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1  | INTRODUC TION

After a slow start in the 1980s, individual-based models (IBMs, 
also known as agent-based models or mechanistic simulation 
models) have found growing acceptance as a tool of ecological 
research (DeAngelis & Grimm, 2014; Grimm & Railsback, 2005). 

Over the past decade, they have been continuously expanded 
to simulate increasingly complex macroecological (e.g. Cabral & 
Kreft, 2012; Harfoot et al., 2014), eco-evolutionary (e.g. Leidinger 
et al., 2021; Schiffers et al., 2014) and macroevolutionary dynam-
ics (e.g. Cabral et al., 2019; Hagen et al., 2021; Rangel et al., 2018), 
among others.
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Abstract
1.	 Individual-based models are doubly complex: as well as representing complex 

ecological systems, the software that implements them is complex in itself. Both 
forms of complexity must be managed to create reliable models. However, the 
ecological modelling literature to date has focussed almost exclusively on the bio-
logical complexity. Here, we discuss methods for containing software complexity.

2.	 Strategies for containing complexity include avoiding, subdividing, document-
ing and reviewing it. Computer science has long-established techniques for all of 
these strategies. We present some of these techniques and set them in the con-
text of IBM development, giving examples from published models.

3.	 Techniques for avoiding software complexity are following best practices for cod-
ing style, choosing suitable programming languages and file formats and setting 
up an automated workflow. Complex software systems can be made more trac-
table by encapsulating individual subsystems. Good documentation needs to take 
into account the perspectives of scientists, users and developers. Code reviews 
are an effective way to check for errors, and can be used together with manual or 
automated unit and integration tests.

4.	 Ecological modellers can learn from computer scientists how to deal with com-
plex software systems. Many techniques are readily available, but must be dis-
seminated among modellers. There is a need for further work to adapt software 
development techniques to the requirements of academic research groups and 
individual-based modelling.
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Although including this complexity is important to increase the 
predictive power of ecological models (Evans et al., 2013; Stillman 
et al., 2015), it can also make the models hard to reason about and 
analyse (Manson et al., 2020). Indeed, it has been argued that in-
creasing complexity is both a necessary development and one of the 
greatest challenges for the field (Cabral et al., 2017). Following the 
adage that IBMs ‘should be constructed as simple as possible, and 
as complicated as necessary’ (Sun et al., 2016), significant work has 
been done to develop methodological and analytical techniques for 
dealing with this biological complexity. These techniques include 
pattern-oriented modelling (Grimm & Railsback, 2011), ‘evaludation’ 
(Augusiak et al., 2014) and cascaded design of simulation experi-
ments (Lorscheid & Meyer, 2016).

However, in its quest to cope with the scientific consequences 
of model complexity, the ecological modelling community has ne-
glected some of the technical aspects of modelling. IBMs simulate 
complex ecological systems using computer code (software) that is 
itself a complex system—in effect, they display a double complexity. 
Thus, to generate reliable results, we must not only think about the 
biological complexity of our models but also about their technical 
complexity (Grimm & Railsback, 2005; Ropella et al., 2002). This is 
all the more important because unreliable software can have cata-
strophic consequences for entire research fields (e.g. Eklund et al., 
2016; Hatton, 1997).

However, this is an engineering challenge, not primarily a sci-
entific one, and as such many ecologists may feel uncomfortable 
tackling it (Cooper & Hsing, 2017; Nowogrodzki, 2019). The prob-
lem is not restricted to ecology: a growing realisation of the impor-
tance of software to science has led to the emergence of the field 
of ‘Research Software Engineering’ (Cohen et al., 2021) and several 
other groups working to improve the software development skills of 
scientists. In line with these developments, we authors argue that as 
ecological modellers, we ought to pay more careful attention to the 
software running our models.

Previous publications have established best practice in regard to 
the workflow of model development (Grimm et al., 2014; Stodden 
& Miguez, 2014), suggested methods for scaling large simulations 

(Parry, 2009), or given general guidelines for scientific programming 
(Balaban et al., 2021; Wilson et al., 2014, 2017). Therefore, in this 
commentary, we will specifically look at the question of software 
complexity in IBMs, with the aim of increasing model reliability. In 
doing so, we will draw on some of the classical software engineering 
literature, as well as our own experiences and observations in the de-
velopment of open-source applications and IBMs (e.g. Ankenbrand 
et al., 2018; Leidinger et al., 2021; Petter et al., 2021). The individual 
points will be illustrated using references to published IBMs with 
publicly available source code (Table 2). We intend this overview 
to be particularly helpful for graduate students and early career re-
searchers who already have some modelling experience, but would 
profit from a firmer grounding in the ‘tools of the trade’ of software 
development.

Right from its inception, the field of computer science has had 
to deal with the issue of software complexity (Dijkstra, 1972). As 
programs became larger and ‘programming’ turned into ‘software 
engineering’, numerous techniques were developed for containing 
this complexity. These techniques have been applied to language de-
sign, coding style, software architecture and development workflow 
(Brooks, 1986). In fact, this topic is considered to be of such great 
importance that one well-known textbook states that ‘reducing 
complexity is arguably the most important key to being an effective 
programmer’ (McConnell, 2004, p. 839).

Essentially, there are four strategies that can be used to contain 
both biological and technical complexities (Table 1): 

1.	 Avoid unnecessary complexity.
2.	 Subdivide unavoidable complexity.
3.	 Document existing complexity.
4.	 Regularly review complexity.

Multiple development techniques target each of these strategies. 
In the following section, we will briefly present a collection of these 
techniques and give examples for how they have been applied to eco-
logical IBMs. Subsequently, we will discuss steps that could or should 
be taken to better integrate good software development practices in 
the field of individual-based modelling.

TA B L E  1   Overview of strategies and techniques for dealing with biological and software complexity in individual-based models. See the 
main text for explanations and references

Strategies Techniques

Biological complexity Software complexity

Avoid Pattern-oriented modelling Clean code

Language & file formats

Automated integration

Subdivide Cascaded design of simulation experiments Encapsulation domain-specific languages

Document ODD README & manual

TRACE Source code comments

Logging

Review Evaludation Code reviews

Unit & integration tests
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2  | PR AC TIC AL RECOMMENDATIONS

2.1 | Writing code

To avoid unnecessary complexity (Table 1), readability must be the 
first concern when actually writing model code. In the words of 
Abelson et al. (1996): ‘Programs must be written for people to read, 
and only incidentally for machines to execute’ (p. xvii). Although 
in some special cases other needs may override this rule (e.g. in 
performance-critical sections), these must remain justified excep-
tions. Readability is a core aspect of understandability, which makes 
programs easier to learn, reason about and analyse. Software that 
is easy to understand is less prone to mistakes, and therefore more 
reliable (McConnell, 2004).

An observational study of 78 professional software developers 
showed that only 5% of their time was spent directly editing the code, 
whereas 58% was spent understanding the code base and a further 
24% navigating it (Xia et al., 2018). Importantly, the developers cited 
comparatively trivial root causes for this high understandability cost. 
These included insufficient comments, meaningless variable names, 
overlong functions and classes, inconsistent coding styles and exag-
gerated inheritance hierarchies in object-oriented programs.

This highlights the essential nature of ‘clean code’ (cf. Martin, 
2009). Basic practices can make a significant difference, such as 
dividing code into appropriately sized functions and files, or keep-
ing layouts simple by avoiding long lines or deep nesting. Further 
guidelines may be found in Wilson et al. (2017), in the style guides 
published for many programming languages, or (in great depth) in 
McConnell (2004).

2.2 | Choosing a language

The choice of programming language is often both deeply subjective 
and contingent upon external circumstances such as available col-
laborators and libraries. Nonetheless, we believe that it is important 
to choose the language for a new project carefully, as the decision 
will influence the project over its entire lifetime. Therefore, based on 
our personal experiences, we will hazard to give an opinion on a few 
popular programming languages below, as well as a recommendation 
for our preferred language.

When choosing a language for a model, one does not want to 
introduce unnecessary complexity with an overly complicated lan-
guage (Table 1), yet one must consider the computational require-
ments of large models. Thus, the ideal language for complex IBMs 
ought to be one that is easy to program in, while offering a good 
runtime performance. This, however, casts questions on some com-
mon modelling languages. Specifically, C++ is generally perceived as 
fast but very complicated; it is powerful, but error-prone particularly 
with regard to its manual memory management. R is great for data 
analysis, and enjoys the advantage of being the only language that 
many ecologists are taught in their university courses. However, for 
individual-based models, it is often both slow and linguistically so TA
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complicated that large R programs are very hard to write and even 
harder to read. Python, on the other hand, can be a good choice, 
as it is exceptionally easy to learn, write and read, although getting 
it to run fast requires the use of more advanced numeric libraries. 
NetLogo also can be a good choice, as it is simple to learn and tai-
lored to the needs of individual-based modellers; despite its former 
reputation for slowness, improvements over the past years now 
make it a feasible platform even for large models (Railsback et al., 
2017).

After having used all of these languages at various times, our 
working group has settled on Julia (Bezanson et al., 2017) as our 
current ‘ideal candidate’. Julia is a comparatively new language that 
is explicitly designed for the requirements of computational scien-
tists. Its syntax is similar to Python and easy to pick up, it supports 
multiple programming paradigms (including object-oriented and 
functional programming), and has an excellent performance even 
without specialised libraries (Lubin & Dunning, 2015). Its rapidly 
growing popularity among computational scientists has greatly in-
creased the availability of libraries and help resources. Individual-
based models can be written directly in the language, or make use 
of the agent-based modelling framework Agents.jl (Datseris et al., 
2021). There are also mature libraries available for visualisation, 
such as Plots.jl (Breloff, 2021) or the aforementioned Agents.
jl. Overall, our experiences with the language have been almost en-
tirely positive (e.g. Leidinger et al., 2021; Sieger & Hovestadt, 2020; 
Vedder et al., 2020).

Obviously, shifting to a new language represents a significant 
time investment, both in terms of learning and teaching as well as 
porting any existing code. Also, the size of the ‘language ecosystem’ 
is often crucial: how many libraries are available, how easy is it to find 
help, do project collaborators know the language too? Indeed, such 
community constraints often make modellers hesitant to pick up a 
new language, particularly as most ecologists are only taught R in 
their university courses. Nonetheless, it should be pointed out that 
learning a new language is a one-time investment that pays long div-
idends and may well save time and effort in the long run. In short, we 
believe that the Julia ecosystem is now large and stable enough, and 
the long-term benefits great enough, to recommend the increased 
adoption of Julia for IBMs. For two examples of models written in 
Julia, see the DEBplant and GeMM models (Table 2; Leidinger et al., 
2021; Schouten et al., 2020).

At the same time, we should point out that while the model it-
self might be best written in Julia, auxiliary software can and should 
utilise other languages. Programming languages are tools, each 
with their own strengths and weaknesses. Accordingly, one should 
choose the best tool for the job at hand. For example, in the GeMM 
model, we use Python and Bash scripts to set up our simulation ex-
periments, Julia for the actual model code, and R to visualise and 
analyse the output data (see Section 2.8). In some instances, it may 
also be worthwhile to use language interoperability libraries such 
as Rcpp to benefit from the strengths of multiple languages. This 
can be tricky, but has been done for instance in the Gen3sis and 
MadingleyR models (Table 2; Hagen et al., 2021; Hoeks et al., 2021).

2.3 | Working with file formats

File formats are conventions for how to structure files that are read 
or manipulated by computer programs. They may be specified by of-
ficial committees (e.g. PDF, HTML), or be defined ad-hoc for indi-
vidual programs. IBMs often interact with multiple input and output 
file types, such as GeoTIFF for map inputs or CSV for configuration 
files. As different file types have different advantages and disadvan-
tages, it is worth thinking about which formats to use and how to 
create new ones.

Fundamentally, a format may use binary (e.g. PDF) or text-
based (e.g. HTML) data encoding. In the programming tradition 
that grew up around the Unix operating systems (such as Linux or 
Mac OS), a premium is placed on using textual file formats wher-
ever possible (Raymond, 2003). Although these may require more 
storage space than binary formats, they have a number of practical 
advantages that are directly relevant to the development of IBMs. 
First, they are human-readable, and can easily be opened with 
any text editor. This makes debugging a lot simpler, as one is not 
dependant on special software to analyse model output. Second, 
text files can be read, analysed and processed by a whole host of 
other programs and programming languages. This means one can 
mix and match at will, always using the best tool for the job, instead 
of being locked into one particular software (see Section 2.2). And 
third, compared to direct binary ‘memory dumps’, the level of 
indirection introduced by exporting to text-based formats auto-
matically encourages encapsulation (see Section 2.4) and helps to 
keep a model backwards-compatible as it grows. Thus, text-based 
file formats help to avoid complexity on multiple levels (Table 1). 
Because of this, we decided to use text-based input and output 
formats for the GeMM model, which allows us for instance to eas-
ily script the creation of configuration files for an experiment, or to 
output FASTA data for analysis with standard bioinformatical tools 
(Table 2; Leidinger et al., 2021).

In some cases, programs begin to rely so heavily on their 
custom-made file formats that these develop into what are known 
as domain-specific languages, or DSL. This may happen when the 
program requires extensive and intricate configuration, or the devel-
opers use the file format to rapidly add new content (such as player 
items in a computer game, or species in an IBM). This can be very ef-
fective, as using a simple language designed specifically for the prob-
lem at hand is more efficient than using a complex general-purpose 
language (Raymond, 2003). It is also a great way to build abstraction 
layers and subdivide complexity (see Section 2.4; Table 1), as a DSL 
represents a clearly defined interface between different sections of 
the software (Abelson et al., 1996).

Two examples of open-source projects that have used this tech-
nique with great success are the LLVM compiler toolchain and the 
‘Battle for Wesnoth’ strategy game (Brown & Wilson, 2011). It has 
also found application in the XL/GroIMP plant modelling software 
(Table 2; Hemmerling et al., 2008), which has been the basis for nu-
merous studies (e.g. Chi et al., 2016; Evers & Bastiaans, 2016; Petter 
et al., 2021). Of course, DSLs are not easy to design well and no 



2328  |    Methods in Ecology and Evolu
on VEDDER et al.

easier to implement. Thus, this technique should be avoided for 
simple models or by inexperienced developers. However, for large 
models with experienced programmers on the team, they can be an 
extraordinarily powerful method for creating highly versatile IBMs.

2.4 | Encapsulation

This technique is most important during the software design stage, 
when constructing the code architecture. Here, the key principle is 
‘divide and conquer’, that is, subdividing a complex system into sim-
pler subsystems (Table 1). This should be done in such a way that 
each subsystem can be thought about individually, and the operation 
of the whole does not depend on the implementation details of its 
constituent parts.

Two complementary approaches can be used for this. The first, 
‘abstraction’, refers to a hierarchical layering of a program. For ex-
ample, a graphics program may have a fundamental layer that draws 
individual pixels onto the screen, an intermediate layer for drawing 
basic shapes and a top layer for rendering entire scenes. Importantly, 
each layer only needs to know about the one just below it. In the 
context of IBMs, ‘super-individuals’ are a common abstraction level 
(Grimm & Railsback, 2005), used, for example, by the MadingleyR 
model (Table 2; Hoeks et al., 2021). Similarly, the RangeShifter model 
(Bocedi et al., 2014) groups individuals into populations, populations 
into patch subcommunities and patch subcommunities into the 
landscape-wide community.

The second approach is ‘modularity’, and refers to a side-by-side 
encapsulation of program parts. For example, a desktop application 
may have a submodule responsible for the graphical user interface, 
and a submodule for processing input. The two modules communi-
cate via pre-defined function calls, but know almost nothing about 
each other’s internal working. Likewise, the GeMM model has sub-
modules devoted to file input and output, which provide utility 
functions to the rest of the model while hiding the implementation 
details of the different file formats involved (Leidinger et al., 2021). 
As another example, the RangeShifter model separates organisms 
from their environment: there is a Landscape object that holds the 
environment’s grid cells, and a Community object that contains all 
individual organisms (Bocedi et al., 2014). DEBplant, in turn, splits 
its functionality into three independent packages to model dynamic 
energy budgets, microclimates and photosynthesis (Schouten et al., 
2020).

Reducing complexity by encapsulation brings several great ad-
vantages. It aids understandability, which, as argued above, also 
makes software more reliable. Furthermore, encapsulated designs 
are easier to extend in future, because the strict structure reduces 
the number of locations where changes need to be inserted. For ex-
ample, all ecological processes in the GeMM model are contained 
within individual functions that are passed the world object as a 
function argument. Thus, adding a new process is as simple as 
writing a new function to modify this object, and inserting it in the 

desired sequence in the scheduling submodule. For more detailed 
discussions of encapsulation, see Abelson et al. (1996), Raymond 
(2003), and McConnell (2004).

2.5 | Documenting models

To maintain understandability of any non-trivial model, adequate 
documentation is critical (Table 1). As with complexity in general, 
this must again be thought of in two dimensions. First, the model’s 
formulation must be documented, that is, how it represents the 
underlying biological reality. Which entities and processes does it 
simulate, what parameters does it use and what data does it record? 
Such questions ought to be answered in an accompanying ODD 
document (Grimm et al., 2020). Further details on the scientific pro-
cess behind the modelling study, such as problem formulation, data 
evaluation and model analysis, are collated in the TRACE document 
(Grimm et al., 2014).

At the same time, one must document the technical details of the 
model implementation (Cooper & Hsing, 2017; Lee, 2018). This must 
countenance both the needs of users and the needs of developers 
of the software. Standard practice in the open-source movement is 
to provide a README file in the top-level project directory, giving a 
brief overview over what the software does and how to use it. For 
large models, a more comprehensive user manual is necessary (such 
as provided by RangeShifter, Table 2; Bocedi et al., 2014), especially 
if the model is to be published in a public repository like CRAN. To 
help developers, there should be an additional document that gives 
an introduction to the software architecture (Raymond, 2003). In 
any case, all source files and all functions should have header com-
ments briefly stating their purpose. Many languages also have li-
braries available to automatically generate cross-referenced HTML 
or PDF documentation from these header comments. For examples 
of such automatically generated documentation, see the FENNEC 
tool and the Gen3sis model (Table 2; Ankenbrand et al., 2018; Hagen 
et al., 2021).

One non-obvious, yet important, documentation method is a 
good logging system. Many open-source programs have the ability 
to save runtime status messages to a log file for later inspection. 
This can be a valuable help in tracking down bugs but also helps new 
developers observe the program in action, effectively providing a 
dynamic documentation. It is useful to make the amount of detail 
saved in the log file configurable, this is known as the ‘verbosity 
level’. Common verbosity levels include ‘quiet’ (only report errors), 
‘normal’ (errors and key function calls) and ‘debug’ (high-detail re-
porting for use during development). Both the RangeShifter and the 
GeMM model make use of such logging facilities (Table 2; Bocedi 
et al., 2014; Leidinger et al., 2021).

Lastly, using version control systems together with hosting plat-
forms like Github can help to document the software development 
process itself, through the use of commits, branches, issues and the 
like (Perez-Riverol et al., 2016).
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2.6 | Code reviews

Even well-designed and documented software systems cannot be 
expected to be free of defects and errors. Therefore, reviewing and 
testing source code regularly is critical (Table 1). Submitting soft-
ware to internal reviews has been shown to be one of the single 
most effective means of increasing code quality. Numerous studies 
have shown that on average, such reviews can be expected to find 
~60% of bugs (Shull et al., 2002). This is even more effective than 
automated testing, and can save significant debugging time down 
the line. Also, reviews have the added advantage of rapidly dissemi-
nating know-how and best practice within teams (see the discussion 
in McConnell, 2004).

Reviews may be done very formally, with moderated meetings 
to inspect a section of code using standardised checklists (Aurum 
et al., 2002). They may also be more informal, using digital tools to 
quickly review new contributions to a software (Rigby & Bird, 2013). 
Either way, they require regular time investments, and ideally need 
to be embedded in a team’s development routine. However, the ben-
efits are so great that this investment should pay for itself. Indeed, 
code reviews have already been recommended for use in IBM de-
velopment (Ropella et al., 2002), and are provided for in the TRACE 
protocol as one method of implementation verification (Grimm et al., 
2014). To give a practical illustration of how to conduct code re-
views, we provide an inspection checklist that we developed for use 
in our institute (Vedder, 2019).

External code reviews can also be an important supplement to 
the normal peer-review process for publications. For example, the 
rOpenSci project has established a code review system for scien-
tific software that interfaces with the publication processes of the 
Journal of Open-Source Software and Methods in Ecology and Evolution 
(Ram et al., 2019).

2.7 | Code testing

Beyond reviewing the source code of a model, it is however also im-
portant to test its actual functioning (Table 1). In software engineer-
ing, this aspect of development is often divided into unit testing and 
integration testing (McConnell, 2004).

Unit tests target small, self-contained segments of the code, 
such as individual functions. They work by passing sample input 
to this segment and checking that the output conforms to expec-
tations. This can be done manually (e.g. in a commandline environ-
ment), but ideally the developer writes a separate test function that 
is then saved alongside the actual code. Thus, an automatic test suite 
is accrued over time, which can be run periodically to ensure that 
later code changes did not introduce new bugs in the already exist-
ing code (this is called regression testing). Most programming lan-
guages have libraries either built-in or available that make creating 
such tests much easier. For examples of ecological software with a 
test suite, see the FENNEC tool and the DEBplant model (Table 2; 
Ankenbrand et al., 2018; Schouten et al., 2020).

A long-standing debate surrounds the extent to which such au-
tomated unit testing should be implemented. There are vocal pro-
ponents of a ‘test-driven development’ (TDD) approach, who argue 
that every function and feature in a code base should have an au-
tomated test accompanying it, and that this test should be written 
before the feature itself (e.g. Martin, 2009). As well as creating a 
comprehensive test suite for automated testing, such test-driven 
development encourages a more stringent and focussed program-
ming style (Jeffries & Melnik, 2007). However, TDD is very time-
consuming to implement, and in terms of defect-finding, other 
techniques such as code reviews appear to be more effective (see 
Section 2.6). Therefore, other authors like McConnell (2004) and 
Balaban et al. (2021) suggest using automated testing primarily for 
fundamental or critical functionality.

What must not be neglected in any case is integration testing. 
This refers to the testing of the complete software, including all sub-
modules. This is somewhat more difficult to automate fully, although 
an automated integration pipeline greatly speeds up the process (see 
Section 2.8). Also, it may be possible to automate the comparison 
of certain output variables against the values of these variables as 
produced by previous model versions. Another classical technique 
of integration testing for IBMs is output visualisation (Ropella et al., 
2002). Having the model display maps of its various entities and 
graphs of key metrics (such as population size or species number) 
will rapidly show patterns that run counter to or align with theoreti-
cal expectations (Grimm & Railsback, 2011).

Additionally, one can use logging facilities (see Section 2.5) or 
dedicated tools known as debuggers to inspect the state of internal 
model objects during its execution. These latter techniques are com-
monly used during debugging, that is, when searching for the root 
cause of a known defect. However, they can also be used proactively 
to investigate whether the software’s internal working conforms to 
expectations, and thus to find bugs that may not be immediately 
visible in the model output. For more details, see the discussion on 
testing in (Grimm & Railsback, 2005, ch. 8.5).

2.8 | Automated integration

In the context of software development, integration refers to the 
combining of individual components into a larger system, and the 
subsequent testing of this system (McConnell, 2004). This is a regu-
lar procedure in an IBM workflow, where models do not just have 
multiple components in and of themselves, but may also have aux-
iliary software to set up and analyse experiments (see Section 2.2).

This process should be automated as much as possible, to avoid 
unnecessary complexity (Table 1). Every step that the user has to 
execute by hand is a step that may be forgotten, or done wrongly, 
or that at the very least takes up development time. Ideally, there-
fore, every fundamental action (like compiling and testing the source 
code, running and analysing an experiment, or packaging for release) 
should only require a single click or command. For example, in a 
newer version of the GeMM model (Table 2; Leidinger et al., 2021), 
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we have three scripts to cover the complete modelling pipeline. The 
first script takes GeoTIFF files and converts them into the model’s 
text-based landscape input format (see Section 2.3). The second 
script generates the set of configuration files needed for an experi-
ment and launches the simulation runs. Finally, the third script reads 
in all output files and performs data analyses and visualisation.

In the software industry, this automation of the deployment 
pipeline has become known as continuous integration (CI, see the 
discussion in Brown & Wilson, 2011). It allows a faster development 
cycle, due to the smaller time gap between code development and 
execution. Also, adding automated testing into this pipeline means 
that bugs are discovered sooner rather than later, increasing de-
veloper confidence in their code (Hilton et al., 2016). All major git 
hosting platforms now support CI so that automated tests can be 
set up to run regularly, such as when merging a new feature branch. 
Considering IBMs, application of CI principles should furthermore 
reduce the usage complexity of models and help establish a greater 
reproducibility of results.

3  | NE X T STEPS

Having recognised the problem of double complexity inherent in 
IBMs, where should we go from here? As authors, we believe that 
we need a thorough discussion in the ecological modelling commu-
nity about which complexity-containing techniques are applicable 
and feasible for our model software. This paper aims to continue and 
promote this discussion. Hopefully, the next few years will see more 
of these techniques integrated into our workflows, and explained in 
our textbooks.

Encouragingly, the field of climate modelling has already been 
through this very process. For example, Easterbrook and Johns 
(2009) described how one climate research centre developed their 
software, and contrasted this with practices in industry. Later, 
Rugaber et al. (2011) reviewed techniques for controlling complex-
ity in coupled climate models. And more recently, Lawrence et al. 
(2018) discussed how developments in computer hardware and soft-
ware engineering could be accommodated by the climate modelling 
community.

Of course, the institutional problem remains that most ecolog-
ical modellers are biologists by training, not software developers. 
Facing this challenge at our institute, we teach multiple programming 
courses for both graduates and undergraduates (cf. Farrell & Carey, 
2018). We have also discovered that collaborations with our univer-
sity’s computer science department can be very fruitful. We have 
heard talks from their professors, hosted their students for intern-
ships and organised joint courses; all to mutual profit.

Other research groups have been able to raise the funds to hire 
a professional software developer to help with their model build-
ing, creating positions similar to those of traditional lab technicians. 
This is generally only feasible for larger groups, as salaries in the 
IT industry are very competitive and often beyond the budget of 
most smaller research groups. This is especially problematic as many 

universities and funding agencies are still reluctant to pay for such 
positions (Nowogrodzki, 2019). Hence, although the approach of hir-
ing professionals should be encouraged, training ecologists in com-
putational skills will remain important for the foreseeable future.

Fortunately, the wider scientific community is becoming increas-
ingly aware of the importance of good software development skills. 
The Software Carpentry project is a volunteer-based initiative of-
fering basic 2-day software training courses for scientists (Wilson, 
2016). Similarly, the rOpenSci community provides programming 
guidance and teaching, as well as building and maintaining a cu-
rated collection of software tools for ecological and evolutionary 
research (Boettiger et al., 2015). Complementing this, the concept 
of Research Software Engineering represents a push to create high-
quality scientific software through close collaborations of scientists 
with professional software developers (Cohen et al., 2021).

As ecological modellers, we can profit from all of these initia-
tives. As a field, we need to cultivate a greater software engineering 
know-how, but this is not impossible. There is an extensive literature 
available on the topic, we can learn from colleagues in other depart-
ments, and, if funds permit, we can hire professionals to help us. 
Most importantly, we need to share experiences and develop a set 
of tried-and-tested best practices for our field.

4  | CONCLUSIONS

In this commentary, we have argued that we need to think about 
both biological and technical complexities if we want to get reliable 
results from our individual-based models. Although a lot of work has 
been done on biological model complexity, little has been written 
about the aspect of technical complexity. Fortunately, computer sci-
ence has decades of experience in dealing with software complexity 
that we can learn from.

Key strategies are to avoid, subdivide, document and review 
complexity. Techniques to do so include writing clean code, choosing 
suitable languages and file formats, encapsulating submodules and 
abstraction layers, and documenting both biological and technical 
details. Additionally, code reviews and unit and integration tests are 
needed to verify code quality. Automated integration can speed up 
the modelling workflow and decreases the likelihood of procedural 
mistakes.

As IBMs continue to grow in scope and importance, learning to 
cope with their double complexity becomes increasingly vital. This 
paper provides some pointers, but we need more cross-pollination 
from the computer sciences, and a more thorough methodological 
discussion in the modelling community.
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