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Abstract

In the last decade continuous-time quantum Monte Carlo in the hybridization expansion (CTHYB)
was one of the most successful Monte Carlo techniques to describe correlated quantum phenomena
in conjunction with dynamical mean field theory (DMFT). The first part of the thesis consists of
algorithmical developments regarding CTHYB and DMFT. I provide a complete derivation and
an extensive discussion of the expansion formula. We generalized it to treat spin-orbit coupling,
and invented the superstate sampling algorithm to make it efficient enough for describing systems
with general interactions, crystal fields and spin-orbit coupling at low temperatures.

But CTHYB is known to fail in the standard implementation for equal-time correlators, certain
higher-order Green’s functions and the atomic limit; we discovered that its estimator for the Greens
function is also inconsistent for Anderson impurities with finite, discrete baths. I focus then on
further improvements of CTHYB that we have conceived and worked on, in particular for f-orbitals
and for taking physical symmetries into account in the calculation of the Monte Carlo observables.

The second part of the thesis presents selected physical applications of these methods. I show
DMFT calculations of highest accuracy for elemental iron and nickel and discover a new mechanism
of magnetic ordering in nickel: the ordering of band structure-induced local moments. Then we
analyze the stability of this phenomenon under pressure and temperatures, that characterize in
the Earth’s core. We find, that the mechanism survives these conditions and may give a significant
contribution to the generation of the Earth’s magnetic field. The next topic is the stability of
double Dirac fermions against electronic correlations. We find, that the Coulomb interaction
in the corresponding material Bi2CuO4 are strong enough to destroy the double Dirac cone, and
substantial uniform pressure is necessary to restore them. In the last chapter I derive the properties
of Higgs and Goldstone bosons from Ginzburg-Landau theory, and identify these excitations in a
model of an excitonic magnet.
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Zusammenfassung

Im letzten Jahrzehnt war die zeitkontinuierliche Hybridisierungsentwicklung (CTHYB) eine der
erfolgreichsten Quanten Monte Carlo Methoden zur Behandlung stark korrelierter Elektronen-
systeme im Zusammenspiel mit der dynamischen Molekularfeldtheorie (DMFT). Im ersten Teil
der Dissertation geht es um Algorithmenentwicklung bezüglich CTHYB und DMFT. Ich leite die
CTHYB-Entwicklungsformel vollständig her und diskutiere ausführlich ihre Eigenschaften. Wir
haben sie im Rahmen der Thesis für die Behandlung von Spin-Bahn gekoppelten Systemen ve-
rallgemeinert, und den Superstate-Sampling Algorithmus entwickelt, der unsere Implementation
effizient genug macht, dass man Rechnungen mit allgemeinen Wechselwirkungen, Kristallfeldern
und Spin-Bahn Kopplung bei tiefen Temperaturen effizient durchführen kann.

Es ist bekannt, dass CTHYB in der Standard-Implementation für Gleichzeit-Korrelationsfunk-
tionen, bestimme Greenfunktionen höherer Ordnung und den atomaren Limes nicht funktioniert;
wir haben entdeckt, dass der Standard-Estimator für die Greensche Funktion auch inkonsistent
ist für Anderson-Störstellen mit endlich großem, diskretem Bad. Dann betrachte ich auch andere
Verbesserungen von CTHYB, die wir uns ausgedacht haben, insbesondere für die Behandlung
von Systemen mit f -Orbitalen, und wie man physikalische Symmetrien bei der Berechnung von
Observablen bei CTHYB mit einbeziehen kann.

Im zweiten Teil der Arbeit präsentiere ich ausgewählte physikalische Anwendungen dieser Meth-
oden. Ich zeige DMFT-Rechnungen mit größtmöglicher Präzision für die elementaren Metalle Eisen
und Nickel, wobei wir einen neuartigen Mechanismus entdeckt haben, der in Nickel die magnetische
Ordnung erzeugt: es ordnen sich lokale magnetische Momente, die von der Bandstruktur erzeugt
worden sind. Dann untersuchen wir die Stabilität des Phänomens unter hohem Druck und hoher
Temperatur, wie sie typischerweise im Erdkern herrschen. Wir finden, dass der Mechanismus diese
Bedingungen übersteht und es denkbar ist, dass er einen signifikanten Beitrag zur Erzeugung des
Magnetfelds der Erde liefert. Das nächste Beispiel ist, wie sich elektronische Korrelationseffekte
auf doppel-Dirac Fermionen auswirken. Wir finden, dass die elektronische Wechselwirkung die
doppel-Dirac Cones in Bi2CuO4 zerstört, und nur enormer hydrostatischer Druck sie wiederher-
stellen kann. Im letzten Kapitel leite ich die Eigenschaften von Higgs- und Goldstone-Bosonen
mithilfe der Ginzburg-Landau Theorie her, und identifiziere dann diese Anregungen im Modell
eines exzitonischen Magneten.
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Man muss noch Chaos in sich haben!
(Friedrich Nietzsche)
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Chapter 1

Introduction

The year 2019 may be remembered as that point in the history of computation, where a quantum
computer for the first time gained supremacy over the most powerful existing classical computer
(Arute et al., 2019). It uses the ability for superposition of quantum mechanical objects to perform
a calculation for several inputs in parallel, whereas the classical computer has to calculate each
input separately.

Another fascinating machine is the quantum simulator, which uses a very clean and well known
reference quantum system, to gain access to properties about another quantum system of interest.

Two main features make quantum mechanics a very difficult task for classical computers. First,
there is an exponential growth of the Hilbert space with regard to the size of the considered system.
This alone was not a serious problem; but second, together with the anticommutation of the
fermionic constituents, which equip half of the Hilbert space with a negative sign, it is impossible
for Monte Carlo algorithms to pick out the important contributions. These two aspects together
are believed to constitute a problem of non-polynomial complexity (Troyer and Wiese, 2005).

However, with current technology, it is also very delicate to build large quantum machines,
because for performing the calculation and reading out the result, they have to be screened from
all environmental perturbances and accessed in a very controlled way. There seems to be an
exponential barrier as well. It is still true today, what physicists have said during the 1930s:
“The Gods have set a limit for human drive to knowledge by the quantum mechanical many-body
problem!”.

A promising way towards quantum machines is trying to understand the properties of quantum
matter to the point that one can make substantial steps forward in building hardware for quantum
computers. For this however we rely on classical computation, which calls for heavy approximations
and has many limitations at the moment. My thesis tries to contribute to the development of these
methods, especially the dynamical mean field theory and quantum Monte Carlo.

The main physical subject of the thesis are emergent phenomena. Systems with many mu-
tually interacting particles show fundamentally different behavior compared to the independent
combination of the properties of the single particles. What emerges is not exactly definable, since
the zoo of phenomena is species-rich and diverse. It is illuminating to collect some examples.

• The “classical” example is magnetism. Elementary magnets do not favor a specific orienta-
tion, but coupled together, they can give rise to spontaneous symmetry breaking and phase
transitions to ferro-, anti-ferro, ferri-, anti-ferri and many other states. There exist analyti-
cally solvable models like the Ising model, or mathematically perfectly treatable models like
the Heisenberg model. Many of these cases represent very well understood phenomena.
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• Chrome-nickel-steel has a tensile strength greater than the sum of the tensile strengths of
each of all its alloyed components together (Buckminster Fuller, 1969).

• Two humans (even though emergent phenomena on their own) have a conversation. Their
interaction leads them to topics and conclusions, which they on their own never would be
able to reach. A social emergent phenomenon.

• Furthermore there is right now a major change in the structure of society: we do not trust
and listen to classical media any more, like TV or radio; instead we listen to each other
via social media. This makes society a interacting many-body problem, that tends to show
unpredictable emergent behavior.

Another feature of emergent phenomena is, that often two things compete against each other.
The main model of this thesis is the Hubbard model and describes interacting electrons moving
on a discrete lattice. Its playground is the competition of kinetic and potential energy. It has
two simple limit. Around the non-interacting limit, the potential energy due to the interaction
is so small, that they barely influence the properties of the freely moving electrons. Around the
atomic limit, the electrons are localized on the sites and move so rarely, that they do not perturb
the atomic properties significantly. In between there is the intermediate-coupling regime, which
usually has a rich phase diagram of different states of matter, of which many are fundamentally
different compared to analytically known or numerically calculable states of matter. Furthermore
they sensitively depend on the external parameters: strength of the electron-electron interaction,
crystal structure, crystal fields and spin-orbit coupling, filling and temperature.

The scope of the thesis is the following. The first part is about algorithmics. In Chapter 2
I introduce the models and numerical methods which are used. In Chapter 3 I discuss the
continuous time quantum Monte Carlo method in hybridization expansion, before in Chapter 4
I show one of its inadequacies that we discovered towards the end of my PhD studies. Chapter
5 introduces the main approximation, the dynamical mean field theory, whereas in Chapter 6 I
discuss symmetry constraints, which dynamical mean-field and quantum Monte Carlo results have
to fulfill. The second part shows selected physical applications. Chapter 7 discusses the effects
of electron-electron interactions on unconventional particles sharing the example of double Dirac
fermions. In Chapter 8 I introduce the Ginzburg-Landau theory for Higgs- and Goldstone-modes,
and show their existence in an excitonic magnet, which is a Bose-Einstein condensate of excitons.
In Chapter 9 we solved a long standing riddle about elemental iron and nickel, and discovered a
novel mechanism of magnetic ordering, which we called band-structure induced correlations.



Chapter 2

From the theory of everything to
models and solutions

In the first part of this chapter I introduce the many-body Schrödinger equation (MBSGL) and
discuss, to what extent statements about phenomena of our everyday world can be made on the
basis of this equation.

The MBSGL can be treated in two distinctly different ways. First there are the ab initio
methods around density functional theory. Second one can construct a model, which is a much
simpler Hamiltonian that (hopefully) contains the essential processes to describe the phenomenons
of interest, quantitatively if possible, or only qualitatively.

The main physical interest of this thesis is correlated emergent physics, i.e. properties of
macroscopic systems which are not already properties of its microscopic constituents. Therefore I
will not discuss DFT or how it connects to many-body methods, but only focus on the models of
interest, the Hubbard model and the Anderson impurity model.

The second part of this chapter gives an overview of the methods used in this thesis to deal with
these models of strong correlations. In order to obtain information about a quantum mechanical
system, we must interact with the system and extract or add a particle to it.

Everything about the particle-in particle-out processes is contained the Green’s functions. I
explain the main framework used in this thesis to calculate Green’s functions for the Hubbard
model, the dynamical mean field theory. It treats the time domain in an exact way and applies a
mean field approximation to the space. To solving the Anderson impurity model is devoted the
much more detailed chapter 2. Finally I discuss the rather technically difficult analytic continuation
of imaginary times Green’s functions.

2.1 From the theory of everything to models

2.1.1 The theory of everything

Let’s start with the microscopic theory of everything, the Hamiltonian of the many-body Schrödinger
equation:

HTOE = −
∑
i

~2

2m∇2
i +

∑
i

vion(ri) +
∑
i<j

e2

|ri − rj |
. (2.1)
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Electrons with charge −e and mass m are located at positions ri in space. They interact with each
other according to Coulomb’s law and move in the potential

vion(r) = −
∑
I

ZIe
2

|RI − r|
(2.2)

of lattice ions with charge +Ze. The interactions between the atomic nuclei are not included, in-
stead their positions are kept fixed at positionsRI (Born-Oppenheimer approximation). According
to non-relativistic quantum mechanics, the many-body wave function is obtained by solving the
Schrödinger equation

i~
∂

∂t
ψ(r1, r2, . . . )〉 = HTOE ψ(r1, r2, . . . )〉 . (2.3)

The expectation value of every static (time-independent) observable A can be computed via 〈A〉 =
〈ψ A ψ〉.

With the solution of Eq. (2.3) it is in principle possible to calculate any desired observable, i.e.
property of the physical system. But even for the smallest systems, a direct calculation of ψ〉 is not
possible. Let’s take a single iron atom with 26 electrons. The wave function has 26 arguments, 3
dimensional each, i.e. 96 scalar arguments in total: ψ(r1, r2, ..., r26)〉. A very rough discretization
of 10 values per dimension would give this function 1096 values, which is approximately equal the
number of atoms in the universe (following Koch (2019)).

This was already foreseen in 1929 by Paul Dirac, that these equations are way too difficult to
be solved exactly for any reasonable system. He asked for approximate practical methods to be
developed, to gain access to the main features of complex quantum systems.

2.1.2 The reductionist hypothesis

The belief, that everything is encoded in underlying microscopic principles, here the many-body
Schrödinger equation, is called the reductionist hypothesis. It is accepted by many scientists
without question, that much of the animate and inanimate matter is controlled by Eq. (2.1):
air, water, rocks, fire, people, the Coronavirus and so forth (Laughlin and Pines, 2000). Some
important things like the existence of the planet Jupiter, nuclear power plants, the sun, and the
curvature of space are not included in this equation, since gravity and inner-nuclear interactions
are missing.

However the reductionist hypothesis does absolutely not imply a “constructionalist” one: The
ability to reduce everything to fundamental laws does not imply the ability to start from those
laws and reconstruct the universe (Anderson, 1972).

For example simple electrical measurements performed on superconducting rings determine
to high accuracy the quantum of magnetic flux hc/2e. Four point conductance measurements on
semiconductors in the quantum Hall regime accurately determine the quantity e2/h. The magnetic
field generated by a superconductor that is mechanically rotated, measures e/mc. These things
are clearly true, yet they cannot be deduced by direct calculation from the theory of everything,
because exact results cannot be predicted by approximate calculations (Laughlin and Pines, 2000).

2.1.3 The Hubbard model

A strategy opposite to applying approximations to the many-body Schrödinger equation is to build
models that capture some physics of interest, and leave out other physics that is considered not to
be important.
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Transition metals and rare earth compounds have partially filled d- and f -orbitals besides also
partially filled bands from s- and p-orbitals. Their behavior is in between that of a band model
and that of an atomic model. For example, spin-waves in ferromagnets or the strong temperature
dependence of the magnetic susceptibility in transition metals are atomic properties. In the same
systems are non-integer magnetic moments (in units of Bohr magnetons), which are typical band
properties. The desired model therefore must find the correct balance between atomic and band
properties, and recover both cases in the appropriate limits. This was achieved by Hubbard (1963)
by introducting the Hubbard model

HHubbard = −
∑
ijσ

tijc
†
iσcjσ + H.c. +

∑
i

Uni↑ni↓, (2.4)

here written down for one orbital. It consists of a lattice with discrete sites i. The operators c†iσ
(ciσ) create (annihilate) an electron on site i with spin σ, the density operators niσ measure the
occupation of the according site and spin. The first term is the kinetic energy, where electrons hop
from site i to j with amplitude −tij . In the standard Hubbard model, there is only next nearest
neighbor hopping, i.e. tij = 0 if i and j are not next nearest neighbors. The energy U that has to
be paid, whenever a site is doubly occupied. The first term alone is the non-interacting limit, which
is diagonal in momentum space, and the second term the atomic limit, which is diagonal in real
space. However with both terms together, the model is currently not believed to be analytically
solvable in general. An exception is the limiting case of a model with next-nearest neighbor
hopping only in one spatial dimension. Then a crucial characteristic of quantum mechanics, the
indistinguishability of particles, is absent. The leftmost electron of spin up can never bypass the
second leftmost of spin up due to Pauli’s principle, and so forth, which means they can be labeled
just like classical particles. This makes an exact solution possible with the Bethe-ansatz (Lieb and
Wu, 1994), and also numerical techniques are much more efficient in one dimension, compared to
higher dimensions.

The Hubbard model (2.4) intrinsically contains many approximations in comparison to the
many-body Schrödinger equation (2.3). The movement of the electrons has been discretized, they
can only be on the sites and not in between sites. The far reaching Coulomb potential has been
replaced by a delta function, i.e. only interactions on the same site are considered; the interaction
energy of electrons further apart is neglected. Also the interplay of conduction orbitals with
lower-lying valence orbitals is neglected in the single-orbital Hubbard model.

This thesis mainly deals with the multi-orbital Hubbard model, where each site has additional
orbital degrees of freedom, or even consists of several atoms; these are much more complicated and
will be discussed in Chapter 5.

2.1.4 The Anderson impurity model

Also very important in solid state physics is the Anderson impurity model (Philip Warren Ander-
son, 1961):

HAIM =
∑
kσ

εkσa
†
kσakσ +

∑
kσ

Vkσ
(
c†σakσ + a†kσcσ

)
+ Un↑n↓. (2.5)

The operators a†kσ (akσ) create (annihilate) electrons in a non-interacting conduction band with
the dispersion εkσ. The operators c†σ (cσ) create (annihilate) electrons with spin σ on the impurity,
and nσ = c†σcσ measures the number of electrons of spin σ on the impurity. Vkσ is the amplitude
of an electron hopping from the impurity in the bath and vice versa, and U the strength of the
electron-electron interaction on the impurity. The AIM is used to describe properties of doping
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atoms in metallic hosts, like the formation of localized magnetic moments and their screening
by conduction electrons, the Kondo effect (Kondo, 1964). It is also used as auxiliary model, as
described in the next section.

For the scope of this thesis, a generalized AIM is necessary, which has multi-orbital structure
and manifold hopping and interaction processes on the impurity. The generalized AIM and its
treatment will be topic of Chapter 3.

2.2 From models to solutions

In this section I discuss, what we mean by saying to solve a model, namely to calculate its Green’s
function. I introduce Green’s functions, derive some of their basic properties and show the main
approximation used in this thesis to calculate them, the dynamical mean field theory. I close by
commenting on the connection between Green’s and spectral functions.

2.2.1 Green’s functions

The Green’s function in many-body physics

Gαβ(r, t; r′, t′) = −i
〈
Ttcα(r, t)c†β(r′, t′)

〉
(2.6)

describes the amplitude of a process, where an electron is created in the system at (r′, t′). It
propagates through the system and interacts with it, before it is removed again at (r, t). The
Greek indices denote an abbreviation of orbital and spin quantum numbers. For zero temperature
the average goes only over the ground state, whereas for finite temperature a complete many-body
basis needs to be considered

〈...〉 =

〈0 ... 0〉 for T = 0
1
ZTr

[
e−βH

]
for T > 0.

(2.7)

Eq. (2.6) is the time-ordered Green’s function, i.e. the order of the times is such that the operator
of lesser time stands on the right side

Ttcα(t)c†β(t′) =

cα(t)c†β(t′) t′ < t

−c†β(t′)cα(t) t < t′,
(2.8)

where a minus sign appears if we are considering fermionic creation and annihilation operators.
When there is translational invariance in space, e.g. no boundaries or defects, G only depends

on the differences of the spacial coordinates; When there is translational invariance in time, e.g.
an equilibrium system and no explicit time dependence of the Hamiltonian, then G only depends
on differences in time (Rohringer, 2013):

Gαβ(r, t; r′, t′)→ Gαβ(r − r′, t− t′) = Gαβ(r, t). (2.9)

Let’s now discuss the time evolution:

Gαβ(r, t) = − i

Z
Tr
[
e−βHTtcα(r, t)c†β(0, 0)

]
= − i

Z
Tr
[
e−βHTteiHtcα(r)e−iHtc†β(0)

]
. (2.10)
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Combining the statistical weight and the time-evolution of the operators in Eq. (2.10) implies a
time-evolution with a complex time argument t̃ = −β + it. This causes complications in calcula-
tions. If one wanted to make an expansion of this object, one needed a two-dimensional expansion
in time and temperature. Sampling this with a Markov chain gives a disastrous sign problem for
two reasons. First, the imaginary time evolution is oscillating and therefore after a certain time one
arrives at a state with same amplitude and opposite phase. Second, in two dimensions a random
walker has many possibilities to make loops, go back to its starting point, but collect up a change
in sign.

In 1955 Takeo Matsubara introduced his (in?)famous technique to fold together the two di-
mensions of time and temperature into one dimension, the imaginary time. This is formally done
by the substitution t→ −iτ , which makes the time-evolutions a real exponential

e(−β+it)H → e(−β+τ)H , (2.11)

yielding the imaginary time Green’s function

Gαβ(r, τ) = −
〈
Tτ cα(r, τ)c†β(0, 0)

〉
. (2.12)

At first sight, this looks like simplifying things a lot, but as one might guess, a simple substitution
cannot resolve problems of dealing with heavy oscillations of the time evolutions over all time scales.
The Matsubara construction shifted the problem to the process of unfolding time and temperature
after a calculation. This is necessary, since the physical response functions live on the real time
or frequency axis. Unfolding is easy for analytic expressions (just apply the inverse substitution
at any time), it is stable for deterministic techniques like exact diagonalization because of very
precise data, but it is highly unstable and an unsolved problem for stochastic methods with slowly
converging error bars (see more in section 2.2.4).

There are restrictions for the imaginary time τ . Assume τ > 0, then

Tr
[
e−βHTτeHτ cαe−Hτ c†β

]
= 1
Z

∑
n

e−(β−τ)En ... (2.13)

Since we have fermions, we can assume the system’s energy spectrum to be bound from below and
set its ground state energy to zero. For this object to be convergent for any infinite system, the
exponent must stay negative, which means τ < β. Equivalently must for τ < 0 the object

Tr
[
e−βHTτeHτ cαe−Hτ c†β

]
= −Tr

[
e−βHc†βe

Hτ cαe−Hτ
]

(2.14)

= − 1
Z

∑
n

e−τEne−βEn ... (2.15)

= − 1
Z

∑
n

e−(β+τ)En ... (2.16)

be convergent, therefore τ > −β. Overall the imaginary time Green’s function is only defined in
the interval

− β < τ < β. (2.17)
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From the cyclicity of the trace follows (assume τ < 0 here)

Gαβ(τ) = 1
Z
Tr
[
e−βHc†β(0)cα(τ)

]
(2.18)

= 1
Z
Tr
[
e−βHc†β(0)eHτ cα(0)e−Hτ

]
(2.19)

= 1
Z
Tr
[
eHτ cα(0)e−Hτe−βHc†β(0)

]
(2.20)

= 1
Z
Tr
[
e−βHeβHeHτ cα(0)e−Hτe−βHc†β(0)

]
(2.21)

= 1
Z
Tr
[
e−βHcα(τ + β)c†β(0)

]
(2.22)

= −Gαβ(τ + β). (2.23)

This together with Eq. (2.17) allows one to study G(τ) in half of the interval. When having
imaginary time objects, I will usually look at [0, β].

The diagonal Green’s function has a discontinuity at τ = 0 of size one

Gαα(τ = 0−) =
〈
cα(0)c†α(0−)

〉
= n (2.24)

Gαα(τ = 0+) = −
〈
c†α(0+)cα(0)

〉
= −1 + n. (2.25)

The values close to but smaller than β are

Gαα(τ = β−) = −Gαα(τ = 0−) (2.26)

=
〈
cα(0)c†α(0−)

〉
= n. (2.27)

From these follow the relation

Gαβ(0+) +Gαβ(β−) = δαβ. (2.28)

Since G(τ) is defined on a finite interval only, a well-behaved Fourier transform can be obtained
by periodization over the full τ axis. Hence:

G(r, iωn) = 1
2

∫ β

−β
dτ G(r, τ)eiωnτ (2.29)

G(r, τ) = 1
β

∑
n

G(r, iωn)e−iωnτ . (2.30)

Here the integration goes over the full interval [−β, β] and we still have the unrestricted frequencies
ωn = 2π

2βn. Because of the analytic property G(τ) = −G(τ + β) the full information is already
contained in half the interval, therefore the integration can be rewritten such that it goes over
[0, β] only, together with a restriction for the frequencies:

G(r, iωn) = 1
2

∫ β

−β
dτ G(r, τ)eiωnτ (2.31)

= 1
2

∫ 0

−β
dτ G(r, τ)eiωnτ + 1

2

∫ β

0
dτ G(r, τ)eiωnτ (2.32)

= −1
2

∫ 0

−β
dτ G(r, τ + β)eiωnτ + 1

2

∫ β

0
dτ G(r, τ)eiωnτ (2.33)

= −1
2

∫ β

0
dτ ′ G(r, τ ′)eiωnτ ′eiωnβ + 1

2

∫ β

0
dτ G(r, τ)eiωnτ (2.34)

= 1
2

∫ β

0
dτ G(r, τ)(1− eiωnβ)eiωnτ . (2.35)
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In Eq. (2.32) the antiperiodic property was used. The fact that we have fermions manifests itself
in the minus sign. In Eq. (2.33) a substitution t′ = t + β was done for the first integral. The
bracket (1 − eiπ/βnβ) = 1 − (−1)n is 0 for n even, and 2 for n odd. Therefore the frequencies
can be re-defined ωn = (2n+ 1)π/β to match the standard definition for the fermionic Matsubara
frequencies.

In summary, the Fourier transforms are as follows:

Gαβ(r, iωn) =
∫ β

0
dτ Gαβ(r, τ)eiωnτ (2.36)

Gαβ(r, τ) = 1
β

∑
n

Gαβ(r, iωn)e−iωnτ (2.37)

Gαβ(r, τ) = 1
(2π)d

∫
ddk Gαβ(k, τ)eikr (2.38)

Gαβ(k, τ) =
∫

ddr Gαβ(r, τ)e−ikr (2.39)

For an extensive discussion of the many other types of Green’s functions on the real axis, see the
thesis of Ghanem (2017).

2.2.2 Fermi liquid theory

Often the strength of the Hubbard interaction U in metals is not small but rather of the order of
the bandwidth W . Despite of that, the properties of such systems, as long as they stay metallic,
can qualitatively be understood in terms of non-interacting calculations. Nevertheless numerical
values of observables can become very different compared to the non-interacting ones. The non-
interacting electrons become renormalized quasiparticles. Also the structure of the electronic
excitations can be mapped onto the non-interacting ones. Since the quasiparticles are able to
move, a Fermi surface exists and one can expand the self-energy around k→ kF and iωn → 0:

Σ(k, iωn) ≈ ReΣ(kF, iωn → 0)︸ ︷︷ ︸
µ′

+ ∂ReΣ(k, iωn → 0)
∂k

∣∣∣∣
k→kF

(k − kF)︸ ︷︷ ︸
correction to εk

(2.40)

+ iImΣ(kF)︸ ︷︷ ︸
−iγ

+ i
∂

∂iωn
Σ(kF, iωn)

∣∣∣∣
iωn→0

iωn︸ ︷︷ ︸
−iαωn

. (2.41)

The first term is a rigid shift µ′ of the dispersion and is absorbed in the chemical potential. The
second term is a correction to εk linear in the wave vector k. The third term −iγ broadens the
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levels and makes the lifetime of excitations finite. The effects caused by the fourth term will be
clear in the following, after writing down the Fermi-liquid Green’s function:

G(k, iωn) = 1
iωn − εk − Σ(k, iωn) (2.42)

≈ 1
iωn(1 + α)−

(
∂εk
∂k + ∂Σ

∂k

)
k→kF

(k − kF) + iγ
(2.43)

=
1

1+α

iωn − 1
1+α

(
∂εk
∂k + ∂Σ

∂k

)
k→kF

(k − kF) + i 1
1+αγ

(2.44)

= Z

iωn − Z
(
∂εk
∂k + ∂Σ

∂k

)
k→kF

(k − kF) + iZγ
(2.45)

= Z

iωn − ε̃k + iZγ
(2.46)

In Eq. (2.45) the quasiparticle renormalization factor Z = 1
1+α < 1 has been introduced, and in

Eq. (2.43) a renormalized and linearized dispersion ε̃k.
In summary, the excitations of a non-interacting system around the Fermi level are particles

of dispersion vF(k − kF) and lifetime τ = ∞. The low energy excitations of the Fermi liquid
are quasi-particles with a dispersion of ε̃k = Z

(
∂εk
∂k + ∂Σ

∂k

)
k→kF

(k − kF) and a finite life-time of
τ = ~

Zγ <∞. In a non-interacting system the particles have the mass me of the electrons, whereas
in the Fermi liquid they have an effective mass of

m∗

me
= Z−1

[
1 + me

kF

∂Σ
∂k

]
≥ 1. (2.47)

Any Matsubara Green’s function must have a definite high-frequency behavior of limωn→∞ G(iωn) =
1/iωn (Abrikosov et al., 2012). Therefore the Fermi-liquid expansion around the Fermi-level cannot
be a full Green’s function, since it has a high-frequency of Z/iωn. Here we have only the coherent
part of the Green’s function with poles close to EF. The incoherent part Gincoh with poles far
away from εF and kF is missing, which is of course not contained in the Fermi-liquid expansion.
Therefore:

G(k, iωn) = Z

iωn − ε̃k + iZγ
+ (1− Z)Gincoh(k, iωn) (2.48)

The incoherent part describes electrons which are localized in atomic orbitals or Hubbard bands.

2.2.3 Dynamical mean field theory

The models of the last two sections, the Hubbard and Anderson impurity model, are connected
via the dynamical mean field theory (DMFT). It was first observed that in infinite dimensions
the self-energy of the Hubbard model is momentum-independent, thus all self-energy Feynman
diagrams are local (Metzner and Vollhardt, 1989), before Georges and Kotliar (1992) introduced
a formulation to calculate the momentum-independent self-energy with an auxiliary AIM.

The self-consistency condition demands that the local Green’s function of the Hubbard model
(k-summed over the Brillouin zone)

Gloc(iωn) = 1
VBZ

∫
dk GHubbard, DMFT(k, iωn) (2.49)

equals the Green’s function of the AIM

Gloc(iωn) != GAIM(iωn) (2.50)
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The self-consistency can be performed in the following way: We start from an arbitrary Weiss field
G(iωn), which is the non-interacting Green’s function of the (non-interacting) bath of the AIM.
Note that this is not the same as the non-interacting Green’s function of the Hubbard model. An
impurity solver calculates the full Green’s function GAIM(iωn) of the impurity. The self-energy

ΣAIM(iωn) = GAIM(iωn)−1 − G(iωn)−1 (2.51)

of the AIM is calculated with Dyson’s equation. We set this self-energy to be the self-energy of
every site of the Hubbard model and calculate the Green’s function of the Hubbard model

GHubbard, DMFT(k, iωn) = 1
iωn + µ− εk + ΣAIM(iωn) . (2.52)

Out of GHubbard, DMFT(k, iωn) the new Gloc(iωn) is generated via Eq. (2.49). An inverse Dyson
equation determines the new properties of the bath of the AIM

GNEW(iωn) =
[
G−1

loc(iωn) + ΣAIM(iωn)
]−1

, (2.53)

which closes the loop. The procedure is repeated until the self-consistency condition Eq. (2.50) is
fulfilled.

For lattices in infinite coordination, DMFT gives the exact solution of the Hubbard model,
since the self-energy is indeed k-independent in this case. For systems in finite dimensions, DMFT
is an approximation that assumes the self-energy of the Hubbard model to be the local DMFT
one:

Σ(k, iωn) ≈ ΣAIM(iωn). (2.54)

This is a reasonable approximation for three dimensions (Metzner and Vollhardt, 1989), but for
two dimensions it gives large quantitative differences of 30%-40% (Rohringer et al., 2011) or even
qualitatively wrong results. A DMFT approximation can only probe those phenomena of the
Hubbard model, which are also present in the limit of infinite dimensions. Therefore when the
physical phenomena are intrinsically described by non-local self-energies, like quantum-criticality
or high-temperature superconductivity, they are absent in the DMFT approximation.

The strength of DMFT is to describe physics that is dominated by local processes within the
atom in the solid. DMFT was the first theory capable of describing the metal to insulator Mott
transition quantitatively, a localization of electrons on the lattice sites due to electron-electron
interaction without the necessity of long-range order. It occurs at integer fillings (an integer
number of electrons per site), when the interaction energy U becomes so large, that it is able
to compete with the hopping amplitude t, or bandwidth energy scale W , respectively. Then it
suppresses the hopping processes and gives an insulator.

DMFT is also exact in the non-interacting limit and atomic limit in any dimension. It is capable
of describing the formation of localized magnetic moments due to electron electron interactions,
as well as their screening by itinerant electrons, the Kondo-effect.

2.2.4 Analytic continuation

I have briefly mentioned above, that for the calculations we fold together temperature and time.
This section discusses some aspects of the turmoil unfolding them again. The underlying mathe-
matics, the Fredholm equation, also appears in many other occasions, whenever the dimension of a
measured quantity is lower than the dimension of the desired observable. For example, computed
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tomography scans make many two-dimensional, projected images of a human body, and then com-
puters calculate a three-dimensional reconstruction. Also noisy pictures can be deblurred, if the
distribution function of the noise in known.

But let us now go back to Green’s functions. The relation between the spectral function and
the Matsubara Green’s function is given by a Fredholm equation of the first kind (Ghanem, 2017)

G(m) =
∫ ∞
−∞

dω K(m,ω)A(ω) (2.55)

with a kernel K. For imaginary frequencies it is

K(iωn, ω) = − 1
iωn − ω

, (2.56)

and for imaginary time
K(τ, ω) = − exp(−τω)

exp(−βω) + 1 . (2.57)

Transforming a spectral function from the real axis to the imaginary axis with these equations is
easy and numerically stable, but vice versa it turns out to be very complicated. Equation (2.57)
shows, that the features of A(ω) at large frequencies ω are damped exponentially, and become
quickly hidden within the error bars of a stochastic method. This means, the inverse of the kernel
amplifies the noise a lot, and results generated by numerical analytic continuation can only be
trusted for low energy features. Appendix A demonstrates this with some examples.

If the data on the imaginary axis has noise or approximations applied, Eq. (2.55) does generally
not have a solution at all. One ends up with the problem to find the most likely spectral function
A(ω), that is compatible with the data and its precision. Generally, the deviation of the transform
of a spectral function to the measured Green’s function will be minimized, which means among
the approximate solutions we look for the most likely one. In order to compare the two Green’s
functions we need a norm, and among the infinite possible choices come infinite many possible
solutions A(ω). Everything boils down to find the compromise between smoothing the noise in
A(ω) and not to oversmooth physical features.

The first attempts were made by Tikhonov (1943) to renormalize the exponentially damped
eigenvalues of the inverse kernel. The Maxent procedure includes a standard model of the spectrum
as prior information. Ghanem and Koch (2020) invented the average spectrum method, which
samples over the free parameters of the Maxent procedure. Mishchenko (2012) sampled the space
of possible (i.e. normalized and positive) spectral functions with a Markov chain; however this
method still depends on the choice of a norm.

When doing a calculation on the imaginary axis, there are only two quantities, which can really
be trusted: the density matrix and the value A(ω = 0), which can be related to G(τ = β

2 ). Let me
derive the latter relation. We examine the kernel

K(τ = β

2 , ω) = −
exp(−β

2ω)
exp(−βω) + 1 (2.58)

= − 1
exp(−β

2ω) + exp(β2ω)
(2.59)

at this position. This is an inverse hyperbolic cosine. It gets very localized in frequency for low
temperatures (see Fig. 2.1). The area under the curve is

A =
∫

dω K(τ = β

2 , ω) = π

β
(2.60)
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and the variance
σ2 =

∫
dω ω2K(τ = β

2 , ω) = π3

β3 . (2.61)

A measure for the width is

σ =

√
σ2

A
= π

β
, (2.62)

i.e. proportional to the temperature T . This motivates the rule of thumb

G(τ = β

2 ) = π

β
A(ω = 0) (2.63)

in case the spectral function can be considered a constant within the integration region.
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Figure 2.1: The kernel plotted for β = 5, β = 25 and β = 100.



24 Chapter 2. From the TOE to models and solutions



Chapter 3

Continuous-time quantum Monte
Carlo in hybridization expansion

Despite decades of intense research, a generic solution to the quantum many-body problem is still
not found yet. The use of diagrammatic Monte Carlo techniques, however, has led to significant
progress for special cases of interest, such as for the Anderson impurity model (AIM) and its
generalizations to correlated molecules and retarded interactions.

Diagrammatic Monte Carlo techniques proceed in a three-step fashion: firstly, the Hamiltonian
or the action is split into two parts, where one part is solved exactly. Secondly, the rest is treated
by expanding an appropriate generating function (such as the partition function or free energy)
with respect to it. Thirdly and finally, the resulting probability distribution is sampled using
Markov chain Monte Carlo.

The hybridization expansion continuous time Quantum Monte Carlo (CTHYB) treats the
impurity exactly, and expands in the so called hybridization function, which contains the effects
of hybridization events and non-interacting bath terms combined. The impurity is a many-body
problem itself and has to be solved with an exact diagonalization (ED) technique for each Monte
Carlo move. This has on the one hand the disadvantage, that the computational effort grows
exponentially with the size of the impurity, i.e. only small systems like correlated d- and f -shells
are within reach. On the other hand it can deal with complicated one- and two-particle interaction
terms on the impurity, which give no or only a moderate sign problem, since they are kept together
within the ED and not sampled individually.

Since its invention, CTHYB has been one of the most powerful solvers for general impurities.
At the moment it looks, that this will not stay that way, because non-probabilistic methods are
moving forward fast, while CTHYB suffers from its unsolved deficiencies: a severe sign problem
when the Hamiltonian has considerable complex terms, its exponential scaling in the number
of impurity flavours, and finally, its operation on the imaginary time axis, which makes it very
cumbersome if possible at all, to transfer the data to the real axis where the physics lives.

It has been written a lot about CTHYB, and the most powerful optimizations were developed
the years following its invention. This makes it very difficult to write something meaningful without
duplicating other works. Since a treatise of this topic can in any case only cover it partially, so I
focus on aspects which have not been documented yet.

I decided to start with a complete derivation of the expansion formula, which I for a long time
found confusing and complicated. I will discuss its properties and review the known optimizations.
Then I show the superstate sampling algorithm, which discusses the optimal choice of the size of
a Monte Carlo configuration. Next I discuss the so called sliding technique, which tries to cure one
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of the minor deficiencies of CTHYB, namely that the estimators are delta functions in imaginary
time, by smearing them out over a finite time-interval. With current supercomputer technology,
the Hamiltonian and the operators of a full f -shell cannot be stored in memory without truncation;
I propose the mixbasis algorithm, which tries to cure this issue with a time-memory trade-off. Last
I describe and discuss two methods for measurements of density-density correlation functions,
which were invented and implemented in the course of this thesis.

3.1 The hybridization expansion

The hybridization expansion formulas were first given by Werner et al. (2006). Here I want to
provide three complete and different derivations of them, following what Einstein was supposed to
have said: Make things as simple as possible, but not simpler. The main difference of the following
three section is, how the hybridization function ∆(τ) is created.

• Within the operator formalism ∆(τ) emerges from Wick’s theorem applied to the non-
interacting bath operators.

• Using Feynman’s path integral technique, where ∆(τ) is generated by an integral over Gaus-
sian fields. The result has to be symmetrized in the end.

• And by employing a dual transformation, known from the dual fermion techniques, where
∆(τ) comes from evaluating Wick’s theorem for non-interacting dual operators.

The starting point is the Hamiltonian

ĤAIM = Ĥbath + Ĥ†hyb + Ĥhyb + Ĥloc (3.1)

=
∑
pµ

εpµâ
†
pµâpµ +

∑
pµν

(
V ∗pµν ĉ

†
ν âpµ + Vpµν â

†
pµĉν

)
+ Ĥloc[ĉ†, ĉ] (3.2)

of the multi-orbital AIM. The operators ĉ†ν (ĉν) create (annihilate) electrons on the impurity with
flavour ν. The operators â†pµ (âpµ) create (annihilate) electrons on the p-th bath site, which
has an energy of εpµ and belongs to impurity flavour µ. In the second term of Eq. (3.2), each
impurity flavour ν couples to its own non-interacting bath sites with amplitudes Vpνν (diagonal
hybridization), but may also couple to the bath sites of other flavours µ via Vpµν with µ 6= ν

(off-diagonal hybridization). The third term Ĥloc[ĉ†, ĉ] = −tµν ĉ†µĉν + Uκλµν ĉ
†
κĉ
†
λĉµĉν contains the

one- and two-particle interaction on the impurity; its actual form does not matter yet for the
derivations, therefore I will not write it out until later in Chapter 5, when I discuss its terms
explicitly.

3.1.1 Derivation with operator formalism

We take the partition function for Eq. (3.2), expand it within the operator formalism in a brute
force way, and sort the terms into the known CTHYB formula. With Eq. (B.36) from appendix B

Z = Tr
{
e−βĤ0Tτexp

[
−
∫ β

0
dτ V̂ (τ)

]}
, (3.3)

and setting

Ĥ0 = Ĥbath + Ĥloc (3.4)
V̂ = Ĥ†hyb + Ĥhyb, (3.5)
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after expanding one gets

Z =
∞∑
n=0

1
n!

∫ β

0
dτ1

∫ β

0
dτ2· · ·

∫ β

0
dτnTrac

[
e−βĤ0Tτ (−V̂ (τn)) . . . (−V̂ (τ2))(−V̂ (τ1))

]
. (3.6)

Trac means, that the trace goes over a complete basis set of both the bath and the impurity.
Furthermore in the absence of superconductivity, any term with not the same number of creation
and annihilation operators of the same kind gives zero expectation value; therefore only terms with
even expansion order n survive and the minus signs of the V̂ s disappear. After multiplying out
the V̂ s, only terms with n/2 of the Ĥhyb and n/2 of the Ĥ†hyb survive. Omitting all odd expansion
orders, writing all even times primed and substituting k = 2n gives

Z =
∞∑
k=0

1
k!

∫ β

0
dτ1

∫ β

0
dτ ′1· · ·

∫ β

0
dτk

∫ β

0
dτ ′k (3.7)

× Trac
[
e−βĤ0Tτ Ĥhyb(τk)Ĥ†hyb(τ ′k) . . . Ĥhyb(τ ′1)Ĥ†hyb(τ1)

]
=
∞∑
k=0

1
k!

∫ β

0
dτ1

∫ β

0
dτ ′1· · ·

∫ β

0
dτk

∫ β

0
dτ ′k (3.8)

×
∑

p1µ1ν1

∑
p′1µ
′
1ν
′
1

· · ·
∑

pkµkνk

∑
p′
k
µ′
k
ν′
k

Vp1µ1ν1V
∗
p′1µ
′
1ν
′
1
. . . VpkµkνkV

∗
p′
k
µ′
k
ν′
k

× Trac
[
e−βĤ0Tτ â

†
pkµk

(τk)ĉνk(τk)ĉ†ν′
k
(τ ′k)âp′kµ′k(τ ′k) . . . â†p1µ1(τ1)ĉν1(τ1)ĉ†ν′1(τ ′1)âp′1µ′1(τ ′1)

]
.

There is a special property here, namely that the operators always appear in connected pairs of one
impurity and one bath operator with the same time argument. Thus time-ordering never generates
minus signs. Since Ĥ0 does not couple the impurity with the bath states, one can factorize the
trace into two traces

Z =
∞∑
k=0

1
k!

∫ β

0
dτ1

∫ β

0
dτ ′1· · ·

∫ β

0
dτk

∫ β

0
dτ ′k (3.9)

×
∑

p1µ1ν1

∑
p′1µ
′
1ν
′
1

· · ·
∑

pkµkνk

∑
p′
k
µ′
k
ν′
k

Vp1µ1ν1V
∗
p′1µ
′
1ν
′
1
. . . VpkµkνkV

∗
p′
k
µ′
k
ν′
k

(3.10)

× Trc
[
e−βĤlocTτ ĉνk(τk)ĉ†ν′

k
(τ ′k) . . . ĉν1(τ1)ĉ†ν′1(τ ′1)

]
(3.11)

× Tra
[
e−βĤbathTτ â

†
pkµk

(τk)âp′
k
µ′
k
(τ ′k) . . . â†p1µ1(τ1)âp′1µ′1(τ ′1)

]
, (3.12)

where the first trace Trc now only goes over the impurity states, and the second trace Tra only
over the non-interacting bath states. Note that separating the bath and impurity operators does
not give minus signs, since in the ordering of Eq. (3.8) the impurity operators appear in pairs,
which commute with the bath operators.1

1Fermionic operators follow anticommutation rules. However if the two systems under consideration A and B are
completely decoupled, like the impurity and the bath in Eq. (3.8), a unitary Klein transform can transform B to C,
where the operators of A and C commute instead of anticommute.
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We want to use Wick’s theorem to calculate the bath trace. For this purpose the time-ordered
expectation value of one bath creator and annihilator is needed:

∆νν′(τ − τ ′) =
∑
pp′µµ′

VpµνV
∗
p′µ′ν′Tra

[
e−βĤbathTτ â

†
pµ(τ)âp′µ′(τ ′)

]
(3.13)

=

−
∑
pµ VpµνV

∗
pµν′Tra

[
e−βĤbath â†pµ(τ)âpµ(τ ′)

]
, τ ′ < τ

−
∑
pµ VpµνV

∗
pµν′Tra

[
e−βĤbath âpµ(τ ′)â†pµ(τ)

]
, τ < τ ′

(3.14)

=

∆H
νν′(τ − τ ′), τ ′ < τ

∆P
νν′(τ ′ − τ), τ < τ ′.

(3.15)

In Eq. (3.14) I have already reduced the sums over the bath indices pµp′µ′ → pµ from two to one,
since the bath is diagonal, both bath operators must act on the same bath site. It is also possible
in CTHYB to have off-diagonal baths, with electrons hopping among the bath sites, but for DMFT
and the applications in this thesis, this does not occur, therefore I assume the bath to be always
diagonal in the following.

Now let us calculate the propagators 〈ââ†〉 and 〈â†â〉 separately, starting with the bath-hole
propagator:

∆H
νν′(τ − τ ′)

τ ′<τ=
∑
pµ

VpµνV
∗
pµν′Tra

[
e−βĤbath â†pµ(τ)âpµ(τ ′)

]
(3.16)

=
∑
pµ

VpµνV
∗
pµν′

〈
â†pµâpµ

〉
eεpµ(τ−τ ′) (3.17)

=
∑
pµ

VpµνV
∗
pµν′

1
eβεpµ + 1e

εpµ(τ−τ ′). (3.18)

This corresponds to a hole created at τ ′ which propagates through the bath with a time-evolution
of eεpµ(τ−τ ′).2 The hole is annihilated at time τ . Separating out all time-evolutions leaves behind
a expectation value

〈
â†â

〉
, which is the Fermi distribution function.3

The same way the particle propagator is calculated, which creates a particle at τ ′ in the bath
and annihilates it at τ :

∆P
νν′(τ − τ ′)

τ ′<τ= −
∑
p

VpµνVpµν′Tra
[
e−βĤbath âpµ(τ)â†pµ(τ ′)

]
(3.19)

= −
∑
p

VpµνVpµν′
〈
âpµâ

†
pµ

〉
e−εpµ(τ−τ ′) (3.20)

= −
∑
p

VpµνVpµν′
eβεpµ

eβεpµ + 1e
−εpµ(τ−τ ′). (3.21)

The expectation value
〈
ââ†

〉
is not the Fermi function, but one minus the Fermi function.4 Let

me stress, that in both expressions time ordering is fulfilled.
The relation between hole and particle propagator is

∆P
νν′(τ) = −∆H

νν′(β − τ). (3.22)

2The time-evolution with regard to a non-interacting Hamiltonian Ĥbath =
∑

pµ
εpµâ

†
pµâpµ can be given explicitly:

âpµ(τ) = eĤbathτ âpµe−Ĥbathτ = e−εpµτ âpµ and â†pµ(τ) = eĤbathτ â†pµe−Ĥbathτ = eεpτ â†pµ, respectively.
3〈ââ†〉 = 〈n̂〉 = 1/(exp[βε] + 1)
4〈â†â〉 = 1− 〈n̂〉 = exp[βε]/(exp[βε] + 1)
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Therefore the full object is

∆νν′(τ − τ ′) =

−∆H
νν′(τ − τ ′), τ ′ < τ

−∆H
νν′(β − (τ − τ ′)), τ < τ ′

. (3.23)

The antiperiodic property of Green’s functions due to cyclicity of the trace appeared here through
a particle-hole transformation of ∆P

νν′ . Now everything is prepared to evaluate the bath trace to
a determinant using Wick’s theorem:

=
∑

p1µ1ν1

∑
p′1µ
′
1ν
′
1

· · ·
∑

pkµkνk

∑
p′
k
µ′
k
ν′
k

Vp1µ1ν1V
∗
p′1µ
′
1ν
′
1
. . . VpkµkνkV

∗
p′
k
µ′
k
ν′
k

(3.24)

× Tra
[
e−βĤbathTτ â

†
pkµk

(τk)âp′
k
µ′
k
(τ ′k) . . . â†p1µ1(τ1)âp′1µ′1(τ ′1)

]
(3.25)

=
∑
ν1ν′1

· · ·
∑
νkν
′
k

(3.26)

×
∑

permutations π
of {1,...,k}

sign(π)
∑
p1µ1

Vp1µ1ν1V
∗
p1µ′π(1)ν

′
π(1)

〈
Tτ â

†
p1µ1(τ1)âp1µ′π(1)

(τ ′π(1))
〉
. . . (3.27)

∑
pkµk

VpkµkνkV
∗
pkµ
′
π(k)ν

′
π(k)

〈
Tτ â

†
pkµk

(τk)âpkµ′π(k)
(τ ′π(k))

〉

=
∑
ν1ν′1

· · ·
∑
νkν
′
k

∑
permutations π

of {1,...,k}

sign(π)
k∏
i=1

∆νiν′π(i)
(τi − τπ(i)) (3.28)

=
∑
ν1ν′1

· · ·
∑
νkν
′
k

det ∆ (3.29)

Here π is a element of the permutation group P. sign(π) = +1, if the number of permutations to
restore the original order {1, . . . , N} is even, sign(π) = −1, if the number is odd. In Eq. (3.27)
all possible contractions according to Wick’s theorem were made by keeping the creator’s times
and flavours fixed, and assigning the properties to the annihilators according to the permutation
group. In Eq. (3.27) was also already used, that the bath propagator is diagonal in bath sites pi.
The two-operator expectation values evaluate to the hybridization function Eq. (3.28), and with
the signs of the permutation, everything can be written as a determinant.

The final result is

Z =
∑
k

1
k!
∑
ν1ν′1

· · ·
∑
νkν
′
k

∫ β

0
dτ1

∫ β

0
dτ ′1· · ·

∫ β

0
dτk

∫ β

0
dτ ′k (3.30)

× Trc
[
e−βĤlocTτ ĉνk(τk)ĉ†ν′

k
(τ ′k) . . . ĉν1(τ1)ĉ†ν′1(τ ′1)

]
det ∆. (3.31)

Before discussing its properties, let me show the alternative ways to arrive at this formula.

3.1.2 Effective propagator formulation

The bath electrons are non-interacting, thus they can be integrated out analytically within Feyn-
man’s path integral formalism. This leaves behind an effective, retarded interaction for the elec-
trons on the impurity. The topic of this section is to derive that action. Let’s again start with the
Hamiltonian

Ĥ = Ĥbath + Ĥ†hyb + Ĥhyb + Ĥloc (3.32)

=
∑
pµ

εpµâ
†
pµâpµ +

∑
pµν

(
V ∗pµν ĉ

†
ν âpµ + Vpµν â

†
pµĉν

)
+ Ĥloc. (3.33)
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According to Eqs. (C.134) and (C.135) in appendix C the partition function is written as the path
integral

Z =
∫
Dc̄Dc

∫
DāDa exp(−S[c̄, c, ā,a]) (3.34)

with an action

S[c̄, c, ā,a] =
∫ β

0
dτ

∑
ν

c̄ν(τ)[∂τ − µ]cν(τ) (3.35a)

+
∫ β

0
dτ Ĥloc(τ) (3.35b)

+
∫ β

0
dτ

∑
pµν

(
V ∗pµν c̄ν(τ)apµ(τ) + Vpµν āpµ(τ)cν(τ)

)
(3.35c)

+
∫ β

0
dτ

∑
pµ

āpµ(τ)[∂τ − εpµ]apµ(τ). (3.35d)

The translation of second quantized operators into Grassmann number is done via ĉ† → c̄, ĉ →
c, and bath operators equivalently. A Fourier transform to Matsubara frequencies gives (see
Eq. (C.148) in the appendix)

S[c̄, c, ā,a] =
∑
n

∑
ν

c̄ν(iωn)[−iωn − µ]cν(iωn) (3.36)

+
∑
n

∑
pµν

(
V ∗pµν c̄ν(iωn)apµ(iωn) + Vpµν āpµ(iωn)cν(iωn)

)
(3.37)

+
∑
n

∑
pµ

āpµ(iωn)[−iωn − εpµ]apµ(iωn) (3.38)

+
∑
n

Hloc(iωn). (3.39)

Now integrate out the bath fermions using Eqs. (C.47) and (C.63) of appendix C, which gives5

Z =
∫
Dc̄Dc exp[Seff[c̄, c]] · det(−iωn + εpµ) (3.40)

with the effective action

Seff[c̄, c] =
∑
n

∑
ν

c̄ν(iωn)[−iωn − µ]cν(iωn) (3.41)

+
∑
n

Hloc(iωn) (3.42)

+
∑
n

∑
pµνν′

V ∗pµν c̄ν(iωn)[−iωn + εpµ]−1Vpµν′cν′(iωn) (3.43)

5The integral is ZG(M ,η, η̄) =
∫
dθ1dθ̄1 . . .dθndθ̄N exp

(∑N

ij=1 θ̄iMijθj +
∑

i

(
η̄iθi + θ̄iηi

))
= detM exp

(
−
∑

ij
η̄i∆ijηj

)
, with

θ̄i = āp,
θj = ap = θi,
ηi = Vpµνcν ,
η̄i = V ∗pµν c̄ν , and
Mij = (−iωn − εpµ)δpp′ .
The inversion of the matrix ∆ij =

(
M−1)

ij
is done in the combined space of spin and bath-sites. Matsubara space

is not affected by it.
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The determinant in Eq. (3.40) det(−iωn + εpµ) = ∏
pµ diag[−iωn + εpµ] goes over the bath indices

pµ and depends on the bath only, thus it will cancel out of all expectation values and can be
omitted. A back-transform to imaginary time of the retarded object gives the explicit form in
imaginary time

Seff[c̄, c] =
∫ β

0
dτ

∑
ν

c̄ν(τ)[∂τ − µ]cν(τ) (3.44)

+
∫ β

0
dτ Hloc(τ) (3.45)

+
∫ β

0
dτ
∫ β

0
dτ ′

∑
pµνν′

c̄ν(τ)∆νν′(τ − τ ′)cν′(τ ′), (3.46)

since the formulation with the partial derivative ∂τ is only formal. The hybridization function

∆νν′(τ − τ ′) =
∑
pµ

V ∗pµνVpµν′

eβεpµ + 1 eεpµ(τ−τ ′) (3.47)

is the retardation effect that an electron feels, which jumps in the bath at imaginary time τ ′ and
comes back at imaginary time τ .

The final result of the action in effective formulation is

Z =
∫
Dc̄Dc exp(−Seff[c̄, c]) (3.48)

with an effective action

Seff[c̄, c] = Sat[c̄, c] +
∫ β

0
dτ
∫ β

0
dτ ′

∑
νν′

c̄ν(τ)∆νν′(τ − τ ′)cν′(τ ′), (3.49)

where the atomic action was introduced, which consists of Eqs. (3.44) and (3.45). We can now
in principle continue in two different ways. Firstly, to expand in the hybridization term and
then symmetrize the product of hybridization functions into the determinant. Secondly, we can
perform another Hubbard-Stratonovich transformation to the retarded term (a dual transform),
which re-introduces non-interacting operators, whose propagators will be the inverse hybridization
function. Expanding with respect to the products of one impurity and one dual operator, and
applying Wick’s theorem to the latter, will also give the determinant.

3.1.3 Expansion with respect to ∆

We now take the effective action Eq. (3.49) and expand with respect to c̄∆c:

Z =
∫
Dc̄Dc exp

[
Sat[c̄, c] +

∫ β

0
dτ
∫ β

0
dτ ′

∑
νν′

c̄ν(τ)∆νν′(τ − τ ′)cν′(τ ′)
]

(3.50)

=
∑
k

1
k!

∑
ν1ν′1...νkν

′
k

∫ β

0
dτ1

∫ β

0
dτ ′1· · ·

∫ β

0
dτk

∫ β

0
dτ ′k exp[Sat[c̄, c]] (3.51)

Tτ c̄νk(τk)cν′
k
(τ ′k) . . . c̄ν1(τ1)cν′1(τ ′1) (3.52)

∆νkν
′
k
(τk − τ ′k) . . .∆ν1ν′1

(τ1 − τ ′1). (3.53)

Note that the integrations of the times all go from [0, β]. Therefore all permutations of the
impurity operators will appear, which the time-ordering operator will put into time ordering. But
the propagations through the bath will stay; no matter which position e.g. the impurity operators
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c̄(τ1) and c(τ ′1) will have in the local trace, they will always be connected by the bath propagator
∆(τ1 − τ ′1). This does not respect indistinguishability of quantum mechanical objects. It is not
a fundamental problem, since in Feynman diagrams the particles and interactions are only of
virtual type, and the result would converge to something that respects the indistinguishability of
the particles. However, this expansion has a severe sign problem, because an exchange of two
neighboring c and c̄ would give a minus sign in the local trace, and have no effect on the sign of
the bath part.

It is therefore necessary to symmetrize the bath part, which gives

1
k!

∫ β

0
dτ1

∫ β

0
dτ ′1· · ·

∫ β

0
dτk

∫ β

0
dτ ′k Tτ c̄νk(τk)cν′

k
(τ ′k) . . . c̄ν1(τ1)cν′1(τ ′1) (3.54)

×∆νkν
′
k
(τk − τ ′k) . . .∆ν1ν′1

(τ1 − τ ′1) (3.55)

= 1
k!

∫ β

0
dτ1

∫ β

0
dτ ′1· · ·

∫ β

0
dτk

∫ β

0
dτ ′k Tτ c̄νk(τk)cν′

k
(τ ′k) . . . c̄ν1(τ1)cν′1(τ ′1) (3.56)

×
∑

permutations π
of {1,...,k}

sign(π)
k∏
i=1

∆νiνπ(i)(τi − τ
′
π(i)) (3.57)

= 1
k!

∫ β

0
dτ1

∫ β

0
dτ ′1· · ·

∫ β

0
dτk

∫ β

0
dτ ′k Tτ c̄νk(τk)cν′

k
(τ ′k) . . . c̄ν1(τ1)cν′1(τ ′1) (3.58)

det∆. (3.59)

Now the exchange of two neighboring impurity operators gives a minus sign in both the impurity
trace and in the determinant, where two rows are exchanged. Therefore no overall minus sign
appears, analogous to Eq. (3.8) above. Switching back from Grassmann numbers to operators
gives

Z =
∑
k

1
k!
∑
ν1ν′1

· · ·
∑
νkν
′
k

∫ β

0
dτ1

∫ β

0
dτ ′1· · ·

∫ β

0
dτk

∫ β

0
dτ ′k (3.60)

× Trc
[
e−βHlocTτ ĉνk(τk)ĉ†ν′

k
(τ ′k) . . . ĉν1(τ1)ĉ†ν′1(τ ′1)

]
det ∆. (3.61)

3.1.4 Expansion with respect to dual operators

Now I want to show a derivation of the hybridization expansion within the path integral formalism,
where bath and impurity operators are treated on an equal footing: both appear as Grassmann
numbers with their corresponding measure. For the impurity operators it is the inverse atomic
Green’s function, and for the dual bath operators it is the inverse hybridization function. This
formulation has the advantage, that at no point combinatoric arguments or a symmetrization of
the result are necessary. It was invented by Lewin Boehnke and Alexey Rubsov, and sketched in
the thesis of Boehnke (2015).

So let us start with the effective action

Seff[c̄, c] = Sat[c̄, c]−
∫ β

0
dτ
∫ β

0
dτ ′

∑
νν′

c̄ν(τ)∆νν′(τ − τ ′)cν′(τ ′) (3.62)
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and apply the Hubbard-Stratonovich transformation a second time to the retarded term, which
gives6

Sdual
[
c̄, c, f̄ ,f

]
= Sat[c̄, c]−

∫ β

0
dτ
∫ β

0
dτ ′

∑
νν′

f̄ν(τ)∆−1
νν′(τ − τ

′)fν′(τ ′) (3.63)

+
∫ β

0
dτ
∑
ν

c̄ν(τ)fν(τ) +
∫ β

0
dτ ′

∑
ν′

f̄ν′(τ ′)cν′(τ ′). (3.64)

Let’ briefly discuss this action. There are the impurity operators, whose integral measure is the
atomic action Sat, which will later govern the time-evolution on the impurity. The new dual
operators f and f̄ have the measure

Sdual
[
f̄ ,f

]
= −

∫ β

0
dτ
∫ β

0
dτ ′

∑
νν′

f̄ν(τ)∆−1
νν′(τ − τ

′)fν′(τ ′). (3.65)

Since they are non-interacting, their time-evolution can be encapsulated in a propagator, the
inverse hybridization function. An expansion with regard to the mixed terms gives

Z =
∫
Dc̄ Dc eSat[c̄,c]

∫
Df̄ Df eSdual[f̄ ,f] (3.66)

· exp
[∫ β

0
dτ
∑
ν

c̄ν(τ)fν(τ) +
∫ β

0
dτ ′

∑
ν′

f̄ν′(τ ′)cν′(τ ′)
]

(3.67)

=
∫
Dc̄ Dc eSat[c̄,c]

∫
Df̄ Df eSdual[f̄ ,f] (3.68)

·
∞∑
k=0

1
k!

∑
ν1ν′1...νkν

′
k

∫
dτ1dτ ′1 . . . dτkdτ ′k (3.69)

· Tτ
[
c̄ν1(τ1)fν1(τ1)f̄ν′1(τ ′1)cν′1(τ ′1) . . . c̄νk(τk)fνk(τk)f̄ν′

k
(τ ′k)cν′k(τ ′k)

]
(3.70)

=
∫
Dc̄ Dc eSat[c̄,c]

∫
Df̄ Df eSdual[f̄ ,f] (3.71)

·
∞∑
k=0

1
k!

∑
ν1ν′1...νkν

′
k

∫
dτ1dτ ′1 . . . dτkdτ ′k (3.72)

· Tτ
[
c̄ν1(τ1)cν′1(τ ′1) . . . c̄νk(τk)cν′

k
(τ ′k)

]
(3.73)

· Tτ
[
fν1(τ1)f̄ν′1(τ ′1) . . . fνk(τk)f̄ν′

k
(τ ′k)

]
. (3.74)

The expectation value of the impurity operators will have to be calculated brute force for each
Monte Carlo configuration, whereas for the dual operators we can apply Wick’s theorem. The
contraction of two dual operators gives7

〈fν(τ)f̄ν′(τ ′)〉 = ∆ν′ν(τ − τ ′). (3.75)
6The integral is ZG(M ,η, η̄) =

∫
dθ1dθ̄1 . . .dθNdθ̄N exp

(∑N

ij=1 θ̄iMijθj +
∑

i

(
η̄iθi + θ̄iηi

))
= detM exp

(
−
∑

ij
η̄i∆ijηj

)
, with

ηj(τ ′) = cν′(τ ′),
η̄i(τ) = c̄ν(τ),
θ̄(τ) = f̄(τ),
θ(τ ′) = f(τ ′), and
∆ij = ∆νν′(τ − τ ′),

7The integral over the measure of the dual operators is of type Z =
∫
dθdθ̄exp

[∑
ij
θ̄iMijθj +

∑
i
(η̄iθi + θ̄iηi)

]
,

which evaluates to Z = detMexp(−
∑

ij
η̄i∆ijηj). Then an expectation value of two thetas evaluates to 〈θ̄iθj〉 =

∂
∂ηi

∂
∂η̄j

Z = ∆ji. Note the exchange of the indices in the Delta compared to the thetas.
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Therefore Eq. (C.75) from the appendix gives

Tτ
[
fν1(τ1)f̄ν′1(τ ′1) . . . fνk(τk)f̄ν′

k
(τ ′k)

]
(3.76)

=
∑

permutations π
of {1,...,k}

sign(π)
〈
fν1(τ1)f̄νπ(1)(τ

′
π(1))

〉
. . .
〈
fνk(τk)f̄νπ(k)(τ

′
π(k))

〉
(3.77)

=
∑

permutations π
of {1,...,k}

sign(π)
k∏
i=1

∆νiνπ(i)(τi − τπ(i)) (3.78)

= det ∆. (3.79)

The final result is

Z =
∑
k

1
k!
∑
ν1ν′1

· · ·
∑
νkν
′
k

∫ β

0
dτ1

∫ β

0
dτ ′1· · ·

∫ β

0
dτk

∫ β

0
dτ ′k (3.80)

× Trc
[
e−βHlocTτ cνk(τk)c†ν′

k
(τ ′k) . . . cν1(τ1)c†ν′1(τ ′1)

]
× det ∆.

Let me note, that instead of two Hubbard-Stratonovich transforms, which go essentially back and
forth, one can also cut short from Eq. (3.35) to Eq. (3.66) by a non-unitary transform of the bath
operators via f̂ν(τ) = ∑

pµ Vpµν âpµ(τ).

3.2 Discussion of the expansion

In this section I will discuss the form of the CTHYB expansion formula, how it relates to Feynman
diagrams, as well as the differences between the two types of measuring the Green’s function:
Z-sampling (corresponds to resampling) and G-sampling (worm sampling).

Let me start with the the second line of Eq. (3.80), the trace Trc[. . . ] = ∑
s 〈s . . . s〉. It sums

over a complete many-body basis of the impurity, which for two flavours is s〉 ∈ { 0〉 , ↑〉 , ↓〉 , ↑↓〉}.
Its argument is a time-ordered product of impurity operators, whose time-evolution is governed by
Ĥloc via ĉν(τ) = eĤlocτ ĉνe−Ĥlocτ . Let me introduce an abbreviated notation for the local weight of

wloc(C, C′) = Trc

e−βĤlocTτ
∏

(ν,τ)∈C
ĉ†ν(τ)

∏
(ν′,τ ′)∈C′

ĉν′(τ ′)

, (3.81)

where C = {(ν1, τ1), . . . , (νk, τk)} contains the flavours and times of the creators, and C′ =
{(ν ′1, τ ′1), . . . , (ν ′k, τ ′k)} those of the annihilators. I want to introduce a second notation, which will
turn out useful for other purposes, namely to keep a symbolic representation of the time-ordered
product of operators:

Ĉ = Tτ ĉνk(τk)ĉ†ν′
k
(τ ′k) . . . ĉν1(τ1)ĉ†ν′1(τ ′1). (3.82)

Writing wloc(Ĉ) or Tr[Ĉ] shall be the same object as wloc(C, C′), which allows to access or manipulate
properties of operators and its neighbors in the time-ordered product via C[... ĉνi(τi)ĉ

†
ν′i

(τ ′j)...].
Let’s take a partition function configuration ĉ†↓(τ1)ĉ†↑(τ2)ĉ↓(τ ′1)ĉ↑(τ ′2) of an AIM with two flavours

↑ and ↓ as an example (Fig. 3.1). This corresponds to C = {(↓, τ1), (↑, τ2)} and C′ = {(↓, τ ′1), (↑, τ ′2)}
in the abbreviated notation. The filled (empty) diamonds indicate the annihilation (creation) of
an electron on the impurity. The dashed lines attached to an operator represent a connection
of this operator to the bath. The bath weight wbath(C, C′) = det ∆ (third line in Eq. (3.80))
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Figure 3.1: a) Z-configuration for the Falicov-Kimball impurity. Empty diamonds denote creation operators, filled
diamonds annihilation operators. The red dashed lines mean a propagation of the electron through the
bath.
b) Green’s function configuration the Falicov-Kimball impurity. c) Z-configuration, which connects to
configuration b) by inserting two worm operators.

describes the retardation effect of the bath on the impurity. It contains three processes combined:
the hopping from impurity to bath, propagation through the bath, and hopping back from bath
to impurity. In our example an impurity electron / bath hole pair is created at τ2. The bath hole
propagates to τ ′2, where it hops back to the impurity; the propagator for these three processes
combined is ∆↑↑(τ2 − τ ′2). The same happens with another hole from τ1 to τ ′1 via ∆↓↓(τ1 − τ ′1).
A second possibility is that the hole at τ2 goes to τ ′1 with propagator ∆↑↓(τ2 − τ ′1), then the hole
from τ1 must go to τ ′2 via ∆↓↑(τ1 − τ ′2). All these combinatorically possible propagations give the
determinant

wbath(CZ) = det
(

∆↓↓(τ1 − τ ′1) ∆↓↑(τ1 − τ ′2)
∆↑↓(τ2 − τ ′1) ∆↑↑(τ2 − τ ′2)

)
. (3.83)

The general form of the bath weight is

wbath(C, C′) = det ∆, (3.84)

where the matrix elements are ∆ij = ∆νi,ν′j
(τi − τ ′j) with (νi, τi) ∈ C and with (ν ′j , τ ′j) ∈ C′.

Now let’s discuss the two types of measuring the Green’s function. The series expansion of the
Green’s function is

Gνν′(τ − τ ′) = 1
Z

∑
C
wloc(C ∪ {ν, τ}, C′ ∪ {ν ′, τ ′})wbath(C, C′). (3.85)

It takes a partition function configuration C, which was generated by the Markov chain, and adds a
vertex {(ν, τ)} to the set of creator vertices, and a vertex {(ν ′, τ ′)} to the annihilator vertices in the
local weight only (indicated by the union symbol). This is depicted in Fig. 3.1 (b), with Green’s
functions operators ĉ†↑(τ2) and ĉ↑(τ ′2) added to the configuration (c). Sampling this expansion is
referred to as worm sampling or G-sampling (Gunacker et al., 2015).
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The standard way to measure the Green’s function (Z-sampling) is different and a form of re-
sampling. The Markov chain produces partition function configurations with weight wloc(C, C′)wbath(C, C′),
from which Green’s function configurations are created via

Gαα′(τ) = 1
Z

∑
C
wloc(C, C′)wbath(C, C′)

×
k∑

n,m=1

wbath(C\{(αn, τn)}, C′\{(α′m, τ ′m)})
wbath(C, C′)

× δ−(τ, τn − τ ′m)δααnδα′α′m (3.86)

= 1
Z

∑
C
wloc(C, C′)wbath(C, C′) (3.87)

×
k∑

n,m=1
Mnm δ−(τ, τn − τ ′m)δααnδα′α′m . (3.88)

The object after the sum∑
nm is the estimated quantity, where the original bath weight wbath(C, C′)

is replaced by a bath weight, where {(αn, τn)} has been removed from the creator vertices and
{(α′m, τ ′m)} from the annihilator vertices (indicated by the set difference). This leaves behind
two operators in the local weight without hybridization lines, making them the Green’s function
operators. To exploit the full information of a Z-configuration, the procedure is applied for all
possible pairs of annihilation and creation operators by the sum ∑

nm. The Green’s function
configuration in Fig. 3.1 (b) was created by removing the hybridization lines of two operators
ĉ†↑(τ2) and ĉ↑(τ ′2) compared to (a). The calculation of the fraction in Eq. (3.88), i.e. the ratio of
two determinants, where in one of the matrices one row and column were removed, is usually done
with fast Sherman Morrison formulas and gives a factor of Mnm, where M = ∆−1 is the inverse of
the hybridization matrix. They are discussed extensively elsewhere (e.g. by Wallerberger (2016))
and therefore not reviewed in more detail here.

Finally let me illustrate the two sampling procedures (Fig. 3.2). In Z-sampling the sampling
solely occurs in Z-space; for the measurment, Green’s function configurations are created from Z-
configurations. In G-sampling the random walk moves between Z-space and G-space and samples
and measures in both.

Figure 3.2: Illustration of the two sampling procedures to measure the Green’s function. Arrows indicate the direc-
tion that the random walker moves, black circles give the points in G-space where the Green’s function
is measured. In Z-sampling (left) the sampling only occurs in Z-space, and for generating Green’s func-
tion configurations the Z-cofiguration is changed (two hybridization lines are removed). In G-sampling
(right) also in G-space is sampled.
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3.3 State and superstate sampling

I’m a filler and
needed here

This chapter is based on the original work already published in Phys-
ical Review B (Kowalski et al., 2019). All figures and captions are
taken from there, as well as some text (which is marked with a sidebar
on the left).

3.3.1 State-of-the-art efficient implementation of CTHYB

CTHYB samples the space of atomic Green’s functions of k-th order

G(k)(τ1, τ
′
1, . . . , τk, τ

′
k) = 1

Z
Trc

[
e−βHloc ĉ(τk)ĉ†(τ ′k) . . . ĉ(τ1)ĉ†(τ ′1)

]
. (3.89)

The G(k) have to be calculated with an exact diagonalization method. Of course not the full,
time-dependent object is calculated and stored. It is calculated on the fly for the specific times,
which the Markov process demands.

While the exponential scaling with the number of flavours and the quadratic scaling with the
inverse temperature are intrinsic to the local problem, potentially model-dependent improve-
ments to the prefactor of this overall scaling can be achieved.

Common approaches to such optimization are block-diagonalization of the local Hamilto-
nian using conserved quantities (Haule, 2007; Parragh et al., 2012b) and binning, tree (Gull
et al., 2011) or equivalent (Sémon et al., 2014) algorithms in so-called “matrix-matrix” im-
plementations of CT-HYB. Additionally, with a similar motivation as for our method, outer
truncation of the local trace to the few dominant contributions and calculation of those with
more efficient sparse-matrix methods has been applied particularly to large systems at low
temperatures (Läuchli and Werner, 2009). Other more advanced strategies are local updates
in imaginary time (Shinaoka et al., 2014), a fast-rejection/acceptance algorithm by calculating
upper/lower boundaries of the weight (Sémon et al., 2014), or a partial summation of diagrams
to extract more information out of one Monte Carlo configuration (Augustinský and Kuneš,
2013).

In general, the local Hamiltonian Hloc conserves a set of quantum numbers. Consequently,
the many-body Hilbert space can be partitioned into a set of linear subspaces {S}, so-called
“superstates” (Haule, 2007), and the Hamiltonian can be brought into a block-diagonal form
with respect to these superstates.

3.3.2 Introduction

When designing a Monte-Carlo algorithm, there is a lot of freedom in what to define as a con-
figuration. In Sec. 3.1.3 I have discussed, that summing up all combinatorically possible paths of
electrons propagating through the bath, is necessary to avoid a disastrous sign problem.

In general, quantum mechanical expansions partition an observable into a sum of many terms.
If one takes too few of these terms into one configuration, then the calculation of one weight is
cheap, but there is likely a very bad sign problem. If one takes too many diagrams into one
configuration, the calculation of one weight is very expensive, with a lighter sign problem (the
extreme case would be to have one configuration with all diagrams, and the trivial Monte Carlo
process has a sign of 1). Between these two limits exists an optimum of maximum efficiency, where
the costs for calculating one configuration and the impact of the sign problem are balanced.
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In this section I discuss, to what extent the local weight

wloc(Ĉ) =
∑
S
wloc,S(Ĉ) :=

∑
S

∑
s∈S
〈s Ĉ s〉 , (3.90)

which the original algorithm always keeps together, can be decomposed into many smaller weights.
Eq. (3.90) contains a sum over all superstates S, whereas each superstate contains a sum over the
states s it contains.

In other words, to what extent can the summands of wloc(Ĉ) be summed stochastically instead
of deterministically?

We have the so called superstate-sampling algorithm, which takes wloc,S(Ĉ) as weight, and the
states-sampling algorithm, which takes 〈s Ĉ s〉 as weight.

The method has been proposed by Markus Wallerberger in his thesis in 2016, but not imple-
mented or tried out (Wallerberger, 2016).

3.3.3 Superstate sampling

The sampled distribution now is

Z =
∑
C

∑
S︸ ︷︷ ︸

QMC

∑
s∈S
〈s Ĉ s〉wbath(Ĉ), (3.91)

with an enlarged configuration space {Ĉ,S}. This makes the calculation of one local weight faster,
and thus also movement through configuration space. It is especially beneficial for systems with
low symmetry, where the blocks of the Hamiltonian are large.

It must be carefully discussed, to what extent the newly defined configurations have different
signs and this partitioning introduces a sign problem.

By just examining an example 5-orbital AIM (Fig. 3.3), the relative contribution of the second
largest superstate is 0.01 % in average, and the contributions of the other superstates are damped
exponentially. Thus the sign of wloc is determined by its largest summand, which does not suggest
the appearance of a sign problem.

A second argument in favor of this partitioning is the large-β limit, in which superstate sampling
and the original algorithm are equivalent, since only one superstate survives in the local weight due
to Pauli’s principle. Therefore the average signs of the two algorithms in this limit must coincide.
A sign-problem absent at low temperature and worsening at high temperature would contradict
Troyer and Wiese (2005), which have proven that the sign problem becomes worse upon lowering
the temperature.

In practice we indeed observe the same sign for both algorithms and all temperatures.

3.3.4 Window updates and τ-shift moves

As we have seen before, at low temperatures most of the configurations have only one possible
outer superstate.

Since the effort of finding the possible superstates of a configuration is negligible compared to
calculating the matrix-vector products (Haule, 2007), one might think superstate-sampling does
not offer a benefit over the standard algorithm. But it does, since at this stage, it is already
perfectly combinable with the window-sampling approach of Shinaoka et al. (2014). They showed
that a tremendous speed-up can be achieved by proposing insertions of operator pairs only locally
in imaginary time. If in window-sampling a proposed insert allows an additional another outer
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superstate
Figure 3.3: Average relative contributions of outer superstates to the local weight per configuration for a typical

simulation with five orbitals and Kanamori interaction. For comparability, the superstates are
ordered by their contribution (i.e. absolute value of the part of the local weight sum from all states
contained in the superstate) for each individual configuration, i.e. superstate “1” does not denote
one specific constant superstate, but always refers to the biggest contributor.

superstate than the current one, or requires the outer superstate to change, then for the new
superstate the full operator sequence has to be calculated from scratch, which is expensive.

In superstate-sampling this case never happens, because the outer superstate is fixed when
proposing insertions and removals.

To restore ergodicity, an additional move must be introduced to change the outer superstate.
The naive choice of just proposing to change it, is highly inefficient, because as we have seen in
Fig. 3.3, each configuration Ĉ has a preferred superstate, and the contributions of the others are
damped exponentially. Such a move would be expensive and have a very low acceptance rate.

Therefore we introduced the τ -shift move, which shifts the operator sequence in imaginary
time. It is also an expensive move, since the whole operator sequence must be calculated from
scratch, but it has an acceptance probability of one for superstate-sampling (for the proof see
appendix of Kowalski et al. (2019)). This first means, that the infinite configurations connected
by a τ -shift move can essentially be considered a single configuration. This is a nontrivial result,
since it states that the cyclic property of the trace not only holds for the full trace, but also for
each outer superstate.

Second, the ergodicity breaking cured by the τ -shifts is a tiny but crucial one. Let us divide all
superstate sampling configurations into two classes: those (ĈS), which contain a certain superstate
S at any imaginary time position, and those which do not (ĈS̄). It holds Ĉ = ĈS ∪ ĈS̄ . Fixing the
outer superstate to S would only sample ĈS . Therefore the purpose of the τ -shift move is to also
access ĈS̄ , which means it can be performed very rarely.

An example of a τ -shift move is depicted in Fig. 3.4.
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statestate state

Figure 3.4: Left: a superstate sampling configuration for a two orbital model with Kanamori interaction. Bold
horizontal lines denote a time-evolution of an eigenstate, the dotted vertical lines the operators
that cause transitions between superstates. Here all superstates have size 1, except the spin-flip
and pair-hopping one. Right: the configuration resulting from application of a global τ -shift by ∆τ
to all operators of the one shown on the left. τf and τl denote the imaginary times of the first
and last operator after the shift. In the superstate sampling algorithm the local weight is the sum
of the red and blue state as outer state of the trace, whereas in the state sampling only one of the
two is selected.

state
Figure 3.5: Average relative contribution of outer states within one superstate, ordered by the size of contribu-

tion per configuration, normalized to the total weight of that superstate. This graph was obtained
from a typical simulation of a 5-orbital system with Kanamori interaction.
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3.3.5 States sampling

Now I discuss the states-sampling algorithm, where both the summation over the superstates S,
and the summation over all states s within the chosen superstate, are done by the Monte Carlo:

Z =
∑
C

∑
S

∑
s∈S︸ ︷︷ ︸

QMC

〈s Ĉ s〉wbath(Ĉ), (3.92)

This corresponds to an enlarged configuration space of {Ĉ,S, s ∈ S}.
An argument as convincing as the large β limit in the previous section does not exist in favor for

this algorithm. But a look at the relative contributions of states (Fig. 3.5) shows, that on average
the largest state is one order of magnitude bigger than the second largest, the second largest one
order of magnitude bigger than the third largest, and so on. One can hope, that the largest state
determines the sign of the superstate often enough not to ruin the average sign. In practice, we
observe a reduction of the average sign of a few percent.

Here the additional problem of choosing the outer state pops up; proposing it randomly would
not give much benefit over a deterministic sum, since one would have to essentially try out all of
them to find the dominant one.

We know that the candidates s〉 at τ = 0 and 〈s at τ = β are eigenstates of the local
Hamiltonian. Therefore their time evolutions e−(Es−E0)τf and e(Es−E0)(β−τl) are known and act as
multiplicative factor in 〈s Ĉ s〉. They are damped with an exponential factor, and we know that
in advance. It is possible to transfer the first and last time-evolution (red and blue in Fig. 3.4)
from the acceptance probability to the proposal probability. This has two advantages: the values
of the acceptance probabilities are brought closer together, resulting in higher acceptance rates,
and we are able to propose the likely outer states much more often. The proposal probability is
an artificial Boltzmann distribution:

pprop(s) = exp[−(Es − E0) · (τf + β − τl)]∑
k∈T exp[−(Ek − E0) · (τf + β − τl)]

, (3.93)

where T is the current outer superstate. Let me stress, that this procedure does not involve any
approximation or assumption. It is an exact sampling, which enables the Monte Carlo to pick out
the important parts of wloc(Ĉ) and moves between them most of the time.

3.3.6 Performance and discussion

Figure 3.6 shows the average sign of an example calculation with a five orbital impurity. The
Kanamori interaction has a constant sign of approximately 1, and the full Hubbard interaction a
moderate sign problem with decreasing temperature. The sign of superstate sampling is not distin-
guishable to the original algorithm within the error bars for both interactions, and state-sampling
has the sign reduced of about 5-10 %. The speed-up factors for superstate sampling compared
to the original algorithm are 10-100 for Kanamori interaction and 150-250 for full-Hubbard in-
teraction. Going from superstate- to state-sampling does not offer a benefit for the Kanamori
interaction, since the blocks of the Hamiltonian are still quite small in this case; the largest ist a
10x10 matrix. State-sampling offers a noticeable speed-up or the full-Hubbard interaction com-
pared to superstate-sampling, since the blocks are here considerably larger. For systems with lower
symmetries these factors can still be orders of magnitude larger.

One might ask, may it be possible to apply the principle even one level deeper, namely to also
sample the sums of the matrix-vector products when applying an operator to a state? We have
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seen that sampling a sum reduces the average sign of about 5%. So for every additional 10 in the
expansion order, the average sign drops by a multiplicative factor of (0.95)20 ≈ 0.35. Clearly this
is not acceptable, since typical expansion orders can be several hundreds.

In conclusion we find, that the states-sampling algorithm is the best compromise in balancing
the costs for calculating one configuration and the impact of the sign problem.
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Figure 3.6: Absolute value of the mean sign using our new sampling methods for a 5-orbital system with
Kanamori or Coulomb interaction with cubic interpolation.
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Figure 3.7: Speed-up factors of the new sampling methods compared to conventional sampling for Kanamori
and Coulomb interaction. For a 5-orbital system with Kanamori or full Hubbard interaction, not
including measurement procedures of observables.

3.4 The mixbasis algorithm

The treatment of general 7-orbital impurities (f -orbitals) poses a substantial challenge to CTHYB,
which was up to now only feasible with approximations.

In these systems the non-Kanamori terms of the full-Hubbard interaction, spin-orbit coupling,
as well as crystal fields are of the same order of magnitude. They are competing and thus have
to be treated exactly. Because of these complicated one- and two-particle interactions the only
conserved quantity on the impurity is the number of electrons. When there are n electrons on the
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impurity, the blocks of the Hamiltonian have a size of
(

14
n

)
, or explicitly 1, 14, 91, 364, 1001,

2002, 3003, 3432, 3003, 2002, 1001, 364, 91, 14 and 1. An operator that describes the creation of
an electron is a matrix. It has a size of 1x14 when going from zero to one electron, a size of 14x91
when going from one electron to two electrons, and so on. Therefore in order to save the operator
matrices, the total number of nonzero matrix entries is

13∑
n=0

(
14
n

)
·
(

14
n+ 1

)
= 37442160 (3.94)

Storing a double precision number costs 64 bit, resulting in 2 396 298 240 bit, or 300 MB approxi-
mately. We need these operators NorbitalsNspinsNca = 28 times, giving a total memory requirement
of 8400 MB for the operators on each processor, which is too much for the standard nodes of
current supercomputers (SUPERMUC-NG has 304 000 cores with 2 GB per core, and 6900 cores
with 16 GB per core).

Let’s assume the system of interest has a filling of one electron on average. This means, in
order to get that average, the number of electrons on the impurity must most of the time be zero,
one, or two electrons, and the blocks with larger number of electrons must occur more and more
rarely and are high excited states. It is reasonable to truncate them.

An outer truncation of the sum is to replace N with Ntrunc in the local trace Tr(Ĉ) =∑N
n=1 〈n Ĉ n〉, assuming the eigenstates are ordered with increasing energy. This does not solve

the memory issue; despite of starting with states n〉 of low energy (and small matrix size), the
configuration Ĉ can also reach the highest excited states. An inner truncation means not to allow
excitations in Ĉ to exceed a certain energy level. In this case, all operators connecting to states
above that level do not have to be stored, thus it alleviates the memory problem. However, both
schemes are dangerous and give untrustworthy results.

In computer science there is a concept called time-memory trade-off. This means one can save
memory by increasing the computation time by not storing objects, but instead calculating them
on the fly whenever needed. In CTHYB such a trade-off is possible in the mixbasis algorithm.

The trace is usually calculated in the eigenbasis of the impurity Hamiltonian, i.e. the time-
evolutions eHlocτ are diagonal matrices, and the operators are full matrices. It was shown by Läuchli
and Werner (2009), that in the occupation number basis, the time-evolutions are complicated
matrix exponentials, but the operator matrices are sparse and don’t need notable space in memory
at all.

The benefits of both bases can be combined. All time-evolutions are done in the eigenbasis,
and whenever an operator has to be applied, the state vector is transformed from eigenbasis to
occupation number basis. A sparse matrix-vector multiplication is performed, which has negligible
costs compared to transformations between the bases. Then the state vector is transformed back
to the eigenbasis, continuing with the time-evolution.

Let us estimate the additional costs of this procedure with the example of going from 6 to
7 electrons. The original algorithm needs a matrix-vector product with a 2002 x 3003 matrix,
whereas in the mixbasis algorithm this is replaced by two matrix-vector products with matrix
sizes 2002 x 2002 and 3003 x 3003. Assuming that the operator applications are the bottleneck,
which definitely is the case for f -orbitals, the doubling of computation time completely removed
the memory issues.
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3.5 The sliding technique

CTHYB has the drawback, when measuring dynamic quantities, it always produces diagrams with
delta-like information in imaginary time. The question arises, can out of such a configuration be
extracted more information than that?

Another downside of delta peaks in imaginary time is that their Fourier transforms eiωnτ have
essential singularities at z =∞. Observables instead have a well defined high frequency behavior,
therefore the singularities have to average away. This naturally causes large noise for the high
frequency, which other methods like CTINT don’t have, where each single measurement has a
defined high frequency behavior (Gull et al., 2011).

The general idea of the sliding technique is to integrate out the time of one of the Greens
function operators of a configuration. The delta-peaks in imaginary time now become continuous
functions which still have steps, corresponding to essential singularities at z =∞, but nevertheless
the precision is increased since more information is extracted out of one configuration. The idea
was originally developed by Augustinský and Kuneš (2013), but for density-density interactions
only. The examinations in this chapter are a generalization thereof and valid for any kind of one-
or two- particle interaction on the impurity.

A second application of the technique is to generate equal-time objects, which naturally never
occur during simulation. They are necessary for physical susceptibilities or improved estimators.
However I will show that the sliding-estimators of that kind are numerically not stable.

First I derive the sliding estimator for the single-particle Green’s function, then I explain the
general principle, and out of that re-derive the measurement of the single-particle Green’s function.
Last I derive and discuss the formulas for equal time objects.

3.5.1 Measuring the Green’s function - heuristic derivation

Here I describe the sliding measurement procedure for the single-particle Green’s function in Z-
sampling.

Figure 3.8: This shows a configuration with four operators with hybridization lines (indicated by the three lines
above and below them), and two Green’s function operators without hybridization lines. Filled (empty)
circles denote annihilation (creation) operators. The plot shows a single measurement of the standard
estimator for the Green’s function, which is a delta-function with prefactor MCij (in red). The blue
curve shows a single measurement of the sliding estimator. The area under the blue curve equals MCij.
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In Fig. 3.8 the standard measurement procedure for the Green’s function in Z-sampling is
depicted. The Markov chain has produced a Z-configuration, from which the hybridization lines
(symbolized by the three lines above and below the operators) were removed from one creation
and one annihilation operator in order to generate a Green’s function configuration (see Eq. (3.88)
in Sec. 3.2). At the time-difference τj − τi of the two operators, in the Green’s function array a
delta-peak with integral Mij appears (Eq. (3.96)). Now the operator at τj will be shifted to all
possible τ positions, without changing the topology of the diagram, i.e. exchanging two operators.
The objective is to sum up all the shifts. I call this procedure to slide the operator.

Moving the operator gives a multiplicative change of the weight of the configuration, which is
not used to propose a new configuration, but to rescale the estimator of the Green’s function. This
results in a continuous curve. The area under this curve must be equal to Mij , since the Markov
chain asked to add a contribution of this size to the Green’s function. Technically, we calculate
the probability density of the moving operator.

Let’s start with the measurement formula

Gαβ(τ) = 1
β

∑
C

Tr[Ĉ]det(Ĉ)
∑
ij

MCij δ
−(τ, τj − τi)δααiδββj (3.95)

= 1
β

〈
Mijδ

−(τ, τj − τi)
〉

(3.96)

for the Green’s function in Z-sampling (Gull et al., 2011), whereMCij are the elements of the inverse
hybridization matrix, and

δ−(τ, τ ′) =

δ(τ − τ ′), τ > τ ′

−δ(τ − τ ′ − β), τ < τ ′
(3.97)

is the antiperiodic Dirac comb. The normalization factor for moving the operator τj is

Nj = 1∫ τnext
τprev

dτj Tr[Ĉ[..., c(τj), ...]]
. (3.98)

The integral boundaries τprev and τnext are always the times of the neighboring operators of the
slided operator in the time-ordered product. Actually all the operators have flavour indices, but
since the concepts in this section do not fundamentally rely on the operator’s flavours, I will omit
them in the following. The estimator, where all annihilators are slided, is

G(iωn) =
∫

dτ eiωnτG(τ) (3.99)

= 1
β

∑
C

∑
ij

Tr[Ĉ]det(Ĉ) MCij eiωn(τj−τi) (3.100)

= 1
β

∑
C

∑
ij

Tr[Ĉ]det(Ĉ) MCij

∫ τnext
τprev

dτj Tr[Ĉ[...ĉ(τj)...]] eiωn(τj−τi)∫ τnext
τprev

dτj Tr[...ĉ(τj)...]
. (3.101)

Note that it is not possible to formulate the estimator in imaginary time. This would correspond
to Eq. (3.101) without the Fourier exponential, and the fraction would just cancel. When the trace
is performed in the eigenbasis of the local Hamiltonian, the integration of the nominator∫ τnext

τprev
dτj Tr

[
... eHloc(τj−τnext)ce−Hloc(τj−τprev)...

]
eiωn(τj−τi) (3.102)

boils down to integrating exponential functions.
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Let me comment on the numerical stability of Eq. (3.101). One must investigate the possibility
of the denominator becoming zero or very small. That could happen, if the neighboring operators
are that close, that there is not much space for the operator to be slided. Assuming the trace does
not change under tiny shifts, which is reasonable, we find

∫ τnext

τprev
dτj Tr

[
... eHloc(τj−τnext)ce−Hloc(τj−τprev)...

]
(3.103)

∼ (τnext − τprev)Tr(Ĉ), (3.104)

where Tr(Ĉ) is the trace of the original configuration. This object can become arbitrarily small,
depending on how close the three operators at τprev, τj and τnext get to each other. Since the
integral appears in nominator and denominator, it cancels for τnext − τprev → 0 and leaves behind
a well defined limit. The estimator therefore is numerically stable.

3.5.2 General Formalism

Here I describe the general mathematical theory of what we have done in the last paragraph.
All configurations Ĉ are divided into equivalence classes Ĉn, denoted by integer subscript n8.

Each diagram only belongs to one class, therefore the union amount of all classes corresponds to
all diagrams

Ĉ =
⋃
n

Ĉn. (3.105)

If we want to have all diagrams Ĉ of one class Ĉn, we write Ĉ ∈ Ĉn. A class can also be represented
by one of its diagrams; if we want to address all diagrams Ĉ in one class Ĉn by one representative
Ĉ′ of this class, we write Ĉ ∼ Ĉ′.

Now we derive the general sliding formula:

∑
Ĉ

f(Ĉ)g(Ĉ) =
∑
n

∑
Ĉ′∈Ĉn

f(Ĉ′)g(Ĉ′) (3.106)

=
∑
n

∑
Ĉ′′∈Ĉn

f(Ĉ′′)
∑
Ĉ′∈Ĉn f(Ĉ′)g(Ĉ′)∑
Ĉ′′′∈Ĉn f( ˆ̂C′′′)

(3.107)

=
∑
Ĉ

f(Ĉ)
∑
Ĉ′∼Ĉ f(C ′)g(Ĉ′)∑

ˆC′′′∼Ĉ f(Ĉ′′′)
, (3.108)

Note how the only essential thing that has been done, was to insert a unity in Eq. (3.107). The
final result, tidied up, is

∑
Ĉ

f(Ĉ)g(Ĉ) =
∑
Ĉ

f(Ĉ)
∑
Ĉ′∼Ĉ f(C ′)g(Ĉ′)∑
Ĉ′∼Ĉ f(Ĉ′)

(3.109)

Eq. (3.109) means, when the Markov chain arrived at a configuration Ĉ, instead of measuring only
Ĉ, we measure all configurations Ĉ′ that are in the same class as Ĉ.

8This is actually inaccurate, since the classes can not be counted nor ordered, but I will write it that way since
it makes no difference.
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3.5.3 Measuring the Green’s function

In this subsection I will re-derive the result from Sec. 3.5.1 using the general formula Eq. (3.109).
We find

G(iωn) = 1
β

∑
Ĉ

∑
ij

Tr[Ĉ]︸ ︷︷ ︸
f

det(Ĉ) M Ĉij eiωn(τj−τi)︸ ︷︷ ︸
g

(3.110)

= 1
β

∑
Ĉ

∑
ij

Tr(Ĉ)
∑
Ĉ′∼Ĉ Tr[Ĉ′]det(Ĉ′)M Ĉ

′
ij eiωn(τj−τi)∑

Ĉ′∼Ĉ Tr(Ĉ′)
(3.111)

= 1
β

∑
Ĉ

∑
ij

Tr(Ĉ)det(Ĉ)M Ĉij
∑
Ĉ′∼Ĉ Tr[Ĉ′]eiωn(τj−τi)∑

Ĉ′∼Ĉ Tr(Ĉ′)
(3.112)

= 1
β

〈∑
ij

Mij

∑
Ĉ′∼Ĉ Tr[Ĉ′]eiωn(τj−τi)∑

Ĉ′∼Ĉ Tr(Ĉ′)

〉
. (3.113)

The linear algebra identity
det(Ĉ′)M Ĉ′ij = det(Ĉ)M Ĉij (3.114)

has been used in Eq. (3.112). The existence of a nontrivial identity like this can be motivated from
the fact that by going from a configuration Ĉ to Ĉ′ in two different ways, one must consistently
obtain the same transition probability. The first way would be to start from a partition function
configuration, remove two hybridization lines, and then shift one of the Green’s function operators;
the change of weight when shifting is obviously independent of the bath part det(Ĉ)M Ĉij . The second
way of obtaining the final configuration is first to shift the operator, for which the bath det(Ĉ)
changes to det(Ĉ′), and then remove the hybridization lines, which gives the factorM Ĉ′ij . From this
considerations follows Eq. (3.114).

3.5.4 Measuring equal-time estimators

In this section I describe, how one might use the sliding technique to measure estimators with
several operators at the same time, which are necessary for improved estimators, susceptibilities
and the high-frequency dependency of 2-particle Green’s functions. We will however find, that the
equal-time estimators are numerically unstable.

I first discuss the most simple equal-time estimator, which is a density. We evaluate the Green’s
function at τ = 0− and apply Eq. (3.109):

〈n〉 = G(τ = 0−) (3.115)
=
∑
Ĉ

∑
ij

Tr[Ĉ]︸ ︷︷ ︸
f

det[Ĉ]Mijδ[τj = τi − 0−]︸ ︷︷ ︸
g

(3.116)

=
∑
Ĉ

∑
ij

Tr[Ĉ]
∑
Ĉ′≡Ĉ Tr[Ĉ′]det[Ĉ′]M Ĉ

′
ij δ[τj = τi − 0−]δaiδaj∑

Ĉ′≡Ĉ Tr[Ĉ′]
(3.117)

=
∑
Ĉ

∑
ij

Tr[Ĉ]det[Ĉ]M Ĉij
∑
Ĉ′≡Ĉ Tr[Ĉ′]δ[τj = τi − 0−]∑

Ĉ′≡Ĉ Tr[Ĉ′]
δaiδaj (3.118)

=
∑
Ĉ

∑
ij

Tr[Ĉ]det[Ĉ]M Ĉij
Tr[Cτj→τi+0+ ]∑
Ĉ′≡Ĉ Tr[Ĉ′]

δaiδaj (3.119)

=
〈
Mij

Tr[Ĉτj→τi+0+ ]∑
Ĉ′≡Ĉ Tr[Ĉ′]

δaiδaj

〉
(3.120)
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This estimator now is much more dangerous that the one for the Green’s function, since the integral
in the denominator, which may become very small, is not canceled by an equally small nominator.

When the three operators c(†)(τnext), ci(τj) and c(†)(τprev) get very close to each other, the
trace does not change upon sliding the middle operator and the fraction becomes

Tr[Ĉ]∫ τnext
τprev

dτj Tr[. . . c(τnext)c(τj)c†(τprev) . . . ] ≈
Tr[Ĉ]

Tr[Ĉ](τnext − τprev)
(3.121)

= 1
(τnext − τprev) (3.122)

Some configurations will generate strong peaks, and when trying to remove them by increasing
statistics, this generates just more peaks with even smaller τnext − τprev, and the estimator never
converges.

3.5.5 Measuring density correlation functions

For the sake of completeness, even though not recommendable to apply, I give here also the
formula for measuring the one-time, two-particle Green’s functions with the sliding technique, like
for physical susceptibilities

〈n(τ)n(0)〉 =
〈
c†(τ)c(τ)c†(0)c(0)

〉
. (3.123)

One begins with the measurement formula for the two-particle Green’s function (Boehnke et al.,
2011)

Gabcd(τ1, τ2, τ3, τ4) =
∑
Ĉ

∑
ijkl

Tr[Ĉ]det[Ĉ](MijMkl −MilMjk) (3.124)

· δ(τi − τ1)(τj − τ2)(τk − τ3)(τl − τ4)δaiδbjδckδdl. (3.125)

The density correlation function is the special case

〈na(τ)nb(0)〉 =
∑
Ĉ

∑
ijkl

Tr[Ĉ]det[Ĉ](MijMkl −MilMjk) (3.126)

δ
(
τi = τj − 0−

)
δ
(
τk = τl − 0−

)
δ(τ = τi − τk)δaiδajδbkδbl. (3.127)

Applying Eq. (3.109) to this expression twice, one finds

〈na(τ)nb(0)〉 =
∑
Ĉ

∑
ijkl

Tr[Ĉ]det[Ĉ]
(
M ĈijM

Ĉ
kl −M ĈilM Ĉjk

)
(3.128)

·
Tr[Ĉτj→τi+0+ ]∑
Ĉ′j≡Ĉ

Tr(Ĉ′j)
Tr[Ĉτj→τi+0+,τl→τk+0+ ]∑
Ĉ′
l
≡Ĉτj→τi+0+

Tr[Ĉ′l]
δaiδajδbkδbl. (3.129)

A possible procedure of accumulating would be the following (let’s remind ourselves, that the result
is independent of the order, but some orders may be much more complicated or impossible, since
they contain an integral of the determinant):

• take a partition function configuration Ĉ

• remove the hybridization lines of the four operators involved

• calculate the norm for sliding the operator τj :
∑
Ĉ′j≡Ĉ

Tr(Ĉ′j)

• move operator τj to τi + 0+ and calculate trace: Tr[Ĉτj→τi+0+ ]

• while the operator τj is kept at τi+0+, calculate the norm for sliding operator τl:
∑
Ĉ′
l
≡Ĉτj→τi+0+

Tr(Ĉ′l)

• then move operator τl to τk + 0+ and calculate the trace: Tr[Ĉτj→τi+0+,τl→τk+0+ ]
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3.5.6 Discussion

In this section I derived the sliding technique, which allows to integrate out the time of one Greens
function operator. We have seen, that the method fails to produce configurations with equal-time
operators because of divergent diagrams. The method works if it is used for smearing out the
delta-estimators of Greens functions. This can be beneficial for systems with correlated f -shells.
They are spatially rather localized and therefore expected to have low expansion order in CTHYB.
Furthermore the sizes of the blocks of the local Hamiltonian is very large, making it very costly to
calculate one Monte Carlo weight. This suggests that the sliding technique may be beneficial for
f -impurities.

3.6 Measurement of density-density correlation functions

As last part of this chapter, I briefly show and discuss two estimators for the measurement of
density-density correlation functions. Besides worm-sampling of 〈n̂(τ)n̂(0)〉 there exist the shift-
estimator, which shifts operators to make densities, and the insertion-estimator, which inserts
densities in the Monte Carlo configuration.

3.6.1 Shift-estimators

A density can also be measured with the so-called shift-estimator. It works the following way: one
changes the configuration, namely removes the hybridization lines of two neighboring operators,
that have correct order to constitute a density, which gives a factor of Mij . Then one shifts the
creator into the annihilator, which gives a factor of Tr(Ĉτi→τj+0+)/Tr(Ĉ).

Figure 3.9: The shift estimator. Creation operators (empty circles) are shifted close to annihilation operators to
make densities.

Therefore the estimator is

n =
〈∑

ij

Mij

Tr(Ĉτi→τj+0+)
Tr(Ĉ)

δτi and τj are neighbours

〉
. (3.130)

Doing the thing twice with appropriate operators gives the density-density correlation function

〈n(τ)n(0)〉 =
〈∑
ijkl

(
M ĈijM

Ĉ
kl −M ĈilM Ĉjk

)
·
Tr[Ĉτi→τj+0+,τk→τl+0+ ]

Tr[Ĉ]

× δτi and τj are neighboursδτk and τl are neighbours

〉
.

(3.131)

The round brackets come from removing the hybridization lines of four operators, and in the trace
of the nominator two densities are constructed.
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3.6.2 Insertion estimators

It is known since the invention of CTHYB (Werner et al., 2006), that Green’s functions cannot be
measured by inserting a creation and an annihilation operator without hybridization lines into a
configuration. That is because the application of an operator makes a transition to another block
of the Hamiltonian, and thus also changes the superstate-sequence in between the two operators
completely. It is likely that highly excited states are accessed, and thus the weight strongly damped.
It generates many unlikely and few important Green’s function diagrams. Very often also a Pauli
violation happens between the inserted operators, which makes the contribution of the diagram
exactly zero. Therefore this estimator only produces unlikely configurations and misses the likely
ones and does not work.

Insertion estimators are only possible, if the operators inserted are projection operators, i.e.
they bring a state back to the block of the Hamiltonian where it started, and thus the superstate-
sequence between the operators is left unchanged. This is obviously true for densities.

Figure 3.10: insertion estimators

The insertion estimator for measuring a density is

〈na〉 =
〈
Tr(Ĉ′)
Tr(C)

〉
, (3.132)

where Ĉ is the original Z-configuration and Ĉ′ the Z-configuration with a density operator na
inserted (without hybridization lines).

For a density-density correlation function the estimator is

〈na(τ)nb(0)〉 =
〈
Tr(Ĉ′′)
Tr(C)

〉
, (3.133)

where Ĉ′′ is the Z-configuration Ĉ with two density operators na and nb (without hybridization
lines) inserted at imaginary time difference τ .

w2dynamics has implemented the density-density and 〈Sz(τ)Sz(0)〉 correlation function that
way.

3.7 Conclusion

In this Chapter I first derived the CTHYB expansion formulas using three different paths: a brute
force operator approach, the standard effective propagator formulation within Feynman’s path
integral technique, and with an elegant dual transform, that introduces the dual operators, which
contain the effect of the bath and the hopping from bath to impurity within one operator.

I discussed the drawbacks of the technique, which is mainly the exponential scaling of the local
problem, which has to be treated with an exact diagonalization method for every Monte Carlo
move, and therefore constitutes the bottleneck of CTHYB.
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The (super-)state sampling methods describes, how this local weight can be split up into
smaller weights and sampled individually. This algorithmic improvementis the key part, which
makes w2dynamics in its matrix-vector algorithm competitive to other implementations of CTHYB,
which are mainly of matrix-matrix type (for a brief comparison of the two methods see Sec. 5.4).

I showed the mixbasis algorithm, which solves the memory-issue one faces with f -orbital im-
purities, and makes them accessible to CTHYB without truncation of the Hilbert space.

Then I discussed the sliding technique, which integrates over the time of one of the Greens
function operators. It is not possible to generate equal-time estimators by applying the sliding
technique, but it is possible to reduce the noise of Greens functions.

Last I briefly showed two estimators, which both can measure density-density correlation func-
tions. The insertion estimator is highly perferable, since it can extract much more information
out of a configuration compared to the shift estimator. The applicability of insertion estimators
is restricted, such that the inserted operator applied on an impurity state must not change its
conserved quantum numbers (for a discussion of quantum numbers see Sec. 5.1). With this rea-
soning, for systems where Hloc only conserves the number of electrons on the impurity, observables
like 〈Jx(τ)Jx(0)〉 or 〈Jy(τ)Jy(0)〉 shall be measurable by insertions. Whether this is really true is
subject of further work.
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Chapter 4

Inconsistency of standard Green’s
function estimator in diagrammatic
quantum Monte Carlo for finite
systems

I’m a
filler and
needed
here

This chapter is an abbreviated version of what is being prepared for submission to
Physical Review with co-authors Josef Kaufmann (TU Vienna), Markus Waller-
berger (TU Vienna) and Giorgio Sangiovanni (University of Würzburg).

4.1 Abstract

In this chapter I describe an inconsistency of the standard Green’s function estimator in CTHYB.
It occurs due to Pauli’s principle in finite baths of Anderson impurity models. We identify Feynman
diagrams missing from the series and characterize the affected models. We argue that it can also
manifest itself in systems with infinite bath size as very long autocorrelation times.

4.2 Introduction

Unlike in the classical case, in quantum mechanics each observable is operator-valued and comes
with its own generating function, and thus after a series expansion, with its own probability
distribution. In principle, Monte Carlo algorithms have to sample these distributions separately,
e.g. the mean density, the one-particle propagator, and even the propagator evaluated at different
times or orbitals.

Two methods are known to deal with this issue: (i) worm sampling, where one forms the
direct sum over the probability spaces of all observables considered and samples that compound
distribution. This quickly leads to an unwieldy number of computations. If the distributions of
interest are similar in their structure, which is often the case, with (ii) resampling, one can sample
only a single distribution and map all other observables to different estimators with respect to that
distribution. Resampling is algorithmically simpler but yields an inconsistent estimator (and thus
wrong results) if the mapping is not surjective. One also runs into autocorrelation problems if the
mapping is indeed surjective, but the probability distributions are substantially different.
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In this chapter I explore one such inconsistency for continuous-time quantum Monte Carlo
in the hybridization expansion (CTHYB, Werner et al. (2006)). Here, the partition function is
expanded with respect to the bath hybridization.

In measuring the Green’s function, one usually employs resampling, relating each Green’s
function diagram to a process of “cutting” parts off a diagram in partition function space. This is
already known to fail for equal-time correlators, certain higher order Green’s functions, and close
to the atomic limit. There, worm sampling must be used instead (Gunacker et al., 2015).

However, resampling is still widely used because it is believed to succeed away from these cases.
We show that resampling yields inconsistent estimators also for certain finite systems, curtailing
the viability of the method in quantum chemistry applications. We also show that for certain
infinite systems, this form of resampling, while formally consistent, causes the autocorrelation
length to grow significantly.

The chapter is organized as follows: We identify missing Feynman diagrams in systems with
finite bath size in section 4.3. In section 4.4 we show an example and make the link to autocor-
relation times. Finally in section 4.5, we show a system with infinite bath size and autocorrlation
problems, before we conclude.

4.3 Inconsistency of the Z-estimator

Here we work out the inconsistency of the Z-estimator for the Green’s function by closely examining
Eq. (3.88) from chapter 3.2:

Gαα′(τ) = 1
Z

∑
C
wloc(C, C′)wbath(C, C′)

×
k∑

n,m=1

wbath(C\{(αn, τn)}, C′\{(α′m, τ ′m)})
wbath(C, C′)

× δ−(τ, τn − τ ′m)δααnδα′α′m . (4.1)

Suppose wbath(C, C′) is zero, then the Z-configuration

wloc(C, C′)wbath(C, C′) (4.2)

will never be reached. If now the cutting of the hybridization lines of two operators makes

wbath(C\{(αn, τn)}, C′\{(α′m, τ ′m)}) (4.3)

nonzero for any n and m, these Green’s function configurations are missed by Z-sampling.
This can happen in systems with a finite number of bath sites, where the bath can only host

a finite number of electrons due to Pauli’s principle. If a Z-configuration wants to deposit more
electrons in the bath than possible, its weight becomes exactly zero, and possible derived G-
configurations are missed. The affected AIMs and diagrams can be exactly characterized, which
we will do in the following.

Let us define a cluster on the impurity of size N , as the set of impurity flavors, which are
connected by one- and two-particle interaction terms. As example we investigate a cluster of
size N = 4 (see Fig. 4.1), where four impurity flavors (black circles) are connected by a hopping
t. Without loss of generality, we analyze what happens at impurity flavor 1, by comparing the
four-bath-site system A) to the three-bath-site system B).

In both systems the impurity cluster can host at most four electrons, therefore in the local
configuration can be at most four consecutive annihilation operators of flavor 1. The diagram we
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are going to discuss is a G-configuration with four annihilators of flavor 1 in a row, and one of
them is a Green’s function operator, which means it has no hybridization lines.

In G-sampling, these four operators are generated directly and need to deposit three electrons
in the bath connected to impurity flavor 1, which is possible for both systems A) and B).

Now let us see what happens in Z-sampling. The Markov chain proposes a Z-configuration
with four consecutive annihilators for flavor 1, which are all connected to the bath. For system A)
this is possible, since there is space for four electrons in the bath. In system B) the weight of this
configuration is always zero, since the attempt to deposit four electrons in this bath violates the
Pauli principle. But by applying the resampling procedure and removing the hybridization lines
of one of the four operators, the generated Green’s function diagram is nonzero in both systems.
It deposits three electrons in the bath, which is also possible in system B). Therefore by going the
detour over a Z-configuration, Z-sampling misses this G-diagram in system B).

In summary, Z-sampling for the Green’s function is inconsistent for a cluster of size N , if any
flavor within the cluster has less than N bath sites.

1 2

34

t

tt

t

V

A)
1 2

34

t

tt

t

V

B)

Figure 4.1: An example cluster with 4 impurity flavors (black circles). They are connected by nearest-neighbor
hopping with amplitude t. Flavor 1 is under consideration and has four bath sites (empty circles) in
case A), and three bath sites in case B).

4.4 Falicov-Kimball impurity

In this section we discuss the arguably smallest system violating the condition formulated at the
end of the last section. It is an impurity with two flavors, which are both connected to only one
and the same bath site. We show, that Z-sampling gives clearly wrong Green’s functions, and
interpret that with respect to autocorrelation times.

For another more physical example system, where each impurity flavor of an cluster of size
N = 2 is connected to one bath site each, see appendix 4.8.5.

4.4.1 General description

The system under consideration is a one-orbital impurity (two spins with energy levels E↑ = E↓ =
−0.25V ). Both connect to a single bath site of energy ε = 0.0 with hybridization amplitude V . Its
Hamiltonian reads

ĤFK =
(
ĉ†↑ ĉ†↓ â†

)E↑ 0 V

0 E↓ V

V V ε


ĉ↑ĉ↓
a

 (4.4)

= E↑ĉ
†
↑ĉ↑ + E↓ĉ

†
↓ĉ↓ + εâ†a+

∑
σ

V (ĉ†σa+ â†ĉσ). (4.5)
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Figure 4.2: Sketch of the discrete model considered in Sec. 4.4. Let us stress that this system can at most host 3
electrons, 2 on the impurity and 1 in the bath. There is no spin-degeneracy.

This is equivalent to a Falicov-Kimball model by flavor rotation; for details see appendix 4.8.2.
The two impurity flavors E↑ and E↓ of our model could differ by any quantum number like orbital,
spin, or a combination thereof. In order to deal with one-orbital models, we choose this quantum
number to be the spin. The inconsistency of the Z-estimator does not require electron-electron
interaction, hence for simplicity we consider the system to be non-interacting.

The criterion, that each impurity flavor of an cluster of site N needs at least N bath sites, is
violated here. We have two clusters of size one, and they are connected to the same bath site.

Figure 4.3: a) Z-configuration for the Falicov-Kimball impurity. Empty diamonds denote creation operators, filled
diamonds annihilation operators. The red dashed lines mean a propagation of the electron through the
bath.
b) Green’s function configuration the Falicov-Kimball impurity. c) Z-configuration, which connects to
configuration b) by inserting two worm operators.

We characterize the missing diagrams explicitly here, since in the section 4.4.2 we refer to them.
The G-diagram in Fig. 4.3 (b) has nonzero weight; it annihilates an electron on each impurity
flavor, creates them again and has only zero or one electron in the bath. In Z-sampling it would
have to be generated out of the Z-diagram in Fig. 4.3 (a). This is however not possible, as it
requires two electrons to occupy the same single bath site, which violates Pauli’s principle and
the Z-diagram has zero weight. Thus G-diagram (a) is never generated in Z-sampling, making
this estimator inconsistent. For more details on how Pauli’s principle is implemented in effective
propagators, see appendix 4.8.3.
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We confirm this numerically in Fig. 4.4. The Green’s functions of Z-sampling are clearly wrong
compared to G-sampling or exact diagonalization. The property Gσσ′(τ = 0+) +Gσσ′(τ = β−) =
δσσ′ from the anticommutation relations of Fermionic operators is violated in Z-sampling.
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Figure 4.4: Diagonal and offdiagonal Green’s function of model Eq. (4.4) for inverse temperature β = 5V −1.

4.4.2 Autocorrelation time analysis

We have discussed in the previous section that for model (4.4) Z-sampling misses all Green’s
function diagrams with two creation or annihilation operators consecutively in a row. Such G-
diagrams will be called critical in the following, and all remaining diagrams (with alternating ĉ†
and ĉ) noncritical. The Green’s function can be decomposed in

G(τ) = Gcrit(τ) +Gnoncrit(τ). (4.6)

Now we show, that this can also be interpreted such that the autocorrelation time of the critical
diagrams is infinite.

For this purpose we introduce a system, where the Pauli principle on the single bath-site can
be switched on and off continuously. The single bath site is split into three and shifted apart by a
parameter δ, creating an interpolation between an problematic and unproblematic system:

Ĥ ′FK(δ) =



ĉ†↑
ĉ†↓
â†1
â†2
â†3



T

·


E↑ 0 v v v

0 E↓ v v v

v v ε− δ 0 0
v v 0 ε 0
v v 0 0 ε+ δ

 ·

ĉ↑
ĉ↓
â1
â2
â3

 . (4.7)

We motivate this construction in appendix 4.8.4. For consistency with the previous model the new
hybridization is v = V/

√
3. One can verify by using the resolvent expression G = (1iω − Ĥ)−1 or

calculating the hybridization function, that the impurity Green’s functions are identical for ĤFK
and Ĥ ′FK(δ = 0).

A scan over the parameter δ is shown in Fig. 4.6 for the values δ ∈ {0.3, 0.05, 0.01, 0.0}. Since
the number of Monte Carlo steps and measurements is the same for all four panels, the noise
can be directly interpreted as exclusive effect of the autocorrelation. Z-sampling gives correct
results for the system with δ = 0.3. The noise of the critical diagrams increases strongly upon
decreasing δ, because the critical Z-diagrams occur less and less frequently. Therefore few and
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Figure 4.5: Depiction of Hamiltonian (4.7) for zero and finite δ.

fewer critical G-diagrams are generated, which explains the poor statistics in Gcrit. For δ = 0.00 no
critical G-diagrams are produced any more. Their contribution is zero without noise and the result
clearly wrong. Equivalently, the autocorrelation time of the critical diagrams became infinite here.
Therefore, Ĥ ′(δ � 0) does not have the inconsistency problem, and for small δ it can be switched
on continuously. A bias may occur for small δ and small N .
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Figure 4.6: Critical and non-critical contributions to the Green’s function for various values of δ. The increasing
autocorrelation time manifests itself in growing noise upon decreasing δ. For δ = 0.00 the critical
diagrams are not measurable, equivalent to an infinite autocorrelation time.

The curve for the noncritical diagrams is smooth all the time, which means their autocorrelation
times are small and independent of δ.
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4.5 Infinite systems

Systems with baths of infinite size do not produce inconsistent estimators of the type discussed in
section 4.3. However, the resampling may suffer from severe autocorrelation problems, as we will
show in this section.

The system under consideration is an AIM with two flavors. We choose a specific bath hy-
bridization function to illustrate the problem. The two impurity flavors are connected by a single-
particle hopping t and have one bath site of energy ε = 0 each. On its own, this system would
violate the general condition and cause problems as shown in appendix 4.8.5 (the cluster size is
N = 2 and there is one bath site per impurity flavor). But here we extend the bath hybridiza-
tion function of a single delta-peak at ε = 0 with some continuous hybridization bands at higher
energies (from −6t to 5t and 5t to 6t), to create a bath of infinite size (see Fig. 4.7).

Figure 4.7: An hybridization function made of a delta-peak at ε = 0 and higher-energy bands, used to mimic a
situation with a very narrow peak at the Fermi level and extended hybridization at higher energies.

One discrete bath site, which on the real-frequency axis corresponds to a hybridization func-
tion of a delta-peak at energy position ε and amplitude V , becomes V 2/(iω − ε) after analytic
continuation to the Matsubara axis. Therefore the full hybridization function becomes

∆(iωn) = V 2

iω − 0 +
∫ −5

−6
dε V 2

iω − ε
+
∫ 6

5
dε V 2

iω − ε
(4.8)

For the numerical calculation we set the hybridization parameter to V = 0.3t. In this case, the
critical diagrams are those, which contain two creation or two annihilation operators of the same
flavor consecutively in a row. As can be seen in Fig. 4.8, the noncritical part of G(τ) is smooth
and thus has low autocorrelation time, whereas the critical part shows considerable more noise,
which indicates a much larger autocorrelation time.

4.6 Conclusion

We found a strict criterion to identify the systems of finite size, for which the standard estimator of
the Green’s function (Z-Sampling) fails in CTHYB. Pauli’s exclusion principle makes the weight of
partition function configurations zero, out of which probably important, nonzero Green’s function
configuration had to be generated. In worm sampling (G-sampling), this kind of inconsistency
does not occur. Furthermore our findings explain the occurrence of large autocorrelation times
for systems with infinite bath size, and limit the application of CTHYB for quantum chemistry
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Figure 4.8: Diagonal Green’s function of infinite system (blue curve). It is divided into the critical and noncritical
part, where the noise completely stems from the critical one.

applications to worm sampling only. In general, our findings illustrate, that for any Markov Chain
Monte Carlo algorithm of diagrammatic series, it is very important to carefully ensure surjectivity
of the mapping between the sampled distribution and observable distribution.

4.7 Software

The CTHYB data was produced with w2dynamics (Wallerberger et al., 2019) using an interface
(Hausoel et al., 2019) to the TRIQS library (Parcollet et al., 2015). The results shown in figures
4.4, 4.11 and 4.8 were confirmed with the CTHYB solver from TRIQS (Parcollet et al., 2015). The
ED calculations were done with pomerol (Antipov and Krivenko, 2015), also using its interface to
TRIQS.

4.8 Appendices

4.8.1 Some technical remarks

For large cluster sizes N the contributions of critical diagrams go rapidly to zero for combinatoric
reasons.

The applicability of our criterion to systems with off-diagonal hybridizations is straightfor-
ward. Each flavor of an impurity cluster of size N must be connected to at least N bath sites,
independently if these bath sites may also be connected to other impurity flavors.

Let us note that the inconsistency problem discussed here is not caused by an accidental zero
of the weight due to numerical noise. However Z-configurations with exactly zero weight can have
nonzero weight due to numerical instability, especially when using Sherman-Morrison formulas for
updating the bath weight after insertion / removal of a diagram vertex. Then it is possible that
the forbidden G-configurations can still be accessed with correct probabilities, since the "wrong"
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but nonzero weights of the Z-configurations cancel out. The authors observed such a case, where
in Z-sampling G(τ) first converged to a wrong result, then it became spiky and showed a very slow
convergence towards the correct result. G-sampling instead immediately converged to the correct
result.

4.8.2 Relation to Falicov-Kimball model

The system in Sec. 4.4 was labeled Falicov-Kimball impurity with rotated flavors. In order to
motivate this name, we introduce new operators

d̂ = 1√
2
(
ĉ↑ + ĉ↓

)
(4.9)

f̂ = 1√
2
(
ĉ↑ − ĉ↓

)
. (4.10)

They are a unitary transform of the original operators ĉ↑ and ĉ↓, which can be written as

ĉ↑ = 1√
2
(
d̂+ f̂

)
(4.11)

ĉ↓ = 1√
2
(
d̂− f̂

)
. (4.12)

Inserting these expressions into the Hamiltonian of Eq. (4.4), we obtain

Ĥ =
(
d̂† f̂ † â†

) E ∆E
√

2V
∆E E 0√

2V 0 ε


d̂d̂
â

 , (4.13)

where the abbreviations E = 1
2(E↑ + E↓) and ∆E = 1

2(E↑ − E↓) were used. The bath operators
â† and â remain unchanged. Eq. (4.13) clearly shows that the f -electrons do not hybridize with
the bath.

4.8.3 Discussion of Pauli’s principle for effective propagators by the example
of the Falicov-Kimball model

Here we will discuss how Pauli’s principle is implemented for effective propagators using the Z-
diagram in Fig. 4.3 (a) as example. The hybridization function of its Hamiltonian (4.4) is

∆(τ) = V 2

eβε + 1 ×

eετ , if τ > 0
−eε(β−τ), if τ < 0

, (4.14)

where the bath site was integrated out. Summing the effective propagators to a determinant for
the Z-configuration gives

wbath(CZ) = det
(

∆(τ1 − τ3) ∆(τ2 − τ3)
∆(τ1 − τ4) ∆(τ2 − τ4)

)

= det
(
eε(τ1−τ3) eε(τ2−τ3)

eε(τ1−τ4) eε(τ2−τ4)

)
= 0, (4.15)

because the matrix in Eq. (4.15) is rank deficient: the rows are the same, but the first is multiplied
with a factor e−ετ3 , the second with a factor e−ετ4 . This is Pauli’s exclusion principle in the
language of effective propagators, which allows at a certain time only one electron to propagate
through the bath for the Falicov-Kimball impurity.

The generalization to bigger matrices is straightforward.
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Figure 4.9: Sketch drawing of the discrete model considered in Sec. 4.8.5.

4.8.4 Adding dummy bath sites

Here we discuss how a single bath site, which can only host one electrons, can artificially be split
into two bath sites, which together also can only host one electron. Take a system with one
impurity flavor and one bath site for simplicity

Ĥ =
(
ĉ† â†1

)(E V

V ε

)(
c

â1

)
. (4.16)

A dummy bath site with the same energy ε is added, which is not coupled to the impurity:

Ĥ =
(
ĉ† â†1 â†2

)E V 0
V ε 0
0 0 ε


 c

â1
â2

 . (4.17)

Then Ĥ is rotated with a unitary matrix

A =


1 0 0
0 1√

2
1√
2

0 1√
2 − 1√

2

 , (4.18)

which gives a Hamiltonian

A†ĤA =
(
ĉ† b†1 b†2

) E V/
√

2 V/
√

2
V/
√

2 ε 0
V/
√

2 0 ε


 c

b1
b2

 . (4.19)

The bath of Hamiltonian (4.19) looks like it was able to host two electrons, because one could assign
an additional quantum number to them, a site number. But there can only be one electron in
the bath, since (4.19) is a rotation of (4.17). Also the hybridization functions of the Hamiltonians
(4.16), (4.17) and (4.19) coincide.

Now shifting the energies ε apart continuously switches off Pauli’s principle in the bath.
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4.8.5 Impurity with single bath site

We consider a physically more realistic example here: an impurity with two flavors E↑ = E↓ = 0,
where each flavor has its own bath. There is a hopping t between the impurity flavors.

Ĥ =
(
ĉ†↑ ĉ†↓ â†↑ â†↓

)

E↑ t V 0
t E↓ 0 V

V 0 ε↑ 0
0 V 0 ε↓



ĉ↑
ĉ↓
â↑
â↓

 (4.20)

=
∑
σ

(Eσ ĉ†σ ĉσ + tĉ†σ ĉσ̄) +
∑
σ

εσâ
†
σâσ (4.21)

+
∑
σ

V (ĉ†σâσ + â†σ ĉσ). (4.22)

The bath parameters are ε↑ = 0.1t, ε↓ = −0.1t, V = 0.3t, and the inverse temperature β = 5/t.
There is no interaction among the electrons.

The criterion is violated here, since the cluster size is N = 2, and each impurity flavor has only
one bath-site.

Critical diagrams are those with two annihilation operators of same kind after each other, like
shown in Fig. 4.10. The Green’s function from Z-sampling is clearly wrong (Fig. 4.11).

Figure 4.10: A critical diagram for the impurity of model in Eq. (4.20).
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Figure 4.11: Diagonal Green’s function of the impurity Eq. (4.20).



Chapter 5

DMFT with general interactions

One of the main tasks of this thesis was to generalize the DFMT package w2dynamics to treat
Hubbard models with the most general, one- and two-particle on-site terms

Hloc = Hloc,1P +Hloc,2P (5.1)

=
∑
µν

tµνc
†
µcν + 1

2
∑
κλµν

Uκλµνc
†
κc
†
λcνcµ. (5.2)

In this chapter I first discuss the physical content and technical implications of certain Hloc.
Then I discuss, how to change the basis of the AIM and the DMFT loop. A major reason for a
change of basis is the symmetry of the local problem. When the crystal structure or the presence
of complicated spin-orbit terms reduces the symmetry of the Weiss field G(iωn), then partial
rotations can make calculations feasible, e.g. because they alleviate the sign problem or reduce
the size of offdiagonal hybridizations. Further choosing the right basis may help to interpret
and understand the results physically better. Another reason is the so-called rotation test. One
performs calculations for the same system in two different bases and checks for consistency. Last
I briefly introduce the interface of the CTHYB solver w2dynamics to the TRIQS library.

5.1 Properties of the local Hamiltonian

In this section I discuss the properties of the local impurity Hamiltonian Hloc, which governs
the time evolution via c(†)(τ) = e−Hlocτ c(†)eHlocτ , as we have seen in Chapter 3. It contains the
microscopic processes, which happen on the impurity during time evolution and mix different
states with each other. The mixing states are grouped together in blocks of Hloc. The fact that
during time evolution the system cannot go from one to another block means, that each block
has a set of conserved quantum numbers, which are different for each block. Since the size of the
blocks directly determines the exponential scaling of CTHYB, a minimization of the block sizes
is desirable. Since there is an equal number of creation an annihilation operators in each term of
Eq. (5.2) and we don’t consider superconductivity, the total number of electrons (in w2dynamics
called Nt) is always conserved.

Let me further separate the discussion for one- and two-particle terms.
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5.1.1 Two-particle terms

It is more intuitive to start from the most severe approximation that sometimes is adopted, which
is the density-density interaction

Hdensity
loc,2P =

∑
i

Uni↑ni↓ +
∑

i<j,σσ′

(V − Jδσσ′)niσnjσ′ , (5.3)

that sometimes is adapted. It only consists of density terms, therefore the time evolution is not
able to change a many body state, but just assigns an energy to it. The orbital occupations niσ
(called Azt in w2dynamics) are conserved quantities on the impurity.

A step away from the most serious approximation is represented by the Kanamori Hamiltonian

HKanamori
loc,2P = Hdensity

loc,2P − J
∑
i<j

(
c†i↑c

†
i↓cj↑cj↓ + c†i↑c

†
j↓cj↑ci↓

)
, (5.4)

which adds spin-flip and pair-hopping terms. As can be seen from figure (5.1), these processes
conserve the PS quantum number, which is the pattern of single occupied orbitals (depicted in
blue here and called Qzt in w2dynamics).

Figure 5.1: Illustration of pair-hopping and spin-flip processes on the impurity. The five boxes represent five or-
bitals. Taken from Parragh et al. (2012a).

The full-Hubbard interaction

H full Hubbard
loc,2P =

∑
ijklσσ′

Uijklc
†
iσc
†
jσ′clσ′ckσ (5.5)

also allows all correlated hopping processes beyond spin-flip and pair-hopping. These are for
example two single electrons hopping, or two electrons of a double occupied orbital hopping apart,
as depicted in Fig. 5.2. They obviously break the PS quantum number.

w2dynamics also has the Coulomb interaction implemented, which is the local part of a spherical
Coulomb tensor written in the basis of the tesseral harmonics (real spherical harmonics) for d-
orbitals. This poses constraints on the numerical values of Uijkl in Eq. (5.5) and gives the angular
momentum in z-direction as additional conserved quantity (Lzt in w2dynamics).

In summary, the parametrizations of the 2-particle interaction Hloc,2P discussed here conserve
the number of electrons and the spin in z-direction. According to the chosen approximation
additionally come the conserved quantities above. The one-particle terms can break these quantum
numbers, which I will discuss in the following.

5.1.2 One particle terms

The one particle terms that consist of density terms only describe the energy levels on the impurity
and do not disturb the conserved quantities of the two particle terms.
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Figure 5.2: Illustration of full-Hubbard processes on the impurity; for a more detailed discussion see Ref. Valli et al.
(2020). The five boxes represent five orbitals. Adapted from Parragh et al. (2012a).

There can be a one-particle hopping of conserving spin, which come from the k-averaged DMFT
Hamiltonian (see Eq. (5.33) later in this chapter), or to describe non-local correlations with cluster
DMFT. The conserved quantities these terms leave are Nt and Szt.

There can be terms that flip the spin and conserve the orbital, for example magnetic fields in
other than z-direction. And there can be single-particle hopping terms which flip the spin, when
there is spin-orbit coupling. In w2dynamics in both cases only Nt is left as conserved quantity.

5.1.3 Discussion

In w2dynamics the conserved quantities have to be given explicitly in the parameter file, for
example as QuantumNumbers = Nt Szt Qzt. Then the block structure of Hloc is fixed that way
and all terms outside of the blocks are neglected. One can play around with the quantum numbers
and check the sensitivity of the results upon truncating classes of terms, in order to find out about
their importance or to find a computationally cheaper model. The computation time may vary
over orders of magnitude upon change of the quantum numbers.

There is also an algorithm implemented, which automatically finds the order and grouping of
the many-body states in the numerical representation of Hloc minimizing the size of the blocks
(add All to the list of QuantumNumbers, which are known to be conserved). In this case, one
should especially closely look at the offdiagonal elements of Hloc,1P, since in a calculation of a real
material they are generated from the k-averaged Hamiltonian 〈H(k)〉 (see Eq. (5.33) later in this
chapter). They may be effectively zero, but have numerical noise and lead to larger blocks in the
automatic minimization procedure.

5.2 The solver

In this section I show how to change the single-particle basis of the CTHYB solver. First I discuss
the impurity operators, then the Green’s functions, and last the one- and two-particle interactions.

5.2.1 Rotation of impurity operators

The transforms of the impurity operators are

dα =
∑
β

A∗βαcβ d = A†c (5.6)

d†α =
∑
β

Aβαc
†
β d† = c†A, (5.7)
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where c(†)
α are the original impurity operators with {cα, c†β} = δαβ. The transformed operators

have to fulfill the same anticommutation relation, therefore{
dα, d

†
β

}
=
∑
γδ

A∗γαAδβ
{
cγ , c

†
δ

}
(5.8)

=
∑
γ

A∗γαAγβ (5.9)

!= δαβ (5.10)

For this to be the case, A must be a unitary matrix (A†A = 1). The inverse transforms are

cα =
∑
β

Aαβdβ c = Ad (5.11a)

c†α =
∑
β

A∗αβd
†
β c† = d†A†. (5.11b)

5.2.2 Rotation of impurity quantities

Now I will find the relations between the impurity quantities and their rotations into the new basis.
The rotation of the Green’s function G(τ) =

〈
Tτ c(τ)c†(0)

〉
is

A†G(τ)A =
〈
TτA

†c(τ)c†(0)A
〉

(5.12)

=
〈
Tτd(τ)d†(0)

〉
(5.13)

= G′(τ), (5.14)

or explicitly with indices

G′αβ(τ) =
∑
γδ

A∗γαAδβGγδ(τ). (5.15)

Transforming the single-particle interaction yields

Hloc,1P =
∑
µν

tµνc
†
µcν (5.16)

=
∑
µν

tµν
∑
α

A∗µαd
†
α

∑
β

Aνβdβ (5.17)

=
∑
αβ

(∑
µν

tµνA
∗
µαAνβ

)
d†αdβ (5.18)

=
∑
αβ

t′αβd
†
αdβ, (5.19)

or t′ = A†tA in short. The same way the two-particle interaction transforms

Hloc,2P =
∑
κλµν

Uκλµνc
†
κc
†
λcνcµ (5.20)

=
∑
κλµν

Uκλµν
∑
α

A∗καd
†
α

∑
β

A∗λβd
†
β

∑
γ

Aνγdγ
∑
δ

Aµδdδ (5.21)

=
∑
αβγδ

∑
κλµν

UκλµνA
∗
καA

∗
λβAνγAµδ

d†αd†βdγdδ (5.22)

=
∑
αβγδ

U ′αβγδ d
†
αd
†
βdγdδ (5.23)
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with the new interaction matrix

U ′αβγδ =
∑
κλµν

UκλµνA
∗
καA

∗
λβAνγAµδ, (5.24)

or U ′ = A†A†UAA in short.

5.3 DMFT loop

In this section I describe the DMFT loop. First I establish the connection between the Weiss field
and the hybridization function, which was introduced in chapter 3. Then I formulate the rotation
test for DMFT, discuss its purpose and limitations, and last show an easy example.

5.3.1 The hybridization function

When there is CTHYB as impurity solver in the DMFT loop (see figure 5.3), the Weiss field /
non-interacting Green’s function G(iωn) of the AIM needs to be transformed to the hybridization
function ∆(iωn) as input for CTHYB. Also in order to calculate the self-energy of the impurity,
we need the non-interacting Green’s function

G(iωn) = [iωn1 + µimp −∆(iωn)]−1 (5.25)

of the AIM (Bruus and Flensberg, 2004), with a yet undefined, matrix valued impurity chemical
potential µimp. Then the hybridization function for particles is

∆P(iωn) = iωn1 + µimp − [G(iωn)]−1 . (5.26)

In CTHYB holes propagate through the bath, therefore we find by a particle-hole transform

∆H(−iωn) = iωn1 + µimp − [G(iωn)]−1 (5.27)
∆H(iωn) = −iωn1 + µimp − [G(−iωn)]−1 , (5.28)

which now is the proper input for the CTHYB, suitable for Eq. (3.23).
The impurity chemical potential µimp still needs to be properly defined. We demand, that the

impurity has the same average filling as one site of the corresponding Hubbard model. It is well
known, that the high-frequency behavior of one-particle Matsubara objects does not contain dy-
namical processes, but depends on static properties or densities only (Wang et al., 2011). Therefore
we fix µimp by inspecting high frequency expansions of the corresponding Matsubara objects.

I first take the local Green’s function of the lattice

Gloc(iωn) = 1
Nk

∑
k

[(iωn + µ)1− Σ(iωn)−H(k)]−1 (5.29)

and expand its inverse around iωn →∞. This gives1

lim
iωn→∞

G−1
loc(iωn) = (iωn + µ)1− Σ(iωn)− 〈H(k)〉 (5.30)

1The inverse of g(z) = 1
N

∑N

i=1
1

z−ci
expanded around z = ∞ gives 1

g(z) = z + 1
N

∑N

i=1 ci. A generalization to
matrix valued z and ci is straightforward.
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with the local, Brillouin-zone averaged Hamiltonian 〈H(k)〉 = 1/Nk
∑
kH(k).2 The second equa-

tion needed is the hybridization function Eq. (5.28), with the Weiss field is eliminated by Dyson’s
equation G−1 = G−1 + Σ, which gives

∆(−iωn) = (iωn + µimp)1−G−1
loc(iωn)− Σ(iωn). (5.31)

Plugging Gloc + Σ = (iωn + µ)1− 〈H〉 from Eq. (5.30) into Eq. (5.31) gives

∆(−iωn) = (iωn + µimp)1− (iωn + µ)1 + 〈H(k)〉 . (5.32)

Applying the limit iωn →∞ makes the hybridization function disappear, and the defining equation
for the impurity chemical potential is found to be

µimp1 = µ1− 〈H(k)〉 . (5.33)

5.3.2 Rotation test for DMFT

Possible problems of the solver may be so subtle, that they are not visible in a single-shot calculation
or they can be smaller than the error bars. However, they may act as a “force” on the self-
consistency procedure in phase space, making it end up somewhere completely else compared to
where it is supposed to end. One sometimes also needs to test the DMFT loop. Here I describe
the rotation test of the DFMT cycle, which essentially means doing the same calculation in two
different bases.

Let us see how the quantities transform starting the self-consistency with Σ = 0. We have to
modify the single particle dispersion by hand via

H ′(k) = U †H(k)U. (5.34)

It can be seen in figure 5.3, that the quantities

G′latt(k, iωn) = U †Glatt(k, iωn)U (5.35)
G′loc(iωn) = U †Gloc(iωn)U (5.36)
G′(iωn) = U †G(iωn)U (5.37)

change together with the basis accordingly. Within the solver,

µimp → U †µimpU (5.38)
∆(iωn)→ U †∆(iωn)U (5.39)

change together with their basis automatically, leaving the interaction matrix, that has to be
changed by hand via

U ′ = A†A†UAA. (5.40)
Then the solver delivers a transformed impurity Green’s function and self-energy

G′imp(iωn) = A†Gimp(iωn)A (5.41)
Σ′(iωn) = A†Σ(iωn)A, (5.42)

which closes the DMFT loop. The lattice chemical potential is independent of the basis, since it is
proportional to the unit matrix, but double-counting schemes are usually basis dependent. If for
the rotation test a system with double counting shall be rotated in another basis, one has to fix
the double counting in one basis, and rotate it to the new basis, instead of applying the scheme to
the new basis.

2Since in w2dynamics the dispersion H(k) of the lattice is always given at a finite set of k-points, the actual
Brillouin-zone average 1/VBZ

∫
BZ dk is here also approximately written as a discrete sum 1/Nk

∑
k
, which is imple-

mented.
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Figure 5.3: Illustration of the DMFT loop. On the left side the observables of the Hubbard model, which are the
lattice Green’s function Glatt local Green’s function Gloc. On the right side the impurity quantities,
which are the Weiss field G and self-energy Σ. Taken from Wallerberger (2016).

5.3.3 A two orbital example

As an example, I show the rotation test for a two orbital Hubbard model with simple cubic lattice
and a Hamiltonian of

H(k) =
(
−2t[cos(kx) + cos(ky)] 0

0 −2t[cos(kx) + cos(ky)]

)
(5.43)

for both spins. There is a Kanamori interaction with Parameters U = 2.0t, J = 0.5t and V = 1.0t.
A magnetic field of strength h = 0.2tσz in z-direction is applied3. The DMFT Green’s function
for a temperature of β = 10t in the original basis is shown in figure 5.4. Since the orbitals are
degenerate and all quantities diagonal in the orbitals, I show only one orbital in the following and
also omit the orbital indices. The magnetic field induces a finite magnetization of m = n↑ − n↓ =
G↑↑(τ = β−)−G↓↓(τ = β−). As expected, the offdiagonal Green’s functions are zero.

In the following I discuss this calculation in different bases. The general rotation of a spin
around an axis n is given by (Sakurai and Commins, 1995)

Rn(α) = cos(α/2)1− iσsin(α/2) (5.44)

=
(
cos(α/2)− inzsin(α/2) (−inx − ny)sin(α/2)
(−inx + ny)sin(α/2) cos(α/2) + inzsin(α/2)

)
. (5.45)

The system is rotated with

Rny(α) =
(
cos(α/2) −sin(α/2)
sin(α/2) cos(α/2)

)
(5.46)

Rny(π) =
(

1/
√

2 −1/
√

2
1/
√

2 1/
√

2

)
(5.47)

by an angle of α = π around the y-axis ny = (0, 1, 0). Fig. 5.5 shows two calculations:
3All technical details about running this (called “A-two-orbital-model-with-magnetic-field”) and

other examples with w2dynamics can be found on the tutorial part of the website of the code:
https://github.com/w2dynamics/w2dynamics/wiki/Tutorials

https://github.com/w2dynamics/w2dynamics/wiki/Tutorials
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Figure 5.4: Converged DMFT results for the system with magnetic field in z-direction. The pictures above show
the spin-diagonal Green’s function, which have a spin polarization. The pictures below show the spin-
offdiagonal part, which is zero.

• one of DMFT convergence, where the Hamiltonian H(k) and the interaction matrix were
rotated with Rny(π)4,

• and one where the DMFT convergence was done with the original Hamiltonian (with mag-
netic field in z-direction), and the resulting G(τ) rotated with Rny(π).

They have to coincide, which is the case. We see, that the magnetic field no longer splits up the
occupations of the spins, but its effect is encoded in the real offdiagonal part of G(τ).

Figure 5.6 shows the same procedure, but with a rotation around the x-axis with a matrix

Rnx(π) =
(

cos(α/2) −i sin(α/2)
−i sin(α/2) cos(α/2)

)
(5.48)

=
(

1/
√

2 −i/
√

2
−i/
√

2 1/
√

2

)
. (5.49)

Now the magnetic field is encoded in the imaginary offdiagonal part of G(τ). Note the different
symmetry properties of the real and imaginary offdiagonal parts of G(τ), which come from the
hermiticity of the Hamiltonian discussed in Sec. 6.2, especially Eq. (6.17).

5.3.4 Discussion

Performing a calculation in two different bases and comparing the results in one basis is a very
powerful test, which sensitively points towards problems. These can be for example not enough

4Note that because the Kanamori interaction for two orbitals is SU(2) spin-rotationally invariant, this also
corresponds to a magnetic field of h = 0.2tσx applied to the original system.
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Figure 5.5: These figures show the results of two calculations. 1) The black and gray solid lines show the system,
where the DMFT calculation was done with the Hamiltonian H(k) rotated with Rny (π), where the
magnetic field now points in x-direction. The diagonal parts of the Greens function are spin-degenerate
again, and the effect of the magnetic field is encoded in the real offdiagonal parts of the Greens function
(figures below). 2) In order to test the implementation and the input, here are also shown the Green’s
functions of Fig. 5.4 rotated with Rny (π) (red and blue dots).
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Figure 5.6: This shows the same as Fig. 5.5, but with a rotation of Rnx(π).

Matsubara frequencies and therefore inaccurate Fourier transforms, omission of important terms of
Hloc by enforcing too much quantum numbers, or ergodicity problems in the Monte Carlo sampling.

However the rotation test only works for paramagnetic systems. In the example of Sec. 5.3.3 a
magnetic field was used to induce a magnetization in order to enable a nontrivial rotation, and the
rotation test was found to succeed. This would be very different, if the ordering was an emergent
phenomenon. For magnetization in z-direction the order parameter is a scalar (m = n↑ − n↓),
but for a magnetization in any other direction it is a frequency-dependent, complex Nflav ×Nflav
matrix. In the latter case, the system has many more degrees of freedom to minimize its energy,
therefore one cannot expect that a rotation exists, which maps the two systems onto each other.
This is also what we observe.

One can force the magnetization into the xy-plane by applying Eq. (6.71) only to the diagonal
part of G(τ), i.e. to symmetrize over the spins on the diagonal only. Since magnetization in z-
direction is described by σz, this suppresses its z-component. If the paramagnetic solution G(τ) is
completely real, by keeping it real, the magnetization can be forced into the xz-plane. Furthermore
applying the two constraints together forces the magnetization to point in x-direction. This is
especially useful, if a system is non-uniform in space like layered structures, where one can create
in-plane and out-of-plane magnetizations this way.

In any case, the choice of the basis is crucial. First, the average Monte Carlo sign depends on
it (Shinaoka et al., 2015), since CTHYB does not like large, offdiagonal imaginary hybridization
functions. Second, for ordered solutions the results may become very difficult to interpret, when
there is a mixed orbital and spin order, also basis dependent of course. Then one must use physical
intuition or a priori knowledge from experiment about what kind of orderings are expected, and
which basis is best to examine them.
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5.4 The w2dynamics_interface - a link to the TRIQS library

As seen in the previous section, rotation tests are not practical to check ordered solutions. They
are however of great interest, therefore one must compare to other implementations of CTHYB
and DMFT.

For this and other purposes we made an the w2dynamics_interface5 to TRIQS6, the Toolbox
for Research on Interacting Quantum Systems. It provides C++ and python libraries for the
treatment of strongly correlated quantum systems, e.g. to quickly build DMFT loops, and also
contains complete applications7 like a CTHYB solver. With the interface it is possible to run the
same calculation with two different implementation of the DMFT loop and two solvers:

• w2dynamics DMFT loop & w2dynamics solver

• TRIQS DMFT loop & w2dynamics solver

• TRIQS DMFT loop & TRIQS solver

These three setups give identical results for paramagnetic calculations, but not yet for magnetic
ones. Further work has to be done in this direction.

Another motivation for the interface was to compare the two CTHYB solvers. Even though
their algorithm is conceptually the same, their interior, especially their implementation of the
fermionic trace Tr ˆ(C) = ∑

n
ˆ〈n C n〉 can be considered orthogonal to each other, making this

comparisons valuable. I will briefly describe the differences here.
triqs_cthyb calculates Tr ˆ(C) = ∑

n
ˆ〈n C n〉 in a matrix-matrix algorithm. This means it

multiplies the matrix representations of the operators and saves them in a binary tree, and in
the very end contracts one matrix with the eigenstates n〉. w2dyn_cthyb has a matrix-vector
algorithm, which means it multiplies the matrix representations of the operators repeatedly on the
eigenstates n〉.

w2dyn_cthyb employs an importance sampling of the sum over the outer states n〉 (the
superstate-sampling or state-sampling algorithm of Kowalski et al. (2019)), whereas triqs_cthyb
performs this sum explicitly.

triqs_cthyb uses a lazy trace evaluation Sémon et al. (2014), which is a method to quickly
calculate upper and lower bounds of the trace by using the norms of the matrices instead of full
matrices. This allows it to reject very unlikely configurations quickly without wasting time to
calculating the exact trace. w2dyn_cthyb instead uses the sliding window technique to propose
only updates local in imaginary time Shinaoka et al. (2014). This enhances acceptance rates a lot,
since the weight of a configuration is known to be damped exponentially with the distance of the
inserted operators in imaginary time.

5https://triqs.github.io/w2dynamics_interface/latest/
6https://triqs.github.io/triqs/latest/
7https://triqs.github.io/cthyb/latest/

https://triqs.github.io/w2dynamics_interface/latest/
https://triqs.github.io/triqs/latest/
https://triqs.github.io/cthyb/latest/
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Chapter 6

From system symmetries to Green’s
function’s symmetries

This chapter discusses constraints of Green’s functions due to symmetries. For complicated sys-
tems it is desirable to know the symmetries of the Green’s function and enforce them in DMFT
calculations. This improves the statistics and stabilizes the convergence.

First I derive what hermiticity of the Hamiltonian (Ĥ = Ĥ†) implies, then I discuss time-
reversal symmetry. Last comes a method, to transfer invariances of the Hamiltonian with respect
to unitary transforms to constraints for the Green’s function.

I consider multi-orbital AIMs with general one- and two-particle interactions, but restrict myself
on one-particle Green’s functions.

6.1 Some repetitions

For the sake of completeness, I repeat some properties already derived in former chapters. The
definition of the imaginary time Green’s function is

Gαβ(τ) = −
〈
Tτ ĉα(τ)ĉ†β(0)

〉
, (6.1)

where already the symmetry of time translational invariance is applied, which is caused by energy-
conservation in the system. The Green’s function then only depends on time differences, or equiv-
alently one time can put to zero. The Fourier transforms are

Gαβ(iωn) =
∫ β

0
dτ Gαβ(τ)eiωnτ (6.2)

Gαβ(τ) = 1
β

∑
n

Gαβ(iωn)e−iωnτ . (6.3)

The cyclic property of the trace leads to

Gαβ(τ) = −Gαβ(τ + β). (6.4)

6.2 Symmetries from hermiticity

A fundamental property of equilibrium quantum systems is the hermiticity of the Hamilton op-
erator (Ĥ = Ĥ†). This is connected to a symmetry of the one-particle Green’s function, which I
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will derive in the following. Generally, the complex conjugate of a matrix element with hermitian
operators Â1, . . . , Ân is

〈m Â1...Ân n〉∗ = 〈n Â†n...Â
†
1 m〉 . (6.5)

The order of all objects is inversed and the operators are daggered. We take the definition of the
Green’s function without time-translational symmetry

Gαβ(τ1, τ2) =
〈
Tτ [ĉα(τ1)ĉ†β(τ2)]

〉
(6.6)

= 1
Z
Tr
[
e−βĤTτ ĉα(τ1)ĉ†β(τ2)

]
(6.7)

and write the Heisenberg time-evolution explicitly

ĉ†α(τ) = eĤτ ĉ†αe−Ĥτ (6.8)

ĉα(τ) = eĤτ ĉαe−Ĥτ . (6.9)

Unlike for real times, the dagger of an imaginary-time dependent operator is not just obtained by
removing / adding the dagger. Instead the time additionally picks up a minus sign:[

ĉ†α(τ)
]†

=
[
eĤτ ĉ†αe−Ĥτ

]†
(6.10)

= e−Ĥτ ĉαeĤτ (6.11)
= ĉα(−τ) (6.12)

[ĉα(τ)]† = ĉ†α(−τ). (6.13)

Applied to the Green’s function Eq. (6.5), this gives

G∗αβ(τ1, τ2) =
〈
Tτ [ĉα(τ1)ĉ†β(τ2)]

〉∗
(6.14)

=
〈
Tτ [ĉβ(−τ2)ĉ†α(−τ1)]

〉
(6.15)

= Gβα(−τ2,−τ1). (6.16)

With time translational invariance one finds

G∗αβ(τ) = Gβα(τ), (6.17)

where the time τ is defined as the first minus the second time argument of G. From this follows,
that the diagonal part Gαα(τ) is always real for any equilibrium Green’s function.

To find the corresponding Matsubara relations first write the original definition, then the
complex conjugate of it, and the Fourier representation of the right side of Eq. (6.17):

Gαβ(τ) = 1
β

∑
n

Gαβ(iωn)e−iωnτ (6.18)

G∗αβ(τ) = 1
β

∑
n

G∗αβ(iωn)eiωnτ (6.19)

Gβα(τ) = 1
β

∑
n

Gβα(iωn)e−iωnτ . (6.20)

According to Eq. (6.17), the right sides of Eqs. (6.19) and (6.20) must be the same. Performing a
substitution iωn → −iωn and remembering that Fourier exponentials are a orthonormal basis set,
one finds

G∗αβ(iωn) = Gβα(−iωn). (6.21)

In w2dynamics, Eq. (6.21) is enforced by default for the hybridization function ∆(iωn).



6.3. Time reversal symmetry 79

6.3 Time reversal symmetry

Here I first discuss the time reversal of the Schrödinger equation, both time-dependent and time-
separated, and in real as well as in imaginary time, to find the properties of states, operators
and the time-evolution under time reversal. Then I discuss the time reversal operator and how it
transforms the Green’s function.

6.3.1 The real time Schrödinger equation (full)

To find out, how states and operators transform under time-reversal, it is convenient to go back
to first quantization and Schrödinger’s equation

i~
∂

∂t
ψ(t)〉 = Ĥ ψ(t)〉 . (6.22)

A complex conjugation of it gives

− i~ ∂
∂t

ψ(t)〉∗ = Ĥ∗ ψ(t)〉∗ . (6.23)

The system is time-reversal invariant, if and only if there exists a unitary transform UT , which is
applied from the left to Eq. (6.23)

i~
∂

∂(−t)UT ψ(t)〉∗ = UT Ĥ
∗U−1

T UT ψ(t)〉∗ , (6.24)

and for which UT Ĥ∗U−1
T = Ĥ holds. Then if ψ(t)〉 is a solution of the Schrödinger equation, also

UT ψ(−t)〉∗ is a solution.

6.3.2 The real time Schrödinger equation (time-separated)

To better understand, I now do the same again with the time-separated SGL. There the wave
function can be written as ψ(t)〉 = e−iHt ψ(0)〉 and the SGL becomes

i~
∂

∂t
e−iHt ψ(0)〉 = Ĥe−iHt ψ(0)〉 . (6.25)

The complex conjugate of it is

(−i)~ ∂
∂t

eiH∗t ψ(0)〉∗ = Ĥ∗eiH∗t ψ(0)〉∗ . (6.26)

The unitary transform UT again comes from the left

i~
∂

∂(−t)UT e
iH∗tU †TUT ψ(0)〉∗ = UT Ĥ

∗U †TUT e
iH∗tU †TUT ψ(0)〉∗ (6.27)

and with UT Ĥ∗U−1
T = Ĥ we have

i~
∂

∂(−t)e
iHtUT ψ(0)〉∗ = ĤeiHtUT ψ(0)〉∗ (6.28)

i~
∂

∂(−t)UT e
iH∗t ψ(0)〉∗ = ĤUT e−iH

∗t ψ(0)〉∗ (6.29)

i~
∂

∂(−t)UT ψ(t)〉∗ = ĤUT ψ(t)〉∗ (6.30)

i~
∂

∂t
UT ψ(−t)〉∗ = ĤUT ψ(−t)〉∗ . (6.31)

In Eq. (6.29) the antilinear property UT Ĥ∗ = ĤUT was used, in Eq. (6.30) the time evolution was
put again back into the state via eiH∗t ψ(0)〉∗ =

(
e−iHt ψ(0)〉

)∗
= ψ(0)〉∗ and in Eq. (6.31) a

substitution t→ −t was performed.
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6.3.3 The imaginary time Schrödinger equation (full)

Since in this thesis all calculations are performed in imaginary time, I briefly have to write down
the derivation also for the imaginary time SGL.

− ~
∂

∂τ
ψ(τ)〉 = Ĥ ψ(τ)〉 . (6.32)

A complex conjugation of it gives

− ~
∂

∂τ
ψ(τ)〉∗ = Ĥ∗ ψ(τ)〉∗ . (6.33)

UT comes from the left and with UT Ĥ∗U−1
T = Ĥ there is

−~ ∂
∂τ
UT ψ(τ)〉∗ = UT Ĥ

∗U−1
T UT ψ(τ)〉∗ (6.34)

= ĤUT ψ(τ)〉∗ (6.35)

If ψ(τ)〉 is a solution of the imaginary time Schrödinger equation and time-reversal symmetry
holds, UT ψ(τ)〉∗ is also a solution. It might seem strange that under a time-reversal operation,
here the time is unaffected. But time-reversal may also be thought as a mirroring along iτ in the
t–iτ plane, and therefore leaving only the mirroring axis iτ invariant.

6.3.4 The time reversal operator

The above considerations motivate to define the time reversal operator T such that it acts on
states and operators like

T ψ(t)〉 = UT ψ(−t)〉∗ (6.36)
TÂT−1 = UT Â

∗U−1
T . (6.37)

It consists of the complex conjugation operator K and a yet undefined, unitary transform UT :

T = UTK. (6.38)

The overlap 〈ψ|φ〉 between two time independent states transforms under time reversal like

〈ψ T−1T φ〉 = 〈ψ KU †TUTK φ〉 (6.39)
= (〈ψ K)U †TUT︸ ︷︷ ︸

=1

(K φ〉) (6.40)

= (〈ψ|φ〉)∗ (6.41)
= 〈φ|ψ〉 , (6.42)

i.e. it complex conjugates the overlap. With an operator Â in between there is

〈ψ T−1ÂT φ〉 = 〈ψ KU †T ÂUTK φ〉 (6.43)
= (〈ψ K)U †T ÂUT (K φ〉) (6.44)

=
(
〈ψ (U †T ÂUT )∗ φ〉

)∗
, (6.45)

where the complex conjugate of the inner bracket must not be mistaken for a Hermitian conjugate.
Now there is still the form of the unitary transform UT to be defined. For this, one precondition
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from the correspondence principle has to be used, namely that the spin S = ~/2σ flips under time
reversal

TST † = −S, (6.46)

like any angular momentum in classical mechanics does. With the standard representation of the
spin via the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(6.47)

the transformations under time reversal are

TσxT
−1 = UTKσxKU

†
T = UTσxU

†
T = −σx (6.48)

TσyT
−1 = UTKσyKU

†
T = −UTσyU †T = −σy (6.49)

TσzT
−1 = UTKσzKU

†
T = UTσzU

†
T = −σz. (6.50)

Thus UT must commute with σy and anticommute with σx and σz. Since any unitary matrix of
size 2× 2 can be decomposed like UT = α1 +βσx + γσy + δσz, the only possibility that Eqs. (6.48)
to (6.50) allow is UT = σy (up to phase). The phase can conveniently be chosen such that the
result is real:

UT = iσy =
(

0 −1
1 0

)
. (6.51)

A typical feature of time reversal for fermions is, that applied twice, it restores the original state,
but with an minus sign:

TT = UTKUTK = U2 = −1. (6.52)

6.3.5 Time reversal of 2nd quantization operators

To figure out, how time reversal acts on 2nd quantized operators, I switch to a spinor notation
with

↑〉 =
(

1
0

)
, ↓〉 =

(
0
1

)
. (6.53)

Therefore:

UT ↑〉 = ↓〉 (6.54)
U2
T ↑〉 = − ↑〉 (6.55)

U3
T ↑〉 = − ↓〉 (6.56)

U4
T ↑〉 = ↑〉 . (6.57)

With the shorthand notation σ = 1 for spin-up and σ = −1 for spin-down, the operators transform
like

U †T ĉσUT = σĉ−σ. (6.58)



82 Chapter 6. From system symmetries to Green’s function’s symmetries

6.3.6 Time reversal of the Green’s function

To get the behavior of the Green’s function under time reversal, I write the trace explicitly as
a sum over the eigenstates and use the fact, that the time-reversed states UT N〉∗ also form a
complete basis set (here I closely follow Bányai and el Sayed (1994))

Gσσ′(τ) = 1
Z
Tr
[
e−βĤTτeĤτ ĉσe−Ĥτ ĉ†σ′

]
(6.59)

= 1
Z

∑
N

e−βEN 〈N TτeĤτ ĉσe−Ĥτ ĉ†σ′ N〉 (6.60)

= 1
Z

∑
N

e−βEN (〈N K)U †TTτe
Ĥτ ĉσe−Ĥτ ĉ†σ′UT (K N〉). (6.61)

We complex conjugate it (not Hermitian conjugate!), where the second quantized operators and
the UT (since they are real) stay unaffected:

G∗σσ′(τ) = 1
Z

∑
N

e−βEN 〈N U †TTτe
Ĥ∗τ ĉσe−Ĥ

∗τ ĉ†σ′UT N〉 . (6.62)

Now if time reversal invariance holds UT ĤU †T = Ĥ∗, or U †T Ĥ∗UT = Ĥ respectively, one can restore
the original Hamiltonian and relate to the original Green’s function

G∗σ,σ′(τ) = 1
Z

∑
N

e−βEN 〈N U †TTτe
Ĥ∗τ ĉσe−Ĥ

∗τ ĉ†σ′UT N〉 (6.63)

= 1
Z

∑
N

e−βEN 〈N TτU
†
T e

Ĥ∗τUTU
†
T ĉσUTU

†
T e
−Ĥ∗τUTU

†
T ĉ
†
σ′UT N〉 (6.64)

= 1
Z

∑
N

e−βEN 〈N TτeĤτσĉ−σe−Ĥτσ′ĉ†−σ′ N〉 (6.65)

= σσ′G−σ,−σ′(τ), (6.66)

therefore
Gσσ′(τ) = (σσ′)G∗−σ,−σ′(τ). (6.67)

The relations in Matsubara space are found equivalently to Sec. 6.2

Gσσ′(τ) = 1
β

∑
n

Gσσ′(iωn)e−iωnτ (6.68)

(σσ′)G∗−σ,−σ′(τ) = 1
β

∑
n

(σσ′)G∗−σ,−σ′(iωn)eiωnτ (6.69)

(σσ′)G∗−σ,−σ′(τ) = 1
β

∑
n

(σσ′)G∗−σ,−σ′(−iωn)e−iωnτ , (6.70)

which yields
Gσσ′(iωn) = (σσ′)G∗−σ,−σ′(−iωn). (6.71)

For multi-orbital systems one obtains the final result by adding orbital indices a and b

Gaσbσ′(iωn) = (σσ′)G∗a,−σb,−σ′(−iωn), (6.72)

or in imaginary time, respectively:

Gaσbσ′(τ) = (σσ′)G∗a,−σb,−σ′(τ). (6.73)

In w2dynamics, one can set the parameter magnetism=para to force the Green’s functions to be
time-reversal invariant, and therefore not develop magnetic order.
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6.4 General symmetries

A unitary transformation U of the Hamiltonian is called symmetry of the system, if it commutes
with the Hamiltonian: [U, Ĥ] = 0. In this section I discuss a method, how a general symmetry of
the Hamiltonian can be transferred to symmetry relations for the Green’s function. This section
is based on section 2.2.2 of the thesis of Georg Rohringer (2013).

I change the notation a little and write the Green’s function as a function of the operators and
the Hamiltonian:

G(cα, c†β, Ĥ) = Gαβ(τ1, τ2) (6.74)

=
〈
Tτ [ĉα(τ1)ĉ†β(τ2)]

〉
. (6.75)

The idea is the following: The symmetry transform leaves the Hamiltonian invariant UĤU−1 =
Ĥ ′ = Ĥ. Via its associative property it can be detached from the Hamiltonian and applied to
the operators, which then transform the Green’s function and deliver a symmetry relation. As a
convention I write the transformed quantities primed: G′, c′ and c′†.

As a simple example one could take the one-orbital Hamiltonian and a SU(2) symmetry, i.e.
spin-rotational invariance. By physical intuition this means, that the labels spin-up and spin-down
can be exchanged in the Hamiltonian without changing any property of the system. Transferring
this symmetry from the Hamiltonian to the Green’s function operators, suggests relations G↑↑(τ) =
G↓↓(τ) andG↑↓(τ) = G↓↑(τ), which will show to be correct. However, for multi-orbital systems with
general interactions and more complicated symmetries, we have to go through the mathematics.

So let us apply the procedure to a Green’s function of a transformed Hamiltonian Ĥ ′:

G′(cα, c†β, Ĥ
′) =

〈
Tτ [ĉα(τ1)ĉ†β(τ2)]

〉
(6.76)

=
〈
Tτ [e−βĤ′eĤ′τ1 ĉαe−Ĥ

′τ1eĤ′τ2 ĉ†βe
−Ĥ′τ2 ]

〉
(6.77)

=
〈
Tτ [e−βUHU−1eUHU−1τ1 ĉαe−UHU

−1τ1eUHU−1τ2 ĉ†βe
−UHU−1τ2 ]

〉
(6.78)

=
〈
Tτ [Ue−βĤU−1UeĤτ1U−1ĉαUe−Ĥτ1U−1UeĤτ2U−1ĉ†βUe−Ĥτ2U−1]

〉
(6.79)

=
〈
Tτ [e−βĤeĤτ1U−1ĉαUe−Ĥτ1eĤτ2U−1ĉ†βUe−Ĥτ2 ]

〉
(6.80)

=
〈
Tτ [ĉ′α(τ1)ĉ′†β (τ2)]

〉
(6.81)

= G′(ĉ′α, ĉ
′†
β , Ĥ). (6.82)

The transformed operators were defined as

ĉ′†α = U−1ĉ†αU (6.83)
ĉ′α = U−1ĉαU. (6.84)

Note that going from Eq. (6.78) to Eq. (6.79) the transformation matrices have been dragged out
of the exponentials.1 Now if U is a symmetry of the system with [U, Ĥ] = 0, the Hamiltonians are
the same Ĥ ′ = UĤU ′

!= Ĥ, and therefore also the Green’s functions:

G′(c′α, c
′†
β , Ĥ) != G(cα, c†β, Ĥ). (6.85)

On the right side, the operators c′† and c′ have to be expressed in terms of the untransformed op-
erators c† and c, of course. Practically, once [U, Ĥ] = 0 was shown, one applies the transformations
to the operators, and Eq. (6.85) delivers constraints for G.

1This can be seen by eUHU
−1τ = I + UHU−1τ + 1

2UHU
−1τUHU−1τ + · · · = U [I + Ĥτ + 1

2 ĤτĤτ + . . . ]U−1 =
UeĤτU−1, and also using U−1U = 1.
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6.5 SU(2) symmetry

As application of the method from the last section and an example for a transform described by a
unitary matrix, I want to discuss the SU(2) symmetry here, which is the invariance under rotation
in spin-space. I employ a spinor notation ĉ† = (ĉ†↑, ĉ

†
↓)T and ĉ = (ĉ↑, ĉ↓)T , where the original

system is such that the spin quantization axis is in z-direction. A rotation around a axis n of an
angle ϕ is described by (Rohringer, 2013)

ĉ′(n, ϕ) =
[
cos(ϕ/2)1− i sin(ϕ/2)n · σT

]
ĉ (6.86)

ĉ′†(n, ϕ) =
[
cos(ϕ/2)1 + i sin(ϕ/2)n · σT

]
ĉ†. (6.87)

Again orbital indices will be neglected in the following, and added again in the end, because the
symmetry only acts on spin space. A rotation around the y-axis n = (0, 1, 0) gives explicitly(

ĉ↑(ϕ)
ĉ↓(ϕ)

)
=
(
cos(ϕ/2) −sin(ϕ/2)
sin(ϕ/2) cos(ϕ/2)

)(
ĉ↑
ĉ↓

)
(6.88)(

ĉ†↑(ϕ)
ĉ†↓(ϕ)

)
=
(
cos(ϕ/2) −sin(ϕ/2)
sin(ϕ/2) cos(ϕ/2)

)(
ĉ†↑
ĉ†↓

)
. (6.89)

Note that in general, the annihilators rotate different compared to the creators, but for this special
case the minus in Eq. (6.86) cancels the transpose in Eq. (6.87).

6.5.1 Rotation of ϕ = π (spin rotation of 180◦)

Now I want to perform some rotations of specific angles explicitly, to derive the constraints of a
SU(2)-invariant Green’s function. Starting with an angle of ϕ = π gives the rotations(

c′↑
c′↓

)
=
(
−ĉ↓
ĉ↑

)
and

(
c′†↑
c′†↓

)
=
(
−ĉ†↓
ĉ†↑

)
(6.90)

for the operators. The diagonal Green’s function then transforms like

G′(ĉ′↑, ĉ
′†
↑ , Ĥ) =

〈
Tτ ĉ
′
↑(τ)ĉ′†↑

〉
(6.91)

=
〈
Tτ (−ĉ↓(τ))

(
−ĉ†↓

)〉
(6.92)

= G↓↓(τ) (6.93)
!= G(ĉ↑, ĉ†↑, Ĥ), (6.94)

therefore
G↑↑(τ) = G↓↓(τ). (6.95)

The same procedure for the offdiagonal Green’s function gives

G′(ĉ′↑, ĉ
′†
↓ , Ĥ) =

〈
Tτ ĉ
′
↑(τ)ĉ′†↓

〉
(6.96)

=
〈
Tτ (−ĉ↓(τ))ĉ†↑

〉
(6.97)

= −G↓↑(τ) (6.98)
!= G(ĉ↑, ĉ†↓, Ĥ), (6.99)

therefore
G↑↓(τ) = −G↑↓(τ). (6.100)
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6.5.2 Rotation of ϕ = π/2 (spin rotation of 90◦)

Let us try one more angle, namely ϕ = π/2. This gives the rotations

(
ĉ′↑
ĉ′↓

)
=

 1√
2(ĉ↑ − ĉ↓)

1√
2(ĉ↑ + ĉ↓)

 and
(
ĉ′†↑
ĉ′†↓

)
=

 1√
2(ĉ†↑ − ĉ

†
↓)

1√
2(ĉ†↑ + ĉ†↓)

 (6.101)

for the operators. The diagonal Green’s function then transforms like

G′↑↑(τ) =
〈
Tτ ĉ
′
↑(τ)ĉ′†↑

〉
(6.102)

=
〈
Tτ

1√
2

(ĉ↑(τ)− ĉ↓(τ)) 1√
2

(
ĉ†↑ − ĉ

†
↓

)〉
(6.103)

=
〈
Tτ

1
2
(
ĉ↑(τ)ĉ†↑ + ĉ↓(τ)ĉ†↓ − ĉ↑(τ)ĉ†↓ − ĉ↓(τ)ĉ†↑

)〉
(6.104)

= 1
2(G↑↑ +G↓↓ −G↑↓ −G↓↑) (6.105)

!= G↑↑(τ), (6.106)

and the offdiagonal Green’s function like

G′↑↓(τ) =
〈
Tτ ĉ
′
↑(τ)ĉ′†↓

〉
(6.107)

=
〈
Tτ

1√
2

(ĉ↑(τ)− ĉ↓(τ)) 1√
2

(
ĉ†↑ + ĉ†↓

)〉
(6.108)

=
〈
Tτ

1
2
(
ĉ↑(τ)ĉ†↑ − ĉ↓(τ)ĉ†↓ + ĉ↑(τ)ĉ†↓ − ĉ↓(τ)ĉ†↑

)〉
(6.109)

= 1
2(G↑↑ −G↓↓ +G↑↓ −G↓↑) (6.110)

!= G↑↓(τ) (6.111)

Using the results of the previous section, this does not give additional constraints.

6.5.3 A general rotation

Last let me show, that any general rotation
(
c′↑
c′↓

)
=
(
cos(ϕ2 )ĉ↑ − sin(ϕ2 )ĉ↓
sin(ϕ2 )ĉ↑ + cos(ϕ2 )ĉ↓

)
and

(
c′†↑
c′†↓

)
=
(
cos(ϕ2 )ĉ†↑ − sin(ϕ2 )ĉ†↓
sin(ϕ2 )ĉ†↑ + cos(ϕ2 )ĉ†↓

)
(6.112)

does not provide more information, compared to what we already have. The diagonal Green’s
function transforms like

G′↑↑(τ) =
〈
Tτ

[
cos(ϕ2 )ĉ↑(τ)− sin(ϕ2 )ĉ↓(τ)

][
cos(ϕ2 )ĉ†↑ − sin(ϕ2 )ĉ†↓

]〉
(6.113)

=
〈
Tτ

[
cos2(ϕ2 )ĉ↑(τ)ĉ†↑ + sin2(ϕ2 )ĉ↓(τ)ĉ†↓

]
− cos(ϕ2 )sin(ϕ2 )

(
ĉ↑(τ)ĉ†↓ + ĉ↓(τ)ĉ†↑

)〉
= cos2(ϕ2 )G↑↑ + sin2(ϕ2 )G↓↓ (6.114)
!= G↑↑(τ) (6.115)
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and the offdiagonal like

G′↑↓(τ) =
〈
Tτ

[
cos(ϕ2 )ĉ↑(τ)− sin(ϕ2 )ĉ↓(τ)

][
sin(ϕ2 )ĉ†↑ + cos(ϕ2 )ĉ†↓

]〉
(6.116)

=
〈
Tτ

[
cos2(ϕ2 )ĉ↑(τ)ĉ†↓ − sin2(ϕ2 )ĉ↓(τ)ĉ†↑

]
+ cos(ϕ2 )sin(ϕ2 )

(
ĉ↑(τ)ĉ†↑ − ĉ↓(τ)ĉ†↓

)〉
= cos2(ϕ2 )G↑↓ − sin2(ϕ2 )G↓↑ (6.117)
!= G↑↓(τ) (6.118)

When using the results of ϕ = π and the trigonometric Pythagorean identity, one sees, that this
gives no additional information.

Let me summarize the findings of this section by adding orbital indices:

Ga↑b↑ = Ga↓b↓ (6.119)

Ga↑b↓ = Ga↓b↑ (6.120)



Chapter 7

Unconventional fermions in the
presence of interactions

I’m a filler and
needed here

This chapter is based on the original work already published in Phys-
ical Review B (Di Sante et al., 2017). All figures and captions are
taken from there (if not otherwise cited), as well as some text (which
is marked with a sidebar on the left).

7.1 Unconventional excitations in the solid
Electrons in solids witness a reduced spatial symmetry in comparison to the space-time contin-
uum. While the high-energy perspective constrains us to Majorana, Weyl, and Dirac fermions
in accordance with the inhomogeneous Lorentz (or Poincaré) group, electronic quasiparticles
in solids at low energies can display emergent fermionic behavior within and even beyond this
classification (Bradlyn et al., 2016; Wieder et al., 2016). Graphene constitutes one of the most
prominent material discoveries where Dirac-type quasiparticles have been realized (Neto et al.,
2009). The current rise of Weyl semimetals (Wan et al., 2011), along with Majorana quasi-
particles in superconducting heterostructures (Fu and Kane, 2008; Read and Green, 2000),
complements this evolution in contemporary condensed-matter physics.

Recently, Wieder et al. (2016) have brought up the possibility to realize double Dirac
quasiparticles in certain 3D crystals with specific non-symmorphic point group symmetry.
Such a type of fermion does not exist in high-energy physics due to its incompatibility with
the Lorentz group, and highlights the relevance of lattice fermion realizations not only in terms
of quantum many-body, but also single-particle states of matter. Double Dirac fermions were
identified by a systematic analysis of all double space groups (SGs) accounting for S = 1/2
electrons in spin-orbit coupled crystals with time reversal symmetry (Bradlyn et al., 2016). In
particular, SG 130 and 135 were found to establish eminently suited ground for generic double
Dirac fermions protected by point group symmetry. Among all material candidates for SG 130,
it was already realized by Bradlyn et al. (2016) that Bi2CuO4 might be a prime candidate due
to its filling-enforced semimetallicity (Po et al., 2016), nurturing the hope to observe double
Dirac fermions close to the Fermi level. All such band structure classifications, however,
always need to be extended to account for the role of interactions in the material, which turn
out to be of vital relevance in Bi2CuO4. Most of the topological band properties, even the
metallic ones, display a certain degree of persistence against weak interactions as long as those
do not break any protecting symmetry. Interaction-induced instabilities, however, do change
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the symmetry class of the quantum state, possibly affecting the whole range of constituting
symmetries including charge conservation, time reversal, and point group operations.

7.1.1 Role of electron-electron interactions

As a paradigmatic change, the concept of topological quantum chemistry is firmly emerging,
based on the idea that quantum chemistry and topology conspire to provide a new search
principle for topological quantum states of matter (Bradlyn et al., 2017). Many new topo-
logical insulator and semimetal candidates were revealed within such a framework, where
however strong electron interactions are neglected. In this Letter, to show how crucial for
this search is to go beyond the single-particle description, we study strong interaction effects
of double Dirac fermions, analyzing the band structure properties and electronic correlations
in Bi2CuO4. From density functional theory, we distill an effective eight-band tight-binding
Hubbard model which is dominated by the dx2−y2 orbital of the four Cu atoms in the unit cell.
Spin-orbit coupling (SOC) is found to be weak because the heavy atoms of the compound do
not significantly contribute to the low-energy density of states. As expected, the double Dirac
dispersion is located close to the Fermi energy, as identified by an 8-fold band degeneracy at
the A point.

7.1.2 Band structure and effective tight-binding model

Bi2CuO4 crystallizes in the tetragonal spage group P4/ncc (SG 130), see Fig. 7.1(a) (Garcia-
Munoz et al., 1990). Four inequivalent Cu atoms in the unit cell share a square-planar CuO4
coordination, stacked along the out-of-plane direction and intercalated by Bi atoms, as depicted
in Fig. 7.1(b). The Cu-O hybridization is quite strong, leading to a mixed d-p character of
the band structure of the occupied states. The Bi-p manifold only starts ≈ 1.5 eV above the
Fermi level, suggesting that the low energy model is given by Cu and O electronic states. The
square-planar crystal field is characterized by a higher-in-energy dx2−y2 orbital experiencing
a head-to-head interaction with the O-p. The level separation is schematically drawn in the
left inset of Fig. 7.1(c). Cu is nominally in the oxidation state 2+ (i.e. d9 configuration). For
this reason, a half-filled dx2−y2-derived single spin-degenerate band per Cu atom in the unit
cell is expected to dominate at low energies. Fig. 7.1(c) displays the band dispersion of the
electronic states around the Fermi level. Due to the dominant Cu orbital, the effect of SOC is
almost negligible, only inducing small spin splittings. We estimate the energy scale of SOC to
be ≈ 20 meV. Despite its small scale, however, SOC is a crucial ingredient for the symmetries
in the double SG representation that ensures the existence of a double Dirac fermion with
linear dispersion at the Brillouin zone corner A = (π, π, π). As the band filling is given by an
odd multiple of 4 (180 = 8×22+4), the double Dirac fermion in Bi2CuO4 is located almost at
the Fermi level, as visible in the right inset of Fig. 7.1(c).

From the DFT band structure of the system in the metallic, paramagnetic phase a effective
tight binding model is derived using maximally localized Wannier functions. Despite the UFO-
structure of the CuO4 may suggest that the system has a rather 2-dimensional character, the
band-structure between Γ and Z is not constant. It has a strong three-dimensional character and
thus is within the range of applicability of DMFT.

The strength of the electron-electron interaction has been estimated by cRPA to be UCRPA =
1.58 eV.
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Figure 7.1: (a) with corresponding high-symmetry points. (b) Crystal structure of Bi2CuO4. Atom colors: Bi
(blue), Cu (yellow), and O (red). Blue plaquettes highlight the square-planar CuO4 coordination.
(c) DFT band structure in the paramagnetic metallic phase with (red solid line) and without (black
dashed line) SOC. The left inset is a schematic representation of the square-planar crystal field
and orbital filling for Cu-type d9. The right inset shows a zoom around the eightfold degenerate
A point, which comes along a characteristic fourfold degeneracy along the R-Z line.
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7.2 Mott transition and spectral function

Comparing this strength of the interaction with the bandwidth, one may already guess that
Bi2CuO4 is deep in the Heisenberg limit.

Fig. 7.2(a) displays the quasiparticle weight

Z = lim
ω→0

(
1− ∂

∂ω
ReΣ(ω)

)−1
. (7.1)

Before reaching UcRPA, we encounter a Mott-type metal-to-insulator transition (MIT) at
UMott ≈ 0.85 eV. At the Mott transition, the quasiparticle weight is suppressed by inter-
actions, and the fraction of doubly-occupied Cu-sites 〈n↑n↓〉 reduces from the free-particle
value of 1/4 towards zero (inset in Fig. 7.2(a)). At intermediate U , the spectral function,
as depicted in Fig. 7.2(b), is well described by the DFT single particle band structure renor-
malized in terms of bandwidth by the quasiparticle weight Z, along with the appearance of
incoherent lower and upper Hubbard bands. Since the double Dirac fermion is located close
to the Fermi level, it contributes to the quasiparticle peak for interaction strengths below the
Mott transition. Even though the eightfold-degeneracy at the A-point remains discernible up
to UMott, the Coulomb repulsion has a dramatic effect on the double Dirac feature. The veloc-
ities are substantially reduced and the linewidths increase rapidly due to the strong scattering.
Even if the protecting symmetry is not yet broken by the magnetic ordering, the damping of
the band structure as well as the transfer of spectral weight towards high-energy (Hubbard)
bands are so pronounced that the whole double Dirac feature looses most of its distinctness
already for U � UMott.

7.2.1 Magnetic ordering

At UcRPA = 1.58 eV, allowing for magnetic ordering, the ground state of Bi2CuO4 is not
paramagnetic, but displays a intra-unit-cell magnetic order. As a consequence, the Mott
regime and the breaking of time-reversal symmetry independently suggest the absence of
double Dirac cones.

Fig. 7.3 shows some DMFT magnetization curves for interaction values already larger than the
cRPA value UcRPA = 1.58 eV. The system is in the Heisenberg limit, which means the Hubbard
model can be mapped very well onto a Heisenberg model. Note that the DMFT Neel temperature is
proportional to 1/U , which is typical of the Heisenberg limit. The Heisenberg exchange interaction
scales indeed like J ∼ t2/U . For this compound, DMFT does not describe very well its G-
antiferromagnetism (the magnetic moments aligned antiferromagnetically in all directions). The
calculated ordering temperatures are way too large. We instead assume the electrons to be localized
in the orbitals and construct a Heisenberg model, whose behavior is governed by the exchange
interaction between the spins of the localized electrons. Solving this with a classical quantum
Monte Carlo technique (for details see appendix of Di Sante et al. (2017)), gives essentially the
experimental value (see Fig. 7.3). Since DMFT describes the local electronic correlations within
one atom exactly, but non-local correlations only within a mean-field approximation, the cause for
the different Neel temperatures comes from non-local correlations (Rohringer et al., 2011).
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Figure 7.2: (a) DMFT quasiparticle weight Z (main panel) and double occupancies (inset) as a function of
U in the paramagnetic phase for a temperature β = 100 eV−1. The Mott transition occurs at
UMott ≈ 0.85 eV. (b) Momentum-resolved DMFT spectral function A(k, ω) for U = 0.2, 0.4, 0.6
and the cRPA value of 1.58 eV. Red lines denote the DFT band structure renormalized by the
DMFT quasiparticle weight Z. For U = 0.4 eV, the zoom shows the preservation of the eightfold
degenerate A point along with an already significant band renormalization.
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TN, exp=50K

TN, Heisenberg QMC=56K

Figure 7.3: This figure shows DMFT results of the Neel temperature for the interaction values U = 1.8, 2.1 and 2.5
eV. Also shown is the experimental value and the value of classical Monte Carlo for the corresponding
Heisenberg model. The inset shows that TN is proportional to 1

U
, which means it follows the behavior

expected for a Heisenberg model.

7.2.2 Hydrostatic pressure

Pressure has a profound impact on the electronic properties of a solid. Here we study the effects of
hydrostatic pressure, i.e. uniform pressure from all spacial directions. Uniform pressure makes the
unit cell smaller, and widens the Brillouin zone. This increases the overlaps between the orbitals,
thus makes the hopping terms larger and the DOS broader. On the other hand, orbitals become
larger, which reduces the electronic interaction energies. Both effects make uniform pressure a
method to reduce the strength of electronic correlations. The question arises, whether in reasonable
experimental setups the double Dirac cones in Bi2CuO4 can be restored. This is the topic of this
section.

As illustrated in Fig. 7.4(a-c), the bands above and below the dx2−y2 manifold get closer to the
Fermi level. This results in a more efficient screening of the Coulomb interaction for the target
dx2−y2 states. Fig. 7.4(d) (...) report the corresponding reduction of UcRPA. In addition, the
slight increase of the dx2−y2 bandwidth (∼ 10%) leads to a larger critical UMott for the Mott
transition. Even though UcRPA remains larger than UMott all the way up to 50 GPa, the trend
towards the restoration of the metallic phase is evident, as shown in Fig. 7.4(d,e,f). The most
reliable feature is the trend observed as a function of pressure rather than the absolute values
of the Coulomb interaction strength obtained through cRPA. The absolute accuracy of cRPA
is challenged by (i) the slight tendency to underestimate the Coulomb matrix elements, (ii)
the mapping of the non-local cRPA Coulomb interaction onto a local Hubbard model, and
(iii) the absence of all non-local correlations within the DMFT approximation. The latter
is known to reduce the Néel temperature of about 30-40% in 3D systems (Rohringer et al.,
2011). Assuming the absence of a structural phase transition, this suggests a transition into
a high-pressure double Dirac metal for ' 60 GPa. So far, pressure effects have been hardly
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investigated in Bi2CuO4. In Zhang et al. (2006), the occurrence of a structural phase transition
might have been observed within 20 GPa and 37 GPa, but demands further analysis.

Figure 7.4: (Color online) (a-c) Evolution of the DFT band structure for P = 0 (ambient pressure), 6, and 30
GPa. Red symbols refer to the dx2−y2 character. (d) UcRPA and UMott as a function of pressure. It
is suggestive to expect an insulator to metal transition around P = 50−60 GPa. (e-f) Momentum-
resolved DMFT spectral function A(k, ω) for U = 0.85 and 0.95 eV at a pressure P = 50 GPa.
A two-color palette has been used to better highlight the linear dispersion along the Z-A line. The
maximum color intensity (arb. units) in panel (e) is twice as larger as that in panel (f).

7.2.3 Conclusion
Our analysis identifies Bi2CuO4 as a prototypical material where crystal structure and orbital
character, under pressure, conspire to give rise to correlated double Dirac fermions close to
the Fermi level. At ambient pressure, the interactions turn out to drive the system into a
Mott state along with magnetic intra-cell ordering where the double Dirac cone is absent. As
a function of hydrostatic pressure, we find that the material could be driven into a metallic
state where the double Dirac features would emerge. For this, our ab initio calculations indicate
a pressure regime of ≈ 60 GPa, which is still within the range of experimental pressure cell
transport setups. Our study suggests several routes to realize a double-Dirac metal in Bi2CuO4
at low temperatures. For instance, a combined pressure and doping approach could establish
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a convenient perturbation of the pristine material in order to render correlated double Dirac
fermions accessible to experimental investigation.

Beside the specific example of double Dirac fermions in Bi2CuO4, (...) we communicate
a rather general message, namely that all these new topological quantum chemistry devel-
opments need to be looked at more carefully, as interactions are systematically neglected
(Bradlyn et al., 2017). This may constitute the most severe and harsh drawback of the whole
approach, largely based on the single-particle band theory of electrons. On the other hand, we
demonstrated how it is possible to restore the nontrivial new quasiparticles physics by means
of external handles, curing this way the intrinsic failure of the topological quantum chemistry
machinery.

This is crucial in light of future technological applications of such new quasiparticles. To
give an example, it will be of relevant interest to study the effects of a magnetic field imposed
on the double Dirac particle dispersion, similarly to what has been done in the case of Dirac
and Weyl semimetals (Jeon et al., 2014; Klier et al., 2015). Centered in the same conal center,
the double Dirac particle features two Dirac cones of different opening angles. As a function
of these angles, it is reasonable to foresee an unprecedented variety of band decompositions
that promises to happen in response to a magnetic field, along with a likely highly non-trivial
magnetoresistance profile. However, in analogy to the Fermi velocity renormalization effect
by interactions in graphene (Elias et al., 2011), the renormalization of the double Dirac cone
dispersion will play a quantitative key role.
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Higgs and Goldstone modes in
excitonic magnets

I’m a filler and
needed here

This chapter is based on the original work already published in Physi-
cal Review Letters (Geffroy et al., 2019). All figures and captions are
taken from there (if not otherwise cited), as well as some text (which
is marked with a sidebar on the left).

In this chapter I will first derive the properties of Higgs and Goldstone modes within the theory
of Ginzburg and Landau. Then I introduce the concept of excitonic condensation, and identify
these modes in a model of an excitonic magnet. Finally we will make a connection of the excitonic
susceptibilities, which are not measurable by experiment, to spin-spin susceptibilities, which are
accessible by experiments.

8.1 Effective field theory of Higgs and Goldstone bosons

The Ginzburg-Landau description of emergent ordering phenomena in terms of spontaneously
broken symmetries is one of the most successful concepts in physics. The system is characterized
by an order parameter, which is zero above the critical temperature and nonzero below. Since it
is an effective theory, the precise microscopic expression for the order parameter, which might be
very difficult to determine, is not required to find the macroscopic consequences. In many cases
the order parameter can be measured directly like a magnetization, but it might as well be out of
reach for current experimental technologies.

In this section I closely follow Pekker and Varma (2015) and supplement their derivations with
additional details.

8.1.1 Static Ginzburg Landau theory

The order parameter of interest for this chapter is a space and time dependent, complex number

Ψ(r, t) = |Ψ(r, t)|eiφ(r,t), (8.1)

for which we write the Ginzburg-Landau action density. Its lowest order static terms are

Sstatic = −rΨ∗Ψ + U

2 (Ψ∗Ψ)2 + ζ2(∇Ψ∗)(∇Ψ) (8.2)

= S1 + S2 + S3.
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It is not a priori clear, that such an expansion is possible, since the point of the phase transition
is a singular point. The coefficients must behave innocuously, which is an assumption (that turns
out to be possible). Because of the gradients in S3, non-uniform solutions in space are possible,
but the uniform solution is the ground state.

The parameter r = r0(T − Tc) determines, whether the system Eq. (8.2) is in the normal state
(r < 0), the ordered state (r > 0) or at the critical point (r = 0). I will not derive this here, since
it follows from standard Landau theory (Nolting, 2007).

I start the derivations with the solution of the static action in the long-wavelength limit, i.e.
where the gradients are very small and thus can be neglected. In order to find the minimum of
the potential energy, we set the derivative

∂Sstat
∂Ψ = −rΨ∗ + UΨ∗ΨΨ∗ (8.3)

= −r|Ψ|e−iφ + U |Ψ|2|Ψ|e−iφ (8.4)
= 0 (8.5)

to zero and obtain the solution1

Ψ0(r) =
√
r

U
e−iφ (8.6)

for nonzero |Ψ|. This is the minimum of the famous Mexican hat or wine-bottle potential depicted
in Fig. 8.1. One can already see that there are two kinds of low-energy excitations: oscillations
of |Ψ| in radial direction, which are the amplitude or Higgs modes, and oscillations in azimuthal
direction (corresponds to a variation of φ), which are the phase or Goldstone modes. I will derive
and discuss their properties in the next section.

Figure 8.1: Mexican hat potential of a complex order parameter Ψ in the symmetry broken phase. Taken from
Coleman (2015) and adapted to my notation.

8.1.2 Dynamic Ginzburg Landau theory

To access the low energy excitations, dynamic terms must also be considered. The lowest order
terms, which are time-reversal invariant and fulfill a global U(1)-gauge symmetry, are

Sdynamic = iK1Ψ∗ ∂
∂t

Ψ−K2

(
∂

∂t
Ψ∗
)(

∂

∂t
Ψ
)

(8.7)

= S4 + S5.

1The derivative with respect to Ψ∗ gives the same expression.
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To find the minima of S = Sstatic + Sdynamic, we need to solve the equations ∂S
∂Ψ∗ = 0 and ∂S

∂Ψ = 0.
Then we take the equilibrium solution Ψ0 and expand to first order in amplitude fluctuations δΨ
and phase fluctuations δφ, where the calculation is done at φ0 = 0:

Ψ(r, t) = (Ψ0 + δΨ)ei(φ0+δφ) (8.8)
= (Ψ0 + δΨ)(1 + iδφ) (8.9)
= Ψ0 + δΨ + iδφ (8.10)

Ψ∗(r, t) = Ψ0 + δΨ− iδφ. (8.11)

The Fourier transforms are

Ψ(r, t) =
∫

dω
∫

dq eiqr+iωtΨ(q, ω) (8.12)

Ψ∗(r, t) =
∫

dω
∫

dq e−iqr−iωtΨ∗(q, ω). (8.13)

By deriving with respect to Ψ, we find the terms

∂S1
∂Ψ = −rΨ∗

= −r(Ψ0 + δΨ− iδφ) (8.14)
∂S2
∂Ψ = UΨ∗ΨΨ∗

= U(Ψ0 + δΨ− iδφ)(Ψ0 + δΨ + iδφ)(Ψ0 + δΨ− iδφ)
= 3rδΨ− irδφ (8.15)

∂S3
∂Ψ = −ζ2∇2Ψ∗

= −ζ2((−q2)Ψ0 + (−q2)δΨ− (−q2)iδφ) (8.16)
∂S4
∂Ψ = −iK1

∂

∂t
Ψ∗

= −iK1(−iω)(δΨ− iδφ) (8.17)
∂S5
∂Ψ = K2

∂2

∂t2
Ψ∗

= K2(−ω2)(δΨ− iδφ), (8.18)
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and with respect to Ψ∗ we find

∂S1
∂Ψ∗ = −rΨ

= −r(Ψ0 + δΨ + iδφ) (8.19)
∂S2
∂Ψ∗ = UΨ∗ΨΨ

= U(Ψ0 + δΨ− iδφ)(Ψ0 + δΨ + iδφ)(Ψ0 + δΨ + iδφ)
= 3rδΨ + irδφ (8.20)

∂S3
∂Ψ∗ = −ζ2∇2Ψ

= −ζ2((−q2)Ψ0 + (−q2)δΨ + (−q2)iδφ) (8.21)
∂S4
∂Ψ∗ = −iK1

∂

∂t
Ψ

= −iK1(iω)(δΨ + iδφ) (8.22)
∂S5
∂Ψ∗ = K2

∂2

∂t2
Ψ

= K2(−ω2)(δΨ + iδφ). (8.23)

Only terms of linear order are kept in the fluctuations δΨ and δφ. In Eq. (8.15) the equilibrium
solution Ψ0 =

√
r/U was inserted, and in Eqs. (8.17) and (8.18) I used that Ψ0 is time-independent.

Writing ∂S
∂Ψ + ∂S

∂Ψ∗ and ∂S
∂Ψ −

∂S
∂Ψ∗ gives the equations(

2r + ζ2q2 −K2ω
2
)
δΨ + iK1ωδφ = 0 (8.24a)

−iωK1δΨ +
(
ζ2q2 −K2ω

2
)
δφ = 0, (8.24b)

which are also given in Pekker and Varma (2015). One can see from Eq. (8.24b), that with all
the given terms in the expansion, the amplitude and phase modes are coupled via

δΨ = ζ2q2 −K2ω
2

iωK1
δφ. (8.25)

Inserting this into Eq. (8.24a) gives[(
2r + ζ2q2 −K2ω

2
)(
ζ2q2 −K2ω

2
)
− (K1ω)2

]
δφ = 0, (8.26)

which is a biquadratic equation and easy to solve:

ω(q) =

√√√√K2
1 + 2K2(r + q2ζ2)±

√(
K2

1 + 2K2r
)2 + 4K2

1K2q2ζ2

2K2
2

. (8.27)

In front of the outer root there is actually also a ±, which I omit since it has no physical relevance.

8.1.3 Particle-hole symmetric case (K1 = 0)

One can see from Eq. (8.24), that the equations decouple and amplitude and phase fluctuations
become independent. Then the amplitude (Higgs) mode has a dispersion of

ω2(q) = 2r + ζ2q2

K2
, (8.28)
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which at zero momentum has a finite dispersion ω(q = 0) =
√

2r/K2. The phase (Goldstone)
mode has a dispersion of

ω2(q) = ζ2q2

K2
(8.29)

and zero energy at zero momentum. This is consistent with physical intuition, which states that
due to the global U(1)-symmetry there must exist a gapless excitation along the minimum of the
Mexican hat in Fig. 8.1.

8.1.4 Particle-hole asymmetric case (K1 6= 0, K2 6= 0)

In the particle-hole asymmetric case, amplitude and phase modes are coupled. Here I discuss their
behavior in the limit of small wavevectors. With

√
1 + x ≈ 1 + 1/2 x the inner root of the general

solution Eq. (8.27) expands to
√(

K2
1 + 2K2r

)2 + 4K2
1K2q2ζ2 = K2

1 + 2K2r+ 2K2
1K2q2ζ2

(K2
1+2K2r)2 , and we

receive

ω(q) =

√√√√√2K2
1 + 4K2r +

(
2K2 + 2K2

1K2
K2

1+2K2r

)
ζ2q2

2K2
2

(8.30)

for the Higgs mode. It is always gapped
(
ω(q = 0) =

√
2K2r+K2

1
K2

)
, even at the phase transition

(r = 0).
The Goldstone mode becomes

ω(q) = 1
K2

√
K2 −

K2
1K2

K2
1 + 2K2r

ζ2q2. (8.31)

It is always gapless for all values of the parameters K1 and K2.

8.1.5 Summary

Let me here summarize the main properties of the Higgs and Goldstone modes, which we will later
identify in the excitonic magnet.

Some examples of the general dispersion Eq. (8.27) are shown in Fig. 8.2. The Goldstone modes
are always gapless. At the critical point (r = 0), the Higgs mode is also gapless, but it opens a
gap upon entering the ordered phase, and upon breaking particle-hole symmetry.

For half-filling, Goldstone- and Higgs-modes are decoupled, for out-of-half-filling they are cou-
pled.

Figure 8.2: a) The dispersion of Higgs and Goldstone modes at the critical point (r = 0). b) The dispersion in the
ordered phase (r = 0.15). Taken from Pekker and Varma (2015).
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8.2 Excitonic insulators in a nutshell

An exciton is a bound state of an electron and a hole, which carries energy but no charge. Mott
(1961), as well as Halperin and Rice (1968) proposed the excitonic insulator, a Bose-Einstein
condensate of excitons. Conclusive experimental evidence for its existence was first given by
Kogar et al. (2017) half a century later. The case of spinful excitons is known as excitonic magnet
(Khaliullin, 2013) and proposed in the material Pr0.5Ca0.5CoO3 (Kuneš and Augustinský, 2014;
Tsubouchi et al., 2002; Yamaguchi et al., 2017).

The minimal model to describe the excitonic condensation is a two-orbital model with interac-
tion between the orbitals (inter-band hybridization, hopping or correlated hopping). Characteristic
for such a condensate is the spontaneous coherence between valence and conduction electrons, rep-
resented by orbital offdiagonal elements of the one-particle density matrix

φi =
∑
αα′

σαα′
〈
a†iαbiα′

〉
(8.32)

as order parameter. σ is the vector of Pauli matrices, a and b fermionic operators for the two
orbitals, and i the site index of the lattice. The emergence of this nonzero order parameter
generates offdiagonal elements in the self energy, which open a gap in the spectral function A(ω),
making the system an insulator.

8.3 The model and observables

Here we calculate dynamical susceptibilities in the normal and ordered phase of an excitonic
magnet. We identify Higgs and Goldstone modes via the properties that I derived in Sec. 8.1.
Further we observe, that the spin susceptibility shows a qualitative change at the phase boundary,
which gives experiment a direct observable to probe the excitonic condensate.

The Hamiltonian of our model reads

H =
∑
ij,σ

(
a†iσ b†iσ

)(taa tab
tab tbb

)(
ajσ
bjσ

)
+ ∆

2
∑
i,σ

(naiσ − nbiσ)

+ U
∑
i,α

nαi↑n
α
i↓ +

∑
i,σσ′

(U ′ − Jδσσ′)naiσnbiσ′ , (8.33)

where a†iσ and b†iσ are fermionic operators that create electrons with the respective orbital
flavors and spin σ at site i of a square lattice. The first term describes the nearest neighbor
hopping. The rest, expressed in terms of local densities nci,σ ≡ c

†
iσciσ, captures the crystal-field

∆, the Hubbard interaction U and Hund’s exchange J in the Ising approximation. Parameters
U = 4, J = 1, U ′ = U−2J , taa = 0.4118, tbb = −0.1882, tab =0, 0.02, 0.06 with magnitudes (in
eV) typical for 3d transition metal oxides were used in previous studies (Kuneš, 2014; Kuneš
and Augustinský, 2014; Kuneš and Geffroy, 2016). The results are little sensitive to variation
of U ′ and J as long as the ratio ∆/J is fixed.

The model is solved within the DMFT approximation, from which the lattice Green’s function
Glatt(k, iωn) and generalized two-particle susceptibility of the AIM are calculated. The real-
frequency susceptibilities χOOηη (k, ω) are obtained by solving the Bethe-equation in the particle-
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hole channel and analytic continuation (Gubernatis et al., 1991; Kunes, 2019) of the Matsubara
representations

χOOηη (k, iνn) =
∑
R

∫ β

0
dτ ei(νnτ+k·R)〈Oηi+R(τ)Oηi (0)〉 − 〈Oη〉2,

with the observables O of interest being the two excitonic fields and the z-component of spin
moment:

Rηi =
∑
αβ

σηαβ(a†iαbiβ + b†iαaiβ) (8.34)

Iηi = i
∑
αβ

σηαβ(a†iαbiβ − b
†
iαaiβ) (8.35)

Szi =
∑
αβ

σzαβ(a†iαaiβ + b†iαbiβ). (8.36)
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Figure 8.3: Evolution of the excitonic modes of dynamical susceptibility in the U2(1) model (tab=0) across ∆-
driven transition (T = 1/40). The columns correspond to − ImχOOγγ (k, ω) with Oγ = Ix, Iy, Rx, Ry

(left to right) along the high-symmetry lines in the 2D Brillouin zone. The rows from top to bottom
correspond to ∆ =3.9, 3.8, 3.65, 3.55, 3.45 with ∆c ≈ 3.75 (Red line separates the normal state
from the PEC phase).
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Figure 8.4: (a) The sound velocity vs of the GMs, the phase mode (χRRyy , blue symbols) and the spin rotation
mode (χIIxx, black symbols) in the U2(1) model as a function of the crystal field ∆. The dotted
lines show the corresponding strong-coupling results. (b) The Higgs gap in the U(1) model with
tab =0.02 and 0.06 as a function of ∆. The line is a guide for eyes.
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Figure 8.5: Sketch of the crystal field vs temperature (∆ − T ) phase diagram (b) with marked cuts, along
which the susceptibilities are calculated. The 1P spectral function at the (∆, T )-points violet (3.55,
1/11), green (3.55, 1/40) and blue (3.8, 1/40).
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8.4 Results and Discussion
Model Eq. (8.33) at half-filling has a rich phase diagram exhibiting a metal-insulator transi-
tion (Werner and Millis, 2007) as well as various types of LRO including antiferromagnetism,
spin-state order or superconductivity (Hoshino and Werner, 2016; Kaneko and Ohta, 2014;
Kaneko et al., 2015; Kuneš and Augustinský, 2014). For the present parameters it undergoes
a temperature- or crystal-field-controlled transition to polar exciton condensate (PEC) (Kuneš,
2015), as shown in Fig. 8.5b. PEC is characterized by a finite excitonic field. Throughout the
paper we choose the orientation 〈Iy〉 = φ, while Ry, Ix and Rx remain fluctuating. This phase
is an instance of spin nematic state, which breaks spin-rotation symmetry without appearance
of spin polarization.

The behavior of the collective modes depends on the continuous symmetry broken by the
LRO (Watanabe and Murayama, 2012). Here, it is the U(1) spin (z-axis) rotation. If tab = 0,
an additional U(1) gauge symmetry due to conservation of ∑i,σ(nai,σ − nbi,σ) makes the total
broken symmetry U(1) × U(1). We will refer to the general tab 6= 0 case as U(1) model and
the tab = 0 case as U2(1) model.

8.4.1 Crystal field driven transition.

While the system exhibits a sizable 1P gap throughout the studied ∆-range, horizontal line in
Fig. 8.5b, low-energy 2P-excitations show up in the excitonic susceptibilities, Fig. 8.3. In the
normal phase (∆ > ∆c), these can be viewed as spinful Frenkel excitons. The spin symmetry
ensures the equivalence of x and y directions, while the gauge symmetry leads to equivalence
of the excitonic fields R and I in the U2(1) model.

Reducing ∆ closes the excitation gap and the system undergoes transition to the PEC
phase. For the exctionic field, which freezes in an arbitrary direction both in the xy-plane
and the RI-plane in the U2(1) case, we choose the orientation discussed above. Linear gapless
GMs (Kunes, 2019) corresponding to the spin rotation and phase fluctuation (RI-rotation) are
observed in χIIxx and χRRyy , respectively. The intensities of both GMs diverge as 1/|k| (Kunes,
2019). The corresponding sound velocities are shown in Fig. 8.4a.

Finite cross-hopping tab leads to a generic U(1) model. The equivalence between the R and I
fields is lost, see Fig. 8.6. The excitonic field freezes in the I-direction (Geffroy et al., 2018;
Kuneš, 2015), while the xy-orientation remains arbitrary. For the small tab studied here, the
changes to the excitonic spectra (Kunes, 2019) are concentrated in the low-energy region shown
in Fig. 8.6. The spin-rotation GM, visible in χIIxx, remains gapless and linear. The ’phase’
mode acquires a Higgs gap that vanishes at the transition, Fig. 8.4b, a behavior observed in
bi-layer Heisenberg system TlCuCl3 (Merchant et al., 2014).

Interestingly the character of this mode changes as we proceed deeper into the ordered
phase, Fig. 8.6. Close to the phase boundary, its spectral weight is dominated by χIIyy, i.e.,
amplitude fluctuation of the condensed Iy field. Deeper in the ordered phase the spectral
weight is mostly in χRRyy , corresponding to phase fluctuation (RI-rotation) as in the U2(1)
model. We offer an interpretation in terms of the relative strength of the symmetry break-
ing term (tab) in the Hamiltonian and the spontaneously generated Weiss field. The Weiss
field, the off-diagonal F ↑↓ab (ω) part of the hybridization function in the present method, is in
general a fluctuating (frequency dependent) object, which prohibits a direct comparison to
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Figure 8.6: The same susceptibilities as in Fig. 8.3 (T = 1/40) in the vicinity of Γ-point for U(1) model with
cross-hopping tab = 0.06. The rows from top to bottom correspond to ∆ =3.675, 3.60, 3.5, with
∆c ≈ 3.65 (Red line separates the normal state from the PEC phase) .

tab. Nevertheless, we can compare their dynamical effects. A Weiss field dominating over the
Hamiltonian term (tab) results in a gapped GM found deep in the ordered phase. A common
example of such situation is a gap in spin-wave spectra of magnets due to magneto-crystalline
anisotropy. Dominance of the Hamiltonian term (tab) close to the phase boundary, where the
Weiss field is small, results in amplitude fluctuations. This is a generic situation in cases with-
out an approximate symmetry. This interpretation is supported by the observation that the
extent of the amplitude-fluctuation regime shrinks when tab is reduced (Kunes, 2019). More-
over, the strong-coupling calculations (see supplementary material of Kunes (2019)), which
make an explicit comparison possible, lead to the same conclusions.

Next, we discuss the impact of exciton condensation on the spin susceptibility χSSzz , shown in
Fig. 8.7. In the normal phase, χSSzz (k, ω) exhibits no distinct dispersion and essentially vanishes
throughout the Brillouin zone, Fig. 8.7b, as expected in a band insulator. In the PEC phase,
it develops a sharp spin-wave-like dispersion although there are no ordered moments present.
We point out a similarity of χSSzz (k, ω) to χRRxx (k, ω) that we discuss later. A distinct feature of
χSSzz (k, ω) is the suppression of the spectral weight close to the Γ-point. This suppression can be
overcome by doping, which results in appearance of ferromagnetic exciton condensate (Kuneš,
2014).
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Figure 8.7: (a) Evolution of dynamical spin susceptibility − ImχSSzz (k, ω) across the ∆-driven transition in
the U2(1) model of Fig. 8.3 (Asterisk marks the normal phase). (b) The corresponding static
susceptibilities ReχSSzz (k, 0) throughout the Brillouin zone.

Table 8.1: The parameters of Eq. 8.38. The variational parameter 0 ≤ α2 ≤ 1, corresponding to the LS
density, assumes 1 in the normal phase and µ+z(T+W)+zV

2z(T+W)+zV in the condensate.

µx α2µ+ zα2(1− α2)(2T + 2W + V)
Tx α2T − (1− α2)J
Wx α2W + (1− α2)J
µy z(T +W); µ if α2 = 1
Ty T − α2(1− α2)(2T + 2W + V)
Wy W − α2(1− α2)(2T − 2W + V)
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8.4.2 Strong-coupling limit

To understand the numerical results, it is instructive to analyze the strong-coupling limit of
(8.33), which can be expressed in terms of two-flavor hard-core bosons (Balents, 2000; Kuneš,
2015; Nasu et al., 2016)

H =µ
∑
i

ni −
∑
ij,ν

[
T d†iνdjν −

W
2 (d†iνd

†
jν + diνdjν)

]
+V2

∑
ij

ninj + J2
∑
ij

Szi S
z
j ,

(8.37)

Bosonic operators d†iν (ν = x, y), which create high-spin (HS) states out of the low-spin (LS)
state, are related to the excitonic fields by Rνi (Iνi )→

√
±1(d†iν ± diν). The number operators

ni = ∑
ν d
†
iνdiν measure the HS concentration and Szi = −i(d†ixdiy − d

†
iydix) is the z-component

of the spin operator. The relations of the coupling constants µ, T , W, V, and J to the
parameters of (8.33) can be found in SM (Kunes, 2019) and Ref. (Kuneš and Augustinský,
2014). SinceW ∼ t2ab, the gauge symmetry of the U2(1) model reflects conservation of d-charge
for W = 0.

Generalized spin wave treatment (Nasu et al., 2016; Sommer et al., 2001) of the excitations
over the variational ground state |G〉 = ∏

i(α+ i
√

1− α2d†iy)|0〉, see SM (Kunes, 2019) for
details, leads to a free boson model

H̃ν = µν
∑
i

ñiν −
∑
ij

[
Tν d̃†iν d̃jν −

Wν

2 (d̃†iν d̃
†
jν +H.c.)

]
. (8.38)

Note that the parameters of this effective model in the ordered phase, given in Table 8.1,
depend on the flavor ν = x, y. The elementary excitations of (8.38) have the dispersion εν(k) =√

(µν − 2Tνδ(k))2 − (2Wνδ(k))2 with δ(k) = cos kx + cos ky. In the U2(1) case with W = 0
both x and y modes are gapless with sound velocities vν ≡ ∇kεν(k = 0) =

√
8|Wν |(Tν + |Wν |)

vanishing at the transition. Finite W in the U(1) case leads to opening of a gap for y-
excitations. The ratio of the spectral weights of I− and R− propagators corresponding to χIIyy
and χRRyy at Γ point is given by (Kunes, 2019)

ImχIIyy(0, νgap)
ImχRRyy (0, νgap) ≈

4W
(2T + V)φ2 ,

which supports the interpretation that a dominant Hamiltonian term (W) favors the amplitude
fluctuations, while a dominant Weiss field (∼ T φ) favors the gapped Goldstone fluctuations.

Finally, we address the behavior of the spin susceptibility χSSzz in Fig. 8.7 We observe that
replacing the operator diy in the strong-coupling expression for Szi by its finite PEC value
yields Szi ∼ (d†ix + dix)φ/2. In the ordered phase, the spin susceptibility χSSzz therefore follows
χRRxx , while they are decoupled in the normal phase.
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Figure 8.8: The same susceptibilities of U2(1) model as in Fig. 8.3 calculated across the thermally driven
transition for ∆ =3.55. The rows from top to bottom correspond to temperatures T = 1/11, 1/16,
1/30, 1/40 with Tc ≈ 1/13.

8.4.3 Thermally driven transition

Since the transition observed in Pr0.5Ca0.5CoO3 (Tsubouchi et al., 2002) is driven by temper-
ature we investigate the behavior of the U2(1) model along the vertical trajectory in Fig. 8.5b.
We observe that the 1P gap in the normal state is closed, Fig. 8.5d. The excitonic suscep-
tibilities possess a peak at finite frequency, whose tail extends to zero frequency, Fig. 8.8
Cooling is accompanied by a downward shift of the damped dispersive features, i.e., the phase
transition can be viewed as a mode softening, an observation also made experimentally on
TlCuCl3 (Merchant et al., 2014).

The normal state spin susceptibility χSSzz in Fig. 8.9 does not vanish as in Fig. 8.7. The
presence of thermally excited HS states gives rise to k-featureless susceptibility with spec-
tral weight concentrated at low energies. Nevertheless, χSSzz (k, ω) changes qualitatively at the
transition in this case as well. The dispersion becomes sharper and its bandwidth increases
significantly. As a result, upon cooling below Tc, the low-energy region is depleted of spec-
tral weight throughout the Brillouin zone, except in the vicinity of the Γ-point. Recently,
this behavior was reported in inelastic neutron scattering in the putative excitonic material
(Pr1−yYy)1−xCaxCoO3 (Moyoshi et al., 2018).
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Figure 8.9: (a) Evolution of dynamical spin susceptibility − ImχSSzz (k, ω) across the thermally driven phase
transition as in Fig. 8.8 for temperatures T = 1/11, 1/20, 1/30 (Asterisk marks the normal phase).
(b) The corresponding static susceptibilities ReχSSzz (k, 0) throughout the Brillouin zone.

8.4.4 Summary

In conclusion, we used DMFT to study the 2P response across exciton condensation transition
in two-orbital Hubbard model. We observed the formation of GMs as predicted by symmetry
considerations (Watanabe and Murayama, 2012). Explicit breaking of continuous symmetry
led to appearance of a gapped mode (Pekker and Varma, 2015), characterized by vanishing of
the gap at the phase transitions similar to observations in TlCuCl3 (Merchant et al., 2014). We
have observed that the character of this mode changes from Higgs-like amplitude fluctuations
close to the phase boundary, to Goldstone-like phase fluctuations deep in the ordered phase.
We suggest that this behavior shall be common to systems with weakly broken symmetry and
provide an interpretation in terms of the relative strengths of the spontaneously generated
Weiss field and the explicit symmetry-breaking term in the Hamiltonian.

Experimental observation of excitonic modes is in principle possible (Kim et al., 2014;
Wang et al., 2018) using resonant inelastic x-ray scattering, however, practical limitations in
energy resolution and k-space accessibility (Wang et al., 2018) exist at the moment. We have
shown that the measurement of dynamical spin susceptibility provides an alternative, that can
used to identify spinful excitonic condensates with current experimental technology (Bryan,
1990; Jarrell and Gubernatis, 1996; Kraberger et al., 2017; Luttinger, 1961; Otsuki et al., 2017;
Sandvik, 1998).
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Band structure-induced correlations
in iron and nickel at ambient and
Earth’s core conditions

I’m a filler and
needed here

This chapter is based on the original work already published in Nature
Communications (Hausoel et al., 2017). All figures and captions are
taken from there (if not otherwise cited), as well as some text (which
is marked with a sidebar on the left).

9.1 Introduction

The ferromagnetism of the elements iron and nickel is one of the most ancient phenomena known
to mankind and the natural sciences. Iron and nickel have vast areas of technical appliance, in
pure form, as well as in combination with other elements. They are also present in the Earth’s
core and responsible for the magnetic field of our planet, which deflects cosmic particles and rays,
which can damage the cells of living beings severely. Without or a significantly weaker field, life
would definitely look different compared to as we know it. Animals needed much thicker skin to
screen the radiation that comes from the sky, and also electronic devices needed special shielding
from cosmic particles to work properly.

However while it is widely accepted that a geodynamo is at work in the outer core of the Earth,
a consistent theory of it does not exist yet. Especially there is a lively debate about the detailed
mechanisms how it is created and sustained. In 2012 Pozzo et al. found, that under the assumption
of the Earth’s core consisting of iron only, there is not enough convection to sustain the geodynamo
(Olson, 2013; Pozzo et al., 2012). A search for the missing ingredients began. The physical
conditions at the core are out of reach for most experiments, therefore computer simulations of
the material’s properties at the core and comparing the results to geological experiments like
shock-waves or particle absorption measurements are a way to go.

In this project I describe the effect of band structure-induced correlations in pure nickel and
iron-nickel alloy, as well as possible implications for geodynamo theory. The properties of sharp
features in the density of states (so called van-Hove singularities) are very well known. It has
been predicted with models (Vonsovskii et al. (1993), among others), that under special conditions
they can shape the properties of a system and make it strongly correlated. However here for
the first time, I present materials existing in nature, where this mechanism is actually at work.
Simultaneously I also resolve the old riddle of determining the strength of correlations in iron and
nickel and which way they come about.
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The chapter is structured as follows: First I briefly review standard geodynamo theory and
explain its main problem. Then I discuss some of the known magnetic properties of iron and nickel
at the one-particle level, before I show a careful comparison of the two at the two particle level.
There I uncover their different microscopic mechanisms, which lead to correlation effects of similar
strength. Finally I discuss how this mechanism can survive Earth’s core conditions and may give
a significant contribution to the thermal resistivity of the outer core.

Figure 9.1: The structure of the Earth (left) and a cartoon of the geodynamo (right): the inner core is solid an has
a temperature of 5,000-7,000K the outer core is liquid and has 4,000-5,000K, and the mantle which
consists of rock, but is still so hot that it flows like road tar. Taken from Geggel (1998) and Christensen
(2019).

9.2 Geodynamo theory

I start with a brief review of geodynamo theory here and make the connection to the topic of this
thesis, strongly correlated materials.

The Earth’s interior consists of the Earth’s inner core, which is believed to be solid and made
of about 80% iron and 10-20% nickel (National Geographic, 1998). One layer above is the outer
core, which contains mostly liquid iron and also some nickel, but less compared to the inner core.
The Earth’s mantle consists mainly of silicate rocks and also some iron. But it is only partially
molten and considering the relevant time-scale, it can be considered as solid and does not play a
role for the geodynamo.

The Earth’s magnetic field cannot come from the known mechanism of ferromagnetism, since
the temperatures are way too high (4,000 to 5,000K in the outer, 5,000 to 7,000K in the inner
core). At ambient conditions the ordering temperature of iron is 1, 043K (Wohlfarth, 1986), and
hydrostatic pressure can only reduce this number, since it widens the density of states and thus
reduces correlation effects.

Instead, the field is believed to be generated by the geodynamo the following way. The inner
core produces heat by various processes: radioactive elements decay, material condensates at the
surface of the inner core, and by friction from dense material sinking downwards. This energy
has to get outwards, which can happen by convection (i.e. material is carried with the transport
of heat) and by conduction (heat is transferred without transport of material). The convecting
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material is forced into rotating columns by the Coriolis force, which then generates the field, see
Fig. 9.1.

Bcc-iron is strongly correlated at standard conditions for temperature and pressure, and would
have enough thermal resistivity to sustain the geodynamo, but under pressure it makes a structural
phase transition to hcp-iron (Leonov et al., 2011). In 2012 Pozzo et al. calculated the thermal
conductivity of hcp-iron with DFT + molecular dynamics at Earth’s core conditions. They found
that it is a factor of 2-3 too high in order to create sufficient convection for a geodynamo of
sufficient strength for the magnetic field we observe on the surface of the Earth. Thus the thermal
conductivity must be low enough, that the heat transport carries enough material in order to
sustain the geodynamo. Back then a vivid search for the missing compounds and mechanisms was
started. In 2017 Belonoshko et al. noted, that a diffusion mechanism may stabilize bcc-iron in the
inner core.

In this project we show, that the effect of band structure-induced correlations in nickel and
hcp-iron-nickel alloy delivers an important contribution to the thermal resistivity of the outer core,
since it significantly increases electron-electron scattering processes and thus increases thermal
resistivity.

9.3 Ferromagnetism and correlations in iron and nickel

Let’s first take a look at the applicability of the DFT+DMFT method reproducing and discussing
known magnetic transition temperatures and spectra of iron and nickel.

Surprisingly, we still lack a complete theoretical comprehension of these two textbook materi-
als. The reason can be ascribed to the intrinsic quantum many-body nature of their electronic
structure, which makes a standard treatment in terms of independent electrons and conven-
tional band theory inapplicable. The calculated Coulomb interaction is large and comparable
in size in iron and nickel, which instead differ in the number of 3d electrons filling the bands
close to the Fermi level. Iron is not too far from half-filling, where the Coulomb interaction has
the strongest effect and can easily drive a system Mott insulating. On the contrary, nickel has
an almost full shell. A situation in which Landau-theory of Fermi-liquids is in general recov-
ered, even if the Coulomb interaction is significant. Yet, nickel was originally considered the
more correlated of the two, because of photoemission satellites far away from the Fermi level,
believed to originate from spectral weight transfer due to the Coulomb interaction (Hüfner
and Wertheim, 1975; Tanaka et al., 1992). A theoretical study by one of us (Lichtenstein
et al., 2001) put the two materials on a similar level, stressing the existence in both of them
of well-formed local moments, despite their marked itinerant character.

9.3.1 Ferromagnetic transition temperatures

The Curie temperature (TC) of iron and nickel has been the object of several studies, in
particular using the merger of density functional theory and dynamical mean-field theory
(DFT+DMFT) (Georges et al., 1996; Held, 2007; Kotliar et al., 2006). This theoretical ap-
proach gives reliable results for three-dimensional materials with large coordination number,
and is able to access the magnetic as well as the non-ordered phase above TC. The latter is
described by DFT+DMFT as non-vanishing local magnetic moments with strong quantum
fluctuations, which is crucial for the physics of correlated itinerant magnets (Drchal et al.,
2013; Kudrnovskỳ et al., 2012; Liechtenstein et al., 1987; Ruban et al., 2007).
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Fe Ni

Figure 9.2: Curie temperatures and self energies of iron and nickel. Ferromagnetic order parameter
m = N↑ − N↓ in bcc-iron (a) and in fcc-nickel (b) as a function of temperature, whereas N↑
(N↓) are the total number of spin-up (-down) electrons in the correlated d-orbitals. The Curie
temperature TC is signaled by the magnetization dropping to zero. For nickel we obtain TC = 600 K,
very close to the experimental value of 633 K(Wohlfarth, 1986), indicated by the black arrow in
b. Our estimated TC for iron is around 1, 500K, i.e. roughly 30% larger than the experimental
one of 1, 043K (Wohlfarth, 1986), marked by the black arrow in a (for a discussion, see Methods,
where also a description of the three parametrization used for the Coulomb interaction is given).
Imaginary part of the Matsubara self-energies of iron (c) and nickel (d). The curves with filled
circles show one of the degenerate t2g orbitals, with empty circles one of the degenerate eg orbitals.
The lifetime of the quasiparticles is inversely proportional to ImΣ(iνn→ 0). Contrary to nickel,
the scattering rate in iron at ambient pressure is large, even though the insulating-like shape of
the density-density eg-self-energy is replaced by an upturn at small frequencies in Kanamori and
full Coulomb.
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In the literature about ab-initio calculations for iron and nickel, there were made severe approx-
imations on the parametrization of the electron-electron interaction. Most of them kept density-
density interaction terms only (Leonov et al., 2011; Lichtenstein et al., 2001) or restored spin-
rotation symmetry within the density-density interaction (Belozerov et al., 2013). In order to see
the effects, which the different types of approximations make on the results, we did our calculations
for three types of interaction. (see Fig. 9.2).

The three references given above overestimated TC for nickel substantially; with Kanamori
or full-Hubbard interaction instead we find the experimental value. For iron, Kanamori or full-
Hubbard interaction still overestimates TC of about 30 %.

This makes sense, since iron (6.7 electrons in the d-manifold) is much closer to half-filling than
nickel (8.8 electrons in d-manifold), and going from half to full filling, the Fermi liquid state is
recovered. DMFT is exact in the non-interacting limit, which corresponds here to the system
being completely full, therefore DMFT is expected to work better for nickel. The same also for
the coordination number, which is 8 for iron’s bcc-lattice, and 12 for nickel’s fcc-lattice, expecting
DMFT to perform better for nickel.

The 30 % off observed for iron can thus be accounted for non-local correlations (Rohringer
et al., 2011). They are strongly present in iron and not captured by DMFT, whereas in nickel they
seem to have minor influence on Tc.

9.3.2 Self energies

We have seen, that the magnetic transition temperatures strongly depend on on the parametriza-
tion of the Coulomb interaction. A similar picture also holds for the self energies.

Iron’s self energies are much larger compared to those of nickel, and also differ strongly between
eg and t2g contributions.

Nickel’s self energies are smaller a factor of 2-3 and don’t differentiate much between the types
of interaction, as well as between eg and t2g.

From the perspective of the self-energies only, iron looks like a strongly correlated metal at
these temperatures, and nickel rather close to a Fermi-liquid state.

9.3.3 DFT + DMFT spectral functions

In the previous two sections we argued that nickel seems to be a Fermi-liquid and iron a strongly
correlated metal. However looking at the spectral functions, nickel has a very pronounced Hubbard
satellite, and therefore must also be a strongly correlated metal. This contradiction will be resolved
later in Sec. 9.4. But let’s now discuss the spectral functions first.

Our DFT+DMFT spectra are consistent with previous calculations of similar kind (Belozerov
et al., 2013; Lichtenstein et al., 2001; Sánchez-Barriga et al., 2009; Schickling et al., 2016)
and agree reasonably well with angular resolved photoemission data (see Fig. 9.5). They
also reproduce the known signatures of correlation in both materials, in particular the visible
spin-polarized photoemission satellite around −6eV for nickel.

k-averaged spectral functions

The results for Fe at T = 386K are shown in Fig. 9.3 for the three parametrizations of the
interaction used. The spectra generally agree well with photoemission experiments (Hüfner
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Figure 9.3: Iron spectral functions. Spectra of the 3d shell for Fe at T = 386K using the three parametriza-
tions of the interaction as discussed above. The top row shows the majority, the bottom row the
minority spin channel.

and Wertheim, 1974; Pessa et al., 1976; Schulz et al., 1979), showing a principal peak below
the Fermi level, a secondary peak at about 2eV binding energy, as well as additional features
at higher binding energies with a potential satellite at about 6-7eV. The spectra undergo
an evolution as a function of the parametrization of the Coulomb interaction, showing more
multiplet features when going form density-density (panels a,b in Fig. 9.3) towards the full
inclusion of Uijkl (e,f in Fig. 9.3). This is somewhat expected, due to the large effects of the
Coulomb interaction on the electronic structure of iron in general.

For Ni the situation is complicated by the long history of the satellites in the photoemission
spectrum. Our results for Ni (T = 386K) are shown in Fig. 9.4 for the three parametrizations
of the interaction used. Here, the spectra do not vary as strongly as in the case of iron.
This is again not unexpected, since the different parametrizations do not have such a strong
effect in Ni. Only small changes in the intensities and positions of features are observed.
Comparing to experiments we identify a large principal peak, a shoulder next to it, as well
as an additional peak at about 2eV binding energy (Hüfner and Wertheim, 1974; Mårtensson
et al., 1984; Nakajima et al., 2004; Okane et al., 1993). Apart from these, we see only one
additional satellite around 6−8eV binding energy, which we identify as the "6eV valence band
satellite".

k-resolved spectral functions

We have also performed a preliminary comparison of our calculations with angle-resolved
photoemission spectroscopy (ARPES) data, which is shown in Fig. 9.5. We compare our
results with ARPES of Himpsel et al. (Himpsel et al., 1979) for Ni and of Schäfer et al.
(Schäfer et al., 2005) for Fe. We have used the results of the density-density interaction, since
the QMC data at low temperature have the least noise here.
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Figure 9.4: Nickel spectral functions. Spectra of the 3d shell for Ni T = 386K using the three parametriza-
tions of the interaction as discussed above. The top row shows the majority, the bottom row the
minority spin channel.

Figure 9.5: Momentum resolved spectra. Total momentum resolved spectral functions of the 3d shell for
Fe and Ni at T = 386K using the density-density parametrization of the interaction as discussed
above.
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For Ni the agreement is quite satisfactory only close to the Fermi level along L-Γ, but
worsens at larger binding energies as well as along Γ-X. From the analytically continued
Green’s function at the L-point we have estimated the exchange splitting to be about 0.25eV
in good agreement with experiments that give values between 0.26 ± 0.05eV (Eberhardt and
Plummer, 1980) and 0.31± 0.03eV (Himpsel et al., 1979).

For Fe the agreement between our data and ARPES is very good along the N-Γ-P lines of
the band structure. Larger quantitative discrepancies appear along P-H-Γ, which is a trend
also seen in the Gutzwiller-DFT of Schickling et al. (Schickling et al., 2016). Since we can
reasonably describe the ARPES spectrum of the ferromagnetic phase of Fe, it appears that
local correlations play an important role here. On the other hand it was shown in Ref. (Sponza
et al., 2017) that the ARPES spectrum of Fe is also very well described within QSGW alone,
neglecting local correlations. In this case, only a simultaneous analysis of one- and two-particle
quantities within the same theoretical scheme can clarify the relative role of local (DMFT)
and non-local (QSGW) correlations.

9.4 The mechanisms of ordering in the antipodal ferromagnets
iron and nickel

Here we show, that iron is the typical textbook strong coupling ferromagnet. Strong electron-
electron interactions localize electrons in the atomic orbitals, which then can order by an exchange
type of interaction. Nickel instead is also a strong-coupling ferromagnet, but goes a different
way: its van-Hove singularities close to the Fermi level first slow down the electrons, which are
then able to localize in the atomic orbitals and order. Thus only the combination of its peculiar
DOS and electron-electron interactions create the Curie-Weiss susceptibilities and non-Fermi liquid
scattering rates observed in nickel.

One year after this publication, one of the coauthors disentangled in a separate work the effects
of large DOS at the Fermi level and an asymmetric DOS. He showed that both effects increase the
amount of electronic correlations (Belozerov et al., 2018).

9.4.1 Iron as typical strong-coupling ferromagnet

The onset of ferromagnetic long-range order is signaled by a divergence of the Q = 0 spin
susceptibility at the Curie temperature. For a ferromagnetic metal, such as nickel or iron, the
local spin susceptibility is instead a regular function of T . The latter is defined as

χω=0
loc =

∫ β

0
dτχloc(τ), (9.1)

i.e. the ω=0-Fourier component of the spin-spin response function

χloc(τ) = g2∑
ij

〈
Siz(τ)Sjz(0)

〉
, (9.2)

where Siz(τ) is the local spin operator for the orbital i on nickel or iron, at the imaginary time
τ . g denotes the electron spin gyromagnetic factor. By studying χω=0

loc (T ), the formation of
local magnetic moments can be inferred. A Stoner-like ferromagnet does not have pre-formed
local moments, whereas a strong-coupling ferromagnetic instability can be pictured as the
emergence of localized spin moments at high temperatures, which acquire phase coherence
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and order throughout the crystal upon cooling. With DFT+DMFT we can access χω=0
loc (T )

also below the Curie temperature, as if magnetism was not present (paramagnetic solution).
This is useful to study the intrinsic local spin response, independently of the actual long
range order. If the local moments are created by the electron-electron interaction, χω=0

loc (T )
must go, at sufficiently high temperatures, as 1/T (Curie law). This clearly happens in iron
(Fig. 9.6a and b) for both parametrizations of the Coulomb interaction used in this case.
Plotted on the same scale of the interacting one, the Uijkl = 0-susceptibility (green dots), as
well as the dressed convolution of two DMFT Green’s functions (“bubble” approximation, gray
squares), are small and weakly temperature dependent. They are completely overwhelmed by
the pronounced Curie behavior obtained, as soon as the Coulomb interaction is considered.

Figure 9.6: Paramagnetic spin response of iron at ambient pressure. a, Temperature dependence
of the local spin susceptibility χω=0

loc (T ) = g2 ∫ β
0 dτ

∑
ij

〈
Siz(τ)Sjz(0)

〉
in iron, calculated with

DFT+DMFT. Calculations are performed following the non-ordered magnetic solution, also below
the ferromagnetic transition temperature TC at which the uniform (Q = 0) susceptibility diverges
(not shown). χω=0

loc (T ) in iron displays a marked “1/T”-Curie-Weiss behavior, above as well as
below TC, indicating the existence of robust local magnetic moments. The fits are least-square
fits with fit function χω=0

loc (T ) = µ2
eff

3(T+2TK) . For density-density we obtain an effective local mo-
ment of µeff = 3.97µB and a Kondo-temperature of TK = 35K, for Kanamori µeff = 3.14µB and
TK = 227K. The DFT+DMFT data are compared to the uncorrelated and “bubble” susceptibili-
ties, i.e. calculated respectively from the bare and “dressed” Green’s functions, neglecting the effect
of vertex corrections. Fig. b shows the decay in imaginary time τ of the local spin susceptibility
at two temperatures β = 4eV (dashed lines) and β = 30eV (full lines), for density-density (red)
as well as Kanamori (blue). The fact that χloc(τ =β/2) is going to zero much more slowly than
β implies the presence of persistent local moments at these temperatures.

In the paramagnetic phase, iron is therefore a bad metal with a strong electron-electron scat-
tering and robust local magnetic moments. The local susceptibility nicely fits to Wilson’s
formula (Wilson, 1975)

χω=0
loc (T ) = µ2

eff
3(T + 2TK) , (9.3)

as shown in Fig. 9.6a and b. Here, µeff is the local moment and, indeed, the estimated values
are in excellent agreement with the experimentally ordered ferromagnetic moment. TK is the
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Kondo temperature and indicates the screening of the local moment, as well as the onset
of a Fermi liquid behavior. As our results show, this would only occur far below TC, if no
long-range order would set it. At TC, the paramagnetic phase of iron is therefore still closer
to a local moment than to an itinerant electron description. This indicates that electronic
correlations are much more important around TC than for the low temperature spin-polarized
ferromagnetic solution, which is not too far from a single-electron Slater determinant.

9.4.2 Nickel as the “van-Hove magnet”

The situation in nickel is shown in Fig. 9.7 and it is totally different. The absolute value of
the local spin susceptibility (Fig. 9.7a) is way smaller than in iron. Also for nickel, it follows
the Wilson law and, surprisingly, this is already the case for the non-interacting susceptibility.
We can explain this by the particular shape of the DOS of nickel with its van Hove singularity,
appearing in the t2g sector (see Fig. 9.7d) slightly below the Fermi level (EF=0). As shown in
Fig. 9.7c, the corresponding band forms a hollow on the hexagonal face of the Brillouin zone,
inside which the dispersion is essentially flat, except for a slow modulation between the six
minima and the shallow maximum around the L point. Though this singularity is integrable
in three dimensions, it induces a “pre-localisation” effect of the Bloch electrons which, for
geometrical reasons, have a band velocity

v = 1/~∇kε(k) (9.4)

close to zero. This reflects directly in an apparent Curie law of the non-interacting spin
susceptibility, governed by the distance in energy from the flat band (Dzyaloshinskii, 1996;
Vonsovskii et al., 1993). Including electronic correlations, the local susceptibility in Fig. 9.7b
keeps its 1/T -behavior but is strongly enhanced (by a factor of 2-3). We stress that such
enhancement is much stronger than what is to be expected from the quasiparticle normalization
Z ∼ 0.8 (Z = (1 − α)−1 with α = ∂ImΣ(iνn)/∂(iνn)|νn→0 in Fig. 9.2d). This indicates the
fundamental importance of vertex corrections to the susceptibility of nickel, despite its large
filling.

The second fingerprint of pronounced band effects in nickel is the kink in the spin susceptibility.
This is present in the Uijkl = 0 as well as in the interacting case (see Fig. 9.7a and b) and
separates two “Wilson”-like behaviors with different slopes of 1/χω=0

loc (T ). The kink can be
traced back to the fact that the chemical potential is ∼0.17eV below the sharp upper edge of
the t2g-DOS and ∼0.05eV above the van-Hove singularity (see Fig. 9.7c and d). The former
acts as a source of pre-localization too (for a demonstration see the analysis under pressure and
the inset to Fig. 9.9b). Since the two singularities are different, their influence to χω=0

loc (T ) is
not symmetric, resulting in two different 1/T -behaviors: decreasing T from high temperatures,
we switch from one to the other when the larger of the two energy scales, i.e. ∼1,700K, is
crossed (see Fig. 9.9a).

It is important to note that the inclusion of interactions does not alter this picture, apart from
lifetime effects and broadening which make the kink much smoother and its position slightly
normalized. The kink in the local susceptibility directly translates via the Bethe-Salpeter
equation to a kink in the ferromagnetic susceptibility. It clarifies the experimentally observed
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Figure 9.7: Paramagnetic spin response of nickel at ambient pressure. a, Temperature dependence
of the static local spin susceptibility χω=0

loc (T ) of nickel in DFT+DMFT, compared to the “bubble”
approximation and to the non-interacting one. In order to show that the characteristic temperature
dependence of the non-interacting susceptibility originates from the t2g-sector and its van-Hove
singularity, we also plot the intra-orbital contribution to the full χω=0

loc (T ) (“full”), considering
the cases where either the 5 orbital-diagonal terms of χloc are summed (“eg + t2g”), or only the
two eg-terms are retained (“eg only”). This shows the more conventional Pauli spin response of
the eg part is in agreement with the fact that the eg-DOS is much smoother around EF = 0. b,
Inverse susceptibility for the non-interacting and DFT+DMFT case. This illustrates the main
peculiarity of nickel, namely that already the non-interacting spin response is characterized by
a “1/T” law. As explained in the text, this is due to “pre-localized” moments arising from the
vicinity to the van-Hove singularities. c, Electronic band dispersion of nickel on the hexagonal face
of the Brillouin zone, close to the L point. The extended flat region around the shallow maximum
at L is responsible for the van-Hove singularity. d, t2g- and eg-DOS for energies close to EF =0.
In the inset, the electronic state dispersion of nickel, close to the W-L-K region and to the top of
the band is shown. The distance of the sharp step in the t2g orbitals at E = 0.17eV corresponds
to the kink of the non-interacting susceptibility in b at T = 2, 000K.
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Figure 9.8: a, χloc(τ) for β = 4eV−1 (dashed) and 30eV−1 (solid). b, instantaneous (τ = 0) and long-time
(τ = β/2) values of χloc(τ). From the latter one can clearly see that the moment is eventually
screened, at temperatures much lower than TC. The comparison with the non-interacting and with
the “bubble” results shows also that vertex corrections are important and the DFT+DMFT result
cannot be obtained by using “dressed” quasiparticle propagators (see also b).

kink at ∼1,200K (Sucksmith and Pearce, 1938), reported almost eighty years ago but so far,
to the best of our knowledge, without explanation.

Since in nickel the “Wilson” behavior is already present in χω=0
loc (T ) at Uijkl = 0, a direct

interpretation in terms of a Kondo effect is difficult. Let us hence turn to the imaginary time
τ dependence of the local susceptibility, shown in Fig. 9.8a and b. Without interaction, there
is a rapid drop of χloc(τ) for τ→β/2. This indicates the absence of long-lived local moments.
A drop is present with interaction as well, but on much larger time scales and from larger
χloc(τ =0) values. This confirms the presence of correlation-enhanced (Prokopjev and Reser,
1991; Toschi et al., 2012) local moments in nickel and the τ -dependence reveals their screening
properties. Since there remains a finite unscreened moment χloc(τ =β/2) even at β=30eV−1

(370K), the screening is not complete. Only at much lower temperatures (of the order of 100K)
this moment eventually gets completely screened, see inset of Fig. 9.8b. The existence of such
a two stage screening can be clarified invoking the few charge carriers available for screening,
as in Nozières exhaustion scenario (Burdin et al., 2000; Nozieres and Blandin, 1980). Also
the local spin being larger than 1/2 (Nevidomskyy and Coleman, 2009) and the fact that d
electrons act both as localized moments and itinerant ones can contribute. The latter screen
the former. This leads to different energy scales for the onset of screening and for complete
screening (Held et al., 2013), with the range in-between strongly affected by the van Hove
peak in the d-electron spectral function.

9.4.3 A unified picture

A van-Hove singularity is actually also present in the bcc-DOS of iron (see Fig. 9.10). The
reason why this does not influence the physical properties as for nickel is the different occu-
pation of the d-shell of the two materials. Due to the proximity to half-filling, in iron the
physics is dominated by correlation-induced band normalization and strong electron-electron
scattering. This means that, even though the van-Hove singularity does give a 1/T -behavior
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Figure 9.9: Nickel under pressure. a, The t2g-DOS of nickel at different values of the pressure. The van-
Hove peak and the sharp edge are smoothed with increasing pressure, but the Fermi level (EF =0)
remains close to these two singular points. The cross at temperature T1 marks the beginning of the
DOS-steps, whereas the square at T2 marks is its ending. Their evolution with pressure is shown
in the inset to b. b, Non-interacting local spin susceptibility versus temperature at high pressures.
The dashed lines are least-square fits of the high- and low-temperature region, which uncover the
separation between the two “Wilson”-like behaviors, shifting towards higher temperatures compared
to ambient pressure. The position of this kink (shown as hexagons in the inset) scales with the
energy distance between EF and the sharp edge of the t2g-DOS. c, A consequence of the sharp
features at the top of the band is the deviation of the quasiparticle scattering rate from the T 2-law
predicted by the Landau theory. Here this is shown for pure nickel, by plotting the scattering rates
of one of the degenerate t2g and one of the degenerate eg orbitals, both at ambient pressure and at
330 GPa. The error bars come from averaging over different fit parameters (number of Matsubara
frequencies and order of fit-polynomial).
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Figure 9.10: The non-interacting susceptibility of iron, as the sum of eg and t2g contributions, and the non-
interacting DOS as inset.

for the non-interacting χω=0
loc (T ) as well as a kink visible on a small scale (see Fig. 9.10), this

has hardly any influence in the actual behavior in the presence of the interaction.
Nickel is instead close to 9 d-electrons and moreover the individual occupation of its five

d-orbitals is almost maximized. Hence, the entire manifold of electronic states is practically
occupied and the majority of the active electrons lives close to van-Hove singularity and to
the sharp feature at the top of the t2g-DOS. As a result, its physics is distinct from the
more common case of a strongly-correlated metal with sharp features in the DOS located far
away from the band edges (bcc-iron). This difference between iron and nickel does not only
concern the formation of local moments but it also leads to different microscopic mechanisms
for ferromagnetism. In the case of iron, ferromagnetism is driven by Hund’s rule coupling
which forms a large local moment of the d-electrons that are close to half filling. These Hund’s
moments then only need a bit of hopping to order (Held and Vollhardt, 1998). For nickel on
the other side, its peculiar DOS is essential not only for the formation of the local moments but
also for their ferromagnetic long range order. This is the flat band (Mielke and Tasaki, 1993),
or more generally asymmetric DOS route (Ulmke, 1998; Wahle et al., 1998) to ferromagnetism.
In contrast to the aforementioned work, Hund’s coupling plays also an important role in nickel.
It enhances the local moments and strongly affects TC (see Supplementary note 2 of (Hausoel
et al., 2017)). Such a mixture of Hund’s rule and flat band ferromagnetism has recently also
been observed in BaRuO3 (Han et al., 2016).
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9.5 Iron and nickel at Earth’s core conditions
The most important implication of our results for nickel comes from the observation that
even at a pressure of hundreds of GPa, the position and the shape of these sharp features in
the DOS do not change dramatically. Nickel remains in its fcc structure up to even larger
pressures (Kuwayama et al., 2008; McMahan and Albers, 1982; Mohammed et al., 2010) and
its magnetic moments, though smaller, are much more robust than those of iron (Torchio
et al., 2014). Consequently, this physics is still active at the pressures of the inner Earth’s
core, at which instead iron is already a perfect Fermi-liquid (Pourovskii et al., 2013, 2016).
The non-Fermi liquid mechanism identified here hence calls for including nickel in the current
models of geomagnetism.

9.5.1 Nickel at Earth’s core pressures

Inspired by our improved understanding of the different nature of magnetism in iron and
nickel, we discuss now the physics of Ni under high pressures. Indeed, if the non Fermi-liquid
properties of nickel survive the extreme conditions of the Earth’s core, our conclusions would
be also important to the recent debate about geomagnetism. The key observation is that the
van-Hove singularity in nickel does not dramatically change its position with pressure. As
shown in Fig. 9.9a, it gets gradually smoothed out but it survives pressures of even hundreds
of GPa. At the same time, the sharp edge of the t2g-DOS moves away from the Fermi level
but its influence can be clearly observed in the non-interacting χω=0

loc (T ) at all values of the
pressure considered here. In Fig. 9.9b the kink is indeed still visible at high pressure. In the
inset we compare the kink position with the distance – converted in temperature – between
EF and the edge of the t2g-DOS (see Fig. 9.9a). They scale the same way with pressure,
confirming our interpretation in terms of sharp features of the DOS.

We now analyze the electron-electron scattering rate

Γ = −ZImΣ(iνn→0), (9.5)

as possible non-quadratic temperature dependencies of this quantity signal deviations from
the Landau theory description of Fermi liquids. Γ of pure fcc nickel is shown in Fig. 9.9c as a
function of temperature at ambient pressure and 330 GPa, characteristic of the Earth’s inner
core. In both cases we observe non Fermi-liquid behavior in a large interval of temperatures.
A technical comment is in order here: extracting the scattering rate from the Matsubara
axis at these elevated temperatures poses well-known difficulties (Pourovskii et al., 2016).
We therefore first checked that a three-orbital model with the same filling of nickel, the same
bandwidth of the ambient pressure case and no singularity and no asymmetry in the DOS gives
a nicely T 2 Fermi-liquid scattering rate (not shown). This confirms that it is possible to reliably
extract the scattering rate from our DFT+DMFT calculations – at least for temperatures up
to 2-3,000K – without artifacts. As a matter of fact, even by considering error bars estimated
from several polynomial fits to ImΣ(iνn→ 0) (denoted by the vertical bars in Fig. 9.9c), the
non-quadratic temperature behavior is clearly recognizable.

Hence we find that, even though judging from the self-energy nickel may seem to be a much
more conventional metal than iron (see Fig. 9.2c and d), its scattering rate has a non-Fermi
liquid behavior at ambient pressure as well as at 330 GPa. This deviation from the standard
linear temperature dependence is caused by the van-Hove singularity (Dzyaloshinskii, 1996)
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and it is so robust that it is still visible at Earth’s core pressures, where the sharp features in
the DOS are weakened but not yet completely gone.

9.5.2 CPA+DMFT

The coherent potential approximation (CPA) can be combined with DMFT to take into ac-
count substitutional disorder, see e.g. Ref. (Poteryaev et al., 2015) and references therein.
Take a binary alloy of two components AxB1−x with concentrations x and 1− x.

If the concentration of A is much larger than that of B, one assumes that the dispersion
and lattice structure of A is preserved for the whole structure to a good approximation, and
that the substituents B are randomly distributed over the lattice sites of A. The substituents
B usually have a different number of valence electrons than A. This is accounted for by
introducing a level shift εB at every B site. This shift is estimated from the shift of the static
crystal field (center of mass of the density of states) of B as compared to the parent A in a
supercell calculation. For the determination of the CPA shifts we used a Fe-hcp supercell with
16 atoms, replacing one of them by Mn or Ni (6.25% admixture).

Following Vekilova et al. we used the volume established within the Preliminary refer-
ence Earth model (PREM) (Dziewonski and Anderson, 1981; Vekilova et al., 2015) to be
7.05Å/atom. Since Mn has one 3d-electron fewer than Fe, and Ni has one 3d-electron more
than Fe, we obtain shifts of εCPA,Ni = −1.67eV for nickel, and εCPA,Mn = +0.94eV for man-
ganese.

Within the DMFT the impurity problem is subsequently solved for each site A and B, and
an average is performed over the Green’s functions according to their concentrations

GCPA = xGA(τ) + (1− x)GB(τ). (9.6)

This gives a disorder independent mean-field, that closes the DMFT self-consistency loop. We
have benchmarked our implementation against Ref. (Poteryaev et al., 2015) and reproduced
some of the results reported there.

9.5.3 Disordered iron-nickel alloy

The inner Earth’s core contains about 20% nickel in addition to solid iron and, at these extreme
pressure and temperature conditions, they form a disordered alloy. Therefore, in order to
understand whether or not nickel should actually be considered in theories of geomagnetism,
one has to study a disordered iron-nickel alloy under pressure. In particular, it should be
seen if, even under extreme conditions, the electronic scattering rate is large and non Fermi-
liquid, as in pure fcc Ni where the van-Hove singularity mechanism is active. The electronic
properties of an alloy are fundamentally different from those of a perfect crystal. In order to
take the nontrivial disorder effects into account, we performed calculations for nickel alloys
of various concentrations at the Earth’s pressure within a Coherent Potential Approximation
(CPA)+DMFT scheme.

The identification of the correct crystalline structure of iron at Earth’s core conditions
is still a subject of debate (see (Pourovskii et al., 2013) and references therein, as well as
(Belonoshko et al., 2017)). In this work we will consider an hcp-Fe/Ni alloy, since hcp-Fe (ε-
Fe) emerges as the most stable structure, according to several studies ((Anzellini et al., 2013;
Kuwayama et al., 2008; Vočadlo et al., 2003)). The blue curve in Fig. 9.11a shows the DOS
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of hcp-iron at core pressure. The vertical dashed lines in the case under pressure show the
position of the local levels, after the shift of the CPA+DMFT algorithm that simulates the
presence of the dopant atoms. For the iron-nickel alloy, the shift is towards the top of the hcp
band and brings the local levels of Ni close to the sharp structures resembling those of pure
fcc nickel (shown in Fig. 9.9a). We also considered the alloy with manganese, for reference
purposes. In that case, the CPA shift has the opposite sign and it does not bring the energy
levels close to any special structure in the DOS, therefore the alloy with Mn is expected to
have more standard electronic properties than that with Ni.

The first indication that the hcp-iron-nickel alloy shares part of the anomalous behavior of
fcc nickel comes from its non-interacting spin susceptibility (Fig. 9.11b). While pure hcp
iron, as well as the alloy with Mn, displays a Pauli-like spin susceptibility in the absence of
electron-electron interaction, the alloy with nickel (both with 5 and 20% nickel content) shows
the “Wilson”-like behavior which characterizes pure fcc nickel (see Fig. 9.9b). Note that the
absolute values of χω=0

loc (T ) depend mainly on the filling, as already observed for pure iron and
nickel. Fig. 9.11c confirms that, when taking the electron-electron interaction into account,
20% nickel leads to a linear and large quasiparticle scattering rate at high temperatures. This
confirms the close resemblance of the iron-nickel disordered alloy to pure fcc nickel, for what
concerns the non Fermi-liquid nature of the scattering. The purple solid circles shown in
Fig. 9.11c approach the gray curve at high temperatures (or even go somewhat above it),
which refers to pure fcc nickel at 330 GPa. This demonstrates that the anomalous effect of
nickel is relevant also in the case of the alloy at the Earth’s core conditions.

9.5.4 Molecular Dynamics+DMFT

Since the CPA can account only for substitutional disorder, we have performed additional
molecular dynamics (MD) simulations combined with DMFT to estimate effects of thermal
disorder. Following Pozzo et al. (Pozzo et al., 2012) we used a canonical ensemble at 6000K
and a run time of 20 ps and a time step of 1 fs. Configurations were written every 50 fs, so in
total 20.000 configurations were generated. These calculations were performed with an fcc Ni
supercell at 330 GPa containing 27 atoms. Subsequently, for the last six MD configurations
we performed an additional static calculation and a local orbital projection as for the bulk.
These inputs were used to perform a DMFT calculation for all 27 Ni atoms in the unit cell.
We used a temperature of about 6000K (β = 2eV−1) also in the DMFT. Since the crystal
structure of the MD configurations is not cubic anymore we used the spherically averaged
Coulomb interaction matrix for Ni, with US = 2.71eV and JS = 1.0eV. As expected from the
structural changes in each configurations the spectrum, self-energies and fillings vary somewhat
between atoms. The fillings of the atoms in each studied configuration vary between 8.8 and
8.9 electrons (bulk: 8.85), where the filling is equally distributed between the orbitals. The
atom-averaged filling in each studied configuration gives 8.84-8.86, basically on top of the bulk
result. Averaging the spectra and self-energies over all 27 impurity problems shows that the
cell-averaged results are again very close to the bulk fcc Ni result. In Fig. 9.12 we show the
DMFT spectrum and electronic self-energy for the MD configuration at 19.80ps compared to
the bulk result obtained using the same parameters. The data shown is a goods representative
of all MD+DMFT results we obtained for this system.
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Figure 9.11: Iron/nickel alloy under pressure. a, DOS of the ε (hcp) phase of iron at ambient and Earth’s
core pressure (green and blue lines, respectively). E = 0 corresponds to the chemical potential of
hcp-iron. The vertical dashed lines indicate the energies at which the local levels of Ni and Mn
are shifted within the Coherent Potential Approximation (CPA) + DMFT scheme. In contrast
to the shift for the Fe/Mn alloy (used here as a reference example), that for Fe/Ni brings the
local levels of nickel close to the peak at the top of the hcp band. Since the latter is similar to
the sharp features of pure fcc nickel (shown in Fig. 9.9a), the non Fermi-liquid effects observed
in the pure fcc material are expected to survive in the iron-nickel alloy. b, Non-interacting local
spin susceptibility for pure hcp-iron and for the alloys of hcp-iron with Mn and Ni, all at Earth’s
core pressure, i.e. 330 GPa. The iron-nickel alloy strongly deviates from standard Pauli behavior
of good Fermi liquids. The example of Mn is on the contrary much closer to the Fermi-liquid
result of hcp-iron. c, The scattering rate (averaged over all d-orbitals) of the nickel-alloy at
high temperatures within CPA+DMFT is remarkably similar to the corresponding one of pure
fcc nickel at these pressures and much larger than that of the Fe/Mn alloy, taken here as a
reference.



9.6. Discussion 127

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-15 -10 -5  0  5  10

A
 (

ω
)

E (eV)

MD config at 19.80ps
bulk

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

 0  10  20  30  40  50

Im
Σ

 (
e
V

)

ωn (eV)

 MD config at 19.80ps
 bulk

(a) (b)

Figure 9.12: Molecular Dynamics Simulations. (a) DMFT spectrum and (b) electronic self-energy aver-
aged over the 3d orbitals for the MD configuration at 19.80ps compared to the bulk result obtained
using the same parameters.

9.6 Discussion
The disorder, that we have treated here at the CPA level, turned out to have a crucial ef-
fect. A comparable amount of nickel combined with hcp iron in a translationally invariant
crystalline structure gives more Fermi-liquid results, as interestingly pointed out in a recent
paper by Vekilova, et al. (Vekilova et al., 2015). The latter approach has the advantage over
CPA+DMFT that non-local changes to the band structure-induced by the presence of the
nickel atoms are fully taken into account. By going beyond the state-of-the-art implementa-
tion of CPA+DMFT, which is the one we followed here, it will be possible in the future to
fully describe this difficult interplay between many-body and disorder effects.

The linear-in-T scattering rate of the iron-nickel alloy at core pressure in a large window
of temperatures suggests a small thermal conductivity. Molecular dynamics followed by real-
space DMFT calculations of large nickel supercells, shows that the van-Hove singularity in the
spectrum and the scattering rate are not dramatically modified by the inclusion of thermal
disorder. Our results may therefore play a role in models of the geodynamo, recently questioned
because of the large thermal conductivity of iron (Pozzo et al., 2012). Whether or not this can
be reconciled with iron alone is at the moment under debate(O’Rourke and Stevenson, 2016;
Pourovskii et al., 2016), but according to the current understanding there would be too little
energy left for convection in the total heat budget (Olson, 2013). In light of our results, it will
be interesting to reconsider the contribution of nickel to the total thermal conductivity of the
core. The next challenge will thus be to include electronic correlations also in the ab-initio
study of the liquid phase of iron and nickel and determine if a more consistent explanation of
the geodynamo can be obtained.
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Chapter 10

Summary

This completes our journey from novel double-Dirac fermions in the material Bi2CuO4, as well as
Higgs- and Goldstone bosons in excitonic magnets, down to the Earth’s core and the geodynamo.

For this purpose, I first introduced the models and methods, which were used in the scope of
this thesis. I briefly discussed the microscopic framework of the many-body Schrödinger equation,
which is way too complicated for practical calculations of systems of scientifically and technically
relevant size, therefore abstracted models have to be deduced. Those models try to capture the
main macroscopic quantum properties of materials, and omit parts not affecting the physics sig-
nificantly. I introduced the dynamical mean field theory for the Hubbard model, which treats
the on-site electronic correlations in an exact way, and applies a mean-field approximation to the
non-local parts. I also discussed the Anderson impurity model, that serves as an auxiliary model
for DMFT.

Then followed a detailed derivation of the continuous-time quantum Monte Carlo technique
in hybridization expansion, building on standard lectures on solid state theory, before discussing
several algorithmical improvements, like the superstate-sampling and sliding techniques, and a
recently discovered inconsistency of Green’s function estimators in systems with finite baths.

I explained the DMFT for general one- and two-particle interaction terms on the impurity,
which appear for multi-orbital Hubbard models of real materials. I showed how to validate the
results of those complicated and cumbersome calculations as well as derived and discussed the
symmetry properties, which these results have to fulfill, in order to reduce numerical instabilities
and improve the precision.

The second part, which presents physical applications, starts with unconventional fermions.
The spatial symmetry of the vacuum permits the existence of Dirac, Weyl and Majorana fermions,
whereas the lowered symmetries of solids allow further fermionic excitations. I showed the exam-
ple of double-Dirac fermions in the material Bi2CuO4. However, due to strong electron-electron
interactions, the material is deep in the Heisenberg limit and orders antiferromagnetically. We
propose to apply hydrostatic pressure to reduce the strength of electronic correlations, drive the
material back to metallic phase and make the double-Dirac fermions observable.

I derived and discussed the properties of Golstone and Higgs bosons in condensed matter within
the framework of Ginzburg-Landau theory and identified them in a model of an excitonic insulator.

The last chapter treats the effects of electronic correlations and magnetism in the metals iron
and nickel. It is well known, that iron is a correlated metal due to its strong electron-electron
interaction. Nickel however is a correlated metal, because van-Hove singularities close to the
Fermi level slow down the electrons, inducing local magnetic moments, which are typical for a
correlated metal. Under pressure, iron makes a structural phase transition from bcc to hcp lattice
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structure, and looses some of its strongly correlated nature. Nickel instead has already fcc structure
at standard conditions for temperature and pressure and keeps its strongly correlated nature even
at the high pressure and temperature at the inner core of the Earth. We also find, that in an alloy
of hcp-iron and nickel, which is believed to exist in the outer core of the Earth, this mechanism is
at work and therefore possibly contributing to the generation of the Earth’s magnetic field.
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Some Green’s and spectral functions

Figures A.1, A.2 and A.3 show, how properties of spectral functions are encoded in imaginary time
Green’s function. For this purpose, some spectral functions are drawn, which consist of Gaussian
peaks. The position of certain peaks is modified, and the corresponding modification of G(τ) is
observed. This illustrates the issue that features of A(ω) far away from ω = 0 are encoded in small
modifications of G(τ).
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Figure A.1: The starting point is a spectral function with three peaks at ω = −2, ω = 0 and ω = 2 (red curve). The
middle peak splits up into two, where one of them moves left and the other right (orange and yellow
curve), until the whole object becomes a two peak structure (purple curve). The change of A(ω) at the
Fermi level makes a significant change of G(τ). It goes from metallic (G(τ = β/2) 6= 0) to insulating
(G(τ = β/2) ≈ 0).



133

G
o
ri

g
 - 

G

Figure A.2: Here we start with three peaks at ω = −2, ω = 0 and ω = 2 (red curve). The peaks at ω = 0 and ω = 2
stay where they are, and the peak at ω = −2 moves to the left. One sees, that G(τ) only changes in
the lower right edge, and its changes more, the closer the peak is at the Fermi level.
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Figure A.3: Now comes the worst situation, namely the encoding of some detail far away from the Fermi level. We
leave the ω = 0 and ω = 2 peaks where they are, and make a splitting of a peak at ω = −5, which
could be a multiplet splitting in a material due to the Coulomb interaction. The change in G(τ) is
tiny, making a difference of G − Gorig ≈ 0.012 for the largest splitting, whereas a typical splitting of
multiplet in a material is rather given by the yellow curves, which is G − Gorig ≈ 0.002. It is clear,
that this information is very easily blurred out by the error bars of a Monte Carlo method.
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Dyson’s series

B.1 Interaction representation and the integral equation

In this appendix I derive the expansion of a partition function Z = Tr
[
e−βH

]
with respect to a

part V of its Hamiltonian

H = H0 + V. (B.1)

The actual distribution of the terms does not influence the derivations here, sinceH0 is not assumed
to commute with V . The trace of the partition function

Z = Tr
[
e−βH

]
(B.2)

=
∑
N

〈N e−βH N〉 (B.3)

can be seen such, to calculate the expectation value of the Boltzmann weight e−βH with all the
many-body states N〉. An alternative interpretation of this formula is that the ket N〉 is time-
evolved from 0 to β with an imaginary time-evolution of e−βH ; this corresponds to the Schrödinger
picture, where the full time-dependence is in the states.

Full Hamiltonians of many-body systems have horribly expensive time-evolutions, which are
not possible to calculate. For this purpose the interaction representation was invented, where the
partition function is rewritten to have its Boltzmann weight and the time-evolutions only with
respect to H0:

Z = Tr
[
e−βH

]
(B.4)

= Tr
[
e−βH0eβH0e−βH

]
(B.5)

= Tr
[
e−βH0A(β)

]
. (B.6)

The auxiliary operator

A(β) = eβH0e−βH (B.7)

is still impossible to calculate, since it contains an exponential of the full Hamiltonian.1 We are
going to find an expansion with respect to V . The differential equation for A is

1Note that it is not possible to write e−βH = e−βH0e−βV , since [H0, V ] 6= 0.
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dA(β)
dβ =

( d
dβ e

βH0

)
e−βH + eβH0

( d
dβ e

−βH
)

(B.8)

=
(
H0eβH0

)
e−βH + eβH0

(
−He−βH

)
(B.9)

= eβH0(H0 −H)e−βH (B.10)
= eβH0(−V )e−βH0eβH0e−βH (B.11)
= −V (β)A(β). (B.12)

In eq. (B.11) the well known time-evolution of an operator in the interaction representation
naturally arises as

V (τ) = eH0τ V e−H0τ . (B.13)

We integrate the differential equation

dA(β) = −V (β)A(β)dβ (B.14)

(A(β)−A0) = −
∫ β

0
dτ1V (τ1)A(τ1), (B.15)

where in (B.15) the differential was relabelled dβ → dτ , and obtain the integral equation

A(β) = A0 −
∫ β

0
dτ1V (τ1)A(τ1). (B.16)

B.2 Solution by a series expansion

The solution of (B.16) can be found by a series expansion ansatz

A(τ) =
∞∑
n=0

A(n)(τ), (B.17)

with zeroth order term A0(τ) = A0. Inserting this into (B.16) gives

∞∑
n=0

A(n)(β) = A0 +
∫ β

0
dτ ′V (τ ′)

∞∑
n=0

A(n)(τ ′). (B.18)

One compares the terms of both sides with the same number of V (τ) and finds the recursion
relation for the coefficients of the series to be

A(n)(τ) =
∫ τ

0
dτ ′V (τ ′)A(n−1)(τ ′). (B.19)

Let us write the first few coefficients of the expansion:
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A(0)(β) = A0 (B.20)

A(1)(β) =
∫ β

0
dτ1V (τ1)A(0)(τ1) (B.21)

=
∫ β

0
dτ1V (τ1)A0 (B.22)

A(2)(β) =
∫ β

0
dτ1V (τ1)A(1)(τ1) (B.23)

=
∫ β

0
dτ1V (τ1)

∫ τ1

0
dτ2V (τ2)A0 (B.24)

A(3)(β) =
∫ β

0
dτ1V (τ1)A(τ2)(τ1) (B.25)

=
∫ β

0
dτ1V (τ1)

∫ τ1

0
dτ2V (τ2)

∫ τ2

0
dτ3V (τ3)A0 (B.26)

Note due to the integration boundaries the times are naturally ordered 0 < τ1 < β, and 0 < τ2 < τ1 < β,
as well as 0 < τ3 < τ2 < τ1 < β.

The times in the integration measure∫∫∫
0<τ1<···<τn<β

dτ1 . . . dτn (B.27)

can be relabeled to any permutation of {1, . . . , n}∫∫∫
0<τπ(1)<···<τπ(n)<β

dτπ(1) . . . dτπ(n). (B.28)

In doing so one can sum up all n! combinatorically possible orderings of the times, which cor-
responds to integrating over the hypercube τi ∈ [0, β] ∀ i = 1, . . . , n, and correcting this by the
normalization factor 1/n!. Since one has to ensure, that the times of the V (τ) are always time-
ordered, the time ordering operator Tτ is introduced

1
n!

∫ β

0
dτ1· · ·

∫ β

0
dτn Tτ . (B.29)

With this integration measure, the terms of the expansion can be rewritten:

A(0)(β) = A0 (B.30)

A(1)(β) = 1
1!

∫ β

0
dτ1 TτV (τ1)A0 (B.31)

A(2)(β) = 1
2!

∫ β

0
dτ1

∫ β

0
dτ2 Tτ [V (τ1)V (τ2)]A0 (B.32)

A(3)(β) = 1
3!

∫ β

0
dτ1

∫ β

0
dτ2

∫ β

0
dτ3 Tτ [V (τ1)V (τ2)V (τ3)]A0. (B.33)

The introduction of time-ordering made the factorials appear and it possible to identify the ex-
pansion coefficients to be those of an exponential. Therefore the auxiliary operator is

A(β) = A0 Tτexp
[
−
∫ β

0
dτV (τ)

]
. (B.34)
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B.3 Summary and discussion

Insert (B.34) in (B.6) to find the famous Dyson series

Z = Tr
[
e−βH

]
(B.35)

= Tr
[
e−βH0Tτexp

[
−
∫ β

0
dτV (τ)

]]
(B.36)

with a Hamiltonian H = H0 + V . The factor A0 was dropped, since for physical observables
〈B〉 = 1

ZTr
[
e−βHB

]
it cancels any way.

Practically when one wants to use Dyson’s equation for a partition, there are two choices:

1. Expand with eq. B.26. The V -operators are time ordered and time integration of each
operator is performed from its left to its right neighbour.

2. Expand with eq. B.33. Now each operator is integrated from [0, β], which is compensated
by a factorial 1/n!. The time ordering operator brings the V -operators in correct order.

In any case the V -operators always have to be time-ordered,
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Grassmann calculus

C.1 General properties

Grassmann variables θi anticommute with themselves

θiθj + θjθi = 0, (C.1)

commute with every (bosonic) observable Â

θÂ = Âθ (C.2)

and anticommute with fermionic operators ψ̂

θψ̂ + ψ̂θ = 0. (C.3)

From this follows, that their square is always zero

θ2 = 0. (C.4)

One can define a formal complex conjugation θ ↔ θ̄, which has the same properties as complex
conjugation of complex matrices and operators

(λθ1 + µθ2) = λ∗θ̄1 + η∗θ̄2 (C.5)
θ1θ2 = θ2 θ1, (C.6)

with complex number λ and η. Since later quantum mechanic fermionic operators will be mapped
to Grassmann variables (θ̄ to the creators, θ to the annihilators), I employ that Grassmann variables
come in conjugated pairs from the beginning on. Then a general function of two variables is

f(θ̄, θ) = f0 + f1θ̄ + f̃1θ + f2θ̄θ (C.7)

with complex numbers f0, f1, f̃1 and f2.
Derivatives are done equivalently to complex numbers, where the derivation-operator anticom-

mutes with Grassmann variables and also with itself
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θi
∂

∂θj
+ ∂

∂θj
θi = δij (C.8)

∂

∂θi

∂

∂θj
+ ∂

∂θj

∂

∂θi
= 0, (C.9)

which have to be understood such that they are applied to a function.1 The derivative of the
general function C.7 therefore is

∂

∂θ
f(θ̄, θ) = f̃1 − f2θ̄ (C.10)

∂

∂θ̄
f(θ̄, θ) = f1 + f2θ. (C.11)

An integral has to have the following properties. It must be a linear operation, i.e.
∫
dθ(f(θ) +

g(θ)) =
∫
dθ f(θ)+

∫
dθ g(θ). It must be translationally invariant

∫
dθf(θ+θ0) =

∫
dθf(θ), and the

result of
∫
dθf(θ) must not depend on θ any more. The only possible way to define the integration

is

∫
dθ θ = 1 (C.12)∫
dθ 1 = 0, (C.13)

up to a multiplicative constant. This means, for Grassmann numbers integration and differentiation
are the same

∫
dθ = ∂

∂θ
. (C.14)

C.2 Change of variables

As a first step let us take a one dimensional function

∫
dθf(θ) (C.15)

and change the variable via

θ = θ′A+B. (C.16)

We want the transformation to conserve parity, i.e. the result also to be a Grassmann number. For
this purpose, A has to be a complex number and B a Grassmann number. Using that integration
and differentiation are the same, the substitution gives

1
(
θi

∂
∂θj

+ ∂
∂θj

θi

)
f = θi

∂f
∂θj

+ δijf − ∂f
∂θj

θi = δijf
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∫
dθf(θ) = ∂

∂θ
f(θ) (C.17)

= ∂θ′

∂θ

∂f

∂θ′
(C.18)

= ∂θ′

∂θ

∫
dθ′f(θ(θ′)) (C.19)

=
(
∂θ

∂θ′

)−1 ∫
dθ′f(θ(θ′)). (C.20)

The general transformation formula can be derived the same way. I assume the product ∏i
∂
∂θi

to
be ordered.

∫
dθ1 . . . dθNf(θ) =

N∏
i=1

∂

∂θi
f(θ) (C.21)

=
N∏
i=1

∂

∂θi
f(θ′1(θ1, ..., θN ), . . . , θ′1(θ1, ..., θN )) (C.22)

=
N∏
i=1

N∑
j=1

∂θ′j
∂θi

∂

∂θ′j
f(θ′1(θ1, ..., θN ), . . . , θ′1(θ1, ..., θN )) (C.23)

=
∑

permutations π
of {1,...,N}

sign(π)
N∏
i=1

∂θ′i
∂θPi

∂

∂θ′i
f (C.24)

= det
(
∂θ′j
∂θi

)
N∏
k=1

∂

∂θ′k
f (C.25)

Some remarks about the derivation. In (C.22) I write f as a function of the new variables θ′, in
order to apply the chain rule in C.23. Each term in the product of derivatives now becomes a sum
of N terms. In C.24 this product of sums was multiplied out. The derivatives ∂θ′j/∂θi commute
and thus can be ordered as desired (from the restriction C.16 follows, that the derivative of a
transformed Grassmann number with respect to a Grassmann number is a complex number). The
order of the derivation operators ∂

∂θ′i
is important since they anticommute. In order to factorize

them out, they must be ordered, which gives a sign according to the permutation P of {1, ..., N}
they appear in. A little reflection shows, that all terms with two derivation operators of the same
kind disappear, and each permutation comes exactly once. So ordering them gives the sign of
the respective permutation. In C.25 the derivatives and the signs were cast into a determinant,
which is the Jacobi determinant. In contrast to complex numbers, where the Jacobi determinant
appears, here is a inverse Jacobian.

To clarify the procedure, I will also explicitly show N = 2:
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∫
dθ1dθ2f(θ1, θ2) = ∂

∂θ1

∂

∂θ2
f(θ1, θ2) (C.26)

= ∂

∂θ1

∂

∂θ2
f(θ′1(θ1, θ2), θ′2(θ1, θ2)) (C.27)

= ∂

∂θ1

(
∂θ′1
∂θ2

∂

∂θ′1
+ ∂θ′2
∂θ2

∂

∂θ′2

)
f(θ′1(θ1, θ2), θ′2(θ1, θ2)) (C.28)

=
(
∂θ′1
∂θ1

∂

∂θ′1
+ ∂θ′2
∂θ1

∂

∂θ′2

)(
∂θ′1
∂θ2

∂

∂θ′1
+ ∂θ′2
∂θ2

∂

∂θ′2

)
f(θ′) (C.29)

=
(
∂θ′1
∂θ1

∂

∂θ′1

∂θ′2
∂θ2

∂

∂θ′2
+ ∂θ′2
∂θ1

∂

∂θ′2

∂θ′1
∂θ2

∂

∂θ′1

)
f(θ′) (C.30)

=
(
∂θ′1
∂θ1

∂θ′2
∂θ2
− ∂θ′2
∂θ1

∂θ′1
∂θ2

)
∂

∂θ′1

∂

∂θ′2
f(θ′) (C.31)

= det

∂θ′1
∂θ1

∂θ′2
∂θ1

∂θ′1
∂θ2

∂θ′2
∂θ2

 ∂

∂θ′1

∂

∂θ′2
f(θ′) (C.32)

= det
(
∂(θ′1, θ′2)
∂(θ1, θ2)

)
∂

∂θ′1

∂

∂θ′2
f(θ′) (C.33)

This makes it clearer, that the sign comes from reordering the derivation operators. Therefore the
transform of the integration variable goes like

∏
i

dθi = det
(
∂θ′j
∂θi

)∏
k

dθ′k. (C.34)

C.3 Gaussian integrals and Hubbard Stratonovich transformation

Compared to Gaussian integrals with complex numbers

∫
dx e−az2 =

√
π

a
, (C.35)

Gaussian integrals with Grassmann numbers are easy, since the expansion of the exponential
truncates to

∫
dθ̄dθ e−aθ̄θ =

∫
dθ̄dθ

(
1− aθ̄θ

)
= a. (C.36)

C.3.1 Plain Gaussian integral

The generalization to N variables gives

∫ N∏
j=1

dθ̄jdθj e−
∑

j
aj θ̄jθj =

N∏
j=1

aj . (C.37)

Now consider a general Gaussian integral with a matrix M in the exponent. We insert two
unity-operators 1 = U †U , where U is the matrix that diagonalizes M to the diagonal matrix M ′.
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Z(M) =
∫

dθ1dθ̄1 . . . dθNdθ̄N exp

 N∑
ij=1

θ̄iMijθj

 (C.38)

=
∫

dθ1dθ̄1 . . . dθNdθ̄N exp

 N∑
ijklmn=1

θ̄iU
†
ijUjkMklU

†
lmUmnθn

 (C.39)

This defines the transformation of variables to go to the diagonal basis ofM ; the Jacobian is one,
since the transformation is unitary.

θ̄′j =
∑
i

θ̄iU
†
ij (C.40)

M ′jm =
∑
kl

UjkMklU
†
lm (C.41)

θ′m =
∑
n

Umnθn (C.42)

The result is

Z(M) =
∫

dθ1dθ̄1 . . . dθNdθ̄N exp

 N∑
jm=1

θ̄′jM
′
jmθ

′
m

 (C.43)

=
∏
i

M ′ii (C.44)

= detM . (C.45)

C.3.2 Gaussian integral with source terms

Now let’s consider the generalized Gaussian integral with source terms η and η̄

ZG(M ,η, η̄) =
∫

dθ1dθ̄1 . . . dθNdθ̄N exp
[
EG
[
M , η̄, η, θ̄, θ

]]
(C.46)

=
∫

dθ1dθ̄1 . . . dθNdθ̄N exp

 N∑
ij=1

θ̄iMijθj +
∑
i

(
η̄iθi + θ̄iηi

). (C.47)

We need to find the change of variables θ and θ̄, that maps this integral on the one in the previous
paragraph. For this purpose define the inverse of the matrix M−1 = ∆ with ∑jMij∆jk = δik,
and determine the maxima of the argument EG of the exponential in C.47.

∂EG
∂θj

= 0 (C.48)

−
∑
i

θ̄iMij − η̄j = 0 (C.49)

−
∑
ij

θ̄iMij∆jk −
∑
j

η̄j∆jk = 0 (C.50)

θ̄k = −
∑
j

η̄j∆jk (C.51)
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And the other one:

∂EG

∂θ̄i
= 0 (C.52)∑

j

Mijθj + ηi = 0 (C.53)

∑
ij

∆kiMijθj −
∑
i

∆kiηi = 0 (C.54)

θk = −
∑
i

∆kiηi (C.55)

The transformed exponent becomes (indices suppressed)

E′G = θ̄Mθ + η̄θ + θ̄η (C.56)
= (θ̄′ − η̄∆)M(θ′ −∆η) + η(θ′ −∆η) + (θ̄′ − η̄∆)η (C.57)
= θ′Mθ̄′ − θ̄′M∆η − η̄∆Mθ′ + η̄∆M∆η (C.58)
+ η̄θ′ − η̄∆η + θ̄′η − η̄∆η (C.59)
= θ′Mθ̄′ − η̄∆η (C.60)

Therefore the generalized integral is

ZG(M ,η, η̄) =
∫

dθ1dθ̄1 . . . dθNdθ̄N exp

 N∑
ij=1

θ̄iMijθj +
∑
i

(
η̄iθi + θ̄iηi

) (C.61)

=
∫

dθ′1dθ̄′1 . . . dθ′Ndθ̄′N exp

 N∑
ij=1

θ̄′iMijθ
′
j −

∑
ij

η̄i∆ijηj

 (C.62)

= detM exp

−∑
ij

η̄i∆ijηj

, (C.63)

using result C.45 from the last subsection.

C.3.3 Gaussian expectation values - two point function

Now we calculate the expectation value of two Grassmann variables

〈
θ̄aθb

〉
=
∫

dθ̄1dθ1 . . . dθ̄NdθN θ̄aθb exp

 N∑
ij=1

θ̄iMijθi

 (C.64)

with a Gaussian weight. The restrictions 1 ≤ a ≤ N and 1 ≤ b ≤ N must be satisfied. We start
from eq. C.61 and generate θ̄aθb by deriving with respect to the corresponding source terms.
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∂

∂η̄b

∂

∂ηa
ZG(M , η̄,η)|η̄=η=0 (C.65)

=
∫

dθ1dθ̄1 . . . dθNdθ̄N
∂

∂η̄b

(
−θ̄a

)
exp

 N∑
ij=1

θ̄iMijθj +
∑
i

(
η̄iθi + θ̄iηi

)|η̄=η=0

=
∫

dθ1dθ̄1 . . . dθNdθ̄N θ̄a
∂

∂η̄b
exp

 N∑
ij=1

θ̄iMijθj +
∑
i

(
η̄iθi + θ̄iηi

)|η̄=η=0

=
∫

dθ1dθ̄1 . . . dθNdθ̄N θ̄aθb exp

 N∑
ij=1

θ̄iMijθj +
∑
i

(
η̄iθi + θ̄iηi

)|η̄=η=0

=
∫

dθ1dθ̄1 . . . dθNdθ̄N θ̄aθb exp

 N∑
ij=1

θ̄iMijθj

 (C.66)

= 〈θ̄aθb〉detM (C.67)

Since we already know the value of ZG(M , η̄,η) to be C.63, we can evaluate its derivative an
alternative way:

∂

∂η̄b

∂

∂ηa
ZG(M , η̄,η)|η̄=η=0 = ∂

∂η̄b

∂

∂ηa
detM exp

−∑
ij

η̄i∆ijηj

|η̄=η=0 (C.68)

= detM ∂

∂η̄b

∑
i

η̄i∆ia exp

−∑
ij

η̄i∆ijηj

|η̄=η=0 (C.69)

= detM

∆ba +
∑
j

∆bjηj

 exp

−∑
ij

η̄i∆ijηj

|η̄=η=0 (C.70)

= detM ∆ba (C.71)

Comparing the results of the two calculations gives simply〈
θ̄aθb

〉
= ∆ba. (C.72)

Note that the indices are exchanged, since in the source terms the conjugated θ appears with the
unconjugated η, and vice versa.

C.3.4 Gaussian expectation values - Wick’s theorem

A general expectation value of Grassmann numbers with Gaussian weight gives Wick’s theorem

〈
θ̄i1θj1 . . . θ̄iP θjP

〉
= ∂

∂η̄j1

∂

∂ηi1
. . .

∂

∂η̄jP

∂

∂ηiP
exp

− N∑
ij=1

η̄j∆jiηi

 (C.73)

=
∑

permutations π
of {1,...,N}

sign(π)∆π(i1)i1∆π(i2)i2 . . .∆π(iP )iP (C.74)

=
∑

permutations π
of {1,...,N}

sign(π)
〈
θ̄i1θπ(i1)

〉〈
θ̄i2θπ(i2)

〉
. . .
〈
θ̄iP θπ(iP )

〉
. (C.75)
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Again P ≤ N must hold. It states, that the expectation value of a product of 2P Grassmann
numbers equals the product of all combinatorically possible 2-operator expectation values, plus
the sign that stems from shifting the operators to their according partners.

C.4 Coherent states with Grassmann numbers

A fermionic coherent state is defined as

c〉 = eĉ†c 0〉 (C.76)
〈c̄ = 〈0 ec̄ĉ, (C.77)

with operators ĉ† and ĉ, and Grassmann numbers c and c̄. Their order is important, since they
anticommute. Due to cc = 0 and c̄c̄ = 0, the expansions of the exponentials are truncated

c〉 = (1 + ĉ†c) 0〉 (C.78)
= 0〉+ 1〉 c (C.79)

〈c̄ = 〈0 (1 + c̄ĉ) (C.80)
= 〈0 + c̄ 〈1 . (C.81)

Fermionic coherent states seem not to be eigenstates of the creation and annihilation operators,
because they have finite sums, but indeed they are:

ĉ c〉 = ĉ(1 + ĉ†c) 0〉 (C.82)
= c 0〉 (C.83)
= c(1 + ĉ†c) 0〉 (C.84)
= c c〉 . (C.85)

Analogously

〈c ĉ† = c̄c̄ (C.86)

holds. The overlap between a coherent state and a state in occupation number basis is

〈n|c〉 = 〈n ( 0〉+ 1〉 c) (C.87)

=

〈0|0〉 = 1 for n = 0
〈1|1〉 c = c for n = 1

(C.88)

= cn, (C.89)

as well as

〈c̄|m〉 = (〈0 + c̄ 〈1 ) m〉 (C.90)
= c̄m (C.91)
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The basis of coherent Grassmann states is overcomplete

〈c̄|c〉 = (〈0 + c̄ 〈1 )( 0〉+ 1〉 c) (C.92)
= 1 + c̄c = ec̄c (C.93)

A representation of the Kronecker delta is

δnm =
∫

dc̄dc e−c̄ccnc̄m. (C.94)

Proof. ∫
dc̄dc e−c̄ccnc̄m =

∫
dc̄dc (1− c̄c)cnc̄m (C.95)

=
∫

dc̄dc (cnc̄m − c̄ccnc̄m) (C.96)

=



∫
dc̄dc (1− c̄c) = 1 n = 0,m = 0∫
dc̄dc (c̄− c̄cc̄) = 0 n = 0,m = 1∫
dc̄dc (c− c̄cc) = 0 n = 1,m = 0∫
dc̄dc (cc̄− c̄ccc̄) = 1 n = 1,m = 1

(C.97)

= δnm (C.98)

Now rewrite the desired expression using the overlaps between occupation number and coherent
states C.89 and C.91

∫
dc̄dc e−c̄ccnc̄m =

∫
dc̄dc e−c̄c 〈n|c〉 〈c̄|m〉 (C.99)

= 〈n
∫

dc̄dc e−c̄c c〉 〈c̄ m〉 (C.100)

= δnm (C.101)

to find the desired result

⇒ 1 =
∫

dc̄dc e−c̄c c〉 〈c̄ (C.102)

=
∑
cc̄

c〉 〈c̄ , (C.103)

where in the last line a shorthand notation ∑cc̄ ≡
∫
dc̄dc e−c̄c was introduced.

From the structure of C.97 can be seen, that if one wants to exchange the order of cnc̄m → c̄mcn,
one of the Grassmann numbers must receive a minus sign. The only significant change in C.97 will
be, that in the fourth line the order of the single cc̄ will change; this will generate an additional
sign by the integration, which has to be compensated by a minus sign in either cn or c̄m. Therefore
two further representations of the Konecker delta are

δnm =
∫

dc̄dc e−c̄c(−c̄)mcn (C.104)

=
∫

dc̄dc e−c̄c 〈−c̄|m〉 〈n|c〉 (C.105)
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or

δnm =
∫

dc̄dc e−c̄cc̄m(−c)n (C.106)

=
∫

dc̄dc e−c̄c 〈c̄|m〉 〈n| − c〉 (C.107)

respectively.
A trace in the basis of Grassmann coherent states is performed like

Tr[A] =
∑
c̄c

〈−c̄ Â c〉. (C.108)

Proof. With this formula we change the basis of the well-known formula for the trace. We start
with the well-known formula for the trace and insert the alternative representation C.105 of the
delta function, which gives

Tr[A] =
∑
mn

〈m Â n〉 δnm (C.109)

=
∑
mn

〈m Â n〉
∫

dc̄dc e−c̄c 〈−c̄|m〉 〈n|c〉 (C.110)

=
∑
mn

∫
dc̄dc e−c̄c 〈−c̄|m〉 〈m Â n〉 〈n|c〉 (C.111)

=
∫

dc̄dc e−c̄c 〈−c̄ Â c〉 (C.112)

=
∑
c̄c

〈−c̄ Â c〉 (C.113)

Matrix elements of normal ordered operators (all the creators to the left, all the annihilators
to the right) are given by replacing the operators with the corresponding Grassmann numbers:

〈c̄ Â
[
c†, c

]
c〉 = 〈c̄|c〉A[c̄, c] (C.114)

= ec̄cA[c̄, c] (C.115)

C.5 The path integral

Now all ingredients are prepared to write the path integral of the partition function

Z = Tr
[
e−βĤ

]
(C.116)

=
∫

dc̄dc e−c̄c 〈−c̄ e−βĤ c〉 (C.117)

= −
∫

dc̄dc ec̄c 〈c̄ e−βĤ c〉 , (C.118)

where in the last line a substitution c̄→ −c̄ was done. The exponential is divided into N slices

e−βĤ →
(
e−∆τĤ

)N
(C.119)
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of width ∆τ = β/N . This is an approximation for finite N , but becomes exact again in the limit
of N →∞. In between the slices a 1j =

∫
dc̄jdcj e−c̄jcj cj〉 〈c̄j is inserted.

ZN = −
∫

dc̄Ndc0 ec̄N c0 〈c̄N (C.120)

e−∆τĤ
∫

dc̄N−1dcN−1 e−c̄N−1cN−1 cN−1〉 〈c̄N−1︸ ︷︷ ︸
1N−1

(C.121)

e−∆τĤ
∫

dc̄N−2dcN−2 e−c̄N−2cN−2 cN−2〉 〈c̄N−2︸ ︷︷ ︸
1N−2

(C.122)

e−∆τĤ
∫

dc̄N−3dcN−3 e−c̄N−3cN−3 cN−3〉 〈c̄N−3︸ ︷︷ ︸
1N−3

(C.123)

. . . (C.124)

e−∆τĤ
∫

dc̄1dc1 e−c̄1c1 c1〉 〈c̄1︸ ︷︷ ︸
11

(C.125)

e−∆τĤ c0〉 (C.126)

By imposing antiperiodic boundary conditions, i.e. by setting c0 = −cN , the Nth time slice equals
the 0th time slice

−
∫

dc̄Ndc0 ec̄N c0 〈c̄N . . . c0〉 =
∫

dc̄NdcN e−c̄N cN 〈c̄N . . . c0〉 (C.127)

and the full object can compactly be written as

ZN =
∫ N∏

j=1
dc̄jdcj e−c̄jcj 〈c̄j e−∆τĤ cj−1〉 . (C.128)

The matrix elements evaluate to

〈c̄j e−∆τĤ cj−1〉 = ec̄jcj−1e−∆τH[c̄j ,cj−1] +O
(
(∆τ)2

)
(C.129)

in leading order. To obtain the path-integral, which is an exact representation of quantum me-
chanics, we can now take the limit N →∞:

Z = lim
N→∞

ZN (C.130)

= lim
N→∞

∫  N∏
j=1

dc̄jdcj

exp
 N∑
j=1
−c̄jcj + c̄jcj−1 −∆τH[c̄j , cj−1]

 (C.131)

= lim
N→∞

∫  N∏
j=1

dc̄jdcj

exp
− N∑

j=1
∆τ
(
c̄j(cj − cj−1)

∆τ +H[c̄j , cj−1]
) (C.132)

=
∫
Dc̄Dc exp

[
−
∫ β

0
dτ (c̄∂τ c+H[c̄, c])

]
(C.133)

=
∫
Dc̄Dc exp[−S[c̄, c]] (C.134)
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with the action

S[c̄, c] =
∫ β

0
dτ (c̄∂τ c+H[c̄, c]) (C.135)

and an abbreviation for the integrals

∫
Dc̄Dc ≡ lim

N→∞

∫  N∏
j=1

dc̄jdcj

 (C.136)

The boundary conditions for the continuum version of C.127

c(τ) = −c(τ + β) (C.137)
c̄(τ) = −c̄(τ + β) (C.138)

encode the well known antiperiodicity of fermionic Greens functions.

C.6 From imaginary time to Matsubara

We look at the action

S[c̄, c] =
∫ β

0
dτ c̄(τ)[∂τ − µ]c(τ) (C.139)

and write the operators in Fourier representation

c(τ) = 1√
β

∑
n

c(iωn)e−iωnτ (C.140)

c̄(τ) = 1√
β

∑
n

c̄(iωn)eiωnτ . (C.141)

One finds

1
β

∫ β

0
dτ
∑
n

c̄(iωn)eiωnτ [∂τ − µ]
∑
m

c(iωm)e−iωmτ (C.142)

= 1
β

∫ β

0
dτ
∑
n

c̄(iωn)eiωnτ
∑
m

[−iωm − µ]c(iωm)e−iωmτ (C.143)

= 1
β

∫ β

0
dτ
∑
nm

c̄(iωn)[−iωm − µ]c(iωm)e−i(ωn−ωm)τ (C.144)

=
∑
nm

c̄(iωn)[−iωm − µ]c(iωm)δnm (C.145)

=
∑
n

c̄(iωn)[−iωn − µ]c(iωn) (C.146)

The integral over τ evaluates to a Kronecker delta2. The integration measure does not change,
since the Fourier transform is unitary. Therefore

2∫ β
0 dτ exp[i(ωn − ωm)τ ] =

∫ β
0 dτ exp

[
i(π
β

(2n+ 1)− π
β

(2m+ 1))τ
]

=
∫ β

0 dτ exp
[
i 2π
β

(n−m)τ
]

= β
2πi(n−m)

[
exp
[
i 2π
β

(n−m)τ
]]β

0

= β
2πi(n−m) (exp[i2π(n−m)]− 1) =

{
limφ→0

β
2πiφ (1 + i2πφ− 1) = β, n = m

0, n 6= m
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Z =
∫
Dc̄Dc exp[−S[c̄, c]] (C.147)

with the action

S[c̄, c] =
∑
n

c̄(iωn)[−iωn − µ]c(iωn) (C.148)

C.7 From Matsubara to imaginary time

The Matsubara object

Shyb[c̄, c] =
∑
n

c̄(iωn)[−iωn + εp]−1c(iωn), (C.149)

wants to be Fourier transformed to imaginary time. For this purpose its Matsubara operators are
written in Fourier representation

c̄(iωn) = 1√
β

∫ β

0
dτ c̄(τ)e−iωnτ (C.150)

c(iωn) = 1√
β

∫ β

0
dτ c(τ)eiωnτ , (C.151)

which gives

Shyb[c̄, c] = 1
β

∑
n

∫ β

0
dτ
∫ β

0
dτ ′c̄(τ)c(τ ′)eiωn(τ−τ ′)[−iωn + εp]−1. (C.152)

In order to perform the sum over all Matsubara frequencies, object (C.152) is continued to the
complex plane, multiplied with the Fermi function, which has it poles with residues of −1/β at
the fermionic Matsubara frequencies. Using the theorem of residues, the sum of all residues equals
zero (since the objects decays to zero for z →∞ fast enough). From this can be deduced, that the
Matsubara sum equals the residue of this object

Shyb[c̄, c] = Resz→εp

[
1
β

∫ β

0
dτ
∫ β

0
dτ ′c̄(τ)c(τ ′)ez(τ−τ ′)[−z + εp]−1 1

eβz + 1

]
· (−β) (C.153)

= −limz→εp(z − εp)
[∫ β

0
dτ
∫ β

0
dτ ′c̄(τ)c(τ ′)ez(τ−τ ′)[−z + εp]−1 1

eβz + 1

]
(C.154)

=
∫ β

0
dτ
∫ β

0
dτ ′c̄(τ)c(τ ′)eεp(τ−τ ′) 1

eβεp + 1 (C.155)

at z = εp multiplied with −β.
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