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Abstract

Climate change is undeniable and constitutes one of the major threats of the 21st century.
It impacts sectors of our society, usually negatively, and is likely to worsen towards the
middle and end of the century. The agricultural sector is of particular concern, for it
is the primary source of food and is strongly dependent on the weather. Considerable
attention has been given to the impact of climate change on African agriculture because
of the continent’s high vulnerability, which is mainly due to its low adaptation capac-
ity. Several studies have been implemented to evaluate the impact of climate change on
this continent. The results are sometimes controversial since the studies are based on
different approaches, climate models and crop yield datasets. This study attempts to
contribute substantially to this large topic by suggesting specific types of climate pre-
dictors. The study focuses on tropical Africa and its maize yield. Maize is considered
to be the most important crop in this region. To estimate the effect of climate change
on maize yield, the study began by developing a robust cross-validated multiple linear
regression model, which related climate predictors and maize yield. This statistical trans-
fer function is reputed to be less prone to overfitting and multicollinearity problems. It
is capable of selecting robust predictors, which have a physical meaning. Therefore, the
study combined: large-scale predictors, which were derived from the principal component
analysis of the monthly precipitation and temperature; traditional local-scale predictors,
mainly, the mean precipitation, mean temperature, maximum temperature and minimum
temperature; and the Water Requirement Satisfaction Index (WRSI), derived from the
specific crop (maize) water balance model. The projected maize-yield change is forced
by a regional climate model (RCM) REMO under two emission scenarios: high emission
scenario (RCP8.5) and mid-range emission scenario (RCP4.5). The different effects of
these groups of predictors in projecting the future maize-yield changes were also assessed.
Furthermore, the study analysed the impact of climate change on the global WRSI. The
results indicate that almost 27 % of the interannual variability of maize production of
the entire region is explained by climate variables. The influence of climate predictors on

i



ii Abstract

maize-yield production is more pronounced in West Africa, reaching 55 % in some areas.
The model projection indicates that the maize yield in the entire region is expected to
decrease by the middle of the century under an RCP8.5 emission scenario, and from the
middle of the century to the end of the century, the production will slightly recover but
will remain negative (around -10 %). However, in some regions of East Africa, a slight
increase in maize yield is expected. The maize-yield projection under RCP4.5 remains
relatively unchanged compared to the baseline period (1982-2016). The results further
indicate that large-scale predictors are the most critical drivers of the global year-to-year
maize-yield variability, and ENSO – which is highly correlated with the most important
predictor (PC2) – seems to be the physical process underlying this variability. The effects
of local predictors are more pronounced in the eastern parts of the region. The impact of
the future climate change on WRSI reveals that the availability of maize water is expected
to decrease everywhere, except in some parts of eastern Africa.



Zusammenfassung

Weil die Folgen des Klimawandels die Lebensgrundlagen aller Lebewesen beeinträchtigen,
ist der Klimawandel ein sehr relevantes Thema des 21. Jahrhunderts. Seine negativen
Effekte betreffen bereits viele Sektoren unserer Gesellschaft und die Prognosen zeigen,
dass sich die Auswirkungen des Klimawandels Mitte und Ende dieses Jahrhunderts ver-
schärfen werden. Die Landwirtschaft ist besonders betroffen, denn sie ist sehr abhängig
vom Klima. Da die Landwirtschaft als Hauptnahrungsquelle der Menschen gilt, ist es
erforderlich sich mit den Problemen des Klimawandels rechtzeitig zu beschäftigen, um
in der Zukunft die Ernährung der Menschheit gewährleisten zu können. Viele Forscher
beschäftigen sich mit den Folgen des Klimawandels in der Landwirtschaft. Besonders
in Afrika wurde viel geforscht, weil die Landwirtschaft in Afrika sich technisch schlecht
anpassen kann, um die Schwierigkeiten, die mit dem Klimawandel einhergehen, zu über-
winden. Mehrere Studien wurden durchgeführt, um die Auswirkungen des Klimawan-
dels in Afrika zu bewerten. Aufgrund der unterschiedlichen verwendeten statistischen
Methoden, Modellierungen der Umweltprozesse oder Ertragsdaten sind die Ergebnisse
teilweise kontrovers. Diese Studie versucht, einen wesentlichen Beitrag zum Einfluss
des Klimawandels auf die Landwirtschaft in Westafrika zu leisten, indem sie spezifis-
che Methoden vorschlägt, um das Klima der Zukunft projizieren zu können. Diese Studie
behandelt Maiserträge in den Tropen Afrikas, da Mais dort die wichtigste Nutzpflanze
ist. Um die Auswirkungen des Klimawandels auf den Maisertrag abzuschätzen, wurde
ein Regressionsmodell (aus dem Englischen: robust cross-validated multiple) entwickelt,
das Klimaprädiktoren und Maiserträge koppelt. Diese entwickelte statistische Übertra-
gungsfunktion ist zuverlässiger bei Schwierigkeiten mit der Überanpassung und der Mul-
tikollinearität. Außerdem ist sie auch in der Lage robuste Prädiktoren mit physikalischer
Bedeutung auszuwählen. Deshalb wurden in der Studie großräumige und lokale Prädik-
toren kombiniert. Erstere entstammen der Analyse der Komponenten des monatlichen
Niederschlags und der Temperatur, letztere basieren basieren auf den mittleren und Ex-
tremtemperaturen sowie dem mittleren Niederschlag. Zusätzlich zu den Prädiktoren
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wurde ein Index der Wasserbedarfsdeckung (Water Requirement Satisfaction Index, WRSI)
verwendet, der auf einem Wasserhaushaltsmodell der Nutzpflanzen basiert. Die erwartete
Mais-Ertragsänderung wird mithilfe eines regionalen Klimamodells (RCM) REMO für die
Emissionsszenarien RCP8.5 und RCP4.5 simuliert. Die einzelnen Effekte der Prädiktoren-
Gruppen bei der Prognose der zukünftigen Mais-Ertragsänderungen wurden ebenfalls
bewertet. Darüber hinaus analysierte die Studie die Auswirkungen des Klimawandels
auf den WSRI. Durchschnittlich zeigen die Ergebnisse eine jährliche Maisproduktionsän-
derung von ca. 27 % in der gesamten Region. Diese Änderung, die in Westafrika mit ca.
55 % stärker ausgeprägt ist, ist eine Folge des Klimawandels. Die Simulationen des Mod-
ells anhand von RCP8.5-Emissionsszenario zeigen auch, dass der Maisertrag der gesamten
Region voraussichtlich bis Mitte des Jahrhunderts abnehmen wird. Danach findet eine
geringe Ertragserhöhung statt, die jedoch um ca. 10 % unter der ursprünglichen Menge
liegt. Im Gegensatz zu Westafrika wird in einigen Regionen Ostafrikas wird ein leichter
Anstieg des Maisertrags simuliert. Die Mais-Ertragsprognose für die gesamte Region
mittels RCP4.5 bleibt relativ unverändert im Vergleich zum ursprünglichen Ertrag. Die
Ergebnisse zeigen weiterhin, dass die großräumigen Prädiktoren die wichtigste Rolle bei
den globalen jährlichen Maisertragsschwankungen spielen. ENSO ist stark mit dem
wichtigsten Prädiktor korreliert, was auf den physikalischen Prozess hinweist, der diese
Ertragsänderung erklärt. Die Relevanz der lokalen Prädiktoren ist in den östlichen Re-
gionen Afrikas stärker ausgeprägt. Sie beeinflussen den WRSI, sodass der Maisertrag im
Verhältnis zur Wasserverfügbarkeit voraussichtlich überall abnehmen wird. Ausgenom-
men sind einigen Regionen Ostafrikas.



Résumé

A ce jour, il est clairement établi que le changement climatique est un phénomène évident
sans équivoque qui constitue une problématique majeure du 21ème siècle étant donné ses
revers sur la vie. En effet, il affecte négativement et sensiblement plusieurs secteurs de
notre société et il en sera davantage, et selon plusieurs projections. De ce fait, une em-
phase sur les effets du changement climatique sur le secteur agricole, source principale
de la nourriture, mérite d’être porté car celui-ci est fortement dépendant des variabil-
ités climatiques. Plusieurs chercheurs se sont penchés sur la question, et une attention
considérable a été accordée aux impacts du changement climatique sur l’agriculture en
Afrique, en raison de la grande vulnérabilité du continent, due principalement à sa faible
capacitée d’adaptation. Cependant les résultats s’avèrent parfois controversés à raison
des différences entre les approches statistiques, les modèles climatiques, et les données de
production agricoles utilisés. Cette étude tente d’apporter une contribution substantielle
à ce vaste sujet, en suggérant des prédicteurs climatiques spécifiques. Nous nous sommes
concentrés sur l’Afrique tropicale avec un focus sur la culture du maïs, considérée comme
la plus importante de la région. Pour quantifier l’impact du changement climatique sur
le rendement en maïs en Afrique tropicale, nous avons développé une régression linéaire
multiple à validation croisée, qui connecte les prédicteurs climatiques et à la produc-
tion annuelle du maïs. Le modèle ainsi développé est moins affecté par le surajustement
statistique « overfitting » et la multi-colinéarité, et est capable d’identifier des prédicteurs
robustes ayant une interprétation physique. Nous avons donc combiné : des prédicteurs
à grande échelle, obtenus après l’analyse en composantes principales des précipitations et
des températures mensuelles ; des prédicteurs traditionnels à l’échelle locale, principale-
ment la précipitation moyenne, la température moyenne, la température maximale et la
température minimale ; et les indices de satisfaction des besoins en eau, dérivant du mod-
èle de bilan hydrique des cultures. La projection de la production du maïs a été simulée à
l’aide d’un modèle climatique régional (MCR) REMO sous le scénario d’émission RCP8.5
et RCP4.5. Les effets séparés de groupes de prédicteurs sont également évalués. En plus,
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nous avons analysé l’impact du changement climatique sur l’indice annuelle de satisfac-
tion en besoin en eau. Les résultats de notre étude montrent que les variables climatiques
expliquent en moyenne 27 % de la variabilité interannuelle de la production de maïs dans
la région d’étude entière. Cette une influence des prédicteurs climatiques sur la produc-
tion de maïs est plus prononcée en Afrique de l’Ouest, expliquant plus ou moins 55 % de
sa variabilité. Les projections du model montre également, selon le scénario d’émission
RCP8.5, que la production de maïs devrait diminuer d’ici 2050 et qu’une légère améliora-
tion s’observerait après 2050 jusqu’à la fin du siècle, mais que cette production resterait
toujours en baisse par rapport à la période de référence (environ -10 %) dans la région
entière. Toutefois, dans certaines régions d’Afrique de l’Est, une légère augmentation en
production du maïs est projetée tout le long de la période considérée pour la simulation.
Sous le scenario d’émission RCP4.5, le changement en production du maïs par rapport
à la période de référence (1982-2016) reste relativement inchangé dans toute la région.
Les résultats indiquent en outre, que les prédicteurs à grande échelle contribuent plus à
la variabilité interannuelle du rendement en maïs et ENSO – qui est fortement corrélé
avec le prédicteur le plus important (PC2) - semble être le processus physique majeur
expliquant cette variabilité. Les effets des prédicteurs locaux sont plus ressentis dans les
parties orientales de la région. L’impact du changement climatique sur l’indice annuelle
de satisfaction en besoin en eau révèle que la disponibilité en eau pour le maïs diminuerait
partout dans la région, sauf dans certaines parties de l’Afrique de l’Est.
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1. Introduction

1.1 Motivation and background

Climate change has become unequivocal, and its impacts on environmental, social and
economic sectors are well established. The Intergovernmental Panel on Climate Change’s
(IPCC) Fourth Assessment Report has sufficiently documented – based on in situ mea-
surements – the increasing trends in global air and ocean temperature, the rise of the
global average sea level, the changes in precipitation, and the melting of ice and snow
Bernstein et al. (2008). According to Hartmann et al. (2013), an increase in temperature
of 0.72 ◦C has been observed since 1950. Climate models projected an increase in global
temperature ranging between 0.3 and 4.8 ◦C by the end of the 21st century, according to
emission scenarios (Kirtman et al., 2013).

However, the impacts of climate change are not heavily distributed and depend on the
state of development of a given region. Africa is a continent that is highly vulnerable
to the impacts of climate change, not for its exposure, but mostly for its low adaptation
capacity (Hassan and Nhemachena, 2008; Barros et al., 2014; Sultan and Gaetani, 2016).
Africa’s economy depends on climate-sensitive sectors such as water resource manage-
ment, agriculture, hydroelectricity, forestry and breeding (Masson-Delmotte et al., 2018),
and its population is very poor. According to many studies, the continent has already
been experiencing a trend of increasing temperature, with an accelerated rate over the
last two decades and extreme precipitation events. The average warming increasing rate
was estimated at 0.5 ◦C per century (Jones and Moberg, 2003; Malhi and Wright, 2004;
Trenberth et al., 2007; Christy et al., 2009). In opposite to the temperature, the direc-
tion of change in precipitation is still controversial, but, on average, precipitation has
decreased during the 20th century. Frequent droughts were observed in southern Africa,
Sahel and the Horn of Africa (Kotir, 2011). Severe droughts in West Africa have been re-
ported since 1960 (Nicholson and Selato, 2000). According to Diem et al. (2014), tropical
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Africa have been much affected by drought compared to other tropical regions. However,
some areas such as East Africa make exceptions, where wetting precipitation regimes
have been observed (Kotir, 2011).

The observed negative impacts of climate change are likely to propagate and worsen in
the future. In Africa, climate models indicate an average temperature increase of 2 to 4.5
◦C (1.7 times more than the global average) by the end of the century (Engelbrecht et al.,
2015). The reduction of precipitation is expected in the south-east of Africa (Kotir, 2011).
Hulme et al. (2001) reported that precipitation in West Africa is expected to decrease.
However, these results may vary according to climate models and emission scenarios.
As considered to be highly influenced climate change, especially in African countries,
agriculture is likely to be drastically affected by the future climate trend.

Climate change poses challenges and opportunities for agricultural production and food
security across the world (Tao et al., 2014): an opportunity for the production of C3 crops
because they are likely to increase with additional CO2 concentration in the atmosphere;
a challenge for C4 crops such as maize because the effects of CO2 are limited. Despite this
controversy, the impact of climate change on crop yields in Africa is generally negative.
Crop yield loss for the next decades across Africa have been predicted by several studies,
but the magnitude of such a change remains uncertain (Roudier et al., 2011; Knox et al.,
2012; Sultan and Gaetani, 2016). A meta-analysis study conducted by Knox et al. (2012)
indicated that climate change was likely to reduce the yield production across Africa by
8 % by 2050. Compared to the rest of the world, agricultural production in Africa over
the last 50 years has very much declined (Kotir, 2011). The impact of climate change on
crop yield should be given more attention because the continent has already faced other
challenges such as low irrigation, lack of fertilisers and low investments, all of which do
not favour improving food security in the region.

Among crops, maize is the most cultivated crop and the largest contributor to the total
value of staple crop production in Africa (Schlenker and Lobell, 2010). The production of
maize in Africa depends on precipitation because farmers cannot afford fertilisers, imple-
ment irrigation schemes or adopt adequate technologies. As a result, maize production
is vulnerable to climate change/variability (Shi and Tao, 2014), and its production is
very low compared to other tropical regions. Cairns et al. (2013); Ngoma et al. (2019);
Masasi and Ng’ombe (2019) have observed low production of maize in Sub-Saharan Africa
(SSA) and attributed it to drought stress rather than poor irrigation schemes, pests, soil
fertility, diseases or weeds. According to Amondo and Simtowe (2018), almost 70–80 %

of maize loss in SSA is due to floods and drought. Numerous studies have projected a
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negative impact of climate change on maize yield (Müller et al., 2011; Cairns et al., 2013;
Tesfaye et al., 2015; Mulenga et al., 2017; Amadu et al., 2020). As predicted by the Paris
Agreement, an increase in temperature of 2◦C will shorten the maize growing season and
decrease its production in Africa.

Different methods have been suggested to study the impact of climate change on crop
production on various spatial scales. This includes statistical analysis based on histor-
ical climate and crop yield data (Lobell and Field, 2007; Schlenker and Roberts, 2009;
Blanc, 2012; Blanc and Strobl, 2013) and process-based crop simulation (Alexandrov and
Hoogenboom, 2000; Butt et al., 2005; Deryng et al., 2014; Rosenzweig et al., 2014; Fal-
connier et al., 2020). Process-based crop simulation provides satisfactory results when
crop parameters are well-calibrated, but this is not the case in tropical Africa (Lobell
and Burke, 2010). The statistical approach offers an opportunity to relate crop yield
datasets to climate predictors and it usually outperforms the process-based model on
larger spatial scales (Lobell and Burke, 2010). However, it cannot integrate adaptation
options and requires a dense and good quality climate observational dataset. For its
implementation, local climate variables, such as mean precipitation, mean temperature,
maximum temperature and minimum temperature, are mostly used, as predictors. Still,
they are often prone to bias, especially in tropical Africa, where stations are scarce and
RCMs do not reproduce small-scale processes very well. To reduce uncertainties related
to the poor local climate variable quality in Africa, Awoye et al. (2017) successfully in-
troduced large-scale climate variables to model the impact of climate change on many
crop yields in Benin. The results were highly satisfactory, because large-scale variables
represent large-scale processes, which are less prone to bias. In the same optic of im-
proving crop yield response to climate change/variability, recent studies have tried to
combine the advantages of both modelling approaches (Roberts et al., 2013; Urban et al.,
2015; Blanc, 2017; Roberts et al., 2017). This approach benefitted from the capabilities
of processed-based models while preserving the advantages of statistical models (Blanc,
2017). Roberts et al. (2017) reported that the combined approach was substantially bet-
ter than those produced by each model separately. These results have been confirmed by
Blanc (2017) using a global crop yield dataset.

In this respect, the statistical transfer function developed in this study is based on the
combination of predictors, which are on the cutting edge of statistical crop yield mod-
elling: traditional local-scale predictors; large-scale predictors (Awoye et al., 2017); and
processed-predictors, based on the Water Requirement Satisfaction Index (WRSI) of dif-
ferent growing seasons. WRSI is an indicator of specific crop performance (McNally et al.,
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2015), generated from a crop water balance model. WRSI has been widely used by inter-
nal organisations, such as the European Commission’s Joint Research Centre, the Food
and Agriculture Organization (FAO), and the US Agency for International Development,
to monitor food security and develop early warning systems in Africa (Tarnavsky et al.,
2018). In addition to being used as simple variables in the statistical model, we also fur-
ther analyse the impact of climate change on the annual WRSI to understand the future
availability of maize water in topical Africa. To our knowledge, no previous studies have
combined these types of predictors in modelling crop production.

1.2 Problem statement

The projected impacts of climate change on crop yields is severe in tropical Africa be-
cause of the conditions prevailing in tropical Africa, dominated by a high population
growth rate, poverty, and a high prevalence of malnourishment. According to Ravallion
(2012), the population of tropical Africa lives on less than $ 1.25 a day. The number of
malnourished people has gone from 173 million in 1990–1992 to 213 million in 2014–2016,
representing 23.3 % of its total population (Von Braun, 2007). Other international or-
ganisations, such as The Economic Research Service of the US Agency for International
Development – as cited by Tian and Yu (2019) – approximate that 301 million people (31
%) living in tropical Africa were exposed to food insecurity. Women and children under
the age of five years are most likely to have poor nutritional status. For example, in the
Democratic Republic of the Congo, 43 % of the children under five are stunted (chronic
malnutrition). The high prevalence of malnourishment could be explained by armed
conflicts, land tenure insecurity, the affectation of land demand for non-agricultural use,
poverty, natural disasters, water scarcity, low investment in agriculture, degraded land
and limit agricultural infrastructure (Lynd and Woods, 2011; Schwan and Yu, 2018).
The trend of agriculture production has almost quadrupled between 1961 and 2014. Still
its impact on food security has been alleviated by high population growth, resulting in
the decline of food production per capita. Many published papers have addressed the
connection between climate and crop yield across tropical Africa, but these investigations
are mostly limited to sub-national and national levels. There is little insight into the
impacts of climate change on crop yield on a global level. Therefore, this study analyses
how climate variables are related to maize crop yield and how this relationship will hold
in the future. The results will be helpful in improving the resilience of the agriculture
sector.
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1.3 Research Objectives

The main objective of this research is to predict the impact of future climate change
on maize yield in tropical Africa by using cross-regression, which relates present-day
local (process-based and traditional) and large-scale predictors to the observed maize
yield dataset. This research is possible only if two major hypothesis stands: (1) climate
variability and changes are only responsible for the maize yield changes and all other
improving factors are controlled after removing the linear trend from the crop and climate
variables datasets; and (2) the causes of present-day climate variables in the simulated
climate model do not change in the future. Specific Objectives assigned of this study are:

• To develop a statistical crop model that relates maize yield to climate variables

• To understand which group of variables – those related to large scale climate telecon-
nection, those related to traditional local variables (precipitation and temperature)
or those related to the basic process-based crop models – best estimate the year-to-
year maize yield variability in tropical Africa and how they are likely to influence
the future maize yield changes

• To evaluate how different climate scenario influence the future maize yield change

• To evaluation a range of statistical model averagings the climate-maize yield rela-
tionship

• To quantify the impact of future climate change on the global WRSI

1.4 Structure of the thesis

This work is structured into nine chapters. The first chapter presents the motivation,
background, and objectives of the research. The second chapter reviews the state-of-
the-art of the impact of climate change on agriculture production, particularly in the
context of tropical Africa. Relevant concepts related to climate change and agriculture
interaction are discussed in this chapter. The third chapter describes the characteristics
of the study areas. The fourth chapter presents the sources of both observational and
modelled datasets used in this study. The fifth, the sixth and the seventh chapters
deal with the mythology used to obtain the results. The eighth chapter presents the
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major results of the study related to maize yield modelling. Finally, the discussion and
recommendations are presented in the last chapter.



2. Climate change impacts on agriculture in tropical
Africa

This chapter presents recent and relevant literature on the impact of climate change on
crop yield and essential concepts related to the climate-agriculture nexus. We address
climate emission scenarios in the first section. The second and third sections discuss cli-
mate model downscaling and bias correction. In the fourth section, we reviewed different
methods of modelling the impact of climate change on crop yield. In the fifth and sixth
sections, we present climate change and its impact on crop yield in Africa in general and
tropical Africa in particular.

2.1 Climate change emission scenarios

Climate change scenarios describe different pathways of how the future climate will re-
spond to the rate of economic growth, demographic changes, emissions of greenhouse
gases, aerosols, environmental and technological conditions and energy (Van Vuuren et al.,
2011). Emission scenarios provide ideas about the fingerprints of anthropogenic activi-
ties on climate change. Therefore, they serve as inputs into climate models to achieve
radiative forcing pathways to project changes and better understand uncertainties in
mitigation and adaptation efforts. There are many published climate scenarios from dif-
ferent scientists and organisations (Carter et al., 2007). Those developed or approved
by the IPCC are commonly used and include the scientific assessment emission scenarios
developed in 1990 (SA90), the six IPCC Scenarios developed in 1992 (IS92) (Change,
1992), the Special Report on Emission Scenarios (SRES) (Nakicenovic et al., 2000) and
the representative concentration pathways (RCPs) (Van Vuuren et al., 2011).

Regarding the history of the climate emission scenarios approved by the IPCC, the SA90
was the first climate emission scenario implemented in 1990. It was based on four emis-

7
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sions scenarios and later completed by IS92, which incorporates economic growth, popula-
tion and technology uncertainties. Then came the SRES climate emission scenario, which
improved the previous version by covering more representative drivers of future emissions,
demographic development and economic and technological progress (Nakicenovic et al.,
2000). Many modelling teams developped SERES, which is composed of 40 scenarios,
grouped in four main storylines, A1, A2, B1 and B2. Each storyline describes a specific
demographic, social, economic, technological and environmental pathway. The quantifi-
cation of storylines allows scientists to estimate greenhouse gases. SERES scenarios were
used in phase three of the coupled model intercomparison project (CMIP3).

The need to develop RCPs comes from the lack of policy actions to mitigate climate
change in previous emissions scenarios. RCPs contain emission, concentration and land-
use trajectories and have been used in phase five of the coupled model intercomparison
project (CMIP5). They cover many scenarios – which can be updated at any time –
published in peer-reviewed literature. These scenarios are assembled in four groups, each
corresponding to a specific radiative forcing pathway: RCP 2.6, RCP 4.5, RCP 6.5 and
RCP 8.5. RCP 2.6 has a peak in radiative forcing at almost 3W/m2 before the end of the
century (2100) and declines to 2.6 by the end of the century (Van Vuuren et al., 2011).
RCP 4.5 and RCP 6.5 are considered stabilisation scenarios. RCP 4.5 has a pathway of
4.5 W/m2and is close to SRES B1 (Wise et al., 2009). RCP 6.5 has stabilisation pathway
at 6 W/m2 and is close to SRES B2 (Wise et al., 2009). Finally, RCP 8.5 is a very high
scenario pathway stabilised at 8.5 W/m2 and close to SRESA1FI (Riahi et al., 2007).

More recently, the new generations of climate emission scenarios have been released for
phase six of the coupled model intercomparison project (CMIP6), named the shared
socioeconomic pathways (SSPs)(Gidden et al., 2019). These scenarios explore a large
number of end-of-century radiative forcing values, ranging from 1.9 to 8.5 W/m2, and
four of them are based on the forcing levels of 2.6, 4.5, 6.5 and 8.5 W/m2, a kind of
updated version of the RCPs. One scenario has the forcing level of 1.9 W/m2, which
corresponds to the objectives of the Paris Agreement on climate change. Finally, the
overshoot scenario exhibits a forcing peak and a reduction at the end of the century
(3.4 W/m2). SSPs are suitable to analyse warming pathways by which realistic climate
outcomes may be reached. Advanced details on how SSPs have been built are provided
by Gidden et al. (2019).
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2.2 Climate model downscaling

GCMs (General Circulation Models) have helped to understand the climate system for a
long time and have proven the ability to capture certain aspects of the climate system,
such as the long-term precipitation trend on a global scale (Fotso-Nguemo et al., 2017a).
However, they are limited in representing regional- and local-scale climate processes be-
cause of their coarse spatial resolution. Therefore, they are not suitable for direct use
in adaptation planning and climate impact studies. In Africa, for example, GCMs have
failed to represent the African easterly jet (Cook, 1999) and tropical easterly jet (Nichol-
son and Grist, 2003), which are important climate features of tropical African regions.
Scientists have been attempting to increase the spatial resolution of GCMs to simulate
local and regional processes despite of the high computational of GCMs. Climate model
downscaling techniques that bring complementary information to GCMs are applied to
bridge this information gap. These techniques are twofold: statistical and dynamical.

Giorgi et al. (2001) identified two categories of climate dynamical downscaling meth-
ods: high-resolution atmospheric GCMs (McGregor, 2015) and Regional Climate Models
(RCMs). High-resolution atmospheric GCMs use information derived only from the at-
mosphere. They are therefore considered as recent versions of GCMs. In the last three
decades, scientists have been promoting RCMs because they are less computationally
demanding. RCMs are run in a limited area and use the initial boundary condition and
Sea Surface Temperature (SST) of either GCMs or global reanalysis (perfect boundary
condition) (Giorgi and Gutowski Jr, 2015). They have shown remarkable ability in im-
proving many climate variables than GCMs by capturing local, regional and mesoscale
processes, such as sea breeze, mesoscale convective systems, tropical storms (Prein et al.,
2015), soil moisture-precipitation interaction (Taylor et al., 2013) and tropical convection
(Hart et al., 2018). Di Luca et al. (2015) and Rummukainen (2016) have provided further
advantages of RCMs. In Africa, RCMs from the coordinated regional climate downscaling
experiment (CORDEX) – the most important framework of RCMs – have demonstrated
more improvement than GCMs in the simulation of the precipitation seasonal mean and
annual cycle (Klutse et al., 2016) and extreme events (Dosio et al., 2015). In some cases
the sign of future climate change of both RCMs and GCMs may be opposite (Teichmann
et al., 2013; Dosio and Panitz, 2016). The climate variability within the nested domain
of the RCMs can explain this. Dosio and Panitz (2016) observed a robust decrease of
mean precipitation over the highlands of Ethiopia using CORDEX RCMs, while most of
the GMCs indicated an increase. Furthermore, Dosio and Panitz (2016) reported oppo-
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site signs between GCMs and CORDEX RCMs in projecting precipitation over Central
Africa.

In contrast, statistical downscaling methods relate GCM predictors (i.e. mean sea level
pressure field) to local predictands (i.e. temperature and precipitation) through a statis-
tical transfer function (Maraun et al., 2019). The transfer function will then be applied
to the outputs of GCMs (Maraun et al., 2019). There is no unanimity in classifying
statistical downscaling methods. Schoof (2013) classified them into four groups: scaling
methods, regression-based approaches, weather-pattern-based approaches and weather
generators. Maraun et al. (2019) preferred three groups: the perfect prog, model output
statistics (MOS) and the weather generator. The perfect prog model relates the observed
predictand and predictors (from the reanalysis) in a regression model, which can be linear
or non-linear, such as artificial neural networks. The regression model is then applied to
the projection of the predictors as simulated by GCMs to generate future projections.
MOS is similar to perfect prog, but the calibration is between the observed predictand
and simulated predictors from climate models. Weather generators are stochastic mod-
els that explicitly model at least the marginal and temporal aspects of a meteorological
variable, often even the relationships between a set of variables and sometimes also spa-
tial dependence. Many authors have reviewed different statistical downscaling methods
(Giorgi et al., 2001; Benestad, 2004; Benestad et al., 2016).

In general, statistical downscaling methods are preferred by many users because of their
low computational requirements, simplification, effectiveness and fast calculation (Zhang
et al., 2020). However, they are limited to a set of variables and require consistent
meteorological observation. The advantage of dynamical downscaling methods is that
they provide a good representation of local-scale climate dynamical processes (including
feedbacks), especially when there are not enough observational data.

2.3 Climate model bias correction

Despite the effort of improving GCMs, RCMs are still prone to significant systematic
biases (Christensen et al., 2008; Teutschbein and Seibert, 2010). It is also complicated
to directly apply them in climate change impact studies, which mostly require absolute
values of the variables. The source of these biases partially comes from the boundary
conditions of GCMs (Rummukainen, 2010; Hall, 2014; Giorgi and Gutowski Jr, 2015),
model parameterisations (i.e. convention parameterisations), land surface schemes and
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the internal variability of RCMs (Teutschbein and Seibert, 2012). Fotso-Nguemo et al.
(2017b) found a positive bias of the REMO in modelling precipitation over southern
Cameroon, Equatorial Guinea and Gabon. The Swedish regional climate model also ex-
hibited the dominance of systematic biases over Central Africa (Tamoffo et al., 2019a).
In this respect, statistical post-processing, commonly known as bias correction, is there-
fore important. Statistical bias correction can also be applied directly to GCMs (Ahmed
et al., 2013).

Bias correction is defined as a systematic difference between the modelled climate vari-
ables of the climate system and the corresponding observed ones (Maraun et al., 2017).
It is based on the assumption of stationarity: the causes of bias remain invariant in
the future (Maraun, 2016). Several bias corrections have been developed (Chen et al.,
2011; Johnson and Sharma, 2012; Teutschbein and Seibert, 2012). They are categorised
according to the statistics they attempt to improve: mean, standard deviation, long-
term trend and/or distribution. Teutschbein and Seibert (2012) enumerated some of the
methods of bias correction: linear scaling (Lenderink et al., 2007), local intensity scal-
ing, power transformation (Leander and Buishand, 2007), variance scaling (Chen et al.,
2011), distribution, quantile or probability mapping (Sennikovs and Bethers, 2009) and
delta-change correction (Moore et al., 2008). MOS is also used in climate bias correction
(Leander and Buishand, 2007; Dobler and Ahrens, 2008; Piani et al., 2010). The quantile
mapping technique yields better results (Piani et al., 2010; Rojas et al., 2011). Quantile
mapping is a widely used bias correction method, especially when dealing with stochastic
variables, such as precipitation and solar radiation (Smith et al., 2014). Sangelantoni
et al. (2019) and (Themeßl et al., 2012) demonstrated that the quantile mapping tech-
nique outperforms all variants of MOS in correcting the daily precipitation. Therefore,
we adopt quantile mapping in our study.

2.4 Climate change in tropical Africa

Like in other regions of the world, tropical Africa is also vulnerable to the impacts of
climate change. The temperature has increased in the past and is likely to increase in the
whole region. Field and Barros (2014) observed an average temperature increase of 0.5
◦C and projected an increase exceeding 2 and 4 ◦C by the end of the century in Africa.
Porter et al. (2014) also estimated an increase in the temperature in tropical Africa of 1
to 4 ◦C in the period 2081–2100 relative to 1986–2005. This is similar to Aloysius et al.
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(2016) study, who projected an annual temperature increase of between 2 and 4 ◦C at the
end of the twenty-first century by using 25 CMIP5 GCMs. Fotso-Nguemo et al. (2017b)
used REMO and projected an increase of 5 ◦C in the northern part of Central Africa
under the RCP 8.5 scenario. The temperature exhibited a southward gradient. Adhikari
et al. (2018) projected an increase in median temperature of 1.5 to 5. 5 ◦C by the end
of the century for SSA. The most recent study based on CMIP6 indicated an increase
of 3.5 ◦C over the central east of Africa under the shared socioeconomic pathways 8.5
(SSP-8.5). Drought is also reported to increase in tropical Africa. Gidden et al. (2019)
reported a drier condition in both the south and west of tropical Africa, while the east
of tropical Africa is expected to be wetter. No significant changes in drought condition
have been reported in the central region.

The direction of change in precipitation in response to climate change is still uncertain in
SSA. A general increase in mean precipitation of between 2 and 20 % has been reported by
Adhikari et al. (2018) over the whole region of tropical Africa, but with a significant level
of uncertainty. At the subregional level, the majority of climate models have projected
a substantial reduction in precipitation in the eastern and western Sahel regions and an
increase in the east and south regions of Africa (Engelbrecht et al., 2015; Field and Barros,
2014). In eastern Africa, the precipitation is projected to increase by 5 to 75 % by the
end of the century, as indicated by Sillmann et al. (2013). Shongwe et al. (2011) found
that the wetter conditions in Eastern Africa were accompanied by less severe drought and
intense precipitation during the rainy season. Persistent flood events have been projected
in Eastern Africa (Shongwe et al., 2011; Field and Barros, 2014). Shongwe et al. (2011)
analysed 12 GCMs and found an increase in precipitation intensity over East Africa. The
magnitude of change between -9 to 27 % has been reported by Aloysius et al. (2016). In
tropical West Africa, Sillmann et al. (2013) reported a decrease in the mean precipitation
by 15 % , but with a significant uncertainty level. However, the frequency of extreme
precipitation days is likely to increase in West Africa (Field and Barros, 2014; Vizy
and Cook, 2012). The uncertainties of precipitation projection are more pronounced in
Equatorial Africa because of missing observation data. Dunning et al. (2018) found no
change in precipitation, like Haensler et al. (2013) study. However, Almazroui et al.
(2020) indicated an increase in mean precipitation by the end of the century. Collins
et al. (2013) also reported increased precipitation across central equatorial Africa during
boreal winter, particularly in the east of the region. Fotso-Nguemo et al. (2017b) used
20 GCMs to assess the impact of climate change on extreme precipitation over Central
Africa. They found an increasing trend of extreme precipitation in the Great Lakes areas,
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northern Zambia, southern Chad and northern Cameroon. New et al. (2006) also reported
an increase in extreme precipitation in the western and southern parts of tropical Central
Africa. Sonkoué et al. (2019) found that the total wet-day precipitation has scientifically
increased during boreal winter over Central Africa. They further reported the same
trend in March–May. Haensler et al. (2013) combined global and regional datasets under
different emission scenarios to assess the impact of climate change over Africa. They found
that the intensity of extreme precipitation and the number of wet-day-spells during the
rainy season are expected to change. Saeed et al. (2018) found that the length of the
rainy season was significantly lower in tropical Africa and much more pronounced in the
east, reaching 27 % .

2.5 Methods of assessing climate change impacts on
crop yields

The impacts of climate change on crop yields are commonly assessed using three ap-
proaches: process-based models, the Ricardian model, and time series statistical models.
The process-based approach uses the physiological processes (assimilation of carbon and
nutrients, transpiration) – at every stage of crop growth – that govern crop growth to
model the production of crops (Roudier et al., 2011; Lobell and Asseng, 2017). Addi-
tional information of the model comes from weather, crop management, soil properties
and plant genetics. While Ricardian and time series statistical methods are based on
empirical observations. Statistical time series models relate time series climate variables
to time series observational crop yield data. Observational crop yield data often come
from national statistical surveys, field measurements and surveys. The difference between
the ricardian and time series statistical models is that ricardian model is cross-sectional
and relates climate variables to the net income of farming systems.

The impact of climate variables as assessed by statistical and process-based methods does
not substantially differ in most literature. Lobell and Asseng (2017) found almost no
difference between both methods when using temperature to predict crop yield. Roudier
et al. (2011), Knox et al. (2012) and Knox et al. (2016) also found that both methods
yield approximately similar results. This could be explained by the fact that process-
based models are developed from empirical observation, and climate variables used in
statistical models are mostly those selected in process-based experiments. For example,
it is more realistic to choose climate predictors that match the crop growing season and
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connect to the crop growth process. A recent study has tried to use statistical models to
emulate maize yield derived from process-based models (Blanc and Sultan, 2015). The
study concluded that statistical crop models could predict the in- and out-of-sample crop
yields generated by process-based models with high precision. The result was further
confirmed by Blanc (2017), who even extended it to five crop models and four crops (rice,
maize, soybean, and wheat).

However, despite this close connection between the two models, the scientific community
prefers the statistical approach because it is cost-effective and easy to calibrate and vali-
date (Roudier et al., 2011; Knox et al., 2016). Calibration of statistical models does not
need additional fieldwork, for example. The use of statistical approaches is also facilitated
by the increasing amount of weather and crop yield data. Furthermore, the statistical
approach can be established directly on a large scale by using aggregate data (Roudier
et al., 2011). The disadvantage of process-based models is that they are expensive to
implement and require many parameters for their calibration, mostly in a specific region;
thus, the parameters may differ for different varieties of the same crop. Additionally, it is
challenging to model many other important processes, such as the influence of pesticides
and insects. Consequently, extrapolation is not suitable. Like process-based models,
statistical methods also have some limitations. They are criticised as being pessimistic
by projecting large negative results (Schlenker and Roberts, 2009) and cannot explain
the process underlying the crop yield. Furthermore, they do not consider climate change
adaptation (Lobell et al., 2011) and assume that the relationship between past crop yields
and climate variables will remain the same in the future (Lobell and Burke, 2009). Many
other authers have described both the advantages and disadvantages of time series statis-
tical and process-based models (Lobell and Field, 2007; Tao et al., 2008). A recent study
conducted by Roberts et al. (2017) tried to combine the advantages of both methods.
The result was substantially better than those produced by each model separately. This
innovative approach opens doors to future research.

2.6 Impact of climate change on crop yield in tropical
Africa

It is more than evident that climate change and variability have a significant impact on
crop production. According to the IPCC report, climate change over the last 30 years
has already reduced global crop production in the range of 3 to 15 %; cereals such as



2.6 - Impact of climate change on crop yield in tropical Africa 15

rice and maize are mostly affected (Porter et al., 2014). Globally, crop production will
likely to decrease, even for the most ecological climate scenario as agreed in the recent
Paris Agreement (Challinor et al., 2014). In SSA, the impact of climate change on crop
yields is generally negative (Lobell et al., 2008; Field and Barros, 2014; Conway et al.,
2015; Sultan and Gaetani, 2016). However, some non cereal crops are likely to benefit
from future climate change impacts. The production of cassava, for example, is expected
to increase in both Central and Eastern Africa, according to Adejuwon (2006).

For the whole continent of Africa, Knox et al. (2012) estimated that future climate change
would significantly reduce the production of maize, sorghum and millet, while cassava and
rice would remind unchanged. Bean yields in most of the African regions are projected
to decrease (Lobell et al., 2008; Thornton et al., 2009, 2011), and wheat yield is projected
to decrease by 35 % in SSA (Nelson et al., 2009).

In tropical Africa, the western region seems to be most affected. The yield of maize is
projected to decrease between 20 and 40 % by 2050 under the RCP 8.5 scenario (Challinor
et al., 2014).Roudier et al. (2011) reported that crop yields would decrease, on average,
by 11 % in the northern of West part of the tropical Africa. Sultan et al. (2014) also found
that cereal yields would decrease by 10 % in the middle of the century. However, it is
important to mention that, as the region is projected to receive abundant precipitation, an
increase in some crop yields is expected. Adejuwon (2006) has already reported a possible
increase of cereal and cassava yields in Nigeria by the end of 2050 and a flattening of the
curve until 2100. According to some studies, the production of peanuts is also expected
to increase(Tingem and Rivington, 2009; Dube et al., 2013). However, other scientists
have also reported negative impacts of climate change on peanut production (Schlenker
and Lobell, 2010; Lobell et al., 2008).

In East Africa, the impact is not always negative. In Kenya, for example, Rosenzweig
et al. (2014) has projected changes in maize yield in the order of 5 %. This is partially
explained by the warming of the highlands in Eastern Africa. In contrast, more recently,
Davenport et al. (2018) found that maize yield will be reduced by 8 % . In the same vein,
Adhikari et al. (2018) reported that the impact of climate change on food projection was
largely negative in the east of tropical Africa; millet yield was projected to reduce by 72
% and maize, rice and soybean yield by almost 45 %.



3. Study area

This chapter describes the socio-economical and biophysical characteristics of the study
area. This includes its location, relief, hydrology, population, agriculture, climate, vege-
tation, geology and soil.

3.1 Study location, relief and hydrography

This study was conducted in tropical Africa between 20◦ north and 20◦ south, and 20◦

west and 53◦ west (Figure 3.1). To better understand the characteristics of the study
region. We spitted the entire region into three sub-regions: tropical East Africa, tropical
Central Africa and tropical West Africa.

Tropical East Africa is characterised by elevation gradients and highly diverse topograph-
ical environments. In the same region, can be found a point of 153 m below the mean sea
level (Lake Assail in Djibouti) and a point of 5,895 m above the mean sea level (Mount
Kilimanjaro in Tanzania). A continuous north–south barrier of highlands emerges from
the Red Sea to southern Tanzania. This includes the Ethiopian massif, considered the
largest highland in Africa, with more than half of its land at 1500 m above sea level. In
the southern of the Ethiopian massif lie two other highlands: the Kenyan highlands and
the Rift mountains. The Kenyan highlands are in the extreme east and have an average
elevation of 1500 to 2500 m. The Kenyan highlands are dominated by two mountains:
Mount Kilimanjaro and Mount Kenya (5,199 m). To the west of the Kenyan highlands
lie the Rift mountains, which run from western Uganda to southern Tanzania, with the
Rwenzori mountains as the highest point. Between the Kenyan highlands and the Rwen-
zori mountains is located the Victoria Lake, the second largest lake in the world. Several
other lakes are located in the region: Lake Abbe and Lake Abaya in the Ethiopian Rift
valley; Lake Turkana, Lake Natron and Lake Eyasi in the eastern Rift; Lake Albert (5,300
km), Lake Edward, Lake Kivu, Lake Tanganyika (32,900 km) and Lake Rukwa in the
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western Rift; and finally, Lake Malawi (or Nyassa, 29,600 km) to the south. In the north
of tropical Eastern Africa, precisely in South Sudan, lies the White Nile river. Central
tropical Africa is dominated by the Congo Basin lowlands. The average elevation of the
region is 500 m. The region is surrounded by the East Africa highlands, the Cameroon
highlands and the southern highlands. The Democratic Republic of the Congo is the
largest country in these regions. Other countries can also be enumerated as part of the
region: the Republic of Congo, Angola, Gabon, Central African Republic and Cameroon
(Camberlin, 2018; Shanahan, 2018).

Figure 3.1: Location map of the study area, showing terrain (shading: altitude in
meters above mean sea level), some water bodies and the country boundaries. The blue
dashed lines indicate the regions where datasets (climate and crop yields) have been
extracted

The relief of tropical West Africa is relatively high, compared to tropical Central Africa,
but lower than Eastern Africa. The region is dominated by Guinea highlands, Jos plateau
of northern Nigeria and Darfur in the Sudan. Further in the extreme south lie Adamawa
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Mountains of Cameroon, which reach over 3000 m. Senegal and Niger are the longest
rivers of the region. There are three other rivers: Bani, Ubangi, and Chari. Lake Chad
is the most important lake in the region and has been, for a long time, affected by the
impacts of climate change (Camberlin, 2018; Shanahan, 2018).

3.2 Population and agriculture in tropical Africa

As part of the SSA, Tropical Africa is among the poorest regions of the world, where
almost 48 % of the estimated population live on less than $ 1.25 a day. In 2013, more
than half of the world’s extreme poor were in SSA (Anyanwu et al., 2017). This rate
is alarming because two decades before (1990), this rate was only 15 %. According
to the statistics of the World Bank, the number of people living in extreme poverty is
projected to increase in the future if no serious measures are undertaken. Furthermore,
the population growth, which is likely to influence the poverty rate in Africa, is also
projected to double by 2050 (with 2004 taken as the reference) and reach two billion by
the end of the century. To comply with this poverty rate and the population growth
dynamic, crop production must be multiplied by a factor of five, as estimated by the UN
(2012).

Considered as the principal source of income in SSA, almost 65 % of the population prac-
tice agriculture and contribute to the country’s national gross domestic product (Raval-
lion, 2012). The agriculture sector is dominated by small-scale farmers who have limited
financial resources.For example, in the east of tropical Africa, small-scale farmers con-
tribute up to 90 % of the agricultural production (Salami et al., 2010). The crop yield has
been increasing over the years, but there are still many challenges to address (Chauvin
et al., 2012). Agriculture is still rainfed (sensitive to climate variability) and charac-
terised by low productivity, lack of irrigation and limited access of fertilizers (Chauvin
et al., 2012). Moreover, agriculture is not a priority for many countries’ political agendas,
resulting in less investment by the private and public sectors (Hoeffler, 2011). All these
factors make it vulnerable to the impact of climate change. According to the World Bank,
only 4 % of cultivated land is irrigated in SSA and less than 20 % of the fertilizers are
applied in SSA (OECD/FAO, 2016). The impact of climate variability on agriculture is
already perceptible. In 2015, the occurrence of El Niño was accompanied by extreme dry
conditions in Eastern and Southern Africa, resulting in crop yield depletion, especially in
Ethiopia, where the lowest annual precipitation was recorded since 1985.
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Regarding types of crops, cereals (millet, maize, sorghum and wheat), as the main source
of energy, are largely produced in SSA. Their production will rise by 41 Mt, relative to
the 2013–2015 base period. The maize cropping system itself covers 27 % of the total
cultivated land for cereal and represents 34 % of the total crop production in SSA. Fur-
thermore, it has been considered as the most consumed cereal and cultivated staple food
in humid tropical Africa because of its protein and calories. According to OECD/FAO
(2016), the production of maize accounts for 40% and 70% of total cereal consumption
and total maize demand respectively. In adequate precitation areas, maize produces
larger yields than any other cereal. However, even in drier areas, where yields are more
variable, maize is often planted for its higher quality compared to sorghum or millet and
because it can be eaten green if necessary (Winch, 2006). The consumption of millet
prevails in drier tropical Africa. Rice production has increased more than any cereal
in SSA because of its ease of conservation and preparation and its ability to adapt to
diverse environments: upland rice, lowland rainfed rice, mangrove swamp rice, floating
rice and irrigated rice. Consumption and production are projected to increase by 18 %

and 20Mt, respectively (OECD/FAO, 2016). Wheat is the cereal produced least in SSA;
it represents only 5% of cereal production. The statistics of other groups of foods and
crops (roots, tubers, oilseeds, pulses, cotton, sugar, biofuels, meat, eggs, fish, dairy, fruit
and beverage crops) are provided by (OECD/FAO, 2016).

3.3 Climate of tropical Africa

Unlike other regions of the world, such as North America, Europe and Asia, the tem-
perature amplitude of the African tropical region, in general, is not fluctuating. The
variability of the tropical African climate is explained by the movement of air masses, the
relative stability and the difference in air moisture (Balek, 2011). These air masses inter-
sect in the intertropical convergence zone (ITCZ), which is the most important weather
feature of intra-annual precipitation fluctuation in tropical Africa. In Central Africa, the
ITCZ reaches the northernmost position in July and the southernmost position in Jan-
uary. The phenomenon of air mass displacement is extensively described by Nicholson
(2019).

The climate of West Africa and equatorial Africa is further influenced by the upper-
level tropical easterly jet, the low-level westerly winds and the South and North African
easterly jets. These three jets are associated with precipitation (Nicholson and Grist,
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2003; Nicholson and Dezfuli, 2013; Nicholson, 2017). The West African monsoon is also a
major climate feature that affects the precipitation in West Africa and equatorial Africa,
where it coincides with the ITCZ (Nicholson, 2018). The effect of the West African
monsoon does not reach East Africa because it is blocked by the East African highlands.
According to Nicholson (2019), the precipitation in West Africa has a strong connection
with the Atlantic Multi-decadal Oscillation. At the local level, precipitation in West and
Central Africa is driven by mesoscale convective systems, larger cumulonimbus clouds
that propagate westward. They explain up to 50 % of the precipitation in Africa, 90
% in West Africa and 85 % in equatorial Africa (Nesbitt et al., 2006). In East Africa,
the general circulation is also influenced by the presence of the tropical easterly jet and
the Somalian jet, and the effect of the ITCZ is diffused. In addition to the tropical
jet, the Somalian and the low-level Turkana jets play an important role in precipitation
variability (Nicholson, 2017). The El Niño-Southern Oscillation (ENSO) and the Indian
Ocean dipole (IOD) also highly affect the region. Because of the topography of the region,
the climate of the region is highly influenced by local features such as the Turkana jets,
mountains and lakes.

According to the Köppen climate classification, considered the most widely used in the
world, tropical Africa experiences four types of climate: tropical humid climate (Af
and Am), tropical wet and dry climate (Aw), highland climate and dry climate. The
tropical humid climate forms a belt less than 20 degrees wide across the Equator. It
is characterised by the absence of winter and abundant precipitation accompanied by
thunderstorms. The annual precipitation lies between 1750 and 2500 mm and reaches
3000 mm on the coast of the Gulf of Guinea (Nicholson and Dezfuli, 2013). The annual
temperature varies between 10 and 25 ◦C , with a daily difference not exceeding 10
◦C. There are two variants of this climate: the first is characterised by the abundant
distribution of precipitation over the year and the second is influenced by the West African
monsoon (Balek, 2011).
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Figure 3.2: Map showing the Köppen climate classification of Africa (Peel et al.,
2017).

The tropical wet and dry climate is distributed around the Equator, no more than 15
degrees to the north and reaching the Tropic of Capricorn to the south. The regions are
characterised by the north–south movement of ITCZ, bringing precipitation during high
sun. During low sun, the influence of the drier and the subtropical winds prevail. It is
considered a transitional climate between the tropical humid climate and the dry climate.
It has less annual precipitation than the tropical humid climate, ranging from 1000 to
1500 mm. The average annual temperature is usually higher than 30 ◦C . Warmer
months in the north are March and April, while September, October and November are
warmer months in the south (Balek, 2011).

The mountainous regions are characterised by highland climates. These are basically
low-temperature variants of low elevations at a similar latitude, where the mean temper-
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ature decreases by 0.65 to 0.95 ◦C/100 m. Precipitation is generally heavier than the
surrounding low land. This climate mostly prevails in the east of Africa (Balek, 2011).

The dry climate regions are characterised by water deficiencies. In the tropical region of
Africa, there are two variants of dry climate: semi-arid climate and arid climate. The
semi-arid climate is a transitional climate, between the desert climate and humid climate.
The total annual precipitation ranges from 250 to 600 mm, while the arid climate is
characterised by an annual precipitation of less than 250 mm and a temperature varying
from 30 to 35 ◦C (Balek, 2011). The arid climate is located in the coastal region of
Eastern Africa, the hottest place in the world (Dallol in the Afar depression)(Pedgley,
1967).

3.4 Vegetation and land cover changes

According to Shant’s classification of vegetation, the tropical region of Africa is subdivided
into four biomes: mountain forest and grassland, equatorial rainforest, savanna (savanna,
forest savanna and woodland savanna), dry forest and acacia savanna. The mountain
forest and grassland colonise the tropical Eastern African highlands, above 1500 m. The
equatorial forest dominates the Congo Basin in the low latitude where the temperature
is high, approximately 24.5 ◦C, and the precipitation abundant. According to FAO
(2016), almost 20 % of tropical forests are in Africa. The savanna, forest savanna and
woodland savanna are the types of vegetation which surround the rainforest. It is which
characterised by a tropical wet and dry climate. The dry forest, known also as the
Miombo forest, located at the south of the Equator, precisely in the southern and south
eastern parts. The acacia savanna and thorn desert are in areas where the precipitation
is under 500 mm and the dry season is more extended (more than eight months).

The climate alone does not determine the distribution of tropical vegetation. Large-scale
savannah are often found within a dense rainforest, mostly due to human activities. Ac-
cording to Staver et al. (2011), almost 36 % of tropical savannahs are located in areas
where dense forests could form in normal conditions. Aleman et al. (2018) found that the
tropical forest has lost almost 21 % of its cover since 1900. Compared to other tropical
regions, the rate of deforestation is relatively low, probably because of the lack of infras-
tructure, low population density and political instability (Megevand, 2013). However,
during the last two decades, the rate of deforestation has doubled (FAO-ITTO, 2011;
Megevand, 2013), resulting in an increase of CO2 in the atmosphere and modification of
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the surface albedo, cloud physics and evapotranspiration (Bala et al., 2007; Lawrence and
Vandecar, 2015). According to Nogherotto et al. (2013), deforestation may impact the
West African monsoon and therefore change the general circulation over the Sahel region.
If natural forest and savannah are the main carbon sinks, fire and deforestation constitute
the main contributors of carbon sink losses (Bombelli et al., 2009). Agriculture is the
second source of carbon sink losses In East Africa for example, cultivated areas increased
by 28 % from 1990 to 2010 (Brink et al., 2014). The east and west regions of tropical
Africa have lost 93 and 83 % of their cover since 1900 respectively, while forest expansion
of about 1.4 % has been observed in Central Africa (Aleman et al., 2018). Similar results
have been confirmed by other scientists who used different methodological approaches
(Willcock et al., 2016).

Figure 3.3: Land cover/land use map of Africa (modified from Defourny et al., 2014).

3.5 Geology, geomorphology and soil of tropical Africa

Tropical African geology and ores have recently been described by Milesi et al. (2006).
In summary, African geology is dominated by the Archean craton formation, the Pale-
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oproterozoic formation, the Mesoproterozoic to the early Neoproterozoic formation, the
Neoproterozoic–Cambrian formation, Paleozoic–Mesozoic basins and the Cenozoic cover
(Milesi et al., 2006). The Archean craton blocks cover a large part of West Africa (Equa-
torial Guinean, the Republic of Congo, the Gabon Massif and a large part of Cameroon),
the Kasai-Lomami-Luanda corridor in the Democratic Republic of the Congo, the cen-
tral shield of western Angola and the northern part of the Democratic Republic of the
Congo. The Paleoproterozoic block covers the west of the Congo Craton, from Angola,
and extends to the southwest of Cameroon. Another belt is located in central and north-
ern Cameroon. Mesoproterozoic to early Neoproterozoic formations extend in the eastern
part of Central Africa (east of the Democratic Republic of the Congo, Tanzania, Rwanda,
Burundi and Uganda). The Neoproterozoic-Cambrian belt is located in the north, south,
west and east of the Congo Craton. The Paleozoic–Mesozoic basin dominates the Central
Africa region. The Cenozoic block covers the central basins of Congo and Angola, and
some extend into Cameroon and the Virunga Massif (east of Democratic Republic of the
Congo).

As with all tropical regions, the African tropical forest tends to be of low fertility, except
for some parts that have developed in alluvial or volcanic parent materials (Milesi et al.,
2006). The humid tropic soil is dominated by Ultisols, Oxisols and Alfisols (Figure 3.4).
They are characterised by low cation exchange capacity, water holding capacity and plant
nutrient reserves and are prone to erosion. In the tropical semi-arid region where Vertisols,
Inceptisols, Alfisols and Aridisols prevail, the semi-arid tropical soil is prone to periodical
drought.
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Figure 3.4: Map of soil orders in Africa Source: FAO (2000).



4. Database

This chapter describes the different types of datasets used to model the impact of climate
change and variability of maize yield in tropical Africa. Two observational datasets
were used: interpolated gridded dataset and reanalysis. The gridded dataset was chosen
because of its long-term coverage, thus suitability to generate stable large-scale variables.
The reanalysis dataset was used to complete the gridded dataset, lacking some local
variables. The climate model datasets are the second type of dataset. The general
circulation and the regional climate model were used to forecast the future maize yield
change. Another type of data is climate indices; they were not put in the crop yield
model but serve to understand the physical meaning of climate predictors. Finally, the
historical crop yield dataset and its related crop calendar are presented.

4.1 Observational climate data

Climate observational databases are important to describe the main features of the
present-day climate. They are also useful to validate and calibrate different models.
Ideal observational climate datasets are those that come directly from ground stations.
However, this is not always the case in Africa, where ground stations are scarce, in-
consistent and have limited documentation and bad sharing policies, making climate
data analysis difficult (Dinku et al., 2014). Therefore, data are directly collected from
other network meteorological stations (provided by international organisations after some
post-processing), satellite estimates, a combination of satellite and ground stations and
reanalysis datasets.

Climate satellite-derived datasets have been collected over the last two decades. The
most used in Africa are the African rainfall climatology version 2.0 (ARC2) with a spa-
tial resolution of 0.1◦ and the Climate Hazards Group InfraRed Precipitation (CHIRP)
with a spatial resolution of 0.05◦. Some are combined with ground-based station obser-
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vation, such as multi-source weighted-ensemble precipitation (MSWEP) and the tropical
applications of meteorology using satellite and ground-based observations (TAMSAT).
The shortcoming of satellite-derived datasets is that they cannot provide many climate
variables. To fill this gap, reanalysis datasets are used. Some reanalysis datasets are
commonly used in Africa: modern-era retrospective analysis for research and applications
version 2 (MERRA-2), ERA-interim, ERA 5 and the climate forecast system reanalysis
(CFSR) (Gebrechorkos et al., 2018). According to (Paeth et al., 2005), the validity of
these datasets is questionable, and they are all prone to major errors. For example, al-
most all satellite devices overestimate precipitation in semi-dry regions. Nikulin et al.
(2012) reported a significant dry bias of Tropical Rainfall Measuring Mission (TRMM)
compared to gridded meteorological data. In contrast, the combined satellite and gouge
data seem to be better than satellite data alone (Paeth et al., 2005). Still, they have
not outperformed gridded methodological datasets, as demonstrated in West Africa (Ali
et al., 2005).

4.1.1 Climate Research Unit (CRU) data

In this study, we chose to use a CRU dataset because of its availability, spatial and
temporal resolution and long-term coverage. CRU data have been widely used in different
research studies, including in crop yield modelling (Paeth et al., 2005; Deryng et al.,
2014). The CRU data constitute a high-resolution grid and monthly data developed by
the University of East Anglia. There are many versions of the CRU data, which have
been resealed in 2000, 2004, 2005 and 2006. The first version was implemented by New
et al. (2000). The last version, used in this study substantially improves the interpolation
method and increases the variable count to 10 (Harris et al., 2020). Like its predecessors,
it uses ground-based station data, which are further interpolated to a 0.5◦ regular grid
using angular distance weighting interpolation. The dataset is made up of three types
of variables: primary, secondary and derived variables. The primary variables are the
mean 2 m temperature, the diurnal 2 m temperature range and the precipitation. They
are all derived from station data. The secondary variables are those collected from a
limited number of observational stations, thus completed by an empirical relation with
primary variables, and these are vapor pressure, wet day and cloud cover. The final type
of variable is entirely derived from the primary ones, and these are the minimum 2 m
temperature, maximum 2 m temperature, frost days and potential evapotranspiration
(Harris et al., 2020).
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The weakness of CRU datasets is that the number of observed stations is not constant
over the years and stations are quite sparse. For example, from 1970–1979 to 2000–2009,
stations’ numbers substantially decreased, especially in Central Africa. Despite this weak-
ness, the cross-validation of CRU data with ground-based station observations is corre-
lated for the temperature and highly correlated for the precipitation. The correlation is
even stronger in high latitude regions, which have many stations. Independent studies
have also evaluated the robustness of CRU datasets against station observations in some
regions (Malsy et al., 2015; Shi et al., 2017). Shi et al. (2017) found that CRU data
underestimate precipitation compared to the 29-point rain gauge records in headwater
regions (China).

Figure 4.1: Spatial pattern of the 1979–2018 climatology annual mean precipitation
(left) and temperature (right) from the CRU dataset.

Compared to other gridded datasets, the CRU temperature is highly correlated with the
University of Delaware’s 0.5 ◦ (UDEL) dataset and the reanalysis dataset JRA-55 from
the Japan Meteorological Agency. There is a correlation coefficient of 0.97 between CRU
and UDEL, and 0.99 between CRU and JRA-55. UDEL seems to be cooler than CRU
in the early twentieth century. For the precipitation, CRU data have been compared to
GPCC; they yield a correlation of 0.92, but GPCC seems wetter in the early twentieth
century. In East Africa, Ongoma and Chen (2017) found that CRU outperformed GPCC
in representing the annual precipitation cycle. Akinsanola et al. (2017) also reported good
performance of CRU data together with TRMM and GPCC to assess precipitation over
West Africa. The inter-annual anomaly of the three datasets showed a high correlation
with ground observation. The previous versions also showed a satisfactory agreement be-
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tween CRU, Global Precipitation Climatology Centre (GPCC) and Global Precipitation
Climatology Project (GPCP) in Africa, except in some regions where ground stations
were very dispersed such as the Democratic Republic of the Congo and Angola (Harris
et al., 2020). Middle correlation values (0.63) have been reported between CRU and
ground stations concerning the inter-annual precipitation variability (Gbobaniyi et al.,
2014).

Only temperature and precipitation have been analysed in this study (Figure 4.1). These
two variables were used to calculate the EOF from which the present predictors of the
crop yield were derived. Data from 1961 to 2019 for the region extending from 20◦ west
to 55◦ east, and 14◦ south to 20◦ north were retrieved.

4.1.2 Extended Reconstructed Sea Surface Temperature version
4 (ERSST.v4)

The sea surface temperature is an important variable of climate fluctuation. It has been
much used in climate modelling, assessment and monitoring. In this study, we used it as
parts of the large-scale predictor to model the impact of climate change on maize yield.
We analysed the SST anomaly extending from 15◦ east to 60◦ east and 20◦ south to 20◦

north in the Indian Ocean, and from 30◦ west to 15◦ east and 20◦ south to 20◦ north in
the Atlantic Ocean (Figure 4.2).

Many SST products from a variety of institutions have been released (Parker et al., 1994;
Kaplan et al., 1998; Reynolds et al., 2002; Ray et al., 2012), but in this study, we opted
for ERSST.v4, which is the current, updated version of ERSST. The characteristics of
ERSST.v4 are explained by Huang et al. (2015). In fact, the most important innova-
tion compared to the previous version is the bias adjustment for night-time marine air
temperature data. In general, ERSST are reconstructed from different dataset sources:
observational data from the International Comprehensive Ocean–Atmosphere Data Set
that covers the period from 1875 to 2007; the night marine air temperatures, covering
the period from 1956 to 2010; the sea ice concentration from the Hadley Centre SST
(HadISST) covering the period from 1870 to 2010; and the optimum interpolation SST
dataset based on satellite observation and field measurements and covering the period
from 1982 to 2011.

ERSST.v4 have been compared to direct observational datasets – such as the one pro-
duced by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
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– and to other reconstructed datasets. ERSST.v4 exhibited a warmer SST at about 0.2
◦C in the Southern Ocean, 0.1 ◦C warmer in the Northern Ocean, and warmer in the lower
latitude, especially in the eastern equatorial Pacific where the difference reaches 0.4 ◦C.
The overall RSME of ERSST.v4 SST compared to ASTER is relatively low, estimated
at 0.54◦C. It is important to mention that ASTER is the most accurate SST satellite
estimate (Merchant et al., 2012). Compared to other reconstructed datasets, the SST of
ERSST.v4 is similar to the previous version of ERSST and other datasets regarding the
spatial mean, variability and trend. The spatial difference may be attributed to the new
bias adjustment of ERSST.v4. For example, in the tropics, the SST anomalies are lower
in ERSST.v4 than HadSST3. Compared to the previous version, ERSST.v3, ERSST.v4
exhibits a lower SST anomaly from 1920 to 1940. More details on the comparison of
ERSST.v4 and other SST products are provided by Huang et al. (2015).
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Figure 4.2: (a) Spatial climatology of mean SST; and (b) SST times series for the
Pacific and Atlantic Oceans of the concerned region, defined by the dashed black line in
the spatial pattern. The data come from ERSST.v4.

4.1.3 Reanalysis data (ERA5)

Reanalysis data sets are considered as an alternative to gridded observational data, espe-
cially in Central Africa where stations are sparse (Hua et al., 2019). They are preferred
because they provide consistent and comprehensive datasets. Reanalysis produces the
best estimate of the past atmospheric state by combining observational data and global
forecasts within an assimilation scheme. Observational data come from different sources:
land surface, ships, radiosondes, aircraft or satellites. The forecast model transfers the in-
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formation from the previous analysis of the atmospheric state. The assimilation scheme
combines short-range forecast with station observations to produce atmospheric state
without spatial and temporal gaps, which will forecast the future. The reanalysis data
can be obtained from different time steps (hourly, daily, monthly) and cover many climate
variables. There are currently more than 10 available reanalysis datasets in the world
(Hoffmann et al., 2019), including ERA5.

ERA5 is the fifth generation of the atmospheric reanalysis data produced by the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF). It covers the period from
January 1979 to the present and will soon be extended back to 1950. The data are im-
plemented through the integrated forecasting system cycle 41r2 with four-dimensional
variational analysis (Hoffmann et al., 2019). It has an horizontal resolution of ∼ 31
km (TL639 spectral grid) and 137 hybrid sigma-pressure levels in the vertical, with the
top level located at 0.01 hPa (an altitude of about 80 km). The data is available on
a 0.25-degree grid with hourly intervals. Compared to previous versions of ECMWF,
ERA5 outperforms ERA-Interim by improving the temporal and spatial resolution. Fur-
thermore, the geophysical processes in the forecast model and the number of observation
stations for the data assimilation system are improved. However, the drawbacks of ERA5
are that it requires more storage space and is computationally intense (Hoffmann et al.,
2019). According to the recent result of Gleixner et al. (2020), ERA5 precipitation and
temperature bias in Africa is negligible compared to other reanalysis data and the inter-
annual variability over Africa is better represented. The spatial distribution is also better
represented (Gleixner et al., 2020).
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Figure 4.3: Climatology yearly means of selected variables: (a) total precipitation
in mm; (b) mean temperature in ◦C; (c) 10-meter wind in m/s; (d) surface runoff
in mm/year; (e) dew point temperature in ◦C ; (f) surface pressure in Pa; (g) solar
radiance MJ.m.d−1; and (h) soil moisture in mm/year.

In this study, ERA5 climate variables have been used to calculate the WRSI, as demon-
strated in chapter 6. These variables are: mean temperature, precipitation, maximum
temperature, minimum temperature, 10 m wind, surface runoff, net solar radiance, sur-
face pressure and soil moisture. We retrieved data from 1979 to 2019 with a region
extending from 20◦ west to 55◦ east, and 14◦ south to 20◦ north (Figure 4.3).

4.2 Climate model data

Climate models were first designed to understand climate systems. They can also be
used to study the future and changes in the past. According to Paeth et al. (2005),
climate models provide many advantages over gridded observation datasets; they are
not affected by measurement errors and provide continuous datasets. However, they are
limited in capturing all the information related to the climate system because of the
computational cost. Furthermore, they are very useful for understanding climate systems
through numerous sensitivity analyses. Many climate models have been developed; some
are assembled in the CMIP5, from which two were used in this study: ECHAM6 and
REMO.
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4.2.1 ECHAM6

ECHAM6 is the sixth generation of the coupled atmosphere ocean circulation model
(Popke et al., 2013). The model was developed by the Max Planck Institute for Me-
teorology. It is the improved and most recent version of the previous ECHAM derived
from the European Center for Medium-Range Weather Forecasts (the origin of EC in
acronym). The model was initially developed in Hamburg (the origin of HAM in the
acronym). With the CMIP5 experiment, ECHAM6 was coupled with the Max Planck
Institute ocean model (MPIOM) (Jungclaus et al., 2013), the Jena Scheme for Biosphere-
Atmosphere Coupling in Hamburg (JSBACH) terrestrial biosphere model (Reick et al.,
2013) and the Hamburg ocean carbon cycle model version 5 (HAMOCC5) (Ilyina et al.,
2013).

The specificity of ECHAM6 is that it improves the large-scale circulation and the dia-
batic processes. The model is composed of a boundary dataset, a scheme of physical
parametrisations of the diabatic processes, a spectral-transform dynamical core and a
transport model. It uses the mixed finite difference/spectral discretisation of the primi-
tive equation to address the adiabatic process. The vorticity and divergence form of the
primitive equations drive the dynamical core of ECHAM6. The method of Simmons and
Burridge (1981) is used for the vertical discretisation, and hybrid sigma-pressure is used
on a Lorenz grid. The tracer transport is represented by the flux-form semi-Lagrangian
scheme of Lin and Rood (1996).

The diabatic process of ECHAM6 is quite similar to the older versions, except for the
land surface process and the treatment of solar radiative transfer. The eddy diffusiv-
ity/viscosity approach is applied to the turbulence parametrisation and boundary layer.
The mass-flux framework developed by Tiedtke (1989) is applied to the parameterisation
of moist cumulus convection. In contrast to previous versions, the condition for convection
is based on the predicted variance of the virtual potential temperature, rather than con-
stant temperature increments. The sub-grid orography scheme developed by Lott (1999)
is used to parameterise the momentum transport. The Doppler spread theory is used to
parameterise the unresolved vertical momentum transport disturbances. The humidity
distribution function scheme implemented by Sundqvist et al. (1989) is used to describe
the subgrid-scale cloudiness. ECHAM6 uses the most recent radiation transfer suite of
models described by Iacono et al. (2008). The radiation transfer suite model is applied
for both shortwave and longwave parts of the spectrum. This is the most significant
difference from ECHAM5, which uses the Fouquart et al. (1980) model for the shortwave.
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In ECHAM6, the rapid radiation transfer model of the shortwave scheme is based on
the correlation k-method. The land surface model is composed of twelve types of plant
functions and two bare soil types. The dynamical vegetation comes from the JSBACH
terrestrial biosphere model where the land-use transition approach took the place of the
land cover change.The model dissociates the visible albedo from the near-infrared one
(Brovkin et al., 2009). In contrast to previous versions, ECHAM6 accounts for the solar
zenith angle dependence over open water, for pond melt on the sea ice and for snow cover.
A simple single-layer bucket model is used to present the soil hydrology, and the temper-
ature is estimated over the five soil layers (Brovkin et al., 2009). A single value represents
all the greenhouse gases, except water vapour and ozone. Carbon dioxide can also be
computed in the Earth System model (ESEM), which is based on a biogeochemical com-
ponent. ESEM describes the carbon fluxes between terrestrial, ocean and atmospheric
reservoirs (Taylor et al., 2012). The time-evolving atmospheric concentration of carbon
dioxide is therefore interactively calculated by the ESEM (Taylor et al., 2012). With
the CMIP5 experiment, the model uses the photodissociation and oxidation of methane
parameterisation to represent the water vapor in the middle atmosphere (Schmidt et al.,
2006). The ozone is given as a three-dimensional monthly value, but it varies with the
longitude in the stratosphere (Cionni et al., 2011).

According to Stevens et al. (2012), ECHAM6 yields a low standardised error compared
to its predecessors. However, like other coupled atmosphere ocean models, ECHAM6 is
not good at representing the sea surface temperature gyres in the upwelling regions west
of the continents. Important biases were also reported in the Kuroshio Current region.
A warm bias was observed in the upwelling region in the west of Africa. The strongest
precipitation bias was reported in tropical Africa. As far as the tropical mode variability is
concerned, ECHAM6 and its predecessors simulate the Madden-Julian-Oscillation (MJO)
quite well (Schubert et al., 2013). It outperforms its predecessors in representing the
ENSO, and the amplitude is much improved. Other characteristics of the ENSO, such as
the principal spatial pattern, are also well represented, except in the west, where the sea
surface temperature variability pattern stretches out. The Atlantic Ocean teleconnection
is also well simulated. However, the model poorly represents the central subtropical North
and South Pacific and tropical western Pacific teleconnections.
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Figure 4.4: ECHAM6 SST from 1900 to 2020

The model has been run with a high emission scenario (RCP 8.5) and a midrange mitiga-
tion emissions scenario (RCP 4.5). We used the low-resolution configuration, with similar
horizontal resolution to ECHAM5/MPIOM. The vertical extends to 0.01 hPa, capable
of representing the variability of the high latitude circulation in the middle atmosphere.
We are only interested in SST from 1979 to 2100 (Figure 4.4).

4.2.2 REMO

REMO is a limited-area three-dimensional atmospheric circulation model based on the
‘Europa-Modell’ of the German weather service. The Europa-Modell constitutes the
dynamical core of the REMO model, where the primitive equations are resolved. The
second core is based on the parameterisation scheme inherited from ECHAM, in our case,
ECHAM6, where important physical processes of the atmosphere are not resolved in the
dynamic equations.

The prognostic variables involved in the primitive equation are horizontal wind com-
ponent, water vapour component, surface pressure, cloud water and temperature. The
model uses the lateral boundary suggested by Davies (1976), which involves the relax-
ation of the interior flow in the vicinity of the boundary to the external fully prescribed
flow. It is based on the five-layer soil model (down to 10 m depth) to simulate the land
surface. The vegetation parameters are derived from the new version of the land sur-
face parameters, known as the LSP2 dataset. This new version improves the background
surface albedo of the bare soil of Africa (Hagemann, 2002). In REMO, the fourth-order
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linear horizontal diffusion scheme is applied to momentum, temperature and water con-
tent. The subgrid-scale atmospheric processes, such as radiation, convection or clouds,
are not resolved and must be parameterised. The micro-cloud scheme has been described
by Lohmann et al. (1996). This new approach of the micro-cloud scheme dissociates the
water cloud prognostic variable to the cloud ice and the maritime to continental clouds.
The model uses turbulent kinetic energy to calculate the eddy diffusion coefficients. The
vertical diffusion and turbulent surface fluxes are calculated with a higher-order clo-
sure scheme for the transfer coefficients of momentum, heat, moisture and cloud water
within and above the planetary boundary layer from the Monin–Obukhov similarity the-
ory (Louis, 1979). The radiation scheme is based on the narrow band models of longwave
radiation transfer, as described by Morcrette et al. (1986), but with a slight improvement
for additional GHG, 14.6 µm band of ozone and various types of aerosols. The moisture
convection is derived from the mass flux scheme, as explained by Tiedtke (1989).

Figure 4.5: Spatial climatology of selected variables from historical REMO (1980-
2005): (a) total precipitation in mm; (b) mean temperature in ◦C ; (c) 10-meter wind
in m/s; (d) surface runoff in mm/year; (e) dew point temperature in ◦C ; (f) surface
pressure in Pa; (g) solar radiance MJ.m.d−1; and (h) soil moisture in mm/year.

As far as numerical calculation of the dynamic part is concerned, the temporal discreti-
sation is implemented by a leap-frog scheme with semi-implicit correction. The vertical
is discretised by hybrid σ -coordinates, as described by Simmons and Burridge (1981).
In the horizontal plane, the spherical Arakawa-C grid is used where prognostic variables
are adjusted in a boundary zone of eight grid boxes and calculated separately for the
different compartments within a model grid box. The model is run in a rotated grid to
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have similar grid box sizes and an optimised time step.

As for other regional climate models, REMO can be driven by different boundary con-
ditions, including perfect boundary conditions from ECMWF 40-year reanalysis. In this
study, we opted for the REMO MPI-CSC version, developed at the Max-Planck Institute
for Meteorology and the German Climate Service Centre in 2009 and was part of CMIP5.
With this version, REMO is nested into the radiative transfer scheme of the atmospheric
component of MPI-ESM-LR (atmospheric general circulation model ECHAM6) devel-
oped at the Max Planck Institute (MPI) in Hamburg (Stevens et al., 2012). The 0.44
grid degree resolution (almost 50 km horizontal resolution) was interpolated into a 0.5-
degree resolution, similar to observational data. The entire model domain of REMO
extends from 30◦ west to 60◦ east and from 15◦ south to 45◦ north. As for observational
datasets used in this study, only datasets from the selected region, extending from 20◦

east to 55◦ east, and from 14◦ south to 20◦ north, were analysed. The historical exper-
iment of REMO in this study covers the period from 1979 to 2005 and the projection
covers the period from 2006 to 2100.

The result of the REMO simulation or any other RCM is validated by observational
datasets. Many researchers have reported good performance of REMO in simulating ma-
jor features over tropical Africa. According to Paeth et al. (2005), REMO successfully
simulates the main features of observed mean, trend and inter-annual variability, as well
as large-scale circulation over West Africa. However, the model cannot effectively re-
produce the sub-Saharan precipitation because of the coarse resolution of the Guinean
Coast orography (Paeth et al., 2005). More recently, Fotso-Nguemo et al. (2017a) found
that REMO could better represent the spatial distribution of precipitation and temper-
ature over Central Africa. They found correlation coefficients of 0.74 for precipitation
and 0.93 for temperature between REMO and CRU datasets. In the same direction,
Fotso-Nguemo et al. (2017b) found that REMO was able to simulate quite well the pre-
cipitation inter-annual variability, the daily precipitation intensity distribution and the
intra-seasonal variability of the Central African monsoon. Vondou and Haensler (2017)
reported the ability of the model to represent the variability in precipitation anomalies
between different events associated with El Niño in Central Africa. Finally, Tamoffo et al.
(2019b) found the model reasonably simulated the frequency of wet days, the threshold
of extreme precipitation and the cumulative frequency of daily precipitation over Central
Africa.



40 Chapter 4 - Database

4.3 Climate teleconnection patterns and indices

Teleconnection patterns refer to a strong negative correlation between two or more centers
of action, mostly between high and low-pressure regions. These opposite centers are sepa-
rated by thousands of kilometers. The action centres present a monthly, yearly or decen-
nially synchronised behaviour pattern, forming a dipole, which comprises a region of high
and low pressures in a specific region of the planet (Barnston and Livezey, 1987; Martinez-
Artigas et al., 2021). This study uses the time series indices of climate teleconnection
patterns to select and give the physical interpretation of the crop yield predictors derived
from the EOF analysis. They have been chosen according to their role in the variability in
the tropical African climate. Thus, we targeted the ENSO, the North Atlantic oscillation
(NAO), the IOD, the South Atlantic Ocean dipole (SAOD), the Indian summer monsoon
(ISM), the Southern Annular Mode (SAM), the tropical North Atlantic index (TNA) and
the tropical South Atlantic index (TSA). Teleconnection patterns were obtained from the
NOAA Physical Sciences Laboratory (https://psl.noaa.gov/data/climateindices/).

ENSO is considered the most important mode that drives the inter-annual climate vari-
ability (Lindesay, 1988). ENSO has an impact on a global scale and determines the
seasonal climate variability in the world. The influence of ENSO – which is happening in
the central and eastern equatorial Pacific – can be observed in the polar regions of both
hemispheres (Yuan et al., 2018). The teleconnection pattern can influence local climate
variables such as precipitation and temperature. It has two phases: El Niño and La
Niña. El Niño refers to the negative phase of the ENSO index, accompanied with ocean
warnings on the western coast of South America. Usually, water on the western coast of
South America is cold because of the Humboldt sea current that comes from Antarctic
latitudes. The association of ENSO and the trade wind brings abundant precipitation
and floods on the west coast of South America. In contrast, drought is reported in the
opposite centre, Australia and Indonesia. Therefore the effect propagates to the rest of
the world through Rossby waves, the jet stream, meridional and zonal circulation and
eddy activities (Martinez-Artigas et al., 2021). Numerous studies have indicated a close
correlation between local climate variables and teleconnection patterns. For example, in
the east of Africa, a strong correlation between the ENSO and precipitation have been re-
ported (Hastenrath and Greischar, 1993; Nicholson, 2017). ENSO has a high correlation
with the short rain season (Indeje et al., 2000; Wolff et al., 2011; Bahaga et al., 2019) in
East Africa. According to Rouault and Richard (2005), more than half of severe droughts
in Southern Africa, for example, are attributed to ENSO. But the relationship between
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Figure 4.6: Climate indices and teleconnection patterns from 1948 to 2010. Source:
https://psl.noaa.gov/data/climateindices/.
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ENSO and local climate variables is not always linear (Reason and Jagadheesha, 2005;
Yuan et al., 2014). For example, one of the strongest El Niño events in 1997 did not
drastically impact Southern Africa’s precipitation compared to moderate events (Wolff
et al., 2011). In the west of Africa, Srivastava et al. (2019a) demonstrated that ENSO has
a significant impact on the West African summer monsoon by regulating the temperature
of the upper troposphere of subtropical Africa. Many other researchers found that ENSO
could explain around 24 % of West African monsoon inter-annual variability (Losada
et al., 2012; Mohino et al., 2011). In Central Africa, in contrast, the influence of ENSO is
limited. Several indices have been suggested to define ENSO; in this study, we used Niño
3 and the multivariate ENSO index (MEI). Niño 3 is calculated in the region extending
from 5 ◦ north to 5 ◦ south and from 150 ◦ west to 90 ◦ west. The MEI is calculated
based on five variables: sea-level pressure, SST, zonal and meridional components of the
surface wind and outgoing longwave radiation (Wolter, 1987).

The Quasi-biannual Oscillation (QBO) is a quasi-periodic movement of the equatorial
zonal wind from east to west, with a period of 28 or 29 months. This phenomenon
happens at the top of the low tropical stratosphere and converges to the tropopause
with a velocity of 1 km per month, where it will dissipate. There are not many studies
investigating the association of QBO and climate variables. We incorporated QBO in this
study simply because Mason and Tyson (1992) found a strong correlation between QBO
and Southern African precipitation. Furthermore, Ng’ongolo et al. (2010) has improved
the statistical perdition of East African precipitation using quasi-biennial oscillation.

NAO is one of the most dominant teleconnection patterns that drives the climate vari-
ability over the North Atlantic Ocean. Its impact on temperature and precipitation is
greatly pronounced in north eastern America, the North Atlantic and the Eurasian con-
tinent. The positive or neutral phase of NAO indicates that low pressure dominates the
high latitudes in the North Atlantic. In contrast, high pressure dominates the opposite
action centre located between the Mediterranean region and North Africa. In Africa, the
effect of NAO on the inter-annual precipitation variability has been observed in Morocco
(Lamb and Peppler, 1987). Moreover, (McGregor, 2015) analysed 31 meteorological sta-
tions, extending from 0◦ to 16◦ south and 25◦ to 40◦ east and found significant negative
correlation between all stations and the NAO index.

IOD is the predominant teleconnection pattern on the inter-annual time scale in the
Indian Ocean. Its positive phase is characterised by a cooling and warming water in
the eastern and western equatorial Indian Ocean respectively. Enhanced convection is
therefore observed in the west, resulting in abundant precipitation in East Africa, mostly
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during the short rain season. Its impact has been much documented in East Africa,
between 10◦ south and 10◦ north and extends from the Indian east coast up to 25◦

east (Gadgil et al., 2004). According to the recent study of (Srivastava et al., 2019c),
IOD could explain about 80 % of precipitation during the short rain season inter-annual
variability in East Africa.

SAOD is a teleconnection pattern that influences the sea surface temperature variability in
the Atlantic Ocean. SAOD has two centres of action: one at the Argentina–Uruguay–Brazilian
coast; another at the central equatorial and West African coast, also referred to as the At-
lantic Niño region. Its impact on precipitation has been assessed in West Africa through
numerical model simulations (Kucharski et al., 2009; Losada et al., 2010). Nnamchi et al.
(2011) demonstrated, using observational climate datasets, that the positive phase of
SAOD is associated with the occurrence of positive precipitation anomalies over 40 mm
per month in the Guinea Coast region.

ISM is a coupled land–ocean–atmosphere phenomenon that plays an important role in
bringing moisture to the Indian subcontinent (Naidu et al., 2020). The phenomenon
does not affect the climate of Africa, except in some Mediterranean regions. According
to Rizou et al. (2018), the effect of ISM in Mediterranean regions can be attributed to
the propagation of the equatorial Rossby wave. This does not concern tropical Africa;
however, we used the ISM to control the robustness of predictors not to capture climate
phenomena happening elsewhere.

SAM, sometimes referred to as the Antarctic Oscillation, is the leading teleconnection
pattern that drives climate variability over the Southern Hemisphere region (Fogt and
Marshall, 2020). The index corresponds to the first principal component of mean sea
level pressure from gridded datasets. It explains between 22 and 32 % of the extratropic
Southern Hemisphere climate variability, according to the observational dataset used
(Fogt and Marshall, 2020). In Africa, SAM index has only has influence on the Southern
African climate (Reason and Jagadheesha, 2005).

Two more additional climate indices have been used in this study: the TNA and the TSA.
TNA refers to the anomaly of the average of the monthly SST from 5.5 ◦ north to 23.5 ◦

north and 15◦ west to 57.5◦ west, while TSA are calculated from the equatorial line to 20
◦south and 10 ◦east-30◦ west. These two indices have an impact on the variability of the
tropical African climate. Worou et al. (2020) conducted a systematic study of all possible
climate indices that could have an impact on precipitation in West Africa and found a
strong correlation coefficient (0.58) between TSA and the Guinean Coast precipitation
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index.

4.4 Crop yield dataset

Crop yield datasets generally come from national statistics and international agencies or
research institutions. Depending on the country’s organisation, national crop yield data
are usually collected per crop at village level in local agricultural centres. These datasets
are further aggerated at the district, provincial and national levels. International organi-
sations such as the FAO refer to these datasets to construct a continuous and standardised
database. However, national datasets are most of the time incomplete, and sometimes
inconstant. In this respect, the FAO uses the imputation technique to improve national
datasets. This technique leads to the reduction of the internal variability of the dataset
(as illustrated in Figure 4.7 for maize in Democratic Republic of Congo) and makes cli-
mate variability studies on crop yields difficult. With the development of satellite devices,
gridded datasets are becoming popular and are used to calibrate and simulate crop yield
models. They merge crop statistics datasets with existing biophysical parameters. Two
important gridded crop yields datasets are commonly used in the scientific community:
the one developed by Iizumi et al. (2014), referred to here as the GDHY dataset, and the
one compiled by Ray et al. (2012).

This study uses the most recent version of the GDHY dataset because it is consistent
(Figure 4.8). This version is referred to as GDHY v1.2 + 1.3. It was released in 2020
and covers the period from 1981 to 2016, with a 0.5◦ spatial resolution. GDHY v1.2 +
1.3 is an aligned version of two datasets: GDHY v1.2 and GDHY v1.3, which cover the
periods from 1981 to 2011 and from 2000 to 2016, respectively. All three versions used
the census statistics from the FAOSTAT as primary input and have as additional inputs:

• The harvested area derived from M3-Crops (0.083◦ and average around 2000);

• the crop calendar data, implemented by Sacks et al. (2010);

• the production share dataset developed by the USDA;

• and the satellite products.

Many global crop yield studies are based on the GDHY v1.2 dataset (Iizumi et al.,
2014; Iizumi and Ramankutty, 2016). Apart from the difference in coverage period, the
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Figure 4.7: Crop yield times series data from 1960 to 2020 for selected African coun-
tries. Data source: FAOSTAT.

GDHY v1.2 differs from the GDHY v1.3 by the type of satellite products and solar
radiation datasets. GDHY v1.2 uses the vegetation leaf area index and a fraction of
photosynthetically active radiation derived from global inventory modelling and mapping
studies and the solar radiation obtained from the JRA-25 reanalysis dataset to calculate
the grid cell net primary production, which was associated with FAOSTAT census data
(Iizumi and Sakai, 2020). In contrast, the grid cell net primary production of the GDHY
v1.3 dataset is derived from the moderate resolution imaging spectro-radiometer and
JRA-55 reanalysis for solar radiation.

The alignment of both datasets was necessary to create a continuous and longer dataset,
which meets the expectation of the scientific community, agribusiness, crop modellers and
food agencies, especially for times series analysis. Iizumi and Sakai (2020) have described
in detail this alignment method. The alignment results were validated by an independent
observed census dataset assembled by Ray et al. (2012). The result indicated that the
GDHY yielded a good agreement with the independent census.

It is important to mention that the accuracy of all GDHY datasets depends on regions,
especially where FAOSTAT census data are missing. Also, the GDHY dataset is not

https://modis.gsfc.nasa.gov/about/
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Figure 4.8: Gridded crop yield data: annual mean (left) and linear trend (right) from
1982 to 2011.

purely considered as an observed dataset, but an estimated one, therefore also subject to
biases. Uncertainties related to GDHY v1.2 global yield gaps, trend patterns, growth rates
and changes in year-to-year variability are clearly described by Iizumi and Ramankutty
(2016). Despite these imperfections, the current GDHY data and its previous version
are the most widely used in scientific communities, especially in climate change impact
studies on crop yield, and have served as calibration and validation datasets of many
crop simulation models. Iizumi and Sakai (2020) studied the impact of climate change on
yield variability using the GDHY v1.2 dataset. Iizumi et al. (2014) assessed the impact
of ENSO on global crop yield using the same dataset.

Figure 4.9: Cropping calendar for maize yield.

In this study, we also used the agricultural crop calendar implemented by Sacks et al.
(2010) to restrict the model to growing seasons only (Figure 4.9). The data were de-
rived from observational crop planting and harvesting dates, mainly collected by the
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United Nations Food and Agriculture Organization and the United States Department
of Agriculture. It contains more than 1300 observational planting and harvesting days
for 19 crops; in our study, we are only concerned with two crops: maize and rice Sacks
et al. (2010). The crop calendars were obtained in graphical formats, then digitised and
geo-referenced. In tropical Africa, the general pattern of planting dates for many crops
depends on precipitation and the rapport between precipitation and evapotranspiration,
while in precipitation-limited regions such as Kenya, the onset of the rainy season deter-
mines the planting date. In some regions, the planting data is set based on the flowing
periods Sacks et al. (2010). In Nigeria for example, maize planting occurs in June to
allow the flowing period to match the rainy season. Other factors not related to climate
can also determine the plating date, such as tractor ownership Sacks et al. (2010). For
maize, both the major and secondary growing seasons are of concern. This study deals
only with main growing season.



5. Statistical methods and data pre-processing

This chapter describes in detail the different statistical methods used to obtain the thesis
results. It also addresses some data pre-processing techniques.

5.1 Data pre-processing

The pre-processing of raw data is necessary before developing the crop yield model. The
following section presents two techniques used to prepare the dataset: interpolation and
statistical bias correction.

5.1.1 Spatial Interpolation

As described in section 4, the land climate dataset and the maize yield dataset came from
different data sources with different spatial resolution and different position of the grid
point centre. REMO has a spatial resolution approximating 0.44◦. Both CRU datasets
and crop yield have a spatial resolution of 0.5◦. The reanalysis ERA5, from which local
variables have been taken, comes with a finer spatial resolution of 0.1◦ . Because the model
is run in each grid point, both ERA5 and REMO are interpolated to the crop yield grid.
Several algorithms have been suggested to conduct such an operation, but the inverse
distance weighting interpolation was applied in this study. The inverse distance weighting
is a deterministic interpolation that uses an advanced nearest neighbour algorithm to
predict the unknown value by weighting the nearest neighbours surrounding the given
point (Hartkamp et al., 1999). It is widely used in environmental science and climatology
(Samanta et al., 2012). In this study, the interpolation was based on six neighbours. It

48
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is therefore mathematically computed as the following:

Y (t, sy) =
1∑n

sx=1w(sx)

n∑
sx=1

w(sx).X(t, sx) (5.1)

Where Y (t, sy) represents the interpolated variable in the new grid space and X(t, sx) a
variable in the original grid space, for each new location sy at the time t, sx represents the
known values at a nearby location. w(sx) is the weight function; it is an inverse distance
power function of the linear distance between the value points. It decreases when the
distance increases and is estimated as the following:

w(sx) = (
1

d(sy, sx)
)
d

(5.2)

Where d is the power parameter of the interpolation. It is generally set to two, as the
case for this study.

5.1.2 Quantile mapping bias correction

Bias correction is an important step for climate impact studies, especially when climate
variables are used directly in the regression model as the case for local predictors in this
study. The bias correction follows three steps: the application of the transfer function to
the simulated dataset for the control period; the application of the transfer function to
the future simulated datasets; and the comparison between the corrected data and the
observation. We used the quantile mapping bias correction.

In general, quantile mapping methods implement statistical transformations for post-
processing of climate modelling outputs (Enayati et al., 2021). The statistical transfor-
mations involve transforming the distribution functions of the modelled variables into
the observed ones. This method corrects the shape and the variability of the simulated
model and is based on the empirical transformation of Panofsky and Brier (1968). It
was initially applied in hydrology and has become the most widely applied bias correc-
tion technique. According to Piani et al. (2010), the statistical function of the quantile
mapping can be mathematically expressed as follows:

x0 = f(xm) (5.3)
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In which x0 is the observed variable, xm is the modelled variable, and f() is the trans-
formation function. The objective here is to find a function f that maps the modelled
variable xm so that its new distribution equals the observed variable distribution x0. In
the context of this study, the observed variables are the local climate variables obtained
from ERA5, and the modelled are those that come from REMO. The cumulative density
function of the observed data and the simulated data can be obtained according to this
mathematical expression:

x0 = F−10 [Fm(xm)] (5.4)

Where Fm(xm)] represents the cumulative density function of xm, and F−10 [] is the inverse
form of the cumulative density function of x0, which is technically assimilated to the
quantile function.

There are many variants of quantile mapping; Galmarini et al. (2019) enumerated that
they are mostly applied in crop yield modelling. Depending on the target climate vari-
able, the quantile mapping can use either a parametric or a non-parametric approach. A
parametric approach uses the parametric transformation functions to form the quantile-
quantile relation. It is therefore applied when the theoretical distribution of the variable
is known, for example, in the normal distribution of the temperature and the gamma
distribution for the precipitation (Themeßl et al., 2012). Different variations of the para-
metric transformation of the quantile-quantile relation can be mathematically expressed
as such:

P0 = bPm (5.5)

P0 = a+ bPm (5.6)

P0 = bPm
c (5.7)

P0 = b(Pm − y)c (5.8)

P0 = (a+ bPm)(1− e(−(Pm−y)/ε)) (5.9)

The P0 represents the best estimate of Pm, and a, b, c, d, y and ε represent calibrated free
parameters. By contrast, the empirical quantiles employ a non-parametric transformation
function. The empirical cumulative distributions are estimated for the observed and
simulated time series at fixed intervals. The empirical quantile mapping technique solves
the cumulative density equation by using the cumulative density function of observed
and modelled values instead of the suggested theoretical distributions. The empirical
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cumulative density distribution is approximated using tables of empirical percentiles.
The values between percentiles are estimated using linear interpolation. This process can
be mathematically represented as such:

PObs = h(PRCMCon) = ECDFObs−1

(ECDFRCMCon(PRCMCon)) (5.10)

The probabilities in ECDFObs and ECDFRCMCon are approximated at a fixed interval.
The h is calculated as the relative difference between the two ECDFs in each interval.

After the calibration of the historical period, the transfer functions are then applied to
the future climate change simulations – from 2006 to 2100 in the context of this study –
under the assumption that they are time-invariant (Cannon et al., 2015). When values
of the future climate projections are larger than the training values used to estimate
the empirical cumulative density function, we used the correction found for the highest
quantile of the training period (Themeßl et al., 2012). The statistical evaluation of the
bias correction performance was not under the scope of this study. However, we computed
the difference between the simulated and observed dataset to show areas prone to bias.

Figure 5.1 indicates how well the quantile mapping bias correction has improved the
empirical cumulative density function of the temperature and precipitation of the sim-
ulated REMO under the RCP4.5 climate emission scenario. Comparing the observed
temperature with the historical REMO (black line), between 13◦C and 26◦C, the his-
torical temperature of the REMO underestimates the observed temperature (green line)
at about 1◦C. However, above 26◦C, they both look completely similar. The empirical
quantile mapping bias correction has substantially corrected the simulated temperature
(red line) in such a way that its cumulative density function coincides with that of the ob-
served temperature. The benefit of the bias adjustment propagates to the future climate
projection of the REMO under the RCP4.5 (orange line), which is warmer in all quantiles
than the historical REMO. The bias correction has also improved the distribution of the
simulated REMO precipitation (red line), where the uncorrected historical REMO un-
derestimates the observed precipitation (green line) at about 1 mm/day between 1 and
7 mm/day. Above 7mm/day, the REMO slightly overestimates the observed precipita-
tion. As for the precipitation, the quantile mapping bias correction works well because
the cumulative density function of the historical corrected REMO coincides with one of
the observed datasets.
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Figure 5.1: Cumulative density probability Function of the observed ERA5, corrected
and uncorrected REMO. (Left) temperature, (right) precipitation.

Figure 5.2 compares the seasonal cycle of the observed ERA5 dataset to corrected and
uncorrected REMO datasets. The uncorrected REMO (blue lines) exhibits a positive
bias for surface runoff, soil moisture, 10 m wind and precipitation over the whole season.
In contrast, a negative bias is observed for solar radiation and surface pressure for the
entire seasonal cycle. The REMO temperature shows, on average, a positive bias of about
0.5 ◦C compared to the observed data, but negative biases are observed in December,
January and February. After correction, the positive bias substantially increased, but
the negative bias increases and propagates to other months (March, April and May).
The REMO precipitation bias indicates a wetter bias of 43 mm/month and becomes 3.4
mm/month after bias correction, but January, February and April display a negative
bias. The REMO dew point temperature has, on average, a negative bias (-0.62 ◦C ),
but from July to October, REMO displays a positive bias. The average bias becomes
-0.001◦C after correction. The REMO 10 m wind shows a positive bias (0.33 m/s on
average). The bias completely disappears after the correction. Bias correction reduces
the negative solar radiation bias from -14.3 to -1.2 J/day and surface pressure from -139
Pa for all months to -1.3 Pa. Stronger positive bias is observed for surface runoff (7.81
mm/month) and soil moisture (165 mm). After correction, the bias for surface runoff
and soil moisture is reduced to -0.51 mm/month and -0.33 mm.
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Figure 5.2: Annual cycle of area averaged-temperature, precipitation, 10 m wind, dew
point temperature, solar radiation, surface pressure, soil moisture and surface runoff.
The green curve corresponds to the observed dataset (ERA5), blue is the uncorrected
historical REMO, and the red is the corrected historical REMO (with empirical quan-
tile mapping bias correction approach.
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Figure 5.3 displays the spatial pattern of ERA 5 data – simulated historical and corrected
REMO. The corresponding biases are represented in Figure 5.4. According to the three
datasets, abundant precipitation is observed in the Guinea coast, the Atlantic Ocean
and the Congo Basin. The observational dataset, ER5 shows abundant precipitation in
Ethiopia’s highlands in the east of the Congo Basin and the mountains of Cameroon. In
contrast REMO seems to underestimate the precipitation over these regions. The temper-
ature distribution of REMO and ERA5 is quite similar. Regions with high temperatures
are in the Sahel. The Ethiopian highland and rift valley are considered cold areas. The
Somalian coast and the Sahel region are affected by strong 10 m winds around 4 m/s, as
indicated by REMO and ERA 5. The spatial distribution of the surface runoff in REMO
and ERA5 is different. REMO overestimates the surface runoff in the Atlantic coast and
Guinea coast and underestimates it in the Ethiopian highlands and other regions. REMO
totally overestimated soil moisture, except in the Congo Basin. The spatial distribution
of REMO and ERA5 in representing solar radiance is similar. High values of solar radi-
ance are observed in the east of Africa and in Sahel. Both datasets’surface pressure The
surface pressure is similar, where high values are located at high altitude. The spatial
distribution of dew point temperature in REMO and ERA5 is also similar. High values
of dew point temperature are located in the Congo Basin.
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Figure 5.3: Spatial distribution of observation ERA5 (extreme left), historical raw
simulated REMO (extreme right), and historical corrected REMO (middle) for mean
temperature, mean precipitation, 10 m wind, dew point temperature, solar radiation,
surface pressure, soil moisture and surface runoff.



56 Chapter 5 - Statistical methods and data pre-processing

Figure 5.4 displays the arithmetic difference between the historical REMO and the ERA5
(REMO minus ERA5). It completes Figure 5.3 by bringing detailed information, which
was masked out; here, the spatial bias is quantified. A positive precipitation bias of
around 500 mm/year is observed in West Africa. In the west of the Congo Basin, a
positive precipitation bias of more than 1000m/year is observed along the Atlantic coast.
Meanwhile, the east is characterised by a negative bias, reaching 1200 mm/year in the
Ethiopian highlands and east African rift valleys. The surface runoff displays a similar
bias pattern as the precipitation. The difference is that the negative bias in east Africa
is low. The REMO temperature has a negative bias in the Sahel and West Africa, at
around 2 ◦C. The 10 m wind displays a positive bias of 1 m/s almost everywhere, except
on the west coast of the Congo Basin. This is similar to soil moisture, which displays
a positive bias of 500 mm/year everywhere, except in the centre of the Congo Basin.
REMO displays a negative bias of 4 ◦C regarding the dew point temperature in east
Africa. In West Africa and in the Sahel, an average negative bias of 3 ◦C is observed.
REMO presents a strong negative bias of around 40 Joules regarding solar radiance
in east Africa in the west of the Ethiopian highlands. Meanwhile, positive biases are
observed in the cost of Somalia (around 20 Joules).
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Figure 5.4: Spatial distribution of the difference between the historical REMO and
observed ERA5 (REMO – ERA5) for mean temperature, mean precipitation, 10 m
wind, dew point temperature, solar radiation, surface pressure, soil moisture and sur-
face runoff.

5.2 Statistical methods

This study is essentially based on applying many statistical methods, which are explained
in many statistical textbooks (BAHRENBERG et al., 1999; Coles et al., 2001; Wilks,
2006; Bortz and Schuster, 2011). Many simple and complex statistical concepts are ad-
dressed in this chapter: numerical summary measures, time series correlation, statistical
inference, linear regression, trend removal and EOF analysis. In each section, the con-
ventional procedure of the statistical method being used is first presented, followed by
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its modification and application in the context of this study. All statistical procedures
were computed with R statistical software, except for the regression, computed with the
scientific programming language Fortran.

5.2.1 Numerical summary measures

Numerical summary measurement is the first step of data preparation and exploration. It
is comprised of measures of the location, spread and symmetry. The measures of location
used in this study include the mean, the median and the moving average. We used the
standard deviation as the measure of spread. The location refers to the data values’central
tendency or general magnitude. The arithmetic mean provides an idea of the point which
the data addresses, and it is the most fundamental statistical parameter in climatology.
The weighted arithmetic mean is preferred to process geographical data – which may have
different surface proportions – instead of the simple arithmetic mean. This is because
of the convergence of the meridian towards the pole, which makes the grid box of the
grid dataset wider at the equator compared to the pole. In this respect, the cosine of
the latitude is therefore used as a weighting. The weighting mean is mathematically
expressed as the following:

xw =
n∑
i=1

wixi (5.11)

Where wi refers to the weighting factor, and xi is the observation. In many applications
of this study, it was not necessary to weigh the mean, the wi is set to 1. The arithmetic
mean was mainly used to calculate, to map the climatological mean of the local variables
derived from the observational, to simulation datasets, and to present the average crop
yield.

To address the strong affect of outliers, in some cases, we used the median instead of the
mean. The median is defined as the middle observation and is the point above which
half the observations lie and below which half of the observations lie. It is obtained
by ordering the observations from smallest to largest and then looking for the middle
observation. We used the median to present and map the average maize yield change
per grid point because the statistical models did not perform well in some grid points,
resulting in very extreme values. The running mean refers to the moving average that we
sometimes used. It is a filtering technique used to remove the variations in time series
data and compute the means of temporally successive data. In this study, we used it to
improve the visualization of some graphs, such as the principal component variable plot
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and the future crop yield projection. The moving average is calculated so that an equal
amount of data on both sides of a central value is averaged over the selected window.
Therefore, the length of the window – which is in our case equal to five – is an odd
number. An algorithm has been implemented to compute the running mean.

We calculated the anomaly, based on the arithmetic means, which is the deviation of
the element xi from the mean x. It could be positive or negative. The anomaly is
mathematically expressed as the following:

x′i = xi − x (5.12)

The estimation of the climate anomaly is particularly important when the interest is
based on the data dynamics and variation rather than its absolute value. They can also be
used to detect errors and bias from the datasets. In this study, both the temperature and
precipitation empirical orthogonal functions (EOFs) were based on the anomaly datasets.

The spread refers to the degree of variation or dispersion around the centre. We used the
variance and the standard variation of the variance measures of the dispersion in the set
of data points around the mean. It is calculated as the sum squared of the anomalies and
normalized with n, and it is expressed in the following equation:

s2 =
n∑
i=1

wi(xi − xw) (5.13)

In case of equal weighting, the variance becomes the following:

s2 = x
′ 2
i (5.14)

The variance is always positive. The standard deviation is the measure of the spread most
often used, and it is the square root of the variance. The observation is less dispersed
(closed to the mean), when the value of the variance/standard deviation is low. In
contrast, high values indicate a large dispersion of observations around the mean. The
variance was necessary in many statistical methods, for example in the computation of
the EOFs.
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5.2.2 Person correlation

Person correlation measures the linear association between two variables, which is two
time series variables. Supposing that X and Y are two variables, the person correlation
is calculated as the following:

rxy =
1

2

n∑
i=1

(
Xi −X
Sn,X

)
.

(
Yi − Y
Sn,Y

)
(5.15)

X and Y refer to the sample means of X and Y , respectively. Sn,X and Sn,Y denote
the sample variance of X and Y , respectively. The correlation coefficient varies between
1 and −1, where 1 denotes a high positive correlation and −1 denotes a high negative
correlation. The correlation coefficient of 0 refers to the absence of linear associations
between the two variables. In this study, person correlation was used for several reasons,
but mostly for measuring the association between principal component predictors used
in the crop yield model and large-scale climate interconnection or indices. The objective
here was to understand the physical interpretation of each climate principal component,
and it was further needed to understand the association between each predictor and
maize yield. Person time-series correlation is also embedded in this cross-validated model
implementation.

5.2.3 Linear regression and trend removal

Crop yield data are generally characterized by a positive trend due to technological im-
provements such as irrigation, fertilization, pesticide and improved crops. Trends are
traditionally removed to minimize these effects. Like climate predictors, the trend is
removed from each of them to deal only with the interannual variation rather than the
directional change of climate. Many trend removal approaches exist in the literature,
including a second-order polynomial regression model, a moving average model, a locally
weighted regression model, a smoothing spline model, an empirical mode decomposition
model, the first differential equation (Lobell and Field, 2007) and a simple linear regres-
sion method. Among these, the simple linear regression is widely applied. Therefore, we
adopted it in this study as the trend removal approach for the crop yield and the climate
predictors.

Linear regression is considered the most important and commonly used basic tool in
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the quantitative sciences. The aim of linear regression is to create a parametric model
for quantitative correlations between different random variables. The univariate variant
explains the behaviour of the dependent variable Y , which is here represented by either
the time series crop yield or the climate predictors and the independent random variables
Xi. The Xi variables are referred to as predictors or regressors. In the special case of
single regression, only one predictor is considered by the model. Otherwise, it is multiple
regression. To implement linear regression for trend removal, time is considered as the
predictor.

yi = a0 + a1.xi + εi (5.16)

The unknown regression coefficients a0 and a1 describe the intercept and slope parameter
of the straight linear regression line between X the predictor (time series in our case) and
Y the dependant variable (crop yield or climate predictors), respectively. The residual
εi represent the random error and explains the influence of external predictors, which
are not included in linear regression. The least-square method is used to estimate these
coefficients by minimizing the sum of square of the difference between the observed and
predicted. They are estimated as follows:

SSε =
n∑
i=1

(yi − â0 − â1 .xi)2 (5.17)

The equation is resolved by applying the partial derivative considering the unknown
parameters and setting these to zero, as follows:

â1 =

∑n
i=1 (xi − x) (yi − y)∑n

i=1 (xi − x)2
(5.18)

The slope â1 is estimated by the covariance of X and Y formed by the variance of X,
and the intercept â0 is obtained by the following equation:

â0 = y − â1.x (5.19)

The detrended data is obtained after subtracting from the crop yield data/climate pre-
dictors (yi) and the predicted values (axi + a0) according to the following equation:

y′i = yi − (a1xi + a0) (5.20)
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5.2.4 Non-linear trend and abrupt change analysis

To better interpret the future climate change time series, the non-linear trend and the
abrupt change analysis were necessary. The Mann–Kendall test was then applied to the
time series for non-linear trend. The Mann–Kendal test is a nonparametric trend test
used in climate science. The test was applied to the whole times series (1982 to 2100),
including the historical period (1982–2005), the middle-of-the-century period (2020–2060)
and the end of the century period (2060–2100). The Mann–Kendall test is formulated
when the data Xi of a given time series complies with the following model:

Xi = f (ti) + εi (5.21)

Where (ti) is a continuous monotonic increasing or decreasing function of t and εi is the
residual time series. Both parameters have the same distribution with a zero mean. The
Mann–Kendall test statistic S is given as follows:

S =
n−1∑
k=1

n∑
j=k+1

sgn(Xj −Xk) (5.22)

Where n represents the length of the time series Xj ,. . ., Xn, sgn(.) is a sign function, Xj

and Xk are the values in the years j and k, respectively. The sign function is computed
as follows:

sgn (Xj −Xk) =


1 if (Xj −Xk) > 0

0 if (Xj −Xk) = 0

−1 if (Xj −Xk) < 0

(5.23)

The expected value of S equals zero [E(S) = 0] for the series without a trend, and the
variance, σ2(S), are computed as follows:

σ2 (S) =
1

18

[
n (n− 1) (2n+ 5)−

q∑
p=1

(tp − 1)(2tp + 5)

]
(5.24)
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Where q represents the number of tied groups, and tp represents the number of data
values in the pth group. The test statistic Z is therefore the following:

Z =


S−1√
σ2(S)

if S > 0

0 if S = 0

S−1√
σ2(S)

if S < 0

(5.25)

If −Z1−/2≤Z≤+Z1−/2, then the null hypothesis of no trend is accepted at the significance
level of alpha equal to 0.05. Otherwise, the null hypothesis is rejected, and the alternative
hypothesis is accepted at the significance level of alpha.

To determine the approximate year of the beginning of a significant trend, the Sequential
Mann–Kendall test is applied. The test is set by Sneyers et al. (1991). The test is
based on two series, a progressive one u(t) and a backward one u′(t). The statistically
significant trend is confirmed as the two series cross each other and diverge beyond the
specific threshold value. The crossing point represents than the year at which the trend
begins. The u(t) is normalized at a zero mean and the unit standard deviation, which
makes its sequential behaviour to fluctuates around the zero level. In practice, the Mann-
Kendall test considers the relative values of all terms in the times series and is computed
according to the following sequence:

• The magnitudes of xj annual mean time series (j = 1, . . . , n) are compared with
xk. At every comparison, the number of cases is counted and denoted by nj

• The test statistic t is given by the following equation:

t =

j∑
1

nj (5.26)

• The mean and variance of the statistic are estimated as follows:

e (t) =
n(n− 1)

4
(5.27)

var tj =
j(j − 1)(2j + 5)

72
(5.28)
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The sequential values of the statistic u are approximated as follows:

u (t) =
tj − e(t)√
var(tj)

(5.29)

A similar sequence is applied to compute u′ (t) but starting from the end of the series.

5.2.5 EOF analysis

The EOF, also known as Principal Component Analysis (PCA), is a multivariate tech-
nique used to reduce the dimensions of large datasets by creating a set of variables called
principal components (PCs). The PCs are built in such a way that they are orthogonal
from one another and according to the assumption that the total variance of the original
data can be completely reproduced by a linear combination of PCs and corresponding
to a fixed weight called eigenvectors. The EOF is particularly useful for highly corre-
lated variables containing redundant information. Many scientists have documented its
importance in meteorology and climatology (Jolliffe, 2002). Besides using a multivariate
technique, the EOF is also applied to different spatial units of a single variable to gen-
erate large-scale spatial patterns of centres with modes of variation, as explained by von
Storch (1999). In this study, the EOF analysis was first applied to spatial units (time
series gridded points) of a single variable. It was applied to two variables separately:
mean precipitation and mean temperature. Another EOF analysis was applied to PCs
obtained from the precipitation and temperature spatial units.

It is important to define the dataset and explain some basic operations before explaining
how the EOF analysis works. A data matrix X of a certain climatic field variable, for
example, the mean times series precipitation of January derived from the CRU dataset,
has a dimension of (t × m) with j = 1,m spatial units over i = 1, t time steps. With
a spatial resolution of 0.5◦, the number of grid points – which represent the number of
variables in EOF analysis – is equal to 4346 (m = 4, 346), and the time step t is equal to 57
(from 1960 to 2016). The EOF analysis is generally applied to anomaly datasets denoted
by X

′ . The anomaly X
′ is built by subtracting from X the corresponding temporal

means, as follows:
X ′ (t, s) = X (t, s)−X(s) (5.30)

With X (s) as the arithmetic means per grid point. Another operation before the com-
putation of the EOF is the weighting. The datasets were weighted because of the non-
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uniformity over the surface of the earth (denser poleward). The non-uniformity implies
that the number of grid points per unit area increases with increasing latitude because
the meridians converge towards the poles. Therefore, the PCA for this kind of gridded
data will dominate in high-latitude features. We weighted each data point by the local
area of its location – this approach is widely used in scientific communities. We multiplied
each gridded point by the cosine of its latitude as follows:

w(s) =

√
cos(s)∑n
s=1 cos(s)

(5.31)

After this step, the principal component times series can be reconstructed as follows:

X (t, s) =
m∑
i=1

ci(t)vi(s) (5.32)

Where ci(t) refers to the principal components (PCs), which are the linear combination of
the original datasets X(t, s). The variance of X(t, s) decreases with increasing index vi(s)
is its associated pattern or eigenvectors,m refers to the maximum number of variables and
t is the time. The EOF can be performed on either a correlation matrix or a covariance
matrix. The gridded points of the EOF were performed on the covariance matrix to allow
the largest possible variations in the dataset. The covariance matrix is therefore written
as follows: ∑

= n−1X
′TX ′ (5.33)

Before the obtention of the derivation of PCs, a main mathematic problem should be
solved. This is how to find the eigen vector vi (s) and the associated eigenvalues λi . This
is presented in the equation formulated by Von Storch and Zwiers (2004) as follows:

A× E = λ× E (5.34)

The dimensions of A and E are (m ×m) and (m × 1), respectively. With a dataset of
m grid points, the principal component equation should be resolved m times. In the
first step, the covariance matrix of the data (A X

′TX ′) must be solved, and the first
eigenvector v1(s) and its associated eigenvalue λ1 are obtained. The first eigenvector
contains the largest variance. This process will be repeated m times, and A is computed
each time after subtracting the information explained by the ith eigenvector and the next
eigenvector. All eigenvectors are uncorrelated. The proportion of the variance explained
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by each eigenvector is therefore described in the following equation:

V ar(i) = 100.
λi∑n
i=1 λi

(5.35)

The variance explained by each eigenvector decreases as the index of the eigenvectors
increases, as illustrated in Figure 5.5. The eigenvectors obtained are further normalized
and sorted. The normalization implies the following:

m∑
s=1

v2i (s) = 1 (5.36)

Figure 5.5 displays the explained variance in the percentage of the 50 leading empirical
orthogonal functions of each month for the precipitation and the temperature. The first
EOF of the temperature for every month contains more information of the total variables
(almost 45 % of the total variance explained, on average), while the second EOF explains
only 18 %. This is not the case for the precipitation EOFs, where the first leading
EOF contains more information of the whole dataset (15 % of the explained variance, on
average) but close to the second (11 % of the explained variance). The explained variance
of the precipitation and temperature decreases progressively with the number of EOFs.
This difference led us to take only the two leading EOFs of the temperature for each
month, which explains, on average, 60 % of the total variance. For the precipitation, we
took the five leading EOFs.
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Figure 5.5: Variance explained by each of the leading 50 EOFs of precipitation and
temperture

So far, the EOF analysis is performed on the observational dataset, CRU. To derive
simulated principal components, the anomaly simulated REMO datasets were projected
into the spatial pattern of the CRU dataset vi (s) according to the following equations:

ui (t) =
m∑
s=1

vi (s) ×X
′′

(t, s) (5.37)

With ui (t) as the simulated REMO PCs. These operations are also applied to the
remaining eleven months of the precipitation dataset and to the twelve months of the
temperature dataset of both observational the CRU dataset and simulated REMO. The
five leading PCs of precipitation datasets for every month and the two leading PCs of
temperature datasets for every month were retained for further EOF analysis. These
leading PCs retained the mode of climate variability in the study area and the remaining
noises. We therefore computed a second EOF analysis on these 84 PCs, 60 from the
precipitation datasets and 24 from the temperature datasets. In contrast to the gridded



68 Chapter 5 - Statistical methods and data pre-processing

EOF analysis as described bellowed, the EOF analysis applied to the 84 PCs is built
on the correlation matrix because it comes from different datasets (precipitation and
temperature), which have different units and variability. The same operation is applied
to the simulated REMO PCs. The final leading PCs obtained serve as a predictor of
maize yield.



6. Specific crop (Maize) water balance model estima-
tion

This chapter describes the estimation of the processed-based crop model, known as the
WRSI. The WRSI is an indicator used to monitor weather-related food insecurity, mainly
in developing countries where rain-fed agriculture prevails (Turner, 2020). The computa-
tion of WRSI is simple and requires the precipitation, the crop coefficient and the reference
evapotranspiration. But in this study, we used the most advanced version, which uses the
actual evapotranspiration instead of the precipitation. The WRSI estimates the water
supply and demand of any crop during the growing season. Therefore, it is considered
as a simple process-based crop model and widely used in Famine Early Warning Systems
to inform food security and as a management instrument of crop insurance. The WRSI
is directly related to agriculture drought in contrast to other drought indices, such as
the standardized precipitation index (Dlamini, 2013), the dry spells assessments (Ma-
supha and Moeletsi, 2018) and the Standardized Precipitation Evapotranspiration Index
(Vicente-Serrano et al., 2015), which all refer to meteorological drought and do not take
into consideration the crop specificities and the soil water. The Normalized Difference
Vegetation Index is also used to monitor drought, but it is not designed for specific crops
like WRSI. Agriculture drought is characterized by a soil water deficit and a low-value
WRSI (Mishra and Singh, 2010), and can be perceived in any development phase of the
crop, including root development, leaf and stem development, flowering, pollination, grain
filling and grain quality (Prasad et al., 2008). Legesse (2010) classified the values of the
WRSI for drought conditions, and crop performance is indicated in Table 6.1.

Many studies have demonstrated that the WRSI is strongly correlated to crop yields
(Doorenbos and Pruitt, 1977; Frere and Popov, 1979; Frère and Popov, 1986). It can
therefore be used as a valuable proxy of crop yield, especially in areas where crop statistics
are missing. Verdin and Klaver (2002) reported a correlation coefficient of 0.75 between
WRSI and crop yield. Similarly,Tarnavsky et al. (2018) reported that WRSI could explain

69



70 Chapter 6 - Specific crop (Maize) water balance model estimation

Table 6.1: Classification of WRSI according to drought conditions and crop performance
(FAO, 1986; Legesse, 2010)

WRSI Drought classification Crop performance description

80 – 100 No drought Good

70 – 79 Mild Satisfactory

60 – 69 Moderate Average

50 – 59 Severe Poor

50 < Extreme Total crop failure

up to 62 % of yield variability in Tanzania. Senay and Verdin (2003) also found a good
correlation between the WRSI and maize production in Ethiopia. Verdin and Klaver
(2002) reported a good performance of the WRSI in predicting crop yield in Zimbabwe.
Many other studies have been conducted to forecast maize yields by the WRSI around the
world (Martin et al., 2000; Rafi and Ahmad, 2005; Jayanthi et al., 2013). It is important to
note that the strength of that correlation varies according to crop and location (Jayanthi
et al., 2013). Some studies used future climate simulations to assess the impact of climate
change on maize-related WRSI (Crespo et al., 2011; Masupha and Moeletsi, 2018).

Figure 6.1: Monthly variability of the soil moisture, reference evapotranspiration,
actual evapotranspiration, precipitation and runoff.

The WRSI is obtained after estimating some intermediated parameters: the reference
evapotranspiration, the crop water requirement and the actual evapotranspiration. Figure
6.1 presents the temporal variability of the soil moisture, maize reference evapotranspi-
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ration, actual evapotranspiration, precipitation and surface runoff of the city of Kinshasa
(Capital of the Democratic Republic of the Congo). Some variables (surface runoff, pre-
cipitation and soil moisture) have been directly downloaded. Others were calculated:the
actual evapotranspiration and the maize reference evapotranspiration, was calculated .

In this study, the WRSI is first used as a stand-alone proxy of crop yield performance
and then as a predictor of the maize yield statistical model.

6.1 Reference evapotranspiration

The concept of reference evapotranspiration was first used by irrigation researchers and
engineers in the late 1970s (Allen et al., 1998). It is was introduced in contrast with
potential evapotranspiration, but both are very closed and sometimes used interchange-
ably. Reference evapotranspiration is defined as “the rate of evapotranspiration from a
hypothetical reference crop with an assumed crop height of 0.12 m, a fixed surface resis-
tance of 70 sm−1 and an albedo of 0.23, closely resembling the evapotranspiration from
an extensive surface of green grass of uniform height, actively growing, well-watered, and
completely shading the ground”. The hypothetical crop is free of disease and water stress.
In contrast, with the potential evapotranspiration, the rate is not based on a specific crop.
Instead, many savannah shrubs and agricultural crops are concerned (Allen et al., 1998).

There are several ways to estimate crop reference evapotranspiration in the literature.
However, the lysimeter approach is the most accurate one, which also served to develop
and validate other methods (Allen et al., 2011). Because of the complexity and financial
cost, the lysimeter approach is constrained to only fundamental research (Allen et al.,
2011). Thus, mathematical models that use meteorological data are commonly used
for application purposes. In this study, we used the most extensive combined method
approved by the Food and Agricultural Organisation (Allen et al., 1998; McVicar et al.,
2007), which is also known as the Penman–Monteith equation. The model uses the
standard climatological records of solar radiation (sunshine), air temperature, humidity
and wind speed for daily, weekly, ten-day or monthly calculations. We calculated the crop
reference evapotranspiration for each growing season based on monthly data (the initial
stage, development, the mid-season stage and late season). The length of the different
stages of the growing season, according to the region is defined in Table 6.2:

• The initial period corresponds to the germination, and during this phase, the soil
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is naturally dry and uncovered.

• The ground cover is around 70 to 80 % during the crop development stage, and
evapotranspiration becomes the main process.

• The maximum of groundcover is reached during the mid-season stage, which is
also known as the maturity stage of the crop. This stage is also the longest for
most annual and perennial crops (40 days for maize growing in humid regions like
Nigeria).

• The late season is the last stage, starting from the crop’s maturity and lasting to
the senescence or harvest.

This used the calculation applied in Nigeria and east Africa. The reference evapotranspi-
ration is mathematically expressed as such:

ET =
0.408∆ (Rn−Gsfc) + γ 900

T+273
u2(es − ea)

∆ + γ(1 + 0.34u2)
(6.1)

e0 (T ) = 0.6018exp(
17.27T

T + 237.3
) (6.2)

es =
e0 (Tmax) + e0(Tmin)

2
(6.3)

ea =
e0 (Tmax)

RHmin

100
+ e0(Tmin)RHmax

100

2
(6.4)

∆ =
4098

[
0.6108 exp( 17.27T

T+237.3
)
]

(T + 237.3)2
(6.5)

γ = 0.665x10−3 P (6.6)

Where ET refers to the reference evapotranspiration (mm · d−1), Rn corresponds to the
net radiation (MJ ·m2 · d−1), G is the soil heat flux in the ground (MJ ·m2 · d−1), es is
the saturation vapour pressure of the air temperature (KPa) and ea is the actual vapour
pressure (KPa). T is the main daily temperature (◦C), u2 wind velocity is at 2 m height
(m.s−1), ∆ is the slope of the saturation vapour-pressure curve of the air temperature
(KPa ·◦ C−1), RH is the relative humidity, P is the air pressure (KPa); es − ea is the
saturation vapor pressure deficit (kPa) and γ is the psychrometric constant (kPa◦C−1)

Figure 6.2 illustrates the climatological mean (1982–2016) of the seasonal spatial dis-
tribution of the reference evapotranspiration in tropical Africa from the ERA5 dataset.
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Independent of the month, the reference evapotranspiration over tropical Africa increases
northward and southward from the Guinean coast and the Congo Basin with the increas-
ing latitude. The mean reference evapotranspiration reaches the minimum values of about
200 mm/month in the Congo Basin and along the Guinea Coast. Maximum values of
around 500 mm/month are recorded in the northern region around Sahel. A meridional
belt of high values from the west of Sahel to the Somalian coast can be observed, par-
ticularly during January, February, March and December. Another strong longitudinal
pattern of high values is observed in the Congo Basin from July to October. This spatial
pattern observed in Figure 6.2 corresponds to the finding of Abiye et al. (2019), who used
the potential evapotranspiration product of the CRU dataset. According to Abiye et al.
(2019), the spatial distribution of the potential evapotranspiration over Africa is highly
influenced by the cloud cover, which reduces the solar radiance. The characteristics of
the local conditions, such as topography, vegetative cover, availability of soil moisture,
reflective land surface, and changes in land use/land cover also influence the reference
evapotranspiration (Rim, 2009; Ashaolu and Iroye, 2018).

Table 6.2: Lengths of Maize development stages and climatic regions (days) (Allen et
al.,1998).

Init. Dev. Mid. Lat. Total Plant Date Region

30 50 60 40 180 April East Africa (alt.)

25 40 45 30 140 Dec./Jan. Arid Climate

20 35 40 30 125 June Nigeria (humid)

20 35 40 30 125 October India (dry, cool)

30 40 50 30 150 April Spain (spr, sum.); Calif.

30 40 50 50 170 April Idaho, USA
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Figure 6.2: Spatial pattern of the monthly reference evapotranspiration (1982–2016).

6.2 Crop water requirement

The crop water requirement is a product of the reference evapotranspiration (ET ) and
the specific crop coefficient (Kc), maize in our case. It is calculated for every growing
season, as the following:

WR = Kc × ET (6.7)

The crop coefficient indicates the pattern of water used by each crop during different
growing seasons (the initial stage, development, the mid-season stage and late season).
The methodology and framework used to estimate it has been extensively explained by
the Food and Agriculture Organization Irrigation and Drainage Paper 56 (Allen et al.,
1998). In addition, the FAO provides a look-up table of the values of the crop coefficient
for a wide range of crops at different growing seasons. The crop coefficient curve for maize
is displayed in Figure 6.3. In the initial phase, the crop coefficient is very low because
the ground cover is less than 10 %. The maximum of the Kc reaches the maximum value
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and remains constant in the mid-season stage. It drops again in the late season.

Figure 6.3: Crop coefficient curve for Maize (Allen, 1998)
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6.3 Actual evapotranspiration

The actual evapotranspiration represents the actual amount of water lost from the soil
water reservoir that has become atmospheric water vapour under natural conditions (Xu
et al., 2006). Many approaches exist in the literature to estimate the actual evapotran-
spiration from meteorological observation and satellite devices. In our study, we used the
rained-driven water balanced accounting shame approach, which is based on the water
cycle (Campos et al., 2016); it is easy to implement. The soil water balance equation is
expressed as follows:

AET = R + I ±∆SM −Dp −RO + CR (6.8)

Figure 6.4: Spatial pattern of the monthly actual evapotranspiration (1982-2016).

Where AET is the actual evapotranspiration; ∆SM is the change of water content be-
tween two consecutive days, months in our case; I is the irrigation, measured in mm; Dp
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is the deep percolation in mm; R is the precipitation in mm; RO is surface runoff flux in
mm and CR is the capillary rise flux in mm. The irrigation term was neglected because
we assume a red-fed agriculture. The drainage term was also neglected because we are
only concerned with the top layer soil water content (90 cm) as well as the capillary rise
flux due to no contribution from groundwater with a capillary rise into the root zone
(Ridolfi et al., 2008).

Figure 6.4 presents the spatial pattern of the actual monthly evapotranspiration of the
study area. Generally, the actual evapotranspiration decreases northward and southward
from the Congo Basin with increasing latitude. Low values are observed in arid and semi-
arid regions, excepting months of October, November, December, January, February and
March, when high values are observed south of the Congo Basin.
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6.4 WRSI

The WRSI is simply a ratio between the actual evapotranspiration and the potential
evapotranspiration, as expressed in the following equation:

WRSI =
WR× 100

AET
(6.9)

Figure 6.5 illustrates the time series of the WRSI of some cities in Africa. A strong
interannual variability of the WRSI is observed in Porto Novo in western Africa. In
the heart of the Congo Basin, the index is high but has a weak inter-annual variability
(Kisangani). The WRSI means in Johannesburg (Southern Africa) and Kigali (East
Africa) are relatively low throughout the years, requiring additional water supplies for
good crop production.

Figure 6.5: Inter-annual variability of WRSI in Johannesburg, Kinshasa, Porto Novo,
Kigali and Kisangani.



7. Development of the statistical crop yield model

Various statistic regressions have been used to model the impact of climate change on
crop yields. They are all assessed according to their ability to deal with multi-collinearity,
non-climatic trend removal, selection of relevant predictors and their ability to better fit
the validation dataset. According to Lobell and Burke (2009), collinearity is one of the
most important challenges to resolve in modelling the impact of climate change crop
yields because it leads to model misspecification. For example, it is challenging to as-
sess the effect of the mean temperature, maximum temperature and precipitation in
statistical models (Shi and Tao, 2014). Sharif et al. (2017) compared the performance
of six regression techniques in predicting oilseed rape yield response to climate variabil-
ity. Their result indicated that Ordinary Least Squared (OLS) multiple regression and
stepwise linear regression were less effective, whereas Lasso and Elastic Net regressions
were the most effective. Ridge regression and the partial least square show intermedi-
ated results. Despite this result from other researchers, OLS multiple linear regression is
still commonly used because of its simplicity and ability to integrate non-linear variables
(Chen et al., 2011; Lobell and Burke, 2010; Lobell and Field, 2007; Schlenker and Lobell,
2010). However, it requires deep biological knowledge of the variables being used to avoid
collinearity issues and more attention needs to be paid to the number of predictors to
avoid the overfitting problem. In this study, we suggested a cross-validated version of
OLS multiple regression, developed by Paeth and Hense (2003) and recently improved by
(Awoye et al., 2017). This regression handles large datasets (highly correlated) well and
is less prone to overfitting. In addition, the model is performant in capturing physically
based predictors. It is applied in two phases: (1) The first phase involves of developing or
calibrating the model. It combined many statistical techniques, such as forward stepwise
multiple linear regression, cross-validation, bootstrapping and model weighting; (2) The
second phase, the forecast phase, consisted of applying the equation derived from the
development phase to the climate-simulated predictors.

79
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7.1 Cross-validated multiple regression

The multiple crossed validated regression aims to assess the impact of predictors on the
predictand and to model the future maize yield changes. The regression is applied to each
bootstrap sample for every grid point. The selected predictors time series are assembled
in the OLS linear regression model, as follows:

yi = a0 +
k∑
j=1

ajxij + εi (7.1)

Where the crop yield (predictand) yi at year i is explained by a linear combination
of k predictors xij, and ε is the random error or the unpredictable component of the
predictand. In the matrix format, the same equation can be written as follows:

y = Xa+ ε (7.2)

Where y is the predictand of one dimension, containing n observations, and X is a
two-dimension matrix, representing the k predictors and n observations. The (k + 1)-
dimensional vector a represents the intercept, and the coefficients corresponding to the
k predictors and ε represent the random errors of each observation. The intercept and
coefficients a are estimated using the least square approach (OLS), which minimizes the
sum of square errors, according to the following mathematical expression:

a = (XX)−1XT y (7.3)

a is comprised of the intercept and parameters of the predictors aj.y contains the pre-
dictand times series with i = 1 . . . n. X represents a matrix with the value 1 in the first
column and the predictors time series in the following column. The explained variance
of the model of the multiple linear regression is calculated as the following:

R2 = yT (X(XTX)
−1
XT − U) y

[
yT (I − U) y

]−1 (7.4)

Where I represent the n×n identity matrix and U an n×n matrix with all entries equal
to 1/n. The distribution of the explained variance R2 under the null hypothesis H0 is
Fisher F , and its significance level can be estimated given a certain error level.

The multiple linear regression explains how different predictors could influence the pre-
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dictand but neither ranks the contribution of each predictor to the model nor selects the
most important predictors. This is possible only through a stepwise screening approach.
The stepwise linear regression can use two different algorithms: the forward or backward
selection. In this study, we applied the forward selection: predictors were added to the
regression model step by step according to their order of importance. The model starts
by taking the mean of the mean of the predictand y as intercept, which is calculated as
follows:

a0 =
1

n

n∑
i=1

yi (7.5)

At this first step of the model, the X matrix only contains the first column – an n

dimensional vector with a value equal to 1. The most important predictor is selected in
the second step, after the linear correlation – described in subsection 5.2.2 – between to
predictand and each predictor. The predictor holding the highest correlation coefficient
with the predictand is the one selected. Before the third step, the simple OLS regression is
computed based on the predictor selected in the second step and the predictand, according
to equation 5.16. In the third step, the second most important predictor is chosen based on
the linear correlation between the remaining predictors (k−1) and the residual predictand
times series derived from the simple linear regression computed in the second step; the
predictor holding the highest coefficient with the residual times series is selected as the
second most important predictor of the model. Instead of the simple linear regression,
the multiple regression is computed with the two predictors selected in previous steps.
The third most important predictors will be chosen in the fourth step, after the linear
correlation between the residual time series of the multiple linear regression and the
remaining predictors (k − 2). From the fourth step, the model will iterate until the last
predictor is selected.

7.2 Cross validation, bootstrap sampling and variable
selection

To avoid spurious correlation between the residual time series and predictors, as explained
in stepwise linear regression, a cross-validation analysis was performed by splitting the
datasets into two parts: calibration and validation. The splitting process was done by
the bootstrap sampling procedure. The Bootstrap sampling procedure draws sample
permutation. It combines the uniform random-number generators and the kernel density
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estimate. It consisted of choosing an integer number and updating and rescaling the
seed integer number to the interval between 0 and 1. We proceeded by applying the
congruential generator algorithm defined as follows:

Sn = a Sn−1 + c, Mod M (7.6)

un = Sn/M (7.7)

Where Sn−1 refers to the seed of the previous iteration, Sn is the updated seed and
a, c and M are the integer parameters called the multiplier, increment and modulus,
respectively. The quantity un is the uniform variate produced by the iteration defined by
the estimation of the center of the kernel according to the following equations (algorithm):

choose xi if
i− 1

n
≤ u <

i

n
, (7.8)

Which yields
i = int [nu+ 1] (7.9)

With [∗ ] indicating the retention of the integer part only. With the splitting of the
dataset, the equation 7.1 is computed only in the calibration datasets. In each step of
the stepwise linear regression, the mean square error of the model (MSEM) is computed
as follows:

M̂SEM =
1

n− nb

n−nb∑
j=1

(yj − ŷj)
2 (7.10)

Where nb refers to the number of observations, commonly called “bootstrap elements”
in the validation dataset. yj indicates the value of the calibration datasets, entering the
regression model at time j, and ŷj is the estimated predictand derived from the regression
model. Until now, the predictors are ranked and ready selected, and the MSEM always
decreases when a predictor is added to the model. To ensure the selection of the important
variables – which has a physical interpretation – the mean square error of the calibration
dataset (MSECV ) is calculated as follows:

M̂SEC =
1

nb

nb∑
j=1

(yBj − ŷBj )
2 (7.11)

Where yBj refers to the bootstrap elements of the calibration dataset, and ŷBj is the
estimated predictand of the regression equation, derived from the calibration dataset but
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applied to the validation dataset.

Compared toMSEM , theMSEC decreases when a relevant predictor (physical meaning)
is selected. An artifact predictor is likely to increase the MSECV . Thus, the stepwise
multiple regression stops in the first relative minimum value of MSECV , and the opti-
mal number of predictors are selected and ranked according to their importance. The
whole process of model development described above was iterated 100 times to ensure
the robustness of the model, which resulted in 100 randomized bootstrap samples.

In this study, the multiple cross-validated regression model is used to model the impact of
climate change on maize yield. The model is applied in each grid box, which has a spatial
resolution of 0.5◦. The list of predictors is comprised of the four leading PCs derived
from the second EOF analysis: the mean precipitation, the maximum temperature, the
minimum temperature, the mean temperature, and the five WRSI products. As far as
the local predictors are concerned, for a given grid box, we calculated the average of the
grid point concerned with its eight neighboring grid points to avoid a potential spatial
offset error of the local predictors. The dataset covers the period from 1982 to 2016 (34
observations). Only 28 observations were used to calibrate the model and six to validate
it ( nb = 6). The performance of the single or multi-averaging models was assessed by the
means of the coefficient of determination and the root mean squared error of the model.

7.3 Model weighting

The bootstrap procedure in each grid point generates 100 samples, which means 100 sub-
regression models with an optimal selection of predictors. In a normal procedure, the
final estimated predictand values should derive from the average over the 100 sub-models.
However, in this study, we used six different multi-model averaging methods: (1) simple
averaging; (2) weighting with the adjusted coefficient of determination of the individual
models with respect to the observational data; (3) the Akaike weights; (4) the corrected
Akaike weights; (5) Bayesian information criteria; and (6) Bayesian model averaging.
Awoye et al. (2017) compared the impact of different model averaging in predicting maize
yield. Their results indicated that the automated Bayesian model (not used here) was
the best, followed by the Bayesian model average and the Bayesian information criteria.
The bootstrap procedure serves to further define a robust confidential estimate around
the multi-model mean, which is important to assess the uncertainties of the model. At
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each time step, the confidential interval is calculated as follows:

CI95% = (Y w − 1.96× SWn,y;Y w + 1.96× SWn,y) (7.12)

Where Y w and the SWn,y denotes the average yield or average yield changes and its
corresponding standard deviation, respectively. The standard deviation corresponds to
the standard error, which was computed on 100 samples. Therefore, 1.96 corresponds to
the 97.5 percentile of the standard normal distribution.

7.3.1 Simple averaging

The simple averaging weighting is similar to the arithmetic mean, computed in equation
5.4 , the formula is here expressed as follows:

E(∆) =
1

2

B∑
i=1

∆i (7.13)

7.3.2 Adjusted coefficient of determination

The averaging of the coefficient of determination of every model iteration can be computed
as follows:

R2
(i) =

[∑n
j=1

(
Yj − Y

)
(f

(i)
j − f

(i)
)
]2

[∑n
j=1 (Yj − Y )

2
]
x

[∑n
j=1 (f

(i)
j − f

(i)
)
2
] (7.14)

Where Yj refers to the observed yield data and Y the mean value of the observed yields.
f
(i)
j is an estimate of the modelMi at time j, and f (i) represents an estimate of the average
yield from the mode Mi in the reference period. The major issue with the averaging of
the coefficient of determination is that it increases every time a new predictor is added,
limiting a good comparison of models which have different numbers of predictors. It
therefore needs to be adjusted. The adjusted coefficient of determination is expressed as
follows:

R
2

(i) = 1−
(1−R2

(i))(n− 1)

n − p − 1
(7.15)
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Where p refers to the number of free parameters in the model Mi. The quantity of interest
is estimated as follows:

E(∆) =

∑B
i=1R

2

(i) × ∆i∑B
i=1R

2

(i)

(7.16)

Where p refers to the number of free parameters in the modelMi.The quantity of interest
is estimated as follows:

E(∆) =

∑B
i=1R

2

(i) x ∆i∑B
i=1R

2

(i)

(7.17)

7.3.3 The corrected Akaike Information Criteria (AICc)

The AICc approach orders the model according to their performance, AIC and the
weight of each of them. The AIC is calculated as follows:

AIC = −2log(δ(M/Data)) + 2K (7.18)

Where δ(M/Data) represents the likelihood of the model M given the data, and K is
the number of parameters in the model. In case the errors are normally distributed, the
AIC is calculated as follows:

AIC ≈ n log(

∑n
i ∈̂

2
i

n
) + 2K (7.19)

Where ∈̂2. denotes the residual sum of squares of the model and n the sample size. The
AIC estimate is prone to bias if the sample size is small with many predictors, which is
the case in this study. It is therefore recommended to proceed by the corrected version
of the AICs (Burnham and Anderson, 2014), estimated as follows:

AICc = AIC +
2K(K + 1)

n − k − 1
(7.20)

The AICc of each candidate model is weighted as follows:

Wi = exp

(
−1

2
(AICci − AICcmin)

)
(7.21)
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Where AICcmin represents the smallest value of AICc among the values for the B candi-
date models. The quantity of interest can be expressed as follows:

E(∆) =

∑B
i=1W x ∆i∑B

i=1Wi

(7.22)

7.3.4 Bayesian information criteria (BIC)

The BIC, also referred to as the Schwartz’s information criteria weight models by assum-
ing that they all have an equal prior probability, is expressed in the following formula:

BIC = −2log(δ(M/Data)) + 2K x log(n) (7.23)

When the errors of all models are normally distributed with a constant variable, the BIC
can be estimated as such:

BIC ≈ n log(

∑n
i ∈̂

2
i

n
) +K × log(n) (7.24)

The weight of each model corresponds to the joint probability P (Mi|D) as expressed in
the following formula:

Wi = P (Mi|D) = exp

(
−1

2
(BICi − BICmin)

)
(7.25)

The posterior probability of each model is therefore the rapport of the joint probability
over the marginal probability.

7.3.5 Bayesian moving average (BMA)

All Bayesian approaches are based on the prior beliefs of the candidate models. For the
case of BMA, all models, as well as their corresponding parameters, receive a uniform
prior distribution. Therefore, the posterior distribution will be estimated as follows:

P (M |D) =
1

B
×

n∏
i=1

1√
2πσ

exp

{
− ε̂2i

2σ2

}
(7.26)
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Where 1/B stands for the prior probability on each modelM i, and the rest of the equation
represents the likelihood of the considered model given the observed data.

7.4 Prediction of the maize yield

The first phase of the model is described in equation 7.1, where the observed climate
predictors from CRU (large scales) and ERA5 (local scales) are used to calibrate the
model. The second phase consisted of transferring the developed model to the REMO for
predicting the future yield and yield changes. As for the observed predictors, the REMO
predictors were also standardised. The mean and standard deviation normalization were
calculated for each predictor using the REMO mean and standardization covering the
period from 1982 to 2012. The following equation indicates how to obtain the predicted
yields, as both the maize yield and the predictors were standardized.

Yi = (Y ′i × Sn−1,Y ) + Y (7.27)

In this equation, Yi denotes the yield data in t/ha and Y ′i the yield estimate from
the model. Y and Sn−1, Y represent respectively the mean and the standard deviation
of the observed maize yield relative to the 1982–2012 period. The yield changes for
the inter-comparison were calculated relative to the 1982–2012 period. It is therefore
mathematically expressed as such:

∆Yi =
Yi − Y
Y

× 100 (7.28)

Where ∆Yi denotes the yield changes relative to the inter-comparison period (1982-2012)
and Y (1982/2012), the average of the observed yield.



8. Climate Impact Assessment

This chapter is divided into two sections. The first section deals with the statistical
modelling of the maize yield from model development to future yield changes. The second
section assesses the impact of climate change directly on WRSI.

8.1 Statistical crop model for Maize in tropical Africa

This section first describes the group of predictors, as well as their association with the
maize yield. After this, the performance of the statistical model in predicting the present-
day and future maize yield changes in tropical Africa is evaluated.

8.1.1 Traditional and process-based Local Predictors

Traditional predictors refer to the most commonly used climate variables used to assess
the impact of climate change on crop yields. Those predictors are the mean temperature,
the maximum temperature and the minimum temperature, as well as the mean precipita-
tion. These variables were all derived from ERA5 datasets. In contrast, the process-based
predictors are those derived from the WRSI, calculated in chapter 6. This concerns the
global WRSI (WRSI-glo), the WRSI of the initial crop stage (WRSI-int), the WRSI of
the crop development stage (WRSI-dev), the WRSI of the mid-season (WRSI-med) and
the WRSI of the late season (WRSI-late). These nine variables are called locals because
they are used at the grid point level.

Figure 8.1 shows the means of the WRSI-glo over five years, as well as the linear trend
calculated from 1979 to 2018. The results indicate that WRSI-glo is very high – exceeding
90 % – in the Guinea coasts: south of the Gambia, Guinee Bissau, Sierra Leonne, Guinea
and the south of Mali. Another pattern of high WRSI-glo is reported in the centre of
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Nigeria. This implies that the water availability for maize production is suitable in these
regions. The WRSI-glo is around 80 %, particularly in the Republic Democratic of Congo,
Republic of Congo, Cameroon, Gabon, Central Africa, the south of Sudan and the nord of
Angola. However, in the last two decades (1999–2018), in the south of Cuvette Centrale,
precisely in the province of Bandundu of the Republic Democratic of the Congo, the
WRSI-glo has substantially decreased. In arid and semi-arid regions, such as the Sahel,
the desert of Namibia and Somalia, the WRSI-glo is extremely low, below 10 %. This
implies that maize could grown adequately without irrigation. The linear trend indicates
that tropical Africa is experiencing a decrease in maize yield performance in general. A
significant trend is observed at 10◦ north, starting from West Africa (Senegal, southern
Mali, Burkina Faso, Ivory Coast, Nigeria, Cameroon, Central Republic of Africa and
South Soudan). Another significant negative trend of WRSI is observed in the centre of
the Republic Democratic of the Congo; in east Africa between Rwanda, Burundi, Uganda
and the North of Tanzania; and the east of Ethiopia. From 1979 to 2018, the Central
African Republic lost 22 % of maize yield performance on average, 9 % on average was
lost in the Republic Democratic of Congo, 11 % was lost in Benin, and 3 % was lost in
Nigeria. However, some regions of Africa are experiencing an increase in global WRSI.
In Angola, for example, the WRSI-glo has increased by 6 % (Table 8.1). Details about
the percentage of the WRSI-glo per country are presented in Table 8.1.
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Figure 8.1: Spatial distribution of the five-year means of WRSI-glo and linear trends
(extreme top-right).

The WRSIs calculated for each stage of the maize growing season are presented in Figure
8.2 The initial stage (Figure 8.2a) is characterised by high values of WRSI-int, exceeding
100 % in the Congo Basin. During this stage, the maize water requirement is low (with
the crop coefficient being close to 0.4), but the precipitation is abundant due to the
permanent presence of the ITCZ. In addition, the initial stage starts in June/July –
which is the peak of precipitation – in the Congo Basin. The value of the WRSI-dev in
the developing period is between 70 and 100 % in most regions of tropical Africa, except
in the arid regions (Figure 8.2b). At this stage, the crop needs almost double the water
required during the initial stage. The peak of water requirement for maize is reached in
the mid-season, where the crop becomes mature (the crop coefficient is about 1.2) (Figure
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Table 8.1: Mean, maximum and minimum values of WRSI in selected African countries

Countries Min (%) Max (%) Mean (%)

Angola -22.36 -22.36 -22.36

Benin -14.97 -8.22 -11.73

Congo -10.03 24.11 0.04

Democratic Republic of the Congo -29.47 18.89 -9.88

Burundi -5.27 -4.44 -4.86

Cameroon -25.37 2.83 -12.99

Central African Republic -31.97 -7.44 -22.7

Equatorial Guinea -1.34 -0.84 -1.09

Gabon -6.25 4.83 -1.41

Ghana -13.49 16.39 -3.72

Guinea -17 9.48 -3.75

Kenya -18.5 0.83 -7.35

Madagascar -3.34 10.79 1.73

Mali -23.43 1.56 -6.34

Malawi -9.87 10.69 -3.19

Guinea-Bissau -11.53 18.78 -0.52

Senegal -18.69 2.81 -9.14

Sudan -25.06 3.76 -9.71

United Republic of Tanzania -21.83 7.83 -6.77

Namibia 1.77 12.9 7.86

Zimbabwe -1.03 13.66 6.62
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8.2c). Consequently, the WRSI-mid is low in the humid region, between 50 and 65 %.
The water needed decreases somewhat in the late season, where the crop coefficient is
around 0.7, but the value of WRSI-late in the Congo Basin is above 90 %, exceeding even
100 % in some regions (Figure 8.2d). High values of WRSI-late are also observed in West
Africa on the Guinea coast and in Burkina, Benin and Ghana.

Figure 8.2: Spatial distribution of the WRSI calculated during different maize grow-
ing season stages: (a) initial; (b) developing; (c) mid-season; and (d) late season.

Figure 8.3 presents the linear correlation between each local predictors (processed-based
and simple) with crop yield. It is important to note that neither maize yield nor the pre-
dictors were detrended. The results show that the correlation pattern between the maize
yield and the three temperature predictors (maximum, minimum and mean) are almost
similar (Figure 8.3a, 8.3b, 8.3d). Significant negative correlations are found in eastern
Africa, specifically Kenya, Uganda and Tanzania. This is also true for north-western
Africa and southern Africa. However, the three temperature predictors are positively
correlated with maize yield in some humid regions (Nigeria and the Republic Democratic
of the Congo) and the north of east Africa (Ethiopia and North of Kenya). The corre-
lation pattern between the maize yield and the five water requirement satisfaction index
(WRSI-glo, WRSI-int, WRSI-dev, WRSI-mid and WRSI-late) is also almost identical
(Figure 8.3e, 8.3f, 8.3g, 8.3h, 8.3i). The maize yield is positively correlated with the five
WRSIs in east Africa and in the north of western Africa (Sahel regions). The correlation
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between crop yield and WRSIs in equatorial Africa, specifically in the Democratic Re-
public of the Congo, is negative. The spatial pattern of the mean precipitation is close
to one of the five maize WRSIs (Figure 8.3c).

Figure 8.3: Linear correlation between maize yield and local climate variables: (a)
maximum temperature, (b) minimum temperature, (c) mean precipitation, (d) mean
temperature, (e) WRSI-lat, (f) WRSI-mid, (g) WRSI-glo, (h) WRSI-int, (i) WRSI-dev.
Black dots indicate places where correlations are significant at the 5 % significance
level.

8.1.2 Large-scale climate predictors

Large-scale climate predictors are derived from EOFs, as explained in Subsection 5.2.5.
The first EOF was applied to the precipitation and temperature grid points, separately.
The second EOFs – from which came the final large-scale predictors – were applied to
the precipitation and the temperature PCs obtained from the first EOF.

Figure 8.4 presents the leading EOFs and PCs of September–October–November precipi-
tation in central Africa. The plotted PCs were normalised using standard deviation based
on the time period from 1960 to 1990 and filtered using nine years moving average. The
first EOF pattern explains 13.8 % of the total precipitation variance, while the second
explains 11.2 %. The first EOF pattern is homogeneous with low values in Sahara and



94 Chapter 8 - Climate Impact Assessment

Kalahari. These values increase equatorward, and the maximum is reached in east Africa
and in the west of the Congo Basin, along the Atlantic coast. Its associated principal
component, PC1, exhibits a multi-decadal variability with a periodicity of almost 30
years. Between 1908 and 1919, the PC1 was wetter than the baseline period. Other wet
periods are observed from 1929 to 1947 and from 1971 to 2000. The periods 1950–1980
and 2000–2018 are considered drier, but the curve indicates a slight recovery. After pro-
jecting REMO precipitation anomalies (simulated under RCP8.5 and RCP4.5 scenarios)
into the EOF spatial pattern of the CRU dataset, we obtained PC1-REMO (RCP4.5)
and PC1-REMO (RCP8.5). Compared to PC1, the present-day PC1-REMO (RCP8.5)
reproduces the temporal variability of PC1 quite well and seems to be coherent in project-
ing future variability. PC1-REMO (PCP85) captures the drier conditions after 2000 well
and projects that the periods between 2022–2054 and 1968–2100 will be wetter than the
baseline period. PC1-REMO (RCP4.5) poorly captures the drying condition after 2000,
but represents the amplitude of the PC1 variability better than PC1-REMO (PCP85).
The direction of both PC1-REMO is opposite after 2080. PC1-REMO (RCP4.5) pro-
jected a drier period after 2080, while PC1-REMO (RCP8.5) indicates a wetter period.
In contrast to the EOF1 spatial pattern, EOF2 presents a dipole spatial pattern of the
opposite sign. Positive precipitation values are found in West Africa, and negative values
are found in East Africa. Its associated PC displays a higher amplitude and longer time
period. Therefore, the period 1925–1980 was wetter than the baseline period. Wetter
periods are also observed from 1995 to 2018. The corresponding PC2-REMO (RCP8.5)
and PC2 (REMO) RCP4.5 do not reproduce the temporal variability of PC2, but both
indicate, as per PC2, that the years after 1995 were wetter than the baseline period.
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Figure 8.4: Nine years moving average time series of the two leading principal com-
ponent for September-October-November precipitation sums of CRU and REMO
datasets, and their associated spatial pattern. PCs have been standardised relative
to 1961–1991 climatology mean.

Figure 8.5 shows the two-leading precipitation EOFs of the September–October–November
season and their associated PCs. In contrast to the precipitation, the temperature dataset
was not detrended to better interpret the curve, but we used the detrended version in
the statistical model. The spatial pattern indicates that EOF1 explains 49.2 % of the
total temperature variance and presents a homogeneous spatial pattern with high values
of eigenvectors in east Africa and north-east Africa. Its associated PC1 indicates that,
from 1901 to 1925, the temperature was colder than the baseline average (1960–1990).
Another colder period was observed between 1945 and 1978. The temperature starts to
warm from 1979 up to 2018. Both PC1-REMO (RCP4.5) and PC1-REMO (RCP8.5)
simulated the present-day temperature very well. Concerning the future simulation, PC1
REMO (RCP8.5) captures very well the linear trend of observed temperature while PC1-
REMO (RCP4.5) fails to reproduce the observed linear trend. The EOF2 pattern displays
a dipole spatial pattern of opposite signs between North Africa and East Africa. The asso-
ciated PC2 time series indicates that between 1901 to 1948, the temperature was warmer
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than the average baseline. From 1955, the temperature recovered and became warmer
again in 1980. The REMO models do not capture the present-day simulation.

Figure 8.5: Nine years moving average times series of the two leading principal com-
ponents for September-October-November temperature mean of CRU and REMO non-
detrended datasets, and their associated spatial pattern. PCs have been standardised
relative to 1961–1991 climatology.

Figure 8.4 and Figure 8.5 are only examples of the EOF analysis computed for the period
September–October–November, but the gridded-based PCs, which were further used in
the second EOF analysis, were computed using the monthly dataset, as illustrated in
figure 5.5, and were all detrended. The PCs derived from the second EOF analysis were
correlated with climate indices in order to select, as final predictors, variables that have
physical meaning (significant correlation with climate indices). Table 8.1 displays the
correlation between PCs and climate indices. It can be observed that the four leading
PCs are correlated with climate indices and explain 55 % of the total data variability.
They are therefore selected as large-scale climate variables for modelling maize yield. The
remaining PCs are considered as simple mathematical constraints because they do not
convey any physical insight. In detail, PC1 is significantly correlated with the TNA (r =
0.56, p = 0.01) and the NAO (r = - 0.46, p < 0.01), TSA (r= 0.39, pvalue = 0.05), the
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Atlantic SST (r = 0.46, p = 0.05) and the Indian ocean SST (r = 0.41, p = 0.05). PC2
is highly correlated with the nino3 index (r = 0.72, p < 0.01), MEI (r = 0.76, p < 0.01),
SAOD (r = -0.68, p < 0.01), TSA (r = - 0.52, p < 0.01), Indian ocean SST (r = 0.57, p
< 0.01), the TNA (r = 0.4, p = 0.05) and the Atlantic SST (r = 0.36, p < 0.01). PC3
is significantly correlated with Atlantic SST (r = 0.68, p < 0.01), the TSA (r = 0.59, p
< 0.01), the SAOD (r = 0.47, p < 0.01), the NAO (r = -0. 43, pvalue < 0.01) and the
IMI (r = - 0.38,p < 0.01). PC4 is significantly correlated with the QBO (r= 0.56, p <
0.01), the IMI (r = - 0.56, p < 0.01) and IOD (r = 0.43, p = 0.05).

Table 8.2: Linear correlation between climate indices (Atlan_SST = Atlantic Seas
Surface Temperature; Indi_SST = Indian Seas Surface Temperature; TNA = Tropical
North Atlantic; TSA = Tropical South Atlantic; MEI = Multivariate ENSO Index; NAO
= North Atlantic Oscillation; SAOD = South Atlantic Ocean Dipole; QBO = Quasi-
Biannual Oscillation; IMI = Indian Monsoon Index; DMI = Indian Monsoon Dipole) and
maize yield. * denotes the corrolation is significant at 5 5% significant level, and ** at 1
% significant level.

Var. Nino3 SAOD QBO DMI IMI NAO MEI SAMI TSA TNA Atlan_sst Ind_sst
Pc1 0.02 0.12 -0.31 -0.1 0.03 -0.46** 0.13 0.26 0.39* 0.56** 0.46* 0.41*

Pc2 0.72** -0.68** -0.03 0.09 -0.03 0.24 0.76** -0.32 -0.52** 0.4* -0.36* 0.57**

Pc3 -0.15 0.47** 0.07 -0.27 -0.38* -0.43* -0.19 0.26 0.59** 0.35 0.68** 0

Pc4 0.35 0.03 0.56** 0.43* -0.56** 0 0.15 0.09 0.02 0.09 0 0.24

Pc5 -0.18 -0.02 0.33 -0.21 0.09 0.42* -0.21 0.28 -0.04 -0.03 -0.04 -0.01

Pc6 0.08 0.07 -0.13 0 0 -0.06 0.03 -0.03 -0.08 -0.11 -0.12 -0.36

Pc7 0.11 -0.18 -0.14 -0.09 0.16 -0.02 0.09 -0.12 -0.1 -0.19 -0.16 -0.17

Pc8 0.26 -0.1 0.22 0.1 -0.33 -0.09 0.18 -0.02 0.04 0.03 -0.05 -0.03

Pc9 -0.17 -0.08 -0.22 0.14 -0.02 0.19 -0.16 -0.28 0.1 -0.29 0.02 0.13

Pc10 0.13 -0.01 0.08 0.2 0.17 0.03 0.12 0.33 0.03 0.22 0.08 0

Pc11 0 0.05 -0.12 -0.05 0.05 0.18 -0.02 -0.18 0.02 0.15 0.02 -0.17

Pc12 -0.24 -0.19 0.13 -0.51** 0.2 -0.05 -0.19 -0.2 -0.2 0.12 -0.04 -0.14

Pc13 -0.03 -0.06 -0.19 -0.01 -0.07 -0.07 -0.1 -0.09 0.09 -0.02 0.07 0.09

Pc14 0.06 -0.12 0 0.24 0.15 -0.24 -0.05 0.38* -0.09 0.25 -0.06 0.11

Pc15 -0.01 -0.1 -0.08 0.07 0.16 0.05 0.05 -0.09 -0.04 -0.06 -0.03 -0.16

Pc16 -0.18 0.15 0.13 -0.15 0.17 -0.05 -0.15 -0.17 0.1 0.13 0.09 -0.3
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8.2 Evaluation of present-day crop models

This section presents and evaluates cross-validated models according to the group of
predictors. It also assesses the impact of the multi-model averaging technique on the
maize yield model.

8.2.1 Impact of the group of predictors on the Maize yield model

According to the nature of predictors, we set four models: (a) a model developed with all
predictors (M1); (b) a model with local process-based predictors (M2); (c) a model with
local traditional predictors (M3); and (d) a model with large-scale predictors (M4). The
explained variables of these models are computed at the RMSEcv equal to the minimum
values, as explained in Section 7.2.

Figure 8.6 presents the spatial distribution of the explained variance of the model devel-
oped with different groups of predictors and their associated empirical probability density
function. The results indicate that the impact of all predictors on maize yield form a com-
plex pattern and vary across different geographical locations (Figure 8.6a). The global
model (M1) explains almost 28 % of the yield variability, and its empirical probability
density curve reaches the maximum value of 27 % (Figure 8.6e). Obviously, the M1
model outperforms the other models (M2, M3, M4). M1 is particularly skilful and
consistent in modelling maize yield in the western parts of the region, where the average
explained variance of the model is around 51 %, reaching 60 % in some regions such as
the south of the Ivory Coast and Ghana. M1 seems also to be performant in Kenya.
The spatial distribution of the explained variance of M4 (Figure 8.6d) is quite close to
that of M1, except with regard to Tanzania, where M4 performed poorly. The empirical
probability density curve of M4 is also similar to that of M1.The main difference be-
tween the models is that the empirical probability density curve of M4 indicates a higher
density of explained variance ranging from 0 % to 15 %, compared to M1 with a lower
density of explained variance from 16 % to 70 %. Compared to M1 and M4, the models
developed using local predictors (M2, M3) are much less performant in modelling maize
yield, but in some regions, such as Kenya, they appear to be skilful. Based on the spatial
distribution, M2 and M3 do not differ across the study area. However, the empirical
probability distribution curve indicates that M2 is better than M3.
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Figure 8.6: Mean explained variance in % of the cross-validated regression at
RMSECV = Minimum. (a) Model with all predictors, (b) model with simple local
predictors, (c) model with WRSI predictors, (d) model with large scale-predictors, and
(e) the empirical probability density function of the explained variance (M1 = model
with all predictors; M2 = model with WRSI predictors; M3 = model with traditional
predictors; M4 = model with large-scale predictors).
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8.2.2 Impact of multi-model averaging techniques on the Maize
yield model

The multi-model averaging techniques are applied to the model with all predictors pre-
sented in Section 7.3. We therefore used BMA, AIC, AICc, BIC, adjusted R-squared and
mean. The explained variance, the RSME and the empirical probability density curve
are used to rank the performance of each multi-model averaging technique. The impacts
of each of these six multi-model techniques on maize yield are displayed in Figure 8.7.
Their associated empirical probability density curves are presented in Figure 8.8. The
results indicate that multi-model averaging techniques based on BMA, BIC, AIC and
AICs performed very well and their spatial patterns are very similar (Figure 8.8). How-
ever, the empirical probability density curve indicates that BMA is slightly better than
the other models. Therefore, the model (M1) based on BMA as a multi-model averaging
technique predicts future maize yield changes.
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Figure 8.7: Spatial distribution of the explained variance and the root mean squared
errors of different multi-model averaging techniques (BMA = Bayesian Moving Averag-
ing; AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion; AICc
= corrected Bayesian Information criterion).

Figure 8.8: Empirical probability density function of the root mean squared error for
different multi-model averaging techniques.
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8.2.3 Model variable selection

As described in Section 7.2, not all input predictors are used in the model. In order
to ensure physical relevance between predictors and predictand, the model selects the
optimal number of predictors through a crossed-validated mechanism. Therefore, the
optimal number of predictors is obtained when the MSECV reaches the first relative
minimum. Figure 8.9 presents the spatial distribution of the optimal number of predictors
selected and used in the regression. The results indicate that the optimal number of
predictors forms a complex and heterogeneous pattern. In general, the first relative
minimum in each grid point is reached when one or four predictors are selected, but on
average, two robust predictors are selected per grid point.

Figure 8.9: Mean number of cross-validated predictors at RMEcv = minimum.

Another important aspect of this model is how often a given predictor is selected in
every grid point over 100 iterations (Figure 8.10). The results suggested that large-scale
predictors are more selected than local ones. Among large-scale predictors, PC2 – which is
strongly associated with ENSO and weakly associated with the Indian SST – is preferably
selected, being selected 36 times on average for the whole region. In addition, it seems to
be the dominant factor in the western parts of the study area, across the Guinean coast
and in the southwestern parts of the region. The following most important predictors
are PC4 (selected 26 times on average) and PC1 (selected 23 times on average). PC4
is highly associated with QBO and PC1 with the TNA. The impacts of PC4 on the
maize yield model are very high in the eastern parts of the study area, particularly in
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the highlands of Ethiopia, where PCs are selected more than 80 times, on average. The
results also indicate that the local predictors influence maize yield more in colder regions,
such as in the eastern parts of the study area. Among the nine local predictors, the mean
temperature is the most important one because it was selected 13 times on average. The
second most important local predictors are the WRSI-dev and the precipitation.

Figure 8.10: Number of times a given predictor is selected in the cross-validated
regression, over 100 interations.

Apart from ranking the predictors in order of importance, the model also counts the num-
ber of times, over 100 iterations, a coefficient of a given predictor is positive or negative.
Figure 8.11 presents a spatial distribution of how many times a positive coefficient is se-
lected per predictor in each grid points. The results suggest that PC2, which is the most
dominant predictor in the study region, positively influences maize yield in the Congo
Basin, especially in the Democratic Republic of the Congo. The relationship between
PC2 and maize yield is also positive in the south of Somalia. The PC1 coefficient is gen-
erally positive and more frequent in the extreme western parts, in northern Nigeria and
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in Angola. PC4 is positively correlated with the maize yield in the Ethiopian highlands.
The spatial distribution of the positive coefficients for the nine local predictors is also
similar with that of the negative coefficients, as displayed in Figure 8.12.

Figure 8.11: Number of times a given predictor yields a positive coefficient in the
regression model, over 100 iterations.
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Figure 8.12 presents the spatial distribution of how many times a negative coefficient
is selected per predictor in each grid points. The results indicate that PC2 negatively
influences maize yield in western Africa. Negative coefficients are not frequently selected
with PC1. The spatial pattern of negative coefficients in PC4 is similar to that of positive
coefficients, except in the highlands of Ethiopia, where positive coefficients are preferred.

Figure 8.12: Frequency of each predictor yielding a negative coefficient in the regres-
sion model over 100 iterations.

8.3 Modelling Maize yield under the future climate
change Condition

This section presents the observed present-day and future climate predictors selected to
model the maize yield. These variables are used in the second phase of the regression
model to forecast the future yield change of maize under different climate emission sce-
narios. The impact of different weighing techniques on maize projection is assessed, as is
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the contribution of different groups of climate predictors on future maize yield changes.

8.3.1 Projection of maize yield changes under climate change
conditions

The projection of maize yield assumes that the statistical transfer function used to develop
the maize yield remains stationary in the future. The REMO-simulated predictors are
put into the cross-validated equation to model future maize yield changes. Figure 8.13
presents present-day and future projections of the median maize yield change under the
RCP8.5 and RCP4.5 emission scenarios, as well as their associated confidence intervals
based on 100 bootstrap samples. The projection is based on the BMA multi-model
technique and the changes in each grid are relative to the baseline period (1982–2016).
The results indicate that, despite the climate scenario being used, there is a decrease
in maize yield over tropical Africa. Under the RCP8.5 emission scenario, the crop yield
decreases in 2018 and peaks in 2060 with 20 % yield reduction. It starts to recover from
2061 until the end of the century but is still negative compared to the baseline period.
Under the RCP4.5 emission scenario, the projected maize yield is on average reduced by
5 % from 2050 to the end of the century.

Figure 8.13: Projection of median maize yield changes under RCP8.5 and RCP4.5
climate scenarios and their corresponding confidential intervals at the 5 % significance
level. The yield changes are calculated based on average maize yield production from
1982 to 2016.
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Table 8.3: Nonlinear trend detection on the projected maize yield using Mann Kendall
test

RCP8.5 RCP4.5
1982 - 2100 1982 - 2018 2018 - 2060 2061 - 2100 1982 - 2100 1982 - 2018 2018 - 2060 2061 - 2100

Z -5.38 -3.19 -1.67 1.58 -4.2 2.7 -2.72 -0.3

S -2317 -265 -150 122 -1811 229 -244 -24

p 0.001 0.001 0.09 0.113 0.001 0.005 0.006 0.7

Table 8.2 reports the results of the non-parametric trend analysis of global maize changes
time series using a Mann–Kendall test and therefore completes the information conveyed
in Figure 8.13. Details about the test are provided in Subsection 5.2.4. The results show
that, in the RCP8.5 emission scenario, crop yield changes significantly decrease during
the entire period (1982–2100), particularly from 1982–2018, at the 1 % significance level.
Between 2018 and 2060, a statistical decrease is also observed, but at the 5 % significance
level. The median yield changes increase from 2061 to 2100, but not significantly (p =
0.113). The median maize changes times series do not show a clear trend under RCP4.5; a
statistically significant decrease is observed for the entire time series at the 1 % significance
level. From 1982 to 2018, the trend increases statistically at the 5 % significance level.
From 2018 to 2060, the trend decreases at the 5 % significance level; it still decreases
from 2060 to 2100, but not significantly. The sequential Mann–Kendall test statistics for
abrupt change detection indicate that the years 2013 and 2042 are considered as turning
points for RCP8.5 and RCP8.5, respectively.
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Figure 8.14 provides more detail on the median maize yield changes by separately analysing
the trend across central, western and eastern tropical Africa. This trend is interpreted
with the results of the Mann Kendal test. The results show that the median maize yield
changes are projected to decrease by the end of the century under RCP4.5 and RCP8.5
emission scenarios. The Mann Kendal test statistics are significant (p <0.001) for both
emission scenarios. The sequential Mann Kendal test shows that the abrupt year changes
under RCP8.5 and RCP4.5 are 2065 and 2045, respectively. In eastern Africa, the fu-
ture median maize yield changes are expected to increase significantly under RCP8.5 by
the end of the century (p <0.001), with an abrupt change in 2055. However, a non-
significant decrease in median yield change is observed under RCP4.5 (p < 0.06). In
central Africa, the maize yield variability fluctuates around the baseline mean under
RCP4.5 and RCP8.5.

Figure 8.14: Projection of median maize yield changes under RCP8.5 and RCP4.5
climate scenarios and their corresponding confidential intervals at the 5 % significance
level for the central, eastern and western parts of the study area. The yield changes are
calculated based on average maize yield production between 1982 and 2016.
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The median maize yield change pattern is presented in Figure 8.15. The lower and upper
confidential intervals at the 5 % significance level, indicating the projection uncertainties,
are also presented. The results indicate that the impacts of all predictors on future median
maize yield vary according to location and climate emission scenario. Under RCP4.5, the
spatial median maize yield changes have not substantially changed (very close to zero),
but a slight decrease in future median maize yield change over the entire study areas is
observed, especially at the end of the century. A reduction in median maize yield change
is expected by the middle and end of the century under RCP8.5, except in the Congo
Basin (central Africa) and in the Ethiopian highlands (eastern Africa), where the median
changes in maize yields relatively increase. However, the 95 % confidence interval of the
median maize yield changes under both scenarios is broad, and there are opposite signs in
most parts of the region. A broad confidence interval implies that the model is subject to
many uncertainties. However, in some parts of West Africa, under the RCP8.5 scenario,
the confidential interval is finer.

Figure 8.15: Projected median of maize yield changes under RCP4.5 and RCP8.5
during the middle (2036–2066) and end (2071–2100) of the century. The uncertain-
ties of the projection are expressed in the upper and lower 95 % percent confidence
intervals.
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8.3.2 Multi-Model averaging techniques and the future Maize
yield change

The multi-model averaging technique is important in assessing the uncertainties of the
statistical model. The statistical model is robust if different multi-model averaging tech-
niques are convergent. Figure 8.16 displays how the six multi-model averaging techniques
influence the forecasted maize yield under the RCP8.5 scenario. Firstly, all the techniques
indicate a reduction in maize yield during the middle and end of the century. The multi-
model averaging based on the assembled mean and R squared projected a relatively low
slope and weak inter-annual variability compared to the multi-model averaging based on
AICc, AIC, BIC and BMA, which predicted the maize yield variability similarly.

Figure 8.16: Influence of multi-model averaging techniques on the projected maize
yield changes.

8.3.3 Separated effects of predictors/groups of predictors and fu-
ture Maize yield Changes

Different climate predictors have been grouped. These are large-scale predictors, processed-
based and traditional local predictors. The influence of these groups of predictors and
individual predictors on future maize yield change are presented in Figure 8.17. When
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analysed as a group, the maize yield changes are more driven by the large-scale predic-
tors because they almost reproduce the temporal pattern of the yield changes induced by
all predictors (Figure 8.17a). The influence of local scale predictors on yield changes is
mitigated (Figure 8.17d, 8.17c). However, traditional predictors (Figure 8.17c) seem to
be more important in forecasting the future maize yield change than process-based ones
(Figure 8.17d).

Figure 8.17: Separated effect of a group predictors on future maize yield projection :
(a) effects of group of predictors; (b) large scales predictors; (c) traditional local predic-
tors; and (d) local WRSI predictors.

8.4 Projected of WRSI under climate change condi-
tions

As previously stated, the WRSIs used in the statistical crop model were all detrended.
The one used here is not detrended and only concerns WRSI-glo. Figure 8.18 shows the
spatial distribution of the projected WRSI-glo changes relative to the historical WRSI-glo
simulation mean (1982–2005). The results indicate that in the middle of the century, the
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WRSI-glo do not substantially change relative to the baseline mean; the magnitude of
change is in order of -5 %, reaching 10 % in some parts of the region. The direction of
the changes is not clearly depicted; some parts experience a positive change while others
experience a negative change. A clear decrease in WRSI-glo is observed at the end of the
century; the magnitude of change is around 10 % under RCP4.5 and around 20 % under
RCP8.5, globally. However, a significant decrease under RCP8.5 is observed in Sahel and
in the Congo Basin. In East Africa,

Figure 8.18: Spatial distribution of the difference between the historical WRSI-glo
and future projected WRSI-glo under two emission scenarios (RCP4.5 and RCP8.5), by
the middle and end of the century.

The simulated times series WRSI-glo under the RCP8.5 and RCP4.5 emission scenarios
and the observed ERA5 are presented in Figure 8.19. The visual inspection and the
Mann–Kendall test indicate a significant decrease of the available water for maize (p <
0.001) over the entirety of tropical Africa under both emission scenarios (Figure 8.19.a).
By the end of the century, the overall WRSI-glo will be below the critical value, according
to the RCP4.5 emission scenario. The probable change points under RCP4.5 and RCP8.5
are 2067 and 2048, respectively. For a more detailed analysis, a decrease is also observed
over central Africa (Figure 8.19b) but is much stronger in RCP8.5 (p < 0.001). However,
the WRSI-glo is still above the critical value by the end of the century. The changing
points under RCP8.5 and RCP4.5 are 2047 and 2020, respectively. In East Africa (Figure
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8.19c), a decreasing trend is observed, but is not statistically significant at the 5 % sig-
nificance level. The simulated times series of the WRSI-glo in West Africa (Figure 8.19d)
is quite similar to the one observed in central Africa (Figure 8.19b), characterised by a
significant decreasing trend and a relatively high value of WRSI-glo. The changing points
of WRSI-glo in West Africa under RCP8.5 and RCP4.5 are 2068 and 2040, respectively.

Figure 8.19: Projected WRSI under two climate emission scenarios (RCP8.5 and
RCP4.5): (a) tropical Africa – whole study region; (b) central parts of the study region
– the Congo Basin; (c) eastern parts of the study region; (d) western parts of the study
region.



9. Discussion and recommendations

In this chapter, the key findings of this study are discussed regarding its main objective.
These results are compared to other published literature. The limitations of this study
and recommendations for further improvement are also addressed. The main objective of
this study was to investigate the impact of future climate change and variability on maize
yield change using a cross-validated regression. The present-day climate predictors and
maize yield data are related using a robust cross-validated multiple linear regression. The
results indicate that the regression model performs quite well and confirms that maize
yield is largely influenced by the climate variability in tropical Africa. Independent to the
adaptation strategies and technologies improvement, climate variability explains, globally,
about 27 % of maize yield inter-annual variability in present-day conditions. This finding
is similar to the explained variance reported by Ray et al. (2015), although their study
was restricted to local predictors such as precipitation and temperature. This study also
reveals that climate fluctuation could explain up to 55 % of the year-to-year maize yield
variability in the west of Africa. This range of explained variance was also reported
by Paeth et al. (2008), who demonstrated that climate variables – mainly temperature,
relative humidity and precipitation – could explain about 50 % of the yield variability
in Benin. Awoye et al. (2017) also reported the same range of explainted variance when
modelling the impact of climate change on maize production using our regression model
and large-scale climate predictors (PCs).

The contribution of each predictor or group of predictors in explaining maize yield vari-
ability differs. The PCs predictors alone explain approximately 25 % of the total maize
yield. The PC2 – which is highly correlated with ENSO indices – was the most important
predictor, especially in West Africa, Angola and around the Great Lakes region. The in-
fluence of ENSO in West Africa has been much documented (Mohino et al., 2011; Losada
et al., 2012), explaining between 24 and 29 % of the total precipitation of the region. Its
impact on maize yield variability has also been reported, but at national and local levels
in many published papers (Hansen et al., 2004; Iizumi et al., 2014). A strong connection
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between maize yield and ENSO has been observed in Zimbabwe and Kenya Hansen et
al. (2004). This spatial pattern of the explained variance aligns with the findings of
Iizumi and Sakai (2020), who used an older version of our maize yield dataset. They
found three sites where ENSO significantly impacted maize yield: West Africa, the Great
Lakes region and Angola. This study shows furthermore that the relationship between
ENSO and maize yield is globally negative. The same result was observed recently by
Iizumi and Sakai (2020). To the best of our knowledge, the impact of other climate tele-
connection patterns or climate indices – captured by other PCs – on maize yield has not
yet been investigated in a large region. However, few studies havw shown the impact of
these indices on either precipitation or temperature variability, implying that they could
also impact crop yield variability in tropical Africa. According to Pachauri et al. (2014),
SAOD, which has an impact on precipitation, has been assessed in West Africa through
numerical model simulations (Kucharski et al., 2009; Losada et al., 2010). Similar, Worou
et al. (2020) demonstrated that the TSA – which is significantly correlated with PC2 and
PC1 – had an impact on the precipitation in West Africa. IOD, which is also correlated
to PC3 and PC4, is highly dominant in East Africa, where it explains up to 80 % of the
rainy season precipitation variability and may have an impact on maize yield in these
regions (Srivastava et al., 2019b).

As demonstrated, local predictors (traditional and process-based) do not influence inter-
annual maize yield variability much. Still their contribution is more pronounced in the
eastern parts, particularly around the Ethiopian highlands. Among local predictors, the
mean temperature seems to be the most prominent. The influence of the mean tempera-
ture on crop production, in general, has been reported by many scientists (Lobell et al.,
2008; Sultan et al., 2014; Waha et al., 2013). Waha et al. (2013) demonstrated that the
mean temperature was the most determinant factor of maize yield variability in different
locations across the world (France, USA, Brazil and Tanzania). Their study was based
on 23 process-based models. Lobell et al. (2011) demonstrated that temperature is more
important than precipitation in explaining the year-to-year variability of maize produc-
tion. Waha et al. (2013) also drew a similar conclusion by conducting their research in
Guinea. In most areas where the temperature is predominant (in the eastern parts), the
relationship between maize yield and the mean temperature was negative. According to
Tao and Zhang (2011), this could be explained by the fact that temperature increase
often shortens the growing season length, which in turn reduces the total CO2 assimila-
tion. Consequently, the total biomass and the grain yield will be reduced. In addition,
high temperatures affect the production of pollen by delaying female reproductive tissues,
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resulting in low quantity and poor quality of maize grain (Cicchino et al., 2010; Cairns
et al., 2013). However, it is important to mention that the relationship between temper-
ature and maize production or other crop yields is not linear (Lobell and Field, 2007).
Lobell and Field (2007) indicated that only temperatures above 30 ◦C could affect maize
yield because the optimal temperature is around 29 ◦C. They concluded that each day
that experienced a temperature of 30 ◦C or higher generally resulted in a 1 % loss in
maize yield.

To a lesser extent than temperature, the impact of precipitation on inter-annual maize
variability is also significant around the Ethiopian highlands. It is an even stronger factor
than the temperature in some areas. A combined effect of temperature and precipitation
in explaining the maize yield variability in East Africa has also been reported by Ray
et al. (2015). Generally, maize yield is very vulnerable to water deficits and surplus
(Mansouri-Far et al., 2010; Agbossou et al., 2012), especially during the flowering and
grain formation stage (Agbossou et al., 2012). The precipitation usually affects maize
yield by reducing the number of grains per year, as well as the quality of the grain.
The coefficient of the regression indicates that precipitation negatively influences inter-
annual maize yields in eastern Africa. However, in many studies, this relationship is
positive. Akponikpe (1999), for example, found that there was maize yield reduction
due to reduced precipitation in West Africa. The negative relationship, as observed in
this study, between precipitation and maize yield in the highlands of Ethiopia could be
explained by the abundance of precipitation in the region, estimated at 3000 mm/year.
Therefore, floods – which are likely to occur in this region – constitute a major threat to
maize production compared to droughts. According to UNOCHA (2017), areas with too
much precipitation, such as the highlands of Ethiopia, are expected to see agricultural
production be negatively affected by severe flooding. Malawi – where precipitation is
the most dominant predictor in this study – has observed 40 flood disasters between
1976 and 2009. The rapid overflowing of Lake Victoria due to extreme precipitation
has been recently reported by Wainwright et al. (2021). Several climatic phenomena are
responsible for extreme precipitation over East Africa. Black (2005) showed that the El
Niño event was responsible for extreme precipitation in East Africa in 1997. Positive IOD
is also associated with heavy precipitation in East Africa (Saji et al., 1999). A part from
these two major phenomena, the MJO and the tropical cyclone in the western Indian
ocean are also related to heavy precipitation in East Africa (Finney et al., 2020).

The results also indicate that WRSI predictors did not influence maize yield variability
in the statistical model. This could purely be a statistical issue, as the five WRSIs are
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highly correlated with traditional predictors: the cross-validated regression used in this
study is likely to select one variable when two or more are highly correlated. Also, the
WRSIs predictors may lose much information by being detrended.

We, therefore, assessed directly the impact of climate change on WRSI-glo (WRSI com-
monly used for crop monitoring and yield estimation). We first correlated it with the
observed maize yield; both variables are not detrended. Figure 8.3 and reveals that the
correlation is positive in East Africa, reaching 0.6 in some places. Many studies reported
a strong positive correlation between WRSI-glo and maize yield in East Africa, precisely
in Kenya, Malawi and Mozambique (Jayanthi and Husak, 2013; Jayanthi et al., 2014).
A high correlation coefficient was reported between WRSI-glo and maize yield in 174
districts of Ethiopia by Senay and Verdin (2003). More recently, Tarnavsky et al. (2018)
found that WRSI-glo was significantly correlated (0.61) with maize yield in Tanzania.
The negative correlation coefficient between WRSI-glo and maize yield in West Africa
and tropical Africa can be explained by the fact that these regions are less prone to
drought, and the maize yield is more affected by water surplus rather than water deficit.
As far as the impact of future climate change is concerned, the spatial distribution of the
difference between the present-day and the future simulation of WRSI-glo under different
scenarios indicates that WRSI-glo is expected to decrease under the RCP8.5 scenario by
the end of the century in the entire study area, except in some locations in the east. This
result is confirmed by the simulated times series of the WRSI-glo. Crespo et al. (2011)
also reported a decrease in WRSI-glo in southern Africa, except in the southeast of the
region where a slight increase was observed. According to Burney and Naylor (2012),
crop yield failure is caused more by water stress, increased evapotranspiration and pre-
cipitation variability than heat stress. Based on this, we can suggest the politics of the
construction and the rehabilitation of the irrigation scheme in central Africa. The imple-
mentation of large irrigation scales is very challenging and expensive. It is not evident
that local farmers will adopt irrigation as coping strategy because of the affordability. In
addition, open water is becoming less available due to high demand for sector competing
sectors: hydroelectricity and urbanisation. In this regard, our suggestion would be to
focus on small irrigation scales.

As far as the future maize yield change is concerned, this study suggested an overall
decrease of maize yield by the end of the century – around 5% under RCP4.5 and 20
% under RCP8.5 in the middle of the century. The analysis of the spatial distribution
indicates that the median maize yield has increased everywhere, except in the Congo basin
and East Africa, particularly in the Ethiopian highlands. Maize yield reduction across
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many tropical African countries has been projected by many other scientists (Jones and
Thornton, 2003). The majority of studies indicate a general decrease in maize yield over
SSA (Abate et al., 2015). Thornton et al. (2009) use GCM climate projections to assess
the impact of climate change on maize yield; they reported that the projected maize
yield change was spatially heterogeneous: large areas were experiencing reduced yield
change and gain maize yields were projected in East Africa. Thornton et al. (2011) also
projected a moderate increase of maize yield in East Africa, about 18 % in Kenya and 18
% in Rwanda, by 2050. However, these results can vary according to the climate model
and maize yield datasets. Knox et al. (2012) assessed 50 studies and concluded that the
impact of climate change on maize yield might vary from -50 to +100 %. This study
also demonstrates that climate emission scenarios have an impact on future maize yield
change. We observe a significant decrease in median maize yield change from 1982 to
2065, and an increase after 2066 up to the end of the century. However, this trend is not
observed in the RCP4.5 emission scenario. The impact of the climate emission scenario
is also well depicted on the spatial pattern of the maize yield change, where a remarkable
decrease in maize yield is observed everywhere under RCP8.5, except in some areas of
eastern and central Africa. These findings are very intuitive because RCPs emission
scenarios are developed with different proportions of land cover type and concentration
of greenhouse gases. These two factors are major causes of climate change in tropical
Africa (Douville et al., 2000; Feddema and Freire, 2001; Lu and Delworth, 2005; Knorr
and Schnitzler, 2006; Paeth et al., 2009); thus, they are related to crop production. Under
RCP8.5, croplands and grasslands are the most dominant land-use types, while natural
vegetation is predominant under RCP4.5, as indicated in Figure 9.1

Figure 9.1: Vegetation crop land use and grass land use across RCPs. The gray areas
denote the 95 percentiles scenario (source: Van Vuuren et al., 2011).
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According to Gaiser et al. (2011), land cover degradation had already led to 24 % maize
yield reduction in Benin. The same authors also concluded that the situation was likely
to be amplified in the coming decades if no serious measures are taken. This result
was later confirmed by Challinor et al. (2015). Land-use changes are indirectly related
to crop production by increasing the temperature and disturbing evapotranspiration.
According to Paeth et al. (2009), land-use change is responsible for about 35 % of the
mean temperature over sub-Saharan Africa. Moore et al. (2014) also showed that land-
use changes also had an impact on local precipitation by modifying the cloud physics. In
West Africa, for example, deforestation is considered as the main cause of drought (Clark
et al., 2001; Abiodun et al., 2008; Paeth et al., 2008, 2009). The degradation of tropical
forests alone is responsible for approximately 26 % of the global CO2 in the atmosphere
(Ramankutty et al., 2008). A difference between RCP8.5 and RCP4.5 is also attributed
to the concentration of CO2. RCP8.5 is driven by the CO2 equivalent of almost 1370
ppm, while RCP4.5 is driven by the CO2 equivalent of about 850 ppm. However, as a C4
plant, maize is less sensitive to an increased CO2 because photosynthesis is saturated at
current CO2 concentrations (Leakey et al., 2009; Cairns et al., 2013; Parkes et al., 2018).
In contrast to C4 plants, the increase of CO2 in the atmosphere is likely to simulate
photosynthesis for C3 crops (i.e. rice, wheat) by improving the carboxylation rate of
rubisco, thus increasing production (Ainsworth and Long, 2005). We can conclude that
the difference between RCP8.5 and RCP4.5 could be much attributed to land use-changes,
as argued above.

This study does not address all the complexities related to climate and crop yield mod-
elling. Its results are stickily related to the proposed statistical model, type of protectors
and datasets. However, it can serve as a solid basis for further investigations. One of the
most prominent weaknesses of this study is the non-integration of adaptation strategies.
The study assumes that farmers have no possibility of adapting to the impact of climate
change. Moreover, the technology improvements are not counted. The result could largely
differ if climate adaptation options and technology improvements were part of the model
because African farmers are likely to mitigate the negative influence of climate variabil-
ity on agriculture production by adopting many agricultural coping strategies, such as
the mixed crops (Butt et al., 2005; Roudier et al., 2011; Rurinda et al., 2014). Unfortu-
nately, adaptation options could only be integrated in a process-based modelling approach
(Rosenzweig et al., 2014; Caubel et al., 2015). Apart from the adaptation strategies, the
statistical model, as developed in this study, could not capture the possible non-linear re-
lationship between of climate predictors and the maize yield. According to Schlenker and
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Roberts (2009) and Lobell et al. (2011), the relationship between temperature and crop
production is often non-linear. Generally, non- linear relationships are modelled in re-
gression by adding a quadratic term (Schlenker and Lobell, 2010; Blanc, 2012). However,
this is possible with a regression with fixed predictors. The cross-validated regression,
as implemented in this study, would not select both the variable and its corresponding
quadratic term because they are highly correlated. Novel predictive models based on
machine learning and deep learning approaches could address this problem. These meth-
ods can to deal with complex datasets and generally outperform parametric regressions
in predicting out-of-sample datasets. Crane-Droesch (2018) tested the performance of
semiparametric variants of deep neural network – which is said to be the best predictive
model – in modelling crop yields against a multiple linear regression. The results indi-
cated that the semiparametric neural network could simultaneously model the complex
non-linear relationship and the parametric structure of the dataset and was far better
than multiple linear regression. This study also omitted integrating factors that could
influence crop yields, such as weeds, pests and parasite plants. Many researchers have
projected an increase in these factors with the current climate change trend, and future
crop yields are likely to be negatively affected (Fand et al., 2012; Knox et al., 2012; Fand
et al., 2014). Based on these limitations, particularly technological improvement and the
non-linearity, it will be interesting if the future development of the crop yield model is
based on semiparametric variants of deep neural network. It will also be interesting if
the technological improvement is added to the empirical model using the method sug-
gested by (Zhai et al., 2021). They defined technological improvement as linear fitting
and transferred it to the future maize yield change.

The uncertainties linked to datasets constitute a threat to this study. Both the crop
yield dataset and datasets used to generate predictors are subjects to huge uncertainties.
According to many scientists, climate models do not perform well in tropical Africa, espe-
cially in equatorial Africa, because of the poor quality of observational datasets (Baccini
et al., 2012; Panitz et al., 2016). Climate model uncertainties can derive from many
sources: initial conditions, boundary condition uncertainties, parameters and structural
uncertainties (Tebaldi and Knutti, 2007). Precipitation, for example, has been projected
to increase according to some models but not to others (Haensler et al., 2013; Lawrence
and Vandecar, 2015). Concerning the temperature, almost all climate models agree with
the projected direction of change, but the magnitude is still controversial. Consequently,
the uncertainties of climate models are transferred to future maize yield changes. How-
ever, it is necessary to point out that the regional climate model REMO used in this
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study performed quite well and can reproduce important variables such as the precipita-
tion and temperature (Fotso-Nguemo et al., 2017a). Nevertheless, the multiple climate
models that use many emission scenarios could have been the most efficient methods
to reduce the uncertainties of climate prediction (Lobell et al., 2006; Mishra and Singh,
2010). If climate model uncertainties were easily addressed by assembling models (Tao
et al., 2008; Hawkins and Sutton, 2011), scientists have paid less attention in improving
uncertainties linked to crop data (Lobell et al., 2006). Few studies addressed this is-
sue through the Agricultural Model Intercomparison and Improvement Project (AgMIP)
framework. Still, it is only possible with process-based crop models. Little is said about
the uncertainties linked to historically observed crop data. However, Anderson et al.
(2015) compared four cropping systems and concluded that they were significantly differ-
ent. More recently, Iizumi et al. (2017) assessed the uncertainties of the maize yield used
in this study by comparing it with the FAO census historical crop yields. Their results
indicated that both datasets matched well in yield trend, and the spatial variability of
GDHY datasets – also used in this study – was much better. The uncertainties of GDHY
mainly result from (1) the yield gaps and uncertainties of the FAO census dataset, which
is the primary product; (2) the time-constant information on harvested area; and (3)
the uncertainties of the satellite dataset. To address some sources of uncertainty, we
implemented a spatial smoothing of the nine-neighbouring grid because the data comes
from different spatial resolutions. In addition, the multi-model averaging was performed,
and four of them yielded similar results. However, in the end, we used the BMA ap-
proach because it was the most performant. Awoye et al. (2017) also reported the high
performance of all Bayesian based multi-model averaging techniques.

With respect to what is demonstrated in this study, some practical recommendations
must be formulated for decision-makers. It is clearly demonstrated that the production
of maize – which is the most important crop in Africa – will be negatively affected by
climate change. The most realistic decision could be to expand the agriculture areas,
but this option is not efficient, regarding the expansion of urbanisation, the need for af-
forestation and other non-agricultural activities. We will therefore recommend the three
strategies suggested by FAO (2016): (1) the reduction of post-harvest losses by invest-
ing in agricultural roads, logistics, storage and processing; (2) agriculture intensification;
and (3) the promotion of multiple cropping systems, which will increase the number of
cropping seasons. Further adaptation strategies, depending on the context of each re-
gion, are also welcome. This could be in the form of income management, government
assurance and programes, farms production practices and technology development. As
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farmers are particularly affected by climate change, more action should be directed to-
wards them. The advantages and limitations of farm production adaptation options have
been addressed by many scientists (Sultan and Gaetani, 2016; Guan et al., 2017; Parkes
et al., 2018). Amongst a large variety of realistic adaptation strategies, the planting of
maize cultivars with thermal time requirements and greater resilience to heat stress is
the most promising approach and is highly recommended by this study. Crop density,
late sowing and mixing crop could also be applied, according to the context of the study
area. However, these options should be implemented after considering existing adaptation
strategies implemented by the local community, as they have already started developing
their own coping strategy (Kurukulasuriya et al., 2006). According to (Kristjanson et al.,
2012), marginal adaptation strategies, such as crop variety and planting date, have al-
ready been successfully implemented by many farmers in tropical Africa. However, these
methods are still limited in improving the soil, acquiring adequate water, and adopting
land management practices.
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