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Abstract

Background: Student performance is a mirror of teaching quality. The pre-/post-test

design allows a pragmatic approach to comparing the effects of interventions. How-

ever, the calculation of current knowledge gain scores introduces varying degrees of

distortion. Here we present a new metric employing a linear weighting coefficient to

reduce skewness on outcome interpretation.

Methods: We compared and contrasted a number of common scores (raw and rela-

tive gain scores) with our new method on two datasets, one simulated and the other

empirical from a previous intervention study (n = 180) employing a pre-/post-test

design.

Results: The outcomes of the common scores were clearly different, demonstrating a

significant dependency on pre-test scores. Only the new metric revealed a linear rela-

tionship to the knowledge baseline, was less skewed on the upper or lower extremes,

and proved well suited to allow the calculation of negative learning gains. Employing

the empirical dataset, the new method also confirmed the interaction effect of teach-

ing formats with specific subgroups of learner characteristics.

Conclusion: This work introduces a new weighted metric enabling meaningful com-

parisons between interventions based on a linear transformation. This method will

form the basis to intertwine the calculation of test performance closely with the out-

come of learning as an important factor reflecting teaching quality and efficacy. Its

regular use can improve the transparency of teaching activities and outcomes, con-

tribute to forming rounded judgements of students' acquisition of knowledge and

skills and enable valuable feedforward to develop and enhance curricular concepts.

1 | INTRODUCTION

Key players in education focus on assessing whether teaching results

in any measurable improvement in test performance.1,2 To assess

changes in learning, educators often collect data from student testing

both prior to (pre-test) and after (post-test) the intervention.3 The

paired test data are then analysed using gain scores to quantify

classroom learning gain as an average for the cohort as well as for the

individual.4 Despite the clear study design, the statistical problem still

exists as to how to analyse the learning gain best, as ceiling effects

and pre-test scores can markedly influence the calculated values.5–7

One basic method to measure changes in learning is to determine

the raw gain, representing the absolute difference between the post-

test and pre-test scores.8 Its analysis is attractive in terms of
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simplicity, but fails to account for the observation that higher pre-test

scores result in disproportionately lower learning gain.9 Controversies

regarding the lack of controls cause further problems with its

use.10–12

A number of modified gain scores have been introduced to assess

learning gain in relation to the baseline knowledge of individual stu-

dents or cohorts (relative gain scores).4 In particular, many authors

suggested the use of the normalised gain score,4,13–15 which is

defined as the ratio between the average gain from pre- to post-test

and the maximum possible gain.13,16–18 The compromise was that

normalising the absolute gain by the maximum gain possible accounts

for the fact that some student cohorts have a wider margin for

improvement than others do. However, this method vastly favours

higher pre-test scores and was primarily designed to compute gains at

the group level (classroom/student cohort) with an overall improve-

ment in knowledge. Nevertheless, the calculation method became

popular in undergraduate science, technology, engineering and mathe-

matics (STEM) education literature19 and in medical education.20

There is a need for objective measures to quantify the teaching

quality in higher education and medical education in particular, such

that the calculated scores allow the meaningful comparison and inter-

pretation of results. Although previously published gains were devel-

oped to deal with inhomogeneous pre-test levels,4 little attention has

been paid to reducing the systematic distortion in learning gain calcu-

lations. Therefore, we introduce a new measure that minimises even

further the bias of starting levels at both extremes (low and high pre-

test scores).

Given the current lack of knowledge,21 the aims of our study

were to

1. Introduce a new linear weighted gain accounting for individual

knowledge baseline with the goal of minimising the pre-test score

influence.

2. Compare this method with those already available in view of the

dependency on pre-test scores and the raw difference between

pre- and post-test scores.

3. Analyse the impact of the different metrics on the resulting learn-

ing gain computed from simulated and empirical test data on both

the group and individual levels.

2 | MATERIAL AND METHODS

2.1 | Common methods of calculating learning gain

We employed several current methods to calculate learning gain

(G0�G3) in the literature to compare and contrast the calculated

learning gain in both our simulated and empirical data.

In the metrics below, categorised as raw gain (G0) and relative

gains (G1�G3), ‘pre’ represents the pre-test scores and ‘post’ the

post-test scores:

G0 ¼ post�pre ð1Þ

G1 ¼ post�pre
100%�pre

if pre < post ð2Þ

G2 ¼ post�pre
postþpre

ð3Þ

G3 ¼ post�pre
pre

if post < pre ð4Þ

Thereby, G0 is the absolute difference or raw gain. G1 represents the

normalised gain calculated on the mean group or cohort level.13 G2 is

the difference in the post and pre-test scores divided by the sum of

each mean score (cohort level) and has been described as being sym-

metric about the mean. It can therefore be termed the symmetric

gain.4 G3, the normalised change score, was created as a student-level

alternative and in addition to G1:
22 It was proposed to account for

the difficulty that arises in the unusual situation in which students'

learning gain is negative (post-test score < pre-test score). Thus, the

score is scaled by the possible number of points students could

have lost.

2.2 | New metric

Here we introduce our new metric, which we label G4 and refer to as

the weighted gain score. This learning gain is based on the non-

parametric Kraemer–Andrews estimator.23 The weighted gain score is

defined as the percentage of raw difference in test score multiplied by

a weighting coefficient to adjust for pre-test variability. The multiplier

serves as a constant linear weighting coefficient transforming results

linearly, thus facilitating the comparison of learning gain, both in dif-

ferent student cohorts and interventions.

This new gain G4 termed as weighted gain is defined as

G4 ¼ post�preð Þ� pre
μ

� �
ð5Þ

We introduce μ as the expected mean learning gain of the student

cohort undergoing a specific intervention; here the value was set as

50, representing 50%.24 Alternative values for μ may also be assumed,

changing the gradient of the linear relationship. In other studies, a

predefined target of 30% defined the minimum value at which the

intervention could be regarded as effective.5,13,25

2.3 | Study design

We compared and contrasted all five metrics. We initially applied the

learning gain functions G0–G4 to a simulated dataset. This dataset

illustrated a theoretical relationship between pre-test scores, differ-

ences in test scores (raw points), and the results of the calculated

learning gains G0–G4, respectively. Secondly, G0 (raw gain) and

G1(normalised gain) were compared with the new G4 (weighted gain),
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employing an empirical dataset originating from an intervention study

(see below).

2.4 | Simulated dataset

We combined different pre-test scores with different raw changes in

test performance on a predefined 10-point scale (fictional maximum

test score), generating a simulated dataset. Pre-test scores ranged

from 1 to a maximum of 9, depending on the simulated improvement

or deterioration in performance of between 1 and 4 points, which in

turn represented 10% to 40% of the maximum score of 10. To escape

ceiling effects, the analysis only included those combinations of pre-

test scores and differences in test performance avoiding having scores

below the minimum of 0 or above the maximum of 10. The simulated

dataset comprised 56 pairs of pre-test/post-test data. Thirty pairs

demonstrated an increase in test performance, whereas 26 pairs dis-

played a decrease.

2.5 | Empirical dataset

The real-world paired test-data were obtained from a previously pub-

lished prospective intervention study comparing the impact of a tradi-

tional lecture with a recorded lecture presented on an e-learning

platform.26 The study ran over two consecutive semesters at the Uni-

versity Medical Centre in Göttingen, Germany, during the teaching

module ‘Operative Medicine’ in the fifth year of the degree course in

human medicine. The local institutional review and ethics board

judged the project as not representing medical or epidemiological

research on human beings. The project was approved without any res-

ervation under the proposal number 1/11/14. A traditional live lec-

ture without explicit interaction on the subject of goitre was held for

the first semester and replaced by a matching video-recorded lecture

during the second, in which students were able to review and repeat

sections ad libitum. The subject of inguinal hernia in the same tradi-

tional lecture format and an untaught subject (cholelithiasis) served as

controls in both semesters. A multiple-choice pre-test/post-test

model of cognitive learning acquisition measured the learning gain.

Students also filled out a questionnaire on their personal preferences

with respect to information technology, which led to the recognition

of two clear clusters that were termed ‘traditional learners’ versus

‘digital natives’. Data from both test scores were linked for each sin-

gle student. In total, we included matched scores from n = 180 stu-

dents in our analysis, independent of the intervention or controls.

Prior to further statistical analyses, we confirmed that the real-world

dataset was normally distributed with the Shapiro–Wilk test.27

2.6 | Recalculation of previously published findings

In the previous paper, learning gain was calculated as raw gain G0:
26

In the present study, we recalculated the findings by comparing G0

with the normalised gain (G1) and the new gain (G4) to investigate pos-

sible effects on the computation of results.

2.7 | Statistical analysis

IBM SPSS Statistics for Windows version 25.0 (Armonk, NY, USA:

IBM Corp.) and R version 3.6.1 (R Foundation for Statistical

Computing, Vienna, Austria) were used to perform the

analyses. Learning gains G0–G4 were computed for the simulated

paired data. This procedure was reproduced for the calculation of G0,

G1, and G4 for the empirical data. We were thus able to compare the

influence of pre-test scores on the calculation of learning gain

pairwise.

Exploring the empirical dataset further, correlation analysis

(Pearson correlation r) evaluated the relationship between pre-test

scores and calculated learning gains G0–G4. To investigate the impact

of baseline knowledge on calculated learning gain, students were

divided into three quartile groups (‘poor performers’: <25%, ‘medium

performers’: 25%–75% and ‘high performers’: >75%) on the basis of

the raw gain G0.

We conducted a two-sided analysis of variance (ANOVA) to

assess the effects of the pre-test score on the gain calculations and to

determine if the results differed statistically significantly on the group

level.

3 | RESULTS

3.1 | Learning gain in simulated paired data

To visualise the extent of the variance, G0 to G4 were plotted as a

function of the pre-test scores (Figure 1a,b). In both cases of increase

and decrease in test performance, G0 had zero slope, with identical

gains regardless of the pre-test score. The learning gain G1 was sensi-

tive to higher pre-test scores and resulted in disproportionally higher

gain values. G2 was moderately influenced as a function of low pre-

test scores, whereas G3 displayed an even stronger bias with over-

calculation of gain values. G2 and G3 displayed a similar negative slope

especially favouring low pre-test scores. The plots of G1–G3 were

exponential in nature and thus demonstrated highly distorting effects.

G4 plots were linear and thus not disproportionate at either the upper

or lower extremes of the pre-test scores. G4 gradient increased with

greater absolute differences between post- and pre-test scores. For

negative learning gains (Figure 1b), G1 markedly overemphasised the

decrease in learning gain for high pre-test scores. G2 and G3 also over-

emphasised this decrease, however this time for low pre-test scores.

Again, G4 was linear, the gradient here being negative, indicating neg-

ative learning gain.

In summary, all five metrics yielded different results. However, G4

appeared to be the most robust in terms of reducing bias towards

pre-test scores. Furthermore, the linear plot enables improved com-

parison of different educational interventions.
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3.2 | Learning gain in empirical pre-test/post-test
data

To determine reproducibility, learning gain was re-evaluated in an

empirical dataset of 180 students (Figure 2). The Pearson correlation

coefficient between pre-test and post-test scores was 0.57 (p < 0.01).

The calculated mean pre-test score was 11.4 points. Following the

teaching formats, the mean post-test score rose to 15.6 points. Thus,

participants demonstrated significant increases (p < 0.01) in test

scores (4.2 raw points of learning gain).

Using all five metrics, the calculated mean learning gain varied

vastly, ranging from approximately 14% to 42% (G0 ¼16:64%,

G1 =29.91%, G2 =15.43%, G3 =42.35% and G4 =14.06%). Two-

sided ANOVA followed by a post-hoc Tukey test confirmed significant

differences between all five gains.

Table 1 depicts a correlation coefficient matrix of calculated

learning gains and pre-test scores. With respect to pre-test scores,

significant negative correlations were determined for calculated

learning gain using G0 toG3, whereas G4 was independent. In

addition, calculated gains using G1 to G4 correlated significantly

with G0. However, the strongest correlation among the equations

was found between G1 and G4, as they both share the

characteristic of overrating gain for students with an already high

baseline score.

Taken together, our new G4 demonstrates two important charac-

teristics: the least dependency on pre-test score and a strong correla-

tion with G0.

We excluded G2 and G3 from further analysis. The latter was

originally introduced as a supplement to the normalised gain G1.
22

Furthermore, G2 and G3 both overemphasised learning gain for

F IGURE 1 (a) Gain calculations G0–
G4 as function of the theoretical pre-test
scores using the simulated dataset. The
simulation ran for a performance
improvement (+1 to +4 points). (b) Gain
calculations G0–G4 depicted as function
of the theoretical pre-test scores using
the simulated dataset. The simulation ran
for a performance deterioration (�1 to

�4 points) [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 2 Distribution of pre-test (grey) and
post-test scores (yellow) in the empirical dataset,
reflecting the overall results from the intervention
and controls; dashed vertical lines represent mean
values
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students with low pre-test scores and were not eligible to differenti-

ate performance towards the ceiling effects.

To visualise the differences in calculating learning gain in more

detail, we separated the performance of students into three percentile

groups based on their raw gain (G0); G1 and G4 were assessed accord-

ingly. The group of ‘poor performers’ comprised n=59 students;

n=84 students were categorised as ‘medium performers’, with the

remaining n=37 students viewed as ‘high performers’. Figure 3a

summarises performance on the group level. There were no significant

differences between the calculated gains in the ‘poor’ group. In

‘medium performers’, the gains resulting from methods G0 and G4 dif-

fered significantly from G1. The gains calculated by each method (G0,

G1 and G4) for ‘high performers’ differed significantly from the other

two, respectively. Figure 3b depicts calculated gains on the individual

student level. In ‘poor performers’, the calculated gains from each

method overlapped; there was no statistically significant

difference between the metrics, F(2, 174)=0.703, p=0.497. How-

ever, the calculated learning gains using G0, G1 and G4 differed signifi-

cantly for ‘medium performers’, F(2, 249)=151.5, p < 0.001, and was

even more pronounced for ‘high performers’, F(2, 108)=132.3,

p < 0.001).

These results indicate that the use of weighted gain leads to

diverging results, particularly for ‘high performers’, for whom possible

ceiling effects are more likely. In contrast, the use of normalised gain

score leads to a dissymmetrical high gain for students with high pre-

test scores combined with high performance.

TABLE 1 Pearson correlation
coefficient matrix of the different
learning gain calculations and pre-test
scores

Pre-test scores G0 G1 G2 G3 G4

Pre-test scores 1

G0 �0.340** 1

G1 �0.202** 0.913** 1

G2 �0.491** 0.931** 0.795** 1

G3 �0.525** 0.900** 0.731** 0.961** 1

G4 �0.062 0.905** 0.979** 0.731** 0.651** 1

**p < 0.01 (two-sided).

F IGURE 3 Notched boxplots
(a) and scatter plot with regression
line and 95% confidence interval
(illustrated as grey areas) (b) to
visualise learning gain in relation to
the pre-test scores using G0, G1 and
G4 in the three groups of performers
(poor, medium, and high), **p < 0.01,
***p < 0.001 [Color figure can be
viewed at wileyonlinelibrary.com]
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3.3 | Recalculation of the learning gain and
differences in curricular effectiveness

To determine teaching quality, the gains G0, G1 and G4 were applied

to the empirical dataset from the module ‘Operative Medicine’
(Figure 4). In the former study,26 there was an interaction effect

between students' perceived affinity to new information technologies

and method of knowledge delivery implemented. Digital natives were

found to be at a significant disadvantage in the traditional live lecture.

In the original paper, G0 was employed to demonstrate the weaker

performance of digital natives when compared with traditional

learners. In our study, G4 confirmed this significant difference, F

(1, 131)=6.514, p < 0.05. However, the interaction effect was lost if

G1 was chosen to determine the intervention effect, F(1, 129)=3.72,

p=0.056. This result indicates that learning is not only dependent on

the teaching format and characteristics of learners, but its measure-

ment is highly sensitive to the method ultimately chosen to calculate

learning gain.

4 | DISCUSSION

The outcome-based paradigm is an important educational model.

Decisions concerning curriculum and teaching are driven by several

student outcome parameters.28 It is often difficult to prove the direct

benefits of an intervention on knowledge delivery or even improve-

ment in healthcare. Therefore, identifying teaching quality using

objective measures of student learning gain is of major interest and

importance. Of note, the burden of different competency curves also

has to be considered, as knowledge baselines for individual students

are inhomogeneous. The concept of learning gain is widely used in

evaluating teaching methods in higher education.29 This study used a

pre-test/post-test design to assess the effects of different learning

gain calculations. Aiming to compare knowledge gain across cohorts

and semesters, we used percentages instead of actual test points in

the metrics.

4.1 | Determination of learning using raw and
relative gains

Common methods to calculate learning gain include computation of

simple differences. Several authors name the raw gain G0 as an unbi-

ased estimate of the underlying true change.30 However, some debate

in the statistics community remains on the ability to measure change

accurately. It is common knowledge that pre-test scores highly influ-

ence the calculated raw gain. Students with very high test scores have

‘no room to grow’, so changes in learning gain for teachers with ‘high
performers’ will be depressed, even for highly effective teachers,31

owing to the ceiling effect.32 On the other hand, students with low

pre-test scores have a wider margin for improvement than those with

high pre-test scores. The limited use of G0 is thus evident.

Hence, the relative gains (G1, G2 andG3) were designed to over-

come the difficulties associated with pre-test bias. Their scores set

the absolute difference between pre- and post-test scores in relation

to several reference variables or terms. Although these methods are

popular in higher education, the calculated gains tend to distort stu-

dents' knowledge systematically by overrating low pre-test levels (G2

and G3) or high pre-test levels (G1) within their correction for pre-test

bias. Mathematically, relative gains lead to exponential overemphasis

at the extremes of the starting values. Whether this characteristic of

the metric is precise depends on the educational scenario and

whether student achievement is expected to range towards the mid-

dle of the score distribution.31

The most popular method, normalised gain (G1Þ, is known to yield

disproportionately high outcomes in learning gain for high pre-test

scores.13,20 It distinguishes students at the very high (or low) end of

the achievement spectrum poorly. Effects of this skewness on out-

come interpretation have already been noted.22 G1 is not applicable,

especially under two conditions: the pre-test score equals the maxi-

mum possible gain or when the pre-test score is higher than the post-

test score (loss in performance). As such, the gain metric G2 was spe-

cifically designed as an expansion of G1, in order to overcome this

negative-learning-gain limitation.

F IGURE 4 Notched boxplots of the
data resulting from recalculation of
percentage learning gains (G0,G1 and G4)
for ‘traditional learners’ and ‘digital
natives’ in a study on the effect of the
teaching formats ‘traditional lecture’ and
‘recorded lecture’, *p < 0.05 [Color figure
can be viewed at wileyonlinelibrary.com]
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4.2 | Determination of learning using a weighted
gain

Given the limitations of already published metrics, we proposed a new

approach to calculating learning gain. We introduce a linear weighting

coefficient that serves to minimise pre-test bias. The expected mean

value μ of the weighting coefficient may be adapted to the pass grade

of any test depending on difficulty. In our study, it was set to 50%.24

Similar to the normalised gain metric G1, our new metric G4 decreases

for low pre-test scores and raises scores for students with high pre-

test scores.

However, G4 was the only gain without any significant correlation

with the pre-test scores in the empirical data. Although there were

similarities and a high correlation between G1 and G4, the weighting

effect of G4 acts linearly, thus reducing skewness in computed results.

In more detail, G4 plots were linear and exhibited fewer disproportion-

ate effects at either the upper or lower extremes of the pre-test

scores. The gradient of G4 increased with greater absolute differences

between post- and pre-test scores; it was positive for improvements

in performance and negative for drops in performance. Comparing G1

with G4, the distinguishing feature of our new weighted metric is that

its use in negative learning gain is not limited mathematically.

The characteristics of the new metric G4 presented here may

improve comparison of the teaching quality of different interventions

and learning gain between different study cohorts. Particularly in

medical education, the outcome-based assessment of teaching activi-

ties covering a multitude of subjects taught during different semes-

ters, inhomogeneous levels of baseline knowledge and divergence in

students' abilities along the competency curves must be controlled at

best before teaching quality at course level or even the entire curricu-

lum can be judged. This is central to the performance-oriented alloca-

tion of financial resources at medical schools and funding in medical-

education-based project proposals.33,34 Moreover, the new metric G4

does not depend on a normal distribution. The latter is important,

because empirical test data from student cohorts often demonstrate

contamination of a symmetric distribution35 and parametric effect sizes

such as Cohen's d lead to different outcomes.36

4.3 | Exploring learning gain differences in a
teaching module

Reassessing previously published test data to measure teaching qual-

ity within the module ‘Operative Medicine’ revealed different results.

G0 was set as the original method, which we compared with G1 and

G4 here. Using G0, the authors found a significant interaction effect

between students' affinity to information technologies and their bene-

fit from a video-recorded versus traditional live lecture. This effect

was confirmed by our new metric G4. However, the distorting effect

of G1 was obvious in our dataset, and the interaction effect we dis-

covered in the original work would never have been found as a result

of implementing G1. Thus, G1 is prone to confounding findings as a

result of its skewness.

One has to consider carefully the method of calculating learning

gain, as deviating results may shed a totally different light on the out-

come. Using G1, with its particular shortcomings, may have led to a

misleading conclusion of teaching quality in the context of new infor-

mation technologies. This finding clearly illustrates the problem asso-

ciated with selecting the appropriate metric and contributes to the

discussion on how best to interpret test data in view of known test

bias.9

4.4 | Limitations of the study

We used an empirical dataset from a pre-/post-test design and com-

pared three different metrics on both group and individual levels,

thereby also determining the impact of knowledge baselines. The

value of this design as predictor or indicator of the underlying true

change and its reliability has been discussed widely.10,37,38 The pre-/

post-test design allows a pragmatic approach to measuring the differ-

ence between two points in time, representing a period of change in

knowledge. However, other scenarios using two reference points may

also be considered. For example, instead of tests demonstrating

knowledge, students might also estimate their level of competence

based on learning objectives related to two points: rating of the pre-

sent level (after completion of the teaching activity) and the retro-

spective level (before).20 Of note, the approach of using two points or

references is independent of the overall study design. To enhance

objectivity, gains are usually calculated separately for the intervention

as well as for the control group, as we did to compare the effective-

ness of teaching formats employing the empirical data set.

Our teaching module data reflected a moderate increase in

knowledge and no distinctive ceiling effect. Only a few participants

demonstrated a high baseline knowledge (e.g. only three students

achieved more than 80% in the pre-test) and none started on the

maximum possible score. We were thus unable to demonstrate any

distortion effects of the calculations at the upper extreme. No student

attained the maximum score post-test. A dataset specifically including

high starters as well as high achievers may prove more suitable to

compare and contrast the metrics G1 and G4.

Using the empirical data, no significant correlation between pre-

test scores and the metric G4 was demonstrable on group level; how-

ever, a tendency was detectable. Furthermore, the pre-test score

impacted significantly when employing the simulated data. This obser-

vation indicates that G4 was highly capable of reducing the influence

of pre-test scores; however the new metric was not completely inde-

pendent of baseline knowledge.

5 | CONCLUSION

Given the distorting effects that various published learning gain calcu-

lations present, we suggest exercising caution when implementing

current metrics to draw conclusions on teaching quality. Hence, we

introduce a new linear weighted gain, developed to provide a realistic
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and accurate method to document learner performance. We believe

this new metric enables more meaningful comparison between educa-

tional interventions. Mathematically speaking, the metric is easy to

calculate and broadly applicable on a routine level for anyone engaged

in quality assurance and course/curriculum development. Its regular

use can improve the transparency of teaching activities and outcomes,

contribute to forming rounded judgements about students' acquisition

of knowledge and skills and enable valuable feedforward to develop

and enhance curricular concepts.

Further studies may confirm and build on our findings. The ques-

tions remain as to whether statistical analysis based on probabilistic

test theory is superior to the classic gain calculations presented here.

There are Rasch models that can be used to model learning gain in

pre- and post-test settings directly.39 This analysis of learning gain

allows direct correlation between the improvement in knowledge and

teaching content through calibrating the test items and students' abili-

ties on the same scale. Applying such models to our data will be the

subject of future research.
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