
2324  |  	﻿� Methods Ecol Evol. 2021;12:2324–2333.wileyonlinelibrary.com/journal/mee3

1  | INTRODUC TION

After a slow start in the 1980s, individual-based models (IBMs,
also known as agent-based models or mechanistic simulation
models) have found growing acceptance as a tool of ecological
research (DeAngelis & Grimm, 2014; Grimm & Railsback, 2005).

Over the past decade, they have been continuously expanded
to simulate increasingly complex macroecological (e.g. Cabral &
Kreft, 2012; Harfoot et al., 2014), eco-evolutionary (e.g. Leidinger
et al., 2021; Schiffers et al., 2014) and macroevolutionary dynam-
ics (e.g. Cabral et al., 2019; Hagen et al., 2021; Rangel et al., 2018),
among others.

Received: 15 March 2021  |  Accepted: 23 August 2021

DOI: 10.1111/2041-210X.13716

P E R S P E C T I V E

Dealing with software complexity in individual-based models

Daniel Vedder1  | Markus Ankenbrand2  | Juliano Sarmento Cabral1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
© 2021 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society

1Center for Computational and Theoretical
Biology, Ecosystem Modeling Group,
University of Würzburg, Wurzburg,
Germany
2Center for Computational and Theoretical
Biology, University of Würzburg, Wurzburg,
Germany

Correspondence
Daniel Vedder
Email: daniel.vedder@stud-mail.uni-
wuerzburg.de

Funding information
Bayerisches Staatsministerium für
Wissenschaft, Forschung und Kunst;
European Social Fund, Grant/Award
Number: ESF-ZDEX; WOA Institution:
JULIUS-MAXIMILIANS-UNIVERSITAET
WURZBURG

Handling Editor: Giovanni Strona

Abstract
1.	 Individual-based models are doubly complex: as well as representing complex

ecological systems, the software that implements them is complex in itself. Both
forms of complexity must be managed to create reliable models. However, the
ecological modelling literature to date has focussed almost exclusively on the bio-
logical complexity. Here, we discuss methods for containing software complexity.

2.	 Strategies for containing complexity include avoiding, subdividing, document-
ing and reviewing it. Computer science has long-established techniques for all of
these strategies. We present some of these techniques and set them in the con-
text of IBM development, giving examples from published models.

3.	 Techniques for avoiding software complexity are following best practices for cod-
ing style, choosing suitable programming languages and file formats and setting
up an automated workflow. Complex software systems can be made more trac-
table by encapsulating individual subsystems. Good documentation needs to take
into account the perspectives of scientists, users and developers. Code reviews
are an effective way to check for errors, and can be used together with manual or
automated unit and integration tests.

4.	 Ecological modellers can learn from computer scientists how to deal with com-
plex software systems. Many techniques are readily available, but must be dis-
seminated among modellers. There is a need for further work to adapt software
development techniques to the requirements of academic research groups and
individual-based modelling.

K E Y W O R D S

ecological modelling, individual-based models, model complexity, research software
engineering, software complexity, software development

www.wileyonlinelibrary.com/journal/mee3
mailto:﻿
http://orcid.org/0000-0002-0386-9102
https://orcid.org/0000-0002-6620-807X
https://orcid.org/0000-0002-0116-220X
http://creativecommons.org/licenses/by/4.0/
mailto:daniel.vedder@stud-mail.uni-wuerzburg.de
mailto:daniel.vedder@stud-mail.uni-wuerzburg.de
http://crossmark.crossref.org/dialog/?doi=10.1111%2F2041-210X.13716&domain=pdf&date_stamp=2021-09-18

     |  2325Methods in Ecology and Evolu
onVEDDER et al.

Although including this complexity is important to increase the
predictive power of ecological models (Evans et al., 2013; Stillman
et al., 2015), it can also make the models hard to reason about and
analyse (Manson et al., 2020). Indeed, it has been argued that in-
creasing complexity is both a necessary development and one of the
greatest challenges for the field (Cabral et al., 2017). Following the
adage that IBMs ‘should be constructed as simple as possible, and
as complicated as necessary’ (Sun et al., 2016), significant work has
been done to develop methodological and analytical techniques for
dealing with this biological complexity. These techniques include
pattern-oriented modelling (Grimm & Railsback, 2011), ‘evaludation’
(Augusiak et al., 2014) and cascaded design of simulation experi-
ments (Lorscheid & Meyer, 2016).

However, in its quest to cope with the scientific consequences
of model complexity, the ecological modelling community has ne-
glected some of the technical aspects of modelling. IBMs simulate
complex ecological systems using computer code (software) that is
itself a complex system—in effect, they display a double complexity.
Thus, to generate reliable results, we must not only think about the
biological complexity of our models but also about their technical
complexity (Grimm & Railsback, 2005; Ropella et al., 2002). This is
all the more important because unreliable software can have cata-
strophic consequences for entire research fields (e.g. Eklund et al.,
2016; Hatton, 1997).

However, this is an engineering challenge, not primarily a sci-
entific one, and as such many ecologists may feel uncomfortable
tackling it (Cooper & Hsing, 2017; Nowogrodzki, 2019). The prob-
lem is not restricted to ecology: a growing realisation of the impor-
tance of software to science has led to the emergence of the field
of ‘Research Software Engineering’ (Cohen et al., 2021) and several
other groups working to improve the software development skills of
scientists. In line with these developments, we authors argue that as
ecological modellers, we ought to pay more careful attention to the
software running our models.

Previous publications have established best practice in regard to
the workflow of model development (Grimm et al., 2014; Stodden
& Miguez, 2014), suggested methods for scaling large simulations

(Parry, 2009), or given general guidelines for scientific programming
(Balaban et al., 2021; Wilson et al., 2014, 2017). Therefore, in this
commentary, we will specifically look at the question of software
complexity in IBMs, with the aim of increasing model reliability. In
doing so, we will draw on some of the classical software engineering
literature, as well as our own experiences and observations in the de-
velopment of open-source applications and IBMs (e.g. Ankenbrand
et al., 2018; Leidinger et al., 2021; Petter et al., 2021). The individual
points will be illustrated using references to published IBMs with
publicly available source code (Table 2). We intend this overview
to be particularly helpful for graduate students and early career re-
searchers who already have some modelling experience, but would
profit from a firmer grounding in the ‘tools of the trade’ of software
development.

Right from its inception, the field of computer science has had
to deal with the issue of software complexity (Dijkstra, 1972). As
programs became larger and ‘programming’ turned into ‘software
engineering’, numerous techniques were developed for containing
this complexity. These techniques have been applied to language de-
sign, coding style, software architecture and development workflow
(Brooks, 1986). In fact, this topic is considered to be of such great
importance that one well-known textbook states that ‘reducing
complexity is arguably the most important key to being an effective
programmer’ (McConnell, 2004, p. 839).

Essentially, there are four strategies that can be used to contain
both biological and technical complexities (Table 1):

1.	 Avoid unnecessary complexity.
2.	 Subdivide unavoidable complexity.
3.	 Document existing complexity.
4.	 Regularly review complexity.

Multiple development techniques target each of these strategies.
In the following section, we will briefly present a collection of these
techniques and give examples for how they have been applied to eco-
logical IBMs. Subsequently, we will discuss steps that could or should
be taken to better integrate good software development practices in
the field of individual-based modelling.

TA B L E 1   Overview of strategies and techniques for dealing with biological and software complexity in individual-based models. See the
main text for explanations and references

Strategies Techniques

Biological complexity Software complexity

Avoid Pattern-oriented modelling Clean code

Language & file formats

Automated integration

Subdivide Cascaded design of simulation experiments Encapsulation domain-specific languages

Document ODD README & manual

TRACE Source code comments

Logging

Review Evaludation Code reviews

Unit & integration tests

2326  |    Methods in Ecology and Evolu
on VEDDER et al.

2  | PR AC TIC AL RECOMMENDATIONS

2.1 | Writing code

To avoid unnecessary complexity (Table 1), readability must be the
first concern when actually writing model code. In the words of
Abelson et al. (1996): ‘Programs must be written for people to read,
and only incidentally for machines to execute’ (p. xvii). Although
in some special cases other needs may override this rule (e.g. in
performance-critical sections), these must remain justified excep-
tions. Readability is a core aspect of understandability, which makes
programs easier to learn, reason about and analyse. Software that
is easy to understand is less prone to mistakes, and therefore more
reliable (McConnell, 2004).

An observational study of 78 professional software developers
showed that only 5% of their time was spent directly editing the code,
whereas 58% was spent understanding the code base and a further
24% navigating it (Xia et al., 2018). Importantly, the developers cited
comparatively trivial root causes for this high understandability cost.
These included insufficient comments, meaningless variable names,
overlong functions and classes, inconsistent coding styles and exag-
gerated inheritance hierarchies in object-oriented programs.

This highlights the essential nature of ‘clean code’ (cf. Martin,
2009). Basic practices can make a significant difference, such as
dividing code into appropriately sized functions and files, or keep-
ing layouts simple by avoiding long lines or deep nesting. Further
guidelines may be found in Wilson et al. (2017), in the style guides
published for many programming languages, or (in great depth) in
McConnell (2004).

2.2 | Choosing a language

The choice of programming language is often both deeply subjective
and contingent upon external circumstances such as available col-
laborators and libraries. Nonetheless, we believe that it is important
to choose the language for a new project carefully, as the decision
will influence the project over its entire lifetime. Therefore, based on
our personal experiences, we will hazard to give an opinion on a few
popular programming languages below, as well as a recommendation
for our preferred language.

When choosing a language for a model, one does not want to
introduce unnecessary complexity with an overly complicated lan-
guage (Table 1), yet one must consider the computational require-
ments of large models. Thus, the ideal language for complex IBMs
ought to be one that is easy to program in, while offering a good
runtime performance. This, however, casts questions on some com-
mon modelling languages. Specifically, C++ is generally perceived as
fast but very complicated; it is powerful, but error-prone particularly
with regard to its manual memory management. R is great for data
analysis, and enjoys the advantage of being the only language that
many ecologists are taught in their university courses. However, for
individual-based models, it is often both slow and linguistically so TA

B
LE

 2
 

Ex
am

pl
es

 o
f o

pe
n-

so
ur

ce
 in

di
vi

du
al

-b
as

ed
 m

od
el

s
an

d
ot

he
r e

co
lo

gi
ca

l s
of

tw
ar

e
th

at
 a

re
 re

fe
rr

ed
 to

 in
 th

e
te

xt
.

So
ft

w
ar

e
Pu

rp
os

e
Re

fe
re

nc
e

La
ng

ua
ge

Ill
us

tr
at

es

D
EB

pl
an

t
M

ec
ha

ni
st

ic
 s

pe
ci

es
 d

is
tr

ib
ut

io
n

m
od

el
Sc

ho
ut

en
 e

t a
l.

(2
02

0)
 h

tt
ps

://
gi

th
ub

.c
om

/r
af

aq
​

z/
D

EB
pl

an
t

Ju
lia

En
ca

ps
ul

at
io

n,
 te

st
in

g

FE
N

N
EC

Tr
ai

t d
at

a
co

lla
tio

n
to

ol
A

nk
en

br
an

d
et

 a
l.

(2
01

8)
 h

tt
ps

://
gi

th
ub

.c
om

/
m

ol
bi

​od
iv

/f
en

ne
c

PH
P,

 J
av

as
cr

ip
t

D
oc

um
en

ta
tio

n,
 a

ut
om

at
ed

 te
st

in
g

G
eM

M
Pl

an
t c

om
m

un
ity

 m
od

el
Le

id
in

ge
r e

t a
l.

(2
02

1)
 h

tt
ps

://
gi

th
ub

.c
om

/C
C

TB
-

Ec
om

o​d
s/

ge
m

m
Ju

lia
Fi

le
 fo

rm
at

s,
 e

nc
ap

su
la

tio
n,

 d
oc

um
en

ta
tio

n,

in
te

gr
at

io
n

G
en

3s
is

M
ac

ro
ev

ol
ut

io
na

ry
 s

pe
ci

at
io

n
m

od
el

H
ag

en
 e

t a
l.

(2
02

1)
 h

tt
ps

://
gi

th
ub

.c
om

/p
ro

je
​

ct
-g

en
3s

​is
/R

-p
ac

ka
ge

R,
 C

+
+

D
oc

um
en

ta
tio

n,
 la

ng
ua

ge
 in

te
ro

pe
ra

bi
lit

y

M
ad

in
gl

ey
R

M
ul

tit
ro

ph
ic

 e
co

sy
st

em
 m

od
el

H
oe

ks
 e

t a
l.

(2
02

1)
 h

tt
ps

://
gi

th
ub

.c
om

/M
ad

in
​

gl
ey

R/
​M

ad
in

​gl
ey

R
R,

 C
+

+
En

ca
ps

ul
at

io
n,

 la
ng

ua
ge

 in
te

ro
pe

ra
bi

lit
y

Ra
ng

eS
hi

ft
er

Po
pu

la
tio

n
ra

ng
e

dy
na

m
ic

s
m

od
el

Bo
ce

di
 e

t a
l.

(2
01

4)
 h

tt
ps

://
gi

th
ub

.c
om

/R
an

ge
​

Sh
ift

​er
/

C+
+

En
ca

ps
ul

at
io

n,
 lo

gg
in

g

XL
/G

ro
IM

P
Pl

an
t g

ro
w

th
 m

od
el

H
em

m
er

lin
g

et
 a

l.
(2

00
8)

 h
tt

ps
://

so
ur

c​e
fo

rg
e.

ne
t/

pr
oj

e​c
ts

/g
ro

im
​p/

Ja
va

D
om

ai
n-

sp
ec

ifi
c

la
ng

ua
ge

s

https://github.com/rafaqz/DEBplant
https://github.com/rafaqz/DEBplant
https://github.com/molbiodiv/fennec
https://github.com/molbiodiv/fennec
https://github.com/CCTB-Ecomods/gemm
https://github.com/CCTB-Ecomods/gemm
https://github.com/project-gen3sis/R-package
https://github.com/project-gen3sis/R-package
https://github.com/MadingleyR/MadingleyR
https://github.com/MadingleyR/MadingleyR
https://github.com/RangeShifter/
https://github.com/RangeShifter/
https://sourceforge.net/projects/groimp/
https://sourceforge.net/projects/groimp/

     |  2327Methods in Ecology and Evolu
onVEDDER et al.

complicated that large R programs are very hard to write and even
harder to read. Python, on the other hand, can be a good choice,
as it is exceptionally easy to learn, write and read, although getting
it to run fast requires the use of more advanced numeric libraries.
NetLogo also can be a good choice, as it is simple to learn and tai-
lored to the needs of individual-based modellers; despite its former
reputation for slowness, improvements over the past years now
make it a feasible platform even for large models (Railsback et al.,
2017).

After having used all of these languages at various times, our
working group has settled on Julia (Bezanson et al., 2017) as our
current ‘ideal candidate’. Julia is a comparatively new language that
is explicitly designed for the requirements of computational scien-
tists. Its syntax is similar to Python and easy to pick up, it supports
multiple programming paradigms (including object-oriented and
functional programming), and has an excellent performance even
without specialised libraries (Lubin & Dunning, 2015). Its rapidly
growing popularity among computational scientists has greatly in-
creased the availability of libraries and help resources. Individual-
based models can be written directly in the language, or make use
of the agent-based modelling framework Agents.jl (Datseris et al.,
2021). There are also mature libraries available for visualisation,
such as Plots.jl (Breloff, 2021) or the aforementioned Agents.
jl. Overall, our experiences with the language have been almost en-
tirely positive (e.g. Leidinger et al., 2021; Sieger & Hovestadt, 2020;
Vedder et al., 2020).

Obviously, shifting to a new language represents a significant
time investment, both in terms of learning and teaching as well as
porting any existing code. Also, the size of the ‘language ecosystem’
is often crucial: how many libraries are available, how easy is it to find
help, do project collaborators know the language too? Indeed, such
community constraints often make modellers hesitant to pick up a
new language, particularly as most ecologists are only taught R in
their university courses. Nonetheless, it should be pointed out that
learning a new language is a one-time investment that pays long div-
idends and may well save time and effort in the long run. In short, we
believe that the Julia ecosystem is now large and stable enough, and
the long-term benefits great enough, to recommend the increased
adoption of Julia for IBMs. For two examples of models written in
Julia, see the DEBplant and GeMM models (Table 2; Leidinger et al.,
2021; Schouten et al., 2020).

At the same time, we should point out that while the model it-
self might be best written in Julia, auxiliary software can and should
utilise other languages. Programming languages are tools, each
with their own strengths and weaknesses. Accordingly, one should
choose the best tool for the job at hand. For example, in the GeMM
model, we use Python and Bash scripts to set up our simulation ex-
periments, Julia for the actual model code, and R to visualise and
analyse the output data (see Section 2.8). In some instances, it may
also be worthwhile to use language interoperability libraries such
as Rcpp to benefit from the strengths of multiple languages. This
can be tricky, but has been done for instance in the Gen3sis and
MadingleyR models (Table 2; Hagen et al., 2021; Hoeks et al., 2021).

2.3 | Working with file formats

File formats are conventions for how to structure files that are read
or manipulated by computer programs. They may be specified by of-
ficial committees (e.g. PDF, HTML), or be defined ad-hoc for indi-
vidual programs. IBMs often interact with multiple input and output
file types, such as GeoTIFF for map inputs or CSV for configuration
files. As different file types have different advantages and disadvan-
tages, it is worth thinking about which formats to use and how to
create new ones.

Fundamentally, a format may use binary (e.g. PDF) or text-
based (e.g. HTML) data encoding. In the programming tradition
that grew up around the Unix operating systems (such as Linux or
Mac OS), a premium is placed on using textual file formats wher-
ever possible (Raymond, 2003). Although these may require more
storage space than binary formats, they have a number of practical
advantages that are directly relevant to the development of IBMs.
First, they are human-readable, and can easily be opened with
any text editor. This makes debugging a lot simpler, as one is not
dependant on special software to analyse model output. Second,
text files can be read, analysed and processed by a whole host of
other programs and programming languages. This means one can
mix and match at will, always using the best tool for the job, instead
of being locked into one particular software (see Section 2.2). And
third, compared to direct binary ‘memory dumps’, the level of
indirection introduced by exporting to text-based formats auto-
matically encourages encapsulation (see Section 2.4) and helps to
keep a model backwards-compatible as it grows. Thus, text-based
file formats help to avoid complexity on multiple levels (Table 1).
Because of this, we decided to use text-based input and output
formats for the GeMM model, which allows us for instance to eas-
ily script the creation of configuration files for an experiment, or to
output FASTA data for analysis with standard bioinformatical tools
(Table 2; Leidinger et al., 2021).

In some cases, programs begin to rely so heavily on their
custom-made file formats that these develop into what are known
as domain-specific languages, or DSL. This may happen when the
program requires extensive and intricate configuration, or the devel-
opers use the file format to rapidly add new content (such as player
items in a computer game, or species in an IBM). This can be very ef-
fective, as using a simple language designed specifically for the prob-
lem at hand is more efficient than using a complex general-purpose
language (Raymond, 2003). It is also a great way to build abstraction
layers and subdivide complexity (see Section 2.4; Table 1), as a DSL
represents a clearly defined interface between different sections of
the software (Abelson et al., 1996).

Two examples of open-source projects that have used this tech-
nique with great success are the LLVM compiler toolchain and the
‘Battle for Wesnoth’ strategy game (Brown & Wilson, 2011). It has
also found application in the XL/GroIMP plant modelling software
(Table 2; Hemmerling et al., 2008), which has been the basis for nu-
merous studies (e.g. Chi et al., 2016; Evers & Bastiaans, 2016; Petter
et al., 2021). Of course, DSLs are not easy to design well and no

2328  |    Methods in Ecology and Evolu
on VEDDER et al.

easier to implement. Thus, this technique should be avoided for
simple models or by inexperienced developers. However, for large
models with experienced programmers on the team, they can be an
extraordinarily powerful method for creating highly versatile IBMs.

2.4 | Encapsulation

This technique is most important during the software design stage,
when constructing the code architecture. Here, the key principle is
‘divide and conquer’, that is, subdividing a complex system into sim-
pler subsystems (Table 1). This should be done in such a way that
each subsystem can be thought about individually, and the operation
of the whole does not depend on the implementation details of its
constituent parts.

Two complementary approaches can be used for this. The first,
‘abstraction’, refers to a hierarchical layering of a program. For ex-
ample, a graphics program may have a fundamental layer that draws
individual pixels onto the screen, an intermediate layer for drawing
basic shapes and a top layer for rendering entire scenes. Importantly,
each layer only needs to know about the one just below it. In the
context of IBMs, ‘super-individuals’ are a common abstraction level
(Grimm & Railsback, 2005), used, for example, by the MadingleyR
model (Table 2; Hoeks et al., 2021). Similarly, the RangeShifter model
(Bocedi et al., 2014) groups individuals into populations, populations
into patch subcommunities and patch subcommunities into the
landscape-wide community.

The second approach is ‘modularity’, and refers to a side-by-side
encapsulation of program parts. For example, a desktop application
may have a submodule responsible for the graphical user interface,
and a submodule for processing input. The two modules communi-
cate via pre-defined function calls, but know almost nothing about
each other’s internal working. Likewise, the GeMM model has sub-
modules devoted to file input and output, which provide utility
functions to the rest of the model while hiding the implementation
details of the different file formats involved (Leidinger et al., 2021).
As another example, the RangeShifter model separates organisms
from their environment: there is a Landscape object that holds the
environment’s grid cells, and a Community object that contains all
individual organisms (Bocedi et al., 2014). DEBplant, in turn, splits
its functionality into three independent packages to model dynamic
energy budgets, microclimates and photosynthesis (Schouten et al.,
2020).

Reducing complexity by encapsulation brings several great ad-
vantages. It aids understandability, which, as argued above, also
makes software more reliable. Furthermore, encapsulated designs
are easier to extend in future, because the strict structure reduces
the number of locations where changes need to be inserted. For ex-
ample, all ecological processes in the GeMM model are contained
within individual functions that are passed the world object as a
function argument. Thus, adding a new process is as simple as
writing a new function to modify this object, and inserting it in the

desired sequence in the scheduling submodule. For more detailed
discussions of encapsulation, see Abelson et al. (1996), Raymond
(2003), and McConnell (2004).

2.5 | Documenting models

To maintain understandability of any non-trivial model, adequate
documentation is critical (Table 1). As with complexity in general,
this must again be thought of in two dimensions. First, the model’s
formulation must be documented, that is, how it represents the
underlying biological reality. Which entities and processes does it
simulate, what parameters does it use and what data does it record?
Such questions ought to be answered in an accompanying ODD
document (Grimm et al., 2020). Further details on the scientific pro-
cess behind the modelling study, such as problem formulation, data
evaluation and model analysis, are collated in the TRACE document
(Grimm et al., 2014).

At the same time, one must document the technical details of the
model implementation (Cooper & Hsing, 2017; Lee, 2018). This must
countenance both the needs of users and the needs of developers
of the software. Standard practice in the open-source movement is
to provide a README file in the top-level project directory, giving a
brief overview over what the software does and how to use it. For
large models, a more comprehensive user manual is necessary (such
as provided by RangeShifter, Table 2; Bocedi et al., 2014), especially
if the model is to be published in a public repository like CRAN. To
help developers, there should be an additional document that gives
an introduction to the software architecture (Raymond, 2003). In
any case, all source files and all functions should have header com-
ments briefly stating their purpose. Many languages also have li-
braries available to automatically generate cross-referenced HTML
or PDF documentation from these header comments. For examples
of such automatically generated documentation, see the FENNEC
tool and the Gen3sis model (Table 2; Ankenbrand et al., 2018; Hagen
et al., 2021).

One non-obvious, yet important, documentation method is a
good logging system. Many open-source programs have the ability
to save runtime status messages to a log file for later inspection.
This can be a valuable help in tracking down bugs but also helps new
developers observe the program in action, effectively providing a
dynamic documentation. It is useful to make the amount of detail
saved in the log file configurable, this is known as the ‘verbosity
level’. Common verbosity levels include ‘quiet’ (only report errors),
‘normal’ (errors and key function calls) and ‘debug’ (high-detail re-
porting for use during development). Both the RangeShifter and the
GeMM model make use of such logging facilities (Table 2; Bocedi
et al., 2014; Leidinger et al., 2021).

Lastly, using version control systems together with hosting plat-
forms like Github can help to document the software development
process itself, through the use of commits, branches, issues and the
like (Perez-Riverol et al., 2016).

     |  2329Methods in Ecology and Evolu
onVEDDER et al.

2.6 | Code reviews

Even well-designed and documented software systems cannot be
expected to be free of defects and errors. Therefore, reviewing and
testing source code regularly is critical (Table 1). Submitting soft-
ware to internal reviews has been shown to be one of the single
most effective means of increasing code quality. Numerous studies
have shown that on average, such reviews can be expected to find
~60% of bugs (Shull et al., 2002). This is even more effective than
automated testing, and can save significant debugging time down
the line. Also, reviews have the added advantage of rapidly dissemi-
nating know-how and best practice within teams (see the discussion
in McConnell, 2004).

Reviews may be done very formally, with moderated meetings
to inspect a section of code using standardised checklists (Aurum
et al., 2002). They may also be more informal, using digital tools to
quickly review new contributions to a software (Rigby & Bird, 2013).
Either way, they require regular time investments, and ideally need
to be embedded in a team’s development routine. However, the ben-
efits are so great that this investment should pay for itself. Indeed,
code reviews have already been recommended for use in IBM de-
velopment (Ropella et al., 2002), and are provided for in the TRACE
protocol as one method of implementation verification (Grimm et al.,
2014). To give a practical illustration of how to conduct code re-
views, we provide an inspection checklist that we developed for use
in our institute (Vedder, 2019).

External code reviews can also be an important supplement to
the normal peer-review process for publications. For example, the
rOpenSci project has established a code review system for scien-
tific software that interfaces with the publication processes of the
Journal of Open-Source Software and Methods in Ecology and Evolution
(Ram et al., 2019).

2.7 | Code testing

Beyond reviewing the source code of a model, it is however also im-
portant to test its actual functioning (Table 1). In software engineer-
ing, this aspect of development is often divided into unit testing and
integration testing (McConnell, 2004).

Unit tests target small, self-contained segments of the code,
such as individual functions. They work by passing sample input
to this segment and checking that the output conforms to expec-
tations. This can be done manually (e.g. in a commandline environ-
ment), but ideally the developer writes a separate test function that
is then saved alongside the actual code. Thus, an automatic test suite
is accrued over time, which can be run periodically to ensure that
later code changes did not introduce new bugs in the already exist-
ing code (this is called regression testing). Most programming lan-
guages have libraries either built-in or available that make creating
such tests much easier. For examples of ecological software with a
test suite, see the FENNEC tool and the DEBplant model (Table 2;
Ankenbrand et al., 2018; Schouten et al., 2020).

A long-standing debate surrounds the extent to which such au-
tomated unit testing should be implemented. There are vocal pro-
ponents of a ‘test-driven development’ (TDD) approach, who argue
that every function and feature in a code base should have an au-
tomated test accompanying it, and that this test should be written
before the feature itself (e.g. Martin, 2009). As well as creating a
comprehensive test suite for automated testing, such test-driven
development encourages a more stringent and focussed program-
ming style (Jeffries & Melnik, 2007). However, TDD is very time-
consuming to implement, and in terms of defect-finding, other
techniques such as code reviews appear to be more effective (see
Section 2.6). Therefore, other authors like McConnell (2004) and
Balaban et al. (2021) suggest using automated testing primarily for
fundamental or critical functionality.

What must not be neglected in any case is integration testing.
This refers to the testing of the complete software, including all sub-
modules. This is somewhat more difficult to automate fully, although
an automated integration pipeline greatly speeds up the process (see
Section 2.8). Also, it may be possible to automate the comparison
of certain output variables against the values of these variables as
produced by previous model versions. Another classical technique
of integration testing for IBMs is output visualisation (Ropella et al.,
2002). Having the model display maps of its various entities and
graphs of key metrics (such as population size or species number)
will rapidly show patterns that run counter to or align with theoreti-
cal expectations (Grimm & Railsback, 2011).

Additionally, one can use logging facilities (see Section 2.5) or
dedicated tools known as debuggers to inspect the state of internal
model objects during its execution. These latter techniques are com-
monly used during debugging, that is, when searching for the root
cause of a known defect. However, they can also be used proactively
to investigate whether the software’s internal working conforms to
expectations, and thus to find bugs that may not be immediately
visible in the model output. For more details, see the discussion on
testing in (Grimm & Railsback, 2005, ch. 8.5).

2.8 | Automated integration

In the context of software development, integration refers to the
combining of individual components into a larger system, and the
subsequent testing of this system (McConnell, 2004). This is a regu-
lar procedure in an IBM workflow, where models do not just have
multiple components in and of themselves, but may also have aux-
iliary software to set up and analyse experiments (see Section 2.2).

This process should be automated as much as possible, to avoid
unnecessary complexity (Table 1). Every step that the user has to
execute by hand is a step that may be forgotten, or done wrongly,
or that at the very least takes up development time. Ideally, there-
fore, every fundamental action (like compiling and testing the source
code, running and analysing an experiment, or packaging for release)
should only require a single click or command. For example, in a
newer version of the GeMM model (Table 2; Leidinger et al., 2021),

2330  |    Methods in Ecology and Evolu
on VEDDER et al.

we have three scripts to cover the complete modelling pipeline. The
first script takes GeoTIFF files and converts them into the model’s
text-based landscape input format (see Section 2.3). The second
script generates the set of configuration files needed for an experi-
ment and launches the simulation runs. Finally, the third script reads
in all output files and performs data analyses and visualisation.

In the software industry, this automation of the deployment
pipeline has become known as continuous integration (CI, see the
discussion in Brown & Wilson, 2011). It allows a faster development
cycle, due to the smaller time gap between code development and
execution. Also, adding automated testing into this pipeline means
that bugs are discovered sooner rather than later, increasing de-
veloper confidence in their code (Hilton et al., 2016). All major git
hosting platforms now support CI so that automated tests can be
set up to run regularly, such as when merging a new feature branch.
Considering IBMs, application of CI principles should furthermore
reduce the usage complexity of models and help establish a greater
reproducibility of results.

3  | NE X T STEPS

Having recognised the problem of double complexity inherent in
IBMs, where should we go from here? As authors, we believe that
we need a thorough discussion in the ecological modelling commu-
nity about which complexity-containing techniques are applicable
and feasible for our model software. This paper aims to continue and
promote this discussion. Hopefully, the next few years will see more
of these techniques integrated into our workflows, and explained in
our textbooks.

Encouragingly, the field of climate modelling has already been
through this very process. For example, Easterbrook and Johns
(2009) described how one climate research centre developed their
software, and contrasted this with practices in industry. Later,
Rugaber et al. (2011) reviewed techniques for controlling complex-
ity in coupled climate models. And more recently, Lawrence et al.
(2018) discussed how developments in computer hardware and soft-
ware engineering could be accommodated by the climate modelling
community.

Of course, the institutional problem remains that most ecolog-
ical modellers are biologists by training, not software developers.
Facing this challenge at our institute, we teach multiple programming
courses for both graduates and undergraduates (cf. Farrell & Carey,
2018). We have also discovered that collaborations with our univer-
sity’s computer science department can be very fruitful. We have
heard talks from their professors, hosted their students for intern-
ships and organised joint courses; all to mutual profit.

Other research groups have been able to raise the funds to hire
a professional software developer to help with their model build-
ing, creating positions similar to those of traditional lab technicians.
This is generally only feasible for larger groups, as salaries in the
IT industry are very competitive and often beyond the budget of
most smaller research groups. This is especially problematic as many

universities and funding agencies are still reluctant to pay for such
positions (Nowogrodzki, 2019). Hence, although the approach of hir-
ing professionals should be encouraged, training ecologists in com-
putational skills will remain important for the foreseeable future.

Fortunately, the wider scientific community is becoming increas-
ingly aware of the importance of good software development skills.
The Software Carpentry project is a volunteer-based initiative of-
fering basic 2-day software training courses for scientists (Wilson,
2016). Similarly, the rOpenSci community provides programming
guidance and teaching, as well as building and maintaining a cu-
rated collection of software tools for ecological and evolutionary
research (Boettiger et al., 2015). Complementing this, the concept
of Research Software Engineering represents a push to create high-
quality scientific software through close collaborations of scientists
with professional software developers (Cohen et al., 2021).

As ecological modellers, we can profit from all of these initia-
tives. As a field, we need to cultivate a greater software engineering
know-how, but this is not impossible. There is an extensive literature
available on the topic, we can learn from colleagues in other depart-
ments, and, if funds permit, we can hire professionals to help us.
Most importantly, we need to share experiences and develop a set
of tried-and-tested best practices for our field.

4  | CONCLUSIONS

In this commentary, we have argued that we need to think about
both biological and technical complexities if we want to get reliable
results from our individual-based models. Although a lot of work has
been done on biological model complexity, little has been written
about the aspect of technical complexity. Fortunately, computer sci-
ence has decades of experience in dealing with software complexity
that we can learn from.

Key strategies are to avoid, subdivide, document and review
complexity. Techniques to do so include writing clean code, choosing
suitable languages and file formats, encapsulating submodules and
abstraction layers, and documenting both biological and technical
details. Additionally, code reviews and unit and integration tests are
needed to verify code quality. Automated integration can speed up
the modelling workflow and decreases the likelihood of procedural
mistakes.

As IBMs continue to grow in scope and importance, learning to
cope with their double complexity becomes increasingly vital. This
paper provides some pointers, but we need more cross-pollination
from the computer sciences, and a more thorough methodological
discussion in the modelling community.

ACKNOWLEDG EMENTS
We are grateful to our colleagues at the CCTB for the years we have
spent working and learning together as computational biologists.
Thank you for your camaraderie! We also appreciate the comments
by Bob O’Hara and two anonymous reviewers, which much im-
proved this manuscript. M.A. and J.S.C. acknowledge funding from

     |  2331Methods in Ecology and Evolu
onVEDDER et al.

the ‘Zentrum für digitales Experimentieren 4.0’ (ESF-ZDEX). J.S.C.
further acknowledges funding from the Bavarian Ministry of Science
and the Arts in the context of the Bavarian Climate Research Network
(bayklif). Open Access funding enabled and organized by Projekt DEAL.

CONFLIC T OF INTERE S T
The authors declare no conflict of interests.

AUTHORS' CONTRIBUTIONS
D.V. conceptualised the paper and wrote the original manuscript
draft; M.A. contributed to the sections on language choice, code
testing and automated integration; J.S.C. contributed to the list of
example models, introduction and next steps sections, as well as
providing supervision and securing funding. All authors were in-
volved in review and editing.

PEER RE VIE W
The peer review history for this article is available at https://publo​
ns.com/publo​n/10.1111/2041-210X.13716.

DATA AVAIL ABILIT Y S TATEMENT
The sample code inspection checklist may be downloaded at https://
doi.org/10.5281/zenodo.5284378 (Vedder, 2019).

ORCID
Daniel Vedder http://orcid.org/0000-0002-0386-9102
Markus Ankenbrand https://orcid.org/0000-0002-6620-807X
Juliano Sarmento Cabral https://orcid.
org/0000-0002-0116-220X

R E FE R E N C E S
Abelson, H., Sussman, G. J., & Sussman, J. (1996). Structure and interpre-

tation of computer programs (2nd ed.). Electrical Engineering and
Computer Science Series. MIT Press.

Ankenbrand, M. J., Hohlfeld, S. C. Y., Weber, L., Förster, F., & Keller,
A. (2018). Functional exploration of natural networks and eco-
logical communities. Methods in Ecology and Evolution, 9(9),
2028–2033.

Augusiak, J., Van den Brink, P. J., & Grimm, V. (2014). Merging valida-
tion and evaluation of ecological models to ‘evaludation’: A review
of terminology and a practical approach. Ecological Modelling, 280,
117–128.

Aurum, A., Petersson, H., & Wohlin, C. (2002). State-of-the-art: Software
inspections after 25 years. Software Testing, Verification and
Reliability, 12(3), 133–154.

Balaban, G., Grytten, I., Rand, K. D., Scheffer, L., & Sandve, G. K. (2021).
Ten simple rules for quick and dirty scientific programming. PLoS
Computational Biology, 17(3), e1008549.

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh
approach to numerical computing. SIAM Review, 59(1), 65–98.

Bocedi, G., Palmer, S. C. F., Pe'er, G., Heikkinen, R. K., Matsinos, Y. G.,
Watts, K., & Travis, J. M. J. (2014). RangeShifter: A platform for mod-
elling spatial eco-evolutionary dynamics and species' responses
to environmental changes. Methods in Ecology and Evolution, 5(4),
388–396.

Boettiger, C., Chamberlain, S., Hart, E., & Ram, K. (2015). Building soft-
ware, building community: Lessons from the rOpenSci Project.
Journal of Open Research Software, 3(1), e8.

Breloff, T. (2021). Plots.jl (v1.16.3). Zenodo. https://doi.org/10.5281/
zenodo.4907285

Brooks, F. (1986). No silver bullet – Essence and accident in software
engineering. In H.-J. Kugler (Ed.), Proceedings of the IFIP Tenth World
Computing Conference (pp. 1069–1076). Elsevier Science B.V.

Brown, A., & Wilson, G. (Eds.). (2011). The architecture of open source ap-
plications. Creative Commons.

Cabral, J. S., & Kreft, H. (2012). Linking ecological niche, community ecol-
ogy and biogeography: Insights from a mechanistic niche model.
Journal of Biogeography, 39(12), 2212–2224.

Cabral, J. S., Valente, L., & Hartig, F. (2017). Mechanistic simulation mod-
els in macroecology and biogeography: State-of-art and prospects.
Ecography, 40(2), 267–280.

Cabral, J. S., Whittaker, R. J., Wiegand, K., & Kreft, H. (2019). Assessing
predicted isolation effects from the general dynamic model of is-
land biogeography with an eco-evolutionary model for plants.
Journal of Biogeography, 46(7), 1569–1581.

Chi, F., Kurth, W., & Streit, K. (2016). Generating 3D models from a single
2D digitized photo using GIS and GroIMP. In 2016 IEEE international
conference on functional-structural plant growth modeling, simulation,
visualization and applications (FSPMA) (pp. 22–27). IEEE.

Cohen, J., Katz, D. S., Barker, M., Hong, N. C., Haines, R., & Jay, C. (2021).
The four pillars of research software engineering. IEEE Software,
38(1), 97–105.

Cooper, N., & Hsing, P.-Y. (Eds.). (2017). Reproducible code. BES guides to
better science. British Ecological Society.

Datseris, G., Vahdati, A. R., & DuBois, T. C. (2021). Agents.jl: A perfor-
mant and feature-full agent based modelling software of minimal
code complexity. arXiv:2101.10072 [nlin].

DeAngelis, D. L., & Grimm, V. (2014). Individual-based models in ecology
after four decades. F1000prime Reports, 6(June), 39.

Dijkstra, E. W. (1972). The humble programmer. Communications of the
ACM, 15(10), 859–866.

Easterbrook, S. M., & Johns, T. C. (2009). Engineering the software for
understanding climate change. Computing in Science Engineering,
11(6), 65–74.

Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why
fMRI inferences for spatial extent have inflated false-positive rates.
Proceedings of the National Academy of Sciences of the United States
of America, 113(28), 7900–7905.

Evans, M. R., Grimm, V., Johst, K., Knuuttila, T., de Langhe, R., Lessells,
C. M., Merz, M., O'Malley, M. A., Orzack, S. H., Weisberg, M.,
Wilkinson, D. J., Wolkenhauer, O., & Benton, T. G. (2013). Do simple
models lead to generality in ecology? Trends in Ecology & Evolution,
28(10), 578–583.

Evers, J. B., & Bastiaans, L. (2016). Quantifying the effect of crop spatial
arrangement on weed suppression using functional-structural plant
modelling. Journal of Plant Research, 129(3), 339–351.

Farrell, K. J., & Carey, C. C. (2018). Power, pitfalls, and potential for inte-
grating computational literacy into undergraduate ecology courses.
Ecology and Evolution, 8(16), 7744–7751.

Grimm, V., Augusiak, J., Focks, A., Frank, B. M., Gabsi, F., Johnston,
A. S., Liu, C., Martin, B. T., Meli, M., Radchuk, V., Thorbek, P., &
Railsback, S. F. (2014). Towards better modelling and decision sup-
port: Documenting model development, testing, and analysis using
TRACE. Ecological Modelling, 280, 129–139.

Grimm, V., & Railsback, S. F. (2005). Individual-based modeling and ecology.
Princeton University Press.

Grimm, V., & Railsback, S. F. (2011). Pattern-oriented modelling: A multi-
scope' for predictive systems ecology. Philosophical Transactions of
the Royal Society B: Biological Sciences, 367(1586), 298–310.

Grimm, V., Railsback, S. F., Vincenot, C. E., Berger, U., Gallagher, C.,
DeAngelis, D. L., Edmonds, B., Ge, J., Giske, J., Groeneveld, J.,
Johnston, A. S. A., Milles, A., Nabe-Nielsen, J., Polhill, J. G., Radchuk,
V., Rohwäder, M.-S., Stillman, R. A., Thiele, J. C., & Ayllón, D. (2020).

https://publons.com/publon/10.1111/2041-210X.13716
https://publons.com/publon/10.1111/2041-210X.13716
https://doi.org/10.5281/zenodo.5284378
https://doi.org/10.5281/zenodo.5284378
http://orcid.org/0000-0002-0386-9102
https://orcid.org/0000-0002-6620-807X
https://orcid.org/0000-0002-6620-807X
https://orcid.org/0000-0002-0116-220X
https://orcid.org/0000-0002-0116-220X
https://orcid.org/0000-0002-0116-220X
https://doi.org/10.5281/zenodo.4907285
https://doi.org/10.5281/zenodo.4907285

2332  |    Methods in Ecology and Evolu
on VEDDER et al.

The ODD protocol for describing agent-based and other simula-
tion models: A second update to improve clarity, replication, and
structural realism. Journal of Artificial Societies and Social Simulation,
23(2), 7.

Hagen, O., Flück, B., Fopp, F., Cabral, J. S., Hartig, F., Pontarp, M., Rangel,
T. F., & Pellissier, L. (2021). Gen3sis: The general engine for eco-
evolutionary simulations on the origins of biodiversity. bioRxiv,
2021.03.24.436109.

Harfoot, M. B. J., Newbold, T., Tittensor, D. P., Emmott, S., Hutton, J.,
Lyutsarev, V., Smith, M. J., Scharlemann, J. P. W., & Purves, D. W.
(2014). Emergent global patterns of ecosystem structure and func-
tion from a mechanistic general ecosystem model. PLOS Biology,
12(4), e1001841.

Hatton, L. (1997). The T-experiments: Errors in scientific software. In R.
F. Boisvert (Ed.), Quality of numerical software: Assessment and en-
hancement, IFIP advances in information and communication technol-
ogy (pp. 12–31). Springer US.

Hemmerling, R., Kniemeyer, O., Lanwert, D., Kurth, W., & Buck-Sorlin, G.
(2008). The rule-based language XL and the modelling environment
GroIMP illustrated with simulated tree competition. Functional
Plant Biology, 35(10), 739.

Hilton, M., Tunnell, T., Huang, K., Marinov, D., & Dig, D. (2016). Usage,
costs, and benefits of continuous integration in open-source proj-
ects. In 2016 31st IEEE/ACM international conference on automated
software engineering (ASE) (pp. 426–437). ACM.

Hoeks, S., Tucker, M. A., Huijbregts, M. A. J., Harfoot, M. B. J., Bithell,
M., & Santini, L. (2021). MadingleyR: An R package for mechanis-
tic ecosystem modelling. Global Ecology and Biogeography, 30(9),
1922–1933.

Jeffries, R., & Melnik, G. (2007). Guest editors' introduction: TDD–The
art of fearless programming. IEEE Software, 24(3), 24–30.

Lawrence, B. N., Rezny, M., Budich, R., Bauer, P., Behrens, J., Carter, M.,
Deconinck, W., Ford, R., Maynard, C., Mullerworth, S., Osuna, C.,
Porter, A., Serradell, K., Valcke, S., Wedi, N., & Wilson, S. (2018).
Crossing the chasm: How to develop weather and climate models
for next generation computers? Geoscientific Model Development,
11(5), 1799–1821.

Lee, B. D. (2018). Ten simple rules for documenting scientific software.
PLOS Computational Biology, 14(12), e1006561.

Leidinger, L., Vedder, D., & Cabral, J. S. (2021). Temporal environmental
variation may impose differential selection on both genomic and
ecological traits. Oikos, 130(7), 1100–1115.

Lorscheid, I., & Meyer, M. (2016). Divide and conquer: Configuring sub-
models for valid and efficient analyses of complex simulation mod-
els. Ecological Modelling, 326, 152–161.

Lubin, M., & Dunning, I. (2015). Computing in operations research using
Julia. INFORMS Journal on Computing, 27(2), 238–248.

Manson, S., An, L., Clarke, K. C., Heppenstall, A., Koch, J., Krzyzanowski,
B., Morgan, F., O'Sullivan, D., Runck, B. C., Shook, E., & Tesfatsion,
L. (2020). Methodological issues of spatial agent-based models.
Journal of Artificial Societies and Social Simulation, 23(1), 3. https://
doi.org/10.18564/​jasss.4174

Martin, R. C. (Ed.). (2009). Clean code: A handbook of agile software crafts-
manship. Prentice Hall.

McConnell, S. (2004). Code complete (2nd ed.). Microsoft Press.
Nowogrodzki, A. (2019). Tips for open-source software support. Nature,

571(7763), 133–134.
Parry, H. R. (2009). Agent-based modeling, large-scale simulations. In M.

Sotomayor, D. Pérez-Castrillo, & F. Castiglione (Eds.), Complex social
and behavioral systems (pp. 913–926). Springer US.

Perez-Riverol, Y., Gatto, L., Wang, R., Sachsenberg, T., Uszkoreit, J.,
Leprevost, F. D. V., Fufezan, C., Ternent, T., Eglen, S. J., Katz, D. S.,
Pollard, T. J., Konovalov, A., Flight, R. M., Blin, K., & Vizcaíno, J. A.
(2016). Ten simple rules for taking advantage of Git and GitHub.
PLOS Computational Biology, 12(7), e1004947.

Petter, G., Zotz, G., Kreft, H., & Cabral, J. S. (2021). Agent-based model-
ing of the effects of forest dynamics, selective logging, and frag-
ment size on epiphyte communities. Ecology and Evolution, 11(6),
2937–2951.

Railsback, S., Ayllón, D., Berger, U., Grimm, V., Lytinen, S., Sheppard,
C., & Thiele, J. (2017). Improving execution speed of models im-
plemented in NetLogo. Journal of Artificial Societies and Social
Simulation, 20(1), 3.

Ram, K., Boettiger, C., Chamberlain, S., Ross, N., Salmon, M., & Butland, S.
(2019). A community of practice around peer review for long-term
research software sustainability. Computing in Science Engineering,
21(2), 59–65.

Rangel, T. F., Edwards, N. R., Holden, P. B., Diniz-Filho, J. A. F., Gosling,
W. D., Coelho, M. T. P., Cassemiro, F. A. S., Rahbek, C., & Colwell,
R. K. (2018). Modeling the ecology and evolution of biodiversity:
Biogeographical cradles, museums, and graves. Science, 361(6399),
eaar5452.

Raymond, E. S. (2003). The art of UNIX programming. Addison-Wesley
professional computing series. Addison-Wesley.

Rigby, P. C., & Bird, C. (2013). Convergent contemporary software
peer review practices. In B. Meyer, L. Baresi, & M. Mezini (Eds.),
Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering – ESEC/FSE 2013 (pp. 202–212). ACM Press.

Ropella, G. E., Railsback, S. F., & Jackson, S. K. (2002). Software engineer-
ing considerations for individual-based models. Natural Resource
Modeling, 15(1), 5–22.

Rugaber, S., Dunlap, R., Mark, L., & Ansari, S. (2011). Managing software
complexity and variability in coupled climate models. IEEE Software,
28(6), 43–48.

Schiffers, K., Schurr, F. M., Travis, J. M. J., Duputié, A., Eckhart, V. M.,
Lavergne, S., McInerny, G., Moore, K. A., Pearman, P. B., Thuiller,
W., Wüest, R. O., & Holt, R. D. (2014). Landscape structure and ge-
netic architecture jointly impact rates of niche evolution. Ecography,
37(12), 1218–1229.

Schouten, R., Vesk, P. A., & Kearney, M. R. (2020). Integrating dynamic
plant growth models and microclimates for species distribution
modelling. Ecological Modelling, 435, 109262.

Shull, F., Basili, V., Boehm, B., Brown, A. W., Costa, P., Lindvall, M.,
Port, D., Rus, I., Tesoriero, R., & Zelkowitz, M. (2002). What we
have learned about fighting defects. In Proceedings Eighth IEEE
Symposium on software metrics (pp. 249–258). IEEE.

Sieger, C. S., & Hovestadt, T. (2020). The degree of spatial variation rel-
ative to temporal variation influences evolution of dispersal. Oikos,
129(11), 1611–1622.

Stillman, R. A., Railsback, S. F., Giske, J., Berger, U., & Grimm, V. (2015).
Making predictions in a changing world: The benefits of individual-
based ecology. BioScience, 65(2), 140–150.

Stodden, V., & Miguez, S. (2014). Best practices for computational sci-
ence: Software infrastructure and environments for reproducible
and extensible research. Journal of Open Research Software, 2(1),
e21.

Sun, Z., Lorscheid, I., Millington, J. D., Lauf, S., Magliocca, N. R.,
Groeneveld, J., Balbi, S., Nolzen, H., Müller, B., Schulze, J., &
Buchmann, C. M. (2016). Simple or complicated agent-based mod-
els? A complicated issue. Environmental Modelling & Software, 86,
56–67.

Vedder, D. (2019). Data from: CCTB code inspection checklist. Zenodo,
https://doi.org/10.5281/zenodo.5284378

Vedder, D., Leidinger, L., & Cabral, J. S. (2020). Effects of species traits
and abiotic factors during the stages of plant invasions. bioRxiv,
https://doi.org/10.1101/2020.04.20.050278

Wilson, G. (2016). Software Carpentry: lessons learned. F1000Research,
3, 62–https://doi.org/10.12688/​f1000​resea​rch.3-62.v2

Wilson, G., Aruliah, D. A., Brown, C. T., Chue Hong, N. P., Davis, M., Guy,
R. T., Haddock, S. H. D., Huff, K. D., Mitchell, I. M., Plumbley, M.

https://doi.org/10.18564/jasss.4174
https://doi.org/10.18564/jasss.4174
https://doi.org/10.5281/zenodo.5284378
https://doi.org/10.1101/2020.04.20.050278
https://doi.org/10.12688/f1000research.3-62.v2

     |  2333Methods in Ecology and Evolu
onVEDDER et al.

D., Waugh, B., White, E. P., & Wilson, P. (2014). Best practices for
scientific computing. PLoS Biology, 12(1), 1–7.

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., & Teal, T.
K. (2017). Good enough practices in scientific computing. PLoS
Computational Biology, 13(6), e1005510.

Xia, X., Bao, L., Lo, D., Xing, Z., Hassan, A. E., & Li, S. (2018). Measuring
program comprehension: A large-scale field study with profession-
als. IEEE Transactions on Software Engineering, 44(10), 951–976.

How to cite this article: Vedder, D., Ankenbrand, M., &
Sarmento Cabral, J. (2021). Dealing with software complexity
in individual-based models. Methods in Ecology and Evolution,
12, 2324–2333. https://doi.org/10.1111/2041-210X.13716

https://doi.org/10.1111/2041-210X.13716

