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Simple Summary: Molecular imaging of patients with prostate cancer is widely utilized. We aimed
to determine whether changes in post-processing parameters, such as maximum intensity thresholds,
can significantly alter results. We investigated 623 lesions that were positive on a molecular imaging
scan and could not find any relevant impact on results when certain parameters were changed, in
particular in lesions indicative for metastases of prostate cancer.

Abstract: Prostate-specific membrane antigen (PSMA)-directed positron emission tomography/computed
tomography (PET/CT) is increasingly utilized for staging of men with prostate cancer (PC). To increase
interpretive certainty, the standardized PSMA reporting and data system (RADS) has been proposed.
Using PSMA-RADS, we characterized lesions in 18 patients imaged with 18F-PSMA-1007 PET/CT for
primary staging and determined the stability of semi-quantitative parameters. Six hundred twenty-three
lesions were categorized according to PSMA-RADS and manually segmented. In this context, PSMA-
RADS-3A (soft-tissue) or -3B (bone) lesions are defined as being indeterminate for the presence of PC.
For PMSA-RADS-4 and -5 lesions; however, PC is highly likely or almost certainly present [with further
distinction based on absence (PSMA-RADS-4) or presence (PSMA-RADS-5) of correlative findings on
CT]. Standardized uptake values (SUVmax, SUVpeak, SUVmean) were recorded, and volumetric parameters
[PSMA-derived tumor volume (PSMA-TV); total lesion PSMA (TL-PSMA)] were determined using
different maximum intensity thresholds (MIT) (40 vs. 45 vs. 50%). SUVmax was significantly higher in
PSMA-RADS-5 lesions compared to all other PSMA-RADS categories (p ≤ 0.0322). In particular, the
clinically challenging PSMA-RADS-3A lesions showed significantly lower SUVmax and SUVpeak compared
to the entire PSMA-RADS-4 or -5 cohort (p < 0.0001), while for PSMA-RADS-3B this only applies when
compared to the entire PSMA-RADS-5 cohort (p < 0.0001), but not to the PSMA-RADS-4 cohort (SUVmax,
p = 0.07; SUVpeak, p = 0.08). SUVmean (p = 0.30) and TL-PSMA (p = 0.16) in PSMA-RADS-5 lesions were
not influenced by changing the MIT, while PSMA-TV showed significant differences when comparing 40
vs. 50% MIT (p = 0.0066), which was driven by lymph nodes (p = 0.0239), but not bone lesions (p = 0.15).
SUVmax was significantly higher in PSMA-RADS-5 lesions compared to all other PSMA-RADS categories
in 18F-PSMA-1007 PET/CT. As such, the latter parameter may assist the interpreting molecular imaging
specialist in assigning the correct PSMA-RADS score to sites of disease, thereby increasing diagnostic
certainty. In addition, changes of the MIT in PSMA-RADS-5 lesions had no significant impact on SUVmean

and TL-PSMA in contrast to PSMA-TV.
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1. Introduction

Prostate cancer (PC) is the second most frequent cancer in men, with more than
1.4 million new cases worldwide in 2020 [1]. The introduction of imaging agents targeting
prostate-specific membrane antigen (PSMA), a type II transmembrane glycoprotein that is
overexpressed on PC cells [2,3], has further improved the ability to detect and ascertain
the presence of metastatic disease compared to conventional imaging [4], showing high
diagnostic accuracy for primary staging and restaging during biochemical recurrence [5–7].
Several PSMA-targeted positron emission tomography (PET) radioligands, especially 68Ga-
labeled compounds, have been established for clinical use [8]. 18F-labeled radiotracers,
such as 18F-PSMA-1007, offer several key advantages when compared to their 68Ga-labeled
counterparts, most notably a longer half-life (110 min vs. 68 min), improved spatial resolu-
tion, and decreased imaging noise (due to lower positron energy) as well as potential cost
savings due to centralized cyclotron-production with dispatch to remote PET centers [5,8,9].

To standardize interpretation in patients imaged with PSMA-directed radiotracers, we
proposed a structured reporting and data system (PSMA-RADS version 1.0) [10]. Based
on a 5-point scale, this framework categorizes lesions based on their likelihood of PC
involvement, with PSMA-RADS-1 being certainly benign, whereas PC is almost certainly
present in a PSMA-RADS-5 lesion [10–12], thereby allowing for lesion-level characterization
that may be helpful in planning focal therapy for limited volume disease and defining
work-up strategies for indeterminate findings.

To date, PSMA-RADS has been validated in various contexts using the 18F-labeled
PSMA imaging agent 18F-DCFPyL as well as 68Ga-PSMA-11 [12–14], but has not been
valudated for [18F]PSMA-1007 positron emission tomography/computed tomography
(PET/CT) scans. Given substantial differences in the lesion detection rate and normal
biodistribution of those radiotracers [8,15,16], we aimed to examine the use of PSMA-RADS
for 18F-PSMA-1007. In addition, we aimed to determine the stability of PSMA-RADS-based
semi-quantification when different maximum intensity thresholds (MIT) were applied, in
particular for PSMA-RADS-5 lesions (i.e., PC almost certainly present).

2. Materials and Methods
2.1. Patient Population

This observational retrospective study was approved by the local Institutional Review
Board (IRB-Nr.: 20210204 03; date of approval: 23 March 2021) and conducted in accordance
with the ethical standards of the institutional and/or national research committee as well as
with the 1964 Declaration of Helsinki and its later amendments. An institutional database
search for the time period from December 2018 to January 2021 identified 31 patients with
newly diagnosed PC who underwent 18F-PSMA-1007 PET/CT imaging for primary staging.
Patients with concomitant malignancies (n = 1), unavailability of histopathology (n = 3)
and/or prior initiation of a systemic treatment, such as androgen deprivation therapy
(ADT; n = 9) were excluded in order to exclude potential influences, e.g., of medication, on
the level of PSMA expression. Hence, a total of 18 patients with histologically proven and
treatment-naïve PC at date of scan were eligible for this study (Table 1).

2.2. Preparation of 18F-PSMA-1007

Radiosynthesis of 18F-PSMA-1007 (radiochemical purity: ≥95%) was carried out
using a GE TRACERlab MX synthesis module (GE Medical Systems, Uppsala, Sweden) as
described in [17].
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Table 1. Characteristics of the study population.

Parameter Value

Subjects 18
Age (y)

Mean ± SD 70 ± 8
Range 50–80

PSA (ng/mL)
Mean ± SD 180.35 ± 393.75
Range 4.79–1690.00

Gleason score
Median 8
Range 7–10

SD = standard deviation, PSA = prostate-specific antigen.

2.3. Image Acquisition and Reconstruction
18F-PSMA-1007 PET/CTs were performed within 28 ± 14 days after initial histopatho-

logical diagnosis. As per usual practice at our institution, patients were asked to be nil
per os (excluding water and medications) for a minimum of 4 h prior to the examination.
Patients received an i.v. injection of the radiotracer 18F-PSMA-1007 with a mean activity
of 301 ± 15 MBq, followed by oral ingestion of an iodine-based contrast agent (30 mL
Peritrast® in 1 L of water). Directly prior to the scan, patients were asked to void their
urinary bladders. Furosemide was not administered. After a mean radiotracer uptake
period of 91 ± 10 min, whole body imaging (from mid-thighs to skull base, in a supine
position) was performed with either a 64-detector PET/CT scanner (Siemens Biograph
mCT 64, Siemens Healthineers AG, Erlangen, Germany) or a 128-detector PET/CT scanner
(Siemens Biograph mCT Flow 128 Edge, Siemens Healthineers AG, Knoxville, TN, USA).
All PET emission data were acquired in three-dimensional mode using 6–8 bed positions
(depending on the patient’s height) with a scan duration of 2 min per bed position [18].
Subsequently, after i.v. injection of an iodine-based contrast agent (1 mL/kg body weight of
Imeron® 350), a monophasic full-dose CT scan (100–120 kV, mA modulated) was performed
for anatomic correlation and attenuation correction [18,19]. Iterative image reconstruction
was achieved using an ordered subset expectation maximization (OSEM) algorithm either
with 3 iterations and 24 subsets followed by post-reconstruction Gaussian filter smoothing
(full width at half maximum (FWHM): 2 mm; Siemens TrueX; Siemens Biograph mCT 64) or
with 3 iterations and 21 subsets followed by post-reconstruction Gaussian filter smoothing
(FWHM: 2 mm; Siemens TrueX + TOF ultraHD; Siemens Biograph mCT Flow 128 Edge) [19].
Reconstructed PET images had a spatial resolution with an FWHM of 4.7 mm (Siemens
Biograph mCT Flow 128 Edge) or 5.7 mm (Siemens Biograph mCT 64) [19].

2.4. Image Analysis

PET, CT, and hybrid PET/CT overlay images were assessed using a dedicated work-
station equipped with syngo.via imaging software, version VB50B_HF02 (Siemens Healthi-
neers AG, Erlangen, Germany). Scans were evaluated by a reader with 3 years’ experience
in reading PSMA-targeted PET/CTs (P.W.M.) who previously underwent a training session
for the standardized reporting system PSMA-RADS version 1.0 [10]. In ambiguous cases,
PSMA-RADS categories were assigned in a consensus read with two experienced readers,
including a board-certified radiologist and nuclear medicine physician (M.B., R.A.W.).

All measurable lesions were noted along with their location (bone, lymph node, liver,
lung, soft tissue, primary) and were assigned to a PSMA-RADS category [14] (with soft
tissue lesions defined as lesions not being assigned to one of the other five compartments).
In total, four patients (4/18, 22.2%) with disseminated skeletal metastatic disease were
encountered, in whom up to ten separate bone lesions were recorded. In brief, PSMA-RADS-
1A and -1B represent definitely benign lesions, while likely benign lesions are categorized
as PSMA-RADS-2. By contrast, lesions in which the presence of PC is highly likely or almost
certainly present are classified as PSMA-RADS-4 or PSMA-RADS-5, with further distinction
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based on absence (PSMA-RADS-4) or presence (PSMA-RADS-5) of correlative findings
on computed tomography (CT) [10,11]. PSMA-RADS-3, however, is the most complex
category, and is divided into four subcategories [10]. PSMA-RADS-3A and PSMA-RADS-3B
define lesions that would be typical for PC, but having only subtle radiotracer uptake in soft
tissue or bone lesions, respectively, rendering those findings equivocal. PSMA-RADS-3C
and PSMA-RADS-3D lesions, however, are unlikely to represent PC and require further
work-up [10].

By using a 3-dimensional segmentation method, an isocontour volume of interest
(VOI) was created separately for all lesions before the maximum and peak standardized
uptake value corrected to body weight (SUVmax and SUVpeak) were recorded for each
lesion [20,21]. While keeping the VOI for each lesion identical, different MITs were then
applied (40, 45, and 50%), i.e., a pre-specified percentage VOI which only includes all
voxels equal to or above the chosen percentage of SUVmax [22]. In addition, the mean
standardized uptake value (SUVmean) and volumetric parameters were measured for each
lesion, yielding a PSMA-derived tumor volume (PSMA-TV, cm3) and total lesion PSMA
(TL-PSMA, cm3). As SUVmean, PSMA-TV and TL-PSMA are influenced by changes of the
MIT, all lesions were measured applying a MIT of 40, 45, and 50% in the identical VOI, as
described for 68Ga-labeled PSMA PET in [20]. TL-PSMA was calculated as follows [20]:

PSMA-TV × SUVmean (1)

As such, for those three parameters, values for MIT of 40, 45, and 50% were recorded.

2.5. Statistical Analysis

Statistical analyses were performed with GraphPad Prism software, version 9.2.0.332
(GraphPad Software, Inc., San Diego, CA, USA) and Microsoft Excel 2016 (Microsoft
Corporation, Redmond, WA, USA). All continuous data are expressed as either mean or
median value ± standard deviation (SD) and range in parentheses. Categorical variables are
presented as frequency and percentage in parentheses. Comparisons between subgroups
were made using the Kruskal-Wallis test. p values < 0.05 were considered statistically
significant (*, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001).

3. Results
3.1. Prevalence of PSMA-RADS-4 and -5 Lesions Was High

Across all patients, a total of 623 lesions were analyzed on 18F-PSMA-1007 PET/CT,
with the vast majority of lesions either located in lymph nodes (449/623, 72.1%) or in the
skeleton (105/623, 16.8%). Moreover, the following compartments were also assessed:
lung (28/623, 4.5%), soft tissue (20/623, 3.2%), primary (18/623, 2.9%), and liver lesions
(3/623, 0.5%).

A plurality of lesions were categorized as PSMA-RADS-5 (148/623, 23.8%), followed
by PSMA-RADS-2 (121/623, 19.4%), PSMA-RADS-3A (105/623, 16.9%), PSMA-RADS-4
(98/623, 15.7%), PSMA-RADS-1B (85/623, 13.6%), PSMA-RADS-3B (25/623, 4.0%), PSMA-
RADS-3D (25/623, 4.0%), PSMA-RADS-3C (11/623, 1.8%), and PSMA-RADS-1A (5/623,
0.8%). Sorted by PSMA-RADS categories, the distribution among organ compartments
can be found in Table A1, while an overview for each patient is given in Table A2. The
distribution of all lesions (n = 623) across all compartments and PSMA-RADS categories is
shown in Figure 1.
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Figure 1. Bar graph showing the distribution of total lesions (n = 623) across all compartments and
PSMA-RADS categories. Bone: 1B (n = 2), 3B (n = 25), 4 (n = 6), 5 (n = 72), total (n = 105); Lymph
Node: 1B (n = 67), 2 (n = 121), 3A (n = 105), 3C (n = 6), 3D (n = 3), 4 (n = 92), 5 (n = 55), total (n = 449);
Liver: 1B (n = 3), total (n = 3); Lung: 1A (n = 5), 1B (n = 1), 3C (n = 1), 3D (n = 21), total (n = 28); Soft
Tissue: 1B (n = 12), 3C (n = 4), 3D (n = 1), 5 (n = 3), total (n = 20); Primary: 5 (n = 18), total (n = 18).
PSMA-RADS = prostate-specific membrane antigen reporting and data system.

3.2. SUVmax of PSMA-RADS-5 Lesions Differed Significantly When Compared to All Other
PSMA-RADS Categories

Including all lesions (independent of organ compartments), lesions classified as PSMA-
RADS-1A, -1B, -2, and -3D each demonstrated a significantly lower SUVmax and SUVpeak
when compared to PSMA-RADS-4 (SUVmax, p < 0.0001; SUVpeak, p ≤ 0.0002) or PSMA-
RADS-5 (SUVmax, p < 0.0001; SUVpeak, p < 0.0001). Interestingly, lesions classified as
PSMA-RADS-3A also showed a significantly lower SUVmax and SUVpeak compared to
PSMA-RADS-4 or -5 (p < 0.0001). For all lesions categorized as PSMA-RADS-3C, SUVmax
was significantly lower compared to PSMA-RADS-5 (p = 0.0322); however, no significant
difference was noted for SUVmax compared to PSMA-RADS-4 (p > 0.99) as well as for
SUVpeak compared to both PSMA-RADS-4 (p > 0.99) and -5 (p = 0.08). Lesions categorized
as PSMA-RADS-4 also showed a significantly lower SUVmax (p = 0.0027) and SUVpeak
(p < 0.0001) compared to PSMA-RADS-5.

Lymph nodes categorized as PSMA-RADS-1B, -2, and -3A showed a significantly
lower SUVmax (p < 0.0001) and SUVpeak (p < 0.0001) compared to the entire PSMA-RADS-4
or -5 cohort. Lymph nodes in category PSMA-RADS-3D (n = 3) also showed a significantly
lower SUVmax compared to PSMA-RADS-5 (p = 0.0131), but not -4 (p = 0.28), while SUVpeak
did not significantly differ (p ≥ 0.16). For PSMA-RADS-3C (n = 6), SUVmax and SUVpeak
did not significantly differ compared to PSMA-RADS-4 (p > 0.99) or -5 (SUVmax, p = 0.17;
SUVpeak, p = 0.29). Lymph nodes classified as PSMA-RADS-4 showed a significantly lower
SUVmax (p = 0.0007) and SUVpeak (p < 0.0001) compared to the entire PSMA-RADS-5 cohort.

For bone lesions, significantly lower SUVmax and SUVpeak for PSMA-RADS-3B lesions
were noted when compared to the entire PSMA-RADS-5 cohort (p < 0.0001), but not
compared to the PSMA-RADS-4 cohort (SUVmax, p = 0.07; SUVpeak, p = 0.08). SUVmax
and SUVpeak of PSMA-RADS-4 bone lesions did not significantly differ from the entire
PSMA-RADS-5 cohort (p ≥ 0.62).

Figure 2 displays SUVmax and SUVpeak among the different PSMA-RADS categories
and organ compartments.
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Figure 2. Box-and-whisker charts showing the maximum (SUVmax, (A)) and peak standardized
uptake value (SUVpeak, (B)) among compartments and different PSMA-RADS categories. For each
subgroup of PSMA-RADS categories 1-4, mean values were compared to PSMA-RADS-5. Both
SUVmax and SUVpeak of lymph nodes in PSMA-RADS categories 1B, 2, 3A, and 4 differed significantly
compared to PSMA-RADS-5 lesions (SUVmax, p ≤ 0.0007; SUVpeak, p < 0.0001); lymph nodes in PSMA-
RADS-3D also showed a significantly lower SUVmax (p = 0.0131). Regarding bone lesions, compared
to the entire PSMA-RADS-5 category SUVmax and SUVpeak were significantly lower only for PSMA-
RADS-3B (p < 0.0001), but not for PSMA-RADS categories 1B (p ≥ 0.49) and 4 (p ≥ 0.62). Data are
shown on a logarithmic scale. PSMA-RADS = prostate-specific membrane antigen reporting and
data system.
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3.3. SUVmean and Volumetric Parameters of PSMA-RADS-5 Lesions Were Susceptible to MIT
Changes of 40 to 50%, But Not 40 to 45% or 45 to 50%

For all lesions classified as PSMA-RADS-4 (p ≥ 0.34) and -5 (p ≥ 0.30), SUVmean did
not change significantly when different MITs were applied (40 vs. 45 vs. 50%, Figure 3A).
Similar results were recorded for PSMA-RADS-4/-5 lesions in the lymph nodes and skeleton
(lymph nodes, p ≥ 0.40; skeleton, p ≥ 0.31, Figures 4A and 5A).
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Figure 3. Box-and-whisker charts showing the mean standardized uptake values (SUVmean, (A))
and volumetric parameters [PSMA-avid tumor volume (PSMA-TV, (B)), and total lesion (TL-PSMA,
(C))], depending on the chosen intensity threshold (40 vs. 45 vs. 50%), for all lesions classified
as PSMA-RADS-4 or -5 (overall lesion level). (A) SUVmean did not differ significantly between
different intensity thresholds, for both PSMA-RADS-4 (p ≥ 0.34) and -5 lesions (p ≥ 0.30). (B) PSMA-
TV changed significantly when changing the intensity threshold from 40 to 50% (PSMA-RADS-4,
p < 0.0001; PSMA-RADS-5, p = 0.0066). When changing the intensity threshold in a smaller increment
to 45%, the differences became largely insignificant (except for PSMA-RADS-4, p = 0.0450) (C) While
changing the intensity threshold from 40 to 50% led to a significant difference in TL-PSMA of PSMA-
RADS-4 lesions (p = 0.0272), TL-PSMA did not change significantly when smaller increments of
5% were applied (p ≥ 0.54). For PSMA-RADS-5 lesions, there was no statistical difference between
the individual subgroups (p ≥ 0.16). Data are shown on a logarithmic scale (exception: linear scale
for PSMA-TV in the PSMA-RADS-4 cohort). PSMA-RADS = prostate-specific membrane antigen
reporting and data system.
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Figure 4. Box-and-whisker charts showing the mean standardized uptake values (SUVmean, (A)) and
volumetric parameters [PSMA-avid tumor volume (PSMA-TV, (B)), and total lesion (TL-PSMA, (C))],
depending on the chosen intensity threshold (40 vs. 45 vs. 50%), for lymph node lesions classified as
PSMA-RADS-4 or -5. (A) Similar to SUVmean on an overall lesion level (Figure 3A), values of lymph
nodes categorized as PSMA-RADS-4 (p ≥ 0.40) and -5 (p ≥ 0.87) did not differ significantly between
different intensity thresholds. (B,C) PSMA-TV reached significance in a comparison of intensity
thresholds of 40 vs. 50% (p = 0.0239), in a manner similar to an overall lesion level (Figure 3B), thereby
suggesting that these findings are primarily driven by lymph node lesions. The same applies to
TL-PSMA (Figure 3C), which only showed a significant difference when comparing 40 and 50% in
PSMA-RADS-4 lymph node lesions (p = 0.0453), but not for the skeleton (p ≥ 0.33, Figure 5). Data are
shown on a logarithmic scale (exception: linear scale for PSMA-TV in the PSMA-RADS-4 cohort).
PSMA-RADS = prostate-specific membrane antigen reporting and data system.
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Figure 5. Box-and-whisker charts showing the mean standardized uptake values (SUVmean, (A))
and volumetric parameters [PSMA-avid tumor volume (PSMA-TV, (B)), and total lesion (TL-PSMA,
(C))], depending on the chosen intensity threshold (40 vs. 45 vs. 50%), for bone lesions classified
as PSMA-RADS-4 or -5. SUVmean (p ≥ 0.31), PSMA-TV (p ≥ 0.11) and TL-PSMA (p ≥ 0.33) did not
differ significantly when changing the intensity threshold. Data are shown on a logarithmic scale
(exception: linear scale for PSMA-TV in the PSMA-RADS-4 cohort). PSMA-RADS = prostate-specific
membrane antigen reporting and data system.

By contrast, PSMA-TV differed significantly in both cohorts when comparing a MIT
of 40 vs. 50% (PSMA-RADS-4, p < 0.0001; PSMA-RADS-5, p = 0.0066). When smaller
increments of 5% were applied, there was still a significant difference in the PSMA-RADS-4
cohort for MIT of 45 vs. 50% (p = 0.0450). However, no significant level of difference was
reached for MIT of 45 vs. 50% in the PSMA-RADS-5 cohort (p = 0.44) as well as for MIT of
40 vs. 45% in both cohorts (PSMA-RADS-4, p = 0.07; PSMA-RADS-5, p = 0.32, Figure 3B).
On an organ-compartment level, those findings were primarily driven by lymph nodes
(40 vs. 50% for PSMA-RADS-4, p < 0.0001; 40 vs. 50% for PSMA-RADS-5, p = 0.0239,
Figure 4B), while PSMA-TV did not differ significantly in bone lesions (40 vs. 50% for
PSMA-RADS-4, p = 0.11; 40 vs. 50% for PSMA-RADS-5, p = 0.15, Figure 5B). Again, when
comparing smaller MIT differences, no significant difference of PSMA-TV was seen for
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lymph nodes (40 vs. 45% for PSMA-RADS-4, p = 0.10; 45 vs. 50% for PSMA-RADS-4,
p = 0.07; 40 vs. 45% for PSMA-RADS-5, p = 0.72; 45 vs. 50% for PSMA-RADS-5, p = 0.42,
Figure 4B).

For TL-PSMA, a significant difference was observed between MIT of 40 vs. 50% for
PSMA-RADS-4 on an overall lesion level (p = 0.0272), whereas significance was not reached
when changing the MIT to 45% (40 vs. 45% for PSMA-RADS-4, p = 0.61; 45 vs. 50% for
PSMA-RADS-4, p = 0.54, Figure 3C). This was also driven by lymph nodes (40 vs. 45% for
PSMA-RADS-4, p = 0.0453, Figure 4C). Regardless which MIT was applied, there were no
significant differences of TL-PSMA in the PSMA-RADS-5 category, neither for all lesions
(p ≥ 0.16, Figure 3C), nor for lymph node (p ≥ 0.67, Figure 4C) or bone lesions (p ≥ 0.56,
Figure 5C).

Figure 6 displays a case of lymph node and bone involvement with different MIT,
demonstrating no significant differences in the segmentation of a lymph node metastasis
attributable to PC.
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Figure 6. Maximum intensity projection (MIP) and axial positron emission tomography (PET) images
of the same patient with different intensity thresholds (40 vs. 45 vs. 50%). Normal organ uptake in
the liver (L), spleen (S), and kidneys (K) are indicated. The patient showed a relatively high tumor
burden with multiple metastases involving both lymph nodes (red arrows) and the skeleton (blue
asterisks). As shown for a PSMA-RADS-5 classified common iliac lymph node (LN), the segmentation
did not differ visually when different maximum intensity thresholds of 40, 45, or 50% were applied.

4. Discussion

In the present study, we aimed to evaluate semiquantitative parameters based on the
PSMA-RADS scoring scheme by using the 18F-labeled PSMA-targeted imaging agent 18F-
PSMA-1007. First, investigating PSMA-RADS-5 lesions, we revealed a significant difference
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of SUVpeak relative to PSMA-RADS-1A, -1B, -2, -3A, -3B, -3D, and -4, but not for -3C lesions.
Of note, SUVmax demonstrated significant difference among all PSMA-RADS categories
when compared to PSMA-RADS-5, and as such, both SUV parameters may be used in the
context of a RADS-based scoring scheme [10,11].

Recent years have provided an increasing body of evidence of multiple pitfalls in the
context of PSMA-targeted scan interpretation [23]. Nonetheless, given its high accuracy for
staging of patients with PC, the number of conducted PET/CTs is expected to further grow,
emphasizing the need for harmonized interpretation criteria that will allow the reader to
identify lesions that are most likely attributable to PC. In this regard, several groups have
made proposals for a structured interpretation system of PSMA-ligand PET/CT, including
PROMISE, E-PSMA, and PSMA-RADS [10,11,24,25]. The latter system has already been
applied to 68Ga-PSMA-11 and other 18F-labeled compounds, such as DCFPyL [14,26]. A
comprehensive evaluation of PSMA-RADS for 18F-PSMA-1007 PET/CT, however, is still
lacking. As such, in this study investigating patients with newly diagnosed, histologically
proven and treatment-naïve PC at time of scan, we observed a high prevalence of lesions
with intense uptake (PSMA-RADS-4 and -5, 39.5%) as well as of lesions with equivocal
uptake (PSMA-RADS-3A or -3B, 20.9%) [27]. Relative to 18F-DCFPyL, the number of
equivocal findings seems to be higher for 18F-PSMA-1007, in particular for the skeleton,
which may partially explain the increased number of indeterminate PSMA-RADS-3A and
PSMA-RADS-3B lesions observed in the present study [16]. Similar to 18F-DCFPyL [27],
lymph nodes accounted for 449 of the 623 investigated lesions (72.1%), with the largest
portion being either categorized as PSMA-RADS-2 or PSMA-RADS-3A. For 18F-DCFPyL,
longitudinal studies have already been conducted to determine the true nature of such
lesions, and PSMA-RADS-3A lesions (defined as equivocal uptake in soft tissue lesions)
are more likely than RADS-3B (equivocal uptake in the bone) to represent true disease
involvement [12].

In this study, we could prove that all benign lesions according to the PSMA-RADS
system (categories PSMA-RADS-1A, -1B and -2) and lesions without relevant uptake
(category PSMA-RADS-3D) had lower SUVmax and SUVpeak when compared with PSMA-
RADS-5. For suspicious lesions of nonprostatic origin with high uptake (category PSMA-
RADS-3C) we were also able to show a significant difference of SUVmax compared to
PSMA-RADS-5.

The clinical most challenging lesions, i.e., equivocal lesions in categories PSMA-
RADS-3A and -3B, had lower SUVmax and SUVpeak when compared with PSMA-RADS-5.
Therefore, we are convinced that an analysis of SUV based on PSMA-RADS may be
helpful for stratifying the risk of PC involvement, in particular for lymph nodes and for
the discrimination of equivocal PSMA-RADS-3B lesions in the bone. Lesions in category
PSMA-RADS-3A, moreover, had a significantly lower SUVmax and SUVpeak compared to
PSMA-RADS-4 lesions, while PSMA-RADS-3B lesions did not. This might be due to the
small number of PSMA-RADS-4 lesions in the bone, and we believe that this may become
significant in a larger cohort. SUVmax and SUVpeak of PSMA-RADS-4 bone lesions did
not significantly differ from the entire PSMA-RADS-5 cohort, which proves the concept of
the PSMA-RADS scoring scheme. Of note, findings of lesion distribution among different
PSMA-RADS categories and SUVs are in line with a recent observation of Ashrafinia
et al. using 18F-DCFPyL, supporting the notion that semi-quantification based on the
PSMA-RADS scoring scheme can be applied to a broad spectrum of 18F-labeled PSMA
agents [27].

In addition, the SUVs may also be helpful for the interpreting molecular imaging
specialist by assigning the appropriate PSMA-RADS score to a suspicious lesion, thereby
increasing diagnostic certainty. Identifying patients with low-volume disease, i.e., with
less than four bone metastases, is of high therapeutic relevance because these patients
benefit from multimodal therapy, as the CHAARTED (Chemohormonal Therapy Versus
Androgen Ablation Randomized Trial for Extensive Disease in Prostate Cancer) trial has
shown [28]. Furthermore, the results on SUV may be of importance in the context of



Cancers 2022, 14, 270 12 of 20

response assessment. For instance, using the 18F-labeled radiotracer DCFPyL, Zukotynski
et al. investigated men with castration-resistant PC prior to abiraterone or enzalutamide
treatment. All patients were imaged prior to therapy and 2 to 4 months during follow-up.
The authors used delta percent (DPSM) and delta absolute SUVmax (DASM), which repre-
sent the changes in radiotracer accumulation between both scans. Increased DPSM/DASM
was linked with poorer overall survival [29]. Given significant differences of SUVmax in
PSMA-RADS-5 lesions relative to other lesions along with the herein presented SUVmax val-
ues for this category, the reader may have certainty that relevant lesions for such response
assessments will not be missed. Such considerations on SUVmax may also be relevant
to identify treatment responders in patients scheduled for PSMA-directed radioligand
therapy, as baseline SUVmax has been advocated to identify high-risk individuals [30–32].
Those studies, however, have been conducted using 68Ga-labeled radiotracers, whereas
for 18F-PSMA-1007, such investigations are still needed, which may further refine the
prognostic value of SUVmax for treatment failure [30,33].

SUVmean and volumetric parameters, i.e., PSMA-TV and TL-PSMA, can be influenced
by different MITs, and as such, different thresholds (40 vs. 45 vs. 50%) have been applied to
conduct a semi-quantitative analysis of the PSMA-avid tumor burden at baseline. The size
of the VOI, however, was not changed for a given lesion. For all PSMA-RADS-5 classified
lesions, SUVmean and TL-PSMA were not influenced by changing the MIT from 40 to 45 or
50%. For PSMA-TV, significance was reached when comparing 40 vs. 50% MIT, but not
when incremental steps of 5% were used. The same phenomenon applied for lymph nodes,
while PSMA-TV of bone lesions was not affected by changes of the MIT, suggesting lymph
nodes are more prone to threshold alterations. Of note, level of significance regarding
TL-PSMA was only reached for 10% changes of the intensity threshold in PSMA-RADS-4
lesions (overall lesion and lymph node level). For SUVmean and bone lesions in general, no
significant differences were observed for varying the MIT between 40, 45 and 50% in PSMA-
RADS-4/-5 lesions. Again, such findings may be of importance for response assessments.
The recently proposed PSMA PET Progression Criteria suggested an increase in tracer
uptake by ≥30% to be indicative for progressive disease. The authors did not recommend
a certain semiquantitative parameter for this approach, but findings of the present study
may indicate that a MIT of 40–50% might be suitable, regardless of whether volumetric
parameters or SUVmean will be used for this purpose [34]. Taken together, in particular for
lymph nodes a threshold of 45% may be considered as safe to provide reliable results.

This study has several limitations. Our retrospective cohort includes a small number
of subjects and thus, our preliminary results warrant further confirmation in a prospective
study. Second, histopathological confirmation of lesions would be desirable in the context
of PSMA-RADS, but is not feasible. Given the high prevalence of PSMA-RADS-3A lesions
in the present study, longitudinal studies in the context of 18F-PSMA-1007 would also
be needed, as information on the true nature of those findings may guide therapy [13].
Third, the herein presented findings may primarily apply to patients referred for initial
staging. As such, semiquantitative values, along with lesion distribution across different
PSMA-RADS scores, may differ in other cohorts, e.g., in patients scheduled for PSMA-
directed radioligand therapy [35]. Furthermore, even though the reconstruction algorithm
was conducted as implemented by the manufacturer, the results on scanning parameters
for lymph nodes are also susceptible to different scanning protocols, which makes inter-
institutional comparisons difficult. Although our results seem to be comparable to other 18F-
labeled radiotracers [27], further studies investigating existing and novel PSMA-directed
compounds are needed, including 68Ga-PSMA-11.

5. Conclusions

Semiquantitative characterization of the structured reporting system PSMA-RADS
in patients imaged with 18F-PSMA-1007 PET/CT revealed that SUVmax was significantly
higher in PSMA-RADS-5 classified lesions compared to all other PSMA-RADS categories.
As such, the latter parameter may assist the interpreting molecular imaging specialist to
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assign the correct PSMA-RADS score to sites of disease, thereby increasing diagnostic
certainty. In addition, changes of the MIT in PSMA-RADS-5 lesions had no significant
impact on SUVmean and TL-PSMA in contrast to PSMA-TV.
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Appendix A

Table A1. Descriptive statistics of intensity of tracer uptake and volumetric 18F-PSMA PET/CT
parameters of all lesions separated by PSMA-RADS category and compartment.

PSMA-RADS Category
& Compartment Parameter Threshold Mean ± SD Range

1A—Lung SUVmax 1.07 ± 0.50 0.54–1.72
SUVpeak 0.83 ± 0.26 0.57–1.13
SUVmean 40% 0.80 ± 0.29 0.49–1.18

45% 0.80 ± 0.29 0.49–1.19
50% 0.83 ± 0.32 0.49–1.24

PSMA-TV 40% 0.51 ± 0.46 0.15–1.34
45% 0.50 ± 0.44 0.15–1.29
50% 0.45 ± 0.39 0.15–1.14

TL-PSMA 40% 0.50 ± 0.61 0.08–1.58
45% 0.49 ± 0.59 0.08–1.54
50% 0.45 ± 0.54 0.08–1.42
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Table A1. Cont.

PSMA-RADS Category
& Compartment Parameter Threshold Mean ± SD Range

1B—Bone SUVmax 3.49 ± 1.08 2.73–4.26
SUVpeak 2.47 ± 0.64 2.02–2.93
SUVmean 40% 2.20 ± 0.77 1.66–2.75

45% 2.40 ± 0.82 1.82–2.98
50% 2.49 ± 0.82 1.91–3.08

PSMA-TV 40% 2.16 ± 0.53 1.79–2.54
45% 1.69 ± 0.35 1.44–1.94
50% 1.46 ± 0.24 1.29–1.64

TL-PSMA 40% 4.57 ± 0.50 4.22–4.93
45% 3.90 ± 0.54 3.52–4.29
50% 3.56 ± 0.60 3.14–3.99

1B—Lymph Node SUVmax 1.46 ± 0.50 0.69–3.33
SUVpeak 0.87 ± 0.27 0.54–1.93
SUVmean 40% 1.02 ± 0.36 0.48–2.16

45% 1.05 ± 0.37 0.48–2.25
50% 1.09 ± 0.39 0.48–2.47

PSMA-TV 40% 0.67 ± 0.57 0.10–3.09
45% 0.61 ± 0.48 0.10–2.41
50% 0.53 ± 0.39 0.10–2.07

TL-PSMA 40% 0.64 ± 0.53 0.10–2.84
45% 0.60 ± 0.48 0.10–2.67
50% 0.55 ± 0.43 0.10–2.36

1B—Liver SUVmax 11.05 ± 1.96 9.13–13.06
SUVpeak 10.62 ± 1.70 8.73–12.05
SUVmean 40% 10.42 ± 1.76 8.93–12.37

45% 10.42 ± 1.76 8.93–12.37
50% 10.42 ± 1.76 8.93–12.37

PSMA-TV 40% 0.20 ± 0.04 0.17–0.25
45% 0.20 ± 0.04 0.17–0.25
50% 0.20 ± 0.04 0.17–0.25

TL-PSMA 40% 2.14 ± 0.57 1.48–2.48
45% 2.14 ± 0.57 1.48–2.48
50% 2.14 ± 0.57 1.48–2.48

1B—Lung SUVmax 1.40 ± 0.00 1.40–1.40
SUVpeak 1.29 ± 0.00 1.29–1.29
SUVmean 40% 1.25 ± 0.00 1.25–1.25

45% 1.25 ± 0.00 1.25–1.25
50% 1.25 ± 0.00 1.25–1.25

PSMA-TV 40% 0.33 ± 0.00 0.33–0.33
45% 0.33 ± 0.00 0.33–0.33
50% 0.33 ± 0.00 0.33–0.33

TL-PSMA 40% 0.42 ± 0.00 0.42–0.42
45% 0.42 ± 0.00 0.42–0.42
50% 0.42 ± 0.00 0.42–0.42

1B—Soft Tissue SUVmax 9.14 ± 5.63 1.76–21.67
SUVpeak 8.54 ± 4.80 1.05–15.86
SUVmean 40% 6.30 ± 4.36 1.01–15.87

45% 6.63 ± 4.34 1.08–15.87
50% 7.07 ± 4.62 1.16–17.04

PSMA-TV 40% 2.26 ± 2.96 0.10–7.96
45% 1.73 ± 2.22 0.10–6.39
50% 1.33 ± 1.66 0.10–4.81

TL-PSMA 40% 6.11 ± 4.01 1.05–16.14
45% 5.14 ± 3.01 1.05–11.96
50% 4.36 ± 2.31 0.76–9.09
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Table A1. Cont.

PSMA-RADS Category
& Compartment Parameter Threshold Mean ± SD Range

2—Lymph Node SUVmax 3.13 ± 1.18 1.03–7.52
SUVpeak 1.88 ± 0.70 0.54–3.83
SUVmean 40% 2.09 ± 0.72 0.69–4.12

45% 2.17 ± 0.75 0.71–4.42
50% 2.27 ± 0.81 0.74–5.03

PSMA-TV 40% 0.89 ± 0.69 0.15–3.68
45% 0.78 ± 0.59 0.15–3.28
50% 0.67 ± 0.49 0.08–2.44

TL-PSMA 40% 1.90 ± 1.83 0.26–9.45
45% 1.74 ± 1.63 0.26–8.73
50% 1.55 ± 1.41 0.21–7.05

3A—Lymph Node SUVmax 3.28 ± 0.97 1.40–8.58
SUVpeak 1.90 ± 0.62 0.89–4.47
SUVmean 40% 2.09 ± 0.60 0.97–5.03

45% 2.22 ± 0.64 1.04–5.41
50% 2.33 ± 0.66 1.05–5.62

PSMA-TV 40% 1.03 ± 0.72 0.17–4.73
45% 0.85 ± 0.61 0.15–4.13
50% 0.72 ± 0.50 0.15–3.48

TL-PSMA 40% 2.11 ± 1.53 0.35–10.79
45% 1.85 ± 1.36 0.31–9.81
50% 1.63 ± 1.18 0.31–8.65

3B—Bone SUVmax 4.78 ± 0.78 3.11–5.88
SUVpeak 2.37 ± 0.31 1.86–3.29
SUVmean 40% 2.85 ± 0.51 1.73–3.67

45% 3.08 ± 0.53 2.06–4.00
50% 3.29 ± 0.55 2.20–4.20

PSMA-TV 40% 1.38 ± 1.13 0.41–5.62
45% 1.03 ± 0.73 0.33–3.73
50% 0.80 ± 0.57 0.25–3.04

TL-PSMA 40% 3.61 ± 2.42 1.41–12.94
45% 2.97 ± 1.77 1.05–9.54
50% 2.48 ± 1.50 0.86–8.13

3C—Lymph Node SUVmax 5.09 ± 0.82 4.37–6.63
SUVpeak 3.66 ± 1.89 1.76–6.39
SUVmean 40% 3.11 ± 0.52 2.69–3.95

45% 3.36 ± 0.52 2.94–4.31
50% 3.59 ± 0.64 3.05–4.75

PSMA-TV 40% 1.46 ± 0.80 0.35–2.59
45% 1.18 ± 0.70 0.25–2.19
50% 0.95 ± 0.56 0.25–1.69

TL-PSMA 40% 4.61 ± 2.64 0.97–7.46
45% 4.01 ± 2.37 0.79–6.45
50% 3.42 ± 1.99 0.79–5.30

3C—Lung SUVmax 5.15 ± 0.00 5.15–5.15
SUVpeak 2.79 ± 0.00 2.79–2.79
SUVmean 40% 3.27 ± 0.00 3.27–3.27

45% 3.44 ± 0.00 3.44–3.44
50% 3.51 ± 0.00 3.51–3.51

PSMA-TV 40% 0.75 ± 0.00 0.75–0.75
45% 0.65 ± 0.00 0.65–0.65
50% 0.60 ± 0.00 0.60–0.60

TL-PSMA 40% 2.44 ± 0.00 2.44–2.44
45% 2.22 ± 0.00 2.22–2.22
50% 2.10 ± 0.00 2.10–2.10
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Table A1. Cont.

PSMA-RADS Category
& Compartment Parameter Threshold Mean ± SD Range

3C—Soft Tissue SUVmax 5.78 ± 1.05 4.65–7.19
SUVpeak 4.02 ± 1.54 2.75–6.25
SUVmean 40% 3.62 ± 1.37 2.65–5.66

45% 3.87 ± 1.46 2.84–6.04
50% 4.07 ± 1.32 3.18–6.04

PSMA-TV 40% 4.73 ± 4.10 0.40–9.21
45% 3.60 ± 3.03 0.35–6.62
50% 2.61 ± 2.18 0.35–4.53

TL-PSMA 40% 14.54 ± 12.28 2.25–27.06
45% 11.92 ± 9.77 2.11–20.96
50% 9.33 ± 7.49 2.11–16.12

3D—Lymph Node SUVmax 2.48 ± 0.86 1.54–3.24
SUVpeak 2.04 ± 0.47 1.65–2.57
SUVmean 40% 1.56 ± 0.39 1.11–1.81

45% 1.61 ± 0.45 1.11–1.97
50% 1.70 ± 0.53 1.11–2.14

PSMA-TV 40% 1.69 ± 1.55 0.66–3.48
45% 1.38 ± 1.01 0.66–2.54
50% 1.12 ± 0.64 0.58–1.84

TL-PSMA 40% 2.84 ± 3.00 1.05–6.31
45% 2.41 ± 2.25 1.05–5.01
50% 2.02 ± 1.66 1.05–3.94

3D—Lung SUVmax 0.89 ± 0.55 0.42–2.54
SUVpeak 0.79 ± 0.38 0.38–1.63
SUVmean 40% 0.74 ± 0.39 0.39–1.76

45% 0.76 ± 0.44 0.39–2.11
50% 0.76 ± 0.44 0.39–2.11

PSMA-TV 40% 0.26 ± 0.14 0.08–0.60
45% 0.26 ± 0.14 0.08–0.60
50% 0.25 ± 0.13 0.08–0.55

TL-PSMA 40% 0.20 ± 0.16 0.04–0.68
45% 0.20 ± 0.16 0.04–0.68
50% 0.20 ± 0.16 0.04–0.64

3D—Soft Tissue SUVmax 1.79 ± 0.00 1.79–1.79
SUVpeak 1.04 ± 0.00 1.04–1.04
SUVmean 40% 1.15 ± 0.00 1.15–1.15

45% 1.23 ± 0.00 1.23–1.23
50% 1.32 ± 0.00 1.32–1.32

PSMA-TV 40% 0.60 ± 0.00 0.60–0.60
45% 0.50 ± 0.00 0.50–0.50
50% 0.40 ± 0.00 0.40–0.40

TL-PSMA 40% 0.69 ± 0.00 0.69–0.69
45% 0.61 ± 0.00 0.61–0.61
50% 0.53 ± 0.00 0.53–0.53

4—Bone SUVmax 8.55 ± 3.76 4.49–14.98
SUVpeak 3.44 ± 1.02 2.47–5.27
SUVmean 40% 5.35 ± 2.67 2.83–10.02

45% 5.82 ± 2.90 3.06–10.99
50% 6.22 ± 2.94 3.11–10.99

PSMA-TV 40% 0.81 ± 0.49 0.41–1.74
45% 0.63 ± 0.40 0.33–1.41
50% 0.52 ± 0.40 0.30–1.33

TL-PSMA 40% 3.59 ± 0.91 2.36–4.93
45% 3.05 ± 0.91 1.91–4.31
50% 2.66 ± 1.02 1.74–4.13



Cancers 2022, 14, 270 17 of 20

Table A1. Cont.

PSMA-RADS Category
& Compartment Parameter Threshold Mean ± SD Range

4—Lymph Node SUVmax 15.64 ± 15.98 3.13–74.57
SUVpeak 6.08 ± 5.72 1.43–33.17
SUVmean 40% 10.24 ± 10.83 2.04–49.97

45% 11.09 ± 11.81 2.40–57.06
50% 11.77 ± 12.60 2.72–57.33

PSMA-TV 40% 0.64 ± 0.42 0.10–2.29
45% 0.53 ± 0.35 0.05–2.14
50% 0.42 ± 0.27 0.05–1.84

TL-PSMA 40% 4.89 ± 4.06 0.81–23.55
45% 4.30 ± 3.69 0.62–22.35
50% 3.73 ± 3.19 0.59–19.59

5—Bone SUVmax 30.27 ± 25.79 4.28–157.80
SUVpeak 15.26 ± 12.58 1.67–77.70
SUVmean 40% 18.84 ± 16.47 2.63–101.10

45% 20.25 ± 17.55 2.73–112.90
50% 21.70 ± 19.52 2.84–113.10

PSMA-TV 40% 3.55 ± 4.52 0.10–20.60
45% 2.83 ± 3.55 0.10–16.12
50% 2.28 ± 2.79 0.05–11.59

TL-PSMA 40% 69.29 ± 106.80 1.18–662.10
45% 59.66 ± 93.39 1.09–598.00
50% 50.35 ± 76.10 0.99–463.60

5—Lymph Node SUVmax 34.12 ± 28.88 4.63–120.30
SUVpeak 18.05 ± 14.82 2.81–58.54
SUVmean 40% 21.00 ± 18.13 2.57–73.98

45% 22.35 ± 19.15 2.73–76.67
50% 23.73 ± 20.05 3.28–79.29

PSMA-TV 40% 4.13 ± 11.00 0.40–66.09
45% 3.11 ± 7.62 0.33–46.88
50% 2.26 ± 4.99 0.10–31.15

TL-PSMA 40% 65.12 ± 127.00 2.72–695.90
45% 53.78 ± 96.57 2.57–529.60
50% 43.32 ± 70.85 1.13–377.30

5—Soft Tissue SUVmax 32.32 ± 8.81 23.32–40.93
SUVpeak 15.12 ± 10.32 8.15–26.98
SUVmean 40% 20.15 ± 3.57 16.65–23.79

45% 21.27 ± 4.13 16.65–24.63
50% 20.20 ± 16.31 5.95–37.99

PSMA-TV 40% 0.95 ± 1.06 0.33–2.19
45% 0.84 ± 0.95 0.25–1.94
50% 1.50 ± 1.20 0.33–2.74

TL-PSMA 40% 21.52 ± 26.47 5.52–52.08
45% 19.64 ± 24.38 5.52–47.79
50% 25.54 ± 25.92 5.52–54.82
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Table A1. Cont.

PSMA-RADS Category
& Compartment Parameter Threshold Mean ± SD Range

5—Primary SUVmax 32.66 ± 21.91 5.15–82.80
SUVpeak 18.85 ± 12.52 3.58–50.20
SUVmean 40% 18.13 ± 13.27 2.89–49.96

45% 20.01 ± 14.69 3.10–53.51
50% 21.37 ± 15.21 3.33–56.03

PSMA-TV 40% 9.16 ± 8.38 0.25–28.96
45% 6.36 ± 6.09 0.17–20.70
50% 4.32 ± 4.20 0.17–14.68

TL-PSMA 40% 145.90 ±
192.80 10.59–806.90

45% 111.50 ±
154.00 8.22–652.00

50% 82.76 ± 112.60 5.36–472.30
SD = standard deviation, SUVmax = maximum standardized uptake value corrected to body weight,
SUVpeak = peak standardized uptake value corrected to body weight, SUVmean = mean standardized uptake
value corrected to body weight, PSMA-TV = PSMA-derived tumor volume (cm3), TL-PSMA = total lesion
PSMA (cm3).

Table A2. Descriptive statistics of number of lesions per PSMA-RADS category and total lesions for
each of the 18 patients.

PSMA-RADS Category Pat. #1 Pat. #2 Pat. #3 Pat. #4 Pat. #5 Pat. #6 Pat. #7 Pat. #8 Pat. #9

1A 0 1 0 0 1 0 1 0 0
1B 3 0 1 3 7 3 4 1 0
2 4 8 3 10 9 7 22 1 13

3A 0 13 1 7 14 14 6 3 1
3B 0 9 0 2 1 2 0 0 1
3C 0 3 0 0 0 0 0 0 0
3D 0 0 0 0 0 1 0 1 5
4 10 12 2 1 4 3 3 1 0
5 25 9 1 1 1 8 5 1 2

Total 42 55 8 24 37 38 41 8 22

PSMA-RADS Category Pat. #10 Pat. #11 Pat. #12 Pat. #13 Pat. #14 Pat. #15 Pat. #16 Pat. #17 Pat. #18
1A 1 0 0 0 0 0 0 0 1
1B 6 12 11 22 2 6 1 2 1
2 13 6 7 6 2 6 0 1 3

3A 7 9 1 7 1 2 0 3 16
3B 3 0 0 0 3 2 0 0 2
3C 0 2 0 0 0 0 0 0 6
3D 1 1 0 1 9 0 1 1 4
4 9 4 3 19 3 14 0 3 7
5 2 15 15 15 23 21 2 1 1

Total 42 49 37 70 43 51 4 11 41

Pat. = patient.
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