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Purpose: Artificial neural networks show promising performance in automatic seg-
mentation of cardiac MRI. However, training requires large amounts of annotated 
data and generalization to different vendors, field strengths, sequence parameters, 
and pathologies is limited. Transfer learning addresses this challenge, but specific 
recommendations regarding type and amount of data required is lacking. In this 
study, we assess data requirements for transfer learning to experimental cardiac 
MRI at 7T where the segmentation task can be challenging. In addition, we provide 
guidelines, tools, and annotated data to enable transfer learning approaches by other 
researchers and clinicians.
Methods: A publicly available segmentation model was used to annotate a publicly 
available data set. This labeled data set was subsequently used to train a neural net-
work for segmentation of left ventricle and myocardium in cardiac cine MRI. The 
network is used as starting point for transfer learning to 7T cine data of healthy 
volunteers (n = 22; 7873 images) by updating the pre-trained weights. Structured 
and random data subsets of different sizes were used to systematically assess data 
requirements for successful transfer learning.
Results: Inconsistencies in the publically available data set were corrected, labels 
created, and a neural network trained. On 7T cardiac cine images the model pre-
trained on public imaging data, acquired at 1.5T and 3T, achieved DICELV = 0.835 
and DICEMY = 0.670. Transfer learning using 7T cine data and ImageNet weight ini-
tialization improved model performance to DICELV = 0.900 and DICEMY = 0.791. 
Using only end-systolic and end-diastolic images reduced training data by 90%, with 
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1  |   INTRODUCTION

Image segmentation is an essential step in the functional anal-
ysis of cardiac magnetic resonance imaging. It allows for the 
extraction of quantitative static measures such as myocardial 
mass, left ventricular (LV) volume, right ventricular (RV) vol-
ume, and wall thickness, as well as dynamic measures such as 
analysis of wall motion and the ejection fraction (EF). Cardiac 
cine MRI is the accepted gold standard for this assessment of 
cardiac function1 and anatomy and is, therefore, of paramount 
clinical importance.2,3 Proper segmentation of such data sets 
is a tedious and time-consuming process that has increasingly 
been tackled using various deep learning approaches.4-7

Artificial neural networks have been shown to outper-
form other methods on several high profile image analysis 
benchmarks and, therefore, so-called deep learning models 
have become state-of-the-art for a wide variety of computer 
vision tasks. Multiple factors like the wide application area 
of deep learning, available compute power, and increasing 
investments as well as user-friendly open source software 
have enabled a rapid development of the field of artificial 
intelligence. This led to ever increasing applications in med-
ical imaging such as MRI8 where tasks nowadays range from 
data acquisition and image reconstruction,9-11 image resto-
ration,12,13 to image registration,14,15 and segmentation16-19 as 
well as classification20,21 and outcome prediction.22,23

There is consensus in the field that the limited availability 
of labeled or annotated data because of data access, privacy 
issues, missing data harmonization, and data protection is one 
of the main obstacles for future clinical applications of deep 
neural networks.17,19,24 Whereas some resources like the UK 
Biobank25 already exist to address this issue, the high qual-
ity standards and the amount of work required to organize 
and maintain such a resource makes data access expensive. 
In addition, such data may already exceed the quality that is 
available in clinical routine cardiac MRI. This leads to neural 
networks, which perform very well for a very specific task 

within a confined data space, where training and testing data 
share the same distribution. However, these networks usu-
ally lack generalization capabilities. Whereas methods such 
as data augmentation, transfer learning, weakly-supervised, 
self-supervised, and unsupervised learning have been ap-
plied to overcome the issue of small data sets in research, it 
is unclear how much data are really required to create a well-
generalizing network or to apply transfer learning. In transfer 
learning, the target model is not created from scratch. Instead 
(part of) an existing pre-trained model is used as starting 
point. This model was usually trained using a lot of data on 
a task that is similar to the target task (eg, image classifica-
tion using ImageNet data as pre-training for semantic seg-
mentation). A related kind of transfer learning is re-training a 
network on the same task using data with different character-
istics (eg, pre-training on 3T MRI images for transfer learn-
ing to 7T images). Notable alternative methods for domain 
transfer include Cycle-GAN26 and neural style transfer.27

In this work, we aim to enable researchers and clinicians in 
cardiology to apply deep learning-based segmentation models 
in their respective research by providing guidelines and easily 
accessible tools as well as annotated data for transfer learning.

2  |   METHODS

2.1  |  Kaggle data

As mentioned above, cardiac MRI is the gold standard for the 
assessment of cardiac function, a key indicator of cardiac dis-
ease. The 2015 Data Science Bowl challenged participants to 
create an algorithm for automatic assessment of end-systolic 
and end-diastolic volumes (ESV and EDV) and therefore, 
ejection fraction, based on cardiac cine MRI. The data set 
consists of pre-defined training, validation, and test sets and 
once the challenge has ended, all sets and their correspond-
ing volume information (end-systolic and end-diastolic) 

no negative impact on segmentation performance (DICELV = 0.908, DICEMY = 
0.805).
Conclusions: This work demonstrates and quantifies the benefits of transfer learning 
for cardiac cine image segmentation. We provide practical guidelines for researchers 
planning transfer learning projects in cardiac MRI and make data, models, and code 
publicly available.

K E Y W O R D S

7T, cardiac function, cardiac magnetic resonance, deep learning, neural networks, segmentation, 
transfer learning, ultrahigh-field
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were made available for research and academic pursuits, 
leading to a total of 1140 “annotated” cardiac MRI examina-
tions of normal and abnormal cardiac function. Images are 
in DICOM format resolving up to 30 phases of the cardiac 
cycle. Although we will focus on short axis images in this 
study, the Kaggle data set also contains alternative views. 
Examinations were done on 1.5T and 3.0T systems (Siemens 
Magnetom Aera and Skyra, Siemens Healthineers, Erlangen, 
Germany) with applications of both FLASH and TrueFISP 
sequences. An overview of the complete data set and its 
variation in patient data and sequence parameters is given 
in Table 1.

2.2  |  7T data

All assessments regarding transfer learning to 7T data are 
done using model: r34_CE_p5_s2. As initial point of com-
parison we used the UKBB model to create labels for 7T 
data, to assess generalization capability of a model, which 
was trained on a very homogeneous data set (UKBB).

Following approval of the local ethics committee (7/17-
SC), n = 22 (14 female, 8 male) healthy volunteers were 
examined using a 7T whole body MRI system (Siemens 
MAGNETOM Terra, Erlangen, Germany) and a 1TX/16RX 
thorax coil (MRI Tools, Berlin, Germany).28 Written in-
formed consent was obtained before all measurements. All 
human volunteers gave their consent for publication using 

our institutional consent form. Volunteer age was 22-53 
years, body weight was 52-95 kg, and height was 151-185 
cm. For triggering, both the integrated ECG and an exter-
nal acoustic triggering system (MRI Tools, Berlin, Germany) 
were used to synchronize measurements with the heartbeat, 
choosing whichever method provided a more stable trigger 
signal during the examination. Images were obtained during 
initial sequence implementation and optimization for 7T car-
diac MRI using a cardiovascular (CV) GRE cine-sequence 
and protocol parameters, therefore, vary to some degree. The 
parameters were: TE = 3.57 ms, FOV = 340 mm × 320 mm, 
interpolated voxel size = 0.66 × 0.66 × 6 mm, and GRAPPA 
acceleration factors: R = 2 and R = 3. Depending on the 
heart rate, 6 to 11 segments and 20 to 35 cardiac phases 
were measured using retrospective gating. Short axis CINE 
stacks for volumetric evaluation varied in the number of 
slices (14-17) and multiple breath-holds (~13 s) were nec-
essary to acquire the whole stack. Volunteers were assigned 
randomly into training, validation and test sets (14, 5, and 3 
subjects and 5076, 1842, and 955 images, respectively). All 
images were manually segmented by an expert radiologist 
(WS). Three data sets of the test set were additionally seg-
mented by an expert cardiologist (TR), to obtain an estimate 
of interobserver-variability.

2.3  |  Data curation

The complete Kaggle data set is a compilation of real, clinical 
data from several sites and as such, subject to inconsistencies 
within individual examinations. Those can be a combination 
of:

•	 missing time points,
•	 inconsistent slice spacing,
•	 inconsistent image dimension,
•	 repeat measurements (identical slice location),
•	 scaled images, and
•	 image rotations.

Before the application of the published segmentation 
network of Bai et al,4 we performed data curation, correct-
ing inconsistencies in all but 8 examinations. More detailed 
information and curated data are available online (https://
github.com/chfc-cmi/cmr-seg-tl, https://doi.org/10.5281/
zenodo.3876351).

2.4  |  Creating labels

Once the data were corrected for inconsistencies we ran 
the Python-based segmentation model of Bai et al.4 for the 

T A B L E  1   Data composition and measurement parameters of the 
Kaggle data

Metric Count

Male 670

Female 470

Age: 0-17 (y) 202

Age: 18-30 (y) 173

Age: 31-50 (y) 298

Age: 51+ (y) 467

Max Age (y) 88

Min Age (y) 0.04

1.5 T 1025

3.0 T 115

Metric Range

Echo Time (ms) 1.04-1.54

Repetition Time (ms) 14-54.72

Bandwidth (Hz/Pixel) 915-1235

Slice Thickness (mm) 5-8

Matrix Size 120-608 × 160-736

Resolution (mm) 0.59-1.95

Phases 112-416

https://github.com/chfc-cmi/cmr-seg-tl
https://github.com/chfc-cmi/cmr-seg-tl
https://doi.org/10.5281/zenodo.3876351
https://doi.org/10.5281/zenodo.3876351
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complete data set, generating RV, LV, and blood pool labels 
as well as LV ESV and EDV volumes. ESV and EDV values 
were then compared to the ground truth values provided by 
Kaggle to determine the accuracy of the network prediction. 
Based on this comparison, we created confidence sets where 
the predicted values were in the range of ±5% (p5), ±10% 
(p10), and ±15% (p15) of the true value. Respectively, these 
sets contained 175, 520, and 763 examinations and 54,540, 
162,480, and 238,350 images. Volume and ejection frac-
tion statistics for each sub-cohort are shown in Supporting 
Information Table S1 and Supporting Information Figure 
S1. As additional quality control, 552 images from 9 patients 
(randomly selected from the p15 confidence set, 6 phases per 
patient, all slices) were manually annotated by an expert car-
diologist (TR) to check for systematic differences in annota-
tion and to validate the automatic labels using DICE scores. 
Volumes calculated from these masks were compared to 
ground truth values through Pearson correlation coefficient.

2.5  |  Hardware

To deal with the extensive computation demands we used 
a custom workstation and a high performance cluster, both 
with graphical processing units.

2.6  |  Framework: deep neural network

All implementations were realized using Pytorch29 and 
fastai30 V1. All networks use the U-Net architecture consist-
ing of an encoder and decoder part with skip connections in 
between.31 The encoder part is often referred to as the back-
bone. Training of neural networks (with varying backbones: 
Restnet34,32 ResNet50,33 and VGG1634) was performed 
using fastai’s implementation of the 1 cycle policy35 with ad-
justed learning rates (lr) and the confidence sets p5, p10, and 
p15. The p5, p10, and p15 confidence sets include patients 
with a maximum of 5%, 10%, and 15% difference between 
predicted and true volume, respectively.

2.7  |  Parameter search

During the parameter search, we evaluated the influence of 
different training parameters on the efficacy of the trained 
model. Training with a weight-decay of 0.02 and a batch-size 
of 32 was done for 30 epochs with frozen weights (lr = 1e−4) 
and another 30 epochs with unfrozen weights (lr = 1e−5). 
The smallest training set (p5) was used initially, image size 
was 256 × 256, and moderate data augmentation transforms 
(s1: flip [none], rotation [20°], lighting [0.4], zoom [1.2], and 
padding [zeros]) were applied.

To avoid an extensive parameter grid search, we assessed 
parameter-dependent performance changes in incremental 
steps. After each step, we determined the best-performing 
model using EF predictions and introduced subsequent pa-
rameter variations on this respective model.

In the first step, we evaluated the influence of the archi-
tecture (VGG16, ResNet34, ResNet50) compared to the fully 
convolutional Network by Bai et al4 trained on UKBB data 
(further referred to as UKBB model). Because of memory 
limitations, we had to reduce the batch size for training of the 
VGG16 and the ResNet50 models.

In the second step, we assessed variations in the loss func-
tion such as cross-entropy (default), generalized DICE,36 and 
focal loss. In the third and last step we evaluated the influence 
of the number of training images using the confidence sets 
p5, p10, and p15.

2.8  |  Data augmentation

Because transfer learning applications assessed in this study 
are based on 7T data, we expect somewhat different image 
contrast and artefacts compared to conventional, clinical data 
sets. In addition, we intended to account for the heteroge-
neous training data, which led to the following set of aug-
mentations as implemented in fastai30 for the initial networks 
(s1: flip [none], rotation [20°], lighting [0.4], zoom [1.2], and 
padding [zeros]). Furthermore, we aimed to introduce some 
robustness to forms of data variations, such as 90°-rotations 
and flips (left-right) using more extensive data augmentation 
(s2: flip [left-right], rotation [90°], lighting [0.4], zoom [1.2], 
and padding [zeros]). To test the efficacy of these transforms, 
we trained a new model (r34_CE_p5_s2) and compared EF 
predictions on a data set including rotated and flipped images 
retained during the data curation process.

2.9  |  Starting point for model training: 
7T human

To assess the efficacy of transfer learning for LV segmen-
tation based on clinical 1.5T and 3T data and experimental 
(human) 7T data, we compare models with varying degrees 
of training and transfer learning. Using a U-Net architec-
ture with a ResNet34 backbone (r34_CE_p5_s2), we gener-
ated the following 3 models: (1) initialization with random 
weights (R), (2) initialization with ImageNet-weights: 
transfer learning 1 (TL), and (3) model 2, pre-trained on 
Kaggle data: transfer learning 2 (TL2). All models were 
used to generate predictions for the 7T test set. Model 
performance was always evaluated using the Soerensen-
DICE37 coefficient between predictions and respective 
ground truth labels.
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2.10  |  Data requirements for model 
training: 7T human

To assess how much and what data are required for conver-
gence of a model we trained all models (R, TL, TL2) with 
subsets of the training data. These subsets were created in 2 
ways:

1.	 Complete subject data (all slices and all phases) from 
either 14, 7, 3, 1 subjects (5076, 2626, 1001, 306 images, 
respectively); partial subject data (only end-systolic and 
end-diastolic images) from all subjects (448 images); 
and

2.	 Random sets of images with sizes matching the subsets in 
(1); each smaller set is a real subset of all larger sets.

When training with subsets, the model is exposed to a 
smaller number of images in every epoch. We, therefore, in-
creased the number of epochs for the subsets to correct for 
this effect.

3  |   RESULTS

3.1  |  Validation of Kaggle labels

The calculated volumes from manual annotations correlate 
strongly with ground truth values from Kaggle (Pearson cor-
relation coefficient r = 0.98, Supporting Information Figure 
S2). Most calculated values slightly overestimate the LV 
volume (Supporting Information Figure S2). DICE scores 
between manual masks and automatically generated labels 
using the UKBB model show high agreement with median 
DICE scores of 0.93 and 0.79 for left ventricle and myocar-
dium, respectively (Supporting Information Figure S3).

3.2  |  Framework: deep neural network

3.2.1  |  Parameter search

Results of the parameter search are illustrated in Figure 1, 
showing the absolute distance between the EF predictions 

F I G U R E  1   Model evaluation during 
incremental parameter search. Plots show 
the absolute distance between the EF 
prediction based on model segmentation 
and ground truth data provided by Kaggle. 
The range of the y-axis is restricted for 
better comparability, dashed lines indicates 
lowest median. Model performance with 
A: Architectures (r34: ResNet34, r50: 
ResNet50, VGG16: v16, UKBB). B: Loss 
functions (Cross-entropy: CE, DICE, focal 
loss). C: Confidence sets (p5: 5%, p10: 10%, 
p15: 15%)
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based on model segmentation and ground truth data provided 
by Kaggle. Overall, the impact of parameter variation on 
model performance was small (3.64%-4.06% mean distance 
to ground truth EF).

In a first approach to interpret these results, we compared 
varying architectures, such as ResNet34, ResNet50, and 
VGG16, with the UKBB model (Figure 1A). All models led 
to lower mean and median distance values compared to the 
UKBB model (Table 2). The lowest median distance values 
were found using a ResNet50 (2.79%), whereas the lowest 
mean distance values were found using a ResNet34 (3.64%). 
Differences in the absolute distance between the models (r34, 
r50) were rather small (Δ0.08%), however. Considering com-
putational demand, we selected the ResNet34.

In the next step of the parameter search, we evaluated 
model performance using varying loss functions, namely 
cross-entropy, generalized DICE, and focal loss (Figure 1B). 
Using the generalized DICE score led to the highest mean 
(3.93%) and median (3.07%) distance values. Median dis-
tance values were similar for cross-entropy and focal loss 
(2.87% vs 2.86%), whereas the mean distance value was low-
est using cross-entropy (3.64%).

We therefore selected cross-entropy for the next step of 
the parameter search, where we evaluated model perfor-
mance using varying confidence sets: 5%, 10%, 15% (Figure 
1C). Using the various confidence sets only slightly affected 
median distance values (2.87%, 2.89%, 2.91%). Based on 
EF predictions, the model: r34_CE_p5_s1 performed best, 
achieving a mean distance value of 3.64%.

3.2.2  |  Data augmentation

Figure 2 shows the performance of our models on the image 
set containing rotated images, plus the performance of an ad-
ditional model where data augmentation allowed left-right 
flips, as well as rotations of up to 90°. Median and mean ab-
solute distance values were lowest (3.06%, 4.08%) using the 
model with extended data augmentation (r34_CE_p5_s2).

3.3  |  Transfer learning

Representative cine images from the Kaggle and the 7T cine 
data set as well as respective data augmentation are shown in 

T A B L E  2   Summary statistics of absolute deviation of predicted 
and true EF in % for the parameter search

Model Mean SD Median IQR

r34_CE_p5_s1 3.64 3.38 2.87 3.72

r50_CE_p5_s1 3.71 3.73 2.79 3.70

r34_CE_p15_s1 3.73 3.38 2.91 3.72

r34_focal_p5_s1 3.75 3.90 2.86 3.80

r34_CE_p10_s1 3.77 4.44 2.89 3.76

r34_DICE_p5_s1 3.93 3.43 3.07 3.91

v16_CE_p5_s1 4.06 4.94 3.02 3.87

UKBB 5.42 8.83 3.72 4.34

Sorted from lowest to highest mean value. Models are named by architecture 
(ResNet34: r34, ResNet50: r50, and VGG16: v16), loss function (cross entropy: 
CE, focal, DICE), confidence set (p5, p10, p15), and data augmentation (s1, s2).

F I G U R E  2   Model evaluation based on data including rotated images. Plots show the absolute distance between the EF predictions based 
on model segmentation and ground truth data provided by Kaggle for all models of the parameter search, plus 1 model trained with extended 
data augmentation (s2). Models are named by architecture (ResNet34: r34, ResNet50: r50, VGG16: v16), loss function (cross entropy: CE, focal, 
DICE), confidence set (p5, p10, p15), and data augmentation (s1: standard data augmentation, s2: extended data augmentation, enabling LR-flips 
and rotations up to 90°)
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Figure 3A,B. Although the Kaggle data set includes images 
with varying field of views and resolution, the 7T data are 
consistent.

Figure 4 presents the inter-observer variability as differ-
ence of LV volume within each image in ml for all slices 
and phases of the 7T human cine test set (n = 3). The slice 
count starts with 0 at the most apical slice and moves toward 
the most basal slice with increasing slice number. Overall 
expert 2 achieved DICELV = 0.94 and DICEMY = 0.81 and 
deviations in LV volume of individual images were lower 
than ±5 mL in all but 1 image (set 3, slice 12, phase 4). 
Compared to expert one (who labeled our training data) and 
expert 2, the AI model achieved DICELV = 0.90, DICEMY = 
0.79 as well as DICELV = 0.91, DICEMY = 0.81. Deviations 
in LV volume of individual images were smaller than 5 mL 
in >95% of the cases. Representative predictions of the AI 
and deviations to expert 1 are shown in Figure 5. All apical 
slices labeled by the AI were in excellent agreement with 
that of our experts. The largest deviations between AI and 
both experts was found for the very basal slice where myo-
cardial tissue moves in and out of plane throughout the car-
diac cycle.

3.3.1  |  Starting point for model training

Results of model training using varying degrees of trans-
fer learning are displayed in Figure 6. The DICE scores for 
the left ventricle and the myocardium in dependence of the 

number of images seen during training are plotted, show-
ing performance and overall convergence for the 3 mod-
els analyzed. All curves have been smoothed to increase 
interpretability.

Starting with the full data set, there are clear differences in 
starting points (DICE after first epoch) and peak performance 
(highest performance reached) for the 3 models.

R: Random weight initialization followed by training 
using 7T data led to the:

•	 lowest starting points with DICELV ~ 0.57 and DICEMY ~ 
0.25, and

•	 lowest peak performance with DICELV ~ 0.89 and DICEMY 
~ 0.77.

TL: ImageNet weight initialization followed by training 
using 7T data led to the:

•	 starting points of DICELV ~ 0.77 and DICEMY ~ 0.51, and
•	 higher peak performance with DICELV: 0.91 and DICEMY: 

0.79.

TL2: ImageNet weight initialization, pre-trained (Kaggle 
data), re-trained 7T data led to the:

•	 highest starting points with DICELV ~ 0.90 and DICEMY ~ 
0.78, and

•	 higher peak performance with DICELV: 0.92 and DICEMY: 
0.81.

F I G U R E  3   Representative cine 
images and respective data augmentation. 
Random selection of 5 images (top) with 5 
data augmentation examples (bottom) for 
the first image of the random selection. A: 
Kaggle data. B: 7T human cine data
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3.3.2  |  Data requirements for model training

Results of model training using varying degrees of transfer 
learning and a smaller amount of training data are displayed 
in Figure 6 as well. The full training data set consists of 14 
volunteers, whereas the subsets consist of 7, 3, and 1 volun-
teer. For the most part, curves follow the trend described for 

the full data set, although each reduction in volunteers led to 
lower starting points. Peak performances remain similar with 
a reduction to 7 volunteers, but drop using subset n3, in par-
ticular for models R and TL. Only for a very small number of 
training images (n1) peak performances are higher for model 
R (DICELV: 0.86; DICEMY: 0.72) compared to TL (DICELV: 
0.83; DICEMY: 0.70).

F I G U R E  4   Inter-observer variability. Difference in LV volume in [ml] for all slices and phases of the 7T cine images of the test set. The slice 
count starts with 0 at the most apical slice and moves toward the most basal slice with increasing slice number. Top: inter-observer variability of the 
2 experts. Middle: inter-observer variability expert 1 (labeled training data as well) versus AI. Bottom: inter-observer variability expert 2 versus AI

F I G U R E  5   Predictions of TL2 on the 
7T human test set. Examples of mid-cavity 
segmentation results with high (top), 
intermediate (middle) and low (bottom) 
DICE scores. Images (left), with predicted 
classes (middle, background: purple, LV: 
blue, MY: yellow) and differences to the 
ground truth (right, LV-error: blue, MY-
error: yellow)
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For small subsets, such as n3 and n1, starting points as 
well as peak performances of all models is higher using the 
random selection of training images instead of all images 
from a set (3/1) of volunteers. The same trend is shown for 
the set n7 using models R and TL.

Using only end-systolic and end-diastolic images led to 
similar peak performance regarding DICE scores compared 
to the full data set (RLV,MY: 0.90, 0.77; TLLV,MY: 0.90, 0.78; 
TL2

LV,MY: 0.92, 0.81 versus RLV,MY: 0.89, 0.77; TL LV,MY: 
0.91, 0.79; TL2 LV,MY: 0.92, 0.81). In addition, the selection of 
end-systolic and end-diastolic images led to increased DICE-
scores as starting points and higher peak performance for all 
models, when compared to the same number of randomly se-
lected images.

4  |   DISCUSSION

In this study, we successfully used a specialized, publicly 
available model4 to produce labels for a public data set of 
clinical 1.5 and 3T cardiac cine MRI, enabling access to more 
annotated data. Based on these labels we created a basic AI 
model, other researchers can use for their individual segmen-
tation tasks. In addition, we applied transfer learning to seg-
mentation of 7T human cine data, demonstrating that models 
based on these labels and a moderate amount of new domain 
data enable state-of-the-art segmentation results.

One of the obstacles to get started in deep learning-based 
segmentation is the large amount of annotated data required 

to train an initial model. In this study, we circumvent this 
problem using the public Kaggle data set to which we pro-
vide labels. The quality of these labels was evaluated using 
the volume information (end-systolic and end-diastolic vol-
umes) included in the original Kaggle data set. Therefore, 
careful data curation had to be applied to avoid data incon-
sistencies (slice spacing, changes in image dimensions and 
image resolution, as well as missing slices) within individual 
patients. In addition, we found that label quality was con-
nected to image orientation and image resolution. Scores 
(mean distance between labels and Kaggle “ground truth”), 
data curation scripts, as well as labels are provided in the on-
line repository, enabling future use in other studies. Limited 
additional validation has been performed through manual 
annotation of 816 images from 9 patients. Calculated vol-
umes from these masks correlate strongly with ground truth 
values but indicate a slight systematic overestimation for the 
manual volumes (Supporting Information Figure S2). This 
can be because of different annotation strategies, for exam-
ple, regarding basal slices and treatment of papillary mus-
cles.38 Because labeling is consistent within each task, we 
do not expect this difference to have a negative influence. In 
the manually validated subset, DICE scores between auto-
matically and manually labeled images show high agreement 
(Supporting Information Figure S3), confirming that the pre-
dicted volumes are because of correct labeling. It also shows 
that images from phases other than systole and diastole are 
labeled correctly. The thresholds of 5%, 10%, and 15% (devi-
ation to the “ground truth”) for the subsets used in this study 

F I G U R E  6   Training evaluation based on the validation set. DICE scores of the left ventricle and the myocardium in 7T human cardiac cine 
images as function of number of images seen during training. Varying degrees of transfer learning (R: ResNet34 initialized with random weights 
and trained using 7T cine images, TL: ResNet34 initialized with ImageNet weights and trained using 7T cine images, TL2: ResNet34 initialized 
with ImageNet weights, pre-trained on the 1.5T and 3T Kaggle cine images and re-trained on 7T cine images) are shown for the 2 subsets 1 (line): 
subset of whole volunteers (full = 14, 7, 3, 1), 2 (dotted line): subset of random images with image numbers corresponding to first subset. In 
addition, there is 1 model (“esed”) trained using only end-systolic and end-diastolic images from all volunteers and a corresponding model trained 
with a number of random images equivalent to the “esed”-set
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were chosen arbitrarily. With 54,540, 162,480, and 239,350 
images, respectively, we assumed these 3 sets to provide the 
reasonable compromise between label accuracy and label 
quantity needed to assess data requirements in this specific 
transfer learning application.

Based on the now annotated data, we trained initial segmen-
tation models with varying architectures (ResNet34, ResNet50, 
and VGG16), varying loss functions (cross-entropy, general-
ized DICE, focal loss), and varying training sets (p5, p10, and 
p15). The final model we selected was a ResNet34, using cross-
entropy as a loss function and the p5 set for training with an 
image resolution of 256 × 256. We selected this model based 
on mean distance to ground truth EF as an indicator of perfor-
mance. Although it is possible for errors in both systolic and 
diastolic volumes to cancel out an produce good EF estimates, 
this case rarely happened in our data. We used EF as it is the 
most clinically relevant value. Overall impacts of parameter 
variations (3.64-4.06% mean distance to ground truth EF) were 
rather small. Similar to the use in this study, researchers or cli-
nicians can use this model as a starting point for their respective 
transfer learning applications.

Considering the performance of this model on 7T human 
cine data, generalization capability appears limited. This is 
also true for the UKBB model. As the authors4 point out, 
the UKBB model was “trained on a single data set, the UK 
Biobank data set, which is a relatively homogenous data set” 
and might therefore “not generalize well to other vendor or 
sequence data sets.” More extensive data augmentation might 
lead to better generalization, potentially at the expense of per-
formance on the specific data set of interest. The state of gen-
eralization and model suitability for a specific data set can be 
monitored through sensitivity analysis.39 In addition, it em-
phasizes why improvements in generalization40-42 are needed 
and why we applied an additional step of transfer learning to 
7T data.

Because of differences in training data, our initial mod-
els based on UKBB labels outperformed the UKBB model 
on the Kaggle data. Although the UKBB model was trained 
on the homogeneous UKBB data, our models were trained 
on the heterogeneous Kaggle data itself. In addition, we ap-
plied data augmentation with respect to rotations and contrast 
and used only Kaggle data with the most accurate (top 15%) 
labels.

Although multiple studies4,5,43 have demonstrated great 
image segmentation results for 1 specific data set, these mod-
els have not been tested on other data sets or initially lack 
generalization capability. In this study, we show that trans-
fer learning leads to improved model performance. DICE 
scores achieved on 7T human cine data before and after 
transfer learning were comparable to human inter-observer 
variability and is within the range of state-of-the-art results, 
despite the relatively small set of training data.19 In addition, 
inter-observer-variability in EDV (3.5%) and ESV (10.5%) 

between our model and the expert radiologist are in good 
agreement with literature reports (EDV: 2.5%-5.3%, ESV: 
6.8%-13.9%)44 based on SSFP CMR imaging.

Typically, segmentation of the left ventricle is done to 
evaluate ejection fraction, a clinically used parameter. In this 
study, we show that the model-based volume prediction on 
the test set is very accurate for apical, mid-cavity, and basal 
slices, with the exception of the most basal slice, where 
myocardial tissue moves in and out of plane throughout the 
cardiac cycle. Because we do not have a “ground-truth” seg-
mentation for the Kaggle data, and no information on label-
ing protocols, we do not know if there is any consistency in 
the definition of basal slices or the inclusion or exclusion of 
papillary muscle.

Although transfer learning allows models to adapt to sim-
ilar tasks and new data sets containing new characteristics 
and patterns, this step also requires new labels. This aspect is 
often a limitation, because labeled medical data are difficult 
to acquire, particularly in areas that require domain-specific 
knowledge. In addition, the manual labeling process for high 
quality segmentations itself is often tedious and labor inten-
sive. In this study, we show that transfer learning applications 
(ImageNet weights to Kaggle data to 7T data) for cardiac cine 
segmentation of human 7T data can provide state-of-the-art 
results when training with labeled data from 7 to 14 volun-
teers. Having labels for 3 volunteers leads to decent results. 
We consider labels for only 1 volunteer to be insufficient.

For small training data sets (n ≤ 1001), we show that a 
random selection of images from multiple volunteers leads 
to better performance compared to the selection of all images 
from a smaller number of volunteers. Generalization capabili-
ties of a model increase with the amount of variation provided 
in the training data, and therefore using data from a multitude 
of patients or volunteers, where morphology and therefore 
image content and contrast differ, may be more beneficial 
than providing the same number of more coherent images 
from a small number of volunteers. Furthermore, we demon-
strate that the number of required images can drastically be 
reduced (from 5076 to 448 images), using labeled data from 
specific heart phases, end-diastolic, and end-systolic instead 
of all images. This may be possible because knowing the 2 
extreme states of contraction the model can deal more easily 
with intermediate states. Considering that n = 448 images 
(roughly equivalent to 2 full cardiac EF examinations) enable 
close to state-of-the-art results for cardiac cine segmentation, 
data requirements for transfer learning applications in closely 
related tasks are low. In addition, labels for end-diastolic and 
end-systolic images are created in routine clinical cardiac ex-
aminations and therefore easily accessible. It is important to 
note, however, that data requirements depend on the hetero-
geneity of the target data set. More data are required when 
training on more heterogeneous data sets (e.g., when training 
segmentation models on a data set covering multiple diseases 
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or broad age ranges). Although using only ES and ED frames 
worked really well in our case, where all 7T data were mea-
sured in healthy (circular shape of the LV) volunteers, this 
might not be true in cases of cardiac disease. In such cases, 
it may be beneficial to introduce more data variation with 
respect to the shape of the LV.

In summary, how much and which kind of data should 
be included in the transfer learning process should be care-
fully considered before labeling new data. In particular, the 
notion to provide data sequentially by individual may result 
in higher data requirements than necessary. There are vari-
ous other routine cardiac MR examinations such as T2, T1, 
LGE, and even T∗

2
 that require segmentation.41,42,45 Transfer 

learning applications to image segmentation of such varying 
contrasts may benefit from the amount of annotated data and 
the framework provided in this study.

With respect to future use of this annotated data, we rec-
ommend researchers take the following steps:

1.	 use the pre-trained model we provide (r34_CE_p5_s2),
2.	 re-train with training data from the new domain and tune 

hyper parameters using validation data from the new do-
main, and

3.	 evaluate model performance on a test set from the new 
domain.

In this study, we used only the 5%-15% of the most ac-
curate kaggle labels to create our base models. Therefore, 
researchers attempting to train their own base network using 
the labeled Kaggle data should always assess label quality.

4.1  |  Limitations

The experimental 7T data used in this study is not compara-
ble to clinical cardiac MRI in patients. Future performances 
on clinical data should be evaluated against the Kaggle data 
set.

There are some limitations connected to the use of the 
Kaggle data set. Although there are variations in measure-
ment parameters, such as resolution, FOV, matrix size, TE, 
TR, bandwidth, and slice thickness, most examinations 
(~90%) were done at 1.5T. In addition, all data were acquired 
using Siemens whole body MRI systems. Models trained 
using this data set might therefore not generalize well to other 
vendor data sets, requiring transfer learning as demonstrated 
in this study.

Because no disease-related information is provided in 
the Kaggle data set, we have no knowledge which and how 
many pathological patterns are currently represented in 
the data set. In this study, we demonstrate that transfer 
learning to 7T data of healthy human volunteers enables 

DICE scores of DICELV: 0.92 and DICEMY: 0.81. A clin-
ical application would require a performance assessment 
or transfer learning for specific cardiac pathologies, both 
beyond the scope of this cardiology-related methodologi-
cal work.

Furthermore, the accuracy of the labels we created was 
assessed based on comparison to provided volume infor-
mation only, and confirmation through manual annotations 
may be biased because we do not know if the provided vol-
ume information is based on consistent definitions of basal 
slices or the inclusion or exclusion of papillary muscle. 
This should be considered when creating models based on 
this data set. Additional automatic quality control could be 
applied by classifying volume curves as normal or abnor-
mal.18 In general, there is a need for a standard benchmark 
data set, where labels are based on standardized protocols 
and images are representations of diverse clinical pheno-
types (diseases, vendors, field strengths, sequences, and 
protocols).

Our transfer learning task involved only data from a sin-
gle MRI vendor (Siemens Healthcare GmbH). Therefore, it 
is uncertain whether transfer learning from the base network 
trained with Siemens data to data from another vendor re-
quires a comparable amount of training data. However, we 
assume that differences in contrast because of sequences 
(TRUFI versus FLASH) and field strength (1.5T, 3T, and 7T) 
are more pronounced than differences between vendors at the 
same field strength.

5  |   CONCLUSIONS

In this study, we provide access to annotated cardiac cine 
MRI data, and AI models, which can be used as a starting 
point for transfer learning applications. Using such a base 
model, we demonstrate that transfer learning from clinical 
1.5T and 3T cine data to 7T cine data are feasible with mod-
erate data requirements, potentially enabling future applica-
tions to other cardiac MRI examinations such as T2, T1, LGE, 
and even T∗

2
. Furthermore, we show that not all data has the 

same value with respect to transfer learning approaches, and 
careful selection of the training data may drastically reduce 
data requirements.
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FIGURE S1 Volume and EF distribution in each confidence 
set
FIGURE S2 Systolic and diastolic volumes of 9 random pa-
tients from the Kaggle data set as provided (ground truth) 
and calculated from manual annotations (manual annotation). 
The gray dashed line is the diagonal and indicates identical 
values whereas the solid blue line is a linear regression of 
the data points (R2 = 0.94 [diastole] and R2 = 0.99 [systole])
FIGURE S3 DICE scores of images from 9 random Kaggle 
data sets labeled manually by an expert cardiologist compared 
to automatically generated labels from the ukbb_cardiac net-
work for left ventricular cavity (LV) and myocardium (MY)
TABLE S1 Volume and EF statistics of confidence sets. The 
mean and standard deviation of end systolic volume (ESF), 
end diastolic volume (EDV), and ejection fraction (EF) are 
shown for each of the confidence sets (p05, p10, and p15) and 
the rest (not part of any confidence set)
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