied
by a DCF, as explained in the text. Top: The result is a radial dataset which has a constant
sampling density. Center right: These points are then multiplied with a convolution kernel
and resampled at the appropriate Cartesian points. This sampling grid is generally chosen
to be �ner than the k-space grid which corresponds to the actual FoV in order to increase
the gridding accuracy. Bottom right: An inverse FFT is performed to move to the image
domain. Bottom left: The roll-o� correction corresponding to the inverse of the convolution
kernel is applied, yielding the �nal gridded image. If a grid oversampling factor was
employed, the actual FoV can be cropped out of the larger image at this stage.



Chapter 3

Parallel Imaging

3.1 Basics of Parallel Imaging

3.1.1 Historical Overview

Due to the constraints imposed on MRI discussed in the previous chapter, increasing imaging speed

while maintaining the same contrast and resolution seemed impossible in the 1990's. However, at the

same time, parallel coil array technology matured, o�ering the possibility for much larger coil arrays.

While single volumetric coils were generally used in the last century, standard clinical arrays currently

in use are made up of between four and twelve elements. This trend has continued with the development

of arrays with 23 [86], 32 [87], or even 90 [86] independent receiver coils, and these new arrays are poised

to become common in a clinical setting. An example of data acquired using a phased array with eight

elements is shown in Figure 3.1. While these arrays can increase the SNR at the surface of the object

due to their higher sensitivities in these areas, they also allow the localization of the signal in a way

that was not possible with standard volumetric coils. The use of this new source of spatial information

from independent coils to decrease scan time in MRI is known as parallel imaging (or pMRI).

In parallel imaging, the amount of k-space data acquired is reduced, as discussed in Section 2.6.

If the distance between each line of k-space in a Cartesian acquisition is increased while the extent of

the k-space (i.e. the resolution) is maintained, the total number of lines needed to �ll the k-space is

reduced, but the Field-of-View (FoV) of the image is also reduced. Given that only half the k-space

lines are acquired, the FoV of the resulting image will also be halved, resulting in an image with

aliasing artifacts. This can be understood by examining the Nyquist criterion; if the sampling rate in

one direction of the k-space is reduced, certain frequencies will be indistinguishable from one another,

leading to the aliasing present in Figure 3.2. At this point, the goal of shorter imaging time has been

achieved, although the resulting image cannot be used because features cannot be easily distinguished

due to the artifacts. Thus, a parallel imaging reconstruction algorithm is required in order to generate

an unaliased image.

The concept of using spatial information from coil arrays to replace some or all gradient encoding

was introduced more than 25 years ago [88, 89, 90]. However, due to the lack of availability of either
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Figure 3.1: An eight-channel receiver array, and representative single channel images. Each
channel has its own receiver chain and acquires data simultaneously and independently
of the other channels (as indicated by the arrows in the image). The di�erent sensitivity
pro�les of the channels lead to di�erent views of the object to be imaged, and used together,
the object is covered completely. The additional spatial information inherent in such an
array can be used to decrease the imaging time using parallel imaging methods.

receiver array coils or multi-channel MR systems systems, the acceleration of in vivo images could not

be accomplished robustly with these early algorithms. However, in 1997, Sodickson et al. introduced a

method known as SMASH [1]. This reconstruction algorithm uses linear combinations of coil sensitivity

variations to mimic the spatial harmonics normally generated by the phase encoding gradients. At the

same time, multi-channel receiver coils and systems were also becoming more commonplace and robust,

which allowed new parallel imaging techniques to be applied reliably in vivo. Thus, with the arrival of

SMASH and these array coils, many other parallel imaging methods followed, such as AUTO-SMASH

[2], SENSE [3], SPACE RIP [4], PILS [5], VD-AUTO-SMASH [6], and GRAPPA [7].

In general, there are two classes of methods for reconstructing the unaliased image. The �rst class

operates in the image domain, and employs coil sensitivity maps to �unfold� the aliased image. The

most commonly used algorithm in this class is generalized SENSE [3]. Although this method is optimal

in cases where the coil sensitivity map can be determined, it can only be used when the undersampling

is regular, i.e. Cartesian sampling. The second class of algorithms seeks to reconstruct the missing

k-space data using coil sensitivity variations in place of gradient encoding. Once the data in k-space

have been reconstructed, a Fourier Transform can be performed on the original and reconstructed data

to arrive at the unaliased image. The GRAPPA [7] method, which is based on SMASH [1] and was

introduced in Würzburg in 2002, is one of the most �exible and often employed k-space reconstruction

algorithms. The work in this thesis has been based primarily on GRAPPA and its extensions, and for

this reason, GRAPPA is discussed in detail in later sections.
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Figure 3.2: Top left: An example of a R=4 undesampled k-space, where every fourth line
(solid) has been acquired, and all other k-space lines (dotted) have not been measured.
Top right: The corresponding R=4 image containing aliasing artifacts, which appear be-
cause the Nyquist criterion has not been ful�lled. Note that because the undersampling
in k-space is in a single direction (the phase encoding direction), the fold-over artifacts
appear exclusively in this direction. Bottom left: The parallel imaging method GRAPPA
works by reconstructing missing k-space lines using the coil sensitivity variations to mimic
gradient encoding. Once the k-space has been reconstructed, an IFFT is performed to
arrive at the reconstructed image. Bottom right: In SENSE, on the other hand, the image
reconstruction is performed in the image domain using a coil sensitivity map.

3.1.2 General Remarks on Parallel Imaging

Before discussing speci�c reconstruction algorithms, a few general remarks about parallel imaging must

be made (see [91, 92] for more detailed comments on parallel imaging). The following points are

important to keep in mind:

� Parallel imaging algorithms are not new imaging sequences, but merely techniques for the recon-

struction of undersampled data

� Parallel imaging requires data acquired simultaneously and independently with multiple receiver

channels with di�ering sensitivity pro�les

� The acceleration factor, R, cannot exceed the number of receiver channels used to collect the

undersampled data

� Most imaging experiments can be accelerated using parallel imaging



34 CHAPTER 3. PARALLEL IMAGING

� Parallel imaging generally does not change the contrast behavior of the underlying imaging se-

quence

� Parallel imaging can be used to decrease the amount of time needed to perform an imaging

sequence, increase the resolution given a speci�c measurement time, or perform a combination of

the two

� The SNR in the reconstructed image is generally reduced by a factor greater than or equal to the

square root of the reduction factor, as R-times fewer datapoints are acquired (see Equation 2.24)

As a convention, the amount of data acquired as compared to the amount needed for a fully-sampled

image is described as the acceleration factor, R. For example, if 256 k-space lines are required for a

given FoV and resolution, and only 64 are actually acquired, the acceleration factor of the dataset is said

to be R=4, which is depicted in Figure 3.2. This acceleration occurs in the phase encoding direction, as

the total time of an MR experiment is dependent on the number of phase encoding steps used. Thus,

for 2D Cartesian imaging, undersampling is performed in a single direction; for 3D Cartesian imaging,

two acceleration directions are available. Acceleration factors of between 2 and 4 are currently used in a

clinical setting, although factors between 9 and 12 are possible for 3D imaging in high SNR applications

using appropriate receiver arrays [91].

The acceleration factor is limited by the sensitivity variations inherent in the receiver coil used to

make the measurement. At the absolute limit, the acceleration factor cannot be larger than the number

of coils employed, although most array con�gurations cannot accomplish such high acceleration factors

due to the distribution of the sensitivity variations in two (or even three) spatial directions. However, the

trend towards greater numbers of elements in coil arrays is in�uenced by the fact that more independent

coils lead to higher possible parallel imaging acceleration factors.

As stated in the bullet points above, parallel imaging generally does not change the contrast in the

accelerated image. This does not hold true in a number of special cases, most importantly for multi-

echo or single shot acquisitions. In these cases, the use of parallel imaging can improve the SNR and

decrease susceptibility artifacts, as well as change the contrast, due to shorter echo train lengths. Such

e�ects are more common and relevant in non-Cartesian parallel imaging, and are discussed speci�cally

when they apply.

Finally, the optimal method for the combination of multi-channel data to form a single image has

been shown to be sum-of-squares (SoS) [93]. While this combination method yields a higher signal value

in those areas where the coil sensitivity is higher, the SNR is maximized in all portions of the image.

An additional disadvantage of the SoS method is the loss of phase information which is present in the

single channel images. Other methods for combining multi-channel images to create a single image

include adaptive reconstruction [94], which uses correlation analysis to compute the coil sensitivities.

With this information, an image with the desired characteristics can be produced, i.e. a constant signal

level over the entire image, constant noise level, or optimal SNR. In addition, phase information in

the image domain is retained. Due to these advantages, the adaptive reconstruction method is often

employed despite its relative complexity as compared to the SoS method.
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3.1.3 SNR Loss and Reconstruction Errors in Parallel Imaging

The acceleration factor describes not only the time savings, but is also an indication of the minimum

SNR loss for an image. Because R-times fewer points are acquired in an accelerated scan, the SNR

of the reconstructed image will be at least
√
R times lower than that of the unaccelerated image. An

additional factor which describes the encoding e�ciency of the receiver coil also in�uences the SNR.

This parameter, known as the g-factor, is a measure of how easily the inversion of the coil sensitivity

matrix required for parallel imaging (see for instance Equations 3.9 and 3.23) can be performed. Given

completely independent coil sensitivity pro�les, the g-factor is equal to one; if the sensitivity of each

coil is identical, the g-factor is equal to in�nity, as an inversion of the matrix made up of the sensitivity

values would be impossible.

The SNR for an image reconstructed using parallel imaging can then be described by the following

equation:

SNRpMRI =
SNR

g ·
√
R

(3.1)

Thus, parallel imaging can only be implemented when the resulting loss in SNR does not lead to

unacceptably degraded image quality. Due to the inclusion of the g-factor, the actual SNR loss is

determined by the coil array used to acquire the data. Arrays with signi�cant sensitivity variations allow

for higher acceleration factors, as parallel imaging employs these sensitivity variations as additional

agents of spatial encoding. As the acceleration factor increases, either the loss in SNR in the resulting

image also increases, or residual aliasing artifacts remain.

A commonly employed measure of the quality of the reconstructed image is the root-mean-square

error (RMSE) of the new image as compared to an unaccelerated image:

RMSE =

√∑
(xi − xi,ref )2∑

x2
i,ref

(3.2)

where x and xref denote the pixel values in the reconstructed and reference images, respectively. The

RMSE takes all deviations of the reconstructed image from the reference image, whether they are due

to noise enhancement, artifacts, loss of resolution, or intensity changes, into account, and thus must be

used with caution.

3.2 Cartesian Parallel Imaging

Although the work in this thesis focuses on non-Cartesian parallel imaging, certain Cartesian parallel

imaging concepts are essential to understanding their non-Cartesian counterparts. While there are a

number of reconstruction algorithms that can be used for Cartesian parallel imaging, as seen in Section

3.1.1, it is beyond the scope of this thesis to describe each method in detail. Thus, this section brie�y

outlines the basics of the Cartesian parallel imaging methods used in this work, as well as several other

important algorithms.
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3.2.1 Generalized Autocalibrating Partially Parallel Imaging (GRAPPA)

The most commonly used and robust k-space based parallel imaging algorithm is GRAPPA [7]. This

algorithm is the result of the natural development from SMASH [1] to AUTO-SMASH [2], which in

turn evolved into GRAPPA. Because GRAPPA can be seen as a generalization of these earlier methods,

only GRAPPA will be discussed in this section.

The basic idea of GRAPPA is that coil sensitivity variations can be used to generate missing spatial

harmonics in the undersampled k-space data. This can be understood by examining the 1D Fourier

Transform:

S(ky) =
∫
dyρ(y) · eikyy (3.3)

In standard imaging experiments, the spin density ρ(y) is modulated by the appropriate harmonic,

eikyy, through the application of an encoding gradient, as described in Section 2.3. The integral, or

in MRI, the sum, over these products yields the signal S(ky) at that particular location in k-space.

Including the in�uence of the coil sensitivity leads to the following equation for the signal from a coil

L:

SL(ky) =
∫
dyρ(y) · CL(y) · eikyy

In parallel imaging, when the data are undersampled to reduce scan time, some of these k-space lines

are skipped. By examining the encoding equations for two lines separated by a distance m in k-space,

one can see that the only di�erence between the two is the spatial harmonic applied, i.e. for the signal

at a k-space location ky +m∆ky:

SL(ky +m∆ky) =
∫
dyρ(y) · CL(y) · ei(ky+m∆ky)y (3.4)

Thus, if one can recreate the additional spatial harmonic of the missing k-space line, or eim∆kyy, the

missing lines can be reconstructed. In GRAPPA, this reconstruction involves using a linear combination

of the coil sensitivity variations of all the coils in the array to mimic the gradient encoding:

CL(y) · eim∆kyy ≈
NC∑
K=1

nK,L,m · CK(y) (3.5)

where both K and L run from 1 to the number of coils in the array, or NC, and for a complete

reconstruction of the missing k-space lines, m runs from 1 to R− 1. By substituting Equation 3.5 into

Equation 3.4, the signal from an acquired line of k-space can be used to generate an approximation of

the signal from a missing line:

SL(ky +m∆ky) ≈
NC∑
K=1

nK,L,m · SK(ky) (3.6)

or, in matrix form:
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Figure 3.3: A schematic depiction of GRAPPA. Top left: The undersampled R=4 multi-
channel k-space data, where the black points have been acquired, and the white points
have not. The auto-calibration signal (ACS), which is required for the calibration of the
GRAPPA weights, can be seen as the extra acquired data in the center of k-space. Bottom
left: The �rst step in GRAPPA is to determine the weights using the ACS data. A 2× 3
kernel is shown here, where six source points (two in the phase encoding direction and
three in the read direction) from all the coils (shown in black) are used to �t the target
point (solid gray) in one coil (the �rst, shown in white), and thus the weight set needed has
a size of 4× 6 (coils × source points). This kernel appears multiple times in the ACS data
(the dotted lines around the groups of points), and all repetitions are used to determine
the the weight set ŵ. Top center: The same kernel appears in the undersampled portion
of k-space, and when the weights ŵ are applied to the source points (top right), the target
point (black stripes) can be reconstructed. Bottom right: The same weight set can be used
to reconstruct all of the missing points in the �rst coil with the same relationships to the
acquired points. In order to reconstruct the entire missing k-space, weight sets for each
missing spatial harmonic and coil must be calculated, which means that 3 (for the three
missing spatial harmonics) di�erent 4× 4× 6 weight sets are needed.
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~S(ky +m∆ky) ≈ ŵm · ~S(ky) (3.7)

Equation 3.6 is simply the matrix version of Equation 3.7, and both state that a linear combination of

acquired signals from all receiver coils yields an approximation of the missing signal for a single coil.

The elements of the matrix ŵ, referred to as the GRAPPA weight set, are the values of n for each of

the coil combinations, and the subscript m remains to denote that a di�erent weight set is required for

each missing spatial harmonic, i.e. each of the missing k-space lines.

The equations above describe the simple case of employing one source point, or acquired point, in

each coil to reconstruct one target point, or missing point, in a single coil. However, GRAPPA generally

employs a reconstruction kernel made up of more than one source point for the approximation of each

target point, as shown in Figure 3.3. In this schematic, two source points in the phase encoding direction

and three in the read direction (a 2 × 3 kernel) from all coils are used to �t a single target point in a

single coil. Because a coil-by-coil reconstruction is performed in GRAPPA, the total size of each weight

set is (NC ×NC× source points). Thus, for a R=4 accelerated dataset acquired with a 4 channel coil

array where a 2× 3 kernel is used for GRAPPA, R− 1 or 3 di�erent (4× 4× 6) weight sets would be

required for the reconstruction of the entire k-space. The use of such a reconstruction kernel makes

GRAPPA more robust than methods that use only a single source point to reconstruct a single target

points, as the extra degrees of freedom allow the missing spatial harmonics to be better mimicked.

It is important to note that the di�erence in spatial harmonics between two adjacent k-space lines

is the same in all portions of k-space. Thus, once the weight set for a given pattern (for instance, the

2×3 kernel and R=4 shown in Figure 3.3) is determined, it can be applied to reconstruct missing points

in all portions of k-space which have the same pattern of acquired/missing points. This idea can also

be seen in the �gure, which shows that missing k-space points both above and below the ACS dataset

can be reconstructed (the black striped points) using the appropriate source points and a single weight

set, ŵ.

Naturally, before GRAPPA can be employed for a reconstruction, the weight sets must be deter-

mined. This can be accomplished, for example, by acquiring a few additional lines in the center of

k-space (where the signal level is the highest), as shown on the upper left-hand side of Figure 6.1.

These auto-calibration signal lines, or ACS, can be used in conjunction with Equation 3.7 to generate

the values of the weight set:

~SACS(ky +m∆ky) = ŵm · ~SACS(ky) (3.8)

This GRAPPA kernel (and therefore the harmonic relationship) appears many times in the auto-

calibration signal, although the weight set for each equation is the same throughout the entire k-space

(as shown in Equation 3.5). Thus, the many appropriate signal and target vectors can be written

together in the form of a matrix. The weight sets can then be determined with the help of the pseudo-

inverse, or Moore-Penrose inverse, which allows the non-square matrix made up of the source signals

to be inverted and results in the least-squares solution to this linear problem:

ŜACS(ky +m∆ky) · pinv(ŜACS(ky)) = ŵm (3.9)
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In this equation, the pseudo-inverse is denotes as �pinv�, and is equivalent to the following:

pinv(Â) = (ÂHÂ)−1ÂH (3.10)

where ÂH is the conjugate transpose (otherwise known as the Hermetian conjugate) of the matrix Â.

Once the weight sets have been determined, they can be used to reconstruct the portions of the dataset

where data are missing in order to arrive at the �nal image.

3.2.2 GRAPPA Operator

The GRAPPA operator formalism [95] is an extension of GRAPPA which describes the special case of

a square GRAPPA weight set, or in other words, an equal number of source and target points. For

simplicity, the case where one source and one target point are employed will be examined (the so-called

one-to-one operator), although the same formalism can be used to describe larger GRAPPA operators

(two source points and two target points, etc.), and all the properties described here are valid for such

operators. Both GRAPPA and the GRAPPA operator can be used to generate a missing point with a

speci�c spatial harmonic using a linear combination of acquired points, and thus the mathematics (i.e.

calibration and application) for the GRAPPA operator are identical to GRAPPA. The basic GRAPPA

operator equation for a shift of ∆k with a single source and target point is identical to Equation 3.7:

~S(kx, ky + ∆ky) = Ĝy · ~S(kx, ky) (3.11)

In this equation, Ĝy is a NC×NC matrix containing the GRAPPA weights for a shift in the y-direction,

and will be further referred to as the GRAPPA operator, and ~S is a vector containing the k-space points

at the proper location for each of the receiver coils. The GRAPPA operator Ĝ can be derived in the

same fashion as standard GRAPPA weights; namely, a �t of points with the appropriate relationship

is performed with the use of the pseudo-inverse:

Ŝ(kx, ky + ∆ky) · pinv(Ŝ(kx, ky)) = Ĝy (3.12)

While the basic mathematics are identical to those of standard GRAPPA, the GRAPPA operator has

additional properties which makes this concept interesting for parallel imaging. The de�ning feature of

the GRAPPA operator (and that which distinguishes it from GRAPPA) is that if Ĝ is applied twice

successively to the signal at ky, the result is the signal at ky + 2∆ky:

~S(kx, ky + 2∆ky) = Ĝy · ~S(kx, ky + ∆ky) = Ĝy · Ĝy · ~S(kx, ky) = Ĝ2
y · ~S(kx, ky) (3.13)

In other words, the application of the square of the GRAPPA operator leads to a shift twice the size of

the shift from the original operator. The name �GRAPPA operator� derives from this feature, which

it shares with ladder or propagator operators in quantum mechanics. In principle, the same is true in
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reverse; applying the square root of the operator leads to a k-space shift of half the size [96]:

~S(kx, ky +
1
2

∆ky) = Ĝ
1
2
y · ~S(kx, ky) (3.14)

Thus, an arbitrarily small shift can be derived by taking the proper root of the base GRAPPA Operator,

Ĝy:

~S(kx, ky + δky) = Ĝδy · ~S(kx, ky) (3.15)

It is important to note that the root operation for a matrix Â can be de�ned as follows:

Â = V̂ · D̂ · V̂ −1 (3.16)

Âδ = V̂ · D̂δ · V̂ −1 (3.17)

where V̂ is a matrix containing the eigenvectors of the matrix Â, and D̂ is a diagonal matrix of the

eigenvalues of Â.

Another property of the GRAPPA operator is that a shift in one direction followed by a shift in

the opposite direction must yield the original point:

~S(kx, ky) = Ĝ−my · ~S(kx, ky +m∆ky) = Ĝ−my · Ĝmy · ~S(kx, ky) (3.18)

and thus

Ĝ−my · Ĝmy = Î (3.19)

or

Ĝ−my = (Ĝmy )−1 (3.20)

This equation implies that the operator for a shift in the −ky direction is simply the inverse of the

operator for a shift in the ky direction. Finally, GRAPPA operators for shifts in orthogonal directions

can be consecutively applied to generate a multi-dimensional shift:

~S(kx +m∆kx, ky + n∆ky, kz + p∆kz) = Ĝmx,ny,pz · ~S(kx, ky, kz) = Ĝmx · Ĝny · Ĝpz · ~S(kx, ky, kz) (3.21)

Thus, using the GRAPPA operator formalism, shifts in any direction by any amount in k-space can be

calculated out of a set of orthogonal unit shift operators. In theory, these orthogonal operators always

commute, as the �nal result does not depend on the order in which the shifts were applied:

~S(kx +m∆kx, ky + n∆ky) = Ĝmx · Ĝny · ~S(kx, ky) = Ĝny · Ĝmx · ~S(kx, ky) (3.22)

It is important to keep in mind that these shift matrices are always GRAPPA weight sets, and that

the accuracy of the spatial harmonic depends on the coil encoding characteristics; the more varied the

coil sensitivities, the larger the possible shift in k-space.
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The following bullet points outline the basic properties of the GRAPPA operator:

� An operator can be applied multiple times to generate increasingly larger shifts in k-space (Equa-

tion 3.13)

� Operators for smaller shifts can be generated using operators from larger shifts (Equation 3.16)

� The operator for a shift in one direction is equal to the inverse of the operator for a shift in the

opposite direction (Equation 3.20)

� The operator for a shift in an arbitrary direction can be separated into operators for shifts in

orthogonal directions (Equation 3.21)

� Operators for orthogonal directions commute (Equation 3.22)

It was hoped that the GRAPPA operator could be used to generate GRAPPA weight sets without the

need for an ACS dataset. In [96], the authors attempted to do this by using R=2 undersampled data to

generate GRAPPA operator weight sets for a ∆k=2 shift in k-space, and then taking the square root

of this weight set to arrive at the ∆k = 1 weight set using Equation 3.14. However, this approach was

not generally feasible because the proper sign for the square roots of the eigenvalues, needed as shown

in 3.16, had to be determined empirically. For R=2, 2NC signs must be determined, and this value

increases rapidly as the acceleration factor increases. This di�culty generating GRAPPA operator

weight sets for smaller shifts using non-Nyquist sampled data led to the discontinuation of research in

this area.

However, the GRAPPA operator has been shown to be useful in increasing the speed for 2D and 3D

image reconstructions, although operators with more than one source and target point were employed

for these algorithms [97]. In addition, this formalism has been used to increase the resolution of

PROPELLER images by increasing the extent of the k-space [98]. Although the GRAPPA operator

has been demonstrated to have properties which could potentially improve and/or simplify image

reconstruction, it is not a method which is frequently employed (see Section 3.2.3). However, some

novel uses of the GRAPPA operator, speci�cally for data gridding, are discussed in Chapters 4 and 5.

3.2.3 GRAPPA vs. the GRAPPA Operator

In the previous sections, two k-space based parallel imaging methods, namely GRAPPA and the

GRAPPA operator, were examined. As stated above, GRAPPA operator is a special case of GRAPPA

where weight sets are square matrices; when one source point is used to �t a single target point, the

appropriate GRAPPA operator Ĝ is then a matrix of size NC × NC. GRAPPA, on the other hand,

uses multiple source points to �t one target point. These two methods, while similar, are used in

applications which take advantage of their di�erent properties.

In order to understand why GRAPPA and the GRAPPA operator are used for di�erent purposes,

one must examine how GRAPPA weight sets behave with increasing numbers of source points. When

a large reconstruction kernel is used, the �ts of the spatial harmonics needed for data reconstruction
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(see Equations 3.4 and 3.5) are more accurate for a given coil arrangement than for a small kernel.

Thus, when �tting large shifts in k-space, it is bene�cial to employ many source points. In addition,

when the value of the target point is based on many source points, the reconstructed point is less

sensitive to the noise in the individual source points, and therefore more accurate. However, because

reconstruction times increase with increasing numbers of source points, a balance must be found between

accuracy and reconstruction time. In standard GRAPPA implementations, kernels of size 4×5 or 2×3
are employed; larger kernels generally do not signi�cantly improve the reconstruction quality. Thus,

because the weight sets in GRAPPA are not limited in terms of the numbers of source points, GRAPPA

is preferred over the GRAPPA operator for clinical image reconstruction.

For the special case of the GRAPPA operator that employs only one source point per target point,

the weight sets generated cannot �t higher spatial harmonics accurately. This is because a small number

of parameters is available for the �t; only 64 di�erent values can be chosen for the one-to-one GRAPPA

Operator with 8 receiver channels (the weight set is 8× 8), whereas 384 di�erent values can be chosen

to �t the desired spatial harmonic in the case of a 2× 3 GRAPPA kernel (the weight set is 8× 8× 6).
Such a GRAPPA operator is therefore only appropriate for small shifts in k-space, which correspond

to low frequency and easy-to-�t harmonics. Similarly, the reconstructed points are highly sensitive to

any inaccuracies due to noise in the source points. Thus, GRAPPA operator reconstructions tend not

to be as robust as GRAPPA reconstructions. However, the one-to-one GRAPPA operator has other

properties which make it useful (see the bullet points in Section 3.2.2). While GRAPPA weight sets

require a speci�c spatial relationship between the source points and the target points, the GRAPPA

operator can be applied to any single point to shift it to a nearby location, because only one source

point is involved. As stated in Section 3.2.2, the operator can be applied multiple times to generate

many k-space points. The weight set can be scaled to �t di�erent spatial harmonics (see Equation

3.16), and thus the weight sets for di�erent shift sizes can be generated out of a single basis weight set.

These properties of the one-to-one GRAPPA operator, which are not shared by GRAPPA, allow this

method to be used for the exotic applications discussed in later chapters of this thesis.

It must be noted that larger GRAPPA operators can be de�ned which �t two source points to two

target points, etc. These larger operators can also be scaled by taking the appropriate roots, and have

the advantage that they can �t larger spatial harmonics more accurately. However, such GRAPPA

operators can only be employed when the relationship between the source and target points has the

correct pattern, as in GRAPPA. This limitation makes such GRAPPA operators less �exible than the

one-to-one operator discussed above, and only the one-to-one case is examined in later chapters of this

work.

3.2.4 Other Parallel Imaging Methods

Although GRAPPA and the GRAPPA operator are the two methods which are discussed and employed

the most throughout this work, there are other Cartesian parallel imaging methods, for example PILS

[5] and SENSE [3], which should be mentioned in any treatment of parallel imaging. Thus, a brief

description of these methods will be provided before moving on to non-Cartesian parallel imaging.
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Figure 3.4: A schematic description of PILS. Top: When using a coil with a localized and
homogeneous sensitivity pro�le, only a small portion of the object to be imaged appears
in the single coil image. When this single coil image is undersampled by a factor of 4,
the outer portions of the image fold into the center portion, as in Figure 3.2. However,
because these outer portions contain no signal due to the lack of coil sensitivity in this area,
only noise folds into the visible portion of the image. Bottom: R=4 single coil images for
four such localized coils, each of which sees a unique portion of the object. These images
can simply be combined with, for example, the sum-of-squares (SoS) algorithm to arrive
at the �nal image. Note that PILS only works so easily when the receiver coils used
�see� completely di�erent portions of the image, i.e. do not overlap, and have relatively
homogeneous sensitivity pro�les.

The most basic parallel imaging method is PILS (Parallel Imaging with Localized Sensitivities),

which does not require any advanced data processing. In order to perform PILS, localized coil sen-

sitivities are required, as shown in the top center of Figure 3.4. Given that each coil �sees� a unique

portion of the image, and that the FoV is completely covered by these coils, the e�ective FoV for the

imaging process can be reduced. As in any imaging sequence, the reduction of the FoV will lead to

fold-over artifacts, but these are weighted by the coil sensitivity, which is zero outside of the sensitive

area. Thus, only noise folds into the reduced FoV, and a simple sum-of-squares reconstruction of the

individual coil images can be performed. This process is described schematically in Figure 3.4.
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Figure 3.5: A schematic depiction of the components of the SENSE Equation 3.23. The
object, and four speci�c voxels ρ in locations 1 through 4 are shown at the left. When a
R=4 undersampled image of this object is acquired with coil A, whose sensitivity map is
shown in the center, the result is a folded image, where the pixels which fall on top of one
another are simply the pixels 1 through 4 multiplied by the coil sensitivities CA1 through
CA4. When four receiver coils, with sensitivity maps CA through CD, are used for the
acquisition, four folded images with di�erent coil sensitivity information result, and the
spin density can be calculated using the inverse the matrix Ĉ.

SENSE (SENSitivity Encoding) is the most common image-based parallel imaging method, and it

functions by using coil sensitivity maps to separate aliased pixels. By examining Figure 3.5, it is clear

that the following equation can be written to describe the relationship between the actual image and

the aliased image: 
IA

IB

IC

ID

 =


CA1 CA2 CA3 CA4

CB1 CB2 CB3 CB4
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 ·

ρ1

ρ2

ρ3

ρ4

 (3.23)

This equation can be written more e�ciently using a matrix formulation:

~I = Ĉ · ~ρ (3.24)

In both of these equations, the values in ~I represent the aliased voxels from the coils A through D, ~ρ are

the actual voxel values at locations 1 through 4, and the matrix Ĉ contains the coil sensitivity values

for the four di�erent coils at the appropriate locations. If the coil sensitivity matrix is known, then the

aliased pixels ~I can be used to determine the actual spin density values ~ρ by taking the inverse of the

matrix Ĉ:

Ĉ−1 · ~I = Ĉ−1 · Ĉ · ~ρ = ~ρ (3.25)

If the number of coils is greater than the acceleration factor, which is often the case, the sensitivity

matrix Ĉ is not square, and the Moore-Penrose pseudo-inverse (see Equation 3.10) must be employed

in place of the inverse.

SENSE has been shown to deliver the best possible image reconstruction with optimal SNR given

an accurate sensitivity map [91], although this constraint often cannot be met. In certain imaging
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modalities, i.e. lung imaging, dynamic imaging, or single-shot methods, the acquisition of a sensitivity

map is either time consuming or di�cult due to SNR limitations. In addition, the SENSE algorithm

cannot be used to reconstruct images containing aliasing in the FoV (so-called pre-folded images)

[99], which are often acquired in cardiac and abdominal MRI. Thus, although SENSE is a simple and

generally fast parallel imaging method, the acceleration of some MR applications is only practical when

working with a k-space based method.

3.3 Non-Cartesian Parallel Imaging

In the previous section, Cartesian k-space based parallel imaging methods were explained and discussed.

However, these methods can only be applied when the k-space undersampling is regular, i.e. patterns

appear in the undersampled k-space data. Such regular undersampling leads to well-de�ned aliasing

characteristics in the image domain. Thus, given an acceleration factor R in a single direction, R voxels

must be separated from one another; that this is the case can be seen in Equation 3.23. However,

when non-Cartesian k-space data are undersampled, aliasing artifacts appear in all directions, and

each voxel in the image domain can potentially alias with all of the other voxels [44, 45]. The complex

aliasing behaviors of di�erent non-Cartesian trajectories can be seen in Figure 2.5. Thus, non-Cartesian

parallel imaging is considerably more complicated than Cartesian parallel imaging. This section focuses

on non-Cartesian parallel imaging methods, especially non-Cartesian GRAPPA.

3.3.1 Non-Cartesian GRAPPA

As can be seen in the basic GRAPPA equation, Equation 3.7, as well as the schematic shown in Figure

3.3, GRAPPA can be applied e�ciently only when the undersampling in k-space leaves regular patterns

of missing datapoints. If this is not the case, a separate GRAPPA weight set is required for each missing

point in k-space, a time-consuming and computationally intensive task. A schematic of the irregular

undersampling found in non-Cartesian trajectories, in this case radial, can be seen on the far left hand

side of Figure 3.6. It is clear that if the GRAPPA weight set was determined for the speci�c pattern

shown in green, the application of the weight set to the source points shown in blue or red would

lead to errors in the reconstructed points. Thus, the regular undersampling patterns in k-space that

are crucial for a successful GRAPPA reconstruction are not present in undersampled non-Cartesian

datasets, and standard Cartesian GRAPPA cannot be applied to such datasets. However, one can

see that in cases where the non-Cartesian trajectory is highly symmetric, similar patterns do exist.

Non-Cartesian GRAPPA takes advantage of these similar patterns to reconstruct the missing k-space

points.

Radial GRAPPA

The left-hand side of Figure 3.6 shows a schematic of an undersampled radial dataset. As can clearly

be seen, di�erent GRAPPA kernels, or patterns, are required to reconstruct di�erent portions of this

k-space data. A pattern that would work well in one section of k-space, such as the blue points, would
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Figure 3.6: The radial GRAPPA algorithm. Left: A R=2 undersampled radial dataset,
where the black points have been acquired and the gray points have not, and the coil
dimension has been neglected for simplicity. One could imagine using the points highlighted
in dark green to reconstruct the missing point in light green. However, the weight set
for this reconstruction would not be applicable for the red points, where the source and
target points are not as far away from each other (the spatial harmonic to be �tted is not
as large). Similarly, the weights for the green pattern could not be applied to the blue
pattern, because the direction of the undersampling is not the same. Strictly speaking,
di�erent weight sets for each missing point must be de�ned. Top center: To limit the
number of weight sets which must be calculated, segments are de�ned in k-space where
the undersampling degree and direction are approximately the same. In this schematic,
12 segments are de�ned, but more could be used in practice if necessary. Right: The data
are reordered from the kx − ky plane into the kr − kθ plane, where the segments can be
observed to be blocks of k-space. Weight sets are determined for each segment using a
reordered fully-sampled dataset. Bottom right: When the weights have been applied to
the appropriate segments, a completely reconstructed dataset results. Bottom left: After
reordering the reconstructed data back to the kx−ky plane, the reconstructed radial dataset
can be gridded and Fourier transformed to arrive at the reconstructed image.
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be completely inappropriate for other k-space sections, such as the green or the red points. This is

because both the direction and the degree of undersampling depends on the location in k-space, unlike

for Cartesian acquisitions. Standard radial GRAPPA [100] assumes that in some portions of k-space,

the undersampling pattern is similar enough to allow the use of the same GRAPPA weight set. For

instance, the red highlighted section at the top of Figure 3.6 shows such a segment; the data points are

not parallel, but a weight set that is determined for the average distance and undersampling direction

will approximate the points in the segment. Thus, although the source points used with the weight set

do not have the proper relationship in k-space with the target point, the approximation allows for the

reconstruction of the missing radial rays. Thus, the steps involved in radial GRAPPA are as follows:

� The undersampled k-space data are segmented such that the missing data in each of the segments

can be approximated using the same GRAPPA kernel

� The segments are reordered from the kx − ky plane onto the kr − kθ plane

� Using weight sets for each segment (see below), each segment is reconstructed separately, yielding

the reconstructed radial dataset

� The reconstructed radial dataset are converted to the image domain using the radon transform

or using the gridding techniques described in Section 2.8, yielding the �nal image

These steps are shown schematically in Figure 3.6. Because each segment of the data in the kr − kθ
plane appears Cartesian, the application of the weight sets can be performed as in Cartesian GRAPPA.

While radial GRAPPA yields reconstructed images that no longer contain the streaking and blurring

artifacts present in the undersampled image, this algorithm has a number of drawbacks. The �rst is that

radial GRAPPA is only an approximation to the actual solution, as the angular weight set which is used

in a given segment does not reconstruct the spatial harmonics which are missing. This is due to the fact

that the distances between the source and target points change by a small amount even within a single

segment. The second drawback is that a fully-sampled radial dataset is required in order to determine

the weight sets for each angular segment, as the acceleration factor and direction, and therefore the

weight sets, are di�erent for each segment. Thus, the use of radial GRAPPA is generally limited to

dynamic studies where a single fully-sampled dataset can be acquired and used for the reconstruction

of subsequent undersampled datasets. There are a number of methods which have been proposed to

bypass this disadvantage, for instance [101], although none of them is currently in clinical use. In

addition, because low SNR areas at the edges of k-space must be used to determine the weights for

these portions of the undersampled k-space, these weights are less robust than those determined for the

high SNR center portion of k-space. The inaccuracy of these outer k-space segment weights often leads

to high-frequency reconstruction errors in the �nal image. However, despite these drawbacks, radial

GRAPPA is one of the fastest and most commonly used non-Cartesian parallel imaging methods.
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Figure 3.7: The spiral GRAPPA algorithm. Top left: A R=2 undersampled spiral dataset,
where the data have been acquired using the constant-linear-velocity acquisition scheme.
Top center: The spiral data must �rst be interpolated to the constant-angular-velocity
trajectory using a 1D interpolation in the read direction. This trajectory has nearly the
same symmetry as the radial trajectory, and the GRAPPA reconstruction after the inter-
polation is almost identical to radial GRAPPA. Top right: The data are segmented, and
(bottom right) reordered into the w−kθ plane, where the weights for each segment can be
calculated (again using a fully-sampled spiral dataset) and applied. Bottom center: The
application of the weights for each segment results in a completely reconstructed dataset,
which can be reordered into the kx − ky plane (bottom left), and gridded.

Spiral GRAPPA, Zig-Zag GRAPPA, and 1D Non-Cartesian GRAPPA

Although the undersampling present when working with the spiral trajectory is in a direction perpen-

dicular to the undersampling in the radial trajectory, the underlying symmetry of these trajectories is

similar. Thus, for spiral GRAPPA [102], the same concept of segmentation, reordering, reconstruction,

and gridding can be employed. Because only the choice of the reconstruction kernel changes between

the two methods, spiral GRAPPA will not be further discussed here. Figure 3.7 depicts the steps of

spiral GRAPPA, which are essentially identical to those of radial GRAPPA, except for the additional

interpolation step needed to transform the spiral data into quasi-radial data.

Similarly, zig-zag GRAPPA [33] also works by segmenting the undersampled data into groups for

which the same reconstruction kernel can be employed. Again, because this method is similar in concept

to radial GRAPPA, it is not discussed in further detail.

1D non-Cartesian GRAPPA [103] is slightly di�erent from radial, spiral, or zig-zag GRAPPA. The

1D non-Cartesian acquisition scheme is shown in Figure 2.5, and one can see that a segmentation

of the data would require many di�erent GRAPPA weight sets which would have to be determined

from the Cartesian ACS portion in the center of k-space. Instead of determining a weight set for each

local acceleration factor, standard GRAPPA weight sets are determined for several acceleration factors
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(R=2, R=3, etc). Then, in order to reconstruct the missing lines in k-space, the GRAPPA weights for

the actual local acceleration factors (R=2.5, for instance) are interpolated from the weight sets which

have been actually calculated. This interpolation means that far fewer weight sets must be calculated,

thereby speeding up the reconstruction process. However, this interpolation method only works when

the relationships between the source and target points, as well as the between source points themselves,

change by a constant factor. In other words, only changes in the relative distances are allowed, making

this method only applicable to 1D non-Cartesian trajectories. For radial and spiral trajectories, the

interpolation of weights as in 1D non-Cartesian GRAPPA would not lead to accurate reconstructions

due to the signi�cant changes in the undersampling factor and direction.

Although the non-Cartesian methods described in this section are all similar, the fact that di�erent

formulations of GRAPPA must be used for each di�erent trajectory highlights the major problem with

non-Cartesian GRAPPA, namely that no generalized GRAPPA algorithm has been de�ned which allows

the reconstruction of arbitrarily undersampled datasets. This problem of non-Cartesian GRAPPA will

be addressed in great detail in Chapter 6, where a generalized GRAPPA method which works with any

sampling scheme is proposed.

3.3.2 Other Non-Cartesian Methods

In addition to the non-Cartesian GRAPPA methods discussed above, there are a plethora of other

methods which can be used for the reconstruction of undersampled non-Cartesian data. Two of these

methods, CG-SENSE [104] and PARS [105, 106], are included to o�er the reader insight into the current

status of non-Cartesian parallel imaging.

Conjugate-Gradient SENSE

Conjugate-Gradient SENSE (CG-SENSE) [104] (similar to [107]) was one of the �rst parallel imaging

methods to be described for non-Cartesian image reconstruction. Although it shares a name with

Cartesian SENSE, the principles of CG-SENSE are di�erent than its Cartesian counterpart. As stated

above, pixels from all over the FoV can be aliased in an undersampled non-Cartesian image, which

makes the direct solution of the SENSE equation nearly impossible for non-Cartesian data because of

the sizes of the matrices involved. Such a solution would be extremely computationally intensive due

to the need to invert the sensitivity matrix describing the aliasing of all pixels with each other. The

CG-SENSE method instead relies on the fact that the multi-channel data, combined with information

about the coil sensitivities, are redundant, even when the k-space data themselves are undersampled.

The relationship between the image and the acquired non-Cartesian k-space data can be written as a

matrix equation:

Ê · ~v = ~m (3.26)

(ÊHÊ) · ~v = ÊH · ~m (3.27)

where m̂ is a vector containing the acquired k-space points for each coil, ~v is a vector containing the

unknown image voxel values, and Ê and ÊH are the matrices which represent a combination of coil
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and gradient encoding and decoding, respectively. The vector m̂ has a length of NC · nk, where NC
is the number of receiver coils, and nk is the number of k-space points acquired for each channel. The

vector ~v has a length N2, where N is the image matrix size. The encoding matrix, which necessarily

has a size of NC · nk ×N2, can be written as:

E
L,~k,~r

= ei·~r
~·k · CL(~r) (3.28)

where L runs from 1 to NC, ~r is the pixel position in the image domain, and ~k is the k-space sampling

point. Thus, given that NC · nk is greater than N2, it should be possible to reconstruct the missing

pixel values ~v using Equation 3.27. As stated above, solving Equation 3.26 directly, i.e. by employing

the inverse of the matrix ÊHÊ, would require immense amounts memory and computation time due

to the large sizes of the matrices and vectors involved. However, Equation 3.26 is a linear equation of

the form

Â~x = ~b (3.29)

where the values in the matrix Â and vector ~b are known, and the values in the vector ~x are unknown.

This means that although it would be computationally challenging to directly solve Equation 3.26,

other solutions for this basic type of linear system can be used. In CG-SENSE, Pruessmann et al.

chose to solve the equation using the well-known iterative Conjugate Gradient method [108], which is

often employed when solving large systems of linear equations. This method is particularly e�cient

because it seeks to minimize the error in the residual by taking steps in conjugate directions, as opposed

to methods such as Steepest Descent, which can take multiple steps in the same direction. Thus, given

a well-behaved system of equations, it can be shown that the CG algorithm converges predictably after

a small number of iterations [109, 110], which is important for fast and robust image reconstructions.

One of the important features of the CG-SENSE method is that the encoding matrix depicted in

Equation 3.28 is made up mostly of Fourier terms, and one can use a Fast Fourier transform instead

of calculating the Ê and ÊH matrices explicitly. However, if one is to use the FFT, the non-Cartesian

data, i.e. the values in the vector m̂, must be gridded as described in Section 2.8. Although the original

work of Pruessmann et al. used the convolution gridding approach described in Section 2.8.1, other

authors have combined the method with INNG [23] (see Section 2.8.2), which is less computationally

intensive. Thus, the vast majority of the operations in the CG-SENSE method are involved in either

the Fourier transform or the gridding procedure. The implementation of the CG-SENSE method is

depicted in Figure 3.8, which also describes each of the individual steps.

The CG-SENSE method is important for parallel imaging because it allows one to reconstruct ar-

bitrary undersampled trajectories. Thus, unlike GRAPPA, CG-SENSE can reconstruct undersampled

radial, spiral, zig-zag, etc. data without requiring a modi�cation in its formulation. However, like

SENSE, CG-SENSE requires a coil sensitivity map, which means that CG-SENSE has the same limita-

tions as Cartesian SENSE. Although the coil map can sometimes be extracted from the undersampled

non-Cartesian data, errors in this map lead to reconstruction artifacts which cannot be removed. In

addition, the use of an iterative method can be more problematic than using a direct method due to
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Figure 3.8: A schematic depiction of the Conjugate-Gradient SENSE algorithm. The ac-
quired multi-channel undersampled non-Cartesian data are fed into the algorithm and then
gridded, Fourier transformed, multiplied by the conjugate coil sensitivities and combined.
These operations make up the decoding of the data, which is represented by ÊH matrix.
The image that results is the ��rst guess� for the actual image, and is fed into the conjugate
gradient algorithm, which yields a �second guess� for the actual image by attempting to
minimize the residual. This �second guess� is then separated into multi-channel images
by multiplying it with the individual coil sensitivities and performing a Fourier transform,
yielding the k-space once again. These operations are equivalent to the Ê matrix. This
new k-space data is resampled along the original k-space trajectory to obtain the updated
k-space, and the entire process is repeated. The CG-SENSE algorithm ends when the
image calculated in the (n − 1)th iteration di�ers from the image from the nth only by a
small de�ned amount.
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uncertainties in the stopping criteria. Finally, when performing dynamic imaging, CG-SENSE must be

performed separately for each time frame, making the reconstruction process much more time consum-

ing than k-space based methods, which typically require only one weight set for all time frames. Thus,

the non-Cartesian GRAPPA methods described above are often employed, despite the fact that they

are speci�c to the trajectory.

Parallel Imaging with Adaptive Radius (PARS)

Another method for reconstructing undersampled datasets with non-Cartesian trajectories is PARS

[105, 106]. Unlike CG-SENSE, PARS is a direct method which reconstructs missing points in k-space,

although coil maps are employed in both methods. Instead of generating the missing non-Cartesian

points, as in the non-Cartesian GRAPPA methods, PARS directly reconstructs the Cartesian k-space

points. In order to accomplish this, source points are chosen from the non-Cartesian data that falls

within a speci�ed radius kr, the so-called local neighborhood, of the �missing� Cartesian point, ~S(kx, ky).
These source points ~S(kx + δx, ky + δy), for which which

√
δx2 + δy2 5 kr, are combined using weight

sets equivalent to those in GRAPPA to reconstruct the Cartesian points:

∑
∆k

NC∑
L=1

n∆k,L,K · SL(kx + δx, ky + δy) ≈ SK(kx, ky) (3.30)

where ∆k indicates all the points within the local neighborhood that are used for the �t, and L and K

run from 1 to NC. In contrast to GRAPPA, the weights n∆k,L,K for PARS are determined using coil

sensitivity maps instead of an auto-calibration dataset:

∑
∆k

NC∑
L=1

n∆k,L,K · ei·(−∆k)·r · CL(r) ≈ CK(r) (3.31)

By comparing Equation 3.31 to Equation 3.4, one can see that the PARS weights should be identical to

those that would be calculated using GRAPPA, although they are determined using the sensitivity map

and the appropriate spatial harmonics instead of an auto-calibration dataset. Indeed, in the limiting

case where only one source point falls within the local neighborhood, PARS is equivalent to SMASH, and

when only one receiver coil is employed, PARS is equivalent to BURS, the gridding method discussed

in Section 2.8.

PARS is advantageous for several reasons: the �rst is that any undersampled trajectory can be

reconstructed using this method, as no symmetry is employed for the reconstruction. Secondly, because

PARS determines the values of the Cartesian points using parallel imaging, no gridding step is needed,

as the data are purely Cartesian after the reconstruction. Finally, PARS is a direct method, and not

iterative, like CG-SENSE. However, PARS does have a number of disadvantages. The �rst is the need

for coil sensitivity maps, which, as stated above, can be di�cult to acquire in some situations. The

second problem is the large number of weight sets which must be calculated for the reconstruction. In

the worst case scenario, each Cartesian k-space location requires a di�erent weight set; the calculation
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of 2562 distinct weight sets for a 256× 256 image takes a considerable amount of time and calculating

power. Similarly, in order to calculate each weight set, large matrix inversions must be performed (the

relevant matrices have dimensions of N2 × 4k), and the sizes of these matrices increase as the kr,

and thus the number of source points in the local neighborhood, increases. Thus, small values of kr

must be employed to maintain acceptable reconstruction times, which can lead to less than optimal

reconstruction quality due to the small number of source points in some locations in k-space. Although

this method is highly parallelizable, it is not commonly used due to its general e�ciency problems.

3.3.3 Non-Cartesian GRAPPA vs. CG-SENSE

The most commonly used non-Cartesian parallel imaging methods, non-Cartesian GRAPPA and CG-

SENSE, have been examined in the previous sections. Both of these methods have advantages and

disadvantages. CG-SENSE, while capable of reconstructing arbitrary undersampled trajectories, re-

quires coil sensitivity maps, which can be di�cult to generate in some cases. Non-Cartesian GRAPPA,

on the other hand, must be formulated separately for each di�erent trajectory, as it relies on symmetry

in k-space for an accurate reconstruction. Methods such as radial and spiral GRAPPA also su�er be-

cause a fully-sampled k-space is required for the generation of the GRAPPA weight sets, making these

methods primarily useful for dynamic imaging. A method which combines the advantages of these

two reconstruction techniques, namely the ability to reconstruct undersampled datasets with arbitrary

trajectories without the need for a coil map, would be advantageous.

3.4 Applications of Non-Cartesian Parallel Imaging

Due to the complexity and time requirements of non-Cartesian parallel imaging, these methods have

not yet become commonplace in a clinical setting. However, there are a number of applications which

have bene�ted from the combination of parallel imaging and non-Cartesian trajectories. For instance,

CG-SENSE has been applied to accelerated spiral data to measure real time values of blood �ow velocity

in the aorta and through the aortic valve [111, 112]. The use of parallel imaging allowed the temporal

resolution to be increased by a factor of three over the conventional imaging while maintaining a high

spatial resolution. Similarly, accelerated 4D (time-resolved 3D) radial images of the coronary artery

have been reconstructed using CG-SENSE with an acceleration factor of two in a single breath-hold

[113].

As stated in Section 2.7.2, spiral trajectories are often employed in fMRI, where a fast acquisition

is of the utmost importance. Thus, acceleration of the spiral trajectory could yield not only better

temporally resolved response information, but also a higher resolution or reduced distortions (which

result from the relatively long spiral read out). CG-SENSE has been used in conjunction with spiral

fMRI in order to accomplish this [114, 115], although only an acceleration factor of two was employed

in both cases.

CG-SENSE has also been employed to accelerate both the PROPELLER trajectory and a modi�ed

spiral trajectory for di�usion-weighted imaging [116]. A slightly modi�ed version of the procedure is
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used to simultaneously correct the phase di�erences between the di�erent PROPELLER blades. This

combination allows acceleration factors of up to R=3, which allows for the acquisition of high resolution

di�usion-weighted images.

3.5 The Current State of Non-Cartesian Parallel Imaging

As can be seen in Section 3.4, there are few actual applications of non-Cartesian parallel imaging, and

they are limited to CG-SENSE applied to the most common non-Cartesian trajectories. This de�cit

can be traced to a few sources. The �rst is the long reconstruction times of the CG-SENSE algorithm.

In many of the references cited in Section 3.4, the reconstruction times were on the order of hours;

although there are possibilities to speed up the reconstruction process, these options are not often

put into practice. The reason for this is the second di�culty with non-Cartesian parallel imaging,

namely its complexity. In order to employ either non-Cartesian GRAPPA or CG-SENSE, one must

have a fair amount of experience in non-Cartesian parallel imaging, as they are complex methods which

require many input parameters and corrections. This makes both methods challenging to implement

automatically, and no major MR developer currently includes non-Cartesian parallel imaging as part

of a product package. As an addendum, it is often di�cult to work with fully-sampled non-Cartesian

trajectories, due to the need for data gridding. For instance, exotic trajectories such as rosette [35]

do not have a DCF which can be analytically described, making gridding of such datasets tricky and

often subjective. Thus, developing straight-forward and parameter-free gridding and parallel imaging

algorithms for non-Cartesian data are of the utmost importance. Once this is accomplished, parallel

imaging could be combined with all of the non-Cartesian imaging applications described in Section

2.7.2.

This work focuses on the development of a non-Cartesian GRAPPA method which does not rely on

k-space symmetry, making it applicable to all undersampled trajectories. However, in order for such a

method to be practical, the undersampled non-Cartesian data must �rst be gridded. As can be seen

in the methods described above, the gridding step never comes before the parallel imaging step; they

are either simultaneous, or the gridding occurs after the reconstruction. This is due to the di�culty

in gridding undersampled data, as discussed in Section 2.8. All standard gridding methods, including

convolution gridding [76, 77], URS/BURS/rBURS [78, 79], INNG [80], DING [81], etc, require that

the Nyquist criterion has been ful�lled; if this is not the case, errors appear in k-space areas where

the region of support is less than ∆k. An additional problem with performing the gridding step �rst

is that one must know which k-space points must be reconstructed using GRAPPA. If gridding were

performed �rst, undersampling would lead to areas of low, but not no, signal, and distinguishing points

that have been �sampled� from those which must be reconstructed is impossible (see Section 6.2.2).

Thus, before a new non-Cartesian GRAPPA method could be developed, a new gridding method with

these properties had to be introduced.

This new gridding method, which is based on the GRAPPA Operator and uses parallel imag-

ing concepts to shift non-Cartesian datapoints to their nearest Cartesian locations, is named GROG
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(GRAPPA Operator Gridding). The basics of this technique and its properties are discussed in de-

tail in Chapter 4. A modi�cation to GROG which ensures that it is self-calibrating, i.e. the parallel

imaging weights can be determined from the data points themselves, for several important trajectories

is described in Chapter 5. The primary advantage of GROG is that it can be used to grid under-

sampled datasets. These gridded undersampled datasets can be further processed using a generalized

non-Cartesian GRAPPA method for all trajectories, namely pseudo-Cartesian GRAPPA, which is dis-

cussed in Chapter 6. This method has the advantages of GRAPPA, i.e. that it is auto-calibrating and

a direct k-space reconstruction is performed, without the need for a di�erent formulation of GRAPPA

for each trajectory.

Finally, an additional use of GROG to reconstruct undersampled datasets without using other

parallel imaging methods is discussed in Chapter 7. This method uses GROG to mimic the so-called

bunched phase encoding acquisition scheme of Moriguchi et al. [23, 24, 25] The use of GROG in

conjunction with the generalized sampling theory of Papoulis [14] allows one to reconstruct images

even when the k-space data are not strictly sampled according to the Nyquist criterion. This method,

similar in function to pseudo-Cartesian GRAPPA, allows one to reconstruct undersampled datasets

with arbitrary trajectories, although no GRAPPA is employed.
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Chapter 4

GRAPPA Operator Gridding (GROG)

4.1 Introduction

As discussed in Section 2.7, non-Cartesian imaging has advantages over standard Cartesian imaging

due to, for example, e�cient k-space coverage or suppression of �ow, undersampling, or o�-resonance

artifacts [15, 26, 28, 29, 31, 35, 38]. However, all acquired points do not necessarily fall onto a grid and

must be resampled onto a Cartesian matrix before a fast Fourier transform can be performed, which

is a major obstacle to non-Cartesian imaging (see Section 2.8). The convolution gridding approach

of Jackson et al. [76] is the gold-standard method to prepare the raw data prior to the FFT, but

it requires a density compensation function (DCF) to even out the sampling density throughout the

trajectory. Unlike the radial trajectory, computing an analytic DCF is not trivial for trajectories

with exotic geometries [117], such as PROPELLER [31], rosette [35], or stochastic trajectories [38].

Other gridding methods [78, 79, 80, 81] can be used to grid data acquired along such trajectories

without a DCF, although these methods have other disadvantages such as noise enhancement, strenuous

parametrization, or iterative reconstructions.

Instead of using convolution gridding, parallel imaging concepts can be applied [1, 2, 3, 4, 5, 6,

7, 105, 106] to reassign non-Cartesian data to the nearest Cartesian grid points. As discussed in

Chapter 3, the basic idea behind parallel imaging is to use several coils at di�erent spatial locations to

acquire Nyquist undersampled data, and then to reconstruct the missing points by combining the coil

information using a reconstruction algorithm such as GRAPPA [7]. In the case of using parallel imaging

for gridding, the missing points are the Cartesian points, and the acquired data are the non-Cartesian

points. By forming linear combinations of the multi-channel non-Cartesian datapoints, the appropriate

spatial harmonics of the missing Cartesian points can be synthesized. This chapter describes GRAPPA

Operator Gridding (GROG), a method for the gridding of non-Cartesian datapoints using parallel

imaging, and validates this method using data collected along radial, spiral, PROPELLER, and rosette

trajectories. This method has been published as a Full Paper in the journal Magnetic Resonance in

Medicine [118].
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4.2 Theory

4.2.1 Properties of the GRAPPA Operator

A parallel imaging method which is well-suited to shift non-Cartesian points to nearby Cartesian

locations is the GRAPPA operator gridding (GROG) approach [118, 119]. Because this section describes

the use of the GRAPPA operator for gridding, only those properties which are relevant for this task

are are reviewed here, and only one-to-one operators are examined. It is important to note, however,

that larger GRAPPA operators which employ more source and target ponts can indeed be de�ned

and utilized. These larger GRAPPA operators have the advantage that they act more like GRAPPA

weight sets (see Section 3.2.3) and allow for larger k-space shifts. However, they also require a speci�c

source point pattern, making the use of such weight sets limited, although they also have the properties

described below. For a more extensive treatment of the GRAPPA operator, and a description of the

uses of these larger GRAPPA operators, please refer to Section 3.2.2.

As recently described by Griswold et al [95], the GRAPPA operator is a formulation of GRAPPA

where the weight set is a square matrix. The name �GRAPPA Operator� was chosen because this matrix

increases or decreases the k-space position or energy of a point in k-space, similar to a raising or lowering

operator (i.e. ladder or propagator operator) in quantummechanics. As is the case for the corresponding

raising and lowering operators in quantum mechanics, parallel imaging reconstructions performed using

the GRAPPA Operator require only one basis weight set which can be applied consecutively to generate

the appropriate spatial harmonics. While the similiarities between the two end here, it is often helpful

when examining the properties of the GRAPPA Operator to keep this comparison in mind.

The GRAPPA operator formalism has several features which make it useful for gridding. First, a

GRAPPA operator can be used to shift a point in k-space by an arbitrary amount n ·∆ky, where n is

not restricted to integer values:

~S(kx, ky + n ·∆ky) ≈ Ĝn · ~S(kx, ky) (4.1)

where ~S(kx, ky) is a vector containing the values of the acquired point for each receiver coil, Ĝn is a

matrix containing the appropriate coil weighting factors (weights) for the desired shift, and ~S(kx, ky +
n·∆ky) is the vector containing the signal from each receiver coil at the desired location. It is important

to note that this formulation is equivalent to GRAPPA with a single source point and a single target

point. As mentioned above, the weight set is simply a square matrix of size NC ×NC, where NC is

the number of coil elements used for the acquisition.

A second important property of the GRAPPA operator is that an operator Ĝδ for a small shift δ

can be derived from an operator for a larger shift of size n · δ, Ĝn·δ, by taking the nth root of the larger

operator [96]:

Ĝδ = (Ĝn·δ)
1
n (4.2)
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This implies that the calibration step for an arbitrary shift in one direction must be performed only

once, as any smaller shift can be derived from a larger shift. The operation above can be performed by

�rst diagonalizing the GROG weight set for a base shift Ĝ1, and using this diagonal form to calculate

the smaller shift operator Ĝδ by employing the δth power of the eigenvalues:

Ĝ1 = Ê · V̂ · Ê−1 (4.3)

and

Ĝδ = Ê · V̂ δ · Ê−1 (4.4)

where Ê is a matrix containing the eigenvectors of the base shift matrix, and V̂ is the diagonal matrix

containing the eigenvalues. Because the weights are calculated using a Nyquist sampled calibration

dataset, the ∆k = 1 GROG weights are completely determined, and the principle roots of the appro-

priate weight set (i.e. those where the eigenvalue has a non-negative real part) can always be used

to calculate the weight sets for smaller shifts. Thus, no time-consuming root determination must be

performed as would be the case if employing undersampled calibration data.

Finally, GRAPPA operators for shifts in orthogonal directions can be derived and subsequently

applied to generate a multi-dimensional shift:

~S(kx + δx, ky + δy, kz + δz) = Ĝδx,δy,δz · ~S(kx, ky, kz) = Ĝδx · Ĝδy · Ĝδz · ~S(kx, ky, kz) (4.5)

Only unit shifts along the logical k-space axes (read, phase and partition for 3D imaging) need to

be calibrated rather than every possible shift, and a shift in any direction by any amount can be

calculated from this single group of orthogonal basis weights. It is important to note at this point that

the GRAPPA Operator formalism assumes that the shifts along orthogonal directions can be considered

to be independent from one another. In other words, orthogonal operators commute with one another

in theory, and the order of their application should not impact the result of the shift calculation.

4.2.2 Gridding with the GRAPPA Operator

GROGmakes use of these properties of the GRAPPA operator to rapidly map non-Cartesian datapoints

to the nearest Cartesian grid location. This is performed through the following steps (for a 2D image):

� Ĝx and Ĝy weights are determined using the read lines (Ĝx) and the phase encoding lines (Ĝy)

of a low-resolution Cartesian calibration signal by �tting each point to the point adjacent to it

in the appropriate direction (this calibration step is described in Section 4.2.3). In the case of

Nyquist-sampled Cartesian data, the base weights Ĝx and Ĝy are the GRAPPA operators for a

shift of ∆k = 1 in the read and phase encoding directions, respectively.

� The distance needed to shift a non-Cartesian point (analogous to the GRAPPA source point) to

the nearest Cartesian point (analogous to the GRAPPA target point) is calculated using the k-
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space trajectory. For example, if a datapoint lies at [kx, ky] = [19.77, 5.83], the nearest Cartesian
location is [kx, ky] = [20, 6], and the distance to be shifted is [∆kx,∆ky] = [+0.23,+0.17].

� As shown in Equation 4.2, the appropriate operators for the small shifts in the kx- and ky-

directions are calculated using Ĝx and Ĝy as the base weights. For instance, if a point must be

shifted by ∆kx = +0.23 and ∆ky = +0.17 and the base weights are calibrated for ∆k = 1 shifts,

the appropriate weight set would be calculated as shown in Equation 4.5:

Ĝδkx,δky = Ĝ0.23
x · Ĝ0.17

y (4.6)

� The shifted points are calculated by applying the appropriate operators to the non-Cartesian

datapoints as shown in Equation 4.1 and deposited in the proper Cartesian location in k-space:

~S(20, 6) = Ĝ0.23
x · Ĝ0.17

y · ~S(19.77, 5.83) (4.7)

� In cases where multiple non-Cartesian points map to the same Cartesian grid point, a simple

average is performed to arrive at the �nal value at that Cartesian location

A schematic which depicts the shifting of non-Cartesian k-space points to their nearest Cartesian

locations, and the proper weight calculation, is shown in Figure 4.1.

The e�ective DCF for GROG, i.e. the simple averaging of the shifted points that are mapped to the

same Cartesian location, can be understood as follows: each non-Cartesian point that is shifted to the

same Cartesian point should ideally have the same value (given perfect GROG weights, no noise, and

an absence of experimental factors such as relaxation). In other words, after shifting the non-Cartesian

points with GROG, the resulting dataset can be treated as a dataset of Cartesian points, some of which

have been acquired multiple times. Thus, the shifted points belonging to the same Cartesian location

generated from di�erent non-Cartesian points can simply be averaged.

It is important to note that for a unit sampled base grid (i.e. equal and isotropic image and grid

FOV), the maximum shift magnitude in one direction that must be performed for gridding is 0.5 ·∆k.
As discussed in Section 3.2.3, the use of the GRAPPA Operator leads to less accurate reconstructions

because only a single source point is used to �t the target point. Thus, the GRAPPA Operator is only

practical for small shifts in k-space; larger shifts lead to larger errors in the reconstructed Cartesian

points. Naturally, as in all parallel imaging methods, more coils in the receiver array allow for a more

reliable determination of the weight sets, and therefore a larger shift distance. While it is possible to

perform a step of 0.5 ·∆k accurately with GROG using most commercially available coils (see Figure

4.5), an array with a small number of detector elements or poorly arranged coils can result in artifacts

due to insu�cient coil sensitivity variation along that direction. Although the trajectory a�ects the

distribution of shifts along a given direction, most shifts are smaller than this maximum. Since the

shifts are variable in size and direction, artifacts that result from GROG are expected to be incoherent

and appear as a noise enhancement in the image.
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Figure 4.1: GROG gridding of non-Cartesian points. Cartesian destinations are at the
intersections of the straight, �nely dotted lines, and consecutive samples of an arbitrary
trajectory are represented by solid circles. GROG grids a non-Cartesian data point by
shifting it to its nearest Cartesian location via an appropriate weight set. For example, the
GROG weights Ĝ0.22

x · Ĝ0.29
y are applied to the upper sampling location. When applied to

each point along the non-Cartesian trajectory, GROG results in a purely Cartesian k-space.
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Figure 4.2: An example of the GROG weight determination for the PROPELLER trajec-
tory. The top left shows the k-space points for the non-Cartesian PROPELLER trajec-
tory. Two of the four blades present are purely Cartesian. By selecting one (or both) of
the Cartesian blades, the Ĝx weights can be calculated by �tting adjacent points in the
kx-direction to each other, as described in Equation 4.8 and shown at the bottom of the
�gure. The same can be performed in the ky-direction to calculate the Ĝy weights. Using
these GROG weights, the non-Cartesian portions of the PROPELLER trajectory can be
gridded, yielding a purely Cartesian dataset (top right).

4.2.3 GROG Weight Determination

In order to employ GROG to grid non-Cartesian points, a calibration dataset must be used to determine

the weights for steps in the Ĝx and Ĝy directions (for two-dimensional imaging). For arbitrary k-space

trajectories, this calibration signal can be a low-resolution Cartesian dataset where steps of ∆k = 1
(or less) are performed (i.e. Ĝx is calculated from the points in the read direction, and Ĝy from the

points along the phase encoding direction). The GRAPPA operator can be derived in the same fashion

as standard GRAPPA weights; namely, a �t of points with the appropriate relationship is performed

with the use of the pseudo-inverse:

ŜACS(kx, ky + ∆ky) · pinv(ŜACS(kx, ky)) ≈ Ĝy (4.8)

In these equations, the signal matrices ŜACS are made up of a collection of signal vectors from the

Cartesian auto-calibration signal with the appropriate distance relationship, analogous to the weight

set determination in GRAPPA (described schematically in Figure 3.3).

For some trajectories, this low-resolution Cartesian dataset is automatically present, as in the

PROPELLER trajectory, where one blade can be used to calculate the base weights. An example

showing how one blade in this trajectory can be used as the calibration dataset for the non-Cartesian
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k-space points is shown in Figure 4.2. The same method can be employed to determine the orthogonal

weight sets from an additional Cartesian dataset for other non-Cartesian trajectories, such as for the

radial and spiral datasets shown here.

4.3 Methods

4.3.1 Simulations

In order to examine the e�ects of noise on the gridded images, simulated datasets were constructed to

compare convolution gridding and GROG. A standard Shepp-Logan phantom was employed with an

eight-element one-ring head coil array, where sensitivities were derived using an analytic integration

of the Biot-Savart equations. The Cartesian data were resampled as radial data (200 projections, 256

read-out points, base matrix of 128 × 128) by sinc interpolation. Progressively larger levels of normal

complex noise (real and imaginary standard deviations (σN ) of 0.1, 0.5, 1, and 2.5, corresponding to

approximately 0.1%, 0.5%, 0.95%, and 2.36% of the maximum amplitude of the DC signal) were applied

to the radial k-space data. The data were then gridded with both GROG and the standard convolution

gridding in order to compare the root mean square error (RMSE) of the resulting images as compared to

the noiseless Shepp-Logan phantom. Note that the region of k-space support for the Cartesian phantom

was reduced with a radial mask of the same extent as the radial trajectory to enforce isotropic image

resolution; this will slightly a�ect the appearance of the standard noiseless phantom. Additionally, a

1D interpolation along the Nyquist sampled read direction (i.e. the radial arms) of each of the noisy

radial datasets was performed in order to increase the data oversampling in the read direction to a

factor of four. This is expected to improve the GROG reconstruction, as the additional radial points

are densely sampled and therefore more non-Cartesian points contribute to each individual Cartesian

location (i.e. each Cartesian point is reconstructed from non-Cartesian points which must be shifted

in di�erent directions, which has an averaging e�ect on the resulting Cartesian points).

In order to examine the e�ect of di�erent numbers of array elements on the RMSE of the GROG-

gridded radial images, several coils were simulated with similar geometries but di�erent numbers of coil

elements. As in the previous example, coil sensitivities were calculated using an analytic integration of

the Biot-Savart equations. The geometry chosen was that of a head coil, i.e. the elements were arranged

in a circle around the object. Following the generation of a coil sensitivity map for each of the di�erent

coils, radial datasets for each coil were simulated as stated above, and these datasets were gridded

using GROG. The RMSE of each image as compared with the noiseless Shepp-Logan phantom was

then calculated. In addition, a comparison was made between the inherent DCF resulting from GROG

gridding of fully- and undersampled radial datasets and the corresponding DCFs proposed by Pipe [120].

To this end, a fully-sampled radial dataset with one Cartesian arm along the x-direction was simulated

as described above (128 projections, 82 read-out points, base matrix of 82 × 82, corresponding to a

dataset which is sampled according to the Nyquist criterion in the azimuthal direction). The dataset

was gridded using GROG, and the contribution of the Cartesian arm to the GROG k-space, i.e. the

e�ective DCF along this radial arm, was examined. In this way, the e�ect of the averaging of multiple
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non-Cartesian points which end up at the same Cartesian location could be examined. The e�ective

GROG DCF was then compared to the standard radial Ram-Lak DCF. To examine the e�ective GROG

DCF of an undersampled dataset, three-fourths of the radial arms were removed, and the remaining

arms (32 projections, R=4) were gridded using GROG. The contribution of the radial arm along the

x-direction was then compared to the undersampled DCF shown to have the optimal SNR and lowest

artifact energy by Pipe.

Finally, in order to demonstrate that GROG can be used to grid data acquired along exotic trajec-

tories without the use of a DCF, a rosette dataset with a base matrix size of 128× 128 was simulated

using the 8-channel coil described above. The trajectory is made up of 21600 points (divided into

180 read points for each of 120 phase encoding steps) and is shown on the left-hand side of Figure

4.7. Before gridding, the data were interpolated in the read direction to yield a four-fold oversampled

dataset, as discussed in the paragraphs above.

4.3.2 In Vivo Experiments

In order to compare GROG with the gold-standard of convolution gridding, in vivo radial, spiral,

and PROPELLER datasets were acquired with parameters as given in Table 4.1. Informed consent

from the volunteers was obtained before each study. Since radial and spiral are the most commonly

applied trajectories in non-Cartesian imaging, their well-known artifacts from convolution gridding can

be readily compared to the GROG reconstruction results. The PROPELLER trajectory was selected

for two reasons. The �rst is that at least one of the blades can be used to calculate the base weights as

described in Section 4.1. In addition, GROG completely avoids the computation of an analytic DCF for

the PROPELLER trajectory, which is a non-trivial but necessary process prior to convolution gridding.

Radial Spiral PROPELLER

Read Points 512 7289a 256

Phase Encoding Steps 256 4 410b

Number of Coils 12 8 17

Base Matrix Size 256 192 256

Scanner 1.5T Espree 3T Trio 1.5T Espree

Sequence FLASH Gradient Echo FLASH

TR 20 ms 2500 ms 20 ms

TE 5 ms 30 ms 5 ms

DCF Ram-Lak modi�ed Ram-Lak iterativec

Base Grid 2 2 2

Kernel Width 5 3 5

Table 4.1: A list of the measurement and reconstruction parameters for the in vivo datasets
gridded using GROG and convolution gridding. aA center-out constant-linear-velocity
spiral trajectory was used. bThe 410 phase encoding steps for the PROPELLER trajectory
are comprised of 41 parallel lines for each of 10 blades. cSee [121] for a detailed description
of the iterative PROPELLER DCF.
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Before gridding each dataset with GROG, as described above, the data were interpolated along

the read direction to an oversampling factor of four, which is expected to improve the reconstruction

quality. No additional DCF was applied to the data before gridding with GROG. In addition, each

dataset was also gridded with standard convolution gridding (parameters shown in Table 4.1). A

Ram-Lak DCF was applied to the radial data before performing convolution gridding, and a modi�ed

Ram-Lak to the constant-angular-velocity spiral data [122]. An iteratively-calculated PROPELLER

density compensation function [121] was applied prior to convolution gridding since an analytical DCF

has yet to be described.

4.4 Results

4.4.1 Simulation

The results from the simulations are shown in Figures 4.3 to 4.7. As can be seen in the pro�les and

the RMSE in Figure 4.3, images gridded with GROG without oversampling (dashed gray line) contain

elevated noise levels when compared to the convolution gridding images (solid gray line). At low noise

levels (σN < 1), the pro�les of both reconstructions are nearly identical to that of the Shepp-Logan

phantom (solid black line), implying that these two methods o�er similar image quality for high SNR

values as the additional noise due to GROG is insigni�cant. However, at higher noise levels, the pro�le

in the lower signal areas of the GROG images deviates more strongly from the standard pro�le than

that of the convolution gridding image, which is also re�ected in the higher RMSE of the GROG images.

These SNR losses can be traced to the application of a weight set to a noisy data point; the underlying

noise of a given datum can be enhanced by the shifting process, especially for large shifts. However, the

RMSE values of the images reconstructed from data interpolated to an oversampling factor of four (thin

black line) are similar to those of the convolution gridding images. This e�ect is to be expected, as the

higher oversampling factor in the read direction indicates that more non-Cartesian points are shifted

to the same Cartesian point, thus e�ectively averaging out the errors that occur when the weights are

applied to noisy data points. Thus, when gridding low SNR data with GROG, a 1D interpolation

along the read direction must be used to increase the read oversampling in order to avoid SNR losses.

Alternatively, the oversampling factor in the read direction can be increased, which would yield the

same results. Figure 4.4 shows the σN = 1 images gridded with the standard convolution gridding

(left) and with GROG (interpolation factor 4, right). As can be seen in this �gure, no additional noise

enhancement is observed in the image gridded with GROG.

Figure 4.5 is a plot of the results of the RMSE calculation for radial datasets simulated with di�erent

numbers of coil elements and gridded using GROG. As can be seen in the �gure, GROG is not e�ective

when two coil elements are used, as there are only coil sensitivity variations which can be employed

to determine the GROG weights in one direction. This leads to the appearance of artifacts in the

gridded image (inset, left image) and a high RMSE. Thus, when a small number of coils is employed,

the RMSE of the GROG-gridded image as compared to the standard Shepp-Logan phantom indicates

that additional noise enhancement is present. However, as the number of coil elements increases, the
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Figure 4.3: Representative pro�les of the results of convolution gridding (solid gray line),
GROG without oversampling (dashed gray line), and GROG interpolated to yield an over-
sampling factor of 4 (thin black line) with di�erent noise levels (σN ), compared to the noise-
less Shepp-Logan phantom (thick black line). As the noise level of the dataset increases,
the GROG without oversampling shows a considerable increase in noise, as indicated by
the RMSE values, whereas the GROG images with oversampling have approximately the
same noise level as the convolution gridding images.
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Figure 4.4: Examples of a radial dataset with a noise level of σN = 1 gridded with con-
volution gridding (left) and GROG (right). As can be seen in the RMSE values shown
in Figure 4.3, there is no appreciable di�erence between the convolution gridding and the
GROG image.

RMSE values of the images approach a constant value; with the simulated coil arrangement, there is

no appreciable di�erence between the use of six and twenty elements. The images in the center and

right of the inset were reconstructed using GROG with six and twelve channels, and appear virtually

identical. Because most commercially available coil arrays have at least six elements (with an increasing

tendency towards larger number of elements), GROG can be performed with these coils on clinical

systems without concern for additional noise enhancement due to insu�cient coil sensitivity variations.

In order to examine the appearance of the density compensation in GROG, the GROG e�ective

DCFs for fully- and undersampled radial data are compared with the Ram-Lak and undersampled

DCF proposed by Pipe in Figure 4.6. The GROG e�ective DCFs are shown as solid lines, and the

standard DCFs as dotted lines. As can be seen in the �gure, the e�ective DCFs of GROG closely follow

the standard radial DCFs, especially in the center of k-space, where the data weighting is essential to

account for correlations between data points. It is important to note that the e�ective GROG DCF

does not change after the data have become more sparse than dictated by the Nyquist criterion, as

evidenced by the R=4 undersampled data (the arrow in Figure 4.6 indicates the point at which the

Nyquist criterion is no longer ful�lled). This is consistent with the idea of the DCF as a tool for

normalizing data correlation; as soon as the data no longer ful�ll the Nyquist criterion in the azimuthal

direction, compensation for varying density is no longer necessary.

Finally, to demonstrate the usefulness of GROG for the reconstruction of data collected along an

exotic trajectory, the image resulting from the rosette trajectory data gridded using GROG is shown

in Figure 4.7. The RMSE of this image in comparison to the noiseless Shepp-Logan phantom was

calculated to be 0.17%, and the images are visually indistinguishable. It is important to note that the

rosette data were gridded without a DCF or any additional gridding parameters.
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Figure 4.5: Images and the corresponding RMSE values reconstructed using GROG from
radial datasets simulated with di�erent numbers of coil elements. As can be seen in the
graph, the use of coils with too few elements leads to a high RMSE, indicating that the
image contains artifacts due to the GROG weights. The inset image on the left shows
such a case; performing GROG on radial data acquired with two coil elements leads to
artifacts in the reconstructed image. As the number of coils increases, the RMSE also
decreases, until a minimum is reached. The use of six coil elements o�ers approximately
the same image quality as coils with more elements (dotted line in chart). The middle and
right inset images, reconstructed using six and twelve elements, respectively, are visually
indistinguishable from each other and from the reference image.

4.4.2 In Vivo Experiments

The results of the gridding of the in vivo images acquired using the radial, spiral, and PROPELLER

trajectories are shown in Figures 4.8 and 4.9. In Figure 4.8, the results of convolution gridding are shown

on the left, and the GROG images on the right; in Figure 4.9, the convolution gridding image is on top,

and the GROG image is below. Upon visual inspection of the results, GROG and convolution gridding

yield equivalent results, where any contrast or resolution di�erences are not evident. As discussed for

the simulations in Section 4.4.1, no parameters besides the trajectories are required for the application

of GROG. This is especially important for the PROPELLER trajectory, where the DCF required for

most gridding methods, including convolution gridding, is complicated and non-analytical.
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Figure 4.6: The e�ective GROG DCFs (solid lines) and the standard DCFs (dotted lines)
for fully-sampled (black) and R=4 undersampled (gray) radial datasets. For the central
portion of k-space, the GROG DCFs follow the standard radial DCFs closely. In addition,
in the R=4 case, the GROG DCF follows the optimal SNR DCF for undersampled radial
data as proposed by Pipe; at the point where the Nyquist criterion is violated in the
azimuthal direction, the DCF becomes constant.

4.5 Discussion

GRAPPA operator gridding (GROG) has been demonstrated for radial, spiral, rosette, and PRO-

PELLER trajectories. One advantage of GROG is that no pre-calculated density compensation func-

tions or other parameters are required for gridding, whereas convolution gridding requires a DCF in

addition to other parameters. While this is not a di�culty for the radial or spiral trajectory, the ability

to grid PROPELLER, rosette, or stochastic data without having to calculate a DCF is highly advan-

tageous. It is important to note that the e�ective DCF used in GROG, i.e. the averaging of shifted

points which map to the same Cartesian location, cannot be used for other gridding techniques, because

GROG explicitly calculates the values of the Cartesian points. Thus, after applying the appropriate

GROG weights to each non-Cartesian point, the resulting dataset is made up of purely Cartesian points,

which can simply be averaged. It would also be possible to weight the shifted points with scaling factors

which depend on the distances of their GROG shifts, although this method of calculating the DCF

has not been examined. In addition, for undersampled datasets, GROG automatically performs an
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Figure 4.7: An example of an image simulated using the rosette trajectory and gridded
with GROG. The trajectory used is shown in the image on the left, where the black path
delineates one phase encoding step, and the reference Shepp-Logan phantom is shown in
the center. The image resulting from the use of GROG to grid the simulated rosette data is
on the right, and is visually indistinguishable from the reference image (RMSE = 0.17%).

approximation of the high SNR, low artifact energy DCF proposed by Pipe for undersampled datasets.

Thus, undersampled data are also correctly density compensated without the need for considerations

about the degree of undersampling present in the dataset.

Despite the fact that no additional parameters are needed for GROG, the in vivo GROG images

presented here are visually indistinguishable from the convolution gridding images in terms of contrast

and resolution. GROG is also less computationally intensive than convolution-based methods. For a

kernel size of �ve, convolution gridding must process 25 gridding points for each actual non-Cartesian

datapoint acquired. GROG, however, uses in essence a kernel size of one, which means that the gridding

operation can be accomplished in much less time and with fewer computational requirements.

There are other methods besides GROG which perform data gridding without the need for a DCF.

For instance, URS/BURS [78] is a method which performs data resampling by transforming the gridding

problem into a linear equation which can be solved using singular value decomposition (SVD). As in

GROG, no subsampling is employed for the gridding process and no DCF is required. However, this

family of methods has several drawbacks. In the URS method, the large number of data samples leads

to an inconveniently large linear equation. The BURS method is somewhat more practical, although it

is highly sensitive to noise due to the need for a matrix inversion in the SVD. The extension to these

approaches, rBURS [79], addresses this noise sensitivity problem, although the results are strongly

dependent on the parametrization of the matrix inversion problem, i.e. the regularization and the size

of the region of support. In comparison with GROG, which requires no parametrization, the URS

family is much more di�cult to employ, and is more computationally intensive.

Several iterative methods have also been proposed which operate without a DCF. One such ap-

proach is INNG [80], which di�ers from convolution gridding in that a multiplication in the image

domain is substituted for a convolution in k-space. In this way, an e�ective sinc convolution can be

performed in k-space (through the multiplication of a box-car function with the image in the frequency

domain) instead of using an approximation (such as a truncated Kaiser-Bessel window). However, a
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Figure 4.8: In vivo examples of images gridded with the standard convolution gridding
(left) and with GROG (right) for the datasets acquired using the radial (top) and spiral
(bottom) trajectories.
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Figure 4.9: An example of an in vivo image gridded with the standard convolution gridding
(top) and with GROG (bottom) for the PROPELLER trajectory.
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number of iterations of the INNG algorithm are required before an artifact-free image results from

the non-Cartesian data. Each iteration involves one Fourier transformation and one inverse Fourier

transformation, which becomes quite time-consuming when large oversampling factors are used. A sec-

ond iterative gridding algorithm is DING [81], which also formulates the gridding problem as a linear

equation. Unlike the URS family, this linear equation is solved using a conjugate gradient optimization.

Because no subsampling is used, this method is less computationally intensive than INNG, although

each iteration requires the same number of Fourier transformations. However, the convolution window

used in DING must be optimized, again leading to potential di�culties in parametrization.

The advantage of GROG over such methods is that GROG is a direct method, and requires no

iteration or parametrization (i.e. subsampling, iteration numbers, window widths, or window shapes).

In addition, all of the methods described above assume that the non-Cartesian data ful�ll the Nyquist

criterion, which is not an assumption of GROG. However, it is important to note that unlike convolu-

tion gridding, URS/BURS/rBURS, INNG, or DING, GROG can only be used to grid data acquired

with a multi-element coil; this is not a requirement for most other gridding methods. The coil array

employed must o�er su�cient sensitivity variation to allow the calculation of robust weights. Because

most modern scanners employ multi-element coils due to their SNR advantages, besides the option of

using parallel imaging, this condition is not a serious constraint. In addition, as demonstrated in the

examples shown here, standard coils which are readily available in a clinical setting possess the sensi-

tivity variations needed to reconstruct images using GROG. While the 18-channel abdomen coil used

to acquire the PROPELLER data may not be currently commonplace, the 12-channel and 8-channel

head coils used to acquire the radial and spiral data, respectively, are both standard and commercially

available. Thus, the need for multi-channel data from appropriate coils is not a major obstacle to the

use of GROG.

For datasets with low SNR, the use of GROG without interpolation may increase the noise in the

�nal images as compared with convolution gridding, as shown in Figure 4.3. This SNR loss can be

attributed to the application of weight sets to the individual noisy points, which ampli�es the noise

in the shifted point. However, if the data are �rst interpolated along the read direction to increase

the read oversampling, more non-Cartesian points can be used to reconstruct a single Cartesian point.

The use of more non-Cartesian points, which must be shifted in di�erent directions, acts as an e�ective

averaging, which combats the noise enhancement. As demonstrated in Figure 4.3, interpolation of the

noisy data to an oversampling factor of four before gridding with GROG leads to images with RMSE

values which do not di�er greatly from those of the images resulting from convolution gridding. Thus,

noise enhancement is not observed when using GROG to grid non-Cartesian data collected with clinical

multi-element coils, even in datasets with lower SNR.

In the implementation of GROG described here, a calibration dataset is required. For some non-

Cartesian trajectories, such as PROPELLER, this calibration dataset is automatically acquired as a

part of the trajectory. However, for many others, the trajectories do not contain this Cartesian portion,

and they are not self-calibrating using the method described here. However, a method of obtaining the

weights from the non-Cartesian data themselves for radial and spiral trajectories has been developed
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during the course of this thesis, and is described in detail in Chapter 5, as well as in several publications

by the author [123, 124, 125]. For trajectories which are not inherently self-calibrating, such as the

rosette trajectory, a pre-scan can be employed to generate the Cartesian calibration dataset required

for the use of GROG.

As stated in Section 4.2.1, the use of the GRAPPA Operator formalism for gridding assumes implic-

itly that the matrices for unit shifts in the logical directions commute. The basis for this assumption is

that the shifts in orthogonal directions should be independent of one another; a shift in the kx-direction

followed by a shift in the ky-direction should be the same as performing the same shift in the opposite

order. However, for actual receiver coils, this assumption may not always hold true, and the values of

the �nal k-space points may depend on the order of the shifting. This phenomenon has not yet been

examined in detail, although it is likely due to noise- and data-correlation between the receiver coils.

Indeed, the k-space values of datasets gridded when changing the order of the application of the Ĝx

and Ĝy weights in Equation 5.3 are not identical to the values obtained when using the stated order,

although the image artifacts are similar in terms of appearance and severity. Despite the fact that

the images gridded using GROG appear not to su�er from the fact that the weight sets do not com-

mute, it must be kept in mind that this assumption is not necessarily ful�lled in actual multi-channel

non-Cartesian datasets.

Finally, the GRAPPA operator gridding approach is less computationally burdensome than other

possible parallel imaging-based gridding techniques. GROG requires only one weight set for each

orthogonal direction in k-space, i.e. two dimensional data require two weight sets. Using the method

described in Section 4.2.3, the speci�c weight sets needed to shift the non-Cartesian points to the

nearest Cartesian locations are then calculated out of these two weight sets. Thus, both the calibration

and reconstruction processes are fast due to the small number of weight sets. In contrast, one could

imagine using a technique such as PARS [105, 106] for data gridding. PARS examines the local vicinity

of a missing point to �nd possible source points, and then uses these points together with a sensitivity

map to calculate a weight set which allows one to reconstruct the missing point. PARS is clearly inferior

in terms of computational complexity to GROG due to the repeated search operations. In addition,

because GROG requires such a small number of weight sets, these weights can be calculated from

simple Cartesian calibration data. Thus, GROG does not require coil maps, weight interpolation, or

di�erently spaced Cartesian calibration data, which simpli�es the reconstruction with respect to other

possible parallel imaging-based gridding schemes.

An extremely important feature of GROG which has not been discussed in detail in this chapter

is that GROG can be used to grid undersampled data as well as fully-sampled data, which is not

the case in convolution gridding. Convolution gridding methods assume that the non-Cartesian data

ful�ll the Nyquist criterion throughout the trajectory. Despite acceptable streak artifacts for angularly

undersampled radial trajectories, gridding with convolution-based methods essentially ��lls up� more

k-space locations than were actually measured. In the extreme case of a single point, GROG can be

used to shift this point to the nearest Cartesian location, yielding a single point in k-space surrounded

by zeros, a feat which cannot be accomplished with convolution gridding. The ability of GROG to
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grid undersampled non-Cartesian datasets to yield Cartesian datapoints near the sampled locations

and zeros in all other locations is be advantageous for other types of non-Cartesian parallel imaging

reconstructions. For instance, non-Cartesian GRAPPA algorithms [100, 102, 126], as discussed in 3.3.1,

�rst reconstruct missing datapoints, and then grid the reconstructed data. However, as demonstrated

in Chapter 6 as well as in several manuscripts by the author [127, 128, 129], the undersampled data can

instead �rst be gridded with GROG followed by a Cartesian GRAPPA reconstruction of the resultant

Cartesian data points. This method, namely pseudo-Cartesian GRAPPA, is the �rst application of

GROG for performing tasks other than the gridding of Nyquist sampled datasets, and is discussed in

Chapter 6.

Similarly, the ability of GROG to shift acquired points by small amounts is advantageous for a

number of other applications [130, 131, 132, 133, 134]. One could, for instance, use GROG to mimic

the Bunched Phase Encoding trajectories of Moriguchi et al. [24, 23, 25], a topic discussed in great

detail in Chapter 7 of this thesis. Thus, while GROG is introduced here as an alternative to standard

gridding algorithms, it can also be used for a variety of purposes.

4.6 Conclusion

The GRAPPA Operator Gridding (GROG) technique proposed here is an alternative method for the

gridding of non-Cartesian datasets. Instead of employing a convolution window as in the gold-standard

gridding, the GRAPPA operator is instead used to shift the non-Cartesian datapoints to their nearest

Cartesian locations. The calculation and application of the GROG weights is computationally e�cient,

as only one weight set is needed per orthogonal direction in k-space. Gridding of data acquired using

radial, spiral, rosette, and PROPELLER trajectories has been demonstrated, where visually equivalent

contrast and resolution were obtained with GROG and standard convolution gridding. Simulations

were conducted which show that noise enhancement resulting from the use of GROG is minimal when

a 1D interpolation is performed to increase the oversampling in the read direction. Only the trajectory,

a small Cartesian calibration dataset and multi-channel data are needed to perform GROG. This

simplicity is advantageous for trajectories, such as PROPELLER, rosette, or stochastic sampling, that

would otherwise require the calculation of a non-trivial DCF prior to convolution gridding. Additionally,

single points or undersampled data can also be gridded and properly density compensated with GROG.

In summary, GROG demonstrates a novel use of parallel imaging to perform tasks other than the

reconstruction of undersampled data.
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Chapter 5

Self-Calibrating GRAPPA Operator

Gridding

5.1 Introduction

GRAPPA Operator Gridding (GROG), a method to grid non-Cartesian data, has been introduced in

Chapter 4. This method has many advantages over other gridding methods. For instance, some grid-

ding methods, namely convolution gridding [76] or URS/BURS/rBURS [78, 79], are computationally

intensive and/or highly sensitive to gridding parameters. Other methods, such as INNG [80] or DING

[81], are iterative methods which can also be both time consuming and di�cult to parameterize. In

addition, many of these methods require a density compensation function (DCF) to counteract the

uneven sampling density of non-Cartesian acquisition schemes.

GROG, unlike the methods described above, is not iterative and does not require grid oversampling,

making the algorithm fast and e�cient. In addition, no DCF must be employed with GROG, which is

advantageous for exotic trajectories which have non-trivial acquisition density. GROG uses a completely

new approach for gridding; the method is similar to the parallel imaging method GRAPPA [7] in that it

employs a combination of coil sensitivities as an alternative to gradient encoding to reconstruct missing

points. In contrast to conventional parallel MRI, coil sensitivity variations are employed in GROG to

shift non-Cartesian data points onto a Cartesian grid.

However, before one can use GROG to grid non-Cartesian points to obtain a 2D image, several

requirements must be met. First, the data must be acquired with a coil array which provides enough

sensitivity variations in both the x- and y-directions to allow the calculation of accurate base weight

sets for GROG, i.e. Ĝx and Ĝy (and in the case of three-dimensional imaging, Ĝz as well). In addition,

as described in Section 4.2.3, a calibration dataset is required to determine the values of Ĝx and Ĝy

(the ∆kx and ∆ky shift operators). This calibration dataset usually takes the form of Cartesian data,

where the datapoints have a constant distance from each other in the kx and ky directions. Using such

data, Ĝx and Ĝy can be calculated directly from the data as in GRAPPA. Some trajectories, such

as PROPELLER or 1D non-Cartesian, contain a Cartesian portion which can be used for calibration.

However, for most trajectories, namely those which do not contain a Cartesian portion, a separate

77
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Cartesian dataset must be acquired for this calibration step. The need for an extra calibration dataset

is a major disadvantage, as it requires extra scan time and can introduce errors due to image mismatches,

and greatly reduces the usefulness of GROG.

The innovation described in this chapter, self-calibrating GROG (SC-GROG), is that the values of

Ĝx and Ĝy can be calculated directly using the non-Cartesian data points. In order to these values, the

relationship between many pairs of multi-channel points along the trajectory must be known. However,

for this calibration step, these points do not necessarily need to lie on the Cartesian grid. This chapter

outlines the determination of the base weight sets Ĝx and Ĝy using radial (or spiral) data themselves.

This extension of GROG eliminates the need for an additional Cartesian dataset for many trajectories,

thereby restoring the advantages of GROG as a gridding method. In addition, the ability to use the

non-Cartesian datapoints themselves for calibration eliminates potential mismatch errors between the

non-Cartesian dataset and the calibration dataset, making gridding with GROG more robust. This

method has been described in a Technical Note in the journal Magnetic Resonance in Medicine [123].

5.2 Theory

5.2.1 GROG Review

GRAPPA Operator Gridding (GROG), introduced in Chapter 4, is brie�y reviewed here. GROG

performs the gridding process by shifting each acquired non-Cartesian point to its nearest Cartesian

location using a GRAPPA-like weight matrix of size NC × NC, where NC is the number of coils in

the receiver array. Because a large shift is equivalent to the consecutive applications of several smaller

shifts, the same idea can be used to derive weight sets for smaller shifts given the weight set for a larger

shift. Speci�cally, given the appropriate weight set for a unit shift of ∆k in a single logical direction,

the weight set for a smaller jump, such as 0.25∆k, can be found by taking the appropriate root of the

weight set for the larger jump, as described in detail in [96]:

Ĝ1 = Ĝ4
0.25 (5.1)

and consequently

Ĝ0.25 = Ĝ0.25
1 (5.2)

By using properties of the GRAPPA Operator, a general equation for shifting points in arbitrary

directions and distances in k-space can be written:

~S(kx + δx, ky + δy) = Ĝδxx · Ĝδyy · ~S(kx, ky) (5.3)

where ~S(kx, ky) is a vector containing the acquired signal from each of the receiver coils at the k-space

location [kx, ky] to be shifted by an amount [δx, δy]; Ĝx and Ĝy are the appropriate GROG weight sets

for unit shifts in the kx- and ky- directions, respectively; and ~S(kx + δx, ky + δy) is the shifted signal
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at location [kx + δx, ky + δy]. GROG works by using the appropriate root of the base weight sets to

shift each non-Cartesian point to the nearest Cartesian location on a grid using Equation 5.3. In this

case, the source points, or ~S(kx, ky) in Equation 5.3, are the non-Cartesian points, which are shifted by

the application of the appropriate weight sets to ~S(kx + δx, ky + δy), the nearest Cartesian locations.

A schematic of data gridding with GROG is shown in Figure 4.1. It is important to note that in this

formulation, the order of the shifts, and thus the order of the application of the Ĝx and Ĝy weights, is

irrelevant. In other words, the GROG weight matrices along orthogonal directions commute, because

a shift in one logical direction should be independent of a shift along another direction.

In cases where multiple non-Cartesian points are mapped to the same Cartesian location, the results

of the GROG shifts are simply averaged. Because the points are purely Cartesian after this shift is

performed, no density compensation function or other corrections are required after the gridding step.

It is also important to note that because only one source point (the non-Cartesian point) is employed,

most standard coil arrays can accurately perform maximum shifts of ∆k = 0.5. For that reason,

each non-Cartesian point is mapped only to its nearest Cartesian neighbor; thus, GROG cannot be

used for the reconstruction of unaliased images from undersampled data, as is commonly expected

from conventional parallel imaging. However, unlike most other gridding methods, GROG is capable

of accurately determining the Cartesian k-space values for undersampled non-Cartesian data because

GROG does not implicitly assume that the Nyquist criterion has been ful�lled.

As stated above, when employing a Cartesian calibration dataset, the GROG weights can be de-

termined as in GRAPPA. However, most non-Cartesian datasets (with the exception of trajectories

such as PROPELLER [31]) do not have enough Cartesian-like data to allow the GROG weights to be

determined directly, and an additional Cartesian calibration dataset must be acquired. The method

describes in this chapter seeks to remove the need for such a Cartesian calibration dataset for radial

and spiral trajectories.

5.2.2 Self-Calibrating GROG

The simplest way of calculating GROG weights directly from radial data would be to use the read

points from 1 to L − 1 (where L is the number of read-out points) along two radial rays which are

orthogonal to one another (see Figure 5.1). This method, while straightforward, su�ers from the fact

that few datapoints in the dataset are actually used for the calibration; low SNR values in these two

rays will lead to less stable GROG weights and poor GROG reconstructions.

A more complicated, but stable, method is to determine the weights using all of the radial rays. In

order to accomplish this, intermediate �angular� weights are �rst calculated for each radial ray from θ1

to θNy (as shown in Figure 5.1):

~S(θ, r + 1) = Ĝθ · ~S(θ, r) (5.4)

Ĝθ = Ŝ(θ, r) · pinv(Ŝ(θ, r + 1)) (5.5)
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Figure 5.1: For self-calibrating GROG using radial data, one could imagine using only the
radial rays which are orthogonal to each other (here, the gray rays) in order to obtain the
GROG weights. However, very little data is employed, which results in unstable weight sets
(see text). Instead, weights along each projection are calculated (the Ĝθ matrices shown
schematically for four rays) as described in Equation 5.5 in the text. These angular weights
can then be separated into their Ĝx and Ĝy components (as shown on the right-hand side
of the �gure) using Equation 5.6, thereby allowing an accurate calculation of these base
weights as described in the text.
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using the pseudo-inverse (pinv) of this relationship and all the points along the ray. In Equations 5.4

and 5.5, θ denotes the angle, or �phase encoding step� of the speci�c ray, r is a point in the read direction

and runs from 1 to L− 1, r + 1 is the next read point along the ray, and Ĝθ is the NC ×NC weight

set which describes a shift along the ray (see Figure 5.1 for a better understanding of the notation). In

Equation 5.4, the vector ~S is the multi-channel signal for a point in the non-Cartesian k-space, and in

Equation 5.5, Ŝ(θ, r) is a matrix containing the signal values from 1 to L− 1 along a ray at angle θ for

all of the receiver channels. To clarify, for a radial dataset with 200 projections and 128 read points,

both signal matrices Ŝ in Equation 5.5 would have dimensions of NC × 127, and this equation appears

Ny, or 200, times.

Since a direct shift along a ray can be described by two consecutive shifts along the x- and y-

directions, each angular weight set Ĝθ can then be written as a function of the Ĝx and Ĝy weights:

Ĝθ = Ĝnx · Ĝmy (5.6)

where n and m are the shifts in the kx- and ky-directions, respectively, and Ĝx and Ĝy also have the

dimensions NC ×NC. Once the Ĝθ values have been calculated for each ray using Equation 5.5 (from

the �rst ray, θ1, to the last ray, θNy, and thus Ny di�erent values of n and m), the following equations

containing the unknowns Ĝx and Ĝy can be written:

Ĝθ1 = Ĝn1
x · Ĝm1

y (5.7)

Ĝθ2 = Ĝn2
x · Ĝm2

y (5.8)

...

ĜθNy
= Ĝ

nNy
x · ĜmNy

y (5.9)

Although this set of equations is non-linear, it can be simpli�ed by taking the matrix logarithm of both

sides:

ln(Ĝθ1) = n1 · ln(Ĝx) +m1 · ln(Ĝy) (5.10)

ln(Ĝθ2) = n2 · ln(Ĝx) +m2 · ln(Ĝy) (5.11)

...

ln(ĜθNy
) = nNy · ln(Ĝx) +mNy · ln(Ĝy) (5.12)
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The previous step assumes that the weight sets Ĝx and Ĝy commute, an assumption based on the fact

that the weight sets perform shifts in orthogonal directions. This condition may not be exactly ful�lled

in real imaging scenarios, due to noise, correlated data, etc. However, deviations from this assumption

are small and in �rst approximation this condition is ful�lled for many applications. A more detailed

discussion of this assumption and its implications is given in Section 5.5.

Equations 5.10 to 5.12 can then be rearranged into NC2 independent matrix equations, where a

and b both run from 1 to NC (i.e. over each coil):

~V (a, b) = [~n, ~m] ·
[
ln(Ĝx(a, b)), ln(Ĝy(a, b))

]
(5.13)

In this equation, ~V (a, b) is the vector made up of the appropriate elements (namely in position [a, b]) of
the logarithms of the angular weight sets on the left-hand side of Equations 5.10 to 5.12 and consequently

has a length Ny; ~n and ~m are vectors of length Ny, which together form a matrix of size Ny × 2; and
the two unknowns ln(Ĝx(a, b)) and ln(Ĝy(a, b)) form a vector of length 2. This equation is solved using

the pseudo-inverse of the distance matrix, i.e. [~n, ~m] (which must be calculated only once), for each

value of a and b (i.e. coil by coil), and the values in Ĝx and Ĝy are calculated by taking the matrix

exponents of the resulting matrices (which must be rearranged again into the appropriate NC × NC
matrices after the calculation):

pinv([~n, ~m]) · ~V (a, b) =
[
ln(Ĝx(a, b)), ln(Ĝy(a, b))

]
(5.14)

and

Ĝx = exp(ln(Ĝx)) (5.15)

Ĝy = exp(ln(Ĝy)) (5.16)

In this way, the base weights Ĝx and Ĝy can be calculated from the radial datapoints themselves, using

all of the available radial data.

This principle can also be applied to spiral trajectories. While most spiral data are acquired using

the constant-linear-velocity-trajectory due to a lower demand on the gradients and SNR advantages [30],

these data can be converted to the constant-angular-velocity trajectory using a simple 1D interpolation

in the time domain. The advantage of the constant-angular-velocity spiral trajectory is that datapoints

acquired using such a trajectory can be resorted into radial data [28], as the number of sampling points

per winding is constant. Thus, using the radial self-calibration scheme described above, the base weights

Ĝx and Ĝy can be calculated from spiral data, making this trajectory self-calibrating as well.
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5.3 Methods

5.3.1 Simulation

Radial datasets both with and without noise were simulated in order to examine the di�erences be-

tween convolution gridding, self-calibrating GROG where only two radial arms are employed, and

self-calibrating GROG with all available radial arms. To that end, an eight-element one-ring head coil

array was simulated, and the sensitivities derived for this coil array using an analytic integration of

the Biot-Savart equations were applied to the standard Shepp-Logan phantom. This simulated coil

was chosen because previous work [118] has shown that the arrangement and number of coils allows

accurate k-space shifts of 0.5∆k in both the x- and the y-direction using GROG without the appear-

ance of artifacts. The simulated phantom image was Fourier transformed to produce Cartesian k-space

data, which were then resampled as radial data (200 projections, 256 read-out points, base matrix of

128× 128) by sinc interpolation. Datasets both without and with noise (real and imaginary standard

deviation (σN ) of 1, corresponding to approximately 0.95% of the maximum amplitude of the DC signal

applied to the radial k-space data) were gridded using the methods described above, and the root mean

square error (RMSE) of the resulting images were compared to the noiseless Shepp-Logan phantom. As

a comparison, the datasets were also gridded using the standard convolution gridding with a Kaiser-

Bessel window of width 5, grid oversampling factor of 2, and a Ram-Lak DCF. Note that the region

of k-space support for the Cartesian phantom was reduced with a radial mask of the same extent as

the radial trajectory to enforce isotropic image resolution, which slightly a�ects the appearance of the

standard noiseless phantom. After the gridding processes, the resulting multi-coil k-space datasets were

Fourier transformed into the image domain coil-by-coil and combined using a Sum-of-Squares method

to arrive at the �nal image.

5.3.2 Experiments

In vivo radial data (12 channel, 256 projections, 512 read-out points, base matrix size of 256×256) were
acquired using a 1.5T Siemens Avanto scanner (Siemens Medical Solutions, Erlangen, Germany), and

in vivo spiral data (32 channel [87], 4 spiral arms, 7289 read-out points, base matrix size of 192× 192)
were acquired using a 3T Trio scanner (Siemens Medical Solutions) using a constant-linear-velocity

trajectory. The base GROG weights were determined from the radial data as described in Section

5.2.2 without further processing; the spiral data were �rst reordered onto a constant-angular-velocity

trajectory using a 1D Fourier interpolation in the time domain (i.e. read-out direction). This reordering

yielded 448 pseudo-projections, each containing 128 points which could be used for the calibration of

the GROG weights. After the weights were determined using the method described above, the datasets

were gridded using GROG. In addition, convolution gridding was performed as a comparison. As in

the simulations, Kaiser-Bessel windows of widths 5 and 3 for the radial and spiral data, respectively,

were employed for the convolution gridding. A Ram-Lak DCF was applied to the radial data before

performing convolution gridding, and a modi�ed Ram-Lak to the constant-angular-velocity spiral data

[122].
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5.4 Results

The results of the radial simulations with and without noise are shown in Figure 5.2. The top row

shows images gridded using the standard convolution gridding, 2-arm self-calibrating GROG, and SC-

GROG with all 200 arms for the noiseless radial dataset. In addition, the upper right hand side of

each reconstructed image shows the di�erence between the reconstruction and the noiseless Shepp-

Logan phantom multiplied by a factor of 5. Although all three images appear quite similar, the weights

obtained from only two orthogonal radial arms result in incoherent image artifacts (appearing here as an

increased noise level), indicated by the slightly higher RMSE of 0.3%. However, both the convolution

gridding image and the self-calibrated GROG image with all 200 arms show similar artifact energy

(0.1%). The result can be seen more clearly when examining the radial datasets with noise, shown

in the lower row of Figure 5.2. Again, the di�erence images multiplied by a factor of 5 are shown

in the upper right hand corners. As in the noiseless dataset, the images gridded with conventional

convolution gridding and the 200-arm self-calibrating GROG exhibit similar RMSE values (2.5% and

2.7%, respectively). GROG calibration using only two of the radial arms results in a much higher RMSE

value (9.3%), which can be seen as additional noise in the gridded image. Thus, although it is possible

to calibrate the GROG weights using just two orthogonal radial arms, the weights which result are

unstable; for all further images shown here, all radial rays were used for the calibration. As evidenced

by the RMSE values of the self-calibrating GROG images as compared to those for the convolution

gridding images, little to no noise enhancement can be seen when gridding with self-calibrating weights

(given adequate coil sensitivity variations). A slight increase in background noise is noticeable in the

di�erence images for SC-GROG, although the �delity of the edges of the Shepp-Logan phantom appears

to be slightly better for these images than for the convolution gridding reconstructions.

Figures 5.3 and 5.4 show images gridded using convolution gridding (left) and self-calibrating GROG

(right) for the in vivo radial and spiral acquisitions, respectively. As can be seen in these �gures,

the results of the self-calibrating GROG are visually indistinguishable from the convolution gridding

images. In addition, there is no observable noise enhancement, and the contrast and resolution of the

self-calibrating GROG images are impossible to visually di�erentiate from that of the standard images.

5.5 Discussion

As shown in the simulations and in vivo images, self-calibrating GROG yields images that are visually

indistinguishable from images gridded using the gold-standard convolution gridding. For both the

noiseless simulations and those with noise, the RMSE values of the convolution gridding images and

the self-calibrating GROG images were similar, and the images themselves cannot be distinguished

with the naked eye. Similarly, the in vivo images gridded with GROG appear visually equivalent to the

convolution gridding images, as shown in Figures 5.3 and 5.4. Thus, the ability to calibrate the GROG

weights from the non-Cartesian data themselves removes the main drawback of GROG, namely the need

for an additional Cartesian calibration dataset, as required in standard GROG. Self-calibrating GROG

maintains the other advantages of standard GROG, namely the lack of gridding parameters such as
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Figure 5.2: Radial simulations using the Shepp-Logan phantom without (top) and with
(bottom) noise. Images reconstructed using convolution gridding are shown on the left,
those generated using self-calibrating GROG and only two orthogonal radial arms for
calibration are shown in the center, and those created with GROG weights calibrated
using the entire 200 radial arms are shown on the right. Di�erence images multiplied by a
factor of �ve for each reconstruction as compared to the noiseless Shepp-Logan phantom are
shown in the upper right-hand corners. As can be seen both visually in the reconstructions,
RMSE values, and di�erence images, the images gridded using GROG weights from two
radial arms are much noisier than the convolution gridding images. However, when all
radial arms are employed for the GROG calibration, the RMSE values are comparable to
those for the convolution gridding images, and the di�erence images show only a slight
noise increase in the background of the images. Thus, when employing weights calibrated
using the entire radial dataset, the images do not exhibit a signi�cant noise enhancement
or artifact level in comparison to convolution gridding.
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convolution shapes, window widths, oversampling factors, or density compensation functions. The only

information that is required for self-calibrating GROG is a knowledge of the sampling positions. In

addition, because the kernel width for GROG is one (as opposed to the standard kernel width of 3 or 5

for convolution gridding), no grid oversampling is required, and time intensive Fourier transformations

are avoided, GROG is much less computationally intensive than methods such as URS/BURS/rBURS,

INNG, or DING. However, it is important to note that unlike other gridding methods, GROG requires

a multi-element coil for signal detection due to the parallel imaging reconstruction process. As has

been shown in previous work [118], most standard coils available on modern clinical scanners provide

the needed sensitivity variations. Indeed, because the shift sizes required for GROG (a maximum of

0.5∆k in each logical direction) are small in comparison to the shift sizes in GRAPPA, less sensitivity

variation is needed, indicating that this requirement does not present a major obstacle to the use of

GROG.

Another advantage of self-calibrating GROG is that there is no longer a potential mismatch between

the calibration data and the non-Cartesian data. In cases where resolution, Field-of-View, or coil

sensitivity mismatches (for example, image distortion in spiral acquisitions) could occur in the two

images, or motion takes place between the acquisition of the two datasets, the weights determined for

GROG using the Cartesian dataset will be suboptimal, leading to a noise enhancement or even artifacts

in the GROG image. For this reason, in addition to the measurement time reduction, the application

of weights determined using self-calibrating GROG is clearly superior to using those determined as

in standard GROG. It is important to note that the amount of time needed to calculate the GROG

weights using the self-calibrating method with 200 radial arms is slightly longer than the standard

method, although both are on the order of a second using non-optimized Matlab code for typical

datasets, such as those shown here.

As stated in Section 5.2.2, the self-calibrating GROG method relies on the assumption that the ma-

trices for unit shifts in the logical directions commute. This assumption is based on the basic properties

of the GRAPPA Operator, as discussed in Section 4.2.1, and is fundamental to self-calibrating GROG.

As seen in both the self-calibrating and Cartesian GROG, the weight sets often do not commute for

actual receiver coils, and the values of the �nal k-space points depend on the order of the application of

the weights. However, as demonstrated in the examples shown here, the GROG weight sets determined

under this assumption, and the images reconstructed with them, do not su�er in quality even when the

weight sets do not commute. Although the images gridded using self-calibrating GROG appear visually

identical to those generated using convolution gridding despite the fact that the base weight sets do

not commute, it must be kept in mind that the self-calibrating calculation of the GROG weights relies

on this assumption.

The e�cient self-calibration method has been demonstrated here using radial and spiral data. Other

non-Cartesian trajectories, namely the PROPELLER [31] trajectory, are inherently self-calibrating, as

one blade can always be used as a Cartesian calibration dataset in order to grid the data along the

other blades. However, trajectories which do not contain such a Cartesian portion or have a radial

symmetry cannot be calibrated using either the standard GROG calibration or the method proposed
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Figure 5.3: : In vivo radial images gridded using convolution gridding (left) and self-
calibrating GROG (right). These images are visually equivalent, and no di�erence can
be seen in contrast or resolution. In contrast to the convolution gridding image, the
self-calibrating GROG image required only knowledge of the trajectory, as no additional
parameters are necessary for the gridding process.

Figure 5.4: In vivo spiral images gridded using convolution gridding (left) and self-
calibrating GROG (right). As in the radial case, the two images are indistinguishable.
The self-calibrating GROG process did not require a density compensation function or
other parameters which were required for the convolution gridding method.
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here. This is because a large group of points which have the same kx and ky distances are needed for

the self-calibration method (due to the need for angular weight sets), as can be seen in Equation 5.5.

This means that the GROG weights for trajectories such as rosette [35], zig-zag [23, 24], or stochastic

[38], cannot currently be found from the datapoints themselves, although work on this topic is currently

in progress. However, because the number of unknowns (the Ĝx and Ĝy matrix values) is much smaller

than the number of possible knowns (adjacent points in the trajectory), it is expected that the GROG

self-calibration for other exotic trajectories will involve a numerical optimization process, and should

be realizable given su�cient computing power.

5.6 Conclusion

The self-calibrating GROG method presented here removes the major obstacle to the use of GROG,

namely the need for an additional Cartesian calibration dataset. For radial and spiral trajectories, the

non-Cartesian dataset can be used to generate the orthogonal GROG base weights, which are then

employed to grid the datapoints themselves. Simulations and in vivo examples of data gridded using

this method have been compared to images gridded with convolution gridding, and the results are

indistinguishable in both contrast and resolution. Self-calibrating GROG maintains the advantages

of GROG, in that gridding can be accomplished without DCFs or other gridding parameters such as

convolution shapes, window widths, or oversampling factors, while maintaining a low computational

complexity. The only requirement for the use of GROG to grid radial and spiral datasets is multi-

channel data which is needed for the application of this parallel imaging based method.
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Pseudo-Cartesian GRAPPA

6.1 Introduction

As explained in Section 3.3, the application of parallel imaging techniques to undersampled non-

Cartesian trajectories is non-trivial. This is due to the unusual point spread functions of nonuniformly

sampled k-space which results from undersampled non-Cartesian trajectories [44, 45]. However, non-

Cartesian sampling schemes o�er some inherent advantages due to their better coverage of the center

of k-space and/or faster acquisition times, among other qualities (see Section 2.7 for more properties

of di�erent k-space trajectories). In addition to faster scan times, di�erent trajectories have added

advantages, such as the motion-insensitivity of radial trajectories, the ability to perform motion cor-

rection using the PROPELLER trajectory [31, 32], or the possibility of obtaining spectral information

using the rosette [35] or stochastic [38] trajectory. Another feature of non-Cartesian trajectories is that

undersampling leads to incoherent artifacts, in contrast to Cartesian trajectories, where the undersam-

pling artifacts are clearly identi�able. These properties make such sampling schemes highly desirable,

and the combination of non-Cartesian trajectories and parallel imaging would be ideal in cases where

a further reduction in scan time is advantageous.

However, as seen in Section 3.2.1, most k-space-based parallel imaging reconstruction techniques,

such as Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA), necessitate the acquisi-

tion of regularly sampled Cartesian k-space data in order to reconstruct a non-aliased image e�ciently.

Unfortunately, non-Cartesian sampling schemes have the disadvantage that the points acquired gener-

ally do not lie on a grid and have complex k-space sampling patterns. Several authors have shown that

the combination of GRAPPA and radial [100] and spiral [102, 126] trajectories can be performed more

e�ciently, although these techniques require radial segmentation of the data before the application of

the reconstruction algorithm and large amounts of auto-calibration data (ACS), as described in Section

3.3.1. 1D non-Cartesian [103] and zig-zag [33] trajectories can also be combined with GRAPPA, al-

though they require weight interpolation and segmentation, respectively, due to their lack of Cartesian

symmetry. However, some trajectories, such as rosette [35] or TwiRL [135], do not possess the sym-

metry required for the segmentation approach; this implies that neither Cartesian nor non-Cartesian

GRAPPA techniques are able to reconstruct images from undersampled data along these trajectories.

89
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There are other techniques besides GRAPPA which can be used to reconstruct undersampled non-

Cartesian datasets. Pruessmann et al. have demonstrated a method for the reconstruction of undersam-

pled non-Cartesian trajectories using the SENSE algorithm in combination with a conjugate-gradient

iteration approach [104]. Other authors have shown that the combination of other parallel imaging

methods and non-Cartesian trajectories is possible, although time-consuming due to the large system

of linear equations that must be solved [105, 106, 107]. However, these methods su�er from either

computational complexity, long reconstruction times, a large number of optimizable parameters, or the

need for coil sensitivity maps.

This chapter introduces a simple, novel method for performing Cartesian GRAPPA reconstructions

on undersampled non-Cartesian k-space data gridded using GROG (GRAPPA Operator Gridding) to

arrive at a non-aliased image. This method is known as pseudo-Cartesian GRAPPA. In contrast to other

GRAPPA methods, the method proposed here does not rely on the radial symmetry of non-Cartesian

trajectories, but instead uses several Cartesian GRAPPA patterns to reconstruct a non-aliased image

using gridded undersampled datasets [127, 128, 129]. In addition, no coil sensitivity maps or additional

parameters are required, which reduces the computational complexity of the reconstruction. The pri-

mary advantage of this pseudo-Cartesian method over previously proposed non-Cartesian reconstruction

schemes is its similarity to the typical Cartesian GRAPPA procedure and general applicability to many

di�erent non-Cartesian sampling schemes. This �exibility in terms of both the appearance and number

of patterns allows this pseudo-Cartesian GRAPPA to be used with undersampled datasets acquired

with any non-Cartesian trajectory, making this reconstruction scheme more general than other non-

Cartesian GRAPPA reconstruction techniques. A comparison of this novel method with non-Cartesian

GRAPPA and CG-SENSE is described here, and the successful implementation of the pseudo-Cartesian

GRAPPA using several di�erent trajectories, including radial, rosette, spiral, 1D non-Cartesian, and

zig-zag trajectories, is demonstrated. This method has been published as a Full Paper in the journal

Magnetic Resonance in Medicine [127].

6.2 Theory

6.2.1 Cartesian and non-Cartesian GRAPPA

Before describing the use of GRAPPA for the reconstruction of non-Cartesian datasets, a simple 2D

Cartesian case is reviewed. A more detailed treatment of GRAPPA is given in Section 3.2.1. In general,

an undersampled dataset is reconstructed using coil weighting factors derived from a reference dataset,

or Auto-Calibration Signal (ACS), which is usually a low-resolution portion of k-space sampled at the

Nyquist rate. Representative examples of both for an acceleration factor R=4 and a single coil are

shown in Figure 6.1 (the remaining coils, which have the same data structure, have been omitted from

the �gure for simplicity). An appropriate GRAPPA pattern, in this case, a 2 × 5 kernel (where two

points in the phase encoding direction and 5 points in the read direction are selected for the pattern),

could be as shown in the inset of Figure 6.1. Using this pattern, weighting factors are obtained on a

coil-by-coil basis by examining the relationship between the acquired points from all coils and a single
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Figure 6.1: A schematic Cartesian R=4 acquisition scheme shown for a single receiver coil
for simplicity. The black circles show data that have been acquired, and the empty circles
data that must be reconstructed using the GRAPPA algorithm and a 2 × 5 kernel. The
fully-sampled central portion of k-space is used as the ACS, and it is important that the
undersampled portions maintain the same symmetry. In the smaller �gure to the right,
the GRAPPA source points (black) are shown, as well as the points to be reconstructed
(gray) using these source points.

missing point in the ACS. These weighting factors are subsequently applied to the source points in the

undersampled portion of the data to �nd the values of the target points. It is important to note that

these weights can be applied everywhere in k-space where this pattern appears because they describe

the general harmonic shift for the given arrangement of source and target points, which does not change

in di�erent areas of k-space. Because the undersampled points fall on a regular pattern in the Cartesian

dataset, i.e. are highly symmetric, only one GRAPPA pattern with three target points, and thus one

set of coil weighting factors, is needed to reconstruct the missing points.

Due to the fact that the GRAPPA technique necessitates matching patterns in both the undersam-

pled source data and the reference data, most common non-Cartesian GRAPPA methods make use

of the radial symmetry inherent in the trajectory. Radial GRAPPA and spiral GRAPPA, the most

common non-Cartesian GRAPPA methods, have been described in Section 3.3.1. In these methods,

the undersampled radial or spiral data are �rst reordered onto a new Cartesian-like grid, where the

axes are the read-out (r) and projection angle (θ) [100, 102, 126]. The missing data are then recon-

structed using a segmented GRAPPA procedure which calculates the coil weights for di�erent portions

of k-space separately; a simple Cartesian GRAPPA method cannot be used because the distance and

direction between sampled points changes depending on their location in k-space. Finally, the entire

reconstructed Cartesian-like data must be gridded to arrive at the �nal k-space, upon which a fast

Fourier transformation is performed to obtain an image. It is clear that these methods necessitate a

regular radial symmetry as well as several di�erent GRAPPA kernels in order to reconstruct the missing

points in the appropriate locations, and can thus be used only with speci�c trajectories.
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6.2.2 Pseudo-Cartesian GRAPPA

The following sections describe a more general case of non-Cartesian GRAPPA, namely pseudo-Cartesian

GRAPPA. This method is made up of three distinct steps:

� Gridding the acquired data onto a Cartesian grid using GROG

� Determination of the appropriate pseudo-Cartesian patterns

� Reconstruction of the missing points using GRAPPA and the selected patterns

Each of these three steps is discussed below.

GRAPPA Operator Gridding (GROG)

GRAPPA Operator Gridding (GROG), described in Chapter 4 and [118], is a method which uses

parallel imaging to grid non-Cartesian datasets. GROG is a special case of GRAPPA where the number

of source and target points is the same, usually one. GROG works by using the appropriate root of the

base weight sets to shift each non-Cartesian point to the nearest Cartesian location on a grid using the

following equation for a 2D image:

~S(kx + δx, ky + δy) = Ĝδxx · Ĝ
δy
y · ~S(kx, ky) (6.1)

where ~S(kx, ky) is a vector containing the non-Cartesian signal from each of the receiver coils (1 to NC,

where NC is the number of coils) at the k-space location [kx, ky] to be shifted by an amount [δx, δy]; Ĝx
and Ĝy are the appropriate GROG weight sets of size NC×NC for unit shifts in the x and y directions,

respectively; and ~S(kx + δx, ky + δy) is the shifted signal at the Cartesian location [kx + δx, ky + δy].
The GROG weights Ĝx and Ĝy can be determined either from the non-Cartesian data themselves (see

Section 5.2.2) or using a separate low-resolution Cartesian dataset (see Section 4.2.3).

It is important to note that GROG alone cannot be used to reconstruct undersampled non-Cartesian

k-space data because only one source point (non-Cartesian) is used for each target point (Cartesian).

The small number of source points implies that only small shifts can be accomplished; depending on

the coil array, shifts of more than ∆k = 0.5 in each direction can lead to errors which result in artifacts

in the image domain. This limitation does not generally hamper gridding, because the largest shift

required to grid is ∆k = 0.5, although it means that GROG cannot be used alone for the reconstruction

of images from undersampled non-Cartesian datasets.

GROG is advantageous for gridding because the process can be performed quickly, as only two weight

sets are required for the needed k-space shifts, and no density compensation function is required. In

addition, it has been shown in Chapter 4 that GROG can be used to grid fully-sampled datasets without

a visible increase in the noise in the �nal image when working with clinical coil arrays. Speci�cally,

symmetric array coils with six or more elements can be used to perform GROG shifts of ∆k = 0.5 in

both logical directions without signi�cant noise enhancement; thus, only such coils were employed in

this work.
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Figure 6.2: : An R=4 radial dataset gridded with the standard convolution gridding (left)
and GROG (right). The center of k-space is correctly gridded using both methods because
the Nyquist criterion is ful�lled in this area. However, as soon as the region of support of
the data is less than ∆k, i.e. the Nyquist criterion is no longer met, convolution gridding
spreads acquired points into areas of k-space where no data have been acquired (the dark
areas of k-space between the acquired radial arms) by the convolution with the gridding
kernel (see Section 2.8). GROG, however, reconstructs only those grid points nearest
to actually acquired k-space points. Thus, undersampled data gridded using convolution
gridding cannot be reconstructed using GRAPPA, as there are no �holes� in the k-space to
be �lled. In addition, due to the insu�cient region of support, even the grid points along
the acquired spokes are incorrect. However, GROG is ideal for use with GRAPPA due to
the fact that the areas of k-space which must be reconstructed are easily identi�able (i.e.
the �holes�), and the gridded datapoints are purely Cartesian (see Chapter 4).
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However, in pseudo-Cartesian GRAPPA, GROG is used for a di�erent reason. Most other gridding

techniques, including the standard convolution gridding method [76], assume that the non-Cartesian

data ful�ll the Nyquist criterion at all locations in k-space. When this is not the case, gridding errors

appear. GROG, however, only shifts each non-Cartesian data point to its nearest Cartesian neighbor

using parallel imaging weight sets. This procedure leaves empty spaces where the shift necessary to

reach the next Cartesian data points exceeds the above mentioned value of ∆k = 0.5. In comparison, no

empty spaces are left in the undersampled k-space data if a conventional gridding kernel is used. Due to

the convolution of the non-Cartesian points with this gridding kernel, a single non-Cartesian data point

is spread out over several Cartesian locations. Thus, pseudo-Cartesian GRAPPA, which requires these

�holes� in k-space for the reconstruction, would not be possible using conventional gridding methods.

The di�erence between an undersampled dataset gridded using convolution gridding and GROG can

be seen in Figure 6.2.

Determination of Patterns

Unfortunately, the gridded undersampled data do not contain one single Cartesian pattern that is

repeated regularly throughout the data and that can be used with the standard Cartesian GRAPPA

algorithm, i.e. there is no simple Cartesian symmetry in the non-Cartesian dataset. In spiral data,

for instance, the 2× 5 GRAPPA kernel forms a pattern that would be optimal for a pie-shaped sector

running 0◦ from the center of k-space would be completely unsuccessful for the sector along the 90◦

radius (Figure 6.3, right), because the selected Cartesian pattern does not exist in these data. For this

reason, several simple Cartesian GRAPPA patterns must be employed to cover the entire undersampled

dataset, such as those shown at the bottom of Figure 6.4. Thus, the next step in the pseudo-Cartesian

GRAPPA reconstruction is to determine the patterns needed to reconstruct the missing points in the

gridded, undersampled dataset. There are many di�erent possibilities for determining these patterns,

and the method used to reconstruct the images in this work is explained here. This method is used

because it quickly �nds appropriate patterns for the trajectories employed in this chapter, but it would

not necessarily �nd the optimal patterns for every undersampled trajectory (and there are surely more

e�cient methods of determining the appropriate and optimal patterns). It is also important to note that

the sole function of the pattern selection process is to determine the patterns for which the GRAPPA

weight sets must be determined; weights could be calculated for all of the possible patterns, although

most of the weight sets would not be needed for the reconstruction.

A constant number of source points to be used was chosen; for all reconstructions shown here, this

number was set to six. More source points could be employed, although this would lead to longer

reconstruction times due to the increased number of weights and the increased time needed to apply

them, as well as an increase in the number of patterns required. Starting with a standard 2×3 Cartesian
kernel, such as the R=3 pattern shown at the top left of Figure 6.4, each source point is assigned an

index variable which can be set to either 0, -1 or 1. Then the source points (black circles) are shifted

according to the values of the index for each respective point. First, the lowest value indices [-1 -1

-1 -1 -1 -1] are assigned to each point (as denoted by the lower case letters by the R=3 base pattern
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Figure 6.3: : Left: A typical R=4 spiral sampling scheme. It is clear that the acquired
points do not fall on a Cartesian grid, and must be gridded before the FFT can be calcu-
lated. Middle: The gridded spiral data, resampled using GROG. Portions of this data are
pseudo-Cartesian; for example, the simple Cartesian GRAPPA 2 × 5 kernel for R=4 (far
right, top) can be used to reconstruct some missing points in the white areas of the under-
sampled k-space. This pattern would be inappropriate for the reconstruction of missing
points in the gray shaded area, and a di�erent pseudo-Cartesian GRAPPA pattern, such
as the one on the far right, bottom, must be selected.

in Figure 6.4). The indices for the top points are added to their locations, the indices for the lower

points are subtracted from their locations (such that the index -1 always indicates motion towards the

target points). This leads to the second pattern shown at the top of Figure 6.4. For this pattern,

the possible source point is indicated by the white triangle. This pattern is then applied to a single

channel of the masked out undersampled k-space in order to see if missing points (white triangles)

can be reconstructed with this pattern of source points. All points that can be reconstructed using

this pattern are marked as reconstructed, and then the pattern is rotated 90� and the same process is

performed. The R=3 pattern with indices [-1 -1 -1 -1 -1 -1], however, does not allow one to reconstruct

any missing points because the target point is the same as one of the source points, and therefore would

not be selected for weight calculation. The indices are then increased to [0 -1 -1 -1 -1 -1], and the new

pattern is examined in order to determine if it allows for the reconstruction of missing points. As an

additional example, the patterns created using the indices [-1 0 1 0 0 0] and [1 1 1 0 0 0] and the R=3

base pattern are shown as the third and fourth patterns at the top of Figure 6.4.

As in all non-Cartesian parallel imaging, de�ning the actual acceleration factor is not trivial. For the

purposes of pseudo-Cartesian GRAPPA, the nominal acceleration factor is determined by the di�erence

between the top center and lower center point in the pattern. Thus, for the patterns shown at the top

of Figure 6.4, the nominal acceleration factors are R=3, R=1, R=3, and R=4, although these patterns

have been created using the Cartesian R=3 as a basis. It is important to note that a maximum

acceleration factor Rmax must be selected by the user. This maximum acceleration factor is based on

the coil geometry, and the undersampling of the trajectories must be performed with this maximum

acceleration factor in mind so that larger �holes� are not present in k-space. In order to assure that the
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Figure 6.4: Examples of patterns used in a pseudo-Cartesian GRAPPA reconstruction.
The top portion of the �gure shows an example of the basic R=3 pattern (far left), and
the letters a through f indicate the source point with which each index value is associated.
Additional patterns generated by the search algorithm and index values [-1 -1 -1 -1 -1 -1],
[-1 0 1 0 0 0], and [1 1 1 0 0 0] are also shown (top left, right, far right). The black circles
denote the source points, and the triangles are target points. It should be noted that
although these patterns are generated using the basic R=3 pattern, they have di�erent
nominal acceleration factors (namely R=3, R=1, R=3, and R=4). The bottom portion
of the �gure shows several di�erent patterns (source points shown in black and target
points in gray) and their indices in the order they would be applied in a pseudo-Cartesian
GRAPPA reconstruction.

pattern search algorithm does not select patterns with larger nominal acceleration factors, the indices

run only from -1 to 0 for Rmax and Rmax − 1, such that the larger acceleration factors that arise

due to the index 1 are avoided. When performing the pattern selection, all of the R=2 patterns are

examined �rst, followed by the R=3 patterns, up until the maximum acceleration factor established for

the reconstruction is reached. This prevents using patterns with higher nominal acceleration factors

to reconstruct missing points which could be reconstructed with a pattern with a lower acceleration

factor.

As seen in the previous discussion, for some arrangements of patterns and source points, such as the

[0 0 0 -1 -1 -1] arrangement for the standard R=2 GRAPPA pattern, no points can be reconstructed

because one of the source points is the same as the target point. Such patterns were discarded. Similarly,

some patterns are identical, such as the R=2 [1 1 1 0 0 0] pattern and the R=3 [0 0 0 0 0 0] pattern. In

this case, the �rst formulation of the pattern would be selected, and the second would not be needed

for the later reconstruction.
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Examples of several possible and sensible (i.e. the source and target points are not the same, and

the patterns are not repeated) kernel patterns and the order in which they would be applied are shown

at the bottom of Figure 6.4. It is important to keep in mind that the 90◦ rotation of each of these

patterns is checked before moving on to a new pattern. For an undersampled radial dataset, patterns

C, D, E, H, and I would be selected, as they allow di�erent missing points to be reconstructed. Patterns

A, B, F, and G would not exist in such a gridded dataset, and would not be selected. However, in order

to allow this implementation to be used for all other trajectories, such patterns must be checked.

Reconstruction of the Missing Points

Once the appropriate patterns for the reconstruction have been determined, a modi�ed GRAPPA

technique with adapted kernels is applied using these patterns to reconstruct the missing points and

arrive at the reconstructed k-space. An example of an undersampled dataset gridded using GROG is

shown in Figure 6.5 (center, top); the �holes� where the data are undersampled can be clearly seen.

These missing spaces in a k-space gridded with GROG can be reconstructed using a standard GRAPPA

method. This involves generating the weight set needed for the speci�c pattern using an ACS dataset

and the standard GRAPPA method, and then applying the weight set to the undersampled dataset

gridded with GROG. For some of the datasets, such as the radial and 1D non-Cartesian data, the

weights can be calculated using the fully-sampled central portion of k-space. It should be noted that

the reconstruction time directly depends on the number of patterns chosen; the use of fewer patterns

means that less time must be spent calibrating the weight sets and searching for the appropriate k-

space locations where the pattern must be applied. For this reason, the reconstruction of trajectories

which were made up of more regular undersampling patterns, such as the zig-zag trajectory and 1D

non-Cartesian trajectory, were much less time consuming than reconstructions using the radial, spiral,

or rosette trajectories in this implementation.

6.3 Methods

6.3.1 Data Reconstruction

All fully-sampled and undersampled datasets shown in this manuscript were gridded using GROG.

As stated above, this method has the advantage that single non-Cartesian points are shifted to the

nearest Cartesian point using the GRAPPA Operator, leaving empty spaces in k-space where data

must be reconstructed. For the radial, spiral, and 1D non-Cartesian datasets, the GROG weights were

determined from the data themselves using the self-calibrating GROG method described in Chapter 5;

a separate low-resolution Cartesian k-space was used to calibrate the weights for the rosette and zig-zag

trajectories.

After the data were gridded, appropriate patterns for each undersampled trajectory were determined

using the algorithm described above. In order to avoid leaving gaps in the reconstructed k-space, a large

number of patterns was chosen (i.e. between 4 to 102, depending on the trajectory and undersampling

factor, see Table 6.1). Each pattern was arranged in a di�erent con�guration with six source points (see
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Figure 6.4 for examples of these patterns). Once the patterns were determined, the pseudo-Cartesian

GRAPPA reconstruction was performed. First, the weight set for each pattern is found using the ACS

in the same way that the weight sets are derived for GRAPPA, and then this weight set is applied in

those places in the undersampled k-space where the speci�c pattern �ts. For the radial dataset, the

ACS was taken from the central fully-sampled portion of the gridded undersampled k-space; for the

remaining datasets, the central portion of the fully-sampled and gridded data was used.

6.3.2 Simulations

In order to test the feasibility of the method described above, the standard Shepp-Logan phantom was

employed with a simulated eight-element one-ring head coil array, where sensitivities were derived using

an analytic integration of the Biot-Savart equations. The Cartesian data were resampled as radial data

(50 projections, 256 read-out points, base matrix of 128×128) by sinc interpolation, which corresponds

to an undersampling factor of 4 in comparison to the fully-sampled case. The GROG weights were

determined from the radial arms themselves using the self-calibrating GROG method of Chapter 5,

and the undersampled radial data were gridded. Using the pattern-�nding algorithm described above,

it was determined that the use of 67 di�erent pseudo-Cartesian GRAPPA patterns would allow for a

complete reconstruction of the missing k-space points given the arrangement of the undersampled data

points. Examples of these patterns are given in Figure 6.4. The reconstruction was then carried out

using the 67 patterns. As can be seen in Figure 6.5 (center, top), the central portion of k-space is

fully sampled, and this block (25× 25) can be used to determine the weights for the pseudo-Cartesian

GRAPPA patterns. A complete depiction of this process can be found in Figure 6.5.

In addition, a standard radial GRAPPA reconstruction [100] with 8 read-out and 10 angular seg-

ments was performed using the same undersampled radial dataset (and the fully-sampled dataset as

the ACS) in order to investigate the di�erences in the images between the standard and proposed re-

construction techniques. For the standard radial reconstructions shown here, the fully-sampled radial

k-space data were used for the calibration, although self-calibrating methods have been proposed for

radial GRAPPA [101]. The use of such a method is not expected to signi�cantly change the image

quality in this reconstruction. A conjugate-gradient SENSE (CG-SENSE) reconstruction [104] was

also performed using 30 iterations of the conjugate gradient loop. Because this method requires a coil

sensitivity map, such a map was derived from the radial dataset using array correlation statistics [94].

The CG-SENSE algorithm yields a single image instead of multi-channel images, and thus the multi-

channel images resulting from the pseudo-Cartesian GRAPPA and radial GRAPPA reconstructions, as

well as the reference image, were combined using R=1 SENSE [3] for comparison purposes. After the

reconstructions were performed, the results were subtracted from the reference image to yield di�erence

images which highlight the reconstruction errors.

Finally, an undersampled simulated rosette dataset was generated by resampling an in vivo Cartesian

head image along this trajectory using sinc interpolation in order to investigate the performance of

pseudo-Cartesian GRAPPA for such a trajectory. The head coil array employed was the same as that

used for the radial simulations. The complete dataset was made up of 120 phase encoding steps, each



6.3. METHODS 99

Radial Rosette Spiral 1D NC Zig-Zag

Acceleration 4 4 2.7 3 3

Patterns for Reco 67 92 102 4 5

Number of Coils 8 8 32 12 12

Matrix Size 128 x 128 128 x 128 256 x 256 256 x 256 256 x 256

Phasea 50 / 200 30 / 120 3 / 8 88 / 256 88 / 256

Read 256 360 6671b 256 256

Scanner NA NA 3T Trio 3T Trio 1.5T Avanto

Table 6.1: Reconstruction parameters for the simulated and in vivo images shown in this
chapter. aThe �rst phase encoding number indicates the number of �phase encoding�
steps used for each accelerated trajectory, and the second is the number of phase encoding
steps needed to ful�ll the Nyquist criterion. bA center-out constant-linear-velocity spiral
trajectory was used.

with 360 read-out points, and the R=4 accelerated rosette dataset was created by reducing the number

of phase encoding steps to 30. A total of 92 patterns were employed for the pseudo-Cartesian GRAPPA

reconstruction, including those shown in Figure 6.4. Both the GROG weights and the weights for the

pseudo-Cartesian patterns were derived from a separate low-resolution (25× 25) Cartesian k-space.

6.3.3 In vivo Experiments

Three images were acquired with two di�erent scanners, a Siemens 1.5T Avanto and a Siemens 3T TIM

Trio (Siemens Medical Solutions, Erlangen, Germany), in order to test the pseudo-Cartesian GRAPPA

reconstruction with di�erent non-Cartesian trajectories, namely spiral, 1D non-Cartesian, and zig-zag.

Informed consent from the volunteers was obtained before each study. Information about the data

acquisition parameters, scanners, and coils used is shown in Table 6.1.

The spiral trajectory was used to acquire an image of the brain accelerated by a factor of 2.7 (3 of

8 spiral arms needed to ful�ll the Nyquist criterion were used). The GROG weights were calculated

using a fully-sampled spiral dataset, and the 102 di�erent pseudo-Cartesian GRAPPA weights used

were determined using a 30×30 portion from the center of the fully-sampled k-space. As stated above,

each pattern was made up of at least six source points; these patterns were similar to those shown

in Figure 6.4 and speci�cally, patterns D, E, H, and I were actually employed for the reconstruction.

In addition to the pseudo-Cartesian GRAPPA reconstruction, a CG-SENSE reconstruction was also

performed, where the coil sensitivity map was generated using array correlation statistics [94]. In this

CG-SENSE implementation, 50 iterations were performed and a grid oversampling factor of 4 was

employed.

An image of a phantom was acquired using the 1D non-Cartesian trajectory (shown in Figure 2.7)

accelerated by a factor of 3. The central portion of k-space was completely acquired (yielding a matrix

size of 21×256), and was used for the calibration of both the GROG and the pseudo-Cartesian weights.

Only 4 patterns were required, as the gridded k-space is purely Cartesian in the y-direction.
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In vivo data were acquired using the R=3 zig-zag trajectory [33] that blipped over approximately

2∆ky in 32 cycles of 16 points. These data were then gridded using GROG, where the weights were

determined using a low-resolution k-space (40 × 40 vs. the original 256 × 256 data matrix). Pseudo-

Cartesian GRAPPA with 5 patterns was employed to reconstruct the missing data points.

6.4 Results

6.4.1 Simulations

The k-space and image reconstructed using R=4 undersampled radial data and the pseudo-Cartesian

GRAPPA method are shown in Figure 6.5 (center right). The root-mean-square-error (RMSE) of the

reconstructed image as compared to the fully-sampled image was calculated to be 0.06%, which is

similar to that of the radial GRAPPA image (0.08%, Figure 6.1, center, far right), and lower than

that of the CG-SENSE image (0.47%). Each reconstruction technique yielded excellent results, as

can be seen in the RMSE values as well as the quality of the reconstructed images. In addition, the

di�erence images at the bottom of Figure 6.5 show that the pseudo-Cartesian GRAPPA method yields

a more homogeneous noise distribution in the reconstructed image, as compared to the radial GRAPPA

reconstruction, where the di�erences are concentrated around the edges. This indicates that the radial

GRAPPA image is blurrier than the pseudo-Cartesian GRAPPA image, more than likely due to errors

in the outer portions of k-space, although it has less noise enhancement overall. The CG-SENSE

reconstruction is signi�cantly worse than the two GRAPPA reconstructions, which is due to errors in

the determination of the coil sensitivity map.

The results seen in the di�erence images are to be expected. The pseudo-Cartesian reconstruction

yields more overall noise due to errors from the GROG gridding which are propagated in the pseudo-

Cartesian GRAPPA reconstruction. However, radial GRAPPA, which approximates segments of the

radial data as Cartesian blocks, leads to reconstruction errors in portions of k-space where this ap-

proximation is less accurate. In addition, calibration in areas of low signal, such as the outer portions

of k-space, tends to be less stable, potentially resulting in high frequency artifacts in radial GRAPPA

due to the larger error at the edges of k-space. The CG-SENSE method, which yields an optimal

least-mean-squared error reconstruction, is limited by the quality of the sensitivity map. In addition,

because this method yields a single image, and not coil-by-coil reconstructions, the results obtained are

more di�cult to compare to the multi-coil reference image.

It is important to note that the most time consuming portion of the reconstruction is the determi-

nation of the patterns to be used and the k-space locations where they must be employed. However, the

pattern determination can be performed independently of the reconstruction, given that the trajectory

and undersampling factor to be used are known. Thus, only the actual determination of the weights and

the reconstruction are relevant for the speed of the algorithm. For the Matlab implementations used

here, the pseudo-Cartesian reconstruction required approximately four times the calculation time of the

radial GRAPPA algorithm. This is due to the larger number of patterns required, as well as the fact

that the pattern for radial GRAPPA is much easier to work with in Matlab than the unusual patterns
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Figure 6.5: A schematic of pseudo-Cartesian GRAPPA with GROG. The fully sampled
k-space and image are shown on the left top and bottom as comparison. The R=4 under-
sampled radial data are �rst gridded with GROG, yielding the gridded k-space shown in
the center, top and the undersampled image (center, bottom). The undersampled k-space
data is reconstructed to generate the fully-sampled k-space (right, top) using the pseudo-
Cartesian GRAPPA method explained in the text. As a comparison, images reconstructed
using radial GRAPPA and CG-SENSE are shown on the far right-hand side in the center
of the �gure. The bottom row shows the results of subtracting the reconstructed images
from the reference image (12.5 times magni�ed).
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Figure 6.6: The R=4 undersampled simulated rosette image (left) and the corresponding
k-space gridded using GROG (middle). After pseudo-Cartesian reconstruction, the image
shown on the right results. This image has a RMSE of 1.73% in comparison to the fully-
sampled image.

needed for the pseudo-Cartesian reconstruction. The CG-SENSE algorithm required approximately

the same amount of time as the pseudo-Cartesian reconstruction due to the need to grid, fast Fourier

transform, and degrid the non-Cartesian data for each iteration. The calculation of the sensitivity map

is not included in this time estimate.

The reference, R=4 undersampled k-space, and pseudo-Cartesian reconstruction of the rosette

dataset are shown in Figure 6.6. As can be seen in the center of this �gure, the undersampled im-

age is both blurred and mottled by irregular undersampling at the outer portions of k-space. After

the pseudo-Cartesian reconstruction, this blurring is removed, and the mottling greatly reduced. The

RMSE of the reconstruction in comparison to the reference image is 1.73%. The reconstruction of un-

dersampled rosette data cannot be accomplished with other GRAPPA techniques due to their irregular

undersampling pattern; thus, no standard reconstruction can be compared to this pseudo-Cartesian

reconstruction.

6.4.2 In vivo Experiments

The results of the reconstructions performed with experimental data are shown in Figures 6.7 through

6.9. Figure 6.7 (left and middle) shows the image and k-space which result from gridding the 2.7-times

accelerated spiral data with GROG, respectively. After the application of pseudo-Cartesian GRAPPA

with 102 patterns, the aliasing artifacts are no longer evident. There is a slight loss in SNR in the center

of the image due to the extreme fold-over artifacts in this region. The CG-SENSE reconstruction still

contains signi�cant artifacts in the center of the image; these artifacts are most likely due to errors in

the determination of the coil sensitivity map. No improvement was seen when increasing the number
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Figure 6.7: The R=2.7 undersampled in vivo spiral image (left) and the corresponding k-
space gridded using GROG (middle left). After pseudo-Cartesian reconstruction with 102
patterns, the undersampling artifacts are no longer visible (middle right). As a comparison,
the CG-SENSE algorithm was also used for the reconstruction of the undersampled spiral
data; the resulting image (far right) contains residual artifacts due to errors in the coil
sensitivity map.

of conjugate gradient iterations.

Figure 6.8 (left and middle) shows the image and k-space which result from gridding the three-fold

accelerated 1D non-Cartesian data with GROG, respectively. This trajectory is interesting because the

non-Cartesian points must be shifted only in the y-direction, and the resulting gridded data is purely

Cartesian. The acceleration factor takes on a value of one in the center of k-space and then increases

up to a value of 5 at the edges. Thus, for the pseudo-Cartesian reconstruction, only 4 di�erent patterns

are required, and all are typical Cartesian patterns for acceleration factors 2 to 5. As can be seen on

the right in Figure 6.8, the application of pseudo-Cartesian GRAPPA removes the aliasing artifacts,

although there is a slight noise increase in the center of the image.

Figure 6.9 (left and middle) shows the image and k-space which result from gridding the three-fold

accelerated zig-zag data with GROG, respectively. After the application of pseudo-Cartesian GRAPPA

with 5 patterns, the blurring and ghosting artifacts evident in the image on the left are removed, yielding

the unaliased image (right).

6.5 Discussion

The pseudo-Cartesian GRAPPA reconstruction method has been shown to allow the reconstruction of

unaliased images from undersampled non-Cartesian datasets. While examples using the radial, rosette,

spiral, 1D non-Cartesian and zig-zag trajectories have been shown, this method can be used to recon-

struct images from any arbitrary trajectory. The reconstruction method requires only that the coil

array used has su�cient sensitivity variations to mimic the missing spatial harmonics, as in all other

parallel imaging reconstruction techniques. By �rst gridding the undersampled data using GRAPPA
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Figure 6.8: The R=3 undersampled phantom 1D non-Cartesian image (left) and the corre-
sponding k-space gridded using GROG (middle). The undersampling factor starts at R=1
in the center of k-space and increases to R=5 at the edges, which can be seen in the middle
image. After pseudo-Cartesian reconstruction using 4 patterns, the blurring and ghosting
artifacts are no longer visible (right).

Operator Gridding (GROG), only the Cartesian points nearest the acquired non-Cartesian points are

reconstructed, leaving �holes� which can later be �lled in using the pseudo-Cartesian GRAPPA recon-

struction. Other gridding methods, such as the standard convolution gridding, assume implicitly that

the data to be gridded ful�lls the Nyquist criterion, and errors can occur when gridding undersampled

data with such methods. In addition, these methods do not leave the �holes� in k-space necessary for

the application of pseudo-Cartesian GRAPPA. Thus, the gridding of the undersampled non-Cartesian

data with GROG is an essential part of the pseudo-Cartesian GRAPPA reconstruction.

However, it is important to note that because the algorithm described here uses two di�erent types

of parallel imaging during the course of the reconstruction, an additional noise ampli�cation can be

expected over traditional GRAPPA reconstructions, i.e. any errors in the GROG gridded data will

propagate due to the use of the pseudo-Cartesian GRAPPA algorithm. For this reason, receiver coils

that exhibit su�cient sensitivity variations must be used, such that the GROG weights allow for

accurate gridding. Although it has been shown in Chapter 4 that standard clinical coils allow the use

of GROG without signi�cant noise ampli�cation, these potential errors stemming from GROG must be

kept in mind. This noise ampli�cation depends on a number of factors, including the coil arrangement,

trajectory, and undersampling factor, and is di�cult to characterize in general. In order to combat

such e�ects, the pseudo-Cartesian reconstruction was only performed with patterns that had at least

six source points. In addition, work on a version of GROG which uses multiple non-Cartesian points for

the gridding process is currently underway, which could potentially improve the reconstruction process.

After the data have been gridded, standard Cartesian GRAPPA with di�erent patterns can be used

to reconstruct the data points missing in the undersampled gridded k-space. An appropriate choice
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Figure 6.9: The R=3 undersampled in vivo zig-zag image (left) and the corresponding
k-space gridded using GROG (middle). After pseudo-Cartesian reconstruction using 5
patterns, the image shown on the right results.

of patterns can be determined using a pattern-�nding algorithm, which automates the process. In

addition, when multiple images are acquired using the same trajectory, the patterns are the same for

all of those k-space datasets and must be determined only once. Thus, the patterns are independent of

the object to be imaged and the coil used; they depend only on the underlying trajectory. It is important

to note that the patterns employed in this work used only the original acquired and then gridded data

points as source points for the reconstruction, which means that a relatively large number of patterns

must be used. Iterative methods, which allow the use of points reconstructed in one step to be used

as source points in subsequent reconstruction steps, would require fewer patterns, but could lead to

unexpected reconstruction artifacts due to error propagation (i.e. from employing a reconstructed point

as a target point for further reconstructions). For this reason, no iterative processes were employed

here.

Each pattern used in the reconstructions shown in this chapter was made up of at least six source

points. Reducing the number of source points for each pattern would also reduce the number of patterns

necessary for the reconstruction, but would also lead to a reduced reconstruction quality. Increasing

the number of source points could improve the reconstructed image, although more patterns, and thus

reconstruction time, would be required. Many Cartesian and non-Cartesian GRAPPA reconstruction

algorithms employ six source points per coil for each target point, which is why this value was chosen

for the pseudo-Cartesian reconstructions. In addition, the patterns for the reconstructions shown here

were chosen such that all missing points in k-space were reconstructed. A method which allows selection

of the optimal patterns, i.e. patterns which employ the optimal source points for the reconstruction of

each speci�c missing point, has yet to be developed, and could further improve the image quality.
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In addition to the patterns, an ACS dataset is also needed for the calibration of the weight sets. For

some trajectories, namely radial, dual-density spirals, 1D non-Cartesian, or PROPELLER, both the

GROG and the pseudo-Cartesian GRAPPA portions of the reconstruction are self-calibrating; for other

trajectories, a low-resolution calibration dataset, identical to that used in Cartesian GRAPPA, is needed

for the calibration steps. Alternatively, for some trajectories, a dual-density implementation could also

be used for the weight determination for both GROG and the pseudo-Cartesian reconstruction; for

instance, the central Nyquist-sampled portion of the rosette dataset can be gridded and then used to

determine the necessary weight sets.

The pseudo-Cartesian GRAPPA method proposed here is much more general than other non-

Cartesian GRAPPA methods. Such GRAPPA methods, i.e. radial GRAPPA [100], spiral GRAPPA

[102, 126], 1D non-Cartesian GRAPPA [103], and zig-zag GRAPPA [33], rely on a high degree of

symmetry in the undersampled data, and cannot be used for arbitrary trajectories (see Section 3.3.1).

The segmentation approach has the additional disadvantage that weights for the outer portions of

k-space are determined using these low SNR outer portions, and not the center of k-space, as in

Cartesian GRAPPA. Thus, the weights for these segments are less accurate, leading to errors in the non-

Cartesian GRAPPA reconstruction, especially in 3D reconstructions (see Section 3.3.1). In addition,

other trajectories such as TwiRL or rosette cannot be reconstructed using these methods, as they lack

the radial symmetry needed for segmented GRAPPA. The pseudo-Cartesian GRAPPA method, in

contrast, can be applied to any undersampled non-Cartesian dataset, thus making it appropriate for

a larger number of non-Cartesian trajectories. As the weights are always determined using the high

SNR center of k-space, they tend to be more accurate than the outer k-space weights in segmented

non-Cartesian GRAPPA. The method could also easily be extended to a third dimension, allowing for

the reconstruction of unusual 3D non-Cartesian datasets. Thus, although the algorithm proposed here

is not always as exact as previously demonstrated non-Cartesian GRAPPA reconstruction schemes, it

is far more general and can be used in a variety of applications.

Another option for the reconstruction of arbitrary trajectories is CG-SENSE [104], which uses the

knowledge of the coil sensitivity maps and the undersampled data to derive unaliased images. This

method has three drawbacks: the �rst is that sensitivity maps are required, which can be di�cult

to generate from the non-Cartesian data, and the second is that the image is reconstructed using

an iterative conjugate gradient method. Methods have been demonstrated which help determine the

stopping criteria for CG-SENSE [110], although many e�ects in�uence the selection of this value,

including the trajectory, undersampling factor, coil array used, preconditioning, gridding method, and

initial image. Thus, a direct reconstruction method which requires few additional parameters, such as

that proposed here, can be advantageous. In addition, in dynamic imaging the iterative reconstruction

has to be performed for each time frame. In pseudo-Cartesian GRAPPA, the pattern and weight

determination has to be performed only once and can then be applied to the following time-frames,

leading to a fast data reconstruction.
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A second reconstruction method which has been proposed for arbitrarily sampled data is PARS

[105, 106], which performs a form of non-Cartesian SMASH using sensitivity maps and the appropriate

spatial harmonics to determine the weight set needed to calculate each Cartesian point. The main

drawback of PARS is that an extremely large number of weight sets must be calculated in order to

reconstruct the image, as each non-Cartesian point generally requires a di�erent weight set, which can

become quite time-consuming. Also, similar to CG-SENSE, coil sensitivity maps must be derived,

which can be di�cult in some imaging scenarios.

A third method is BOSCO [136], which �rst grids the undersampled data using standard convolution

gridding, and then convolves the data a second time with a GRAPPA kernel, leading to an unaliased

image. BOSCO has only been demonstrated using spiral data, and su�ers from the use of a single

kernel, which could hamper the reconstruction of other undersampled trajectories. Pseudo-Cartesian

GRAPPA su�ers from none of these drawbacks. It is not iterative, requires neither a sensitivity map

nor an inordinately large number of weight sets, and the number of kernels used for the reconstruction

is not limited to one.

Finally, it is important to note that this method is based directly on the conventional Cartesian

GRAPPA method. Because pseudo-Cartesian GRAPPA applies this standard GRAPPA to reconstruct

undersampled data acquired along arbitrary trajectories, it is much more straightforward than other

non-Cartesian GRAPPA methods, which require dedicated algorithms. The combination of its simplic-

ity and general applicability to many non-Cartesian trajectories makes the pseudo-Cartesian method

in conjunction with GROG demonstrated here advantageous.

6.6 Conclusion

The pseudo-Cartesian GRAPPA reconstruction method proposed here is a simple application of the

basic Cartesian GRAPPA algorithm to non-Cartesian datasets. As the algorithm uses the Cartesian

patterns in gridded undersampled data for reconstruction, no additional segmentation or interpolation is

necessary. In addition, for radial acquisitions, dual-density spirals, 1D non-Cartesian, or PROPELLER

data, no additional ACS data must be acquired as is needed for the standard GRAPPA reconstruc-

tions. However, the main strength of the pseudo-Cartesian algorithm is that it can be applied to any

undersampled non-Cartesian dataset; this includes not only radial and spiral trajectories, but also tra-

jectories which cannot be reconstructed using other non-Cartesian GRAPPA techniques, such as TwiRL

and rosette. Because this algorithm can be applied to other non-Cartesian trajectories, the need for a

separate reconstruction procedure for each accelerated non-Cartesian trajectory is eliminated.
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Chapter 7

GROG-Facilitated Bunched Phase

Encoding

7.1 Introduction

As discussed in all earlier chapters of this thesis, non-Cartesian imaging can be advantageous due to

the unusual properties of certain trajectories [15, 28, 29, 59, 35, 38, 31], and acceleration of such non-

Cartesian acquisitions is currently a subject of much interest. One possibility to reconstruct artifact-

free images from undersampled non-Cartesian data is parallel imaging, as seen in Section 3.3 as well as

Chapter 6. While the image-based conjugate gradient SENSE (CG-SENSE) method of Pruessmann et

al. [104] is able to reconstruct undersampled arbitrary trajectories in an e�cient manner, this method

requires a coil sensitivity map as well as many parameters, which in some cases can be di�cult to

determine. K-space based parallel imaging techniques for non-Cartesian trajectories [33, 100, 102, 103,

105, 106, 126, 129] have also been proposed. Most of these methods make use of speci�c symmetries

in the k-space trajectories, such as radial or spiral GRAPPA [100, 102, 126], and cannot be applied to

non-Cartesian trajectories without the requisite symmetry (see Section 3.3.1). Although some k-space

based methods such as PARS [105, 106] or pseudo-Cartesian GRAPPA (discussed in Chapter 6 and

[127]) are able to reconstruct images from undersampled arbitrary k-space data, these methods can

be time consuming when using many source points for the reconstruction. Thus, a straightforward

reconstruction method which is applicable to arbitrary trajectories and does not require a sensitivity

map would be advantageous in many situations.

However, other methods have also recently been introduced for the reconstruction of undersampled

data which are not based on parallel imaging. For instance, the work of Moriguchi et al. [23, 24, 25]

exploits the Generalized Sampling Theorem of Papoulis [14] to generate images using non-uniformly

sampled data. This theorem and its implications for accelerated MR imaging are discussed in Sections

7.2 and 7.3, respectively.

109
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Figure 7.1: Left: A signal sampled equidistantly at Nyquist rate. Using the discrete
datapoints, the underlying signal can be reconstructed. Right: The same signal sampled
at 1/3 of the Nyquist rate with bunches of 3 points. Because the average sampling rate
is equal to the Nyquist sampling rate, the Generalized Sampling Theorem states that the
underlying signal can be accurately reconstructed using these bunched points although the
Nyquist criterion has been violated in some portions of the acquisition.

7.2 Generalized Sampling Theorem

The Generalized Sampling Theorem, �rst introduced by Papoulis in 1977, states that unaliased images

can be reconstructed even when the Nyquist criterion is violated in portions of k-space, as long as the

average sampling rate is equal to the Nyquist rate. In other words, if n bunched samples are acquired at
1
n

th
of the Nyquist rate, the original signal can be recovered despite the fact that the Nyquist criterion

has not been met. This idea is shown schematically in Figure 7.1. Certain criteria must be ful�lled in

order for the reconstruction to be successful, such as a bandwidth limited signal, although these criteria

are generally met in MR images. In addition, such a reconstruction is highly sensitive to noise in the

signal [137], meaning that it cannot be implemented in some cases. It is important to note that the

idea of bunched sampling is novel in MRI, as it is generally assumed that the Nyquist criterion must

be met in all portions of k-space to avoid aliasing artifacts (Section 2.2).

A discussion of the reconstruction of equidistantly sampled points in the time domain (i.e. k-space)

from the bunched sampled points is excluded from this work due to the highly non-intuitive forms of

the interpolation functions needed. However, the reconstruction can be understood by examining the

fold-over artifacts that occur in the frequency domain (i.e. image) due to the violation of the Nyquist

criterion. For simplicity, it is assumed that the signal consists of bunches of two points sampled at 1
α th

the Nyquist rate (where α is less than one, and the sampling rate exceeds the Nyquist rate), where

each group of bunched points is sampled at 1
2 the Nyquist rate. In k-space, the distance between the

two points in the bunch is α ·∆k, and the distance between the groups is 2 ·∆k. This sampling schema

can be seen in Figure 7.2, where the black points are separated from each other by 2 ·∆k, and the black

and gray points by α ·∆k.
If only the black points in Figure 7.2 are used to generate an image, the typical R=2 fold-over
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Figure 7.2: Left: The sampling schema described in the text, where the bunched groups
(black and gray points) are sampled at one-half the Nyquist rate, but the average overall
sampling rate is equal to the Nyquist rate. Performing an inverse Fourier transformation on
the black points leads to an aliased image (right, top), where the signal values at locations
+L/2, 0, and -L/2 have the same phase. However, when an inverse Fourier transformation
is calculated for the gray points, an additional location-dependent phase term appears
(right, bottom). Using these phase di�erences, the unaliased image can be reconstructed
(see text).

artifacts appear (see Sections 2.2 and 3.1.1, especially Figure 3.2); given that the original image appears

between -L/2 and +L/2, a replica of the original appears shifted by L/2. As can be seen on the right-

hand side, the phases of the signal at locations +L/2, 0, and -L/2 (and all other locations) are identical.

However, if only the gray points are used to generate an image, an additional location-dependent phase

term is evident (Figure 7.2, bottom right). This phase term is directly related to the k-space shift of

the gray points, namely α ·∆k, and is a result of the Fourier Shift Theorem. This phase shift between

the image generated from the black points, I0(x), and that generated from the gray points, Iα(x), can
be related to the original, non-aliased image, I(x) and I(x− L

2 ):[
I0(x)
Iα(x)

]
=

1
2

[
1 1
1 e−iαπ

]
·

[
I(x)

I(x− L
2 )

]
(7.1)

This equation can be solved by taking the inverse (or pseudo-inverse) of the phase matrix:

2 · pinv

([
1 1
1 e−iαπ

])
·

[
I0(x)
Iα(x)

]
=

[
I(x)

I(x− L
2 )

]
(7.2)
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thereby allowing the reconstruction of the non-aliased image. This method, which performs essentially

a pixel-by-pixel unfolding of the aliased images, is strikingly similar to SENSE [3], which was discussed

in detail in Section 3.2.4.

For higher acceleration factors, i.e. larger bunches of points with a larger distance between them, a

general formula for the reconstruction can be written as:
I0

Iα1

...

Iαm−1

 =
1
p


1 ei2παo/p . . . ei2παo(p−1)/p

1 ei2πα1/p . . . ei2πα1(p−1)/p

...
...

...
...

1 ei2παm−1/p . . . ei2παm−1(p−1)/p

 ·


I(x)
I(x− L

p )
...

I(x− L·(p−1)
p )

 (7.3)

given that m bunched data points are sampled at a sampling rate of p · ∆k (and m = p, such that

the average sampling rate is greater than or equal to the Nyquist rate). Thus, an unaliased image can

indeed be generated using bunched points, even when the sampling rate is lower than the Nyquist rate

in some portions of the signal sampling.

7.3 Bunched Phase Encoding

The application of the Generalized Sampling Theorem for the acceleration of MRI data was �rst intro-

duced by Moriguchi at al. [23, 24, 25]. In Moriguchi's work, a so-called bunched sampling technique

is employed, where datapoints are collected along a zig-zag shaped trajectory such that some areas of

k-space are more densely sampled than dictated by the Nyquist criterion, and fewer phase encoding

lines than strictly necessary are acquired (see Figure 7.3). When the bunched points are acquired along

a Cartesian-like trajectory, as shown on the left hand side of 7.3), the matrix method described in

Section 7.2 can be employed [24]. However, when the bunched points are irregular, which is the case

when using a non-Cartesian zig-zag trajectory (such as the radial bunched phase encoding (PR-BPE)

trajectory shown on the right hand side of Figure 7.3), it is not possible to write the phase matrix

in a simple form, as in Equation 7.3. As in SENSE, where the non-Cartesian case cannot be easily

solved using a simple matrix inversion, the conjugate gradient (CG) method is employed (see Sections

3.2.4 and 3.3.2). Thus, using bunched data points along an undersampled non-Cartesian trajectory,

unaliased images can be reconstructed with a CG algorithm [23, 25], despite the fact that the Nyquist

criterion has been violated in some portions of k-space. This BPE method in conjunction with CG has

been demonstrated using undersampled radial (projection reconstruction, or PR) data. It is important

to note that the CG algorithm used for the bunched phase encoding (BPE) method does not require

knowledge of coil sensitivity maps, as in CG-SENSE, and thus no parallel imaging is involved in this

reconstruction.

While the BPE method has been shown to produce unaliased images with Nyquist undersampled

datasets, the method requires non-standard trajectories and therefore high-performance gradients. Con-

sequently, special pulse sequences and potentially gradient systems must be employed to generate such

datasets. In addition, because the gradient execution is not always exactly what is desired, trajectory
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Figure 7.3: Left: The Cartesian bunched phase encoding scheme of Moriguchi et al, where
r∆ky denotes the width of the k-space covered by a bunched phase encoding step, and
q∆ky the distance between two phase encoding lines. The value of q is set to be greater
than one to decrease measurement time. Given N phase encoding lines in a standard
measurement, and an acceleration of R, the total number of points in one bunched phase
encoding line must be N · R for the reconstruction. Right: A schematic of the BPE-PR
acquisition scheme, where the zig-zag trajectory is used along each projection. As shown
in [25], fewer projections are required for an unaliased imaging when using the BPE-PR
trajectory in conjunction with a CG reconstruction than when using a standard radial
trajectory.

measurements are often required in order to perform the reconstruction. Thus, although the bunched

phase encoding trajectories show promise for faster imaging, they often are di�cult to implement and

employ.

7.4 GROG-BPE

However, instead of generating these bunched datapoints using gradient encoding, the bunched trajec-

tory can be mimicked using a standard �straight� trajectory in conjunction with parallel imaging. In

this work, the BPE trajectory is replaced with points generated using the GRAPPA Operator Gridding

(GROG) method (introduced in Chapter 4 and [118]), which replicates the function of these bunched

gradients. Using GROG, each acquired datapoint can be shifted by a small amount in the x-direction,

y-direction, or both simultaneously, thereby generating a cloud of additional points surrounding the

original acquired point. These new bunched datapoints can then be used with the CG optimization

to reconstruct accelerated images. In this chapter, several di�erent strategies for generating bunched

points are examined, namely using systematic [130] or random bunched points [131] as the BPE points.

A schematic of the GROG-facilitated BPE reconstruction (GROG-BPE) and examples of the blipping

strategies employed in this chapter are shown in Figure 7.4.

This method of generating bunched points using GROG is advantageous for several reasons. The

�rst is that the reconstruction technique can be applied to arbitrary trajectories, because no symmetry

is required, as in many k-space based non-Cartesian reconstruction schemes. No sensitivity maps are

needed, and the computation times are similar to CG-SENSE, because both are based on the conjugate

gradient algorithm. In addition, because the GROG weights can often be calculated from the under-
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Figure 7.4: A schematic of the GROG-BPE procedure. The leftmost image depicts the
standard undersampled radial dataset. Each datapoint is �bunched� using GROG; the up-
per middle image shows an example of random bunched points, and the lower image shows
a systematic blipping scheme. Once the additional bunched points have been generated,
a coil-by-coil conjugate gradient reconstruction algorithm is applied to the datapoints,
resulting in the �nal unaliased image, as shown on the right.

sampled non-Cartesian datapoints themselves, this method can provide a completely self-calibrating

reconstruction of undersampled non-Cartesian data [124]. For instance, the GROG weights needed to

generate the bunched points can be calculated from undersampled radial and rosette datasets. For

spiral datasets, the weights must be calculated from the fully-sampled data, although an undersampled

dual-density or interleaved dynamic spiral acquisition would also be self-calibrating. The only require-

ment for the GROG-BPE method is that the receiver coils employed must provide su�cient sensitivity

variations to generate the bunched points, a condition met by most clinical array coils. In this chapter,

simulations are performed in order to examine the e�ects of di�erent parameters on the reconstruction

quality, and examples of accelerated in vivo radial, spiral and rosette trajectories are shown.

7.5 Simulation

7.5.1 Methods

In order to examine the e�ects of di�erent shift sizes and number of additional GROG-BPE points on

the reconstruction quality, simulated undersampled radial data were reconstructed using the method

proposed here. To this end, an eight-element one-ring head coil array was simulated, and the sensitivities

derived for this coil array using an analytic integration of the Biot-Savart equations were applied to

a contrast-modi�ed Shepp-Logan phantom. This simulated coil was chosen because it is similar to

commercially available array coils. In addition, previous work [118] has shown that this arrangement

and number of coils allows k-space shifts of at least ∆k = 0.5 in both the x- and the y-direction using
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GROG without the appearance of artifacts. The Cartesian data were resampled as radial data (200

projections, 256 read-out points, base matrix of 128 × 128) by sinc interpolation. This dataset was

undersampled retrospectively to yield datasets with acceleration factors of 2 to 6 (100 projections for

R=2, 67 for R=3, 50 for R=4, 40 for R=5, 34 for R=6). The GROG weights were determined from

the undersampled radial datasets [124], and GROG-BPE datasets for each acceleration factor were

created using these weights. The e�ects of di�erent GROG jump sizes on the reconstruction quality

were examined by increasing the maximum blip amplitude from ∆kmax = 0.1 to ∆kmax = 1.0 in

increments of ∆k = 0.1. In addition, the e�ect of the density of bunched points on the reconstruction

was examined by increasing the total number of GROG-BPE points. The minimum number of points

used for a reconstruction was 9 GROG-BPE bunched points per acquired point, and the maximum

was 225. Finally, two di�erent blipping patterns were employed: the �rst was systematic blipping, and

the second was random blipping. For the systematic blipping, the GROG-BPE points were regularly

distributed over the maximum blip amplitude in both the kx- and the ky-directions. For instance, if a

total of 49 bunched points are to be used with a maximum amplitude of ∆kmax = 0.6, the kx-locations
of the bunched points would be:

kx + (−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6)

With the same distribution of ky points, the desired number of total points (49) has been achieved.

For the random blipping, the direction and distance of the bunched points was determined randomly.

As in the systematic blipping, the maximum blip amplitude and the number of BPE points was given,

but the actual location of the bunched points was random and uniformly distributed over the range

from −∆kmax to +∆kmax. A schematic depiction of both the systematic and the random blipping

is shown in Figure 7.4. After the BPE-mimicked points were generated using GROG, the resulting

k-space data was processed using the CG-INNG algorithm described in [23], although without using

sensitivity maps (i.e. no CG-SENSE is employed). This algorithm is similar to that used in [25] and is

made up of the following steps (performed independently for each coil):

� The k-space data (made up of the bunched points generated using GROG) are distributed onto an

oversampled Cartesian grid using a nearest neighbor algorithm (i.e. the non-Cartesian datapoints

are placed onto the nearest rounded Cartesian grid point)

� An inverse FFT is performed, yielding an image with an increased FoV (corresponding to the

oversampling factor)

� The central portion of the image is cropped out and used to initialize the CG algorithm

� The new image from the CG algorithm is placed into a larger matrix �lled with zeros (again

corresponding to the oversampling factor)

� An FFT is performed on the large FoV image, resulting in an oversampled updated k-space

� The k-space data at the original locations is retained, and all other areas in k-space are set to

zero
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� The inverse FFT is performed on the updated k-space data, yielding an updated image

� The updated image is cropped out of the larger FoV, and fed back into the CG algorithm

� After a given number of iterations have been performed, or the stopping criteria have been met,

the cropped updated image is accepted as the �nal reconstructed image

A schematic of CG-INNG process is shown in Figure 7.5. No density compensation function is required

for this gridding algorithm. For all datasets, 10 iterations were performed using an oversampling factor

of s = 2, followed by 10 iterations with an oversampling factor of s = 10. No improvement in the

image quality was observed when using more iterations or larger grid oversampling factors. The �nal

reconstructed images for all acceleration factors, maximum blip amplitudes, and number of blip points

were compared to the noiseless Shepp-Logan phantom using the root mean square error (RMSE) value

in order to determine which parameters o�ered the best image quality for each acceleration factor. Note

that the region of k-space support for the Cartesian phantom was reduced with a radial mask of the

same extent as the radial trajectory to enforce the circular FoV, which slightly a�ects the appearance

of the standard noiseless phantom.

7.5.2 Results

The results of the simulations for the acceleration factor R=4 and di�erent GROG-BPE parameters

are shown in the graph in Figure 7.6. Due to the large number of simulated images, only a few graphs

are shown to demonstrate the trends in RMSE values for di�erent parameters. Tables 7.1 and 7.2 show

the lowest RMSE errors and parameters used for each of the reconstruction types (i.e. systematic or

random) for each acceleration factor. As seen in Figure 7.6, for systematic blipping (the black lines

and points), an increase in the maximum amplitude of the bunched points leads �rst to a decrease, and

then an increase in the RMSE value for a given acceleration factor and number of bunched points. The

reason for this can be seen in Figure 7.7, which shows the images resulting from a R=4 using 9 BPE

points and an increasing maximum blip amplitude. When the maximum blip is small (∆kmax = 0.1),
the blurring evident in the undersampled image is still present. By increasing the blip amplitude, this

blurring decreases. However, because the GROG weights become more unstable with increasing blip

distance, the error in the BPE points grows as the blurring decreases. A RMSE minimum (0.94%) is

seen in Figure 7.6 when the maximum amplitude is ∆kmax = 0.4, and the use of a larger amplitude leads

to a darkening of portions of the image which can be attributed to errors in the center of k-space from

inaccurate bunched points. The results of employing di�erent numbers of systematic bunched points

are also shown in Figure 7.6. For larger blip amplitudes, a greater number of bunched points leads

to a larger RMSE. This is again due to the increasing inaccuracy of GROG weights as the maximum

amplitude increases; when more bunched points are generated further away from the acquired point,

the reconstruction error increases. It is interesting to note that there are no signi�cant di�erences in

RMSE values when employing small maximum amplitudes but di�erent numbers of bunched points

for a given acceleration value; this is due to the fact that these points have smaller GROG errors. It

would be expected from the theory of Papoulis that a larger number of points for a given maximum
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R=2 R=3 R=4 R=5 R=6

Minimum RMSE 0.21% 0.44% 0.94% 1.65% 2.40%

Bunched/Acquired Point 9 9 9 49 49

Maximum Blip Amplitude ∆kmax = 0.2 ∆kmax = 0.3 ∆kmax = 0.4 ∆kmax = 0.5 ∆kmax = 0.5

Table 7.1: Minimum RMSE values and reconstruction parameters for images reconstructed
from simulated undersampled radial data using systematically blipped GROG-BPE for
acceleration factors from R=2 to R=6.

blip amplitude would lead to a better reconstruction than a smaller number; in this implementation of

the method, however, no evidence for that is seen for systematic blipping.

More interesting are the results of the simulations with random blipping. As evidenced in Figure

7.6, the RMSE for images reconstructed with random bunched points (gray lines) are lower than

those reconstructed using systematic blipping (black lines). This statement is true especially for large

maximum blip amplitudes (∆kmax > 0.5). This phenomenon can be explained by the incoherent

artifacts which are a result of the random blipping patterns. By arbitrarily choosing a shift direction

and amount for each acquired point, the errors which result from the GROG weights tend to average

each other out. In the systematic blipping case, these errors, while still present as incoherent noise, tend

to reinforce each other, thereby yielding larger RMSE errors for the reconstructed images. It should

be noted that the minimum RMSE for the random blipping method appears at a larger maximum blip

amplitude ( ∆kmax = 0.5) than the minimum for the systematic blipping, and this minimum is not

as narrow. This indicates that the choice of the maximum blipping amplitude is not as crucial for the

random blipping as it is for the systematic blipping. Finally, the RMSE of the reconstructions with

random blipping with more points always yielded a lower RMSE than reconstructions with fewer points

(dotted vs. solid gray lines). This result �ts with the generalized sampling theorem of Papoulis, in that

more bunched points should lead to a better reconstruction of the actual signal.

Examples of images reconstructed with the random blipping for an acceleration factor of 4, a total

of 225 random GROG points per acquired datapoint, and di�ering maximum blip amplitudes are shown

in Figure 7.8. Using a maximum blip amplitude of ∆kmax = 0.5, the reconstruction yields an image

which no longer contains the blurring evident in the R=4 undersampled image (with a RMSE of 0.64%).

In addition, the darkening of the center of the image present in the systematic blipping reconstructions

does not appear in the random blipping using this maximum amplitude; it is, however, present when

R=2 R=3 R=4 R=5 R=6

Minimum RMSE 0.11% 0.24% 0.64% 1.42% 2.31%

Bunched/Acquired Point 225 225 225 225 225

Maximum Blip Amplitude ∆kmax = 0.3 ∆kmax = 0.5 ∆kmax = 0.5 ∆kmax = 0.6 ∆kmax = 0.6

Table 7.2: Minimum RMSE values and reconstruction parameters for images reconstructed
from simulated undersampled radial data using randomly blipped GROG-BPE for accel-
eration factors from R=2 to R=6.
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Figure 7.5: A schematic of the CG-INNG algorithm, as described in detail in the text.
The portion on top (the initial gridding of the GROG-bunched data) is performed only
once, and the portion in the dotted area is performed multiple times until the CG algorithm
converges. The schematic k-spaces represent the acquired data non-Cartesian data assigned
to the oversampled grid (s = 2 in this case), while the small and large images show the
correct FoV and zero-padded FoV, respectively.
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Figure 7.6: A graph showing the RMSE values for simulated R=4 radial images recon-
structed with GROG-BPE performed using di�erent parameters (black: systematic GROG
blipping, gray: random GROG blipping; diamond: 9 GROG bunched points/acquired
point, square: 225 bunched points/acquired point).
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Figure 7.7: Reconstructions of the R=4 simulated data using systematic GROG-BPE and
9 bunched points/acquired point for di�erent maximum blip amplitudes. The top left
image, with blip amplitude ∆kmax = 0, corresponds to the R=4 undersampled image. As
the maximum blip amplitude increases, the blurring evident in the undersampled image
decreases, but the center of the image darkens when using blip amplitudes larger than
∆kmax = 0.5. This phenomenon can also be seen in the plot (black diamonds) in Figure
7.6.

using larger blip amplitudes and random blipping (∆kmax = 0.9), thereby increasing the RMSE of the

reconstruction (RMSE=1.38%). Finally, as apparent in the graph shown in Figure 7.6, the quality of

images reconstructed using random blipping is not as dependent on the maximum blip amplitude as

those reconstructed using systematic blipping. Thus, in general, random blipping leads to both better

reconstruction quality (i.e. lower RMSE values), and more stable reconstructions (i.e. less dependent

on the choice of maximum blip amplitude).

7.6 In Vivo Experiments

7.6.1 Methods

Given the results for simulations performed with di�erent blip amplitudes, di�erent numbers of bunched

points, and the two blipping patterns, it was determined that all further in vivo reconstructions should

be performed with the following reconstruction parameters:
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Figure 7.8: Reconstructions of the R=4 simulated data using random GROG-BPE and
225 bunched points/acquired point for di�erent maximum blip amplitudes. The top left
image again corresponds to the R=4 undersampled image. The R=4 image with the lowest
RMSE (0.64%) is the ∆kmax = 0.5 image shown on the lower left.

� Random Blipping

� Large oversampling matrices for the conjugate gradient reconstruction (s = 10)

� Large numbers of bunched points

� Maximum amplitudes determined by the number of receiver coils and geometry

Several comments must be made about the choice of parameters. Random blipping was chosen because

the RMSE of such reconstructions was lower than the RMSE for the systematic blipping. The number

of bunched points used for each reconstruction was limited by memory constraints; the generation

of 225 additional points for a dataset with 512 read out points, 50 radial rays, and 12 channels was

not always feasible with the memory available. Thus, a smaller number was chosen for the in vivo

reconstructions. In addition, coil arrays with a large number of elements allow for larger GROG

shifts without substantial artifacts. Thus, several maximum amplitude values were examined, and the

sharpest image chosen for each in vivo reconstruction. Finally, the same oversampling matrix sizes were

used as for the simulations. The di�erent non-Cartesian trajectories employed are described below, and

the speci�c measurement parameters are given in Table 7.3.
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Radial Spiral Rosette

Read Points 512 7289a 1000

Phase Encoding Steps 50 2 15

Number of Coils 12 32 12

Base Matrix Size 256 192 128

Undersampling Factor 5 2 4

Maximum Blip Amplitude ∆kmax = 0.3 ∆kmax = 1.0 ∆kmax = 1.0
Bunched/Acquired Points 121 121 50

Table 7.3: Dataset sizes and reconstruction parameters for the in vivo accelerated radial,
spiral, and rosette trajectories used to demonstrate GROG-BPE. aA center-out constant-
linear-velocity spiral trajectory was used.

In vivo radial data (12 channel, 256 projections, 512 read-out points, base matrix 256 × 256)
were acquired using a 1.5T Siemens Espree scanner (Siemens Medical Solutions, Erlangen, Germany.

The data were retrospectively undersampled by removing all but 50 of the radial arms, yielding an

acceleration factor of R=5 with respect to Cartesian sampling (and approximately R=8 with respect to

radial sampling). The GROG weights were determined from the undersampled radial data themselves

without further processing using the GROG self-calibration method described in Chapter 5 and [124].

Using the random blipping method described above with 121 bunched points for each acquired point

and a maximum blip amplitude of ∆kmax = 0.3, GROG-BPE reconstructions were performed.

In vivo spiral data (32 channel [87], 4 spiral arms, 7289 read-out points, base matrix 192 × 192)
were acquired using a 3T Trio scanner (Siemens Medical Solutions) using a constant-linear-velocity

trajectory. As stated in Section 7.1, the undersampled spiral trajectory is currently not self-calibrating

for GROG. Thus, in order to determine the GROG weights, the full spiral data were �rst reordered

onto a constant-angular-velocity trajectory using a 1D Fourier interpolation in the time domain (i.e.

read-out direction). This reordering yielded 448 pseudo-projections, each containing 128 points which

could be used for the calibration of the GROG weights [124]. The spiral data were then retrospectively

undersampled to R=2, i.e. two spiral arms were removed from the acquisition, and the random blipping

method was employed, also with 121 bunched points per acquired point and a maximum blip amplitude

of ∆kmax = 1.0. This larger blip amplitude was made possible by the 32 independent receiver channels,

which lead to more stable GROG weights for larger shifts.

Finally, in vivo rosette data were acquired on a 1.5T Avanto scanner (Siemens Medical Solutions).

The rosette trajectory employed di�ered slightly from that proposed in [35], in that the following

formula was used to describe a single shot of the trajectory:

k = 4 · cos(t)− cos(4 · t) + i · 4 · sin(t)− i · sin(4 · t)

where t runs from 0 to 2π. This parametrization leads to a trajectory comprised of three large petals

which overlap 15 times in the course of a single read out. Using this trajectory, the entire k-space for

a 128 × 128 matrix can be covered with 60 shots (by rotating k from 0◦ to 59◦ in increments of 1◦).
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Figure 7.9: Left: The radial reference image as described in the text. Center: The R=5
undersampled radial image. Right: The GROG-BPE reconstruction of the R=5 radial
data.

The trajectory was implemented on the scanner and measured using the method of Duyn et al. [138].

Accelerated in vivo data were acquired with 15 repetitions of the above trajectory (by rotating k from

0◦ to 55◦ in increments of 4◦, corresponding to an acceleration factor of R=4), 1000 read points, and

a base matrix of 128 × 128, using a 12-channel receiver coil. The GROG weights cannot currently be

calculated using raw rosette trajectory data, and thus the central portion of k-space (which is fully-

sampled despite the R=4 undersampling) was gridded using the CG-INNG algorithm. The resulting

low-resolution Cartesian dataset (20 × 20) was used to determine the base GROG weights. Using

these weights, random blipping was performed with a total of 50 GROG points per acquired point

and a maximum blip amplitude of ∆kmax = 1.0. Finally, a reconstructed image was created using the

GROG-BPE dataset and CG-INNG.

7.6.2 Results

The reference images, undersampled images, and results of the reconstructions of the accelerated radial,

spiral and rosette datasets using GROG-BPE with CG-INNG are shown in Figures 7.9 through 7.11. For

comparison purposes, the reference and undersampled images were also reconstructed using CG-INNG

but without the extra bunched points.

In the radial reconstruction of the R=5 undersampled dataset shown on the right-hand side of Figure

7.9, the blurring and streaking artifacts present in the undersampled image are removed when employing

the BPE-GROG algorithm. Similarly, the undersampling artifacts present in the R=2 accelerated

spiral image shown in the center of Figure 7.10 are no longer evident in the reconstruction shown on

the right, despite the relatively malicious artifacts which result from missing points in the center of

k-space. Finally, the reconstruction of the R=4 undersampled rosette dataset shown in Figure 7.11

also appears less blurry than the undersampled image, although a noise increase can be observed as

compared to the reference image depicted on the left.
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7.7 Discussion

As shown in the simulations and in vivo reconstructions, GROG-facilitated bunched phase encoding

with conjugate gradient reconstruction can be used to reconstruct artifact-free images from undersam-

pled non-Cartesian datasets. According to the Generalized Sampling Theorem of Papoulis [14], the

sampling of all points in k-space does not necessary have to ful�ll the Nyquist criterion; given that the

average sampling rate is equal to the Nyquist rate, it is possible to reconstruct the original signal using

methods such as the iterative conjugate gradient algorithm. This is a novel concept in MR imaging,

where it is generally assumed that aliasing artifacts result when the Nyquist criterion is violated in any

single portion of k-space. While it has been shown that modi�ed bunched phase encoding trajectories,

which allow the acquisition of clusters of points which are bunched in k-space, can be exploited to reduce

sampling time, this method requires novel trajectories and gradient performance above and beyond that

required for the standard trajectory. Thus, a method which allows the utilization of the Generalized

Sampling theorem to reconstruct undersampled datasets without the need for such modi�cations to

standard non-Cartesian trajectories, such as GROG-BPE, is advantageous.

Using GROG, either additional systematic or random bunched points can be generated from points

acquired along a standard non-Cartesian trajectory. These points can then be used in conjunction with

the CG algorithm, exactly in the same way Moriguchi et al. [23, 25] employ the bunched points, to

reconstruct artifact-free images from undersampled non-Cartesian data. This manuscript demonstrates

the application of this method for generating images from undersampled simulated radial data and in

vivo radial, spiral, and rosette data.

As shown in Section 7.5, random blipping outperforms systematic blipping in terms of stability and

image reconstruction quality (as measured by the RMSE of the reconstructed images). As described

in previous work [118], the use of GROG can lead to errors in the generated bunched points, especially

when the shifts are large. When random blipping is employed, these errors are also random in both

direction and magnitude, and appear as less coherent artifacts in the reconstructed images. Systematic

blipping results in more coherent artifacts, which lead to higher RMSE values. Thus, one can conclude

that random blipping is preferable to systematic blipping, and the in vivo reconstructions shown here all

employed random blipping. In addition, the e�ects of parameters such as maximum blip amplitude and

number of bunched points were also examined. As expected from the Generalized Sampling theorem,

the use of a greater number of bunched points in conjunction with the CG algorithm yields a better

image quality than using a smaller number of bunched points for all acceleration factors examined.

Finally, as shown in Figures 7.6 through 7.8, the reconstruction quality increases and then decreases

when the maximum blip amplitude is increased. This can be explained by the use of GROG to generate

the bunched points. As mentioned above, large k-space shifts using GROG weight sets are less accurate

than small shifts. Because of this, larger maximum blip amplitudes in k-space lead to larger errors in the

bunched points generated using GROG. On the other hand, Moriguchi et al. [24] have shown that larger

blip amplitudes lead to better reconstructions as a consequence of the Generalized Sampling Theorem.

Thus, a balance must be found between removing the aliasing artifacts (blurring, streaking, fold-over),

and introducing errors due to noise-prone GROG points. The trade-o� depends on the quality of the
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Figure 7.10: Left: The spiral reference image as described in the text. Center: The R=2
undersampled spiral image. Right: The GROG-BPE reconstruction of the R=2 spiral
data.

GROG weights and the errors they introduce in the bunched points. However, the additional error

introduced in the bunched points depends on a number of factors, such as the number of receiver

coils used, their orientation, the SNR of the reference and undersampled dataset, etc. In addition,

the maximum blip amplitude required depends on the undersampling factor and the trajectory. For

instance, although the same receiver coil was employed for the radial and rosette datasets, the optimal

maximum blip amplitude was found to be ∆kmax = 0.3 for the R=5 radial dataset and ∆kmax = 1.0
for the R=4 rosette dataset. This is due to the di�erences in the degree of undersampling in di�erent

portions of k-space for the two trajectories; larger �holes� are found closer to the center of k-space for

the R=4 rosette trajectory than for the R=5 radial trajectory, requiring larger blip amplitudes for the

reconstruction. Because the weights derived from the receiver coil can be used to generate more accurate

∆k = 0.3 GROG shifts than ∆k = 1.0 shifts, the resulting radial reconstruction appears to have a noise

level similar to that of its reference image, while the rosette reconstruction is notably noisier than the

rosette reference. Thus, the choice of maximum blip amplitude must be made in consideration of the

above factors. Luckily, one does not have to decide on the maximum blip amplitude before acquiring

the data; di�erent amplitudes can be examined and an appropriate value chosen in the course of the

reconstruction.

There are, of course, other options for the reconstruction of accelerated non-Cartesian datasets,

such as parallel imaging methods. The most commonly used is CG-SENSE [104], described in Section

3.3.2, which is advantageous because it can be used with arbitrary non-Cartesian trajectories. This

reconstruction algorithm also relies on the CG method to generate artifact-free images from under-

sampled datasets. The primary di�erence between the method proposed here and CG-SENSE is that

CG-SENSE requires sensitivity maps. While such sensitivity maps can in theory be generated whenever

the central portion of k-space is fully-sampled, in cases such as the radial and rosette trajectories shown

here, these maps are di�cult to calculate in low SNR areas or given pre-folding. GROG-BPE, however,

does not require sensitivity maps and is also self-calibrating for the same undersampled trajectories
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Figure 7.11: Left: The rosette reference image as described in the text. Center: The R=4
undersampled rosette image. Right: The GROG-BPE reconstruction of the R=4 rosette
data.

as CG-SENSE. The GROG weights for the radial dataset can be determined using all of the acquired

datapoints [124], while the central, Nyquist-sampled portion of the undersampled rosette dataset can

be gridded and used as a Cartesian block of data for the GROG weight determination. While the R=2

spiral dataset demonstrated here cannot currently be used to determine the GROG weights, possibilities

for a self-calibrating alternative include the use of dual-density spirals, which would be self-calibrating.

The other major parallel imaging alternative is the general class of non-Cartesian GRAPPA meth-

ods, including radial GRAPPA [100], spiral GRAPPA [102, 126], 1D NC GRAPPA [103], etc. which are

detailed in Section 3.3.1. Non-Cartesian GRAPPA methods generally rely on symmetrical trajectories,

which can be used to generate and apply weight sets using entire segments of the undersampled k-space.

In cases of trajectories which do not contain the necessary symmetry, such as the rosette trajectory

used here, non-Cartesian GRAPPA cannot be employed. In addition, these methods often require a

fully-sampled calibration dataset in order to determine the GRAPPA weights for each of the segments.

GROG-BPE, in contrast, is self-calibrating for those trajectories which include a fully-sampled central

k-space portion, such as radial, rosette, dual-density spiral, or PROPELLER. Thus, the GROG-BPE

method presented here is far more general than other non-Cartesian GRAPPA methods and requires

no additional calibration information. However, the current implementation of GROG-BPE requires

more computation time than other iterative methods due to the large number of points which must be

generated with GROG and gridded with CG-INNG. Fortunately, once the additional bunched points

have been determined using the GROG weights, the following CG algorithm can be performed coil-by-

coil and in parallel. This greatly decreases the time to required perform the reconstruction, although

signi�cant memory requirements still remain a challenge.
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7.8 Conclusion

The new method described here, namely GROG-facilitated Bunched Phase Encoding, or GROG-BPE,

can be used as an alternative to non-Cartesian parallel imaging techniques and to the standard BPE

described by Moriguchi et al [23, 24, 25]. By exploiting the Generalized Sampling Theorem of Papoulis

[14], GROG-BPE allows the reconstruction of artifact-free images from undersampled non-Cartesian

data using additional points generated using GROG in conjunction with an iterative CG algorithm. This

method does not require specialized k-space trajectories or additional gradient performance, as does the

method of Moriguchi et al, because the �bunched� points are generated using GROG and the standard

undersampled non-Cartesian datasets. In addition, it can be used for arbitrary k-space trajectories

without the need for sensitivity maps, unlike CG-SENSE. Finally, for many undersampled datasets,

GROG-BPE is completely self-calibrating and requires no additional dataset. As demonstrated with

in vivo datasets, GROG-BPE results in reduced artifacts and blurring for undersampled radial, spiral,

and rosette images.
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Chapter 8

Summary

Magnetic Resonance Imaging (MRI) is an imaging modality which provides anatomical or functional

images of the human body with variable contrasts in an arbitrarily positioned slice without the need for

ionizing radiation. In MRI, data are not acquired directly, but in the reciprocal image space (otherwise

known as k-space) through the application of spatially variable magnetic �eld gradients. The k-space

is made up of a grid of data points which are generally acquired in a line-by-line fashion (Cartesian

imaging). After the acquisition, the k-space data are transformed into the image domain using the Fast

Fourier Transformation (FFT).

However, the acquisition of data is not limited to the rectilinear Cartesian sampling scheme described

above. Non-Cartesian acquisitions, where the data are collected along exotic trajectories, such as radial

and spiral, have been shown to be bene�cial in a number of applications, such as real-time cardiac

imaging [61, 62, 63, 64], MR angiography [68, 69, 70], lung imaging [46, 47, 48], motion correction [71,

72], and fMRI [57, 58, 59, 60]. However, despite their additional properties and potential advantages,

working with non-Cartesian data can be complicated. The primary di�culty is that non-Cartesian

trajectories are made up of points which do not fall on a Cartesian grid, and a simple and fast FFT

algorithm cannot be employed to reconstruct images from non-Cartesian data. In order to create

an image, the non-Cartesian data are generally resampled on a Cartesian grid, an operation known as

gridding, before the FFT is performed. There are many di�erent gridding algorithms which can be used

to perform this task, and most involve many parameters which must be optimized, such as a convolution

function, kernel width, oversampling factor, Density Compensation Function (DCF), regularization

parameters, etc. In addition, such algorithms cannot be used to grid Nyquist undersampled datasets.

Thus, a simple method of gridding which does not require many parameters to be optimized and can be

used to grid undersampled data would simplify the gridding process and make non-Cartesian imaging

more accessible.

Another challenge for non-Cartesian imaging is the combination of unusual trajectories with parallel

imaging. Because the acceleration factor changes in both degree and direction in an undersampled

non-Cartesian k-space, standard Cartesian parallel imaging methods such as SENSE [3] or GRAPPA

[7] cannot be directly employed. The most commonly used and most �exible non-Cartesian parallel

imaging reconstruction algorithm is CG-SENSE, developed by Pruessmann et al. [104]. While CG-

129
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SENSE can be applied to any undersampled non-Cartesian trajectory, the quality of the reconstructed

image depends on the accuracy of the coil sensitivity map, which can be di�cult to acquire in many

cases. Non-Cartesian GRAPPA methods [100, 102, 103, 126] do not require sensitivity maps, which

makes them advantageous for lung and cardiac imaging, but they must be formulated di�erently for

each non-Cartesian trajectory. This is because the missing non-Cartesian data must be reconstructed

before gridding is performed due to the di�culties in gridding undersampled datasets. Prior to this

thesis, a generalized non-Cartesian GRAPPA method which can be applied to arbitrary trajectories

had yet to be developed.

This thesis has presented several new non-Cartesian parallel imaging methods which simplify both

gridding and the reconstruction of images from undersampled data. In Chapter 4, a novel approach

which uses the concepts of parallel imaging to grid data sampled along a non-Cartesian trajectory called

GRAPPA Operator Gridding (GROG) is described. GROG shifts any acquired k-space data point to its

nearest Cartesian location, thereby converting non-Cartesian to Cartesian data. Unlike other parallel

imaging methods, GROG synthesizes the net weight for a shift in any direction from a single basis set

of weights along the logical k-space directions. Given the vastly reduced size of the basis set, GROG

calibration and reconstruction requires fewer operations and less calibration data than other parallel

imaging methods for gridding. Instead of calculating and applying a DCF, GROG employs only local

averaging, as the reconstructed points fall upon the Cartesian grid. In addition, because the e�ective

gridding kernel is one, local gridding can be performed, making the gridding of undersampled data

possible. The only requirements for GROG are a multi-channel acquisition and a calibration dataset

for the determination of the GROG weights. Simulations demonstrating that the root mean square error

values of images gridded with GROG are similar to those for images gridded using the gold-standard

convolution gridding were shown. Finally, GROG was compared to the convolution gridding technique

using data sampled along radial, spiral, rosette, and PROPELLER trajectories.

Chapter 5 discusses an extension of GRAPPA Operator Gridding, namely Self-Calibrating GRAPPA

Operator Gridding (SC-GROG). SC-GROG is a method by which non-Cartesian data can be gridded

using spatial information from a multi-channel coil array without the need for an additional calibration

dataset, as required in standard GROG. Using self-calibrating GROG, the non-Cartesian datapoints are

shifted to nearby k-space locations using parallel imaging weight sets determined from the datapoints

themselves. SC-GROG also employs the GRAPPA Operator, a special formulation of the general

reconstruction method GRAPPA, to perform these shifts. The innovation introduced in Self-Calibrating

GROG allows the shift operators to be calculated directly out of the non-Cartesian data themselves.

This eliminates the need for an additional calibration dataset, which reduces the imaging time, and

also makes the GROG reconstruction more robust by removing possible inconsistencies between the

calibration and non-Cartesian datasets. Simulated and in vivo examples of radial and spiral datasets

gridded using self-calibrating GROG are compared to images gridded using the standard method of

convolution gridding.

Although GROG can be used to grid undersampled datasets, it is important to note that this

method uses parallel imaging only for gridding, and not to reconstruct artifact-free images from under-
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sampled data. As stated above, simple GRAPPA cannot be used with non-Cartesian datasets because

it necessitates the acquisition of regularly sampled Cartesian k-space data in order to reconstruct a

non-aliased image e�ciently. Thus, the extension of Cartesian GRAPPA to non-Cartesian sequences is

non-trivial. However, GROG can be combined with GRAPPA in order to simplify the reconstruction

process for undersampled non-Cartesian datasets. Chapter 6 introduces a simple, novel method for

performing modi�ed Cartesian GRAPPA reconstructions on undersampled non-Cartesian k-space data

gridded using GROG to arrive at a non-aliased image. Because the undersampled non-Cartesian data

cannot be reconstructed using a single GRAPPA kernel, several Cartesian patterns are selected for the

reconstruction. This �exibility in terms of both the appearance and number of patterns allows this

pseudo-Cartesian GRAPPA to be used with undersampled non-Cartesian datasets acquired with any

non-Cartesian trajectory. The successful implementation of the reconstruction algorithm using several

di�erent trajectories, including radial, rosette, spiral, 1D non-Cartesian, and zig-zag trajectories, has

been demonstrated. Pseudo-Cartesian GRAPPA is important because it is the �rst GRAPPA recon-

struction method which can be applied to any arbitrary non-Cartesian trajectory. In addition, it is the

�rst method to make use of the fact that GROG can be employed to grid undersampled data.

Finally, Chapter 7 discusses a novel method of using GROG to mimic the bunched phase encoding

acquisition (BPE) scheme. It has been shown that the use of BPE in conjunction with a conjugate

gradient reconstruction algorithm can decrease scan time by reducing the number of phase encoding

lines needed to generate an unaliased image [23, 24, 25]. In MRI, it is generally assumed that an

artifact-free image can be reconstructed only from sampled points which ful�ll the Nyquist criterion.

However, the BPE reconstruction is based on the Generalized Sampling Theorem of Papoulis [14],

which states that a continuous signal can be reconstructed from sampled points as long as the points

are on average sampled at the Nyquist frequency. Thus, the BPE method of Moriguchi et al. takes

advantage of the idea that bunched points (which are sampled at a frequency higher than dictated by

Nyquist) can be used to reconstruct k-space data which is sampled at a lower rate in some locations.

However, the acquisition of such bunched data at the scanner requires both modi�ed pulse sequences

and extremely high and stable gradient performance. A novel method of generating the �bunched� data

using GRAPPA Operator Gridding (GROG), which shifts datapoints by small distances in k-space using

the GRAPPA Operator instead of employing zig-zag shaped gradients, is presented in this chapter.

Many bunched points can be generated random distances and directions (within a maximal shift value)

from the original point using GROG, which removes the limitations imposed by the gradient system

and the sampling time available. With the conjugate gradient reconstruction method, these additional

�bunched� points can then be used to reconstruct an artifact-free image from undersampled data.

This method is referred to as GROG-facilitated Bunched Phase Encoding, or GROG-BPE. In order

to better understand how the patterns of bunched points, maximal blip size, and number of bunched

points a�ect the reconstruction quality, a number of simulations using the GROG-BPE approach are

performed. Finally, to demonstrate that this method can be combined with any trajectory, examples of

artifact-free in vivo images reconstructed from undersampled radial, spiral, and rosette data are shown.
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With the introduction of GROG and SC-GROG, non-Cartesian datasets can be gridded without

the need for additional parameters, greatly simplifying and speeding up the gridding process. The

further combination of GROG and either GRAPPA or the Generalized Sampling Theorem allows for

the reconstruction of artifact-free images from undersampled non-Cartesian data sampled along an

arbitrary trajectory. For many trajectories, such as radial, dual-density spiral, PROPELLER, and

rosette, these methods are completely self-calibrating, which can lead to both imaging time reduction

and more stable reconstructions. Thus, the methods developed in this thesis make both non-Cartesian

imaging and parallel imaging more accessible to the typical MR operator, and can be employed to

accelerate the data acquisition for many non-Cartesian applications.

Indeed, work with both fully-sampled and undersampled non-Cartesian datasets is currently un-

derway using the methods described here. The gridding of undersampled radial data with GROG has

been shown to be useful in so-called Compressed Sensing (CS) reconstructions [133, 134], which are

gaining more attention in the MR community due to the possibility for very high acceleration factors.

It is expected that GROG will play a role in making these CS methods more e�cient, as it is the only

method which can be used to grid undersampled data, and the combination of GROG-BPE and CS

is currently a subject of research. In addition to gridding, GROG has also been used to shift points

in k-space in order to perform motion correction [132], a novel use of the GRAPPA Operator. Both

pseudo-Cartesian GRAPPA and GROG-BPE are currently being examined as alternatives to accelerate

radial acquisitions, especially in cardiac and lung imaging. These methods require no calibration data

in the form of extra radial lines or a coil sensitivity map, which can be di�cult to acquire in cardiac data

due to motion and in lung data due to the low signal intensities. Similarly, GROG and GROG-BPE

for the reconstruction and acceleration of 3D radial data have been proposed due to the simplicity and

time-e�ectiveness of the GROG reconstruction method [125]. The possibility of combining metabolite

detection or fMRI using an accelerated rosette trajectory and pseudo-Cartesian GRAPPA is also being

considered, and ideas for developing new trajectories which can be realized only using GROG have

been discussed. The variety of di�erent topics under investigation using methods developed as part

of this thesis indicate that both gridding and data acceleration using the GRAPPA Operator have

and will continue to expand non-Cartesian imaging to make additional Magnetic Resonance Imaging

applications possible.



Chapter 9

Zusammenfassung

Die Magnetresonanztomographie (MRT) ist ein nichtinvasives bildgebendes Verfahren ohne Strahlenbe-

lastung und eignet sich zur biomedizinischen Darstellung verschiedener Gewebetypen mit hoher räumli-

cher Au�ösung und sehr gutem Kontrastverhalten. In der MRT erfolgt die Datenaufnahme im reziproken

Bildraum � auch k-Raum genannt - welcher typischerweise entlang eines diskreten kartesischen Gitters

abgetastet wird. Ein Bild erhält man schlieÿlich durch eine schnelle Fouriertransformation der aufge-

nommenen k-Raum-Daten. Neben den kartesischen Akquisitionsschemata haben sich in den letzten

Jahren auch vereinzelt nichtkartesische MRT-Verfahren in der klinischen Routine durchgesetzt, welche

den k-Raum beispielsweise entlang radial- oder spiralförmiger Trajektorien abtasten. Solche nichtkarte-

sischen Trajektorien erreichen eine hohe Abtaste�zienz, was zu einer Verkürzung der Messzeit führt. Ein

weiterer Vorteil ist ihre Robustheit gegenüber Bewegung oder pulsatilem Blutt�uss. Die Schwierigkeit

im Umgang mit nichtkartesischen Trajektorien liegt vor allem in der Tatsache begründet, dass nichtkar-

tesisch akquirierte Datensätze vor Anwendung der schnellen Fouriertransformation auf ein kartesisches

Gitter transformiert werden müssen (�Gridding�). Hierzu gibt es eine Vielzahl von Verfahren, die von

zahlreichen Parametern abhängen, womit ein hoher Aufwand und hohe Fehleranfälligkeit verbunden

sind. Ein weiterer Nachteil dieser Gridding-Methoden ist, dass sie auf unvollständig aufgenommene

Datensätze nicht angewendet werden können.

Alternativ zu den konventionellen MR-Verfahren haben sich in den letzten Jahren die sogenann-

ten parallelen Bildgebungsmethoden (beispielsweise SENSE oder GRAPPA) in der klinischen MRT

etabliert, die mittlerweile von nahezu allen Hersteller�rmen kommerziell zur Verfügung gestellt wer-

den. Die parallele Bildgebung erlaubt es, die Bildmesszeiten um einen Faktor 2 bis 4 zu verkürzen

und lässt sich prinzipiell auf jede beliebige Bilgebungsmethode anwenden ohne dabei das Kontrastver-

halten zu beein�ussen. In der klinischen Routine ist diese Technik allerdings lediglich auf kartesische

MRT-Verfahren beschränkt, und es ist bisher noch nicht gelungen, die Vorteile der nichtkartesischen

MRT-Verfahren optimal mit den Leistungsmerkmalen der parallelen MRT zu verknüpfen.

Ziel dieser Arbeit war es, neue und e�ziente Strategien zu entwickeln, um die nichtkartesische

Magnetresonanztomographie für ein breiteres Anwendungsspektrum in der klinischen Praxis zu eta-

blieren. Neben der Rekonstruktion von herkömmlich aufgenommenen nichtkartesischen Datensätzen

sollten auch Verfahren entwickelt werden, die eine Kombination mit Messzeitverkürzungen durch par-
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allele MRT-Verfahren erlauben.

In Kapitel 4 wird ein neues paralleles Bildgebungsverfahren zum Gridding nichtkartesischer Daten-

sätze namens �GRAPPA Operator Gridding� (GROG) vorgestellt. GROG benutzt GRAPPA-ähnliche

Gewichtungsfaktoren, um die nichtkartesischen Punkte auf ein kartesisches Gitter zu schieben. Im Ge-

gensatz zu anderen Gridding-Methoden (wie beispielsweise dem �Convolution-Gridding�) werden bei

der Anwendung von GROG Parameter wie Faltungskerne, Regularisierungswerte oder Dichtekompen-

sations-Funktionen nicht benötigt. Dies führt nicht nur zu einer erheblichen Vereinfachung des Grid-

dingprozesses, sondern auch zur deutlichen Reduktion der Rechenoperationen. In Simulationen konnte

nachgewiesen werden, dass trotz dieser erheblichen Vereinfachung des Griddingprozesses die Bildqua-

lität im Vergleich zu den aktuellen Goldstandard-Methoden nahezu identisch ist. Besonders deutlich

wird dies im Vergleich zum �Convolution-Gridding� unter Verwendung verschiedener nichtkartesischer

Trajektorien (Spiral, Radial, Rosette, PROPELLER). Ein weiterer groÿer Vorteil von GROG ist darin

begründet, dass es mit dieser Methode möglich ist, unvollständig aufgenommene Daten zu Gridden,

was andere Methoden wie beispielsweise das �Convolution-Gridding� nicht erlauben.

In Kapitel 5 wird eine Erweiterung des GROG-Algorithmus vorgestellt, welche ohne Kalibrierungs-

datensätze auskommt (�Self-Calibrating GROG�, SC-GROG). Die Gewichtungsfaktoren für die Ver-

schiebungen der Datenpunkte werden in dieser Methode aus den akquirierten Punkten selbst gewonnen.

Neben der Verkürzung der Aufnahmezeit für die Datensätze führt dies auch zu einer deutlichen Erhö-

hung der Stabilität des GROG-Algorithmus, da Inkonsistenzen zwischen den Kalibrierungsdaten und

den Daten aus den beschleunigten Experimenten entfallen. Um die Vorteile dieser Methode gegenüber

den Standardmethoden zu demonstrieren, wurde ein Vergleich zum �Convolution-Gridding� sowohl in

der Simulation als auch im in-vivo Experiment durchgeführt.

Die erste Anwendung von GROG zur Vereinfachung der Rekonstruktion unvollständig aufgenomme-

ner nichtkartesischer Datensätze ist in Kapitel 6 beschrieben. Die Verwendung von GROG zur Transfor-

mation der unvollständig aufgenommenen nichtkartesischen Daten auf ein kartesisches Gitter erlaubt

es, anschlieÿend einen modi�zierten GRAPPA-Algorithmus anzuwenden, und somit nichtkartesische

Datensätze aus beschleunigten Experimenten zu rekonstruieren. Der besondere Vorteil dieser Methode

liegt darin, dass sie zur Rekonstruktion unvollständig aufgenommener Datensätze beliebiger Trajektori-

en angewendet werden kann, was auf herkömmliche nichtkartesische GRAPPA-Methoden nicht zutri�t.

Die groÿe Flexibilität dieses �Pseudo�-kartesischen GRAPPA-Verfahrens konnte in der Anwendung auf

verschiedene Trajektorien (Radial, Spiral, Rosette, 1D NC, zick-zack) demonstriert werden.

Schlieÿlich wurde GROG in Kapitel 7 auf die �Bunched Phase Encoding� (BPE)-Methode ange-

wendet. Bereits zuvor wurde gezeigt, dass das BPE-Verfahren in Verbindung mit einem �Conjugate

Gradient� Rekonstruktionsverfahren eine deutliche Verkürzung der Messzeit gestattet. Basierend auf

dem verallgemeinerten Abtasttheorem nach Papoulis werden die Daten bei diesem Verfahren entlang

einer extrem schnell oszillierenden Trajektorie aufgenommen. Nach Papoulis ermöglicht die lokal höhere

Datendichte eine artefaktfreie Bildrekonstruktion trotz Unterabtastung in anderen k-Raumbereichen.

Allerdings werden dabei erhebliche Ansprüche an die Gradienten-Hardware des Tomographen gestellt,

wodurch das Konzept auf geringe Beschleunigungsfaktoren beschränkt wird. Im Rahmen dieser Arbeit
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konnte jedoch gezeigt werden, dass es möglich ist, auf dieses aufwändige Abtastschema zu verzichten,

indem lediglich entlang einer regulären nicht-oszillierenden Trajektorie akquiriert wird und die höhere

Datendichte nachträglich mittels GROG erreicht wird (GROG-BPE). In einer Reihe von Simulatio-

nen wurde zunächst ein tiefergehendes Verständnis für diese Methode entwickelt, um dieses Verfahren

anschlieÿend auf diverse nichtkartesische Trajektorien in in-vivo Experimenten anzuwenden.

Zusammenfassend lässt sich sagen, dass durch die Entwicklung von GROG die Rekonstruktion

nichtkartesischer Datensätze erheblich vereinfacht und beschleunigt wurde. Die Verbindung von GROG

mit kartesischem GRAPPA oder dem verallgemeinerten Abtasttheorem ermöglicht erstmals eine präzise

und stabile k-Raum basierte Bildrekonstruktion von beschleunigten nichtkartesischen MRT-Experimenten

mit beliebigen Trajektorien. Die in dieser Arbeit entwickelten Strategien stellen als e�ziente und ro-

buste Verfahren somit einen wichtigen Schritt dar, um die Vorteile nichtkartesischer Trajektorien in

Kombination mit stark verkürzten Messzeiten für die Praxis nutzbar zu machen.
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