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1 Introduction

Since the introduction of what is known today as the Internet, the number of
active users has reached 5.2 billion in March 2021 [24], without even taking into
account the influx of smart devices deployed in Industry 4.0, smart cities and
the Internet-of-Things (IoT) in general. Additionally, the strain on network in-
frastructures in both Wide Area Network (WAN) and datacenter environments
is amplified by the introduction of new, resource intensive applications such as
video streaming or cloud gaming. In the years 2020 and 2021, the rise of remote
working due to the COVID-19 pandemic has once again shown the importance
of reliable and ubiquitous access to broadband internet in today’s modern world.

All of these reasons — growing demand, increasing application requirements,
increasing societal dependency — drive operators, industry and academia to
constantly reinvent network infrastructures, systems and mechanisms with the
goal to develop solutions to fulfill the ever-growing demands of users. Depend-
ing on the specific stakeholder, a multitude of different and competing criteria
need to be taken into account. Network operators aim to achieve a high Qual-
ity of Service (QoS) by providing highly reliable network connectivity to their
customers. Service operators aim for maximum user satisfaction, hence Quality
of Experience (QoE). Finally, end-users expect reliable services using various,
heterogeneous end-devices and access technologies. At the same time, the cost-
efficiency of every component involved in these complex systems needs to be
as high as possible.

In order to achieve these goals, several novel softwarization paradigms have
been suggested and investigated in recent years. Initially, the goal of Software-

Defined Networking (SDN) was to physically and logically separate the data



1 Introduction

from the control plane and define open interfaces to enable vendor-agnostic
programmability. To this end, control components have been removed from
data plane devices and were instead aggregated at a logically centralized con-
troller [25]. This kind of control-centralization enables new, dynamic network
configuration and re-configuration as controllers are now able to maintain
global knowledge of systems and make forwarding decisions based on this
global knowledge. At the same time, data plane devices become increasingly
more simple, as devices simply accept instructions from a local control entity
and do not have to make their own decisions based on limited knowledge.

The next step in this softwarization of networks is the introduction of Net-
work Function Virtualization (NFV). While data plane devices were largely ex-
pected to be dedicated hardware components in the early days of SDN, NFV aims
to replace Application-Specific Integrated Circuits (ASICs) through software so-
lutions running on commercial off-the-shelf (COTS) hardware. This usage of
software over static middleboxes aims to improve the efficiency of networks,
as software components can be dynamically scaled based on current demands.
Furthermore, software tools are far easier to maintain and update than hardware
middleboxes, further reducing the cost of operating networks.

However, processing network traffic in software is, in general, less perfor-
mant than dedicated hardware appliances and comes with new challenges. On
the one hand, novel monitoring approaches to reliably assess the performance
of functions both before and after deployment are required [26]. On the other
hand, mechanisms and models to reliably and accurately estimate the perfor-
mance of software-based network functions are crucial for the development,
dimensioning, and operation of software-based network infrastructures.

In addition to the performance aspects of software solutions, the interop-
erability with existing, potentially legacy, network infrastructures needs to be
maintained in order to ensure reliable network operation. The operation of net-
works consisting of legacy devices, programmable hardware as well as software-

based elements requires the investigation of new control plane mechanisms [27].



This monograph covers both technical and analytical mechanisms to as-
sess the performance of software-based network functions as well as complex
service-function chains in the area of microservice architectures. We propose
a novel monitoring approach that enables low-overhead monitoring of high-
performance software-based network functions. Subsequently, we apply our
monitoring approach to acquire measurements with the purpose of developing
a detailed, discrete-time model of a software router using state-of-the-art ac-
celeration techniques. We show that the integration of software solutions into
existing networks is possible while maintaining system performance. Through
the abstraction of data plane components, a standardized SDN controller can be
used to manage a heterogeneous landscape of data plane devices. Finally, we
perform a detailed, simulative performance evaluation of a complex microser-
vice architecture in the context of IoT. We propose simulation models for both
the workload profile and the system architecture to allow investigations of vari-
ous Key Performance Indicators (KPIs). In summary, we identify and contribute

to answering the following research questions.

« How to monitor the processing performance of software-based network

functions?

+ How to predict critical KPIs of software-based network functions under

varying load levels?

« How to ensure the interoperability of software solutions, programmable

hardware and SDN-enabled data plane devices?

» How to model and assess the performance of complex microservice-based

packet processing architectures?



1 Introduction

1.1 Scientific Contribution

In the following paragraphs, the scientific contributions in each of the areas
covered in this thesis are outlined. Note that a more detailed description of con-
tributions and investigated research questions is presented at the beginning of
each chapter, respectively. Figure 1.1 shows a selection of research activities in
the context of this work. Thereby, single publications are categorized along the
x-axis by their respective research subject, NFV, SDN or Applications in the con-
text of NFV. Additionally, the y-axis shows the applied methodology, namely
modeling, measurements and simulation. The figure also encodes the specific
research area as the title of each box, whether the references are covered in this
thesis through the used font color and the chapter that each of the topics is

presented in by the circled number.

Performance Monitoring. In order to deepen our understanding of the per-
formance characteristics of software-based network functions, sophisticated
monitoring mechanisms that allow the assessment of relevant KPIs are crucial.
To this end, in Chapter 2 of this monograph, we present a novel approach to
monitor accurate packet processing times of network functions. Our approach
of in-stack monitoring (Section 2.2) relies on mapping packet ingress and egress
events directly in the used network stack in order to perform low-overhead
monitoring during both development and after deployment. To this end, we de-
velop KOMon, a proof-of-concept implementation based on the New API (NAPI)
network stack used in the Linux Kernel. We evaluate both accuracy and over-
head of our approach through measurements and provide a discussion regarding

its application and limitations in practice.
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Figure 1.1: Categorization of research work conducted by the author. References
noted in opaque font are not covered in this manuscript. The circled
numbers at the bottom right annotate the chapter that covers the
respective publications.

Performance Modeling. Subsequently, in Chapter 2 of this thesis, we apply
our monitoring approach to obtain measurement values for a state-of-the-art
software router. On the basis of the obtained processing time measurements,
we develop an accurate, discrete-time model of Cisco’s Vector Packet Process-
ing (VPP) that is capable of predicting several crucial KPIs (Section 2.4). These
include the queue size, response time, waiting time as well as packet loss prob-

ability under differing load levels and system parameters. We present a detailed
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description of our model and validate its predictive accuracy using the previ-
ously obtained measurement values. The developed model in combination with
the proposed monitoring approach enables both the accurate monitoring of net-

work function performance and the prediction of relevant KPIs

Data Plane Abstraction. Following the performance evaluation of single
component network functions, we introduce a data plane abstraction approach
in Chapter 3. Here, the general concept of data plane abstraction through pro-
tocol translation is introduced and the design of our proof-of-concept imple-
mentation is outlined. The presented concept is based on the idea of actively
intercepting control plane messages of various protocols between control and
data plane. Before relaying the intercepted messages, various modifications to
the content are made to transparently map between different data plane tech-
nologies and control plane applications. We thereby demonstrate the practicality
of translating between OpenFlow [28] and P4 [29] as well as hardware and soft-
ware solutions. We also demonstrate the possibility of emulating virtual devices
towards the control plane, while realizing the data plane operations through
multiple, potentially heterogeneous data plane devices. Finally, we conduct per-
formance measurements and discuss the impact of our concept on the control

plane performance.

Traffic Modeling. In order to perform accurate performance evaluation of a
complex microservice system, the workload profile imposed on the system is
established in Chapter 4. To this end, we perform an extensive analysis of a 31-
day-long network trace containing more than 1.4 billion messages and over 7
terabyte of raw data. The trace has been obtained at the ingress of a real world
Mobile Virtual Network Operator (MVNO) mobile network core. We dissect the
trace contents regarding message distribution and identify a simple feature set
that allows the classification of individual IoT devices based on their mobile sig-
naling traffic (Section 4.2). Based on the identified features, we perform unsu-

pervised machine learning through k-means clustering and evaluate the differ-
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ences in device behavior between resulting clusters. Finally, we highlight critical
properties of the aggregated arrival process resulting from the superposition of
the signaling traffic of individual devices. We show that the Markov assumption
commonly made in standardization and literature does not necessarily hold in

practice, but can be restored through preliminary device classification.

Simulative Performance Analysis. Finally, after establishing a workload
profile, Chapter 4 presents our simulation model and case study on the applica-
bility of our model. Here, we outline the architecture of the real world system
and present a suitable abstraction. Subsequently, we introduce both a signaling
model that dictates the behavior of individual devices and a core network model
that describes the available resources as well as their interactions (Section 4.3).
After validating the accuracy of the proposed simulation model through mea-
surements in both dedicated testing environments and a productive system, we
perform a case study regarding system dimensioning. Finally, we evaluate sev-
eral overload control mechanisms with regard to their capability to ensure ef-
ficient operation under extreme overload conditions. Our validation and inves-
tigation of overload control mechanisms shows that the developed simulation
model is capable accurately of replicating conditions in the real world system.
Hence, the model can be used to investigate complex extensions of the system
to identify efficiency issues, thereby increasing the optimization potential of the

system.
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1.2 Thesis Outline

In the following, we present a brief outline of the contributions made in this the-
sis. Figure 1.2 presents an abstract view of the system evaluated in the following
chapters. The annotations in read describe the chapter in which each part of the
system is discussed. The figure shows data plane components and their interac-
tions in green. Each network function can thereby be realized using software,
programmable hardware or SDN-enabled whitebox switches. As is common in
modern, softwarized networks, the control entity is realized using a logically
centralized control and management unit, shown at the top of the figure.

Chapter 2 deals with the performance evaluation of single component
software-based network functions. To this end, we conduct measurements and
develop analytical models to advance our general understanding of the behavior
of such network components.

After establishing accurate performance models of single network functions,
Chapter 3 highlights the feasibility of integrating multiple, potentially techno-
logically heterogeneous network functions into a single data plane. To this end,
we develop an abstraction tool mediating between control and data plane. We
show the feasibility of multi-component and multi-technology data plane solu-
tions and discuss performance implications of our abstraction approach.

Finally, Chapter 4 covers the performance evaluation of a complex system
of multiple software-based network functions at the example of a real world
virtualized MVNO mobile core network. To achieve this, we establish a load
profile through detailed analysis of an extensive network trace obtained from a
productive mobile core network. We then apply the gained insights to develop a
highly detailed simulation model of the real world mobile core system. We high-
light the application possibilities of our model for bottleneck detection, system
dimensioning as well as the investigation of systemic extensions like overload

control mechanisms.
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2 Performance Evaluation of Single
Component Software-based

Network Functions

The concept of NFV has initially been introduced by Chiosi et al. in 2012 [30] in
order to react to increasing demands for network operators to be able to quickly
react to technological advancements and gain access to new revenue earning
network services.

Up to this point, network services and functions are mostly realized via the
development and deployment of dedicated, proprietary hardware appliances.
These ASICs require significant capital investment both during development
and deployment, as well as during operation. At the same time, the static nature
of hardware components limits the ability to flexibly react to new and chang-
ing demands. In order to alleviate these issues and trigger the next evolution of
networked systems, the paradigm of NFV promises to reduce equipment cost,
simplify maintenance tasks and reduce power consumption. Simultaneously, the
goal is to enable more flexible network operation and speed up the time to mar-
ket.

The idea behind the NFV concept is the migration of network components and
functions previously realized through proprietary middleboxes towards open
software solutions that can be hosted in virtual environments using readily
available COTS servers. This allows for dynamic resource scaling of these Vir-
tualized Network Functions (VNFs) and enables far greater flexibility than is

possible in hardware-based scenarios. However, in order to achieve these am-
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bitious goals, several technical challenges require significant attention [30, 31].
Questions regarding management and orchestration [32], security [33], relia-
bility and resilience [34], and finally performance [35] need to be addressed in
order to achieve the ambitious goals promised by the NFV paradigm.

First, management and orchestration, deals with problems regarding the effi-
cient operation of software-based network components. On the one hand, these
include technical components such as the on-demand instantiation and destruc-
tion of VNF instances [36, 37] as well as their efficient placement within net-
works [38]. On the other hand, the integration of software solutions into exist-
ing networks poses significant challenges [39, 40], such as transparent interop-
erability with legacy equipment.

Second, the introduction of software into the network landscape inherently
comes with additional attack surfaces exploitable by malicious parties [41]. At
the same time, due to the reduced time to market and shorter cycles between
component updates, software solutions are by nature less resilient against mis-
configuration and implementation errors than their hardware counterparts [33].

This leads immediately to the third aspect, the reliability and resilience of
VNFs. In environments in which five nines reliability is a mission critical factor,
deployed components need to be sufficiently resilient against both hardware
failures and software errors [41].

Finally, the performance penalty induced by moving from hardware to soft-
ware is significant. In order to still be able to provide high performance services,
new approaches for efficient, software-based packet processing need to be in-
vestigated [26, 35]. The performance aspect being the focus of this chapter, the
following sections present a more fine-grained taxonomy of current research in

this area.
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Based on these observations, we identified the following research questions

that are covered in this chapter of the monograph.

RQ2.1) How can the processing performance of generic network functions be
monitored? This includes the measurement of the total raw processing
times as well as the response or sojourn times of packets consisting of

the processing as well as the waiting time in buffers and queues.

RQ2.2) Can this be achieved in a VNF-agnostic way while treating network
functions as a black box without access to the VNF source code? This

includes the elimination of VNF-specific methodology adaptations.

RQ2.3) Can the monitored packet processing times be exploited to develop
accurate, generalizable performance models of state-of-the-art network
functions? This includes the prediction of key performance indicators
such as the expected loss rate, sojourn time and identification of maxi-

mal throughput.

In the following chapter, in order to address these research questions, we start
in Section 2.1 by providing an overview over the process of handling pack-
ets in software when it comes to modern, state-of-the-art network functions.
We cover common optimization mechanisms and provide insight into modern
frameworks to accelerate software based processing. Furthermore, we provide
an overview of selected literature that covers research work related to the con-
tributions made in this chapter. Section 2.2 addresses RQ1 by presenting a novel
approach to monitoring the processing performance of generic network func-
tions without the need to access or modify the VNF code. We show both the
accuracy of the proposed mechanism and the behavior under load by means
of comparing reported values to baseline measurements obtained from experi-
ments using an industrial grade hardware traffic generator in Section 2.3. Sub-
sequently, Section 2.4 presents a general Gi/Gi’/1-3 single arrival, batch pro-
cessing queuing model with limited queue size /3 that allows the prediction of

several KPIs such as the waiting time distribution or packet loss probability.

13
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Once again, we present a detailed validation of the model output by compar-
ing against measurements obtained in a dedicated testbed. Finally, Section 2.5
concludes the chapter and provides a discussion of lessons learned regarding
the scientific contributions made in this chapter. The main contributions can be

summarized as follows.

C2.1) A novel approach to measuring packet processing times of generic, black

box network functions called in-stack monitoring.

C2.2) A general discrete-time queuing model able to predict several KPIs
of modern network functions using state-of-the-art acceleration tech-

niques.

These contributions have been published in the past and are condensed in

this monograph based on the following scientific publications.

« Geifller, S., Lange, S., Wamser, F., Zinner, T., Hof}feld, T.: "KOMon -
Kernel-based Online Monitoring of VNF Packet Processing Times," in In-

ternational Conference on Networked Systems (NetSys), 2019. [18]

« Lange, S., Linguaglossa, L., Geifller, S., Rossi, D., Zinner, T.: "Discrete-Time
Modeling of NFV Accelerators that Exploit Batched Processing," in IEEE
Conference on Computer Communications (INFOCOM), 2019. [19]

« Geifller, S., Lange, S., Linguaglossa, L., Rossi, D., Zinner, T., Hof3feld, T.:
"Discrete-Time Modeling of NFV Accelerators that Exploit Batched Pro-
cessing,' in ACM Transactions on Modeling and Performance Evaluation
of Computing Systems (ToMPECS), 2021. [1]
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2.1 Background and Related Work

2.1 Background and Related Work

In this section, we provide a concise overview of the current landscape regard-
ing software packet processing as well as current research related to the contri-
butions made in this work, namely the assessment of packet processing times
of software systems in both live and testbed environments as well as the sub-
sequent development of accurate performance models. This involves both the
theoretical and practical performance evaluation of software solutions for effi-

cient packet processing.

2.1.1 Software Packet Processing Overview

We start by describing the general processes involved in receiving and sending
packets using software applications. Note that the information provided here
is based on Linux Networking. However, due to the level of detail presented in
this section, the information is in major parts applicable to other operating sys-
tems as well. Figure 2.1 depicts a schematic overview of the processes performed
during both reception and transmission of packets. A more detailed, technical

description of the process is presented in [42] and [43].

Packet ingress RX ring enqueue Copy to kernelspace Copy to userspace Application processing

NIC \ Memory CPU
-1 @ |_ Kernelspace Userspace

3 = Ingress Socket Buffer=—— 4 = Ingress Buffer : 5
«8 7/ Egress Socket Buffer «= § = Egress Buffer

Packet egress TX ring enqueue Copy to kernelspace

Figure 2.1: Schematic overview of processes involved in software packet pro-
cessing.
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2 Performance Evaluation of Single Component Network Functions

The packet ingress path starts with a packet arriving at the Network Interface
Card (NIC), depicted as (1) in the figure. Immediately after reception, the NIC
controller moves the packet data into a pre-allocated memory region residing in
kernel space called RX ring (2) using Direct Memory Access (DMA). Note that
Figure 2.1 shows RX/TX rings within the NIC whereas technically, these mem-
ory regions resign in kernel space. This has been done to indicate the DMA pro-
cess that does not involve the CPU. Subsequently, the NIC raises an interrupt to
notify the CPU about newly available packets, which in turn copies the packet
data (3) from the RX ring into a separate memory allocation in kernel space,
represented by the ingress socket buffer in the figure. From there, user space ap-
plications can access the packet data by issuing a receive system call, triggering
the CPU to copy the data from kernel to user space (4), where the application
can finally perform packet processing (5). The egress path is traversed similarly,
in the opposite direction. Applications issuing send system calls to move data
from user to kernel space (6), and finally into the TX ring from where the NIC

controller can then collect the packet and physically transmit it over the wire.

Based on this basic mechanism, all-software processing of network traffic has
unleashed the possibility to rapidly deploy and update new protocols and fea-
tures in both the control and the data plane. Particularly, ASICs still dominate
the network core, where the network fabric performs simple processing like IP
forwarding or MPLS switching at several terabits per second. In contrast, all-
software stacks are gaining popularity at the network edge, where software can
deliver feature-rich packet processing for a large variety of protocols at tens to
hundreds of gigabits per second. Software routers have been introduced nearly
two decades ago [44], but their adoption has been slow due to severe perfor-
mance bottlenecks, which made the idea appealing but limited to research pro-
totypes. Yet, the situation changed drastically in the last decade, with the in-
troduction of the so-called “kernel-bypass” network stacks [45, 46] that started
offering efficient low-level building blocks for multithreaded user-space pro-
cessing of network traffic at line-rate. As a result, full-blown software stacks,

enabling more complex use cases in the SDN and NFV areas started rising in
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the software ecosystem. Open Virtual Switch (OVS) [47] and Vector Packet Pro-
cessor (VPP) [48] are two examples.

To achieve high-speed processing, these software frameworks share com-
monalities [49] such as the use of lock-free multi-threading as well as the use of
poll-mode batched processing. While the use of multi-threading allows horizontal
scaling and makes each thread independent of the others, the use of batching is a
distinctive characteristic of modern high-speed packet processing frameworks.
Particularly, batching is used for both fetching packets from the Network In-
terface Card (NIC) by low-level drivers to reduce interrupt pressure [45, 46],
and for processing batches of packets in higher-level applications to amortize
framework overhead [48-51].

In the following, we provide details regarding several of these extensions and
optimizations to the process of receiving, processing and transmitting packets
and highlight aspects that are relevant in the context of NFV.

Polling and 1/0 Batching

Traditionally, the networking stack generates an interrupt every time a new
packet is received by the NIC, signaling the CPU that all processing should stop
in order to deal with packet I/O. Under heavy load, this mechanism is known
to be very inefficient, leading to a livelock on the CPU [52]. To alleviate this is-
sue different interrupt mitigation mechanisms have been introduced. One such
mechanism is polling [53]. Here, at very high traffic rates, one or more CPU
cores are being dedicated to continuously check for packets stored in the packet

ring without raising any interrupts.
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Polling mechanisms are typically coupled with batching. Meaning when the
CPU polls a device, it gathers a group of contiguous packets in the ring and
the whole batch is passed to the processing application. A similar procedure is
executed during packet transmission, when packets scheduled to be transmitted
are forwarded in batches. Batching is a powerful mechanism that speeds up
overall processing, as it amortizes the fixed cost of the I/O process over multiple
packets [50, 54] and is as such supported by modern networking stacks like
DPDK [45] and netmap [46].

A maximum batch size 3 is usually defined to specify an upper limit on the
number of packets to be taken by an atomic poll operation, so that the size of the
polled batch can take any value in [0, ). This is done to parametrize the trade-
off between the processing efficiency of larger batches and the reduced jitter of
smaller batches [55]. The impact of this value on the overall system performance

under different circumstances is evaluated later in this work in Section 2.4.5.

Packet Ring and Receive Side Scaling

When packets are received at the NIC, they are written to a buffer, called packet
ring, that is also accessed by the software to retrieve incoming packets. Writing
happens without involving the CPU, using DMA, and does not involve costly
memory copy operations. This memory area acts as a circular queue which
means that when the input rate is higher than the processing rate, the oldest
packets might be overwritten by new arrivals. Hence, unlike in classic FIFO
queues, older packets are dropped when the buffer is full.

Modern NICs expose multiple RX/TX hardware queues for the same link to
allow for more efficient, parallel packet processing. Modern software frame-
works like DPDK [45], VPP [48] or netmap [46] can leverage Receive Side Scal-
ing (RSS) [56] to bind different CPU cores to different of these RSS hardware
queues. Thereby, incoming traffic is balanced across different RSS queues based
on a hashing function, which allows parallelizing packet processing with the
number of available CPU cores. Therefore, each CPU is assigned to a separate

instance of the software router, managing its own specific RSS queue with its

18



2.1 Background and Related Work

own packet ring. Since RSS makes each thread independent, it is sufficient to an-
alyze the performance of a single RSS queue as handled by a single core. Indeed,
due to the lack of synchronization and locking issues, the aggregated system
performance scales linearly with the number of cores [57]. Hence, for modeling

purposes, it is sufficient to focus on a single RSS queue.

Compute Batching

More recently, the use of batching has been extended beyond packet I/O and
has been applied to the processing of packets as well. Indeed, network function
computation can similarly benefit from grouped processing, which is known as
compute batching.

Shortly, when a VNF is executed on a batch instead of single, sequentially pro-
cess packets, this allows sharing the overhead of the packet processing frame-
works between multiple packets, e.g., all processing instructions are initialized
once per batch rather than once every packet. Additionally, it increases the effi-
ciency of the underlying CPU pipelines since the VNF code raises a single miss
for the first packet in the batch, but is then subsequently cached in the L1 in-
struction cache for the remainder of the batch.

Whereas the actual implementation of compute batching differs among
frameworks, for example when comparing the compute batching implemen-
tations of G-opt [51], DoubleClick [50], FastClick [49] and VPP [48], compute
batching in general is an additional technique to increase performance of mod-

ern high-speed packet processing frameworks.

2.1.2 Experimental Research Work

The ecosystem of high-speed all-software packet processing has flourished in
the last decade with both low-level building-blocks that use I/O batching (e.g
netmap [46] and DPDK [45]), as well as high-level full-blown stacks that ap-
ply NFV functions with a compute batching paradigm [48-51]. Whereas such

frameworks offer a similar set of features, comparison is difficult so that most
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related work relies on extensive evaluation campaigns of a single tool — as we
do in this thesis using VPP over DPDK.

Previous efforts aimed to evaluate a limited subset of the aforementioned
tools [49, 58, 59]. For example, [58] focuses on accelerated low-level frame-
works, namely netmap, DPDK, and PF_RING. The authors perform an exper-
imental campaign assessing not only throughput, measured in Mpps, but also
consider the impact of factors such as batch size or misses in CPU caches. Sim-
ilarly, FastClick performance is evaluated over both DPDK and netmap in [49].
Finally, [59] experimentally compares NFV throughput with chains of hetero-
geneous functions using OVS-DPDK, SR-IOV, and FD.io VPP.

At the same time, significant work has been invested into the development
of generic evaluation tools and frameworks that allow the establishment of per-
formance profiles for various network functions, independent of their specific
implementation or used platform.

In [60], the authors propose an offline solution to gather functional as well
as performance data through static code analysis without execution of the VNF
itself. This approach allows the evaluation of arbitrary workload characteristics
in an offline manner. To make use of this methodology, however, the codebase of
a VNF needs to be accessible, making it impossible to perform black box testing
or to evaluate closed source network functions.

The authors of [61] propose another tool for offline performance benchmark-
ing of virtual network functions. The Gym framework enables fully automated
performance benchmarking of virtually any VNF type by allowing the user to
define custom test cases suitable for the VNF that is to be tested. This and the
support for different underlying virtualization platforms make this approach
very flexible, while still limiting it to offline, dedicated performance benchmark-
ing.

The aforementioned approaches focus on resource utilization, like CPU time
or memory usage, in order to determine VNF performance levels. However, re-
search has shown that this information might not always be sufficient to reliably

identify performance bottlenecks [62]. To alleviate this issue, the approach pro-
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posed in [63] suggests monitoring VM-to-VM communication to enable online
performance monitoring of network functions. However, port mirroring of all
incoming and outgoing packets is required by this solution, which imposes a sig-
nificant performance overhead in a field where processing times and efficiency

are crucial.

Another approach proposed by the SONATA-NFV project [64] involves using
information exposed by the Linux Kernel to evaluate the performance of virtual
network functions. However, the information exposed by the Kernel does not
include NFV-specific metrics, like the processing time distribution of packets,
and instead only provides generic information like interrupt counters, buffer
levels and number of dropped packets. In this context, the mechanism proposed
in Section 2.2 exploits a similar methodology of using the /proc/ file system to
extend the information provided by the Kernel. Hence, it could be used to in-

crease the monitoring capabilities of the SONATA framework.

A recent direction advocates for a more general approach at the evaluation
of software routers, and for the availability for open and honest quantification
of novel tools’ performance. Authors in [65] propose a methodology to fairly
assess the performance of several state-of-the-art software routers in different
settings, while the online reports of [66] show the results of several throughput
and latency measurements for the latest versions of VPP. Finally, pointed out in
[67], the topic of fairly measuring the performance of software routers is delicate
and difficult, which further proves the need for flexible approaches such as the

one proposed in this thesis, alongside the classical experimental benchmarking.

Due to this lack of easily reproducible and widely applicable approaches that
allow for accurate assessments of packet processing times as well as other KPIs,
such as buffer fill levels, in both online and dedicated testing environments, we
propose in-stack monitoring, a novel approach that can be applied to a wide

field of network functions and implementation environments.

The top half of Table 2.1 summarizes the publications discussed in this para-

graph and provides a qualitative comparison to the contributions of this chapter.
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Table 2.1: Overview of related work in the field of VNF monitoring and mod-
eling. The gray comments provide a short description of the publica-
tions covered in the respective row.

2 15

= o =1 0 3 o0 g Q N

g g2 2% 2 |5 25 £z 3 ¢

E 22 £5 % |R% FT @ § %

< o3 < ) g Sa & £ &
) [60] X X NA
5 [61] x 'S NA
é [63] v v high
[64] v V) low

. 6869 X X v v v

=]

c [70] X X X x x

2 [71, 2] X X v v v

[72] v X v v v

This Work ¢/ v o olw | v v v v v

2.1.3 Modeling Research Work

As outlined before, modern software packet processing frameworks leverage
batching to improve processing efficiency. The theory of this mechanism has, in
the form of bulk queuing systems, long been studied [73]. For Markovian bulk
input MX1 /M /1 and service M /M /1 systems, [74] provides closed form
solutions under Poisson arrivals and exponentially distributed service times.
Particularly, bulk-input Batch Markovian Arrival Processes (BMAP) have been
well studied [75-77], and applied to study long-lived TCP connections [78, 79],
model aggregated IP traffic [80] or describe parallel processing in cloud environ-
ments [81]. Similarly, models featuring batch arrivals and general independent
arrival distributions have been proposed as well [82, 83].

Furthermore, several studies regarding bulk-service systems have been con-
ducted in the past [84-87]. Similarly, previous work that takes batch-size de-

pendent service times into account does exist as well [88-90]. However, the
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complexity of the relation between batch-size and service time is limited in
these studies. This relation between batch-size and service time can be arbi-
trarily complex for the model proposed in this work. Finally, [91, 92] both in-
vestigate M/ Gil? /1 queues and compute the queue size distribution at de-
parture events. Note here that all of these studies contain at least one Markov
component or are limited to basic performance indicators, as opposed to the
Gi/Gi™ /1 — L study presented in this work.

Models in the context of NFV have also recently appeared [68-72]. In partic-
ular, queuing models are used in [68] and [69] to describe software-based net-
works. Similarly, the authors of [93-95] investigate the impact of autoscaling
on 5G networks with both legacy equipment and VNFs as an M /M /n system
with variable n. All of these models adopt a global network view and strongly
abstract the mechanisms of specific network elements by simply assuming a
certain service rate, as opposed to this thesis, in which we provide a detailed
model of a single VNF component. Under this perspective, studies closer to ours
are [70, 71], which both aim at predicting virtual function performance on multi-
core systems. Yet, [70] does not take into account mechanisms like batch arrival
or batch processing of packets, which both are crucial characteristics of mod-
ern NFV routers. In contrast, the authors of [71] assume fixed processing times,
which we show not to hold true in practice, and omit a proper experimental val-
idation. In [72], the authors extend previously proposed models for DPDK-based
NFVs to take into account IO batching, but omit compute batching. Furthermore,

the model only predicts mean values instead of full distributions.

In synthesis, while several models exist that take bulk arrival as well as batch
service processes into account, evaluations of real world systems are missing.
Furthermore, most solutions are based on the Markovian property of a system,
which does not necessarily hold true in the real world. In addition, related ap-
proaches in the area of NFV often exploit a high level of abstraction by ignoring
details of the software stack like batch processing, interrupt mitigation and busy
polling mechanisms. Finally, proper validation of the model outputs based on a

comparison to experimental results of a real NFV system is lacking so far. To this
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end, we develop a discrete-time model that allows the prediction of several KPIs,
such as the waiting time, sojourn time or packet loss probability, and validate
the obtained predictions against a state-of-the-art software router implemented
using the VPP acceleration framework.

The bottom half of Table 2.1 aggregates the discussed research works and

indicates the differences to the contributions made in this chapter.

2.2 KOMon: In-Stack Monitoring of VNF Packet

Processing Times

The ability to accurately measure the processing performance of network func-
tions is crucial during both function development and live deployment. Being
able to assess the impact of code changes on system performance is critical dur-
ing early development and before rolling out changes. At the same time, it is
important to monitor the performance of functions during operation in order to
react to load fluctuations and detect anomalies.

However, reliable and accurate measurement of network function specific
KPIs, like packet processing times, is not only relevant in live environments
and for monitoring purposes. Instead, the processing time can be used as an
input parameter for theoretical models ahead of deployment when it comes to
predicting performance under certain circumstances [19, 1, 2]. Additionally, the
softwarization of networks is often accompanied by the application of software
development paradigms during network function development. Especially in the
area of continuous integration and delivery, the availability of fast, reliable, and
automatable mechanisms to obtain comparable performance metrics of a new
version of a network application is required [96].

To this end we present a novel mechanism based around the idea of in-stack
monitoring. This approach eliminates the need for port mirroring and allows
online monitoring with minimal overhead by hooking into the network stack,

which needs to be traversed by every packet destined for a hosted VNF. In the
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KOMon Controller Network Application

Ethernet

Network Interface Card

Figure 2.2: Architecture and stack interaction.

following, the architecture, monitoring logic, and a proof-of-concept implemen-
tation of KOMon [18] (Kernel-based Online Monitoring) is discussed, before a
case study using an exemplary VNF is conducted. The code for both the moni-
toring tool and the VNF used in the case study can be found on GitHub'. In the
presented use case, we use the network stack of the Linux Kernel v4.11 [97]. The
in-stack monitoring approach can, however, be applied to other stack implemen-
tations such as DPDK [98], Snabb [99] or VPP [48] since the basic procedure is
independent of the underlying network stack. However, the KOMon tool used in
the case study is limited to the Linux Kernel stack and some re-implementation
effort would be required to adapt the tool to another stack implementation.
The tool consists of two basic components. First, the KOMon Kernel mod-
ule hooks into the network stack by injecting its monitoring code. Second, the
KOMon controller runs in user space and is responsible for configuration and
management tasks. Figure 2.2 shows this architecture and its interaction with
the network stack. For reference, the right-hand side of the figure shows an ab-
stracted view of the NAPI [100] stack, according to the ISO/OSI model.

!https://github.com/lIsinfo3/KOMon
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Before starting the monitoring procedure the tool requires initialization
(1+2). The module needs to be loaded into the Kernel, thus injecting the monitor-
ing code directly into the network stack, thereby attaching its monitoring logic
to existing Kernel functions of the network stack. In this use case, we attach two
monitoring probes to the network stack responsible for handling UDP traffic. In
order to obtain timestamps for incoming datagrams, we inject the monitoring
point into the __udp4_1ib_rcv function that is used to process UDP data-
grams before sending them to a user space application. On the other hand, in
order to gather timestamps of outgoing packets, we inject a second measure-
ment point into the udp_sendmsg function that is used by a UDP socket to
send datagrams. After the injection process, the user space controller config-
ures sample size and monitoring interval and thereby defines how often and

how many packets are being sampled by the Kernel module.

The Kernel module is now passive until it receives an initial trigger issued
by the user space controller and the monitoring loop (2+3+4) is activated.
After the controller triggers a monitoring interval, the Kernel module is acti-
vated, samples the previously configured number of consecutive packets, and
calculates their response times. Therefore, at the first measurement point, the
timestamps of incoming packets destined for the VNF to be monitored are stored
in a ring buffer together with a hash of the packet payload. After the packets
have been processed by the VNF and are ready to be sent out, the second mea-
surement point monitors outgoing packets and compares payload hashes to the
oldest packet still in the ring buffer. If the hashes match, the timestamps are
simply subtracted and the response time is stored as a result. After the pre-
configured number of packets have been monitored, the Kernel module returns
to its passive mode in order to decrease overhead. The data obtained during the
active monitoring phase can then be queried by the user space controller via a
procfs interface that returns a list of measured response times. This mechanic of
matching packets limits the functionality of the proof-of-concept implementa-
tion to VNFs that process packets in a FIFO manner and do not alter the payload

of packets. The implications and challenges of payload altering and prioritizing
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network functions are discussed in Section 2.3.3. It should further be noted that,
from a modeling perspective, the times measured by this mechanism represent
the response or sojourn times, since it includes at least part of the waiting time
of each packet. A more detailed discussion is presented in Section 2.3.2.

Note that the highlighted nodes in Figure 2.2 correspond to monitoring UDP
over IPv4 traffic. The Kernel module can, however, be attached to any protocol
supported by the network stack with only slight modifications. This integration
into the network stack consequently allows KOMon to monitor real VNF traffic
and thus eliminates the need for injecting dedicated sampling traffic or traffic
mirroring, further reducing the induced performance overhead. Furthermore,
KOMon can do so without modifying or even accessing the VNF source code, as
the complete monitoring logic is outsourced to the network stack. This provides
crucial advantages over similar approaches, as it not only significantly broadens
the spectrum of functions the approach can be used on, but also simplifies the
deployment of the mechanism, as the monitoring logic is based on the execution
platform instead of the particular network function.

In the following, we perform a detailed, measurement based case study with
the goal to answer questions regarding both the accuracy of the proposed ap-
proach with respect to the replication of baseline values and its behavior in high

load scenarios.

2.3 Evaluation of KOMon Monitoring Approach

Using the mechanism introduced before, we now perform a case study and show
the accuracy of the monitoring approach by comparing values reported by the
KOMon tool to ground truth values obtained from a specifically designed vali-
dation network function. To this end, a dedicated testbed as shown in Figure 2.3
has been designed, consisting of a Spirent C1 hardware traffic generator that is
directly connected to a bare metal server equipped with an Intel Xeon E5420,
16 GB RAM, and 2x 1 Gbit NICs that is running Ubuntu 16.04.3 LTS and our

modified version of Kernel 4.11.
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Figure 2.3: Testbed setup used during the evaluation.

Thereby, the Spirent Testcenter C1 serves as the traffic generator (1) as well
as the traffic sink (3). It generates a continuous stream of tagged UDP data-
grams that can be uniquely identified via their payload and sends them to the
system-under-test hosting the network function (2) over a direct 1 Gbps copper
connection. The network function is a simple UDP relay with configurable pro-
cessing delay. Furthermore, the VNF is able to report baseline processing delays
for comparison. This test setup is used throughout the evaluation presented in
this work. In the following, we evaluate the accuracy of the KOMon monitor-
ing tool in different scenarios and evaluate the influence of various parameters
on its performance. The data used in this evaluation is provided in the public

GitHub repository.

2.3.1 Accuracy of Measurement Values

In order to evaluate the accuracy of the values reported by our tool, we conduct
a series of measurements with increasing artificial delay values. During this set
of experiments, the Spirent C1 generates a continuous stream of 1,000 UDP data-
grams per second of size 128, that are received by the VNF, artificially delayed,

and returned to the traffic generator.

Measurement Accuracy

First, we investigate the measurement accuracy of the KOMon monitoring tool,
meaning the deviation of response time values reported by the tool from the

ground truth. Figure 2.4a shows the time along the y-axis. The x-axis shows an

28



2.3 Evaluation of KOMon Monitoring Approach

I
=)

KOMon=2VNF

©
S

o o

o

@
S

Difference of Means [us]
o
'S

w
S

<)

N

— @ ———

75 100 0

Processing Time [us]

[S)
o
=)

100

10 25 50 50
Avrtificial Delay [us] Artificial Delay [us]

(a) Comparison of VNF reported values and values (b) Bootstrapped difference of means for different
observed using KOMon for different artificial  artificial delays.
delays.

Figure 2.4: KOMon evaluation at varying artificial delay values.

increasing artificial delay as it is added by the used network function. Thereby,
values in red represent the data measured using the KOMon monitoring tool,
while the blue data points show the baseline data reported by the VNF. The
black markers in this plot mark outliers whose value is either smaller than Q1 —
1.5 - IQR or larger than Q3 + 1.5 - IQR, where IQR is the interquartile range,
Q1 is the 25% quantile and Q3 is the 75% quantile. In this scenario, both the VNF
and KOMon sample 10 packets in negative exponentially distributed intervals
with a mean of 0.2 seconds. Note that the artificial delay is configured to be
the processing time of the network function and the load in this scenario is
designed to be low enough to not induce waiting times. Hence, we can compare
the processing time values of the VNF with the response time values reported
by KOMon.

It can be seen that values monitored using KOMon exhibit a roughly constant
offset over the baseline values reported by the VNF for all artificial delay levels.
The differences in outliers are due to the fact that both the VNF and KOMon ob-
tain the values through packet sampling, and it cannot be guaranteed that both
tools sample the exact same packets. The general presence of these outliers is
due to the general purpose operating system used to host the VNF that performs

task scheduling that may affect a time measurement in the microsecond realm.
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As the measurement points created by KOMon are located in Kernel space,
the response time observed by the monitoring tool includes an offset formed
by operations happening between the measurement points and the processing
performed by the VNF, e.g. copying packet data from Kernel space to user space.
This explains the slightly higher variance exhibited by KOMon reported values
over the baseline data. In order to quantify this offset as well as validate the
observation of the measurement accuracy being independent of the total pro-
cessing time of the VNF, Figure 2.4b shows the bootstrapped difference of means
for different levels of artificial delay. Thereby, 1,000 random samples, each con-
sisting of 10 subsequent packets, have been taken from both the VNF-reported
and the KOMon-generated data set, respectively. In order to soften the impact
of scheduling on a general purpose operating system, the following figures only
contain values up to the 99% quantile of the dataset. For each of the pairs of sam-
ples, the difference of means has been calculated before finally determining the

95% confidence interval for the resulting distribution of the difference of means.

Figure 2.4b shows the mean difference of means after 1,000 repetitions along
the y-axis with the opaque area depicting the 95% confidence interval. The x-axis
shows again the different levels of artificial delay. The first observation made in
this figure is the fact that KOMon reported values are within a range of 0.2 us.
Considering the fact that these values have been obtained by means of software
based measurements, this difference falls well within the expected accuracy of
our methodology. Additionally, none of the 95% confidence intervals exceeds a
width of 0.03 us, further supporting the fact that KOMon exhibits a constant
offset over the baseline values. Based on these values, we consider 5.2 us to be
the overhead of KOMon reported values over the baseline. Note that the sample
frequency as well as the number of packets in a single sample have no impact
on the measured offset, since all packets have to traverse the part of the stack

located between the measurement points of KOMon independently.

30



2.3 Evaluation of KOMon Monitoring Approach

Estimation of Processing Time Distributions

Following the evaluation of its accuracy, we demonstrate the applicability of the
proposed approach by using our KOMon tool to determine the processing time
distribution of VNFs. To this end, we investigate the capabilities of estimating
various processing time distributions. These include a negative exponential dis-
tribution, a uniform distribution that ranges from 0 to 2, as well as two normal
distributions whose coefficients of variation are equal to 1 and 0.2, respectively.
Furthermore, we vary the mean processing time of the VNF from 2 to 100 mi-
croseconds. Note that, as the normal distribution may assume negative values,
we apply the left-sided pi-operator 7o to the distribution, thereby accumulating
negative probability mass on 0.

We first provide qualitative results of the evaluation in Figure 2.5. Each facet
corresponds to one of the four processing time distributions and displays the
empirical cumulative distribution function (ECDF) of the values that are re-
ported by the KOMon tool and the VNF, respectively. While the data source
is represented by the line type, differently colored curves denote different mean
processing times 4 as listed in the annotation in the first facet.

Two main observations can be made. First, the distributions that are obtained
by means of the KOMon tool as well as the VNF are very similar regarding both
their shape and values in all considered scenarios. Secondly, a constant offset be-
tween the curves can be observed. This offset has already been identified in the
previous section and occurs due operations performed by the Kernel. By using
the difference of means that is obtained during the calibration phase in conjunc-
tion with the KOMon-based values, we can correct this shift and estimate the
mean processing time of the VNF as well as its coefficient of variation.

Results of this estimation are presented in Table 2.2. We show the mean values
as well as the coefficient of variation of processing times that are reported by
the VNF itself as well as the KOMon-based estimates. The latter are obtained by
subtracting the calibration offset from KOMon-reported values. Finally, the table
shows the theoretical coefficient of variation for each of the used distributions.

In the presented case, this offset is equal to 5.2 microseconds.
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Figure 2.5: Empirical CDFs for different delays and different processing time dis-
tributions as sampled by the VNF as well as KOMon.

As evidenced by almost identical values in the context of all processing time
distributions and average processing times, mean values can be estimated re-
liably. While this is also true for most scenarios in the case of the coefficient
of variation, significant deviations are observed for ;1 = 2 microseconds for
all distributions. This behavior can be explained by the fact that in these sce-
narios, the offset is larger than the mean processing time and the small values
are close to the resolution of software-based measurements. When it comes to
the deviation between theoretical values and measurement values for the nor-
mal distribution with a coefficient of variation of 0.2, the inaccuracy can be ex-
plained by the inability of the network function to accurately reflect this small
coefficient of variation. For this configuration, small technical inaccuracies due
to, e.g., scheduling, reflect strongly in the resulting values. Hence, the deviation
between theoretical and measurement values. However, when comparing VNF
and KOMon-reported values this deviation disappears, and the results are in line

with the remaining numbers.
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Table 2.2: Mean and coefficient of variation for different artificial delays and dif-
ferent processing time distributions.

L Delay Mean [us] Coefl. of Variation
Distribution .
o [us] VNF KOMon VNF  KOMon  Theoretical
. 2 2.75 2.68 1.43 1.75 1
Negative
. 50 50.91 50.59 0.99 0.99 1
Exponential
100 100.53 101.37 0.99 1.00 1
2 2.73 2.61 1.39 0.87 0.58
Uniform 50 50.77 51.05 0.59 0.59 0.58
100 100.69 101.02 0.58 0.58 0.58
2 2.89 2.79 1.59 1.49 0.80
Normal
cy =1 50 55.17 55.01 0.80 0.81 0.80
100 109.74 109.57 0.80 0.80 0.80
2 2.73 2.62 1.22 0.71 0.2
Normal
— 50 51.05 50.84 0.25 0.25 0.2
c, = 0.2
100 100.88 101.05 0.22 0.22 0.2

To summarize, as has been observed in Figure 2.4, the monitoring values can
be used to determine the packet processing time of a network function. The values
obtained during the calibration show that the offset is statistically independent of
the total processing time of the VNF and can be used to infer its real processing
time.

Additionally, we have demonstrated that KOMon can be used to reliably repro-
duce the shape and estimate the mean as well as the coefficient of variation of a
wide range of VNF processing time distributions. In particular, this estimation can
be performed without VNF-reported values or access to the VNF code as only a
system-specific constant, which can be obtained by means of a calibration run (cf.
Figure 2.4), is needed.

Based on these measurements and observations, we are able to answer the ques-
tion of measurement accuracy of our approach and conclude that the mechanism of
in-stack monitoring can be leveraged to obtain highly accurate packet processing

times while remaining network function agnostic (RQ2.1, RQ2.2).
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Figure 2.6: KOMon evaluation at varying load levels.

2.3.2 Accuracy in High Load Scenarios

The second metric investigated here is the influence of different load levels on
our tool’s monitoring capabilities. Therefore, Figure 2.6a shows the mean as well
as 95% quantiles of response time values monitored using KOMon as well as the
processing time values reported by the VNF. Thereby, the x-axis shows the dif-
ferent load levels in packets per second. The y-axis presents the observed time
in microseconds. Values obtained by KOMon are again reported in red while the
blue values show baseline values reported by the VNF. In addition, the dotted
lines represent the mean value while the solid curve depicts the 95% quantile.
Similar to the scenario investigated before, the traffic generator produces a con-
tinuous stream of UDP datagrams of size 128 bytes. Both the VNF and KOMon
sample batches of 10 consecutive packets in negative exponentially distributed
intervals with a mean of 0.2 seconds. Instead of adding artificial delay, the VNF
is configured to flood out packets as fast as possible.

Two observations can be made in this figure. On the one hand, it can be seen
that the mean processing time reported by the VNF is nearly constant for all
evaluated load levels between 1,000 and 175,000 packets per second, with 150,000
packets per second being the non-drop rate for the test setup as higher load leads

to significant packet loss and is therefore not included in this evaluation.
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This observation is quite intuitive as the VNF is processing packets as fast as
possible for all load levels and, since no packet loss occurs even at 150,000 pack-
ets per second, it can do so even at high loads. The 95% quantile is, after a slight
increase at around 30,000 packets per second, also mostly constant. On the other
hand, the mean values obtained by KOMon show a continuous growth with the
95% quantile even exhibiting exponential growth behavior. This difference in
observed response times is once again attributed to the operations taking place
between the VNF and the monitoring points used by KOMon. Packets processed
by the Linux Kernel network stack are in general queued two times on their way
from the network interface card (NIC) to a user space application. Once at the
NIC itself in a process called interrupt mitigation [101] that aims to decrease
the overhead of sending an interrupt to the Kernel for every incoming packet,
thus avoiding livelocks. Then, after having traversed most of the network stack,
packets are queued a second time in the socket buffer of the socket opened by a
user space application. This second buffer is located between the KOMon mea-
surement points and the VNF and is filled to a different extent for different load
scenarios. Figure 2.6b shows the mean buffer fill levels and 95% confidence in-
tervals recorded during the load test presented in Figure 2.6a. The values have

been obtained from /proc/net /udp.

The figure shows the different load levels along the x-axis and the mean buffer
fill level along the y-axis. The opaque area depicts the 95% confidence interval.
It can be seen that the buffer fill level develops similarly to the 95% quantile of

the monitored values in Figure 2.6a, thereby exhibiting a correlation of 0.85.

In Summary, the information presented in Figure 2.6 shows that KOMon is able
to take the queuing time of packets into account that not even the VNF itself can
report and can thus be used to trigger measures like scale-up or scale-out ahead of
time, thereby avoiding packet loss. This shows that KOMon can be used in live sce-
narios to monitor the current performance of network functions and is able to detect
performance bottlenecks. Based on these measurements, and in combination with
previous results, we can answer the question of applicability to both benchmarking

and monitoring in live environments (RQ2.1).
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2.3.3 Applications in Practice

In this section, we briefly discuss the packet matching problem and its impact
on the proposed methodology and provide an outline regarding how it can be

applied to different use cases.

The Packet Matching Problem

As described in Section 2.2, KOMon uses the hash value obtained from the packet
payload for packet identification. This limits the functionality of the proof-of-
concept in its current state to network functions that do not alter the payload
in any way. In addition, in order to decrease the overhead induced by the mon-
itoring logic as far as possible, we currently compare outgoing packets only to
the oldest packet still in the incoming ring buffer, thus eliminating the possi-
bility of per flow prioritization. The second issue of supporting non-FIFO net-
work functions could be solved by comparing all packets currently in the system
whenever a packet is sent out. This would lead to a slight increment in moni-
toring overhead while at the same time enabling more functionality. The initial
problem, however, still remains. Network functions that alter payloads, drop, ag-
gregate, or split up packets can currently not be monitored. This problem could
be worked around by providing a VNF policy description ahead of time. The
policy description can then be used to predict how the VNF is going to behave
and KOMon can monitor for the expected result. This functionality, however,
strongly depends on the type and functionality of the network function and is

thus not part of the generic methodology proposed in this work.

Application during Network Function Development

Similar to the application of the approach in theoretical models, it can be ap-
plied during the development phase of a network function. Especially in the
realm of continuous integration and continuous delivery (CI/CD) [102], au-
tomatable evaluations of application specific performance characteristics are

crucial. To this end, KOMon can be seamlessly integrated into a build and evalu-
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ation pipeline to perform automated performance evaluations of new versions of
an application before its deployment, thereby ensuring no performance degra-
dation, e.g., through added features. How the CI/CD paradigm can be applied to

the networking realm is discussed in [96].

Application in Network Function Monitoring

Finally, the KOMon tool can be applied to monitor the performance of network
functions in live environments by continuously gathering and evaluating sam-
ples. This allows for policing of the remaining resources of a network function
instance. Upon reaching a certain threshold, scaling mechanisms can be trig-
gered to provide additional resources before packet loss or response time explo-
sion can occur. As was observed in Figure 2.6a, the 95% quantile could serve as a
suitable indicator in most scenarios. In some cases other metrics extracted from

the response time observations, e.g. entropy, might provide better results.

Application in Performance Modeling

One of the outcomes of the evaluation performed in Section 2.3.1 is that, for low
loads, the reported monitoring values are very close to the real processing time
of the VNF. In addition, we have shown that the offset included in the measure-
ment is statistically independent of the magnitude of the processing times of the
network function. This allows for KOMon to be used to determine the distribu-
tion of processing times as it is needed for theoretical performance models such
as [19, 1, 2]. In addition, this offset can be eliminated from the values as it is pos-
sible to calibrate the system by performing measurements involving a network
function of which the processing time is known. Hence, the offset that depends
on the hardware or virtual environment can be calculated and taken into ac-
count by comparing the reported monitoring values to baseline measurements
reported by a known network function. This exact procedure has been applied

during the comparison of model and measurement results later in Section 2.4.5.
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2.4 Discrete-time Modeling of Software-based
Network Function KPlIs

Based on the introduced mechanism for acquiring packet processing times and
the shown ability to accurately replicate the processing time distributions of
software-based network functions, we now apply the developed methodology to
obtain the input parameters required for the development of an accurate system
model. To this end, we provide an overview of the workflow and relevant system
parameters when it comes to software packet processing. We continue with a
detailed description of the model itself. Finally, the accuracy of the model is
evaluated through a thorough set of measurements, thereby investigating the
impact of different factors on the prediction accuracy of the model.

As a baseline for this work, we use VPP [48], an all-software framework that
enables high performance packet processing by implementing several of the op-
timization and acceleration techniques introduced earlier in Section 2.1.1.

Of these software frameworks, numerous system implementations exist, and
while some work recently started undertaking an experimental comparison of
these implementations [49, 58, 59], to the best of our knowledge the model pro-
posed in this thesis is the first system model that can explain and accurately
predict the measurable system performance of such batch-based packet proces-
sors. Although a model for VNF response times is proposed in [71], its appli-
cability is restricted to systems that process each packet individually. However,
batching departs radically from such classic models where packets arrive in-
dependently and are independently buffered and treated. Indeed, batching not
only correlates arrival and departure, but can also influence the average per-
packet processing time. While queuing models that feature batched arrivals at
the processing unit are not entirely new and have been used to better capture
phenomena such as bursty TCP behavior [75, 76, 79, 80] or parallel process-
ing in cloud environments [81], both the use case and the particular processing
schemes differ significantly. Finally, modern systems for high-speed packet pro-
cessing adopt several low-level techniques to speed up the processing time. The
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efficiency of such techniques is severely affected by the experienced batch sizes.
This in turn introduces a dependency between the processing efficiency, and
hence the service time, and the batch size.

In the following, we present a brief overview of the processing workflow as
well as parameters of such batch-based systems, before detailing the proposed
model and finally presenting an evaluation of the prediction accuracy of said

model.

2.4.1 Workflow and System Parameters

In a typical scenario, a software based packet processor binds one (or more)
CPU(s) to one (or more) RSS queue(s). The CPU then enters a main loop in
which the NIC is polled at every iteration. Consequently, the application collects
a batch of packets and starts performing the packet processing. During this time
new packets might have arrived at the NIC and are stored in the packet ring(s)
until the next iteration. We now describe the most important metrics and pa-
rameters regarding the tuning and evaluation of our model and briefly highlight

their respective interaction effects.

Batch Size

The first parameter is the batch size of the system, describing the number of
packets that are processed in a single polling, processing and transmitting cy-
cle. There is an intuitive correlation between the size of the batches and the
input rate observed at the system. In the extreme case of input rate zero, the
CPU keeps polling the NIC, but at every iteration it will find no packets, thus
the average batch size is zero as well. The opposite extreme occurs if the input
rate is higher than the processing rate. In this case, packets are written to the
packet rings and the CPU cannot cope with the incoming rate. Hence, packets
are overwritten and losses occur. Since the CPU will always find a full ring, it
will intuitively pick up as many packets as possible, which is limited by the in-

ternal maximum batch size. Subsequently, the measured average batch size will
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converge to the maximum batch size. The most interesting scenario happens in
between the two extreme cases, where the input rate is between zero and the
maximum sustainable rate of the software router. In this case, at every itera-
tion the CPU will poll the device and find some amount of packets that will be
processed. The number of packets observed at every polling event depends on
the processing time of the batch collected in the previous cycle as well as the
incoming packet rate and interarrival time distribution. In practice, this relation
between the number of arrivals during a processing cycle in combination with
the fact that the system becomes more efficient for larger batches, leads to an
automatic feedback loop that helps maintain a stable equilibrium regarding the
batch size. As already mentioned, smaller batches are processed less efficiently
due to caching effects and the distribution of framework overhead in batch pro-
cessing scenarios. Hence, small batches lead to an increase in batch size for the
next cycle. At some point, the system reaches a state at which the processing
efficiency has increased until the mean number of arrivals during a process-
ing cycle equals the number of arrivals during the previous cycle. From that
point, fluctuations in the batch size are mainly attributed to fluctuations in the
arrival process. The impact of the maximum batch size is evaluated during the
parameter study by investigating the impact of different values under varying

circumstances in Section 2.4.5.

Processing Time

Next, we describe the processing time of batches. When an increase in the ar-
rival rate occurs or the system has not yet reached equilibrium, the next batch
will be larger, but the processing efficiency will be higher due to amortizing
the fixed costs over a greater number of elements. Therefore, when a batch is
larger, the per-packet processing time is smaller, impacting the size of the batch
collected in the following polling cycle. Further, the processing time of batches
is also affected by the network function that has to be applied to each packet.
Some simple functions such as Ethernet switching intuitively require less pro-

cessing than more complex functions such as IPSec or DPI. Finally, it needs to
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be taken into account that packets within a single batch could potentially re-
quire differentiated processing and will hence exhibit varying processing times.
In these scenarios, the processing of the batch is considered complete once the
last packet of the batch has been processed. The processing time of different
batch sizes is one of the input parameters of the proposed model. Section 2.4.5

provides insights into the tuning of the model based on observed values.

Packet Loss

Moving on, packet loss is one of the most crucial metrics when it comes to soft-
ware routers as it relates directly to the QoS of a VNF. Typical software routers
are able to sustain a rate of 12 to 14 millions packets per second (Mpps) [46, 49].
When sending 10Gbps traffic of minimum-sized packets on a wire, this trans-
lates into a rate of 14.88Mpps.? As mentioned before, losses occur if the packet
arrival rate is higher than the packet processing rate as this leads to packets be-
ing overwritten in the receive side (RX) rings. However, losses may occur even at
lower rates, because of the aforementioned dependencies between packet pro-
cessing time, batch size and efficiency of the framework or in edge cases with
arrival processes exhibiting large bursts. The packet loss probability is one of the
output metrics generated by the proposed model and is evaluated for different
scenarios during the parameter study.

Queue Size and Waiting Time

Finally, directly related to the packet loss probability as well as the sojourn time
of the system is the queue size, meaning the number of available slots in the RX
ring available for arriving packets. As mentioned before, loss occurs whenever
a new packet arrives while all slots are occupied. In addition, the queue size im-
pacts the waiting time experienced by arriving packets that are not collected in

the next polling cycle. Instead, these packets have to wait for one or more full

“The minimum-size of a packet is 64 bytes, to which we should add the Ethernet header and trailers
for 20 additional bytes.
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processing times before they start processing. In this context, the queue size dic-
tates the trade-off between potentially long waiting times and resilience against
bursts of packets. The queue size distribution is one of the output parameters
predicted by the proposed model. Similarly, the model is able to predict packet
waiting times. However, due to technical limitations, we are not able to mon-
itor waiting times in the technical system. Instead, we compare sojourn time
distributions composed of the waiting time plus the processing time. Since the
processing time is part of the model input, the only unknown factor remains the
waiting time and the comparison is hence valid to establish the quality of our
waiting time prediction.

Finally, it is important to note that, in the model, we represent the RX ring
as a simple FIFO queue, meaning that, in lossy scenarios, the predicted wait-
ing time will likely deviate from the measurement values. In a ring, old packets
get overwritten and hence lost, while new arrivals are discarded instead of en-
queued when it comes to the FIFO queue. The error is observed and detailed
in Section 2.4.5. However, in lossy scenarios, the quantification of the waiting
time distribution is only of limited value, since packet loss probability becomes

the more meaningful parameter in that case.
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Figure 2.7: Schematic overview of model components and interactions.

2.4.2 System Model

In this section, we describe the queuing model that is used to evaluate the per-
formance of batching-based packet processors. Figure 2.7 illustrates its main
components, namely an arrival process with arbitrarily distributed packet in-
terarrival times, a limited-capacity FIFO queue as well as a processing unit that
regularly polls the queue, picks up limited-sized batches, and processes them
with service times that depend on the batch size. We deliberately abstract the
circular packet ring with a FIFO queue for the sake of tractability. Intuitively,
this does not alter the system performance w.r.t. the amount of lost packets, only
which packets are lost. Furthermore, experiments show that the model achieves
a high level of accuracy despite this simplification (Section 2.4.5). In this section,
after a brief overview of the system states that are captured by the model, we

outline how to extract KPIs from the system steady state.

Discrete-Time Model

Before diving into the details we introduce definitions and notations as well as
provide an outline of the model. Since the model developed in this work is based
on a discrete-time approach, we need to discretize time into fixed intervals At.
For the remainder of this work, we use At = 10ns, as it represents the most
suitable resolution to describe the obtained measurement data. Note that the
model resolution could be increased further by selecting a smaller At, at the

expense of additional computational complexity.
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Table 2.3: Notation.

’ Variable ‘ Description
L Queue capacity, equals 4096 if not stated otherwise.
B Maximum batch size, equals 256 if not stated otherwise.
A, a(k) Packet interarrival time.

B;, bi(k) Service time of size 7 batches.

Xi, xi(k) Number of arrivals whose interarrival time is distrib-
uted according to A during an interval whose length is
distributed according to By, in(i,5) [103]. If T is a con-
stant, we implicitly apply the deterministic distribution
with probability mass 1 at 7.

Qn, qn(k) | Queue size immediately before the n-th batch pick up.

Q, q(k) Queue size at embedding times during steady state, be-
fore batch pick up. Hence, @) = nlgr;o Qn.

Qa,qa(k) | Queue size at arrival times.

Q, q(k) Queue size at random times.
Vi, vn(k) | Batch size immediately before the n-th batch pick up.
V,v(k) Batch size at embedding times during steady state.
Hence, V = nli)nolo V.
S, s(k) Batch service time at random times / among all batches.
Ploss Packet loss probability.
W,w(k) | Waiting time.
D, d(k) Processing time.
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For the sake of readability, we provide an overview of the notation used in this
manuscript in Table 2.3. The top half contains constants and random variables
that constitute the model input, whereas outputs are listed in the bottom half.
To disambiguate between random variables (RVs), distributions, and distribution
functions, we use the following convention: uppercase letters such as A denote

RVs, their distribution is represented by

a‘(k) =def P(A = k)7 k € [Oa OO) ]
and the corresponding distribution function is defined as

k
A(k) = P(A< k)= > a(i), ke[0,00).

In the proposed model, the system state at a given time is represented by the
corresponding queue size @), at the time the n-th batch is polled from the NIC.
As highlighted in Figure 2.8, all system events, such as packet arrivals as well
as polling and batch processing, have a direct impact on the queue size. While
each packet arrival leads to an increment of the queue size by one, polling by
the processing unit decrements it by the number of packets that are picked up.
The latter is limited by the maximum batch size which is denoted as 8 and the
number of packets that reside in the queue at the time of the polling event.
Finally, if an arriving packet finds the queue at its maximum capacity L, the
packet is dropped. Hence, the queue size distribution at the times of embedding
during steady state q(k) can be used to derive relevant performance indicators
of the modeled system such as the batch size distribution and the packet loss
probability. Additionally, it is possible to derive the queue size at arrival times
@ 4, which is required for computing the waiting and overall processing time
distributions. To obtain event-independent system information, we also present

a way of calculating the queue size at random times Q.
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Figure 2.8: Exemplary state development of the model.

In order to derive the distribution of the queue size, we consider an embedded
Markov chain whose embedding times are defined to be immediately before the
busy polling events of the processing unit. Based on the queue size distribution
gn (k) at these embedding times, we can derive the state probability distribution
at consecutive embedding times by taking into account the current batch size
and the number of arrival events during the corresponding service time. Finally,
we use a fixed-point iteration in order to determine the queue size distribution
at steady state g(k). To this end, we leverage the recursive relationship in Equa-
tion 2.1 to compute the queue size distribution immediately before the (n+1)-st
batch is picked up, based on the queue size distribution immediately before the
n-th batch is picked up.

an(i)xi(k — (i —min(i, 8))) for0< k<L,

qny1(k) = an(i) in(L +j— (i —min(s,B))) fork=1L, ¢
i=0

Jj=0

0 otherwise.
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The first case covers the probability to reach a state with a queue size that is
below its capacity L. In order to calculate this probability, every possible pre-
vious value for the queue size ¢ at the previous time of embedding is consid-
ered. Given %, the size of the batch that is processed between embeddings equals
min(z, 3) since the processing unit can pick up at most 8 packets. From this,
we can derive the number of arrivals during the corresponding service time by
means of X;, which describes the number of arrivals with interarrival time A in
an interval of length B, ;5 (s, 5) [103]. Since embeddings are placed immediately
before polling events, a queue size of k is reached when the number of arrivals
during the service time is equal to the difference between k and i — min(z, 8),
the size of the queue immediately after the batch is picked up.

The special case of £ = L is calculated in an analogous fashion, but it is
necessary to take into account packet loss, i.e., the arrival of packets beyond
the queue capacity which also results in a queue size of L. Each number of lost
packets is represented by the summation index j.

Under stationary conditions, the indexes n and (n + 1) in (2.1) can be sup-

pressed, i.e.,
q(k) = lim g, (k).

n—o0o

Finally, we note a limitation of the outlined model, namely that the variability
of the arrival process has to be reasonably smaller than batch service times. Oth-
erwise, subsequent embedding times without new arrivals violate the assump-
tion of independence between embedding times the embedded Markov chain is
based on, and the number of arrivals is overestimated resulting in inaccuracies
w.r.t. the KPIs. This is, however, a reasonable assumption taking into account

the utilized traffic patterns.

Key Performance Indicators

Given the queue size distribution, the batch size distribution and packet loss prob-
ability can be derived according to Equations 2.2 and 2.3, respectively. While

the former is representative of the system’s efficiency, i.e., larger batches cor-
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respond to lower per-packet processing times, a non-zero value of the latter is
indicative of an under-dimensioned system. Furthermore, the queue size distri-
bution at embedding times also allows calculating the queue size distributions
at both arrival and random times. These statistics are representative of the sys-
tem state encountered by arriving packets and a random observer, respectively.
In particular, the former serves as the foundation for determining waiting and

processing time distributions.

Batch Size Distribution If the queue size is lower than the maximum batch
size 3, the two are identical, i.e., the entire queue is emptied upon batch pickup,
which is covered in the first case of (2.2). Queue sizes larger than /3 result in

batch sizes of exactly 3 and are instead covered by the second case.
a(k)  0<k<p,

v(k) ={ D> i) k=8, (2:2)

i=B

0 otherwise.

Packet Loss Probability As noted in the description of (2.1), packet loss oc-
curs when the number of arrivals during a service interval would lead to a queue
size that exceeds the capacity L. Hence, we can describe the packet loss proba-
bility as the ratio of the expected number of arrivals beyond this threshold Ny

and the expected total number of arrivals Narrivals:

E [NLost]
Ploss = =17 7 —
E [NArrivals}

S0 q(i) X5 oG - wi(L + min(i, B) — i + 7))
S0 a(D) Y520 i (h))

(2.3)
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Similarly to (2.1), we consider all possible queue sizes ¢ and use the corre-
sponding probability ¢(7) as a weighting factor. For each number of lost packets
j, we calculate the probability for the arrival of (L + min(é, 8) — ¢ + j) pack-
ets that are required for filling and exceeding the queue. For the expected total
number of arrivals, we proceed in an analogous fashion but do not have to shift

the distribution of the number of arrivals.

Queue Size Distribution at Arrival Times While the queue size distribu-
tion at the times of embedding allows us to compute the batch sizes that are
picked up during busy polling events, we need a shift of perspective in order
to determine the waiting time distribution of packets. In particular, the waiting
time of a packet starts as soon as it arrives in the system and the time it spends
in the system depends on its position in the queue.

Equation 2.4 shows how the queue size distribution as seen by arrivals, g4 (k),
can be computed. Based on the queue size at embedding times, it is possible to
determine the resulting batch size as well as the distribution of the number of
arrival events during the corresponding batch service interval. The probability
of an arrival finding a certain queue size can then be computed via the ratio
of the number of arrivals that find the queue at that specific level and the total

number of arrivals.

L . .\ —~i—min(i,8)+j—1

> iloa(d) Zji() xbmin(i,ﬁ)’a(-]) Zm:i—y(niizi,g) Lmin(m, )=k}
L ; N
Zi:o q(l) Z;io mbmin(i,ﬁ)va’(]) J

qa(k) =
(2.4)

Waiting and Processing Time Distributions

Given the queue size distribution at arrival times, we can derive the distribution
of the waiting time by decomposing it into two parts. First, the time between a
packet’s arrival and the next batch pick-up event. Second, zero or more service

times of size-{ batches, depending on the packet’s position in the queue.
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We obtain the first component by considering the recurrence time of the
overall batch service time Rg, i.e., the time a random observer has to wait to
encounter a batch pick-up event. To this end, we derive the distribution of ob-
served batch service times s(k) by weighting the batch size-dependent service
times with the occurrence probabilities of the corresponding batch sizes as fol-

lows.

B
s(k) = _w(i) - bi(k). (2.5)
i=0

For the second component, we leverage the fact that each possible queue size
(Q 4 that can be encountered by an arriving packet can be mapped to a specific

number of full batches that are serviced before it.
Subsequently, the distribution of the corresponding duration for servicing the
respective number of batches can be obtained by convolving bg with itself. In

terms of random variables, the waiting time can therefore be expressed as

5]
W=Rs+ Y Bg, (2.6)
i=1
where Rgs denotes the recurrence time of s(k).
Finally, the total time a packet spends in the system can be calculated as the

sum of the waiting time W and the service time S:
D=W+S§S. (2.7)

Queue Size Distribution at Random Times

While the perspective of individual packets that arrive at the system can be
useful when calculating performance indicators such as the waiting time, the
queue size distribution at random times provides generic steady-state system

information that is independent of specific events.
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In order to determine the queue size distribution at random times, we reason
about the possible development of the queue between two times of embedding.
We illustrate the development between the n-th and (n + 1)-st embedding time
in Figure 2.9. Let the queue size equal Qi+ immediately before a batch of pack-
ets is picked up for processing. Depending on Q;nit, the resulting batch size of
the ¢-th batch k; is between 0 and 5. During the corresponding batch service
time Bjy,, a number of X}, arrival events take place and sequentially increase
the queue size. The relative time the queue spends on each level is proportional
to the interarrival time A for most packets. Exceptions include the first and
last level since they are interrupted by the current and subsequent batch pick-
up events, respectively. Hence, their duration is proportional to the recurrence
time of the interarrival time, R 4. Other exceptions include the case of no ar-
rivals and arrivals that find the queue fully occupied. In those cases, the queue
spends the entire time on the same level or a prolonged time on the maximum

level, respectively. The recurrence time R 4 [104] of a RV A can be computed as

1
ra(t) = E[A] (L—A(t)). (2.8)
Q) < By, >
L ’ R4
= Qinit
b, 2 A A4 XBb[,A
Ry
t

~n Embedding Times 1

Figure 2.9: Exemplary queue size development between two embedding times
and the contributing interarrival as well as recurrence times.
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We use Equation 2.9 to calculate g(k), i.e., the probability of observing a queue
size of 0 < k < L, as follows. 1{condition} thereby represents the indicator
function, assuming 1 if the condition is true, O otherwise. The first term consid-
ers reaching queue size k immediately after the batch pick-up. In this case, the
queue size either remains equal to & the entire time if no additional arrivals take
place during the batch service time, or it stays at size k for a time proportional to
the recurrence time if there are additional arrivals. The second term deals with
cases in which the queue size is reduced to a value lower than k£ when a batch
is picked up, and a queue size of k is reached either as an intermediate state or
as the final state prior to the next pick-up event. Depending on this, the time
spent at a queue size of k is proportional to either the interarrival time A or its
recurrence time R 4. Note the two indices in z;, 4 as opposed to the single index
defined in Table 2.3. x;, 4 describes the more general case without the limitation
of j to f3, and thus represents the distribution of the number of arrivals with

interarrival time A that occur in an interval of length j.

4(8) - Lsmmin(i,8)=k} * ) bmin(i,0) (7)
j=0

> E[R4]
‘ (xj’A(O) +2_wiall): (I-1)E[4] i 2E [RA]>

=1
L o0

+ ZQ(Z) . 1{i_min(i,[3)<k} . Z bmln(z,,@)(]) (2.9)

i=0 =0

3 E (4]
(l;Jrl mJ’A( ) (l - DE[A] +2E[Ra}
. , E[RaA]

Faalk =0 T E g +2E[RA}>
for0 <k < L.
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For the special case of k = L, we need to account for the fact that the pro-
portion of time the queue spends at its maximum occupancy may be larger due
to the occurrence of packet loss. We derive the corresponding term in Equa-
tion 2.10:

L oS}
a(L) =Y qli Z bmin(i,6) (J > zj,0(0)
i=0 =L—i+min(i,B) (2.10)

‘E[RA]—i—( —l—l)E[A]
(I— 1)B[A] + 2E [Ra]

2.4.3 Experimental Setup

To validate our model, we instrument a testbed operating a real NFV software
router following the IETF benchmarking guidelines [105]. This section describes
our hardware and software setup as well as the scenarios we examine to assess
the accuracy of our model. We point out that, to assist reproducibility of our

work, all the experimental data we collect is available at [106].

Hardware Setup

The testbed, as depicted in Figure 2.10, consists of two COTS Desktop PCs,
equipped with two Intel 82599ES dual port NICs operating at 10 Gbps. Each
node has an i7-2600 processor, running at 3.40 GHz. Each processor has 3 lev-
els of cache hierarchy, ranging from 32 KB for the L1 to 8 MB for the L3. Both
machines are equipped with 16 GB of memory.

One node is used as the Device Under Test (DUT) and the other for traffic gen-
eration (TX) and reception (RX). The DUT receives traffic from one input line-
card, performs the packet processing, and then proceeds with the forwarding
to the designated output port. We conduct our measurements at the TX and RX
side in order to assess the packet ingress and egress rate as well as packet loss.

Additionally, we measure directly within the DUT in order to obtain batch sizes
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and per-batch processing time. In order to ensure reproducibility and eliminate
operating system scheduling, we run the DUT on a single CPU core attached to

a single RSS queue, as is typically done in stress-test conditions.

Loss Receive Side Scaling

Generator DUT VNF
Moongen A VPP Software Router
+ Programmable « Ethernet

Traffic Generator . IPv4
+ Upto 10 Gbps [iputRate -« IPv6

Continuous CPU

Traffic —

Forward Rate Batch Processing

Figure 2.10: Schematic overview of the hardware testbed used to obtain VNF
measurements.

2.4.4 Software Setup

DUT To validate the model, we select a state-of-the-art NFV software stack
that employs batched processing. In particular, we conduct experiments with the
Vector Packet Processor (VPP) [48]. VPP implements VNFs as software compo-
nents (nodes) that can be linked together in a specific configuration (forwarding
graph). A specific input node (dpdk-input) polls the line-card for new packets,
grabbing a batch (vector) from the ring for processing. Notice from Table 2.4 that
VPP compute-batches may aggregate several DPDK I/O-batches, as the max-
imum VPP batch size is larger than DPDK’s. VPP then processes all packets
in the vector node-by-node instead of traversing the graph packet-by-packet.
Hence, in addition to sharing the framework overhead over the batch, only the
first packet triggers fetching of processing code in the L1-instruction cache of
the CPU, whereas processing of subsequent packets benefits from L1-instruction
cache hits [55, 107].
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Table 2.4: Experimental configuration parameters.

Parameter Value
NIC Intel 82599ES dual-port 10 Gbps
E CPU i7-2600@3.4 GHz
Caches L1/L2/L3 32KB/256 KB/8 MB
Software router VPP 19.04
Number of CPU cores 1
. Number of RSS queues 1
B Memory allocated 4GB
Size of input queue (pkts) L = {1024, 2048,4096 }
Max DPDK batch size (pkts) 32
Max VPP batch size (pkts) B = {64,256,512,1024}
Traffic Generator MoonGen
Rate span [min:inc:max] [0.5 : 0.5 : 10] Gbps
é Hi/Lo rates 10 Gbps / 2.5 Gbps
> Packet sizes {64,128, 256,512,1024} B
& | Arrival rate process Constant bit-rate (CBR)
Data points per configuration | 138k
Functions {XC, Eth, IPv4, IPv6 }
Scenarios Homogeneous vs Heterogeneous

Also notice that this process naturally introduces branches, as packets may
trigger different functions implemented in different nodes of the forwarding
graph. This requires splitting the original heterogeneous batch into smaller ho-
mogeneous batches for the subsequent nodes. This is expected to change the
operational point of the NFV router, as not only the splitting process incurs an
additional overhead, but also since the framework overhead is now shared over
a smaller batch, and the code heterogeneity increases the L1-instruction cache
miss rate. It is thus important to assess experimental performance under realistic
scenarios involving multiple functions. Furthermore, we investigate the impact
of varying maximum batch sizes as well as the size of the RX ring for different
load levels.
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TX/RX For traffic generation and reception, we use MoonGen [108], a state-
of-the-art programmable tool capable of sustaining 10 Gbps line-rate. MoonGen
also provides APIs to perform basic measurements at the TX/RX side. For ex-
ample, it is possible to access the NIC’s hardware counters to precisely measure
the number of packets transmitted and received, which allows to derive the ex-
perimental forwarding and loss rates for comparison with the model.

Typically, a single DUT thread on a single RSS queue under commonly con-
sidered NFV workloads is able to sustain a rate of 12-14 Mpps [46, 49]. As such,
when sending 10 Gbps worth of traffic at minimum-sized 64 Bytes packets on
a wire, corresponding to a rate of 14.88 Mpps, we expect the system to be in
a lossy regime. As such, we assess the system performance for different rates,
ranging from 0.5 Gbps to 10 Gbps with a step increment of 0.5 Gbps. For the sake
of illustration, we also consider two exemplary operational points, representing
a high-rate (10 Gbps) and a low-rate (2.5 Gbps) regime. Additionally, we assess
the system performance for differently sized packets, ranging from 64 Bytes to
1024 Bytes.

Scenarios

We consider two VNF cases, in which the router is stressed with either homoge-
neous traffic that triggers the same function or heterogeneous traffic that acti-
vates a mixture of functions. We select popular functions in the NFV ecosystem
that allow us to focus on different components of the framework. We use the
simplest function to investigate I/O batching and introduce different types of
lookup and data structures to provide instances of compute-batching with dif-

ferent complexity.

Homogeneous Cross-Connect Function In this scenario a single VNF, usu-
ally referred to as cross-connection (XC), is applied to all packets, representing
the baseline of homogeneous functions in an NFV router. In this case, the VPP
DUT is configured to take all the packets from one input interface and immedi-
ately forward them to a fixed output interface. Notice that for the XC VNF, no
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computation is needed on the headers of the transferred packets since the DUT
simply moves batches from the input to the output NIC. Therefore, this scenario
helps assess whether the model faithfully reproduces the impact of I/O-batching.

We generate our workload using a MoonGen script that sends a stream of
packets at a fixed rate, namely copies of a templated UDP packet. Notice that
for such a simple VNF, the type of traffic does not affect the processing time.
Since neither processing nor branching happens, XC performance represents

an upper bound for the performance of the NFV router.

Heterogeneous Eth/IPv4/IPv6 Functions As pointed out in [59], as net-
work traffic is heterogeneous, NFV routers need to handle a mixture of different
functions. We therefore consider the case of three different functions that op-
erate on the same traffic batch. Specifically, we investigate three functions with
different sizes of inputs (48, 32, and 128 bits), lookup types (exact vs longest-
prefix match), and data structures (hash tables vs tries). In particular, we gen-
erate traffic that triggers the following operations, in increasing order of com-
plexity: (i) a 48 bit exact-match Ethernet lookup, (ii) a 32 bit IPv4 longest-prefix
match lookup using a trie structure, and (iii) a 128 bit IPv6 longest-prefix match
lookup that performs a lookup over multiple hash tables for different netmask
lengths.

For the sake of simplicity, our experiments are performed with an even split of
the functions, i.e., each of the above traffic types consume % of the bandwidth, so
that each function activates with probability % resulting in different function
breakdowns across batches. We point out that more complex scenarios (e.g.,
featuring an uneven split, a larger set of functions, or longer chains) are within
the capability of the model, but are out of the scope of the research presented

here.
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2.4.5 Modeling vs Experimental Results

Before we validate our model via experimental results from the homogeneous
and the heterogeneous traffic scenarios, we discuss several options that are
available for tuning the model inputs. These options represent different trade-
offs in terms of the resulting prediction accuracy, the model’s general appli-
cability, as well as the amount of measurements that are required prior to its
application. Using appropriate model settings, we then compare model-based
performance predictions with our measurements. In particular, we focus on the

batch size and the waiting time.

Model Tuning Options

As detailed in Section 2.4.2, the model input consists of the queue capacity L, the
maximum batch size 3, the distribution of packet interarrival times a(k), and the
size-dependent distributions of batch processing times b; (k). For the purpose of
model tuning, we fix the values for L and 3 at 4096 and 256, respectively.
While the mean packet interarrival time E [A] can be determined from the
applied rate, our model provides a degree of freedom by allowing to set an ar-
bitrary distribution to reflect aspects like the traffic’s burstiness. To this end, we
consider a total of four distributions that have varying degrees of variation. In

particular, these include (i) the Poisson distribution whose coefficient of varia-
1
VE[A]

of % with p = 1 — ¢ being the success probability, and (iii)-(iv) negative bino-

tion equals (ii) the geometric distribution with a coefficient of variation

mial distributions whose parameters are set to achieve coefficients of variation

equal to 0.5 and 2, respectively.

Batch-dependent Processing Time Distribution Furthermore, we use our
measurements to obtain E [B;], the mean size-dependent batch service times.
Similarly to the packet interarrival time, we can use different distributions to
model the behavior of the processor. However, all conducted measurements

yielded a very low degree of variation when considering a particular combi-
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nation of applied rate and the corresponding per-size batch service time. Hence,
we use Poisson distributions for the service time as our experiments have shown

that the low variability provides a close fit to the measurement data.

Interpolating Processing Times Additionally, the model might require ser-
vice time distributions for batch sizes that did not occur in the measurements.
In order to provide these missing distributions, the mean service times for the
remaining values of the batch size are required. We obtain these by means of
linear fitting. In particular, we interpolate the missing mean service times based
on the means of observed values. The Poisson distributions for the service time
are then generated with measurement-based means where available and with
fitted means otherwise. This fitting procedure can be done either globally or
on a per-rate basis. This choice represents at trade-off between the overhead
for per-rate measurements of the service time, risking overfitting the model to
a particular scenario, and a possible improvement w.r.t. the resulting accuracy.
Again, based on our experiments, we use a single, global linear fit in order to
generate mean processing time values for batch sizes not observed during mea-
surement runs. The remainder of the presented results are based on this method

of interpolating the missing data.

Arrival Process Distribution In contrast to the fitting strategy, the chosen
distribution of the arrival process does not have a significant impact on the mean
batch size returned by the model, which we can capture with the relative er-

ror (RE) of the normalized difference of means which is defined as

B[P - E[Q)

Therefore, we extend our evaluation and compare the batch size distributions
that are returned for different arrival processes. To this end, we compare the
batch size distribution returned by the model under different arrival processes to

distributions observed in the testbed. Note that we do not modify the arrival pro-
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Figure 2.11: Batch size distributions for different rates and arrival processes.
Cross-connect scenario with 8 = 256, L = 4096, and 64 B packets.

cess in the measurement setup, but are interested in identifying an appropriate
interarrival time distribution for the model. We quantify the difference between
the distribution that is returned by the measurements and the model by means
of the Jensen-Shannon divergence (JSD) which is symmetric and bounded and

allows to equally weight differences among two distributions p(k) and q(k) over

their full support, and is defined as

JSD(P,Q) = (%p(k) In ¢

k=0
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For three exemplary rates that represent a low, a medium, and a high load as
well as our four arrival distributions in increasing order of coefficient of varia-
tion, Figure 2.11 displays the batch size distribution obtained by means of mea-
surements and our model. Given the batch size on the x-axes, the y-axes rep-
resent the corresponding probability while annotations provide the JSD and RE
values. Note that all rows show the same values in case of the measurement-
based distributions, since we only vary the interarrival time distribution used in
the model.

When inspecting the distributions obtained by the measurements, we can ob-
serve that there is usually one peak around which the main portion of the prob-
ability mass is centered. This can be explained by the fact that there is an equi-
librium between the per-packet service time that is achieved in the context of a
particular batch size and the mean packet interarrival time. Hence, the number
of arrivals during the service time of a batch is nearly constant. In the case of
higher rates, shorter interarrival times lead to larger mean batch sizes which, in
turn, allow for larger fluctuations in terms of the number of arrivals during the
corresponding service time.

When comparing the subfigures column-wise, we observe that while these
peaks are also reconstructed by all model variants, their dispersion increases
significantly with the coefficient of variation of the chosen arrival distribution.
Similarly to the previous argument, the higher variance of packet interarrivals
leads to a wider range in terms of the number of arrivals during a service period.
Finally, the best match regarding both the shape of the resulting distributions
and the achieved JSD measure is achieved when using arrivals that follow a Pois-
son distribution.® This is also in line with the settings of the MoonGen traffic
generator that is set to send packets at a constant rate. Since it is a software-
based generator, minor fluctuations of the corresponding sub-microsecond in-
terarrival times are to be expected. Therefore, we use interarrival times that

follow a Poisson distribution for the remainder of this work.

3Note that arrivals do not follow a Poisson process, but exhibit interarrival times according to a
Poisson distribution.
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Table 2.5: Packet loss probability for different rates. Cross-connect scenario with
B = 256, L = 4096, and 64 B packets.

Rate [Mbps] 8000 8500 9000 9500 10000
Measurements | 0.97% | 6.69% | 11.58% | 16.44% | 20.17%
Model 1.09% | 6.78% | 11.56% | 16.30% | 20.13%

As already noted, the mean batch size takes on a constant value of 256 for
rates of 8 Gbps and above. In these high-load regimes, packet loss begins to occur
since the number of arrivals during the batch service time exceeds 256 and the
queue fills up steadily. In Table 2.5, the actual packet loss that is reported in
the measurements is compared to the model’s predictions. Rates below 8 Gbps
are omitted since they are equal to 0 in both cases. For the remaining rates,
the model accurately predicts the occurrence and quantity of packet loss which
increases linearly with the applied load.

In summary, our model achieves a very high accuracy for both batch size and
packet loss in the cross-connect scenario, faithfully modeling I/O batching over a
wide range of arrival rates, including overload scenarios that result in packet loss,
thereby contributing to the answer of RQ2.3.

Prediction of Key Performance Indicators

Having demonstrated the model accuracy in the context of the simple cross-
connect scenario and having identified appropriate model settings, we present
the results of evaluations with the more complex scenario featuring mixed traffic
in this section. Additionally, we investigate the impact of parameters such as the
maximum batch size, the queue size, and the packet size on the system behavior

as well as the accuracy of the model.
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Figure 2.12: Average batch size obtained via model and measurements given
different packet (pk) and queue sizes (qs). Maximum batch size
B = 256 and mixed traffic.

Batch Size Distribution Since the overhead for processing a batch of packets
is shared between packets within a batch, the batch size distribution constitutes
an important measure of system efficiency. We present a comparison between
the mean batch sizes reported in our measurements and the predictions of our
model in Figure 2.12. Each subplot depicts a combination of queue and packet
size and displays the applied rate on the x-axis and the corresponding mean
batch size on the y-axis.

First, we can extract insights regarding the system behavior. We observe that
the maximum batch size is attained earlier in the context of the more complex
mixed traffic scenario than in the cross-connect scenario. While the top right
subplot of Figure 2.12 shows that this already happens at a rate of 5 Gbps with
mixed traffic, a queue size of 4096, and 64 B packets, the maximum batch size
is reached starting at a rate of 8 Gbps when using the same parameters in the
cross-connect case.
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Furthermore, increasing the packet size leads to a decrease of batch sizes as
evidenced by the development of batch sizes along vertical sequences of sub-
plots. This can be explained by the fact that processing happens per header
rather than per byte and therefore an increase in packet size results in a decrease
of the packet-rate at the same bitrate. From the vertical sequences of subplots,
we can derive that the queue size does not have a significant impact on the batch
size. To explain this, we can consider the two extreme operational regimes the
system can be in. If it is in the loss-free regime, the queue is emptied on each
batch pickup event and never runs full. In conditions with packet loss, the queue
tends to fill up regardless of its size, leading to exclusively full batches. The be-
havior in between these two scenarios is, in general, depending on the arrival
process and, more specifically, its burstiness. Hence, while the maximum queue
size does not have an immediate impact on batch sizes, it should not be ignored
since it does affect waiting times and can allow the system to withstand packet
bursts.

Finally, comparing measurement values with model-based estimates demon-
strates that despite the increased complexity of the scenario, the model is still
capable of reliably predicting the mean batch size. In 90% of scenarios, the dif-
ference w.r.t. mean batch size is 2 or less. Nevertheless, some outliers with larger
differences are present. These tend to occur on two occasions. First, during the
transition from the loss-free regime to the lossy regime. Second, when the ap-
plied rate equals the maximum rate of the link. Both constellations represent

conditions with an increased sensitivity where deviations are amplified.
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Figure 2.13: Difference in mean batch sizes obtained via model and measure-
ments given different packet (pk) and queue sizes (qs). Maximum
batch size f = 256 and mixed traffic. Values greater than O cor-
respond to the mean batch size in the measurements being larger
than the one returned by the model.

The transition between loss-free and lossy regimes can be observed in Fig-
ure 2.13, which shows the difference between the experimentally measured
batch sizes and the predictions of the model. Considering the first row (obtained
with mixed traffic of 64 B packets) we observe that at high-rate, the difference is
zero: the model correctly predicts the saturation of the system which will always
retrieve batches of the maximum size 5. At low rate, the difference between
the model and the measurements is very low, and it increases as we approach
the state change between a loss-less and a lossy regime. When the system load
reaches this state change (between 3.5 Gbps and 5.0 Gbps) we observe that the
model underestimates the actual size of the batches. This is due to non-linear
effects introduced by the implementation of the VNF router, as the program tries
to privilege larger batches in order to minimize the overhead of the framework,

thus causing a discrepancy of up to 30 packets for the batch size.
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Similarly, this also explains the behavior observed in the second row of Fig-
ure 2.13. Interestingly, we observe that when the packet size is 64 B (first row),
the interval of the state change is [3.5, 5.0] Gbps, which translates into an inter-
val of [5.2, 7.4] Mpps (millions of packets per second). When the packet size is
128 B, the state-change interval is [6.0, 8.5] Gbps, which translates into an inter-
val of [5.1, 7.2] Mpps. Therefore, although the second interval is larger in bitrate,
it is comparable in terms of processed packets per second. Finally, as the scenar-
ios with packet size greater than 256 B never show a change of regime, we do
not observe a significant difference between the measurements and the model.

In summary, the model accurately captures the mean batch size as well as the
batch size distribution, even when the scenario complexity is increased by changing
the VNF behavior, traffic mix, or parameters such as the packet size, queue size, and
maximum batch size. The compatibility with these scenarios is maintained without
modifications to the model, highlighting its general applicability.

Waiting and Processing Time Distributions While the batch size can serve
as an efficiency indicator, large batches can also adversely affect the waiting and
processing time of packets. Hence, these metrics should be considered when
evaluating the performance of VNFs. With our model, we can derive the waiting
and processing time distributions, and we validate the results in this section.
Since performing per-packet delay measurements in the DUT would inter-
fere with VNF performance - especially at high packet rates - it is not a feasible
strategy for obtaining ground-truth latency data. Instead, we measure the total
per-packet latency between the egress and ingress of the MoonGen traffic gen-
erator and compare it to the processing time determined via our model. Due to
this measurement setup, we expect two main sources of mismatch between the
experimental results and our model. Whereas the model targets internal DUT
processing, measurements are taken externally. Hence, the measurements in-
clude DUT processing as well as additional delays induced by the traffic genera-
tor and other overheads. Similarly, propagation and transmission delay between

the generator and the DUT are not explicitly accounted for in the model.
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As such, we expect the model to underestimate delay-related KPIs when com-
pared to measurement values. However, due to the nature of the aforementioned
overhead, this difference should result in a constant, scenario-specific fixed delay
offset which can be addressed with appropriate calibration. In our case, this fixed
delay offset encompasses the MoonGen processing time for packet handling, the
round-trip propagation, and transmission delays on wire. We quantify this off-
set by means of a simple cross-connect setup in which the DUT simply executes
DPDK L2 forwarding to minimize processing. In this scenario, we once again
use MoonGen to generate a continuous stream of packets, that are forwarded
back to the source by the L2 forwarding VNF. In our specific testbed configu-
ration, this overhead amounts to roughly 5 microseconds and is later used in

Figure 2.15 to present adjusted model predictions.

For different rates on the x-axis, Figure 2.14 shows a comparison of the mean
latency in microseconds as obtained from measurements and our model. Hori-
zontally and vertically arranged subplots illustrate the effects of changes to the
queue size and packet size, respectively. We limit the y-axis to a maximum of
10 s in order to show details during the loss-free operational regime. As soon as
the load increases and the system transitions into the lossy regime, the latency

increases significantly due to congestion at the queue.

We make three main observations. First, for all shown scenarios, both the
measurement- and the model-based values follow the same trend, i.e., latency
increases happen at the same locations and with a similar slope. Furthermore,
the offset between the two curves remains in a narrow range around 5 pus. Sec-
ond, there is a clear effect of the packet size on the waiting time. Following
subfigures along the vertical axis, we can observe that the latency starts increas-
ing earlier in the case of small packets. This is in line with previous observations
about higher packet rates when using smaller packets at the same bitrate. Third,
almost no difference is observed regarding the mean latency in scenarios that
differ only in the queue size. This effect is caused by limiting the y-axis and
showing only the loss-free portion of the scenarios. In those, no congestion at

the queues takes place and the queue is emptied on each batch pick-up.
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Beyond these rates, the queue size does play a role and limits the maximum
waiting time, i.e., rather than having to wait longer, packets are dropped in the

case of a smaller queue size.
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Figure 2.14: Mean latency measured in the technical system and reported by the
model under different packet (pk) and queue sizes (gs). Maximum
batch size 8 = 256 and mixed traffic.

Despite the offset regarding the mean latency, we investigate the latency
distribution to check whether the model can faithfully reproduce the general
system behavior, e.g., regarding the shape of the distribution. To this end, we
present cumulative distribution functions for three different parameter combi-
nations in Figure 2.15. Each subfigure corresponds to one parameter combina-
tion, and we vary the traffic conditions, queue size, packet size, and applied
packet rate. The measurement values are shown in red, whereas the green and
blue lines indicate the model values with and without calibration, respectively.
In particular, the adjusted model curves are obtained by using the mean offset
from the calibration measurements to shift the original distributions that are

returned by the model.
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Figure 2.15: Latency distributions in different scenarios obtained via measure-
ments and model. Dashed green curves are obtained by shifting the
original model curves by a constant offset that is obtained via cali-
bration measurements.
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In case of all three combinations, we can see that the shape of the distribution
is retained and that in case of both the measurements and the model, the overall
processing time roughly follows a uniform distribution. This is consistent with
the fact that packets experience different waiting times depending on their time
of arrival relative to the next batch pick-up event and arrive at the system at a
near-constant rate.

When comparing the first two subplots, we notice that the latency ranges dif-
fer despite the respective scenarios having the same applied rate of 2000 Mbps.
This phenomenon is explained by the different packet size which in turn af-
fects the batch size and therefore batch service time, leading to a lower total
processing time in case of the scenario with larger packets in Figure 2.15b. Fur-
thermore, the latency values shown in Figure 2.15c are even lower and lie within
a narrower range. This stems from the simple cross-connect scenario in which
a higher rate can be sustained due to more heterogeneous packets and absence
of table look-ups during packet handling.

Finally, when looking at the adjusted model values obtained by adding the
constant offset obtained during calibration measurements, the close fit of the
model can be seen.

In summary, the results presented in this subsection highlight that the model is
also capable of accurately reproducing the behavior of VNFs in terms of the latency
that is experienced by packets. Furthermore, this capability persists throughout nu-
merous parameters and therefore shows that the model generalizes well. Based on
this, we are able to answer RQ2.3 and conclude that the developed model can reli-

ably predict critical KPIs of modern software network functions.
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2.5 Lessons Learned

Designing and operating high performance network functions is a complex and
expensive task. The development and testing of high performance hardware ap-
pliances require immense financial as well as time expenditures and the subse-
quent maintenance of deployed devices is a very laborious task. Still, even after
the developmental and operational overhead, hardware appliances remain rela-
tively inflexible in today’s fast-changing network landscape. The rate at which
new services need to be deployed, new protocols need to be supported and sys-
tems need to be scaled to meet growing demands require new, more dynamic
solutions.

One of these solutions that promises increased flexibility, more cost-efficient
operation and reduced time-to-market is NFV. The paradigm aims to revolu-
tionize the way networks operate by replacing monolithic, proprietary ASICs
with, in comparison, lightweight and dynamic software solutions. This migra-
tion towards software allows for the application of well known practices during
development, such as continuous integration [102] to significantly speed up and
simplify the process of developing new as well as updating existing network
functions while at the same time reducing management overhead and financial
expenses.

However, the introduction of software components raises several new chal-
lenges, the most crucial one being the reduced performance of software tools
when compared to highly specialized ASICs. To address this issue, new mecha-
nisms to both monitor and predict the performance of these software tools need
to be investigated in order to be able to assess system performance during both
development of new functions and after function rollout. Similarly, mechanisms
to solve systems dimensioning, parameter optimization as well as bottleneck de-

tection need to be investigated.
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To this end, we identified and investigated three distinct research questions

in this chapter.

RQ1) How can the processing performance of generic network functions be

monitored?

RQ2) Can this be achieved in a VNF-agnostic way while treating network func-

tions as a black box without access to the VNF source code?

RQ3) Can the monitored packet processing times be exploited to develop accu-
rate, generalizable performance models of state-of-the-art network func-

tions?

To address these, we designed a novel approach to enable accurate, low over-
head monitoring of software based network functions called in-stack monitoring
(RQ1). Thereby, components of the existing network stack are exploited to pro-
vide precise measurements of the processing time of a generic network func-
tion. In the context of a case study we have shown that the approach is well
suited for both performance assessment during development and monitoring
after live deployment as the tool is both able to capture the accurate processing
time distribution during calibration and detect performance degradation during
online operation, while remaining network function agnostic (RQ2). Further-
more, we developed a discrete-time model that allows the prediction of several
KPIs when it comes to software based network functions, such as the packet
loss probability and waiting time distribution (RQ3). To this end, we applied the
aforementioned measurement approach to a state-of-the-art packet processing
framework, called VPP, and constructed an accurate model on basis of the ob-
tained measurement data. We have shown that model predictions are highly
accurate for all relevant KPIs.

The combination of these tools enables both the highly accurate monitor-
ing of network function performance and the prediction of KPIs during system
dimensioning and configuration, thereby unlocking additional optimization po-

tential. Furthermore, the nature of these tools allows their integration in modern
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software development pipelines, thereby reducing validation overhead during
function development and in return reducing the time-to-market. At the same
time, our proposed monitoring approach in combination with the capability to
perform detailed parameter studies using the introduced model can be used to
quickly adapt function parameters or perform resource scaling based on current
demand. Ultimately, the mechanisms introduced in this work can be exploited in
several ways to better understand the performance characteristics of network
functions and, depending on their exact application, can be used to advance

closer to the goal of NFV, to replace hardware with software.
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3 Abstracting Heterogeneous Data
Plane Solutions Through a Single
API

In current and emerging networks, the performance of packet processing com-
ponents is one of the most crucial parameters. As discussed before, the raw per-
formance of pure software solutions is often times inferior when compared to
dedicated hardware appliances. However, not all tasks involved in network op-
eration require the flexibility of software solutions. Instead, tasks like layer2 for-
warding, access control or simple header modifications may well be performed
by programmable hardware solutions in order to benefit from a trade-off be-
tween the performance of hardware and the flexibility of pure software solu-
tions. Thus, either one, or a combination of multiple different, not necessarily
homogeneous, data plane solutions, may be used to realize a given task. De-
pending on several factors such as required throughput, latency or flexibility,
but also how often configuration changes are expected or if dynamic resource
scaling is required different solutions or technologies may be best suited to solve
a given task. However, the combination and integration of differing data plane
technologies raises new challenges regarding both the performance overhead
induced by the concept of a mixed technology data plane and control solutions
that allow the configuration of such systems.

On one end of the spectrum, pure software solutions allow for highly flexi-
ble setups both regarding scale and their supported feature set. These software

solutions, however, often come with a performance penalty over hardware ap-
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pliances. These dedicated ASICs, on the other end of the spectrum, feature ex-
ceptional performance for a very narrow and ossified feature set.

In addition to the pure software and pure hardware solutions, the introduction
of technologies like SDN [109] with its flexible configuration protocol Open-
Flow [28] and programmable hardware solutions like P4 [29] allows for a middle
ground, providing increased flexibility through programmability while main-
taining ASIC-like performance.

On the one hand, hardware data plane solutions are, by definition, equipped
with a specific capacity for processing, storage and other relevant tasks. For
example, an SDN switch with a total Ternary Content-Addressable Memory
(TCAM) capacity of N entries and a maximum number of M flow tables will,
regardless of potential optimizations, run into a bottleneck if more than N rules
need to be installed or more than M flow tables are required. A common way for
developers to deal with this problem is by creating explicit mitigation strategies
for missing capabilities or bottlenecks. However, this is a redundant, complex
and time-consuming task, which leads to additional development effort and cost
in the best case, and to feature abandonment and prevention of innovation in
the worst. On the other hand, performance limitations of software may impede
the adoption of more flexible data plane solutions. These issues, in return, lead
to longer development times and release cycles which adversely affect the adop-
tion of SDN as well as NFV as mainstream technologies.

To this end, we discuss the concept of data plane abstraction through an in-
termediary translation agent, sitting between the control and data plane, and
present a proof-of-concept implementation that enables the aggregation of mul-
tiple hardware as well as software-based data plane solutions to transparently
emulate multi-technology data plane devices. Hence, we identify and investigate

the following research questions.

RQ3.1) Are multi-technology data plane solutions feasible using existing tech-
nologies? This includes the definition of an abstraction concept that al-
lows the integration of multiple data plane technologies into flexible

packet processing pipelines.
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RQ3.2) Can a proof-of-concept be realized using existing, state-of-the-art con-
trol plane and data plane solutions? This includes the practical integra-
tion of readily available solutions to proof the realizability of the designed

concept.

RQ3.3) What are the performance and scalability limitations of the proposed
concept? This includes a detailed discussion as well as measurement

study regarding the capabilities of the proposed approach.

In order to address these research questions, we provide a detailed taxonomy
of related work as well as the required background for the remainder of this
chapter in Section 3.1. Section 3.2 introduces the concept of data plane abstrac-
tion developed in this work and outlines the design goals behind the abstrac-
tion architecture before introducing example use cases. Section 3.3 presents a
detailed analysis of the performance of our proof-of-concept implementation.
Finally, Section 3.4 discusses limitations of the proposed approach before Sec-
tion 3.5 summarizes the insights and results from this chapter. The main contri-

butions can be summarized as follows.

C2.1) The design and realization of a novel approach for the integration of mul-
tiple data plane technologies.

C2.2) A detailed investigation regarding the performance and discussion of lim-
itations of the proposed approach.

These contributions have been published in the past and are condensed in

this monograph based on the following scientific publications.

+ Geifller, S., Herrnleben, S., Bauer, R., Grigorjew, A., Jarschel, M., Zinner,
T.: "The Power of Composition: Abstracting a Multi-Device SDN Data
Path Through a Single API" in IEEE Transactions on Network and Service
Management (TNSM), 2019. [20]
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o Geifller, S., Gebert, S., Herrnleben, S., Zinner, T., Bauer, R., Jarschel,
M.: "TableVisor 2.0: Towards Full-Featured, Scalable and Hardware-
Independent Multi Table Processing,’ in IEEE Conference on Network
Softwarization (NetSoft), 2017. [3]

3.1 Background and Related Work

Many network applications rely on sophisticated packet processing and ad-
vanced pipelining, thereby combining multiple processing steps to realize com-
plex network functions. On the one hand, common SDN examples include
source address validation [110], d-dimensional packet classification [111], wild-
card rule caching [112], controller modularization or hierarchical network man-
agement [113]. On the other hand, virtual network functions are expected to be
composed of several, atomic elements such as header reads, header writes, state
tracking [35] as well as more complex operations like database lookups or cryp-
tographic operations.

The available hardware and software solutions to realize these use cases, how-
ever, may not necessarily support all required capabilities or provide sufficient
resources. We call this phenomenon a “mismatch” between control plane re-
quirements and data plane capabilities. Here, we can differentiate between func-
tional limitations such as missing features like monitoring counters or support
for specific protocols and non-functional limitations such as memory capacity
or maximum throughput.

There are different approaches to deal with this problem. The easiest solution
is to simply develop purpose built applications or appliances that provide the
required capabilities or use devices with high overall flexibility. Programmable
switches in combination with OpenFlow or P4-enabled devices are promising
candidates here. Another, more realistic, approach is to accept — and maybe
even encourage — heterogeneous infrastructures and then hide the heterogene-
ity with unified and silicon-independent APIs. P4 Runtime is a promising recent

development that does exactly that. Finally, there are various works that try to
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improve flexibility and scalability of the data plane itself, e.g., with respect to
pipeline processing (see Table 3.1).

There are, however, two fundamental problems that cannot be solved with
just unified APIs or improved data plane solutions: the conceptual limits of flex-
ibility and the resource constraints of individual devices with respect to both

performance and scalability.

3.1.1 Conceptual Limits of Flexibility

It is not likely that current — or future — device generations provide sufficient
flexibility in the long run. Various enhancements to the OpenFlow protocol and
corresponding devices clearly demonstrate this and while current developments
in the area of programmable devices have alleviated this issue, the inherent lim-
itations of single devices will, by definition, not be solved through these ad-
vances. [114] extended the match-action abstraction to support autonomous
stateful decision-making. [115] added a new API to allow autonomous gener-
ation of packets. [116] proposed approximation techniques to enable the appli-
cation of otherwise excessive data plane procedures. [117] tackled the problem
of slow flow table entry installation. Even more important, completely new con-
trol plane requirements may emerge that cannot be realized with a new config-
uration file, pipeline template or firmware update, e.g., in-network support for
distributed machine learning and time-sensitive networking [118]. As a result,
it is simply not realistic to control every possible device with a unified API such
as P4 Runtime, especially if we are talking about devices with bleeding-edge
capabilities often used in the research community.

Instead, we need a way to efficiently deal with different existing control chan-
nel protocols. The proxy-layer architecture in conjunction with the new proto-
col translation concept introduced in Section 3.2 is a first step in this direction.
The method of transparently processing OpenFlow messages is not particularly
new. Similar techniques are used for network virtualization [119-121], to re-

alize hypervisor functionality [122], to interoperate with non-SDN legacy net-
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work equipment [123] or to transparently deal with flow table limitations [124].
The novelty of our approach is that developers can easily create and deploy their
own translation application for every possible control channel protocol, without
extensive changes to the network operating system or the control apps, which
simplifies rapid prototyping and research work. Furthermore, our approach al-
lows the utilization of resources of more than one device, which is discussed in

detail in the next section.

3.1.2 Constraints of Individual Devices

The resource and capability constraints of individual devices are equally impor-
tant. Programmable switches are, like every other hardware device, limited to
the resources and capabilities of a single device. Control plane requirements go-
ing beyond what is provided by a single device cannot be satisfied, even if two
cooperating devices could easily fulfill the request. Existing work to alleviate
this limitation can be distinguished into two categories: software-based solu-
tions that do not touch the switch hardware and hardware-based solutions. We
present prominent related work for both categories and explain how previous
work differs from our approach. A summary of this taxonomy can be found in
Table 3.1. The limitations of existing solutions clearly shows the gap in literature
that is addressed in this thesis.

Software-based Approaches

Most software-based solutions focus on either pipeline flexibility or scalability
aspects. We start by elaborating on flexibility by comparing the studies in cate-
gory C1 in Table 3.1 and discuss software-based scalability solutions later on.
Several works try to address the problem of pipeline flexibility. SDFTP [113]
introduces software-defined flow table pipelines with an arbitrary number of
stages and adaptive table sizes. A special mapping logic is used to embed vir-
tual software tables into the hardware tables of the switch. FlowAdapter [125]

is a middle layer between the hardware and software data plane that provides

80



3.1 Background and Related Work

Table 3.1: Comparison between TableVisor and selected approaches from re-

lated work
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support for multi-stage pipeline processing by properly mapping rules onto ex-
isting hardware capabilities. FlowConverter [126] tries to generalize the above
ideas and presents an algorithm that can translate between different forwarding
pipelines. Table Type Patterns (TTP) [133] for OpenFlow also introduce flex-
ibility by allowing the controller to negotiate pipeline details with hardware
switches. ALIEN HAL [134] focuses not directly on pipeline flexibility, but fol-
lows similar design principles as FlowAdapter and TTP by using a hardware
abstraction layer to realize OpenFlow capabilities on legacy network elements.
Furthermore, previously proposed approaches like Frenetic [135] and Pyretic
[136] revolve around high level languages for programming collections of net-

work switches. However, these approaches are largely limited to OpenFlow and,
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like other previously proposed solutions, don’t address the limitations imposed
by the constraints of singular hardware devices. Instead, these approaches focus

on a simplification of the programming interface of SDN-enabled devices.

Since the approach presented in this thesis is also software-based, there are
similarities to the above approaches, primarily with respect to the basic moti-
vation. However, there are three important conceptual differences. (1) Existing
solutions for software-based pipeline flexibility are, by design, limited to the re-
sources of a single switch, i.e., the approach can only be used if there is enough
free space left in at least one of the hardware tables, which imposes inherent
restrictions with respect to scalability. Our solution copes with this important
challenge by combining the resources and capabilities of multiple devices into
one emulated device. (2) Our approach is used in a fully transparent fashion
as neither the controller nor the applications have to be modified, and the ap-
proach can be used out-of-the-box in any OpenFlow based network. While some
approaches like FlowAdapter and HAL have similar properties, others sacrifice
transparency. SDFTP [113], for example, introduces a new southbound interface
for all table operations which requires non-trivial changes in the control plane.
(3) Our approach does not solely focus on flexible pipeline processing but rather
considers it as one single use case among a broader set of different applications.
The application engine presented in Section 3.2.2 can be seen as a generic plat-
form to transparently include different functions. Following this approach, we
can combine pipeline flexibility with use cases from other research domains such
as TCAM space optimizations, control channel logging or protocol conversion.
Even the integration of complex VNFs performing arbitrary packet processing
tasks could be realized, as long as the interfaces are compatible or instructions

can be translated by our shim layer.

Category C2 in Table 3.1 is addressing device as well as overall network scal-
ability. Solutions for device scalability try to cope with limited capacities and
capabilities of a single device, e.g., by adding a virtual switch with high table
capacity [117, 127]. However, this requires infrastructural changes and is asso-

ciated with a performance degradation for all flows that are forced to use the

82



3.1 Background and Related Work

slow path via the virtual switch. Performance characteristics and limitations of
virtual switching were intensively studied in the recent past [137-139]. Even if
only a fraction of the traffic is affected, this might be inapplicable for many sce-
narios [127]. Others try to achieve similar results by exploiting spare resources
of co-located devices [124]. However, unlike our approach, these approaches do
not consider pipeline processing.

Solutions for overall network scalability usually consider flow tables and
TCAM space as a shared resource. Palette [128], DIFANE [140] and One-Big-
Switch (OBS) [129] are prominent examples. The general idea of gathering
shared resources under a unified abstraction is similar to our solution. How-
ever, these solutions have a fundamentally different scope and try to abstract
the whole infrastructure (i.e., every switch), while we aim for a more localized
solution, focusing on smaller sets of switches. In addition, the aforementioned
solutions introduce policy abstractions that change how networks are used and
programmed, which impedes transparency to and compatibility with legacy ap-
plications. The high level of abstraction introduced by these changes is a blessing
and a curse at the same time. It shields application programmers from low level
details but makes it difficult, if not impossible, to realize proper pipelining, be-
cause the pipelining itself is not covered by the individual abstractions. Looking
at the various use cases that are difficult to realize without explicit, application
controlled pipelining [110-113], we argue that this kind of abstraction is not
necessarily a panacea. As a result, we designed our solution as a transparent

proxy layer without changing the interface that is used for pipelining.

Hardware-based Approaches

Category C3 in Table 3.1 compares prominent examples of hardware-based so-
lutions. The core idea here is to provide programmable network devices with
freely definable packet processing pipelines. The FlexPipe architecture of In-
tel’s FM6000/FM7000 series [141] allows programmable parsing of incoming
traffic based on a TCAM/SRAM/MUX structure. Protocol Oblivious Forward-

ing [142] introduces a generic flow instruction set to make the data plane
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protocol-oblivious. Reconfigurable Match-Action Table (RMT) [132] proposes
a model for re-configurable match tables and enables dynamic, in-field recon-
figuration of the data plane. Recently, dRMT [143] introduced a new RMT ar-
chitecture, in which memory as well as compute resources are disaggregated
and moved to a general pool that can be accessed by all pipeline stages over a
crossbar. ESwitch [131] proposes a novel architecture that is able to generate
efficient machine code for SDN switches based on packet processing templates
inspired by the OpenFlow pipeline.

The limitations of programmable switches are twofold. First, they require spe-
cial hardware currently not available in large quantities. While this may change
in the future, it is more likely that such devices will complement existing in-
frastructures, rather than completely replace them. So the control plane has to
either deal with this expected device heterogeneity directly, by differentiating
between programmable and non-programmable devices in the applications, or
use some kind of abstraction as is exploited by the approach presented in this
thesis. Second, even if we assume that every device in the network supports
the same degree of programmability, these devices will still be equipped with
fixed resources, say a total TCAM capacity of N entries and a maximum num-
ber of M flow tables. Existing solutions such as RMT [132] and ESwitch [131]
can boost these numbers, so that N and M might be much larger compared to
currently used OpenFlow switches. NOSIX [130] is the only hardware-based ap-
proach that we are aware of that follows a similar design paradigm by exploiting
shared resources. Similar to our approach, NOSIX envisions a lightweight porta-
bility layer for the control plane and can make use of special-purpose tables
in different switches. However, the approach requires special hardware support

and breaks transparency.

Programmable Data Plane

The programmable data plane concept describes the idea of programmatically
reconfiguring the packet processing mechanisms provided by data plane devices

at runtime [144]. The concept thereby applies to both software solutions and
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hardware devices and has gained significant traction through the introduction
of the separation of control and data plane introduced in SDN [25]. The splitting
of formerly joint components into a separate, intelligent control unit and sim-
ple, dumb data plane devices allows for far greater flexibility and enables new

applications in modern networks [109, 145].

Especially the introduction of OpenFlow [28] has led to the adoption of the
programmable data plane concept as a mainstream technology in networking as
a standardized protocol for the configuration of widely available programmable
switches enabled the adoption in both industry and research [146]. With Open-
Flow, it is possible to issue well-defined instructions to compatible hardware or
software switches that modify their internal match-action tables and hence ma-
nipulate their respective forwarding behavior [146]. A detailed description of
these controller-to-switch and switch-to-controller instructions can be found in

the OpenFlow specification [147].

Naturally, the programmable data plane concept has since been well re-
searched and new, more powerful approaches have emerged. Covering all devel-
opments in the area at this point in this thesis would be unreasonable. Instead, a
broad overview of developments in the area of programmable data plane devices
is provided by Bifulco et al. [144].

However, two developments that warrants dedicated coverage are Program-
ming Protocol-independent Packet Processors (P4) [29] and NFV. P4 aims to
extend the match-action functionality provided by, e.g., OpenFlow to enable the
processing of arbitrary header fields, and hence arbitrary protocols. Further-
more, P4 provides basic arithmetic operations and dissolves the ossified lookup
tables of early programmable switches by providing a set of resources that can
be programmatically allocated as needed. A detailed description of the P4 pro-
gramming language can be found in the respective specification [148]. In this
context it is important to differentiate between P4 as a hardware platform and
OpenFlow as a control channel protocol, as P4-enabled devices still need some
form of control API to push match-action rules into their tables. However, it

is clear that the control capabilities of OpenFlow only cover a small subset of
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what P4 devices can do. Different control approaches are hence required. To this
end, we cover the translation between OpenFlow and a proprietary P4 control
mechanism in Section 3.2.

The concept behind NFV, as already discussed in Section 2.1, covers the pro-
cessing of simple network tasks like packet forwarding but also complex opera-
tions such as Deep Packet Inspection (DPI) or encryption. To this end, software
frameworks like DPDK [45], VPP [48] or FastClick [49] are used to develop high-
performance software solutions. In addition, the concept of network function
offloading has been introduced to further increase the processing capacity of
network functions [26, 35, 149, 150]. However, the integration of heterogeneous
data plane technologies comes with new challenges regarding interoperability
with respect to both their configuration and manner of processing [151]. To this
end, we investigate the feasibility of integrating heterogeneous data plane tech-
nologies by providing a unified interface towards the controller. This aspect is

covered in Section 3.2.3.

3.2 TableVisor

This section covers the proposed proof-of-concept implementation of a data
plane abstraction service. We start by presenting the design concept of TableVi-
sor, describe available functionality, and conclude with possible use cases that
can be realized by applying its features. Note that the proof-of-concept imple-

mentation is available as an open source project via Github'.

3.2.1 Design Principles

When it comes to the design choices made for our proposed approach, we need
to differentiate between the goals we want to achieve and the design principles
needed to realize these goals. To this end, we present a brief overview of the

aforementioned goals that are described in more detail in the following sections.

!https://github.com/lsinfo3/J TableVisor
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First and foremost, TableVisor should be able to do two things, with the first
one being the aggregation of features and capacities provided by multiple, het-
erogeneous data plane devices into a single emulated device. The second ma-
jor design goal is the integration and seamless interoperability of differing data
plane technologies such as P4, whitebox switches or software solutions. In order
to achieve these goals, a number of design principles needed to be defined.

First, TableVisor is expected to work in a fully transparent manner, meaning
that both control plane and data plane are unaware of the abstractions happen-
ing by our service. To achieve this, we need to seamlessly translate between
different protocols and control mechanisms and can hence use both unmodified
data plane and control plane solutions. Second, our service needs to work fully
placement agnostic, meaning that TableVisor can be deployed on an arbitrary
host somewhere within the network in order to allow the integration into more
complex network environments as well as interoperability with a multitude of
different data plane technologies. Finally, TableVisor needs to respect the sepa-
ration of concerns [152], meaning it may not act as a control plane entity itself
and is not allowed to make control decisions while at the same time it is not a
data plane entity and is not allowed to interact with data plane traffic. Instead,
our service merely mediates between the two planes and translates messages to
ensure interoperability. The control plane is still in full control of forwarding
decisions while the control plane is still handling all the traffic processing and

forwarding.

3.2.2 Architecture

TableVisor has a modular structure in order to allow the addition of extensions
and further functionalities in the future. It comprises a central core and three
main logical layers — the upper layer endpoint, the application engine, and the
lower layer endpoint — as shown in Figure 3.1. The separation between upper
and lower layer endpoints as well as the application engine allows a clear sepa-

ration of responsibilities with regard to the workflow of TableVisor.
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Figure 3.1: TableVisor Architecture.

This is realized through Java APIs exposed by the TableVisor Core which en-
ables easy implementation of additional endpoints or application engine mod-
ules.

The upper layer endpoint is responsible for the communication with the con-
troller and handling of protocol specific mechanisms (e.g., keep alive messages).
The endpoint parses control protocol messages into a workable data structure
that can be processed by the application engine and vice versa. The addition of
further upper layer endpoint implementations allows TableVisor to work with
control plane instances that are not OpenFlow-capable, e.g., legacy network
management systems.

The application engine is responsible for passing messages through all loaded
applications. An application specifies whether and how a message is processed,
e.g., rewriting of table IDs or actions. TableVisor comes with a number of pre-
selected applications, including basic applications such as for maintaining the
OpenFlow Control Channel, but also applications that change the representation
and behavior of the virtual switch.

The applications themselves are structured as an ordered pipeline. Control
messages are passed through all loaded applications in a predefined order, which
is specified at a global scope during their implementation. Applications can be

loaded and unloaded in the configuration file.
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If an application is loaded, all messages are passed to it, unless blocked by an
earlier application. The application order of messages from the upper and the
lower layer endpoints are opposed, i.e., the last application that is passed by a
control message from the upper layer endpoint is traversed first by messages
from the lower layer, and vice versa. The feature set supported by the current
version of the implementation is listed in Table 3.2.

The lower layer endpoint maintains the communication paths towards data
plane devices. It parses, encodes and decodes messages that are to be sent to
or received from the respective data plane devices. This could be OpenFlow
messages, implemented by the Generic OpenFlow Endpoint, P4 control messages,
managed by the Netronome P4 Endpoint, or additional novel or existing protocol
implementations.

By exploiting upper and lower level endpoints, this architecture can achieve
complete transparency towards both data plane and control plane. Therefore, it
allows the usage of standard controller implementations as well as data plane

devices without the need for modifications.

3.2.3 Features

The application set of TableVisor is focused around three major feature sets,
namely, control channel translation, table capacity extension and device aggre-
gation. The main tool used for their implementation is the mapping of global
table IDs, as seen by the controller, to local devices and tables, while handling all
their intermediate communication. The individual feature domains, as directly

applicable by the use cases, are explained in the following.

Control Channel Translation

The control channel translation functionality encompasses everything that in-
volves the modification of control messages for compatibility reasons. This in-
cludes not only the translation between different protocol families, but also dif-

ferent versions of the same protocol, as detailed in the following.
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Table 3.2: TableVisor Application Engine Modules.

Transparent Single Switch Application

Transparently forwards OpenFlow messages between a single switch and
the control plane. Can be used in conjunction with other applications to add
functionality, such as the control channel logging application that monitors
an OpenFlow control path.

Multi Switch Application

Aggregates multiple switches into a single pipeline that is presented towards
the controller as a single multi-table switch. Allows the realization of multi-
table use cases and exploits the heterogeneity inherent to the landscape of
OpenFlow-enabled hardware switches.

Control Channel Logging Application

Monitors OpenFlow control messages between the lower and upper layer
endpoints. This can be used in conjunction with other applications either
for debugging or live monitoring purposes.

P4 Control Application

Provides OpenFlow functionality towards the control plane and constructs
OpenFlow messages based on statistics and rule sets provided by proprietary
P4 management tools.

P4 Translation Application

Provides translation functionality between OpenFlow in the control plane
and proprietary control protocols in the data plane.

OpenFlow device heterogeneity. The idea of control channel translation
originally evolved around the problem of device heterogeneity in the early
OpenFlow hardware implementations, as different switches exhibit different
feature sets and device specific behavior with respect to the supported Open-
Flow versions, default table numeration, and general conformability with the
standard. This problem is most prominent when comparing early implementa-
tions of different vendors. TableVisor can be used in such situations to alleviate

the problem of protocol mismatches and different expectations between con-
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Figure 3.2: Illustration of the control channel translation features between spe-
cific OpenFlow versions, and generally between different control
plane protocols.

trol and data plane. The general instructions of various SDN controllers can be
tailored to the needs of specific devices’ behavior, and their replies can be gener-
alized to be understood by a standard-conformant software implementation of
OpenFlow. This is shown on the left in Figure 3.2, where TableVisor translates
between different OpenFlow versions.

P4 device integration. Going one step further, TableVisor features a semi-
automatic translation between the OpenFlow protocol and the P4 running con-
figuration. Therefore, the translation application expects an OpenFlow packet
from the upper layer endpoint. As both protocols are based on a similar match-
action architecture, the translation engine must match the intents contained in
the original message to the available table names, action names, and header
fields in the P4 program. Note that, as with each translation, the expressiveness
of the resulting control channel is limited by the intersection of possible com-
mand sets from both languages. In this case, OpenFlow supports a subset of P4
capabilities, hence the level of control is limited by the highest supported Open-
Flow version in the controller and the actually deployed P4 program. However,
if necessary, unused OpenFlow header fields may be used to address sophisti-
cated headers in P4 programs. In many scenarios, the required operations can
be triggered implicitly in the P4 control flow.

TableVisor leverages the existing P4 program in order to learn the respec-

tive mappings. Therefore, the program is annotated with the corresponding ta-

91



3 Abstracting Heterogeneous Data Plane Solutions

ble IDs, header field names as well as action names and parameters. TableVisor
parses these annotations and stores their respective mappings. Listing 1 contains
an example snipped of a P4 program with a simple mapping from the OpenFlow
table ID O to the P4 table name acl_tbl.

// QTV table 0
table acl_tbl {
reads {

Listing 1: Annotated P4 program excerpt as example table mapping: acl_tbl <>
table 0.

Similarly, the header field names can be mapped to their OpenFlow counter-
part inside the reads block of the table. Note that this mapping might be ap-
plied locally for this specific table, which enables the use of different mappings in
different tables, if desired. Our current implementation applies a global mapping
to reduce administrative overhead during configuration. Listing 2 maps Open-
Flow’s in_port to the corresponding P4 metadata field, and the ipv4_dst
to our defined destination address header field name.

// @TV table 2

table routing_tbl {

reads {

// Q@QTV field in_port
standard_metadata.ingress_port: exact;
// @TV field ipv4_dst

ipv4.dstAddr: exact;}

actions { set_dst_mac; }}

Listing 2: Annotated P4 program excerpt with two example field mappings:
in_port and ipv4_dst.

Finally, mapping actions requires special care. They do not only contain their
own name, but also a list of parameters that may be supplied by the controller at

runtime. In addition, OpenFlow allows the execution of multiple actions at the
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same time, while P4 is limited to a single, custom defined action for each table
entry. Therefore, in Listing 3, a single P4 action set_dst_mac is mapped to
multiple OpenFlow actions, and vice versa. Note here that the GOTO_TABLE
instruction is called explicitly in OpenFlow, while the table transition is defined

separately in the control block in the P4 program.

// QTV action SET_FIELD_ETH_DST ETH_DST=mac
// Q@QTV action GOTO_TABLE_123

action set_dst_mac (mac) {

modify_ field(eth.dst, mac);

}

Listing 3: Annotated P4 program excerpt for action mapping: set_dst_mac is as-
sociated with SET_FIELD_ETH_DST and GOTO_TABLE.

These name mappings are utilized by the translation application to create a
JSON string. As our current implementation is designed for the Netronome Ag-
ilio CX SmartNIC?, this JSON string is then passed into the RTECLT interface
by the respective lower layer endpoint which pushes the new flow rules to the
SmartNIC that is associated with it. The entire example mapping, along with
further explanation, can be found in the GitHub repository.> This implementa-
tion is shown in the middle of Figure 3.2.

Further extensions. Note that the concept can be further extended and gen-
eralized to support additional protocols by adding new endpoints, both in the
upper and lower layer. With little more effort, new applications could handle the
inclusion of additional devices well beyond the match-action abstraction, for ex-
ample to enable control of hardware accelerated security features in legacy net-
working devices or complex software network functions performing arbitrary
packet processing tasks like DPI or application layer firewalling. The general
translation between different implementations of SDN protocols is illustrated

on the right in Figure 3.2.

*https://www.netronome.com/
*https://github.com/Isinfo3/J TableVisor/tree/master/example2
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Figure 3.3: [llustration of the table capacity extension feature.

Table Capacity Extension

In early deployments of OpenFlow switches, hardware accelerated table capac-
ity was very limited, with some models only allowing a few hundred Open-
Flow rules stored in their TCAM.* Some use cases require large amounts of flow
rules [153], which then need to be handled explicitly by the network adminis-
trator or the SDN control plane deployment. With the TableVisor abstraction,
multiple hardware tables can be mapped to a single, virtual table and presented
in a single device to the control plane. In this scenario, TableVisor would handle
dependencies between the different match-action rules, such as implicit header
matches due to higher priority flow rules. This concept has been discussed in
detail in [20].

Figure 3.3 provides a visual example of the intended use. TableVisor presents
a single table hosted by a single device towards the controller. The individual
match-action flow rules are split between Switch A and Switch B in order to
provide the necessary TCAM space, thereby simplifying the implementation of

control plane applications.

*https://support.hpe.com/hpsc/doc/public/display?docld=c04217797&lang=en-us&cc=us
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Figure 3.4: lllustration of the device aggregation feature.

Device Aggregation

Similarly to the table capacity extension, some features of a single deployed
switch are often not sufficient for a task. Simply deploying a “bigger” device
would often solve problems with respect to number of ports, number of tables,
or even supported features. However, such hardware is not always available, or
may be too expensive for the task at hand. TableVisor features a cost-efficient
way to aggregate features from multiple networking devices in a single, virtual
device. This is especially useful if these devices feature very different charac-
teristics, e.g., a “dumb” forwarding device with many ports and a smart router,
VNF, or programmable NIC.

The general approach towards the different aggregation features is shown in
Figure 3.4. The capabilities of multiple devices (Switch A, B and C) are presented
as a single switch with a mix of all of their capabilities, tables, and ports towards
the control plane, based on the intended use case.

Port extension. If a single device does not provide sufficient ports to connect
to all of its neighbors, but features all of the required functionality, TableVisor
can be used to extend the port number by seamlessly integrating another device.
The devices would best be connected via dedicated trunk links at higher rates
due to the increased amount of traffic between these two switches. Alternatively,
multiple ports can be spent for the inter-device communication, depending on

the situation.
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Extension of number of tables. In many cases, SDN forwarding devices
perform multiple actions based on multiple matching criteria. To prevent an ex-
ponential explosion of flow rule numbers [154], multiple tables can be used in
succession for these tasks. However, not all devices support multiple tables na-
tively. TableVisor can be used to aggregate existing devices and present their
tables next to each other in a single, multi table device to the controller. In par-
ticular, it would handle the mapping of global table IDs to local, device-specific
tables, as well as ensure interoperability, e.g., by translating GOTO_TABLE mes-
sages to their respective OUTPUT actions if the desired table is located on an-
other switch.

Aggregation of features. Finally, not all tables of an SDN switch provide
the same capabilities. For example, only a limited number of hardware accel-
erated rules is often able to push or pop header fields at line rate in the data
plane. Sometimes, the required characteristics for a specific task are not simul-
taneously supported by a single device, e.g., the required number of ports and a
specific set of actions, but can possibly be provided by sophisticated hardware
such as P4 devices like Barefoot’s Tofino hardware.® In these cases, TableVisor’s
mapping can be used for a seamless combination of separate devices with the re-
quired capabilities. This way, the required characteristics can easily be recreated
by available, cheap hardware in a brownfield deployment or for rapid prototyp-

ing of new concepts as well as to emulate devices for research purposes.

3.2.4 Supported Topologies

This section covers the different underlying topologies the TableVisor approach
is able to leverage for its data plane abstraction. Figure 3.5 shows the four most
common pipeline structures. Note that these topologies represent common de-
sign patterns. The TableVisor approach is not limited to these types of topologies

and can be adapted to the specific use case.

*https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-
switch.html
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Figure 3.5: Available topologies for TableVisor abstraction.

Staged Pipeline. Figure 3.5a shows the staged pipeline, in which each ele-
ment provides additional features or TCAM space. All hosts or uplink switches,
represented by circles in the figure, are connected to the first stage of the
pipeline. From there, packets only need to enter the stage providing the capabili-
ties needed for their specific processing requirements. This minimizes the over-
head induced by the abstraction while still enabling more complex use cases.
The abstraction is realized by emulating multiple tables, each represented by at
least one switch of the pipeline.

Unidirectional Pipeline. An extension of the staged pipeline is shown in
Figure 3.5b. The unidirectional pipeline allows hosts or up-link devices to connect
to both ends of the pipeline. However, packets may only traverse the pipeline
in one direction. A direct communication between network elements connected
to different pipeline ends is thus not possible in this scenario. Instead, this em-
ulation type is especially useful in VNF offloading scenarios that only need to
handle unidirectional traffic.

Bidirectional Pipeline. The third extension supported by the TableVisor
concept is the bidirectional pipeline illustrated in Figure 3.5c. This layout al-

lows the connection of hosts or up-link switches to either the first or last switch
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of the pipeline respectively. Simultaneously, the direction of paths through the
pipeline is arbitrary in this case and packets can enter as well as leave the switch
aggregate at both ends. This structural layout further increases the capabili-
ties of the emulated switch at the cost of further management complexity. This
pipeline type is best used in VNF offloading cases that require bidirectional traf-
fic, e.g., in request-response scenarios.

Circular Pipeline. The final pipeline type supported by TableVisor is the
circular pipeline shown in Figure 3.5d. Thereby, data plane devices are arranged
in a ring topology and hosts as well as up-link switches can be connected to
every element of the pipeline. This significantly increases the total number of
ports available for the emulated switch. Hence, this emulation type can be used
to deploy use cases in which a large number of ports is required. The drawback
of this setup is the need for internal forwarding rules in order to ensure that
traffic still reaches its intended destination. Depending on the specific use case,
this may, in the worst case, lead to one forwarding rule per connected host or
up-link device, significantly reducing the effective TCAM space available for the
application.

Finally, these different topologies can be used by multiple TableVisor in-
stances in a single network deployment, as shown in Figure 3.6. In this case,
the controller identifies five devices in the network, indicated by the control
channel connections. The switches connected to each of the respective Table-
Visor instances are abstracted into a single emulated device. In addition to the
TableVisor instances, additional data plane devices can be used without the ab-

straction layer.
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Figure 3.6: Schematic depiction of a network using multiple TableVisor in-
stances.

3.2.5 Use Cases

In the following section, we present two specific exemplary use cases that show
how the features presented in the Section 3.2.3 can be leveraged to design com-
plex scenarios using simple and affordable network components. We start by de-
tailing an access control list (ACL) setup comprised of multiple, non-expensive
and highly available single table switches and how the device aggregation fea-
ture is used to realize this use case. Furthermore, we demonstrate how control
channel protocol translation can be used to realize powerful use cases using
common network components by describing an MPLS label edge router real-
ized through the incorporation of non-expensive, P4-enabled devices into the

data plane.

ACL Multi Table Switch

The first example we detail is the realization of an emulated multi-table switch
performing access control as well as forwarding. A scenario like this can be
especially useful in brownfield deployments in which new applications and de-

vices have to co-exist with legacy solutions in both control as well as data plane.

99



3 Abstracting Heterogeneous Data Plane Solutions

The idea here is to combine multiple widely available and affordable single table
switches to enable a single, multi table application. In this specific use case, the
usage of multiple forwarding tables alleviates the common problem of flow ta-
ble explosion [154] with legacy SDN devices. This problem essentially describes
a combinatorial problem occurring whenever a single or multiple actions need
to be performed based on combinations of two or more input values, like ACL
rules and MAC addresses. In a single table scenario, all ACL rules would need
to be recombined with all possible output MAC addresses, leading to N x M
flow rules in total. When moving to a multi table scenario, the total number
of required flow rules to achieve the same functionality is reduced to N + M.
Thereby, the first table can perform the access control lookups and an indepen-
dent second table is used to perform the L2 forwarding task. Figure 3.7 shows
a schematic setup of TableVisor realizing this multi table switch by combining

two single table devices.

Controller
OpenFlow
TableVisor
OpenFlow OpenFlow
Global Controlled
e, Switch 1 __S90The | Switch2 e,
ACL Forwarding

Figure 3.7: Schematic ACL setup using two single table devices.

More specifically, we leverage the device aggregation feature discussed in Sec-
tion 3.2.3, to combine two, potentially heterogeneous, data plane devices into a
single, emulated switch featuring two tables. This emulated device is then trans-
parently presented to the controller as a regular hardware device. Hence, neither
the devices, nor the controller are required to provide any specialized function-

ality to be used in this environment. Instead, all involved parties communicate
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using their version of the OpenFlow protocol. Due to the control-channel proto-
col translation functionality of TableVisor, the two switches as well as the con-
troller can thereby speak different versions of OpenFlow, or even a completely
different protocol. At the time of writing, TableVisor supports OpenFlow ver-
sions 1.0 and 1.3 as well as the proprietary control API used by Netronome P4
devices used in the example use case in the next section. The processing required
for this level of transparency, from control as well as data plane point of view,
is fully handled by TableVisor.

Through the message processing performed by TableVisor, the system is able
to emulate a multi-table switch towards the control plane without the need
for modification of the controller or the involved data plane devices. This in-
creases the reusability of legacy devices in brownfield deployments and allows
researchers to quickly prototype control plane applications for which expensive

hardware devices would be required, otherwise.
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Figure 3.8: Schematic MPLS lable edge router setup using a P4 device.

P4 Label Edge Router

The second example application we discuss in this work is the realization of an
MPLS label edge router using a regular OpenFlow device in combination with
a two port P4 PCle extension card. The goal here is to extend the functional-

ity of a simple, affordable and widely available OpenFlow device by adding the
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programmability of a single P4 device. Thereby, we are able to leverage the port
capacity of the OpenFlow switch as well as the processing flexibility of the P4
device and combine them into a single, powerful, emulated data plane device
towards the controller. The general setup of this application is shown in Fig-
ure 3.8. It is essentially a combination of the port extension, feature aggregation
and P4 device integration features described in Section 3.2.3.

Here, the switch communicates with TableVisor using regular OpenFlow. The
P4 device, a Netronome Agilio CX SmartNIC 2x10G, is controlled via the pro-
prietary CLI tool shipped with these kinds of PCle extension cards. TableVisor
handles the translation between the OpenFlow protocol used to connect to the
controller and the proprietary control interface of the card. This control channel
translation mechanism allows the transparent integration of the P4 device into
the data plane without the need for modifications of any part of the system. As
the SmartNIC only features two ports, the OpenFlow switch is instructed to out-
put all GotoTable instructions at one port connected to the NIC and forward
packets coming from the other port connected to the NIC. Information required
for the forwarding process can be included using the metadata functionality of
TableVisor, as described in [20]. The P4 device then performs all the heavy lift-
ing, like pushing and popping MPLS headers, essentially using the OpenFlow
switch as a port replicator. Note that the Netronome devices used in this use
case feature two 10 GbE ports while the OpenFlow switch only features 1 GbE
regular ports and two 10 GbE uplink ports.® The implementation of this use case
can be found in the GitHub repository accompanying this work.”

Note that the P4 device in this scenario could also be replaced by a VNF per-
forming the processing tasks. This again simplifies rapid prototyping and seam-
less integration of complex networking functionality without modification of

the control plane in a brownfield deployment.

SHP 2920-24G + 2x10G
"https://github.com/Isinfo3/J TableVisor
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To summarize, we have introduced the concept of transparent data plane ab-
straction, realized by a dedicated shim layer between the network control plane
and diverse data plane solutions. Furthermore, the features provided by our proof-
of-concept implementation are outlined and we show that the integration of generic
OpenFlow capable devices with P4-enabled programmable switches and NICs is
possible. Applications such as port, table or feature aggregation have been outlined
and exemplary use-cases have been realized using our proof-of-concept implemen-
tation. Based on the presented insights, we can conclude that multi-technology data
plane solutions are indeed feasible and can be realized using already available tech-
nology on both control and data plane as well as using existing communication
protocols like OpenFlow (RQ3.1, RQ3.2).

3.3 Performance Evaluation of TableVisor

In order to evaluate the implications of TableVisor in different use cases, we
conducted extensive delay measurements with respect to different control plane
interactions. We evaluate scenarios in which we measure the controller’s inter-

action with the data plane devices, specifically:

1. The way TableVisor influences the overall control channel delay of a
bulk of operations, namely F1lowMod installations targeted to multiple

switches,

2. The influence on the delays of individual messages, for example

FlowStatsRequests, during regular operation.

Thereby, the influence of the number of installed FlowMods as well as the
number of connected switches is investigated with both software and hardware
switches as well as varying controllers.

The three main OpenFlow instructions we use during the presented mea-
surement study are F 1 owMods that modify the match-action rules installed in a
switch flow table, FlowStat sRegeuest s that query statistics about installed
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flow rules from connected switches and BarrierRequests that instruct the
switch to issue a BarrierReply once all previously issued instructions have
been processed. The latter is used purely for monitoring purposes in order to
trigger a notification once a device has completed all issued instructions. The
exact message flows for the scenarios investigated in this thesis are shown in
Figures 3.11 and 3.12.

Controller Controller

ONOS / Ryu ONOS / Ryu

| | TableVisor

l l Multi-Switch App
v I v
Hardware Hardware Hardware t Hard: Hard:
Switch Switch Switch Switch Switch Switch
HP 2920-24G HP 2920-24G HP 2920-24G HP 2920-24G HP 2920-24G HP 2920-24G
(a) Without TableVisor (b) With TableVisor

Figure 3.9: Performance overhead measurements with hardware switches.

Figures 3.9 and 3.10 provide an overview of the experiment setups for the per-
formance comparisons. Here, Figure 3.9 represents the topology use in a staged
pipeline scenario with one to three hardware switches, as well as two hosts® for
the controller and TableVisor itself. The switches are either connected directly
to the controller, or to the TableVisor instance, which acts as a single multi-table
switch towards the controller. In order to investigate the impact of horizontal
scaling of the pipeline, a similar topology with up to 50 switches has been em-
ulated using Mininet, as shown in Figure 3.10.

In particular, we measure the F1lowMod installation times with and with-
out TableVisor by sending multiple F1lowMod messages followed by a sin-
gle BarrierRequest. Thereby, without TableVisor, each switch receives its

FlowMods directly from the controller. In the scenario with TableVisor, all

8Controller: Intel Xeon X5650 @2.67GHz with 36GB RAM, TableVisor: Intel Xeon D-1548 @2.00GHz
with 32GB RAM.
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Figure 3.10: Mininet scenarios for switch number performance tests.

FlowMods are sent to the TableVisor instance, which then distributes the rules

to its underlying hardware devices acting as tables in the emulated switch. The

installation time is then given by the time difference between the first F 1 owMod

and the last BarrierReply as seen on the controller host. This measurement

methodology has been validated in detail in [155]. Figure 3.11 shows an ex-

emplary message flow in this measurement scenario in case of two connected

switches.
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Figure 3.11: Message flow for F1owMod installation with two switches.
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Figure 3.12: Message flow for FlowStat sRequest response time with two
switches.

For all such experiments, 10 repetitions of each configuration were performed,
and all displayed results show the mean installation time with a 95% confidence
interval. The F 1 owMods used during the evaluation consist of a match on ether-
type 0x800 (IP), the TCP protocol as well as a randomly chosen TCP port. Addi-
tionally, the priority of the F'1owMod is chosen at random between 1 and 255.

For the single-response delay measurements, we captured 30 seconds of
ONOS’ regular operations after installing the F1lowMods. During this time,
ONOS sends FlowStatsRequest messages to every connected switch ev-
ery 5 seconds. For each such request, we measure the time difference between
the FlowStatsRequest and the corresponding FlowStatsReply mes-
sage as perceived by the controller. Note that TableVisor does not aggregate
multiple FlowStatsReplies into a single message, but passes each of them sepa-
rately to the controller by leveraging the ReplyMore flag. Figure 3.12 shows
again the exemplary message flow in case of two connected switches with and
without TableVisor. Based on all such request-reply-delays observed during the

30-second interval, we evaluate their mean values and 95% confidence intervals.
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Figure 3.13: FlowMod setup times for 2 controllers (Ryu, ONOS), 1 to 3 hardware
switches, with and without TableVisor, and 50 to 500 FlowMods.

3.3.1 FlowMod Setup Times

Figure 3.13 shows the FlowMod installation times with one, two, and three
hardware switches, using the Ryu controller on the left, and the ONOS con-
troller on the right. On the x-axis, the number of F1owMods that every switch
receives is given, while the y-axis displays the corresponding setup times in sec-
onds. The color indicates the number of switches used in the experiment. Solid
lines indicate the bare controller-switch-scenario, and dashed lines refer to the
same scenario including TableVisor.

In both controllers’ scenarios, the installation times without TableVisor, as
shown by the solid lines, are very similar. They range from 0.1 to 1.5 seconds,
and the number of connected switches only has a minor impact on the mea-
surements. The steep increments after 200 and 350 F 1owMods are expected to
originate from the switches’ underlying hardware setup, i.e., the time it takes the
switches to process the F 1 owMods increases with their TCAM utilization [156].
With ONOS, TableVisor causes an additional delay of roughly 0.2 up to 0.25 sec-
onds in the control plane throughout all switch counts and F1owMod numbers.
With Ryu, this additional delay shows a slight linear increase with F1owMods
after connecting multiple switches. This is due to Ryu generating and sending
the messages through a single thread while ONOS uses multiple threads to send

messages. Figure 3.14 shows the difference of means between scenarios with and
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Figure 3.14: Linear regression of difference of means between with and without
TableVisor for FlowMod setup times for 2 controllers (Ryu, ONOS),
1 to 3 hardware switches and 50 to 500 FlowMods.

without TableVisor and confirms these observations. The linear regression for-
mulas provided in Figure 3.14 show that, especially when using the production
ready controller ONOS, the additional delay caused by the TableVisor proxy
layer is dominated by the inherent F1lowMod installation times of hardware

switches, even for higher loads.

The F1owMod installation times obtained from the software scenario are pre-
sented in Figure 3.15. Hereby, the x-axis shows the number of OVS instances
connected to either the controller or TableVisor, and the y-axis contains the
respective setup times. The graph is split into groups for each of the both con-
trollers, Ryu and ONOS, and each of the F1owMod counts of 50 and 250, while
the color indicates whether the switches were connected directly or TableVisor
was used.

When using Ryu, the F1owMod installation times increase linearly with the
number of connected devices, both in the 50 and 250 FlowMods case, peaking at
0.25 and 1.25 seconds, respectively. In low-load scenarios, the use of TableVisor
causes an additional latency of up to 0.13 seconds. This overhead is decreasing
with increasing load on the setup, and after 15 switches with 250 F1owMods, it
becomes negligible compared to the bottleneck Ryu introduces. This increment
in the performance of TableVisor is likely due to the Java JIT compiler that is able
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Figure 3.15: FlowMod setup times for 2 controllers (Ryu, ONOS), with and with-
out TableVisor, with 50 and 250 F1owMods per switch, and 5 to 50
software switches.

to perform various optimizations at runtime. The results obtained in the ONOS
scenarios show a much smaller installation time due to more efficient processing
via multi-threading. With 250 F1owMods, ONOS setup times peak at only 0.25
seconds without TableVisor, and rise up to 0.75 seconds with TableVisor. This
additional delay is not only caused by the processing time of TableVisor, but also
by ONOS itself as it generates and transmits the F1 owMod messages in a much
slower pace when connected to TableVisor, presumably due to its internal multi-
threading structure as we only present a single virtual switch to the controller.
Note that, when the abstraction of large device numbers is desired, the devices
can be split into multiple TableVisor instances. Consider the scenario indicated
by the purple line in Figure 3.15, in which two TableVisor instances each handle
50% of all connected devices. Here, the installation times peak at 0.5 seconds
when both instances handle 25 switches, which effectively halves the overhead

introduced by our concept in that case.
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Figure 3.16: FlowStats Request-Reply delays for hardware and software
switches with the ONOS controller.

3.3.2 FlowStats Request-Reply Delay

Figure 3.16 presents the delays for the individual FlowStats Requests with
up to three hardware switches as well as up to 50 OpenvSwitches. In the
hardware measurement in Figure 3.16a, the x-axis depicts the number of
installed flow rules, while the y-axis shows the measured delay between
FlowStatsRequest and FlowStatsReply. The latency without TableVisor
ranges from roughly 10 ms to 155 ms and is mostly independent of the switch
count. The additional delay introduced by TableVisor is steady around 10 ms to
15 ms throughout all investigated F 1owMod counts for one and two switches,
rising much slower compared to the overall latency. With three switches, this
difference peaks at 25 ms with 500 F1owMods, which equals a 16% overhead
compared to the pure ONOS case.

Finally, Figure 3.16b presents the FlowStat sRequest delays with an in-
creasing number of software switches. In this case, the y-axis again shows the
measured delay of the request-response pair, while the x-axis shows the number
of connected software switches. While the pure ONOS measurements appear
to be nearly constant for 50 F1lowMods, they increase linearly from 3 ms to
13 ms when the FlowStats Replies contain 250 F 1owMods each. The TableVisor

measurements show a notable overhead of 12 ms to 34 ms with 50 F1owMods,
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and 22ms to 76 ms with 250 F1lowMods, respectively, peaking at a mean re-
sponse time of 89 ms with 50 connected switches and 250 FlowMods. How-
ever, it should be noted that these results apply to this specific scenario, and
do not only comprise the processing delay of TableVisor. Albeit the mean la-
tency remains quite stable throughout the different samples, the delays of in-
dividual switches vary a lot when using TableVisor. Most notably, it should be
considered that all software switches are located on the same host in the Mininet
scenario. When TableVisor receives the FlowStat sRequest message, it im-
mediately sends 50 copies of it towards the switches. However, when ONOS is
directly connected to them, the individual requests are spaced out throughout
a certain period, allowing the Mininet host to spread the workload and reply to
individual requests faster. If we compare the time difference between the first
FlowStatsRequest and the last FlowStatsReply, similarly to the pre-
vious F'1owMod installation time measurement, we observe 0.175 seconds with
TableVisor and 0.202 seconds with ONOS directly connected to 50 switches in
the 250 F1lowMod scenario. Overall, although individual messages receive an
overhead delay from TableVisor during such a bulk update, the total time until
the controller receives all updates is even shortened by this approach.

3.3.3 Data Plane Overhead

As, in our measurements, TableVisor only interacts with the control plane of
OpenFlow devices, the above evaluation does not consider data plane perfor-
mance. Here, we evaluate the latency introduced in the data plane by concate-
nating multiple data plane devices into a single pipeline. To do so, we measure
the end-to-end delay of the emulated pipeline using a Spirent C1 Testcenter as

the traffic generator.
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Figure 3.17: Data plane delay of an emulated multi-table switch for different
frame lengths and load levels.

Figure 3.17 shows the average delay in a pipeline comprised of four identical
HP 2920-24G switches along the y-axis. Different load levels, in percent relative
to the maximum of 1 Gbps, and frame lengths are indicated along the x-axis and
by differently colored bars, respectively. The whiskers describe 95% confidence
intervals. It can be seen that both the delays and the confidence intervals are
independent of the load and are constant for all three load levels. The frame
length, on the other hand, has significant influence on the end-to-end delay,
which indicates that a large portion of the time is used to write the information
to the transmission media while the processing of packets is independent of the
packet size.

Note that this evaluation is independent of the TableVisor implementation.
This particular scenario is similar to the multi-stage ACL deployment presented
in Section 3.2.5 to alleviate shortcomings in the devices’ capabilities. Although
the setup is achieved by our TableVisor proof-of-concept, there is no further
interaction after preparing the configuration as the data plane traffic does not

trigger actions in the control plane.
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In this section, we have investigated both the impact of the additional abstraction
layer on control plane performance and on data plane performance. As is intuitively
expected, data plane performance is fully independent of the use of TableVisor and
is only dictated by the number of devices a packet has to pass through. When it
comes to control plane performance, our measurements have shown that depending
on the deployed controller application, the overhead induced by our approach varies
based on specific configuration, but remains within suitable levels even for large
configurations with up to 50 software switches connected to a single TableVisor
instance. Based on these observations, we can answer RQ3.3 and conclude that the
developed proof-of-concept, while inducing additional control plane delay, operates
well within the time scales expected from directly connected hardware devices and
scales well with the total number of abstracted devices. A detailed discussion of

these results is presented in Section 3.4.

3.4 Challenges and Limitations

In this monograph, we propose the concept of data plane device aggregation and
provide a proof-of-concept implementation of our approach. In order to detail
required considerations and limitations of TableVisor, we discuss the most im-
portant points regarding the operation of TableVisor. Furthermore, we explain
current limitations of the implementation as well as general limitations of the
approach and describe trade-offs that come with the application of TableVisor.
Where applicable, we provide potential mechanisms to alleviate the limitations
due to the device abstraction.

Performance Characteristics. The performance with respect to additional
control plane delay as well as data plane latency when using our approach has
been described in the previous section. However, there are some aspects that
need to be taken into account when it comes to real world deployments of Table-
Visor, including research and development scenarios.

Regarding data plane performance, one has to consider the limitations of all

devices involved in a TableVisor emulated switch. As traffic needs to traverse
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multiple devices, the total delay to go through the emulated switch will be the
sum of individual device delays. This effectively limits the number of stages
used in a specific deployment in order to not exceed the data plane delay re-
quirements. However, as observed in Figure 3.17, the relevant timescales are in
the order of tens of microseconds. Additionally, in the real world, it can be ex-
pected that this issue only impacts very specific use cases, as we have shown in
Section 3.2.5 that the size of aggregates can be kept low, while still able to solve
complex use cases. Furthermore, the available bandwidth between physical de-
vices needs to be taken into account as the traffic of multiple input ports may
need to be passed on to a second stage. However, depending on the use case and
the available hardware devices, the impact of this limitation can be alleviated by
mechanisms like providing multiple uplink ports between stages as a trade-off

between externally available ports and internal bandwidth capacity.

When it comes to control plane performance, the response time needs to be
taken into account in addition to the feature set of emulated devices. The re-
sponse time of messages is, in general, limited by the slowest device in the
aggregate. However, TableVisor’s use of the SEND_MORE flag allows modern
controllers to start processing replies before all switches answer to a request,

resulting in faster control plane updates.

Finally, it needs to be considered that TableVisor is in many cases not a drop-
in solution for already deployed networks. Instead, it is well suited to combat
heterogeneity of single devices as well as to provide missing functionality by
adding a carefully selected set of devices in combination with TableVisor’s ag-
gregation features. However, the actual devices to be combined need to be se-
lected carefully as TableVisor allows the aggregation of nearly arbitrary devices.
TableVisor does currently not provide any form of sanity checks or implicit op-
timization, therefore it is possible to create emulated devices with unexpected
behavior, e.g., unevenly sized tables or specialized tables that lack basic features.
This needs to be taken into account during deployment and must be avoided ei-
ther by using a suitable set of switches or worked around on the controller or

application side.
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Fault Tolerance. When assessing the fault tolerance of a proxy-based ab-
straction approach, both the failure probability of the proxy itself and the un-
derlying abstracted devices are relevant. As for TableVisor itself, additional com-
ponents in the system increase the overall failure probability, as it potentially
adds another single point of failure to the control channel. To alleviate this is-
sue, TableVisor was designed without the need to track run-time state to enable
fast re-initialization in case of software failures. An outage of TableVisor, from
both the controller’s and the devices’ view, appears as a short disconnect of the
control channel and no data is lost in this case. Additionally, the stateless na-
ture of TableVisor enables mechanisms like fast fail-over through hot standby to
minimize downtime. These mechanisms may be implemented in future exten-
sions of this work. If hosted on similar hardware as the actual SDN controller,
TableVisor is subject to the same hardware failure conditions as the controller
itself.

As for failures in the data plane, due to the abstraction, problems of individual
data plane devices result in the outage of the entire abstracted device chain. This
is a limitation of the proposed approach and can not easily be worked around.
Potential approaches to alleviate this issue include the use of backup devices or

the dynamic deployment of OVS instances to take over from a failed device.

Scalability. Finally, when it comes to the scalability of the TableVisor ap-
proach, multiple aspects that are related to the previously mentioned points
have to be taken into account. First, the introduction of TableVisor into the con-
trol channel affects the control plane performance of emulated devices. This
has been evaluated in detail in Figures 3.13 and 3.15. The evaluation has shown
that, when using hardware switches, TableVisor induces a near constant offset
regarding control plane delay. We have also seen that the behavior strongly de-
pends on the controller used. In general, our measurements have shown that
TableVisor scales linearly with the number of devices in the evaluated scenar-
ios with up to 50 switches and 250 FlowMods per switch. We assume that this
linear scaling holds true for larger scenarios. However, this needs to be verified

by means of additional measurements in the future. However, as with the data
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plane delay mitigation, we assume that in many real world applications, like the
examples shown in Section 3.2.5, the number of devices will be limited. Hence,
the results shown in Figure 3.13 should be considered for real world use cases.
Opverall, it needs to be taken into account that the emulation features provided
by TableVisor come with certain trade-offs regarding the control plane and data
plane performance, and may also impact other aspects of a network such as
resiliency and fault tolerance. Some of these can be worked around using the
controller, while others can be limited to a certain extent, e.g. by restricting the

number of hardware devices used in a single TableVisor emulated device.

3.5 Lessons Learned

In this chapter we presented TableVisor, a transparent proxy layer that allows
the emulation of hardware-accelerated data plane devices towards a standard
SDN controller. On the one hand, this functionality allows the aggregation of
devices towards the controller to simplify its view of the network and reduce
overhead, e.g., through topology discovery. On the other hand, it enables more
powerful and more flexible use cases through the introduction of hardware-
accelerated pipeline processing using multiple data plane devices with differing
technologies. In this context, our proof-of-concept enables the integration of P4
hardware into an OpenFlow controlled network. The generic abstraction func-
tionality of TableVisor allows the application of the approach as a tool during
rapid prototyping and the emulation of state-of-the-art devices for research pur-
poses in addition to the realization of new, more complex use cases. Hence, we
are able to answer research questions RQ3.1 and RQ3.2, and conclude that the
integration of multi-technology data plane solutions can be realized using ex-
isting mechanisms, protocols and technologies.

We performed an extensive performance evaluation to investigate the im-
pact of our approach on the control plane performance. Measurements involving
hardware devices have shown that TableVisor introduces a constant additional

delay in the control channel that is independent of the respective workloads.
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Extending the evaluation to software data plane solutions has shown that our
approach scales well with the number of abstracted devices. Finally, a detailed
discussion regarding the limitations with respect to performance, fault tolerance
and scalability allows us to answer RQ3.3 and conclude that the concept of data
plane abstraction can be exploited to realized highly complex network functions
and processing pipelines while maintaining high performance processing.

Our investigation has shown that TableVisor is a suitable tool to realize not
only complex new use cases using a combination of hardware devices, but also
to support the rapid development promised by the SDN paradigm. In constantly
changing and developing networks, the high flexibility provided by TableVisor
allows SDN application developers, network orchestrators and researchers to

realize use cases that face limitations using single, dedicated hardware devices.
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loT-focused MVNO Core Network

After the evaluation of single-component software-based network functions in
Chapter 2 and the study on data plane abstraction presented in Chapter 3, the
final chapter of this monograph covers the performance evaluation of complex
multi-component queuing systems. More specifically, we investigate a large
scale microservice architecture consisting of a multitude of virtualized cloud
services.

However, when considering the analytical or numerical modeling of such sys-
tems, the list of constraints quickly limits the practical application of many ap-
proaches. Methodologies like Jackson Networks [157, 158] in which all service
time distributions need to be negative exponentially distributed and all events
need to be processed on a first-come-first-serve basis do provide product-form
solutions to open queuing networks. However, these constraints often do not
hold in practice. Even with the extensions provided by Gordon et al. [159] their
application for modern queuing networks remains limited. Further extensions
by Baskett et al. [160] and Gelenbe [161, 162] do provide solutions under less or
more flexible constraints but still require substantial abstractions when dealing
with real world systems. Finally, approaches using the renewal approximation
in combination with discrete-time analysis, as seen in Chapter 2, can be used to
describe complex queuing networks [163, 21].

Due to these limitations, other approaches to evaluate complex queuing net-
works are required. Especially in the context of modern microservice architec-

tures in which a multitude of heterogeneous components interact with each
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other, we reach the limits of the aforementioned approaches [164-166]. Hence,
many investigations resort to simulative approaches when it comes to systems
of this level of complexity [167-169].

Similarly, we develop a scalable simulation model in order to investigate a
complex system of queuing elements comprised of inter-dependent VNFs. The
system analyzed in this work represents the core network of an MVNO that has
been modeled in close cooperation with the development team of the operator.
In this context, both the load profile applied to the system and the individual
components of the microservice architecture are evaluated in detail in order to
develop an accurate simulation model. Finally, an extensive set of measurements
are conducted to validate our model.

More specifically, we first investigate a large scale dataset containing the
2G/3G signaling traffic of over 270,000 unique IoT devices. These data points
have been monitored in cooperation with aforementioned MVNO and contain
the raw signaling traffic as it arrives at the core network. We perform a detailed
investigation of this dataset in order to assess key characteristics of both the ag-
gregated traffic and per device message flows. These findings are then used to
define an abstract behavioral model for IoT devices that is subsequently used as a
load profile. Based on this behavioral model and detailed knowledge of both the
network domain and the core network architecture, we then develop a detailed,
simulative model of the network core components and perform a case study on
overload control to show both the scalability and accuracy of our simulator.

Based on the classification of the workload and the development and valida-

tion of the simulation model, we identify the following research questions.

RQ4.1) Can IoT devices be characterized based solely on their signaling traf-
fic? This includes the investigation of the traffic of single IoT devices as

observed at the modeled core network.

RQ4.2) How can the aggregated signaling traffic as seen by the core network
by characterized? This includes the analysis of the aggregated traffic re-

sulting from a superposition of multiple IoT device signaling flows.
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RQ4.3) How accurate can a system of this complexity be simulated while main-
taining practical feasibility? This includes both the accuracy and scala-

bility of the developed simulation model.

RQ4.4) Can our simulation model be applied to answer both questions of di-
mensioning, such as the detection of bottlenecks, and evaluate possible
extensions of the system ahead of deployment? This includes the appli-
cations of the developed simulation model and whether the previously
validated accuracy can be maintained while extending the simulation

through new features.

In order to address these research questions, we provide related work as well
as the required background for the remainder of this chapter in Section 4.1.
Section 4.2 subsequently covers the analysis of the obtained dataset and lays the
groundwork for establishing our device behavior model used later in Section 4.3
as a load profile. In the same section, we also introduce our simulation model.
A detailed case study on different overload control mechanisms is conducted in
Section 4.4. Finally, Section 4.5 summarizes the lessons learned in the context of

this work. The main contributions can be summarized as follows.

C2.1) Development of a simple feature set that allows classification of IoT de-

vices based on their signaling behavior.

C2.2) Identification of key characteristics of aggregated signaling traffic of IoT

devices.

C2.3) Development and validation of a detailed, extendable, simulation model

of a complex microservice architecture.
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These contributions have been published in the past and are condensed in

this monograph based on the following scientific publications.

« Geif3ler, S., Wamser, F., Bauer, W., Krolikowski, M., Gebert, S., Hof3feld,
T.: "Signaling Traffic in Internet-of-Things Mobile Networks," in 2021
IFIP/IEEE International Symposium on Integrated Network Management
(IM), 2021. [22]

« Geildler, S., Wamser, F., Bauer, W., Gebert, S., Kounev, S., Hof3feld, T.: "Sim-
ulating Fully Virtualized IoT-centric Mobile Core Networks," Under sub-
mission, 2021. [4]

4.1 Background and Related Work

The adoption of the cloud computing paradigm has paved the way for system ar-
chitectures to become increasingly complex. The possibility of on-demand scal-
ing, both vertically and horizontally, provided the basis for dynamically chang-
ing infrastructures. Where legacy systems have been realized by large, mono-
lithic components, modern applications and infrastructures are often built in the
form of microservices. These systems are comprised of a multitude of tiny soft-
ware services that act in unison to perform complex tasks [170]. To achieve this,
each component of a microservice architecture represents a highly specialized
actor that is responsible for one very specific task. These tasks range from sim-
ple queue management, e.g. keeping track of waiting requests, to more complex
operations such as decryption and encryption or database queries. In general,
microservices are small application that can be deployed, scaled and tested inde-
pendently of the remaining infrastructure [171]. Through these properties, the
microservice concept promises to improve scalability, streamline deployment of
new services and reduce time to market while simultaneously increasing relia-
bility [172]. A popular example of the application of these principles is Chaos
Monkey by Netflix [173, 174], a software tool that systematically introduces link
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or network failures. Thereby, the idea is that the injection of realistic, manage-
able failures simulates real world operation and helps identify breaking points of
a live production environment. Similar concepts have been employed by Ama-
zon and Google [175] as well as Microsoft [176] and Facebook [177]. This adop-
tion of the microservice paradigm by industry giants shows how powerful this
technology is in practice.

At the same time, the move from singular, monolithic applications towards
a distributed microservice architecture introduces new challenges. Specifically,
the complexity of the infrastructure as a whole is essentially moved from the
application layer into the networking layer [171]. To address these new chal-
lenges, several approaches to assess the performance of single microservices as
well as whole microservice architectures have been proposed [167-169, 178—
180]. Our work builds upon this research body and introduces a detailed sim-
ulation model of a state-of-the-art microservice architecture. We later use said
model to explore overload control mechanisms to improve resilience against in-

ternal as well as external failures.

4.1.1 Internet-of-Things Traffic Classification

Previous research in the area of IoT traffic falls into two categories. Investi-
gation of traffic characteristics and datasets related to IoT deployments on the
one hand and research regarding the signaling efforts of both machine to ma-
chine (M2M)-centric mobile networks and common mobile networks on the
other hand. Studies investigating the traffic characteristics of IoT devices at a
large scale, i.e. evaluating global scenarios including roaming devices, are still
lacking from the general literature. Further, while all the following studies in-
vestigate traffic patterns of IoT devices, they all focus on data plane traffic. With
this work, we aim at filling the gap created by the lack of a detailed model of the

signaling behavior of IoT devices.
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Regarding research on IoT traffic characteristics, the authors of [181] have
compiled a taxonomy of available traffic patterns observed in IoT networks and
investigated the applicability of the Poisson approximation in the context of
IoT traffic. Further research in the area of IoT traffic modelling compares hu-
man generated traffic to M2M traffic [182, 183], proposed source traffic [184]
and traffic models [23] as well as classification mechanisms for smart devices
using WiFi [185] or general communication networks [186]. Finally, there exist
studies analyzing M2M communication [187]. However, all the above focus on
data plane traffic. Hence, when it comes to analyzing signaling traffic of mobile
IoT devices beyond a single Mobile Network Operator (MNO), to the best of our

knowledge, no other studies are available at the time of writing.

4.1.2 Mobile Network Architectures

Several works have been conducted investigating various aspects of mobile core

networks and MVNOs in particular.

Bedhiaf et al. [188] investigate different MVNO architectures w.r.t their de-
ployment time and overall suitability for virtualization. The authors of [189]
perform an extensive, crowdsourced measurement study and investigate aspects
of inaccurate billing and performance discrimination by examining user plane

traffic flows as well as several external data sources.

When it comes to the simulation of mobile networks, previous research has
looked into simulating radio access systems and signal propagation [190, 191].
Metzger et al. [192] investigate the performance of a virtual GGSN. Samoilenko
et al. [193] investigate the impact of the presence of IoT traffic on human com-
munication in LTE environments. However, the simulation proposed in this
work is, at the time of writing and to the best of our knowledge, the first protocol

level simulation of a mobile core architecture in the context of IoT.
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4.1.3 Overload Control for Mobile Networks

Aside from the microservice-specific mechanisms mentioned earlier, overload
or congestion control mechanisms mainly date back to the beginning of radio
networks. Originally, overload control was done at the air interface or radio ac-
cess network of mobile networks with radio resource management [194-197].
The challenge here was to efficiently assign subscribers and devices to radio
resources of a cell. However, with the introduction of smaller or even cell-free
architectures for machine-type communications as well as the new role of vir-
tual operators, air interface based overload control went out of the focus in favor
of signaling overload control in the mobile core [198, 199].

Common overload mechanisms for core networks are simple dropping or
probabilistic dropping [198]. More advanced overload mechanisms are specif-
ically designed to deal with bursty IoT traffic [198] or leverage explicit sig-
naling [199]. A detailed dissection of overload and congestion control mech-
anisms for both mobile core and radio access networks is provided by Ferdouse
et al. [200]. Adaptive and selective overload control mechanisms have been pre-
sented in [201]. Here, admission control rejects only specific requests that, for
example, lead to bottlenecks or otherwise reduce system efficiency. Similarly,
analytical approaches for overload scenarios have been developed in the past.
Tran-Gia [202] devised a discrete-time approach based around the remaining
unfinished work in a queuing system. Thereby, throttling in the form of reject-
ing newly arriving events is applied as soon as a specific threshold of unfinished

work is reached. Further analytical models are for example presented in [203].

4.1.4 Simulation Methodology

Finally, when it comes to the design and implementation of simulation models,
applying the correct methodology is crucial in order to obtain accurate and gen-
eralizable results. First, a suitable level of abstraction is required to enable the
assessment of relevant KPIs while keeping simulation complexity and runtime

in check [204, 205]. To this end, the simulation model presented in this chap-
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ter is represented by an event based simulation on protocol level. This means
that every single simulated device tracks its own state for the protocol used
during mobile signaling. On the one hand, this leads to a substantial amount of
signaling events that need to be simulated. On the other hand, this allows the
investigation of the interaction between the system and the signaling behavior
of devices.

This leads directly to the methodology decision of realizing the simulation in
the form of a model-driven simulation instead of trace-driven simulation [206].
Both approaches have been used extensively in the past [207-210]. However, as
one of the points of research is the interaction between system and device be-
havior, and trace-driven simulation essentially dictates the behavior of devices
ahead of time, the choice is clear. By developing a model that determines the sig-
naling load observed at the system, how retries are handled or what happens in
case of rejected requests, the interaction details can be captured and evaluated

under different circumstances.

4.2 Classification of Internet-of-Things Signaling
Traffic

Assessing the traffic carried in a communication network is an important task in
order to operate a network successfully. In particular, with new types of traffic
that have fundamentally different characteristics, such as the traffic occurring in
the context of the Internet of Things (IoT) [181, 184-186, 211], those assessments
are essential to plan and operate networks accordingly.

With IoT traffic, a number of new characteristics arise in the networks. By
2022, it is expected to have 18 billion IoT devices, 1.5 billion of which use cellu-
lar connectivity [212, 213]. These devices span heterogeneous areas such as in-
dustrial, healthcare, residential, automotive, sports, and entertainment. Between
2016 and 2022 there is an average growth of 21% per year, driven by new use

cases [213]. This growth in numbers as well as the heterogeneity raises the ques-

126



4.2 Classification of Internet-of-Things Signaling Traffic

tion of the scalability of the underlying infrastructure. Further, the characteris-
tics of traffic are fundamentally changing with IoT, especially given the growth
in machine-to-machine communications [214]. For 2020 about 41% or 12.86 bil-
lion IoT devices are installed as smart home devices [215]. The traffic generated
by smart home IoT devices differs from the traffic generated by conventional
devices [183]. In general, a mixture of machine-driven and event-driven traffic
patterns is expected for upcoming IoT traffic [181].

From a technical perspective, this change in mobile traffic is met by a differ-
ent handling of IoT devices in the networks compared to previous mobile use
cases. Newly emerging IoT MVNOs run specialized service platforms providing
worldwide device connectivity by leveraging already existing infrastructure of
MNOs [216]. By providing global coverage to their customers through roaming
agreements, MVNOs can provide their service without setting up a dedicated
physical cellular network infrastructure. This is technically implemented with
the IP exchange network (IPX) through which all physical and virtual providers
that roam with each other are connected [216]. It is a separate network paral-
lel to the Internet, so that mobile devices around the world can register with
a physical, local mobile network, and their traffic is forwarded to the respec-
tive provider responsible for their SIM card, in case the provider has a roaming
agreement with the given physical network.

This technical setup results in a mixture of traffic with unknown character-
istics in the mobile core of MVNOs, since traffic comes from different locations
and devices worldwide, different applications. In addition, different customers
are being aggregated through the usage of the IPX network [216, 217]. This
leads to unknown signaling traffic in the control plane, which results in signif-
icant uncertainties for the operation of networks [218, 219]. Overall, technical
questions such as the volume of expected signaling traffic, the identification of
certain classes of devices, or the identification of possible approaches to system

optimization become important.
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To provide a first step towards these issues, we aim at characterizing IoT sig-
naling traffic for mobile networks (i) from a mobile network operator’s point of
view, (ii) at device level, and (iii) for data connection establishment.

A large scale dataset is obtained by monitoring signaling transport (SIG-
TRAN) as well as 3GPP GPRS Tunneling Protocol (GTP) signaling traffic of over
270,000 IoT devices in cooperation with an MVNO that provides global IoT con-
nectivity through over 500 roaming partners in 192 countries. In this part of the
thesis, we dissect the signaling behavior of devices using 2G/3G network con-
nectivity and provide a broad overview regarding the signaling volume for both
protocol stacks and a detailed evaluation regarding the occurrence of specific
signaling patterns in the case of IoT traffic. Furthermore, we identify features
characterizing the signaling behavior of single IoT devices and perform a device
classification based on the identified signaling characteristics.

We evaluate the signaling behavior exhibited by devices of different device
classes and show that the devices of different classes exhibit statistically signif-
icant differences regarding their signaling traffic. Finally, we dissect the arrival
process of new data connections as a proxy for system load and present ap-
proaches to model the aggregated arrival process of the observed devices. We
show that the Markov assumption, widespread in standardization and litera-
ture [181, 23, 220, 221], regarding the aggregated arrival process for data con-
nections does not apply in reality by default, but can be restored through ad-
ditional modeling steps. The Markov assumption should, based on the theorem
of Palm-Khintchine, apply here, as the aggregated arrival process is the result
of the superposition of a sufficiently large number of independent sources. The
methodology used to obtain the results as well as the structure of the following

section is shown in Figure 4.1.
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Figure 4.1: Methodology used to obtain the results from the creation of a dataset
to the characterization of important key figures for IoT signaling traf-
fic in mobile networks.

4.2.1 Data Description and Processing

The raw data collected in this work consists of all SIGTRAN and GTP messages
between Home Location Register (HLR) and Visitor Location Register (VLR)
as well as between HLR and Visitor Serving GPRS Support Node (VSGSN) in
a roaming scenario. Consequently, all messages belong to the ETSI/3GPP Mo-
bile Application Part (MAP) protocol as part of the SS7 signaling system (ITU-T
Q.700-series) or the 3GPP GPRS Tunneling Protocol (GTP) respectively. This in-
cludes signaling for authentication (SAI), network attachment (UL, UL_GPRS),
data connectivity (PDP_CREATE, PDP_UPDATE, PDP_DELETE) as well as mo-
bility.

Table 4.1 provides a list of messages captured and parsed in the scope of
this work. The table also shows the corresponding dialog classification based
on message sequences.

The messages contained in the raw dataset are assembled into Dialogs using
Apache Spark. To this end, a state-machine keeps track of the current signaling
state of each device throughout the dataset and matches messages belonging
to the same dialog. Here, a dialog is defined as a single signaling interaction
between serving and home network and each dialog consists of all messages re-
lated to the initial request. A dialog is considered finished when the correspond-
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ing response has been captured. Hence, in accordance with the specifications of
the SS7 signaling system as well as the GTP protocol, the dialog assembly pro-
cess generates the dialog types presented in Table 4.1.
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Table 4.1: Dialog types generated by assembling corresponding messages. op code in brackets. Number of in-
sertSubscriberData Requests n € [1, oo|.

Dialog Abbreviation Contained Messages

sendAuthenticationInfo ~ SAI sendAuthenticationInfo Request(56)—
sendAuthenticationInfo Response(56)

updateLocation UL updateLocation Request(2)—
n X (insertSubscriberData(7) Request—
insertSubscriberData Response(7))—
updateLocation Response(2)

updateGprsLocation UL_GPRS updateGprsLocation Request(23)—
n X (insertSubscriberData Request(7)—
insertSubscriberData Response(7))—
updateGprsLocation Response(23)

cancelLocation CL cancelLocation Request(3)—
cancelLocation Response(3)

create pdp context PDP_CREATE createPDPContext Request(16)—
createPDPContext Response(17)

update pdp context PDP_UPDATE updatePDPContext Request(18)—
updatePDPContext Response(19)

delete pdp context PDP_DELETE  deletePDPContext Request(20)—

deletePDPContext Response(21)
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These dialog types have been selected for further study as they, as well as
their corresponding errors, contribute 95% of the total observed traffic volume.
All remaining dialogs have been combined into groups labeled OTHER in the
case of SIGTRAN and PDP_OTHER in the case of GTP. These dialogs are mostly
related to SMS transmission and interrogation requests, which have not been
evaluated in this work.

4.2.2 Dataset Overview

The dataset has been collected between 01.01.2020 and 31.01.2020. Figure 4.2
shows a timeseries over the whole month with the number of million dialogs per
hour depicted along the y-axis. It can be seen that the timeseries exhibits grad-
ual growth in signaling traffic over the monitored period. The blue line shows
a linear regression with a constant of 0.71 million dialogs and a coefficient of
0.00042 million dialogs per hour. Furthermore, the data exhibits a cyclic pattern
with 31 peaks, exactly the number of observed days. On January 8th an oper-
ator outage lead to a significant signaling incident, inducing roughly fourfold
signaling traffic for about 20 minutes before returning to baseline. The specific
reason for the incident in the visited network is unclear. In total, signaling traffic
from 346 different mobile networks in 192 countries has been observed during

the measurement period.

2.0- Measurement Error . — Signaling Outlier

% Linear Regression
S=15 ba f(x) = 0.000428x + 0.71
e g 1.0- ( I\)l/ight
55" Vo
S 05
0.0- ! ! ! )
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Time [Hours]

Figure 4.2: Number of signaling dialogs over time in January 2020.
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Table 4.2: Dataset overview and key data points.

. Messages Dialogs
Devices Operator Countr Type
P Y P Abs. Frac. Abs. Frac.
SIGTRAN

Error 14,400,550 0.010 3,849,272  0.006

274,184 j R R . s s .

346 192 Reject 198,425,402  0.140 0.587 99,212,701  0.152 0.551

(100%) Success 595,878,305 0.419 235,523,346  0.361

Unknown 26,165,873  0.018 20,829,090 0.032
GTPv1

930,602 Error 154,987,535 0.109 77,593,654 0.119

(84.,1%) 191 152 Success 431,698,276  0.304 0.413 | 215,848,695 0.331 0.449
Unknown 186 0.000 9 0.000
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Table 4.2 presents an overview of key characteristics regarding the dataset.
Between the two monitored signaling types GTP and SIGTRAN, roughly 270,000
devices have been observed, 84.1% of which have established at least one GTP
tunnel in the observed time frame. In total, devices have generated around 1.4
billion signaling messages, 72.3% of which relate to successful signaling proce-
dures. 14% are rejections by the system, which include disabled SIM cards as
well as networks blocked by configuration. 11.9% are related to error responses
for establishing PDP context, which include technical errors as well as devices
without remaining quota. After assembling the raw data into dialogs, about 650
million dialogs could be identified, 69.2% of which have been successful, 12.5%
have failed and 15.2% have been rejected by the system. A more detailed dissec-

tion of errors and rejected messages is provided in Section 4.2.3.

4.2.3 Global loT Statistics for the Dataset

This section summarizes general IoT statistics for the dataset before presenting
a detailed decomposition of the dataset. Finally, we present temporal correla-
tions within the dataset and show common signaling patterns that have been

observed.

General Statistics

On average, 172,000 unique IoT devices have been observed per day. A device is
counted as active if either a successful updateLocation (UL) dialog after authen-
tication or PDP context creation (PDP_CREATE) has occurred. Broken down to
hours, roughly 55,000 devices are active on average. In total, all devices gener-
ate an average traffic volume of 20 million signaling dialogs per day, 875000 per

hour, or 244 dialogs per second within our dataset.
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With regard to modeling purposes, the average number of signaling dialogs
per day and device amounts to 103 with a standard deviation (sd) of 1,485 and
a coefficient of variation (c) of 14.4. The high coefficient of variation indicates
high heterogeneity among devices.

Out of the 230,000 devices using data connectivity, on average, a device estab-
lishes 21.9 connections (sd: 84.7, c: 3.86) per day. The average duration is 2,890
seconds (sd: 20,205, c: 6.99). The high variation here is a further indicator for

highly heterogeneous behavior of the devices active in the dataset.

Errors and Rejected Dialogs

Of the 1.4 billion signaling messages, 27.7% relate to unsuccessful signaling pro-
cedures, with errors and rejected messages contributing 12.5% and 15.2%, respec-
tively. An error is defined as an invalid sequence of signaling messages, such as
incomplete or out of order interactions. As it is nearly impossible to identify the
reason for incomplete dialogs, the observed errors are not evaluated in more
detail at this point.

Some dialogs have been actively rejected by the home network. These con-
tain mostly requests from devices equipped with SIM cards that have not been
activated, are no longer active or are not allowed to establish data or phone
connectivity. In this context, two reasons for rejected dialogs are prevalent.

Inactive SIMs. Of 650 million dialogs, roughly 13.4% are rejected due to de-
vices with inactive SIM cards. These dialogs are generated by 8.3% of the devices
(23,002 devices) that have at least one of their dialogs rejected with Unknown-
Subscriber. Hence, this relatively small number of devices is responsible for 13.4%
of total signaling dialogs.

Invalid Roaming Attempts. Accordingly, 11 million dialogs (1.7%), gener-
ated by 15.2% of the devices (41,874 devices), are rejected due to invalid roaming
partner selection. This occurs if a device selects a visited network that, e.g. due to
policy reasons or customer configuration, cannot be used as a roaming partner.

These dialogs fail with the message RoamingNotAllowed.
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Table 4.3: Dialog composition of signaling trace.

Protocol Dialog Type Abs.  Frac.
SAI 172,618,050  0.26
SAI_REJECT 87,962,499  0.13
UL 31,013,855  0.05
CL 21,343,648  0.03
OTHER 20,829,090  0.03

sioTRAN  UL-REJECT 11,049,617  0.02
UL_GPRS 10,547,793 0.02
UL_GPRS_ERROR 1,726,272 0.00
UL_ERROR 1,200,272 0.00
SAI_ERROR 860,920  0.00
UL_GPRS_REJECT 200,585  0.00
CL_ERROR 61,808  0.00
PDP_CREATE 93,915,264  0.14
PDP_DELETE 93,236,365  0.14
PDP_CREATE_ERROR 77,556,648  0.12

GTPv1 PDP_UPDATE 28,697,066  0.04
PDP_DELETE_ERROR 36,009 0.00
PDP_UPDATE_ERROR 997  0.00
PDP_OTHER 9 0.00

Sequence of Messages

Table 4.3 decomposes the dataset according to the observed dialog types as well
as how much of the total signaling volume each type contributes. The last col-
umn shows the arrival rate for each dialog type. Note that arrivals during the
incident shown in Figure 4.2 have been removed here.

The table shows the significant portion of messages attributed to inactive de-
vices (SAI_REJECT) as well as invalid roaming attempts (UL_REJECT). Further-

more, it can be seen that a large fraction of errors is related to GTP context cre-
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ation. These errors occur mostly due to the GGSN rejecting the device (10.7%)
or APN Congestion (1%).

Temporal Correlation of Signaling Dialogs.

In order to improve the understanding of device behavior, Table 4.4 shows all
dialog sequences observed in the dataset that contribute at least 1% to the total
number of dialog sequences. A dialog sequence is thereby defined as a sequence
of dialogs without a significant pause inbetween dialogs. More specifically, the
timeseries of each device has been divided into bins of one minute with a device
being active if at least one dialog occurs within each bin. The resolution of one
minute has been selected as it coincides with the timeout for activity in the
monitored mobile core. Based on this activity diagram, a sequence is defined
as all dialogs occurring in bins with activity without there being a bin without
activity inbetween.

Table 4.4 shows that a significant portion of the resulting sequences consists
of three or fewer dialogs with the majority only featuring a single dialog. We
can also observe that a significant fraction of sequences occurs due to devices
closing an already established PDP context, directly followed by the creation of
a new tunnel, meaning devices don’t establish a tunnel, send data and close the
tunnel. Instead, devices close and reestablish PDP contexts, send their data and

leave the tunnel open until the next iteration.
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Table 4.4: Dialog sequences with at least 1% contribution (73% of total dialogs).

Dialog Sequence Abs. Frac.
SAI_REJECT 46,265,888  0.157
SAI 32,634,374  0.110
PDP_DELETE 19,907,081  0.068
SAI_REJECT—SAI_REJECT 17,088,982  0.058
PDP_CREATE 14,012,643  0.048
PDP_DELETE—PDP_CREATE 13,215,440  0.045
PDP_CREATE—PDP_DELETE 8,477,924  0.029
SAI—SAI 8,376,366 0.028
UL 8,059,256 0.027
PDP_UPDATE 6,094,100 0.021
SAI—PDP_CREATE 5,682,473 0.019
PDP_CREATE_ERROR 5,046,938 0.017
UL_REJECT 4,624,730 0.016
SAI—-UL 4,315,840 0.015
UL_GPRS 4,051,486 0.014
SAI—-PDP_CREATE—PDP_DELETE 3,710,986  0.013
SAI—PDP_DELETE—PDP_CREATE 3,705,860 0.013
SAI—SAI—PDP_CREATE 3,170,721 0.011
PDP_CREATE_ERROR—PDP_CREATE_ERROR 3,123,481 0.011
UL_REJECT—SAI REJECT 2,937,871 0.010

4.2.4 Device Classification

As already observed earlier, the signaling behavior differs significantly between
devices. Hence, in the following section, we establish a set of device features
extracted from purely evaluating signaling traffic and show that devices can be
clustered using the k-means algorithm. In the feature set, the error rate as well as

reject rate denote the fraction of dialogs resulting in errors or being rejected by
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the system, respectively. Further, the grade of periodicity of a device is defined as
the sum of the autocorrelation values of the three most significant lags observed
while calculating the autocorrelation for lags between 1 and 1500 in minutes.
Thus, this evaluation is able to identify periods of up to 24 hours for devices
with up to three significant periods." Figure 4.3 shows autocorrelation values
of a synthetic process exhibiting a strong autocorrelation at lags 15, 30, 45 and
60. In this example our periodicity metric would equal the sum of the three
highest values, hence periodicity P = 0.69 + 0.48 + 0.33 = 1.5. Note that
periodicity values greater 1 can occur, and the metric is bounded between 0 and
3, as potentially all three values could be equal to 1.

Although further features have been evaluated, our investigations have
shown that this minimal feature set is enough to classify devices observed in
the trace. Note that Section 4.2.5 introduces an additional feature to further re-

fine the clustering performed here.
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Figure 4.3: Exemplary autocorrelation plot of synthetic, periodic process with
period p = 15.

'Devices with single period p also exhibit high autocorrelation values at 2p and 3p.
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Table 4.5: Features used for device classification.

Featurename Description

Error Rate Percentage of dialogs resulting in errors.
Reject Rate Percentage of dialogs resulting in reject.
Periodicity Sum of autocorrelation of three most significant lags.

Evaluating the within-cluster sum of squares using the elbow-method, k = 5
has been decided to be a suitable number of clusters to perform the k-means
algorithm on. The resulting clusters correlate with the expected outcome ac-
cording to expert knowledge contributed by the MVNO. In order to visualize the
results of the clustering, Figure 4.4 shows the biplot resulting from the primary
component analysis and plotting the two most significant primary components
against each other. Each point represents one device and the colors represent
the assigned cluster. Additionally, the arrows and labels indicate the influence
of the original features on the shown primary components. This visualization
allows a visual identification of the relation between features and the result-
ing clusters. We identify the five clusters as Non-Periodic (Green), Semi-Periodic
(Pink), Periodic (Blue), High Error Rate (Red) and High Reject Rate (Yellow).

Figure 4.5 shows the distribution of devices among those five identified clus-
ters. It can be seen that a significant portion of devices exhibits non-periodic or
semi-periodic behavior, with the other classes containing only 16% of devices

altogether.
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Figure 4.4: Biplot of two most significant primary components and influencing
original features.
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Figure 4.5: Devices classified by signaling behavior via k-means.
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Figure 4.6: ECDF of inter sequence interarrival times by device class.

In order to validate the classification with respect to differing device behav-
ior within the identified classes we compare signaling characteristics between
classes. Figure 4.6 shows the empirical cumulative distribution function (ECDF)
of inter sequence interarrival times, meaning the distribution of the time be-
tween activity phases per device over all devices within one cluster. It can be
seen that the different device classes exhibit differing behavior regarding their
sequence interarrival times. Periodic devices show clear peaks at interarrival
times of 30, 60, and 120 minutes. The two sided Kolmogorov-Smirnov (KS) test
confirms statistically significant differences regarding the sequence interarrival
times.

Analogously, Figure 4.7 shows the ECDF of the GTP context duration for the
same set of device classes. Note that the classes High Error Rate and High Reject
Rate have been omitted here, since their signaling behavior is strongly influ-
enced by their high number of erroneous and rejected dialogs and a comparison
to regular devices regarding their GTP context durations would be invalid. Ad-
ditionally, the y-axis has been limited to [0.7, 1] to make the effect more visible.
The KS test once again shows statistically significant differences for each pair

of distributions.
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Figure 4.7: ECDF of GTP context duration by device class.

While less prominent, periodic devices again show peaks at context durations
30, 60 and 120 minutes, indicating a correlation between the two values.

Finally, when it comes to the distribution of dialog types used by devices of
each class, with the exception of high error rate and high reject rate, no significant
difference between classes could be observed. In the case of the error and reject
classes, the fraction of rejected and erroneous dialogs is, by definition, higher

compared to other classes.

4.2.5 Aggregated PDP Context Arrival Process

Finally, in order to better understand the underlying arrival process of the de-
vices resulting from the performed classification, we examine the aggregated
arrival process of newly established data connections. To this end, we dissect
the arrival process of PDP_CREATE dialogs. This subset of messages has been
selected as it acts as a proxy for the general system load for MVNOs since a
successful PDP_CREATE requires successful SAI, UL, and UL_GPRS dialogs be-
forehand.
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As already stated before, large parts of literature and standardization [181,
23, 220, 221] assume Markov properties when dealing with the aggregated ar-
rivals in large scale IoT environments. The Markov assumption is suitable as
the superimposed traffic of an infinite number of sources exhibits memoryless-
ness, according to Palm-Khintchine [222]. In the following, we demonstrate that
the assumption does not hold true in reality due to the presence of time syn-
chronous devices, but can be restored through additional device classification
and filtering. Similar observations have been made in the past, e.g. [185]. Note
that the synchronous behavior of devices is expected to stem from firmware im-
plementation specifics rather than actual synchronization between independent
devices. Devices seem to be programmed to transmit data at fixed times, instead
of fixed intervals, resulting in pseudo synchronous behavior in the aggregated
traffic.

High Error Rate — High Reject Rate — Non-Periodic — Periodic Semi-Periodic
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Figure 4.8: Message probability density function of PDP_CREATE dialogs for

the probability that messages occur at a specific minute within any
hour during the entire trace.
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To this end, Figure 4.8 shows the message density over one hour for all de-
vice classes for the whole trace. Hence, the y-axis shows the probability of an
arbitrarily selected dialog happening within the corresponding minute along
the x-axis. The plot is shown to visualize the synchronized behavior of devices
within the trace. Although devices are expected to not synchronize their signal-
ing behavior with other devices, clear synchronization patterns can be observed.
Specifically, increased density between 0 and 5 minutes as well as peaks at min-
utes 0, 5, 15, 35 and 45 can be observed. As these devices contribute a significant
portion of traffic, this behavior violates the assumption of memorylessness, as
in a process exhibiting the Markov property, the message density would need to
be constant. Note here that asynchronous, periodic devices would still lead to a
memoryless superposition. The issue here is the time-synchronous behavior of
devices, violating the independence between devices.

However, based on the message density function of single devices, we are able
to identify time synchronous devices and hence divide the arrival process in syn-
chronized and non-synchronized devices. To this end, we examine the maximum
message density for messages of a specific device, as is shown in Figure 4.8 for all
devices. This classification is based on the assumption that the message density
function of a non-periodic, non-synchronized device would follow a uniform
distribution. Figure 4.9 shows the ECDF of the maximum message density over
all devices with at least 30 activity phases. This limitation is introduced as the
density value is not significant for devices with less than one activity per day.

Based on the distinct knee observed in the figure, devices with a maximum
message density of at least 0.075 are classified as synchronized. This results in
23% of devices being classified as synchronized. Note that this classification has
been performed in addition to the clustering performed earlier, so each device
can be classified by both their signaling behavior and their synchronicity. Fig-
ure 4.10 shows the same plot as Figure 4.8 with devices split into synchronized

and non-synchronized classes.
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Figure 4.9: ECDF of maximum message density over all devices with at least 30
activity phases.
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Figure 4.10: Message probability density of PDP_CREATE dialogs over minutes
within any hour of the trace per synchronization class.
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Figure 4.11: Q-Q-plot of interarrival times of non-synchronized devices.

It can be seen that non-synchronized devices now exhibit a uniform message
density distribution while synchronized devices feature the peaks observed be-
fore as well as low baseline density. Based on these observations we assume
the arrival process of non-synchronous devices to exhibit memorylessness and
consequently negative exponentially distributed interarrival times. To this end,
Figure 4.11 shows the Q-Q-plot of the empirical interarrival times of all non-
synchronized devices, irrespective of device class, and the corresponding neg-
ative exponential fit. The red marks show the 10% to 90% quantiles, the gray
marks show the 1% to 99% quantiles. It can be seen that the interarrival times of
the aggregated process of all non-synchronized devices can be closely approxi-
mated using an exponential distribution as it is the case for Markov processes.
Furthermore, the interarrival times exhibit no significant autocorrelation with
the largest observed value being 0.017 for lags between 1 and 1000.

In the preceding sections, we presented the results of our analysis of a 31 day IoT
signaling trace containing more than active 270,000 IoT devices of an MVNO oper-
ating worldwide. We found that about 84% of the observed 2G/3G devices use data
connectivity with the remaining 16% only using network connectivity for phone

and text messaging as they do with circuit-switched services. We have shown that
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devices exhibit significant differences regarding their signaling behavior and ex-
tracted features that allow the modelling of different device classes based on the
rate of erroneous and rejected dialogs as well as the periodicity of devices. We have
shown that devices identified by this classification mechanism exhibit statistically
significant differences when it comes to their signaling behaviour. Based on these
findings, we can answer RQ4.1 as we have shown the feasibility of classifying IoT
devices based on their signaling behavior.

Finally, by evaluating the aggregated arrival process of new data connections,
we have shown that the often assumed memorylessness does, surprisingly, not hold
true in reality due to the presence of time synchronous devices, but can be restored
through additional classification and filtering steps. Hence, we can answer RQ4.2
by providing means to model aggregated signaling traffic in IoT-focused 2G/3G

environments.

4.3 Simulation of an loT-centric MVNO Core
Network

The rapid adoption of Internet-of-Things (IoT) in both industry and everyday
life is leading to an ever-increasing number of connected devices. Network op-
erators and providers react to this development with the ratification and imple-
mentation of Machine to Machine (M2M) IoT platforms that, in connection with
mobile networks, enable global and demand-oriented access of IoT devices to the
Internet [217]. Providers invest considerable effort towards the transition from
conventional communication to machine-controlled mass device connectivity
in order to support the enormous number of devices, open up new profitable
business cases, and give companies more configuration options and more flexi-
ble use of the mobile networks.

While initial forecasts regarding the number of devices have been overes-
timating the expected growth [223], more recent predictions expect up to 18

billion deployed IoT devices within the next few years [212]. Of these globally
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deployed devices, approximately 10% are expected to rely on mobile connectiv-
ity for data transmissions [213]. The volatility in the number of devices and tight
economic reasons are encouraging providers and operators to take steps to op-
erate IoT networks efficiently. The ability to mitigate short-term overload and
general flexibility, e.g., during booms and downturns with millions of devices,
has therefore become an indispensable measure and must be ensured by suitable
overload control mechanisms [224]. This aspect specifically, and a general un-
derstanding of the scalability, performance and resilience of these IoT platforms

in general, are still subject of active research [22, 193, 217].

Recent studies show that IoT devices differ significantly from regular
smartphone-based traffic both regarding their signaling and their payload trans-
fer behavior [181, 184-186, 211]. Thus, networks in general and the deployed
overload control mechanisms in particular must be able to mitigate short-term
load peaks, excessive signaling traffic, or abnormal behavior of machines. Char-
acteristics of machine-type communication become particularly problematic
under unexpected circumstances, e.g., in the event of regional or global network
failures, connection resets, or general loss of connection. In such scenarios, the
reaction of devices is entirely dictated by their programming, firmware or con-
figuration. In many cases, as opposed to humans, devices that lose connectivity
will continuously try to re-establish connectivity, thereby triggering workload

in the control plane.

This behavioral difference becomes even more evident when taking into ac-
count recent developments in the area of MVNOs that run centralized instances
of the mobile core without deploying their own radio access network (RAN).
Instead, MVNOs rely on roaming agreements with physical MNO, thereby ex-
ploiting existing infrastructure in combination with the global IP exchange net-
work (IPX) [216] to carry signaling traffic between visited networks and the
mobile core of the MVNO. This setup allows a single MVNO to operate a single,
centralized instance of the mobile core and still provide global connectivity to
its customers. However, this also introduces multiple points of failure for both

MNOs and MVNOs that may lead to extreme overload scenarios. Being depen-
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dent on the infrastructure of many, globally distributed physical operators as
well as a number of signaling carriers to ensure transmission of signaling traffic
between the visited and home network introduces the risk of regional outages
resulting in signaling storms [225] that can quickly overload the home network

core.

To this end, in this work we introduce a detailed, protocol level simulation
framework developed on base of a real world, virtualized MVNO core network.
The proposed simulation model contains, on the one hand, a signaling model
dictating how IoT devices behave with respect to their signaling message se-
quence and timeout and retry behavior. On the other hand, we present a detailed
MVNO core model describing the processing of received signaling messages by
the core network using network and component simulations with real process-
ing times obtained from a productive MVNO mobile core network that processes
IoT traffic from 540 radio access networks with IoT devices in 180 countries.

Furthermore, we present a case study of how the proposed simulation frame-
work can be applied to perform bottleneck detection and investigate the im-
pact of resource scaling within the core network. Finally, we present a detailed
investigation of various overload control mechanisms that allow the continu-
ous survival of the core network under extreme overload conditions. We iden-
tify several performance metrics beyond a mechanism’s mitigation capability
and compare the suggested mechanisms regarding, e.g., resource utilization and
blocking probability from device point of view. The results presented in the fol-
lowing sections help categorize overload control mechanisms and highlight the
need for MVNOs to deal with the upcoming IoT traffic by defining appropriate
control mechanisms in mobile cores. Furthermore, to best of our knowledge, this
is the first protocol level simulation of a real world MVNO core network in the
context of IoT traffic.
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4.3.1 Technical System Description

As a base for the simulation model, we use a state-of-the-art virtual mobile core
implementation that is, at the time of writing, in production and serving up-
wards of 170,000 unique devices and 21 million signaling dialogs on a daily basis.
In the following, we present the key technical aspects of this system and high-
light central properties relevant for the development of our simulation model.

The system is designed from the ground up to operate in the cloud, adhering
to the cloud native paradigm [226, 227] and the principles of NFV. All involved
services are implemented in software and running on Amazon Web Services
(AWS). Besides advantages of fine-grained scalability, this dramatically lowers
efforts compared to hardware development and enables in-house development
of unique selling points without dependency of a large vendor. By leveraging
multiple AWS Regions, a globally distributed, multi-layered control plane for
GTP has been developed [228] and is in production since 2015.

Leveraging the AWS public cloud ecosystem enables the mobile core system
to operate globally and scale virtually limitless to meet the required capacity.
The latter, as well as resiliency against component failure, however, require
more than just the underlying cloud architecture can provide.

Instead, paradigms from the area of serverless computing [229] are used to al-
low dynamic scaling, optimize resource utilization and allow easy recovery after
component failure. More specifically, all components of the architecture are de-
veloped as an actor based model [230, 231] on top of Akka [232]. The advantage
of the actor model is a simplification of applications handling a high number of
concurrent tasks, in contrast to object-oriented programming that often requires
locking of data structures. While actors communicate via immutable messages,
every actor processes only one message at a time. Until a message can be pro-
cessed, it waits in the actor’s mailbox. Communication across multiple hosts is
transparently and resiliently given by the Akka Cluster extensions.

Figure 4.12 shows a schematic overview of the full system and its environ-
ment, starting with IoT devices deployed in the field on the left, the visited net-

work used for roaming to establish mobile connectivity and the corresponding
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Figure 4.12: Schematic overview of the technical system used as the basis for the
simulation model.

signaling carriers in the middle, and the virtual core network on the right. Note
that only services relevant for this work are shown in the image. The path taken
by GTP-c signaling messages is shown in orange, the blue path indicates the
path taken by SIGTRAN signaling messages. The devices on the left as well as
the signaling carrier part in the middle are not the focus of this work and are
only included for completeness’ sake. Instead, we focus on the right part of the
figure, representing the virtual mobile core platform as well as its components.
Note that this work focuses only on the SIGTRAN processing path shown in
blue as well as the four components involved therein. The CAP-MAP Router
(CMAP) component presents the ingress and egress nodes for both signaling
requests and responses, respectively. It receives messages and translates them
into the data structure used by the subsequent components before performing
forwarding the request to the next component in the chain. The HLR is, as spec-
ified in [233], involved in keeping the state of mobile subscribers and handles
signaling interactions related to, e.g., authentication or updating the location of
devices. To this end, the HLR delegates tasks to the two remaining components.
Authentication Center (AUC) is thereby responsible for the authentication of
devices. The Backend represents the interface towards persistent storage and is

involved in both querying and updating device profiles. Finally, it is important
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to note that both the HLR and the Backend component feature caching capa-
bilities that allow requests to be processed directly without the need for task
delegation. Thereby, the HLR caches device profiles for 20 minutes while the
Backend cache removes entries after 24 hours. The cache size is thereby only

limited by the available system memory.

Each component is realized by reserving a specific number of CPU cores ded-
icated for the specific component. This resource reservation for individual com-
ponents ensures that all tasks can be performed at any time without the need
for inter-task scheduling. However, within each of the four core network com-
ponents the actor based programming model realized by the Akka framework
creates a serverless pipeline. This means all resources available within each com-
ponent’s pool can be freely distributed among all processing tasks of the specific

component.

The implications for the developed simulation and the resulting abstractions

inferred from these system properties are detailed in the following section.

4.3.2 Simulation Model Description

After detailing the technical characteristics of the real world system used as a ba-
sis for the developed model, this section presents a description of the simulation
model. Figure 4.13 shows a schematic representation of the system. The simula-
tion consists of two core components, namely the signaling model dictating the
behavior of simulated IoT devices and the MVNO core model representing the
components in the virtual cellular core dealing with processing signaling mes-
sages. Both models are based on preliminary studies of a production-ready state-
of-the-art virtual core network for IoT devices and applications. The code for all

simulation scenarios presented in this work is publicly available on GitHub.?

*https://github.com/lsinfo3/MVNOCoreSim
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Figure 4.13: Schematic overview of the simulated system consisting of the sig-
naling model and the MVNO core model.

Signaling Model

The signaling model represents an abstract representation of the signaling traf-
fic observed between visited and home networks resulting from roaming IoT
devices. It dictates characteristics such as the sequence of signaling interactions
as well retry and timeout behavior. Note here that due to the technical properties
of the real world system, our signaling model does not actually model signaling
messages used by IoT devices, but rather the messages triggered by the VLR and
Serving GPRS Support Node (SGSN) of the visited network that are then issued
towards the mobile core network, as is the case during roaming.

In order to keep the number of parameters of the simulations conducted in
this work in check, we define a singular signaling model that is used for all
simulation scenarios throughout this work. The model used is a representation
of a scenario in which devices attach to the system, assuming the system holds
no prior information about the respective devices. This model has been chosen
as it reflects the behavior that occurs after a system outage that leads to loss
of connectivity and the subsequent attempt to reattach to the mobile network
as well as completely new devices that connect to the system for the first time.
Note that in the following, we refer to devices not as physical IoT devices, but
abstract objects generating signaling load.

In this model, the VLR starts by issuing a sendAuthenticationInfo (SAI) mes-
sage request used for authentication at the core network. Based on the origin

of this message, we call this first message SAlyir. Upon success, an updateLo-
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cation (UL) message is issued to update information about the device, such as
the visited operator and location, in the HLR database. At that point, the de-
vice would be able to make calls and transmit text messages. However, since a
majority of devices use data connectivity [22], we assume all interactions also
perform the equivalent attach procedure for GPRS connectivity consisting of an-
other SAI message, called SAIsgsn, followed by an updateGprsLocation message
(UL_GPRS). After successful completion of this sequence of messages, we con-
sider the attachment procedure complete and the corresponding element leaves
the simulation.

In addition to the message sequence, the signaling model defines two sepa-
rate timeout paths, indicated in blue and green in the signaling model part of
Figure 4.13. The green path shows the timeout started after an UL message is
issued. Based on expert knowledge provided by the operator, if the respective
interaction is not completed within 15 seconds, the system assumes loss of con-
nection and returns to the beginning of the signaling sequence. Analogously,
the same occurs after not receiving a response to a SAI message for 6 seconds.

Naturally, and as already mentioned, the signaling model used to obtain the
simulation results presented in the next sections is only an abstract representa-
tion of how the signaling traffic observed at this point in the system behaves in
reality. However, the developed simulation tool is explicitly not limited to such
abstract models but can also incorporate much more detailed models as well as a
combination of various different models to simulate different signaling patterns.
Especially taking into account the findings in [22], meaning the combination of
Markov arrivals and time-synchronized behavior, this combination of models

will be required to obtain workloads that match reality.

MVNO Core Model

The second component of the simulation is the MVNO core model that dictates
the interaction between services within the mobile core, i.e. the path messages
take through the system, as well as their capacities and processing performance.

Furthermore, this component will be responsible for implementing any specific
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system extensions or mechanisms, as we will demonstrate later in Section 4.4.
The right side of Figure 4.13 depicts the simulated core components. The an-
notations indicate the processing steps performed during the processing of SAI
(blue) and UL and UL_GPRS (green) messages.

In general, the MVNO core model is defined by a network of queuing com-
ponents, their capacities and processing performance as well as the paths mes-
sages take through the queuing network. Table 4.6 lists the processes messages
go through on their path through the core as well as their key parameters. Note
that the provided capacities are per component and all steps performed by the

same component share this capacity.

Table 4.6: MVNO core model components and parameters.

Processing Time

Step  Name Component  Description Capacity Mean Coeff. of Var.
1 Message In CMAP Parsing messages 8 Processors 1659 ps 0.07
2 Profile Query HLR Get device profile 64 Processors 1739 ps 0.06
3 DB Query Backend Get device profile from DB 128 Processors 1877 ps, 70482 ys 0.06, 0.68
4 Insert subscriber ISD Qquomg interaction with 50 Processors 5998 s 143
data visited network
5 DB Update Backend Update database content 128 Processors 13115 ps 0.25
4 Generate Keys AUC Generat‘e k§ys for 8 Processors 2886 ps 0.04
authentication
5.1  Update Data AUC Update device data in DB 8 Processors 4960 ps 0.03
6,5.2 Message Out CMAP Transmission of response 8 Processors 749 ps 0.14

The capacities as well as the processing times used for these operations are
modeled after the real world system and have been obtained through dedicated
measurements. Although only the mean processing time values are presented
in Table 4.6, the simulation input actually consists of a vector of processing time
samples obtained from the real world system. These samples are also included
in the accompanying GitHub repository. Furthermore, all queues are assumed to
hold an infinite number of elements, as the real world system is only limited by
memory capacity and never actively rejects messages without overload control

or congestion mechanisms.
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Based on these operations, we can now define the paths of the three signal-
ing messages used in the signaling model. Note that the insert subscriber data
(ISD) operation scales with an infinite number of processors. This is done as
the processing for this outgoing interaction is performed by the visited network
which, for simplicity reasons, is represented as a dummy component with infi-
nite capacity, based on the assumption of similar response times independent of
the number of requests the MVNO is issuing. This also means that events never

have to wait before being processed by the ISD component.

As already detailed in the signaling model, sendAuthenticationInfo messages
occur in two variants, SAlyir and SAIsgsny which are processed mostly identical.
The blue annotations in Figure 4.13 depict the involved processing steps. In-
coming messages are parsed by the CMAP component (1), routed to the HLR (2)
where the actual message processing is performed. At this point, the difference
between the two types occurs due to caching. Namely, in order to process the
initial SAlyir message the HLR needs to query data from the Backend compo-
nent (3). Depending on the cache of the database, this step exhibits two different
processing time distributions, hence we also show two mean values in Table 4.6.
Additionally, the response will be cached at the HLR for subsequent SAI mes-
sages belonging to this device, meaning subsequent messages may skip the DB
query (3) entirely. Finally, the AUC generates the authentication keys (4) and
performs the processing required for authentication (5.1). In parallel a reply is
sent via the CMAP back to the visited network (5.2). Note that steps (5.1) and
(5.2) are performed in parallel.

When it comes to UL and UL_GPRS messages, the green annotations in Fig-
ure 4.13 depict the involved processing steps. Here, it is important to note that,
due to the device behavior employed in this work, all UL and UL_GPRS mes-
sages generate a cache hit at the HLR (2) and can hence skip the DB query (3).
However, the DB Update (5) has to be performed either way.

In this work, both HLR and Backend caches exhibit infinite space and are
configured to retain elements for 20 minutes in the case of the profile query

operation and 24 hours in the case of the DB query operation.
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Finally, in order to keep the complexity of the core model in check, a number
of abstractions over the real system have been made during the development of
the simulation model. These mainly revolve around the representation of indi-
vidual components. As is typical for cloud native architectures, the real system
realizes each component as a group of dedicated instances, each equipped with
a certain capacity, i.e. CPU cores. As an example, the AUC component is realized
using 4 instances with 2 CPU cores each for a total of 8 processors. In this setup,
dictated by implementation specifics of the services, each instance features its
own queue. For the simulation model, we abstract this behavior and just imple-
ment a single instance with a single queue and the total number of processors
instead. This abstraction will, based on the multiplexing gain in queuing sys-
tems, overestimate the performance of the real system.

Further, we introduce an additional abstraction with respect to the processing
path that is presented in Figure 4.13. Namely, due to technical limitations, we
were not able to obtain accurate processing time distributions for some steps
along the processing path. More specifically, some processing steps take such
little time, that their processing times are well below the margin of error of time
measurements in software environments. Due to these inconsistencies and to
avoid overfitting, the simulation model is omitting these processing steps. One
example for this is the forwarding of the response of a SAI message by the HLR
— between (4) and (5.2) in Figure 4.13. This abstraction will, in general, lead to an
underestimation of the response times for these message types. However, as the
processing times for the omitted steps are negligible and are within the range
of 100 microseconds, the effect on the overall results is expected to be negligible

as well.
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4.3.3 Validation

Based on the simulation model introduced in the previous section, we now vali-
date the model by comparing results to measurements taken from real systems.
We compare the results of a dedicated simulation run with values obtained from
a dedicated testing environment deployed in AWS provided by a real MVNO.
Furthermore, more validation data was recorded during the productive use by
the MVNO and compared with the values from the test system and the simula-

tion.

Simulation Accuracy

We start by validating the processing time values reported by the simulation
against both measurements from the testing and the production environment.
The results of the productive dataset have been collected in November 2020.
The dataset was sampled from all customers from 193 countries and consist of
1601442 messages and dialogs. After post-processing, 206 971 message flows
could be isolated to reveal the processing times of components in the MVNO
core network per dialog interaction. For the testbed measurements, the signal-
ing model was configured to generate new device arrivals with geometrically
distributed interarrival times with a rate of 2 devices per second. Both the test-
ing and the simulation environment as well as the production system use the
capacities and processing values presented in Table 4.6.

Figure 4.14 shows the response times for both cache misses and cache hits for
SAI messages as well as cache hits for UL messages. It is important to note here
that, due to the modeled device behavior and time scales, both updateLocation
and updateGprsLocation messages always result in a cache hit, as they require
a successful SAT to be issued in the first place, which triggers a cache miss and
hence fills the cache. Moreover, the SAIsgsy message, cf. Figure 4.13 also always
results in a cache hit for the same reason.

The figures show the response time along the x-axis and the empirical CDF

along the y-axis. All subplots show the values obtained from the testing environ-
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Figure 4.14: Validation of processing times of dialogs in testbed and simulation;
additionally, values of productive environment.

ment in blue, from the productive one in green, and the distributions resulting
from the simulation in red. The simulated values correspond to the CDFs of the
testbed measurements for all measured dialogs. It can also be seen that the values
from the productive system are of a similar order of magnitude, but have slightly
different values. This is due to the different load and configurations in Amazon
AWS compared to the testbed. Note that the measurement values shown for
the productive system may contain waiting times, as the measurement points
include those. The testbed values have been obtained for load levels that effec-

tively eliminate waiting, hence isolating the service times.

Furthermore, the Kolmogoroff-Smirnoff-Distance (KSD) and the Jensen-
Shannon-Divergence (JSD) have been derived between the testbed and simu-
lation distributions to better show that the CDFs match each other in numbers.
For SAlIyir the one-sample KSD with the simulation samples is 0.097 with a
p-value of 0.94, meaning there stands nothing against the hypothesis that the
samples are drawn from the same distribution. The JSD is at 0.04 for SAlyir. For
SAlsgsn with cache hits the KSD is at only 0.030 with a p-value of 0.99, the JSD
assumes 0.004. The KSD for updateLocation is at 0.064, JSD with 0.0251.
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Figure 4.15: Validation of configured arrival rate, attachment time and number
of open SAlyir dialogs.

Figure 4.15 highlights three central KPIs and compares the results obtained via
simulation to values observed in the testing environment. Thereby, horizontal
facets indicate the configured arrival rate of new devices while vertical facets
state the evaluated metric. Each facet shows the mean metric value obtained for
15 second intervals over time for simulation and measurement runs of 30 minute
duration. Note that the simulation time has been set to 40 minutes and the first
and last 5 minutes have been trimmed to obtain stationary results. Similarly, the
figure shows a 30-minute snapshot of a measurement run from the testbed.

The first row depicts the monitored arrival rate of new devices and shows that
both the testbed and simulation have been subjected to a similar load between 2
and 200 arrivals per second. More interesting, the second row shows the attach-
ment time of devices, meaning the time it takes for each device to complete their
attachment cycle as described in Section 4.3.2. It can be seen that the simulation

results align with the observed measurement values for arrival rates of 2, 150
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and 200 devices per second when it comes to the magnitude of values. The peaks
observed in both the attachment time and the open SAlyir portion of the figure
are explained by fluctuations of the testbed performance due to it running in a
public cloud environment. More specifically, a closer investigation has shown
that the database underlying the Backend component took longer to respond
to queries. Unfortunately, due to the nature of the monitoring tool used in the
testbed, it is unknown if single large outliers or a general increase in response
time occur at these points in time. In order to not overfit this specific system,
the simulation neglects these fluctuations. However, such changes in processing
power can be reflected in the simulation by modeling the processing times of
components as a function of time, if desired. In fact, even the dynamic adapta-
tion of CPU capacities could be realized with minimal work. The fluctuations
observed for 2 arrivals per second are explained by the low number of samples
in each 15 second interval. Similarly, the last row of Figure 4.15 shows the mean
number of open SAlIyr dialogs. A dialog is thereby considered open as long as it
is being processed by or waits for processing by any of the core components de-
picted in Figure 4.13. Again, the figure shows a close match between simulation
and measurement values for all load levels over the whole run.

Based on these observations as well as the dialog level response times eval-
uated in Figure 4.14, we can conclude that the proposed simulation model pro-
vides a close representation of the real world system when it comes to the KPIs

reported by the simulation.

Simulation Functionality

Further, in order to show the correctness of the implementation of the signaling
model as well as the path of messages through the core on a functional level,
Figure 4.16 shows a waterfall plot of an exemplary device that represents the
timeline of processing steps of this device along the x-axis. The y-axis shows
the different signaling dialogs used by the device. The colored bars indicate the
resource that is occupied by this specific device at the specific point in time. The

vertical lines indicate special events such as cache hits and cache misses.
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Figure 4.16: Waterfall plot of an exemplary device and its signaling behavior.

The figure shows the sequence of occupied components for each signaling
message. For example, the SAly;r shown in the first row arrives at the CMAP
component, is then processed by the HLR, where a cache miss occurs. Based
on that, a database query is triggered and the Backend component gathers the
required information before the AUC starts generating the entries required for
authentication. Finally, the CMAP component transmits the response while the
AUC simultaneously updates database entries. Note the missing occurrence of
the HLR between the Backend and the AUC, that is omitted in the simulation
due to the reasons elaborated earlier in Section 4.3.1. Analogously, the other
signaling interactions are shown in the further rows of the plot, each of which

behaves as described in Figure 4.13.

4.4 Case Study - Dimensioning and Overload Control

After demonstrating the close fit between the real world system and the simu-
lation model, this section presents a case study evaluating different aspects of
the system to show the capabilities of the developed simulation model. We start
with a bottleneck detection and show the possibility of scaling individual core
components. Following, we develop and compare different mechanisms that can
be applied to mitigate system overload and ensure system survival under over-

load conditions.
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4.4.1 Bottleneck Detection

In order to establish a baseline for the maximum load the system can handle
without failing and in order to detect which component acts as the bottleneck,
we perform 10 simulation runs with a duration of 5 minutes for an increasing
arrival rate of new devices. The first 60 seconds of each run have been trimmed
from the data to remove the transient phase and let the system reach a steady
state. For these runs, we evaluate the mean load for each of the MVNO core

components, as described earlier in Section 4.3.2.
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Figure 4.17: Component load under increasing arrival rates of new devices.

Figure 4.17 plots the arrival rate of new devices in arrivals per second along
the x-axis against the encountered load along the y-axis. The colors indicate the
core services as introduced in Section 4.3.2. Note that confidence intervals have
been omitted here, since the variation between simulation runs is negligible.
We identify the load level at which the first core component exceeds its maxi-
mal processing capacity as the baseline for the following scenarios. The vertical
indicator line shows the highest arrival rate that leaves all components with
a system load below 1. The component with the highest load in this case, and
hence the bottleneck, is AUC with a load of 0.99. The figure also shows differ-

ent behavior of components when increasing the arrival rate over the maximum
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value of 460 arrivals per second. This spike is explained by the device behavior
introduced in Section 4.3.2. As, due to overload, the queues of components start
to fill and devices start to run into timeouts resulting in an infinite retry loop.
This leads to an additional increase in signaling messages over time, as more and
more devices try, and fail, to attach to the system. Due to this behavior, the sys-
tem enters a livelock, as all components work at maximum capacity, but due to
the long waiting time, devices retry before the system can respond.’ Note further
that the absolute values shown in the plot are to be considered as an indicator
for overload, as the system is unstable for these load levels and queue sizes grow
with increasing simulation time. At the same time, the Backend component ex-
hibits a decline regarding its load. This is due to the fact that the Backend service
is only involved in processing UL and UL_GPRS messages. However, since the
AUC is already overloaded, devices fail during authentication and the rate of UL

messages drops.

4.4.2 Resource Scaling

After identifying the maximum rate the system can handle without running into
overload at a rate of 460 new devices per second and identifying the AUC as be-
ing the bottleneck holding back the system, we now rescale the AUC component
from 8 processors as shown in Table 4.6, to twice the capacity with 16 processors
and repeat the bottleneck detection regime for the rescaled system.

Figure 4.18 again shows the load of individual core components. It can be seen
that rescaling the AUC has shifted the bottleneck to the CMAP component as
now this is the first component to exceed a load of 1 at 850 new arrivals per
second.

Based on this, for the remainder of this work, we consider an arrival rate of
840 the highest load without running into overload and an arrival rate of 850

the lowest load that already leads to overload behavior.

® Note: This behavior can also be observed in the real production system if no measures are taken.
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Figure 4.18: Component load under increasing arrival rates of new devices with
rescaled AUC.

4.4.3 Dedicated Overload Mechanisms

As resource scaling is only feasible up to a certain point, we now demonstrate
the capability to evaluate specific mechanisms regarding the modeled system
by defining and implementing various overload control mechanisms that allow
the system to keep working while under severe overload. Table 4.7 summarizes
the mechanisms evaluated in the following.

Using the information obtained earlier, we can subject the system to vari-
ous levels of overload by increasing the arrival rate of new devices beyond the
identified rate of 850 devices per second. To this end, we first introduce a set of
three different overload mechanisms and compare their performance regarding

system as well as device parameters.

Simple Dropping The first mechanism employed and examined here, Simple
Dropping, aims at reducing the total waiting time of messages and thereby re-
ducing the probability for timeouts that in return lead to a retry by the device.
To this end, we limit the maximum queue size of each component in order to
drop messages that can not be processed in time, thereby limiting the amount

of unnecessary work performed by the system.
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Table 4.7: Summary of overload control mechanisms.
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Simple Dropping ¢/ v X b 4
MSU Policing v v 4 X
Device Policing ¢/ 4 4 4

Figure 4.19 shows the attachment rate as well as queue size for the AUC and
CMAP components over time for an arrival rate of 850 new devices per second.
Note that the queue size of other components is omitted here, since it remains
zero over the whole duration. The attachment rate in Figure 4.19a represents the
total number of devices that are able to successfully complete their attachment
cycle per second. The colors indicate the respective configuration of the maxi-
mum queue size, with Inf indicating the baseline case with an unlimited queue
size. Note that no transient phase has been trimmed for these plots as the system
never reaches steady state. It can be seen that, for the baseline scenario, the rate
stays largely linear around the 840 devices per second until the queues fill up
to a certain threshold, after which the aforementioned retry livelock occurs and
the attachment rate quickly declines to zero. When looking at the baseline curve
in Figure 4.19b, it can be seen that at the point of the decline of the attachment
rate, the queue size of the AUC component exhibits exponential growth, as de-
vices start to retry in addition to the arrival of new devices. Eventually, close to
the 300-second mark, the load on the system even exceeds the capacity of the
CMAP component and its queue starts to fill up as well.

Moving to the simple dropping scenarios shown in red, green and blue, it can
be seen that the limitation of the maximum queue size has no positive effect

on the survivability of the system. In fact, the opposite occurs and the system
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(b) Queue size for AUC and CMAP components (y-axis limited to 15,000)

Figure 4.19: Performance Metrics over time for different maximum queue sizes.

enters the retry livelock even sooner, depending on the configured maximum
queue size. This can be explained by the fact that, in order for devices to not is-
sue retries, it is required to successfully process the four previously mentioned
signaling messages. However, as the system is overloaded, the maximum con-
figured queue size is eventually reached and a significant fraction of messages
gets dropped. Hence, the probability of four consecutive messages of a single
device not being dropped is close to zero, leading to the exact same behavior

observed in the baseline scenario.
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MSU Policing The logical evolution to the simple dropping mechanism, MSU
policing, limits the number of messages that are allowed to be processed concur-
rently. Thereby, each message type m is subject to its own quota ()., meaning
that at one point in time, a maximum of Qs 1, , , messages may be processed,
while at the same time a maximum number of Qur, may be in the system as
well. Note that ‘being processed’ here also includes messages currently waiting
at one of the core components. This mechanism allows the system to perform
a form of prioritized dropping, as it can reject messages of new devices, while
still processing messages of devices that have already started their attachment

cycle in time.
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Figure 4.20: Performance metrics over time when applying MSU policing.

Figures 4.20a-b) again show the attachment rate as well as queue size of an
exemplary simulation run. Note that the queue size for the CMAP component is
omitted here since it remains zero over the simulated duration. Further note that
the confidence intervals of the steady state attachment rate over 10 simulation

repetitions are once again negligible with values of 2.5 for an arrival rate of 850
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and lower than 0.7 for all other arrival rates, respectively. We hence only show
one exemplary simulation run. The color now indicates the arrival rate of new
devices, as we increase the arrival rate beyond the identified overload threshold
of 850 devices per second to stress the system even further. Figure 4.20a shows
that the attachment rate, after an initial transient phase, remains constant at
around 840 devices per second, even after the queue of the AUC component has
filled (cf. Figure 4.20b). The quotas @, for all message types have been set to
5,000 messages in this scenario as a queue of 5,000 SAlyir and 5,000 SAIsgsn
at the AUC component allows the system to still process all waiting messages
in time. In combination with the prioritized dropping, the UL and UL_GPRS
messages of devices can also be processed in time. However, additional authen-
tication messages beyond the threshold of Qsar,,, = 5000 get rejected. This
leads to near optimal resource utilization, as all messages processed by the sys-
tem eventually lead to a successful attachment. Other combinations the Q.
quotas have been evaluated as well and have resulted in similar behavior, which
is why only one parameter set is shown here.

Additionally, Figure 4.20c shows the ECDF of the number of retries a device
has to perform before eventually being accepted for processing. Intuitively, the
number of required retries grows with the arrival rate and the highest observed

retry count was 100.

Device Policing with Explicit Congestion Signaling Similar to the MSU
policing mechanism, device policing also artificially limits the number of mes-
sages allowed to be concurrently present in the system. However, instead of
tracking the number of messages, the mechanism keeps track of the total num-
ber of devices having at least one message in the system. Hence, the quota @ p
dictates the number of devices allowed to have messages currently being pro-
cessed by the system. In addition, we now introduce a mechanism that is able
to explicitly notify devices about system congestion and can suggest a retry
window based on currently unfinished work. Note that a mechanism like this

would require an extension of the protocol stack to support the explicit conges-
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tion notification. Here, whenever () p is exceeded, the system rejects all mes-
sages of devices not currently being processed and notifies them about a point
in the future at which a retry should be attempted. By this, the system gains
more fine-grained control over the arrival rate of messages and can optimize
resource utilization without excessive blocking of messages. Note that this sce-
nario introduces changes to the signaling model introduced earlier. Instead of
pure timeout-driven retries, devices are now able to dynamically change their
retry behavior. Also note that a mechanism like this would require an extension
of current protocols and assume devices that respect the feedback of the system.
Especially the latter is unlikely to hold true in the real world. However, we still
include this mechanism as a potential solution that optimizes both system uti-
lization and message reject rate, thereby reducing the load on both the visited
network and the signaling carrier in a roaming scenario. Furthermore, this can
lead to reduced energy consumption for the IoT devices as excessive retries are
reduced.

In the scenario presented here, the system is configured to propose retry times
based on the fact that it can process 840 devices per second without resulting in

overload. Hence, the timer ¢, suggested to devices is computed as

N
840

with n, being the number of unattached devices actively trying to connect

=1

to the system. This results in an arrival rate of exactly 840 devices per second
when only taking into account retrying devices. In addition, the system has to
deal with new devices. However, as the source for the overload is expected to
be resolved eventually, and we want to ensure maximum resource utilization, a
guaranteed arrival rate of 840 devices will yield the best resource utilization as

it guarantees a high system load without resulting in overload.
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Figure 4.21: Performance metrics over time when applying device policing with

explicit signaling.

Figure 4.21 again shows the attachment rate as well as the ECDF of the num-
ber of retries for different arrival rates of new devices. The confidence interval
of the steady state attachment rate over 10 simulation repetitions is below 0.75
for all evaluated arrival rates. Thus, we again show one exemplary simulation
run. It can be seen that the attachment rate is as consistent as in the MSU polic-
ing scenario, while the number of required retries is significantly reduced, as the

maximum observed value has declined from 100 to now 25 with the 99% quan-
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4.5 Lessons Learned

tile being only 3 in the case of 3400 arrivals per second. However, the time to
attach, meaning the time between the first message attempt and the successful
completion remained similar with a mean time to attach of 236 seconds for MSU
policing and 229 seconds for device policing with explicit congestion signaling.

In order to improve our understanding of the behavior of IoT-focused mobile core
systems, we have presented a protocol level simulation framework of a real world
MVNO mobile core and have shown that the proposed simulation is able to accu-
rately reproduce several KPIs of the underlying real world system. The implemen-
tation used in this work is freely available on GitHub and can easily be extended
to include more complex device models or investigate other aspects beside the ones
examined in this work. We can hence conclude that we are able to faithfully model
the behavior of such a complex system using our simulator and thus answer RQ4.3.

We have shown the source of the issue in overload scenarios within the retry be-
havior of devices and proposed two different solutions to ensure consistent recovery
from overload phases. Both MSU policing and device policing have been shown to
ensure high resource utilization by allowing the system to operate at maximum ca-
pacity, even under sustained overload. We were furthermore able to identify bottle-
necks regarding the scaling of the system and were able to evaluate aforementioned
overload control mechanisms. Thereby, we can answer RQ4.4 and conclude that our
simulator can be used to perform case studies regarding possible extensions to the
system and can furthermore be applied to identify scalability issues under varying

circumstances.

4.5 Lessons Learned

In this chapter, we present both our analysis of a large scale dataset contain-
ing 2G/3G signaling traffic of over 270,000 IoT devices that has been obtained
and analyzed in close cooperation with a MVNO. In this context, we have first
shown that it is feasible to characterize IoT devices based on the signaling be-
havior observed at the mobile core. Furthermore, we have shown that a clas-

sification of IoT devices based on a simple feature set is possible and devices
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can be distinguished based on their signaling traffic (RQ4.1). Finally, we have
investigated characteristics of the aggregated stream of signaling messages ar-
riving at the mobile core and have established that the Markov assumption does
not necessarily hold in practice, despite having a virtually unlimited number
of traffic sources. However, we have also proposed additional filtering and pro-
cessing steps to reestablish the Markov property by distinguishing between syn-
chronous and non-synchronous devices (RQ4.2). This observation has been ap-
plied to develop a simplistic device behavior model to apply as a load profile for
our mobile core simulation model developed in the second part of this chapter.

To this end, we have designed and implemented a detailed simulation model
that allows the evaluation of several key performance indicators of the mobile
core network. We perform a broad set of simulation runs and validate the simula-
tion results against measurement conducted in a dedicated testing environment
hosted and operated by the MVNO. By comparing the results we can conclude
that our simulation is able to faithfully represent the core network and replicate
critical key performance metrics such as the attachment rate of incoming de-
vices, the number of concurrently open signaling requests as well as the time it
takes new devices to attach to the system (RQ4.3). Further, we have conducted
a case study and investigated multiple approaches of overload control to ensure
system survivability in the event of extreme overload. Our results show that,
based on the applied device behavior model, prioritized dropping in combina-
tion with message type specific queue size limits allows the system to maintain
optimal efficiency even under extreme overload of up to four times its maximum

processing capacity (RQ4.4).
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Today, our everyday life is inextricably linked to the ubiquitous usage of techno-
logical devices. Not only are we using smartphones, smart televisions or digital
assistants during our leisure time and around our living spaces, but also con-
tinuously interact with a vast array of heterogeneous devices and applications
during our professional life. In both areas, basically every application, use case
and intended usage pattern is designed around the availability of reliable and
fast network connectivity. Applications like video streaming, video conferenc-
ing, cloud gaming, but also emerging platforms such as the Internet-of-Things
(IoT) or Industry 4.0 continuously drive the need for faster, more resilient, eas-
ier to manage and more flexible network architectures. The importance of the
widespread availability of broadband access became especially clear during the
COVID-19 pandemic that started in 2020. Within days, large parts of the work-
ing population all around the globe started working remotely due to travel re-
strictions and work-from-home orders. Luckily, wide area as well as access net-
works were able to handle the sudden spike in usage. This can, in no small part,
be attributed to the efforts of operators, industry and academia, who constantly
strive to improve network efficiency and resiliency and develop concepts to sup-
port the growing resource demand of new users as well as applications with
increasing complexity.

One of these efforts, the softwarization of networks, is also covered in this
monograph. Specifically, as the title of this thesis states, we focused on the per-
formance evaluation of next-generation data plane architectures and their com-
ponents. The performance evaluation of network components and distributed

systems has been an established research area for many years and contributions
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towards the improvement of network performance have been made plenty in
the past. However, due to the speed at which network architectures evolve and
the number of new, groundbreaking advancements achieved in recent years,
we were able to identify a broad yet specialized set of research questions that
were not answered in literature before. Approaches and methods of simulative
and analytical system modeling were combined with extensive measurement
studies to investigate a wide range of research topics related to the performance
of software-based network functions. More specifically, we were able to answer
the research questions outlined in the introductory section of this monograph
as follows. Note that a more detailed discussion of research questions as well as

the related contributions can be found in the respective chapters.

Starting in Chapter 2, we answered the question of how to monitor the pro-
cessing performance of software-based network functions by proposing a novel
monitoring mechanism that exploits the processing done by the network stack
used by VNFs. To this end, we designed the monitoring concept itself and imple-
mented a proof-of-concept that has been published as an open-source tool. The
proposed mechanism, called in-stack monitoring, leverages the already avail-
able code infrastructure of the network stack to intercept timestamps of in-
coming and outgoing messages and compute the processing time of packets.
We validated the accuracy of our approach through measurements in a dedi-
cated testbed using an industrial grade traffic generator. Finally, we discussed
limitations and outlined application scenarios of the in-stack monitoring mech-
anism. We have shown that our approach can be applied to obtain highly ac-
curate packet processing times while remaining network function agnostic and
inducing only minimal overhead. Even more, through the exploitation of al-
ready existing packet parsing infrastructure provided by the network stack, the
approach can be transferred to basically any arbitrary networking implementa-
tion that is capable of parsing and processing packets. Thus, the concept itself,
supported by our proof-of-concept implementation, is a valuable tool for oper-
ators, industry and academia and builds the basis for future research in the area

of performance monitoring of software-based network functions.
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We answered the question of how to predict critical KPIs of software-based
network functions by developing a discrete-time model of a state-of-the-art soft-
ware router. To this end, we applied our developed monitoring mechanism to
obtain a dataset of the processing performance of said software router under dif-
ferent load levels as well as configurations. We developed a suitable abstraction
and defined a discrete-time queuing model that allows the prediction of critical
performance metrics, such as the waiting time, queue size and packet loss prob-
ability. Using parts of the measurements during development and parts during
validation, we showed that our model is capable of accurately predicting the
relevant performance characteristics based on easily obtainable input parame-
ters. The generalizability, as evaluated for two different types of network func-
tions using the same underlying framework, makes the developed model a valu-
able asset for both practical problems, like dimensioning or performance predic-
tion, and future research. By providing a point of reference for the performance
of network functions, our model can be used to evaluate performance metrics
of network functions that will be developed in the future. Simultaneously, the
model can be practically applied by operators, developers and academia today
in order to assess and predict the performance of systems without the need for
physical deployment. This relevance in both practical and research areas as well
as current and future developments highlights the value of a generalizable, an-
alytical model. In combination with the previously discussed monitoring mech-
anism, we provide a full set of tools to be used by various stakeholders to suc-

cessfully assess the performance of software-based network functions.

Regarding the integration of software solutions into existing network archi-
tectures, as discussed by the third research question, Chapter 3 presents our
contribution in the area of network function interoperability. To answer this
question, we developed a data plane abstraction mechanism that allows the
transparent translation between different control plane protocols. In addition
to the introduction of the concept itself, we presented a proof-of-concept im-
plementation that allows the transparent integration of regular SDN-enabled

whitebox switches, software solutions as well as proprietary P4 programmable
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hardware devices into the same network while using a unified control plane
protocol, namely OpenFlow. We evaluated the performance impact of the data
plane abstraction on the control plane performance and discussed opportunities
and limitations of the concept. The proof-of-concept implementation has been
published as an open-source tool. The contribution in this area is the investi-
gation of the data plane abstraction concept itself. By highlighting the general
feasibility and impact on control plane performance, the investigation we con-
ducted is largely independent of the current state of the art. The same concept
can be applied to new and currently unknown control plane protocols as well
as data plane devices. At the time of writing, we work with the OpenFlow pro-
tocol and translate between different protocol versions as well as proprietary
control mechanisms employed by P4 devices. This type of translation, however,
is in no way a limitation of the concept. Instead, next generation devices and
control protocols developed in the future can be subsumed in a single network
in the same way. The same holds true for the feature aggregation discussed in
Chapter 3. While new devices will likely solve the problems today’s data plane
devices have, the methodology of combining multiple, heterogeneous devices
to solve problems emerging in the future remains valid, independent of the ca-
pabilities of single devices. Hence, the concept of data plane abstraction can be
considered a timeless contribution and will remain valid, even as the underlying

technology evolves.

Lastly, Chapter 4 answers the question of how to assess the performance of
complex microservice-based packet processing architectures. In this context,
our contribution is twofold. First, we examined an extensive dataset obtained
through measurements in a real world IoT-focused MVNO core network in or-
der to infer a realistic workload profile for the system. Here, we identified a sim-
ple feature set that enables the differentiation between types of devices solely
through analysis of their mobile signaling traffic. Subsequently, we leveraged
those insights during the development of a detailed simulation model of both
the signaling workload and the mobile core microservice architecture. After

the validation of our proposed simulation model, a series of case studies re-
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garding bottleneck detection, resource scaling, and overload control have been
conducted. We have shown that, using our approach, we are able to evaluate
possible extensions of the architecture and have identified optimization poten-
tial currently being realized by the MVNO. An implementation of the simulation
model as well as the required input data have been published for the community
to use and extend in the future. Similarly, the model can be applied to future net-
work architectures as well. As opposed to trace driven simulations that depend
on accurate measurements reflecting the current system state, our model-based
approach can be easily scaled and adapted to future signaling workloads and
core architectures beyond 5G. At the same time, the current model implemen-
tation is a valuable tool for academia and MVNOs, as it provides a platform for
parameter studies and system extensions. As we have shown, the simulation can
be used to investigate the impact of system modifications without the need to
implement modifications ahead of time. Thereby, operators can evaluate differ-
ent mechanisms such as overload control, autoscaling or load balancing using
a fraction of the time and cost it would take to develop proof-of-concept imple-

mentations.

The concepts, mechanisms and tools discussed throughout this monograph
not only individually cover crucial parts of the landscape of software-based net-
work functions, but, if seen in conjunction, outline a state-of-the-art workflow
in evaluating the performance of complex, interconnected systems consisting
of heterogeneous data plane components. By applying our approaches, a full
performance estimation of individual components as well as a multi-component
system can be achieved. Furthermore, we highlight the concept of data plane ab-
straction that allows the integration of heterogeneous data plane solutions into
the same system. By publishing both the scientific insights and the developed
tools, our contributions advance the state of the art regarding the performance
evaluation of software-based network functions and serve as a basis for future
work in this area. Here, several points remain as open areas to be addressed in
the future. While this monograph focused purely on performance aspects, our

contributions build the basis for further research beyond the scope of this work.
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In the area of reliability, questions regarding the continuity of the provided
processing performance need to be investigated. By combining our model with
concepts known from the area of reliability and survivability modeling, new
models covering the reliability and availability of software-based network func-
tions need to be developed. It is well known that software is seldom perfect, the
underlying hardware fails and unforeseen events can severely impact the oper-
ation of network functions. By investigating these aspects, we can strengthen
our understanding of the general reliability of software solutions and the impact
failures have on hybrid or pure-software systems. For example, the data plane
abstraction approach introduced in this monograph can be applied to provide a
transparent software-fallback in case of hardware failure, thereby allowing the
system to keep functioning at reduced performance instead of outright failing.
The implications, opportunities and limitations of such a mechanism remain to
be investigated.

Similarly, questions regarding elasticity and scaling in the context of dimen-
sioning software-based network architectures need to be addressed. Even today,
many architectures are dimensioned towards the worst case, thereby wasting a
significant amount of energy and money that could be used more effectively
otherwise. Even as dynamic scaling is by no means a novel concept, its appli-
cation to software-based network components has only gained importance in
recent years. Questions regarding when to perform scale-out and when to per-
form scale-up need to be revisited and results obtained in the context of cloud
elasticity need to be transferred to the networking domain. In this context, scal-
ing mechanisms can be combined with our simulation model to investigate the
impact of dynamic scaling using different scaling mechanisms on system perfor-
mance and availability. In combination with the previously mentioned aspects
of reliability and survivability, mechanisms that enable rapid scaling under un-
foreseen load spikes to ensure system survivability need to be examined. These
aspects, among others, in the area of elasticity and scaling remain to be the sub-

ject of future research work.
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These areas and more remain to be investigated in the future when it comes
to improving our understanding of the implications of moving from hardware
to software. Without knowing what developments the future holds and what
technological advancements will be coming to the networking domain, the in-
vestigation of the current state of the art and the identification of generalizable
models, concepts and ideas is the best way to prepare for what is to come. With
the contributions presented in the monograph, we have laid the groundwork
for impactful and relevant research in the area of network softwarization in the

years to come, even beyond the performance aspects covered in this thesis.
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