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ACRONYMS

2DEG two dimensional electron gas.

3D-TI three dimensional topological insulator.

AMR anisotropic magneto-resistance.

ARPES angle-resolved photoemission spectroscopy.

DFT density functional theory.

DOS density of states.
FFT fast Fourier transformation.
HH heavy hole.

LH light hole.

LL Landaulevel.

MBE molecular beam epitaxy.

MR magneto-resistance.
PHE planar Hall effect.

QH quantum Hall.

QHE quantum Hall effect.
SdH Shubnikov-de Haas.

TI topological insulator.

TSS topological surface state.
VPS Volkov-Pankratov state.

WAL weak anti-localization.






|

INTRODUCTION






MOTIVATION

The goal of physics is understanding and describing the world around us with the help of
preferably simple models. The macroscopic world surrounding us and its intuitively acces-
sible phenomena, as the movement of cars or the ball in soccer games, is well described
by classical mechanics governed by Newton’s laws. The validity of such a classical theory
has been challenged by the observations of quantized energies, as in the Frank and Hertz
experiment in the spectrum of a mercury gas lamp. This observation is seen as the first
experimental evidence for the existence of quantized energy levels. The physics of such
quantized systems, usually represented by small particles, smaller than < 1078m, can be
described with the help of the Schrodinger equation. It turns out, that the Schréodinger
equation can also be used to describe properties, such as the conductivity of materials, in
arbitrary shapes and sizes which vary over orders of magnitudes. The study and use of such
rigid materials is the field of solid-state physics, which constitutes a workhorse for techno-
logical advance. The development of smaller and smaller and more potent devices could
in foreseeable future reach the border of the possible in this framework.

One possible way to avoid such limitations is the inclusion of concepts and theories
developed in other disciplines. Namely, the adaptation of the concept of topology origi-
nally concerned with the classification of geometric objects, which lead to the discovery of
new classes of materials, hence called topological materials [1]. The first predicted and ex-
perimentally realized topological materials have been topological insulators [2-8]. These
insulators host massless surface states at the interface to trivial insulators. An adequate
description of such massless states can be adopted from particle physics, which routinely
deals with particles with vanishingly small rest mass. Since such particles possess high
kinetic energies they have to be described in the framework of the relativity theory. The
Schrédinger equation has been extended by Dirac correspondingly to describe such rela-
tivistic quantum particles [9]. The resulting equation is named after its discoverer Dirac
equation. The limit of zero mass, nowadays used to describe the properties of topological
surface states, has been proposed by Weyl and is thus called Weyl equation [10]. While the
Dirac equation describes relativistic electrons, no particles have been found in nature that
obeys the Weyl equation. Three-dimensional quasi-particle representations of both, the
Weyl and the Dirac equation, can be found in gapless solid-state systems. These systems
are called Weyl and Dirac semi-metals and depict another new class of topological mate-
rials [11]. The vast interest in these topological semi-metals started with the prediction

3



4 1. MOTIVATION

of exotic surface states with a non-closed Fermi surface accordingly dubbed Fermi-arcs in
Ref. [12]. These novel states are not only of interest for basic research but also of impor-
tance for potential applications. One much sought-after path for technological advance-
ment is the development of quantum computers [13]. Alternatively to the momentarily
most advanced realization of a quantum computer based on superconducting qubits, also
different possible realizations of topological qubits exist. These are either based on topo-
logical superconductivity (realizable by induced superconductivity in topological surface
states [14]) or in so-called chiral qubits based on the chiral anomaly observed in topologi-
cal semi-metals [15].

These ambitious far-distant applications contrast the poor understanding of topologi-
cal materials. A comprehensive and deep understanding of the components and thus the
topological materials is inevitable for the successful development of these applications.
This work expands the understanding and possibilities for manipulation of the topolog-
ical materials based on the investigation of HgTe. Conveniently, HgTe can be prepared
in a three dimensional topological insulator (3D-TI) phase with topological surface states
as well as in a three-dimensional Dirac semi-metal phase. The first part of this work de-
scribes the identification and manipulation of topological surface states, which represent
one building block for topological superconductivity. Additionally, Volkov-Pankratov states
[16, 17] are found, which are induced by applied electric fields and need to be accounted for
in actual devices. The second part investigates the novel field of topological semi-metals.
The transport signature, called chiral anomaly, due to the apparent anomaly in the bulk
band structure is investigated. The search for the predicted peculiar disjoint surface states,
called Fermi-arcs, reveals the existence of topological surface states also in inversion in-
duced Dirac semi-metals. HgTe is chosen since it represents a well-established and control-
lable model system. The insights gained for HgTe are relevant for all topological insulator
and inversion induced Dirac semi-metals and have important implications for topological
materials in general.



THE VERSATILE TOPOLOGICAL MATERIAL
HGTE

To build actual devices or even investigate more complex physical phenomena, as the above-
mentioned topological superconductivity or the chiral anomaly, first, a suitable material
has to be found and its properties well understood. In this Chapter, HgTe is presented as
a perfect candidate. The introduction is split into two parts: A few theoretical considera-
tions on the HgTe material system are discussed before existing experimental results are re-
viewed. HgTe is a semi-metal with a quadratic band touching point. It can be transformed
into an insulator and a Dirac semi-metal by strain engineering. A trivial insulator phase is
accessible via the addition of Cd. In HgTe/CdHg; - . Te heterostructures is the formation of
specific interface states predicted. The concept of topology is introduced. Topology iden-
tifies the gap-less linear surface state as a general consequence of topological non-trivial
systems such as HgTe. The existing experiments evolve around tensilely strained HgTe. Its
band structure is discussed based on angle-resolved photoemission spectroscopy (ARPES)
measurements and calculations performed with density functional theory (DFT) as well
as k- p. The established fabrication process HgTe samples for transport experiments via
high-quality molecular beam epitaxy (MBE) growth and optical lithography is reviewed.
The topological surface state (TSS) have been verified by magneto-transport experiments
via the observation of quantum Hall effect (QHE) and have been interpreted based on the
Dirac screening model. Still, a few open questions exist and are shortly summarized. These
open questions together with the experimental results on tensile strained HgTe represent
the starting point for the research and results presented in the remainder of this work.
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2.1. BULK BAND STRUCTURE OF HGTE

HgTe is chosen because of two reasons. HgTe is a well-established material system that can
be fabricated in high quality and HgTe possesses an adjustable band structure. The band
structure of unmodified HgTe is introduced as semi-metal with quadratic band touching
based on its lattice structure. This Section introduces possibilities to adjust the band struc-
ture and describes the consequences of the experimentally used material. Strain can be
used to alter the symmetry of the lattice and thus the band structure. An insulator and
semi-metal phase with linear dispersion can be accessed. Surface/interface states form
since the experimental samples are effectively HgTe/Cd,Hg;_,Te heterostructures.

2.1.1. THE SEMI-METAL HGTE

HgTe crystallizes in a cubic close-packed crystal lattice with a two-atom basis called zinc
blende lattice. The symmetry of such a lattice sets important constraints and conditions for
the material properties, which are expressed in their band structure. A zincblende lattice
is a face-centered cubic lattice with a two-atom basis along (i,i,i) like a diamond lattice
1, but with two different atoms occupying the two positions of the basis. Alternatively, one
could picture the zinc blende lattice as two face-centered cubic lattices (one for Hg and
Te each) offset by (i,i,i) to each other. For HgTe these two atoms are Hg and Te and the

corresponding lattice is shown in Fig. 2.1a).
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Figure 2.1: The crystal structure of HgTe in its zinc blende crystal structure is shown in a) with the Hg and Te
atoms highlighted in red and blue, respectively. The resulting band structure of HgTe is shown along various
directions in the Brillouin zone in b), as determined by pseudopotential calculations. b) is reprinted from D. J.
Chadi et al., Reflectivities and electronic band structures of CdTe and HgTe, PRB 5, 3058 (1972) [18]. Copyright
1972 by The American Physical Society.

!The diamond lattice is inversion symmetric with the point group Oy,.
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To simplify the deduction of information such crystal lattices are assigned to space and
point groups based on their symmetries. For HgTe the space group is the symmorphic
group Tg = F43m based on the inversion asymmetric point group Ty = 43m. Since the in-
version symmetry breaking is relatively small, its influence on the band structure is minor.
The point group is thus often treated as Oy, [19]. The character of the irreducible represen-
tations of the respective point group can be determined at specific k values and is used to
name the respective bands accordingly. For example, the relevant bands in HgTe close to
the Fermi Energy are located around the I" point (k = 0) and according to the respective
irreducible representations are called I'g,I's and I'7, as discussed in Ref. [20]. The differ-
ent symmetries of these bands can be traced back to the orbital character. The I's band
is composed of the Hg S-like band, while the I's and I'; bands are constituted of the Te P-
like band, as explicitly written down in Sec. 4.2. The band structure of HgTe as determined
by empirical pseudopotential calculations in Ref. [18, 21] is shown for high symmetry di-
rections of the Brillouin zone in Fig. 2.1b). The low energy bands which determine the
transport properties are indeed located at the I' point. These are the I's-bands and the
I's-band. The so-called split-off I'; band lies 0.94eV below the Fermi energy and is thus
irrelevant for the transport properties. The low energy part of the band structure of HgTe
can be well described by the Kane model [22]. The Kane model can be written as six band
model only including the I's and I's bands or an eight-band model, which also considers
the I'; band, depending on the relevance of band structure details. This is also true for
many other semi-conductors as GaAs, InSb, and CdTe. It is noteworthy, that the Luttinger
model [23] with an appropriate parameterization can be sufficient as well [24]. These mod-
els are discussed in more detail in Sec. 8.4. Due to the spin-orbit coupling in HgTe the
orbital character is described by the total angular momentum quantum number j = |l + 5],
where [ is the angular quantum number and s the spin, together with its projection m; < j.
The I's band is two times degenerate with j = % and m; = i% and traditionally called elec-
tron (E) band. The I's band is four times degenerate with j = % The I's bands with m; = %
are called heavy hole (HH) bands and m; = % light hole (LH) bands. This nomenclature is
traditional and motivated by the band structure of GaAs and CdTe. In these materials, the
order of bands corresponds to the expectation from the atomic limit. Namely, the j = %
band lies above the Fermi energy with an electron-like dispersion, while the j = % lie below
the Fermi energy with a hole-like dispersion. The m; quantum number distinguishes the
two different effective masses of the hole like j = 3 bands. The split of I'; band with j = §
and m; = J_r% is typically neglected for the discussion of the low energy dispersion. The cal-
culations presented in this work nevertheless account for the I'; band to facilitate the best
possible quantitative agreement. HgTe has two bands (the two I's bands) that touch at the
Fermi energy and is thus a semi-metal, as shown in Fig. 2.1b). Sticking to the traditional
definition of the bandgap in semiconductors (between the I's and I's bands), the bandgap
is defined as AEr_r, = —0.3 eV making HgTe a quadratic semi-metal with an inverted band
ordering indicated by the negative bandgap. It should be noted that in HgTe the relativis-
tic correction due to the heavy mass of Hg is responsible for the resulting band inversion
compared to the topological trivial order in CdTe.
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2.1.2. THREE PHASES OF HGTE - ACCESSIBLE BY STRAIN

While HgTe as a semi-metal with quadratic dispersion, constitutes an interesting phase in
itself, as discussed in Sec. 7.5.4, this Section addresses the versatility of HgTe due to the pos-
sibility of altering the bulk band structure by strain. The low energy band structure relevant
for transport is given by the I's bands. The I's bands are degenerate at the high symmetry
point I of the Brillouin zone and disperse quadratically for finite k. This touching of the I'g
bands at k = 0 (the I" point) is protected by the cubic crystal symmetry of the zinc blende
crystal structure and thus stabilizes the semi-metal phase with quadratic dispersion, which
is depicted in Fig. 2.2b). Altering this quadratic band touching requires a reduction of the
symmetry of the crystal. The cubic crystal symmetry can be reduced to a tetragonal sym-
metry by elongating the crystal along one direction. Experimentally, the bi-axial strain is
realized via growth on an appropriate substrate. The stiffness of the crystal transfers this
bidirectional strain into unidirectional strain in the third crystal direction. For small strains,
this effect follows Hooks’s law, see Ref. [8, 25, 26].

30 a) 8bi-aXiZ:ﬂ = _03% b) sbiaxia] = 0 C) sbiaxial = 03%
20 F i
%‘ 10 F J
£
s /\/klp\
-10 - kOOp-
-0.1 0.0 0.1 -0.1 0.0 0.1 -0.1 0.0 0.1
k [nm?] k [nm?] k [nm?]

Figure 2.2: Shown is the energy dispersion of bulk HgTe for different biaxial strains, namely a) tensile strain, b)
strain-free and c) compressive strain, for ki, (green) along the strain direction and koop (blue) perpendicular
to it.

The influence of uniaxial strain onto the shape of the two low-energy bands (I's)? is
discussed in Ref. [27] based on the low energy band structure model for Ge, which also
has a direct bandgap at the I" point with two degenerate points with the same underlying
symmetry, as introduced by Ref. [28]. The crystal is thereby assumed to be a simple cubic
satisfying inversion symmetry. The energy dispersion E(k) is given by

1/2
E(k) = AK* £ | B2K" - C2(I3K2 + K2 K2+ 22| 2.1)

where k; is along the uniaxial strain direction, while k, and k, are perpendicular and equiv-
alent due to the cubic symmtery in this model. The effective band mass parameters for
HgTe are A=611 meVnm?, B = 745meVnm?, and C = 571 meVnm? as taken from Ref. [25].
The band dispersion of this reduced model reproduces the one obtained by the eight-band
Kane model discussed in Sec. 8.4.

2For the sake of simplicity and readability we will always refer to the bands by the I' notation introduced in
Section 2.1, although some of the models presented possess slightly different symmetries.
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Tensile biaxial (compressive uniaxial) ® strain lifts the degeneracy at the I' point by
opening a bandgap between the two I's bands forming an insulator phase. If the I's band
would be included, the inverted band ordering would identify this phase as a three-dimen-
sional topological insulator, as discussed in Sec. 8.4. As shown in Fig. 2.2a) the LH I's band
forms the conduction band which disperses quadratically with some flattening for small k
for the dispersion inside the sample plane (along k;,). The valence band is formed by the
HH TI'g band, which starts with an electron-like dispersion with a comparably small effec-
tive mass miegr, up to alocal maximum at finite k and proceeding with a hole-like dispersion
with a comparably high m.g. This shape of the valence band is often called camelback. This
phase is addressed in more detail in Part II.

Compressive biaxial (tensile uniaxial) strain shifts the HH band towards higher energies
and the LH band towards lower energies preserving their quadratic dispersion around the
I' point but causing the two bands to cross at finite k (see Fig. 2.2c)). This crossing is linear
and protected by the remaining symmetry of the crystal. Since at the touching point these
two bands disperse linearly, their dispersion can be described by the mass-less Dirac equa-
tion, hence the modern name Dirac semi-metal [11]. The semi-metal phase is addressed in
more depth in Part II1.

2.1.3. HETEROSTRUCTURES OF HGTE/CD,HG;,_,TE

X=0<x,

//—’\1‘7 /\1-7

™ K

/’_\l'/

Figure 2.3: Shown is the energy spectrum of Cd,Hg;_,Te around the I" point for different Cd concentrations
x determined using the program "kdotpy" [29] with x; ~ 0.17.

The experimentally investigated HgTe samples are surrounded by protective Cdy ;Hgp3Te
layers. The dependence of the band structure on the Cd content x is reviewed to under-
stand the properties of the interfaces. As a starting point, the band structure of HgTe is
taken, as already introduced in Sec. 2.1. The band structure of HgTe is conceptually equiv-
alent to the one shown on the left of Fig. 2.3 for Cd,Hg;_,Te with a Cd concentration x
smaller than the critical content x; (x < x;). The admixed Cd with the relative content x
only renormalizes the size of the bandgap AEr,_r, but preserves the band ordering of the
I'e band relative to the I's bands. The bandgap AEr,_r, of Hg;_CdTe varies from —0.3eV
for HgTe to 1.6eV for CdTe approximately linearly with the relative Cd content x [30]. On

3As long as not otherwise indicated in this work the strain direction refers to the biaxial direction.
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the right of Fig. 2.3 the band structure of CdHg; - Te with x > x, consequently represents
the band structure of CdTe with the accordingly renormalized bandgap. This order of the
bands with the I's band above the I's bands represents the expected band ordering from
the atomic limit. Connecting the two different insulator phases with different band order-
ing, a semi-metal phase with no bandgap must exist and can experimentally be realized
by fine-tuning the Cd content x to the critical concentration x.. The respective theoreti-
cally expected band structure for x = x. is shown in the middle of Fig. 2.3. The value for
the critical concentration is typically assumed to be x, ~ 0.16 [30] (x, ~ 0.17 [31]). This
value depends on a variety of parameters like temperature, strain, and confinement [32].
This semi-metal phase with linear dispersing bands and a flat band is called in literature
massless Kane fermion/semi-metal [31] and experimentally examined by Ref. [32].

Cd,Hg,.,Te

HgTe

Cd,Hg,.,Te

1 0 0 1
X AEr r, [eV]

Figure 2.4: Shown is a semi-finite slab of HgTe surrounded by Hg; -, Cd, Te together with the local distribution
of the relative Cd content x (left) and the bandgap AEr,_r, (right).

The interface between HgTe and Cd, 7Hgy 3Te resembles a very sharp Cd content tran-
sition from x = 0 to x = 0.7 across the critical thickness x = x.. The semi-finite layer stack
is shown in Fig. 2.4. On the left, the variation of the relative Cd content x along the finite
direction z is shown. The resulting characteristic band gap Eg = AEr,-r, is shown on the
right of Fig. 2.4 determined by

AEr,_ry (%) = —0.302 + 1.93x — 0.810x* + 0.832x° (2.2)

for the temperature T = 0K [30]. Since the sign of AEr,_r, changes at the interface the for-
mation of a local gap-less state is required. Intuitively one expects this state to be similar
to the linearly dispersing gap-less state formed in Hg;_ . Cdy, Te, as shown in the middle
of Fig. 2.3. B. A. Volkov and O. A. Pankratov describe a similar interface with a four-band
model using the Dirac equation and making the bandgap dependent on the growth direc-
tion z in Ref. [16] *. This means the seemingly uninvolved flat HH I's band is ignored for
this description. The HH band only alters the details of the dispersion of the surface state
due to hybridization but does not change the qualitative behavior [33]. The model yields
linear dispersing non-degenerate states at the interface for sharp interfaces together with
additional massive surface states for smooth interfaces, as shown in Fig. 2.5. Since these
states satisfy the Weyl equation, they are called Weyl states in their publication. In more
recent literature such states are usually called Dirac surface states or Dirac cones and are
discussed in more detail in Chapter III. The states are dubbed massless Volkov-Pankratov
states after the names of the authors who predicted such states [34].

4The model is originally motivated by the band structure of Pb;_,Sn,Te.
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conduction band

O ,/
N .~ - - \’”/
. ==r=~" ). Volkov-Pankratov states
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N~~~/ - _massless Volkov-Pankratov states

; = topological surface states

\ o -— massive Volkov-Pankratov states

valence band

Figure 2.5: Shown are the expected interface states for an interface with smooth Cd content transition from
HgTe to Cdy 7Hgp 3 Te according to Ref. [16]. The nomenclature of Ref. [34] is used.

2.2. TOPOLOGY IN SOLID STATE SYSTEMS

More recently it has been recognized, that the formation of these surface states is a conse-
quence of topology. Traditionally materials in solid-state physics are classified using their
band structure and position of the Fermi energy Er into metals, semi-metals, and insula-
tors °. For metals, the Fermi energy lies deep inside a band and for insulators inside the
bandgap. A semi-metal is characterized by a Fermi energy close to the band edge and over-
lapping bands at this energy. This classification has been found to be incomplete, and the
mathematical concept of topology ° is used to classify materials via a topological invariant.
The classification via topology first found its entrance to solid-state physics to explain the
stability of the QHE, the occurrence of superconductivity and superfluidity in thin layers,
and the description of spin chains, leading to the Nobel Prize in 2016 for D. J. Thouless, E
D. M. Haldane and J. M. Kosterlitz [35]. Topology has subsequently been used to classify
insulators in 2007 by L. Fu and C. L. Kane in Ref. [5]. Bi;_,Sby has been reported as the first
experimental realization based on the observation of the topological surface states with
ARPES in 2008 in Ref. [6], and soon after the Bi and Sb chalcogenides in Ref. [36]. The first
verification of topological surface states using magneto-transport measurements has been
reported in Ref. [8] for tensilely strained HgTe.

The classification via topology sorts materials into one class of insulators, whose band
structure can be continuously transformed into each other without closing their bandgap.
Members of the class of topological trivial insulators possess the band ordering as expected
from their atomic limits. The strong topological insulator phase is distinguished from the
topological trivial insulator phase via the topological invariant vy, which is a Z, invariant.
Topological non-trivial insulators are identified by vy = 1, while topological trivial insula-
tors yield vy = 0. In this work, only the strong topological insulator phase is considered,
even though there are a variety of other interesting topological phases. At the boundary
of a topological insulator and a topological trivial insulator the above (see Sec. 2.1.3) in-
troduced argument of the continuity of bands requires the formation of gap-less surface
states. These topological surface states disperse linearly and possess a helical spin texture
with the spin direction locked to the momentum. A more rigorous description of topology
in solid-state systems is given in a variety of textbooks as Ref. [17, 37] and review papers

SHere Half-metals are taken as metals and semiconductors as insulators.
5Two objects are equivalent (belong to the same group) if they can be transformed into each other by a Home-
omorphism (a continuous deformation).
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as Ref. [38, 39]. An experimentally motivated description can be found in Ref. [40]. The
same classification has recently been extended to gapless systems as Weyl semi-metals with
their respective topological surface states, called Fermi-arcs [12]. Another class of topolog-
ical semi-metals is the Dirac semi-metal, which is the degenerate counterpart of the Weyl
semi-metal [11]. Topology generalizes the interface/surface states of HgCdTe/HgTe het-
erostructures to a variety of materials. Examples are the Bi and Sb chalcogenides, Dirac
semi-metals as CdsAs,, Na3Bi, and compressively strained HgTe.

2.3. STATE OF THE ART: TENSILELY STRAINED HGTE

This section establishes the starting point for this work by reviewing the research on the
three-dimensional insulator phase of tensilely strained HgTe. The Section starts non-chro-
nological with the observation of the band structure including the topological surface states
via ARPES experiments. The measured band structure is compared to results obtained us-
ing DFT and k- p calculations. The MBE growth of HgTe samples is reviewed, including the
established further processing via lithography. The verification of the TSS with magneto-
transport experiments via the observation of the QHE is described. The results have been
interpreted based on the so-called Dirac screening model. The Section closes with a sum-
mary of open research questions.

2.3.1. TOPOLOGICAL SURFACE STATES IN TENSILELY STRAINED HGTE

The described theoretical expectations of peculiar topological surface states are in this Sec-
tion compared to the band structure of actual tensilely strained HgTe samples. ARPES mea-
surements enable direct experimental access to the band structure. Ref. [8] presents ARPES
data for a sample with a (100) surface grown by MBE. The (100) direction is also the growth
direction for the samples investigated by magneto-transport measurements in this work.
The result is shown in Fig. 2.6a). In Fig. 2.6b) the ARPES data from Ref. [41] on cleaved
samples with a (110) surface is depicted. At first glance, both ARPES measurements look
similar. The Fermi-energy, which is indicated as a dashed line, lies at the valence band
etch. A quadratically and linear dispersing band is visible in both measurements. The
quadratically dispersing band is identified as the bulk valence band and is indicated as
BB 7 in Fig. 2.6a). The linear dispersing band is highlighted with dashed orange lines and
indicated as SSB®. It is identified as a surface state by its non-existing k. dispersion. In
Fig. 2.6b) for E < —0.5eV an other linear dispersing band with high intensity can be seen.
Its intensity vanishes for small k. This band is identified as the second valence band. An
additional third quadratically dispersing valence band at E ~ —1eV is visible. The constant
energy measurements are shown in d) reveal a fourfold symmetric dispersion in the mea-
sured plane, consistent with the cubic symmetry of the lattice.

The experimentally identified bulk and surface states are compared to the DFT calcu-
lation results shown in Fig. 2.6¢) [42]. The first valence band in the DFT calculation shows
a quadratic dispersion consistent with the ARPES measurements. For small k a flattening
with potentially local extrema can be surmised. In agreement with the ARPES results, a
surface state is found. It is identified by its spectral weight on the surface, which is used
as the color code. Surface states appear red and bulk states blue. The surface state is lo-

BB represents the bulk band.
8SSB represents surface state band.
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calized inside the first valence and disperses linearly towards the second valence band. In
the DFT band structure the second valence band appears to disperse linearly consistent
with the ARPES results. It should be mentioned that the distinction between a linear and a
quadratic dispersion with a small band mass is difficult. At E ~ 0.7 eV the third valence band
can be seen. It appears thus for slightly higher energy than in the ARPES measurements.
The band structure obtained by ARPES is well reproduced by the DFT calculation.

These band structures are now compared to the widely used eight-band Kane model
[22] described in Sec. 4.2. The bulk band structure of an infinite 0.3 % tensilely strained
HgTe layer in the Kane model is shown in Fig. 2.6e). The k- p calculations are performed
with the program "kdotpy" [29] which uses the material parameters of Ref. [43]. The en-
ergetic positions of the bulk bands match reasonably well. To compare the character of
the surface state, the band structure is also calculated for a finite 70nm thick HgTe slab
sandwiched by Cdy7Hg 3sTe layers as boundary conditions. The resulting band structure
is shown in Fig. 2.6f). The first valence band, the I's yyy-band also disperses quadratically
for big k, but shows a deviation from the quadratic behavior for small |k| < 0.2nm, which
is not resolvable in the ARPES measurements. A surface state dispersing inside the valence
I's ni-band is found, which is consistent with the results obtained by ARPES and DFT. This
surface state is the topological surface state induced by the inversion between the light-
hole conduction I'g-band and the I's-band. The surface state coexists with the I's yy
band. While comparing the results obtained with ARPES and DFT with the k- p model, its
limited k-range has to be kept in mind. The k- p model only allows the calculation of a
small fraction of the k-range covered by the ARPES and DFT in Fig. 2.6. The k-range acces-
sible with k- p calculations is nevertheless sufficient to describe the density range accessed
by the magneto-transport experiments performed in this work. This k-range can also be
translated into an energy range using a crude estimate. Taking the value of the maximum
accessible charge carrier densities iy, < 2 x 102cm™ and assuming double degenerate
states, yields a maximum k of kpay < 0.35nm™! by using k = /27 n. The double degener-
acy thereby stems either from the existence of two surfaces, one at the top and the other
at the bottom, or the degeneracy of the first valence subband. Taking the band structure
as shown in Fig. 2.6f) and assuming only the occupation of the surface state and the high-
est valence sub-band, this k.« translates into an energy window relevant for our transport
experiments of —20meV< E < 100meV as shown in Fig. 2.6g).
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Figure 2.6: a) shows the ARPES measurement of the (001) surface of a relaxed 1 um thick HgTe sample. The
raw ARPES data of the (110) surface of HgTe is shown along k, (I' - K) in b). Constant energy maps measured
by ARPES of the ky — ky-plane are shown in d). ¢) Band structure calculation by DFT of 60nm thick 0.3 %
strained HgTe film with the surface atom character proportional to the size of the red circles. Eight-band
k- p calculation of HgTe as infinite layer e) and finite 70nm slab with sandwiching Cdy 7Hg 3Te layers as the
boundary condition in f) and g) with a reduced energy range indicating the maximum available energy range
for transport experiments. The z-expectation value is color-coded via the use of a small electric field to split
the degeneracy of the top and bottom sides. Calculated with the program "kdotpy" [29]. a) reprinted from C.
Briine et al., Quantum Hall Effect from the Topological Surface States of Strained Bulk HgTe, PRL 106, 126803
(2011) [8]. Copyright 2011 by The American Physical Society. b) and d) reprinted from C. Liu et al, Tunable
spin helical Dirac quasiparticles on the surface of three-dimensional HgTe, PRB 92, 115436 (2015). Copyright
2015 by The American Physical Society. c) is taken from [42].
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2.3.2. ESTABLISHED FABRICATION PROCESS FOR HGTE DEVICES

As growth method MBE is chosen because of the achievable high layer quality and the pos-
sibility to realize the necessary strain to obtain the three-dimensional topological insulator
phases of HgTe, as described in Sec. 2.1.2. The MBE growth process is simplified the evap-
oration of the different material components, onto a substrate in an ultra-high vacuum
chamber. This way the hetero-structure of choice is produced. The actual procedure of
the MBE growth is of course much more sophisticated and details can be found in Ref. [25].
Here we will limit ourselves to the functionality of the resulting heterostructure as schemat-
ically shown in Fig. 2.7a). The HgTe layer is grown on a substrate with appropriate lattice
constant to create the desired strain of € = (ngTe - asub) | aggre With apgre and agyp, being
the lattice constant of HgTe and the substrate of choice. The 3D-TI phase requires bi-axial
tensile strain, which is realized by growth on commercially available CdTe substrates [8, 44].
The HgTe layer is sandwiched in between protective Cdy7Hg 3Te layers. The layer under-
neath the HgTe layer is called buffer layer and ranges from 5 —100nm thickness. The upper
protective layer is dubbed cappinglayer and is typically 5—-15nm thick. The layer total layer
thickness is thereby limited to ensure fully strained growth to ~ 155nm of HgTe, where the
Cdy.7Hgo.3Te due to their smaller lattice constant contribute less than their actual thickness
(44].

a) b)

Au Gate

CdHgTe 5-15 nm

HgTe 67 nm

CdHgTe 5-100 nm
CdTe

commercial
CdTe(001)

—

Figure 2.7: In a) the total MBE grown and lithographed layer stack is sketched. The MBE grown layers on top
of the commercial CdTe substrate are a CdTe layer followed by a Cdg 7Hgp 3Te buffer layer, the HgTe layer,
and a capping Cdy 7Hgp s Te layer. These layers are covered with a SiO,/SizNy4 insulator deposited by plasma-
enhanced chemical vapor deposition and an Au layer applied by electron beam evaporation. In b) the optical
photograph of the structure consisting of 600 pm x200 um and a 30 pmx 10 pm Hall-bar is shown. The mesa
can be seen underneath the black SiO,/SizNy4 covered by the yellow Au gate and the Au/Ge contacts covering
the current leads and voltage probes.

To perform magneto-transport measurements the hetero-structure is shaped into a
600 pm x 200 um Hall-bar. A Hall-bar consists of a current path with transversal and longitu-
dinal voltage probes. These probes enable measurements in the four-probe configuration
to exclude the resistance of the contacts. The Hall-bars are produced by optical lithography
following the standard Hall-bar recipe as described in Ref. [45] and shortly summarized in
the following. The HgTe layer (including the sandwiching Cdy 7Hg 3Te layer) is etched into
a Hall-bar shape using Ar* sputtering. The structure defined by etching is usually referred
to as mesa. The Hall-bar is covered by a SiO,-Si3N, insulator deposited by 80" Plasma-
enhanced chemical vapor deposition. This layer acts as the dielectric for the 100nm thick
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Au electrode which is deposited together with a 5nm Ti sticking layer by electron beam
evaporation. The contacts to the mesa are made by cleaning the Cdy ;Hgp s Te capping layer
of the mesa leads with Ar* sputtering and depositing in situ 50nm AuGe and 50nm Au by
electron beam deposition. The final device is shown as a schematic cut in Fig. 2.7a) together
with a microscopic picture of the lithographed sample in Fig. 2.7b).

2.3.3. MAGNETO-TRANSPORT ON TENSILELY STRAINED HGTE

Tensilely strained HgTe has been established as three-dimensional topological insulator
(TD) by the observation of its topological surface states in Ref. [8]. QHE has been observed
in a three-dimensional layer, which requires the existence of a two-dimensional state. This
two-dimensional state is identified as the TSS due to the observed phase of the Shubnikov-
de Haas (SdH) oscillations and the QHE. It shall be mentioned, that in Ref. [46] a similar
observation is made, but the interpretation is different. There a part of the observed con-
ductance is contributed to bulk states. The possibility to change the carrier density is in-
troduced by the addition of a top gate electrode in Ref. [47]. The top gate allows to match
the carrier densities of the top and bottom TSS and equivalently their quantum Hall (QH)-
indices. The obtained Hall resistance Ry, as a function of the magnetic field shows different
QH-plateau sequences for different gate voltages. This is shown in Fig. 2.8a), including the
expected odd QH-plateau sequence for degenerate TSSs according to

.1 1)é
]t+Jb+5+§) W (2.3)

O xy,TI =

where j; and j; are the QH-indices for the top and bottom TSS. Such an odd QH-sequence
has later also been observed in BiSbTeSe, in Ref. [48]. Compared to the bulk band gap in
HgTe of AE ~ 20meV (see Fig. 2.2 and Sec. 2.3.1) the QHE is observed over a surprisingly
large density range. The two-dimensional transport hence dominates over a much wider
energy range than expected from the size of the bulk energy gap.

Furthermore, protective top and bottom Cdy 7Hgp 3 Te layers sandwiching the HgTe layer
have been introduced to improve the quality of the HgTe interface [49, 50]. The resulting
layer stack is described in Sec. 2.3.2. This improvement of the layer quality leads to an
increased mobility and the observation of QHE not only in the electron but also hole trans-
port regime, as shown in Fig. 2.8b). In the p-conducting regime for low magnetic fields,
the Hall signal starts with a positive slope, indicating an electron regime, which turns into
a negative slope with increasing magnetic field, as expected for hole transport. This indi-
cates the involvement of at least two transport channels with opposite carrier types. More
specifically an electron type channel with a higher mobility than the hole type channel
with higher carrier density. The total carrier density is thus effectively hole-like. The mo-
bility of the electron channel is not only higher than the hole channel, but also absolutely
with g ~ 0.5 x 109cm?/Vs. The high mobility is emphasized by the observation of quan-
tum oscillations in the Ry, and Ry, down to magnetic fields below B = 100mT, as shown
in Fig. 2.8c). The frequency of these oscillations as well as the fit of the Hall and longitudi-
nal resistance with the classical Drude model for two contributing channels yields a carrier
density around 0.5 - 0.6 x 10 ¢cm™2, which is stable for a vast number of samples [50, 51].
The low magnetic field value for the observed onset of the quantum oscillations is a con-
firmation of the high mobility of these samples determined by the two carriers Drude fits
to p ~ 0.5 x 10cm?/Vs. Comparing the onset magnetic field of the oscillations to mea-
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Figure 2.8: a) shows the Hall resistance Ry, of a top gated uncapped tensilely strained HgTe sample as a
function of the magnetic field B for various gate voltages Ug. b) shows the longitudinal resistance Ry in
black and the Ry in red of a HgTe sample with a 5nm capping Hgo 3Cdo.7 Te layer. SdH oscillations and QHE
is observed for the electron and hole transport regime. c) shows the observation of SdH oscillations in Ry
and Ryy for another capped HgTe sample for low magnetic fields at the temperature T = 0.05K. a) is reprinted
from C. Briine et al., Stabilized Surface-State Transport in a Topological Insulator, PRX 4, 41045 (2014) [47],
Attribution 3.0 Unported (CC BY 3.0). b) is reprinted from A. Jost et al., PNAS 113, 8648 (2016), Copyright 2016
National Academy of Sciences [49]. c) is reprinted from C. Thienel, Exploring the transport properties of the
three-dimensional topological insulator material HgTe, Dissertation, Universitdt Wiirzburg (2015) [50].

surements of GaAs/Aljy3Gag7As two dimensional electron gas (2DEG)s with with mobili-
ties of g =11.9 x 108 cm?/Vs, it is indeed comparable [52]. These oscillations are observed
in samples with different interfaces, thicknesses and are independent of the applied top
gate voltage. Their origin is still under discussion and some potential origins are named
in Ref. [50]. An additional potential mechanism is the appearance of quantum oscillations
without a Fermi surface, as described in Ref. [53, 54]. This mechanism is discussed in Ap-
pendix B, since it might also be relevant for topological Kondo insulators as SmBg [55, 56].
Ain Ref. [50] mentioned potential origin of the oscillations is the bottom TSS, which is sug-
gested based on k- p modeling in Ref. [57]. The bottom TSS is the most likely origin and
thus addressed in Sec. 4 and in more detail in Ref. [58].

2.3.4. THE DIRAC SCREENING MODEL

As mentioned above in Sec. 2.3.3 the observed QHE in Ref. [47] for electron densities up to
2.0 x 10'2 cm~2 with quantization to the expected integer fractions of the Klitzing constant,
as shown in Fig. 2.8a) seems to be in contradiction to the small bulk band gap compared to
the presumably accessed energy range, as presented in Fig. 2.6g). Additional states man-
ifest themselves in transport either as parallel conductance leading to a deviation of QH-
plateaus from ]% for three-dimensional states or as additional oscillation frequencies for
two-dimensional states. Neither of the two has been observed. Because of this, the authors
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of Ref. [47] model the topological insulator as an insulator wrapped by a thin metal sheet.
This metal sheet formed by the TSSs screens the applied electric field. In other words, a
change of the top gate voltage only causes a change in the occupation of the TSSs, but the
Fermi energy Er in the bulk is unaffected. Due to the Dirac nature of the topological surface
states, this model is called Dirac-screening [47].

This Dirac screening concept is implemented in Ref. [47] by using an effective Hartree
potential as shown in Fig 2.9a). This effective Hartree potential determines the overall car-
rier density distribution in the sample. The shape of the Hartree potential is thereby equiva-
lent to the expected distribution of the potential over the layer stack by a dielectric constant
of erss = 3 for the TSS and epyx = 21 for the HgTe bulk. The resulting band structures are
shown for two example gate voltages in Fig. 2.9b) and c). The Fermi energy stays inside the
bulk band gap and only the dispersion of the top TSS in red and bottom TSS in blue changes
with respect to the bulk bands in black due to the applied potential. The chosen form of
the Hartree potential ensures consequently a change of the occupation of both TSSs with
the applied gate voltage without the occupation of bulk states. This is consistent with the
observed QHE over a wide density range. The observed irregular QH-plateau sequences
indicate the contribution of two two-dimensional transport channels.
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Figure 2.9: Model Hartree potentials representing the respective applied gate voltages Ugate = —1V and Ugate =
5V. are shown in a) and are used to calculate the band structure of a 70nm thick 0.3 % tensilely strained HgTe
layer with a 6-band k- p Kane model which is shown in b) and c). The Fermi energy Er. is indicated as a dotted
black line and the top and bottom TSS are highlighted in blue and red, respectively. Reprinted from C. Briine
et al., Dirac-Screening Stabilized Surface-State Transport in a Topological Insulator, PRX 4, 41045 (2014) [47],
Attribution 3.0 Unported (CC BY 3.0).
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An alternative interpretation is presented in Ref. [57]. It is based on a self-consistent
k - p analysis with the six band Kane model parameterized to represent a 40 nm thick 0.3 %
tensilely strained HgTe layer. This analysis yields a change of only the carrier density of the
top surface state with the gate voltage, while the density of the bottom surface state stays
unchanged. Since this result seems in contrast to the observed magneto-transport data for
high magnetic field in Ref. [47] and shown in Fig. 2.8a) and it is only valid for a small density
range, the Dirac-screening model has been used in Ref. [47].

2.3.5. OPEN QUESTIONS

Tensilely strained HgTe is established as a topological insulator with accessible topological
surface states. Nevertheless, open questions remain: The first question is already men-
tioned in Sec. 2.3.3. It concerns the origin of the pronounced quantum oscillations at low
magnetic fields shown in Fig. 2.8c). This observation raises the question, whether addi-
tional states exist next to the TSS. If indications for the existence of other states can be
found, of which nature are these states? Are these states additional surface states? The sta-
bility of the TSS is another interesting topic. Is a bulk bandgap necessary for TSS to exist?
How high gate voltages can be applied and TSS are still observed? The top gate is so far
the only possibility to adjust the occupation of the TSS. Is there a way to create specific
occupations of the TSS? Does a simpler way to create specific occupations exist? Can we
implement additional nobs to vary the carrier density in the TSS? These and other ques-
tions will be addressed in the remainder of this work.
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MAGNETO-TRANSPORT ON HIGH MOBILITY
TENSILELY STRAINED HGTE

This Chapter is the natural continuation of the above (in Sec. 2.3) described state of the
art of research. New insights are gained by adjustments to the MBE grown layer stack and
access to newly developed less invasive lithographic methods. The consequently increased
mobility enables the analysis of SAH oscillations and the QHE at lower magnetic fields. This
additional information allows the separation and identification of the involved transport
channels and their individual dependencies on the gate voltage. The magnetotransport is
compared to the band structure of HgTe.

3.1. SAMPLE QUALITY IMPROVEMENTS AND THEIR VERIFICATION

The modifications to the layer stack and the fabrication process are introduced, which
lead to the increased sample quality. The increased sample quality is verified by magneto-
transport experiments. The experimental setup is introduce. The semi-classical magneto-
transport regime is used to extract the mobility as a figure of merit for the sample quality
based on the shortly reviewed Drude model. As another indicator for the high sample qual-
ity, the occurrence of the QHE and SdH oscillations at low magnetic fields is described.

3.1.1. NEW LAYER STACK AND FABRICATION METHOD

As summarized in Sec. 2.3, the quality of the tensilely strained HgTe has been improved by
introducing a Cdy 7Hgp 3 Te buffer layer underneath the HgTe layer and a thin Cdy ;Hgp 3Te
capping layers of 5 —15nm on top of the HgTe layer [50]. Based on developments intro-
duced for HgTe quantum wells where with increasing capping and buffer layer thicknesses
enhanced mobilities are obtained in Ref. [59], the thickness of the capping is increased to
~ 70nm. This thickness is chosen, since the overall thickness of the strained portion of the
layer stack, namely the HgTe layer together with its protective Cdy;Hgo.3sTe layers, has to
be sufficiently thin to prevent relaxation. Relaxation would cause a reduction in the de-
sired strain and layer quality. For a HgTe layer directly grown on CdTe a critical thickness
of d. ~ 155nm is found [25, 44]. Cdy7Hgp 3Te contributes approximately only with half its
thickness due to smaller mismatch of the lattice constant to CdTe. This means the desired
thickness of the HgTe layer and Cd;Hgy 3Te protective layers of d ~ 70nm is realizable

23
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[25]. The thicker capping layer reduces the available hysteresis free gate range. The intrin-
sic nature of the samples ensures the access of the electron and hole transport regime of
interest without the need of big changes of the carrier density. The range is sufficient to
introduce a modulation doping layer into the buffer layer, as sketched in Fig. 2.7a). This
layer provides a finite starting electron density by modulating the chemical potential land-
scape of the hetero-structure. As dopants iodine is used and incorporated into a 9nm thick
layer inside the Cdy.7Hg 3 Te buffer layer 65 nm below the HgTe layer. This procedure is well
established for HgTe quantum wells [60].

To preserve the high mobility of these samples, less invasive etching methods have been
developed in the group [45, 58]. The first method is the as new standard established wet
etching method using an aqueous solution of KI/I,/HBr as presented in Ref. [45] or in more
detail in Ref. [61]. The second option is inductively coupled plasma etching which com-
bines low energy Ar* etching with chemical etching by CH4. The energy of the Ar* ions is
thereby drastically reduced from the former pure Ar* ion milling from 1kV to 35V. Details
to this etching process can be found in Ref. [58].

CdHgTe 50 nm

HgTe 67 nm

CdHgTe 65 nm

CdHgTe:T 9 nm

CdHgTe 18 nm
CdTe

commercial
CdTe(001)

— @ —_—

Figure 3.1: Shown is the total layer stack consistent of the commercial CdTe substrate followed by MBE grown
HgTe layer, Cdy 7Hgo 3Te buffer with a CdTe:I modulation doping layer inside, HgTe layer and a Cdy7Hgg 3 Te
cap covered with a SiO,Si3Ny insulator and a Au gate layer.

3.1.2. MEASUREMENT SETUP

The magneto-transport measurements are perforemd to analyze the properties of the charge
carrier system of HgTe and reconstruct the corresponding band structure. Low tempera-
tures are chosen to isolate the properties of the charge carrier system from the crystal lat-
tice by staying below T < 20K, which is the temperature where optical phonons become
relevant in HgTe [62]. To supply these conditions a Hez/He, dilution refrigerator is used
to achieve temperature of 7' = 0.05K. The dilution refrigerator is equipped with a super-
conducting magnet capable of magnetic fields up to B = 16 T. The electrical wiring is fit-
ted with appropriate electrical filters to keep the electron temperature close to the lattice
temperature of the sample. The measurements are performed by applying a constant low-
frequency ac-voltage excitation and measuring the resulting voltages with lock-in ampli-
fiers. Low excitations of Uy, ~ 100 1V are used to stay in the linear response regime and
prevent heating of the sample. The low frequencies, like f,x. = 37Hz are employed to en-
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sure that the response of the investigated samples is only resistive. Generally, the measured
voltage U is proportional to the impedance Z = R+ i X. The reactance X is thereby due to
the capacitance or inductance of the device and R due to its resistance. Since the capac-
itance and inductance of the device are neglectable for low frequencies, the signal can be
treated as the only originating from the resistance R of the device. This allows, for example,
to correct for the stray capacitance of the cryostat wiring which causes a finite reactance
contribution that shifts the phase of the measured signal. This shift is for the chosen mea-
surement conditions typically in the range of a few degrees and can be corrected by deter-
mining the phase of the signal maximum and use this stray capacitance corrected phase
for the measurement. The measured voltages U allow to determine the resistances R of
interest by using Ohm’s law R = % and a known reference resistor R.f to determine the cur-
rent I. To access these resistances as accurately as possible the samples are shaped into a
Hall-bar geometry with separate current leads and voltage probes as shown in Fig. 3.2. This
allows measuring in the four-point geometry, which excludes the contact resistance since
no current flows through the voltage probes. The voltage probes can hence be treated as

local potential probes. The measurement configuration is shown in Fig. 3.2.

Ugate ¢4 | d
Usx

el 0
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Uexc Rref

-
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Figure 3.2: A schematic of a Hall bar in the applied measurement scheme is shown. Uex, is the low-frequency
constant excitation voltage, Ugate the dc voltage applied on the Au top gate. The measured voltages are Upet
which is the voltage dropping over a known reference resistor Ryf, the longitudinal voltage U, and the Hall
voltage Uy .

3.1.3. QUANTIFICATION OF THE SAMPLE QUALITY

The above-introduced measurement scheme is used to quantify the improvements made
by adjusting the layer stack and the etching method. The semi-classical low magnetic field
regime is measured and the Drude model is used to extract the mobility i and carrier den-
sity n. The mobility p is chosen as figure of merit for the quality of the sample since it is a
measure of the number of impurities in the sample. In the following some generally use-
ful quantities are introduced using the conventional nomenclature. The specific resistance
p(B) ! of the Hall bar in dependence of the magnetic field B reads

1/0'0 —%

1/0’0 )

Pxx ny

3.1
—Ryy Pxx G-

p:

ne

'Bold symbols indicate the vector character of the quantities.
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The indices here indicate the direction with respect to a two-dimensional Cartesian co-
ordinate system. The first index indicates the current direction and the second index the
direction of the resulting voltage. The conductivity without magnetic field B is

O0=0xx(B=0T)=enu (3.2)

with e being the electron charge, n the carrier density, and pu the carrier mobility. In this
work, electron densities are positively defined, while hole densities are indicated by a mi-
nus sign. The slope of the Hall resistance Ry (B) given by

1
ne

can be used to determine the carrier density n. Together with the zero-field conductivity
of Eq. 3.2 gives the mobility u. The mobility p contains additional to the amount of scat-
tering information about the band structure of the material, since in the relaxation time
approximation the mobility is given by

U= et/ meg, (3.4)

where 7 is the relaxation (=scattering) time and me¢s is the effective electron mass. The ef-
fective mass is the renormalized electron mass accounting for the movement of an electron
(hole) through a crystal instead of the vacuum and is given by the curvature of the respec-
tive band. A more in-depth discussion on magneto-transport can be found in Ref. [63].
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Figure 3.3: The longitudinal resistance Ry in black and the Hall resistance Ry, in red is shown as function of
the magnetic field B for the gate voltage Ugate = 0V and the temperature T = 0.05K. The theoretically expected
QH-plateau values are indicated as dashed blue lines and zero is marked as dashed grey line.
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The mobility is used to verify the improvements to the layer stack and the sample fab-
rication described in Sec. 3.1.1. The magnetoresistance data of sample QC0501 is shown
in Figure 3.3. The sample consists of a 50nm thick capping layer and a modulation dop-
ing layer in the buffer and is fabricated by inductively coupled plasma reactive-ion etching
as shown schematically in Fig. 3.1. It should be noted, that we had to choose a non-ideal
measurement configuration for this sample. One of the current contacts did not work so
that we had to use one of the voltage probes as a current lead. Most importantly, in the
edge channel transport regime of interest, identifiable by the observation of QH-plateaus
the chosen configuration is identical to the ideal configuration. In the Drude transport,
regime artifacts could arise due to the non-ideal current distribution. We checked the sym-
metry of the signal by measuring for positive and negative magnetic fields. The observed
symmetry validates this measurement configuration and consequently the extracted num-
bers for density and mobility. Additionally, the results were reproduced in multiple other
devices, see for example Fig. 3.4. At first glance, the measurement shows quantum effects,
namely QHE and SdH-oscillations. These indicate a high sample quality. To quantify this
impression the mobility is determined by first evaluating the density n using a linear fit
to Ryy(B) for the low magnetic field region 0T< B < 1T and Eq. 3.3. Eq. 3.2 allows by
knowing the length to width ratio //b = 3 and R,x(B = 0T) to determine the mobility p.
This procedure yields for Ugate = 0V a density of n = 7.0 x 10" cm™ with the high mobil-
ity of i = 0.5 x 10 cm?/Vs as indicated in Fig. 3.3 which confirms the high sample quality.
To put this number into perspective it ~ 10 times higher than the mobility of uncapped
HgTe samples of pyncapped ~ 0.03 x 108 cm?/Vs for n = 9.0 x 10! cm™2 [47] and about dou-
ble as high as the mobility of HgTe samples with thin caps tman cap ~ 0.30 x 10®cm?/Vs
for n < 11 x 10" cm™2 [49] as well as more than a factor 100 higher than the mobility of
BiSbTeSe, ugsts ~ 0.003 x 10 cm?/Vs for n = 5 x 10! cm™ [48]. This high mobility mani-
fests itself in the sharp transitions between the QH-plateaus observed in the Hall resistance
Ry and the narrow peaks in the longitudinal resistance Ry as shown in Fig. 3.3. The QH-
plateaus also quantize on the expected plateau values of V—Zz within the measurement accu-
racy and are accompanied by zero resistance plateaus in the Ry, between the peaks down
to low magnetic fields of B < 2T. The sharp peaks in Ry, and plateau transitions in Ry,
indicate a small broadening of the Landau levels, which can be compared to the broaden-
ing observed in the samples with thinner capping Cdy 7Hgp 3Te as shown in Fig. 2.8b). The
quantization of the QH-plateaus up to the measurement accuracy together with the van-
ishing longitudinal resistance has been observed in samples with lower mobilities before
[50], and shall not be claimed as new here, the focus lies solely on showing the high quality
of investigated samples. The analysis of the semi-classical low magnetic field regime con-
firms the high sample quality and motivates further and more sophisticated investigations.
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3.2. ANALYZING MAGNETO-TRANSPORT MEASUREMENTS

The QHE and SdH oscillations contain more information about the properties of the sam-
ple. A short reminder on the Landau level (LL) formation as the underlying physical mech-
anism is given. Afterwards, a routine to extract information from the SdH oscillations and
QHE is described. This routine is presented on an exemplary magnetic field dependent
measurement. This procedure gives access to the underlying band structure of the investi-
gated HgTe layer.

3.2.1. CONSEQUENCES OF LANDAU LEVEL FORMATION IN MAGNETO-TRANSPORT

The underlying mechanism for QHE and SdH oscillations is the restriction of charge carri-
ers by the Lorentz force due to a magnetic field B onto cyclotron orbits in the plane perpen-
dicular to B (see for example [63]). These states are called Landau levels and their energies
are quantized to

Ep, = (j+1/2)hieB/ meg, (3.5)

where 71 = % is the reduced Planck constant and j the Landau level index. The degeneracy
of these Landau levels is given by
e
np = gsngB (3.6)

with £ being the Planck constant and gs (gy) the spin (valley) degeneracy. The number of
filled Landau levels in a system is given by the filling factor

v_n_ n hl
n, g8 ebB

(3.7)

This modulation of the density of states (DOS) with magnetic field also alters the conduc-
tance following Eq. 3.2 and thus the resistance in a oscillating fashion called SdH oscilla-
tions, as shown in Fig. 3.3. In a finite two-dimensional system, the energies of the Landau
levels are locally enhanced at the edges due to the edge potential. Fully occupied Landau
levels, which lie below the Fermi-energy Er in the bulk, bend upwards and cross Ep at the
sample edges. The Hall conductance o,y of these states is quantized and proportional to
the number of occupied Landau levels in the bulk

eZ

Oxy= v%. (3.8)
This effect is called QHE. Since all LLs in the bulk are completely occupied, no four-point
longitudinal conductivity o, is expected according to Eq. 3.2. Consequently, not only the
Hall conductivity oy, but also the Hall-resistance Ry, is quantized, as visible in Fig. 3.3 and
3.4. The carrier density is treated as two-dimensional carrier density despite the three-
dimensional extension of the sample, since QHE is observed. QHE is expected to only exist
in even dimensions, meaning two dimensions for our purposes. Abstract arguments can be
made for this fact. Here an intuitive motivation is given by looking at the different shapes of
the Fermi energy contours and Landau level energy contours for different dimensions. In
two dimensions the Landau levels, as well as the Fermi energy, are circles, making it possi-
ble to push the Fermi energy circle through one Landau level circle into the gap between to
Landau level circles without them intersecting, allowing for a bandgap in the full Brillouin

zone. In three dimensions the Fermi surface is a sphere and the Landau levels are tubes
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making a crossing of the spherical Fermi surface with the tube-shaped Landau levels un-
avoidable. The spacing of SdH-oscillation peaks can be used together with the definition
of the filling factor in Eq. 3.7 to determine the charge carrier density in a system up to a
degeneracy factor via

(1)_ e4n_£gsgv. (3.9

B/ hk* h n
This carrier density is equivalent to the extremal Fermi surface perpendicular to B. The
measurements of the SdH-oscillations frequency in dependence of the angle of the applied
magnetic field allow to map out the shape of the Fermi surface of a material. Such a Fermi
surface mapping has been widely used in metals by measuring the magnetization using
the de Haas-van Alphen effect [64]. The determination of the carrier density based on the
frequency of the observed oscillation is the main tool for the sample investigation in this
work.

3.2.2. EXTRACTING INFORMATION FROM THE QUANTUM HALL EFFECT AND
SHUBNIKOV-DE HAAS OSCILLAITONS
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Figure 3.4: The longitudinal resistance Ry, in black and the Hall resistance Ry, in red is shown as a function of
the magnetic field B for a gate voltage Ugate = 0V and the temperature T = 0.05K together with the expected
QH-plateau values as dashed blue lines for the 30 x 10pm sample up to B = 4T in a) (with Ry, = 0 indicated
as dashed red line) and over the full available magnetic field range up to B=16T in b).

The reproducibility of the results and the homogeneity of the layers is demonstrated by
additional measurements on the 30pum x 10pum Hall-bar structure ? in Fig. 3.4. This Hall-
bar is simultaneously on the same chip prepared as the 600 um x 200 um Hall-bar shown in
Fig. 2.7. The measurements for the 600 um x 200 um Hall-bar is shown in Fig. 3.3. The den-
sity and mobility numbers extracted from the semi-classical transport regime agree well
for both Hall-bars, as shown in Fig. 3.3 and 3.4. Also, the positions of the SdH peaks and
the QH-plateaus in the magnetic field coincide reasonably well. This resemblance moti-
vates a deeper analysis, which is started with the semi-classical transport regime to extract
information on the type of the involved charge carriers. In Fig. 3.4a) the Hall resistance

2For this Hall-bar all contacts have been available and the measurements are performed in the usual Hall-bar
measurement geometry.
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Ry increases monotonically with the magnetic field B. Accounting for the direction of the
magnetic field this increase indicates electron transport. The increase of Ry, is linear for
low magnetic fields, except for very small deviations for B ~ 0T, yielding an overall density
of n = 6.7 x 10! cm™2. The longitudinal resistance Ry, shows a weak dependence on the
magnetic field for low magnetic fields B and a symmetric dip around B = 0T. Such a dip of
Ryx(B ~0T) can have different origins.

One possible mechanism that is reported in the literature to describe a similar dip ob-
served in the magneto-transport measurements on Bi/Sb chalcogenide TIs (e.g. [65]) is
weak anti-localization (WAL). WAL is a correction to the conductance due to a positive self-
interference of the different possible coherent scattering paths of the charge carriers. WAL
is considered an unlikely mechanism due to the big magnetic field range of a few T reported
for the Bi/Sb chalcogenides. A stronger indication is the independence of the measured dip
in Ryx(B) from the temperature in our tensilely strained HgTe samples. This temperature
independence is shown in Fig. C.1 of appendix C, which depicts multiple Ry (B) traces for
different temperatures. Another mechanism is the Sharvin-effect [66] which leads to an in-
crease of the resistance with magnetic field in small samples due to the device geometry or
impurities. Indeed an additional dip is observed in even narrower structures in Ref. [58],
which excludes the Sharvin-effect as the origin for the here observed dip. The most proba-
ble mechanism is the involvement of multiple transport channels with sufficient different
carrier densities and mobilities. Figuratively speaking, for B = 0T the channel with high
carrier mobility dominates, while with increasing magnetic field strength the concept of
mobility loses its validity, and effectively all carriers contribute equally to the transport.

The contribution of two transport channels can cause the above-described dip in Ry
around B = 0T, which is usually accompanied by a change of slope of the Hall resistance,
which might only appear as a kink or a small non-linearity around B = 0T. For two con-
tributing transport channels, the Hall slope for low magnetic fields can be approximated
by the involved carrier densities n, n, and respective mobilites y;, yp using

1 1
ARy, /AB = — . (3.10)
H en+tn,

For the measurement shown in Fig. 3.4 the change in the Hall resistance Ry, around B ~0T
is not strong enough to be analyzable. Only one Hall slope can be determined, which gives
the overall carrier density n = 6.7 x 10! cm ™2 as mentioned above. The multiple carrier be-
havior is established as the origin for the observed dip in the longitudinal resistance Ry in
Ref. [50]. The longitudinal R,,(B) and Hall resistance Ry, (B) data is for various gate volt-
ages reproduced using the Drude model while accounting for multiple transport channels.
This model reproduces the data well. Summarizing, the dip in the longitudinal resistance
together with the positive Hall slope indicates the involvement of at least two electron-like
transport channels.

For small magnetic fields B 2 0.5T distinct oscillations are visible in the longitudinal
resistance Ry, together with plateaus in the Hall resistance Ry, for B 2 1T. For moderate
magnetic fields B < 5T varying distances between SdH peaks and amplitudes in a beating
fashion together with omitted QH-plateaus are observed. The observation of beating pat-
terns suggests the involvement of multiple oscillation frequencies originating from multi-
ple transport channels. A fast Fourier transformation (FFT) analysis is used to unambigu-
ously identify the number of involved channels with their corresponding oscillation fre-
quencies. These frequencies are proportional to the respective carrier densities. The data
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has to be prepared for the FFT analysis because the SAH oscillations are periodic in B,
while the data is recorded at fixed time intervals with a constantly driven magnetic field,
which makes the data points effectively equidistant in B. This is why the longitudinal resis-
tance R, data is linearly interpolated in the inverse magnetic field B! to provide the nec-
essary equidistant sampling points for the numerical FFT analysis. The longitudinal resis-
tance Ry, is shown as function of the inverse magnetic field B~! in Fig. 3.5a). The FFT results
shown in Fig. 3.5b) are obtained for 0.2T< B < 16 T using the "Welch" window function with
"Origin 2018". The exact analyzed magnetic field range and the window function have been
varied yielding consistent results (see appendix D). For FFT analyses in this work, the mag-
netic field step size in B~! is chosen, so that the maximum detectable frequency is above
the highest expected frequency. While for Fig. 3.5b) nearly the full measured magnetic field
range of 0.2T< B < 16T is used, the analyzed magnetic field range is sometimes adapted to
only include oscillations that are sufficiently sinusoidal to avoid FFT-artifacts. The stability
of the FFT result to the chosen magnetic field range is also shown in appendix D.
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Figure 3.5: The longitudinal resistance Ry, as shown in Fig. 3.4 is linearly interpolated to be equidistant in B~
and shown as a function of the inverse magnetic field B~! in a). In b) the FFT spectrum of the data from a) is
shown as a function of a rescaled frequency axis to represent the equivalent non-degenerate carrier density
n.

The x-axis of the FFT spectrum in Fig. 3.5b) is transformed from frequency f to the
more intuitive quantity carrier density n following Eq. 3.9 assuming non-degenerate bands
via n = f. This assumption is made based on the observation of odd and even QH-
plateaus indicating the crossing of single LLs with the occasional exception when multiple
SdH peaks coincide. The FFT spectrum shows two close peaks at 77 = 0.9 x 10! cm™2 and
at np = 1.1 x 10 em™2 as well as peaks at n3 = 2.1 x 10! cm™2 and n4 = 2.7 x 10 cm™2.
Additionally, higher-order peaks are observed, requiring a closer investigation of the orig-
ination of peak 3, since it sits roughly at n3 ~ 2 x n; , making it potentially a higher-order
peak of peak 1 or 2. Usually, higher-order peaks possess smaller amplitudes than their
original peaks. The relative peak height is only a trend and not a requirement. A more rigid
validation is the identification of LL with the corresponding transport channels. The den-
sities n;_4 are converted to the respective periods in B~!. These periods are sketched as
colored sets of lines into the longitudinal resistance Ry, and Hall conductivity oy, data in
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Fig. 3.6. The absolute position of the lines is effectively a phase and thus determined by
finding the best match to the peaks in the longitudinal resistance data R,,(B~!). Each line
indicates the expected position of one LL. The amount of lines between QH-plateaus in the
Hall conductance o, matches the change of the filling factor v of the quantized values of
0 xy according to Eq. 3.8. Even tough some of the lines do not match the exact position of
the QH-plateau transitions in the Hall conductance o, and the SdH peaks in the longitu-
dinal resistance Ry, perfectly, the overall behavior is well described down to B~! ~ 0.25T"!
(B ~4T). The lower B~} (higher B) region is marked in grey since the lower carrier densi-
ties reach their quantum limit in this magnetic field regime obstructing the analysis in this
regime. Another consistency check is the comparison of the sum of all carrier density de-
termined by the FFT analysis to the total carrier density determined by the Hall slope. The
sum of the FFT densities yields 72104 = 6.8 x 101! cm~2, which matches the Hall density of
Nian = 6.7 x 101 cm™2 well. Additionally, the analysis of further magnetic field dependent
measurements for multiple gate voltages, as shown in the following Sec. 3.4, also confirm
all four identified peaks as individual conducting channels.
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Figure 3.6: Shown is the longitudinal resistance Ry, (black) and the Hall conductivity oy, (red) as a function
of the inverse magnetic field B~! for the gate voltage Ugate = 0V and the temperature T = 0.05K. This is a
repetition of the data shown in Fig. 3.5b). The periods in B~! corresponding to the densities determined by
the FFT analysis are shown as colored vertical lines with n; = 0.9 x 10! cm™? (cyan), np = 1.1 x 10" cm™2
(purple), n=2.1 x 10" cm~2 (blue) and n = 2.7 x 10! cm~? (green). The phase of the vertical lines is chosen
to fit the observed peak positions in Ryy.

The observation of four transport channels might at first glance seem contradictory
to the state of research magneto-transport results presented in Sec. 2.3.3. There the fo-
cus lies on the high magnetic field region for which only two transport channels are ob-
served. These are interpreted as being the top and bottom topological surface states. To
address this apparent contradiction, it has to be kept in mind, that the magnetic field
strength necessary for the formation of Landau levels strongly depends on the carrier den-
sity. The visibility and contribution of the different transport channels to the overall trans-
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port thus depend on the magnetic field strength. To be more explicit, for a carrier density of
ni 2 ~ 1x10t cm™2, like the low density transport channels, the v = 1 QH-plateau is reached
for By-; ~ 3T, meaning that no further oscillations from integer Landau levels are expected
(compare grey area of Fig. 3.6). In other words, an analysis for B > 3T is insensitive to
transport channels with 7 < 1 x 10'! cm™2, assuming that there are no further QH-plateau
transitions once the filling factor v = 1 is reached. This analysis confirmed the existence
of several transport channels. Two transport channels are assigned to the TSS of a 3D-TI.
The origin of the other channels remains an open question. The gate voltage-dependent
magneto-transport behavior in the low magnetic field regime is analyzed in more detail in
the following.

3.3. QUALITATIVE ANALYSIS OF THE GATE VOLTAGE DEPENDENT
MAGNETO-TRANSPORT

In this section, the influence of the top-gate onto the magneto-transport properties of the
3D-TI tensilely strained HgTe is introduced. For this analysis, the semi-classical magneto-
transport regime at low magnetic fields is investigated. The obtained transport regimes
are compared to the quantized high magnetic field regime, which is used to trace the dis-
persion of the Landau levels. The properties of the observed LL are investigated to find
common properties to identify the number and type of transport channels.

3.3.1. ANALYSIS OF THE SEMI-CLASSICAL MAGNETO-TRANSPORT REGIME

As a starting point, the functionality of the gate is demonstrated. The longitudinal resis-
tance Ry is shown as a function of Ugate for B = 0T in Fig. 3.7a). The Ry, can be var-
ied from Ryy(Ugate = 0) ~ 50Q by a factor ~ 4 up to a maximum of Ryymax ~ 190Q at
Ugate,max ~ —2.2V down again to Ryy(Ugate = —5V) ~ 120€Q2. Additionally some other weak
structures are visible in the Ry (B = 0T, Ugate) curve for Ugate > —2V. This change of Ry, with
Ugate happens over a change of the total carrier density from 7n(Ugate = 0V) = 7.0 % 10 cm™2
t0 n(Ugate = —5V) = —4.3 x 10" cm™ as shown in Fig. 3.7b). The total carrier density n
is determined by linear fits to the semi-classical Hall regime for the magnetic field range
of 0.5T< B < 1T, as described in Sec. 3.1.2. The Hall resistance Ry, is shown for exem-
plary gate voltages Ugate as a function of the magnetic field B together with the linear fits
as dashed lines in Fig. 3.8. The fitting procedure works well for the electron transport
regime for Ugye > —2.3V (1> 2 x 10 cm™2), where the Hall slope is strictly linear (compare
Ugate = 0V in Fig. 3.8). For Ugate < —2.3V the Hall signal shows oscillations indicating the on-
set of the quantum transport regime, questioning the reliability of a semi-classical analysis.
These oscillations can be seen in Fig. 3.8 for Ugate = —2.5V, -3V, and —3.5V. The influence of
these quantum effects depicts itself as deviation of the linear extrapolation to B =0T from
the Ry (B = 0T) value. This non-analyzable gate voltage range of —2.3V> Ugae > —3.8V is
marked as grey area in Fig. 3.7b). The Hall resistance increases for all gate voltages Ugate for
low magnetic fields and only for higher magnetic fields a change of the sign of the Hall slope
for sufficiently negative gate voltages Ugate < —3.2V is observed. The change from a positive
Hall slope for low magnetic fields to a positive one for higher magnetic fields indicates the
involvement of electrons and holes and consequently multiple transport channels. This
multiple carrier behavior with changing positive to negative Hall slope with magnetic field
is also observed for Ugate < —3.8V, but there a sufficiently linear magnetic field dependence
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exists for 0.5T< B < 1T (see Ugate = —5V in Fig. 3.8). This enables the determination of the
total carrier density for Ugate < —3.8V. Thereby the observed QH-plateaus for Ugate = —4V
and —2V in Fig. 3.8 are treated as linear slope. This procedure is chosen, since the QHE
can be treated as symmetric deformation of the Hall resistance Ry, (B) around the semi-
classical linear behavior and therefore does not change the obtained slope.
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Figure 3.7: In a) the longitudinal resistance R, is shown for the magnetic field B = 0T as function of the
gate voltage Ugaee at the temperature T = 0.05K. The expected gate voltage Ugate for zero density is indicated
as a dashed olive line. The carrier density n is determined by linear fits to the Hall resistance Ryy(B) for
0.5T< B < 1T and shown in b) as black circles. The gate voltage range with no analyzable Hall slope is marked
in grey and the symbols are shown as grey stars. The red line is a linear fit disregarding the grey area. The
expected value for the gate voltage for zero overall density, estimated by the linear fit, is indicated as a dashed
olive line. The horizontal grey dashed lines indicate the reliable density range.

These determined densities for Ugae < —3.8V and Ugae > —2.3V as indicated by the
white background in Fig. 3.7b) allow to determine the gate action by a linear fit. The linear
fit yields a gate action of 2.3 x 10" cm™2/V with n(Ugste = 0V) = 7.0 x 10" cm™?, which is
shown as a red line in Fig. 3.7b). This linear fit gives Ugate cn ~ —3.2V for the charge neu-
trality point. The possibility to describes the gating behavior for the electron and hole
regime with one single linear fit points towards a gapless system, see discussion about
quantum capacitance in Sec. 4.1. This is consistent with the observation of simultane-
ous electron and hole transport. Interestingly the maximum of the longitudinal resistance
Ryx,max at Ugate ~ 2.2V does not coincide with the charge neutrality point at Ugate,cn ~ 3.2V
as indicated by the dashed olive line in Fig. 3.7a). The charge neutrality point is not repre-
sented by any specific features for B = 0T. The overall shape of the longitudinal resistance
Ryx(B = 0T, Ugate) shall here only be noted as a zero-field peculiarity and the interested
reader is referred to Ref. [58]. There the shape of the Ryx(B = 0T, Ugate) curve is modeled
using a multiple channel Drude model with the respective parameters extracted from band
structure calculations, like the one shown in Fig. 2.6g).
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Figure 3.8: The Hall resistance Ry, is shown as function of the magnetic field B for gate voltages Ugate =
-5V,-4V,-3.52V,-3V,-2.52V,-2V, -1V, and 0V (from green to red) at the temperature T = 0.05K. The
curves are offset by Ugate x 3002 for clarity. The Ugae = —3.52V and —2.52V traces are measured at lower
magnetic field resolution. Linear fits to the data for 0.5T< B < 1T are shown as dashed lines.

To sum up, already from the semi-classical transport regime HgTe is classified as a gap-
less system. The electron-dominated transport regime shows a strictly linear Hall slope,
which indicates transport by one band or multiple bands with similar mobility. The hole-
dominated regime is characterized by a positive slope for small magnetic fields that con-
verts into a negative slope. Parallel to the hole channel is a more mobile electron channel
present. Such behavior is consistent with a semi-metal composed of an electron-like band
that overlaps with a less mobile hole-like band. More information about these bands is
accessible in the quantum transport regime which is addressed in the following.

3.3.2. QUALITATIVE INVESTIGATION OF THE LANDAU LEVEL DISPERSION

In this Section, the focus is shifted from the low magnetic field regime to higher magnetic
fields, where the transport starts to be quantized due to the formation of LLs. The aim is
to trace and analyze the dispersion of the LLs with the magnetic field and gate voltage to
extract further information about the underlying band structure. Intuitive access to the
LLs constitute the peaks in the longitudinal resistance, which appear when LLs cross the
Fermi energy, as described in Sec. 3.2. Consequently, the longitudinal resistance R,y is
measured as function of the gate voltage Ugate for various fixed magnetic field values B.
The result is shown in Fig. 3.9 as color code. The blue areas represent very low values (ef-
fectively zeros) of the longitudinal resistance Ry, which are equivalent to no states in the
bulk, while colorful areas of high resistance indicate the existence of states and the position
of LLs. The colorful lines in the color plot of the longitudinal resistance Ry, can be seen as
the dispersion of the LLs with respect to the gate voltage Ugate and the magnetic field B.
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The dark red region around Ugaee ~ —3V constitutes an exception, since this Ugate resem-
bles the regime of low total carrier density as determined by the semi-classical analysis
depicted in Fig. 3.7. Low carrier densities, especially compensated ones 3, are expected to
experience a strong increase of the longitudinal resistance with the magnetic field B called
positive magneto-resistance (MR). The dark red region around Ugate ~ —3V separates two
regions of red lines with either positive (electron-like) slope for Ugye > —3V or negative
slope (hole-like) for Ugate < —3. Additionally, nearly vertical lines are visible which repre-
sent gate voltage-independent LLs. To interpret these results we first try to sort these LL
based on their dispersion in B and Ugate, before a more quantitative analysis based on FFT
analysis as in Sec. 3.2 is utilized.
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Figure 3.9: The longitudinal resistance Ry is shown as color code in function of the magnetic field B and the
top gate voltage Ugate at the temperature T = 0.05K.

As a reference, the expectation for a simple system is refreshed. According to Eq. 3.7 in
a system with only one transport channel LLs disperse linearly with respect to Ugate o< 1
and B irrespective of their dispersion in energy. For high magnetic fields B > 6T, the exper-
imental observed Landau levels indeed disperse linearly and appear to emerge from one
origin for B — 0T. To verify this observation a better resolution of the LLs in the low density
regime (Ugate ~ —3V) is desirable. For an alternative way of visualizing the LL dispersion,
which does not suffer from the strong MR, the Hall conductance o, signal is used. Thereby
the LL-position is extracted from the transition between QH-plateaus with a steep slope
compared to the flat QH-plateaus. The derivative of the Hall conductance with respect to
the gate voltage 00 yy/0Ugate is shown in Fig. 3.10, where high 00 ),/ 0Ugate values (in red)
represent the LLs. The dispersion of the LLs is consistent for Fig. 3.9 and 3.10 and only
differs in the visibility of the different features. The most distinct difference is that the lon-
gitudinal resistance Ry, data in Fig. 3.9 shows a broad region with high resistance around
Ugate ~ —3V, while a plateau with 00 yy/0Ugate = 0 is observed in Fig. 3.10. This plateau is
enclosed by two sharp lines of high 00, /0Ugate and possesses a value of oy = 0e?/h as
shown in in Fig. 3.10b). Such a state with oy, = 0 is an interesting system in itself and could

3Compensated means the low total carrier density is due to the coexistence of electrons and holes.
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be either due to a gap opening, as observed in zero-gap HgTe quantum wells in Ref. [67]
or the cancellation of counter-propagating edge channels as a suggested mechanism to ex-
plain the zero QH-plateau observed in bismuth chalcogenides [48, 68]. Since the electron
and hole-like LLs are observed to coexist, the most likely mechanism is the cancellation of
electron and hole-like edge channels, as investigated in detail in Ref. [69].

To verify that all observed lines for B > 6T indeed behave as one set of LLs, a constant
magnetic field cut at B = 10T a dashed black line at B = 10T is shown in Fig. 3.10 and
equidistant steps are indicated by dotted black lines. This shows that the LL are indeed
equidistant in Ugaee as expected for a single set of LLs. The observed LL dispersion, which is
consistent with the expectation for one conducting channel or equivalently one occupied
band, is surprising and noteworthy in a complex material as tensilely strained HgTe (com-
pare the band structure shown in Fig. 2.6). One possible mechanism is the in Sec. 3.2.2 mo-
tivated expected quantum limit for transport channels with low densities already at moder-
ate magnetic fields [Bq(n = 1 x 10! cm™%) ~ 3T]. Reaching the quantum limit could cause
aredistribution of the charge carriers between the transport channels in the magnetic field
[70, 71]. For an assessment of this mechanism and further analysis of this transition with
the magnetic field to a simple LL dispersion see Ref. [58].
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Figure 3.10: The derivative of the Hall conductivity with respect to the gate voltage 00 xy/0Ugate is shown in
color code as function of the magnetic field B and the top gate voltage Ugate at the temperature 7' = 0.05K. The
dashed black line marks a cut at constant magnetic field B = 10T with equidistant markers as short dotted
black lines.

In contrast, the low to moderate magnetic field regime displays a completely different
behavior. The LL dispersion for B < 6T in Fig. 3.9 and 3.10 seems quite overwhelming and
complicated at first glance. The observed lines are grouped based on their dispersion. It
shall be remarked here, that in Ref. [71] also qualitatively similar complicated LL disper-
sions are observed for 80nm thick tensilely strained HgTe layers. The details of the dis-
persion, as the observed bending at the crossing points of some LLs, are not relevant for
the assignment of the LL into groups. Such bending and deviation from the expected lin-




38 3. MAGNETO-TRANSPORT ON HIGH MOBILITY TENSILELY STRAINED HGTE

Ryx [kQ] doxy/dUgate [a.u.]
0 5 10 15 20 0 5 10 15 20 25 30
I P
a) e . — b)
T . ; 0

Ugate [V]

sate [V]

B[T] BIT]

Figure 3.11: In a) the longitudinal resistance R,y is presented again (see Fig. 3.9) as a function of the magnetic
field B and gate voltage Ugate up to B = 6 T. The dashed white and dotted green lines are guides to the eye to
mark two sets of LLs. In b) the derivative of the Hall conductivity with respect to the gate voltage 00 xy/3Ugate
from Fig. 3.10 is re-plotted and dot-dashed black lines marking the edge of the deep red areas are added as
guides to the eye.

ear behavior have been observed before in double quantum well structures for example in
Ref. [72] and in 80 nm thick tensilely strained HgTe layers in Ref. [71]. The bending is there
attributed to charge redistribution between the transport channels in the magnetic field.
The differentiation between such charge redistribution and interaction effects is addressed
in Ref. [58]. The focus of this work lies in the extraction of the involved transport channels
and their identification in the band structure.

The most prominent group of LLs in Fig. 3.9 are the dark red lines with negative slope,
which are marked by dotted green lines in Fig. 3.11a) and extrapolated to B = 0T to one
starting point at Ugate ~ 2.0V. The shared origin is consistent with the assignment of the
LL to one transport channel. Another distinct set of lines with shared gate voltage and
magnetic field dependence constitute the nearly vertical lines, which are very distinct for
Ugate > —2V but persist down to the maximum investigated gate voltage Ugate = —5V. This
continuation Ugate < —2V is best visible for B ~ 3 and 5T. These LLs are marked with dashed
white lines in Fig. 3.11a). These LLs are independent of the applied gate voltage, in contrast
to the before discussed set of LLs (dotted green lines), which possess a hole-like gate voltage
dependence. Additionally, gate voltage-dependent lines with positive slopes identifying
them as electron-like LL are visible. These lines cannot straightforwardly be assigned to
one set of LL due to their more complex structure with crossings. These LLs are thus not
indicated as an own set of colored lines.
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The same analysis is also possible for the 00 y,/0Ugate data, shown in Fig. 3.10 and re-
peated in Fig. 3.11b). The two different visualizations of the LLs illustrate different features
differently well . The thick p-type LLs, marked by the dotted green line in Fig. 3.11a), are re-
vealed as each line being two weakly split LLs. This dotted green p-type set of LLs is double
degenerate and appears like a normal 2DEG with its spin degeneracy lifted by the Zeeman
effect. The nearly vertical set of LLs (white dashed in Fig. 3.11a)) are not as prominent, but
can still be recognized for moderate magnetic fields.

Very pronounced features are the two dark red edges at Ugate ~ —2.05V and Ugate ~
—1.65V, marked as dash-dotted black line in Fig. 3.11b). The lower black line coincides with
the starting point of the dotted green lines in Fig. 3.11a). Similarly exist lines in Fig. 3.11b)
that appear to start from the upper black dash-dotted line at Ugyte ~ —1.65V. The dash-
dotted black lines indicate a gap-like feature between an electron-like dispersing set of
LLs and a hole-like one. In contrast to these two sets of LLs with starting points, the be-
fore mentioned vertical lines span the whole investigated gate voltage range. Between the
two dash-dotted black lines are more lines with a positive dispersion visible additionally to
these vertical lines visible. These lines are the fourth set of LLs. This analysis gives evidence
for the existence of a spin split hole-like band for Ug,te < —2V, a gate voltage-independent
electron-like band, and two additional electron bands. One of these bands is observable
over the whole accessible gate voltage range and the other one only for Ugaee > —1.65V. The
origin of these bands has to be further investigated.

3.4. QUANTITATIVE ANALYSIS OF THE LANDAU LEVEL DISPERSION

To determine the densities of the above-identified four conducting channels a FFT analysis
is used as introduced in Sec. 3.2. The FFT analysis is the easiest way of determining the
respective carrier densities in a system with multiple transport channels. The FFT anal-
ysis of the Ryy(B, Ugate) data is shown in Fig. 3.9. The amplitudes of the FFT frequencies
are obtained with the program "Mathematica 12" and shown in Fig. 3.12a) color coded
as function of the gate voltage Ugate and the corresponding frequency expressed as non-
degenerate density npondegenerate- Yellow represents high amplitudes indicating the posi-
tion of the FFT peaks corresponding to the encountered carrier densities for the respective
gate voltage. The resulting peak positions of an independent FFT analysis with the program
"Origin2018" are shown in Fig. 3.12 as colored circles. These colors are used to simplify the
reference to the determined transport channels. The integer gate voltages are the results
for separate magnetic field dependent measurements, while for the gate voltages Ugate =
-0.5V,-1.5V,..,,—4.5V the traces are extracted from the gate voltage-dependent measure-
ments for a fixed magnetic field. The results are consistent independent of the analysis
details, making them reliable and trustworthy. For more verification see appendix D.

The FFT results are effectively only an alternative way of representing the LL dispersion
discussed in Sec. 3.3. The most prominent feature is the bright yellow nearly vertical and
consequently gate voltage independent line at fnon-degenerate ~ 2.0 x 10'* cm™ and equiv-
alently the green dots in Fig. 3.12. These are reminiscent of the gate voltage independent
lines highlighted as dashed white lines in Fig. 3.11a). The density determined by the FFT
can be verified by estimating the distance of the dashed white lines in the inverse mag-

4Vertical lines are not very well depicted in the 80, /0Ugate data due to the direction of the derivative. The
direction is chosen to avoid artifacts due to the measurement scheme of varying the gate voltage at a fixed
magnetic field for various magnetic field values.
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Figure 3.12: Shown is the result of the FFT analysis of the longitudinal resistance data. The respective ampli-
tudes for the non-degenerate density 7non-degenerate i presented as function of the applied gate voltage Ugate.
The FFT analysis is performed with "Wolfram Mathematica 11.3" for the magnetic field range of 0.08T to
2T - to ensure a sufficient measurement point density and sinusoidal looking oscillations - using a Dirichlet
Window following the procedure introduced by Valentin Miiller in Ref. [58]. The points from an equivalent
analysis with the program "Origin2018" are included as colored circles (integer voltages show analyzes from
a separate data set of magnetic field-dependent measurements). Additionally guides to the eye at the same
position as in Fig. 3.11b) are added for orientation.

netic field B~!. This yields 71e5 ~ 1.9 x 10! cm™2 consistent with the value from the FFT
analysis of Nnon-degenerate ~ 2.0 x 10" cm™. Another clear feature is the bright diagonal
line or equivalently the red dots in Fig. 3.12 visible for Ugate < —2.0V. The red dotted den-
Sity 7non-degenerate iNCreases with decreasing (more negative) gate voltage, identifying this
transport channel as hole-like. The observed gate voltage dependence and range are rem-
iniscent of the green dotted set of LL in Fig. 3.11a). The starting point of Ugate ~ —2.0V co-
incides with the lower dash-dotted black line. The two dash-dotted black lines are adopted
from Fig. 3.11b) to facilitate the comparison to the qualitative analysis of Sec. 3.3.

Additionally, three features in the FFT results are observed indicated by blue, cyan, and
purple circles. The density of all three signals increases with increasing (less negative) gate
voltage, identifying these states as electron-like. The cyan and purple lines are reminiscent
of a double degenerate state with slightly lifted degeneracy, which appears to emerge from
Ugate ~ —1.6V consistently with the upper dash-dotted black line. In contrast, the state
marked with the blue dots emerge from outside the available gate voltage range Ugate <
-5V, as does the gate voltage-independent state marked with green dots. The FFT ampli-
tude of this state is relatively week up to Ugate ~ —2.0V and only possesses a weak depen-
dence on Ugaee for Ugate < —2V. For Ugae > —2V (above the lower dash-dotted black line)
the FFT amplitude and dependence on gate voltage increases abruptly.
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Figure 3.13: The resulting density from the FFT analysis with correctly accounted degeneracy is shown to-
gether with their sum and the total carrier density determined by the semi-classical Hall slope from Fig. 3.7b).

The identified transport channels can be grouped according to their shared properties.
The first group consists of the two transport channels, which are electron-like and observ-
able over the full gate range without any signs of degeneracy. The second group consists
of the two transport channels, which are degenerate and only observable over a limited
range of gate voltages despite their opposite carrier type. These two channels are the elec-
tron channel marked in cyan and purple as well as the hole channel marked with red dots.
While the degeneracy of the electron states is directly visible, the degeneracy of the hole
states is only visible as splitting of the hole type LL in Fig. 3.11b) for high magnetic fields.
The splitting is not directly observable in the FFT analysis. The observed degeneracy of the
hole LLs in the 00 ), /0Ugate data is not an artifact due to the derivative. This is verified by
the comparison of the sum of the individual densities determined by the FFT analysis to
the total carrier density determined by linear fits to the Hall slope. As shown in Fig. 3.13, a
double degeneracy of the hole states is necessary to match the total densities.

Since tensilely strained HgTe is a three dimensional topological insulator with the band
structure shown in Fig. 2.6, an educated guess for the origin of the respective transport
channels can be made and is introduced as nomenclature to simplify the reference to the
respective states. One type of state shown in the band structure is the topological surface
state. These are non-degenerate and expected to exist over the whole experimentally ac-
cessible energy range (compare Fig. 2.6g)). This makes the first group likely topological
surface states. Since the gate voltage is applied from the top, the surface state on the top
side is expected to show a stronger gate voltage dependence, while the gate voltage depen-
dence of the bottom surface state depends on the assumed screening scenario. The blue
dotted density thus is identified as the top TSS according to its observed gate voltage de-
pendence. Consequently, the gate voltage-independent green dotted density is assigned to
the bottom TSS. The gate voltage independence of the bottom TSS is consistent with the
observation in uncoupled double 2DEGs, where the electric field from the top electrode is
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completely screened by the top 2DEG making the bottom 2DEG gate voltage independent
(see e.g. [73]). The Thomas-Fermi screening properties of the TSS are discussed in the ap-
pendix A and support analogous this expectation of screening by the top 2DEG. In contrast,
the former conduction and valence bands are expected to be spin degenerate and should
only be occupied, when the Fermi level is moved into the respective band. But since these
bands are expected to be three-dimensional, they are inconsistent with the observation of
QHE a purely two-dimensional effect. This requires the creation of new two-dimensional
states, here called Volkov-Pankratov states following Ref. [16, 34, 74]. The origin and nature
of Volkov-Pankratov state (VPS) is in Sec. 4.4 discussed. The black dash-dotted line repre-
sents a bandgap between the electron-type VPS (cyan and purple circles) and the hole-like
VPS (red circles). This assignment is verified with the help of model calculations in the
following Section.



MODELING OF THE MAGNETO-TRANSPORT
RESULTS

Analyzing the magneto-transport data offers insights into the number and properties of the
involved transport channels. Unfortunately, the measurement data alone is not sufficient
to reconstruct the band structure. Model calculations are additionally necessary. An obsta-
cle for the unification of the experimental and theoretical results are their different acces-
sible quantities, namely the gate voltage and the energy, respectively. Translating these two
quantities into each other is not straightforward. Two different approaches are presented
in this Chapter. Motivated from the experimental point of view, the sample is described
as a plate capacitor. The finite DOS of the HgTe layer is accounted for by its quantum ca-
pacitance, as motivated by the high-frequency measurements discussed in Chapter 5. An
equivalent capacitor circuit is created accounting for the capacitances of all involved states.
This model is compared to the experimental results of Sec. 3.3. The model is translated
into a relative filling and consequently respective energetic shift of the different states in
the HgTe layer. The theoretical approach uses self-consistent k - p calculations. The Kane
model is introduced, and the results of the calculations are presented. Those show indica-
tions for the formation of additional surface states called Volkov-Pankratov states.

4.1. CAPACITOR MODEL

The investigated Hall-bar device is a plate capacitor, as sketched in Fig. 4.1. The overall
carrier density in the HgTe layer is thus directly proportional to the gate voltage. This linear
dependence is verified in Fig. 3.7b) of Sec. 3.3, where the density determined from the slope
of the Hall resistance is shown as a function of the gate voltage. Different states of the
HgTe layer contribute to the capacitance of the layer. To disentangle the charge carrier
density distribution inside the HgTe layer a capacitor circuit model is used. The resulting
charge carrier density distribution from the model is compared to the measurement results.
Eventually, an equivalent representation of capacitor circuit as band structure is presented,
and its physical implications are discussed.

43
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4.1.1. OPERATION OF THE GATE
The capacitance of a plate capacitor normalized to the area ! Cgeo is given by

ne 1
Cgeo = —— = €0€r—, 4.1)
gate d

where e the elementary charge, €g the vacuum permittivity, €, the relative permittivity, and
d the separation of the plates. The dielectric is composed of a 110nm thick dielectric layer
consistent of 11 alternating layers of SiO, and Si3sN4 with the relative permittivities €sjg, =
3.9 and €sj;n, = 7.5 as well as the 50nm thick Cdy 7Hgo 3Te capping layer with an estimated
relative permittivity ecqngre ~ 8.5 [50, 74]. The capacitance of such a layer stack can be
described as two standard plate capacitors in series yielding
-1 _ -1 -1

CtOt — “geo,insulator + Cgeo,cap' (4.2)
The insulator multilayer is effectively also series of capacitors with the single capacitances
given by Eq. 4.1. This yields for the capacitance of the multilayer

1 i dsio, N > dsisN,

geo,insulator —

(4.3)
i=1 €0€si0, ;=1 €0€Si3Ny

with dsio, = dsi;n, = 10nm. Even though equation 4.1 assumes metal plates, the total car-
rier density nyo introduced in the HgTe layer is well described by this simple model as
shown in Fig. 3.7b). Tensilely strained HgTe is actually a topological insulator with a fi-
nite DOS D = aa—E”F. The states of interest are its topological surface states which possess a
two-dimensional linear dispersion

E(k) = hvgk, (4.4)

where vp is the Fermi-velocity. Their two-dimensional DOS is given by

g

Diinson (E) =
lin;2D Zﬂhzl)lz:

E (4.5)

with g = 1 being the degeneracy factor. The finite DOS of the surface states causes a change
of the system’s energy when its carrier density is altered. This is of course not only true for
a TSS with linear dispersion but all systems with a finite DOS. The energy dependence of
the DOS is given by the dispersion of the band. Generally, this energy can be expressed in
the form of a capacitance, called quantum capacitance
on
Cq=e"—. 4.6

q 3E: (4.6)
For topological surface states the electrochemical potential dependent quantum capaci-
tance is determined by using Eq. 4.4 and Eq. 4.6 and reads

ge?

—— FFf. 4.7
2717721/12: F td

Cq,lin;ZD (Ep) =

! The capacitance C is in this work always given normalized to the area for convenience.



4.1. CAPACITOR MODEL 45

A schematic illustration of the quantum capacitance is shown in Fig. 4.1. The sketched
plate capacitor consists of a metal top plate (yellow), an insulator layer (black), and the
HgTe layer as the bottom plate (blue). The metallic top plate is represented by an exem-
plary quadratic dispersion shown in the yellow frame. An experimentally realistic change
in carrier density of An ~ 5 x 10'! cm™2 only causes an insignificant change in energy. In
contrast for the dispersion of a TSS leads An ~ 5 x 10! cm™2 to a significant change in the
energy of the system in the order of 10meV to 100meV, which cannot be neglected any
longer. This additional energy cost can be expressed in the form of the quantum capaci-
tance (see Eq.4.6), which enables the creation of equivalent circuit diagrams.
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Figure 4.1: A plate capacitor composed of a metal top plate (yellow), the insulator (black), and a TI bottom
plate (blue) is sketched together with the dispersion of a metal plate on the top left and the dispersion of a
topological surface state on the bottom right. The expected energy difference for a density change of An ~
5x 10'' cm™? is indicated by the starting energy (green line) to the expected energy (red line).

4.1.2. THE HETEROSTRUCTURE AS CAPACITOR CIRCUIT

The above-introduced possibility to represent the band structure of HgTe as quantum ca-
pacitance is used to create an equivalent circuit diagram in this Section. This circuit di-
agram describes the distribution of the charge carriers in the HgTe layer. The simplest
equivalent circuit diagram that describes our Hall bar structures consists of two capaci-
tances in series, as shown in Fig. 4.2a). The first capacitance is the geometric capacitance
between the Au-electrode and the HgTe layer Cgeo. The geometric capacitance is given by
the properties of the insulating and capping layer. The second capacitance is by the quan-
tum capacitance of the HgTe layer Cq Hgre.

To determine Cq Hgre the electrochemical potential is assumed to lie in the bulk bandgap
according to the state of the art of research as described in Sec. 2.3.4. This means that only
the TSSs on the top and bottom surface have to be accounted for. Since both TSS are con-
tacted via the Au/Ge contacts, both states are connected to the ground potential, making
the two TSSs act as parallel capacitances. Since the bottom TSS is located at the bottom
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Figure 4.2: In a) the equivalent capacitor circuit is shown that represents the actual device by accounting for
the quantum capacitance of the HgTe layer Cugre. In b) the equivalent circuit used to determine the quantum
capacitance of the HgTe layer Cpgre for the bulk bandgap is shown. In c) the equivalent circuit including either
the valence or conduction band like VPS is presented.

surface of the HgTe layer, the HgTe bulk has to be taken into account as well. Since the
Fermi energy is assumed to lie in the bulk bandgap as mentioned before, the HgTe bulk is
an insulator and thus only contributes with its geometric capacitance. The capacitive con-
tribution from the bottom TSS hence consists again of two capacitances in series, one being
the geometric capacitance of HgTe Cgeo 1gte and the quantum capacitance of the bottom
TSS Cqpot- In total the quantum capacitance of the HgTe layer Cy ngre is a parallel circuit
of the top TSS Cgop with the parallel capacitance given by Cq ot in series with Cgeo Hgre,
as shown in Fig. 4.2b) [57, 75, 76]. To determine the voltage drop across the different con-
tributing parts of the HgTe layer the definition of the capacitance

C=— (4.8)

is used. The equivalent circuit diagram, as shown in Fig. 4.2b), infers that mainly the top
TSS will be affected by the applied top gate voltage. To quantify this statement, the ac-
tual values of the capacitances need to be determined. Taking into account the sample di-
mensions, as shown in Fig. 2.7a), the geometric capacitances can be determined following
Sec. 4.1.1 by adding the reciprocal capacitances. Summing up the capacitances of the insu-
lator and the Cdy.7Hgo.3Te capping layer yields Cgeo ~ 0.33 x 10~3F/m?. The exact param-
eters for the capping layer are not well known. Only accounting for the insulator layer, the
geometric capacitance yields Cgeo only ins ~ 0.40 % 1073F/m?. Using epgre = 21 (see Sec. 2.3.4)
the geometric capacitance of the HgTe layer reads Cgeo, HgTe = 2.5 % 1073 F/m?. To determine
the quantum capacitances, the energy dependence of Eq. 4.6 is translated into the experi-
mentally more accessible quantity density n. With the expression for the Fermi wave vector

of a non-degenerate 2DEG
kg = Vann (4.9

and the linear energy dispersion of the TSS according to Eq. 4.4 the quantum capacitance
of a TSSs reads

2
e
Cq,TSS = h—VF\/47[I’l. (4.10)
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For a TSS with a density of n = 2 x 10 cm™2 this yields Cysurf(n = 2 x 10 em™2) = 12 x
1073F/m?. The first result is that the quantum capacitance only contributes ~ 2% to the
total capacitance. The total capacitance is thus dominated by the geometric capacitance.
Because of this, the calculated geometric capacitance Cge, can be compared to the ca-
pacitance determined by the gate voltage-dependent magneto-transport measurements as
shown in Fig. 3.7b). The dependence of the experimentally determined total carrier den-
sity on the gate voltage yields the capacitance Cgeg exp = 0.38 x 1073 F/m?, which is slightly
higher than the theoretically calculated value Cgeo ~ 0.33 x 107> F/m*. The deviation is
probably due to the uncertainty of some parameters. Especially the values for the dielec-
tric constant of the Cdy 7Hgp 3Te and the exact thicknesses of the layers are not well known.
These uncertainties are no concern since the absolute value of the geometric capacitance is
not relevant for the determination of the carrier distribution inside the HgTe layer, which is
the main interest of this work. The geometric capacitance nevertheless enables a rough es-
timate of the bulk bandgap based on the Landau level dispersion data shown in Fig. 3.11b)
and Fig. 3.12. There are band edge-like features indicated as black dash-dotted lines, which
are about AU = 0.4V apart. Assuming the occupation of only the top surface state using

C
Unigre = —24_AU (4.11)

Cq,topTSS
yields a band gap of AEqny toprss ~ 20meV. The bottom surface state can also be accounted
for using the equivalent circuit diagram shown in Fig. 4.2b). The quantum capacitance of
the HgTe layer in the bulk band gap Cy ngre gap is then given by

-1
Cq,HgTe,gap = Cq,topTSS + (1/Cgeo,HgTe + 1/Cq,botTSS) . (4.12)

Assuming a bottom surface state density of nporss = 2 x 101 cm™2, as estimated from

Fig. 3.12), yields a band gap of AEg gre ~ 15meV. Both values are in the order of the ex-
pected band gap of ~ 20meV according to Ref. [47]. A more refined value can be determined
by the k- p calculations with the program "kdotpy" [29], as shown in Fig. 2.6f), yielding a
value of Egap = 14 — 15meV dependent on the k-direction. This accordance is a motivating
interim result. It suggests that the chosen assignment of the observed transport channels
is plausible.

Now, the whole observed behavior will be reproduced with this capacitor model. All
transport channels observed in the magneto-transport experiments have to be accounted
for. Due to the observation of QHE these states are modeled as two-dimensional states.
To simplify the nomenclature we will label these states VPS, in anticipation of the expla-
nation given in Sec. 4.4. The dimensionality determines their DOS and consequently their
quantum capacitance (see Eq. 4.6). The DOS of a two-dimensional quadratically dispersing

band is
Meft

Dq,quad,ZD = gsgvﬁy (4.13)
where g5 and g, are the spin and valley degeneracy, respectively. For HgTe, the relevant
bands are situated at the I'-point, which prevents any valley degeneracy making g, = 1.
The value of the spin degeneracy gs depends on the type of band and is either g5 = 1 for
the TSSs or g5 = 2 for the VPSs. The quantum capacitance of the additional surface states is

determined using Eq. 4.6 to
Meff

2nh?’

Cq,vps = &s€° (4.14)
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To account for the VPSs the circuit diagram is extended by the quantum capacitance of
these bands Cg vps parallel to the quantum capacitances of the TSS, as shown in the circuit
diagram in Fig. 4.2c). The overall quantum capacitance then reads

-1
Cq,HgTe = Cq,topTSS + (I/Cgeo,HgTe + 1/Cq,bo'[TSS) + Cq,VPS- (4.15)

The relevant quantum capacitances Cq, are determined based on the observed LL disper-
sion in Fig. 3.11b). The amount of observed transport channels is used to determine the
appropriate equivalent capacitor circuit or equivalently the contributing quantum capac-
itances. The dispersion of the VPS is for simplicity assumed to be quadratic, which yields
the quantum capacitance according to Eq. 4.14 with with g5 = 2. The onset and vanishing
of the VPS contribution can be translated into a gate voltage-dependent effective mass of
the VPS. The values for the effective masses of the conduction band and valence band like
VPS of HgTe are estimated with k-p calculations performed with "biscuit" [29] as shown in
Fig. 2.6f). The gate voltage dependent effective mass for the VPS reads then

0.2 Mel Ugate < _2.0V
Meff(Ugate) = none _2.0 < Ugate < _1.6V
0.02 mel _1.6V< Ugate.

This mefr(Ugate) enables the calculations of the quantum capacitance of the VPS over the
full range using Eq. 4.14. In contrast to the quantum capacitance of quadratic bands which
is independent of n, the quantum capacitance of the linearly dispersing TSS depends ac-
cording to Eq. 4.10 square root like on the density. This would require an unintuitive iter-
ative solution. This is why, instead the quantum capacitance is calculated using an appro-
priate average density yielding Cqtoptss(Mavg,top = 0.7 x 10 cm™2) = 7.5 x 107 F/m?* and
Caq,botTss (Mavg,bot = 2.0 x 101 cm™?) =12 x 107> F/m? for the top and bottom TSS, respec-
tively. With these values Eq. 4.15 is used to estimate the density distribution based on the
ratio of the capacitances. The result is shown in Fig. 4.3 on top of the FFT data of Fig. 3.12.
In the experiment, the degeneracy of the VPS can be lifted due to the Zeeman or Rashba ef-
fect. This splitting is imitated by slightly adjusting the effective mass for one spin species of
the VPS. The experimentally observed density distribution is qualitatively as well as quan-
titatively well reproduced.

The overall good quantitative agreement is remarkable. The only very weakly gate voltage-
dependent bottom TSS, as well as the strongly varying gate voltage dependence of the top
TSS with the onset of the VPSs, is well reproduced. The decent agreement of the occupation
of the VPSs, even though the model only includes quadratic dispersing bands, is surprising.
Nevertheless, there also exist deviations. The filling of the VPSs is not perfectly reproduced.
The model produces a stronger gate voltage dependence for the bottom TSS as experimen-
tally observed. These differences between the capacitor model and the experimental re-
sults might be due to the oversimplified dispersion, the localization of the involved bands,
or the uncertainty in some parameters as the dielectric constants. The simplified band
structure is shown in Fig. 4.4 compared to the realistic band structure shown in Fig. 2.6. The
approach of modeling the magneto-transport using a capacitor circuit is not new. Similar
capacitor circuit diagrams are used in Refs. [57, 76]. The chosen circuit diagrams differ par-
tially, however. In Ref. [57], an additional parallel geometric capacitance is added, which
mimics a grounded substrate. In our experiment, the substrate is neither conducting nor
contacted. This is why this capacitance is neglected. The circuit diagrams of Ref. [76] only
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Figure 4.3: Shown is the density distribution onto the different bands of tensilely strained HgTe according
to the capacitor model on top of the densities extracted by the FFT analysis from the experimental data (see
Fig. 3.12). The occupation according to the capacitor model is shown for the bottom (top) TSS in green (blue),
the valence band like VPS in light and dark red, and the conduction band like VPS in cyan and magenta.

differ for the regime with additional states. There a geometric capacitance is added in se-
ries to the quantum capacitance of these states. This effectively localizes the states away
from the top of the sample towards its middle. In this work, these states are assumed to
be localized at the top surface of the sample. This assumption is based on the localization
calculated with self-consistent k - p calculations in Sec. 4.3. The capacitor circuit nicely vi-
sualizes the response of the different states to the applied gate voltage, as described in the
next Section.

4.1.3. THE CAPACITOR CIRCUIT DEPICTED AS BAND STRUCTURE

In this Section, the gate voltage dependencies from the capacitor model are translated into
its equivalent band structure to access its physical implications. The capacitor model is de-
picted as band structure by plotting the dispersion of the bands corresponding to the quan-
tum capacitances of the equivalent circuit of Fig. 4.2. The resulting band structure is shown
in Fig. 4.4a). The topological surface states are modeled with linear dispersion. The density
of the bottom surface state (green) is increased compared to the top surface state (blue)
to account for the bottom doping layer. The valence band like VPSs (red) and conduction
band like VPS (purple) are assumed to disperse quadratically. The nodes in the electric cir-
cuit determine the action of the gate on the bands. The occupation of bands is indicated
by the chemical potential (dashed lines). The different connections of the quantum capac-
itances in the circuit diagram cause effectively an energetic shift of the bands with respect
to each other. Based on the circuit diagram the top TSS and the VPSs are not shifted with
respect to each other and are occupied in the same fashion. This is why these states are
depicted together in Fig. 4.4b). The bottom TSS is treated separately since it is occupied
differently due to the geometric capacitance of the HgTe layer, as shown in Fig. 4.4c).
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Figure 4.4: The band structure representing the capacitor model is shown in a) with the double degenerate
quadratically dispersing valence and conduction Volkov-Pankratov state in red and purple and the top and
bottom topological surface state in blue and green. The experimentally accessible energy range for the re-
spective bands is indicated by the minimal (grey dashed) and maximal (olive dashed) achievable chemical
potential in b) for the top TSS and VPSs in c) for the bottom TSS.

The resulting highest and lowest chemical potentials are indicated as dashed blue and grey
lines in Fig. 4.4b) for the top TSS and VPSs and in Fig. 4.4c) for the bottom TSS. This gives
an estimate for the energy range accessed by the experiment of —10meV< Er < 40meV for
the top TSS and VPSs. Only a small change in the Fermi level in comparison to the other
bands is observed for the bottom surface state. This behavior is caused by the different
localization of the states on either the top or bottom side, which is accounted for in the
model by the additional geometric capacitance of the HgTe layer for the bottom surface
state, as mentioned before. Since the chemical potential is constant over the whole sam-
ple, this implies a relative energetic shift of the bottom TSS with respect to the top TSS and
VPSs with gate voltage. A similar difference in the gate voltage dependence of the top and
bottom surface state is reported based on self-consistent k - p calculations by Y. Baum et.
al. in Ref. [57]. A 45nm thick slab of 0.3 % tensilely strained HgTe is analyzed based on the
six-band Kane Hamiltonian. The calculations yield a top gate voltage-independent bot-
tom surface state together with a top gate voltage-dependent top surface state for a density
range of 0.6 — 1.0 x 10! cm™2. For sufficiently strong gate voltages also the occupation of
the conduction and the valence band is reported. The top gate voltage independence of
the bottom TSS is explained by the screening of the electric field by the top TSS and the
bulk states. These stats are localized towards the top surface due to the electric field. Over-
all the reported behavior is consistent with the capacitor model. It should be kept in mind,
that only a limited gate voltage range is investigated by the self-consistent calculations in
Ref. [57]. To get a better understanding of the screening effects and localization of the dif-
ferent involved states similar self-consistent k- p calculations are presented in Sec. 4.3 after
first introducing the Kane model [22] in the next Section.
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4.2. THE KANE HAMILTONIAN

For the self-consistent k- p band structure calculations the eight-band Kane model [22] is
used. To be able to discuss self-consistent k - p calculations, the Kane model is briefly re-
viewed. The presented Hamiltonian is actually the sixband Hamiltonian since the so-called
split of bands (I';) are disregarded for the discussion. The I'; bands only cause quantitative
corrections to the band structure, but increase the extent of the Hamiltonian and do not
contribute to developing a physical understanding. The Kane Hamiltonian is given by the
symmetry of the lattice of HgTe as described in Sec. 2.1.1. HgTe crystallizes in a zinc blende
lattice, which is non-inversion symmetric and described by the Ty point group. Since the
inversion symmetry breaking is small, the inversion symmetric Oy, point group of the di-
amond lattice is used instead. The inversion symmetry breaking terms can be added in a
perturbative fashion afterward if necessary. The basis is given by the I bands, which are
introduced and discussed in Sec. 2.1.1. These states are
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Even though the detailed derivation of the Kane Hamiltonian is out of the scope of this work
and the interested reader is pointed to Ref. [19, 20] for a derivation based on the analysis
of the space group symmetry, a short motivation for the Hamiltonian shall be given. As the
starting point, the diagonal elements are chosen. These elements describe the energy of
the six bands at k = 0. Two bands of these bands each represent the two spin species and
should have the same energy for k = 0. Since the I's bands originate from the P orbitals
of the Te atoms, the four I's bands should be degenerate at k = 0 and differ from the two
I's bands, which are formed by the S orbital of the Hg atoms. A quadratic dispersion with
different effective masses for the |F8; i%) and the |F8; i%) are assumed. This procedure
yields the diagonal terms of the Hamiltonian which are given in Eq. 4.16.

For the off-diagonal elements, only a few comments on the general shape of the Hamil-
tonian are given. Since the Hamiltonian needs to be Hermitian to ensure real eigenvalues,
the condition Hiape,ij = leane,jl. requires only the construction of half of the off-diagonal
elements by the symmetry analysis. The k dependence of the off-diagonal elements can
be motivated by looking at the magnetic quantum number m; of the basis states, which
are coupled by these elements. The k. can be seen as ladder operators, which can change
the quantum number of a system, in this case m;. This gives the first idea for expected k
dependencies for the respective matrix elements.
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The exact allowed matrix elements, as well as their actual form, have to be derived by
analyzing the symmetry constraints given by the Oy, point group, as mentioned above. Ac-
counting for the spin-orbit coupling in the lowest order of perturbation theory the Kane
Hamiltonian reads in the convention of Ref. [19, 75]
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Thereby ¥ = (y3 —7y2)/2 and ¥ = (y3 +y2)/2 is used and [A, B] = AB — BA represents the
commutator and A, B = AB + BA the anti-commutator. The parameters for HgTe are given
in Table 4.1. The same arguments made to motivate the Kane Hamiltonian can be used
to identify the bands responsible for the creation of the topological surface states. The I'g
bands possess an inverted ordering to all four I's bands compared to the expected order
from the atomic limit. But only the |T's; + > bands possess the same quantum number
as the I's bands, identifying these bands as the topologically relevant partner bands. The
|F8 ; i%} is in contrast only a band that happens to exist at the same energy due to symme-
try constraints. Due to its subordinate relevance in a topological sense, it could be called
a spectator band. Even though the |F 8 i%) is topologically irrelevant, it is important to
describe the observed transport behavior as will be discussed in Sec. 4.3.

The above described Kane Hamiltonian represents unstrained HgTe which is a semi-
metal with quadratically dispersing conduction and valence bands that touch at the I point,
which is here called quadratic semi-metal. To access the different phases of HgTe, the sym-
metry of the Kane Hamiltonian has to be reduced. The symmetry is experimentally re-
duced via strained growth. The deformation of the crystal by accounting for its stiffness
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Table 4.1: Luttinger parameters taken from [77].

of the crystal is discussed descriptively in Ref. [25]. The resulting correction terms to the
on diagonal elements as well as the coupling between the I'g bands are shown explicitly in
Ref. [19, 75] based on the description introduced in Ref. [26]. The Kane model including
the terms for the strain, allows studying the realistic band structure for HgTe in different
phases, as introduced in Sec. 2.1.2. The 3D-TI phase is investigated with self-consistent
calculations in the following.

4.3. SELF-CONSISTENT k- p CALCULATIONS

The motivation for the self-consistent k- p calculations presented here is twofold. First,
to double-check whether accounting for the realistic band structure using the Kane model
yields the same qualitative occupation of states as the capacitor model (Sec. 4.1). Second,
the orbital character and spatial distribution of the involved states can be obtained. Un-
fortunately, the calculation of the exact experimental layer stack and thus a quantitative
comparison is not possible. A thickness of 70nm is chosen experimentally as the thick-
ness of the HgTe layer to ensure high crystal quality, while being thick enough to result in
a small subband splitting, so that the layer can be seen as a three-dimensional structure.
The resulting band structure with its subbands determined by k - p calculations for 70nm
thick slab is shown in Fig. 2.6f). This small subband splitting makes the self-consistent
carrier distribution demanding and challenging due to the sheer amount of possible con-
figurations. The amount of subbands is significantly reduced by choosing a thinner HgTe
layer with a thickness of 40nm, to ensure convergence for a sufficient parameter range.
Interpreting these results one has to keep in mind that the reduced thickness could cause
deviations due to a different potential shape and possible interaction of the surface states.
The dielectric constant (=permittivity) € describes the response of a material to an electric
field. For HgTe the dielectric constant is space-dependent since it has to account for the
different permittivity of the TSS compared to bulk HgTe (see appendix A). The dielectric
constant of HgTe might even be energy-dependent, which would need to be accounted for
by random phase approximation calculations [78]. Such calculations are far outside the
scope of this work. With these restrictions in mind, the calculations can still be used to
examine the qualitative behavior.

The calculations are performed using the program "kdotpy" kindly provided by Wouter
Beugeling [29]. The calculated structure is a semi-finite HgTe slap, which is infinite along
the x and y direction and finite along the z direction. The HgTe layer is 40nm thick along

the z direction and surrounded by two 10 nm thick Cdy 7Hgy 3Te barriers as shown in Fig. 4.5.

To describe this layer stack the above in Sec. 4.2 introduced Kane Hamiltonian with the ma-
terial parameters of Ref. [77] is used in the program "kdotpy". The layer stack of the exper-
imentally investigated sample possesses a bottom doping layer as shown in Fig. 3.1. This
doping layer is accounted for in the calculation via a finite starting density. This is done
indirectly by setting a starting chemical potential Er = 12meV as parameter. The electric
field additionally introduced by this doping layer is neglected. For the self-consistent de-
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Figure 4.5: The semi-infinite slab used for the self-consistent k - p calculations is shown. The layer stack is
sketched with the respective thickness, material, and dielectric constants € of the layers indicated. On the
right, the chosen boundary condition for the Hartree potential ® is sketched. The boundary conditions are
the electric field & which is the derivative of the Hartree potential with respect to the z direction d®/dz.

termination of the Hartree potential via the Poisson equation two boundary conditions are
necessary. Here the electric fields & at the boundaries of the HgTe layer are chosen, which
are equivalent to the derivative of the Hartree potential ® with respect to the z-direction
d®/dz = &. For the bottom Cdy 7Hgp 3Te layer & = 0 is used, while for the top Cdg7Hgp 3Te
layer an electric field representing the applied top gate voltage is chosen, as sketched in
Fig. 4.5. These calculations give the dispersions shown in Fig. 4.6 for Ugate = 0V meaning
d®/dz = 0 and for the highest reliable gate voltages. The presented gate voltages are the
highest ones, which still yield the expected linear dependence of the total density on the
applied gate voltage.

The determined density of 7y = 3.0 x 10! cm™2 compares reasonably well with the
experimental density of 7n1ss gap ~ 2.6 x 101! cm™2. The carrier density distribution of the
simulated band structure is slightly more symmetric with r1ss potp ~ 1.7 x 10! cm™ and
nTss,botkp ~ 1.3 X 10 cm™2 compared to the experimental densities of nTss,bo,exp ~ 1.9 x
10" cm™ and nrss opexp ~ 0.7 x 101 cm™2. Even though a more quantitative agreement
would be desirable, here this slightly less asymmetric starting position is accepted to cal-
culate a sufficient gate voltage range to examine the qualitative behavior. For sufficiently
strong negative voltages a band separates from the valence band. This band is called mas-
sive Volkov-Pankratov state [16, 79]. The name and properties of these states are addressed
in detail in Sec. 4.4. This hole-like massive VPS is occupied as shown in Fig. 4.6b). Equiv-
alently an electron-like massive VPS forms from the conduction band and is occupied for
sufficiently positive voltages as visible in Fig. 4.6c). The occupation of the involved states
for different effective gate voltages Ugfr is summarized in Fig. 4.7a). The total density for a
chosen electric field as boundary condition is calculated and then translated into Ugg us-
ing the experimentally determined gate action 7n(Ugate) = (7.0 +2.3 \l, X Ugate) x 10 cm™2 as
determined in Sec. 3.3.1. The calculations show a range of U, for which only the topo-
logical surface states are occupied. The occupation of the top TSS in blue changes more
rapidly with Ugg than the occupation of the bottom TSS in green. The occupation of the
first conduction band is found for Ueg > —1.3V and similarly the first valence sub band for
Uess < —2.5V. Qualitatively this behavior is consistent with the distribution of the charge
carriers found by the magneto-transport experiments. The density distribution obtained
with the FFT analysis already presented in Fig. 3.12 is shown again together with the den-
sity distribution determined by the capacitor model of Fig. 4.3 in Fig. 4.7b). The comparison
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Figure 4.6: Self-consistent k- p calculations with the Fermi energy Er placed in the bulk band gap for the gate
voltages Ugate = 0V in a), for the maximal trustworthy Ugate > 0V in b), and the minimal trustworthy Ugate <
0V in c). The starting Fermi energy is indicated by Egg as a dashed line together with the self-consistently
determined position of the electrochemical potential Er. The corresponding total carrier densities n, are
given together with the hole density np)es for ). The color code indicates the spatial localization of a state
via the normalized average position < z > /d.

of the experimental and the k- p calculation results show two differences. The gate voltage
window between the occupation of the bulk bands is in the self-consistent k- p calculation
with AUi., ~ 1.1V more than twice as big as the experimental one of AUex, ~ 0.4V. The
occupation of the bottom surface state changes with gate voltage for the calculation, while
in the experiment the occupation of the bottom surface state is nearly independent of the
top gate voltage. These effects could be due to the trade-offs needed to perform the self-
consistent k- p calculations at all. The gate voltage dependence of the bottom TSS could be
related to the thickness of 40nm in the calculation compared to the thickness of the exper-
imental layers of 70nm. The layer is thinner compared to the localization length of the TSS
making the surface states effectively more localized towards the middle of the sample and
potentially allowing for more hybridization between the top and bottom TSS. The reduced
thickness could explain the stronger top gate voltage dependence of the bottom TSS in the
k- p calculation than in the experiment. The apparent bulk bandgap size could be altered
by this hybridization or the different dielectric constants of the TSS and bulk HgTe that are
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not taken into account. Similar calculations are performed for a 45nm thick layer accessing
a density range of 0.6 — 1.0 x 10'! cm™2 in Ref. [57]. For this small density range, no change
in the occupation of the bottom TSS with the top gate voltage is found, as mentioned in
Sec. 2.3.4.
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Figure 4.7: The result of the self-consistent k- p calculated with the program "kdotpy" [29] for different ef-
fective gate voltages Uegr matched to the applied gate voltage by the total carrier density are shown in a). For
comparison the experimental FFT results together with the density distribution by the capacitor model (see
Fig. 4.3) are shown again in b). The experimentally determined size of the bandgap is indicated as grey arrows.
The inset of c) shows an exemplary chemical potential ® as a function of the layer thickness z calculated by
the self-consistent k - p calculation. In c) is the probability distribution |¥|? of the massive Volkov-Pankratov
states formed from the I's gy valence band at the momentum k = 0.2 nm~! (red) together with the massive
Volkov-Pankratov states formed from the conduction band (purple) and the top TSS (blue) at k = 0.07nm ™"
as function of the layer thickness z shown obtained by a k- p calculation with the spatial electrical potential
function obtained by self consistent k- p calculations shown in the inset.

With the qualitative gating behavior reproduced, the nature of the massive VPS can be
investigated. The spatial distribution of the massive VPS due to the Hartree potential is ex-
amined. The spatial probability distribution for the occupied I's yy hole-like VPS is shown
in Fig. 4.7¢) in red for the electrical potential shown in the inset. The probability distribu-
tion is shifted towards the top half of the slab. This indicates the localization of the band
with the applied electric field towards the top surface of the slab. To emphasize this shift,
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the spatial distribution of the electron-like massive VPS (purple) and the top TSS (blue)
are shown for comparison. This hole-like massive VPS (red) is shifted towards the top side
compared to the unoccupied electron-like massive VPS (purple), but is still less localized
than the top TSS (blue). This local shift is accompanied by a separation of this red hole-like
massive VPS from the remaining valence-subbands in energy as shown in Fig. 4.6c). The
remaining subbands are treated as the band continuum. In principle, the same effect is
expected for the I's bulk conductance band. The higher mass of the valence band makes
the valence band more sensitive to the variation of the electrical potential, since due to the
comparably large DOS already small local changes in energy can cause a redistribution of
a significant amount of charge carriers. The valence band is thus expected to follow the
spatial variation of the electrical potential more strictly than the conduction band. The
localization of the VPS and the top TSS onto the top surface justifies their equivalent treat-
ment in the capacitor model. The spatial separation of the bottom TSS is accounted for by
the geometric capacitance.

4.4, MASSIVE VOLKOV-PANKRATOV STATES IN HGTE

Cd,Hg;_,Te has been widely studied as an infrared detector before HgTe has been de-
scribed in the framework of topology [80]. The interface of Cd,Hg;_,Te with x > x. on
the one side and x < x, on the other side is investigated under the name band inverting
contact in Ref. [33]. The band structure of the two sides is equivalent to the band struc-
ture of HgTe and Cdy,yHgp sTe, respectively (see Fig. 2.3). Only the size of the bandgap is
renormalized according to the Cd content x. The interface is thus equivalent to the one
investigated in this work. An interface state between the conduction I'g 113 and the second
valence band I'g has been found. This interface state is reminiscent of the nowadays called
topological surface state. A similar interface state is also reported in the gapless quadratic
semi-metal unstrained HgTe based on the Luttinger model 2 in Ref. [81].

An intuitive access to the nature of the interface state is presented by B. A. Volkov and
O. A. Pankratov in Ref. [16]. They discuss an inverted contact using a four-band model with
mutually inverted bands motivated by the material Pb;_,Sn,Te. A linear dispersing non-
degenerate interface state is found. This interface state is independent of the details of the
interface, and forms due to the supersymmetry of the effective Hamiltonian. Additional
quadratically dispersing interface states are reported for interfaces with a smooth varia-
tion of the Cd content x. The resulting band structure of such a smooth inverted interface
is sketched in Fig. 4.8. The thickness of the smooth transition area determines the energy
scale of the bandgap of the additional massive surface states. These states are not very likely
to appear in our samples, since the length scale of such a content transition is expected to
be narrow. From scanning tunneling microscopy pictures presented in Ref. [25] the thick-
ness of the interface is estimated to ~ 1 — 2nm. For narrow interfaces, the massive surface
states are only expected to exist at inaccessible high energies. This creation mechanism is
extended in Ref. [17, 74] by accounting for a smooth drop of the electric potential over such
an inverted interface. The smooth electric potential drop is shown to be equivalent to a
smooth content variation and will also cause the formation of these additional massive sur-
face states. Similar electric field-induced additional surface states are found by magneto-

2For a description of different model Hamiltonians typically used to describe HgTe and materials alike see
Chapter 8.4.
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Figure 4.8: Shown are the interface states (surfaces states) at the interface between two materials with mu-
tually inverted bands. The states are named Volkov-Pankratov states [16], after the authors first describing
them, and are distinguished by their dispersion. Taken from Ref. [34].

transport measurements in the Dirac semi-metal compressively strained HgTe in Ref. [34],
which is discussed in detail in Chapter 8. Perfectly quantized QH plateaus are observed
over the whole accessible gate voltage range which covers densities of 7 ~ +10 x 10! cm ™2,
The electron transport is attributed to the topological surface states. Since the Dirac point
and the hole regime of the TSS is not accessible, the hole transport can not have the same
origin. The hole transport is traced to additional massive surface states which form due to
the applied gate voltage. The formation of such massive surface states is shown by 6 x6k- p
calculations which account for the applied gate voltage via a realistic Hartree potential.
These states are dubbed massive Volkov-Pankratov states due to the above discussed first
description by B. A. Volkov and O. A. Pankratov in Ref. [16].

Since the band structure of tensilely and compressively strained HgTe only differs for
small k and energy window around the energy where for unstrained HgTe the quadratic
band touching point would be. The formation of additional massive surface states is also
likely in the three-dimensional insulator phase. The additional observed hole-like trans-
port channel in parallel to the top and bottom topological surface states in the magneto-
transport measurements presented in Sec. 3 are thus identified as massive VPS. The Lan-
dau level dispersion of the hole-like transport channel in parallel to the top and bottom
TSS Landau level dispersion can be seen in Fig. 3.11 and its FFT analysis in Fig. 3.12. This
assignment is confirmed by the self-consistent k - p calculations shown in Fig. 4.6, where
a hole-like state, which is localized to the top side of the HgTe layer, is found for negative
gate voltages. The probability distribution close to the top side is shown in Fig. 4.7c) for the
potential shown in the inset. This is why the hole transport observed in tensilely strained
HgTe is also attributed to the massive Volkov-Pankrtov states. Similar VPS are observed in
Ref. [74] using high-frequency compressibility measurements that lead to the extension of
the smooth material content variation over an interface to a smooth electric potential vari-
ation by Ref. [17] and hence to the name VPS. These measurements are discussed in the
following Chapter 5.



HIGH FREQUENCY COMPRESSIBILTY
MEASUREMENTS

The above described VPS have already been proposed to describe the high-frequency com-
pressibility measurements on tensilely strained HgTe for high positive gate voltages. The
high-frequency compressibility measurements give access to the DOS as a function of the
electrochemical potential. The routine to access the DOS is described by introducing the
device design used to measure the admittance and the model of distributed resistance-
capacitance required to extract the capacitance and resistance values. These quantities can
be transformed into the DOS and electrochemical potential. The results are interpreted
with the help of additional k- p calculations accounting for the applied electric field and
compared to the magneto-transport measurements.

5.1. THE MEASUREMENT SETUP

A complementary approach to investigate the 3D-TI tensilely strained HgTe is taken to-
gether with Inhofer ef.al. as presented in Ref. [74, 82] via high frequency compressibility
measurements. The surplus of these measurements over the quasi dc magneto-transport

measurements presented before is the access to the DOS D = g—& as a function of the chem-

ical potential Er !. To measure the high-frequency transport response a plate capacitor
structure consisting of the HgTe layer as backplate a dielectric and an Au top gate is em-
bedded into a co-planar waveguide, as shown in Fig. 5.1a) and schematically in Fig. 5.1b).
The capacitor device is fabricated with optical lithography analogous to the Hall bar de-
vices in Sec. 3.1.1. A stripe HgTe mesa is etched with an aqueous solution of KI/I,/HBr
[45]. To contact this stripe, 50nm Au/Ge and 50nm Au are deposited via electron-beam
evaporation on the with Ar* milling cleaned surface of the HgTe mesa. A top gate is fabri-
cated using a self-aligned process for the insulator and gate deposition based on a negative
optical resist with an undercut of ~ 0.4 um. As insulator 60 cycles of HfO, are grown by
low-temperature atomic layer deposition at a temperature of T = 30°C yielding a layer of
~ 10nm thickness, which extends into the undercut of the resist [61, 83]. As gate electrode,
a 100nm thick Au layer is deposited on top of a 5nm thick Ti sticking layer via in situ elec-
tron beam evaporation. This more directed electron beam deposition process compared to

IThe chemical potential and Fermi energy will be used equivalently in this work as Er. to avoid confusion with
the mobility .
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Figure 5.1: In a) a photograph of the plate capacitor device embedded into a co-planar waveguide is shown.
In b) a schematic of the device is sketched to show the lateral structure of the device. The AC bias is indi-
cated as a red wave. The Au gate on top of a HfO, dielectric/insulator covers an area of 44 x 20 um of the
stripe-shaped mesa [blue rectangle in a)] and allows together with the Au contact to apply a dc bias. In c) the
corresponding circuit diagram is shown. The gate voltage Ugate drops over the geometric capacitance Cgeo
and the quantum capacitance Cgngre. a) and b) are reprinted from A. Inhofer et al., Observation of Volkov-
Pankratov states in topological HgTe heterojunctions using high-frequency compressibility, PRB 96, 195194
(2017) [74]. Copyright 2017 by The American Physical Society.

the atomic layer deposition growth restricts the Au gate layer to only reach up to ~ 0.4 um
to the edge of the HfO, insulator, thus preventing shorts to the HgTe layer. For the coplanar
waveguides, 200nm of Au/Ge and 200 nm Au are evaporated onto the sample. The detailed
recipe can be found in Ref. [82]. The finished device is shown in Fig. 5.1a).

From a physical point of view, the device resembles a simple plate capacitor with an
Au top plate, the HfO, and Cdy7Hgp 3Te layer as dielectric and the HgTe layer as the bot-
tom plate. The area of the plate capacitor is given by the overlap of the Au gate with the
HgTe layer, which has a length L = 44 um and width W = 20 um. This plate capacitor can
be extended to account for the quantum capacitance of the HgTe layer by using a capaci-
tor circuit analogous to Sec. 4.1. Since the ground is connected via the HgTe layer, Cyo ? is
made up of a series connection of the quantum capacitance of the HgTe layer Cy and the
geometric capacitance Cge, 0Of the metal-topological insulator capacitor as schematically
shown in Fig.5.1c) and 4.2b). This is the same equivalent capacitor circuit as for the Hall-
bar device. The device is designed to maximize the measured admittance spectrum Y (w)
as a function of the angular frequency w = 27 f, where f is the frequency. The admittance
Y(w) = Z(w)™! is the inverse of the complex impedance Z(w). The co-planar waveguide
matches the impedance of the structure to the 50Q impedance of the measurement circuit
[82]. This prevents reflection of the measurement signal on the device. A thin insulator
of 10nm thick HfO, and a 5nm thick Cdy;Hgp 3sTe capping layer are chosen to maximize
the capacitance of the device and consequently the amplitude of the admittance signal.
HfO, is used as insulator layer due to its high expected dielectric constant of €eoretical = 25
[84]. Even though the 10nm thin HfO, layer grown by low-temperature atomic layer depo-
sition only yields a value of € ~ 3.6 according to the analysis of Ref. [74], this still provides
a sufficiently strong measurement signal. The deviation of the dielectric constant from the
literature value is shortly assessed in the following. Thicker HfO; layers of 15nm and 30nm
thickness grown by low-temperature atomic layer deposition yield € ~ 7, in Ref. [61]. The

2All capacitances are given as capacitance per unit square for convenience.
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Figure 5.2: An exemplary complex admittance spectrum Y (Re(Y) in red and Im(Y) in blue) is shown as a
function of the frequency f at a temperature of T = 10K in a). The low-frequency limit is shaded in green
and the high-frequency limit in grey. In b) the circuit diagram for the distributed resistance-capacitance
model is drawn. The infinitesimal resistances and capacitances are labeled by R dx and C dx. The contact
resistance R, and the DC gate voltage Ugate as well as the AC driving voltage Uexc are also indicated. a) is
reprinted from A. Inhofer et al., Observation of Volkov-Pankratov states in topological HgTe heterojunctions
using high-frequency compressibility, PRB 96, 195194 (2017) [74]. Copyright 2017 by The American Physical
Society.

permittivity of HfO, is determined from the capacitance of the measured devices. This re-
quires a value for the permittivity of Cdo 7Hgo 3 Te. In Ref. [61] ecdngre ~ 10 is used following
Ref. [80], while in Ref. [74] a value of ecqugre ~ 8.5 is taken based on Ref. [85]. Still, a factor of
two is more than expected from the difference in the choice of ecqugre. This deviation could
point towards some thickness dependence of enfo, for thin layers due to the complicated
growth start [84]. In this work € 0, ~ 3.6 and ecangre ~ 8.5 is used, following Ref. [74].

The measurements are performed with a vector network analyzer in a frequency range
of f =50kHz—8GHz in a cryogenic radiofrequency probe station at a temperature of T =
10K on samples fabricated from wafer Q2837. A standard in situ calibration technique
is performed. Commercial calibration samples and fabricated dummy structures, which
mimic the actual sample, are used to de-embed the admittance signal of the sample from
contributions of the circuitry. The details of this procedure are described in Ref. [82]. An
exemplary measurement of the frequency f = w/2n dependent complex admittance Y (w)
is shown in Fig. 5.2a). To interpret the admittance spectrum Y (w) and extract the quantities
of interest, namely the capacitance and resistance, the distributed resistance-capacitance
model from Ref. [86] is used. This model accounts for the actual device design, as schemat-
ically shown in Fig. 5.1b). The excitation signal is allowed to propagate inside the HgTe
layer before transferring into the Au top plate.
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The resistance and capacitance are defined as one-dimensional infinitesimal quantities
as a function of the propagation direction as shown in Fig. 5.2b). This gives a set of coupled
differential equations describing the complex admittance with the solution

tanh (\/ ia‘lCtotsz)
\/ io._lctotwLZ '

where i is the imaginary unit. A fit of the model to the measurement data is shown as
dashed lines in Fig. 5.2a). The model reproduces the measurement data well and thus al-
lows to extract the overall capacitance Cio; and the conductivity o. Before interpreting the
extracted quantities first the seemingly complicated admittance spectrum shall be better
understood by looking at the low and high-frequency limits. The complex admittance Y (w)
given by Eq. 5.1 reduces in the low frequency limit to

Y()/W =iCnwL

(5.1)

Im (Y (@ ~0)) = Cot Lw (5.2)
and ,
C 3
Re (Y (w ~ 0)) = %W?wz. (5.3)

A linear fit to Im (Y (w ~ 0)) yields the total capacitance Ci¢ according to Eq. 5.2. Know-
ing Cyo the conductance o can be determined by a quadratic fit to Re (Y (w ~ 0)) following
Eq. 5.3. Realistic devices possess a finite access resistance due to the contact to the de-
vice, which alters the measured resistance, but not the capacitance, for low frequencies.
This access resistance can be determined and corrected by the analysis of the full mea-
sured frequency range, which is done for all presented resistance and capacitance values.
The access resistance is not specifically addressed, since it is device geometry specific. A
detailed description is given in Ref. [82]. The low-frequency part of the measured data is
highlighted in green in Fig. 5.2a). The imaginary and real part of Y (w) follow the expected
linear and quadratic behavior, respectively. In the high frequency limit, Eq. 5.1 reduces to

Re (Y (w — 00)) ~ Im (Y (@ — 00)) ~ W Ctot%w. (5.4)

The high frequency limit is highlighted in grey in Fig. 5.2a), for which the measured real and
imaginary part of Y (w) are indeed alike. Since the low and high-frequency limit confirms
the validity of the model, the focus is now shifted back to the results obtained with the fits
of the admittance spectrum over the full frequency range.

The total capacitance and inverse conductance obtained by fitting the distributed resistance-
capacitance model (Eq. 5.1) for the full measured frequency range in the hysteresis free gate
voltage range of Ugate = +3V are summarized in Fig. 5.3a). The total capacitance Ci; and
the inverse conductance ¢! are shown as function of the chemical potential Er where Ep

is determined from
Ctot

Er(Ug) = ef—dUg. (5.5)
Cq
The total capacitance, shown in blue in Fig. 5.3a), features a clear minimum close to Er =

0eV. Interestingly the maximum of the resistivity is shifted towards a more negative Er in
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Figure 5.3: In a) the total capacitance Ci, and the inverse conductance o~ ! are shown as function of the
electrochemical potential Er. In b) the quantum capacitance Cq extracted by accounting for the insulator ca-
pacitance Cins is shown together with error bars indicating the uncertainty due to the value of Ci,s. The green
dash-dotted line indicates the lowest expected quantum capacitance estimated by the k- p band structure
of tensilely strained HgTe. The dashed black line is a guide to the eye to highlight the linear dependence of
the quantum capacitance on the chemical potential for Er > 0eV. The presented range of Er corresponds to a
gate voltage range of Ugate = 3 V. a) and b) modified from A. Inhofer et al., Observation of Volkov-Pankratov
states in topological HgTe heterojunctions using high-frequency compressibility, PRB 96, 195194 (2017) [74].
Copyright 2017 by The American Physical Society.

comparison to the minimum of the capacitance. To get a more intuitive access to the phys-
ical origin of this offset, the quantum capacitance Cgq is determined using

Cq = (Ciot ~ Coe )_1 (5.6)

q tot geo . .

The geometric capacitance Cgeo could be determined following Sec. 4.1.1 using the de-
vice dimensions and material parameters, but the necessary value, especially the dielectric
constants, come with notable uncertainties. This is why the total capacitance is instead
extracted from the admittance measurement for the highest available gate voltage. Since
for high carrier densities the DOS can be taken as infinite, the quantum capacitance Cq
becomes infinite as well. This yields Cgeq ~ Cior ~ 2.6 mF/ m?. The resulting quantum ca-
pacitance Cq is shown as function of the electrochemical potential Er in Fig. 5.3b). The
quantum capacitance Cy still shows a minimum close to Er = 0. The minimum of the DOS
does not coincide with the maximum of the resistance. This observation is investigated
further in the following Section by considering the band structure of HgTe.
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5.2. INTERPRETATION BASED ON THE DIRAC SCREENING MODEL

In this Section the information about the DOS of the HgTe layer is extracted from the quan-
tum capacitance spectrum Cq(Ep). For a system like HgTe with multiple bands, the con-
tributions due to the individual DOSs of the contributing bands to the total quantum ca-
pacitance have to be taken into account. As a starting point, the Dirac-screening model of
Ref. [47] is used, which is summarized in the state of the art of research in Sec. 2.3.4. Only
the top and bottom topological surface states are relevant according to this model. This is
illustrated again in Fig. 5.4a), which shows the exclusive occupation of the TSS for a positive
gate voltage within the Dirac-screening model.
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Figure 5.4: In a) the band structure of a 70nm thick 0.3% tensilely strained HgTe layer with a 6-band k- p
Kane model which is shown, as already presented in Fig. 2.9c). The Fermi energy Er is indicated as a dotted
black line and the top and bottom TSS are highlighted in blue and red, respectively. Reprinted from C. Briine
et al., Dirac-Screening Stabilized Surface-State Transport in a Topological Insulator, PRX 4, 41045 (2014) [47],
Attribution 3.0 Unported (CC BY 3.0). In b) the equivalent capacitor circuit is shown that represents the
actual device by accounting for the quantum capacitance of the HgTe layer Cygre, which is calculated based
on a further equivalent circuit including the quantum capacitances of the topological surface states Cq top/bot
Volkov-Pankratov states Cqvps, and the geometric capacitance of the HgTe bulk Cgeo bulk, as already shown in
Fig. 4.2a) and c).

Following the same procedure as in Sec. 4.1 a capacitor circuit diagram is designed to ac-
count for the quantum capacitances Cqop and Cqpot, appropriately. The measured Cq is
a parallel circuit of the quantum capacitance of the top TSS Cg1op in parallel to the capac-
itance made up of the quantum capacitance of the bottom TSS Cg o in series with the
geometric capacitance of the HgTe bulk Cgeopuk. The corresponding effective circuit dia-
gram is shown in Fig. 4.2b) and again reprinted here in Fig. 5.4b). This capacitor circuit has
some implications which account for the sensitivity of the capacitance measurements to
different states. Since the quantum capacitance Cgpot(72 > 0.5 x 101 ¢cm™2) > 6mF/m? (see
Eq. 4.10) is in series with the smaller geometric capacitance of the HgTe layer Cgeo buik =
€0€R,HgTe/ dHgTe = 2.7mMF/ m?, the total capacitance of this parallel channel is in good ap-
proximation given by the geometric capacitance of the HgTe layer Cparatel ~ 2.7mFE/ m?. A
more precise value including Cq ot would yield Cparagtel ~ 2.4mF/ m? which is not much
different. The parallel path of Cgeo,huik in series with Cg ot is expected to mainly act as con-
stant "parasitic" capacitance. Or in other words, the measured capacitance depends only
very weakly on the quantum capacitance of the bottom TSS. The negligible contribution of
the bottom surface state is visualized in Fig. 4.4c). There the comparable small change in
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the occupation of the bottom surface state with the top gate voltage is depicted. The quan-
tum capacitance Cq consequently represents the gate voltage dependence of the quantum
capacitance of the top TSS Cq top (Ugate) including the constant offset Cparaliel-

The minimum quantum capacitance Cg;min ~ 10mF/ m? > Cparallel at Er ~ 0.00eV is thus
an meaningful and interesting quantity. Assuming a topological surface state with acces-
sible Dirac point one would expect to find a zero DOS and thus Cparaie @8 @ minimum in
contrast to the observed finite Cg;min. The zero DOS of a Dirac point would also be expected
to be accompanied by a resistance maximum. Here the resistance maximum is shifted to
Er ~ —0.08 eV, where hole transport would be expected. To explain this behavior the realis-
tic band structure of tensilely strained HgTe has to be considered. The corresponding band
structure is shown in Fig. 2.6f) as calculated by k- p and in Fig. 2.6¢) as determined by DFT
calculations. The Dirac point of the TSS is buried in the bulk valence (I's yi;) band. The
position of the TSS Dirac point differs in the two calculations due to the different surface
potentials accounted for. The k- p calculation in Fig. 2.6f) assumes an ideal interface to the
Cdy 7Hgp.3Te capping layers. The Dirac point then lies ~ 80 meV below the valence band
edge. The DFT calculation also places the Dirac point inside the valence band edge, but
closer to the valence band edge. The Dirac point is nevertheless inaccessible for both cal-
culations. Consequently, zero DOS is unattainable in tensilely strained HgTe, and the Dirac
point of the top TSS can not be the origin of the observed minimum in C.

To find an alternative reason for the observed minimum capacitance, the focus is shifted
back to the overall Cy(Ef) spectrum. The quantum capacitance of the two-dimensional lin-
ear dispersing topological surface state depends according to Eq. 4.7 linearly on Er. For
Er > 0eV this resembles the experimental observation well, as indicated by the dashed
black line in Fig. 5.3b). The minimal quantum capacitance can be estimated by reformu-
lating Eq. 4.7 to include the Fermi wave vector k. The equation then reads

2

Cq;lin;ZD (kF) = he_l)p kF (5.7)
In the k- p band structure, as shown in Fig. 2.6f), the smallest achievable DOS is found for
Er right above the valence band edge at kp.jin = 0.10 nm~!. Taking the Fermi velocity to be
VRt = 0.5 x 10°m/s [51, 87], this yields based on Eq. 5.7 Cqjin2p ~ 8mF/m?* and is indicated
as dash-dotted green line in Fig. 5.3b). This value is only slightly lower than the experi-
mental observed minimal quantum capacitance. Alternatively, the surface state densities
are also extracted from the FFT analysis of the gate voltage-dependent magneto-transport
data shown in Fig. 3.12b). The valence band edge lies at Ugate = —2V as indicated by a dash-
dotted black line and yields 7opmin ~ 0.6 x 10" cm™2. This density compares reasonable
well with the extracted value of kg.pin = 0.10nm™! from the k- p calculations which corre-
sponds to Nopmin ~ 0.8 x 10!t cm™2. Using the relation between kg and n for a 2DEG given
by Eq. 4.9, Eq. 5.7 is reformulated to include the density n explicitly as Eq. 4.10, which reads

eZ
Cq,1ss = h_ 4 n. (5.8)

VF
With np,min and Eq. 5.8 a minimum quantum capacitance of Cq min,est ~ 7mF/ m? is de-
termined. Together with the above discussed "parasitic" parallel conductance due to the
bottom surface state Cparatiel ~ 2.4mF/ m? these numbers reproduce the observed minimal
capacitance of Cg;min ~ 10mF/ m? well. The coexistence of electrons and holes, as seen in
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the k- p calculation shown in Fig. 2.6f), also offers an explanation for the observed shift
of the resistance maximum towards a more negative Er compared to the minimum of the
quantum capacitance Cy min. The conductivity o and consequently the resistance depends
according to Eq. 3.2 not only the density 7, and thus the DOS, but also the carrier mobility
u. The holes, which are introduced for Er < 0, possess a much lower mobility due to their
higher effective mass compared to the electrons, as determined in Sec. 2.3.3. This means
the overall conductance can even reduce when the overall carrier density is increased. Ad-
ditionally, the introduced holes can act as a new scattering source for the electrons reducing
the overall conductance. The linear DOS which is observed for E;f > 0¢€V, is consistent with
the signal being dominated by the top TSS as expected from the Dirac screening model.
The validity of this simple first assumption is examined in the next Section.

5.3. REINTERPRETATION BASED ON THE CAPACITOR CIRCUIT MODEL
The results of the high-frequency compressibility measurements allow extracting the Fermi
velocity vr. The quantum capacitance Cq as a function of the electrochemical potential Er
is analyzed using the Equation for the quantum capacitance of a two-dimensional linear
dispersing band given by

e’ 1

——— —FF. 5.9
27 h? vlzz F (5-9)

Cq,‘[opSS (Ep) =
This equation resembles Eq. 4.7 under the assumption of no degeneracy (g = 1). A linear fit
to the quantum capacitance data Cy(EF) is indicated in Fig. 5.3b) as dashed black line. The
slope of this linear fit yields vp = 1.6 x 10m/s. This Fermi velocity differs by a factor 2 — 3
from vgexp ~ 0.5 x 108m/s obtained by other measurement techniques in Refs. [51, 87, 88],
which is similar to vg;p ~ 0.7 x 10°m/s determined by k- p calculations using the program
"kdotpy" [29]. The theoretical value of vg,y is obtained by a linear fit to the dispersion
of the TSS for the energy range 50meV< E < 150meV and assuming the linear dispersion
E(k) = hvpk for the TSS. This procedure is visualized in Fig. 5.5, where the linear fit to the
blue TSS is drawn as a dashed black line.
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Figure 5.5: The band structure of HgTe determined by k - p calculation with the program "kdotpy" as shown
in Fig. 2.6f) is shown. Only the band edges of the conduction (purple) and the valence band (red) are shown
together with the topological surface state (blue). The dashed black line shows a linear fit to the dispersion of
the surface state for the energies 50meV< E < 150 meV.
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To investigate the origin of the discrepancy of the Fermi velocity vr by a factor of 2 - 3,
the assumptions made for the analysis are revisited. Using the Dirac-screening model and
accounting for the capacitances of the top and bottom TSS only the top TSS is relevant ac-
cording to the analysis in Sec. 5.2. In contrast, the magneto-transport measurements pre-
sented in Chapter 3 show the occupation of additional n-type transport channels, which
are by k- p calculations in Chapter 4.3 identified as electron-like massive Volkov-Pankratov
states. Even though a bandgap is observed in this measurements of Egap, ~ 0.015€eV be-
fore these electron-like massive VPS are observed, the bandgap is very small compared
to the investigated energy range of 0.4eV in the compressibility measurements. Since the
electron-like massive VPS are localized at the top surface, these states can be accounted
for in the effective circuit diagram as additional parallel capacitance. The correspond-
ing equivalent circuit diagram is shown in Fig. 4.2c¢) and again in Fig. 5.4b). The involve-
ment of multiple bands makes the situation more complex and may make the extraction
of band structure parameters from the quantum capacitance seem ambiguous. To qualify
this statement, the band structure of HgTe calculated with k- p using the program "biscuit"
is shown in Fig. 5.5. Only the band edges of the conduction and valence band together with
the TSS is depicted. The dispersion of the conduction band edge is taken as an approxi-
mation for the dispersion of the electron-like massive VPS. For high energies (E > 50meV)
the dispersion of the TSS and the electron-like massive VPS are approximately identical
and linear. For sufficiently high energies the non-degenerate TSS and the double (spin)
degenerate electron-like massive VPS can thus be treated as one linearly dispersing band
with the degeneracy factor g = 3. The quantum capacitance is then again given by Eq. 5.9,
which including the degeneracy factor explicitly reads

2

MEF = gCq,topss- (5.10)

Cqsrealistic = &

This equation allows to extract the Fermi velocity vg using a linear fit to Cq(Ugate) as shown
in Fig. 5.3b). The Fermi velocity is effectively renormalized by a factor of three, yielding the
Fermi velocity vg ~ 0.5 x 108m/s. This Fermi velocity fits the before mentioned reported
values of vgexp ~ 0.5 x 10 m/s. Furthermore, the involvement of three surface states agrees
with the three two-dimensional transport channels observed in the magneto-transport.

This interim result supports the validity of the model for HgTe introduced in Chap-
ter 4 based on the coexistence of topological surface states and Volkov-Pankratov states.
The high-frequency compressibility measurements still provide some open questions. The
quantum capacitance data for Er ~ 0eV and Ep < 0eV is more complicated. A more in-
depth analysis would be necessary, which is out of the scope of this work. It is unclear, why
no indications for the occupation of the conduction band continuum are visible for the
high positive electrochemical potentials Er. A possible mechanism could be the screening
of the applied electric field by the VPS. The self-consistent k - p calculations, as shown in
Fig. 4.6¢) and discussed in Sec. 4.3, show an energy shift of the electron-like massive VPS
away from the band continuum. This energy shift is accompanied by a shift of the prob-
ability distribution of the state towards the top surface, as shown in Fig. 4.3c). The shift
of the probability distribution towards the top surface is used to identify these states as
electron-like massive Volkov-Pankratov states in Sec. 4.4. The questions about the screen-
ing properties of the TSS and the whereabouts of the conduction band are the motivation
for the investigation of even stronger electric fields in the next Section.
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5.4. OBSERVATION OF MASSIVE VOLKOV-PANKRATOV STATES

Measurements up to high gate voltages are performed to examine the dispersion of the TSS
for high energies as well as their screening properties. These measurements revealed the
formation of a related, but different, type of surface state in HgTe, which has been dubbed
massive Volkov-Pankratov state [16, 17, 74] (see Sec. 4.4).

5.4.1. MEASUREMENTS UP TO HIGH GATE VOLTAGES

So far only the hysteresis free top gate voltage has been discussed. There, the quantum ca-
pacitance Cq shows a linear dependence on the electrochemical potential Er for positive
energies, as shown in Fig. 5.3b) up to Er ~ 0.43eV. According to Eq. 5.9 a linear energy de-
pendence can be taken as an indication for a linear energy dispersion in the momentum
k. The big range of Er with linearly dispersing states is surprising, even while accounting
for the occupation of the electron-like massive VPS. The focus is thus shifted from the ca-
pacitance to the resistivity, which is shown as a function of the electrochemical potential
in red in Fig. 5.3a). Starting from Ep = 0eV the resistivity decreases with increasing Ef as
expected with increasing charge carrier densities up to Er ~ 0.3eV. For Er > 0.3eV the re-
sistivity o~ ! appears nearly constant. This appearing constant resistivity is a minimum in
the resistance. The minimum is verified by extracting the total capacitance Ciy and re-
sistivity from complex admittance measurements for higher gate voltages. The extracted
values are shown in Fig. 5.6a). The high applied gate voltages cause hysteresis, which can
be seen by the saturation of the total capacitance Ci; and the resistivity o_; for gate volt-
ages Ugate > 6V. Full hysteresis loops are shown in Ref. [74]. A similar hysteresis effect is
observed in HgTe quantum wells in Ref. [89]. The hysteresis is attributed to a charge accu-
mulation in the interface between the gate insulator and the Cdy ;Hg 3Te layer. The charge
accumulation in the interface limits the maximum via the gate adjustable carrier density.
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Figure 5.6: In a) the total capacitance Cy, and the inverse conductivity o ! are shown as function of the gate
voltage Ugate and the electric field &. In b) the Diffusion constant D extracted from the ac-compressibility
measurements is shown as a function of the chemical potential Er. The potential energetic position of the
charge neutrality point and the onset of the massive Volkov-Pankratov state are marked as CNP and VPS,
respectively. The dashed line is a guide to the eye. a) is modified and b) is reprinted from A. Inhofer et al.,
Observation of Volkov-Pankratov states in topological HgTe heterojunctions using high-frequency compress-
ibility, PRB 96, 195194 (2017) [74]. Copyright 2017 by The American Physical Society.



5.4. OBSERVATION OF MASSIVE VOLKOV-PANKRATOV STATES 69

The high gate voltage range verifies the observation of a minimum in the resistivity for
positive gate voltage and justifies a more in-depth analysis of the measurements performed
in the hysteresis free gate voltage range. In contrast to the observed minimum in the resis-
tivity, a steady decrease of the resistivity is expected for the continuous occupation of one
well-behaved band. The change from a decrease of the resistance to an increase with in-
creasing gate voltage indicates either a change in the property of the band as a change of its
effective mass or the onset of a new band. To investigate this weak trend in more detail an-
other accessible quantity, the diffusion constant D, is introduced. The diffusion constant

is determined by

D (B = 2 EE) (5.11)
YT Cy (Er). '

The diffusion constant D is shown as function of the electrochemical potential Er in Fig. 5.6.
For Er > —0.02eV the diffusion constant linearly increases with Er up to a clear maximum
at Er ~ 0.3eV. For Er < —0.1eV the diffusion constant increases with more negative Ep, but
much weak than the increase observed for Er > —0.02eV. The maximum of the diffusion
constant D at Er ~ 0.3 eV is consistent with the position of the minimum of the resistivity.
This decrease of the diffusion constant suggests the onset of some kind of transport hin-
dering mechanism. The diffusion constant D(EF) can be translated into a mobility p using
the relation

B = Z2e2 (5.12)

U (Ep Cq Er . .

The observed linear dependence of D(EF) indicates a constant mobility of p ~ 120 x 103 %,
which compares well to the mobility determined by magneto-transport measurements for
the electron transport regime, as shown in Fig. 5.7a). The observation of a low mobility for
small carrier densities that increases up to a constant mobility for high electron densities is
consistent with screened charged impurity scattering. This is usually the dominating scat-
tering effect that limits the mobility in semiconductors at low temperatures [90]. For the
region of interest Er > 0.0eV the electron density is sufficiently high to screen the charged
impurities, yielding a constant mobility. The minimum of the diffusion constant lies as ex-
pected at Er ~ —0.1eV, which is the poition of the resistance maximum in Fig. 5.3a)) and
lower than the minimum of the DOS at Egminpos ~ —0.02eV. For Er < —0.1eV the diffusion
constant only increases weakly with increasing hole density. This yields a hole mobility in
the order of ppole ~ 20 x 103 CV—I‘;Z, also consistent with the value determined by magneto-
transport measurements. To sum up the analysis of D(EF) yields consistent mobilities with
the ones determined by magneto-transport measurements [see Fig. 5.7a)]. The observed
maximum in the diffusion constant indicates the onset some transport hindering mecha-
nism for Er > 0.3eV. The onset of a new scattering mechanism should also be visible in DC
magneto-transport, which is presented in the next Section.

5.4.2. REFERENCE MAGNETO-TRANSPORT MEASUREMENTS

To perform magneto-transport measurements at high positive electric fields a Hall-bar is
fabricated from wafer Q2837 following the recipe described in Sec. 3.1.1 with a few modifi-
cations. The mesa is etched with the aqueous solution of KI/I,/HBr (see Ref. [45]) and the
110nm thick SiO,Si3N4 multilayer insulator is replaced by a 15nm HfO, insulator is grown
by low-temperature atomic layer deposition. These steps are equivalent to the fabrication
process of the capacitor device described in Sec. 5.1. The insulator thickness is increased
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from 10 to 15nm to avoid insulator breakthrough due to the significantly increased area of
the insulator in the Hall bar device. The longitudinal resistance as a function of the gate
voltage Ryx(Ugate) is shown in Fig. 5.7a). A minimum in the high electron density regime
is observed, which is reminiscent of the minimum observed for the capacitor structure in
Fig. 5.3a). Its position is indicated in Fig. 5.7a) by the label VPS. The mobility p and total
carrier density n are extracted from the semi-classical magneto-transport regime following
the procedure described in Sec. 3.1.2. The density values are shown as additional x-axis
in Fig. 5.7a) together with the mobility as blue dots. The minimum in the longitudinal re-
sistance Ry coincides as expected with a maximum of the mobility p. This is consistent
with the reduction of the diffusion constant D found for the capacitor structure, as shown
in Fig. 5.6b).
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Figure 5.7: In a) the longitudinal resistance Ry is shown in black together with the mobility u as a function
of the gate voltage Ugate and equivalently the overall density n. In b) exemplary measurements of the Hall
resistance Ry, are shown as a function of the magnetic field B for high positive gate voltages Ugate as well as
lower voltages representing lower electron densities in the inset. The dashed lines are guides to the eye.

The gate voltage dependence of the longitudinal resistance and the mobility of the Hall-
bar is similar to the resistivity and diffusion constant determined by the compressibility
measurement, respectively. For the Hall-bar is the Hall resistance signal Ry, additionally
accessible. The semi-classical transport regime for low magnetic fields is analyzed. In the
electron regime, the Hall resistance Ry, (B) shows the expected linear dependence on the
magnetic field B up to gate voltages of Ugate ~ 0.9V, as indicated by the dashed olive line
in Fig. 5.7b). For Ugae > 0.9V, the Hall resistance Ry, starts to form an s-shape around
B =0T as shown in Fig. 5.7b). This s-shape deviation from the expected linear behavior
is emphasized by the black dashed extrapolation of the linear behavior for magnetic fields
B ~ £1T and the gate voltage Ugate = 2.9 V. The simplest model to reproduce such a curved
Hall signal is the Drude model for two channels with sufficiently different carrier densities
and mobilities, as introduced in Sec. 3.1.2. According to the model, the development of
the s-shape indicates the onset of a second sufficiently different transport channel. This
second transport channel shows no specific temperature dependence up to temperatures
of T =20K according to Ref. [91].



5.4. OBSERVATION OF MASSIVE VOLKOV-PANKRATOV STATES 71

Considering the band structure of HgTe, as shown in Fig. 5.5, it is surprising that a linear
Hall signal is observed for such a large electron density range of up to n ~ 30 x 10'! cm™2
in the first place. This is reminiscent of the observed linear DOS up to high Ugaee in the
compressibility measurements in Fig. 5.3b) of Sec. 5.1. This observation is traced in Sec. 5.3
to the fact that the top topological surface state and the conduction band edge possess
a nearly identical dispersion for high energies Er and thus high electron densities n. A
matching dispersion implies the same effective mass and thus also a similar mobility. This
means that the TSS and electron-like massive VPS should not be distinguishable in the
semi-classical regime and behave like one single degenerate transport channel. The onset
of a second transport channel in the Hall resistance Ry, suggests the occupation of a new
state as the source for the scattering identified by the observed reduction of the diffusion
constant. To find the responsible state, k- p band structure calculations are used in the next
Section.

5.4.3. BAND STRUCTURE CALCULATIONS FOR A FINITE GATE VOLTAGE

The discussion of the band structure of HgTe usually focuses on the energy regime a few
hundred meV around the I's and I's band edges at the I' point. The band structure of HgTe is
shown for this energy range in Fig. 2.6 based on ARPES, DFT and k- p. The energies reached
by the compressibility measurements and the magneto-transport measurements discussed
in this Chapter 5 exceed this energy window. The bulk band structure of tensilely strained
HgTe calculated using the program "kdotpy" is shown up to higher energies in Fig. 5.8a).
The electrochemical potential Er of the compressibility measurements can be mapped to
the energy of the band structure by assigning the minimum of Cq to the valence band edge
based on the discussion in Sec. 5.2. The observed low diffusion constant and mobility for
Er < —0.02eVin Fig. 5.6 is consistent with the flat dispersion of the bulk valence band edge.
The high mobility determined by the linear fit to D(Ef) for Er > —0.02eV similarly agrees
with the high mobility expected for electrons with a linear dispersion. No resemblance for
the breakdown of the diffusion constant at Eg ~ 0.3eV is found in the bulk band structure
of HgTe, as shown in Fig. 5.8a).

The bulk band structure does not consider any interfaces or any other intrinsic or exter-
nal potentials. In principle, the self-consistent k-p calculations presented in Sec. 4.3 could
be used to look for additional interface states for strong applied electric fields. Unfortu-
nately, these calculations are only possible for very small gate voltages and consequently
also very small changes in Er of AEr ~ 0.03eV compared to the relevant energy scale of
Er ~ 0.3eV and are thus unsuitable to find the responsible mechanism. Following the
same motivation, six-band k - p calculations are performed in Ref. [17, 74]. These cal-
culations reveal the formation of an additional interface state at E ~ 0.8eV, as shown in
Fig. 5.8b). This additional interface state is formed due to the drop of the electrical poten-
tial over the interface. Similar massive interface states are predicted by B. A. Volkov and
O. A. Pankratov in Ref. [16] in an interface with a smooth material content variation. The
authors of Ref. [17, 74] argue that a smooth electric potential is equivalent to a material con-
tent variation and also causes the formation of additional massive surface states. This cre-
ation mechanism is discussed in more detail in Sec. 4.4. Based on this resemblance these
additional massive surface states due to the electric potential are called massive Volkov-
Pankratov states to acknowledge the first description of such states by B. A. Volkov and O.
A. Pankratov in Ref. [16]. These additional massive states should possess a different disper-
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Figure 5.8: In a) the bulk band structure of tensilely strained HgTe is shown for higher positive energies as
calculated with the eight-band k - p using the program "kdotpy" [29] and depicted before in Fig. 2.6e). In b)
the energy dispersion along the interface direction is shown for an HgTe/CdTe interface obtained within a six-
band Kane model. The color encodes the density of eigenstates in a region of 6 nm around the interface. b) is
reprinted from A. Inhofer et al., Observation of Volkov-Pankratov states in topological HgTe heterojunctions
using high-frequency compressibility, PRB 96, 195194 (2017) [74]. Copyright 2017 by The American Physical
Society.

sion to the other occupied states and could constitute a new scattering mechanism. The
massive VPS are thus a reasonable mechanism for the observed breakdown of the diffu-
sion constant by the onset of a new scattering channel. These massive Volkov-Pankratov
states found for very high electron densities and strong electric fields are different from the
ones described in Sec. 4.4. The difference lies in the localization of these states. While the
VPS here are localized 6nm around the interface, the electron and hole VPS found in the
magneto-transport experiments (see Sec. 4.4) for much smaller densities and weaker elec-
tric fields are mainly localized inside the HgTe layer. Both states are still a consequence of
the shape of the Hartree potential across the heterostructure and interesting as well as not
neglectable additional surface states.
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5.5. SUMMARY OF HIGH FREQUENCY COMPRESSIBILITY MEASURE-

MENTS

The high-frequency compressibility measurements constitute a valuable complementary
measurement technique to the magneto-transport investigations. These measurements
grant access to the DOS as a function of the electrochemical potential. A linear DOS is ob-
served over a wide range of electrochemical potentials indicating the existence of a state
with linear energy dispersion. The observed reduction of the diffusion constant for strong
electric fields hints at the onset of a new state. Magneto-transport experiments on a Hall
bar device reveal an s-shaped curvature in the Hall resistance for low magnetic fields. Such
an s-shaped curvature is consistent with the onset of an additional transport channel ac-
cording to the two-channel Drude model. The modeling of this observation with the help
of k- p calculations with a realistic interface and accounting for the applied electric field
led to the discovery of an additional massive interface state. These states have been called
to Volkov-Pankratov states to acknowledge the work of B.A. Volkov and O. A. Pankratov on
inverted interfaces in e.g. Ref. [16].

Further insights could be gained by combining the complementary measurement tech-
niques of high-frequency compressibility and magneto-transport measurements. As a first
approach, measurements could be performed with Lock-In amplifiers at moderate fre-
quencies in the order of 10kHz in cryostats wired with coaxial cables. This frequency range
avoids the need for special high-frequency equipment. This way the capacitance can be
examined as a function of the magnetic field. The combination of resistance and capaci-
tance measurements could allow determining the localization of different states similar to
Ref. [76]. The observed transport features could thus be traced to the responsible states.






NEW INSIGHTS INTO THE
THREE-DIMENSIONAL TOPOLOGICAL
INSULATOR PHASE OF HGTE

Three-dimensional topological insulators have been theoretically predicted in 2008 by
Ref. [92]. Shortly after Bi;_,Sb, has been verified as experimental realizations using ARPES
in Ref. [6] and tensilely strained HgTe using magneto-transport measurements in Ref. [8].
The development of topological materials has been reviewed in Ref. [38, 39]. Neverthe-
less, a convincing identification and manipulation of all observed surface states present
a challenge up to the present day. The realization of a prototypical 3D-TI with purely
topological surface state-driven transport either needs very high magnetic fields, as for
Bi,_SbyTes—,Sey e.g. in Ref. [93], or is hindered by the existence of other states in parallel,
as in tensilely strained HgTe in Ref. [71]. This is where this work contributes. The qual-
ity of tensilely strained HgTe samples has further improved. Additionally, the MBE grown
layer stack and the lithographic fabrication recipe have been adjusted. In these samples,
quantum Hall effect and Shubnikov-de Haas oscillations can be observed for low magnetic
fields even below B = 0.2T. Because of this, six contributing transport channels have been
found. The analysis of the Landau level spectrum together with k - p calculations enabled
us to identify their respective origins. Two of these states are the top and bottom topolog-
ical surface states, which exist over the full investigated gate voltage range. The four other
transport channels are identified as additional surface states. The existence of such addi-
tional states was first proposed to explain the observations in high-frequency compress-
ibility measurements. In these compressibility measurements, a strong electric field has
been used to investigate the dispersion of the topological surface states for high energies
and revealed their linear dispersion over a wide energy range. These strong electric fields
have been shown with the help of k- p calculations in Ref. [17, 74] to cause the formation of
additional massive surface states, dubbed massive Volkov-Pankratov states. Such Volkov-
Pankratov states have been identified as the origin of the two hole-like transport channels
observed in the magneto-transport experiments. This has been verified with the help of
additional self-consistent k - p calculations. The additional observed electron type trans-
port channels are likewise contributed to massive Volkov-Pankratov states. To sum up, a
purely topological surface state-driven regime is found and the additional transport chan-
nels are identified as massive Volkov-Pankratov states created by the applied gate voltage.
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This indicates tensilely strained HgTe as an ideal three-dimensional topological insulator
for further more advanced experiments and devices.

For example, a first step towards the realization of topological qubits has already been
made based on hybrid superconductor HgTe devices [40]. Experiments with superconduc-
tors on 65 —90nm thick tensile strained HgTe devices in Ref. [14] have already shown a
4 —  -periodic Josephson supercurrent. The 4 — 7 contribution was relatively small due
to the coexistence of topological trivial surface states. Subsequent experiments on hybrid
superconductor devices based on topological HgTe quantum wells in Ref. [94] showed a
much stronger 4 — 7 contribution. An optimized MBE grown layer stack could suppress
the formation of Volkov-Pankratov states and maximize the carrier density in the TSSs and
thus the 4 — 7 contribution. The use of a Cdy7Hgp 3Te buffer layer with an iodine doping
layer and a protective Cdg 7Hgp 3Te capping layer is suggested. A minimal invasive etching
method as wet etching with aqueous KI/I,/HBr solution or inductively coupled ion etching
is necessary to provide an adequate interface for the superconductor to be able to induce
superconductivity.

Next to this more ambitious long-term goal, exist also more immediate questions and
potential developments. The bottom doping layer has been shown to change the occupa-
tion of the bottom TSS, while the top gate mainly alters the filling of the top TSS. Motivated
by this observation, the growth of samples on a doped GaAs substrate is suggested, since
the substrate can be used as a back gate. The combination of a top and back gate consti-
tutes an ideal playground to investigate the interplay and interaction of the TSSs with each
other and the massive Volkov-Pankratov states. The potential change in the occupation
of the bottom surface states can be increased by the combined use of the iodine doping
layer and the GaAs substrate as a back gate. The massive Volkov-Pankratov states are also
interesting themselves due to their non-trivial dispersion. Especially the hole-like massive
Volkov-Pankratov states with their "camelback"-like dispersion. These are predicted to po-
tentially host additional quantum oscillations without a Fermi surface [53, 54] (see App. B).
Due to the strong spin-orbit coupling in HgTe, an electric field can alter the symmetry of
these hole-like VPSs due to the combination of the bulk and structural inversion asymme-
try or equivalently the Dresselhaus and Rashba effect. An investigation on the shape and
symmetry of these bands via magneto-transport is presented in Ref. [95] and also examined
to some extent in Part III of this work.
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BULK PROPERTIES OF INVERSION INDUCED
DIRAC SEMI-METALS

The two-dimensional topological surface states are of special interest because of their topo-
logical protection, spin moment locking, and linear dispersion. It turns out that linear
dispersions are also interesting in three dimensions, where they are predicted to cause a
new magnetoresistance effect, the so-called chiral anomaly [11]. To address this new trans-
port effect this Chapter is arranged as follows: Materials with a linear bulk dispersion, so-
called topological semi-metals, are introduced. The focus lies on the subclass of inversion-
induced Dirac semi-metals since the investigated material compressively strained HgTe
belongs to this material class. Magneto-transport measurements reported on these topo-
logical semi-metals are reviewed. These show a reduction of the longitudinal resistance
with a magnetic field applied parallel to the current. This so-called negative magnetoresis-
tance is seen as a signature for the subsequently described chiral anomaly. This presents
the starting point for the subsequent presented magneto-transport investigations on com-
pressively strained HgTe. The fabrication process of the HgTe samples is described and
the performed magneto-transport experiments are summarized. The magneto-transport
experiments are performed with varying strength and angle of the magnetic field which
yields results consistent with the chiral anomaly as a driving mechanism. This accordance
is verified with the help of measurements with varying top gate voltage as well as impu-
rity concentration and strain in the HgTe layer. Additionally, other transport effects, as the
weak anti-localization, the planar Hall effect, and other band structure-dependent magne-
toresistance effects, are found and investigated.

7.1. TOPOLOGICAL SEMI-METALS

Recently, a variety of materials have been proposed to be topological semi-metals with lin-
ear dispersing bulk bands. These are mainly novel materials of which only some have been
successfully synthesized and measured. A comprehensive overview can be found in the
recent review papers [11, 96, 97]. Here only a brief overview of topological materials is
given to be able to place compressively strained HgTe within these. The class of topologi-
cal semi-metals can be divided into Dirac and Weyl semi-metals. Dirac semi-metals host
a linear crossing of degenerate bands that are protected by time-reversal symmetry T and
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parity symmetry ! P. Weyl semi-metals host non-degenerate linear crossing points. These
linear crossing points are protected by either T or P symmetry. The broken symmetry is
used to categorize the Weyl semi-metals into the magnetic Weyl semi-metals with broken
time-reversal symmetry T and the non-centrosymmetric Weyl semi-metals with broken
parity P.

The magnetic Weyl semi-metals are theoretically the simplest Weyl semi-metal with a
minimum of two symmetry enforced non-degenerate linear crossing points and thus an
ideal model system. Materials predicted as magnetic Weyl semi-metals are for example the
magnetic pyrochlores AyIr,O7 [12], which turns out to have a more complex band struc-
ture with 24 Weyl nodes. Even though the material has been successfully experimentally
synthesized in different phases, the Weyl semi-metal phase stays elusive [11]. DFT calcu-
lations predicted other materials like Co-based magnetic half Heusler compounds as mag-
netic Wely semi-metals [98], but these materials have not yet been experimentally real-
ized. The other class of Weyl semi-metals contains the non-centrosymmetric Weyl semi-
metals, which host four or a multitude of four Weyl nodes due to the T symmetry. The
most prominent representative of these materials is the TaAs family, for example, TaP, NbAs,
and NbP, which are predicted to host 24 Weyl nodes [99] and were successfully synthe-
sized and experimentally examined [100]. ARPES measurements on these materials reveal
the predicted disjoint surface states called Fermi-arcs. These Fermi-arcs and other surface
states in topological semi-metals, specifically inversion induced Dirac semi-metals, are ad-
dressed in detail in the subsequent Chapter 8. The bulk of these topological semi-metals is
predicted to cause another specific effect, the so-called chiral anomaly in Ref. [101], which
is addressed in detail in Sec. 7.3. The chiral anomaly leads to a reduction of the longitudinal
resistance with a magnetic field applied along the direction of the current. Initially, the ob-
servation of a negative MR in magneto-transport experiments on Weyl semi-metals led to
a controversial discussion whether the negative MR really stems from the chiral anomaly
or it is a measurement artifact due to a non-uniform current distribution, called current
jetting [102-104]. The chiral anomaly has also been measured in Dirac semi-metals and
is now widely accepted as the origin. The chiral anomaly is addressed in detail in Sec. 7.2
based on inversion induced Dirac semi-metals.

The complicated band structure of the experimentally realized Weyl semi-metals hin-
ders a comparison to HgTe. This is why the list of Weyl semi-metals is not more comprehen-
sive and the focus is shifted to the more comparable Dirac semi-metals. One realization of a
Dirac semi-metal is the phase at the quantum critical point between the conventional and
topological insulator phase. The first report of a negative MR in such a so-called composi-
tion tuned Dirac semi-metal is reported for Biy 97Sbg o3 in Ref. [105] and later in ZrTes [106].
Another realization is Cd,Hg;-,Te for the critical concentration x = x, ~= 0.17 [31]. This
phase is due to an additional flat band called Kane semi-metal [31] and is studied in de-
tail in Ref. [32]. The other realization of Dirac semi-metals are the band inversion induced
Dirac semi-metals, as compressively strained HgTe [34], Cd3As;, [107], and NazBi [108]. The
investigation of inversion-induced Dirac semi-metals based on the material compressively
strained HgTe is the focus of this work.

Ispatial inversion symmetry
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7.2. INVERSION INDUCED DIRAC SEMI-METALS

The state of the art of research on inversion induced Dirac semi-metals is summarized
as starting point for the investigations on compressively strained HgTe conducted in this
work. The inversion induced Dirac semi-metals CdszAs, and NasBi are introduced and the
reported magneto-transport investigations are summarized. A reduction of the magnetore-
sistance with magnetic fields along the current direction is observed. Different origins for
this negative MR are explored.

7.2.1. CD3AS,

CdsAs; is the most widely studied inversion induced Dirac semi-metal. A comprehensive
review can be found in Ref. [107]. Two possible phases of CdsAs, are discussed in the lit-
erature for ambient conditions. Traditionally, CdsAs; is assumed to crystallize in the non-
centrosymmetric space group I4,cd (No. 110), but recently the centrosymmetric group
I41/acd (No. 142) has been preferred. In the I4,cd space group the Dirac nodes could
be split into Weyl nodes, due to the lacking inversion symmetry. The I4;/acd is inversion
symmetric which preserves the degeneracy of the Dirac node. The Cd3As; crystal structure
is given by a nonprimitive tetragonal unit cell shown in Fig. 7.1a). The unit cell can be de-
scribed as being composed of 2x2x4 antifluorite cells with two missing cadmium cations as
shown in Fig. 7.1a). The crystal lattice is nearly cubic with (2a = 2b ~ ¢) with a small elon-
gation along the c-axis with (c¢/2a ~ 1.006) [107]. The symmetry of the crystal structure of
CdsAs; is reminiscent of the one of compressively strained HgTe discussed in Sec. 2.1. The
only difference is that the lattice is intrinsically tetragonal, while for HgTe the lattice sym-
metry needs to be reduced from cubic to tetragonal, artificially by strain. Not the doubling
of the lattice constant along c is the tetragonal distortion, but the deviation from perfect
doubling ¢ = 2a = 2b. The distortion from ¢ = 2a is roughly twice the elongation introduced
by the strain of € ~ 0.3 % in our compressively strained HgTe samples using the virtual sub-
strates, as described in Sec. 7.4.1.

Traditionally, the low energy band structure of CdsAs, is described by the six-band Bod-
nar model [109] as shown in Fig. 7.1b) . The two spin degenerate P-type bands, which cross
linearly at finite k, = +kp, determine the low energy dispersion. The conduction band in
light blue disperses linearly over the full momentum range and is called the light hole band
(LH). The name already indicates the existence of a band inversion. The valence band (red)
in contrast becomes flat for k > kp and is thus called heavy hole (HH) band. The second va-
lence band (green) possesses an S-type character and disperses linearly. From the atomic
limit, this S-type band is expected to lie above the two P-type bands, hence the traditional
name electron band (E). The band structure is thus an inverted one as the band structure of
HgTe presented in Fig. 2.3 on the left. The energy scale for the band gap Ep is determined
by DFT calculations, scanning tunneling spectroscopy, and magneto-optics measurements
to Ep =20 —40meV [107]. Magneto-optic measurements yield a value of Eg = —70meV for
the inverted band gap between the E and LH bands [110]. This model is verified by ARPES
measurements, shown in Fig. 7.1d). For comparison, the big k-range investigated by ARPES
has to be considered. The ARPES measurement shows a linearly dispersing conduction
band that touches the first valence band at E ~ —0.3eV which possesses a flat dispersion
for small k. Also, a second valence band with similarly steep linear dispersion as the con-
duction band is observed. The exact starting point of the band is not well resolved due to
the limited resolution of the ARPES measurement. Since the linear crossing points are of
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special interest, their position in the Brillouin zone is sketched in Fig. 7.1c). The investi-
gated (001) surface is perpendicular to the expected splitting of the Dirac nodes. Because
of this, not two linear crossing points at kp, but one Dirac node at k = 0 are expected for
this measurement direction. This is consistent with the observation in Fig. 7.1d) within the
measurement resolution. Such a band structure can also be described by the Kane model
given by Eq. 4.16 and is alternatively used to describe Cd3As, [108]. The Kane model is also
used to describe HgTe as discussed in Sec. 4.2.

-02 00 0.2
Momentum (1/A)

Figure 7.1: a) The non-primitive tetragonal unit cell of Cd3As; is shown next to the weakly distorted antiflu-
orite cell with two cadmium vacancies, which effectively composes the unit cell by taking it 2x2x4 times. b)
Resulting band structure of CdzAs; in the Bodnar model, where kp mark the position of the Dirac nodes with
the characteristic energy scales given by the bandgap Ep and the inverted band gap Eg. The bulk and (001)
surface Brillouin zone of CdsAs; is shown in c¢). In the surface Brillouin zone is the measurement direction in-
dicated as a dash-dotted line. The second-derivative image of the band structures measured by ARPES along
this direction is shown in d). a) and b) reprinted from I. Crassee et al., 3D Dirac semimetal CdsAs,: A review
of material properties, Phys. Rev. Mater. 2, 120302 (2018) [107]. Copyright 2018 by The American Physi-
cal Society. c) and d) are reprinted with permission from Nature Publishing Group: Springer Nature, Nature
Communications, Observation of a three-dimensional topological Dirac semimetal phase in high-mobility
CdsAsz, Madhab Neupane et al., Copyright © 2014, Nature Publishing Group, a division of Macmillan Pub-
lishers Limited. All Rights Reserved. (2014) [111].
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7.2.2. NA3BI

Another inversion induced Dirac semi-metal is the relatively novel material NasBi 2 NasBi
crystallizes in the hexagonal inversion symmetric space group P63/ mmc [108]. The hexag-
onally shaped Brillouin zone is shown in Fig. 7.2a). The Brillouin zone depicts the ARPES
measurement results from Ref. [113]. These measurements show two solitary linear cross-
ing points in the band structure, which are called Dirac nodes. The linear dispersion of the
conduction band over a wide energy range is shown in Fig. 7.2b) [113]. The ARPES measure-
ments shown in Fig. 7.2b) are consistent with the band structure calculations presented in
Ref. [108]. The calculations are shown in Fig. 7.2c) and yield a linear crossing between the
P-bands. The calculations show an additional third p-type valence band, but more impor-
tantly an S-type band energetically below the P-type bands. Na3Bi consequently possesses
the same inverted band structure as CdsAs, and compressively strained HgTe.

a) Pristine surface b)
0
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Figure 7.2: The ARPES measured map of the Fermi surface of NasBi is shown in a) for the whole 3D Bril-
louin zone together with its surface projection. The measured constant energy contours for different binding
energies are shown in b). The model low energy bulk band structure of NasBi is shown along A—T' and I' - L
direction in c). a) and b) from Discovery of a Three-Dimensional Topological Dirac Semimetal, NazBi, K.L. Liu
etal., Science, 343, 6173 (2014) [113]. Reprinted with permission from AAAS. ¢) reprinted from Z. Wang et al.,
Dirac semimetal and topological phase transitions in A3Bi(A=Na, K, Rb), PRB 85, 195320 (2012) [108]. Copy-
right 2012 by The American Physical Society.

7.2.3. MAGNETO-TRANSPORT OF INVERSION INDUCED DIRAC SEMI-METALS

One goal of this work is to identify compressively strained HgTe as Dirac semi-metal using
magneto-transport experiments. The magneto-transport features specific for the above in-
troduced Dirac semi-metals are discussed in this Section. The magneto-transport data of
NasBi, first reported by Ref. [114], is used exemplary. The longitudinal specific resistance
Pxx is shown in Fig. 7.3a) as a function of the magnetic field B for different magnetic field
directions from B parallel to the current I to out of the transport plane. The usual magneto-
transport configuration with the magnetic field applied out of the transport plane (® = 90°)

2Special care must be taken here due to a second stable phase at ambient conditions namely NaBi exist, which
is a bulk superconductor [112].
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shows a monotonic increase of p, with B. This monotonic increase of the longitudinal re-
sistivity appears linear for magnetic fields B > 1T. This increase of p,.(B) with B is called
positive MR. For NazBi decreases the positive MR with the rotation of the magnetic field
into the sample plane towards the direction of the current. For angles ¢ < 45° the longi-
tudinal resistivity p,, reduces with the magnetic field for a limited range of B, which de-
pends on the value of the angle ®. This reduction of the longitudinal resistivity p,, with
the magnetic field B is called negative MR and increases with the rotation of B towards the
transport plane and thus a decreasing ¢p. The negative MR is maximal for the magnetic field
applied parallel to the current (¢ = 0°). For the whole reported magnetic field range of up
to £9T a reduction of the p,, with B is observed for B parallel I (¢ = 0°). For an ordinary
three-dimensional metal, a magnetic field perpendicular to the current is expected to in-
crease the resistance due to the increased path of the charge carriers due to the deflection
by the Lorentz force. This deflection causes in ordinary metals a quadratic dependence of
the resistance on the magnetic field R,,(B) o« B?, which saturates for high magnetic fields
[117]. In contrast, a magnetic field applied along the current direction does not alter the
path of the charge carriers and thus does not change the resistance. The above described
linear positive MR for B out of the transport plane and the negative MR for B parallel I of
Na3Bi, which is shown in Fig. 7.3a), deviates from this naive expectation and could thus in
principle be a magneto-transport signature of Dirac semi-metals.

Indeed, the large linear positive MR for ¢ = 90° is suggested to be a signature for a linear
bulk band structure in Ref. [118]. It is argued that the applied magnetic field lifts the pro-
tection from backscattering. The lifted backscattering protection is not the only physical
mechanism proposed in the literature to cause a strong linear positive MR. A few mecha-
nisms are given in the following. One of which is the so-called quantum magnetoresistance
[119]. The specific resistance for a system with only the lowest Landau level partially occu-
pied is described by

Pxx(B) =po+aB, (7.1)

where pg = pxx(B = 0T) and «a is a proportionality factor which depends on the scatter-
ing in the sample. The condition of an only partially filled lowest LL only requires a low
density, meaning a small Fermi surface. It does not pose any other restrictions on the dis-
persion. A system with the Fermi energy close to the Dirac point would be sufficient, but
not required, for the observation of a positive linear MR. A linear positive MR is also re-
ported for compensated materials, as InSb and Bi in Ref. [120]. Ref. [121] traces the linear
positive MR to an electron-hole-recombination in finite-size samples due to an interplay
of the bulk and edge of the sample. Also in a completely different system, a high mobil-
ity (u =25 x 10°cm?V~1s71) n-type GaAs quantum well a linear positive MR is observed in
Ref. [115]. In Fig. 7.3b) the longitudinal resistance R, is shown in black together with the
resistance calculated according to the so-called resistance rule [122, 123]
dRyy
1B ‘B-«a

in red. For T = 20K both resistances coincide and increase linearly with B. For lower tem-
peratures oscillations due to the quantization in Landau levels are visible. The respective
filling factors v are indicated as dashed blue lines. The positive linear MR is already ob-
served for low magnetic fields corresponding to filling factors v > 2 and thus a different
mechanism than the quantum magnetoresistance must be at work. The linear MR is at-
tributed to an admixture of the Hall resistivity, which is linear in B, to the longitudinal

Ryt = (7.2)
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resistivity. This admixture is consistent with the validity of the resistance rule according
to Eq. 7.2. The admixture of the Hall resistance can be caused by variation of the density
over the sample. This admixture of the Hall resistance is another mechanism for a lin-
ear MR are inhomogeneities of the sample that even exist for the well-established material
GaAs that can be grown in high quality as high mobility quantum wells. The admixture can
not only be due to density fluctuations but also mobility fluctuations inside the sample.
Mobility fluctuations are shown as origin in Ref. [124] with the help of magneto-transport
measurements on InAs and In(As,N) layers with varying N content, to vary the scattering
center concentration and accompanying Monte Carlo simulations. Such density/mobility
inhomogeneities are also used to explain the magnetoresistance of MBE grown layers of
the Dirac semi-metal CdsAs; in Ref. [116]. The MR as function of an out of plane magnetic
field is shown in Fig. 7.3c) for CdsAs; layers of thicknesses ranging from 85nm to 370nm.
These layers also show a quasi-linear and non-saturating MR. The quantum magnetoresis-
tance is excluded as the mechanism due to the densities of n ~ 2 x 10'>cm™2. These are
still too high for transport only by the lowest Landau level for typical accessible magnetic
fields in a lab, even though much lower than for example the density of the bulk samples in
Ref. [118]. The magnetic field required to enter the lowest Landau level for such a density of
n~2x10%2cm™2 is Bgq1 > 20T, which is a factor of 2 higher than the highest reported mag-
netic field of £10T in Fig. 7.3c). In Ref. [116] it is argued, that the inhomogeneities as the
origin of the observed strong linear MR are supported by the observation of a negative MR
for a magnetic field applied parallel to the current in the same samples. These measure-
ments are shown in Fig. 7.3d). For thin samples, only a weak magnetic field dependence
of the longitudinal resistance is observed. The weak magnetic field dependence fits the ex-
pected magnetic field independence of an ideal metal of finite size and thus an ordinary
2DEG. For thicker samples, a strong negative MR is observed. The increasing negative MR
with sample thickness is consistent with current distortions due to density/mobility fluc-
tuations in the sample. The fluctuations lead to inhomogeneous equipotential lines. The
effect is stronger in thicker samples since these allow for a deviation of the current flow
also along the growth direction, The resulting inhomogeneous equipotential lines prevent
a sensible measurement of the potential inside the sample with voltage probes on the edge
of the sample. A similar deformation of the equipotential lines can be caused by the mag-
netic field for point-like contacts called current jetting [102-104].

Even though the linear positive MR is unusual, it is not a suitable indicator for a Dirac
semi-metal phase due to the multitude of different possible origins. The attention is shifted
to the negative MR observed for the magnetic field parallel to the current. Even though
such a negative MR can also be due to measurement artifacts due to insufficient sample
quality causing current jetting or non-well defined potential measurements due to den-
sity/mobility fluctuations in the sample, as mentioned above. Another physical mecha-
nism requires the existence of linear crossing points in the bulk band structure and is called
chiral anomaly. The negative MR observed in NasBi in Ref. [114] is shown in Fig. 7.3a) and
is in Ref. [114] attributed to this chiral anomaly, which will be introduced in the following
Section.
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Figure 7.3: In a) the longitudinal resistance Ry is shown as a function of the magnetic field B for different
angles ¢ of the magnetic field with respect to the current I. The angels ¢ range from ¢ = 0° being B parallel
to the current I to 90° being B out of the transport plane for NagBi. In b) the longitudinal resistance Ry of a
ultra high mobility n-type GaAs quantum well is shown in black together with the calculated resistance based
on the Hall resistance Ryy using Rgiff = dRyy/dB - B - a in red as function of an out-of-plane magnetic field
B for different temperatures 7' = 0.3,1.2,2.210, and 20 K. The dashed blue lines indicate the positions of the
filling factors v = 2,1, and 0.5, respectively. The longitudinal resistance normalized to the resistance at zero
magnetic field R/Rp-gT is shown as a function of a magnetic field perpendicular to the transport plane in
¢) and along the current direction in d) for CdsAs; layers of thickness 85,120,170,340, and 370nm indicated
by the labels 010 to 020. a) from Evidence for the chiral anomaly in the Dirac semimetal Na3Bi, J. Xiong et
al., Science, 350, 6259 (2015) [114]. Reprinted with permission from AAAS. b) reprinted from T. Khouri et
al., Linear Magnetoresistance in a Quasifree Two-Dimensional Electron Gas in an Ultrahigh Mobility GaAs
Quantum Well, PRL 117, 256601 (2016) [115]. Copyright 2016 by The American Physical Society. ¢) and d)
reprinted from T. Schumann et al., Negative magnetoresistance due to conductivity fluctuations in films of
the topological semimetal CdzAs;, PRB 95, 241113 (2017) [116]. Copyright 2017 by The American Physical
Society.
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7.3. THE CHIRAL ANOMALY

The chiral anomaly is a neat example of a consequence of topology. It does not cause the
formation of special states but leads to a directly measurable transport phenomenon. The
chiral anomaly is a consequence of the topological character of the band structure of the
material with its linear crossing points. The topological character of these nodes can be de-
scribed as magnetic monopoles. The chirality gives the respective magnetic charges [11].
The involved chirality of the nodes lends the phenomenon its name chiral anomaly. Par-
allel applied electric and magnetic fields shift the energy of the linear crossing points with
respect to each other. The occupation of nodes with one type of "magnetic charge" is in-
creased, while the occupation of the opposite one is reduced. This occupation imbalance
is released by an additional current I, reducing the resistance of the system [11, 125, 126].

E E

L R

Figure 7.4: Shown are the Landau levels (1) of two Weyl points with different chirality (L and R) with a mag-
netic field applied parallel to an electric field. Filled (empty) circles indicate filled (empty) states. The zeroth
LLs are marked in red and blue.

The first description of this so-called anomaly for solid states systems is given in Ref. [101]
and is shortly summarized here since it is the most picturesque one. The minimal required
band structure consists of two Weyl nodes with opposite chirality. An applied magnetic
field leads to the formation of LLs. The LLs for the two Weyl nodes are thereby identical
except for the zeroth LL, which possess opposite velocities according to the different chi-
ralities of the Weyl nodes, as shown in Fig. 7.4. For simplicity, the magnetic field is assumed
to be strong enough, that only the lowest (= zeroth) LL is occupied and the system is in its
so-called quantum limit. The electric field & changes the momentum of the charge carriers
by 6k = e/hi&. This changes the occupation as soon as the change in momentum 6 k equals
the size of one momentum space kpin = ZT”, where L is the system size along the direction of
interest. This process is indicated by the filled and empty circles in Fig. 7.4. The occupation
of one Weyl node thereby increases, while the other one decreases due to their opposite
velocity of the zeroth LL. The overall occupation is conserved. The rate of this change in

local occupation is given by

d”%?L e
=+—&-B. 7.3
dt h? (7.3)
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This local occupation imbalance is only stable when the intranode scattering (1/7 ) is faster
than the internode scattering, which relaxes this imbalance. In Weyl semi-metals is the
internode scattering suppressed by the separation of the Weyl nodes in k-space. For Dirac
semi-metals, the suppression is due to the remaining symmetry of the lattice [127]. Because
of this, the electric and magnetic field-induced occupation difference can be described as
a chiral chemical potential difference. This chiral chemical potential difference drives an
anomalous current I, analogous to usual chemical potential differences. To quantify this
chiral current I, the chiral magnetic effect, as described by Ref. [128], can be used according
to Ref. [11]. The chiral current I, depends linearly on the energy difference between the
Weyl nodes AEpdes, Which can be written down as

eZ
I. = _BAEnodes (7.4)

h2
Since the change in occupations given by Eq. 7.3 is due to the linear dispersion of the zeroth
LL proportional to the change in energy, the overall dependence of the chiral current on the
magnetic field is given by

Ica B(g)'BTa. (7.5)

The chiral magnetic effect can according to Ref. [11] be seen as a second successive use of
the E- B term causing an equilibrium current due to the chiral chemical potential difference
caused by its first use. This chiral current /. causes an additional conductivity that increases
quadratically with the magnetic field B. This result for the quantum limit is also reproduced
by the semi-classical Boltzmann kinematic approach in Ref. [129] and using field theory in
Ref. [127] yielding the relation

e*r,B?

O'(B):O'()-FMT(EF).

(7.6)
To summarize, in Dirac and Weyl semi-metals a quadratic increase of the conductivity
0(B) « B? with the projection of the magnetic field B along the driving electric field (= cur-
rent) is expected. Equivalently the resistance is expected to reduce according to Ry, (B)
(00 +B?) !, The chiral anomaly is the focus of the following section to verify compressively
strained HgTe as Dirac semi-metal and to explore its properties in detail.

7.4. CHIRAL ANOMALY IN COMPRESSIVELY STRAINED HGTE

The above introduction of topological semi-metals, their magneto-transport properties,
and the chiral anomaly set the basis for the investigation of the Dirac semi-metal com-
pressively strained HgTe. First, the sample fabrication, including strain engineering, is de-
scribed, and the possibility to adjust the carrier density and thus the electrochemical po-
tential via gating is introduced. Second, magneto-transport measurements are performed
to find indications for the chiral anomaly. A variety of different measurements are per-
formed to verify the chiral anomaly as the origin. Lastly, the bulk properties of compres-
sively strained HgTe are examined.
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7.4.1. SAMPLE FABRICATION AND MEASUREMENT SETUP
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Figure 7.5: The MBE grown layer stack is shown on top of the commercial GaAs substrate with the virtual
substrate composed of a superlattice of CdTe layers by self-limited monolayers of Cdy 5Zng 5Te, followed by
the HgTe layer sandwiched in the protective (Cd,Zn,Hg)Te layers. Reprinted from P. Leubner et al., Strain
Engineering of the Band Gap of HgTe Quantum Wells Using Superlattice Virtual Substrates, PRL 117, 086403
(2016) [130]. Copyright 2016 by The American Physical Society.

The compressively strained HgTe samples are realized using the virtual substrate intro-
duced by Leubner et. al. in Ref. [25, 130] to freely adjust the lattice constant between the
one of CdTe and Cdg 5Zng 5Te. Samples with strain values of —0.3% < € < 0.6 % for bulk HgTe
layers of dygre = 60—120nm [25] can be grown by MBE. A schematic of the MBE grown layer
stack is shown in Fig. 7.5. The amount of strain is limited by the lattice constant of CdTe
for negative values and the onset of relaxation in the HgTe layer for positive values. The
virtual substrate is composed of a superlattice of MBE grown CdTe layers in variable thick-
ness and mono-layers of Cdg 5Zng 5Te grown in a self-limiting atomic layer epitaxy fashion
as sketched in Fig. 7.5. The resulting strain is given by the relative CdTe to Cdy 5Zng 5 Te layer
thickness. This ratio can be adjusted during MBE growth by choosing the appropriate Te
flux and growth time of the CdTe layer. The fully strained grown HgTe layer of a thickness
dygre = 60—120nm is surrounded by protective Cdy.7Hgo 3Te layers to increase the interface
quality. The maximal thickness of the protective layers due to relaxation depends on the de-
sired strain. For d = 70 nm thick HgTe samples with a compressive strain of € ~ 0.3 % protec-
tive Cdo.7Hgo 3 Te layers are limited to a thickness of dijgcdre = 10—15nm , while for tensilely
strained samples on CdTe (¢ ~ —0.3 %) with thickness of up to dpgcdre = 80nm are feasible
[25]. The realizable thickness of the HgTe layer can be increased using a lattice-matched
Cd;_,Zn,Te barriers. The measurements presented in this chapter are either performed in
a dilution refrigerator with a base temperature of 7 = 0.02K and accessible magnetic fields
up to B =16 T. Alternatively, a helium bath cryostat with a 1K-pot is used, which reaches
T ~ 2K and is capable of magnetic fields up to B = 14T. For the bath cryostat, two dipsticks
with two different one-axis rotation mechanisms are available. The dipsticks allow rotating
the sample with respect to the magnetic field to cover a rotation inside the sample plane
or rotating out of the sample plane. Some measurements have been performed in the high
field magnet laboratory in Nijmegen in a He3-cryostat at the temperature T = 0.3K in a
bitter magnet capable of magnetic fields up to B=30T.
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7.4.2. ADJUSTING THE CARRIER DENSITY
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Figure 7.6: In a) the longitudinal resistance Ry is shown in black together with the carrier density n as red
dots of the gate voltage Ugate at zero magnetic field and the temperature T = 20mK. The blue line represents
alinear fit to the carrier density n as a function of Ugate. In b) the Hall resistance Ry is shown as a function of
an out-of-plane magnetic field B for various gate voltages Ugate. In c) the low energy bulk k- p band structure
based on the eight-band Kane-model calculated with the program "biscuit" is shown along k. and k, [29].

The chiral anomaly requires the band structure to host linear crossing points and the elec-
trochemical potential to lie close to the linear crossing points, as described in Sec. 7.3. This
is why being able to change the electrochemical potential is a powerful tool to verify the
chiral anomaly as the underlying mechanism for the observed negative MR. The Hall-bar
devices are equipped with a top gate making them plate capacitors, as shown in Fig. 3.1 and
Fig. 3.2 and described in Sec. 4.1.1. The electrochemical potential is thus indirectly adjusted
via changing the carrier density, as introduced in Sec. 4.1. The change in the carrier density
is directly proportional to the applied gate voltage. The longitudinal resistance R, is shown
as a function of the gate voltage Ugate in Fig. 7.6a). A sharp maximum is observed close to
Ugate = 0.5V reaching Ry max = 24.5kQ, which equals a sheet resistance of rg ~ 8.2kQ. The
lowest Ry value is observed for Ugate = 4.5V with Ry (Ugate = 4.5V) = 62(2. For positive gate
voltages, a change in resistance of 3 orders of magnitude is achieved. Negative gate voltages
lead to a reduction of the resistance of 2 orders of magnitude to Ryx(Ugate = —3.5V) = 400Q.
Figure 7.6a) shows the carrier density as a function of the gate voltage. The accessible
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gate range is equivalent to densities reaching from n(Ugae = —=3.5V) ~ =13 x 10" cm™ to
n(Ugate = 4.5V) ~ 12 x 10" cm™2. The density as a function of the gate voltage shows the
linear dependence expected for a plate capacitor, as indicated by the blue line. The carrier
densities are determined by linear fits to the Hall resistance in the function of the out-of-
plane magnetic field as shown in Fig. 7.6a).

The maximum of the longitudinal resistance Ryy(Ugate) at Ugate ~ 0.5V coincides with
the zero density determined by the blue linear fit. It thus marks the charge neutrality point
and separates the electron and the hole transport regimes. The height and identification of
the maximum of the longitudinal resistance Ry.(Ugate) with the charge neutrality point is
different to the three-dimensional insulator phase of tensilely strained HgTe, for which no
simple representation for the Ry (Ugate) maximum can be found, as discussed in Sec. 3.3.1.
The Hall resistance Ry, as function of an out of plane magnetic field B is shown in Fig. 7.6b).
For the gate voltages Ugate > 0.5V only positive (electron-like) Hall slopes are observed,
while for gate voltages Ugate < 0.5V only negative (hole-like) Hall slopes are measured. The
3D-TI tensilely strained HgTe also shows positive Hall slopes in the electron regime. In con-
trast, the hole transport regime only shows negative Hall slopes for high magnetic fields,
which are always accompanied by a positive Hall slope for low magnetic fields, as shown in
Fig. 3.8. To translate the observed magneto-transport properties into a band structure pic-
ture, the maximum of the longitudinal resistance R, indicates the transition from a purely
electron-like to a hole-like state. The low energy bulk band structure is calculated with k- p
using the program "biscuit" [29] based on the Kane Hamiltonian introduced in Sec. 4.2 for
a biaxial compressive strain of € = 0.3 % without accounting for the bulk inversion asymme-
try and shown in Fig. 7.6¢). The two low energy bands, namely the I's yg and I's 1y bands
cross linearly at finite k; = +k;0. Based on this band structure the resistance maximum
can be seen as an indicator for the electrochemical potential being located at linear band
crossing points.
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7.4.3. NEGATIVE MAGNETORESISTANCE IN COMPRESSIVELY STRAINED HGTE
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Figure 7.7: The longitudinal resistance Ry is shown as a function of the magnetic field B applied parallel to
the current path for the gate voltage at the charge neutrality point and the temperature 7' = 0.02K.

The linear crossing points in the band structure are the identifying property of the Dirac
semi-metals. The electrochemical potential is thus, as a starting point for the in-plane
magnetic field dependent investigation, placed at the Dirac nodes. The gate voltage is
chosen to correspond to the charge neutrality point according to Sec. 7.4.2. The magnetic
field is applied parallel to the current path of the Hall bar. The resulting longitudinal resis-
tance Ry« (B) at a temperature of T = 0.02K is shown in Fig. 7.7. The longitudinal resistance
Ryx(B = 0T) deviates slightly from its maximum of Ry (Ugate) shown in Fig. 7.6. The reason
for this deviation is multiple cooldowns of the sample which are necessary to change the
alignment of the rotation axis of the sample stick with respect to the magnetic field. Differ-
ent cooldowns can cause small varieties in the trapping of charges and insulator properties.
These varieties lead to a different potential landscape seen by the active layer and thus an
offset in the gate voltage or the mobility. As a consequence, the absolute value of the lon-
gitudinal resistance changes. Data from multiple cooldowns is presented in this Chapter.
For low magnetic fields, the resistance increases quickly up to B ~ 0.3T, where the resis-
tance starts to decrease with further increasing magnetic field down to B ~ 4.7T. The min-
imum observed resistance represents a relative reduction compared to resistance at zero
magnetic field of Ryx min/Rxx(B =0T) ~ 60%. For higher magnetic fields the resistance in-
creases again with a local maximum at B ~ 13T. To sum up, a reduction of the longitudinal
resistance Ry, (B) with increasing magnetic field, typically called negative MR, is observed
as predicted by the chiral anomaly. But this negative MR is accompanied by other effects,
namely a resistance increase for small magnetic fields and a non-monotonic MR for high
magnetic fields.

To separate these different features, measurements are performed as a function of the
magnetic field for different temperatures and shown in Fig. 7.8a) as longitudinal resistance
Ryx and in Fig. 7.8b) as MR Ryx/Ryx(B = 0T). The idea behind these measurements is that
different underlying physical mechanisms should come with different temperature depen-
dencies. The measurements are performed in a continuous-flow cryostat equipped with
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Figure 7.8: The longitudinal resistance Ry, and the magnetoresistance Ry (B)/Ryx(B = 0T) is shown as func-
tion of a magnetic field B applied parallel to the current path for the gate voltage Ugate, max for temperatures
of 2K in dark green via 4K, 6K and 18K to 23K in red in a) and b), respectively. In a) the longitudinal resis-
tance Ry is shown for a different cooldown at the temperature T = 0.02K as dash-dotted black line. This is a
repetition of the data shown in Fig. 7.7.

an electrical heater to allow for moderately high temperatures up to T ~ 20K. The temper-
ature of T ~ 20K is chosen as the upper limit, since for this temperature the influence of
phonons is not neglectable anymore for HgTe [131]. The longitudinal resistance at zero
magnetic field decreases with increasing temperature, as expected for an insulator. The
strong positive MR for small magnetic fields reduces quickly with temperature. The rela-
tive increase of AMR~ 15% for T = 0.05K becomes unresolvable for T > 4K as can be seen
in Fig. 7.8a) and b). In contrast the negative MR, which is observed for magnetic fields up
to B ~ 4.6 T only shows a weak temperature dependence up to T = 18K. The negative MR
stays nearly unchanged even though the R, (B = 0T) varies by a factor of two for the same
change in temperature. The slight increase in MR with temperature is most likely due to
the normalization to Ryx(B = 0T) which is altered with temperature due to the temper-
ature dependence of the strong positive MR for low magnetic fields. Only for T = 23K a
significant change of the negative MR contribution is observed, which is probably due to
phonons setting in.

The positive MR for low magnetic fields is due to its strong temperature dependence
at low temperatures most likely WAL as already mentioned in Sec. 3.2.2. The positive MR
for low magnetic fields is investigation in more detail in Sec. 7.5.1, which supports WAL as
likely mechanism. Treating the positive MR for low magnetic fields B as WAL enables the
modeling of the observed longitudinal resistance R,.(B) up to moderate magnetic fields
of B <4T. Weak (anti)localization in two-dimensional systems is described by the Hikami-
Larkin-Nagaoka equation [132], which reproduces the WAL observed in thin films of the
Dirac semi-metals CdyAss [133] and Na3Bi [134] well. In contrast the WAL signal, as shown
in Fig. 7.8a) and b) and especially Fig. 7.18, is not well described by the Hikami-Larkin-
Nagaoka equation. A different shape of the WAL signal is also observed for the Weyl semi-
metal TaAs in Ref. [135]. An alternative expression for the WAL in disordered Weyl semi-
metals is calculated with the Feynman diagram technique in Ref. [136]. This expression is
used in Ref. [135] in a simplified form and reproduces their experimental data well.
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Figure 7.9: The change in longitudinal conductance dGy(B) = Gxx(B) — Gxx(B = 0T) is shown as function of
the magnetic field applied along the current direction B for the temperature T = 2K in black together with a
fit according to Eq. 7.7 up to B=+1.5T in red.

While also accounting for the chiral anomaly according to Eq. 7.6, the simplified WAL equa-

o (: \% + }/ +0g+ C . 7.7

This formula effectively describes an initial B? behavior with the strength Cyay, with a tran-
sition at the critical crossover field B, towards a vB behavior with the strength y - Gwar.
The Eq. 7.7 thus possess three fitting parameters to describe the low magnetic field behav-
ior. The zero field conductivity o,x(B = 0T) is accounted for by oy. The chiral anomaly
driven part of the signal is accounted for by the additional term CcaB?, which is quadratic
in B and possess only the fitting constant Cca. The longitudinal conductance Gy is equiv-
alent to the longitudinal conductivity o, due to the neglectable small Hall signal for the
magnetic field applied along the direction of the current, as shown in Fig. 7.20 for the an-
gle 0 = 0° in green. The change of the longitudinal conductance with the magnetic field
AdGyx = Gxx(B) — Gxx (B =0T) is shown in Fig. 7.9 together with the fit of Eq. 7.7. The fitting
of the WAL signal is only a tool to separate the WAL contribution from the rest of the signal.
The dG,,(B) for moderate magnetic fields B < 3T follows the B2 behavior expected for the
chiral anomaly according to Eq. 7.6 and 7.7. For high magnetic fields positive MR effects
expected for most systems [117] take over. This observation of a B?> dependence of the pos-
itive magneto conductivity, which is equivalent to the negative MR, is encouraging for the
chiral anomaly as driving mechanism.
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7.4.4. ANGULAR DEPENDENCE OF THE NEGATIVE MAGNETORESISTANCE
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Figure 7.10: The longitudinal resistance Ry is shown as a function of the magnetic field B for various mag-
netic field directions for angles ® out of the transport plane for the charge neutrality point of a compressively
strained HgTe layer at T = 2K in a). The R, is shown as a function of the magnetic field applied inside the
transport plane along the angle ©® with respect to the current direction at the temperature T = 0.3K in the
high field magnet laboratory in Nijmegen in b). The magnetic field directions are indicated as schematics in
the insets.

The chiral anomaly as a possible origin for the observed negative MR is verified by inves-
tigating the negative MR signal for various angles of the magnetic field with respect to the
driving current. According to Eq. 7.5 the strength of the anomalous contribution is given by
the scalar product of the magnetic field with the current-driving electric field. The strength
of the negative MR thus depends on the component of the magnetic field alongside the cur-
rent. In Fig. 7.10a) the longitudinal resistance Ry is shown as function of the magnetic field
for different magnetic field directions from B parallel to the current, labeled with ® =0°, to
B out of the transport plane for ® = 90°. The magnetic field range for which the negative
MR is observed as well as its amplitude reduces quickly with the rotation of the magnetic
field out of the transport plane (increasing angle ®). For ® = 45° a monotonically increasing
positive MR is observed. A strong positive MR signal is expected in an out of plane magnetic
field (@ =90°) for systems with low carrier densities, as is the case here, according to the
discussion in Sec. 7.2.3. This expected positive MR due to the out-of-plane magnetic field
contribution overshadows the MR effects of the in-plane component of the magnetic field
for angles ® = 45°. That the positive MR is driven by the out-of-plane component of the
magnetic field is confirmed via the rotation of the magnetic field inside the sample plane.
The corresponding longitudinal resistance Ry, is shown as function of the magnetic field
along different in-plane angles © in Fig. 7.10b). The angle ® = 0° represents the B paral-
lel I case and the angle ® = 85° the B nearly perpendicular to I, but inside the transport
plane case. The real perpendicular direction of ® = 90° could not be reached due to lim-
itations in the rotation mechanism. A reduction of the negative MR with increasing angle
O or decreasing parallel portion of the magnetic field is observed. The effectively in-plane
perpendicular case (© = 85°) shows compared to the out-of-plane case (® = 90°) only a
week overall positive MR, which in comparison can effectively be treated as magnetic field
independent. Additional features in the form of local minima and maxima of the longitudi-
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nal resistance Ry, (B) are observed. These features are especially visible for the red ©® = 85°
curve in Fig. 7.10b). These local extrema are present for all investigated angles, but they are
obscured by the stronger overall MR. Similar features are also observed in the 3D-TI phase
and thus not specific to the Dirac semi-metal phase. These local extrema are investigated
in detail in Sec. 7.5.4 based on tensilely strained HgTe 3D-TI samples. To summarize, the
negative MR is driven by the component of the magnetic field parallel to the current and is
thus consistent with the chiral anomaly as the underlying mechanism.

7.4.5. GATE VOLTAGE DEPENDENCE OF THE NEGATIVE MAGNETORESISTANCE
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Figure 7.11: The longitudinal resistance Ry of the compressively strained HgTe layer is shown as a function
of the magnetic field B applied along the current direction for different gate voltages Ugate for the temperature
T~2K.

This Section examines the influence of the position of the electrochemical potential rel-
ative to the Dirac nodes on the observed negative MR and thus the magnetoresistance for
the electron and hole transport regime. The top gate of the device is used to adjust the
carrier density in the HgTe layer, as introduced in Sec. 7.4.2. An overview of the longitu-
dinal resistance Ry, for different gate voltages as function of the magnetic field B applied
along the current direction is shown in Fig. 7.11. The longitudinal resistance Ry (Ugate) at
B =0T is highlighted as dashed black line as reference. The turquoise line at the maxi-
mum of the black dashed Ryx(Ugate) at B = 0T curve represents the same measurement
as the dark green curves of ® = 0° and ® = 0° shown in Fig. 7.10a) and b). It shows the
highest resistance over the full magnetic field range. The longitudinal resistance decreases
quickly with more negative gate voltage (blue lines) as well as more positive gate voltages
(green lines) for the whole magnetic field range. The longitudinal resistance Ry, depends
stronger on the gate voltage Ugate than the magnetic field B. This is why it is insightful to
look at the variation of Ry, with Ugaee for different values of B. The change in resistance
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with Uggee is strongest around B ~ 0T along the dashed black line and high magnetic fields
of B ~ £14T along the dashed grey lines. For moderate magnetic fields around B ~ 5T, the
gate voltage dependence of the Ry, appears to be weaker than for zero and high magnetic
fields. To quantify this impression, the data is re-plotted as MR in Fig. 7.12a) (Fig. 7.12b))
for the electron (hole) transport regime. With the introduction of more electrons (higher
gate voltages) the overall change of resistance with magnetic field reduces from turquoise
to green in Fig. 7.12a). The same happens by adding more holes (lower gate voltages) from
turquoise to blue in Fig. 7.12b). The negative MR reduces with increasing carrier densi-
ties and is most prominent for gate voltages around Ugate ~ —0.2V. Since Ugate ~ —0.2V is
equivalent to the charge neutrality point, the negative MR is connected to low carrier den-
sities and hence likely to the Fermi energy being located at the Dirac nodes, as discussed in
Sec. 7.4.2. The oscillations like local extrema become very prominent for high positive gate
voltages Ugate = 3V [green curve in Fig. 7.12a)]. As already mentioned in Sec. 7.4.4 these
features are not specific to the Dirac semi-metal phase of HgTe and are addressed in more
detail in Sec. 7.5.4.
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Figure 7.12: The longitudinal resistance normalized to the resistance at zero magnetic field Ry,/Rxx(B =0T)
of a compressively strained HgTe layer is shown as function of the magnetic field B applied along the direction
of the current for different gate voltages Ugate = —0.2V in a) and Ugate < —0.2V in b) for the temperature
T ~2K.

The observation of a reduction of the negative MR with increasing carrier density poses
the question of why do not all carriers contribute to the chiral anomaly, or equivalently
how does the gate voltage alter the underlying band structure. The simplest assumption is
that all carriers occupy the bulk of the material and shift the Fermi energy accordingly. The
bands of compressively strained HgTe are only for a small energy range around the Dirac
nodes linear as shown in Fig. 7.6c). The further the Fermi energy is moved away from the
Dirac nodes, the less linear the bands become. The non-linearity reduces the chiral charge
pumping due to the magnetic field [11, 137]. The two Dirac nodes connect already 2 meV
above the energy of the Dirac nodes, as can be seen in Fig. 7.6c). Such a connection of the
two Dirac nodes is typically called Lifshitz transition. The Lifshitz transition could provide a
relaxation process hindering the build-up of chiral charge on the Dirac nodes. It should be
noted, that the splitting between the Dirac nodes is not relevant for the chiral current, but
the splitting of the Weyl nodes, which for compressively strained HgTe is most likely due to
the Zeeman effect of the applied magnetic field. This is investigated in detail in Sec. 7.4.7.




98 7. BULK PROPERTIES OF INVERSION INDUCED DIRAC SEMI-METALS

The Lifshitz transition is also an upper limit for the size of the Weyl node splitting. The
corresponding carrier density is 7y jfghirz ~ 0.1 x 10 cm~2, which is equivalent to a change
in gate voltage of AUgate < 0.1V. A clear negative MR is observed over a much wider gate
voltage range, as shown in Fig. 7.12. This observation could have a multitude of reasons:
The Lifshitz transition is somehow irrelevant for the build-up chiral charges on the Dirac
nodes. The correction to the band structure by the applied magnetic field, for example, due
to the Zeeman effect is extraordinarily strong. The charge carriers do not simply occupy
the bulk of the HgTe layer, but also other states that do not contribute to the chiral charge
pumping. The chiral anomaly is only expected for three-dimensional states [101], which
makes the occupation of surface states are potential mechanism.

Different types of surface states are proposed for compressively strained HgTe and ex-
amined in detail in subsequent Chapter 8. To test whether the occupation of surface states
could explain the observed gate voltage dependence of the negative MR, a simple model
is proposed. The model consists of two parallel transport channels. One transport chan-
nel represents the surface state, and the other one the bulk states. The conductance of
the surface states is assumed to only to depend on the gate voltage and to be independent
of the magnetic field. The conductance of the surface states Ggs(Ugate) is thus given by the
gate voltage-dependent conductance without magnetic field Gss(Ugate) = 1/ Ryx(Ugate). The
conductance of the bulk states is in contrast assumed to be independent of the gate volt-
age, but to host the chiral anomaly and hence to depend on the magnetic field. The con-
ductance of the bulk states Ganomaly(B) is for convenience assumed to be zero without a
magnetic field and only describe the magnetic field dependence of the conductance at the
charge neutrality point (CNP) Ganomaty(B) = 1/ Ryx,cnp(B) — 1/ Ryx.cnp(B = 0T). The longitu-
dinal resistance at the charge neutrality point as a function of the magnetic field R,y cnp(B)
is shown as a turquoise curve in Fig. 7.11 at the maximum of the black dashed line. Since
the surface states and bulk states exist in parallel their conductances add up. The expected
resistance from this model is the inverse of the sum of these two conductances

1
Gss(Ugate) + Ganomaly(B) .

The resistance determined by this model is shown as dashed red line together with the
measured longitudinal resistance as function of the gate voltage for the magnetic fields
B =2T,6T, and 10T in Fig. 7.13. The model reproduces the measurement data for B=2T
perfectly, while for B = 6 T some deviations are visible around 0V < Ugate < 1V. For B=10T
bigger deviations can be seen. The assumption of no MR for the gate voltage-dependent
channel is not realistic, as can be seen by the green and blue curves in Fig. 7.12a) and b),
which correspond to high positive and negative gate voltages, respectively. The resem-
blance of the model with the experimental data, despite the oversimplification, encour-
ages the occupation of surface states as the underlying mechanism. The origin and nature
of these surface states are examined in the subsequent Chapter 8.

Here, the results obtained on compressively strained HgTe is compared to the reported
observations in other Dirac semi-metals, as CdsAs,, which is described in Sec. 7.2.3. The
carrier density of ncg,as, ~ 2% 102 cm™2, which is in Ref. [116] reported to be low for CdsAs;,
is a factor of two higher than the highest investigated carrier density of 7ax ~ 1.2x 1012 cm ™2
in our compressively strained HgTe samples. For the densities of 7 ~ 1 x 10'2cm™2, which
corresponds to gate voltages |Ugatel > +3V the negative MR is already overshadowed by
other magnetoresistance effects in compressively strained HgTe, as shown in Fig. 7.11.

Rmodel(Ugate, B) = (7.8)
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Figure 7.13: The longitudinal resistance Ry, is shown as a function of the gate voltage Ugate for a magnetic
field of B=2T,6T, and 10T applied parallel to the current. The results of a model assuming one gate voltage-
independent magnetic field dependent channel in parallel to a gate voltage-dependent magnetic field inde-
pendent channel are shown simultaneously as dashed lines.

The different density regime could indicate a different mechanism for the negative MR.
In Ref. [138] the observed negative MR in Cd3As; is attributed to density/mobility fluctu-
ations in the sample. Excluding inhomogeneities as the origin is always difficult. Never-
theless, their role for the observed negative MR is investigated in the next Section based
on samples with different mobilities indicating different impurity concentrations. So far, it
is encouraging, that the negative MR in our compressively strained HgTe samples is only
observed in a limited gate voltage range around the charge neutrality point. This is consis-
tent with the Fermi energy being located close to the Dirac nodes and no occupation of any
other states and makes the chiral anomaly a likely mechanism.

7.4.6. MOBILITY DEPENDENCE OF THE NEGATIVE MAGNETORESISTANCE

The influence of impurities on the observed negative MR is investigated using samples fab-
ricated from three different wafers with nominally the same compressive strain. These
samples have been intended to investigate potential thickness dependencies and to ex-
clude finite-size effects due to the limited thickness dygre = 66 nm of sample QC0262. The
longitudinal resistance R, of the three samples is shown in function of the gate voltage in
Fig. 7.14a). The so far discussed thinnest sample shows the highest maximum of the longi-
tudinal resistance Ryx(Ugate) and simultaneously the lowest Ry (Ugate) for high positive and
negative Ugaee €quivalent to high densities. The opposite behavior with the lowest max-
imum resistance and the highest resistance for high densities is observed for the sample
with the intermediate thickness dygre = 94nm. The position of the maximum longitudinal
resistance Ry, shifts with reducing height to more negative gate voltages. Neither the height
nor the position of the peak of the longitudinal resistance Ry (Ugate) indicates a thickness-
dependent trend. The total carrier densities and mobilities are determined for the three
samples from the semi-classical low magnetic field regime and shown in Fig. 7.14b). The
thinnest sample shows the highest mobility over the full density range, while the d = 94nm
thick sample shows the lowest mobility. The absence of a thickness dependence points to
a difference in the layer quality and thus the number of impurities. The varying number
of impurities in the samples explains the different longitudinal resistance for high positive
and negative gate voltages. The peak in the longitudinal resistance Ry (Ugate) indicates ac-
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cording to the discussion in Sec. 7.4.2 the charge neutrality point is shifted with to more
negative voltages with decreasing mobility. The shift could indicate increased uninten-
tional doping in the HgTe layer and is consistent with an increased charged impurity den-
sity in the HgTe layer and thus reduced mobility. Unfortunately, the absolute position of the
Ry x(Ugate) peak is not a reliable quantity. It can vary from cool down to cool down due to
differences in the charge trapping at interfaces and inside the insulator while cooling down
the sample. The focus is thus shifted to the mobility y, which is shown as a function of the
total density n In Fig. 7.14b). For low carrier densities n no values for the mobility u can
be determined indicating very low mobilities. The density region with indeterminably low
mobilities is here called mobility gap. The size of the mobility gap increases with decreas-
ing mobilities for high carrier densities n. This increase of this mobility gap corresponds to
the observed broadening of the peak of the longitudinal resistance Ry (Ugate) in Fig. 7.14a).
The sharpness of the Ryy(Ugate) peak or equivalently the maximum of Ry, resembles thus
an indicator for the mobility of the sample. The mobility gap is larger for holes than for
electrons, which is consistent with the overall lower mobility observed for holes than for
electrons. The lower mobility makes the holes more prone to localization due to potential
inhomogeneities in the sample. Nevertheless, all three samples show a reduction of the
longitudinal resistance with a magnetic field applied along the current direction, as shown
in Fig. 7.14c). Despite the significant difference in the value of the longitudinal resistance at
zero magnetic field the normalized longitudinal resistance shows a comparable reduction
with the magnetic field of Ry, (B)/Rxx(B0 = T) ~ 65%. The slightly higher amplitude of the
negative MR for the thickest sample in red is an artifact due to the absence of the WAL cor-
rection around B ~ OT. Still, differences exist in the MR of the three samples. For example,
the magnetic field value of the minimal longitudinal resistance, the visibility of the addi-
tional oscillation like extrema, and the strength of the positive MR for high magnetic fields.
Nevertheless, the resemblance of the MR of these three samples in Fig. 7.14d) is astonishing
compared to the difference in R,x max(B = 0T). Since the strength of the negative MR does
not vary significantly in these samples, has neither the thickness nor the mobility, and thus
the number of impurities, a significant influence on the negative MR.

This observation raises the question, what the independence of the mobility of the neg-
ative MR implies for its physical origin. The mobility is a measure of the homogeneity
and amount of impurities in the sample. The typical scattering mechanisms in layers as
HgTe are density fluctuations and ionic scattering [90]. Both types of scattering are de-
scribed to be able to cause negative MR. Fluctuations of the density or mobility are identi-
fied in Ref. [116] to cause the observed negative MR in CdsAs, samples, which is described
in Sec. 7.2.3 and shown in Fig. 7.3d). Ionic scattering, which is typically the dominating
source of scattering in semiconductors for low temperatures [90], is described by Ref. [139]
to cause a negative MR with a magnetic field parallel to the current. If either of the two
mechanisms would be responsible for the observed negative MR, the measured MR sig-
nal should depend on the mobility. In contrast, the amplitude of the negative MR does
not change with the mobility, even though the mobility of the investigated samples differs
by more than a factor of three between the dpgre = 94nm and dygre = 66 nm thick sam-
ples. This independence of the amplitude of the negative MR on the mobility of the sample
makes the scattering on charged impurities and density or mobility fluctuations an unlikely
mechanism. The negative MR is because of this most likely due to a band structure effect,
as the chiral anomaly.
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Figure 7.14: In a) the longitudinal resistances Ry, of HgTe layers of different thicknesses dpgre =
66nm, 120nm, and 94nm with a compressive strain of € ~ 0,3% strain are shown as function of the gate
voltage Ugate for the magnetic field B = 0T and the temperature T ~ 2K. In b) the mobility u is shown as a
function of the total charge carrier density n determined from the semi-classical transport regime. In c) the
longitudinal resistance Ry at the charge neutrality point is shown as a function of the magnetic field B ap-
plied parallel to the current direction at T ~ 2K. In d) the same data as c) is presented as the longitudinal
resistance normalized to the zero magnetic field resistance Ryx(B)/Rxx(B =0T).

7.4.7. STRAIN DEPENDENCE OF THE NEGATIVE MAGNETORESISTANCE

The possibility to alter the band structure of HgTe with bi-axial strain applied by the growth
on a substrate with appropriate lattice constants, as introduced in Sec. 2.1.2 and 7.4.1,
is used to investigate the relevance and influence of the splitting between the two Dirac
cones for the negative MR. Samples with different strain ranging from a slight tensile strain
of € = —0.04% to a compressive strain of € = 0.47 % are compared. The longitudinal resis-
tance R,y at the charge neutrality point is shown as a function of the magnetic field applied
along the direction of the current in Fig. 7.15a). The most prominent observation is that the
longitudinal resistance Ry, (B = 0T) varies up to a factor of 10 between the samples ranging
from Ry qcoze2(B = 0T) = 20.5kQ to Ryy,qcosze(B = 0T) = 1.7kQ2. The values of the lon-
gitudinal resistance do not follow the magnitude of the strain in an obvious fashion. The
longitudinal resistance Ry, (B = 0T) is thus probably not only determined by the strain in
the HgTe layer but also by other factors as the growth quality of the layer, as discussed in
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Sec. 7.4.6. Nevertheless, all samples show a negative MR up to B ~ 6 T. A comparison of the
respective amplitudes of the negative MR is hindered by the big variation of the values of
the longitudinal resistance R,x(B = 0T). This is why the longitudinal resistance is normal-
ized to the zero magnetic field resistance and shown in Fig. 7.15b). The maximum of the
negative MR is for all samples around B ~ 5T observed. Only the sample QC0361, which
possesses the highest strain, shows the maximum at a magnetic field of B ~ 9T. The am-
plitude of the maximum negative MR only varies by a factor of two between the values of
—37% and —65 %. This factor of two is small compared to the variation in the longitudinal
resistance Ry, (B = 0T) by a factor of ten. The amplitude of the negative MR does not show
any obvious trends in the function of the strain. In contrast, the amplitude of the negative
MR amplitude increase with increasing longitudinal resistance R, (B = 0T). The observed
properties of the sample with varying strain are reminiscent of the MR observed for sample
with varying mobility, but constant strain, in Fig. 7.14c) and d). As discussed in Sec. 7.4.6,
the value of the maximum resistance in the Dirac semi-metal phase is a measure of the
mobility of the sample. The different mobility of the investigated layers overshadows any
potential strain influence. The different mobilities thereby are either due to differences in
layer quality or due to different effective masses of the bands in the layers. For zero strain
a semi-metal with a quadratic band touching point is expected. These samples could be
more prone to potential fluctuations over the sample compared to their linear counterparts
for higher compressive strain. The independence of the relative amplitude of the negative
MR on the mobility of the HgTe layers observed in Sec. 7.4.6, seems only to hold above a
certain layer quality. Fig. 7.15b) shows the longitudinal resistance normalized to its zero
magnetic field value as a function of the magnetic field for samples with various strain and
layer quality. The amplitude of the observed negative MR reduces for too low mobilities, or
equivalently to disordered layers.
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Figure 7.15: In a) the longitudinal resistance Ry, of HgTe samples with different strain €, which ranges from a
compressive strain of € = 0.47 % to a slight tensile strain of € = 0.04 %, is shown as a function of the magnetic
field B applied along the direction of the current. The temperature is T ~ 2K, as long as not otherwise indi-
cated. In b) the same data is shown as longitudinal resistance normalized to the longitudinal resistance at
zero magnetic field Ry (B)/Ryx(B =0T).
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It is surprising that also the two samples with a small tensile strain show a negative MR
signal. The amplitude of the negative MR of the slightly compressively strained sample with
€ = —0.04 % is even comparable to the highest observed negative MR of the sample QC0262.
This sample can be treated as unstrained to a good approximation since the uncertainty in
the strain is comparable to its size and the bandgap is neglectable small. Unstrained HgTe is
a semi-metal with a quadratic band touching point, with no linear crossing points at zero
magnetic field. In Ref. [140] it is pointed out that HgTe as inverted material of the point
group T,; becomes a Weyl semi-metal in a magnetic field due to the energy shift by the Zee-
man effect. Consequently, a chiral anomaly driven negative MR is expected for unstrained
HgTe. Since the size of the negative MR is comparable for the unstrained and 0.31% and
0.47 % strained HgTe, the Zeeman effect is likely the driving force for the chiral anomaly in
the compressively strained Dirac semi-metal phase and the unstrained semi-metal phase
with a quadratic band touching of HgTe.

7.4.8. MAGNETORESISTANCE IN THE ABSENCE OF A LINEAR CROSSING POINT

IN THE BULK BAND STRUCTURE

In this Section, the question is addressed whether a band touching point is needed at all to
observe the negative MR signal. The particular possibility to adjust the bulk band structure
of HgTe by strain, while preserving all other properties is even further exploited. This al-
lows a direct comparison to the in-plane magneto-transport of the 3D-TI tensilely strained
HgTe. The sample is a tensilely strained HgTe layer of 90 nm thickness is grown surrounded
by a 10nm thick capping and a 50 nm thick Cdy 7Hgo 3Te buffer layer on top of a commercial
CdTe substrate. It is similar to the 3D-TI sample analyzed in detail in Part II. The longitu-
dinal resistance Ry, and the carrier density n are shown as function of the gate voltage
Ugate in Fig. 7.16a). The longitudinal resistance for high negative and positive gate voltages
is with 0.4kQ and 0.08kQ, respectively, comparable to the longitudinal resistance of the
Dirac semi-metal phase for such densities. For comparison see Fig. 7.6a). In contrast, the
maximum of the longitudinal resistance Ry, max(Ugate) = 1.22k(Q is nearly 20 times smaller
than the maximum resistance for the Dirac semi metal phase. The maximum of the longi-
tudinal resistance is also shifted with respect to the charge neutrality point, as determined
by the linear fit to the total densities shown in Fig. 7.16a). This difference in the longitudinal
resistance curves Ry (Ugate) €nables a distinction between the 3D-TI and Dirac semi-metal
phase. The low maximum resistance and its shift with respect to the charge neutrality point
is a consequence of the coexistence of the electron-like topological surface states with the
hole-like Volkov-Pankratov states. The interplay of these two states is discussed in Chap-
ter 3 and more detailed in Ref. [58, 79]. For the comparison with the Dirac semi-metal
phase, this shift is irrelevant, and the charge neutrality point is chosen as the reference
point. The longitudinal resistance Ry is shown as function of the magnetic field B parallel
to the current and the gate voltage Ugate in Fig. 7.16b). The longitudinal resistance Ryx(B)
increases with the magnetic field B for the light blue curves around the charge neutral-
ity point Ugaee ~ —0.8V. The observed positive MR in the 3D-TI phase around the charge
neutrality point verifies the relevance of the Dirac nodes in the Dirac semi-metal phase or
the magnetic field induced Weyl nodes in the unstrained semi-metal phase for the chiral
anomaly driven negative MR. The comparison of Fig. 7.16b) to Fig. 7.11 nicely highlights
the different magnetoresistance of the two phases.
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Figure 7.16: In a) the longitudinal resistance Ry of the 90nm thick tensilely strained HgTe sample Q2761 is
shown in black as a function of the gate voltage Ugate together with the corresponding charge carrier densities
n inred. The blue line represents a linear fit to the density n(Ugate) and the vertical dashed line indicates the
charge neutrality point. In b) the longitudinal resistance Ry is shown as function of the magnetic field B
applied along the direction of the current for multiple gate voltages from Ugate = 3V in blue to Ugate = =5V in

green. The Ryx(Ugate) shown in a) is indicated as dashed black line in b). The dashed grey line highlights the
Ry (B =14T) values.

Despite this difference, also similarities are observed. The gate voltage mainly deter-
mines the value of the longitudinal resistance Ry,. The longitudinal resistance is non-
monotonic and also shows oscillation-like local extrema. These local extrema and their
potential origins are examined in Sec. 7.5.4. The MR of the 3D-TI sample is positive for all
Ugate < OV. For Ugate > 0V and thus with n > 2 x 10 cm~2 well in the electron transport
regime, the resistance reduces with magnetic field. This negative MR is observable up to
electron densities n ~ 1 x 10'*cm™ for Ugae = 3V. This negative MR seems to originate
from a different mechanism. The thin capping layer thickness makes density or mobility
fluctuations over the sample a potential mechanism, as also suggested for the negative MR
observed in CdsAs; samples, as discussed in detail in Sec. 7.2.3.

To summarize, the positive MR around the charge neutrality point for the tensilely
strained HgTe sample is opposite to the negative MR observed for the compressively strained
HgTe samples. The linear crossing point in the bulk band structure of compressively strained
HgTe is necessary to observe negative MR around the charge neutrality point. Further-
more, the linear crossing points of unstrained HgTe samples in a magnetic field also cause

a negative MR signal. The chiral anomaly is thus likely the driving mechanism behind the
observed negative MR.
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The chiral anomaly-driven negative MR in the Dirac semi-metal compressively strained
HgTe is accompanied by other interesting transport features. These effects are summa-
rized in Fig. 7.17. The longitudinal resistance R, at the charge neutrality point is shown
as a function of the in-plane magnetic field applied for various angles ©. Three different
transport regimes are identified: These are the magnetic field direction independent low
magnetic field regime, the moderate magnetic field regime with a monotonic dependence
of the longitudinal resistance on the angle ©, and the high magnetic field regime. The mag-
netic field B ~ 18T is chosen as the starting point for the high magnetic field regime, since
there the behavior of the longitudinal resistance R,,(B) changes indicated by the crossing
of the R, (B) curves. This magnetic field is highlighted as a dashed black vertical line. The
negative MR observed in the moderate magnetic field regime is identified with the chiral
anomaly in the previous Sec. 7.4. This Section focuses on the transport features, which are
observed additionally to the negative MR. The low magnetic field regime is taken as starting
point.
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Figure 7.17: The longitudinal resistance Ry, at the charge neutrality point of compressively strained HgTe
(QC0262) is shown as a function of an in-plane magnetic field B applied alongside various angles 0, as in-
dicated in the inset, at the temperature T = 0.3K. The vertical dashed black line marks the magnetic field
B =18T. The data is measured in the high field magnet laboratory in Nijmegen.

7.5.1. WEAK ANTI-LOCALIZATION

The low magnetic field regime shows a positive MR, which is in Sec. 7.4.3 interpreted as
WAL correction. Weak anti-localization is predicted by Ref. [141] to cause a positive MR for
metals with strong spin-orbit coupling. That WAL is relevant in HgTe layers is motivated
from its observation in arrays of HgTe wires in Ref. [142]. The interpretation of WAL as driv-
ing mechanism for the positive MR is supported by the possibility to fit the observed MR up
to B ~ 3T with Eq. 7.6, as shown in Fig. 7.9. The WAL and the chiral anomaly are taken into
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account for the fit. To produce a satisfactory resemblance of MR for low magnetic fields,
the formula for the WAL described by Ref. [135, 136] is used. This Equation deviates from
the typically used Hikami-Larkin-Nagaoka formula [132]. The good resemblance makes
the WAL a likely mechanism for the positive MR observed for low magnetic fields and high-
lights the WAL as peculiar and thus interesting. This Section shall be seen as a motivation
for a future pursue a more in-depth examination of the observed WAL signal. Figure 7.18
shows a summary of the results obtained in this work.

Firstly, the temperature dependence of the positive MR signal is examined and empha-
sizes the WAL as a likely mechanism. The normalized longitudinal resistance is shown for
various temperatures for low magnetic fields in Fig. 7.18a). This data is an excerpt of the
low magnetic field regime from the data already shown in Fig. 7.8. A strong positive MR of
up to 3% is observed for T = 2K. The amplitude of the positive MR reduces with increas-
ing temperature. For a temperature of T = 6K only an amplitude 0.2% is observed. For a
temperature of T ~ 18K, the positive MR increases no longer. The MR decreases instead
right away with increasing magnetic fields around B = 0T. Since WAL is a self-interference
effect, it depends on a sufficiently long coherence time and is thus strongly temperature-
dependent. The strong observed temperature dependence of the positive MR is consistent
with the WAL as the underlying mechanism.
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Figure 7.18: The figure shows an overview of the longitudinal resistance Ry as a function of the magnetic
field B observed in compressively strained HgTe layer QC0262. In a) the longitudinal resistance normalized
to the zero magnetic field resistance Ry (B)/Rxx(B = 0T) at the charge neutrality point is shown as function
of the magnetic field B along the current direction for different temperatures T = 2K,4K,6K, 14K, 18K, and
23K. In the upper panel of b) the longitudinal resistance Ry, is shown as a function of the magnetic field B for
various angles © in the sample plane (see inset) and in the lower panel for angles @ representing a rotation
out of the sample plane (see inset). In c) the normalized longitudinal resistance R (B)/Rxx(B = 0T) is shown
as function magnetic field B along the current direction for different gate voltages Ugate. The upper panel
shows the electron regime, and the lower panel the hole regime. The sub-figures a), b), and c) are close ups of
the low magnetic field regime of the data already presented in Fig. 7.8, Fig. 7.10, and Fig. 7.12, respectively.
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Secondly, the positive MR and thus the WAL shows peculiarities. The positive MR for
various angles of the magnetic field is summarized in Fig. 7.18b). The shown data represent
a zoom onto the low magnetic field region of Fig. 7.10. The longitudinal resistance Ry (B)
is up to magnetic fields of B ~ 0.1 T independent of the angle © of the magnetic field with
respect to the current inside the sample plane. This independence is also observed for TaAs
in Ref. [135] and consistent with the calculations for a thin Weyl semi-metal of Ref. [143].
The positive MR in contrast increases with increasing inclination ® and hence the out-
of-plane component of the magnetic field. The origin could be twofold. It could be the
additional positive MR expected due to an out-of-plane magnetic field by the deflection of
the charge carriers by the Lorentz force. It could also be a property of the WAL itself. For a
Weyl semi-metal, different WAL corrections for an out-of-plane and an in-plane magnetic
field are given in Ref. [143]. A distinction between these two effects is not possible with the
current data set.

Thirdly, the top gate is used to identify the transport regime with the most prominent
positive MR and thus WAL. The normalized longitudinal resistance Ry, as function of the
magnetic field B along the current direction is summarized for various gate voltages Ugate
in Fig. 7.18c¢). The strongest positive MR is observed around Ugae ~ —0.2V which resembles
the position of the maximum of the longitudinal resistance R.x(Ugate) and thus the charge
neutrality point as well as the strongest observed negative MR for moderate magnetic fields.
In Sec. 7.4.2 this gate voltage is identified with the Fermi energy located at the Dirac nodes.
The strong MR is thus likely connected to the Dirac nodes in the bulk band structure.

Lastly, the pure existence of a strong WAL correction in a three-dimensional layer makes
the WAL interesting in itself. In contrast only a very weak WAL is observed in the 3D-TI
tensilely strained HgTe in Ref. [144]. Together with the non-trivial dependence on the angle
of the magnetic field and the gate voltage dependence, this effect would be interesting to
investigate in more detail in a dilution refrigerator with a three-dimensional vector magnet.

7.5.2. PLANAR HALL EFFECT

The longitudinal resistance R (B) for moderate magnetic fields B > 1T is dominated by
negative MR which is traced to the chiral anomaly in Sec. 7.4. In this Section, the details of
the angular dependence of the negative MR are investigated in more detail. The additional
current driven by the chiral anomaly is described by Eq.7.5. Since the current-driving exci-
tation voltage is constant in our experiment, the longitudinal conductance depends on the
variation of the current due to the chiral anomaly. The longitudinal conductance Gy (0)
is hence given by the scalar product of E and B and thus depends on cos(0). Since the
dependence on B is quadratic the angular dependence of the conductance is given by

Gyx(0) o cos?(0). (7.9)

An exemplary measurement of the longitudinal resistance R, (0) at the charge neutrality
point for a constant magnetic field B = 5T is shown in Fig. 7.19a). The longitudinal resis-
tance Ry, is measured as a function of the in-plane angle 6 by rotating the sample stick
inside the constant magnetic field. The angle 0 is determined with a Hall sensor mounted
on the rotation mechanism next to the sample. Because of this, the absolute value of the
angle 0 possesses an uncertainty in the order of a few degrees. The longitudinal conduc-
tance Gyx(®) = 1/ Ry, and the conductivity o . () are shown together with the longitudinal
resistance Ry, (®) for B=5T in Fig. 7.19a).
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Figure 7.19: In a) the longitudinal conductance Gy = 1/pxy (black), longitudinal conductivity o (red), and
the longitudinal resistance R, (blue) at the charge neutrality point of the compressively strained HgTe layer
QC0262 are shown as function of the angle © of a constant magnetic field B = 5T in sample plane for the
temperature T = 0.3K. The same data is shown in b) again, as a function of cos?(@). In c) the Hall resistance
Ryy is shown in green together with the longitudinal resistance Ry in blue as a function of the angle 0.
The dashed green line indicates Ry, = 0kQ2 and the dash-dotted grey line highlights the corresponding angle
© ~ 5°. The data has been measured in the high field magnet laboratory in Nijmegen.

The longitudinal conductivity o, (0) is determined using

w R
oxx(0) = 7 wad

: : (7.10)
R)%x(%) +R2,

where 7 is the ratio of the length [ to the width w of the Hallbar. The longitudinal conduc-
tance Gyx(0) (black) and longitudinal conductivity o«(0) (red) curves show a maximum
close to the angle 6 ~ 0° and the onset of a minimum for the angle 8 ~ 90°, as expected from
Eqg. 7.9. The connection of these two extrema deviates from the expected sinusoidal shape.
In contrast, the longitudinal resistance R,.(0) (blue curve) appears to be sinusoidal. To
quantify this impression, the same data is plotted as function of cos?(0) in Fig.7.19b). The
longitudinal resistance R, shows a linear dependence on cos?(6), which is emphasized by
the linear fit depicted as a green line. The longitudinal conductance and conductivity do
not show a linear dependence in contradiction to the expectation from Eq. 7.9.

To sum up, the longitudinal resistance R, () is proportional to cos?(d). This propor-
tionality is expected for the anisotropic magneto-resistance (AMR), as observed in ferro-
magnetic metals [145]. The anisotropic magnetoresistance is the manifestation of the scat-
tering dependence on the magnetic field and current direction in the longitudinal resis-
tance Ryy. This scattering also causes a voltage perpendicular to the current and conse-
quently a Hall resistance Ry,. This effect is called planar Hall effect (PHE). The AMR and
PHE signals are constrained by the crystal symmetry of the material. The space group of
HgTe is given by the F43m space group of the zinc blende crystal. The applied bi-axial
in-plane strain reduces the space group to F42m. The allowed terms of the longitudinal
resistivity p.x and Hall resistivity py in an in-plane magnetic field are given in Ref. [146]
for this space group. These terms read

Pxx(®) = Co+ Crcos(29 - 2¢) + Crc cos(29 + 2¢) + C¢ cos(49) (7.11)

and
Pxy(0) = Crsin(29 — 2¢) + Cycsin(29 + 2¢), (7.12)
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where 9 and ¢ are the angles of the magnetic field and current with respect to the crystal-
lographic direction and Cj resembles the average longitudinal resistivity p ., and Cy, Cyc as
well as C¢ are respective amplitudes. Since the measured Hall bars are oriented such that
the current flows along the high symmetry (110) direction, these equations reduce to

Pxx (@) = Cy + Cycos(20) + Cy, cos(46) (7.13)

and
Pxy(0) = Casin(20), (7.14)

where 0 is the angle between the magnetic field and the current, and C, and G, are treated
as fitting parameters. According to the trigonometric identities is

cos(20) = 2cos’(@) — 1. (7.15)

Equation 7.13 is thus consistent with the observation of the longitudinal resistance R, be-
ing linear in cos?(0), as shown in Fig. 7.19b). The Hall resistance Ry (6) is shown together
with the longitudinal resistance Ry, (0) in Fig. 7.19c). The Hall resistance Ry (0) crosses
zero at the minimum of the longitudinal resistance Ry (0) signal, which is consistent with
the expected phase shift of 45° between the two signals by Eq. 7.13 and 7.14. Even though
the Hall resistance Ry, (0) deviates from the expected sinusoidal shape, it appears to have
a zero-crossing at the position of the extrema in the longitudinal resistance R,.(0). The
zero crossing is thus consistent with the two-fold symmetry sin? expected for the PHE by
Eq. 7.14. The amplitude of the Hall signal is with Ap, = ARy), ~ 0.9kQ is similar to the
amplitude of the longitudinal resistivity signal of Apy = ARy 7 ~ 1.3kQ. The amplitudes
for the AMR and PHE are expected to coincide according to Eq. 7.13 and Eq. 7.14. A rea-
son for the observed smaller amplitude in the Hall resistivity could be the misalignment
of the sample with respect to the magnetic field. Such a misalignment is unavoidable in
the used rotation mechanism. An out-of-plane magnetic field causes a contribution of the
classical Hall to the Hall resistance Ry, (0). The classical Hall contribution is expected to
be proportional to sin(f + 6y). The phase 6 is unknown and depends on the direction of
the misalignment. The presence of a PHE signal and the deviation of the negative MR from
the naively expected G, o< cos?(f) behavior is emphasizing the importance of accounting
for the resistivity as tensor as already pointed out in Ref. [147]. There is a narrowing of the
negative MR and thus a deviation of the longitudinal conductance from G, « cos?(8) due
to the PHE described.

An overview over the Hall resistance Ry, as a function of the magnetic field B for various
angles 0 inside the sample plane for the full accessible magnetic field range is given in
Fig. 7.20. The Hall resistance Ry (B) signal shows three different regimes:

The low to moderate magnetic field regime for B < 10T (left of the dashed grey line)
shows positive Hall resistance Ry, values for angles 6 = —5° together with the strongest neg-
ative signals for the angle 0 = 45° (thick orange line). For angles 6 > 45° the Hall resistance
Ry increases again up to 6 = 85°, but stays below the value of Ry, (6 = —5°). This behavior
resembles the measurement for fixed B = 5T as function of the angle 8 in Fig. 7.19¢) and is
thus assigned to the above discussed PHE related to the chiral anomaly.

The transition regime 10T < B < 18T (between the dashed lines) shows also a minimal
Hall resistance Ry for the angle 6 ~ 45°, but the Hall resistance Ry (6 = 65°) exceeds the
Ryy(0 = —5°) values. In contrast, the longitudinal resistance Ry (B) in Fig. 7.17 does not
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Figure 7.20: The Hall resistance Ry, at the charge neutrality point of the compressively strained HgTe layer
QC0262 is shown as a function of an in-plane magnetic field B applied alongside various angles 6 at the
temperature T = 0.3K. The angle 0 of the magnetic field B with respect to the current I is sketched in the
schematic inset. The vertical dashed grey and black lines mark B = 10T and B = 18T, respectively. The data
has been measured in the high field magnet laboratory in Nijmegen.

show a change in the transport behavior up to B ~ 18T. The here investigated low carrier
density regime at the charge neutrality point is susceptible to artifacts due to classical Hall
effect-like contributions. These classical Hall effect-like contributions to the Hall resistance
Ry are caused by a misalignment of the magnetic field with respect to the sample plane
and can not easily be excluded. This transition regime is thus not investigated.

The high magnetic field regime B > 18T (right to the dashed black line) shows a strong
increase with the magnetic field B of the longitudinal resistance R, (B) and the Hall resis-
tance Ry (B), as shown in Fig. 7.17 and 7.20, respectively. The Hall resistance Ry, (0 = 35°)
(thick yellow line) is for magnetic fields B < 18T close to the most negative observed Hall
resistance values Ry, (6 = 45°), but increase for high magnetic fields B > 18T quickly from
negative to the maximal positive Hall resistance values. The Hall resistance Ry, (6 ~ 35°)
increase for high magnetic fields B > 18T much stronger with the magnetic field than
any magnetic field dependence of the Hall resistance observed for moderate magnetic
fields B < 18T. Similar behavior is observed for the longitudinal resistanceR,(B) shown
in Fig. 7.17. The maximum of the longitudinal resistance Ry, is for high magnetic fields
B > 18T observed for the angle 6 = 45° instead of the angle 0 = 85° for moderate magnetic
fields B < 18T. This observed strong positive MR contradicts the theoretically expected lin-
ear negative MR for high magnetic fields in Weyl and Dirac semi-metals [148]. To summa-
rize, the in-plane magnetic field-dependent longitudinal and Hall resistance data seems to
indicate the existence of two transport regimes. The moderate magnetic field regime for
B < 18T, which is dominated by the chiral anomaly driven negative MR and PHE, and the
high magnetic field regime for B > 18T with a strong positive magnetoresistance with so
far unknown origin.
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7.5.3. POTENTIAL METAL-INSULATOR TRANSITION IN HIGH MAGNETIC FIELDS
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Figure 7.21: The longitudinal resistance Ry, and Hall resistance Ry, of the compressively strained HgTe layer
QC0262 are shown as polar plots as a function of the angle of the magnetic field with respect to the current
O between —10° and 90° for various constant magnetic field values B and the charge neutrality point at the
temperature T = 0.3K. The longitudinal resistance Ry(®) and the Hall resistance Ry (©) are shown up to
magnetic fields B = 12T in a) and b) and up to B = 30T in ¢) and d), respectively. The grey background
indicates positive values of the Hall resistance Ry, (®) in b) and d). The data has been measured in the high
field magnet laboratory in Nijmegen.

The observed strong increase of the longitudinal and Hall resistance for high magnetic
fields is addressed in this Section. The angular resolution is improved by measuring the
longitudinal and Hall resistance for various constant magnetic fields B as a function of the
angle 0. The measurement results are shown as polar plots in Fig. 7.21. The polar plot of
the longitudinal resistance R, in Fig. 7.21a) emphasizes the reduced longitudinal resitance
Ry for the angle 8 ~ 5° compared to the maximal resistance for 8 = 90° due to the chiral
anomaly. This AMR is accompanied by the negative PHE signal in the Hall resistance Ry,
with a maximum at the angle 8 ~ 50°, as shown in Fig. 7.21b). The PHE signal increases with
the magnetic field up to a maximum for B = 5T, before it decreases with higher magnetic
fields again until it changes sign and becomes positive. So far this resembles only an alter-
native illustration of the decently understood chiral anomaly-driven moderate magnetic
field regime. The representation of the data as polar plot in Fig. 7.21c) is chosen to em-
phasize the shift of the maximum of the longitudinal resistance R,,(0) for magnetic fields
B > 12T from the angle 6 = 90° towards 6 ~ 50°, where it stays for high magnetic fields
B = 18T. A similar shift is observed for the Hall resistance Ry, in Fig. 7.21b) and d). There
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a maximal negative Hall resistance signal is observed around the angle 6 ~ 50° for mag-
netic fields B < 12T, which transforms via a complicated intermediate regime into a posi-
tive maximum around 6 ~ 40° for B > 24T. In Fig. 7.21d) the positive maximum of the Hall
resistance Ry, around the angle 6 ~ 40° appears like a negative maximum around 6 ~ 220°
due to the chosen radial axis for the polar plot. The angular dependence of the longitudinal
resistance appears for the available range of angles to transform from a two-fold symmetry
for moderate magnetic fields in a) to a four-fold symmetry for high magnetic fields B > 18T
inc).
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Figure 7.22: In a) a constant energy contour is shown for E = —5meV, which equals 14 meV below the Dirac
nodes, in the three-dimensional momentum space for a € = 0.3% compressively strained HgTe layer, which
is calculated with the program "kdotpy" [29]. In b) the energy E dispersion of lowest valence and conduction
band is shown with respect to the momenta k; and k, for k, = 0.12 nm~!, which resembles the position of
the Dirac node in k.

The significant increase in the longitudinal and Hall resistance with the magnetic field
is reminiscent of a magnetic field-driven metal-insulator transition. Such metal-insulator
transitions are observed in narrow gap semiconductors, but typically in out-of-plane mag-
netic fields [149]. For two-dimensional holes in GaAs, a metal-insulator transition is also
observed with in-plane magnetic fields in Ref. [150]. There the necessary magnetic field
strength for the metal-insulator transition varies with the crystal direction along which the
magnetic field is applied. A similar angular dependence is observed for the strength of the
increase of the longitudinal resistance with magnetic field in Fig. 7.17 and the Hall resis-
tance in Fig. 7.20 as well as summarized as polar plots in Fig. 7.21. To check the possibility of
ametal-insulator transition as the underlying mechanism, the symmetry of the band struc-
ture of HgTe is examined. The bulk band structure of € = 0.3 % compressively strained HgTe
is shown in Fig. 7.22, as calculated using the program "kdoptpy" [29]. The equal energy con-
tour for E = —5meV, which equals 14 meV below the Dirac nodes, is shown in Fig. 7.22a).
This energy contour resembles exemplarily the hole-transport regime and not the low-
density regime directly at the Dirac nodes. It nevertheless emphasizes the quadratic dis-
tortion of the bandstructure due to the four-fold symmetry of the lattice. It also shows that
the extremal contour in the ky — k,-plane lies close to the middle of the Fermi surfaces,
which are positioned around position of the Dirac nodes at k, = +0.12nm™!. The investi-
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gated magneto-transport relevant extremal energy dispersion of the ky — k-plane is cen-
tered around k, = +0.12nm™!, which is shown in Fig. 7.22b). The quadratic distortion of
the dispersion is already a few meV away from the Dirac node visible, which also makes the
effective mass depending on the k-direction. The measured Hall-bar is aligned along the
(110)-direction. For the angle 8 = 0°, the magnetic field is aligned with the largest exten-
sion of the Fermi area along k and the highest effective mass. For 8 = 45°, the magnetic field
points towards the smallest elongation of the Fermi area along k and lowest effective mass.
The strongest increase of the longitudinal and Hall resistance with the magnetic field is ob-
served according to Fig. 7.21c) and d) around the angle Omaxr,, ~ 50° and OmaxR, , ~40°
and thus along the (100) direction. If a metal-insulator transition is responsible for the ob-
served increase in the longitudinal and Hall resistance for high magnetic fields, then the
smallest extension of the Fermi area in k or the lowest effective mass would cause the ear-
liest onset of the metal-insulator transition in the magnetic field. A magnetic field-driven
metal-insulator transition seems a reasonable mechanism for the observed strong MR and
its angular dependence for high magnetic fields.

7.5.4. OSCILLATIONS IN THE IN-PLANE MAGNETORESISTANCE
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Figure 7.23: The longitudinal resistance normalized to the resistance at zero magnetic field Ryx/Rxx(B =0T)
is shown for the 90nm thick tensilely strained HgTe layer Q2761 as function of the magnetic field B applied
along the current direction for different gate voltages Ugate > —0.8V in a) and Ugate < —0.8V, in b) for the
temperatureT ~ 2K. This resembles a different presentation of the longitudinal resistance Ry, data already
shown in Fig. 7.16b). The gate voltage Ugate > —0.8V depicts the charge neutrality point as indicated by the
vertical grey dashed line in Fig. 7.16a).

The magnetoresistance data, for example depicted in Fig. 7.23, shows oscillation-like ex-
trema. These extrema are already mentioned in Sec. 7.4.4 and shown in Fig. 7.12. The ex-
trema are in our group referred to as "in-plane oscillations" and are not specific to the Dirac
semi-metal phase. The 3D-TI tensilely strained HgTe also shows these extrema, as shown
in Fig. 7.16b) and investigated in Ref. [95, 151]. The presumably simpler 3D-TI phase is
thus used in this Section to discuss these extrema and their potential physical origins. An
overview of the longitudinal resistance R, as a function of a magnetic field B applied along
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the direction of the current of tensilely strained HgTe is already given in Fig. 7.16b). The
overall trend of the MR as a function of the magnetic field is discussed in Sec. 7.4.8. The
focus lies there on the absence of a negative MR around the charge neutrality point. To en-
hance the visibility of the oscillations the same data is presented again in Fig. 7.24a) and b)
as longitudinal resistance normalized to the zero magnetic field resistance for the electron
and hole regime, respectively. The MR for the gate voltage Ugae = 3V (green) represent-
ing high electron densities only shows one weak local extrema. The only distinct feature
is a maximum around B ~ 4T. The maximum moves with decreasing gate voltage Ugate to-
wards lower magnetic fields B until it can not be identified anymore for Ugate = 0.5V. For
Ugate = 0.5V a minimum starts to form at B ~ 13T instead. This minimum becomes more
pronounced for low electron densities (Ugaee < 0V) and shifts to B ~ 12T. The hole regime is
summarized in Fig. 7.23b) and shows the same pronounced minimum at B ~ 12T (dashed
grey vertical line) for all investigated negative gate voltages. This minimum is accompa-
nied by a maximum at B ~ 9T. A second maximum exist for lower B < 4T which shifts with
more negative Ugae and thus increasing hole density towards lower B until it vanishes for
Ugate < —4V.
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Figure 7.24: The longitudinal resistance normalized to the resistance at zero magnetic field Ryx/Rxx(B =0T)
is shown for the 90nm thick tensilely strained HgTe layer Q2761 as function of the magnetic field B applied
inside the sample plane perpendicular to the current direction for different gate voltages Ugate = 0V in a) and
Ugate <0V, in b) for the temperature T ~ 2K.

The angular dependence of these extrema is investigated by reproducing the measure-
ment with the magnetic field applied perpendicular to the direction of the current, but
still in the sample plane, shown in Fig. 7.24. The MR is positive for the electron regime,
very strong for the low-density regime, and negative for the hole regime. The additional
extrema observed in the high electron densities for Ugate = 2 and shown in Fig. 7.24a) are
similar in shape and amplitude to the ones seen in the measurements with a parallel mag-
netic field. The hole regime is shown in Fig. 7.24b). It only shows weak features and lacks
the pronounced extrema and their clear gate voltage dependence as observed for the par-
allel magnetic field case. There are still non-monotonicities visible, but much smaller in
amplitude.
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Figure 7.25: The longitudinal resistance Ry, of a remotely doped wide parabolic AlGaAs quantum well as a
function of a magnetic field B applied in the direction of the current is shown for different gate voltages Ugate.
The sharp oscillations are labeled with arrows and the corresponding subband labels E; and E3. The middle
curve (Ugate = 0mV) is offset by 60 for clarity. Reprinted from J. Jo et al., Probing the subband structure
of a wide electron system in a parabolic quantum well via capacitance-voltage measurements, PRB 47, 4056
(1993) [152]. Copyright 1993 by The American Physical Society.

Different potential, but not satisfying ideas to explain these oscillations-like features
exist. Only considering the n-regime of the B in-plane perpendicular to the current case,
the oscillation-like features are reminiscent of the cyclotron resonances with the finite size
of the device, which are called Weiss oscillations [153]. Since the same features are also
observed in the parallel magnetic field case, cyclotron orbits can not be the origin. To form
cyclotron orbits, the charge carriers need to be deflected by the Lorentz force of a magnetic
field perpendicular to the current. For thin 3D-TI a change in the tunneling probability
between the TSS with the strength of an in-plane magnetic field is predicted [154]. The
magnetic field shifts the Dirac cones of the top and bottom TSS in opposite directions in
k-space. The shift leads to a maximum in the tunnel coupling for exactly touching Dirac
cones due to the matched spin and momentum direction of the top and bottom TSS. Since
this tunneling process only causes one extremum, it can also not be the origin of all the
observed extrema.

To find other possible mechanism measurements of other material systems showing
similar signatures are reviewed. The magnetoresistance of a two-dimensional hole-gas in
a remotely doped wide parabolic AlGaAs quantum well shows similar oscillation-like ex-
trema for a magnetic field applied along the direction of the current in Ref. [152], as shown
in Fig. 7.25. The observed minima of the longitudinal resistance Ry are explained by the
magnetic field-induced depopulation of hole subbands. Even though no subbands are in-
volved in the transport in HgTe, the VPS, introduced in Sec. 4.4, are similar. Magnetic field
dependence of these VPS would cause a similar redistribution of charge carriers in an in-
plane magnetic field and thus extrema in the magnetoresistance. Calculations to deter-
mine the magnetic field dependence of the VPSs to verify this hunch are still pending.
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7.6. BULK PROPERTIES OF INVERSION INDUCED DIRAC SEMI-METALS

One achievement of this work is the verification of compressively strained HgTe as Dirac
semi-metal. The procedure has been as follows: As a starting point, the in the literature
established inversion induced Dirac semi-metals CdsAs, and NasBi have been introduced.
In the literature, two transport features are identified with Dirac semi-metals. These are
the strong linear positive MR in an out-of-plane magnetic field and the negative MR for a
magnetic field aligned with the current. The chiral anomaly driven negative MR is iden-
tified as the more reliable signature. Nevertheless, strong positive and negative MR are
also reported for non-topological materials without linear band structure. The tunability
of compressively strained HgTe has been used to find the physical origin of the magnetore-
sistance and to pinpoint the chiral anomaly as the driving mechanism. The nobs are the
strain engineering of the band structure, and the low intrinsic doping, and thus gateablility.
These nobs have been used to trace the negative MR to the chiral anomaly. The negative
MR is only observed for samples, which have a linear bulk band crossing and for which the
Fermi energy is located close to the Dirac nodes. The magnetic field strength and angle de-
pendence also fit the expectations for the chiral anomaly. Interestingly, the strength of neg-
ative MR does not scale with the splitting of the Dirac nodes in k-space. Even unstrained
HgTe layers show a negative MR. The splitting of the quadratic band touching point due to
the Zeeman effect into linear crossing points is identified as the underlying mechanism. A
scattering-driven mechanism has been excluded based on a series of samples with differ-
ent mobilities and consequently different impurity densities. The strength of the negative
MR signal reduces with increasing impurity density. This observation excludes a scattering-
driven mechanism. It confirms that an intrinsic band structure effect is likely the driving
mechanism. The chiral anomaly as the driving mechanism is consistent with the negative
MR signal only depending on the magnetic field contribution parallel to the current.

Additionally, an accompanying planar Hall effect, and a strong positive MR for high
magnetic fields, has been observed. These two effects possess a different angular depen-
dence than the negative MR signal, which is consistent with the cubic symmetry of the
HgTe crystal. For low magnetic fields, a positive MR has been measured and is due to its
temperature dependence identified as WAL. The WAL shows an atypical magnetic field de-
pendence, consistently with the observations in the Weyl semi-metal TaAs. Such a strong
WAL in a three-dimensional material is peculiar and notable. In the moderate magnetic
field regime, oscillation-like extrema have been observed. These features exist in the Dirac
semi-metal as well as in the 3D-TI phase. Their origin is still unclear but could be related
to the magnetic field dependence of the VPS, which exist in both phases.

The measurements which establish compressively strained HgTe as Dirac semi-metal
brought up quite a few interesting questions: Most of which arise around angular depen-
dencies. A profound analysis of these would be ambitious in this work due to the short-
comings of the used rotation mechanism, as the unavoidable and unknown misalignment.
It would be interesting to investigate the samples with a three-dimensional vector mag-
net in a dilution refrigerator. These effects reach from the peculiar strong WAL signal at low
magnetic fields via the observed PHE and oscillation-like extrema to the strong positive MR
at very high magnetic fields. The assignment of this strong MR for high magnetic fields to
a metal-insulator transition could be tested using temperature-dependent measurements.
The origin of the AMR and PHE signals could be examined by fabricating and measuring
Hall bars on one chip for multiple crystal directions or Corbino disc structures. These mea-
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surements could reveal whether these effects depend on the angle of the magnetic field
with respect to the current or the crystal axis. Additionally to hosting the chiral anomaly,
the quadratic semi-metal unstrained HgTe is predicted to host a magnetic field-induced
phase transition. It also depicts the phase with the lower limit for the achievable density
in the topological surface states by strain engineering. A low carrier density makes single
quantum Hall channels already at low magnetic fields accessible. The single QH channels
are beneficial for some superconductor hybrid devices or even metrology. A more in-depth
analysis of unstrained HgTe samples would thus be interesting.







SURFACE STATES IN INVERSION INDUCED
DIRAC SEMI-METALS

Weyl and Dirac semi-metals are not only interesting because of the linear crossing points
in their bulk band structure and the consequential anomalous magneto-transport effects.
Weyl semi-metals are predicted to host a new type of disjoint surface state, called Fermi-
arc. This raises the question, whether these disjoint surface states are also present in Dirac
semi-metals. The existence of the name-giving band inversion in inversion induced Dirac
semi-metals additionally raises the question, whether the band inversion causes the for-
mation of topological surface states. These questions are addressed in this Chapter with
the help of magneto-transport measurements on compressively strained HgTe layers. The
measurement results are interpreted with the help of DFT and k- p band structure cal-
culations. The insights won by the magneto-transport investigation of the compressively
strained HgTe layers, and the band structure calculations are generalized and compared to
reported measurements and models for Cd3As;, the most widely studied inversion induced
Dirac semi-metal, to find one coherent description.

8.1. OUT OF PLANE MAGNETO-TRANSPORT MEASUREMENTS

To search for potential surface states, a three-dimensional slab of compressively strained
HgTe of thickness d = 66 nm is investigated for signs of two-dimensional transport features,
namely the QHE. The observation of two-dimensional transport features requires the exis-
tence of two-dimensional states, which due to the three-dimensional extension of the slab
can not be due to its bulk and thus indicates the existence of surface states. The same pro-
cedure is extensively used to investigate the surface states of the 3D-TI tensilely strained
HgTe in Chapter II. The tool of choice are magneto-transport experiments with an out-
of-plane applied magnetic field. Exemplary measurements of the longitudinal and Hall
resistance are shown in Fig. 8.1. The electron-regime, in Fig. 8.1a), shows well pronounced
QH plateaus in the Hall resistance Ry, (red) and SdH oscillations in the longitudinal re-
sistance Ry, (black). The peaks of the SdH oscillations in the longitudinal resistance Ry
coincide with the position of the QH plateau transitions in the Hall resistance Ry,. The
values of the QH-plateaus match the theoretical expected values of Reeo,xy = l%, where
j is the integer QH index. The agreement is better than the accuracy of 1% of the used
"SR124" and "SR810" Lock-In amplifiers from Stanford Research Systems [155]. The QH-
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Figure 8.1: The longitudinal resistance Ry (black) and Hall resistance Ry (red) are shown as function of the
out of plane magnetic field B at the temperature T = 0.3K for a gate voltage Ugate = 4V, which corresponds
to an electron density of n = 13 x 10" ¢cm~2 in a), and Ugate = —4V, which corresponds to a hole density of
n=-10x10""cm~2 inb). The indicated charge carrier density n and mobility i are extracted from the semi-
classical low magnetic field regime. The measurements were performed in the high field magnet laboratory
of the Radboud University in Nijmegen.

plateaus in the Hall resistance Ry, are accompanied by zeros in the longitudinal resistance
Ry for magnetic fields B > 7T. Except for very high magnetic fields B > 22T, where the
longitudinal resistance Ry.(B > 22T) shows finite and fluctuating values. These fluctua-
tions are most likely an artifact due to a magnetic freeze-out of the contacts, which is dis-
cussed in Ref. [58]. The qualitatively same behavior is observed for the hole-regime shown
in Fig. 8.1b). Quantum Hall plateaus are observed in the Hall resistance Ry, which quan-
tize to the literature value and are accompanied by a zero in the longitudinal resistance
Ry for high magnetic fields. The main difference is the negative sign of the Hall resistance
Ry, which indicates the hole character of the transport regime. Additionally, the SdH os-
cillations and the QH-plateau transitions are broader compared to the electron-regime.
The broadening is consistent with the about five times lower mobility, which is determined
from the semi-classical low magnetic field regime and indicated in Fig. 8.1.

The observed QHE and SdH oscillations are reminiscent of the magneto-transport of
the 3D-TI tensilely strained HgTe shown in Fig. 2.8 and 3.3 and described in Chapter 3 and
Sec. 2.3.3. The three-dimensional extension of the HgTe layer together with the observation
of QHE, which is a purely two-dimensional phenomenon, infers the existence of surface
states. The same argument can be made for the Dirac semi-metal compressively strained
HgTe. The exact quantization of QH-plateau values to the theoretical values and the zeros
in the longitudinal resistance R, indicate a purely two-dimensional transport for magnetic
fields B > 7T. Electron and hole type surface states are thus expected to exist. To investigate
the properties of these surface states further the same approach, as for 3D-TI HgTe layers
presented in Sec. 3.3.2, is taken. The LL dispersion in the magnetic field is investigated
over the full available gate voltage range and shown in Fig. 8.2. The derivative of the Hall
conductance with respect to the gate voltage 00, /0Ugate is therefore shown as a color plot
as a function of the magnetic field and the gate voltage. High values of 00,/ 0Ugate indicate
the transition between QH-plateaus and thus the position of LLs. Zeros in 00y, /0Ugate
indicate the position of QH-plateaus and their respective QH-indices are indicated as white
numbers based on the value of the Hall conductivity oy (Ugate, B).
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The LL show a surprisingly regular pattern, especially compared to the LL dispersion of
the tensilely strained HgTe layers shown in Fig. 3.9. The LL dispersion of the 3D-TI phase
shows multiple intersecting sets of LL as emphasized in Fig. 3.11a). The LL dispersion of
the compressively strained Dirac semi-metal phase of HgTe shown in Fig. 8.2 in contrast
consists of two separate sets of LL. An electron-like set for Ugate > 0.5V and a hole-like set
for Ugate < 0.5V. The character of the LLs is given by their slope. Electron-like LL possess a
positive slope and hole-like LL a negative slope. The hole-like LLs do not cross and show a
periodic pattern of alternating smaller and bigger spacing. Such a pattern is expected for
a regular spin degenerate 2DEG, where the splitting of the LL is caused in an alternating
fashion by the orbital and Zeeman effect of the magnetic field. This hole regime is sepa-
rated from the electron regime via a zero plateau in oy at Ugate ~ 0.5V. The electron LL
are well resolved and show a regular and equidistantly spaced pattern. The only excep-
tion is the QH-plateau with QH-index j = 4. For the QH-index j = 4 a LL crosses through.
Additional crossings at high positive gate voltages and low magnetic fields can neither be
directly observed nor excluded due to the limited resolution and broadening of the LL. The
discussion and reconstruction of the details in the LL dispersion is postponed to Sec. 8.2.4.
The main result is the observation of LL and thus two-dimensional transport over the full
available gate voltage range. Potential origins of the observed two-dimensional transport
are the Fermi-arcs predicted for Weyl semi-metals and topological surface states due to the
inherent band inversion.
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Figure 8.2: The derivative of the Hall conductivity oy, with respect to the gate voltage Ugate is shown as a
function of the gate voltage Ugate and the out of plane magnetic field B at the temperature T = 0.05K. The
white labels indicate the QH-plateau index determined by the values of the Hall conductivity o xy (Ugate, B).
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8.2. ORIGIN OF THE SURFACE STATES

This Section investigates the origin of the observed two-dimensional transport in the Dirac
semi-metal compressively strained HgTe. The different potential surface states of the Dirac
semi-metal compressively strained HgTe are introduced. The missing inversion symmetry
of the zinc blende crystal makes compressively strained HgTe actually a Weyl semi-metal,
even though this symmetry breaking is small. Because of this, Fermi-arcs are expected to
exist. Their relevance for the observed magneto-transport is discussed. Topological sur-
face states are expected due to the inherent band inversion of HgTe. The possibility of the
formation of VPS due to the similarity to the three-dimensional insulator phase of tensilely
strained HgTe is examined. Finally, observed LL dispersion is reproduced using a toy model
accounting for the TSS and massive VPS.

8.2.1. FERMI-ARCS

The broad interest in Weyl semi-metals is fueled by their disjoint surface states predicted
in Ref. [12] and named Fermi-arcs. The simplest possible model which hosts such Fermi-
arcs represents the material class of magnetic Weyl semi-metals. A magnetic Weyl semi-
metal consists of linearly dispersing bands with at least two non-degenerate linear crossing
points. An overview over topological semi-metal is given in Sec. 7.1. The Brillouin zone of
such a magnetic Weyl semi-metal is shown in Fig. 8.3a). The position of the linear cross-
ing points called Weyl nodes are highlighted as red balls. The chirality of the Weyl nodes
is indicated by the plus and minus signs. The projection of the bulk Weyl nodes onto the
surface Brillouin zone (grey area) is shown as red circles. The projected Weyl nodes of op-
posite chirality are connected via the so-called Fermi-arc indicated in yellow in Fig. 8.3a).
The name Fermi-arc stems from their open arc-like contour. The shown upper surface only
hosts one Fermi-arc connecting the projected Weyl nodes from positive to negative chiral-
ity, while the opposite connection is located at the bottom surface. Accounting for both
surfaces the Fermi-arcs form together again a closed Fermi contour which is connected via
the bulk Weyl nodes. The Fermi-arcs are similar to the TSS of a 3D-TI. The two TSS located
on opposite surfaces also possess different chirality [11]. In Weyl semi-metals the Fermi-
arc are thus also protected by the separation of the Weyl nodes in k-space. The degenerate
Dirac nodes in Dirac semi-metals are effectively multiple Weyl nodes on top of each other,
which impedes the protection of the Fermi-arcs. Even though Fermi-arcs do thus not nec-
essarily have to exist in Dirac semi-metals, in principle there is nothing preventing their
formation. The magnetic field used to probe the properties of these semi-metals anyways
lifts the degeneracy of the Dirac nodes due to the Zeeman effect. Dirac semi-metals in a
magnetic field are thus effectively Weyl semi-metals. The Zeeman provides the splitting of
the Weyl nodes relevant for the formation of Fermi-arcs.

With this general introduction of Fermi-arcs, the attention is shifted to the Weyl nodes
in compressively strained HgTe and its Fermi-arcs. The bulk Brillouin zone of compres-
sively strained HgTe is shown in Fig. 8.3b) together with the surface Brillouin zone of the
(001) surface on top and the (010) surface on the right. The broken inversion symmetry
of the zinc blende crystal splits the Dirac nodes at k; = +k 0, as shown in Fig. 7.6¢) and
Fig. 2.2¢), into four Weyl nodes each inside the k, k, plane. The positions of the Weyl nodes
in the Brillouin zone are marked as balls. The balls are colored according to their chirality
in red (positive) and blue (negative). The experimentally investigated surface is the (001)
surface, which is shown on the top in Fig. 8.3b). The projection process is graphically rep-



8.2. ORIGIN OF THE SURFACE STATES 123

resented in Fig. 8.3b) by the red plane sketched in the bulk Brillouin zone which reduces to
the red line in the (001) surface Brillouin zone. For the (001) surface one of the Weyl nodes
around k; = —k; is projected on top of the equivalent Weyl node around k; = +k; . This
yields in total four projected Weyl nodes in the (001) surface Brillouin zone as indicated
by the colored dots. The chiralities of the surface Weyl nodes are the sum of the projected
bulk Weyl node chiralities. The red and blue dots thus possess the chirality +2 and -2, re-
spectively. This yields a total of eight chiral charges, which corresponds to four expected
Fermi-arcs for the top (001) and bottom (001). The resulting Fermi-arcs of the (001) sur-
face are determined with DFT calculations in Ref. [156] and shown in Fig. 8.3c). The four
Fermi-arcs look together like a slightly deformed Fermi annulus.

The contribution of the Fermi-arcs to the observed magneto-transport in Sec. 8.1 is
estimated by calculating their size in k-space. The Fermi-arcs are approximately annuli
and their diameter depends on the position of the Fermi energy with respect to the Weyl
nodes. As an upper boundary, the full area of a circle is estimated instead. For the radius
k = 0.1nm extracted from Fig. 8.3c) and using the equation for the DOS in k-space for a

8. 1

this yields the density 7permjarc ~ 0.8 x 101 cm™2. This density is small compared to the
maximal accessed density of 7y ~ 13 x 10'! cm™2. The assumed strain of 1% for the DFT
calculations is a factor of three larger than the experimental strain of 0.3% strain. Den-
sity functional theory calculations with a strain of 0.3 % of Ref. [34] yield a much smaller
splitting of the Weyl nodes of Ak ~ 0.02nm, as shown in Fig. 8.3d). This size in k-space
corresponds to a density of 7perm; arcs ~ 0.03 x 10'! cm™2, which is neglectable for magneto-
transport experiments. This neglectable small density excludes the Fermi-arcs as the sur-
face states carrying the observed magneto-transport of Sec. 8.1. These DFT calculations
depicted in Fig. 8.3d) show additional surface localized states which disperse along the va-
lence band edge. The origin of these surface states and their relevance for the magneto-
transport are the topic of the next Section.
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Figure 8.3: In a) two Weyl nodes with different chirality, indicated by the plus and minus sign, are shown
as two red balls in the bulk Brillouin zone (BZ). The resulting disjoint surface state, called Fermi-arc is
sketched in yellow in the surface Brillouin zone which connects the projected Weyl nodes (red circles). In
b) a schematic of the bulk Brillouin zone of HgTe is shown. The positions of its eight Weyl nodes are indicated
as circles. These circles are according to their chirality red or blue. The surface Brillouin zone of the (001)
surface, investigated experimentally in this work, and the corresponding projections of the Weyl nodes are
shown on top and equivalently for the (010) surface on the right. In c) the surface Fermi-arcs are shown in
the (001) surface for a HgTe layer with 1% compressive strain determined with DFT calculations. In d) the
band structure of a 0.3% compressively strained semi-infinite HgTe layer calculated with DFT is shown. The
color code represents the spectral function. Dark red colors indicate the surface character, while lighter col-
ors show the bulk states. b) and c) are reprinted from J. Ruan et al., Symmetry-protected ideal Weyl semimetal
in HgTe-class materials, Nature Communications 7, 11136 (2014), Creative Commons Attribution 4.0 Inter-
national License [156]. d) is reprinted from D. M. Mahler, Interplay of Dirac Nodes and Volkov-Pankratov
Surface States in Compressively Strained HgTe, PRX 9, 031034 (2019), Creative Commons Attribution 4.0 In-
ternational License [34].
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8.2.2. TOPOLOGICAL SURFACE STATES
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Figure 8.4: In a) the band structure of 0.3% compressively strained semi-infinite HgTe layer calculated with
DEFT is shown as in Fig. 8.3d) only for a bigger momentum range k. The color code represents the spectral
function, and dark red colors thus indicate surface character, while lighter colors show the bulk states. The
band structure of a 70nm thick 0.3% compressively and tensilely strained HgTe calculated with the program
"kdpotpy" [29] is shown along the ky direction in b) and c), respectively. The color code indicates the local-
ization of the states along the finite z-direction. a) is taken from D. M. Mahler, Interplay of Dirac Nodes and
Volkov-Pankratov Surface States in Compressively Strained HgTe, PRX 9, 031034 (2019), Creative Commons
Attribution 4.0 International License [34].

Since Fermi-arcs are not sufficient to explain the observed two-dimensional magneto-
transport, the question arises whether other surface states exist in compressively strained
HgTe. The band structure of a semi-infinite slab of ~ 0.3% compressively strained HgTe
determined by DFT calculations is already shown in Fig. 8.3d) and here again in Fig. 8.4a)
for a wider momentum and energy range. Additionally to the bulk bands (orange) are two
surface states (dark red) visible. The character of the states is identified by the amplitude
of their spectral function on the surface. One surface state follows the bulk conduction
band edge, while the other is buried in the bulk valence band. The buried surface state
disperses linearly for low energies, crosses at E ~ —27meV linearly, and finally hybridizes
in an anti-crossing-like fashion with the bulk valence band for E > —20meV. The disper-
sion of the seemingly two surface states is reminiscent of the TSS in the three-dimensional
topological insulator phase of HgTe, as shown in Fig. 2.6.

To simplify the comparison, the band structures of 70nm thick HgTe layers is shown
for —0.3% compressive and 0.3 % tensile strain in Fig. 8.4b) and c), respectively. The band
structures are determined by k- p calculations using the program "kdotpy" [29] with
Cdy7Hgp3CdTe layers as the boundary conditions. The dispersion of the surface states
highlighted in red only differs around E ~ O0meV. For higher energies E > 0meV, the sur-
face state disperses along the bulk conduction band edge for both phases. For lower en-
ergies E < 0meV, the surface states hybridize for both phases with the bulk valence band
and show a linear crossing inside the bulk valence band at E ~ —100meV. The surface state
found by the DFT and k- p calculations for the compressively strained HgTe slab resembles
the topological surface state of the 3D-TI tensilely strained HgTe. This accordance sug-
gests the band inversion as the origin for the surface states observed in the compressively
strained HgTe Dirac semi-metal phase. Thereby, the different positions obtained for the
linear crossing of the TSS with the DFT and k- p calculations are only a consequence of
the different surface potentials assumed for the calculations. The position of the I's bulk
band is indeed nearly unaffected by the different strain directions and lies at E ~ —300 meV
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below the I'g bands for both strain directions in Fig. 8.4b) and c). The order of the bands
is inverted to the atomic limit, which classifies compressively strained HgTe as inversion
induced Dirac semi-metal (see Chapter 7). The strain only changes the details of the band
structure around E ~ 0meV and not the topology of the system. For high momenta k, the
order of the bands is the same for all phases: The I'g 111, ['s iy, and then the I' bands. Be-
cause of this, topological surface states due to the inversion of the I's band with respect to
the I's 1y band are expected to form in the Dirac semi-metal phase of HgTe exactly as in its
3D-TI phase. The details of its dispersion can of course vary, for example, due to the hy-
bridization of the TSS with the I'g ;11 bands. These band inversion-induced surface states
in compressively strained HgTe are thus also called topological surface states. An impor-
tant side note: The existence of the topological surface states also in compressively strained
HgTe, for which the valence and conduction band touch, emphasizes that no bulk bandgap
is necessary for the formation of topological surface states.

8.2.3. VOLKOV PANKRATOV STATES
With the existence of TSS also in the Dirac semi-metal phase of HgTe established, the focus
is now shifted onto the modeling of the experimentally observed Landau level dispersion.
The TSS in Dirac semi-metal phase follows the edge of the bulk conduction band as shown
in Fig. 8.4a) and b). The TSS disperses thus like the TSS in the 3D-TI phase, as shown in
Fig. 8.4c) for comparison. For positive gate voltages Ugate and thus electron densities, the
TSS of the Dirac semi-metal phase of HgTe should consequently behave similar to the TSS
of the 3D-TI phase of HgTe. To verify this, the influence of the top gate voltage is investi-
gated using k - p calculations for a 66 nm thick € = 0.3 % compressively strained HgTe layer
based on the six-band Kane Hamiltonian (see Sec. 4.2) in Ref. [34]. The calculations use
Hard-wall boundary conditions and include the bulk inversion symmetry breaking term.
Appropriate toy Hartree potentials are included to account for the applied top gate voltage.
The resulting band structure is shown in Fig. 8.5a) together with the shape of the applied
Hartree potential Vijarree | in blackin Fig. 8.5b). The TSS are separated from the conduction
sub-bands and are preferentially occupied in the same fashion as for the 3D-TI case shown
in Fig. 4.6b). The degeneracy of TSS (blue) is lifted by the Hartree potential. The observed
electron-type two-dimensional transport is thus assigned to the topological surface states.
This raises the question of whether the hole-type transport is also carried by the TSS.
To answer this question a short detour via the 3D-TI phase is taken. The motivation of
the TSS also being responsible for the hole-type transport comes from the Dirac screening
model described in Sec. 2.3.4. In Ref. [49] two dimensional electron and hole transport is
observed in 3D-TI tensile strained HgTe samples. To explain the observed hole transport
it is proposed that the Dirac node of the TSS can be pulled into the bulk bandgap for suf-
ficiently strong gate voltages. The hole-side of the TSS would thus be accessible. In the
3D-TI phase, the I'g 1 iy band lies above the I's gy band, which is followed by the I's band, as
shown in Fig. 8.6b). Since the inverted bands are the I's 1 jj and I's band, the Dirac point can
in principle be moved above the I'g yiy band and consequently into the bulk bandgap. In
the Dirac semi-metal phase in contrast, the order of the I'g bands at the I" point is inverted
compared to the 3D-TI phase, as shown in Fig. 8.6a). As mentioned above, the band inver-
sion creating the TSS is between the I'g 1y and the I'g band. In the Dirac semi-metal phase,
the Dirac point of the TSS can thus not be moved through the I's ;5 band. The TSS would

!n this notation a negative Hartree potential represents a positive gate voltage.
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hybridize and vanish as far as it touches the I'g ;1 band. The hole-part of the TSS thus only
exists in parallel to the bulk valence I's ji5 band. The large DOS of the I's band overshadows
the TSS, as shown in Fig. 8.4a) and b). The TSS can consequently not be the origin of the
observed two-dimensional hole-type transport.
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Figure 8.5: The band structure of a 66nm thick 0.3% compressively strained HgTe slab is shown. It is cal-
culated using the Kane model including the bulk inversion asymmetry terms and accounting for a Hartree
potential Viariree, Which represents a small electron density, a moderate hole density, and a moderate elec-
tron density in a), ¢) and d), respectively. The Fermi energy is indicated as orange line the topological surface
state (TSS) and massive Volkov-Pankratov states (VPS) are highlighted in red and blue, respectively. The re-
spective Hartree potentials are presented as a function of the z coordinate in b). Taken from D. M. Mahler,
Interplay of Dirac Nodes and Volkov-Pankratov Surface States in Compressively Strained HgTe, PRX 9, 031034
(2019), Creative Commons Attribution 4.0 International License [34]. .

Different kinds of hole-type surface states must be present. Further k- p calculations
are performed in Ref. [34] for a positive Hartree potential representing a negative gate volt-
age. The Hartree potential is shown in blue in Fig. 8.5b) and the resulting band structure
in Fig. 8.5¢). The topological surface states are pushed close to the conduction band, and
the electrochemical potential shifts slightly down. The first valence bulk sub-band, high-
lighted in red, is shifted away from the remaining valence sub-bands. This state is pref-
erentially occupied and is consequently responsible for the hole-like transport. This red
valence band is localized at the top surface as shown for the 3D-TI-phase in Fig. 4.7c) and
discussed in Sec. 4.3. Such additional massive surface states have been already described
by B. A. Volkov and O. A. Pankratov in Ref. [16] for an interface of insulators with mutually
inverted bands. To acknowledge this work, the red state is called massive Volkov-Pankratov
state. A more detailed discussion can be found in Sec. 4.4. The introduction of hole-like
massive Volkov-Pankratov state in this work based on the 3D-TI tensilely strained HgTe is
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chosen out of didactic reasons. Actually, the conceptional inaccessibility of the hole-side
of the TSS in compressively strained HgTe helped to identify the massive VPS in the 3D-TI
tensilely strained HgTe phase, as described in Sec. 4.4.

The calculation for the positive Hartree potential in Fig. 8.5c) shows not only a hole-
type massive VPS but also an electron-type massive VPS. The electrochemical potential lies
below this electron-type massive VPS and is thus not occupied. This nevertheless raises
the question, whether for higher negative potentials the transport is purely TSS driven or
whether electron-type massive VPS also contributes. The band structure for a moderately
strong negative Hartree potential [Fig. 8.5b) (red)] is shown in Fig. 8.5d). An electron-type
massive VPS is found and highlighted in red. At the electrochemical potential Eg, the DOS
of this massive VPS is small, especially compared to the DOS of the TSS. Assuming no
degeneracy, Eq. 4.9 can be used to estimate the density n from the respective size in k-
space. This yields nyps ~ 0.7 x 10'! cm™2 for the massive VPS, 1y 1ss ~ 1.8 x 101 cm ™2 and
NtopTss ~ 4.8 x 10" cm™ for the bottom and top TSS, respectively. The quantum limit for
nyps is according to the definition of the filling factor (Eq. 3.7) Bgj;yps ~ 3 and thus close to
the not well resolved low magnetic field regime of Fig. 8.2 and Fig. 8.7. The top and bottom
TSS thus dominate the magneto-transport in the electron-regime of the Dirac semi-metal
compressively strained HgTe.
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Figure 8.6: The band structure of a 70nm thick 0.3 % HgTe layer is shown for compressive strain along the k-
direction in a) and for tensile strain along the ky-direction in b). The color code indicates the band character
as indicated in the inset. Both band structures are calculated using the program "kdpotpy" [29].

8.2.4. IDENTIFICATION OF THE LANDAU LEVELS

The k- p calculations with Hartree potentials identify three relevant states for the magneto-
transport, namely the top and bottom TSS as well as the hole-type massive VPS. Theoret-
ically, the LL dispersion of the full band structure, as shown in Fig. 8.5, can be calculated.
The amount of involved bands and their complex dispersions hinders the assignment of
the LL with their respective bands. Additionally, the theoretical determined dispersion in
energy into the measured dispersion in gate voltage Ugaee Or equivalently carrier density n
is not straightforward, as discussed in Chapter 4. This is why the focus is shifted back to
measured LL dispersion already shown in Fig. 8.2. The LL are expected to disperse linearly
as function of the density and thus gate voltage Ugate (see the discussion in Chapter 3).
The measured LL dispersion is shown again in Fig. 8.7. The observed LL are extrapolated
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to B — 0T. The extrapolation yields two starting points for the LL. The LL are color-coded
according to their starting point. The dash-dotted blue lines emerge from the lower start-
ing point at Ugae ~ 0.5V and the dashed red lines from Ugate ~ 0.7V. All dash-dotted blue
lines disperse electron-like and all, except one, dashed red lines are hole-like. The origin
of the electron-like LL below the origin of the hole-like LL is unusual. This behavior can
be explained considering the band structure of compressively strained HgTe. The disper-
sion of the surface states is reminiscent of the dispersion of the corresponding bulk bands
[compare Fig. 8.5¢)]. Because of this, the simpler dispersion of the bulk bands, as shown
in Fig. 8.6, is discussed representatively. Consistently, the electron-like conduction band
(green) minimum lies below the hole-like valence band (blue) maximum at the I'-point.
More puzzling is the origin of the single electron-like dispersing red dashed LL.
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Figure 8.7: The derivative of the Hall conductivity oy, with respect to the gate voltage Ugate is shown as func-
tion of Ugate and the out of plane magnetic field B at the temperature T = 0.05K. The blue dash-dotted and
red dashed lines are guides to highlight the two sets of Landau levels with a different origin for B=0T.

To investigate this odd LL, an analytically solvable toy model is used to qualitatively
reproduce the LL dispersion. This is done following the approach of Ref. [157]. The model
is the two-dimensional version of the "simple for band model" (Eq. 8.8) widely used to
describe topological materials and discussed in detail in Sec. 8.4.1. The non-degenerate
Hamiltonian reads

Co+ My + (Cy — Mp) (K% + kf,) Ak,

Htoy(kx’ k}’) = Ak_ Co— My + (Cy + Mz)(ki + sz,)

(8.2)

with k. = ky £ ik,. Two copies of this Hamiltonian are used to represent the top and bot-
tom TSS as well as the massive VPS, respectively. The parameters are chosen to create a
simplified version of the band structure determined with k- p calculations for a negative
gate voltage Ugate = 2V shown in Fig. 8.5¢). The resulting model band structure is shown in
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Fig.8.8a) for the parameters given in table 8.1. The model reproduces the qualitative dis-
persion of the top and bottom TSS in blue and light blue as well as the massive hole and
electron-type VPS in red and green. The Landau level dispersion of these bands can be ob-
tained analytically following the usual procedure, as described in Ref. [157] and Ref. [158].
First, the Peierls substitution k — IT = k + 7 A is used to introduce the magnetic field de-
pendence. The gauge potential A represents the magnetic field viaV-xA =B = Bé, with &,
being the unit vector along the z-direction pointing perpendicular to the surface. Second,
the momenta IT are expressed in second quantization as ladder operators:

eB eB eB eB
M,=1/—|(a"+al|, 1 =1\ = a'-a|, M_=(/-—-a, and 0 :\/—a* 8.3
< Zh( ) y Zh( ) 2h " 2h (8.3)

The ladder operators applied to the Eigenstate |n) obey the following conditions:
a'(nl=Vn+1in+1), anl=vnln-1), and a'aln)=nln)=nln) (8.4

Third, the Eigenvalues of the Hamiltonian (Eq. 8.2 including the Peierls substitution and
expressed in second quantization using Eq. 8.3 are calculated to

e e e
E.(B)=Cy—C2—Bn+¥ \/Az—Bn + (M + Mg—Bn)2

h h h , 8.5)
Ei1-0(B) = Co— My —(Co— MZ)EB

These Eigenvalues represent the LL dispersion and are shown in Fig. 8.8b) for the param-
eters of table 8.1. The hole-type transport is solely carried by the LL of the hole-type mas-
sive VPS (red). For magnetic fields B > 3T the electron-type transport is determined by
the LL of the top (blue) and bottom (light blue) TSS except for one LL. Only one LL of the
massive VPS crosses through the LL of the TSS. This LL is the LL with index v = 0, which
possesses a positive dispersion despite originating from the hole-like massive VPS. The LL
of the electron-like massive VPS only contribute to the not well resolved low magnetic field
regime (B <37).

To sum up, the magneto-transport of the compressively strained HgTe samples is car-
ried by the topological surface states and the hole-like massive Volkov-Pankratov states. No
signatures of Fermi-arcs could be found. This observation emphasizes the importance of
the inherent band inversion in materials.

’ band C() C2 ‘ M() ‘ M2 A
massive VPS 0eV —0.9eVnm? | 1eV | 0.002eVnm? | 0.08eVnm?
TSS —0.01eV | —1eVvnm? | 0.1eV 0eVnm? 0eVnm?

Table 8.1: The table shows the parameters of the simple four band model (Eq. 8.2 used to represent the
massive Volkov-Pankratov states and the topological surface states of the Dirac semi-metal compressively
strained HgTe. These are used to qualitatively reproduce the measured LL dispersion.
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Figure 8.8: In a) the qualitative band structure of an inversion induced Dirac semi-metal with an applied gate
voltage is shown based on the simple four-band model (Eq. 8.2). The blue and light blue bands are the top
and bottom topological surface states and the red and green bands are the hole and electron-type massive
Volkov-Pankratov states. In b) the corresponding Landau level dispersion concerning the magnetic field B
and the energy E are shown up to the Landau level index v = 5.

8.3. SURFACE STATES IN OTHER INVERSION INDUCED DIRAC SEMI-

METALS

The magneto-transport measurements on compressively strained HgTe reveal the exis-
tence of topological surface states and VPSs in inversion induced Dirac semi-metals. In this
context, the reported observations of magneto-transport effects in the Dirac semi-metals
CdsAs; are reviewed and the theoretical predicted magneto-transport phenomena, as the
SdH oscillations and QHE carried by Fermi-arcs are summarized. This overview is used as
the foundation to find a consistent description of inversion-induced Dirac semi-metals.

8.3.1. QUANTUM OSCILLATIONS IN THE DIRAC SEMI-METAL CD3AS,

As a starting point, the expected magneto-transport phenomena for a simple Dirac semi-
metal with two double degenerate linearly crossing bands is described. Fermi-arcs are pre-
dicted to cause unconventional quantum oscillations in the longitudinal resistance as a
function of the magnetic fields [159]. For simplicity, the mechanism is described based on
a Weyl semi-metal, which can be straightforwardly transferred to Dirac semi-metals. A slab
of a Weyl semi-metal is shown in Fig. 8.9a), where the projection of the Weyl nodes onto the
top and the bottom surface is indicated as circles. A magnetic field applied alongside the
z-direction forces the charge carriers in the Fermi-arc on the top surface to fulfill one-half
of a cyclotron orbit. To execute the other half of the cyclotron orbit the charge carrier has to
move through the bulk parallel to the magnetic field into the Fermi-arc of the bottom sur-
face. On the bottom surface, the charge carrier can finish its cyclotron orbit by moving back
to the projection of the first Weyl node and tunneling back to the top surface. The overall
path can be treated as one cyclotron orbit, as long as the movement through the bulk is
coherent, e.g. tunnel-like. This full cyclotron orbit is sketched in Fig. 8.9a). The magnetic
fields B; corresponding to these cyclotron orbits is given by

1 e (nvp
B ko
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1/Bri 1/B

Separate orbits Crossover Orbits traverse
on each surface regime bulk

Figure 8.9: In a) the semi-classical orbits of quantum oscillations in the Fermi-arcs of a finite Weyl semi-metal
slab are shown in real space for the y-direction and momentum space for x and z. The same semi-classical
orbits are shown in b) for a Dirac semi-metal with two Fermi-arcs per surface. The potential intermixing
of surface and bulk states due to a magnetic field is indicated as arrows. In c) the corresponding quantum
oscillations are shown for three different possible regimes due to the intermixing. Reprinted by permission
from Nature Publishing Group: Springer Nature, Nature Communications, Quantum oscillations from sur-
face Fermi arcs in Weyl and Dirac semi-metals, A. C. Potter et al., Copyright © 2014, Nature Publishing Group,
a division of Macmillan Publishers Limited. All Rights Reserved. (2014) [159].

where ky is the length of the Fermi-arc, j the Landau level index, y a constant, which ac-
counts for quantum corrections for low Landau level indices, and d the thickness of the
device [159]. The path in a Dirac semi-metal can be imagined as the sum of the path for
two opposite Weyl semi-metals. The cyclotron orbits are thereby separated by the sup-
pressed backscattering between nodes with different chirality due to the leftover symmetry
of the crystal [11]. The corresponding semi-classical orbit for a Dirac semi-metal is shown
in Fig. 8.9b The expected resulting quantum oscillations are depicted in 8.9c). The tunnel-
like motion through the bulk has multiple consequences [159]. It restricts the thickness of
the samples not to exceed the mean free path. It also causes a bulk thickness phase de-
pendence as visible in Eq. 8.6, and a saturation magnetic field By as an upper limit for the

occurrence of these oscillations .
0
Bgat ~ i (8.7)

Such Fermi-arc mediated quantum oscillations have first been reported for the Dirac
semi-metal CdsAs; in Ref. [160]. The results of this work are shortly summarized in the
following. These devices are produced via focused ion beam etching. The resulting de-
vice is shown in Fig. 8.10a) as false color scanning electron microscope picture. The active
CdsAs; structure is highlighted in purple and the gold leads in yellow. The longitudinal re-
sistivity shows quantum oscillations as a function of the magnetic field. For the magnetic
field applied parallel or perpendicular to the surface different frequencies are observed, as
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can be seen in Fig. 8.10b). The corresponding frequencies of these oscillations are deter-
mined using a FFT analysis and shown in Fig. 8.10c). For the parallel (0°) case only one fre-
quency is obtained, while in the perpendicular (90°) case an additional frequency is found.
An overview of the angular dependence of the frequencies is given in Fig. 8.10f). One fre-
quency is angle independent. The other frequency scales with cos(®), where O is the angle
of the magnetic field with respect to the normal of the transport plane. The angle inde-
pendent frequency is assigned to the bulk carriers. The other frequency is attributed to
the Fermi-arcs based on its angular dependence, which is consistent with the expectation
for a two-dimensional system. Since for Fermi-arc mediated quantum oscillations a bulk
thickness-dependent phase is expected according to Eq. 8.6, also a triangular shape is fab-
ricated as shown in Fig. 8.10d). The corresponding results of the FFT analysis are shown in
Fig. 8.10e). The FFT analysis of the triangular shape only shows the frequency fg assigned
to the bulk. The absence of the Fermi-arc assigned frequency is in Ref. [160] interpreted
as consistent with the canceling of the quantum oscillations due to the different phases
picked up by the different path lengths through the bulk in the triangular geometry.
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Figure 8.10: In a) a false-color scanning electron microscope picture of the CdsAs, devices prepared by fo-
cused ion beam as free-standing 4 umx10 um sheets are shown. The free-standing CdsAs; structures are
highlighted in purple and the Au contacts in yellow. The longitudinal resistivity as a function of the magnetic
field is shown in b). The two horizontal lines indicate the expected peak positions in the magnetic field B for
the oscillations periodic in the inverse magnetic field with a frequency of f = 36.5T. The corresponding FFT
analysis of the resistivity in function of the inverse magnetic field is shown in c) for a magnetic field applied
parallel to the surface (0°) in red and perpendicular to it (90°) in blue. An overview of the angular dependence
of the FFT determined frequencies is given in f). In d) an additional prepared and measured triangular ge-
ometry is highlighted in light red. The results of the FFT analysis of the magneto-transport of the triangular
structure are shown in e) in light red together with the results for the rectangular reference structure in light
blue. The direction of the magnetic field is indicated schematically in the inset. Reprinted by permission
from Nature Publishing Group: Springer Nature, Nature, Transport evidence for Fermi-arc-mediated chiral-
ity transfer in the Dirac semimetal Cd3As2, P. J. W. Moll et al., Copyright ©2016, Nature Publishing Group, a
division of Macmillan Publishers Limited. All Rights Reserved. (2016) [160].
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The presented interpretation possesses a few shortcomings, which are discussed in
the following. As pointed out by the authors of Ref. [160], the maximum magnetic field
Bgy¢ for the Fermi-arc assigned quantum oscillations is not consistent with the predicted
thickness dependence of Eq. 8.7. The maximum magnetic field By, instead fits the quan-
tum limit expected for conventional quantum oscillations. Also, the frequency of a three-
dimensional state is only expected to be independent of the magnetic field direction for a
spherical Fermi surface. Following the discussion of Ref. [137] Fermi-arcs only exist around
the Weyl/Dirac nodes, as long as the Fermi contour does not wrap both Dirac nodes com-
pletely, which would cause the chiral charge of the Dirac nodes to cancel. In other words,
Fermi-arcs only exist for energies inside the anti-crossing gap. In this energy window, the
assumption of a spherical Fermi surface, which would correspond to an angle indepen-
dent frequency as shown in Fig. 8.10f), is non-trivial and the Fermi contour could as well
be asymmetric.
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Figure 8.11: In a) the suggested 3D nested anisotropic Fermi surface in CdsAs, is shown based on magnetic
field angle-dependent magneto-transport measurements. In b) the Fermi surface of CdsAs, calculated with
an simple four band model (Sec. 8.4.1) using the parameters of Ref. [161] is shown for the Fermi energy
Er = 0.0065eV. The Fermi energy Er = 0.0065¢€V is indicated as transparent yellow plane in the correspond-
ing band structure for k, = 0 in c¢). a) is taken from Y. Zhao et al., Anisotropic Fermi Surface and Quantum
Limit Transport in HighMobility Three-Dimensional Dirac Semimetal CdsAs, PRX 5, 031037 (2015), Creative
Commons Attribution 3.0 License [162].

An anisotropic three-dimensional Fermi surface can also lead to a similar angular de-
pendence of the magnetic field as an isotropic two-dimensional Fermi circle and thus be re-
sponsible for the observed angular dependent frequency assigned to Fermi-arcs. In Ref. [162],
the shape of the Fermi contour is analyzed with the help of crystal direction-dependent
magneto-transport measurements. These measurements yield either one single frequency
or two frequencies depending on the crystal direction. Summarizing the observations for
multiple crystal directions, a Fermi surface composed of two nested ellipsoids is suggested,
as shown in Fig. 8.11a). The expected Fermi energy is estimated to be Er = 200meV above
the Dirac nodes, consistent with the observed high carrier density of 7 ~ 6 x 10'8cm™3. To
motivate, that this mechanism is responsible, an example Fermi surfaces is shown for a
Fermi energy (Ep = 6.5meV) slightly above the so-called Lifshitz transition in Fig. 8.11b).
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A Lifshitz transition is the conversion from two Fermi surfaces to one Fermi surface with
changing Fermi energy, here increasing Fermi energy. The Lifshitz transition happens when
the Fermi energy Er hits the upper edge of the anti-crossing gap, as indicated by the trans-
parent yellow plane in Fig. 8.11c). The shown Fermi surface is probably not the exact Fermi
surface of the device investigated in Ref. [160] but motivates the possibility of the existence
of a Fermi surface with such a symmetry in CdsAs;. To calculate this Fermi surface a sim-
ple four-band model is used, as described in Eq. 8.8, with the parameters for CdsAs; given
by Ref. [161]. The values of the simple four-band model should not be taken as absolute
quantities, since the exact band structure of CdsAs; is still under discussion, as discussed
in Sec. 7.2.1 and the review paper Ref. [107]. Unfortunately, different reports on the same
material CdsAs; can also not simply be compared. Very different magneto-transport prop-
erties are observed in Ref. [163] on nanoplates of Cd3As, with thicknesses between 80 nm
and 150 nm with various carrier densities. For lower doped samples, even QHE is observed.

8.3.2. QUANTUM HALL EFFECT IN CD3AS,

The observation of QHE is a more reliable indicator for the dimensionality of a system since
it only exits in two-dimensional systems. In Ref. [163], plateaus in the Hall resistance Ry,
are observed in CdzAs, samples with a low carrier concentration of n3p ~ 5 x 107 cm™3, as
shown in Fig. 8.12a). The observation of QHE requires a two-dimensional transport layer.
The three-dimensional extension with a thickness of 70— 150 nm of the investigated CdsAs;
nanoplates suggests the existence of surface states. The authors of Ref. [163] assign this sur-
face transport to Fermi-arcs. To prove that Fermi-arcs are the underlying mechanism for
the observed QHE in CdsAs;, the phase of the QHE in a wedge-shaped sample is inves-
tigated in Ref. [164]. The proposed mechanism by Fermi-arcs is sketched in Fig. 8.9 and
predicts that the phase scales with the sample thickness d according to Eq. 8.6. The wedge
design is chosen to probe three different thicknesses in one sample piece and compare the
phase of the observed quantum oscillations and QHE. Indeed a shift of the phase for the
different thicknesses is observed.

In contrast, in Ref. [138] a different approach is taken to test the thickness dependence
of the phase. Layers of different thicknesses grown with MBE are defined in Hall bar struc-
tures and equipped with a gate, which allows matching the carrier densities for the different
layers. Their experiment yields no clear dependence of the phase on the sample thickness.
Instead, the observed shifts between the onset of QH plateaus and SdH oscillations in dif-
ferent devices are traced to small differences in the carrier density in the samples. These
small differences are unavoidable since it is impossible to precisely match the carrier den-
sity only based on the classical Hall slope for low magnetic fields. The reported phases do
not match the expectations for the QHE carried by Fermi-arcs. Arguably the chosen layers
are with up to 38 nm relatively thin, but according to the estimate by Ref. [163] the Fermi
wavelength is of the same size, making at least the thicker devices quasi three-dimensional.

So far, itis implicitly assumed that the proposed mechanism of cyclotron orbits through
the Fermi-arcs on opposite surfaces not only cause SdH oscillations but also QHE. The ex-
pected magneto-transport is explicitly calculated for finite slabs of Weyl and Dirac semi-
metals, namely CdsAs; and NasBi, in Ref. [161]. The mechanism thereby is the same as
proposed for the quantum oscillations in Sec. 8.3.1 and sketched in Fig. 8.9. The simple four
band model described by Eq. 8.8 with B(k) = 0 is used and solved for a 100nm thick slab
of CdsAs; along the [110] direction. The resulting band structure is shown in Fig. 8.12b) to-
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Figure 8.12: In a) the measured longitudinal resistance Ry, and Hall resistance Ry as a function of the mag-
netic field B on a CdzAs; nanoplate is shown. The band structure of a 100nm slab of Cd3As; determined with
a simple four-band model is shown in b) together with the wave function distribution along the finite direc-
tion for k, = 0.0lnm~"! indicated as red dot. The corresponding Hall conductance O xy is shown in ¢). a) is
taken from C. Zhang et al., Evolution of Weyl orbit and quantum Hall effect in Dirac semimetal Cd3As2, Nat.
Commun. 8, 1272 (2017), Attribution 4.0 International (CC BY 4.0) [163]. b) and c) are taken from C. M. Wang
et al., 3D Quantum Hall Effect of Fermi Arcs in Topological Semimetals, PRL 119, 136806 (2017) Copyright
2017 by the American Physical Society. [161].

gether with the probability distribution |®| of the occupied state for k, = 0.01nm™!. A sur-
face state localized on both surfaces is found, which is nevertheless identified as a Fermi-
arc state. The corresponding Hall conductivity oy is calculated showing the formation of
QH-plateaus. The Hall conductivity oy is shown as function of the inverse mangetic field
in Fig. 8.12c).

To sum up, in Cd3zAs, SdH oscillations and QHE are reported, which are similar to
the observation in compressively strained HgTe in this work. The magnetic field direc-
tion dependence of the reported SAH oscillation and the observation of QHE character-
izes the transport in CdzAs; as two-dimensional. The necessary surface states are typically
identified as Fermi-arcs. In contrast, the two-dimensional magneto-transport observed in
compressively strained HgTe is assigned to the topological surface states and the massive
Volkov-Pankratov states.

8.4. MODEL HAMILTONIANS FOR INVERSION INDUCED DIRAC-
SEMI-METALS

The magneto-transport indicates the existence of surface states in compressively strained
HgTe and CdsAs,. To understand the origin of these surface states in these inversion in-
duced Dirac semi-metals the most popular model Hamiltonians are reviewed and com-
pared. These Hamiltonians are a simple four-band model, a Luttinger-like model, and the
already in Sec. 4.2 introduced Kane model. The origin and stability of the observed surface
states are addressed with the help of these models.


https://creativecommons.org/licenses/by/4.0/
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8.4.1. SIMPLE FOUR BAND MODEL

The most widely used model is the simple four-band model already used in Sec. 8.3 to vi-
sualize the band structure of CdsAs, [165]. This simple four band model is also used to de-
scribe Na3Bi [108] and the three-dimensional insulators chalcogenides Bi,Ses, Bi;Tes and
Sb,Tes [166]. One convention for the Hamiltonian is

Mk) Ak, 0 B* (k) |E, 1)
_ Ak —-M(k) B*(k) 0 |H,|)
Hrto=eok)+ | "0 gy M -ak. | 1B (6.8
B(k) 0 -Aky —M(k) |H,1)
where k. = ky ik, and
€0(k) = C() + C1 kg + Cg(kac + ]C?,)
as well as
M(k) = My — M1k — My (k5 + k) (8.9)

to account for the non-cubic crystal structures of these materials (tetragonal for CdsAs, and
hexagonal for NazBi and the chalcogenides). The parameters My, M;, M, have to be neg-
ative (My, M1, M, < 0) to realize the necessary band inversion. To describe a Dirac semi-
metal like Cd3As; and NasBi the off-diagonal element B(k) is set to zero (B(k) = 0). The
other parameters Cy, C;,C, and A are effectively fitting parameters to reproduce the dis-
persion of the low energy bands obtained by DFT or ARPES.

It is instructive to look at the different phases that can be described by this model and
their connection. A picturesque way to obtain the Dirac semi-metals phase is by starting
with a fully quadratic dispersion and reducing the symmetry until the target band structure
with the linear band crossings is achieved. The additional fitting term €y (k) is set to zero
(eo (k) = 0) for simplicity. The effective mass terms in Eq. 8.9 are chosen to be M; = M, and
M, = 0. Setting all off-diagonal elements to zero, the dispersion is given by the diagonal
elements of Eq. 8.8, namely

Equadratic(k) =FM; kzr

making the system a semi-metal with quadratically dispersing bands as shown in Fig. 8.13a).
An intuitive approach to create a linear crossing between two bands is to figuratively speak-
ing push the two bands into each other. This can be done by introducing an energy offset
between the two bands via setting My < 0 and results in the dispersion given by

Enodal-line(k) == (MO - MZkz);

which describes a so-called nodal-line semi-metal phase, as shown in Fig. 8.13b). This
nodal-line semi-metal phase disperses linearly along the radial direction of the circular
nodal line and quadratically in the other directions. The simplest possible Dirac semi-
metal hosts two linear crossing points, called Dirac nodes. These two Dirac nodes are cho-
sen to reside on the k,-axis. The degeneracy along the nodal line is therefore lifted via the
introduction of the coupling terms Ak, and Ak_ linear in k. The resulting band structure
of a Dirac semi-metal is given by

Epirac) = F1/ 42 (I2 + k2) + (Mo — Ma ?)’
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Figure 8.13: The evolution of the band structure from a quadratic semi-metal [a)] via a nodal-line semi-metal
[b)] and a Dirac semi-metal [c)] into a topological insulator [d)] is shown based on the simple four band model
(see Sec. 8.4.1).

and shown in Fig. 8.13c). When the left over degeneracy at k, = ky is lifted via the additional
linear coupling term B(k) = Ak, in the Hamiltonian (Eq. 8.8), the topological insulator
phase with the dispersion

E3D-Tl(k) = ?\/Az (k;zc + kJZ,) + A%k% + (MO - M2k2)2

is realized as shown in Fig. 8.13d). The Dirac semi-metal phase is thus except for the pro-
tected crossing points at k; = ko virtually identical to the topological insulator phase. This
similarity of the Dirac semi-metal and topological insulator raises the question of whether
topological surface states also exist in the Dirac semi-metal phase.

8.4.2. SURFACE STATES IN THE SIMPLE FOUR BAND MODEL

To investigate the properties of the surface states in inversion-induced Dirac semi-metals,
their band structure is calculated for a finite slab. In Ref. [167] the simple four-band model,
introduced in the above Sec. 8.4.1 and given by Eq. 8.8, is expressed in a tight binding like
fashion. The simple four-band model in a tight binding like fashion reads

H (k) = e?c + [t (cosky +cosky—2) + t; (cosk; —cos Q)| T, + A sinky0xTx+ A sinky0y7y,
(8.10)
where o (7) are the Pauli matrices acting on the spin (orbital space), ¢ and ¢, are hopping
amplitudes, and A is the spin-orbit coupling parameter. The obtained surface states are
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shown in Fig. 8.14a) with respect to the position of the Dirac nodes in the Brillouin zone
indicated as red dots. Fig. 8.14b) shows the connection of the two Dirac nodes on the k.-k,
surface via two surface states. The dispersion of these surface states looks like the dis-
persion expected for Fermi-arcs. The authors of Ref. [167] show that they can deform the
surface state and move it away from the Dirac nodes via adding a perturbation term, which
conserves the symmetry and does not shift the bulk nodes. This perturbation term has the
form

8 Hy(k) = m' (cos ky — cosky)sink,0 ;7.

This possibility to detach the surface states from the Dirac nodes, questions the Dirac nodes
as the origin for the surface states and thus them being Fermi-arcs.

a) o b) 2 c)2
1 1
o0

P 2206 -0.3

Figure 8.14: In a) the bulk Brillouin zone is shown in the middle, and the position of the two Dirac nodes of
the simple four-band model is marked as red dots. The equivalent surface Brillouin zones of the four surfaces
parallel to k, are shown in blue. The Fermi-arc-like surface states connect the projections of the Dirac node
onto the respective surface Brillouin zone, which are indicated as red dots. The Fermi-arcs-like surface states
on the k;-ky surface calculated using the simple four-band model are shown in b) without perturbation and
in c) with perturbation for the electrochemical potential Er positioned at the Dirac nodes (Er = 0). Reprinted
from M. Kargarian et al., Are the surface Fermi arcs in Dirac semimetals topologically protected?, PNAS 113,
8648 (2016), Copyright 2016 National Academy of Sciences [167].

As mentioned in Sec. 8.4.1, the band structure and Hamiltonian of the Dirac semi-metal
phase and the topological insulator only differ around k;, = ky. This difference comes from
an off-diagonal term breaking the symmetry protection at k, = k. This similarity suggests
some affinity between the observed surface states in both phases. Since the TSS in topolog-
ical insulators is connected to the Z, topological invariant indicating a topologically non-
trivial character for Z, = 1, the authors of Ref. [168] determine the topological invariant of
the Dirac semi-metal phase. The Dirac semi-metal phase also possesses the topological
invariant Z, = 1 and thus an unwanted or at least hidden band inversion. A quite pictorial
approach is taken in Ref. [168] to negate the band inversion in the Dirac semi-metal phase,
by adding a set of mutually inverted bands. They use that the addition of two Z, = 1 invari-
ants yields Z, = 0 and thus a topologically trivial system. The corresponding robust Dirac
semi-metal eight-band model with the topological invariant Z, = 0 of Ref. [168] reads:

H(k) M(k)

H (k) = MY (k) Hr, )

(8.11)

Hrp =€)+ 1’ (coskycosky +cosk; —2) T, + [Ayxy (sinkyoy —sinkyoy) + Az sink,0;] 7y,
(8.12)
M) =mo(1—1,) (8.13)
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with my being real. This Hamiltonian describes the superposition of a Dirac semi-metal
and a topological insulator. Each of the two is described by a copy of Eq. 8.10. The off-
diagonal terms mix the Dirac semi-metal and 3D-TI blocks of the Hamiltonian. The corre-
sponding bulk band structure is shown in Fig. 8.15a).

mo = 0.05¢

mo = 0.1¢ mo = 0.15¢

k, [1/a]

Figure 8.15: In a) the bulk band structure of the non-topological Dirac semi-metal phase proposed by
Ref. [168] is shown. In b) the resulting surface state is shown in the surface Brillouin zone for various val-
ues of the model parameter m for the Dirac semi-metal model with the topological invariant Z, = 0. The
projection of the Dirac nodes is indicated as red circles. b) taken from M. Kargarian et al., Deformation and
stability of surface states in Dirac semimetals, PRB 97, 165129 (2018), Copy- right 2018 by the American Phys-
ical Society [168].

The resulting surface state for different strength of the mixing term mg in Eq. 8.13 is
shown in Fig. 8.15b). The surface state can be destroyed by increasing the strength of the
mixing term m,. The mixing term adds a mass term to the surface state, which opens a gap
around k; = 0. The surface states are thus only observed in the topologically non-trivial
(Zy = 1) effective four-band Dirac semi-metal model, and not in the topologically trivial
(Z, = 0) eight-band Dirac semi-metal model. Because of this, the authors of Ref. [168] argue
that the surface states are not related to the Dirac nodes, but instead are an extension of
the usual bulk boundary correspondence due to the band inversion. This suggests, that the
surface states in Cd3zAs; and compressively strained HgTe are related to their topologically
non-trivial bulk character.

8.4.3. LUTTINGER-LIKE MODEL

The Luttinger model [23] and the Kane model are widely used to describe the band struc-
ture of HgTe. The surplus of the Luttinger-like model over the above described simple
four-band model is its connection to the Kane model. The Kane model is well established
for the tensilely strained 3D-TI phase of HgTe and the contribution of each band is well-
understood [8, 77], as described in Sec. 4.2. The Luttinger-like Hamiltonian can be created
by downfolding of the six-band Kane Hamiltonian, as presented in Ref. [24, 169]. In this
downfolding process also the basis is adjusted accordingly.
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Figure 8.16: The bulk spectrum of the Dirac semi-metal phase of HgTe in the Luttinger-like model is shown for
the momentum k, = 0. In a) the energy ¢ is shown for ky, = 0 as function of ky, which is the momentum along
the direction of the uni-axial strain €. In b) the energy is shown for k, = 0 as function of ky. The calculated
surface state dispersion is highlighted as red dots. Taken from M. Kharitonov et al., Universality and Stability
of the Edge States of Chiral-Symmetric Topological Semimetals and Surface States of the Luttinger Semimetal,
PRL 119, 266402 (2017), Copyright 2017 by the American Physical Society [169].

The Luttinger-like Hamiltonian for unstrained HgTe, a semi-metal with quadratically dis-
persing bands, reads

aok?+Eq (k) —2V3a,k_k, —v3a,k? 0 |HHy; 1)

o | “2vB8azkik. aok®—Eq, (k) 0 ~V3ak? ILHi; 1)
huttinger = /B, k2 0 aok? —Eq (k) 2v3a k_k; |LHy; |)
0 —V3a,k? 2V3azkik, aok®+ Eq (k) |HHy; |)

(8.14)

with Ey, (k) = a, (kfc + k- 2kz2), where the effective Luttinger parameter are related to the
Kane model parameters by

Ep

E
a0:Y1_3_]£g; @z = Y2~ gy (8.15)

The Kane model parameters are listed in Table 4.1. In Ref. [169] the same analysis is ex-
tended to the Dirac semi-metal and topological insulator phase. These phases are ac-
cessed from the quadratic semi-metal phase by elongating the cubic unit cell via uni-axial
strain, which lifts degeneracy at the I'-point. The band structure of the Dirac semi-metal
phase is shown in Fig. 8.16. The shown surface states are similar to the surface states
obtained by the simple four-band model [Sec. 8.4.1, Fig. 8.14b)], and by the eight-band
Kane model [Fig. 8.4b)]. A three-dimensional semi-metal with quadratic dispersion, as un-
strained HgTe, also hosts stable surface states, as already reported in Ref. [81] and shown
in Ref. [24] using the four-band Luttinger-like model given by Eq. 8.14. The band structure
of unstrained HgTe determined with the Luttinger-like model is shown in Fig. 8.17a). The
surface states found for the unstrained HgTe phase is identical to the one determined for
the Dirac semi-metal phase. Since the unstrained HgTe Hamiltonian is much simpler, it is
exemplary analyzed in the following.

The phase diagram of this model is tested by varying the parameter of the Hamiltonian.
The resulting phase diagram, as determined by Ref. [24] is shown as a function of the ef-
fective Luttinger parameters f in Fig. 8.17b). The used effective Luttinger parameters are
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Figure 8.17: In a) the band structure of a semi-infinite unstrained HgTe slab in the Luttinger-like model is
shown for the momentum k, = 0. The bulk states are shown in blue and the surface state in red. In b),
the edge-state stability phase diagram is shown as function of the normalized effective Luttinger parameters
Bo/B1L and B,/ B, . The position of the Luttinger-like model (Eq. 8.14) inside this stability phase diagram is
indicated by the narrow dashed black line. The orange area hosts one surface state, the green area two sur-
face states, and the grey area no surface states. In c) the band gap Ep = Er,_r, of the Kane model is shown as
function of the effective Luttinger parameters o/ .. a) and b) reprinted from M. Kharitonov et al., Univer-
sality and Stability of the Edge States of Chiral-Symmetric Topological Semimetals and Surface States of the
Luttinger Semimetal, PRL 119, 266402 (2017) [24], Copyright 2017 by The American Physical Society.

Bo = ap and B; = a, which are normalized to §; = v3a,. The parameterization of the
Luttinger-like model given by Eq. 8.14 is indicated by the thin black dashed vertical line
in Fig. 8.17b). Multiple phases hosting different numbers of surface states are found. The
phase of interest is colored in orange. The Section of the dashed line on the orange back-
ground indicates the range of the effective Luttinger parameters capable of hosting these
surface states. Since the effective Luttinger parameters are determined by downfolding the
parameters of the Kane Hamiltonian the question is, whether the parameters of the Kane
model give a more intuitive access to the observed transition from a phase hosting a sur-
face state to a phase without a surface state. Here especially the inverted band gap between
the I's and I's bands Ey = Er,_r, comes to mind. The existence of an inverted band gap be-
tween bands with different parity offers more intuitive access to the topological character
of the material than calculating the topological invariant as done in Sec. 8.4.2. In Fig. 8.17¢)
the size of the band gap Ej is shown as function of the normalized downfolded effective
Luttinger parameter o/ .. The phase of the Luttinger-like model hosting surface states is
equivalent to an inverted bandgap in the Kane model. The transition to the phase with no
surface state happens via closing the inverted bandgap and the transformation to a non-
inverted bandgap and thus the band order. To correlate the effective Luttinger parameters
to the inverted bandgap, the solution of the Luttinger-like Hamiltonian (Eq. 8.14) is ana-
lyzed in the k, = 0 plane. This solution reads

Ei(ky) = ((xo +1/3a2+ a%) Kkt (8.16)


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.266402
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with k) =/k% + kJZ, To describe a semi-metallic phase, as shown in Fig. 8.18a), the two so-
lutions need to have effective masses with opposing signs. This restricts the effective Lut-
tinger parameters due to Eq. 8.16 to ay < 2a or equivalently 8y < 2f3,. Using the effective
Luttinger parameter definition given by Eq. 8.15 the above condition translates to Ey < 0.
In the six-band Kane model, the semi-metallic phase is thus accompanied by an inverted
band order. The relation of the inverted band gap Ej to the normalized downfolded effec-
tive Luttinger parameter /3, is shown in Fig. 8.17c). To get a better understanding of the
phases involved in this phase transition the corresponding band structures of the different
phases of the Luttinger-like model are shown in Fig. 8.18. The quadratic semi-metal phase,
which hosts surface states, is shown in a). The phase transitions happen via a phase with
a quadratic conduction band and a completely flat valence band, as shown in b). The sur-
face state lacking phase possesses only conduction bands, as shown in c¢). To summarize,
the models typically used to describe inversion-induced Dirac semi-metal are inherently
topologically non-trivial, and topological surface states are thus expected to exist.
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Figure 8.18: The band structure of the Luttinger-like model is shown for the semi-metal phase in a), the phase
transition in b), and the non-semi-metal phase in c).

8.5. COMMON PROPERTIES OF INVERSION INDUCED DIRAC SEMI-
METALS

The most important common property of the inversion-induced Dirac semi-metals is their
name-giving inherent band inversion and thus topologically non-trivial character. These
Dirac semi-metals are typically described with the help of two-band models since these
already reproduce the characteristic linear band crossing. The band inversion in these sys-
tems is often not between these two low energy bands but between the conduction band
and a higher valence band. The band structure of CdsAs, and NasBi with its band inversion
is shown in Sec. 7.2. The order of the bands is identical to the band order in HgTe, which
can be seen in Fig. 2.1. The topologically non-trivial character stems from the inversion of
the S-type band with the P-type bands, which determines the low energy dispersion.

The possibility to alter the low energy dispersion via strain engineering in HgTe from an
insulating to a Dirac semi-metal phase is described in Sec. 2.1.2 and visualized in Fig. 2.2.
The simple transition via strain emphasizes the relationship of the inversion-induced semi-
metals with the three-dimensional topological insulators. The underlying band inversion is
thus expected to also cause the formation of topological surface states in inversion-induced
Dirac semi-metals. This band inversion tends to be hidden in the parameterization of four
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Figure 8.19: The ARPES measurement of the dispersion of the energy with respect to the Fermi energy E — Eg
is shown is function of the momentum of the CdsAs, (112) surface in a) together with dispersion calculated
with DFT in b). The bands are labeled and numbered according to their character. BV means bulk valence
bands and SV surface valence bands. Taken from X. Liu et al., Evidence of Topological Surface State in Three-
Dimensional Dirac Semimetal CdsAsy, Sci. Rep. 4, 6106 (2014), Attribution-NonCommercial-NoDerivatives
4.0 International (CC BY-NC-ND 4.0) [162] [170].

band models, as discussed in Sec. 8.4. Because of this, it is proposed that the signatures
of surface states found in inversion Dirac semi-metals are due to the topological surface
states or the massive Volkov-Pankratov states also found in HgTe.

This statement is supported by the observation of topological surface states in ARPES
measurements on CdsAs; in Ref. [170, 171]. The measurements of Ref. [170] are shown
exemplary in Fig. 8.19. A linearly dispersing surface state is observed over a broad energy
range. The energy range is much wider than the finite energy window of the anti-crossing
gap of the order of 20 — 40meV [107]. This observation is in contrast to the expected be-
havior of Fermi-arcs. The observed broad energy range, however, fits the expectation for
topological surface states. The existence of TSS also offers a simple and consistent expla-
nation for the observed SdH oscillations and QHE for compressively strained HgTe in this
work and also reported for CdsAs;. This contradicts the initially in the literature favored as-
signment of the observed SdH oscillations and QHE in CdsAs; to Fermi-arcs (see Sec. 8.3),
which is also questioned by other works, as Ref. [138]. The existence of topological sur-
face states becomes more present in the literature, as Ref. [172]. To sum up, topological
surface states and massive Volkov-Pankratov states offer a simple, and consistent explana-
tion for the two-dimensional transport phenomena observed in inversion-induced Dirac
semi-metals.
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SUMMARY

The motivation for this work has been contributing a step to the advancement of technol-
ogy. A next leap in technology would be the realization of a scalable quantum computer.
One potential route is via topological quantum computing. A profound understanding of
topological materials is thus essential. My work contributes by the investigation of the ex-
emplary topological material HgTe. The focus lies on the understanding of the topological
surface states and new possibilities to manipulate them appropriately. Traditionally top
gate electrodes are used to adjust the carrier density in such semi-conductor materials. We
found that the electric field of the top gate can further alter the properties of the HgTe layer.
The formation of additional massive Volkov-Pankratov states limits the accessibility of the
TSS. The understanding of these states and their interplay with the TSS is necessary to ap-
propriately design devices and to ensure their desired properties. Similarly, I observed the
existence and stability of TSSs even without a bandgap in the bulk band structure in the
inversion induced Dirac semi-metal phase of compressively strained HgTe. The finding
of topological surface states in inversion-induced Dirac semi-metals provides a consistent
and simple explanation for the observation reported for CdzAs;.

These observations have only been possible due to the high quality of the MBE grown
HgTe layers and the access of different phases of HgTe via strain engineering. As a start-
ing point I performed Magneto-transport measurements on 67 nm thick tensilely strained
HgTe layers grown on a CdTe substrate. We observed multiple transport channels in this
three-dimensional topological insulator and successfully identified them. Not only do the
expected topological surface states exist, but also additional massive surface states have
been observed. These additional massive surface states are formed due to the electrical
field applied at the top gate, which is routinely used to vary the carrier density in the HgTe
layer. The additional massive surface states are called Volkov-Pankratov states after B. A.
Volkov and O. A. Pankratov. They predicted the existence of similar massive surface states
at the interface of materials with mutually inverted bands. We first found indications for
such massive Volkov-Pankratov states in high-frequency compressibility measurements for
very high electron densities in a fruitful collaboration with LPA in Paris. Magneto-transport
measurements and k- p calculations revealed that such Volkov-Pankratov states are also
responsible for the observed hole transport. We also found indications for similar massive
VPS in the electron regime, which coexist with the topological surface states. The topo-
logical surface states exist over the full investigated gate range including a regime of pure
topological insulator transport. To increase the variability of the topological surface states
we introduced a modulation doping layer in the buffer layer. This modulation doping layer
also enabled us to separate and identify the top and bottom topological surface states.

We used the variability of the bulk band structure of HgTe with strain to engineer the
band structure of choice using virtual substrates. The virtual substrates enable us to grow
compressively strained HgTe layers that do not possess a bandgap, but instead linear cross-
ing points. These layers are predicted to be Dirac semi-metals. Indeed I observed also topo-
logical surface states and massive Volkov-Pankratov states in the compressively strained
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Dirac semi-metal phase. The observation of topological surfaces states also in the Dirac
semi-metal phase has two consequences: First, it highlights that no bulk bandgap is nec-
essary to observe topological surface states. Second, the observation of TSS also in the
Dirac semi-metal phase emphasizes the importance of the underlying band inversion in
this phase. I could not find any clear signatures of the predicted disjoint topological sur-
face states, which are typically called Fermi-arcs. The presence of topological surface states
and massive Volkov-Pankratov states offer a simple explanation for the observed quantum
Hall effect and other two-dimensional transport phenomena in the class of inversion in-
duced Dirac semi-metals, as CdsAs,. This emphasizes the importance of the inherent bulk
band inversion of different topological materials and provides a consistent and elegant ex-
planation for the observed phenomena in these materials. Additionally, it offers a route to
design further experiments, devices, and thus the foundation for the induction of super-
conductivity and thus topological quantum computing.

Another possible path towards quantum computing has been proposed based on the
chiral anomaly. The chiral anomaly is an apparent transport anomaly that manifests it-
self as an additional magnetic field-driven current in three-dimensional topological semi-
metals with a linear crossing point in their bulk band structure. I observed the chiral anomaly
in compressively strained HgTe samples and performed multiple control experiments to
identify the observed reduction of the magnetoresistance with the chiral anomaly. First,
the dependence of the so-called negative magnetoresistance on the angle and strength of
the magnetic field has been shown to fit the expectation for the chiral anomaly. Second,
extrinsic effects as scattering could be excluded as a source for the observed negative MR
using samples with different mobilities and thus impurity concentrations. Third, the neces-
sity of the linear crossing point has been shown by shifting the electrochemical potential
away from the linear crossing points, which diminished the negative magnetoresistance.
Fourth, I could not observe a negative magnetoresistance in the three-dimensional topo-
logical insulator phase of HgTe. These observations together prove the existence of the chi-
ral anomaly and verify compressively strained HgTe as Dirac semi-metal. Surprisingly, the
chiral anomaly is also present in unstrained HgTe samples, which constitute a semi-metal
quadratic band touching point. This observation reveals the relevance of the Zeeman effect
for the chiral anomaly due to the lifting of the spin-degeneracy in these samples.

Additionally to the chiral anomaly, the Dirac semi-metal phase of compressively strained
HgTe showed other interesting effects. For low magnetic fields, a strong weak-anti-
localization has been observed. Such a strong weak-anti-localization correction in a three-
dimensional layer is surprising and interesting. Additionally, non-trivial magnetic field
strength and direction dependencies have been observed. These include a strong posi-
tive magnetoresistance for high magnetic fields, which could indicate a metal-insulator
transition. On a more device-oriented note, the semi-metal phase of unstrained HgTe con-
stitutes the lower limit of the by strain engineering adjustable minimal carrier density of
the topological surface states and thus of very high mobility.

To sum up, topological surface states have been observed in the three-dimensional
topological insulator phase and the Dirac semi-metal phase of HgTe. The existence and ac-
cessibility of topological surface states are thus independent of the existence of a bandgap
in the bulk band structure. The topological surface states can be accompanied by mas-
sive Volkov-Pankratov states. These VPS are created by electric fields, which are routinely
applied to adjust the carrier density in semiconductor devices. The theoretical predicted
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chiral anomaly has been observed in the Dirac semi-metal phase of HgTe. In contrast to
theoretical predictions, no indications for the Fermi-arc called disjoint surface states have
been observed, but instead the topological and massive Volkov-Pankratov surface states
have been found. These states are thus expected for all inversion-induced topological ma-
terials.







ZUSAMMENFASSUNG

Der technologische Fortschritt schreitet immer schneller voran. Um diese Entwicklung zu
ermoglichen werden die Strukturen immer kleiner. Das Erreichen atomarer GréB8en kénn-
te bald die Abkehr von der iiblichen Miniaturisierung erfordern und den Sprung zu einer
neuen Technologie erzwingen. Die Motivation dieser Arbeit ist es das Verstdndnis topolo-
gischer Materialien zu erweitern und so einen Beitrag zu der Realisierung eines solchen
potenziellen Technologiesprungs zu leisten. Eine vielversprechende Moglichkeit zur Auf-
rechterhaltung der aktuellen Entwicklungsgeschwindigkeit ist die Realisierung eines ska-
lierbaren Quantencomputers. Eine mogliche Umsetzung ist das topologische Quantum-
Computing, das zum Beispiel durch induzierte Supraleitung in topologische Oberflachen-
zustdnde realisiert werden konnte. Das tiefgehende Verstdndnis der topologischen Ober-
flichenzustdnde und deren Manipulation ist ein Schwerpunkte dieser Arbeit. Der zweite
Schwerpunkt wurde kiirzlich auch als ein potenzieller Pfad zur Realisierung eines Quan-
tencomputers basierend auf ,chiralen Qubits“ vorgeschlagen, ndmlich dem Nachweis und
die Untersuchung des Transportphdnomens der sogenannten chiralen Anomalie in Dirac-
und Weyl-Halbmetallen.

Die Untersuchungen in dieser Arbeit wurden am MBE gewachsenen topologischen Ma-
terial HgTe durchgefiihrt. HgTe zeichnet sich dadurch aus, dass verschiedene topologi-
sche Phasen realisierbar sind. Dazu wird die HgTe-Schicht durch die Wahl entsprechen-
der Substrate verspannt. Als Startpunkt fiir die Analyse der topologischen Oberflachenzu-
stdnde habe ich die topologische Isolator-Phase gewihlt. Diese wird durch ein gedehntes
MBE-Wachstum der HgTe-Schicht auf einem CdTe-Substrat realisiert. Eine hohe Qualitét
der HgTe-Schicht und Oberfliche wurde dabei mit Hilfe von schiitzenden Cdy;Hg, 3Te-
Schichten gewédhrleistet. Wir haben zusitzlich eine Modulationsdoping Schicht in der un-
teren Cdy 7Hgp s Te-Schicht eingefiihrt, die fiir eine kleine endliche Elektronendichte in der
HgTe-Schicht sorgt. Diese Dotieriung gewéhrleistet eine zuverldssige elektrische Kontak-
tierung. Aus diesen Waferstiicken haben wir mit Hilfe optischer Lithografie und trocknen
Atzens so genannte Hall-Bars strukturiert, die aus einem Strompfad mit vier lings und
quer angeordneten Spannungsabgriffen besteht. Eine Moglichkeit zur Kontrolle der La-
dungstriagerdichte in der HgTe-Schicht wird iiber eine aufgedampfte Gate-Elektrode ge-
schaffen. Diese Hall-Bars habe ich mit Hilfe von niedrig frequenten Wechselspannungs-
messungen unter hohen Magnetfeldern bis zu 30 T bei tiefen Temperaturen von 2 K in
Helium-Kryostaten bzw. 0.1 K in He3/He*-Misch-Kryostaten untersucht.

Die hohe Qualitdat der HgTe-Schicht spiegelt sich in den zuverléssig erreichten hohen

Beweglichkeiten in der GréRenordnung von 0.5 x 10° % im Elektronenregime und 0.03 x
10° Cvﬁ im Lochregime wieder. Eine Quantisierung des Magneto-Transport ist dadurch schon

fiir kléine Magnetfelder von B 2 0.5T beobachtbar. Dies ermoglichte mir die Analyse der
Dispersion der Landau Levels und damit der Nachweis der Existenz von sechs zwei-
dimensionalen Transportkandlen. Zwei dieser Kanile konnten wir mit den topologischen
Oberflichenzustinden identifizieren. Den Einfluss der Spannungen, die an der Gate-Elek-

trode angelegt wurden, haben wir in hoch frequenten Kompressibilititsmessungen fest-
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gestellt. In diesen Messungen haben wir fiir sehr hohe Elektrodenspannungen Hinweise
auf zusétzliche massive Volkov-Pankratov Zustdnde gefunden. Der Name ist dabei gewéahlt
worden, um die Vorhersage derartiger Zustdnde durch B. A. Volkov und O. A. Pankratov
zu wiirdigen. Den Ursprung der vier weiteren Transportkanile konnten wir mit Hilfe von
Bandstrukturberechnungen auf zusétzliche Oberflichenzustdnde zuriickfiihren. Die Be-
rechnung haben wir mit Hilfe des Kane Models in der k - p Ndherung unter Beachtung der
Hatree Potentiale, welche die angelegte Spannung an der Gate-Elektrode reprédsentieren,
durchgefiihrt. Die elektronenartigen topologischen Oberflichenzustinde konnten fiir den
ganzen untersuchten Elektrodenspannungsbereich nachgewiesen werden. Wir haben aber
auch ein signifikantes und manipulierbares Elektrodenspannungsfenster gefunden, in wel-
chem nur topologische Oberflichenzustdnde besetzt sind.

Eine Moglichkeit zur Manipulation der Eigenschaften der topologischen Oberflachen-
zustdnde ist die Variation der Verspannung mit Hilfe des MBE-Wachstums auf virtuellen
Substraten aus alternierenden Cdg 5Zng 5Te- und CdTe-Schichten mit einstellbarer Gitter-
konstante. Die HgTe-Schicht haben wir durch das Wachstum auf ein entsprechendes vir-
tuelles Substrates druck- anstatt zugverspannt. Die HgTe-Schicht befindet sich dadurch in
der Dirac-Halbmetall anstatt der dreidimensionalen topologischen Isolator-Phase. Dirac-
Halbmetalle zeichnen sich durch einen linearen Kreuzungspunkt der Volumenmaterial-
bédnder aus. Ich konnte topologische Oberflachenzustdnde und massive Volkov-Pankratov
Zustiande auch in der Dirac-Halbmetall-Phase nachweisen. Dieser Umstand weist die Exi-
stenz und Stabilitidt der topologischen Oberfldchenzustinde auch ohne Bandliicke in der
Bandstruktur des Volumenmaterials nach. Des Weiteren betont die Anwesenheit der topo-
logischen Oberflichenzustinde die Relevanz der inhdrenten Bandinversion fiir die Klas-
se der inversionsinduzierten Dirac-Halbmetalle. In druckverspanntem HgTe habe ich QHE
beobachtet, der nur in zweidimensionalen Systemen auftritt. Ahnliche Beobachtungen wur-
den auch fiir andere Dirac-Halbmetalle, wie Cd3As, berichtet. Die topologischen Oberfla-
chenzustidnde schlage ich als einfache und einheitliche Erkldrung fiir diesen zweidimen-
sionalen Transport vor.

Die Anwesenheit linearer Kreuzungspunkte in der Volumenmaterialbandstruktur druck-
verspannten HgTes konnte ich durch die Beobachtung der chiralen Anomalie nachwei-
sen. Damit konnte ich nicht nur druckverspanntes HgTe als Dirac-Halbmetall nachweisen,
sondern auch einen Beitrag zum besseren Verstdndnis der chiralen Anomalie leisten. Des
Weiteren haben elektrodenspannungsabhédngige Messungen gezeigt, dass parallel anwe-
sende Oberflichenzustdnde das Signal der chiralen Anomalie zwar tiberlagern, dieses aber
nicht verhindern. AuBerdem habe ich Untersuchungen an unterspannten HgTe Schichten
durchgefiihrt, welche Halbmetalle mit einem Beriihrungspunkt zweier Bander mit quadra-
tischer Dispersion darstellen. Auch in diesen Schichten wurde die chirale Anomalie beob-
achtet. Dies verdeutlicht die Relevanz des Zeeman-Effektes fiir die Ausbildung der chira-
len Anomalie in HgTe. Die chirale Anomalie zeigte eine unerwartet Magnetfeldrichtungs-
abhédngigkeit im Bezug zur Stromrichtung. Diese Magnetfeldrichtungsabhédngigkeit betont
die Notwendigkeit der Beschreibung des Widerstandes als Tensor, damit die dreidimen-
sionale Ausdehnung der experimentellen Proben und der daraus folgenden Effekte, wie
dem Planar-Halleffekt, korrekt beschrieben werden. Des Weiteren habe ich eine fiir dreidi-
mensionale Proben aullergew6hnlich stark ausgepriagte Weak-Antilokalisierung beobach-
tet. Diese konnte spezifisch fiir topologische Halbmetalle sein, da @hnliche Beobachtungen
auch fiir das Weyl Halbmetall TaA berichtet wurden.
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Das Ziel dieser Arbeit war es einen Beitrag zum technologischen Fortschritt durch das
bessere Verstdndnis topologischer Materialen zu leisten. Dieses Ziel konnte somit erreicht
werden. Wir kénnen alle Zustdnde, die wir in dem dreidimensionalen topologischen Iso-
lator zugverspanntes HgTe beobachtet haben, ihrem Ursprung zuordnen. Dies ermoglicht
uns die Préparation und Manipulation der gewiinschten Zustdnde fiir komplexe Bautei-
le, wie topologische und supraleitende Hybridstrukturen, zu optimieren. Ich konnte auch
zum besseren Verstdndnis der Materialklasse der inversionsinduzierten Dirac-Halbmetalle
beigetragen, indem ich die an druckverspannten HgTe gewonnen Erkenntnisse auf die ge-
samte Materialklasse der inversionsinduzierten Dirac-Halbmetalle verallgemeinern konn-
te. Dies ist zum Beispiel anhand des Nachweises der Anwesenheit von topologischen Ober-
flichenzustdnden geschehen. AuBerdem konnte ich neue Einblicke in die chirale Anoma-
lie gewinnnen. Die Existenz linearer Kreuzungspunkte in der Volumenmaterialbandstruk-
tur wurde dabei als notwendige Bedingung bestétigt. Damit konnte ich einen Beitrag zum
Verstandnis der Grundbausteine fiir zwei mogliche Pfade zu einem potenziellen Quanten-
computer in der Form von zug- und druckverspanntem HgTe leisten.







THOMAS FERMI SCREENING

A significant part of this thesis evolves around the change of the occupation of different
states with the help of an electric field in a plate capacitor like device. Since topological
material are surrounded by topological surface states, the screening properties of these
states are especially of interest. A simple estimation of the screening properties can be
made by comparing the Thomas Fermi screening length Itr of the TSS to its localization
length [;,.. The localization length is determined using the program "kdotpy" [29] to calcu-
late the probability distribution of the TSS along the stacking direction z, which is shown
in Fig. A.1a) and yields a localization length of /j, ~ 10nm. The screening length Itr of the
TSSis estimated following Ref. [173]. The TSS is assumed to disperse linearly with quadratic
corrections due to the hybridization with bulk bands, which yields

1+sgn(n) 'n—’z)'

Irp = (A.1)
T rskg
with the parameters
ro=_ ¢ fin = MgV (A.2)
S~ ersseohvg’ 0T 3an2

where

kg = Vann (A.3)

is the Fermi wave vector for a non-degenerate 2DEG and erss is the dielectric constant of
the TSS. Since the exact value of erss is unknown, the screening length is calculated for
multiple values of the dielectric constant. The resulting screening lengths are shown as
function of the carrier density n in Fig. A.1. The bulk value of eygre ~ 21 [47] is chosen as
upper limit for the estimation, which gives the longest screening length. Alternative values
for the dielectric constant of the TSS are half the bulk value and the dielectric constant
of graphene €graphene = 3 as suggested in Ref. [173] and Ref. [47], respectively. Even for the
most pessimistic estimation based on the bulk dielectric constant € = 21, the Thomas Fermi
screening lengths Ip is already for 7 ~ 0.5 x 1071! cm ™2 shorter than the localization length
loc ~ 10nm. The minimal accessible density in 0.3% tensilely strained HgTe is given by
the DOS of the TSS at the valence band edge. The corresponding Fermi wave vector of the
TSS estimated with the program "kdoptpy" kg;p ~ 0.95 x 10%cm™! as shown for example in
Fig. 2.6g), yields using Eq. A.3 a minimal density n ~ 0.5 x 10! cm™2. By this estimation,
the TSS is expected to always be able to screen the applied electric fields.
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Figure A.1: In a) the probability distribution |®|? of the TSS is shown for a 70nm thick 0.3 % tensilely strained
HgTe layer for k = 0.15nm™! calculated with the program "kdotpy" [29]. In b) the Thomas-Fermi screening
length I is shown as function of the carrier density n for a TSS with linear dispersion and quadratic correc-

tions for different dielectric constants €.



QUANTUM OSCILLATIONS WITHOUT A
FERMI SURFACE

Quantum oscillations are a common occurrence in measurements on conductors in a mag-
netic field. The magnetic field pushes Landau Levels (LL) through the Fermi level causing
oscillations in the DOS which manifest in well-known effects such as de Haas-van Alphen
and Shubnikov-de Haas (SdH). It has recently been discovered that this description of quan-
tum oscillations may be incomplete. Tan ef al. reported 1/B-quantum oscillations in the
magnetization in the Kondo insulator SmBg when the Fermi level is in the gap of the ma-
terial [55]. There are various interpretations discussed in the literature as addressed in Ref.
[56]. A common one is to interpret this observation as resulting from Landau levels cross-
ing, instead of the Fermi level, an extremum in the DOS. Such an extremum can be induced
by the presence of a hybridization gap that leads to a non-monotonic dispersion of the bulk
bands [53, 54].

The mechanism is illustrated in the cartoon of Fig. B.1 based on the band structure of
tensilely strained HgTe. The crucial feature is that the hybridization causes a non-monotonic
energy dispersion at the top of the valence band. Because of this, as the magnetic field is
increased, Landau levels (yellow) first move up in energy until they reach the local extrema
of the valence band (red), and then start moving downwards in energy. Since the carriers
reside in the Landau levels, the effective position of the valence band maximum is thus
modulated, as these LLs flow through the local extrema of the valence band (red). The ef-
fective size of the gap between the valence and conduction bands thus slightly oscillates as
a function of the magnetic field.

We observed very pronounced 1/B period oscillations down to magnetic fields below
0.1T with a frequency f = 2.5T as shown in Fig. 2.8¢c). Their oscillation frequency varied
only about +25% for tensilely strained HgTe layers grown on CdTe substrates. A strong
change of this frequency has only been observed for less tensilely strained HgTe layers.
Such a low variation in the occupation of the topological surface state across these samples
seemed unlikely. The band structure and hence the shape of the valence band, in contrast,
should be comparable across these samples, which makes the mechanism of quantum os-
cillations without a Fermi surface intriguing [42]. Further investigations with modulation
doping and back gates trace these oscillations to the topological surface states (see Chap-
ter 3 and Ref. [58]).
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Figure B.1: A diagram of the bottom of the conduction and top of the valence band is shown for a finite
magnetic field. The emerging Landau levels are represented by yellow circles. The black arrows indicate the
direction of flow of the Landau levels as the magnetic field is increased. The red circle highlights the area
surrounded by the top of the valence band in the absence of the magnetic field. The bulk Fermi level located
inside the gap is indicated by the dashed line.



TEMPERATURE DEPENDENCE OF THE
SEMI-CLASSICAL REGIME

In the 3D-TI tensilely strained HgTe is a dip in the longitudinal resistance R for low mag-
netic fields around B = 0T observed. This dip is not due to WAL, but due to the involve-
ment of multiple carrier densities. This is verified by the temperature dependence of this
dip in the longitudinal resistance. The longitudinal resistance Ry is shown as function of
the magnetic field B for multiple temperatures T in Fig. C.1. The dip in the longitudinal
resistance Ry, is stable up to the highest measured temperature of T = 4K. For low tem-
peratures are also well pronounced SdH oscillations observed. The SdH oscillations are a
consequence of the formation of Landau levels and thus a quantum effect. Similarly, the
WAL describes a correction to the conductance due to self-interference and hence is also a
quantum correction. Consequently, the higher temperature should diminish the WAL in a
similar fashion as the SdH oscillations, which is not observed. The WAL dip observed in the
Dirac semi-metal compressively strained HgTe shows a strong temperature dependence for
this temperature range, as discussed in Sec. 7.5.1 and shown in Fig. 7.18. This makes WAL
an unlikely mechanism. In contrast, the dip in the longitudinal resistance is likely a conse-
quence of the involvement of multiple transport channels, which does not possess a strong
temperature dependence, as observed in Fig. C.1.
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Figure C.1: The longitudinal resistance Ry, of the tensilely strained HgTe sample Q2584 is shown as a function
of the magnetic field B at a low overall hole density for different temperatures T.



REPRODUCIBILITY OF THE FAST FOURIER
ANALYSIS RESULTS

The high mobility of the samples enables the observation of well-pronounced SdH oscil-
lations in the longitudinal resistance down to low magnetic fields B < 0,2T. For these low
magnetic fields, the SdH oscillations are still nicely sinusoidal, in contrast to the peak-like
shape observed for high magnetic fields. This enables the analysis of the observed oscilla-
tions with the help of a FFT analysis. Since the measurement signal is nevertheless neither
perfectly sinusoidal nor infinite, the reliability and credibility of the FFT analysis are ad-
dressed in this Section. The FFT results shown in this work are either obtained using the
program "Wolfram Mathematica 12" [175] which provides its own FFT routine or the pro-
gram "OriginPro 2018/2020" [174] which uses the adaptive software architecture for FFT
library "fftw" [176]. The reliability and reproducibility of the FFT analysis is summarized
in Fig. 3.12. As starting point the longitudinal resistance Ry, its second derivative with re-
spect to the magnetic field d2 R,/ d B? and the derivative of the Hall resistance with respect
to the magnetic field dR,/d B are shown as exemplary measurement signals in Fig. D.1a).
The presented data resembles a cut through the Landau level dispersion shown in Fig. 3.9
for the gate voltage Ugate = —1V. The data is interpolated to provide constant steps in the
inverse magnetic field B~! to provide equidistant sampling points for the FFT analysis. The
resulting FFT spectrum determined with the program "OriginPro 2018/2020" is shown in
Fig. D.1b). The x-axis is converted from frequency into density using n = 7 f under the as-
sumption of no degeneracy. All FFT results presented elsewhere in this work are based on
the longitudinal resistance Ry, data to minimize the necessary data processing steps, as
the numeric differentiation. All three obtained FFT spectra show two pronounced peaks
at np = 1.7 x 101 cm™2 and n3 = 2.0 x 10! cm™2 as well as a peak at n; = 0.6 x 10! cm ™2,
The absolute amplitude of the peaks depends on the chosen signal. The variation is con-
sistent with the strong variation in the amplitudes of the oscillations in the data shown
in Fig. D.1a). The quantity of interest is not the amplitude, but the number of peaks that
correspond to the number of conducting channels and their respective peak positions in
density n representing their carrier density. Since the amplitude and shape of the oscilla-
tions depend on the magnetic field, the FFT analysis is repeated for different ranges of the
magnetic field. The resulting FFT spectra are shown in Fig. D.1c) and yield consistent peak
positions. The limitation of the analyzed spectrum to moderate magnetic fields B < 5T the
n; peak is revealed as a double peak. For higher magnetic fields the QH regime deforms
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the SdH oscillations from sinusoidal to separated peaks which hampers the FFT analysis
and thus broadens the observed features. This is why a limited magnetic field range is used
for the FFT in this work and especially for the spectrum presented in Sec. 3.4. To perform a
FFT analysis the measured data has to be effectively repeated consecutively and infinitely.
The data is therefore folded with a so-called window function to create an infinite periodic
signal. The FFT spectra obtained using different window function are shown in Fig. D.1d).
The chosen window functions are known to be appropriate to preserve the frequency and
thus the density [177]. The "Hamming" window does not seem to be appropriate for the
analyzed signal type. The other three window functions, namely "Dreieck”, "Hanning" and
"Welch" yield very similar results. The "Hanning" window resolves the double peak at n;
also for the full magnetic field range but yields a factor of 10 smaller amplitudes in total.
To summarize the FFT results presented in this work are obtained using the program "Ori-
gin 2018/2020" with the "Welch" window and an appropriate magnetic field range or the
internal FFT routine of the program "Wolfram Mathematica 12".
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Figure D.1: In a) the exemplary measurement data of QC0501 for Ugae = —1V is shown as the longitudinal
resistance Ry, in black, the derivative of the Hall resistance with respect to the magnetic field dRy,/dB in
red and the second derivative of the longitudinal resistance with respect to the magnetic field d?Ry,/dB?
in blue in function of the inverse magnetic field B~!. The curves are offset by 100, respectively. In b) the
corresponding FFT spectrum of the data determined using a Welch window is shown as a function of the
carrier density n, which is calculated from the determined frequency assuming no degeneracy. The FFT
analysis of the longitudinal resistance Ry, data is shown for various ranges of the magnetic field B in c) and
for different window functions in d). The analysis is performed using the program "Origin 2020" [174].






LIST OF PUBLICATIONS

e OBSERVATION OF VOLKOV-PANKRATOV STATES IN TOPOLOGICAL HGTE HETERO-
JUNCTIONS USING HIGH-FREQUENCY COMPRESSIBILITY.
A. Inhofer, S. Tchoumakov, G. Feve, ]J. M. Berroir, V. Jouffrey, D. Carpentier,
M. O. Goerbig, B. Placais, K. Bendias, D. M. Mahler, E. Bocquillon, R. Schlereth,
C. Briine, H. Buhmann, and L. W. Molenkamp,
Phys. Rev. B 96, 195104 (2017).

e INTERPLAY OF DIRAC NODES AND VOLKOV-PANKRATOV SURFACE STATES IN COM-
PRESSIVELY STRAINED HGTE.
D. M. Mahler, ].-B. Mayer, P. Leubner, L. Lunczer, D. Di Sante, G. Sangiovanni,
R. Thomale, E. M. Hankiewicz, H. Buhmann, C. Gould and L.W. Molenkamp,
Phys. Rev. X9, 031034 (2019).

e MASSIVE AND TOPOLOGICAL SURFACE STATES IN TENSILE STRAINED HGTE.
D. M. Mahler,V. L. Miiller, C. Thienel, L. Lunczer, J. Wiedenmann, W. Beugeling,
H. Buhmann, and L.W. Molenkamp,
Nano Letters 21, 23, 9869-9874 (2021).

165






ACKNOWLEDGEMENTS

This work would not have been possible without the help of a large group of people. Here,
I would like to sincerely thank all of you.

e Laurens, thank you for giving me the opportunity to work as a Ph.D. student in your
chair EP III and your guidance.

e Hartmut, thank you for accepting me as a Ph.D. student, the positive and supportive
work atmosphere in your group, and your support and trust in me.

* Charles, thank you for treating me as one of your Ph.D. students and for your help in
the lab and with manuscripts.

e Wouter, thank you for providing such an easy to use and powerful band structure
calculations tool and your patient explanations.

* Tam also very grateful for the numerous fruitful discussions, explanations, and calcu-
lations from our theoretical collaborators Ewelina, Jan, and Benny from TP4 as well
as Giorgio, Domenico, and Ronny from TP1.

e Thomas and Steffen, thank you for the sleep robing, but nevertheless very enjoy-
able and productive measurement session in the high field magnet laboratory in Ni-
jmegen as well as your input on equipment design.

* Erwann, Andreas, and Bernard, thank you for the excursion into the world of high-
frequency measurements and Paris.

* Cornelius and Jonas, thank you for introduction into the world of topological mate-
rials and magneto-transport.

* Budy, thank you for the rescue from any technical issues in the lab and for always
creating a positive atmosphere.

 Kalle, thank your for the sample fabrication and the good time in Paris.
* Christopher, Raimund, Philipp, and Lukas, thank you for "just growing that stuff".

e Valentin, thank you for the headache-causing puzzling, but fruitful discussions and
collaboration in the lab.

* ] also appreciate the support of the work by Fabian as a master student and several
bachelor students: Janice, Philip, Philipp, Alexander B., and Alexander W.

e ] am also very thankful for the technical support and patience with an "only things
breaking physicist" from the electronic and mechanic workshop, especially Roland,
Cornelius, Utz, and Rainer, and the EP3-technicians Martin and Volkmar.

167



168 ACKNOWLEDGEMENTS

e Mirko thank you for design the new in-plane rotation stick.

e Madder thank you for sharing the journey towards this thesis with me and for the
occasional detours in the strange world of metals.

e Gracy for your legendary motivational speeches and the introduction to Brazilian
cuisine.

A big thank you to all members of EP3 for your help and the friendly and productive work-
ing atmosphere. Especially I want to mention our EP3 skiing, volleyball, wine fest, and cof-
fee team: Madder, Lukas, Simon, Jonas, Mirko, Gracy, Steffen, Erwann, Philipp, Cornelius,
and our EP7 substitute Tim.

I am also grateful for the funding by the SFB 1170 and the Elitenetzwerk Bayern.

Finally, I want to thank my family, especially my mom Simone, my sister Lena, and my girl-
friend Kathi, but also my aunts and uncles, cousins, and grandparents for their continuous
support and interest in my endeavors.



REFERENCES 169

REFERENCES

(1]

(2]

3]

(4]

(5]

(6]

[7]

8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

O. Vafek and A. Vishwanath, Dirac Fermions in Solids: From High-T, Cuprates and
Graphene to Topological Insulators and Weyl Semimetal, Annu. Rev. Condens. Matter
Phys. 5, 83 (2014).

C. L. Kane and E. ]J. Mele, Z, Topological Order and the Quantum Spin Hall Effect,
Phys. Rev. Lett. 95, 146802 (2005).

B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Quantum Spin Hall Effect and Topolog-
ical Phase Transition in HgTe Quantum Wells, Science 314, 1757 (2006).

M. K6nig, S. Wiedmann, C. Briine, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi,
and S.-C. Zhang, Quantum Spin Hall Insulator State in HgTe Quantum Wells, Science
318, 766 (2007).

L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76,
045302 (2007).

D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R.J. Cava, and M. Z. Hasan, A topological
Dirac insulator in a quantum spin Hall phase, Nature 452, 970 (2008).

P.Roushan, J. Seo, C. V. Parker, Y. S. Hor, D. Hsieh, D. Qian, A. Richardella, M. Z. Hasan,
R.J. Cava, and A. Yazdani, Topological surface states protected from backscattering by
chiral spin texture, Nature 460, 1106 (2009).

C. Briine, C. X. Liu, E. G. Novik, E. M. Hankiewicz, H. Buhmann, Y. L. Chen, X. L.
Qi, Z. X. Shen, S. C. Zhang, and L. W. Molenkamp, Quantum Hall effect from the
topological surface states of strained bulk HgTe, Phys. Rev. Lett. 106, 126803 (2011).

P. A. M. Dirac, The quantum theory of the electron, Proc. R. Soc. London. Ser. A, Con-
tain. Pap. a Math. Phys. Character 117, 610 (1928).

H. Weyl, GRAVITATION AND THE ELECTRON, Proc. Natl. Acad. Sci. 15, 323 (1929).

N. P Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac semimetals in three-
dimensional solids, Rev. Mod. Phys. 90, 015001 (2018).

X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and
Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B
83, 205101 (2011).

V. Lahtinen and J. Pachos, A Short Introduction to Topological Quantum Computa-
tion, SciPost Phys. 3, 021 (2017).

J. Wiedenmann, E. Bocquillon, R. S. Deacon, S. Hartinger, O. Herrmann, T. M. Klap-
wijk, L. Maier, C. Ames, C. Briine, C. Gould, A. Oiwa, K. Ishibashi, S. Tarucha, H. Buh-
mann, and L. W. Molenkamp, 4r-periodic Josephson supercurrent in HgTe-based
topological Josephson junctions, Nat. Commun. 7, 10303 (2016).

D. E. Kharzeev and Q. Li, The Chiral Qubit: quantum computing with chiral anomaly,
(2019), arXiv:1903.07133 .


http://www.annualreviews.org/doi/10.1146/annurev-conmatphys-031113-133841
http://www.annualreviews.org/doi/10.1146/annurev-conmatphys-031113-133841
https://link.aps.org/doi/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1126/science.1133734
http://www.sciencemag.org/content/318/5851/766
http://www.sciencemag.org/content/318/5851/766
https://link.aps.org/doi/10.1103/PhysRevB.76.045302
https://link.aps.org/doi/10.1103/PhysRevB.76.045302
http://www.nature.com/articles/nature06843
http://www.nature.com/articles/nature08308
http://dx.doi.org/10.1103/PhysRevLett.106.126803
http://dx.doi.org/10.1098/rspa.1928.0023
http://dx.doi.org/10.1098/rspa.1928.0023
http://dx.doi.org/10.1073/pnas.15.4.323
https://link.aps.org/doi/10.1103/RevModPhys.90.015001
https://link.aps.org/doi/10.1103/PhysRevB.83.205101
https://link.aps.org/doi/10.1103/PhysRevB.83.205101
http://www.nature.com/articles/ncomms10303
http://arxiv.org/abs/1903.07133
http://arxiv.org/abs/1903.07133

170

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

B. A. Volkov and O. A. Pankratov, Two-dimensional massless electrons in an inverted
contact, J. Exp. Theor. Phys. Lett. 42, 145 (1985).

S. Tchoumakov, V. Jouffrey, A. Inhofer, E. Bocquillon, B. Plagais, D. Carpentier, and
M. O. Goerbig, Volkov-Pankratov states in topological heterojunctions, Phys. Rev. B
96, 201302 (2017).

D. J. Chadi, J. P Walter, M. L. Cohen, Y. Petroff, and M. Balkanski, Reflectivities and
electronic band structures of Cdle and HgTe, Phys. Rev. B 5, 3058 (1972).

A. Pfeuffer-Jeschke, Bandstruktur und Landau-Niveaus quecksilberhaltiger I1-VI Het-
erostrukturen, Ph.D. thesis, Universitdt Wiirzburg (2000).

L. Voon and M. Willatzen, The k p Method: Electronic Properties of Semiconductors
(Springer, 2009) p. 445.

S. Bloom and T. K. Bergstresser, Band structure of HgSe and HgTe, Phys. status solidi
42,191 (1970).

E. O. Kane, Band structure of indium antimonide, ]. Phys. Chem. Solids 1, 249 (1957).

J. M. Luttinger, Quantum theory of Cyclotron Resonance in Semiconductors: General
Theory, Phys. Rev. 102, 1030 (1956).

M. Kharitonov, J.-B. B. Mayer, and E. M. Hankiewicz, Universality and Stability of
the Edge States of Chiral-Symmetric Topological Semimetals and Surface States of the
Luttinger Semimetal, Phys. Rev. Lett. 119, 266402 (2017).

P. Leubner, Strain-engineering of the Topological Insulator HgTe, Ph.D. thesis, Univer-
sitdt Wiirzburg (2016).

G. L. Pikus and G. E. Bir, Symmetry and strain-induced effects in semiconductors (Wi-
ley, 1974) p. 484.

L. Liu and W. Leung, Transport property of zero-gap semiconductors under tensile
stress, Phys. Rev. B 12, 2336 (1975).

G. Dresselhaus, A. E Kip, and C. Kittel, Cyclotron resonance of electrons and holes in
silicon and germanium crystals, Phys. Rev. 98, 368 (1955).

W. Beugeling, kdotpy: kp bandstructure calculation program, (2017).

L. Tsidilkovski, G. Harus, and N. Shelushinina, Impurity states and electron transport
in gapless semiconductors, Adv. Phys. 34, 43 (1985).

M. Orlita, D. M. Basko, M. S. Zholudeyv, E Teppe, W. Knap, V. I. Gavrilenko, N. N.
Mikhailov, S. A. Dvoretskii, P. Neugebauer, C. Faugeras, A. L. Barra, G. Martinez, and
M. Potemski, Observation of three-dimensional massless Kane fermions in a zinc-
blende crystal, Nat. Phys. 10, 233 (2014).

R. Schlereth, New techniques and improvements in the MBE growth of Hg-containing
narrow gap semiconductors, Ph.D. thesis, Universitdt Wiirzburg (2020).


http://www.jetpletters.ac.ru/ps/1420/article_21570.pdf?ref=Guzels.TV http://www.jetpletters.ac.ru/ps/1420/article_21570.shtml
https://link.aps.org/doi/10.1103/PhysRevB.96.201302
https://link.aps.org/doi/10.1103/PhysRevB.96.201302
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.5.3058
https://books.google.com/books?id=t46OZQrEd8QC
http://doi.wiley.com/10.1002/pssb.19700420120
http://doi.wiley.com/10.1002/pssb.19700420120
https://www.sciencedirect.com/science/article/pii/0022369757900136
https://link.aps.org/doi/10.1103/PhysRev.102.1030
https://link.aps.org/doi/10.1103/PhysRevLett.119.266402
https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/start/1/rows/10/sortfield/score/sortorder/desc/searchtype/simple/query/Strain-engineering+of+the+Topological+Insulator+HgTe/docId/15244
https://books.google.de/books/about/Symmetry_and_Strain_induced_Effects_in_S.html?id=38m2QgAACAAJ&redir_esc=y
https://link.aps.org/doi/10.1103/PhysRevB.12.2336
https://link.aps.org/doi/10.1103/PhysRev.98.368
http://www.tandfonline.com/doi/abs/10.1080/00018738500101731
http://www.nature.com/articles/nphys2857
https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/start/3/rows/10/sortfield/score/sortorder/desc/searchtype/simple/query/schlereth/docId/20079

REFERENCES 171

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

[42]

[43]

(44]

(45]

O. A. Pankratov, S. V. Pakhomov, and B. A. Volkov, Supersymmetry in heterojunctions:
Band-inverting contact on the basis of Pb, —,Sn, Te and Hg, x Cd,, Te, Solid State Com-
mun. 61, 93 (1987).

D. M. Mahler, J.-B. Mayer, P. Leubner, L. Lunczer, D. Di Sante, G. Sangiovanni,
R. Thomale, E. M. Hankiewicz, H. Buhmann, C. Gould, and L. W. Molenkamp, Inter-
play of Dirac Nodes and Volkov-Pankratov Surface States in Compressively Strained
HgTe, Phys. Rev. X9, 031034 (2019).

T. Royal Swedish Academy of Sciences, Press Release - The Nobel Prize in Physics 2016,
(2016).

D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, E Meier, J. Osterwalder, L. Patthey, J. G.
Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava,
and M. Z. Hasan, A tunable topological insulator in the spin helical Dirac transport
regime, Nature 460, 1101 (2009).

E Ortmann, S. Roche, and S. O. Valenzuela, Topological Insulators: Fundamentals
and Perspectives (Wiley, 2015) p. 407.

M. Z. Hasan and C. L. Kane, Colloquium : Topological insulators, Rev. Mod. Phys. 82,
3045 (2010).

X.-L. Qiand S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys.
83, 1057 (2011).

J. Wiedenmann, Induced topological superconductivity in HgTe based nanostructures,
Ph.D. thesis, Universitdt Wiirzburg (2018).

C. Liu, G. Bian, T.-R. R. Chang, K. Wang, S.-Y. Y. Xu, 1. Belopolski, I. Miotkowski,
H. Cao, K. Miyamoto, C. Xu, C. E. Matt, T. Schmitt, N. Alidoust, M. Neupane, H.-T. T.
Jeng, H. Lin, A. Bansil, V. N. Strocov, M. Bissen, A. V. Fedorov, X. Xiao, T. Okuda, Y. P.
Chen, and M. Z. Hasan, Tunable spin helical Dirac quasiparticles on the surface of
three-dimensional HgTe, Phys. Rev. B 92, 115436 (2015).

D. M. Mahler, J. Wiedenmann, C. Thienel, C. Ames, J. Bottcher, P Leubner,
R. Schlereth, E Schmitt, C. Briine, H. Buhmann, D. Di Sante, C. Gould, E. M. Han-
kiewicz, G. Sangiovanni, and L. W. Molenkamp, Observation of 1/B oscillations from
an insulating topological state of matter, to be published .

X. C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, V. Hock, H. Buhmann, C. R. Becker, and
G. Landwehr, Rashba splitting in n-type modulation-doped HgTe quantum wells with
an inverted band structure, Phys. Rev. B 63, 245305 (2001).

C. Ames, Molecular Beam Epitaxy of 2D and 3D HgTe, a Topological Insulator, Ph.D.
thesis, Universitdt Wiirzburg (2015).

K. Bendias, S. Shamim, O. Herrmann, A. Budewitz, P. Shekhar, P. Leubner, J. Kleinlein,
E. Bocquillon, H. Buhmann, and L. W. Molenkamp, High Mobility HgTe Microstruc-
tures for Quantum Spin Hall Studies, Nano Lett. 18, 4831 (2018).


https://www.sciencedirect.com/science/article/pii/0038109887909343
https://www.sciencedirect.com/science/article/pii/0038109887909343
http://dx.doi.org/10.1103/PhysRevX.9.031034
https://www.nobelprize.org/prizes/physics/2016/press-release/
https://www.nobelprize.org/prizes/physics/2016/press-release/
http://www.nature.com/articles/nature08234
http://onlinelibrary.wiley.com/book/10.1002/9783527681594
http://onlinelibrary.wiley.com/book/10.1002/9783527681594
https://link.aps.org/doi/10.1103/RevModPhys.82.3045
https://link.aps.org/doi/10.1103/RevModPhys.82.3045
http://link.aps.org/doi/10.1103/RevModPhys.83.1057
http://link.aps.org/doi/10.1103/RevModPhys.83.1057
https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/start/1/rows/10/sortfield/score/sortorder/desc/searchtype/simple/query/wiedenmann/docId/16278
https://link.aps.org/doi/10.1103/PhysRevB.92.115436
https://link.aps.org/doi/10.1103/PhysRevB.63.245305
https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/start/4/rows/10/sortfield/score/sortorder/desc/searchtype/simple/query/christopher+ames/docId/15113
https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/start/4/rows/10/sortfield/score/sortorder/desc/searchtype/simple/query/christopher+ames/docId/15113
http://pubs.acs.org/doi/10.1021/acs.nanolett.8b01405

172

[46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

(54]

[55]

[56]

[57]

(58]

[59]

D. A. Kozlov, Z. D. Kvon, E. B. Olshanetsky, N. N. Mikhailov, S. A. Dvoretsky, and
D. Weiss, Transport Properties of a 3D Topological Insulator based on a Strained High-
Mobility HgTe Film, Phys. Rev. Lett. 112, 196801 (2014).

C. Briine, C. Thienel, M. Stuiber, J. Bottcher, H. Buhmann, E. G. Novik, C.-X. Liu,
E. M. Hankiewicz, and L. W. Molenkamp, Dirac-Screening Stabilized Surface-State
Transport in a Topological Insulator, Phys. Rev. X 4, 041045 (2014).

Y. Xu, I. Miotkowski, C. Liu, J. Tian, H. Nam, N. Alidoust, J. Hu, C.-K. Shih, M. Z.
Hasan, and Y. P. Chen, Observation of topological surface state quantum Hall effect in
an intrinsic three-dimensional topological insulator, Nat. Phys. 10, 956 (2014).

A. Jost, M. Bendias, J. Bottcher, E. Hankiewicz, C. Briine, H. Buhmann, L. W.
Molenkamp, J. C. Maan, U. Zeitler, N. Hussey, and S. Wiedmann, Electron—hole asym-
metry of the topological surface states in strained HgTe, Proc. Natl. Acad. Sci. 114, 3381
(2017).

C. Thienel, Exploring the transport properties of the three-dimensional topological in-
sulator material HgTe, Ph.D. thesis, Universitdt Wiirzburg (2015).

J. Wiedenmann, Quanten-Hall-Effekt eines relativistischen Systems, Master thesis,
Universitdat Wiirzburg (2013).

L. Bockhorn, P. Barthold, D. Schuh, W. Wegscheider, and R. J. Haug, Magnetoresis-
tance in a high-mobility two-dimensional electron gas, Phys. Rev. B 83, 113301 (2011).

J. Knolle and N. R. Cooper, Quantum Oscillations without a Fermi Surface and the
Anomalous de Haas—van Alphen Effect, Phys. Rev. Lett. 115, 146401 (2015).

L. Zhang, X.-Y. Song, and E Wang, Quantum Oscillation in Narrow-Gap Topological
Insulators, Phys. Rev. Lett. 116, 046404 (2016).

B.S. Tan, Y. T. Hsu, B. Zeng, M. Ciomaga Hatnean, N. Harrison, Z. Zhu, M. Hartstein,
M. Kiourlappou, A. Srivastava, M. D. Johannes, T. P. Murphy, J. H. Park, L. Balicas,
G. G. Lonzarich, G. Balakrishnan, and S. E. Sebastian, Unconventional Fermi surface
in an insulating state, Science 349, 287 (2015).

O. Erten, P. Ghaemi, and P. Coleman, Kondo Breakdown and Quantum Oscillations
in SmB6, Phys. Rev. Lett. 116, 046403 (2016).

Y. Baum, J. Béttcher, C. Briine, C. Thienel, L. W. Molenkamp, A. Stern, and E. M.
Hankiewicz, Self-consistent k-p calculations for gated thin layers of three-dimensional
topological insulators, Phys. Rev. B 89, 245136 (2014).

V. Miiller, Transport signatures of topological and trivial states in the three-
dimensional topological insulator HgTe, Ph.D. thesis, Universitdt Wiirzburg (to be
published).

C. R. Becker, C. Briine, M. Schifer, A. Roth, H. Buhmann, and L. W. Molenkamp,
The influence of interfaces and the modulation doping technique on the magneto-
transport properties of Hgle based quantum wells, Phys. status solidi 4, 3382 (2007).


https://link.aps.org/doi/10.1103/PhysRevLett.112.196801
http://dx.doi.org/10.1103/PhysRevX.4.041045
http://www.nature.com/articles/nphys3140
http://www.pnas.org/lookup/doi/10.1073/pnas.1611663114
http://www.pnas.org/lookup/doi/10.1073/pnas.1611663114
https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/start/1/rows/10/sortfield/score/sortorder/desc/searchtype/simple/query/thienel/docId/12203
https://link.aps.org/doi/10.1103/PhysRevB.83.113301
https://link.aps.org/doi/10.1103/PhysRevLett.115.146401
https://link.aps.org/doi/10.1103/PhysRevLett.116.046404
http://dx.doi.org/ 10.1126/science.aaa7974
http://dx.doi.org/10.1103/PhysRevLett.116.046403
https://link.aps.org/doi/10.1103/PhysRevB.89.245136
http://doi.wiley.com/10.1002/pssc.200775402

REFERENCES 173

(60]

(61]

(62]

(63]

(64]

[65]

[66]

[67]

(68]

(69]

[70]

[71]

[72]

[73]

E Goschenhofer, J. Gerschiitz, A. Pfeuffer-Jeschke, R. Hellmig, C. R. Becker, and
G. Landwehr, Investigation of iodine as a donor in MBE grown Hg;_,CdyTe, ]. Elec-
tron. Mater. 27, 532 (1998).

M. K. Bendias, Quantum Spin Hall Effect - A new generation of microstructures, Ph.D.
thesis, Universitdt Wiirzburg (2018).

J. Dubowski, T. Dietl, W. Szymanska, and R. Galazka, Electron scattering in
Cd,Hg - Te,]. Phys. Chem. Solids 42, 351 (1981).

C. W. Beenakker and H. van Houten, Quantum Transport in Semiconductor Nanos-
tructures, Solid State Phys. - Adv. Res. Appl. 44, 1 (1991).

R. REIFENBERGER, Magnetic Oscillations, Science 227, 1026 (1985).

J. Chen, H.J. Qin, E Yang, J. Liu, T. Guan, E M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie,
C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Gate-voltage control of chemical potential
and weak antilocalization in Biy Ses, Phys. Rev. Lett. 105, 176602 (2010).

Y. V. Sharvin, A possible method for studying Fermi surfaces, Sov. Phys. JETP 21, 655
(1965).

B. Biittner, C. X. Liu, G. Tkachov, E. G. Novik, C. Briine, H. Buhmann, E. M. Han-
kiewicz, P. Recher, B. Trauzettel, S. C. Zhang, and L. W. Molenkamp, Single valley
Dirac fermions in zero-gap Hgle quantum wells, Nat. Phys. 7, 418 (2011).

C. Li, B. de Ronde, A. Nikitin, Y. Huang, M. S. Golden, A. de Visser, and A. Brinkman,
Interaction between counter-propagating quantum Hall edge channels in the 3D topo-
logical insulator BiSbTeSe,, Phys. Rev. B 96, 195427 (2017).

L. Wang, E Schmitt, L. Lunczer, H. Buhmann, and L. W. Molenkamp, Counterprop-
agating quantum Hall edge mode in Mn doped topological insulator Hg) - xMny Te, to
be published .

K. Zolleis, C. Barnes, A. Davies, M. Simmons, D. Ritchie, and M. Pepper, Onset of
subband locking in double-quantum-well structures as the signature of wave function
delocalization, Phys. B Condens. Matter 249-251, 850 (1998).

J. Ziegler, D. A. Kozlov, N. N. Mikhailov, S. A. Dvoretsky, and D. Weiss, Quantum Hall
effect and Landau levels in the 3D topological insulator HgTe, Phys. Rev. Res. 2, 033003
(2020).

C. H. W. Barnes, A. G. Davies, K. R. Zolleis, M. Y. Simmons, and D. A. Ritchie, Intrinsic
coupling mechanisms between two-dimensional electron systems in double quantum
well structures, Phys. Rev. B 59, 7669 (1999).

A. G. Davies, C. H. W. Barnes, K. R. Zolleis, J. T. Nicholls, M. Y. Simmons, and D. A.
Ritchie, Hybridization of single- and double-layer behavior in a double-quantum-
well structure, Phys. Rev. B 54, R17331 (1996).


https://link.springer.com/article/10.1007/s11664-998-0010-x
https://link.springer.com/article/10.1007/s11664-998-0010-x
https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/start/1/rows/10/sortfield/score/sortorder/desc/searchtype/simple/query/bendias/docId/16821
https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/start/1/rows/10/sortfield/score/sortorder/desc/searchtype/simple/query/bendias/docId/16821
https://linkinghub.elsevier.com/retrieve/pii/0022369781900421
http://dx.doi.org/10.1016/S0081-1947(08)60091-0
https://www.sciencemag.org/lookup/doi/10.1126/science.227.4690.1026-a
https://link.aps.org/doi/10.1103/PhysRevLett.105.176602
http://www.jetp.ac.ru/cgi-bin/e/index/e/21/3/p655?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/21/3/p655?a=list
http://www.nature.com/articles/nphys1914
https://link.aps.org/doi/10.1103/PhysRevB.96.195427
https://linkinghub.elsevier.com/retrieve/pii/S0921452698003299
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033003
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033003
https://link.aps.org/doi/10.1103/PhysRevB.59.7669
https://link.aps.org/doi/10.1103/PhysRevB.54.R17331

174

[74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

A. Inhofer, S. Tchoumakov, B. A. Assaf, G. Feve, J. M. Berroir, V. Jouffrey, D. Carpen-
tier, M. O. Goerbig, B. Placais, K. Bendias, D. M. Mahler, E. Bocquillon, R. Schlereth,
C. Briine, H. Buhmann, and L. W. Molenkamp, Observation of Volkov-Pankratov
states in topological HgTe heterojunctions using high-frequency compressibility, Phys.
Rev. B 96, 195104 (2017).

Jan Bottcher, Anomalous Dirac Surface Screening versus Self-Consistent Hartree Band
Structure Calculations for the 3D TI HgTe, Master thesis, Universitdt Wiirzburg (2014).

D. A. Kozlov, D. Bauer, J. Ziegler, R. Fischer, M. L. Savchenko, Z. D. Kvon, N. N.
Mikhailov, S. A. Dvoretsky, and D. Weiss, Probing Quantum Capacitance in a 3D
Topological Insulator, Phys. Rev. Lett. 116, 166802 (2016).

E. G. Novik, A. Pfeuffer-Jeschke, T. Jungwirth, V. Latussek, C. R. Becker, G. Landwebhr,
H. Buhmann, and L. W. Molenkamp, Band structure of semimagnetic Hg,—,Mn,, Te
quantum wells, Phys. Rev. B 72 (2004).

E. M. Hankiewicz, personal communication, (2019).

D. M. Mahler, V. L. Miiller, C. Thienel, J. Wiedenmann, W. Beugeling, H. Buhmann,
and L. W. Molenkamp, Massive and Topological Surface States in Tensile-Strained
Hgle, Nano Lett. 21, 9869 (2021).

P. Capper and J. Garland, Mercury Cadmium Telluride: Growth, Properties and Appli-
cations (Wiley Blackwell, 2010) pp. 1-556.

M. L. D’yakonov and A. V. Khaetskii, Surface states in a gapless semiconductor, Pisma
Zh. Eksp. Teor. Fiz. 33, 115 (1981).

A. Inhofer, Probing AC electronic compressibility of 3D HgTe and Bi, Se; topological in-
sulators at high electric fields: evidence for excited massive surface states, Ph.D. thesis,
Laboratoire Pierre Aigrain (2017).

P. Shekhar, S. Shamim, S. Hartinger, J. Kleinlein, M. K. Bendias, R. Schlereth, H. Buh-
mann, and L. W. Molenkamp, Room temperature atomic layer deposition of hafnium
oxide for microelectronics application, to be published .

J. Robertson, High dielectric constant oxides, EP] Appl. Phys. 28, 265 (2004).

J. Baars and E Sorger, Reststrahlen spectra of HgTe and Cd, Hg, - Te, Solid State Com-
mun. 10, 875 (1972).

E. Pallecchi, A. C. Betz, J. Chaste, G. Féve, B. Huard, T. Kontos, J.-M. Berroir, and
B. Placais, Transport scattering time probed through rf admittance of a graphene ca-
pacitor, Phys. Rev. B 83, 125408 (2011).

A. M. Shuvaey, G. V. Astakhov, G. Tkachov, C. Briine, H. Buhmann, L. W. Molenkamp,
and A. Pimenov, Terahertz quantum Hall effect of Dirac fermions in a topological in-
sulator, Phys. Rev. B 87, 121104 (2013).


http://dx.doi.org/ 10.1103/PhysRevB.96.195104
http://dx.doi.org/ 10.1103/PhysRevB.96.195104
https://link.aps.org/doi/10.1103/PhysRevLett.116.166802
http://dx.doi.org/10.1103/PhysRevB.72.035321
http://dx.doi.org/10.1021/acs.nanolett.1c02456
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470669464
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470669464
http://www.jetpletters.ac.ru/ps/1501/article_22948.shtml
http://www.jetpletters.ac.ru/ps/1501/article_22948.shtml
https://www.phys.ens.fr/spip.php?article2774&lang=fr
http://www.epjap.org/10.1051/epjap:2004206
https://linkinghub.elsevier.com/retrieve/pii/0038109872902116
https://linkinghub.elsevier.com/retrieve/pii/0038109872902116
https://link.aps.org/doi/10.1103/PhysRevB.83.125408
https://journals.aps.org/prb/pdf/10.1103/PhysRevB.87.121104

REFERENCES 175

(88]

(89]

[90]

(91]

(92]

(93]

[94]

(95]

[96]

[97]

(98]

(99]

(100]

[101]

[102]

J.N. Hancock, J. L. M. van Mechelen, A. B. Kuzmenko, D. van der Marel, C. Briine, E. G.
Novik, G. V. Astakhov, H. Buhmann, and L. W. Molenkamp, Surface State Charge Dy-
namics of a High-Mobility Three-Dimensional Topological Insulator, Phys. Rev. Lett.
107, 149903 (2011).

J. Hinz, H. Buhmann, M. Schifer, V. Hock, C. R. Becker, and L. W. Molenkamp, Gate
control of the giant Rashba effect in HgTe quantum wells, Semicond. Sci. Technol. 21,
501 (2006).

T. Thn, Semiconductor Nanostructures: Quantum States and Electronic Transport (Ox-
ford University Press, 2010) pp. 1-568.

P. Stein, Ladungstréiger Kontrolle im Drei-Dimensionalen topologischen Isolator HgTe,
Bachelor thesis, Universitdt Wiirzburg (2017).

L. Fu, C. L. Kane, and E. ]J. Mele, Topological Insulators in Three Dimensions, Phys.
Rev. Lett. 98, 106803 (2007).

R. Yoshimi, A. Tsukazaki, Y. Kozuka, J. Falson, K. S. Takahashi, J. G. Checkelsky, N. Na-
gaosa, M. Kawasaki, and Y. Tokura, Quantum Hall effect on top and bottom surface
states of topological insulator (Biy—xSby)Tes films, Nat. Commun. 6 (2015).

E. Bocquillon, R. S. Deacon, J. Wiedenmann, P. Leubner, T. M. Klapwijk, C. Briine,
K. Ishibashi, H. Buhmann, and L. W. Molenkamp, Gapless Andreev bound states in
the quantum spin Hall insulator HgTe, Nat. Nanotechnol. 12, 137 (2017).

G. Santos, Spin-Orbit Torques and Galvanomagnetic Effects Generated by the 3D
Topological Insulator HgTe, Ph.D. thesis, Universitdat Wiirzburg (to be published).

B. Yan and C. Felser, Topological Materials: Weyl Semimetals, Annu. Rev. Condens.
Matter Phys. 8, 337 (2017).

A. Bernevig, H. Weng, Z. Fang, and X. Dai, Recent progress in the study of topological
semimetals, (2018).

Z.Wang, M. G. Vergniory, S. Kushwaha, M. Hirschberger, E. V. Chulkov, A. Ernst, N. P.
Ong, R.J. Cava, and B. A. Bernevig, Time-Reversal-Breaking Weyl Fermions in Mag-
netic Heusler Alloys, Phys. Rev. Lett. 117, 236401 (2016).

H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Weyl Semimetal Phase in Non-
centrosymmetric Transition-Metal Monophosphides, Phys. Rev. X 5, 011029 (2015).

B. Q. Lv, H. M. Weng, B. B. Fu, X. P Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X.
Zhao, G. E Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental Discovery of
Weyl Semimetal TaAs, Phys. Rev. X 5, 031013 (2015).

H. Nielsen and M. Ninomiya, The Adler-Bell-Jackiw anomaly and Weyl fermions in a
crystal, Phys. Lett. B 130, 389 (1983).

K. Yoshida, Transport of spatially inhomogeneous current in a compensated metal un-
der magnetic fields. II. Dynamical properties of the current system, J. Appl. Phys. 50,
4166 (1979).


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.107.136803
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.107.136803
http://stacks.iop.org/0268-1242/21/i=4/a=015?key=crossref.57196e7d56c89bdaa2f3709fd1a5d37e
http://stacks.iop.org/0268-1242/21/i=4/a=015?key=crossref.57196e7d56c89bdaa2f3709fd1a5d37e
http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199534425.001.0001/acprof-9780199534425
https://link.aps.org/doi/10.1103/PhysRevLett.98.106803
https://link.aps.org/doi/10.1103/PhysRevLett.98.106803
https://www.nature.com/articles/ncomms7627
http://dx.doi.org/10.1038/nnano.2016.159
http://www.annualreviews.org/doi/10.1146/annurev-conmatphys-031016-025458
http://www.annualreviews.org/doi/10.1146/annurev-conmatphys-031016-025458
http://journals.jps.jp/doi/10.7566/JPSJ.87.041001
http://journals.jps.jp/doi/10.7566/JPSJ.87.041001
https://link.aps.org/doi/10.1103/PhysRevLett.117.236401
https://link.aps.org/doi/10.1103/PhysRevX.5.011029
https://link.aps.org/doi/10.1103/PhysRevX.5.031013
https://linkinghub.elsevier.com/retrieve/pii/0370269383915290
http://aip.scitation.org/doi/10.1063/1.326497
http://aip.scitation.org/doi/10.1063/1.326497

176

[103]

[104]

[105]

[106]

[107]

[108]

(109]

(110]

[111]

[112]

[113]

[114]

E Arnold, D. Sokolov, M. O. Ajeesh, S.-C. Wu, C. Shekhar, E. Hassinger, N. Ku-
mar, B. Yan, M. Naumann, R. D. dos Reis, C. Felser, H. Borrmann, A. G. Grushin,
M. Baenitz, M. Schmidt, M. Nicklas, J. H. Bardarson, and Y. Sun, Negative magne-
toresistance without well-defined chirality in the Weyl semimetal TaP, Nat. Commun.
7, 11615 (2016).

R. D. Reis, M. O. Ajeesh, N. Kumar, E Arnold, C. Shekhar, M. Naumann, M. Schmidt,
M. Nicklas, and E. Hassinger, On the search for the chiral anomaly in Weyl semimet-
als: The negative longitudinal magnetoresistance, New J. Phys. 18, 085006 (2016).

H.J. Kim, K. S. Kim, J. E Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Kitaura, M. Yang,
and L. Li, Dirac versus weyl fermions in topological insulators: Adler-Bell-Jackiw
anomaly in transport phenomena, Phys. Rev. Lett. 111 (2013).

Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosi¢, A. V. Fedorov, R. D. Zhong, J. A.
Schneeloch, G. D. Gu, and T. Valla, Chiral magnetic effect in ZrTes, Nat. Phys. 12, 550
(2016).

I. Crassee, R. Sankar, W. L. Lee, A. Akrap, and M. Orlita, 3D Dirac semimetal CdsAs;:
A review of material properties, Phys. Rev. Mater. 2, 120302 (2018).

Z.Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Dirac
semimetal and topological phase transitions in A3Bi(A=Na, K, Rb), Phys. Rev. B 85,
195320 (2012).

J. Bodnar, Band structure of CdsAs, from Shubnikov - de Haas and de Haas - van
Alphen effects, (2017), arXiv:1709.05845 .

M. Hakl, S. Tchoumakov, I. Crassee, A. Akrap, B. A. Piot, C. Faugeras, G. Martinez,
A. Nateprov, E. Arushanov, E Teppe, R. Sankar, W.-1. Lee, J. Debray, O. Caha, J. Novék,
M. O. Goerbig, M. Potemski, and M. Orlita, Energy scale of Dirac electrons in CdsAs,,
Phys. Rev. B 97, 115206 (2018).

M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R.
Chang, H.-T. Jeng, H. Lin, A. Bansil, E Chou, and M. Z. Hasan, Observation of a
three-dimensional topological Dirac semimetal phase in high-mobility CdsAs,, Nat.
Commun. 5, 3786 (2014).

S. K. Kushwaha, J. W. Krizan, B. E. Feldman, A. Gyenis, M. T. Randeria, J. Xiong, S. Y.
Xu, N. Alidoust, I. Belopolski, T. Liang, M. Zahid Hasan, N. P. Ong, A. Yazdani, and R.]J.
Cava, Bulk crystal growth and electronic characterization of the 3D Dirac semimetal
Nas Bi, APL Mater. 3, 041504 (2015).

Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X.
Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a three-dimensional
topological dirac semimetal, Nas Bi, Science 343, 864 (2014).

J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. J. Cava,
and N. P. Ong, Evidence for the chiral anomaly in the Dirac semimetal Nas Bi, Science
350, 413 (2015).


http://www.nature.com/articles/ncomms11615
http://www.nature.com/articles/ncomms11615
https://iopscience.iop.org/article/10.1088/1367-2630/18/8/085006
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.111.246603
http://www.nature.com/articles/nphys3648
http://www.nature.com/articles/nphys3648
https://link.aps.org/doi/10.1103/PhysRevMaterials.2.120302
https://link.aps.org/doi/10.1103/PhysRevB.85.195320
https://link.aps.org/doi/10.1103/PhysRevB.85.195320
http://arxiv.org/abs/1709.05845
http://arxiv.org/abs/1709.05845
https://link.aps.org/doi/10.1103/PhysRevB.97.115206
http://www.nature.com/articles/ncomms4786
http://www.nature.com/articles/ncomms4786
http://aip.scitation.org/doi/10.1063/1.4908158
http://www.sciencemag.org/cgi/doi/10.1126/science.1245085
https://science.sciencemag.org/content/350/6259/413.long
https://science.sciencemag.org/content/350/6259/413.long

REFERENCES 177

[115]

[116]

[117]

(118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

T. Khouri, U. Zeitler, C. Reichl, W. Wegscheider, N. E. Hussey, S. Wiedmann, andJ. C.
Maan, Linear Magnetoresistance in a Quasifree Two-Dimensional Electron Gas in an
Ultrahigh Mobility GaAs Quantum Well, Phys. Rev. Lett. 117, 256601 (2016).

T. Schumann, M. Goyal, D. A. Kealhofer, and S. Stemmer, Negative magnetoresistance
due to conductivity fluctuations in films of the topological semimetal CdsAs,, Phys.
Rev. B 95, 241113 (2017).

Pippard, Alfred Brian and A. B. Pippard, Magnetoresistance in Metals (Cambridge
University Press, 2009).

T. Liang, Q. Gibson, M. N. Ali, M. Liu, R.J. Cava, and N. P. Ong, Ultrahigh mobility and
giant magnetoresistance in the Dirac semimetal CdsAs,, Nat. Mater. 14, 280 (2015).

A. A. Abrikosov, Quantum magnetoresistance, Phys. Rev. B 58, 2788 (1998).

H. Weiss and H. Welker, Zur transversalen magnetischen Widerstandsdnderung von
InSb, Zeitschrift fiir Phys. 138, 322 (1954).

P S. Alekseev, A. P. Dmitriev, I. V. Gornyi, V. Y. Kachorovskii, B. N. Narozhny, M. Schiitt,
and M. Titov, Magnetoresistance in two-component systems, Phys. Rev. Lett. 114,
156601 (2015).

A. Chang and D. Tsui, Experimental observation of a striking similarity between quan-
tum hall transport coefficients, Solid State Commun. 56, 153 (1985).

S. H. Simon and B. 1. Halperin, Explanation for the Resistivity Law in Quantum Hall
Systems, Phys. Rev. Lett. 73, 3278 (1994).

N. Kozlova, N. Mori, O. Makarovsky, L. Eaves, Q. Zhuang, A. Krier, and A. Patane,
Linear magnetoresistance due to multiple-electron scattering by low-mobility islands
in an inhomogeneous conductor, Nat. Commun. 3, 1097 (2012).

P. Hosur and X. Qi, Recent developments in transport phenomena in Weyl semimetals,
Comptes Rendus Phys. 14, 857 (2013).

A. Burkov, Weyl Metals, Annu. Rev. Condens. Matter Phys. 9, 359 (2018).

A. A. Burkov, Negative longitudinal magnetoresistance in Dirac and Weyl metals, Phys.
Rev. B 91, 245157 (2015).

A. A. Zyuzin and A. A. Burkov, Topological response in Weyl semimetals and the chiral
anomaly, Phys. Rev. B 86, 115133 (2012).

D. T. Son and B. Z. Spivak, Chiral anomaly and classical negative magnetoresistance
of Weyl metals, Phys. Rev. B 88, 104412 (2013).

P. Leubner, L. Lunczer, C. Briine, H. Buhmann, and L. W. Molenkamp, Strain Engi-
neering of the Band Gap of HgTe Quantum Wells Using Superlattice Virtual Substrates,
Phys. Rev. Lett. 117, 086403 (2016).


https://link.aps.org/doi/10.1103/PhysRevLett.117.256601
http://link.aps.org/doi/10.1103/PhysRevB.95.241113
http://link.aps.org/doi/10.1103/PhysRevB.95.241113
http://www.nature.com/articles/nmat4143
https://link.aps.org/doi/10.1103/PhysRevB.58.2788
http://link.springer.com/10.1007/BF01340677
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.156601
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.156601
https://linkinghub.elsevier.com/retrieve/pii/0038109885905551
https://link.aps.org/doi/10.1103/PhysRevLett.73.3278
http://www.nature.com/articles/ncomms2106
https://linkinghub.elsevier.com/retrieve/pii/S1631070513001710
http://www.annualreviews.org/doi/10.1146/annurev-conmatphys-033117-054129
https://link.aps.org/doi/10.1103/PhysRevB.91.245157
https://link.aps.org/doi/10.1103/PhysRevB.91.245157
https://link.aps.org/doi/10.1103/PhysRevB.86.115133
https://link.aps.org/doi/10.1103/PhysRevB.88.104412
https://link.aps.org/doi/10.1103/PhysRevLett.117.086403

178

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

(141]

[142]

(143]

[144]

K. Takita and G. Landwehr, Very Large Phonon-Drag Thermoelectric Power of HgTe in
Strong Magnetic Fields, Phys. status solidi 106, 259 (1981).

S.Hikami, A. I. Larkin, and Y. Nagaoka, Spin-Orbit Interaction and Magnetoresistance
in the Two Dimensional Random System, Prog. Theor. Phys. 63, 707 (1980).

B. Zhao, P. Cheng, H. Pan, S. Zhang, B. Wang, G. Wang, E Xiu, and E Song, Weak
antilocalization in CdsAs, thin films, Sci. Rep. 6, 22377 (2016).

J. Hellerstedt, M. T. Edmonds, N. Ramakrishnan, C. Liu, B. Weber, A. Tadich, K. M.
O’Donnell, S. Adam, and M. S. Fuhrer, Electronic Properties of High-Quality Epitaxial
Topological Dirac Semimetal Thin Films, Nano Lett. 16, 3210 (2016).

C.-L. Zhang, S.-Y. Xu, L. Belopolski, Z. Yuan, Z. Lin, B. Tong, G. Bian, N. Alidoust,
C.-C. Lee, S.-M. Huang, T.-R. Chang, G. Chang, C.-H. Hsu, H.-T. Jeng, M. Neupane,
D. S. Sanchez, H. Zheng, J. Wang, H. Lin, C. Zhang, H.-Z. Lu, S.-Q. Shen, T. Neupert,
M. Zahid Hasan, and S. Jia, Signatures of the Adler—Bell-Jackiw chiral anomaly in a
Weyl fermion semimetal, Nat. Commun. 7, 10735 (2016).

H.-Z. Lu and S.-Q. Shen, Weak antilocalization and localization in disordered and
interacting Weyl semimetals, Phys. Rev. B 92, 035203 (2015).

E D. M. Haldane, Attachment of Surface "Fermi Arcs" to the Bulk Fermi Surface:
"Fermi-Level Plumbing" in Topological Metals, (2014), arXiv:1401.0529 .

L. Galletti, T. Schumann, D. A. Kealhofer, M. Goyal, and S. Stemmer, Absence of sig-
natures of Weyl orbits in the thickness dependence of quantum transport in cadmium
arsenide, Phys. Rev. B 99, 201401 (2019).

P. Goswami, J. H. Pixley, and S. Das Sarma, Axial anomaly and longitudinal magne-
toresistance of a generic three-dimensional metal, Phys. Rev. B 92, 075205 (2015).

J. Cano, B. Bradlyn, Z. Wang, M. Hirschberger, N. P. Ong, and B. A. Bernevig, Chi-
ral anomaly factory: Creating Weyl fermions with a magnetic field, Phys. Rev. B 95,
161306 (2017).

G. Bergmann, Weak anti-localization—An experimental proof for the destructive in-
terference of rotated spin 1/2, Solid State Commun. 42, 815 (1982).

M. Miihlbauer, A. Budewitz, B. Biittner, G. Tkachov, E. M. Hankiewicz, C. Briine,
H. Buhmann, and L. W. Molenkamp, One-dimensional weak antilocalization due to
the berry phase in hgle wires, Phys. Rev. Lett. 112 (2014).

W. E. Liu, E. M. Hankiewicz, and D. Culcer, Quantum transport in Weyl semimetal
thin films in the presence of spin-orbit coupled impurities, Phys. Rev. B 96, 045307
(2017).

M. Stuiber, Dreidimensionale Topologische Isolatoren, Master thesis, Universitit
Wiirzburg (2011).


http://doi.wiley.com/10.1002/pssb.2221060129
https://academic.oup.com/ptp/article-lookup/doi/10.1143/PTP.63.707
http://www.nature.com/articles/srep22377
https://pubs.acs.org/doi/10.1021/acs.nanolett.6b00638
http://www.nature.com/articles/ncomms10735
https://link.aps.org/doi/10.1103/PhysRevB.92.035203
http://arxiv.org/abs/1401.0529
http://arxiv.org/abs/1401.0529
https://link.aps.org/doi/10.1103/PhysRevB.99.201401
https://link.aps.org/doi/10.1103/PhysRevB.92.075205
http://link.aps.org/doi/10.1103/PhysRevB.95.161306
http://link.aps.org/doi/10.1103/PhysRevB.95.161306
https://linkinghub.elsevier.com/retrieve/pii/0038109882900138
http://link.aps.org/doi/10.1103/PhysRevB.96.045307
http://link.aps.org/doi/10.1103/PhysRevB.96.045307

REFERENCES 179

[145]

[146]

(147]

[148]

(149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]
[158]

[159]

[160]

T. McGuire and R. Potter, Anisotropic magnetoresistance in ferromagnetic 3d alloys,
IEEE Trans. Magn. 11, 1018 (1975).

M. Baussenwein, Symmetry breaking in the planar anisotropic magnetoresistance of
NiMnSb, Ph.D. thesis, Universitdt Wiirzburg (to be published).

A. A. Burkov, Giant planar Hall effect in topological metals, Phys. Rev. B 96, 041110
(2017).

T. Louvet, M. Houzet, and D. Carpentier, Signature of the Chiral Anomaly in Ballistic
Magneto-Transport, (2017), arXiv:1711.06657 .

M. Shayegan, V. Goldman, H. Drew, N. Fortune, and J. Brooks, Magnetic-field induced
metal-insulator transition in InSb and Hgy 79 Cdy 21 Te at very low temperatures, Solid
State Commun. 60, 817 (1986).

S. J. Papadakis, E. P. De Poortere, M. Shayegan, and R. Winkler, Anisotropic Magne-
toresistance of Two-Dimensional Holes in GaAs, Phys. Rev. Lett. 84, 5592 (2000).

E Schmidt, Transporteigenschaften von druck- und zugverspannten HgTe-Epi-
Schichten, Master thesis, Universitdat Wiirzburg, Wiirzburg (2016).

J. Jo, E. A. Garcia, K. M. Abkemeier, M. B. Santos, and M. Shayegan, Probing the sub-
band structure of a wide electron system in a parabolic quantum well via capacitance-
voltage measurements, Phys. Rev. B 47, 4056 (1993).

D. Weiss, K. V. Klitzing, K. Ploog, and G. Weimann, Magnetoresistance Oscillations
in a Two-Dimensional Electron Gas Induced by a Submicrometer Periodic Potential,
Europhys. Lett. 8, 179 (1989).

S. S. Pershoguba and V. M. Yakovenko, Spin-polarized tunneling current through a
thin film of a topological insulator in a parallel magnetic field, Phys. Rev. B 86, 165404
(2012).

Stanford Research Systems, Digital Lock-In Amplifiers: SR810 and SR830, Analog
Lock-In Amplifiers SR124 and SR2124 — Analog lock-in amplifiers, .

J. Ruan, S.-K. Jian, H. Yao, H. Zhang, S.-C. Zhang, and D. Xing, Symmetry-protected
ideal Weyl semimetal in HgTe-class materials, Nat. Commun. 7, 11136 (2016).

]J.-B. Mayer, Note on Landau in Weyl HgTe with Pankratov states, (2018).
D. Tong, Lectures on the Quantum Hall Effect, (2016), arXiv:1606.06687 .

A. C. Potter, L. Kimchi, and A. Vishwanath, Quantum oscillations from surface Fermi
arcs in Weyl and Dirac semimetals, Nat. Commun. 5, 5161 (2014).

P J. W. Moll, N. L. Nair, T. Helm, A. C. Potter, I. Kimchi, A. Vishwanath, and J. G.
Analytis, Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac
semimetal CdsAs,, Nature 535, 266 (2016).


http://ieeexplore.ieee.org/document/1058782/
http://link.aps.org/doi/10.1103/PhysRevB.96.041110
http://link.aps.org/doi/10.1103/PhysRevB.96.041110
http://arxiv.org/abs/1711.06657
http://arxiv.org/abs/1711.06657
https://linkinghub.elsevier.com/retrieve/pii/0038109886906034
https://linkinghub.elsevier.com/retrieve/pii/0038109886906034
https://link.aps.org/doi/10.1103/PhysRevLett.84.5592
https://link.aps.org/doi/10.1103/PhysRevB.47.4056
https://iopscience.iop.org/article/10.1209/0295-5075/8/2/012
https://link.aps.org/doi/10.1103/PhysRevB.86.165404
https://link.aps.org/doi/10.1103/PhysRevB.86.165404
https://www.thinksrs.com/products/lockin.html
https://www.thinksrs.com/products/lockin.html
http://www.nature.com/articles/ncomms11136
http://arxiv.org/abs/1606.06687
http://arxiv.org/abs/1606.06687
http://www.nature.com/articles/ncomms6161
http://www.nature.com/articles/nature18276

180

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

(170]

[171]

[172]

[173]

[174]

C.M. Wang, H. P. Sun, H. Z. Lu, and X. C. Xie, 3D Quantum Hall Effect of Fermi Arc in
Topological Semimetals, Phys. Rev. Lett. 119, 136806 (2017).

Y. Zhao, H. Liu, C. Zhang, H. Wang, J. Wang, Z. Lin, Y. Xing, H. Lu, J. Liu, Y. Wang,
S. M. Brombosz, Z. Xiao, S. Jia, X. C. Xie, and J. Wang, Anisotropic Fermi Surface
and Quantum Limit Transport in High Mobility Three-Dimensional Dirac Semimetal
CdsAs,, Phys. Rev. X 5, 031037 (2015).

C. Zhang, A. Narayan, S. Lu, J. Zhang, H. Zhang, Z. Ni, X. Yuan, Y. Liu, J.-H. Park,
E. Zhang, W. Wang, S. Liu, L. Cheng, L. Pi, Z. Sheng, S. Sanvito, and E Xiu, Evolution
of Weyl orbit and quantum Hall effect in Dirac semimetal CdsAs,, Nat. Commun. 8,
1272 (2017).

C.Zhang, Y. Zhang, X. Yuan, S. Lu, J. Zhang, A. Narayan, Y. Liu, H. Zhang, Z. Nj, R. Liu,
E. S. Choi, A. Suslov, S. Sanvito, L. Pi, H.-Z. Lu, A. C. Potter, and E Xiu, Quantum Hall
effect based on Weyl orbits in CdsAs,, Nature 565, 331 (2019).

Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Three-dimensional Dirac semimetal
and quantum transport in CdszAs,, Phys. Rev. B 88, 125427 (2013).

C.-X. Liu, X.-L. Qi, H. Zhang, X. Dai, Z. Fang, and S.-C. Zhang, Model Hamiltonian for
topological insulators, Phys. Rev. B 82, 045122 (2010).

M. Kargarian, M. Randeria, and Y.-M. Lu, Are the surface Fermi arcs in Dirac semimet-
als topologically protected? Proc. Natl. Acad. Sci. 113, 8648 (2016).

M. Kargarian, Y. M. Lu, and M. Randeria, Deformation and stability of surface states
in Dirac semimetals, Phys. Rev. B 97, 165129 (2018).

J.-B. Mayer, Topological insulators and semimetals within 4-band Luttinger model,
Master thesis, Universitdt Wiirzburg (2017).

X. Liu, G. Liu, Y. Feng, J. He, C. Chen, K. Shimada, J. Zhang, S. He, H. Namatame,
L. Zhao, Z. Fang, Z. Wang, M. Taniguchi, Y. Peng, M. Nakatake, Y. Liu, C. Chen, Z. Xie,
X. Dai, H. Yi, X. J. Zhou, Y. Shi, X. Dong, M. Arita, Z. Xu, and A. Liang, Evidence of
Topological Surface State in Three-Dimensional Dirac Semimetal CdsAs,, Sci. Rep. 4,
6106 (2014).

S. Roth, H. Lee, A. Sterzi, M. Zacchigna, A. Politano, R. Sankar, E C. Chou, G. Di Santo,
L. Petaccia, O. V. Yazyev, and A. Crepaldi, Reinvestigating the surface and bulk elec-
tronic properties of Cd 3 As 2, Phys. Rev. B 97, 165439 (2018).

B. C. Lin, S. Wang, S. Wiedmann, J. M. Lu, W. Z. Zheng, D. Yu, and Z. M. Liao, Ob-
servation of an Odd-Integer Quantum Hall Effect from Topological Surface States in
CdsAsy, Phys. Rev. Lett. 122 (2019).

S. Adam, E. H. Hwang, and S. Das Sarma, Two-dimensional transport and screening
in topological insulator surface states, Phys. Rev. B 85, 235413 (2012).

O. Corporation, Origin(Pro), (2020).


https://link.aps.org/doi/10.1103/PhysRevLett.119.136806
https://link.aps.org/doi/10.1103/PhysRevX.5.031037
http://www.nature.com/articles/s41467-017-01438-y
http://www.nature.com/articles/s41467-017-01438-y
http://www.nature.com/articles/s41586-018-0798-3
https://link.aps.org/doi/10.1103/PhysRevB.88.125427
https://link.aps.org/doi/10.1103/PhysRevB.82.045122
https://www.pnas.org/content/113/31/8648
https://link.aps.org/doi/10.1103/PhysRevB.97.165129
http://www.nature.com/articles/srep06106
http://www.nature.com/articles/srep06106
https://link.aps.org/doi/10.1103/PhysRevB.97.165439
https://link.aps.org/doi/10.1103/PhysRevB.85.235413
https://www.originlab.com/

REFERENCES 181

[175] I. Wolfram Research, Mathematica, (2020).

[176] M. Frigo and S. G. Johnson, FFTW: An adaptive software architecture for the FFT, in
ICASSR IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., Vol. 3 (1998) pp. 1381-
1384.

[177] J. O. Smith, Cent. Comput. Res. Music Acoust. (2011) pp. 1-674.


https://www.wolfram.com/mathematica
http://dx.doi.org/ 10.1109/ICASSP.1998.681704
http://books.w3k.org/

	I Introduction
	Motivation
	The versatile topological material HgTe
	Bulk band structure of HgTe
	The semi-metal HgTe
	Three phases of HgTe - accessible by strain
	Heterostructures of HgTe/CdxHg1-xTe

	Topology in solid state systems
	State of the art: Tensilely strained HgTe
	Topological surface states in tensilely strained HgTe
	Established fabrication process for HgTe devices
	Magneto-transport on tensilely strained HgTe
	The Dirac screening model
	Open questions



	II HgTe as three-dimensional topological insulator
	Magneto-transport on high mobility tensilely strained HgTe
	Sample quality improvements and their verification
	New layer stack and fabrication method
	Measurement setup
	Quantification of the sample quality

	Analyzing magneto-transport measurements
	Consequences of Landau level formation in magneto-transport
	Extracting information from the Quantum Hall effect and Shubnikov-de Haas oscillaitons

	Qualitative analysis of the gate voltage dependent magneto-transport
	Analysis of the semi-classical magneto-transport regime
	Qualitative investigation of the Landau level dispersion

	Quantitative analysis of the Landau level dispersion

	Modeling of the magneto-transport results
	Capacitor model
	Operation of the gate
	The heterostructure as capacitor circuit
	The capacitor circuit depicted as band structure

	The Kane Hamiltonian
	Self-consistent k p calculations
	Massive Volkov-Pankratov states in HgTe

	High frequency compressibilty measurements
	The measurement setup
	Interpretation based on the Dirac screening model
	Reinterpretation based on the capacitor circuit model
	Observation of massive Volkov-Pankratov states
	Measurements up to high gate voltages
	Reference magneto-transport measurements
	band structure calculations for a finite gate voltage

	Summary of high frequency compressibility measurements

	New insights into the three-dimensional topological insulator phase of HgTe

	III HgTe as inversion induced Dirac semi-metals
	Bulk properties of inversion induced Dirac semi-metals
	Topological semi-metals
	Inversion induced Dirac semi-metals
	Cd3As2
	Na3Bi
	Magneto-transport of inversion induced Dirac semi-metals

	The chiral anomaly
	Chiral anomaly in compressively strained HgTe
	Sample Fabrication and measurement setup
	Adjusting the carrier density
	Negative magnetoresistance in compressively strained HgTe
	Angular dependence of the negative magnetoresistance
	Gate voltage dependence of the negative magnetoresistance
	Mobility dependence of the negative magnetoresistance
	Strain dependence of the negative magnetoresistance
	Magnetoresistance in the absence of a linear crossing point in the bulk band structure

	Additional in-plane magneto-transport effects
	Weak anti-localization
	Planar Hall effect
	Potential metal-insulator transition in high magnetic fields
	Oscillations in the in-plane magnetoresistance

	Bulk properties of inversion induced Dirac semi-metals

	Surface states in inversion induced Dirac semi-metals
	Out of plane magneto-transport measurements
	Origin of the Surface states
	Fermi-arcs
	Topological surface states
	Volkov Pankratov states
	Identification of the Landau levels

	Surface states in other inversion induced Dirac semi-metals
	Quantum oscillations in the Dirac semi-metal Cd3As2
	Quantum Hall effect in Cd3As2

	Model Hamiltonians for inversion induced Dirac-semi-metals
	Simple four band model
	Surface states in the simple four band model
	Luttinger-like model

	Common properties of inversion induced Dirac semi-metals


	IV Conclusion
	Zusammenfassung
	Thomas Fermi screening
	Quantum Oscillations without a Fermi Surface
	Temperature dependence of the semi-classical regime
	Reproducibility of the Fast Fourier analysis results
	List of Publications
	Acknowledgements
	References


