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Purpose: Image  acquisition and subsequent manual analysis of cardiac cine 
MRI is time-consuming. The purpose of this study was to train and evaluate a 
3D artificial neural network for semantic  segmentation of  radially undersam-
pled cardiac MRI to accelerate both scan time and postprocessing.
Methods: A database of Cartesian short-axis MR images of the heart (148,500 
images, 484 examinations)  was assembled from  an  openly accessible  data-
base and radial undersampling was simulated. A 3D U-Net architecture was pre-
trained  for segmentation of undersampled spatiotemporal cine  MRI.  Transfer 
learning was then performed using samples from a second database, compris-
ing 108 non-Cartesian radial cine series of the midventricular myocardium to 
optimize the performance for authentic data. The performance was evaluated for 
different levels of undersampling by the Dice similarity coefficient (DSC) with 
respect to reference labels, as well as by deriving ventricular volumes and myo-
cardial masses.
Results: Without transfer learning,  the  pretrained model  performed  moder-
ately on true radial data [maximum number of projections tested, P = 196; DSC 
= 0.87  (left ventricle), DSC = 0.76  (myocardium), and DSC =0.64  (right ven-
tricle)]. After transfer learning with authentic data, the predictions achieved 
human level  even  for  high  undersampling  rates (P  =  33, DSC  =  0.95, 0.87, 
and 0.93) without significant difference compared with segmentations derived 
from fully sampled data.
Conclusion: A 3D U-Net architecture can be used for semantic segmentation 
of radially undersampled cine acquisitions, achieving a performance com-
parable with human experts in fully sampled data. This approach can jointly 
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1  |   INTRODUCTION

Cardiovascular magnetic resonance (CMR) imaging has 
been established as a noninvasive reference standard for 
diagnosis and management of cardiac diseases in clini-
cal practice. The assessment of ventricular structure and 
function is an essential part of CMR. While left ventricular 
(LV) function is assessed in almost any imaging protocol 
independently of the underlying cardiac disease, specific 
diseases such as arrhythmogenic ventricular cardiomyop-
athy may also require assessment of right ventricular (RV) 
function.1 Imaging is being performed in short axis orien-
tation from the base of the left ventricle to the apex. Using 
a slice thickness of 6 to 8 mm, imaging therefore requires a 
significant amount of time. Ultimately, functional param-
eters such as end-diastolic volume/end-systolic volume 
(EDV/ESV), ejection fraction (EF), and myocardial mass 
are derived depending on the clinical need.2

For the acquisition and reconstruction part, a variety 
of applications of CMR have excellent preconditions for 
an acceleration by exploiting model-based imaging tech-
niques like compressed sensing.3 The dynamic nature 
of, for example, cine or perfusion imaging leads to high 
redundancy in the temporal domain of image series, 
which can be modeled within a constraint of an itera-
tive reconstruction. This has been used for accelerating 
procedures4-9 with respect to classical approaches that 
are ignoring these characteristics. In recent years, cor-
responding reconstruction approaches exploiting data-
driven acceleration gained more importance.10-12 All these 
methods exploit the fact that the aimed depiction is highly 
compressible and thus can be fully determined with less 
parameters than usually acquired during a fully sampled 
cine CMR exam, which suggests that an appropriately 
undersampled and accelerated image acquisition might 
carry sufficient information for adequate assessment of 
the ventricular structure and function.

Regarding postprocessing, databases, comprising cine 
CMR data alongside respective segmentation labels set by 
experienced operators, were used to train artificial neural 
networks to perform semantic segmentation fully auto-
matically with the same accuracy as human operators.13-19

If now moderately undersampled, non-Cartesian sam-
pling patterns like radial projections or spiral arms are used 

for cine imaging, it becomes apparent that the human eye 
is usually capable of distinguishing between the anatomy 
(and its dynamics) and the superimposed undersampling 
artifacts. Especially if the sub-Nyquist patterns are varying 
throughout cine frames, dynamic depictions clearly reveal 
the contours of interest and relevant organ borders. This 
motivates deep learning-based approaches,20,21 which cir-
cumvent costly image reconstructions and directly esti-
mate the volumes on undersampled data. In this article, 
we describe a 3D artificial neural network that was trained 
for semantic segmentation of the LV, the RV, and the myo-
cardium with radially undersampled cine data as input. 
Radial acquisitions were first simulated based on a larger 
data set holding Cartesian cine images22 and used for a 
pretraining of the model (see Figure 1). For translation 
into a realistic setting, the network was fine-tuned using 
a smaller data set with genuine radial cine MRI data23 
and ultimately applied to unseen native radial cine MRI 
data with different levels of undersampling. The approach 

accelerate  time-consuming  cine  image acquisition and  cumbersome manual 
image analysis.

K E Y W O R D S

cardiovascular magnetic resonance (CMR), deep learning, radial, semantic segmentation, 
undersampling

F I G U R E  1   Schematic workflow for the presented training 
of a segmentation model. A, 3D neural network with U-Net 
architecture was pretrained using Cartesian cine images from the 
publicly available Kaggle data, which were radially undersampled 
by simulation, using 2D short axis slices from base to apex and 
the temporal domain as third dimension, respectively. B, Transfer 
learning was then performed using radially acquired cine images 
in midventricular short axis orientation from the Harvard data set, 
which were reconstructed with different rates of undersampling. 
The final network was ultimately evaluated using radial cine 
images from the Harvard data set, which were not used for training 
of the network before
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aims at a fast evaluation of cardiac functional data, which 
were acquired in short scan times. Although this accel-
erates the typically lengthy and thus uncomfortable in-
vestigation; it also shortens the cumbersome and costly 
post processing, the manual image segmentation, which 
is applied to determine cardiac function so far. All codes 
and data to reproduce the results of this study are publicly 
available at https://github.com/expRa​d/Segme​nt_Under​
sampl​ed_cMRI.

2  |   METHODS

2.1  |  Assembly of database and 
simulation of radial data

2.1.1  |  The Kaggle data

The publicly available Data Science Bowl Cardiac 
Challenge Data by the online community Kaggle (re-
ferred to as Kaggle data) provided 1140 cardiac cine MRI 
examinations,24 which were complemented by numeri-
cal volume information of end-systolic and end-diastolic 
ventricular volume in the aftermath of the competition. 
No “ground truth” segmentation labels were provided. 
Images were stored in DICOM format resolving slices 
from base to apex with 30 phases of the cardiac cycle. 
Examinations were performed both on 1.5T and 3.0T sys-
tems (Siemens Magnetom Aera and Skyra) using FLASH 
and balanced steady-state free precession (bSSFP) se-
quences with a Cartesian acquisition trajectory. An over-
view of the complete data set and its variation in patient 
data and sequence parameters is given in Table 1.

2.1.2  |  Data curation and creation of ground-
truth segmentation labels

The Kaggle data are a compilation of real, clinical data 
from multiple sites and as such, subject to inconsisten-
cies within individual examinations. A data curation was 
performed as described by Ankenbrand et al,22 to remove 
these inconsistencies as much as possible. More detailed 
information and examples regarding data curation can be 
found in this online repository: https://github.com/chfc-
cmi/cmr-seg-tl#data-curat​ion-and-conve​rsion.

For the Kaggle data, no expert ground truth segmen-
tation was available. Bai et al,13 however, developed and 
published a segmentation model based on a neural net-
work, which achieved a performance similar to human 
experts.13 To prepare labels for our study, this openly avail-
able model (https://github.com/baiwe​njia/ukbb_cardiac) 
was applied to each individual 2D image of the curated 

Kaggle data, each representing one cardiac phase of one 
slice in one subject. The created label comprised infor-
mation about RV blood pool, LV blood pool, and LV myo-
cardium. ESV and EDV were derived from the obtained 
segmentation and compared with the real ground-truth 
values provided by Kaggle. The accuracy of the network 
predictions was determined, and a confidence set was cre-
ated where the predicted values were in the range ±15% 
of the true value. The final data set comprised 148,500 im-
ages from 484 examinations. All scores (label vs ground 
truth) for ESV and EDV values are listed in the above-
mentioned online repository. A limited manual valida-
tion of the labels obtained by Bai’s network is available 
at: https://github.com/chfc-cmi/cmr-seg-tl/blob/maste​r/
code/kaggl​e/compa​re_manual_conto​urs.ipynb.

2.1.3  |  Simulation of radial raw data

To simulate cine series based on undersampled ra-
dial k-space trajectories, the images and labels were 
first organized in 3D matrices of matching x-y-t series 
(#4950  =  148,500 images/30 frames per slice). Each 
real-valued image series was superimposed with com-
plex valued simulated coil sensitivities (#12, complex 
valued), determined by using Biot-Savart's law,25 which 

T A B L E  1   Data composition and measurement parameters of 
the Kaggle data

Metric Count

Sex

Male 670

Female 470

Age

0-17 y 202

18-30 y 173

31-50 y 298

51+ y 467

Max age, y 88

Min age, y 0.04

1.5T 1025

3.0T 115

Metric Range

Echo time, ms 1.04-1.54

Repetition time, ms 14-54.72

Bandwidth, Hz/pixel 915-1235

Slice thickness, mm 5-8

Matrix size 120-608 × 160-736

Resolution, mm 0.59-1.95

Phases 112-416

https://github.com/expRad/Segment_Undersampled_cMRI
https://github.com/expRad/Segment_Undersampled_cMRI
https://github.com/chfc-cmi/cmr-seg-tl#data-curation-and-conversion
https://github.com/chfc-cmi/cmr-seg-tl#data-curation-and-conversion
https://github.com/baiwenjia/ukbb_cardiac
https://github.com/chfc-cmi/cmr-seg-tl/blob/master/code/kaggle/compare_manual_contours.ipynb
https://github.com/chfc-cmi/cmr-seg-tl/blob/master/code/kaggle/compare_manual_contours.ipynb
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was initialized by coil geometries, randomly chosen 
within typical ranges. The resulting 4D matrices (x-y-t 
coils) were Fourier transformed along the spatial do-
mains (kx-ky-t coils) and each kx-ky space was masked 
by a pseudoradial pattern on the Cartesian grid (see 
Figure 2).

The radial trajectory was chosen as it results in com-
parably subtle artifacts incoherently superimposing the 
image in the case of undersampling. For each sample of 
the training data, the number of projections per frame (t) 
was randomly chosen from the set P∈ {21, 34, 55, 89, 144, 
233, 377} during run time, leading to a random undersam-
pling rate for each individual sample (varying throughout 
different epochs of the training). The number of projec-
tions was thus equal for all frames of one sample; how-
ever, the pattern was rotated by a randomly chosen angle 
for each subsequent frame to increase the incoherency of 
the resulting undersampling artifacts. The angle incre-
ment between projections within one frame was set to the 
“golden angle”26; therefore, the elements of P were chosen 
as Fibonacci numbers. The obtained series were trans-
formed back to image space (x-y-t coils) and combined 
via a root mean sum of squares along the coil dimension. 
The image spaces of the resulting matrix I consequently 
represented reconstructions of undersampled k-spaces: 
measurements violating the Nyquist-sampling criterion. 

An exemplary image (x-y) created with 55 projections can 
be seen in Figure 2C.

2.2  |  The 3D neural network 
architecture

A 3D U-Net as described by Çiçek et al27 was imple-
mented in MATLAB (Deep Learning Toolbox, v2020a; 
MathWorks) and trained for semantic segmentation of 
radial undersampled cine series. The input of the network 
was represented by the simulated cine series as described 
in the previous section. Subsequent to the simulation of 
radial undersampling, all real-valued x-y-t matrices I were 
cropped to a size of 160 × 160 × 24 to provide a consistent 
input for the neural network. The t domain was cropped 
to 24 frames by discarding the final frames, which repre-
sent the highly redundant end-diastolic phases. The x-y 
domain of the cropped matrices was reviewed manually to 
confirm that trimming of the heart was avoided.

The network consisted of 55 layers (19,073,860 train-
able parameters) with two blocks in each stage. One block 
featured a 3D convolution layers with a kernel size of 3 
×3 ×3, followed by batch normalization and a rectified 
linear unit. The network was ultimately concluded by a 
Dice pixel classification layer, which provides a series of 

F I G U R E  2   Simulation of radially undersampled data from fully sampled Cartesian data: The Kaggle data comprised 148,500 fully 
sampled cardiac cine images in short axis orientation acquired with Cartesian trajectories. One frame of one slice is depicted in (A). A 3D 
matrix was formed from matching x-y-t series. Images were superimposed with artificial coil sensitivities and Fourier transformed along the 
spatial domains. A pseudoradial pattern (B) was used to mask the Cartesian grid with a random number of projections as described in the 
Methods section. C, Shows the result of applying the simulated undersampling to (A). The 3D U-Net was pretrained for segmentation of the 
left ventricle (dark blue), the myocardium (light blue), and the right ventricle (red) using the undersampled reconstructions. (E) Shows the 
result of applying the trained network to (C) in comparison with the ground truth in (D)
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segmentation masks S (same size as I), with labels for 
background, LV, RV, and myocardium. The output layer 
is based on the generalized Dice loss28,29 that weights the 
contribution of classes inversely to their volume and was 
chosen to suppress the influence of large background re-
gions during training. The network architecture and train-
ing is illustrated in Figure 1. The magnitude MR input 
images were normalized by subtracting the mean value of 
all pixels and dividing by the SD.

2.3  |  Pretraining of a 3D U-Net for 
segmentation of x-y-t series of cine MRI

The 3D U-Net was first pretrained using a major part of the 
simulated radial acquisitions as described in subsection 
2.1. For every epoch, 4300 x-y-t inputs I were processed 
as follows: For each individual I, a random number of 
projections was chosen from P “on-the-fly,” that is a new 
undersampling pattern was applied each time the data set 
was loaded in each epoch. In addition, a different, ran-
domly chosen set of coil sensitivities was superimposed as 
described in subsection 2.1. As the k-space trajectory and 
the coil sensitivities thus vary throughout different ep-
ochs, the data set was virtually augmented. Further data 
augmentation incorporated random applications of rota-
tions of 90°, horizontal or vertical flips, or combinations of 
the aforementioned.

The simulated radially undersampled data set from 
subsection 2.1 was separated in 4300 cine series for train-
ing, 150 for validation, and 500 for testing. This repre-
sented a patient leave-out training: Slices in the test 
set were not from any patient used in the training set. 
Adaptive moment estimation (Adam) was used as opti-
mizer of the loss function.30 The initial learning rate was 
set to 1e-4; training was performed for 10 epochs until 
the loss of the training data reached a minimum with-
out further decrease, and validation loss did not indicate 
overfitting. For epoch 6-10, the learning rate was reduced 
to 0.8e-4.

For testing, the trained model was subsequently ap-
plied to 500 hitherto unseen cine series. Basal and apical 
slices, which are not showing parts relevant for the quan-
tification of cardiac function, were excluded by an expert 
radiologist (leaving 380 series for quantification). A sep-
arate segmentation was determined for each series using 
simulations with varying number of projections P as used 
within the training. The performance of the pretrained 3D 
U-Net was evaluated by determination of the Dice simi-
larity coefficient (DSC) in comparison with the “ground 
truth” labels obtained from Cartesian fully sampled data 
by the model of Bai et al13 as described in subsection 2.1. 
EFs were derived for each patient and undersampling 

factor, and were subsequently also compared with the 
ground truth.

2.4  |  Transfer learning with truly 
radially sampled acquisitions from the 
Harvard data

To fine-tune the obtained model towards a realistic ap-
plication, the pretrained network from subsection 2.3 was 
subjected to transfer learning using a second data set com-
prising radially sampled cine acquisitions. In conjunction 
with their publication on deep learning-based image re-
construction in cardiac MRI,31 the authors kindly made 
their MR raw data (multicoil, complex valued) openly 
available (https://doi.org/10.7910/DVN/CI3WB6 re-
ferred to as Harvard data). In contrast to the Kaggle data, 
where radial projections were simulated, these data were 
actually acquired by a radial bSSFP sequence at 3T, and 
thus represent even more realistic samples for the aimed 
method. The data set comprised 108 cine series acquired 
in breath-hold, each in one midventricular slice orienta-
tion. Further acquisition parameters were reported as fol-
lows: TR = 3.1 ms, TE = 1.4 ms, in-plane resolution = 1.8 
mm × 1.8 mm, slice thickness = 8 mm, FA = 48°, number 
of channels = 16 ± 1. Retrospective ECG-triggering was 
used to determine 25 cardiac phases in a segmented fash-
ion, each consisting of 196 linearly ordered projections. A 
total scan time of 14 heartbeats on average was reported.

2.4.1  |  Label creation (ground truth) and 
data curation

Using the fully sampled radial data, segmentation labels 
were again automatically determined for each frame of 
each cine series using the model of Bai et al.13 Results 
were checked for artifacts and inadequate segmentation 
by a trained expert with 4 years of experience in cardiac 
MRI, resulting in a final data set of 83 subjects with match-
ing cine series and label series. The data set was split up 
for training, validation, and testing (61, 5, and 17 subjects, 
respectively).

2.4.2  |  Radially undersampled data

Ultimately, undersampled reconstructions were deter-
mined using only a part of the radial projections pro-
vided with each data set. P equidistant projections per 
frame were used with P corresponding to {196, 98, 49, 33, 
25}, representing samples with different undersampling 
factors R. P  =  196 was chosen as maximum because it 

https://doi.org/10.7910/DVN/CI3WB6
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represented the maximum number of readouts per frame 
contained in the provided data set. For the matrix size of 
160 × 160, which was processed to the network, this rep-
resents a slight undersampling (R =

160 ∙�

196 ∙2
= 1.3), which 

was, however, not impairing the centric circular region 
of interest depicting the heart. Accordingly, the accelera-
tion factors R for P = {196, 98, 49, 33, 25} correspond to 
R = {1.3, 2.6, 5.1, 7.6, 10.1}.

2.4.3  |  Training and evaluation

For each specimen, respective magnitude reconstructions 
using the five different sampling rates (different number 
of radial projections P as indicated above) were deter-
mined and paired with the “ground truth” labels obtained 
from the fully sampled counterpart. Subsequently, all 
samples were pooled in a joint data store used for training. 
For transfer learning, the initial learning rate was adapted 
to 0.002. A learning-rate schedule with a drop factor of 0.5 
every five epochs was applied. The model was trained for 
50 epochs until the training loss reached a minimum.

2.5  |  Statistical analysis

The final model was ultimately applied to the 17 test data 
sets and evaluated by determination of DSC in compari-
son with the ground-truth segmentations for LV, RV, 
and myocardium obtained by the model suggested by Bai 
et al from the fully sampled radial counterparts.13 The 
evaluation was performed separately for each level of un-
dersampling. To test the impact of the transfer-learning 
step, the same analysis was performed using the model 
that was derived from the Kaggle data only. A one-way 
analysis of variance (ANOVA) was performed separately 

for each compartment (LV, RV, myocardium), to compare 
the results for the different numbers of projections per 
frame. A p value < .05 was considered statistically signifi-
cant. Box plots were generated to complement the results 
of the ANOVA.

In addition, “volumes” were derived from predicted 
and ground-truth labels for the midventricular slice in ac-
cordance with functional assessment typically performed 
in clinical routine for the entire heart. For each subject, 
ESVs and EDVs were assessed for the left and the right 
ventricle and myocardial mass, EFs were calculated.

3  |   RESULTS

3.1  |  Kaggle data: pretraining

The pretraining using the Kaggle data set took 43 h on 
an NVIDIA Titan XP graphics processing unit (GPU). 
Applying the model subsequently to test data took only 
0.3 s for one spatiotemporal cine series. Therefore, the 
entire segmentation process for one patient can be per-
formed within approximately 5 s. Figure 2 illustrates the 
fully sampled Cartesian data and the simulated under-
sampled radial data, exemplarily with 55 projections per 
frame. The ground truth for fully sampled Cartesian data 
obtained by the model of Bai et al13 is shown as an overlay 
in Figure 2D. The predicted segmentation for simulated 
undersampled data (Figure 2C) is exemplarily shown in 
Figure 2E.

Table 2 shows the mean DSC between predicted data 
for each level of undersampling compared with the 
ground truth. The predicted segmentations of the LV, 
the myocardium, and the RV agree well with the ground 
truth even with only 55 projections, whereas perfor-
mance decreases slightly for 34 and more strongly when 

Projections P
Acceleration 
factor R LV Myocardium RV

377 fully sampled 0.88 0.80 0.75

144 1.7 0.89 0.80 0.77

89 2.8 0.88 0.80 0.77

55 4.6 0.86 0.77 0.75

34 7.4 0.81 0.71 0.67

21 11.9 0.64 0.52 0.40

Note: Data are shown as mean Dice similarity coefficient DSC. For each different scheme of 
undersampling (number of projections) the performance of the network was compared with the ground 
truth labels determined by the model proposed by Bai et al13 to fully sampled Cartesian cine images. The 
performance was evaluated individually for left ventricle blood pool (LV), the left ventricle myocardium, 
and the right ventricle blood pool (RV). Factor of acceleration (R) is indicated. Cases without segments in 
both ground-truth and predicted segmentation were not counted. Test data were augmented as described 
for training and measures were averaged across five repetitions of the evaluation.

T A B L E  2   Performance of the 
pretrained 3D U-Net for segmentation of 
simulated radially undersampled cardiac 
cine images from the Kaggle data set
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applying the network to a data set with only 21 projec-
tions. Additional Bland-Altman plots for evaluation of 
the LV EF with each level of acceleration are provided in 
Supporting Information Figure S1, which essentially con-
firm this trend.

3.2  |  Harvard data: transfer learning

After transfer learning using the Harvard data (6 h on an 
NVIDIA Titan XP GPU), applying the resulting model to 
test data resulted in mean DSC as presented in Table 3. 
The numbers given in parentheses show the according 
values if the model after the pretraining was applied, that 
is the neural network which was trained using the simu-
lated images based on the Kaggle data only. First, the DSC 
values are significantly higher for the model, which was 
additionally subjected to the transfer learning for all areas 
and acceleration factors. Scores for the LV, the myocar-
dium, and the RV remain constantly high when reduc-
ing the number of projections from 196 (“fully sampled”) 
down to 49 per frame. Still for only 33 projections, just a 
slight drop in performance can be observed for all regions, 
which is then more pronounced when the number is fur-
ther reduced down to 25.

The statistical test indicated no significant variation 
within the groups of different undersampling factors for 
the LV and the RV. For the segmentation of the myocar-
dium, however, ANOVA showed a significant difference 
with a p value of .0062. Subjecting the results to a post hoc 
analysis (multicomparison test with Bonferroni correc-
tion), a significant difference resulted between R = 10.1 
and the specimen of R = 1.3, 2.6, 5.1, respectively. Boxplots 
(Figure 3) confirm these results, whereas also the values 
obtained for 10.1-fold acceleration in the RV appear with 
lower scores; however, no significant difference was de-
tected by the ANOVA (p = .73). In Figure 4, the results of 
one test example are presented for the end-systolic and the 
end-diastolic cardiac phase. In accordance with the results 

from the statistical test, segmentations remain stable up to 
a 7.6-fold acceleration, whereas larger areas of false seg-
mentation start to manifest for R = 10.1 (see red arrows). 
Dynamic views of two further examples can be observed 
in Supporting Information Videos S1 and S2. In addition, 
mean values for specificity, sensitivity, accuracy, and pre-
cision are presented in Supporting Information Table S3. 
With a fairly constant high specificity throughout all ac-
celeration factors, sensitivity shows comparable trends as 
observed by the DSC.

Figure 5 shows Bland-Altman analyses of the EF de-
termined in both ground-truth and segmentation results 
in undersampled cine data. The average agreements for 
the left ventricular EF between the model predictions and 
ground truth were high, up to an acceleration factor of 
R = 5.1, whereas a small, but statistically not significant 
difference was observed at R = 7.6 (coefficient of variation 
[CV] = 5.6 %, p =  .13 according to the Wilcoxon signed 
rank test). With accelerations of R = 10.1, the predicted 
EF was acceptable but significantly different as compared 
with the ground truth (CV = 8.4 %, p = .04). Median rel-
ative errors between the accelerated acquisitions and 
ground truth were small for quantitative parameters of the 
left ventricle (see Table 4). Although predictions for the 
RV-derived parameters were in good agreement with the 
ground truth for accelerations up to R = 5.1, higher un-
dersampling led to significantly impaired values. Finally, 
median relative errors of the LV myocardial mass were ac-
ceptable up to a 7.6-fold acceleration.

4  |   DISCUSSION

In this study, we present a 3D U-Net trained for seman-
tic segmentation of radially undersampled cardiac cine 
MRI. For pretraining of the network, a large, open data-
base of Cartesian cine data was used to simulate radial 
cine acquisitions with different levels of undersampling. 
The pretrained network was subsequently subjected to 

Projections P
Acceleration 
factor R LV Myocardium RV

196 1.3 0.97 (0.87) 0.90 (0.76) 0.94 (0.64)

98 2.6 0.97 (0.85) 0.90 (0.74) 0.94 (0.62)

49 5.1 0.96 (0.81) 0.89 (0.66) 0.94 (0.53)

33 7.6 0.95 (0.68) 0.87 (0.43) 0.93 (0.26)

25 10.1 0.93 (0.36) 0.80 (0.16) 0.91 (0.12)

Note: Data are shown as mean Dice similarity coefficient. The performance was tested for different 
undersampling schemes (numbers of projections) compared with the ground truth. The performance 
was evaluated individually for segmentation of the left ventricle blood pool (LV), the left ventricular 
myocardium, and the right ventricle blood pool (RV). The data in parentheses show the performance for 
segmentation of undersampled data when using only the pretrained network without transfer learning.

T A B L E  3   Performance of the 
transfer-learned 3D U-Net for the 
segmentation of non-Cartesian 
cardiac cine images from the Harvard 
data reconstructed with different 
undersampling schemes
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transfer learning using the raw data of an open data-
base of radially sampled cine data, again for different 
levels of undersampling. Ultimately, the final model 
was evaluated by means of a separate set of 17 sub-
jects, which resulted in overall high DSC scores for the 
segmentation of LV, RV and myocardial tissue, which 
were stable even for only 33 projections per frame. 
Slice-specific “volumes” and “masses” confirmed this 
minimum number of readouts for the quantification 
of left ventricular function with only slightly increased 

differences in EF compared with reconstructions from 
lower R (see Figure 5).

This means a clear acceleration with respect to the 
procedures usually performed in clinical routine, where 
Cartesian trajectories are used, which typically require 
150 to 250 readouts to obey the Nyquist criterion. As as-
sumed, the neural network was able to learn the human 
skill of “seeing through the artifacts” and discriminating 
the endo- and epicardial contours in dynamic cine series 
when radial undersampling strategies are used. Routine 

F I G U R E  3   Box plots show the performance of the transfer-learned 3D U-Net for segmentation of radially undersampled cine 
images. Data are shown as Dice scores (DSC). Median is indicated by a red line within the box of the upper and lower quartile. Whiskers 
are indicated as black bars. Outliers are indicated as red plus signs. Data are shown individually for the left ventricle, the left ventricle 
myocardium, and the right ventricle. R represents the acceleration factor

F I G U R E  4   Performance of the transfer-learned 3D U-Net on test data on end-systolic (A) and end-diastolic (B) phases. Exemplary 
images for each scheme of undersampling (R = acceleration factor). For comparison, the ground truth determined by the model of Bai 
et al13 in fully sampled images is shown in the middle section. The models prediction for left ventricle blood pool (blue), the left ventricle 
myocardium (light blue), and the right ventricle blood pool (red) are indicated. Note that the visual performance is well until R = 7.6. 
Performance is acceptable for undersampling with R = 10.1, where segmentation errors mainly occur in the myocardium (arrow). 
Additional movie files representing all frames of two further examples are Supporting Information Videos S1 and S2
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postprocessing for the analysis of ventricular structure and 
function conventionally, in contrast, relies on manual seg-
mentation by a trained expert, which is time-consuming 
and prone to subjective errors. Application of the 3D   
U-Net took only 0.3 s per cine series.

Previous studies have already demonstrated auto-
mated models for the segmentation of cardiac MRI, even 
with performances on the human level.13 The majority of 
these models, however, relies on fully sampled data and 
thus requires lengthy data acquisition or an additional 
sophisticated method to first reconstruct undersampled 
data (eg, compressed sensing). Only a few publications 

report on directly training the model for the segmentation 
of undersampled data.20,21 These studies, however, only 
use Cartesian or simulated non-Cartesian data, which 
is an issue when transferring the model to real appli-
cations such as applying the model to data that was in-
deed acquired by radial projections. The latter point has 
been specifically addressed in our study: The pretrained 
model, which was trained with simulated radial data only 
(Kaggle), was applied to the MRI data in fact acquired by 
non-Cartesian radial projections (see values in parenthe-
ses in Table 3). Significantly decreased segmentation per-
formances and corresponding DSC scores were observed, 

F I G U R E  5   A-D, Bland-Altman analyses show high average agreement of ejection fractions (EFs) between the model predictions and 
ground truth up to 7.6-fold acceleration. For each undersampling scheme (R = acceleration factor) data are shown per subject for the “left 
ventricular ejection fraction” of the midventricular slice. Average agreement, 95% CI (1.96 SD), and coefficient of variation are shown. 
Statistical significance is indicated by p value (Wilcoxon signed rank test). The model failed to predict left ventricular volumes adequately 
in one subject; this specimen is marked by a red asterisk and was excluded from statistical analysis. Respective mean and ∆ of the EFs are 
indicated

T A B L E  4   Relative errors for cardiac functional analysis as compared with the ground truth

R

LV Myocardium RV

ESV EDV EF mass ESV EDV EF

1.3 4.1 (6.1) 3.5 (4.2) 2.7 (3.7) 8.9 (8.7) 4.0 (12.0) 3.1 (5.0) 6.1 (21.5)

2.6 2.9 (5.2) 3.4 (4.3) 2.6 (3.1) 9.0 (9.8) 3.4 (10.9) 2.9 (4.8) 5.1 (22.0)

5.1 2.2 (3.4) 2.4 (4.1) 2.1 (4.2) 7.5 (9.7) 4.4 (9.5) 1.9 (6.9) 7.6 (21.0)

7.6 5.6 (5.5) 2.8 (3.7) 2.6 (8.8) 6.7 (11.1) 3.2 (10.5) 3.3 (8.0) 10.2 (13.2)

10.1 6.1 (5.2) 3.3 (3.7) 3.6 (8.0) 11.5 (21.4) 9.8 (11.3) 5.4 (6.3) 11.2 (27.9)

Note: Data are shown as median and interquartile range (parentheses) of the relative errors in % for each acceleration factor R as compared to the ground truth.
Abbreviaetions: EDV, end-diastolic volume; EF, ejection fraction; ESV, end-systolic volume; LV, left ventricle; mass, myocardial mass; RV, right ventricle.
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hindering adequate quantification of the cardiac func-
tion. For translation into routine imaging, the pretrained 
model was fine-tuned using a comparatively small set of 
MRI data acquired with a non-Cartesian radial trajectory, 
which was ultimately tested by means of unseen radial 
cardiac cine series, reconstructed with different under-
sampling schemes.

Considering the Bland-Altman analyses of the derived 
LV EF from radial cine MRI (see Figure 5), a 7.6-fold accel-
eration appears applicable. To be noted, the performance 
was higher for parameters of the LV (ESV, EDV) com-
pared with the RV, which might be explained by a more 
heterogeneous appearance of the right ventricular shape. 
Considering these slightly lower performances, an accel-
eration factor of 5.1 would be the method of choice for 
combined quantitative analysis of LV, RV, and myocardial 
mass.

Although the pretrained model (Kaggle data) did not 
perform sufficiently on the genuine radial data (Harvard), 
the transfer learning with a comparatively small data set 
ultimately allowed predictions with high performance. 
Reversely, transfer learning of the model significantly de-
creased its performance when applied to the simulated 
data (see Supporting Information Table S2); however, 
when considering the different contrast and different ap-
pearance between simulated and genuine radial data, this 
is not surprising.

4.1  |  Limitations

Even though transfer learning the model achieved high 
performance levels, the real non-Cartesian data set is still 
relatively small, and all data sets were acquired at a sin-
gle site on a single scanner. This is a clear disadvantage 
with respect to the generalization ability of the model. 
Nevertheless, the focus of this work was to translate the 
principle of semantic segmentation to an authentic under-
sampled data set and to prove the relevance of this step, 
and not the presentation of an ultimate model for clinical 
application.

Furthermore, the transfer learning and evaluation of 
the neural network was only performed on real data of 
midventricular slices, as the public database used unfor-
tunately does not comprise the whole heart and no other 
open databases with radially sampled cine series were 
known to us. As can be deduced from the results of the 
pretraining, the overall performance is typically best at 
the midventricular slice, where the image presentation 
is most homogeneous without open contours, such as at 
the base and partial volume effects like at the apex. Thus, 
more training data are certainly necessary to introduce the 
presented method into clinical routine.

The neural network architecture used in our method 
(U-Net) represents a robust and, to a certain extent, es-
tablished model. Nevertheless, a variety of new semantic 
segmentation techniques is presented continuously,19,32 
such that there might already exist an even more suitable 
approach for the presented task. In particular, automatic 
machine-learning methods, for example, as presented in 
Isensee et al,33 have proven to render most of the cum-
bersome manual adjustments, which are still necessary, 
obsolete; furthermore, they show potential to push the 
performance based on an improved goodness of the un-
derlying model. This very general approach is undoubtedly 
also attractive for the further advancement of the method 
presented in this study. Furthermore, a 4D architecture 
capturing all dimensions of the cine exam at once (x-y-z-t) 
can potentially model the overall information even more 
efficiently11; however, this also places high demands on 
the GPU memory.

5  |   CONCLUSION

A 3D U-Net can be trained to accurately perform semantic 
segmentation in radially undersampled cine acquisitions. 
The final model was able to predict the common cardiac 
functional parameters up to 5.1-fold accelerated acquisi-
tion and up to 7.6-fold acceleration when deriving param-
eters from the LV only. This circumvents costly image 
reconstructions and enables fast postprocessing (0.3 s per 
cine series) immediately after accelerated and thus fast 
cine acquisitions. A combination of pretraining with a 
larger number of simulated data and subsequent transfer 
learning using data, which were actually sampled by radial 
trajectories, resulted in high DSC for realistic data sets, 
thereby not only proving the opportunity of eased clinical 
workflows, but also demonstrating the high importance of 
data authenticity when exploiting deep learning.
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FIGURE S1 Bland-Altman analyses show high average 
agreement of ejection fractions (EF) between the pre-
trained model predictions and ground truth of the kaggle-
dataset up to 4.6-fold acceleration (A – D). For each un-
dersampling scheme (R  =  acceleration factor) data are 
shown per subject for the left ventricular ejection fraction 
of the mid-ventricular slice. Average agreement, 95 % con-
fidence interval (1.96 standard deviation) and coefficient 
of variation (CV) are shown
TABLE S1 The listed tables hold the mean specificity, 
sensitivity, accuracy and precision for applying the pre-
trained model to the test set of the Kaggle data

TABLE S2 Performance of the transfer-learned 3D U-Net 
for segmentation of simulated radially undersampled car-
diac cine images from the kaggle data test split. Data are 
shown as mean DSC. For each different scheme of under-
sampling (number of projections) the performance of the 
network was compared to the ground truth labels deter-
mined by the model proposed by Bai et al. to fully-sampled 
Cartesian cine images. The performance was evaluated in-
dividually for left ventricle blood pool (LV), left ventricle 
myocardium and right ventricle blood pool (RV). Factor of 
acceleration (R) is indicated. Cases without segments in 
both ground truth and predicted segmentation were not 
counted. Test data were augmented as described for train-
ing and measures were average across five repetitions of 
the evaluation
TABLE S3 The listed tables hold the mean specificity, 
sensitivity, accuracy and precision for applying the final 
model to the test set of the Harvard data
TABLE S4 Performance of Bai’s 2D model (trained on fully 
sampled data only) for the segmentation of non-Cartesian 
cardiac cine images from the Harvard data reconstructed 
with different undersampling schemes. Data are shown 
as mean DSC. The performance was tested for different 
undersampling schemes (numbers of projections) com-
pared to the ground truth (i.e. application of Bai’s model 
on P = 196). Scores were determined individually for seg-
mentation of the left ventricle blood pool (LV), the left 
ventricular myocardium and the right ventricle blood pool 
(RV). As only fully sampled cine series were used to train 
Bai’s model, DSC values drop rapidly for increasing R. The 
transfer-learned 3D U-net, however, showed a stable per-
formance up to R = 7.6 and only a slightly reduced mean 
DSC for R = 10.1 (see table 3 of the main manuscript)
VIDEO S1 Dynamic view demonstrating the performance 
of the transfer-learned 3D U-Net on one example of the 
test data. Acceleration factors correspond to those of 
Figure 4
VIDEO S2 Dynamic view demonstrating the performance 
of the transfer-learned 3D U-Net on another example of 
the test data. Acceleration factors correspond to those of 
Figure 4
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