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Genetic algorithms are very efficient search mechanisms
which mutate, recombine and select amongst tentative solu-
tions to a problem until a near optimal one is achieved. We
introduce them as a new tool to study proteins. The identifica-
tion and motivation for different fitness functions is discussed.
The evolution of the zinc finger sequence motif from a random
start is modelled. User specified changes of the \ repressor
structure were simulated and critical sites and exchanges for
mutagenesis identified. Vast conformational spaces are effi-
ciently searched as illustrated by the ab initio folding of a
model protein of a four 3 strand bundle. The genetic
algorithm simulation which mimicked important folding
constraints as overall hydrophobic packaging and a propen-
sity of the betaphilic residues for trans positions achieved a
unique fold. Cooperativity in the 3 strand regions and a length
of 3—5 for the interconnecting loops was critical. Specific
interaction sites were considerably less effective in driving the
fold.
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protein structure

Introduction

Genetic algorithms are a well known tool for optimization tasks.
The search routines use the mechanisms of natural selection and
genetics. A tentative solution to a given problem or query is
encoded as a long string of characters (‘nucleotides’) in a
‘genome’. A population comprises many individual strings with
their respective genomes. Individuals from a start population have
only random strings. The probability of becoming a parent for
the next generation rises according to the fitness of the solution
encoded. There is a predetermined amount of mutation and
crossing over between the code strings of selected parents for
the next generation. After several generations of fitness selec-
tion, mutation and crossing over, individuals arise close to an
optimal solution (Goldberg, 1989).

Such a search procedure can cover vast solution spaces typical
of proteins and their attributes reliably and quickly. An example
is given where a potential zinc finger primary structure is found
from 20 possible sequences with little computer effort on a
small workstation. Another example shows how the algorithm
can be used to search for solutions in a protein engineering
problem. An initial wild-type sequence is altered by the genetic
algorithm to optimize effectively and simultaneously several
criteria such as greater helix stability and preserved core volume.
Each of the new mutated structures identified by the algorithm
optimizes the total of the engineering parameters. Thus the impor-
tant starting features of the wild-type primary structure can be
conserved while the desired features for engineering are
implemented.
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A final example was used to investigate the potential of genetic
algorithm simulations to fold a protein ab initio. In a model four
B strand structure the genetic algorithm reached smoothly a
unique protein fold. Since many individuals (and even more
schemata, Goldberg, 1989) can be processed in parallel, the
genetic approach offers a quicker optimization potential than
conventional techniques. Furthermore the relative importance of
various physicochemical forces to achieve the 38 strand-rich fold
can be explored. Different forces (e.g. electrostatic interactions
and hydrophobicity) were used in the fitness function for selec-
tion and tested for their ability to encourage the properly folded
protein state. Though the present models and goals are simplistic,
the potential of the method for more complex tasks is clearly
suggested.

Materials and methods
The genetic algorithm
The simulations were carried out on a VAX 3200 workstation.
Programs for this study were written (T.Dandekar) in Pascal
utilizing modified versions of the simple genetic algorithm as
described by Goldberg (1989). In each of our tests the genetic
algorithm started with a population of several random bit strings
(30—3500). The strings had to be decoded in a subprogram depen-
ding on the problem. They were translated into amino acid
sequences according to the genetic code for two examples
modelling zinc finger evolution and A repressor engineering or
they were interpreted as internal coordinates of a model protein
in folding trials. The fitness of the decoded bit string solution
was calculated according to certain parameters. In the first
example, the amino acid matches to a zinc finger consensus
(Gibson et al., 1988), the differences in amino acid composition
to the average found in zinc finger sequences, and the number
of stop codons were multiplied by specific weight values and
added to yield the total fitness value of a given bit string. Stop
codons which interrupt the zinc finger peptides were heavily
selected against and received a large negative weight. Parameters
and weights were carefully chosen and empirically tested (see
in Discussion an extensive description for the motivation of the
different fitness functions) to model a particular problem properly.
A dice is rolled to pick individuals to become parents for the
next generation. The probability of an individual being picked
increases directly with its fitness value. A selected individual is
either directly copied to the next generation or undergoes recom-
bination (the chance for this was set to be 0.2 per individual)
at a random crossover site with another selected individual,
exchanging the bit string after the recombination site with that
from the other individual, resulting in a new generation. Low
frequency random bit mutations were also incorporated during
crossing over and copying. The mutational level was set to be
just below or equal to one mutated bit per individual, allowing
for quick evolution in the simulations. Dice selection, mutational
copying and crossover are continued until a whole new popula-
tion, a new ‘generation’ is achieved. The bit strings of these
individuals are decoded and fitness values calculated. Each new
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maximum of fitness is reported by the computer program and
then the selection for the following generation starts. After suffi-
cient trials (100 or more generations), the individuals encoding
near optimal solutions emerge. A further refinement of the simple
genetic algorithm (Goldberg, 1989) involved the collection of
the fittest individuals from several selection runs and their use
in a final competition run, again against a random background
population. Each run was called an ‘epoch’ and consisted of 100
or 120 generations of evolution and selection. Individual
experiments ranged from O (one selection run only with no final
competition) to 24 epochs (24 selection runs and one final
competition). Run times varied between 10 min and 8 h on a
VAX station 3200 in batch mode.

Simulation of protein motifs

Each string was decoded according to the genetic code translating
it in groups of six bits and reading only the frame starting with
the first bit such that a start codon was not required. In the zinc
finger sequence simulation, the fitness function used for selec-
tion was:

fitness = Aadiff — (300X Aastop) + (100X Consensus matches).

Aadiff is the sum over all amino acid types of the squared
difference between the amino acid composition of the evaluated
sequence and the average amino acid content for the zinc finger
motifs according to Gibson et al. (1988). Aastop was incremented
by one for each stop codon found. Consensus matches were
calculated according to amino acid types allowed at certain posi-
tions in the zinc finger consensus (Gibson ez al., 1988). The
completely conserved cysteines and histidines which coordinate
the zinc finger cation were upweighted by a factor of two.

alignment position : 1, 2,3, 4,6,9,11,13,17,19,22,24,26,27,28

allowed amino acids: E,KR,P,YF,C,C,KR, F, S, L, H,KR, H, T, G

position weight s b, 2,4, 1,2.2, 2, 4, 1L, 1, 2, 1, 2, 1, &
Other sites were allowed any amino acid type.

Sequence engineering of the N-terminal half of the \ repressor
involved the following fitness function:

fitness = w; X50 X Aasolvent + w, X50 X Aaturn +
w3 X50 X Aahelix + w,X50X[50—abs (549-core)] +
ws X 100 X Aadiff.

This example was used to reproduce a hypothetically more stable
sequence from a wild-type start where substituted residues in
secondary structures showed a greater preference for the struc-
tural type and yet important folding constraints were maintained
as hydrophilic residues at the protein surface or a near constant
total volume for the hydrophobic core side chains. Aasolvent
depends on the solvent accessibility of the residues in the N-
terminal half of the \ repressor tertiary structure (Pabo and Lewis,
1982). The residues were divided into three categories: <20
(buried), 20—60 (neutral) and > 60 A2 (exposed) accessible
surface determined by the routine of Kabsch and Sander (1983).
Amino acid preferences to be buried (G,A,L,I,V,M,C,F), neutral
S, T,P,WH)Y) or exposed (R,K,E,Q,D,N) were chosen
according to Janin et al. (1978). If in the decoded trial protein
an amino acid with a buried preference occurred at a position
known to be buried in the tertiary protein structure, Aasolvent
was increased by one. An exposed amino acid in this place
diminished Aasolvent by one while an intermediate or neutral
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amino acid did not prompt a change in Aasolvent. Exposed
positions were treated analogously.

Regions of turn and helix preference were determined accor-
ding to their observed secondary structure as determined by the
routine of Kabsch and Sander (1983). Amino acid preferences
for turns and helices were taken from Chou and Fasman (1978).
Turn formers (G,S,D,N,P) in a loop position increased Aaturn
by three while turn breakers decreased it by two
(A,L,M,H,V,LLF). Aahelix was calculated similarly, but there
were five classes: strong formers (A,L,M,E) increasing Aahelix
by +4; weak formers (+2: K,F,Q,W,ILV); indifferent formers
(+1: D,H); weak breakers (—4: Y,N); and strong breakers
(—12:P,G). The respective weights were chosen to have roughly
equal probability for a change to lower or higher helicity;
similarly the overall values of the parameters were chosen to be
about equal. The weights w; —ws can be modified according to
the user’s needs. In the example shown, w, and ws were set to
4 and the others to 1.

Aadiff counts the number of times amino acids as preferred
by the user occur in the trial protein. The preference chosen here
was for charged amino acids (D,E,R,N,Q,H,K). The term ‘core’
involves the residues L18, V36, M40, V47, F51, L57 and L65
which constitute the N\ repressor structural interior. Observed
mutations of these residues such that the repressor protein main-
tained function showed that their total volume must be between
493 and 586 A® (Lim and Sauer, 1989). The total core volume
of the trial protein is calculated allowing for all amino acid types
at this position. A positive fitness value is maintained if total core
volume differs by <50 A® from that of the wild-type (549 A%).
Charged core residues are punished as their presence did not
maintain functionality (Lim and Sauer, 1989). This was achieved
by setting their volume to zero, resulting in a large deviation from
the allowed volumes. More parameters and more sophisticated
calculations can easily be introduced in the fitness function as
additive terms or subterms.

Protein folding trials

Bit strings were interpreted as internal coordinates on a tetrahedral
lattice. The direction from one C,, atom to the next of the model
protein (four possible directions from the C, atom at the centre
of a tetrahedral lattice unit to the next chain point) was deter-
mined by decoding two bits of the string. Backwalks in the chain
trace leading to clashes were allowed but heavily selected against
(see below). A further simplification was to assume equal
distances between the residues. Side chains were not modelled
explicitly.

The fitness function for the first selection (specific attractive
forces) was calculated as:

fitness = ¢; + clashes + Bstrand + CNinteraction.

The term c; is a positive number used to maintain positive
fitness, especially important in the earliest generations which
displayed considerable clashes or atomic overlaps. It was typically
set to 1500 X length (in bits) of one individual. The number of
clashes was incremented by +2 to allow easy removal of the
final and only clash typical of later generations. The clash count
was multiplied by a large negative weight, set to —2000 in the
trials shown. Only the number of those positions in the protein
assigned as (3 strand residues constituted the value of the 3 strand
term. A strand position i+ 1, trans relative to the residue i, was
modelled by selecting both a similar direction in the two vectors
defined respectively by the C, atom pairs (i+1, i) and (i—1,



i—2) and different directions involving residue pairs (i+1, i) and
(i, i—1), resulting in an extended zig-zag pattern. For each such
residue found the B strand value was increased by betarow.
Betarow, starting with a value of one, was increased by +2 for
each such parallel direction event found within a strand. However,
at the terminal position of each strand, it was set to one. This
rule proved superior to others tested as it favoured in a simple
way growth of betaphilic start nuclei within the strand and yet
allowed modelling of the § strand breakers at the strand termini.
The @ strand value was then multiplied by its weight (400 for
the trials in the results). The CNinteraction was used to model
an antiparallel strand bundle (Figure 1). The strands were
numbered 1 to 4. To promote the bundle, lattic distances between
the N-terminus of an even strand and the C-terminus of an uneven
strand (and vice versa) were added for all possible pairs. To
increase parallelism of the strands the difference between the
Ceven—Nuneven aNd Cypeven—Neven distances for each strand pair
were also added. The sum was multiplied by a high negative
weight (—600 in the results). If the maximum CNdistance found
was larger than the length of a strand (eight residues), indicating
no tight packing of the protein, then this difference was multiplied
by a negative weight of —5000 and added to reduce further the
fitness of the particular string coded solution.

For the second folding example, the hydrophobic selection trial,
all terms and weights are as previously described except that
CNinteraction was replaced by a scatter function:

fitness = ¢; + clashes + Qstrand + scatter.

The scatter is simply the calculated sum of the distances of each
point or atom in the model protein from its centre of mass. The
sum was multiplied by a negative weight (—900 in the results).
This function modelled the effect of an overall hydrophobic
contraction in promoting secondary and higher protein structure.
Protein structures calculated in the folding simulations were
further analysed and drawn using the protein visual characteriza-
tion system developed by G.Chelvanayagam (unpublished).
Labelled residues of the chain trace are shown as glycines
(Figures 2 —4) since different side chains were only implicit. Only
two types of side chains were utilized: those preferring 8
configuration and those without such a preference.

Results

The first example models the evolution of the zinc finger motif.
The total sequence space for this motif (30 residue motif, 20
naturally occurring amino acids) is 20°° such that an exhaustive
search of each of the possible combinations is virtually
impossible. The example provides a test of whether the random
mutation and recombination events of the genetic algorithm can
search a vast space of residue combinations quickly. The genetic
algorithm driven search with a random sequence start popula-
tion quickly (700 generations, needing only 19 min on a small
VAX workstation) leads to zinc finger-like sequences (Table I).
A population of 100 random 180-bit strings represents different
genomes decoded according to the genetic code. Individuals
encoding peptides closer to the zinc finger concensus (Gibson
et al., 1988) by overall composition and alignment position
received higher fitness scores (see Materials and methods) and
were preferentially selected to be parents for the next genera-
tion. Further, stop codons were selected against. The algorithm
optimizes all three parameters simultaneously and, though it starts
with reshuffling random sequences, it reliably finds the region
in sequence space with the highest possible similarity score (19,

Genetic algorithms in protein simulations

Table 1. Evolution of a zinc finger sequence

02 TLSIWRWDSVAPKEVYCQRVPNCCPANLTR (first individualP)
1 EVFVTWRNSSFCEAPMRARKVYANSVVTLI
2 FKGILFLSVWLYATAGDDLRTTSIPTEFGF
4 HRQLGDYVPCVLKTLISSLAAGRRKLAAKH
5 HRRFGDYAPCVLKTLISPLAAGPRKLAAKH
6 HRRFGDYVPSVLKALISPLAAGLRKSTTTI
7 HRNRGCALVLPTRKDSSPLPAGPRKSTTTV
8 SYPFACKLVLSTRNDCSPLRPGLRKSTITI
9 SYPFACKLVDRTRIGSSPLVPKPRRATTMF

10 SHPFACKLALLTRRGDSPLGAGRREHTTNI

11 SHPFACKLAARTRSGDSPLGVGRREHTTNI

12 SRPFACKLAPRTHTRDSPLKVGRREHTTYI

13 TRPFACKLVLRMGTHDSPLVLRGRQHTGYI

13 SRPFECSLTVRACAHDSPLVLRGRQHTGYI

(generation 51)

(best of epoch 1)

14 SRPFTLDARSRTFWEASLLYHHPRSHTGPI
16 ERPYDCLFCKRPTWONSGEVTHYRAHKGGT
13 ERPYMCGLCKRHGILVSMLRTSFRLTTSPQ
17 ERPTVCEGCSRNFSRGSVLSIHMRWHVGGE
12 FRMAACWQCLRSRSHPSVLRQTITLHTGVG

(best of epoch 2)
(best of epoch 3}
(best of epoch 4)
(best of epoch 5)
(best of epoch 6)

Final selection start
(Generation 10)
(Generation 20)
(Generation 101)
conservation®

17 ERPTVCEGCSRNFSRGSVLSTHMRWHVGGQ
18 ERPTVCEGCSRNFSDASLLYHHPRSHTGPI
19 ERPYDCEPCSRNFSRGSVLSTHVRSHTGPN
19 ERPYKCGKCFKYFARPSELGTHSRSHTGRN

* & * *

Negative Controlsd:

17 DKPYLCEECPRIQLVNSFLSDHARIHTGRR
14 RRPESCGTCLRSFSRGGSTSIHPKPHVGPL

{mutation rate 0.03)
{mutation rate 0.00)

2The number of matches to the consensus is given on the left, with 19 the
maximum possible.

The start population consisted of 100 random 180 bit strings decoded
according to the genetic code (including STOP codons). The fitness function
involved similarity (matches and overall composition, see Materials and
methods) to the zinc finger consensus (Gibson ez al., 1988).

CAsterisks indicate the fully conserved zinc liganding residues.

4All other conditions are identical; the final result is given.

see Materials and methods) to the zinc finger consensus. The
algorithm models at the same time the evolution of random
peptides to a functional protein. This example also shows that
the algorithm can reach the consensus in the simulation with
optimized evolution parameters. That evolution is mimicked can
be seen by setting the mutation rate higher (three per 100 bits,
Table I) such that the consensus sequence is not attained, albeit
using identical fitness functions and processing conditions. Muta-
tion rates above the threshold (in our simulations higher than 1
bit per each individual of 180 bits) slow down evolution.
Similarly, relying in each new generation of individuals on recom-
bination alone is also not able to reach the concensus (Table I,
mutation rate 0.00).

A potential application of the genetic algorithm involves protein
sequence engineering tasks. We now do not start with random
sequences but want to improve a known wild-type sequence to
get an optimized structure. It is easy to select analytically good
sites for mutations which fulfil one criterion, for example helix
stability. The advantage of genetic algorithms in this type of
protein engineering is their ability to select mutations which
simultaneously fulfil many weighted criteria, typical in applied
protein engineering. The data shown in Table II illustrate the
design of new mutations in A repressor. The starting population
consists of 40 612-bit strings all encoding the 102 residues of
the N-terminal part of X repressor (Lim and Sauer, 1989) but
each containing random bit permutations which do not alter the
102 wild-type amino acid residues. The program shown optimizes
the following parameters (see Materials and methods): helix- and
turn-preferences for residues found in such secondary structures,
amino acid type preferences at a given sequence position accord-
ing to the solvent accessibility of the side chain in the known
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Table II. Engineering trial of \ repressor

r.Fit@ nb amino pref core helix turn accesibility
1.182 0 6.08000E+04 4.00000E+04 6560 400 ‘10400c
STKKKPL'IQEQLEDARRLKAIYEKKKNELGLSQESVADKMGMGQSGVGALFNGINALNAYNAALL.AKILKVSVEEFSPSIAREIYEMYEAVSMQPSLRSEYEd
B BIBD) cnmssecmnen o5 0 R § ) b NS4 181 88 e ot o R B 1 o SR T & BB B B8 R B RS § 0 By £ <
D TOD, wmrscsipmns o= 6% ¥ @ HETEI ST B Blansesons s v 60 Wi ottt 44 & 08 BB abNIDS o & i @idis o s » o 9w et 2 5 elansa e 51 o osadiecinina e B B VoY
1195 s g e Hiseveiaiosies Wi oo dosgaiasns w6 & S eneumailbi s 5 & & oo SIRGS o 4 4 Disaswneriy o @ 3R TR 51 5 o i 1 s P R 1 21 ozmssmafisasin = f
1.196 SRR § N B BB e B Y B S A W W S e b T 8% & N, B ¢ 5 5 & & & S AR & iy (| A, NQ
G711 U A — Donssnrmesmnsn et En o foy oo Toaa B iremr e s s R + 29
1238 sssmmassiies Kumwos Tz 4 65 6 v e He oo e HaVaKi s v RLiwiwsio o DNY s TaBroa N 55 5 5 & 5 wwsiwa v T s 5 e ol s alew el o oo
15234 BFBunmmossds KowsSuils 5534 Ricaas BI oHi o 0 o Ha VK8 (R vieis DNY . TaDaeMius s o3 K susmns T's o 5 5 maE H: s Koo oRis s v V.
1248 .:N«wsSA: EBHLwwSWINT: ssRasavs I.H.C..H.VRK...RL.G...DKI.I.DC..V...RT.NAWL.N.TRW....... Kovpwwm o o S.RKL..Q
1.248 44 7 04000E+04 4.00000E+04 6240 200 8000
3.
1. 1
1
e
1.
1. 2
i
.
2
Qs
1.
Do 202 comssopns s v v s 5 5 % A0ee & 5 o 8 5 b GRS GG €8 § 5 5 BUEEEIN o & Bl s Rivsangs v 6 8§ 30 8 Saaais § 5 8 5 8 5 b Shsaaens KX o 6 wocn @ o 6 5 5 woeverss o & His i wvaweniss & =
12209 wosvesisss BuaGascs s O e na €5 6 5 & b SueinE 8 8 Ris ideioa@s s v i s sniaeis ss s S5 8 & Liswess L soomias & Hissmmeunsss Macus &
L2010 weem o6 o8 65 5 g Moo o v o5 5 navsiosss K B s s mwmes REis « » Divisiussis o 6 & & & 5 G005 VD TRV wsis Kosssns Pusasssd KTscsssns GRQ
1.228 olenusssssusasasisys pasuas RH: sRiKevaame RLis ¢ 3 & mawiasinne & Bl 5 & 5 mEa & D.TRV 0 i R Posurisi B o s Rawpos v 2
1.233 .nBo oo sisnns B b o 5o s b o bbmmas KH: <GB Qiarmmss R ¢ @ Wigrowuaa = » B & & A 15D PRV s aimnccs: B s oo it i Baisees o KT, K, .GRQ.
B ZTh L v e w6 memimncmns B % 55 AU § KH.. JRKoowss RERG & wanssos o o BING & v w o D.TRV LB s « i iomse B Baiaitl & KT....... D. Q
1,290 T EN. SR wssonsumsa s v os s 0 i Q. KH..RHKP..... RLR.R. .F..RN...K.F...D.TRVF IK.LT.N.R..... I.RT..R..P.D.
1.290 38 7.84000E+04 4. 00000E+O4 1360 —800 10000
1.189
1.199 1
1:200
1.201
1.205
1., 213
1.222 2
L1259 PRov o o Bis s ssuaimginms i o s 0 Ie0meis & 5 @5 @i-eupieiar N ¢ o 5 avmmsetians e b+ 2o Cog S songn Livow sy Gis s sciisre: @ N sacBiasals « woan N..
16303 Rususs PS. sl & ¢ o V..N.R i oD g Gane v B s o MaxINKy v s apeews NE: sHewvwwss v N.P..FD
1.303 26 7. 36000E+04 4.00000E+04 6480 400 9800
L9092 56365 DABrGa Saa6 5 o6 BRI s & 6 Ks sepesivi minien wn s i Blinio 580 5 & 5k i S0 Y S
1,208 &t66ssntts siadnmh USROG e (0 G 5 FENEREP) ) BBl (e [ () WP 3B s s o, T 30801 i T T St . (S MR MR 5, O s 1
L2281 M. 0 5 v qummesan sy omnais s, . iy i 3 B Disvers v avavas Bls s vun Risca o aDis 5 st
Lo o 15 wiascnisain, scmscgtatigs o Wia oo embe ity o o o SR o s e & Bl T 09,5506 & b o o Snirs b W & @oimaemet doidiosin
1.261 .A.N.A RecieHV vsninie win K KSR v 4 wnse V.. L E.E.RT. .SE. -VI.
1.261 34 7.04000E+04 4. 00000E+04 6880 400 8400
(final competitionh:)
1.334 28 7.52000E+04 4.00000E+04 8560 400 9600
R o B85 500 Bh s VWV s N R B ) 9 omdoge oo m o et RRCET o oo T s iGove v oMl ve M o BHL K v o0 msose NEL. B oo v e N.L..FD
1.363 .I.EN..R........ okt 8 ) il ©.R KHD RHKP..... RLR.R B oRN. < iKoFla oD TRVF LK LTRW.. cowiee won Ko wovione s S.RKL. .Q
1.374 .I.QD.SR....vvvnunnn Q.R..KHD.RHKP..... RLR.R B JRBNu ¢ cKoFi o D TRVE Y oo TR LTRW: wvevs 0 avn K...E...S.RKLD.Q
.INED.SR DsiBi 5 e Q.R..KHD.RHKR..... RER«Rasis o Fis wRK: « :KuF o o D TRVE 5 2. TK BTRW. o Koo o ¢ JKis 5 9B v #9«RKLw Q)
1.375 45 8.32000E+04 4.00000E+04 5280 -800 9800

The relative fitness of each individual. The selection for new mutations conserves core packaging, turns, helices and solvent accessibility in the same regions
as in wild-type N repressor. The user specified engineering parameters were a mutation preference for charged residues (D,E,R,N,Q,H,K) and parameter
weights for helix, turn and accessibility of 1 and for amino acid preference and core packaging of 4 in the fitness function used for selection.

YThe number of mutations.

“The absolute values calculated for each parameter are listed for the wild-type and for the end of each selection epoch after which a new selection trial is

started.

9The N-terminal 102 residues of wild-type \ repressor which are engineered by the genetic algorithm using a start population of 40 612-bit strings, five
epochs with 11 generations and a CPU time of 10 min on a VAX 3200 workstation.

“Wild-type residues are indicated by a dot and amino acid mutations by capital letters.

fOnly the individuals which have a higher fitness than all individuals tested previously in that epoch are shown.
8High fitness individuals having critical substitution sites are marked.
PFinal competition between the fittest from each epoch.
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Fig. 1. (A) The four-stranded bundle investigated. Four units (1—4) of secondary structure (3 strands) are connected at their termini (C,N) by three loops.
There is no crossing over in the fold. An exemplary side chain interaction is sketched between the N-terminus of structural unit 1 and the C-terminus of unit
2. In the text, this would be designated as a NypevenCeven attractive force. (B) Three image stereo picture of the C,, trace for the first 50 N-terminal residues
of azurin (Adman and Jensen, 1981; no coordinates for residues 1 and 2). The experimental structure is similar to that of the model shown in (A).

tertiary structure, constraints on the amino acid type and total
side chain volume of seven critical core residues in the protein
fold, and preferences for new amino acid exchanges defined by
the user. For an engineering trial in designing a primary sequence
with certain structural characteristics, the user may assign equal
or different weights in the fitness function to these parameters
and the amino acid preferences for new mutations. For instance,
a higher weight may be given to the conserved core packaging
or charged residues could be favoured as new mutations to
investigate their influence on the function of \ repressor. The
course of the genetic algorithm run starting from the wild-type
\ repressor sequence is shown in Table II. Individuals with few
mutation sites yet high fitness (marked in Table II) are of
particular interest in actual mutagenesis trials; also mutations
leading to drastic changes in fitness can also be tested experi-
mentally. Selection by a fitness function where the sign of some
of the fitness subterms has been changed (see Materials and
methods) identifies particularly disruptive mutations (e.g. disrupt-
ing a helix and the core packaging) which are most useful to
confirm protein structure interactions if ony partial information
is available. As all other criteria of the fitness function remain
optimized, the algorithm identifies test mutations for the presumed
interaction. Additional parameters can easily be added to the
fitness function as in other applications of genetic algorithms (e.g.
Bickel and Bickel, 1990).

The next part of our study investigated the power of the genetic
algorithm in a far more complex problem of ab initio protein
folding from random conformations. For this the complex protein
structure has again to be encoded in a string representing the
‘genome’ of an individual. This was achieved in a simplified way
by using internal coordinates on a tetrahedral lattice (see Materials
and methods). A fitness function judging the quality of the folded
structure was established and should then mimic the important
factors governing protein folding.

The ability of the genetic algorithm to discriminate between
different forces in protein folding is critical for the evaluation
of results by others on protein folding rules in their respective
models (Skolnick et al., 1989; Chan and Dill, 1991). Introducing
proper folding parameters should result in a unique and plausible
structure while unrealistic parameters would lead either to
random, not observable structures or converge to different struc-
tures in different runs with different starts.

A simple model protein fold provided the trial (Figure 1A).
It consisted of stretches of hydrophobic residues in § strand (B)
configuration (zig-zag pattern) with interspersed loop regions (L)
formed by residues with no distinct structural preference. No
specific hydrogen bonding scheme was considered for the model.
The hydrophobic residues should have a preference to be in a
trans position in contrast to cis. The total protein had the formula
bslabgLsbglsbg, resembling a B strand-rich protein. An approx-
imation of the ideal fold can also be found in known tertiary
protein structures; e.g. the first 50 residues of azurin (Adman
and Jensen, 1981) as shown in Figure 1b or parts of a 3 roll
in gene activator protein (Weber and Steitz, 1987). The model
was also chosen as it is similar to those first investigated by the
ab initio Monte Carlo simulations of Skolnick ez al. (1988) and
Chan and Dill (1990), and to provide a convenient and simple
model to study folding of a protein in general.

How does this primary sequence fold into a three-dimensional
structure? Are specific interactions to be included in the folding
model or are, in contrast, more global, general forces important
for the overall fold? Different fitness functions in our simula-
tions tested this. A first fitness function (see Materials and
methods) tried to enhance the probability of formation of a
uniquely folded four-member antiparallel 8 bundle (Figure 1) by
assuming important attractive (e.g. electrostatic) interactions
between the strand ends such that the C-terminus of an even
numbered 8 strand should be attracted to the N-terminus of an
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Fig. 2. Three image stereo picture of the ab initio folding of a four 3 strand-rich protein by the genetic algorithm. The program starts from random
conformations (A) and more ordered structures arise by recombination, mutation and selection (B). The fitness function is based upon three residue loops
(L3), eight-residue § strands (b8) with C,, atoms in a trans position and following a zig-zag pattern, and upon attractive forces between adjacent N- and
C-termini. The last two structures (C) and (D) have adopted the secondary structure bgLabglsbgLsbg but have different topologies and represent some of the
fittest individuals from various runs with different starting configurations. Residues are labelled as a glycine for visual facility in tracing the fold (Figure 1).

uneven numbered B strand and similarly the C-terminus of an
uneven strand by the N-terminus of an even strand (Figure 1A).
The simulation terminates in highly ordered structures and each
of the § strands is completely formed with all the residues
assuming frans configuration; however, the final fold observed
is not always unique, a phenomenon which becomes even more
prominent as the loop length is increased (Figure 2). Further-
more, in no case was the expected optimal fold (Figure 1)
achieved.

Other parameters for governing the fold were then investigated
(see also Discussion). The importance of site specific interac-
tions were replaced by a different and more general condition:
namely, the overall globularity of the protein. The scatter of the
atom positions around their centre of mass was minimized in the
fitness function. The scatter mimicks the preference of
hydrophobic residues to be buried in the core of the protein fold.
Driving the selection with the aid of this parameter leads in fact
to a unique fold resembling a four-membered 8 bundle (Figure 1),
the expected optimal solution. This fold (loop length = 3) is
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reproducible in different runs, independent of the random start
configurations (Figure 3). As the final conformation is indepen-
dent of the start it may be concluded that the complete confor-
mational space is effectively searched (8 h run time on a VAX
3200 workstation in batch mode for the complete simulation).

The short loops which were not constrained structurally but
were participants in the scatter fitness value were also signifi-
cant in achieving the fold. For loop lengths 3—35 the bundle fold
was maintained and was independent of the starting configura-
tion; loop length 6 still achieved a compact fold. At loop length
7, not only was the bundle and considerable compactness lost,
but different starts resulted in different final folds (Figure 4).
No selection pressure was applied for or against the cis or trans
position in the loop residues. For the larger loop lengths, which
are close to those of the secondary structural elements, the non-
ordered loop residues present more and more effort for the core
forces and challenge the symmetry of the protein structure. In
other trials, the scatter part of the fitness function was applied
only to the 3 strand residues as the structureless loop residues



Genetic algorithms in protein simulations

Fig. 3. Stereo picture (three images) of a typical fit individual for a four 8 strand bundle structure (Figure 1) using a fitness function based upon a three
residue loop structure, eight-residue § strands (bgl.3bgL3bglsbg), and a minimum distance of all atoms from the molecular centre of mass, the latter mimicking

hydrophobic packing forces.
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Fig. 4. As in Figure 3 but using different loop lengths L: (A) bgLsbgLsbgLsbg, (B) bgL;bgL;bgL bg. The loop residues were included in the scatter fitness
function. It is clear that the topology of the antiparallel four-strand bundle (Figure 1) is not maintained if the loop length increases above 5.

may have interfered with convergence to optimality, especially
as the loops became larger. However, similar results were found
as in the cases above where loop atoms were included in the
compactness term.

In all of the protein folding experiments for a given set of
parameter constraints in the fitness function, the best individuals
from 24 *epochs’ of different start populations with random lattice
coordinates competed in a final selection run against a random
background. The number of epochs was chosen as it resulted
in the expected optimal fold under at least one set of fitness condi-
tions. For each fitness function at least 10 complete simulation
runs of 24 epochs each were tested.

Discussion
Finding the fitness function
The selection driven genetic algorithms are very efficient search
tools covering vast conformational space. They can be used to
optimize simultaneously several parameters. However, the direc-
tion of the selection is critical for achieving a good and realistic
model. The fitness functions for different simulations must be
carefully chosen and tested given the parameters to be modelled
and their respective weights. A good guideline is to keep the
model as simple as possible, introduce and change only one
parameter at a time and maintain a minimum number of fitness
parameters. The various weights for the parameters were adjusted
in the beginning with the most significant features similarly
weighted. However, if a fitness characteristic was crucial in the
early generations, its weight was increased decisively. For
instance, a high negative clash weight was essential to build
realistic structures without any atom overlap.

Genetic algorithms offer the specific advantage that they are

robust search routines. Especially the introduction of crossover
allows high fitness islands to be reached which would not be
attainable by using mutation alone (Spears and De Jong, 1991).
The fitness parameters and weights for the examples given here
were determined empirically by test runs as the problem space
including all possible parameter conditions is rather large
(Goldberg, 1989). Thus the advantage of genetic algorithms in
competition with other methods (e.g. Monte Carlo searches)
depends on how easily an effective fitness function can be tailored
for the application.

The ratios between the different parameter weights determine
the selection outcome. Thus in the first simulation the very high
weight on Aastop allowed counterselection against stop codons
in the earliest generations. The higher weight on consensus
matches than amino acid differences leads to two stages of evolu-
tion in the example and was explicitly chosen. First, the general
zinc finger binding consensus is approached and heavily selected
for. Only when this is nearly reached is the amino acid composi-
tion optimized according to the known average. A two stage selec-
tion procedure by genetic algorithms allows the possibility that
the initial high-weight parameter is the first to reach a near optimal
state. This evolution simulation tested the ability of the genetic
algorithm to search efficiently a vast combinatorial space and
delineate quickly the expected answer, namely, the zinc finger
consensus. Negative controls illustrated conditions where the
algorithm failed showing the example to be non-trivial. In
contrast, the engineering example developed a known wild-type
sequence further. The engineering direction is open for the user
by placing weights on preferred parameters.

Conclusions from the folding simulation

In more complex simulations like protein folding, the choice of
a proper model (and corresponding string coding) in which the
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genetic algorithm performs well is more complex. For instance,
simulations on the tetrahedral lattice proved to be superior to those
based on a cubic lattice (three bits per chain atom). Chan and
Dill (1991) in ab initio protein folding trials conclude from their
exhaustive configurational enumerations on small lattices that
formation of secondary structure is inherently probable but that
the unique native fold is rare and difficult to find. The genetic
algorithm selection used here found the optimal fold and avoided
an exhaustive enumeration of all states which are of the order
of 107, Though the model had only the secondary structural
propensities of its residues predefined, the ability of the algorithm
to find the unique three-dimensional fold and the effectiveness
of various forces in folding (e.g. hydrophobicity) or structural
stabilization (e.g. cooperativity) were tested in the simulations.

The fitness functions described in the results have been

optimized from many trial runs. Specifically in the folding
example, a very low value of ¢, (positive fitness parameter) had
only very few individuals surviving the first generation,
significantly reducing variants for further selection. A very high
value for ¢, diminished the fitness differences between
individuals and slowed evolution. Too large a value for the clash
weight prevented formation of occasional turns or disallowed
internal movements in the protein structure. The clash weight
chosen allowed maximum flexibility of the protein chain as it
was the smallest value which just deleted all clashes from later
generations. The introduction of the betarow factor in the fitness
function, allowing for growth of regions which already had 3
conformations, proved to be critical in achieving extended struc-
ture in 8 conformation. A very high value left clashes or lead
to a loss of an overall compact three-dimensional fold. The 3
strand start weight and the increment chosen for betarow
represented a balance between promoting nucleating regions for
B structure and rewarding strand outgrowth.

The basis for secondary structure formation has been suggested
to be core packaging rather than hydrogen bonds or specific
interactions (cf. Chan and Dill, 1990). This idea was tested in
our model. The pairwise packing of the 3 strands is a result of
simple selection for low scattering around the centre of mass,
tantamount to attractive hydrophobic forces acting on the core
residues. Rather non-specific, global forces may be more impor-
tant for protein folding than previously anticipated (Hughson
et al., 1991; Jeng and Englander, 1991). Moreover, our results
show that the reliance on specific interactions at the ends of 3
strands was not able to achieve a unique fold and the ideal
bundle model. This is also consistent with ab initio protein folding
studies by Skolnick and coworkers who found that site specific
interactions are only involved in fine tuning the fold (Skolnick
et al., 1988). In comparison with electrostatic interactions and
overall hydrophobicity as governing parameters for the overall
fold, other parameters tested proved to be far less effective in
the simulations. In particular, neither a strongly selected (already
in the earliest generations) hydrophobic collapse of the centres
of the 8 strand regions nor different selections for parallelity or
close vicinity of the 3 strands proved to be effective. In this way
different parameters could be inspected in the model for their
relative power to drive a protein fold.

Loops may play an important but indirect role in producing
a unique native state (Skolnick ez al., 1989). The effect of loop
length was tested in our model by varying systematically the
length of the three interconnecting loops. It was observed that
the optimal fold was no longer reached above a certain threshold
length which was near the length of the secondary structural
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elements. Even when the compactness criterion was applied only
to the strand residues, the relatively long loops continued to
interfere with optimal folding. Though core hydrophobic packing
primarily directs the fold, long loops can be destabilizing unless
internally stabilized.

Perspectives

In contrast to typical Monte Carlo simulations, the model fold
presented here was found by a different type of search and
perspective. The calculation requirements of the genetic algorithm
(24 epochs of 120 generations for an entire four-strand simula-
tion) compares favourably with a Monte Carlo (MC) simulation
(3 x 10° MC cycles per temperature tested; Skolnick ef al.,
1988). The genetic algorithm folding analysis answered directly
how stable and unique protein structures are achieved under an
evolutionary type of selection. The general conclusions of
Skolnick et al. (at least for their start models, 1988, 1989) and
Chan and Dill (1990, 1991) were verified by the genetic algorithm
approach, which also allowed the study of cooperativity in the
formation of 3 strand regions, the effect of variance in loop length
and the significance of specific interactions in the folding process.

We wish to call attention to the wide potential application of
genetic algorithms in the study of proteins. Possible areas of
interest are illustrated by examples from protein evolution,
engineering, design and folding. We intend to explore further
important forces for protein folding by using fitness functions
with various residue physicochemical characteristics as preferred
side chain—side chain interactions, hydrogen bonds, size and
shape. Simulations with « helical structures are in progress.
Independence of the lattice, allowing general atom positions, will
also be explored to avoid any bias (Gregoret and Cohen, 1991).
Secondary structure predictions can be exploited to enhance the
power of the genetic algorithm in guiding tertiary structure
folding. Complementation with other prediction models is also
possible where a pregiven set of solutions can be refined by
simply including them in the start population (see Materials and
methods, ‘epochs’). The ability of genetic algorithms to search
vast conformational spaces in parallel with a realistic fitness func-
tion represents a potential which awaits further exploitation for
problems in protein structure.
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