ALTE UND NEUE CYCLOADDITIONEN DER NITRILOXIDE Manfred Christl und Rolf Huisgen

Institut für Organische Chemie der Universität München

(Received in Germany 6 September 1968; received in UK for publication 16 September 1968)

A. Acrylsäureester und Derivate

In schönen Arbeiten haben Quilico und seine Schule (1) - im wesentlichen von 1945 - 1960 - die Cycloadditionen der Nitriloxide an CC-Doppel- und CC-Dreifachbindungen erschlossen. Von wenigen Ausnahmen (2, 3) abgesehen, wurden die Anlagerungen des Benzonitriloxids an α,β -ungesättigte Carbonester als richtungsmäßig eindeutig beschrieben. In dieser Eindeutigkeit sah Firestone (4) ein wichtiges Argument für die Annahme diradikalischer Zwischenstufen bei 1.3-Dipolaren Cycloadditionen (5).

Als Vorarbeiten für die Ermittlung partieller Additionskonstanten wiederholten und ergänzten wir frühere Versuche. Um die Oligomerisation des Formonitriloxids (Knallsäure) und die Furoxan-Bildung aus höheren Nitriloxiden zurückzudrängen, bedienten wir uns niedriger Stationärkonzentration; diese wurde durch langsame Freisetzung des Nitriloxids aus den Hydroximsäure-Halogeniden mit Triäthylamin in Gegenwart überschüssigen Dipolarophils erzielt (6). Lediglich 2.4.6-Trimethyl- und 2.4.6-Trimethoxy-benzonitriloxid (7) sind stabil und lieferten hohe Adduktausbeuten. Die Δ²-Isoxazolin-carbonester wurden nach Hochvak.-Destillation der quantitativen NMR-Analyse unterworfen; anschließend wurden meist die Stellungsisomeren dünnschichtchromatographisch getrennt und anhand der NMR-Spektren aufgrund eines größeren Erfahrungsmeterials (8) zugeordnet.

Die Tab. 1 lehrt, daß schon Acrylsäure-methylester die Nitriloxide in beiden Additionsrichtungen aufnimmt; lediglich bei Knallsäure und Pivalonitriloxid lag die zweite Additionsrichtung unter 1%. Auch Crotonsäure-methylester ist nicht inert gegenüber Benzonitriloxid (9), sondern lieferte 84% Cycloaddukt. Seine hinter Acrylsäureester zurückstehende dipolarophile Aktivität hat zur Fol-

$$R-C \equiv N-O$$

$$+ \qquad \qquad R'-\frac{4-5}{3} \qquad \qquad R-\frac{3}{3} \qquad \qquad \qquad R-\frac{3}{3} \qquad$$

Verhältnisse von Δ^2 -Isoxazolin-carbonsäure-(5)- und -carbonsäure-(4)-methylesternbei der Cycloaddition von Nitriloxiden an α, β -ungesättigte Carbonester in Äther (falls Lösungsmittel verwendet); % Gesamtausbeute in Klammern

TABELLE 1

	Acrylsäure-	Crotonsäure-	Zimtsäure-	3.3-Dimethyl-
R-	methylester	me thylester	methylester	acrylsäure-
	$(R^{\dagger} = H)$	$(R^{\dagger} = CH_3)$	$(R' = C_6H_5)$	methylester
н	100 : 0 (93)	62 : 38 (36)	24 : 76 (23)	
снз	94.9: 5.1 (85)	36 : 64 (81)	30 : 70 (70)	0 : 100 (65)
(CH ₃) ₃ C	100 : 0 (95)	14 : 86 (83)	22 : 78 (75)	0 : 100 (85)
N=C-	98 : 2 (72)	44 : 56 (43)	15 : 85 (5)	
HO-N=CH		45 : 55 (31)	(33)	
^С 6 ^Н 5	96.4: 3.6 (99)	34 : 66 (84)	30 : 70 (89)	0 : 100 (78)
2.4.6-(CH ₃) ₃ C ₆ H ₂	93.4: 6.6(100)	27 : 73 (97)	36 : 64 (93)	0 : 100 (86)
2.4.6-(CH ₃ 0) ₃ C ₆ H ₂	93.5: 6.5 (86)			

ge, daß Knallsäure teilweise zum Isonitroso-acetonitriloxid dimerisiert und sich als solches an den Crotonsäureester anlagert (10). Bei diesem Dipolarophil stößt man auf die größte Variation des Verhältnisses der Additionsrichtungen; energetisch bewegt sie sich allerdings auch nur innerhalb $\Delta\Delta G^{\dagger}=1.3$ kcal/Mol. Mit schrittweiser Einführung von Methylgruppen in den Acrylsäureester trat der Vorzug der Bildung des Isoxazolin-5-carbonsäureesters zurück; 3.3-Dimethyl-acrylsäure-methylester erbrachte nur noch den 4-Carbonester. Man ist geneigt, diese Umkehr in der Orientierung dem Gegeneinander von sterischen und elektronischen Effekten zuzuschreiben. Man begegnet Schwierigkeiten, da die Abstufung in den vertikalen Kolonnen der Tab. 1 keine einfache Beziehung zum Raumbedarf von R erkennen läßt. Man gewinnt vielmehr den Eindruck, daß das Orientierungsverhal-

ten eine dem Nitriloxid-System immanente, von der Natur des R nur untergeordnet beeinflußte Eigenschaft ist.

B. Acetylen-carbonester

Aus den Cycloadditionen an acetylenische Carbonester gingen aromatische Isoxazole in hohen Ausbeuten hervor (Tab. 2). Der Vorzug des 5-Carbonesters in den aus Propiolsäure-methylester entstehenden Isomerengemischen ist geringer als bei der Anlagerung an Acrylsäureester. Beim Übergang zu Tetrolsäure- und Phenylpropiolsäureester erhielt man fast nur noch die Isoxazol-4-carbonsäureester.

TABELLE 2

Verhältnisse von Isoxazol-carbonsäure-(5)- und -carbonsäure-(4)-methylestern bei der Cycloaddition von Nitriloxiden an Acetylen-carbonester in Äther; % Gesamtausbeute in Klammern

R-	Propiolsäure- methylester (R' = H)	Tetrolsäure- methylester (R' = CH ₃)	Phenylpropicl- säureester (R' = C6H5)
н	84 : 16 (50)		
(CH ₃) ₃ C	91 : 9 (95)		
N=C-	68 : 32 (69)		
с ₆ н ₅	72 : 28 (98)	1.3 : 98.7 (83)	1.2 : 98.8 (93)
2.4.6-(CH ₃) ₃ C ₆ H ₂	28 : 72 (99)		

C. Cyclooctatetraen

Entgegen der früher vermuteten Reaktionsträgheit gegenüber Benzonitriloxid (9) gelangten wir zu 83% des kristallinen Cycloaddukts II, dessen tricyclische Struktur aus dem NMR-Spektrum (CDCl3) abzulesen war. Ein Singulett (breit) für 4 Vinylprotonen erscheint bei 7 4.20, die Multipletts für 3a-H

gegen 5.72, für 3b-H und 7a-H bei 6.66 und für 7b-H bei 4.90. Das gleiche Addukt II wurde jüngst auch von Bianchi, Gandolfi und Grünanger (11) beschrieben, die einen eleganten chemischen Strukturbeweis erbrachten. Bei 140° im Hochvak. trat neben die II-Thermolyse zu 3-Phenyl-isoxazol (III, 71%) und Benzol eine Dimerisation zu 29%; in Analogie zur Cyclohexadien-Dimerisation erscheint V plausibel. Oberhalb des Schmelzpunktes (243°) spaltete auch V in III + Benzol.

Die italien. Autoren (11) lassen offen, ob Cyclooctatetraen oder Bicyclooctatrien (IV) als Reaktionspartner des Benzonitriloxids dient. In unserem Arbeitskreis wurde früher gezeigt, daß das Valenztautomerie-Gleichgewicht des Cyclooctatetraens mit 0.01 % IV erst oberhalb 90° ausreichend mobil ist (12). Als
wir die Umsetzung des Cyclooctatetraens mit Benzonitriloxid und die Aufarbeitung bei $\leq 10^\circ$ vornahmen, traten im NMR-Spektrum neben den Signalen von II diejenigen des Cyclooctatrien-Abkömmlings I auf. Nach 1-stündigem Erwärmen auf 80°
hatte sich I innerhalb der NMR-Nachweisgrenze vollständig zu II isomerisiert;
die Ringabschnürung vollzieht sich also erst auf der Cyclooctatrien-Stufe. Über
ein II entsprechendes Knallsäure-Addukt des Cyclooctatetraens berichteten wir

in anderem Zusammenhang (10).

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie schulden wir für die Förderung des Arbeitsprogramms Dank.

LITERATUR

- 1. Ubersicht: A. Quilico in "Five- and Six-Membered Compounds with Nitrogen and Oxygen", S. 19, 99 (1962), The Chemistry of Heterocyclic Compounds, herausgegeben von A. Weissberger, Interscience Publishers.
- 2. o- und p-Nitro-zimtester: F. Monforte und G. Lo Vecchio, Gazz.chim.ital. 82, 416 (1953).
- 3. cis-Zimtester: P. Grünanger, C. Gandini und A. Quilico, Rend. Ist. Lombard. sci.lett. 93, 467 (1959).
- 4. R.A. Firestone, J.Org. Chem 33, 2285 (1968).
- 5. Widerlegung: R. Huisgen, J. Org. Chem. 22, 2291 (1968).
- 6. R. Huisgen und W. Mack, Tetrahedron Letters 1961, 583.
- 7. C. Grundssenn und J.M. Dean, J.Org. Chem. 30, 2809 (1965).
- 8. R. Sustmann, R. Huisgen und H. Huber, Chem. Ber. 100, 1802 (1967).
- 9. Loc. cit. (1), S. 100/101.
- 10. R. Huisgen und M. Christl, Angew. Chem. 79, 471 (1967).
- 11. G. Bianchi, R. Gandolfi und P. Grünanger, Chimica é Industria 49, 757 (1967).
- 12. R. Huisgen, F. Mietzsch, G. Boche und H. Seidl in Organic Reaction Mechanisma, Spec. Publ. Chem. Soc. [London] 19, 3 (1965).