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e Cytosolic calcium signals are evoked by a large variety of biotic and abiotic stimuli and play
an important role in cellular and long distance signalling in plants. While the function of the
plasma membrane in cytosolic Ca®* signalling has been intensively studied, the role of the
vacuolar membrane remains elusive.

¢ A newly developed vacuolar voltage clamp technique was used in combination with live-cell
imaging, to study the role of the vacuolar membrane in Ca®>* and pH homeostasis of bulging
root hair cells of Arabidopsis.

» Depolarisation of the vacuolar membrane caused a rapid increase in the Ca®* concentration
and alkalised the cytosol, while hyperpolarisation led to the opposite responses.

e The relationship between the vacuolar membrane potential, the cytosolic pH and Ca®* con-
centration suggests that a vacuolar H*/Ca®* exchange mechanism plays a central role in
cytosolic Ca®* homeostasis. Mathematical modelling further suggests that the voltage-depen-
dent vacuolar Ca** homeostat could contribute to calcium signalling when coupled to a
recently discovered K* channel-dependent module for electrical excitability of the vacuolar
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Introduction

Temporal elevations of the cytosolic free calcium concentration
([Ca*™] oo of plant cells are evoked by a variety of biotic and abi-
otic stimuli (McAinsh & Pittman, 2009; Roelfsema & Hedrich,
2010). These Ca”" spikes can serve as signals within single plant
cells, or propagate to enable systemic signalling between distant
plant tissues (Choi et al., 2014; Evans ez al., 2016; Toyota et al.,
2018). Such Ca**-based signals have been implicated in a broad
range of functions, including pathogen resistance (Jeworutzki
et al., 2010; Ranf et al., 2014; Tian et al., 2019; Thor et al.,
2020), defence responses to wounding (Toyota er al, 2018;
Marhavy ez al., 2019), the signal transduction of hormones (Shih
et al., 2015; Dindas et al., 2018; Huang ez al., 2019), nutrient
sensing (Xu ez al., 2006; Tang et al., 2020), as well as adaptive
responses to salt stress (Choi et al., 2014; Evans et al., 2016).

In general, Ca** signals can be considered as a transient distur-
bance of the Ca*" homeostasis in plant cells, which controls
[Cal2+]Cyt at a low resting level of ¢. 100-200 nM (Wheeler &
Brownlee, 2008; Roelfsema & Hedrich, 2010; Bose et al., 2011;
Tang & Luan, 2017; Kudla ez 2/, 2018). This constant low level
is stabilised by a multitude of proteins that bind Ca** and
thereby provide a buffer capacity of 0.1-0.5 mM in plant cells
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(Trewavas, 1999). In the longer term, low [CazJ’]Cyt is main-
tained by the energy-dependent transport of Ca®* ions against
their electrochemical gradient across the plasma membrane (PM)
and across the intracellular membranes of organelles. So far, four
groups of transport proteins have been identified in Arabidopsis
thaliana that contribute to this process: the autoinhibited Ca**-
ATPases (ACAs), ER-type Ca®>"-ATPases (ECAs), P1-ATPases
(as for HMA1) and H'/Ca** exchangers (CAX) (Kudla et al.,
2018). These Ca** efflux transporters are therefore likely to affect
the shape of intracellular Ca’t signals but, so far, this has only
been shown for the PM-localised efflux transporters ACA8 and
ACA10 (Costa ez al., 2017; Yang et al., 2017).

Ca®*-permeable ion channels counteract the active trans-
porters mentioned above and enable a rapid influx of Ca** ions
along the steep electrochemical gradient for Ca®* across the PM
and endomembranes. In recent years, our understanding of the
contribution of PM-localised Ca®* channels to the generation of
cytosolic Ca®" signals has expanded considerably. Members of
the cyclic nucleotide gated channel (CNGCs), hyperosmolarity-
induced [Ca®*] channels (OSCAs) and glutamate receptor-like
channels (GLRs) families were shown to be involved in several
physiological processes such as auxin signalling (Shih ez al.,, 2015;
Dindas ez al., 2018), plant immunity (Yuan er al, 2014; Tian
et al., 2019; Thor ez al, 2020), reproduction (Frietsch et al,
2007; Michard e al., 2011; Tunc-Ozdemir et /., 2013; Wudick
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et al., 2018; Pan er al, 2019) and long distance systemic sig-
nalling (Nguyen et al., 2018; Toyota et al., 2018). In addition,
several classes of mechanically activated Ca**-permeable PM
channels in plants are likely to be encoded by the midl-comple-
menting activity (MCAs), piezos and MSL1 channels (Kurusu
et al., 2013; Hou et al., 2014; Hamilton ez al., 2015; Li et al.,
2020; Mousavi et al., 2020; Radin ez al., 2020).

The central vacuole plays an important role in the cytosolic Ca*
homeostasis of plant cells (Martinoia et 4/, 2012). Calcium is
stored in vacuoles at low millimolar concentrations, while its con-
centration in the cytosol is below one micromolar (Miller & San-
ders, 1987; Felle, 1988; Bethmann ez a/, 1995). Because of this
steep concentration gradient, opening of Ca®* channels in the vac-
uolar membrane (VM) will cause a rapid increase in the cytosolic
Ca®* level. However, little information is known about Ca®* chan-
nels in the VM. The two-pore channel 1 (TPC1) was initially pro-
posed to act as a Ca**-release channel (Peiter ez al, 2005), but it is
controversially discussed if this channel is able to conduct Ca** cur-
rents under physiological conditions (Hedrich ez af, 2018). A
recent publication suggested that the voltage-dependent TPC1
channel provides excitability to the VM (Jaslan ez 4/, 2019) by a
mechanism in which TPC1 acts in concert with the Ca**-activated
K* channels TPK1 and TPK3 (Isayenkov ez a/, 2010; Jaslan et al.,
2019). However, it is still unknown how the apparent excitability
of the VM is related to long distance Ca®* signalling in plant cells.

To elucidate the role of the VM in Ca®>* homeostasis, we used
a recently developed approach to clamp the VM potential in root
hair cells, while simultaneously recording changes in the cytosolic
Ca®" level and pH (Wang ez al., 2015). Our data suggest that the
VM acts as a voltage-dependent Ca** homeostat, as a depolarisa-
tion of the VM causes an increase in the cytosolic Ca** concen-
tration, while hyperpolarisation provokes the opposite response.
It is likely that the voltage pulses affect H*-coupled transport, as
depolarising pulses alkalinised the cytosol, while it became more
acidic during hyperpolarisation of the VM. Based on these data
and the linear relationship between Ca®* flux and voltage, we
concluded that a vacuolar H*/Ca®* exchange mechanism plays a
central role in cytosolic Ca** homeostasis. In a mathematical
modelling approach the vacuolar Ca>* homeostat is combined
with a recently uncovered module for electrical excitability of the
VM (Jaslan ez al., 2019), generating a new hypothesis for the link
between electrical and Ca”" signals.

Materials and Methods

Plant material and growth conditions

Arabidopsis thaliana seeds were sterilised in 6% NaOCI with
0.05% Triton X-100 and washed with sterile deionised water. Sin-
gle seeds were subsequently placed on the surface of 1 ml of
growth medium (0.12% Murashige & Skoog basal salt mixture
including MES, Duchefa; 0.5% sucrose; 1% agarose, pH5.8 with
Tris) filled in small Petri dishes (@ 35 mm). Sealed Petri dishes
were placed in a vertically position in a growth chamber (KBWF
720; Binder, Tuttlingen, Germany) 3—5 d before the experiments.
Growth chambers operated on a 12 h : 12 h, day : night cycle
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with temperatures cycling between day : night, 21°C : 16°C, and
a light intensity of 120 umol photons m™ s~'. The R-GECO1
line (Keinath et 4/, 2015) was provided by Rainer Waadt (Univer-
sity of Tartu), the GFP line, transformed with GFP5 (Siemering
et al., 1996) and with the mutation S65T (Heim ez al.,, 1995), was
kindly provided by Melanie Krebs (University of Heidelberg) and
the cpYFP line (Behera ez 4/, 2018) was a gift from Markus Sch-
warzlinder (University of Miinster).

Electrophysiology

Microelectrodes were prepared from borosilicate glass capillaries
(Doue | mm, @;, 0.58 mm, w/filament, Hilgenberg, Germany).
Single-barrelled microelectrodes were pulled with a P-2000 hori-
zontal laser puller (Sutter Instruments, Novato, CA, USA). Dou-
ble-barrelled microelectrodes were prepared by fusing two glass
capillaries through successive heating, turning them by 360° and
prepulling them using a customised L/M-3P-A vertical puller
(List-Medical-Electronic, Darmstadt, Germany), before the final
pull was executed on the horizontal laser puller.

Measurements were conducted in bath solution (5 mM CaCl,,
4 mM KCI, 0.25 mM MgCl,, 0.5 mM NaCl, 1 mM HEPES/
KOH pH 7) to which seedlings were accustomed overnight. To
this purpose, 2 ml of sterile bath solution was applied to each Petri
dish and the Petri dishes were subsequently sealed and placed in a
vertical position in the growth chamber. Before measurements,
seedling-containing Petri dishes were placed horizontally on an
upright microscope and the bath solution was replaced by fresh
solution with the same composition (Axioskop 2FS; Zeiss AG,
Jena, Germany). Microelectrodes were mounted in a holder of a
micromanipulator (MM3A-LMP, Kleindiek Nanotechnik, Reut-
lingen, Germany) that was used to impale bulging root hair cells.
The barrels of the microelectrodes were backfilled with 300 mM
KCI and connected with Ag/AgCl half-cells to head stages with
input resistance of 100 G, that were linked to a custom-made
microelectrode amplifier (Ulliclamp 01). A reference electrode,
filled with 300 mM KClI and sealed with an agarose plug (2% w/
300 mM KClI), was placed in the solution of the Petri dish. The
microelectrode amplifier was equipped with a differential amplifier
that enabled double-barrelled electrode, voltage clamp experi-
ments. The voltage and current data were filtered with a four-pole
low-pass Bessel filter (LPF 202A; Warner Instruments, Holliston,
MA, USA) at 200 Hz and sampled at 1 kHz using the PULSE soft-
ware (v.8.74, HEKA; Lambrecht/Pfalz, Germany) with an LIH-
1600 interface (HEKA), or a UBS-6002 interface (NI, Austin,
TX, USA) and WINEDR software (Dempster, 1997). The electro-
physiological data were analysed offline using MS Excrr®
(Microsoft, Redmond, WA, USA) and ORIGIN PrRO 9 software
(OriginLab, Northampton, MA, USA). The microelectrodes were
impaled in vacuoles and the electrical potential difference Et
between bath and vacuolar lumen was measured. Thereafter, the
cells were clamped to this value, so that the current at the holding
potential was close to 0 nA. Cells in which the current changed
more than ¢. 0.1 nA during the measurement were discarded, as it
is likely that the PM potential of these cells had changed during

the experiment.
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Imaging

R-GECOL1 was excited with light from a mercury lamp (Leis-
tungselektronik, Jena, Germany) filtered at 562 nm with a Bright-
line single-bandpass filter (562/40 nm, Semrock, Rochester, NY,
USA) and reflected with a 590 nm dichroic mirror (Zeiss). Light
emitted by R-GECO1 was filtered at 628 nm with a Brightline
single-bandpass filter (628/40 nm; Semrock). The pH-sensitive
cpYFP was excited with an LED illumination system (pE-4000;
CoolLED, Andover, UK) at 405 nm and 470 nm (Behera ez 4/,
2018). The emission signal was passed through a dichroic mirror
with a cut-off wavelength of 499 nm (Zeiss) and a band filter at
520/35 nm. The cytosolic pH was monitored by calculating the
ratio of fluorescence signals obtained with excitation at 470 nm
(pH sensitive) and at 405 nm (low pH sensitivity). A decrease in
this ratio value indicates a drop in the cytosolic pH (Behera ez 4/,
2018). GFP5 (S65T) was excited with light filtered at 472 nm
with a Brightline single-bandpass filter (472/30 nm, Semrock,
USA) and reflected with a 490 nm dichroic mirror (Zeiss). Light
emitted by GFP was filtered at 520 nm with a Brightline single-
bandpass filter (520/30 nm, Semrock). The excitation light was
focused on the sample through an Achroplan x40/0.80 W objec-
tive (Zeiss). Filters and dichroic mirrors described above were
placed inside a CARV2 confocal imager (Crest Optics, Rome,
Italy) with the spinning disc out of the light path. Filter selection
and image acquisition with a charge multiplying CCD camera
(QuantEM 512SC; Photometrics, Tucson, AZ, USA) were con-
trolled with Visiview software (Visitron, Puchheim, Germany).
For analysis of imaging data, the freeware tool IMAGE] (im-
agej.nih.gov/ij/) was used (Schindelin ez 4/, 2012).

Estimation of the pH-dependent changes in R-GECO1
fluorescence intensity during VM voltages pulses

The fluorescent reporter protein R-GECO1 is sensitive to
changes in the cytosolic Ca** concentration, as well as the cytoso-
lic pH (Zhao ez al.,, 2011). As a result, part of the change in R-
GECOI1 fluorescence intensity, observed during manipulation of
the VM potential (Figs 1, 2, 4), could be due to changes in the
cytosolic pH. The pH-dependent change of R-GECO1, during
application of VM voltage pulses, therefore, was estimated by
comparison of the R-GECOL signals with that of cpYFP, which
is highly sensitive to the cytosolic pH (Schwarzlinder er al.,
2011).

Roots of 6-d-old A. thaliana seedlings, which expressed either
cpYFP (Supporting Information Fig. S1a), or R-GECO1 (Fig.
Sib), were exposed to bath solutions with 50 mM
CH3COONHy, in which the pH was buffered to pH 6.0 and
6.5 with 2-(N-morpholino)ethanesulfonic acid (MES) and Bis-
Tris propane (BTP) and to pH 7.0, 7.5 and 8.0 with BTP and 4-
(2-hydroxyethyl)-1-piperazineethanesulfonic ~ acid ~ (HEPES)
(Behera ez al., 2018). The buffer solutions were exchanged at a
speed of 2.5 ml min~!, while the volume of the bath was ¢. 1.5
ml.

An LED illumination system (pE-4000; CoolLED, Andover,
UK) was used to excite cpYFP at wavelengths of 405 nm and 470

©2021 The Authors
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nm and R-GECO1 at 580 nm. The filter wheels in a spinning
disc unit (CARV2; Crest Optics, Italy) served to pass the emis-
sion signal of cpYFP through a dichroic mirror with cut-off wave-
length of 499 nm (Zeiss) and a band pass filter of 520/35 nm,
while the R-GECO1 signal was passed through a 590 nm
dichroic mirror (Zeiss) and a single-bandpass filter (628/40 nm;
Semrock).

The relationship between the extracellular pH and the cpYFP
signal, as well as that of the extracellular pH and R-GECO1,
could be described with single exponential functions (Fig. Slc,
d). Both relationships between extracellular pH and fluorescent
reporters were used to obtain an association between cpYFP and
the pH-dependent changes in the R-GECOL1 signal intensity
(Fig. Sle). Based on this association and the changes in cpYFP
ratio during voltage pulses (470,,/405.,, Fig. 3b,c), the expected
pH-dependent changes in the R-GECOL1 signal were calculated
and plotted in Fig. 4b,c (grey curves).

Simulation of thermodynamically ideal transporters

Calculations of the ideal thermodynamic behaviour of trans-
porters were made using the following equations:

Ca** permeable ion channel

[Ca”"]
_ lum
AG'—}{’T'lOgc <[Caz—+}cyr —ZCaH'F'EVM Eqnl
H*/Ca®* exchanger
[Ca2+]lum
AG= N2t RTIOgC W — 2t F- EVM
o Eqn2
—my+ - [RT -log <[H+hum> —zy+ - F-Eym
e +
[H oy
Ca’*-ATPase
I:Ca2+]lum
AG= N2t - RT-lOge W — 2t F-EVM
cyt
[H'],
—my+ - |RT -log, [Hﬂum —zy+ - F- Eym Eqn3
cyt

[ADP]. [P],
[ATP],, 1/4M>]

In all equations, R is the universal gas constant (8.3
J mol™" K™1). T'is absolute temperature (293 K). zis the valence
of the ion (z¢2+ =2 and zy+ = 1), F the Faraday constant (9.6
x 10* C mol™") and Eyy is the VM voltage. For simulation of a
H*/Ca®" exchanger and a Ca®*-ATPase, 7+ and 7+ indicate
transport stoichiometry. For the Ca®>"-ATPase AGy 47p is the

+

AGO.ATP + RT . loge (
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Fig. 1 Voltage pulses applied to the vacuolar membrane (VM) trigger changes in the cytosolic Ca®* concentration. (a) Cartoon of the experimental setup,
with a double-barrelled microelectrode impaled into the vacuole of a bulging Arabidopsis thaliana root hair cell. (b, ¢) The VM was stimulated with voltage
pulses (top panels) of 100 mV (b), or =80 mV (c), which caused changes in vacuolar currents (middle panels, averaged data). A depolarising pulse evoked
an increase in the R-GECO1 signal (b, lower panel), while a hyperpolarisation of VM lowered the R-GECO1 fluorescence intensity (c, lower panel). The
voltage pulses did not affect the fluorescence of GFP5 (S65T) (bottom panels). Error bars represent SE, n = 7 (GFP5, grey traces), or n = 9 (R-GECO1,
black traces) in (b) and n = 6 in (c). Fluorescence signals are given in units that are relative to the value just before the start of voltage pulse. (d)
Representative fluorescence images (four panels on left) and transmitted light image (right panels) of bulging root hair cells, expressing GFP5 (S65T) (upper
panels), or R-GECO1 (lower panels). The panels in the middle show magnifications of the left panel, as indicated by the white dashed box. The cells were
stimulated with a 100 mV voltage pulse at the VM, as in (b). The region of interest (ROI) are encircled by a magenta line in the left panel. Time points and
applied voltage pulses are indicated in the middle panels. Fluorescence intensities are linked to the relative fluorescence intensity by the calibration bars on
the left.

standard enthalpy for ATP hydrolysis (—3.3 x 10% J mol™). the
ADP/ATP ratio was set to 1 and [P]., = 70 uM (Pratt ez al,
2009).

challenged the vacuole with a range of current pulses and deter-
mined the changes in Eyy and [CaZ"L]Cyt over time. Relative
changes in the cytosolic Ca®* concentration (A[Ca“]cyt) were
estimated by integrating the net Ca* flux during tonoplast exci-

cyt

Computational cell biology ranon:
The electrical behaviour of the TPC1/TPK1/3 module was simu-
lated as described in detail in the supplementary material of
Jaslan ez al. (2019), resulting in the time course of Eyp(t) in
response to an external stimulus. The net Ca®* flux was experi-

afca], =a- / (Eym(e) — Ex)ds Eqn4

with Eg being the resting voltage. The unknown proportional

mentally found to be linearly correlated to changes in Evy (A Vy factor a was eliminated by normalisation.

Fig. 4d). At the resting voltage, which is negative of the activa-
. . 2+

tion threshold of TPC1, .the.re is no net Ca HI%X across thze+tono- Results and Discussion
plast. Upon hyperpolarisation, the VM mediates a Ca™" flux

from the cytosol to the vacuole, while it enables a Ca®* influx ~ Voltage clamp experiments with guard cells revealed that hyper-

into the cytosol at depolarising potentials. In our model, we
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Fig. 2 Depolarisation of the vacuolar membrane (VM) increases the cytosolic Ca>* concentration. (a) An Arabidopsis thaliana root hair cell, of which the
VM was stimulated with a voltage ramp. The upper panel shows the R-GECO1 signal of the whole cell, while the lower panels display their magnifiied
images, as indicated by the white dashed box. A magnification of the transmitted light image is shown in the lower right panel. The VM of the cell was
stimulated with a depolarising step of 100 mV after 1 min, followed by a gradual return to O mV in the following 1.5 min (time indicated in the top of the
panels and the voltage at the right side of the panels). The calibration bar (upper right) links the colour code to the fluorescence signal of R-GECO1. (b)
Voltage protocol (top panel) used to stimulate the VM of root hair cells, averaged VM currents (middle panels) and averaged relative R-GECO1
fluorescence intensity (bottom panel) at the region of interest (ROI, as shown in upper panel of (a)). Error bars show SE (n = 7).

Blatt, 1998; Levchenko ez al, 2005; Stange et al., 2010; Voss
et al., 2016), while long depolarising pulses cause the opposite
effect (Stange ez al., 2010). The impact of these voltage pulses on
[Cal”]c},t is probably mediated by hyperpolarisation activated
cation channels in the PM (Hamilton ez a/, 2000; Pei et al.,
2000; Stoelzle er al., 2003), but so far no genes have been found
that encoded these channels. We hypothesised that voltage-acti-
vated Ca**-permeable channels may also be active in the VM
and therefore tested if voltage pulses applied to the VM also affect
[Ca®*].. using the vacuolar voltage clamp approach that was

previously described by Wang ez a/. (2015).

Voltage stimulation of the VM alters Ca2+cyt

Double-barrelled microelectrodes were impaled into the body of
bulging root hair cells (Fig. 1a), of four 6-d-old Arabidopsis
seedlings. At this subcellular position, the tip of the electrodes
normally penetrates both the plasma and VMs and enables
manipulation of the VM potential (Wang ez al., 2015). Micro-
electrodes with vacuolar localisation measured on average an elec-
trical potential difference of 112 mV between bath and vacuolar
lumen (standard error (SE) = 2 mV, n = 15). According to the
convention of membrane voltage measurements on
endomembranes (Bertl et 4/, 1992) the PM and VM potentials
should be considered relative to the cytosol and, therefore, Epyy =-
Yoyt = Whath while EVM = Yot —
ET = What-Wyac consequently represents Eyyy subtracted by Epys;
ET = Woath Wvac = (wcyt - anc) - (WCyt - \\Uba(h) = EVM - EPM-

Wyaee The measured voltage

©2021 The Authors
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Wang er al. (2015) found that the VM potential is on average
—30 mV, which suggests that the bulging root hair cells had an
average PM potential of c. =142 mV. After measuring Er, the cells
were clamped to this value and, therefore, the current at the holding
potential was close to 0 nA.

Voltage pulses of 30 s were applied with a AV of 100 mV,
which provoked a depolarisation of the VM from ¢. =30 mV to
+70 mV (Fig. 1b, upper panel), while a AV of —80 mV was
applied to hyperpolarise the VM to ¢. =110 mV (Fig. lc, upper
panel). Just as described by Wang er al. (2015), such voltage
pulses provoked vacuolar currents that slightly decreased during
the voltage pulses (Fig. 1b,c, middle panels). On average we
determined a VM conductance of 6.5 nS (SE = 0.7 nS, » = 9)
and 6.1 nS (SE = 1.1 nS, # = 6), based on the steady-state cur-
rents evoked by depolarising and hyperpolarising pulses, respec-
tively. Under the voltage clamp scenario described, the
fluorescence signal of the Ca*" reporter R-GECO1 (Zhao ez al,
2011; Keinath er al, 2015) was used to monitor changes in
[Caz"L]Cyt (Fig. 1d).

As a control, a version of GFP5 was used that has a relative
low sensitivity to cytosolic pH changes. In a recent study with
Arabidopsis and tobacco guard cells, it was shown that current
injection can lead to osmotically driven cytosolic volume changes
(Voss et al., 2016). Due to such volume changes the fluorescence
intensity of single-wavelength cytosolic reporters may change and
potentially produce false signals. However, we found that pulses
of AV of +100 mV or —80 mV did not affect the GFP5 signal
(Fig. 1b,c, lower traces and Fig. 1d, upper panels). Apparently,

New Phytologist (2021) 230: 1449-1460
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Fig. 3 A depolarisation of the vacuolar membrane (VM) potential alkalises the cytosol of root hairs. (a) False colour images of the cpYFP ratio (470c,/

405,,) of Arabidopsis thaliana root hair cells, stimulated with depolarising (top row) and hyperpolarising (bottom row) voltage pulses. The time after start
of the experiment is indicated in the top of each image and the clamp voltage at the bottom. The panels on the right show the transmitted light images of
the same cells. Bar, 20 um. The calibration bar (lower right panel) links the colour code to the cpYFP fluorescence signal. (b, ¢) Top panels: the VM of root
cells was stimulated with depolarising (b, from 100 to 20 mV), and hyperpolarising (c, from —80 to —20 mV) voltage pulses. Bottom panels: averaged
cpYFP ratio (470x/405,,) of the region of interest (ROI, as shown in left panels of (a) normalised to the value at the start of the experiment. Error bars
show SE (n = 9in (b) and n = 7 in (c)). (d) Average change of cpYFP ratio (470,,/405,) plotted against the voltage to which VM was clamped. The solid

black lines show linear fits of the cpYFP signal with the indicated correlation coefficients. Error bars show SE (n = 7-9).

the voltage pulses did not provoke changes in the cytosolic vol-
ume of root hairs. By contrast, the depolarising pulses caused a
rapid increase in the R-GECOL signal, while hyperpolarising
pulses evoked the opposite response (Fig. 1b,c, lower panels and
Fig. 1d, lower panels). This suggests that a depolarisation of the
VM causes an influx of Ca®* into the cytosol, whereas hyperpo-
larisation results in an increased Ca®* loading of the vacuole.
Voltage pulses applied to the VM in intact root hair cells, also
provoked small potential changes in the PM (Wang ez 4/, 2015),
which could have induced activation of hyperpolarisation acti-
vated Ca”*-permeable channels. However, experiments in which

New Phytologist (2021) 230: 1449—1460
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only the PM potential was manipulated showed that these small
PM potential changes (on average 8 mV) do not affect [Ca®"]
(Fig. S2).

The relationship between the VM potential and [Ca**],, was
studied in further detail, by applying a voltage protocol in which
AVT (Whah — AW,,) was first stepped to +100 mV and there-
after changed to 0 mV in a voltage ramp with a rate of
1.67 mV s ! (Fig. 2a,b). The R-GECOL1 signal showed that

[Ca®*]., increased after the depolarising voltage step and

cyt

returned to the original value during the subsequent voltage
ramp.

©2021 The Authors
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Fig. 4 The root hair cytosolic Ca>* concentration depends on the vacuolar membrane (VM) potential. (a) False colour images of an Arabidopsis thaliana
root hair cell, of which the VM was stimulated with a series of depolarising voltage pulses (the time from the start of the experiment is indicated in the top
of the panels and the voltage at the bottom). The upper panel shows the R-GECO1 signal, while the lower panels display the magnified images, as
indicated by the white dashed line. The transmitted light image of this cell is shown in the lower right panel. The calibration bar (upper right) links the
colour code to the fluorescence intensity of R-GECO1. (b, ¢) Top panels: voltage protocols to stimulate cells either with a series of depolarising (b) or
hyperpolarising (c) pulses. Middle panels: averaged values of the R-GECO1 fluorescence intensity (normalised to the value at the start of the experiment,
black) at the region of interest (ROI, as indicated in upper panel of (a)), as well as the calculated pH-dependent changes in R-GECO1 fluorescence,
deduced from cpYFP-recordings (grey). Bottom panels: Average Ca®*-dependent R-GECO1 signal calculated by subtracting the pH-dependent signal
(grey, middle panel) from the total R-GECO1 signal (black, middle panel). The solid straight lines represent the slope of the initial [Ca>*].,+-dependent R-
GECO1 fluorescence change, in response to a voltage change. Error bars show SE (n = 7). (d) The average rates of R-GECO1 initial fluorescence changes
(black straight lines in (b) and (c), lower panels) are plotted against the applied voltage. The solid black lines show linear fits, with the indicated correlation
coefficients. Error bars show SE (n = 7).

VM potential. To this purpose, the relationship between
[Ca2+]cy[ and the VM was determined with voltage pulses
ranging from +100 mV to +20mV (Fig. 4a,b), as well as
Changes in the [CaZJ']Cyt of plant cells are often accompanied by pulses ranging from —80 mV to —20 mV (Fig. 4¢c). In this
pH changes in the same compartment (Behera er al, 2018;  respect, we had to overcome the technical difficulty that the
Waadt ez al., 2020). We therefore used seedlings that expressed ~ fluorescence intensity of R-GECOL is sensitive to changes in
cpYFP to monitor the cytosolic pH during manipulation of the [Ca2+]cyt, as well as the cytosolic pH (Zhao er al. 2011). We
VM (Fig. 3). It turned out that depolarisation of the VM in steps therefore developed a procedure, to determine the impact of
of 30 s caused an alkalisation of the cytosol (Fig. 3a,b), whereas  cytosolic pH changes on R-GECO1, using the cpYFP signal as
hyperpolarising pulses provoked acidification (Fig. 3a,c). The  a reference. This approach revealed that the voltage-induced
potential of the VM membrane, therefore, appears to affect both  cytosolic pH changes only had a small impact on R-GECO]1
the cytosolic pH (Fig. 3d) and Ca”* concentration. (Fig. 4d) and therefore that most of the changes in the R-

We set out to elucidate the nature of the transporter that GECOL1 signal during the voltage pulses are due to a change in
provokes the changes in [(3212+]Cyt upon manipulation of the [Ca2+]cyt (Fig. 4b—d).

Are VM-dependent [Ca®"],: changes caused by H*/Ca**
exchangers?

©2021 The Authors New Phytologist (2021) 230: 1449-1460
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[Ca®*1¢t = 10 (e) Change in Gibbs free energy plotted against the potential of the VM of a Ca®* permeable ion channel operating under
luminal/cytosolic Ca®* gradients of 10° (magenta) and 10? (black). (f) Change in Gibbs free energy plotted against the potential of the VM of a Ca**-
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n>2(a,b).

The relationship between changes in the VM potential
(AV1 = Ypam — AW, and the rate by which the Ca2+—depen—
dent R-GECOL signal changed is shown in Fig. 4(b,c). Both the

New Phytologist (2021) 230: 1449—1460
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data obtained at depolarising and hyperpolarising pulses were fit-
ted with a linear function, which revealed an #* of 0.99 and 0.75,
respectively. If we assume that the change in the R-GECO1

©2021 The Authors
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signal is a measure of the Ca** current across the VM, this Ca®*
current, therefore, has a linear dependency on the VM potential
(Fig. 4d). The Ca®* conductance of the VM was compared with
that of several groups of Ca** transporters (Fig. 5). Among the
possibilities tested, we found that an mH*/nCa”* exchanger with
a coupling rate m/n > 2 provided the best fit of our experimental
observations (compare Fig. 5a,b with Fig. 4d). By contrast,
mH*/nCa®* exchangers with a coupling rate of m/n less than 2
(Fig. 5¢,d), ion channels (Fig. 5e), or Ca®"-ATPases (Fig. 50)
showed a thermodynamic behaviour that clearly deviated from
that of the Ca?" current across the VM. We therefore regard it
unlikely that the latter groups of Ca®* transport proteins con-
tributed essentially to the measured voltage-dependent VM Ca**
conductance.

Altogether, our data suggested the presence of active H*/Ca®*
exchangers in the VM. A depolarisation of the VM reduced the
driving force for the H" flux into the cytosol and as a result
caused an increase in pH (Fig. 3). The lowered driving force of
H* also reduced the uptake of Ca** by H"/Ca®" exchangers into
the vacuole and therefore caused a rise in [Caz+]cyt. (Fig. 4). An
inverse behaviour was observed upon hyperpolarisation. The
CAX genes are obvious candidates to encode these voltage-depen-
dent VM-localised transporters, as most CAX transporters are
located in the vacuole and act as HY/Ca** exchangers (Pittman
& Hirschi, 2016). Future studies will have to reveal if CAX-pro-
teins indeed serve as voltage-dependent vacuolar Ca** home-
ostats, or if other metal transporters also contribute to this system

that balances [Caz+]cyt.

A model that couples VM excitation to [Ca®*].: signals

The physiological function of the voltage-dependent Ca>* con-
ductance of the VM (called Ca** homeostat in the following)
was explored using computer-based simulations. Recently, it was
shown that the voltage-depended channel TPC1 and the K*
selective channels TPK1/TPK3 can convert an initial short volt-
age stimulus into a prolonged depolarisation of the VM (Jaslan
et al., 2019). This experimentally observed mechanism was simu-
lated with high accuracy by a computational model (Jaslan ez al.,
2019) that was now expanded with the VM-based Ca®* home-
ostat (Fig. 6a).

As demonstrated by Jaslan er 4l (2019) the application of a
current pulse depolarised the VM and the length of the depolari-
sation depended on the strength of the current pulse (Fig. 6b).
During the depolarisation, C:12+Cyt increased and stronger current
pulses enhanced this response. Likewise, the magnitude of the
[Cal2+]cyt change was enhanced, if the length of the current pulses
was increased (Fig. 6¢). However, when both amplitude and time
were varied, but the stimulus charge (product of current and
time) was kept constant, both the excitation time and final level
of [CaH]Cyt remained unchanged (Fig. 6d). We screened the
[Ca®*].. vs charge relationship for a huge set of time/amplitude-
combinations (black dots in Fig. 6e) and found an unambiguous
relationship between the calcium signals and the stimulus charge.
Therefore, the VM seems capable of integrating the amplitude
and length of current pulses and convert these parameters into a

New Phytologist (2021) 230: 1449—1460
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voltage change, which in turn provokes a cytosolic Ca®* signal
(Fig. Ge).

The combined Ca®>" homeostat and the TPC1/TPK1/TPK3-
based channel network in the VM may, therefore, explain how
the voltage-dependent TPC1 cation channels, together with the
Ca®*-dependent K* channels TPK1 and TPK3, contribute to
shaping the Ca®* signals, while none of these channels directly
releases Ca®t from the vacuole. The proposed Ca*™-release
model is in line with the observed role of TPCI in long distance
signals, which are provoked by high NaCl concentrations in roots
(Choi et al., 2014) and herbivory in shoots (Kiep ez af., 2015). It
is likely that these Ca** signals are passed on from one cell to its
neighbour by plasmodesmata (Hedrich ez al., 2016; Choi ez al.,
2017). Because of these connections, elevation of Ca”cyt in a cer-
tain cell may cause a small local Ca®* signal in the neighbouring
cell. In return, the localised Ca** signal in the neighbour cell can
activate TPK channels by the Ca2+-binding calcineurin B-like
(CBL) proteins that regulate CBL-interacting protein kinases
(Gobert ez al., 2007; Latz ez al., 2007; Voelker ez al., 2010; Wang
et al., 2015; Tang et al., 2020), depolarise the VM and trigger a
large rise in [Ca®*] o through the Ca”* homeostat of the VM.
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