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1 Summary 

The yeast Candida albicans is a member of the normal microflora on the mucosal surfaces of 

the gastrointestinal and urogenital tract in healthy persons. However, it is an opportunistic 

pathogen that can cause a range of infections from superficial to disseminated, in response to 

perturbation of the normal microflora or alterations in the host immunity. C. albicans exhibits 

a variety of characteristics such as adhesion, morphogenetic switching and secreted aspartic 

protease production that contribute to its virulence. Expression of many of these virulence 

factors is controlled by the availability of essential element, nitrogen. C. albicans undergoes 

morphogenetic transition to form filaments under nitrogen starvation conditions and this 

switch is controlled by the ammonium permease Mep2p. However, little is known about how 

this signaling function of Mep2p is regulated.   

Mutational analysis of Mep2p was carried out to identify the residues that confer 

signaling activity to this permease. The C-terminal cytoplasmic tail of Mep2p contains a 

signaling domain that is dispensable for ammonium transport but essential for the signaling 

activity of Mep2p. In this work, progressive C-terminal truncations analysis demonstrated that 

a MEP2ΔC433 allele was still able to induce filamentation while nitrogen starvation-induced 

filamentous growth was abolished in cells expressing a MEP2ΔC432 allele. Therefore, tyrosine 

at position 433 (Y433) is the last amino acid in Mep2p that is essential for signaling. To gain 

insights into how the signaling activity of Mep2p is regulated by ammonium availability and 

transport, conserved residues that have been implicated in ammonium binding or uptake were 

mutated. Mutation of D180, which has been proposed to mediate initial contact with 

extracellular ammonium, or the pore-lining residues H188 and H342 abolished Mep2p 

expression, indicating that these residues are important for protein stability. Mutation of F239, 

which together with F126 is predicted to form an extracytosolic gate to the conductance 

channel, abolished both ammonium uptake and Mep2p-dependent filamentation, despite 

proper localization of the protein. On the other hand, mutation of W167, which is assumed to 

participate along with Y122, F126, and S243 in the recruitment and coordination of the 

ammonium ion at the extracytosolic side of the cell membrane, also abolished filamentation 

without having a strong impact on ammonium transport, demonstrating that extracellular 

alterations in Mep2p can affect intracellular signaling. Mutation of Y122 reduced ammonium 

uptake much more strongly than mutation of W167 but still allowed efficient filamentation, 

indicating that the signaling activity of Mep2p is not directly correlated with its transport 

activity.  
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An important aspect in the ability of Mep2p to stimulate filamentation in response to 

nitrogen limitation is its high expression levels. The cis-acting sequences and trans-acting 

regulators that mediate MEP2 induction in response to nitrogen limitation were identified. 

Promoter analysis revealed that two putative binding sites for GATA transcription factors 

have a central role in MEP2 expression, as deletion of the region containing these sites or 

mutation of the GATAA sequences in the full-length MEP2 promoter strongly reduced MEP2 

expression. To elucidate the roles of the GATA transcription factors GLN3 and GAT1 in 

regulating MEP2 expression, mutants lacking one or both of these transcription factors were 

constructed. Mep2p expression was strongly reduced in gln3Δ and gat1Δ single mutants and 

virtually abolished in gln3Δ gat1Δ double mutants. Deletion of GLN3 strongly inhibited 

filamentous growth under limiting nitrogen conditions, which could be rescued by 

constitutive expression of MEP2 from the ADH1 promoter. In contrast, inactivation of GAT1 

had no effect on filamentation. Surprisingly, filamentation became partially independent of 

the presence of a functional MEP2 gene in the gat1Δ mutants, indicating that the loss of 

GAT1 function results in the activation of other pathways that induce filamentous growth. 

These findings demonstrated that the GATA transcription factors Gln3p and Gat1p control 

expression of the MEP2 ammonium permease and that GLN3 is also an important regulator of 

nitrogen starvation-induced filamentous growth in C. albicans. 

C. albicans mutants lacking both the GATA transcription factors Gln3p and Gat1p 

were unable to grow in a medium containing an alternative nitrogen source, bovine serum 

albumin (BSA) as the sole nitrogen source. The ability to utilize proteins as sole source of 

nitrogen for growth of C. albicans is conferred by the secreted aspartic protease Sap2p, which 

degrades the proteins, and oligopeptide transporters that mediate uptake of the proteolytic 

products into cell. The growth defect of gln3Δ gat1Δ mutants was mainly caused by their 

inability to express the SAP2 gene, as SAP2 expression from the constitutive ADH1 promoter 

restored the ability of the mutants to grow on BSA. Expression of STP1, which encodes a 

transcription factor that is required for SAP2 induction in the presence of proteins, was 

regulated by Gln3p and Gat1p. Forced expression of STP1 from a tetracycline-inducible 

promoter bypassed the requirement of the GATA transcription factors for growth of 

C. albicans on proteins. When preferred nitrogen sources are available, SAP2 is repressed and 

this nitrogen catabolite repression of SAP2 was correlated with downregulation of STP1 under 

these conditions. Tetracycline-induced STP1 expression abolished nitrogen catabolite 

repression of SAP2, demonstrating that regulation of STP1 expression levels by the GATA 

transcription factors is a key aspect of both positive and negative regulation of SAP2 
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expression. Therefore, by using a regulatory cascade in which expression of the specific 

transcription factor Stp1p is controlled by the general regulators Gln3p and Gat1p, 

C. albicans places SAP2 expression under nitrogen control and ensures proper expression of 

this virulence determinant.  

In summary, the present study illustrated how GATA factors, Gln3p and Gat1p, play 

partially overlapping, but distinct roles, in mediating the appropriate responses of C. albicans 

to the availability of different nitrogen sources. These responses are also determinants of 

pathogenicity of the fungus. The relative contributions of Gln3p and Gat1p vary with their 

target genes and the availability of nitrogen source. Overall, these findings provide us with a 

better understanding of the molecular basis of some of the important processes that help in 

adaptation of C. albicans to various environmental conditions. 

 



  Zusammenfassung 

   4

1   Zusammenfassung 

Der Hefepilz Candida albicans ist ein harmloser Kommensale auf den Schleimhäuten des 

Gastrointestinal- und Urogenitaltrakts der meisten gesunden Menschen. Bei einer Störung der 

natürlichen Mikroflora oder des Wirtsimmunsystems kann der Pilz jedoch auch oberflächliche 

und sogar systemische Infektionen verursachen. C. albicans weist eine Reihe von 

Eigenschaften auf, die zur Virulenz des Erregers beitragen. Dazu gehören die Adhärenz an 

unterschiedliche Wirtsoberflächen, die morphologische Variabilität des Pilzes und die 

Sekretion von Aspartatproteasen. Die Expression vieler dieser Virulenzfaktoren wird unter 

anderem durch die Verfügbarkeit von Stickstoff reguliert. Unter 

Stickstoffmangelbedingungen wechselt C. albicans vom Wachstum als sprossende Hefe zum 

filamentösen Wachstum, und dieser Wechsel wird durch die Ammoniumpermease Mep2p 

reguliert. Wie die Induktion des filamentösen Wachstums durch Mep2p kontrolliert wird, ist 

jedoch weitgehend unbekannt. 

In der vorliegenden Arbeit wurde eine Mutationsanalyse von Mep2p durchgeführt, um 

Aminosäuren zu identifizieren, die an der Signalfunktion dieser Permease beteiligt sind. Die 

C-terminale cytoplasmatische Domäne von Mep2p wird für den Ammoniumtransport nicht 

benötigt, ist jedoch essentiell für die Signaltransduktion. Progressive C-terminale 

Verkürzungen von Mep2p zeigten, dass ein MEP2ΔC433-Allel immer noch in der Lage war, 

das filamentöse Wachstum zu induzieren, wohingegen die Deletion einer weiteren 

Aminosäure die Morphogenese blockierte. Das Tyrosin an Position 433 (Y433) ist deshalb 

die letzte Aminosäure, die für die Signalfunktion von Mep2p essentiell ist. Um besser zu 

verstehen, wie die Signalaktivität von Mep2p durch die Verfügbarkeit und den Transport von 

Ammonium reguliert wird, wurden verschiedene hochkonservierte Aminosäuren mutiert, die 

vermutlich an der Bindung oder dem Transport von Ammonium in die Zelle beteiligt sind. 

Die Mutation von D180, von dem postuliert wurde, dass es den initialen Kontakt mit 

extrazellulärem Ammonium ermöglicht, oder der im Transportkanal lokalisierten Histidine 

H188 und H342 hatte zur Folge, dass Mep2p nicht mehr exprimiert wurde, so dass diese 

Aminosäuren vermutlich für die Proteinstabilität wichtig sind. Die Mutation von F239, das 

zusammen mit F126 eine extracytosolische Pforte zur Transportpore bildet, verhinderte trotz 

korrekter Membranlokalisation sowohl den Ammoniumtransport als auch das filamentöse 

Wachstum. Allerdings führte auch die Mutation von W167, das vermutlich zusammen mit 

Y122, F126 und S243 an der Rekrutierung des Ammoniumions an der extrazellulären Seite 

der Membran beteiligt ist, zur Blockierung des filamentösen Wachstums, obwohl der 
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Ammoniumtransport kaum beeinflusst war. Dies zeigte, dass die intrazelluäre 

Signaltransduktion durch extrazelluläre Veränderungen in Mep2p beeinflusst werden kann. 

Die Mutation von Y122 reduzierte die Ammoniumaufnahme weitaus starker als die Mutation 

von W167, erlaubte jedoch immer noch ein effizientes filamentöses Wachstum. Die 

Signalaktivität von Mep2p ist deshalb offensichtlich nicht direkt mit der Transportaktivität 

des Proteins korreliert. 

Ein wichtiger Aspekt in der Fähigkeit von Mep2p, die Morphogenese zu stimulieren, 

ist die vergleichsweise starke Expression des Proteins. Um die Regulation der MEP2-

Expression aufzuklären, wurden die cis-regulatorischen Sequenzen und die trans-

aktivierenden Faktoren, die die MEP2-Induktion unter Stickstoffmangel vermitteln, 

identifiziert. Eine Promotoranalyse zeigte, dass zwei mutmaßliche Bindungsstellen für 

GATA-Transkriptionsfaktoren eine zentrale Rolle in der MEP2-Expression haben, da die 

Deletion oder Mutation dieser GATAA-Sequenzen die Expression von MEP2 stark 

reduzierte. Um die Rolle der GATA-Transkriptionsfaktoren Gln3p und Gat1p bei der 

Regulation der MEP2-Expression zu untersuchen, wurden Mutanten hergestellt, in denen die 

entsprechenden Gene deletiert waren. Die Expression von Mep2p war in gln3Δ und gat1Δ 

Einzelmutanten stark verringert und in gln3Δ gat1Δ Doppelmutanten nicht mehr nachweisbar. 

Die Deletion von GLN3 hatte auch eine starke Reduktion des filamentösen Wachstums zur 

Folge, die durch die konstitutive Expression von MEP2 unter Kontrolle des ADH1-Promotors 

aufgehoben wurde. Dagegen hatte die Deletion von GAT1 keinen Einfluss auf das filamentöse 

Wachstum. Überraschenderweise war das filamentöse Wachstum in den gat1Δ Mutanten 

teilweise unabhängig von Mep2p, was darauf hinwies, dass in Abwesenheit von GAT1 andere 

Signalwege aktiviert werden, die die Morphogenese stimulieren. Diese Ergebnisse zeigten, 

dass die GATA-Transkriptionsfaktoren Gln3p und Gat1p die Expression der 

Ammoniumpermease MEP2 kontrollieren und dass Gln3p auch ein wichtiger Regulator des 

durch Stickstoffmangel induzierten filamentösen Wachstums von C. albicans ist. 

Mutanten, in denen die beiden GATA-Transkriptionsfaktoren Gln3p und Gat1p 

fehlten, waren nicht mehr in der Lage, in einem Medium zu wachsen, das bovines 

Serumalbumin (BSA) als einzige Stickstoffquelle enthält. Die Fähigkeit von C. albicans, 

Proteine als einzige Stickstoffquelle zum Wachstum zu verwenden, wird durch die sekretierte 

Aspartatprotease Sap2p, die die Proteine zu Peptiden abbaut, und durch 

Oligopeptidtransporter, die diese Peptide in die Zelle aufnehmen, vermittelt. Der 

Wachstumsdefekt der gln3Δ gat1Δ Doppelmutanten war hauptsächlich durch einen Defekt in 

der SAP2-Expression verursacht, da die Expression von SAP2 unter Kontrolle des 
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konstitutiven ADH1-Promotors die Fähigkeit zum Wachstum auf BSA wieder herstellte. Es 

zeigte sich, dass Gln3p und Gat1p die Expression des Transkriptionsfaktors STP1, der für die 

Induktion von SAP2 in Gegenwart von Proteinen notwendig ist, regulieren. Bei einer 

Expression von STP1 unter Kontrolle des induzierbaren Tet-Promotors waren Gln3p und 

Gat1p nicht mehr notwendig für das Wachstum auf Proteinen. Wenn bevorzugte 

Stickstoffquellen verfügbar sind, wird SAP2 auch in Gegenwart von Proteinen reprimiert, und 

diese Stickstoff-Katabolitrepression korrelierte mit einer reduzierten STP1-Expression. Die 

Expression von STP1 unter Kontrolle des Tet-Promotors hob diese Repression auf, was 

zeigte, dass die Regulation der STP1-Expression durch die GATA-Transkriptionsfaktoren 

eine Schlüsselrolle sowohl bei der positiven als auch bei der negativen Kontrolle der SAP2-

Expression spielt. Eine regulatorische Kaskade, in der die Expression des spezifischen 

Transkriptionsfaktors Stp1p durch die allgemeinen Regulatoren Gln3p und Gat1p kontrolliert 

wird, stellt die Expression von SAP2 in C. albicans deshalb unter Stickstoffkontrolle und 

gewährleistet eine angepasste Expression dieses Virulenzfaktors. 

Die Ergebnisse dieser Arbeit illustrieren, dass die GATA-Faktoren Gln3p und Gat1p 

zum Teil überlappende aber auch spezifische Funktionen in der Anpassung von C. albicans 

an die Verfügbarkeit verschiedener Stickstoffquellen haben. Diese Anpassungsmechanismen 

spielen auch eine Rolle in der Pathogenität des Pilzes, wobei die relative Bedeutung von 

Gln3p und Gat1p vom Zielgen und der Stickstoffquelle abhängt. Diese Erkenntnisse geben 

einen vertieften Eiblick in die molekularen Grundlagen der Anpassung von C. albicans an 

unterschiedliche Umweltbedingungen. 
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2 Introduction 

The fungal kingdom is incredibly diverse, and its members can inhabit an extraordinarily 

wide range of niches. Surprisingly, out of 1.5 million (approximate) existing fungal species 

only around 150 are known to be associated with human infections. Some of these 

occasionally infect humans, but normally grow in the environment, e.g., Aspergillus 

fumigatus, Cryptococcus neoformans or Histoplasma capsulatum. However, there are a few 

fungal species that seem to be extremely successful in their adaptation to the human host. 

These are the dermatophytes, such as members of the genus Microsporum or Trychophyton, 

which frequently cause skin infections, and those fungi that belong to the normal microbial 

flora such as some Candida species (Hube, 2006). Although the genus Candida comprises 

about 150 yeast species, the majority of them, ~65%, are nonpathogenic as they are unable to 

grow at 37°C, a trait that is certainly a prerequisite for being a successful human pathogen 

(Calderone, 2002). The majority of all Candida infections are caused by Candida albicans, 

the most frequently encountered species in clinical practice. However, the incidences of non-

albicans infections such as the ones caused by C. glabrata, C. tropicalis and C. parapsilosis 

species are steadily increasing (Calderone, 2002). 

 

Pathogenicity of Candida albicans 

Candida albicans can be found as a harmless commensal of the human oral, gastrointestinal 

and vaginal mucosal surfaces. Under certain predisposing conditions, the delicate balance 

between the host and this otherwise normally commensal fungus may turn into a parasitic 

relationship, resulting in the development of infection called candidiasis. The nature and 

extent of the impairment of normal host defense influence the manifestation and severity of 

infection. In general, superficial mucocutaneous candidiasis is frequent in individuals with T-

cell deficiencies, such as AIDS patients. The more serious, life-threatening, deep-seated or 

disseminated candidiasis is normally found in a spectrum of severely immunocompromised 

patients (Odds, 1988). C. albicans has become an ever increasing medical problem as the 

number of immunocompromised patients is steadily increasing either due to rising number of 

HIV infections or  use of more aggressive medical procedures such as organ transplants and 

cancer chemotherapy.  

 C. albicans as a well-evolved opportunistic pathogen does not rely on any single 

attribute to enable its conversion from a passive commensal to a life-threatening invasive 
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pathogen. As expected, a multitude of genes involved in diverse biological functions have 

been implicated in various roles in the development of the pathogenic state of C. albicans 

 

2.1 Determinants of pathogenicity: Virulence factors of C. albicans 

There are several predisposing factors for C. albicans to alter it from a state of a relatively 

quiescent commensalism to an aggressive pathogenic lifestyle. C. albicans acts as an alert 

opportunist in the presence of these factors. Host factors, like infectious, congenital and other 

debilitating diseases or a digression from the natural physiological status inclusive of a 

hormonal variation can cause an impaired state of immune function which is a prerequisite for 

candidiasis. Dietary factors, like excess or deficiency of certain nutrients may alter the 

endogenous microbial flora; mechanical factors, like trauma or occlusive injury can alter the 

microenvironment; medical factors such as drugs used to suppress immune activity after 

surgery, and medication, which alters the host defenses against specific infections are all 

causes for this predisposition towards candidiasis (Odds, 1988). The fungus is not a mere 

passive participant in the infectious process and uses several attributes which are potential 

pathogenicity parameters. These fungal attributes include adherence, antigenic variability as a 

result of change in expression pattern of cell surface composition, dimorphic transition, 

production of secreted hydrolytic enzymes and phenotypic switching (Calderone & Fonzi, 

2001). C. albicans virulence is a function of a multiplicity of factors working jointly to 

overcome the host defenses. A lack or debility in any of these parameters will reflect 

negatively on its infectivity and make it difficult for Candida to establish itself, particularly in 

a healthy individual (Ghannoum & Abu-Elteen, 1990). 

 

2.1.1 Adhesins 

The cell wall of C. albicans is an essential and highly dynamic structure which is involved not 

only in several physiological functions such as maintaining the cellular morphology and 

osmotic protection of cell, but also in adherence, and for being antigenic it modulates the 

immunological response against the infection (Navarro-García et al., 2001). The 

pathogenicity of C. albicans is correlated with its ability to adhere to host surfaces, an early 

but essential step in the establishment of infection, which is an outcome of both fungal and 

host cell properties. Expectedly, adherent strains of C. albicans are more pathogenic than 

strains with a less adherent phenotype (Sundstrom, 2002). Adherence of Candida cells is 

mediated by adhesins which include the ALS family of proteins and the Hwp1p surface 
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protein, which recognize specific ligands on the host surfaces. The ALS (agglutinin-like 

sequence) family includes eight genes (ALS1 to ALS7 and ALS9) that encode large cell-

surface glycoproteins (Hoyer, 2001). Each Als protein consist of three domains, relatively 

conserved N-terminal domain which is believed to have adhesive function, a central domain 

consisting of tandem copies of a highly conserved 108 base pair unit of a repeated motif, and 

a serine-threonine rich C-terminal domain that is relatively variable in length and sequence 

across the family. Als proteins are uniformly distributed across the cellular surface rather than 

focally clumped. The cell surface localization of Als proteins is attributable to amino- and 

carboxy-terminal hydrophobic sequences, which are reported to function as a secretory signal 

sequence and glycosylphosphatidylinositol (GPI) anchor addition site, respectively. Expres-

sion profiling and mutational analysis have shown enormous diversity within the Als family 

either due to differential regulation of ALS genes or to variability in size because of 

differences in the number of 108 bp tandem repeat copies present in the central domain. This 

provides C. albicans with an array of cell wall proteins capable of recognizing and interacting 

with a wide range of host constituents during infection (Hoyer, 2001). HWP1 (hyphal wall 

protein) is an important developmentally regulated adhesin found only on surfaces of hyphae 

but not yeasts or pseudohyphae of C. albicans. Hwp1p is a cell surface glycoprotein that acts 

as substrate for mammalian transglutaminases. These enzymes are thought to generate 

covalent cross links between Hwp1p on the fungal hyphal surface and proteins on the 

mammalian mucosa  (Sundstrom, 2002). 

 

2.1.2 Extracellular hydrolytic enzymes 

C. albicans, like other microbial pathogens uses secretion of hydrolytic enzymes as a strategy 

to invade the host and cause infection. Secreted aspartyl proteases (Saps), lipases and 

phospholipases are the most significant extracellular hydrolytic enzymes produced by the 

pathogen. The proteolytic activity of C. albicans due to Sap production was one of the first 

recognized virulence attributes of this fungus  (Remold et al., 1968; Staib, 1965; 1969). 

Proteolytic activity has also been found in vitro in most isolates of other pathogenic Candida 

species C. dubliniensis, C. tropicalis and C. parapsilosis. Less pathogenic or nonpathogenic 

Candida species do not appear to produce significant amounts of proteases, suggesting that 

virulence is correlated with level of Sap production. Similarly, isolates of C. albicans from 

symptomatic patients with candidiasis are reported to be significantly more proteolytic than 

those from asymptomatic carriers (Naglik et al., 2003). 
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 C. albicans possesses a family of ten genes, SAP1-10, encoding secreted aspartic 

proteases (Albrecht et al., 2006; Monod et al., 1994; 1998). While eight members of the 

family, Sap1p-Sap8p, are secreted into the extracellular space, the other two, Sap9p and 

Sap10p, are membrane anchored GPI proteins. On the basis of amino acid sequence 

homology two Sap subfamilies, Sap1p-Sap3p and Sap4p-Sap6p are formed. These 

isoenzymes are inhibited by protease inhibitor, pepstatin A, and most of them have an optimal 

activity at low pH values (‘acid proteases’).  

  All ten Saps of C. albicans are synthesized as precursors in preproprotein forms with 

approximately 60-200 amino acids longer than the mature protein which are processed when 

transported via the secretory pathway. The N- terminal secreting signal peptide (prepeptide) is 

removed by the signal peptidase complex in the rough endoplasmic reticulum. Active enzyme 

is obtained after further processing of the propetide by Kex2 proteinase in Golgi apparatus. 

However, alternative processing pathways for Saps, yet unidentified, must exist because a 

Kex2 deficient mutant secrete abnormally processed but active Sap2p (Newport & Agabian, 

1997). The mature enzymes are in the range of 35-48kDa, contain sequence motifs typical for 

all aspartic proteases, including the two conserved aspartate residues of the active site and the 

conserved cysteine residues that are implicated in maintenance of its three-dimensional 

structure.  

 Most biochemical properties of Saps have been deduced from the studies on Sap2p 

since it is the major in vitro secreted protease of C. albicans. Sap2p acts mainly at acidic pH 

and has very broad spectrum of activity. It is known to degrade many human proteins at 

mucosal sites including extracellular matrix and host surface proteins such as keratin, 

collagen, laminin, fibronectin and mucin (Colina et al., 1996; Morschhäuser et al., 1997; Ray 

& Payne, 1990). The efficient removal of host barriers by the proteolytic activity in vivo 

would not only provide essential nutrients for growth (Staib, 1965), but would also reveal 

potential binding sites to enhance adherence of C. albicans (Watts et al., 1998). Sap2p can 

also digest several host defense molecules like immunoglobulins (including IgA) and 

complement proteins (Kaminishi et al., 1995; Rüchel, 1981)  which may help in evasion of 

host defense by the pathogen. It is not yet clear whether the digestion of substrates by Sap2p 

in vivo is similar to that shown in vitro or if other Saps utilize the same substrates as Sap2p. 

Different Saps have different pH optima, while Sap1p-Sap3p have the highest activity at low 

pH, Sap4p-Sap6p have at higher pH values. This empower C. albicans with a  proteolytic 

activity in pH range 2-7, which may be vital to survival and infection of the fungus in 

different host tissues such as vaginal mucosa (acidic pH) or oral cavity (neutral pH).  
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 The presence of 10 Sap isoenzymes suggests that their expression may be differentially 

regulated depending on environmental conditions, thus providing growth advantage to C. 

albicans. In vitro expression analyses have revealed that a variety of conditions affect the 

expression of Sap genes. SAP2 is the major proteinase which is expressed in yeast cells at 30-

37ºC in media containing proteins as the sole source of nitrogen (Hube et al., 1994). 

Interestingly, even the two alleles of SAP2 are differentially regulated under these conditions 

(Staib et al., 2002). Expression of SAP1 and SAP3 is regulated by phenotypic switching and 

these genes are expressed only in the opaque form of WO-1 strain (Morrow et al., 1992; 

White et al., 1993). Surprisingly, although members of acid proteinase family, SAP4-6 genes 

are almost exclusively expressed during hyphal transition at neutral pH (Hube et al., 1994; 

White & Agabian, 1995). SAP8 expression is temperature regulated with increased levels at 

25ºC than at 37ºC (Monod et al., 1998). SAP9 and SAP10 are constitutively expressed in both 

yeast and hyphal growth forms and their expressions are independent of the environmental 

conditions (Felk et al., 2002; Schaller et al., 2003). Therefore, protease expression in C. 

albicans is a highly regulated process and possibly different members of the Sap family might 

also be regulated differentially in vivo. These ideas were the basis for lots of studies in which 

expressions of Saps were analyzed on reconstituted human epithelium (in vitro) and animal 

(in vivo) experimental models. Various in vitro models of infection (oral, vaginal) 

demonstrated that the SAP1-3 subfamily is mainly expressed in the initial stages of epithelial 

colonization (Schaller et al., 1998; 2003). In animal models, SAP gene expression and 

regulation is shown to be dependent on type and stage of C. albicans infections. For instance, 

in a mouse model of esophageal candidiasis SAP5 and SAP6 were strongly activated and in 

intravenous model SAP4-6 were activated, while SAP2 gene was activated only in the late 

stages of disseminated candidiasis (Staib et al., 2000). SAP2, SAP4-6 and SAP9 transcripts 

were detected continuously in mouse model of intraperitoneal infection (Felk et al., 2002). 

Importance of Saps in virulence of C. albicans is implicated by the studies of SAP null 

mutants. It seems that during mucosal infections Sap1-3 are probably the most important of 

Saps. While SAP2 null mutants are reported to be avirulent in rat vaginitis model of infection, 

the virulence of SAP1 and SAP3 null mutants was compromised (De Bernardis et al., 1999). 

Sap4p-Sap6p appeared critical for systemic infections, as virulence of a SAP4-SAP6 triple 

null mutant was strongly attenuated in both guinea pig and murine models of systemic 

infections while a weak attenuation was observed for sap1Δ, sap2Δ and sap3Δ single mutants 

(Hube et al., 1997; Sanglard et al., 1997).  
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 Naglik et al. (1999; 2003) demonstrated that SAP1, SAP3 and SAP7 transcripts were 

predominantly expressed in oral candidiasis patients as opposed to carriers, while SAP2 and 

SAP5 were the most commonly expressed genes. High titre of anti-SAP antibodies from the 

sera of candidiasis patients suggest that Saps are expressed and secreted during human 

mucosal and systemic infections. With the information that C. albicans has 10 Saps which are 

differentially expressed and differ in their enzymatic characteristics and substrate specificities, 

it is likely that individual proteases may fulfill various functions during infections and help in 

optimal adaptation of the pathogen to various host niches. Despite being one of the most 

studied virulence determinant of C. albicans, knowledge regarding molecular basis of SAP 

gene regulation is still in infancy.  

Phospholipases:  

Phospholipases (PL) hydrolyse one or more ester linkages in glycerophospholipids, hence 

play important role in damaging cell membranes and invading host cells. High phospholipase 

production is correlated with increased adherence and higher mortality rate in animal models 

(Mayser et al., 1996). Though four subclasses A, B, C and D of phospholipase have been 

identified in C. albicans, it is the PL B class encoded by genes PLB1 and PLB2 which is 

extracellular in nature. Expression of PLB1 is regulated by nutritional supplementation, 

environmental factors, and the growth phase of C. albicans cells. The differential expression 

of PLB1 in response to environmental factors may be correlated to host-specific components 

available to C. albicans (Mukherjee et al., 2003). The virulence of PLB1 null mutants was 

significantly attenuated for systemic and intragastric model of candidiasis (Ghannoum, 2000; 

Leidich et al., 1998) providing the most convincing evidence for role of PLs in pathogenesis 

of C. albicans infections.  

 

2.1.3 Morphogenetic switching  

A striking feature of C. albicans biology is its ability to grow in variety of morphological 

forms. The fungus is not as usually described dimorphic, but with its ability to adopt a 

spectrum of morphologies, is more properly considered polymorphic or pleomorphic. C. 

albicans can reversibly convert unicellular budding yeast growth form (blastospores) to either 

pseudohyphal or hyphal form, collectively referred as filamentous growth form. Primary 

hyphae emerging from the blastospores are referred to as germ tubes until it forms a septum. 

Hyphae exhibit both tip-growth and cross branching, and extensive filamentous growth leads 

to formation of mycelium which displays hyphae with branches and lateral buds. The 
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formation of pseudohyphae occurs by polarized cell division when yeast cells growing by 

budding have elongated without detaching from the parent cells. Pseudohyphal cells are 

elliptical in shape and have constrictions at cell junctions whereas hyphal cells have parallel 

sides and true septa at cell junctions (Sudbery et al., 2004). These morphological transitions 

often represent a response of the fungus to changing environmental conditions and this 

plasticity in forms allows adaptation of the fungus to different biological niches. 

 Each morphological form of C. albicans has certain unique characteristics which 

provide each cell type with distinct roles in the infectious process of this pathogen. Yeast 

form is proposed to be the one that initiate as well disseminate infection, since blastospores 

are generally found at the epithelial cell surface and in between epithelial cells. Filamentous 

form is associated with adhesion, invasion of host tissues and escape from the phagocytic 

immune cells (Kumamoto & Vinces, 2005). Tissues infected with C. albicans typically 

contain a mixture of yeast and filamentous cells implicating both growth forms are essential 

for pathogenic lifestyle (Odds, 1988). Diminished virulence of  C. albicans mutant strains 

which are unable to undergo morphogenetic switching, highlighted the importance of 

morphogenesis in the pathogenicity of this organism (Lo et al., 1997; Saville et al., 2003; 

Zheng & Wang, 2004).  

 C. albicans yeast-to-filament transition can be triggered by a wide variety of  in vitro 

conditions, such as presence of serum, N-acetyl glucosamine (GlcNAc), higher temperature, 

neutral pH, nutrient starvation e.g. carbon or nitrogen, growth under 5% CO2 (physiological 

relevant concentration) (Odds, 1988). Hyphal development is stated to be dependent on two 

factors; the nature, number and intensity of environmental signals (outside cues), and the 

activity of signaling pathways (cellular response machinery) (Ernst, 2000). The environmental 

control of dimorphism in C. albicans is a huge topic, and information gathered till now 

suggest that depending on the environmental cues, different signal transduction pathways are 

activated which then regulate the targets that are required to initiate hyphal growth (Biswas et 

al., 2007; Brown & Gow, 1999; Ernst, 2000; Whiteway & Oberholzer, 2004). Though the 

components of the signaling networks have been well characterized, knowledge of 

receptors/sensors that mediate the environmental responses is limited.  

Molecular basis of morphogenesis in C. albicans  

Molecular dissection of morphogenesis in C. albicans has greatly benefited from the studies 

on the model yeast S. cerevisiae which switches to a filamentous, pseudohyphal growth form, 

on nutrient poor media. Most of the signal transduction genes in C. albicans have been 

identified through complementation of the defects of the corresponding homolog mutants in 
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S. cerevisiae. Networks of signaling pathways regulate the yeast to hyphal transition in C. 

albicans, out of which the Cph1-mediated MAPK pathway and the Efg1-mediated cAMP-

PKA pathway are well characterized (Fig. 1). 

Environmental sensing: Upstream components of the signal transduction networks 

Gpr1p, a G-protein coupled receptor along with Gpa2p, a Gα protein, is reported to act 

upstream of the cAMP-PKA pathway and regulate morphogenesis in C. albicans (Maidan et 

al., 2005a). However, there have been conflicting reports regarding the nature of the ligand 

for Gpr1p. Miwa et al., (2004) reported that, as in S. cerevisiae, Gpr1p is required for glucose 

induced increase in cAMP, but Maidan et al., (2005b) showed that Gpr1 directly or indirectly 

senses the amino acid methionine. Mechanism(s) involved in activation of cAMP-PKA 

pathway by Gpr1p, and role of its ligand in this mechanism is not known. Gpa2p is also 

reported to act upstream of the MAPK pathway to regulate filamentous growth in C. albicans 

(Sanchez-Martinez & Perez-Martin, 2002). 

 Under limiting nitrogen conditions, an ammonium permease Mep2p is assigned a 

regulatory role in the induction of filamentous growth in C. albicans and pseudohyphal 

growth  in S. cerevisiae (Biswas & Morschhäuser, 2005; Lorenz & Heitman, 1998). In C. 

albicans, Mep2p activates both the cAMP-PKA and MAPK pathway in a Ras1p dependent 

manner via its cytoplasmic C-terminal tail, which is essential for signaling but not for 

ammonium transport (Biswas & Morschhäuser, 2005). However, so far, it is not understood 

how Mep2p activate these signaling networks. 

Intracellular signaling: Signal transduction cascades and downstream effectors 

MAP Kinase Pathway 

The first morphogenetic signaling components to be identified in C. albicans were members 

of a mitogen-activated protein kinase (MAPK) pathway. The MAPK cascade includes the 

kinases Cst20p (homolog of the p21-activated kinase [PAK] kinase Ste20p), Hst7p (homolog 

of the MAPK kinase [MAPKK] Ste7p), Cek1p (homolog of the Fus3 and Kss1 MAPKs) and 

Cph1p (homolog of transcription factor Ste12p) (Csank et al., 1998; Köhler & Fink, 1996; 

Leberer et al., 1996; Liu et al., 1994). Studies have shown that Cst20p, Hst7p, Cek1p and 

Cph1p act sequentially in the order of a canonical MAPK cascade to induce the C. albicans 

yeast to hyphal transition in response to nutritional starvation. Null mutations at each of the 

loci of MAPK cascade confer hyphal defect only on certain solid starvation type media 

(Spider or SLAD), all these mutants filament normally in response to pH and serum, 

indicating that this pathway is not the only mechanism of hyphal development (Csank et al., 
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1998; Köhler & Fink, 1996; Leberer et al., 1996; Liu et al., 1994). Virulence of each of  

cst20Δ and hst7Δ single mutants is partially affected in a mouse model of systemic 

candidiasis. The phosphorylation status of Cek1p, hence the activity of this pathway as a 

whole, is negatively regulated by a MAP kinase phosphatase, Cpp1p (Csank et al., 1997). 

Inactivation of CPP1 leads to constitutive hyerfilamentation phenotype which is suppressed 

by deletion of the Cek1p. The cpp1Δ mutant strains are reduced for virulence in systemic 

model of candidiasis (Csank et al., 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Fig. 1. Regulation of dimorphism in C. albicans by multiple signaling pathways (adopted and modified from 

Biswas   et al., 2007)  

 

cAMP-PKA Pathway  

A second well characterized morphogenesis pathway that acts independently but in parallel to 

MAPK cascade is the cyclic AMP-dependent protein kinase A (cAMP-PKA) pathway. 
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Homologs of S. cerevisiae included in the cAMP-PKA pathway are, Ras1p, Cyr1p/Cdc35p, 

protein kinase A and the transcription factor Efg1p (Bockmühl et al., 2001; Feng et al., 1999; 

Rocha et al., 2001; Sonneborn et al., 2000). In C. albicans, ras1Δ mutants are viable but have 

a severe defect in hyphal growth in response to serum and other conditions (Feng et al., 

1999).  These defects in hyphal morphogenesis can be rescued by either exogenous cAMP or 

overexpressing components of the MAPK cascade, demonstrating that Ras1p functions 

upstream of both the cAMP as well as the MAPK pathway (Leberer et al., 2001). Like Ras1p, 

adenylate cyclase gene CDC35/CYR1, is not essential for growth but is required for hyphal 

development in C. albicans (Rocha et al., 2001). External cues elevate intracellular cAMP 

levels, whose binding to Bcy1 (the regulatory subunit of PKA) liberates it from Tpk1 and 

Tpk2 (the catalytic subunits of PKA), and thereby results in the activation of the catalytic 

subunits. Although both C. albicans Tpk isoforms act positively to regulate hyphal formation, 

they have different functional specificities, while Tpk1 seems to mediate filamentation on 

solid media, Tpk2 plays a prominent role in liquid medium (Sonneborn et al., 2000). The 

transcription factor Efg1p, a basic helix-loop-helix protein, is a downstream component of the 

cAMP-PKA pathway. In presence of serum or GlcNAc the efg1Δ mutant is unable to undergo 

hyphal formation (Lo et al., 1997; Stoldt et al., 1997). On the other hand, under 

microaerophilic or embedded conditions hyphal formation in efg1Δ mutant is rather 

stimulated. It seems, depending on environmental cues, Efg1p has a dual role as a 

transcriptional activator and repressor of morphogenesis. The efg1Δ mutant has strong 

reduction in virulence, the cph1Δ mutant has no defect, whereas efg1Δ cph1Δ double mutant, 

with extreme filamentous  growth defect, are avirulent in mouse model of infection (Lo et al., 

1997).       

 Apart from these two major signal transduction pathways, other genes like TEC1 or 

CPH2 have also been found to regulate hyphal development in C. albicans. Epistatis analysis 

has suggested that TEC1 is one of the downstream effectors of both Efg1p and Cph2p (Lane 

et al., 2001; Schweizer et al., 2000). Morphogenesis is also regulated by a conserved pH 

response pathway mediated by transcription factor Rim101p. Rim8p and Rim20p are the 

upstream components of this pathway and are involved in proteolytic activation of Rim101p 

which is required for high pH induced filamentation and expression of alkaline responsive 

gene PHR1 and repression of acid expressed gene PHR2 (Davis et al., 2000; El Barkani et al., 

2000; Porta et al., 1999; Ramon et al., 1999). Czf1p, a zinc-finger containing protein, is 

important for hyphal development in response to matrix embedding conditions (Brown et al., 

1999). Besides positive control, C. albicans hyphal development is subjected to negative 
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regulation by Tup1p (Braun & Johnson, 1997). Although Tup1p itself has no DNA binding 

activity, it is recruited to promoter of target genes through interaction with sequence specific 

DNA binding proteins Nrg1, Mig1, Rfg1 (Braun et al., 2001; Kadosh & Johnson, 2001; 

Khalaf & Zitomer, 2001; Murad et al., 2001a; 2001b)  

 These different environmental signaling pathways ultimately bring about the expression 

of not only hyphae specific genes such as HWP1, ALS1, ALS3, SAP4-6 but also those of 

pathway specific genes e.g. PHR1 and PHR2, all of which are important virulence 

determinants of C. albicans. 

 

2.1.4 Phenotypic switching  

Phenotypic switching in C. albicans is a reversible high-frequency phenomenon that is readily 

detectable as changes in cell or colony morphology. Common strains of C. albicans could be 

induced to switch reversibly and at high frequency between a number of variant phenotypes.   

Strain WO-1 undergoes ‘white-opaque’ switching, in which cells switched between a smooth, 

white colony phenotype containing round budding yeast cells to an opaque colony phenotype 

containing elongated oblong cells with surface pimples (Slutsky et al., 1987). With the 

discovery of mating in C. albicans in late 1990s, the importance of conversion from white to 

opaque physiological phase was realized. Only strains that are homozygous or hemizygous at 

the mating-type-like (MTL) locus, i.e., a and α cells can undergo white-opaque switch; 

furthermore, only the opaque cells mate at high efficiency (Johnson, 2003; Noble & Johnson, 

2007). However, there is more to white-opaque switching than just mating efficiency. 

Although white cells are more virulent than opaque cells in the mouse systemic model of 

infections, the opposite pattern is seen in a mouse skin model (Kvaal et al., 1999; 1997). 

Several virulence attributes of C. albicans, including expression of adhesins, Sap production 

and hyphal formation have been associated with the switching phenomenon (Soll, 2002). 

White-opaque switching provides C. albicans with an extraordinary phenotypic variability 

and mating competence to the cells, which in turn could help in generation of genetic 

diversity within an individual host, thus contributing to successful adaptation of the fungus in 

different environments.  

 

2.2 Nitrogen regulation in C. albicans 

Apparently, C. albicans virulence is a quantitative trait caused by the contributions of a 

number of genes. However, a complete understanding of its pathogenicity requires insights 
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into how this pathogen meets its nutritional need within the host. It is not known what 

nutrients, e.g., nitrogen sources, are exactly utilized by C. albicans during infectious growth 

in host, though there are two obvious and abundant nitrogen sources i.e., amino acids and host 

proteins. Under in vitro conditions, the quantity and quality of nitrogen sources in growth 

medium governs the responses of C. albicans. Nitrogen starvation induces morphogenetic 

switching that require a functional ammonium permease Mep2p (Biswas & Morschhäuser, 

2005), and availability of proteins as the sole nitrogen source results in production of Saps 

(Hube et al., 1994; White & Agabian, 1995), and both these features have been implicated in 

virulence of C. albicans. However, not much is known about the regulatory factors that 

control these important nitrogen responses in C. albicans.    

  Nitrogen is an essential element for living organisms for being a major constituent of 

complex macromolecules such as proteins, purines, pyrimidines, enzyme co-factors, some 

carbohydrates and lipids, all of which are central to growth processes. Hence, nitrogen 

metabolism and its regulation that ensures constant supply of nitrogen in diverse 

environments are fundamental to growth and survival of microorganisms. For pathogenic 

microbes the ability to infect and cause disease is often dependent on a proper response to the 

nitrogen environment of the host niche due either to the need to acquire adequate nutrients 

from nutrient poor host sites or to coordinate the expression of virulence determinants. 

Numbers of studies have highlighted the importance of nitrogen regulation in virulence of 

human fungal pathogens. Aspergillus fumigatus mutants lacking the areA gene, a key 

regulator of nitrogen metabolism, are partially attenuated in murine model of pulmonary 

aspergillosis (Hensel et al., 1998). Recent work has revealed the importance of GAT1 

(homolog of areA) which is required for proper expression of alternative nitrogen source 

utilization pathways in the virulence of C. albicans (Limjindaporn et al., 2003). SAP2 mutants 

of C. albicans exhibit reduced virulence in animal models of candidiasis (De Bernardis et al., 

1999; Hube et al., 1997; Staib et al., 2002), suggesting that the ability to utilize proteins as a 

nitrogen source is important for growth of the fungus in certain host niches. Similarily, 

importance of the capacity to take up amino acids for growth in mammalian hosts is 

demonstrated by the reduced virulence of csh3Δ mutants in murine disseminated disease 

model (Martinez & Ljungdahl, 2004). Csh3p, an endoplasmic reticulum localized chaperone, 

is specifically required for proper localization of amino acid permeases (AAPs), consequently 

the most upstream component of extracellular amino acids sensing and uptake mechanisms 

(Martinez & Ljungdahl, 2004). These studies emphasize the importance of utilizing available 
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nitrogen sources in infection process of C. albicans, and bring focus into significance of the 

factors that control nitrogen regulation. 

 

2.2.1 Nitrogen regulatory genes: GATA transcription factors  

Fungi are able to use a wide variety of compounds as nitrogen sources. Use of any compound 

as nitrogen source requires permeases for the transport of these compounds into the cell and 

enzymes for generation of ammonia by their metabolism. Once inside the cell, ammonia in 

the presence of NADP-linked glutamate dehydrogenase, can react with α-ketoglutarate, 

provided by the metabolism of carbon source of the growth medium, to produce glutamate. 

Glutamine synthetase catalyzes the incorporation of ammonium into glutamate to form 

glutamine. Glutamate and glutamine serve as the source of cellular nitrogen (Magasanik & 

Kaiser, 2002). Certain nitrogenous compounds like, ammonia, glutamine and glutamate are 

preferably used by the fungi and are considered as primary nitrogen sources, others like 

nitrate, nitrite, purines, amides, most amino acids and proteins are utilized only when primary 

nitrogen sources become growth limiting. These primary and alternative nitrogen sources are 

also referred to as preferred and non preferred/secondary nitrogen sources, respectively.  

 A conserved feature, by which selective use of available nitrogen sources is achieved in 

fungi, is the central role played by GATA factors. Members of this transcription factor family 

contain a DNA-binding zinc finger domain that recognizes the nucleotide sequences 5’-

GATA-3’ in the regulatory regions of their target genes, hence are called GATA factors 

(Marzluf, 1997). They affect a response commonly called Nitrogen Catabolite Repression 

(NCR) or simply nitrogen regulation. Under this control mechanism, expression of genes 

needed for uptake and catabolism of secondary nitrogen sources is prevented in presence of 

preferred nitrogen sources such as ammonium or glutamine. In the absence or limitation of 

preferred nitrogen sources, GATA factors activate transcription of these secondary, nitrogen 

sensitive, metabolic genes either alone or in conjugation with pathway specific factors. 

Nitrogen regulation in fungi is typically controlled by multiple GATA factors; some activate 

transcription while others negatively regulate expression (Magasanik & Kaiser, 2002; 

Marzluf, 1997). The filamentous fungi Aspergillus nidulans and Neurospora crassa rely on a 

single highly conserved GATA factor, AreA and Nit2 respectively, to activate the expression 

of NCR sensitive genes. The homologs NmrA and Nmr1 antagonize AreA and Nit2 function, 

respectively, by interaction with zinc-finger domain (Marzluf, 1997). S. cerevisiae on the 

other hand, uses two, partially redundant, activating GATA factors encoded by GLN3 and 

GAT1/NIL1 (Marzluf, 1997). The relative contribution of Gln3p and Gat1p on expression of 
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target genes depends on the individual gene and the growth conditions (available nitrogen 

source). The activation of nitrogen sensitive genes by Gln3p and Gat1p is antagonized by two 

negatively acting GATA factors, Nil2p and Dal80p. These factors are proposed to antagonize 

Gln3p and Gat1p activation by competing for binding to GATA elements in the promoter of 

NCR regulated genes to fine tune expression. The configuration of the GATA sites and/or 

auxiliary elements in the promoters of nitrogen regulated genes is likely the key determinant 

of the binding affinities and specificities of these various GATA factors (Marzluf, 1997; 

Wong et al., 2008). Additional control to Gln3p and Gat1p activity is provided by protein-

protein interactions with Ure2p, which result in retention of GATA factors in the cytoplasm 

under nitrogen sufficient conditions, hence, these factors can not activate their target genes 

(Magasanik & Kaiser, 2002).  

 Several regulatory systems have been implicated in the response of C. albicans to 

nitrogen source availability. In analogy to S. cerevisiae the external amino acid sensing sys-

tem in C. albicans is also called SPS sensor, consisting of homologs of Ssy1p, Ptr3p and 

Ssy5p. This plasma membrane associated sensor complex detects presence of amino acids and 

induces the expression of several permeases that facilitate uptake of amino acids from the 

medium (Brega et al., 2004). Primary amino acid sensor component of the complex is 

encoded by CSY1, and the csy1Δ mutants fail to activate amino acid permease expression 

(Brega et al., 2004). Enhanced expression of permeases is mediated by the transcription 

factors Stp1p and Stp2p, which are proteolytically processed by the activated SPS sensor 

complex. The processed form of Stp1p activates expression of genes required for protein 

utilization (e.g., SAP2 and OPT1), whereas processed Stp2p induces expression of amino acid 

permease genes (e.g., GAP1 and GAP2) (Martinez & Ljungdahl, 2005). The chaperone 

protein Csh3p also regulates the activation of Stp1p and Stp2p (Martinez & Ljungdahl, 2004). 

Responses to internal amino acid pools are regulated by the general amino acid control system 

which requires the transcription factor Gcn4p (Tripathi et al., 2002). Starvation for a single 

amino acid induces multiple amino acid biosynthetic pathways and hyphal formation 

(Tripathi et al., 2002). Observations that ammonium inhibits expression of peptide transport-

ers (Basrai et al., 1992; Payne et al., 1991) and expression of SAP2 (Banerjee et al., 1991; 

Hube et al., 1994; Ross et al., 1990) indicate that nitrogen catabolite repression influences 

responses of C. albicans to the quality of available nitrogen source. Limjindaporn et al., 

(2003) demonstrated that a GATA transcription factor, GAT1 controls NCR in C. albicans 

and the gene is essential for its virulence. On the basis of preliminary experiments, lack of or 

reduction in secreted aspartic protease expression was hypothesized to be the reason for 
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attenuation of gat1Δ mutants. Molecular mechanisms by which GAT1 regulate Sap expression 

were not demonstrated. Moreover, the full spectrum of GAT1 influence on nitrogen metabolic 

capacity of C. albicans was not investigated. 

 

2.2.2 Ammonium permease mediated filamentous growth in C. albicans 

Ammonium is a preferred nitrogen source for microorganisms, and its transport across plasma 

membrane is mediated by an evolutionary conserved permease family, the Amt/Mep/Rh 

family (Andrade & Einsle, 2007). All members of this family are predicted to be membrane 

proteins with an extracytosolic amino terminus and a central hydrophobic core of 11 

transmembrane helices (Thomas et al., 2000). Structural and biochemical studies with the 

bacterial members of this family have proposed that these transporters form a channel that 

allows the passive diffusion of the ammonia gas (Khademi et al., 2004; Knepper & Agre, 

2004). Ammonium selectivity is attributed to the presence of a narrow hydrophobic pore that 

requires deprotonation of the translocating ammonium at the periplasmic side of the cell to 

form ammonia that can pass through the channel. Mutational analysis of the conserved 

residues which are involved in ammonium selectivity suggested that the mechanism of 

ammonium transport is evolutionarily conserved (Javelle et al., 2006; Marini et al., 2006). 

  In S. cerevisiae ammonium uptake is mediated by three members of the Amt/Mep/Rh 

family, Mep1p-Mep3p (Marini et al., 1997). A mutant lacking all three MEP genes can not 

grow on media containing less than 5 mM ammonium as sole nitrogen source, however each 

permease by itself is sufficient to allow growth of the fungus under these conditions (Marini 

et al., 1997). The MEP genes are subject to nitrogen control, i.e., their expression levels are 

highly induced when cells are grown under nitrogen limiting conditions (low concentrations 

of ammonium or presence of a non preferred nitrogen source in the growth medium).  

 Under nitrogen starvation conditions, the budding yeast S. cerevisiae switches to 

filamentous, pseudohyphal growth form, which is  thought to enable these non-motile yeast 

cells to seek a preferable environment (Gimeno et al., 1992). Ammonium permease Mep2p 

has been proposed to act as an ammonium sensor that regulates pseudohyphal growth of 

S. cerevisiae in response to low ammonium concentrations (Lorenz & Heitman, 1998). Under 

these conditions, the mep2Δ mutants do not switch to pseudohyphal growth, while 

mep1Δ mutants behave like the wild type. Some other fungal permeases are able to restore the 

pseudohyphal growth of S. cerevisiae mep2Δ mutants indicating that sensing and signaling 

function of Mep2p is preserved in specific members of the family across the fungal kingdom 

(Biswas & Morschhäuser, 2005; Javelle et al., 2003a; 2003b; Smith et al., 2003; Teichert et 
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al., 2008). Presumably, these permeases possess certain structural features which provide 

them with the signaling activity and these specific features are absent from other permeases 

that have only transport function (Smith et al., 2003). However, it is not known how the 

ammonium transport activity of the ammonium permeases influences its signaling activity. In 

particular, if these permeases act as sensors of ammonium availability and couple ammonium 

transport with the regulation of a signal transduction pathway is not understood.  

 C. albicans also undergoes a transition from the budding yeast form to filamentous 

growth in response to nitrogen limitation. C. albicans expresses the MEP1 and MEP2 genes, 

which encode two ammonium transporters that enable growth of the fungus when limiting 

concentrations of ammonium are the only available nitrogen source. While deletion of either 

one of these two ammonium permeases does not affect the ability of C. albicans to grow at 

low ammonium concentrations, mep1Δ mep2Δ double mutants are unable to grow under these 

conditions. In addition to being an ammonium transporter, Mep2p, but not Mep1p, has a 

central function in the induction of filamentous growth on solid media under limiting nitrogen 

conditions (Biswas & Morschhäuser, 2005). However, Mep2p is not required for filamentous 

growth of C. albicans in response to other inducing signals, e.g. in the presence of serum. 

Therefore, the functions of the C. albicans ammonium permeases are similar to those of their 

counterparts in the model yeast S. cerevisiae. The C-terminal cytoplasmic domain of 

CaMep2p contains a signaling domain that is not required for ammonium transport but is 

essential for Mep2p-dependent morphogenesis (Biswas & Morschhäuser, 2005). CaMep2p 

activates both the cAMP-PKA and MAPK pathway in a Ras1p dependent manner via its 

cytoplasmic C-terminal tail to induce filamentous growth (Biswas & Morschhäuser, 2005). 

However, proteins that interact with Mep2p to activate the signal transduction pathways that 

induce hyphal development in response to nitrogen starvation are yet to be identified.  

 Beside structural features, the regulatory role of Mep2p in induction of filamentous 

growth is also due to its higher expression levels. Both ammonium permeases, Mep1p and 

Mep2p, are induced in response to nitrogen limitation but Mep2p is expressed at much higher 

levels than Mep1p. Promoter swapping experiments demonstrated that the differential 

expression levels are due to the stronger activity of the MEP2 promoter as compared with the 

MEP1 promoter and presumably also to differential transcript stability (Biswas & 

Morschhäuser, 2005). Expression of MEP2 from the MEP1 promoter resulted in reduced 

amounts of Mep2p, inefficient ammonium transport, and loss of its ability to induce 

filamentous growth. In contrast, expression of MEP1 from the MEP2 promoter resulted in 

increased Mep1p levels, which also conferred on it the ability to induce a weak filamentation. 
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These experimental evidences showed that Mep1p is a highly efficient ammonium transporter 

that needs to be expressed only at low levels to support growth on limiting ammonium 

concentrations. Contrastingly, Mep2p is a less efficient ammonium transporter that is 

expressed at high levels, which in turn is a prerequisite for the induction of filamentation. 

Since the control of MEP2 expression is central to the regulation of nitrogen starvation 

induced filamentous growth in C. albicans, it is of paramount importance to identify the 

factors that regulate MEP2 expression. 

 

2.3 Aims of the study 

C. albicans is the most common and arguably the most important causative agent of human 

fungal infections. C. albicans pathogenicity can be attributed to its ability to survive and 

thrive in multiple microenvironments within the host and to virulence factors that aid in 

proliferation of the fungus. The present study was aimed at understanding the control of 

virulence traits of C. albicans, dimorphic switching and production of secreted aspartic 

protease Sap2p, both of which are regulated by availability of nitrogen sources in the growth 

environment. Previous studies have illustrated that under nitrogen limiting conditions 

ammonium permease Mep2p, but not Mep1p has a regulatory role in inducing filamentous 

growth, and the C-terminal cytoplasmic tail of Mep2p has a specific signaling function. 

Moreover, higher expression levels of Mep2p in comparison to Mep1p contribute to the 

specific regulatory role of the permease (Biswas & Morschhäuser, 2005). 

 With this information, the present study set out to identify residues critical for the 

signaling function of Mep2p. An attempt was made to outline how signaling activity of 

Mep2p is regulated by ammonium availability and transport. Since appropriate levels of 

Mep2p are a prerequisite for regulation of filamentation, this research sought to identify the 

cis-acting sequences in the MEP2 promoter as well as the trans-acting regulatory factors 

controlling MEP2 expression and to elucidate their roles in morphogenesis. Possible roles, if 

any, of those transcription factors on other nitrogen regulated responses of C. albicans were 

also investigated.  
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3 Materials and Methods 

3.1 Bacterial strain 

Escherichia coli K12: E. coli strain DH5α (F-, endA1, hsdR17 [rk
-, mk

-], supE44, thi-1, 

recA1, gyrA96, relA1, Δ[argF-lac]U169, λ-, φ80dlacZΔM15) (Bethesda Research Labo-

ratories, 1986) was used for bacterial cloning experiments. 

 

3.2 Plasmids 

Following abbreviations are used in the description of plasmids: caFLP: C. albicans-adapted     

FLP gene encoding the site specific recombinase FLP; cartTA: C. albicans-adapted reverse 

tetracycline-dependent transactivator; caSAT1: C. albicans-adapted nourseothricin resistance 

marker (dominant selection marker); FRT: (FLP-recognition target) minimal recombination 

target sites of the FLP recombinase; GFP: Green fluorescent protein gene; PX: Promoter of 

the given gene (X) ; Ptet: rtTA-dependent promoter; TACT1: Transcription termination 

sequence of the actin (ACT1) gene; URA3: Orotidine-5’-phosphate decarboxlylase gene, 

selection marker for uridine auxotrophic strains of C. albicans. 

 

Table 1.  Plasmids used in the study 

Plasmids Relevant insert Reference 

 MEP2 gene deletion cassette 

pMEP2M2 [5´MEP2-FRT-PSAP2-caFLP-TACT1-URA3 -FRT -3’MEP2]-fragment (Biswas & 
Morschhäuser, 
2005) 

pMEP2M5 [5´MEP2-FRT-PSAP2-caFLP-TACT1-caSAT1 -FRT -3’MEP2]-fragment This study 

 

 Plasmid used for URA3 reintegration 

pUR3 [URA3]-fragment (Kelly et al., 
1987) 

 Plasmids containing wild-type or mutated MEP2 alleles 

pMEP2Y122A [MEP2Y122A]-fragment This study 

pMEP2F126A [MEP2F126A]-fragment This study 

pMEP2W165A [MEP2W165A]-fragment This study 

pMEP2W167A [MEP2W167A]-fragment This study 
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Plasmids Relevant insert Reference 

pMEP2D180L [MEP2D180L]-fragment (Biswas and 
Morschhäuser, 
unpublished) 

pMEP2D180N [MEP2D180N]-fragment This study 

pMEP2H188A [MEP2H188A]-fragment This study 

pMEP2S243A [MEP2S243A]-fragment This study 

pMEP2H342A [MEP2H342A]-fragment This study 

pMEP2K1 [PMEP2-MEP2-TACT1-URA3-3´MEP2]-fragment (Biswas & 
Morschhäuser, 
2005) 

pMEP2K4 [PMEP2-MEP2 Y122A-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2K5 [PMEP2-MEP2 F126A-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2K6 [PMEP2-MEP2 W165A-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2K7 [PMEP2-MEP2 W167A-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2K8 [PMEP2-MEP2D180L-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2K9 [PMEP2-MEP2 D180N-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2K10 [PMEP2-MEP2 H188A-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2K11 [PMEP2-MEP2 S243A-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2K12 [PMEP2-MEP2 H342A-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2K13 [PMEP2-MEP2 -TACT1-URA3-3´MEP2]-fragment This study 

pMEP2K15 [PMEP2-MEP2 Y433F-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2K16 [PMEP2-MEP2 F239A-TACT1-URA3-3´MEP2]-fragment This study 

 

Plasmids containing GFP-tagged site specific MEP2 mutant alleles 

pMEP2G8 [PMEP2-MEP2 D180N-GFP-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2G9 [PMEP2-MEP2 Y122A-GFP-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2G10 [PMEP2-MEP2 F126A-GFP-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2G11 [PMEP2-MEP2 W165A-GFP-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2G12 [PMEP2-MEP2 W167A-GFP-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2G13 [PMEP2-MEP2 H188A-GFP-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2G14 [PMEP2-MEP2 S243A-GFP-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2G15 [PMEP2-MEP2 H342A-GFP-TACT1-URA3-3´MEP2]-fragment This study 
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Plasmids Relevant insert Reference 

pMEP2G16 [PMEP2-MEP2 F239A-GFP-TACT1-URA3-3´MEP2]-fragment This study 

 

Plasmids used for analysing cytoplasmic tail of Mep2p  

pMEP2∆C6 [PMEP2-MEP2 ΔC439-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2∆C7 [PMEP2-MEP2 ΔC438-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2∆C8 [PMEP2-MEP2 ΔC437-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2∆C9 [PMEP2-MEP2 ΔC436-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2∆C10 [MEP2-MEP2 ΔC435-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2∆C11 [PMEP2-MEP2 ΔC434-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2∆C12 [PMEP2-MEP2 ΔC433-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2∆C12M1 [PMEP2-MEP2 ΔC433Y433F-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2∆C13 [PMEP2-MEP2 ΔC432-TACT1-URA3-3´MEP2]-fragment This study 

   

MEP hybrids 

pMEP21H3 [PMEP2-MEP21-418-MEP1417-438-TACT1-URA3-3´MEP2]-fragment This study 

pMEP21H6 [PMEP2-MEP21-418-MEP1417-433-TACT1-URA3-3´MEP2]-fragment This study 

pMEP21H7 [PMEP2-MEP21-418-MEP1417-433F431Y-TACT1-URA3-3´MEP2]-fragment This study 

 

Plasmids used for MEP2 promoter analysis  

pMEP2G2 [PMEP2-MEP2-GFP-TACT1-URA3-3´MEP2]-fragment (Biswas & 
Morschhäuser, 
2005) 

pMEP2G5 [PMEP1-MEP2-GFP-TACT1-URA3-3´MEP1]-fragment (Biswas & 
Morschhäuser, 
2005) 

pMEP2G6 [PMEP2-MEP2-GFP-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2∆P1 [PMEP2Δ-1014 to -189-MEP2-GFP-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2∆P2 [PMEP2Δ-1014 to -431-MEP2-GFP-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2∆P3 [PMEP2Δ-1014 to -621-MEP2-GFP-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2∆P4 [PMEP2Δ-1014 to -806-MEP2-GFP-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2∆P5 [PMEP2Δ-434 to -189-MEP2-GFP-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2∆P6 [PMEP2Δ-1014 to -288-MEP2-GFP-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2∆P7 [PMEP2Δ-1014 to -218-MEP2-GFP-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2MP1 [PMEP2M-206 to -210-MEP2-GFP-TACT1-URA3-3´MEP2]-fragment This study 
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Plasmids Relevant insert Reference 

pMEP2MP2 [PMEP2M-264 to -268-MEP2-GFP-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2MP3 [PMEP2M-206 to -210, M-264 to -268-MEP2-GFP-TACT1-URA3-3´MEP2]-
fragment 

This study 

pMEP2K13 [PMEP2-MEP2-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2∆P5A [PMEP2Δ-434 to -189-MEP2-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2∆P6A [PMEP2Δ-1014 to -288-MEP2-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2MP1A [PMEP2M-206 to -210-MEP2-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2MP2A [PMEP2M-264 to -268-MEP2-TACT1-URA3-3´MEP2]-fragment This study 

pMEP2MP3A [PMEP2M-206  to -210, M-264 to -268-MEP2-TACT1-URA3-3´MEP2]-fragment This study 

 

Plasmids containing SAT1 flipper cassette for gene deletion and reintegration  

pGAT1M1 [5´GAT1-FRT-PMAL2-caFLP-TACT1-caSAT1-FRT-3’GLN3]-fragment This study 

pGAT1M2 [5´GAT1-FRT-PMAL2-caFLP-TACT1-caSAT1-FRT-3’GAT1]-fragment. 
GAT1 gene deletion cassette. 

This study 

pGAT1K1 [GAT1P-GAT1-FRT-PMAL2-caFLP-TACT1-caSAT1-FRT-3’GAT1]-
fragment 

This study 

pGLN3M1 [5´GLN3-FRT-PMAL2-caFLP-TACT1-caSAT1 -FRT -3´OPT3]-fragment This study 

pGLN3M2 [5´GLN3-FRT-PMAL2-caFLP-TACT1-caSAT1-FRT-3’GLN3]-fragment. 
GLN3 gene deletion cassette. 

This study 

pGLN3K1 [GLN3P-GLN3-FRT-PMAL2-caFLP-TACT1-caSAT1 -FRT -3’GLN3]-
fragment 

This study 

pSTP1M1 [5´STP1-FRT-PMAL2-caFLP-TACT1-caSAT1-FRT -3´GAT1]-fragment This study 

PSTP1M2 [5´STP1-FRT-PMAL2-caFLP-TACT1-caSAT1-FRT-3’STP1]-fragment. 
STP1 gene deletion cassette. 

This study 

 

Plasmids containing GFP reporter constructs for analyzing MEP1, and MEP2 expression  

pMEP1G4 [PMEP1-MEP1-GFP-TACT1-caSAT1-3´MEP2]-fragment This study 

pMEP1PG1 [PMEP1-GFP-TACT1-caSAT1-3´MEP2]-fragment This study 

pMEP2G7 [PMEP2-MEP2-GFP-TACT1-caSAT1-3´MEP2]-fragment This study 

pMEP2PG1 [PMEP2-GFP-TACT1-caSAT1-3´MEP2]-fragment This study 

 

Plasmids used for expressing MEP2 and MEP2ΔC440  under the control of ADH1 promoter 

pADH1E1 [PADH1-TACT1-caSAT1-3’ADH1´]-fragment (Reuß & 
Morschhäuser, 
2006) 

pMEP2K2 [PMEP1-MEP2-TACT1-URA3-3´MEP1]-fragment (Biswas & 
Morschhäuser, 
2005) 
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Plasmids Relevant insert Reference 

pMEP2E4 [PADH1-MEP2-TACT1-URA3-3´ADH1]-fragment This study 

pMEP2∆C2 [PMEP2- MEP2ΔC440-TACT1-URA3-3´MEP2]-fragment (Biswas & 
Morschhäuser, 
2005) 

pMEP2∆C2K2 [PMEP1- MEP2ΔC440-TACT1-URA3-3´MEP1]-fragment This study 

pMEP2∆C2E2 [PADH1- MEP2ΔC440-TACT1-URA3-3´ADH1]-fragment This study 

 

Plasmids containing genes under the control of tetracycline inducible ( Tet)  promoter 

pNIM1 [PADH1-cartTA -TACT1- caSAT1- TACT1- GFP-Ptet - 3´ADH1]-fragment (Park & 
Morschhäuser, 
2005) 

pTET1-GAT1-1 [PADH1-cartTA -TACT1- caSAT1- TACT1- GAT12268-Ptet - 3´ADH1]-
fragment 

This study 

pTET1-GAT1-2 [PADH1- cartTA -TACT1- caSAT1- TACT1- GAT12067- Ptet - 3´ADH1]-
fragment 

This study 

pTET1-GAT1-3 [PADH1- cartTA -TACT1- caSAT1- TACT1- GAT12004- Ptet - 3´ADH1]-
fragment 

This study 

pTET1-GLN3 [PADH1- cartTA -TACT1-caSAT1-TACT1- GLN3- Ptet - 3´ADH1]-fragment This study 

pTET1-STP1 [PADH1- cartTA -TACT1- caSAT1-TACT1- STP1-Ptet - 3´ADH1]-fragment This study 

pTET1-STP1ΔN61 [PADH1- cartTA -TACT1- caSAT1- TACT1- STP1ΔN61-Ptet - 3´ADH1]-
fragment 

This study 

 

Plasmids containing GFP reporter constructs for analyzing OPT1, OPT3, SAP2, and STP1 expression  

pOPT1G22 [POPT1-GFP-TACT1-caSAT1-3´OPT1]-fragment (Reuß & 
Morschhäuser, 
2006) 

pOPT3G22 [POPT3-GFP-TACT1-caSAT1-3´OPT3]-fragment (Reuß & 
Morschhäuser, 
2006) 

pSAP2G1 [PSAP2-1 -GFP-TACT1-caSAT1-3´SAP2]-fragment (Reuß & 
Morschhäuser, 
2006) 

pSTP1G1 [PSTP1-GFP-TACT1-caSAT1-3´OPT1]-fragment This study 

pSTP1G2 [PSTP1-GFP-TACT1-caSAT1-3´STP1]-fragment This study 

 

Plasmids used for expressing SAP2 and OPT1  from the ADH1 promoter 

pOPT1E1 [PADH1- OPT1-TACT1- caSAT1-3´ADH1]-fragment (Reuß & 
Morschhäuser, 
2006) 

pSAP2ex7 [PADH1- SAP2-1-TACT1-caSAT1-3´ADH1]-fragment. Allele 1 of SAP2 
expressed from the ADH1 promoter. 

This study 
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3.3 C. albicans strains 

 

Table 2. C. albicans strains used in this study 

Strain Parent Relevant genotypea Reference 

SC5314  wild-type strain (Gillum et al., 
1984) 

CAI4 SC5314 ura3Δ::imm434/ura3Δ::imm434 (Fonzi & 
Irwin, 1993) 

CAI4RU1A and B CAI4 ura3Δ::imm434/URA3 This study 

SAP2MS4A/B SC5314 sap2Δ::FRT /sap2Δ::FRT (Staib et al., 
2008) 

mep2Δ single and mep1Δ mep2Δ  double mutants  

SCMEP2M1A SC5314 mep2-1Δ::SAT1-FLIP b/MEP2-2 This study 

SCMEP2M1B SC5314 MEP2-1/mep2-2Δ::SAT1-FLIP This study 

SCMEP2M2A SCMEP2M1A mep2-1Δ::FRT/MEP2-2 This study 

SCMEP2M2B SCMEP2M1B MEP2-1/mep2-2Δ::FRT This study 

SCMEP2M3A SCMEP2M2A mep2-1Δ::FRT/mep2-2Δ::SAT1-FLIP This study 

SCMEP2M3B SCMEP2M2B mep2-1Δ::SAT1-FLIP/mep2-2Δ::FRT This study 

SCMEP2M4A SCMEP2M3A mep2-1Δ::FRT/mep2-2Δ::FRT This study 

SCMEP2M4B SCMEP2M3B mep2-1Δ::FRT/mep2-2Δ::FRT This study 

MEP2M4RU1A MEP2M4A ura3Δ::imm434/URA3 
mep2-1Δ::FRT/mep2-2Δ::FRT 

This study 

MEP2M4RU1B MEP2M4B ura3Δ::imm434/URA3 
mep2-1Δ::FRT/mep2-2Δ::FRT 

This study 

MEP2M4A/B CAI4 mep2-1Δ::FRT/mep2-2Δ::FRT (Biswas & 
Morschhäuser, 
2005) 

MEP2M5A MEP2M4A mep2-1Δ::FRT/mep2-2Δ::URA3 (Biswas & 
Morschhäuser, 
2005) 

MEP2M5B MEP2M4B mep2-1Δ::URA3 /mep2-2Δ::FRT (Biswas & 
Morschhäuser, 
2005) 

MEP12M4A MEP2M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/mep2-2Δ::FRT 

(Biswas & 
Morschhäuser, 
2005) 

MEP12M4B MEP2M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/mep2-2Δ::FRT 

(Biswas & 
Morschhäuser, 
2005) 
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Strain Parent Relevant genotypea Reference 

MEP12M6A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/mep2-2Δ::URA3 

(Biswas & 
Morschhäuser, 
2005) 

MEP12M6B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::URA3 /mep2-2Δ::FRT 

(Biswas & 
Morschhäuser, 
2005) 

 

mep2Δ mutants expressing wild-type or mutated MEP2 alleles 

MEP2MK1A MEP2M4A mep2-1Δ::FRT/mep2-2Δ::MEP2-URA3 (Biswas & 
Morschhäuser, 
2005) 

MEP2MK1B MEP2M4B mep2-1Δ::MEP2-URA3/mep2-2Δ::FRT (Biswas & 
Morschhäuser, 
2005) 

MEP2MK6A MEP2M4A mep2-1Δ::MEP2Y122A -URA3/mep2-2Δ::FRT This study 

MEP2MK6B MEP2M4B mep2-1Δ::FRT/mep2-2Δ::MEP2Y122A-URA3 This study 

MEP2MK7A MEP2M4A mep2-1Δ::MEP2F126A -URA3/mep2-2Δ::FRT This study 

MEP2MK7B MEP2M4B mep2-1Δ::FRT/mep2-2Δ::MEP2F126A-URA3 This study 

MEP2MK9A MEP2M4A mep2-1Δ::MEP2W167A -URA3/mep2-2Δ::FRT This study 

MEP2MK9B MEP2M4B mep2-1Δ::FRT/mep2-2Δ::MEP2W167A-URA3 This study 

MEP2MK17A/B MEP2M4B mep2-1Δ::FRT/mep2-2Δ::MEP2F239A-URA3 This study 

 

mep1Δ mep2Δ double mutants expressing wild-type or mutated MEP2 alleles 

MEP12MK2A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/mep2-2Δ::MEP2-URA3 

(Biswas & 
Morschhäuser, 
2005) 

MEP12MK2B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2-URA3/mep2-2Δ::FRT 

(Biswas & 
Morschhäuser, 
2005) 

MEP12MK6A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/mep2-2Δ::MEP2Y122A-URA3 

This study 

MEP12MK6B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2Y122A -URA3/mep2-2Δ::FRT 

This study 

MEP12MK7A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/mep2-2Δ::MEP2F126A-URA3 

This study 

MEP12MK7B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/mep2-2Δ::MEP2F126A-URA3 

This study 

MEP12MK8A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/mep2-2Δ::MEP2W165A-URA3 

This study 

MEP12MK8B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2W165A -URA3/mep2-2Δ::FRT 

This study 
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Strain Parent Relevant genotypea Reference 

MEP12MK9A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/mep2-2Δ::MEP2W167A-URA3 

This study 

MEP12MK9B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2W167A -URA3/mep2-2Δ::FRT 

This study 

MEP12MK10A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/mep2-2Δ::MEP2D180L-URA3 

This study 

MEP12MK10B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2D180L -URA3/mep2-2Δ::FRT 

This study 

MEP12MK11A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2D180N -URA3/mep2-2Δ::FRT 

This study 

MEP12MK11B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/mep2-2Δ::MEP2D180N-URA3 

This study 

MEP12MK12A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/mep2-2Δ::MEP2H188A-URA3 

This study 

MEP12MK12B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2H188A -URA3/mep2-2Δ::FRT 

This study 

MEP12MK13A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2S243A -URA3/mep2-2Δ::FRT 

This study 

MEP12MK13B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/mep2-2Δ::MEP2S243A-URA3 

This study 

MEP12MK14A MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/mep2-2Δ::MEP2H342A-URA3 

This study 

MEP12MK14B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2H342A -URA3/mep2-2Δ::FRT 

This study 

MEP12MK16A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2Y433F -URA3/mep2-2Δ::FRT 

This study 

MEP12MK16B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/mep2-2Δ::MEP2Y433F-URA3 

This study 

MEP12MK17A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2F239A -URA3/mep2-2Δ::FRT 

This study 

MEP12MK17B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/mep2-2Δ::MEP2F239A-URA3 

This study 

 
mep1Δ mep2Δ double mutants expressing GFP-tagged MEP2 alleles 

MEP12MG2A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2-GFP-URA3/mep2-2Δ::FRT 

(Biswas & 
Morschhäuser, 
2005) 

MEP12MG2B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/mep2-2Δ::MEP2-GFP-URA3 

(Biswas & 
Morschhäuser, 
2005) 

MEP12MG4A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2D180L-GFP-URA3/ 
mep2-2Δ::FRT 

(Biswas and 
Morschhäuser, 
unpublished) 
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Strain Parent Relevant genotypea Reference 

MEP12MG4B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2Δ::MEP2D180L-GFP-URA3 

(Biswas and 
Morschhäuser, 
unpublished) 

MEP12MG8A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2D180N-GFP-URA3/ 
mep2-2Δ::FRT 

This study 

MEP12MG8B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2Δ::MEP2D180N-GFP-URA3 

This study 

MEP12MG9A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2Δ::MEP2Y122A-GFP-URA3 

This study 

MEP12MG9B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2Y122A-GFP-URA3/ 
mep2-2Δ::FRT 

This study 

MEP12MG10A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2F126A-GFP-URA3/ 
mep2-2Δ::FRT 

This study 

MEP12MG10B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2Δ::MEP2F126A-GFP-URA3 

This study 

MEP12MG11A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2W165A-GFP-URA3/ 
mep2-2Δ:: FRT 

This study 

MEP12MG11B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2Δ::MEP2W165A-GFP-URA3 

This study 

MEP12MG12A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2W167A-GFP-URA3/ 
mep2-2Δ:: FRT 

This study 

MEP12MG12B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2Δ::MEP2W167A-GFP-URA3 

This study 

MEP12MG13A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2H188A-GFP-URA3/ 
mep2-2Δ:: FRT 

This study 

MEP12MG13B MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2Δ::MEP2H188A-GFP-URA3 

This study 

MEP12MG14A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2S243A-GFP-URA3/ 
mep2-2Δ:: FRT 

This study 

MEP12MG14B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2Δ::MEP2S243A-GFP-URA3 

This study 
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Strain Parent Relevant genotypea Reference 

MEP12MG15A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2H342A-GFP-URA3/ 
mep2-2Δ:: FRT 

This study 

MEP12MG15B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2Δ::MEP2H342A-GFP-URA3 

This study 

MEP12MG16A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2F239A-GFP-URA3/ 
mep2-2Δ::FRT 

This study 

MEP12MG16B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2Δ::MEP2F239A-GFP-URA3 

This study 

    

mep1Δ mep2Δ double mutants expressing truncated MEP2 alleles 

MEP12MK2AΔC2 MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2ΔC440-URA3/mep2-2Δ::FRT 

(Biswas & 
Morschhäuser, 
2005) 

MEP12MK2BΔC2 MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT /mep2-2Δ::MEP2ΔC440-URA3 

(Biswas & 
Morschhäuser, 
2005) 

MEP12MK2AΔC6 MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT /mep2-2Δ::MEP2ΔC439-URA3 

This study 

MEP12MK2BΔC6 MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2ΔC439-URA3/mep2-2Δ::FRT 

This study 

MEP12MK2AΔC7 MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2ΔC438-URA3/mep2-2Δ::FRT 

This study 

MEP12MK2BΔC7 MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT /mep2-2Δ::MEP2ΔC438-URA3 

This study 

MEP12MK2AΔC8 MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT /mep2-2Δ::MEP2ΔC437-URA3 

This study 

MEP12MK2BΔC8 MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2ΔC437-URA3/mep2-2Δ::FRT 

This study 

MEP12MK2AΔC9 MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT /mep2-2Δ::MEP2ΔC436-URA3 

This study 

MEP12MK2BΔC9 MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT /mep2-2Δ::MEP2ΔC436-URA3 

This study 

MEP12MK2AΔC10 MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2ΔC435-URA3/mep2-2Δ::FRT 

This study 

MEP12MK2BΔC10 MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT /mep2-2Δ::MEP2ΔC435-URA3 

This study 

MEP12MK2AΔC11 MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT /mep2-2Δ::MEP2ΔC434-URA3 

This study 
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Strain Parent Relevant genotypea Reference 

MEP12MK2BΔC11 MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2ΔC434-URA3/mep2-2Δ::FRT 

This study 

MEP12MK2AΔC12 MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT /mep2-2Δ::MEP2ΔC433-URA3 

This study 

MEP12MK2BΔC12 MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2ΔC433-URA3/mep2-2Δ::FRT 

This study 

MEP12MK2AΔC12M1 MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2Δ::MEP2ΔC433 Y433F-URA3 

This study 

MEP12MK2BΔC12M1 MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP2ΔC433 Y433F-URA3/ 
mep2-2Δ::FRT 

This study 

MEP12MK2AΔC13 MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT /mep2-2Δ::MEP2ΔC432-URA3 

This study 

MEP12MK2BΔC13 MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT /mep2-2Δ::MEP2ΔC432-URA3 

This study 

MEP12MK21H4A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2Δ::MEP21-418-MEP1417-438-URA3 

This study 

MEP12MK21H4B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP21-418-MEP1417-438-URA3/ 
mep2-2Δ:: FRT 

This study 

MEP12MK21H6A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP21-418-MEP1417-433-URA3/ 
mep2-2Δ::FRT 

This study 

MEP12MK21H6B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2Δ::MEP21-418-MEP1417-433-URA3 

This study 

MEP12MK21H7A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2Δ::MEP21-418-MEP1417-433 F431Y -URA3 

This study 

MEP12MK21H7B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::MEP21-418-MEP1417-433 F431Y-URA3/ 
mep2-2Δ::FRT 

This study 

 

Strains expressing a MEP2-GFP fusion under control of wild-type and mutated MEP2 promoters in a 
mep1Δ mep2Δ double mutant background 

MEP12MG6A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1::PMEP2-MEP2-GFP-URA3/ 
 mep2-2Δ::FRT 

This study 

MEP12MG6B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2::PMEP2-MEP2-GFP-URA3 

This study 
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Strain Parent Relevant genotypea Reference 

MEP12MG6ΔP1A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1::PMEP2Δ1-MEP2-GFP-URA3/ 
mep2-2Δ::FRT 

This study 

MEP12MG6ΔP1B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2::PMEP2Δ1-MEP2-GFP-URA3 

This study 

MEP12MG6ΔP2A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1::PMEP2Δ2-MEP2-GFP-URA3/ 
mep2-2Δ:: FRT 

This study 

MEP12MG6ΔP2B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2::PMEP2Δ2-MEP2-GFP-URA3 

This study 

MEP12MG6ΔP3A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2::PMEP2Δ3-MEP2-GFP-URA3 

This study 

MEP12MG6ΔP3B MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2::PMEP2Δ3-MEP2-GFP-URA3 

This study 

MEP12MG6ΔP4A MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1::PMEP2Δ4-MEP2-GFP-URA3/ 
mep2-2Δ::FRT 

This study 

MEP12MG6ΔP4B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2::PMEP2Δ4-MEP2-GFP-URA3 

This study 

MEP12MG6ΔP5A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1::PMEP2Δ5-MEP2-GFP-URA3/ 
mep2-2Δ::FRT 

This study 

MEP12MG6ΔP5B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2::PMEP2Δ5-MEP2-GFP-URA3 

This study 

MEP12MG6ΔP6A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2::PMEP2Δ6-MEP2-GFP-URA3 

This study 

MEP12MG6ΔP6B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1::PMEP2Δ6-MEP2-GFP-URA3/ 
mep2-2Δ::FRT 

This study 

MEP12MG6ΔP7A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1::PMEP2Δ7-MEP2-GFP-URA3/ 
mep2-2Δ::FRT 

This study 

MEP12MG6ΔP7B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2::PMEP2Δ7-MEP2-GFP-URA3 

This study 

MEP12MG6MP1A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1::PMEP2M1-MEP2-GFP-URA3/ 
mep2-2Δ:: FRT 

This study 
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Strain Parent Relevant genotypea Reference 

MEP12MG6MP1B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ::FRT/ 
mep2-2::PMEP2M1-MEP2-GFP-URA3 

This study 

MEP12MG6MP2A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1::PMEP2M2-MEP2-GFP-URA3/ 
mep2-2Δ:: FRT 

This study 

MEP12MG6MP2B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1::PMEP2M2-MEP2-GFP-URA3/ 
mep2-2Δ:: FRT 

This study 

MEP12MG6MP3A MEP12M4A mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1::PMEP2M3-MEP2-GFP-URA3/ 
mep2-2Δ:: FRT 

This study 

MEP12MG6MP3B MEP12M4B mep1-1Δ::FRT/mep1-2Δ::FRT 
mep2-1Δ:: FRT/ 
 mep2-2::PMEP2M3-MEP2-GFP-URA3 
 

This study 

 

Strains expressing MEP2 under control of wild-type and mutated MEP2 promoters in a mep2Δ 
background 

MEP2MK13A MEP2M4A mep2-1::PMEP2-MEP2-URA3/ mep2-2Δ::FRT This study 

MEP2MK13B MEP2M4B mep2-1Δ::FRT/mep2-2::PMEP2-MEP2-URA3 This study 

MEP2MK13ΔP5A MEP2M4A mep2-1::PMEP2Δ5-MEP2-URA3/ mep2-2Δ::FRT This study 

MEP2MK13ΔP5B MEP2M4B mep2-1Δ::FRT/mep2-2::PMEP2Δ5-MEP2-URA3 This study 

MEP2MK13ΔP6A MEP2M4A mep2-1::PMEP2Δ6-MEP2-URA3/mep2-2Δ::FRT This study 

MEP2MK13ΔP6B MEP2M4B mep2-1Δ::FRT/mep2-2::PMEP2Δ6-MEP2-URA3 This study 

MEP2MK13MP1A MEP2M4A mep2-1::PMEP2M1-MEP2-URA3/  

mep2-2Δ::FRT 

This study 

MEP2MK13MP1B MEP2M4B mep2-1Δ::FRT/mep2-2::PMEP2M1-MEP2-URA3 This study 

MEP2MK13MP2A MEP2M4A mep2-1::PMEP2M2-MEP2-URA3/  

mep2-2Δ::FRT 

This study 

MEP2MK13MP2B MEP2M4B mep2-1Δ::FRT/mep2-2::PMEP2M2-MEP2-URA3 This study 

MEP2MK13MP3A MEP2M4A mep2-1::PMEP2M3-MEP2-URA3/ 

 mep2-2Δ::FRT 

This study 

MEP2MK13MP3B MEP2M4B mep2-1Δ::FRT/mep2-2::PMEP2M3-MEP2-URA3 This study 
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Strain Parent Relevant genotypea Reference 

gln3Δ mutants and complemented strains 

GLN3M1A SC5314 gln3-1Δ::SAT1-FLIP/GLN3-2 This study 

GLN3M1B SC5314 GLN3-1/gln3-2Δ::SAT1-FLIP This study 

GLN3M2A GLN3M1A gln3-1Δ::FRT/GLN3-2 This study 

GLN3M2B GLN3M1B GLN3-1/gln3-2Δ::FRT This study 

GLN3M3A GLN3M2A gln3-1Δ::FRT/gln3-2Δ::SAT1-FLIP This study 

GLN3M3B GLN3M2B gln3-1Δ::SAT1-FLIP/gln3-2Δ::FRT This study 

GLN3M4A GLN3M3A gln3-1Δ::FRT/gln3-2Δ::FRT This study 

GLN3M4B GLN3M3B gln3-1Δ::FRT/gln3-2Δ::FRT This study 

GLN3MK1A GLN3M4A GLN3-SAT1-FLIP/gln3-2Δ::FRT This study 

GLN3MK1B GLN3M4B gln3-1Δ::FRT/GLN3-SAT1-FLIP This study 

GLN3MK2A GLN3MK1A GLN3-FRT/gln3-2Δ::FRT This study 

GLN3MK2B GLN3MK1B gln3-1Δ::FRT/GLN3-FRT This study 

    

gat1Δ mutants and complemented strains 

GAT1M1A SC5314 gat1-1Δ::SAT1-FLIP/GAT1-2 This study 

GAT1M1B SC5314 GAT1-1/gat1-2Δ::SAT1-FLIP This study 

GAT1M2A GAT1M1A gat1-1Δ::FRT/GAT1-2 This study 

GAT1M2B GAT1M1B GAT1-1/gat1-2Δ::FRT This study 

GAT1M3A GAT1M2A gat1-1Δ::FRT/gat1-2Δ::SAT1-FLIP This study 

GAT1M3B GAT1M2B gat1-1Δ::SAT1-FLIP/gat1-2Δ::FRT This study 

GAT1M4A GAT1M3A gat1-1Δ::FRT/gat1-2Δ::FRT This study 

GAT1M4B GAT1M3B gat1-1Δ::FRT/gat1-2Δ::FRT This study 

GAT1MK1A GAT1M4A GAT1-2-SAT1-FLIP 1/gat1-2Δ::FRT This study 

GAT1MK1B GAT1M4B gat1-1Δ::FRT/GAT1-2-SAT1-FLIP This study 

GAT1MK2A GAT1MK1A GAT1-2-FRT/gat1-2Δ::FRT This study 

GAT1MK2B GAT1MK1B gat1-1Δ::FRT/GAT1-2-FRT This study 
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Strain Parent Relevant genotypea Reference 

gln3Δ gat1Δ double mutants and complemented strains 

Δgln3GAT1M1A GLN3M4A gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::SAT1-FLIP/GAT1-2 

This study 

Δgln3GAT1M1B GLN3M4B gln3-1Δ::FRT/gln3-2Δ::FRT 
GAT1-1/gat1-2Δ::SAT1-FLIP 

This study 

Δgln3GAT1M2A Δgln3GAT1M1A gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::FRT/GAT1-2 

This study 

Δgln3GAT1M2B Δgln3GAT1M1B gln3-1Δ::FRT/gln3-2Δ::FRT 
GAT1-1/gat1-2Δ::FRT 

This study 

Δgln3GAT1M3A Δgln3GAT1M2A gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::SAT1-FLIP 

This study 

Δgln3GAT1M3B Δgln3GAT1M2B gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::SAT1-FLIP/gat1-2Δ::FRT 

This study 

Δgln3GAT1M4A Δgln3GAT1M3A gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::FRT 

This study 

Δgln3GAT1M4B Δgln3GAT1M3B gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::FRT 

This study 

Δgln3GAT1MK1A Δgln3GAT1M4A GLN3-SAT1-FLIP/gln3-2Δ::FRT  
gat1-1Δ::FRT/gat1-2Δ::FRT 

This study 

Δgln3GAT1MK1B Δgln3GAT1M4B gln3-1Δ::FRT/GLN3-SAT1-FLIP  
gat1-1Δ::FRT/gat1-2Δ::FRT 

This study 

Δgln3GAT1MK2A Δgln3GAT1MK1 A GLN3-FRT/gln3-2Δ::FRT  
gat1-1Δ::FRT/gat1-2Δ::FRT 

This study 

Δgln3GAT1MK2B Δgln3GAT1MK1B gln3-1Δ::FRT/GLN3-FRT  
gat1-1Δ::FRT/gat1-2Δ::FRT 

This study 

Δgln3GAT1MK3A Δgln3GAT1M4A gln3-1Δ::FRT/gln3-2Δ::FRT 
GAT1-2-SAT1-FLIP/gat1-2Δ::FRT 

This study 

Δgln3GAT1MK3B Δgln3GAT1M4B gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::FRT/GAT1-2-SAT1-FLIP 

This study 

Δgln3GAT1MK4A Δgln3GAT1MK3A gln3-1Δ::FRT/gln3-2Δ::FRT 
GAT1-2-FRT/gat1-2Δ::FRT 

This study 

Δgln3GAT1MK4B Δgln3GAT1MK3B gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::FRT/GAT1-2-FRT 

This study 

 

mep2Δ gat1Δ double mutants 

Δmep2GAT1M1A SCMEP2M4A mep2-1Δ::FRT/mep2-2Δ::FRT 
GAT1-1/gat1-2Δ::SAT1-FLIP 

This study 

Δmep2GAT1M1B SCMEP2M4B mep2-1Δ::FRT/mep2-2Δ::FRT 
gat1-1Δ::SAT1-FLIP/GAT1-2 

This study 

Δmep2GAT1M2A Δmep2GAT1M1A mep2-1Δ::FRT/mep2-2Δ::FRT 
GAT1-1/gat1-2Δ::FRT 

This study 

Δmep2GAT1M2B Δmep2GAT1M1B mep2-1Δ::FRT/mep2-2Δ::FRT 
gat1-1Δ::FRT/GAT1-2 

This study 
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Strain Parent Relevant genotypea Reference 

Δmep2GAT1M3A Δmep2GAT1M2A mep2-1Δ::FRT/mep2-2Δ::FRT 
gat1-1Δ::SAT1-FLIP/gat1-2Δ::FRT 

This study 

Δmep2GAT1M3B Δmep2GAT1M2B mep2-1Δ::FRT/mep2-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::SAT1-FLIP 

This study 

Δmep2GAT1M4A Δmep2GAT1M3A mep2-1Δ::FRT/mep2-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::FRT 

This study 

Δmep2GAT1M4B Δmep2GAT1M3B mep2-1Δ::FRT/mep2-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::FRT 

This study 

 

Strains expressing MEP2-GFP  and MEP1-GFP reporter gene fusions in wild-type, gln3Δ, gat1Δ and 
 gln3Δ gat1Δ backgrounds 

SCMEP2G7A SC5314 mep2-1::PMEP2-MEP2-GFP-caSAT1/MEP2-2 This study 

SCMEP2G7B SC5314 MEP2-1/mep2-2::PMEP2-MEP2-GFP-caSAT1 This study 

SCMEP1G4A/B SC5314 MEP1/mep1::PMEP1-MEP1-GFP-caSAT1 This study 

Δgln3MEP2G7A GLN3M4A gln3-1Δ::FRT/gln3-2Δ::FRT 
mep2-1::PMEP2-MEP2-GFP-caSAT1/MEP2-2 

This study 

Δgln3MEP2G7B GLN3M4B gln3-1Δ::FRT/gln3-2Δ::FRT 
MEP2-1/mep2-2::PMEP2-MEP2-GFP-caSAT1 

This study 

Δgln3MEP1G4A  GLN3M4A gln3-1Δ::FRT/gln3-2Δ::FRT 
MEP1/mep1::PMEP1-MEP1-GFP-caSAT1 

This study 

Δgln3MEP1G4B GLN3M4B gln3-1Δ::FRT/gln3-2Δ::FRT 
MEP1/mep1::PMEP1-MEP1-GFP-caSAT1 

This study 

Δgat1MEP2G7A GAT1M4A gat1-1Δ::FRT/gat1-2Δ::FRT  
MEP2-1/mep2-2::PMEP2-MEP2-GFP-caSAT1 

This study 

Δgat1MEP2G7B GAT1M4B gat1-1Δ::FRT/gat1-2Δ::FRT 
mep2-1::PMEP2-MEP2-GFP-caSAT1/MEP2-2 

This study 

Δgat1MEP1G4A GAT1M4A gat1-1Δ::FRT/gat1-2Δ::FRT  
MEP1/mep1::PMEP1-MEP1-GFP-caSAT1 

This study 

Δgat1MEP1G4B GAT1M4B gat1-1Δ::FRT/gat1-2Δ::FRT 
MEP1/mep1::PMEP1-MEP1-GFP-caSAT1 

This study 

Δgln3Δgat1MEP2G7A Δgln3GAT1M4A gln3-1Δ::FRT/gln3-2Δ::FRT  
gat1-1Δ::FRT/gat1-2Δ::FRT  
MEP2-1/mep2-2::PMEP2-MEP2-GFP-caSAT1 

This study 

Δgln3Δgat1MEP2G7B Δgln3GAT1M4B gln3-1Δ::FRT/gln3-2Δ::FRT  
gat1-1Δ::FRT/gat1-2Δ::FRT  
MEP2-1/mep2-2::PMEP2-MEP2-GFP-caSAT1 

This study 

Δgln3Δgat1MEP1G4A Δgln3GAT1M4A gln3-1Δ::FRT/gln3-2Δ::FRT  
gat1-1Δ::FRT/gat1-2Δ::FRT  
MEP1/mep1::PMEP1-MEP1-GFP-caSAT1 

This study 

Δgln3Δgat1MEP1G4B Δgln3GAT1M4B gln3-1Δ::FRT/gln3-2Δ::FRT  
gat1-1Δ::FRT/gat1-2Δ::FRT  
MEP1/mep1::PMEP1-MEP1-GFP-caSAT1 

This study 
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Strain Parent Relevant genotypea Reference 

Strains expressing PMEP2-GFP and PMEP1-GFP reporters in wild-type, gln3Δ, gat1Δ and  gln3Δ gat1Δ    
backgrounds 

SCMEP2PG1A SC5314 mep2-1::PMEP2-GFP-caSAT1/MEP2-2 This study 

SCMEP2PG1B SC5314 mep2-1::PMEP2-GFP-caSAT1/MEP2-2 This study 

SCMEP1PG1A SC5314 mep1-1::PMEP1-GFP-caSAT1/ MEP1-2 This study 

SCMEP1PG1B SC5314 MEP1-2/mep1-2::PMEP1-GFP-caSAT1  

Δgln3MEP2PG1A GLN3M4A gln3-1Δ::FRT/gln3-2Δ::FRT 
MEP2-1/mep2-2::PMEP2-GFP-caSAT1 

This study 

Δgln3MEP2PG1B GLN3M4B gln3-1Δ::FRT/gln3-2Δ::FRT 
mep2-1::PMEP2-GFP-caSAT1/MEP2-2 

This study 

Δgln3MEP1PG1A  GLN3M4A gln3-1Δ::FRT/gln3-2Δ::FRT 
mep1-1::PMEP1-GFP-caSAT1/MEP1-2 

This study 

Δgln3MEP1PG1B GLN3M4B gln3-1Δ::FRT/gln3-2Δ::FRT 
MEP1-1/mep1-2::PMEP1-GFP-caSAT1 

This study 

Δgat1MEP2PG1A GAT1M4A gat1-1Δ::FRT/gat1-2Δ::FRT  
MEP2-1/mep2-2::PMEP2-GFP-caSAT1 

This study 

Δgat1MEP2PG1B GAT1M4B gat1-1Δ::FRT/gat1-2Δ::FRT 
mep2-1::PMEP2-GFP-caSAT1/MEP2-2 

This study 

Δgat1MEP1PG1A GAT1M4A gat1-1Δ::FRT/gat1-2Δ::FRT  
mep1-1::PMEP1-GFP-caSAT1/ MEP1-2 

This study 

Δgat1MEP1PG1B GAT1M4B gat1-1Δ::FRT/gat1-2Δ::FRT 
MEP1-1/mep1-2::PMEP1-GFP-caSAT1 

This study 

Δgln3Δgat1MEP2PG1A Δgln3GAT1M4A gln3-1Δ::FRT/gln3-2Δ::FRT  
gat1-1Δ::FRT/gat1-2Δ::FRT  
MEP2-1/mep2-2::PMEP2-GFP-caSAT1 

This study 

Δgln3Δgat1MEP2PG1B Δgln3GAT1M4B gln3-1Δ::FRT/gln3-2Δ::FRT  
gat1-1Δ::FRT/gat1-2Δ::FRT  
mep2-1::PMEP2-GFP-caSAT1/MEP2-2 

This study 

Δgln3Δgat1MEP1PG1A Δgln3GAT1M4A gln3-1Δ::FRT/gln3-2Δ::FRT  
gat1-1Δ::FRT/gat1-2Δ::FRT  
mep1-1::PMEP1-GFP-caSAT1/MEP1-2 

This study 

Δgln3Δgat1MEP1PG1B Δgln3GAT1M4B gln3-1Δ::FRT/gln3-2Δ::FRT  
gat1-1Δ::FRT/gat1-2Δ::FRT  
MEP1-1/mep1-2::PMEP1-GFP-caSAT1 

This study 

 

Strains expressing wild-type and hyperactive MEP2 alleles from the ADH1 promoter or carrying a 
control construct in wild-type and gln3Δ backgrounds 

SCADH1G4A/B SC5314 ADH1/adh1::PADH1-GFP-caSAT1 This study 

SCMEP2E4A/B SC5314 ADH1/adh1::PADH1-MEP2-caSAT1 This study 

SCMEP2ΔC2E2A/ B SC5314 ADH1/adh1::PADH1-MEP2ΔC440-caSAT1 This study 
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Strain Parent Relevant genotypea Reference 

Δgln3ADH1G4A GLN3M4A gln3-1Δ::FRT/gln3-2Δ::FRT  
ADH1/adh1::PADH1-GFP-caSAT1 

This study 

Δgln3ADH1G4B GLN3M4B gln3-1Δ::FRT/gln3-2Δ::FRT  
ADH1/adh1::PADH1-GFP-caSAT1 

This study 

Δgln3MEP2E4A GLN3M4A gln3-1Δ::FRT/gln3-2Δ::FRT  
ADH1/adh1::PADH1-MEP2-caSAT1 

This study 

Δgln3MEP2E4B GLN3M4B gln3-1Δ::FRT/gln3-2Δ::FRT  
ADH1/adh1::PADH1-MEP2-caSAT1 

This study 

Δgln3MEP2ΔC2E2A GLN3M4A gln3-1Δ::FRT/gln3-2Δ::FRT  
ADH1/adh1::PADH1-MEP2ΔC440-caSAT1 

This study 

Δgln3MEP2ΔC2E2B GLN3M4B gln3-1Δ::FRT/gln3-2Δ::FRT  
ADH1/adh1::PADH1-MEP2ΔC440-caSAT1 

This study 

 

Strains expressing PSAP2-GFP, POPT1-GFP, POPT3-GFP, and PSTP1-GFP reporter gene fusions 

SCSAP2G1A/B SC5314 sap2-1::PSAP2-1-GFP/SAP2-2 (Reuß & 
Morschhäuser, 
2006) 

SCOPT1G22A SC5314 OPT1-1/opt1-2::POPT1-GFP (Reuß & 
Morschhäuser, 
2006) 

SCOPT1G22B SC5314 opt1-1::POPT1-GFP/OPT1-2 (Reuß & 
Morschhäuser, 
2006) 

SCOPT3G22A SC5314 opt3-1::POPT3-GFP/OPT3-2 (Reuß & 
Morschhäuser, 
2006) 

SCOPT3G22B SC5314 OPT3-1/opt3-2::POPT3-GFP (Reuß & 
Morschhäuser, 
2006) 

SCSTP1G1A/B SC5314 STP1/stp1::PSTP1-GFP This study 

Δgln3SAP2G1A GLN3M4A gln3-1Δ::FRT/gln3-2Δ::FRT 
sap2-1::PSAP2-GFP/SAP2-2 

This study 

Δgln3SAP2G1B GLN3M4B gln3-1Δ::FRT/gln3-2Δ::FRT 
sap2-1::PSAP2-GFP/SAP2-2 

This study 

Δgln3OPT1G22A GLN3M4A gln3-1Δ::FRT/gln3-2Δ::FRT 
OPT1-1/opt1-2::POPT1-GFP 

This study 

Δgln3OPT1G22B GLN3M4B gln3-1Δ::FRT/gln3-2Δ::FRT 
OPT1-1/opt1-2::POPT1-GFP 

This study 

Δgln3OPT3G22A GLN3M4A gln3-1Δ::FRT/gln3-2Δ::FRT 
opt3-1::POPT1-GFP/OPT3-2 

This study 

Δgln3OPT3G22B GLN3M4B gln3-1Δ::FRT/gln3-2Δ::FRT 
OPT3-1/opt3-2::POPT1-GFP 

This study 

Δgln3STP1G1A GLN3M4A gln3-1Δ::FRT/gln3-2Δ::FRT 
STP1/stp1::PSTP1-GFP 

This study 
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Strain Parent Relevant genotypea Reference 

Δgln3STP1G1B GLN3M4B gln3-1Δ::FRT/gln3-2Δ::FRT 
STP1/stp1::PSTP1-GFP 

This study 

Δgat1SAP2G1A GAT1M4A gat1-1Δ::FRT/gat1-2Δ::FRT 
sap2-1::PSAP2-GFP/SAP2-2 

This study 

Δgat1SAP2G1B GAT1M4B gat1-1Δ::FRT/gat1-2Δ::FRT 
sap2-1::PSAP2-GFP/SAP2-2 

This study 

Δgat1OPT1G22A GAT1M4A gat1-1Δ::FRT/gat1-2Δ::FRT 
OPT1-1/opt1-2::POPT1-GFP 

This study 

Δgat1OPT1G22B GAT1M4B gat1-1Δ::FRT/gat1-2Δ::FRT 
opt1-1::POPT1-GFP/OPT1-2 

This study 

Δgat1OPT3G22A GAT1M4A gat1-1Δ::FRT/gat1-2Δ::FRT 
OPT3-1/opt3-2::POPT1-GFP 

This study 

Δgat1OPT3G22B GAT1M4B gat1-1Δ::FRT/gat1-2Δ::FRT 
opt3-1::POPT1-GFP/OPT3-2 

This study 

Δgat1STP1G1A GAT1M4A gat1-1Δ::FRT/gat1-2Δ::FRT 
STP1/stp1::PSTP1-GFP 

This study 

Δgat1STP1G1B GAT1M4B gat1-1Δ::FRT/gat1-2Δ::FRT 
STP1/stp1::PSTP1-GFP 

This study 

Δgln3Δgat1SAP2G1A Δgln3GAT1M4A gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::FRT 
sap2-1::PSAP2-GFP/SAP2-2 

This study 

Δgln3Δgat1SAP2G1B Δgln3GAT1M4B gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::FRT 
sap2-1::PSAP2-GFP/SAP2-2 

This study 

Δgln3Δgat1OPT1G22A Δgln3GAT1M4A gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::FRT 
OPT1-1/opt1-2::POPT1-GFP 

This study 

Δgln3Δgat1OPT1G22B Δgln3GAT1M4B gat1-1Δ::FRT/gat1-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::FRT 
opt1-1::POPT1-GFP/OPT1-2 

This study 

Δgln3Δgat1OPT3G22A Δgln3GAT1M4A gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::FRT 
opt3-1::POPT1-GFP/OPT3-2 

This study 

Δgln3Δgat1OPT3G22B Δgln3GAT1M4B gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::FRT 
OPT3-1/opt3-2::POPT1-GFP 

This study 

Δgln3Δgat1STP1G1A Δgln3GAT1M4A gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::FRT 
STP1/stp1::PSTP1-GFP 

This study 

Δgln3Δgat1STP1G1B Δgln3GAT1M4B gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::FRT 
STP1/stp1::PSTP1-GFP 

This study 
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Strain Parent Relevant genotypea Reference 

gln3Δ gat1Δ double mutants expressing SAP2 or OPT1 from the ADH1 promoter 

Δgln3Δgat1SAP2ex7A Δgln3GAT1M4A gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::FRT 
ADH1/adh1::PADH1-SAP2 

This study 

Δgln3Δgat1SAP2ex7B Δgln3GAT1M4B gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::FRT 
ADH1/adh1::PADH1-SAP2 

This study 

Δgln3Δgat1OPT1E1A Δgln3GAT1M4A gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::FRT 
ADH1/adh1::PADH1-OPT1 

This study 

Δgln3Δgat1OPT1E1B Δgln3GAT1M4B gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::FRT 
ADH1/adh1::PADH1-OPT1 

This study 

 

stp1Δ mutants 

STP1M1A/B SC5314 STP1/stp1Δ::SAT1-FLIP This study 

STP1M2A STP1M1A STP1/stp1Δ::FRT This study 

STP1M2B STP1M1B STP1/stp1Δ::FRT This study 

STP1M3A STP1M2A stp1Δ::FRT/stp1Δ::SAT1-FLIP This study 

STP1M3B STP1M2B stp1Δ::FRT/stp1Δ::SAT1-FLIP This study 

STP1M4A STP1M3A stp1Δ::FRT/stp1Δ::FRT This study 

STP1M4B STP1M3B stp1Δ::FRT/stp1Δ::FRT This study 

 

gat1Δ mutants expressing different GAT1 versions from a tetracycline-inducible (Tet) promoter 

Δgat1TET1-GAT1-1A GAT1M4A gat1-1Δ::FRT/gat1-2Δ::FRT 
ADH1/adh1::Ptet-GAT12268 

This study 

Δgat1TET1-GAT1-1B GAT1M4B gat1-1Δ::FRT/gat1-2Δ::FRT 
ADH1/adh1::Ptet-GAT12268 

This study 

Δgat1TET1-GAT1-2A GAT1M4A gat1-1Δ::FRT/gat1-2Δ::FRT 
ADH1/adh1::Ptet-GAT12067 

This study 

Δgat1TET1-GAT1-2B GAT1M4B gat1-1Δ::FRT/gat1-2Δ::FRT 
ADH1/adh1::Ptet-GAT12067 

This study 

Δgat1TET1-GAT1-3A GAT1M4A gat1-1Δ::FRT/gat1-2Δ::FRT 
ADH1/adh1::Ptet-GAT12004 

This study 

Δgat1TET1-GAT1-3B GAT1M4B gat1-1Δ::FRT/gat1-2Δ::FRT 
ADH1/adh1::Ptet-GAT12004 

This study 
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Strain Parent Relevant genotypea Reference 

gln3Δ gat1Δ double mutants expressing STP1 or STP1 ΔN61 from a tetracycline-inducible promoter 

Δgln3Δgat1TET1- 
STP1A 

Δgln3GAT1M4A gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::FRT 
ADH1/adh1::Ptet-STP1 

This study 

Δgln3Δgat1TET1- 
STP1B 

Δgln3GAT1M4B gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::FRT 
ADH1/adh1::Ptet-STP1 

This study 

Δgln3Δgat1TET1-
STP1ΔN61A 

Δgln3GAT1M4A gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::FRT 
ADH1/adh1::Ptet-STP1 ΔN61 

This study 

Δgln3Δgat1TET1-
STP1ΔN61B 

Δgln3GAT1M4B gln3-1Δ::FRT/gln3-2Δ::FRT 
gat1-1Δ::FRT/gat1-2Δ::FRT 
ADH1/adh1::Ptet-STP1 ΔN61 

This study 

 

stp1Δ mutants expressing STP1, GLN3, or GAT1 from a tetracycline-inducible promoter 

Δstp1TET1-STP1A STP1M4A stp1Δ::FRT/stp1Δ::FRT 
ADH1/adh1::Ptet-STP1 

This study 

Δstp1TET1-STP1B STP1M4B stp1Δ::FRT/stp1Δ::FRT 
ADH1/adh1::Ptet-STP1 

This study 

Δstp1TET1-GLN3A STP1M4A stp1Δ::FRT/stp1Δ::FRT 
ADH1/adh1::Ptet-GLN3 

This study 

Δstp1TET1-GLN3B STP1M4B stp1Δ::FRT/stp1Δ::FRT 
ADH1/adh1::Ptet-GLN3 

This study 

Δstp1TET1-GAT1-1A STP1M4A stp1-1Δ::FRT/stp1-2Δ::FRT 
ADH1/adh1::Ptet-GAT12268 

This study 

Δstp1TET1-GAT1-1B STP1M4B stp1-1Δ::FRT/stp1-2Δ::FRT 
ADH1/adh1::Ptet-GAT12268 

This study 

Δstp1TET1-GAT1-2A STP1M4A stp1-1Δ::FRT/stp1-2Δ::FRT 
ADH1/adh1::Ptet-GAT12067 

This study 

Δstp1TET1-GAT1-2B STP1M4B stp1-1Δ::FRT/stp1-2Δ::FRT 
ADH1/adh1::Ptet-GAT12067 

This study 

Δstp1TET1-GAT1-3A STP1M4A stp1-1Δ::FRT/stp1-2Δ::FRT 
ADH1/adh1::Ptet-GAT12004 

This study 

Δstp1TET1-GAT1-3B STP1M4B stp1-1Δ::FRT/stp1-2Δ::FRT 
ADH1/adh1::Ptet-GAT12004 

This study 

 

a Apart from the indicated features all strains have the genotype of their parental strain. 
b SAT1-FLIP denotes the SAT1 flipper cassette. 
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3.4 Primers   

 

Primers were obtained from MWG (Ebersberg, Germany). Restriction sites introduced into 

the primers are underlined; the substituted nucleotides either for introduction of restriction 

site or amino acid exchange are highlighted in bold; the start and stop codons are in italics. 

Primers with the suffix “p” are 5’ phosphorylated. 

 

Table 3. List of primers used in this study 

Primer 
 

No. of 
nucleotides

Tm (ºC) Sequence (5’ → 3’) 

GAT1 29 68.1 CCGATAACAATAAGGGCCCTCCCAATCAG 

GAT2 28 68.0 TGTAGTGGCTGTGCTCGAGTTAAGCTGC 

GAT3 30 65.4 GCTAATAATCAAGCCGCGGATTGGTTAAAC 

GAT4 29 63.9 TGCTATGTTCAGTGAGCTCACATTTGAAG 

GAT5 32 72.1 GAGGGTTCCGCGGCTAGTGGAGTCAATACATC 

GAT6 32 69.5 TGACAGAGGAGCTCATGATTGGGTTGGATCTG 

GAT7 31 65.5 ATAGATGACACTCGAGTTGATGATTGGGTTG 

GAT8 21 52.0 AGATTGGTCAATTTAATCAGC 

GAT9 18 51.4 ATTCTCAACGTCAGCATC 

GAT10 21 55.9 AACTACTCCATTATGGAGACG 

GAT11 30 66.8 ATGAATAGGTTGTGAGCTCGGTTGACTAGG 

GAT12 33 63.3 ATATGGATCCATAATTCATGTTTAACCAATCCC 

GAT13 29 66.7 TGTTGAAATCATGGTGCGGTTCAGGTTGG 

GAT14 32 64.4 TTGTGATAATTGGGACATTGTATTAGTGGCAG 

GAT15 31 68.2 AAGTCATACCACCACCTGAACTACCTCTGTC 

GAT1-1 34 69.5 ATATGTCGACAATGTACTACCGTGCTCGTCACTC 

GAT1-2 33 60.8 ATATGGATCCTAATAATTCATGTTTAACCAATC 

GAT1-3 37 63.9 ATATGTCGACAATGACAATGAATTTTAATCAAACAGG 

GAT1-4 35 62.4 ATATGTCGACAATGATGTATATTAACAACAAATCG 

GLN1 30 66.8 ATAACGGGCCCTACCTAGAGGAATAAGTTC 

GLN2 30 68.1 GACTGACTATTCGCTCGAGTCATTTGTCCC 

GLN3 30 69.5 GGGGATTATAAGGCCGCGGATTGGTTGAAG 

GLN4 29 69.5 GTCGTTTAGGTCACGAGCTCCACGAGATG 

GLN5 31 64.2 ATATTGGATCCTAGAGTTTGCAAACACGTAC 

GLN6 30 62.7 GTCATTAGGATCCAAAGTATATACTATGCC 

GLN7 25 63.0 ACTACAACAACGACGTCGTATCACC 

GLN8 22 56.5 CATCTTCCACTTCATTATCTGG 

GLN9 22 56.5 CATACTAGAGAATGTGAACACC 
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Primer 
 

No. of 
nucleotides

Tm (ºC) Sequence (5’ → 3’) 

GLN10 28 63.7 TTTTCTCGAGGGACAAATGACTACATCG 

GLN11 35 68.3 ACGTGGATCCTCAAATGTCAAACTTCAACCAATCC 

MEP3 34 62.1 TAAATACGGTACCCAAACGATTGGCTTGAATGTC 

MEP24 30 64.9 CCAGACACTCGAGTTATTAACTATTCAGAG 

MEP32 29 68.4 AAAGAACTGGATCCATTTTTAGCTTCTCC 

MEP39p 27 77.9 TGGCGGTCCAGTTCACGAAAACTCTGG 

MEP44 31 65.5 CAGCTATCTTGGTACCTCATCAATCAATTGC 

MEP51 30 61.3 GAAAAATCTAGAAATCCCTATTGTGATTGG 

MEP52 26 63.2 AACCACTCTAGATTTACCCCACTTCG 

MEP53 32 64.4 GTGATGCTCTAGATAAATACAATACCCAAACG 

MEP54 34 63.4 ATGATTTTCTAGAATATACCATGAAGTACCAAGC 

MEP55 30 64.0 TCCTCGTTCTAGATACTAATGGTTGATACG 

MEP60 32 65.6 GGGGTAAATCTAGAGTGGTTAAAAGGATATCC 

MEP61 31 60.2 TCTCAATTCTAGAATTATTCCTGTATATTGC 

MEP62 35 60.1 TTTTTCTAGAAAATTGTTTATCAGTGTGAAAAATC 

MEP63 30 62.7 CTGGGAAATTGTTCTAGAGTGTGAAAAATC 

MEP64 30 62.7 GATTTTTCACACTCTAGAACAATTTCCCAG 

MEP65 29 58.2 CCTGTATATTGCAGATCTATATTTTTTTC 

MEP66 29 58.2 GAAAAAAATATAGATCTGCAATATACAGG 

MEP67p 25 64.6 CCGGCGAAATTCAATGCACCTAAGC 

MEP68p 32 70.8 CAGCAGCAAACATCCCTTGGGCAAGACAGAAC 

MEP69p 32 70.8 CAGCAGCAGCCATCCCTTGGTAAAGACAGAAC 

MEP70p 25 63.0 TCACTGCTATTTTGATGGCTGGTGC 

MEP71p 25 66.3 CCGGCGAAATCCAATGCACCTAAGC 

MEP72p 27 69.5 TGGCGGTCCAGTTGCCGAAAACTCTGG 

MEP73p 22 56.5 ACAGTAAACAACAGTCAACCAG 

MEP74p 26 68.0 CCTATTGCCTATGCCACATGGGGTGG 

MEP75p 23 67.8 GGCCCCACCGTTGAAACCGTACC 

MEP76p 23 60.6 ACTGGTAACTCTTCCATGCGTTC 

MEP77p 22 58.4 GTCCATACCATCATCAATCTGC 

MEP78p 26 71.1 GTGTGGGCACTCGCTGGTGTTGGTGG 

MEP79 29 59.6 AAAGAACAGATCTAATTTTTAGCTTCTCC 

MEP80p 32 70.8 CCTATTGCCTATTGGACAGCCGGTGGAAATGG 

MEP81 32 64.4 TTGGTTTCAGATCTAGTCATCAGCATAATAGG 

MEP82 30 61.3 TTGGTTTCAAGATCTAATCAGCATAATAGG 

MEP83 41 68.4 TTGGTTTCAGGATAGATCTAAGCATAATAGGCATATTCACC 

MEP84 36 66.1 TTCAGGATCGTAGATCTAATAATAGGCATATTCACC 

MEP85 37 68.4 TTCAGGATCGTCATCAGATCTAATAGGCATATTCACC 

MEP86 38 69.5 ATCGTCATCAGCAGATCTAGGCATATTCACCAATTTGG 
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Primer 
 

No. of 
nucleotides

Tm (ºC) Sequence (5’ → 3’) 

MEP87 38 67.3 ATCGTCATCAGCATAGATCTAATATTCACCAATTTGGG 

MEP88 38 67.3 ATCGTCATCAGCATAGATCTAAAATTCACCAATTTGGG 

MEP89p 22 64.0 TTGGGCCAAGTCGGTTCCCAAC 

MEP90p 28 60.7 ATTGGTGAATTTGCCTATTATGCTGATG 

MEP91 37 63.9 TCACTTCAAAGATCTAATAAGCAAATTCACCAATTT 

MEP92 37 63.9 TCACTTCAAAGATCTAATAAGCATATTCACCAATTT 

MEP94p 27 72.6 GGACCCACCGTTGGCACCGTACCAACC 

STP1-1 38 65.1 ATATAGTCGACAAAATGCCACCAATACAAAAGATTAAG 

STP1-2 30 58.6 AAACTAGATCTTAATCTAGTAATAGATTGC 

STP1-3 28 62.2 TTACGTACCACAACTTATACCATCAAGC 

STP1-4 37 67.2 AACCAATGTCGACAACTATGTTGATACTTTCCATAGG 

STP1-5 28 65.1 ATGAAAAGATAAGGGCCCATGGAAAGCC 

STP1-6 26 56.9 AGTTATAGTCGACGTTCTTTAATATG 

STP1-7 23 58.9 ATATATCCTGCAGGTGTAAAGGC 

STP1-8 24 61.0 TAATGAAGAGCTCGAACCTGAACG 

STP1-9 24 64.4 AATGGAAGATCCGCGGCTGTTTCC 

 

 

 

3.5  Materials  

Sources of chemicals, enzymes and equipments used in this study were: 

Amersham, Applichem, Boehringer, Difco, Eppendorf, Gibco, Gilson, Greiner, Merck, New 

England Biolabs (NEB), MWG-Biotech, Oxoid, Peqlab, Pharmacia, Roth, Serva and Sigma. 

 

  Table 4. Equipments used in the study 

Equipments used Source 

Centrifuge 
  Tabletop centrifuge (Biofuge Pico) 
  4º centrifuge (Megafuge 2.0R) 

 
Heraeus 

Confocal Laser Scanning Microscope 
  (Zeiss LSM 510 + Zeiss Axiovert 100)  

Zeiss 

Digital camera Coolpix 4500 Nikon 
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Equipments used Source 

Electrophoresis apparatus  
  Agarose gel (DNA Sub Cell GT/Mini Sub Cell GT) Bio-Rad 
  Polyacrylamide gel (Mini Protein 3) Bio-Rad 
  Agarose-Formadehyde-Gel Fröbel 

Electroporation apparatus  (Easyjet prima) Equibio 

FACSCalibur cytometry system Becton Dickinson 

Geldocumentation system Bio-Rad 

Hybridization oven Shake `n´ Stack Hybaid 

Incubators 
  for E. coli (37°C) (Type B6200)  
  for C. albicans (30°C) (Model 400) 

 
Heraeus 
Memmert 

Shaking incubators 
  for E. coli (37°C) Innova 4300 
  for C. albicans (30°C) Certomat BS-1 

 
New Brunswick Scientific 
B. Braun Biotech 

Spectrophotometer (Ultrospec 3000) Pharmacia Biotech 

Stereozoom microscope SMZ800 Nikon 

Thermocycler Cyclone 25 Peqlab 

UV-Crosslinker Sratalinker 1800 Stratagene 

Vacuum-Blotter Pharmacia Biotech 

 

 

 

3.6 Methods 

For all microbiology and molecular biology procedures standard protocols were followed 

from Sambrook et al., (1989) or Ausubel et al., (1989).  

All solutions and media were made in double distilled and distilled water, 

respectively. All solutions and media were sterilized by autoclaving or filter sterilized by 

passing through a 0.22 micron Millipore filter.  
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3.6.1 Growth and maintenance of E. coli strains 

Recombinant E. coli strains were routinely grown in LB liquid medium (1% Peptone, 0.5% 

Yeast extract, 0.5% NaCl) under the selection pressure (either 100 µg/ml ampicillin or 30 

µg/ml chloramphenicol). For growth on plates, 1.5% agar [DifcoTM agar granulated, BD] was 

added to the media. The cells in liquid culture were grown at 37°C for 16-18 hours with 

shaking at 200 rpm and the plates were incubated at 37°C until the colonies appeared. While 

liquid cultures were processed to isolate plasmid DNA, the plates with streaked colonies were 

stored at 4ºC. 

 

3.6.2 Growth and maintenance of C. albicans strains 

 C. albicans strains were routinely grown in YPD liquid medium (2% Peptone, 1% Yeast 

extract, 2% Glucose) at 30°C shaker with rpm of 250. For growth on plates 1.5% agar was 

added to the YPD medium. 

 

3.6.3 Selection media for C. albicans transformants 

Uridine prototrophic C. albicans strains were selected and propagated on SD agar plates 

(0.67% yeast nitrogen base without amino acids [BIO 101, Vista, Calif.], 2% glucose, 1x 

CSM-URA [BIO 101, Vista, Calif.] and 1.5% agar). To support growth of uridine 

auxotrophic strains, 100 µg/ml uridine was added to the media. For the selection of 

nourseothricin-resistant transformants, 200 μg/ml nourseothricin (Werner Bioagents, Jena, 

Germany) was added to YPD agar plates. Nourseothricin-sensitive derivatives in which the 

SAT1 flipper was excised by FLP-mediated recombination, were obtained by growing 

transformants for 6 h in YPM medium (2% Peptone, 1% Yeast extract, 2% Maltose) without 

selective pressure. On plates containing 20 µg/ml of nourseothricin, NouS clones were 

identified by their small colony size in comparison to the NouR parental strain. These NouS 

clones were confirmed by restreaking on YPD plates containing 100 µg/ml of nourseothricin. 

 

3.6.4 Phenotypic assays 

To observe MEP2 expression, strains were grown overnight in liquid minimal proline 

medium (0.17% yeast nitrogen base without amino acids without ammonium sulphate [BIO 

101, Vista, Calif.], 2% glucose, 0.1% proline) diluted 50 fold, and grown for six hours at 

30°C in SD medium in which the standard concentration of 76 mM ammonium was replaced 
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by 100 µM ammonium or other nitrogen sources as indicated in the text. To study 

filamentation, and Mep2p expression on solid media, overnight cultures of the strains in YPD 

medium were appropriately diluted and plated on SD agar plates (washed agar 2%) 

containing 100 μM ammonium or other nitrogen sources. Individual colonies were 

photographed after 6 days of growth at 37°C. Growth of the strains was assayed by 

incubating strains for 4 days at 30°C on SD agar plates containing 1 mM ammonium. 

Filamentation was also tested on agar plates containing 10% fetal calf serum (PAA 

Laboratories GmbH). 

To test for growth on BSA as the sole nitrogen source, strains were grown at 30°C in 

YCB-BSA medium (2.34 % yeast carbon base [YCB, Difco, Heidelberg, Germany], 0.4% 

bovine serum albumin [BSA, Sigma, Deisenhofen, Germany], pH 4.0). Experiments in which 

normal growth of gat1Δ and gln3Δ gat1Δ mutants was required, 0.2% yeast extract was 

added to YCB-BSA medium (YCB-BSA-YE). For induction of tet-promoter, 50 μg/ml 

doxcycycline was added to the experimental medium. 

 

3.6.5 Small scale plasmid DNA isolation (Miniprep)  

Miniprep was carried out by modified alkaline lysis method (Sambrook et al., 1989). Cells 

were harvested at 13,000 rpm for 1 minute at RT. Medium was removed by aspiration and 

bacterial pellets were suspended completely in 100 µl Solution Ι (25 mM Tris-HCl  pH 8.0, 

10 mM EDTA pH 8.0, 50 mM Glucose). 200 µl freshly prepared Solution II (1% SDS, 0.2 N 

NaOH) was added and mixed by inverting tubes 3-4 times. 150 µl ice cold Solution III (3 M 

sodium acetate pH 5.2) was added to the cell lysate, mixed thoroughly by inversion and then 

incubated on ice for 10 minutes. To remove cell debris, bacterial cell lysate was centrifuged 

at 13,000 rpm for 5 minutes at RT and the supernatant was collected and extracted once with 

200 µl phenol/chloroform/isoamyl alcohol (25:24:1). Plasmid DNA was precipitated, by 

adding 1 ml 96% ethanol to the supernatant and then mixed by inversion. The plasmid pellet 

was recovered by centrifugation at 13,000 rpm for 5 minutes at RT, the supernatant was 

discarded, the pellet washed once with 70% ethanol and air-dried. The pellet was dissolved in 

50 µl double distilled water (100-200 ng/l DNA), and 1 µl RNase A (50 mg/ml) was added to 

each sample.  
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3.6.6 Polymerase Chain Reaction (PCR)  

As high fidelity DNA polymerase either Phusion (Finnzymes) or Elongase (Invitrogen) was 

used for all PCR applications. Usually the PCR reaction volume was 50 µl which contain 1-2 

ng plasmid DNA or 0.1-0.5 µg genomic DNA as template, 0.2 mM of each dNTP, 0.5 µM of 

each primer, 1 unit of enzyme and polymerase specific buffer. The PCR reaction was 

performed on Thermocycler Cyclone 25 (Peqlab) following the programme recommended by 

the enzyme manufacturers.  

Following are the cycling conditions when using Phusion enzyme: 

Initially the DNA was denatured at 98°C for 30 s followed by 30 cycles of amplifications.    

 Denaturation at 98°C for 10 s 

 Annealing temperature (optimized) 45-55°C for 30 s 

 Extension at 72°C for 30 s /1 kb product  

Final extension was done at 72°C for 10 minutes in order to fill the incomplete 

extension products. The annealing temperature was adjusted on the basis of the Tm of the 

primers (mentioned in Table 3) used for amplification. The template amount, number of 

cycles and cycling conditions were varied to maximize the product yield. Successful 

amplification was confirmed by agarose gel electrophoresis and the PCR product was 

purified using Qiagen kit (Qiagen GmbH, Hilden, Germany).  

 

3.6.7  DNA digestion with restriction enzymes    

DNA digestions were done using 10x ‘one-for all buffer’ (330 mM Tris-acetate pH 7.9, 660 

mM K-acetate, 100 mM Mg-acetate, 5 mM DTT, 0.1% BSA) with final concentration of 1x 

in the digestion reaction. Amount of enzyme per µg of DNA used was according to 

manufacturer’s instructions. All preparative digestion reactions were generally done in a 50 

µl reaction volume, at 37ºC for 6 h, containing 30-35 µl of plasmid DNA (inserts) or 10 µl of 

plasmid DNA (vectors). The digests were then mixed with 10x DNA stop buffer (0.2% 

bromophenol blue, 0.2 M EDTA, 50% glycerol) to a final concentration of 1x, and loaded on 

a 1% agarose gel along with 1 kb DNA ladder (Invitrogen).  

 

3.6.8 Gel electrophoresis and gel elution of DNA fragments  

Agarose gel electrophoresis of DNA was routinely carried out in 1x TAE (1 liter 50x TAE 

stock solution : 242 g Tris base, 57.1 ml glacial acetic acid and 100 ml 0.5 M EDTA pH 8.0 

in distilled water). After electrophoresis, the gels were stained in ethidium bromide (10 

30 cycles 
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mg/ml in water) and photographed using a gel documentation system. The sizes of the 

fragments were estimated by measuring the relative mobility of the bands in comparison to 

markers of known molecular size (1 kb DNA ladder, Invitrogen), run in a lane alongside. 

 

3.6.9 Elution of inserts from agarose gel 

To release insert of interest, digested DNA sample was loaded on the agarose gel and run 

overnight at low voltage till the band of interest was well separated from the vector 

backbone. Required band was cut out with a scalpel. The DNA was eluted from the gel slice 

using the ‘Gene Clean Kit’ (QBiogene, Heidelberg, Germany). 400 µl NaI was added to the 

gel slice and incubated at 50°C till the agarose melted (10-15 minutes). 7 µl glass-milk was 

added and thoroughly mixed by vortexing; it was then incubated on ice for 5 minutes. 

Washed 3 times with 200 µl ‘New Wash’ solution 1 (13,000 rpm, 1 min). 11 µl distilled 

water was added to the pellet, mixed well, and incubated at 50°C for 5 minutes. After 

centrifugation at 13,000 rpm for 2 minutes, the supernatant was collected which contains the 

fragment of interest. Digested PCR products were eluted from the gel similarly. Linear DNA 

fragments needed for C. albicans transformation were eluted in 6 µl distilled water, instead 

of 11 µl.  

 

3.6.10 Cloning gene of interest in vectors  

 Ligation: The vector most commonly used in these studies was pBluescript KS II 

(Stratagene, Heidelberg, Germany). Ligation reactions were set up at 1:5 ratio of vector and 

insert (in general) in a 20 µl reaction volume containing 10 µl of 2x Quick ligase buffer 

(NEB) and 1 unit of Quick ligase enzyme (NEB). A vector-only control ligation reaction was 

also set up during each ligation experiment. Ligation reactions were carried out at RT for 15-

30 min. 

Transformation of E. coli  

Preparation of E. coli DH5α competent cells: E. coli competent cells were prepared using 

calcium chloride method. Single colony of DH5α was inoculated in 10 ml LB medium and 

grown at 37°C with shaking at 200 rpm for 16-18 hours. The overnight grown culture was 

diluted 1:100 in 50 ml fresh LB medium and incubated at 37°C shaker for 3-4 hours (till 

OD600= 0.7-0.9). The culture was then transferred to chilled 50 ml tubes and centrifuged at 

3,000 rpm for 10 min at 4°C in a chilled rotor. The supernatant was discarded and the cell 

pellet was resuspended in 20 ml of ice cold 100 mM calcium chloride The cell mix was 
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incubated on ice for 30 minutes and centrifuged at 4,000 rpm for 10 minutes at 4°C. The 

pellet was then resuspended gently in 2.5 ml of 100 mM calcium chloride and 86% glycerol 

was added to a final concentration of 15% (v/v). Aliquotes of 200 µl competent cells were 

made in the eppendorf tubes and stored at -80°C for later use.  

Transformation of competent cells:  

For each transformation a frozen aliquot of competent cells was thawed on ice. The ligation 

reaction mixture (20 µl) was added to 200 µl competent E. coli cells and incubated for 30 

minutes on ice. The cells were subjected to heat shock at 42°C (water-bath) for 90 seconds 

and then chilled on ice for 2 minutes. After adding 1 ml LB medium the cells were allowed to 

grow for 1h at 37°C. Finally, the cells were spread on LB selection plate (containing 

ampicillin or chloramphenicol). These plates were incubated at 37°C until the colonies 

appeared (~16 hours).  

 

3.6.11  Screening of recombinants  

3 µl of miniprep plasmid DNA of clones was digested with appropriate restriction enzymes at 

37°C in a 20 µl reaction mix for 1-2 h and separated on a 1% agarose gel. After staining in 

ethidium bromide the gel was observed in gel documentation system and correct 

recombinants were selected based on their expected band pattern on gel. Sequences of these 

clones were also verified, in order to avoid selecting such recombinants which may contain 

undesired nucleotide substitutions that can arise in PCR.  

DNA-Sequencing  

For sequencing of the cloned fragments, plasmid DNA was isolated as described earlier. The 

DNA sample was purified in following manner: Volume of the sample was made up to 200 

µl by adding distilled water. After extracting once with phenol/chloroform/IAA (25:24:1) and 

once with chloroform/IAA (24:1), the DNA was precipitated by addition of 0.1 volume 3 M 

sodium acetate pH 5.2 and 2.5 volumes 100% ethanol and incubation at -70°C for 1 h. The 

DNA pellet was recovered by centrifugation at 13,000 rpm for 5 minutes at RT. After 

washing with 70% ethanol the DNA pellet was dissolved in 20 µl distilled water. Reaction 

mixture containing 1 μl of the plasmid DNA, 1 μl primer (100 pmole/μl) chosen as per the 

requirement of cloned fragment to be sequenced, and 5 μl distilled water was sent to 

Sequence Laboratories Göttingen GmbH (Göttingen, Germany). 
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3.6.12 C. albicans transformation 

C. albicans strains were transformed by electroporation as described by Köhler et al., (1997), 

with slight modifications. A single colony of the strain to be transformed was inoculated in 

10 ml YPD medium (supplemented with 100 μg/ml uridine if strain is ura3 negative), grown 

overnight at 30ºC shaker (250 rpm). Cells from the preculture were diluted 10-4 in 50 ml fresh 

YPD medium and grown at 30°C shaker till the culture reached mid log phase (OD600= 1.6-

2.2). Cells were collected by centrifugation at 4,000 rpm at 4°C for 5 minutes. The cell pellet 

was then suspended in 8 ml of sterile distilled water. After addition of 1 ml of 10x TE (100 

mM Tris-HCl pH 7.5, 10 mM EDTA, pH 7.5) and 1 ml of 1M lithium acetate (pH 7.5), the 

suspension was incubated in rotary shaker for 60 minutes at 30°C. 250 μl of 1 M 

dithiothreitol (DTT) was then added, and the cells were incubated again for 30 min at 30°C 

with shaking. After addition of 40 ml of water the cells were centrifuged (4,000 rpm, 4°C, 5 

minutes), cell pellet was then washed sequentially in 25 ml of ice-cold water and 5 ml of ice-

cold 1 M sorbitol. The supernatant was discarded and the washed cell pellet was resuspended 

in 50 μl of 1 M sorbitol and kept on ice.  

Five μl of the linear DNA fragments was mixed with 40 μl of electrocompetent cells 

in a 0.2 cm cuvette (PeqLab, Erlangen, Germany). For control, 5 μl of sterile distilled water 

was used instead of DNA. Electroporation was carried out at 1.8 kV using an electroporation 

apparatus (Equibio, Kent, UK). After electroporation, the cells were transferred to eppendorf 

tubes using 1 ml of 1 M sorbitol. When URA3 gene was used as the selection marker, the 

electroporated cells were collected by centrifugation (4,000 rpm, 4°C, 2 minutes) 

resuspended in 100 μl of residual sorbitol and plated on the minimal media selection plate 

directly. When the transforming cassette contained caSAT1 (dominant nourseothricin 

resistance marker), the electroporated cells after resuspension in 1 ml YPD medium were 

divided into two parts so that two independent first round transformants could be obtained. 

The volume of each part was adjusted to 1 ml by adding 500 μl YPD and the samples were 

then incubated for 4-6 h at 30°C. After incubation, 100 μl from the sample was spread on 

YPD plates containing 200 μg/ml of nourseothricin. The plates were incubated at 30°C until 

colonies appeared. Individual colonies were streaked on respective selection media plates for 

further analysis.  

3.6.13 Genomic DNA isolation from C. albicans  

Strains were grown overnight in 10 ml YPD medium at 30°C. The cells were collected by 

centrifugation at 4,000 rpm for 5 minutes, resuspended in 1 ml 1M Sorbitol and transferred to 
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2 ml micro centrifuge tubes. The cells were washed by centrifugation at 4,000 rpm for 5 

minutes, the supernatant was discarded and the cell pellet was resuspended in 1 ml SCEM 

buffer (1M sorbitol, 100 mM sodium citrate pH 5.8, 50 mM EDTA, 2% β-mercaptoethanol, 

500 U/ml lyticase [Sigma]) and incubated at 37°C for 45 minutes. The protoplasts thus 

obtained were centrifuged (13,000 rpm, 5 minutes), suspended in 800 µl proteinase-buffer 

(100 mM Tric-Cl pH 7.5, 50 mM EDTA pH 7.5, 0.5% SDS, 1 mg/ml proteinase K [Sigma]) 

and incubated at 60°C for 30 minutes. After 2 times extraction with phenol/chloroform/IAA 

(25:24:1), the nucleic acids were precipitated by adding 600 µl isopropyl alcohol to each 

sample. After centrifugation at 13,000 rpm for 5 minutes the pellet was washed with 70% 

ethanol, air-dried and dissolved in 200 µl distilled water containing 2 µl RNaseA (10 mg/ml). 

After 30 minutes incubation at 37°C, the DNA was extracted once with phenol/chloroform/ 

IAA (25:24:1) and once with chloroform/IAA (24:1) and precipitated with 200 µl 

isopropanol. It was then centrifuged at 13,000 rpm for 5 minutes, washed in 70% ethanol, air-

dried and dissolved in 100 µl distilled water.  

 

3.6.14  Southern hybridization  

10 µg of genomic DNA from C. albicans transformants was digested overnight with 

appropriate restriction enzymes in a 30 µl reaction volume at 37°C. The reactions were 

stopped by adding DNA stop buffer to 1x final concentration. Digested samples, along with 1 

kb DNA ladder (Invitrogen) as marker, were loaded on a 1% agarose gel. The gel was run 

overnight at 36-40 V in 1x TAE buffer. After electrophoresis the gel was stained with 

ethidium bromide, and photographed.  

DNA transfer  

 A nylon membrane (15 cm x 14 cm, Schleicher & Schuell, Dassel, Germany) was pre-wet 

for few seconds in distilled water and equilibrated in 20x SSC (3 M NaCl, 0.3 M tri-sodium 

citrate dihydrate) for 5 minutes. The gel was rinsed with distilled water and aligned on top of 

the membrane in vacuum blot apparatus (Phamacia Biotech). In a sequential order, the gel 

was treated with different solutions (15 min each) under vacuum, Solution A (0.25 N HCl) 

for depurination of the DNA, Solution B (1.5 M NaCl, 0.5 N NaOH) for denaturing DNA and 

then with Solution C (1.5 M NaCl, 0.5 M Tris-Cl pH 7.5) for neutralization. Transfer was 

done with 20x SSC for 90 minutes. After the transfer was complete, the membrane was first 

soaked in 0.4N NaOH for 1 minute to denature the DNA and then treated with 0.2M Tris-

HCl (pH 7.5) for 1 minute for neutralization. The wet membrane was placed on Whatmann 
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filter paper and DNA was fixed to membrane by UV-cross linking using Stratalinker 

(Stratagene).  

Hybridization 

Hybridization was performed with the ‘ECL labelling and detection kit’ (GE Healthcare, 

Braunschweig, Germany) as per instructions of the manufacturer. The membrane was pre-

wet in 2x SSC for 1 minute and then placed in a hybridization bottle. For prehybridization, 

the membrane was incubated with 15 ml ECL hybridization buffer for 1-2 h at 42°C in a 

hybridization oven. The probe was prepared as per manufacturer’s instruction using 100 ng 

DNA of interest (gel eluted) and 2 ng 1 kb DNA ladder (Invitrogen) and then was added to 

the prehybridization buffer. Hybridization was carried out at 42°C for 16-18 hours. After 

hybridization, the membrane was washed at 42°C, one time with 5x SSC for 15 minutes, 2 

times with Wash Buffer I (6 M Urea, 0.4% SDS, 0.5x SSC) for 10 minutes and finally in 2x 

SSC at RT for 15 minutes. For signal detection, the washed membrane was incubated in a 

mixture of detection solution 1 and 2 (1:1) for 1 min, then wrapped securely in saran wrap, 

and finally exposed to Amersham hyperfilm ECL in a film cassette for 5-90 minutes. For 

rehybridizing with a 2nd probe the blot was washed in 2x SSC for 10 min and then steps for 

hybridization, as described above, were followed.  

 

3.6.15 RNA isolation from C. albicans  

All solutions used for RNA isolation were made either in DEPC treated water or treated with 

DEPC after preparation and RNase-free plastic ware was used in all procedures of RNA 

handling. For DEPC treatment 0.1% DEPC (v/v) was added and the solutions were incubated 

at 37°C overnight and autoclaved.   

Hot acidic phenol method  

Total RNA was isolated from log-phase cultures of the C. albicans strains in liquid Synthetic 

Low Ammonium Dextrose (SLAD) medium by the standard hot acidic phenol method 

(Ausubel et al., 1989).  Cells grown under this MEP2 inducing condition were collected by 

centrifugation and the pellet was resuspended in 600 µl TES buffer (10 mM Tris-Cl pH 7.5, 

10 mM EDTA, 0.5% SDS prepared in DEPC water). 600 µl water saturated phenol was 

added and mixed thoroughly by vortexing. The mixture was heated at 65°C for 1 h with 

intermittent mixing. The hot mixture was then chilled in an ethanol-dry ice bath for 5 seconds 

and then centrifuged at 12,000 rpm for 10 minutes at 4ºC. Without disturbing the interphase, 

the upper aqueous phase was carefully transferred to another tube and reextracted once again 

with water saturated phenol and twice with TE saturated phenol/chloroform/IAA (25:24:1). 
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The RNA was precipitated by adding 0.1 volume 3 M sodium acetate pH 5.2 and twice the 

volume chilled 96% ethanol. The RNA precipitate was collected by centrifugation (12,000 

rpm, 10 min, 4ºC).  The RNA pellet was washed with 70% ethanol in DEPC water, dried and 

dissolved in DEPC treated water. Concentration of RNA was estimated by measuring the 

absorbance at 260 nm (OD260= 1.0 equals 40 µg/ml RNA). 

 

3.6.16 Northern hybridization  

A formaldehyde denatured RNA gel, which contains 1.2% agarose in 1x MOPS buffer and 

2.2 M formaldehyde (Applichem, pH 3-3.5), was prepared. To prepare the RNA sample, 30 

µg RNA in 11.25 µl DEPC water was mixed with 5 µl 10x MOPS buffer (0.2 M MOPS pH 

7.0, 20 mM sodium acetate, 10 mM EDTA), 25 µl deionised formamide and 8.75 µl 37% 

formaldehyde. After incubation at 55°C for 15 minutes, 10 µl RNA loading buffer (50% 

glycerol, 1 mM EDTA, 0.002% bromophenol blue and 0.002% xylene cyanol) was added to 

the mix and the samples were loaded in the wells. Electrophoresis was done in 1x MOPS 

buffer at 150 V for 3-4 h (bromophenol blue had migrated 2/3 length of the gel).  

Afterwards, the gel was washed at RT in DEPC treated water twice (30 min each) on 

a rotator, followed by equilibration in 10x SSC for 45 minutes. The RNA was transferred to 

nylon membrane by overnight capillary transfer using 20x SSC as transfer buffer. RNA was 

cross linked to the membrane by using a UV-cross linker and the amount of RNA loaded was 

verified by methylene blue staining (0.02% methylene blue in 0.3 M sodium acetate) of the 

blot.  

Probe labeling and hybridization  

The membrane was pre-wet in 6x SSC for 1 minute and then placed in hybridization bottle. 

For prehybridization, the membrane was incubated with 15 ml of pre warmed (65°C) rapid 

hybridization buffer (Rapid-hyb buffer, GE Healthcare) for 1 h at 65°C in a hybridization 

oven. Labeling of DNA for probe was done using the rediprime II random prime labelling 

system (GE Healthcare, Braunschweig, Germany). For this, 25 ng of the template DNA 

fragment (gel eluted) was taken in 45 µl 1x TE buffer. The DNA was denatured by heating to 

100°C for 5 min in a boiling water bath, and then chilled quickly by placing on ice for 5 

minutes. The tube was centrifuged briefly to bring down the contents to bottom and the 

denatured DNA was then added to the reaction tube which is provided with the kit. This 

reaction tube contains buffered solution of dATP, dGTP, dTTP, exonuclease free Klenow 

enzyme and random primers in a dried, stabilized form. 5 µl of [α32P]-dCTP (50 µCi from 

3,000 Ci/mmol specific activity) was added to the reaction tube and the contents of tube were 
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mixed thoroughly by pipetting. The reaction mix was incubated at 37°C for 30 min and the 

reaction was stopped by adding 5 µl of 0.2 M EDTA. The labeled DNA was denatured by 

heating at 100°C for 5 min, chilled on ice and then added to the hybridizing sample. 

Hybridization was carried out at 65°C for 3-4 hours in a hybridization oven. 

Afterwards, the membrane was washed with Wash solution I (2x SSC, 0.1% SDS) for 20 

minutes at 42°C and 2 times for 15 minutes in Wash solution II (0.1x SSC and 0.1% SDS ) at 

65°C. Washing time was varied according the radioactivity present in the blot. After each 

wash the background count was monitored with a Hand Monitor to avoid washing off the 

specifically bound signal. The washed membrane was then wrapped securely in a saran wrap 

and autoradiographed, by exposing to Kodak X-Omat™ film at -80°C for 6 hours to 2 days, 

depending on the signal strength.  

 

3.6.17 5'-Rapid amplification of cDNA ends (5' RACE) assay 

 C. albicans strain SC5314 was grown to log-phase in liquid SLAD medium and total RNA 

was isolated using the RNeasy mini kit (Qiagen GmbH, Hilden, Germany). 5’ RACE analysis 

was performed using the 5’/3’ RACE kit, 2nd Generation (Roche Diagnostics GmbH, 

Mannheim, Germany) according to the manufacturer’s specifications. First-strand cDNA was 

synthesized in 20 μl reaction mix containing 2 µg of the template RNA which was reverse 

transcribed using the antisense primer GAT13 (see Table 3 for sequence of the primer). A 

homopolymeric dA-tail was added to the purified cDNA using recombinant terminal 

transferase and dATP provided with the kit. With the help of DNA polymerase enzyme 

(Phusion), the dA-tailed cDNA was amplified using the 5’ RACE oligo dT-anchor primer 

(5’-GACCACGCGTATCGATGTCGACTTTTTTTTTTTTTTTTV-3’; V=A, C or G) and the 

GAT1-specific antisense primer GAT14. The product was further amplified using the 5’ 

RACE PCR anchor primer (5’-GACCACGCGTATCGATGTCGAC-3’) and the GAT1-

specific antisense primer GAT15. The PCR products of both reactions were purified and sent 

to sequencing with the primer GAT15, using the protocol for DNA sequencing as described 

in section 3.6.1.8. 

 

3.6.18 SDS polyacrylamide gel electrophoresis (SDS PAGE) and Western blotting  

To investigate Sap2p secretion or its proteolytic activity (monitored by BSA degradation), 

supernatants of C. albicans strains grown at 30°C in YCB-BSA-YE (pH 4.0) were analyzed 

on polyacrylamide gel. While BSA in medium appears as an intense signal between 50 and 
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80 kDa; the thin Sap2p band at 43 kDa is detectable only after complete degradation of BSA 

and is otherwise masked by BSA degradation products. Culture supernatants were collected 

at different time points as mentioned in text. 4 µl of protein sample buffer (5x Sample buffer 

stock: Solution I (1.1 g SDS, 0.41 g EDTA, 0.17 g NaH2PO4 x 2H2O, 1.1 ml β-

mercaptoethanol, distilled H2O was added to make up the volume to 10 ml) + Solution II 

(20 mg bromophenolblue in 10 ml of 50% glycerin) was added to 15 μl of the supernatants to 

be analyzed. These samples were then analyzed on 12% polyacrylamide gel; Resolving gel: 

2.5 ml Solution B (1.5 M Tris-Cl pH 8.8, 0.4% SDS), 4.0 ml gelstock (30% acrylamide 

solution containing 0.8% bisacrylamide [Roth]), 50 µl 10% ammonium persulphate (APS), 

5 µl TEMED, dH2O was added for making volume to 10 ml; Stacking gel: 

1.25 ml Solution C (0.5 M Tris-Cl pH 6.8, 0.4% SDS), 0.65 ml gelstock, 25 µl 10% APS, 

5 µl TEMED, dH2O was added to make the volume to 5 ml. 10 μl of Precision Plus Protein 

Standards all blue size marker (Bio-Rad, München, Germany) was loaded in a lane along 

with the samples for determining the molecular weight of the proteins. Electrophoresis was 

performed on a minigel apparatus (Bio-Rad) at 35 mA for 1 h in 1x SDS running buffer (10x 

Stock solution: 30.2 g Tris, 188 g glycine, 1% SDS in 1litre dH2O).  

Protein bands were visualized by overnight staining of gel with Colloidal coomassie 

dye (40 ml Stock solution (0.1% Coomassie-brilliant-blue R250 [Serva], 85% phosphoric 

acid, 0.75 M ammonium sulphate) + 10 ml ethanol). Proteins were transferred onto the 

nitrocellulose membrane (Schleicher & Schuell) in Towdin buffer (25 mM Tris pH8.1-8.5, 

192 mM glycine and 20% methanol), using a Semi-Dry-Trans-Blot SD blot apparatus (Bio 

Rad) at 15 V for 1 h. After blocking of the membrane which was done for 1 hour at RT in 10 

ml of 1x TBS (Solution: 8 g NaCl, 0.2 g KCl, 3.0 g Tris, pH was adjusted to 7.4 with HCl) + 

5% non fat milk powder (Applichem), the membrane was given primary antibody treatment 

for 1 hour at RT i.e., antibodies raised against Sap2p (provided by Michel Monod, University 

of Lausanne, Switzerland) at dilution 1:1000 in 10 ml TBS+ 5% non fat milk powder. 

Afterwards, the membrane was given secondary antibody treatment for 30 min at RT, with an 

anti-rabbit (1:10000) antibody. Washing of the membrane was done thrice, 5 min each time 

at RT, in 1x TBS and signals were detected with the ECL labelling and detection kit (GE 

Healthcare, Braunschweig, Germany). 
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3.6.19 GFP expression analysis 

Fluorescence microscopy 

Localizations of GFP fusion proteins were determined using a Zeiss LSM 510 inverted 

confocal laser scanning microscope equipped with a ZEISS Axiovert 100 microscope. 

Imaging scans were acquired with an Argon laser of 488 nm wavelength and corresponding 

filter settings for GFP and parallel transmission images. The cells were observed with with 

63× immersion oil objective.  

Flow cytometry 

Cells were grown for the indicated times in the various experimental media, washed and 

suspended in 1x PBS (phosphate buffered saline) to an OD600 of 0.1 and kept on ice. 

Fluorescence-activated cell sorter (FACS) analysis was performed with a FACSCalibur 

cytometry system (Becton Dickinson, Heidelberg, Germany) equipped with an argon laser 

emitting at 488 nm. Fluorescence was measured on the FL1 fluorescence channel equipped 

with a 530-nm band-pass filter. Twenty thousand cells were analyzed per sample and were 

counted at low flow rate. Fluorescence data was collected by using logarithmic amplifiers. 

The mean of analyzed events was calculated using the Histogram Stats in the CellQuest Pro 

software. Unless mentioned otherwise the strain SC5314, which does not carry GFP, was 

included as a negative control in all experiments. 

 

3.6.20 Ammonium uptake assays  

Ammonium uptake was assayed as described previously (Biswas & Morschhäuser, 2005). 

Briefly, strains were grown to late log phase in minimal proline medium (0.17% YNB 

without amino acids and [NH4]2SO4 [BIO 101 Vista Calif.], 0.1% proline, 2% glucose) and 

the cultures were diluted to an OD600 of 1.0-1.2 in the same medium plus 250 µM ammonium 

sulfate. At the indicated times 1 ml of the culture was taken, the cells removed by 

centrifugation, and the ammonium concentration in the culture supernatant determined using 

a glutamate dehydrogenase-linked assay. Reaction mixture contains 50 mM imidazole pH 

7.3, 20 mM α-ketoglutarate, 0.1 mg/ml NADH, 0.01 mg/ml EDTA and 10 units of glutamate 

dehydrogenase from bovine liver (Sigma). Absorbance at 340 nm was measured one minute 

after the addition of NADH to the reaction mixture. In this reaction NH4
+ + NADH + H+ + α-

ketoglutarate is converted to glutamate + NAD+ + H2O and a higher A340 value due to 

increased NADH concentration indicates ammonium removal by the cells.  
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4 Results 

4.1 Mutational analysis of ammonium permease Mep2p of C. albicans 

In response to nitrogen starvation, C. albicans switches from yeast to filamentous growth 

form. This morphogenetic switch is controlled by the ammonium permease Mep2p. It is not 

yet clear whether the ammonium transport by Mep2p is required for its signaling activity or 

not. The C-terminal cytoplasmic domain of Mep2p contains a signaling domain that is not 

required for ammonium transport but is essential for Mep2p-dependent morphogenesis 

(Biswas & Morschhäuser, 2005). Mutational analysis of Mep2p was done to identify the 

residues of the C-terminal cytoplasmic domain that are critical for the signaling function of 

the permease and to investigate how the ammonium transport activity of the Mep2p 

influences its ability to induce filamentous growth under limiting nitrogen conditions. 

4.1.1 Identification of the minimal region in the C-terminal cytoplasmic tail of 

Mep2p that is required for the induction of filamentous growth 

Previously, it was reported that deletion of the last 40 amino acids of the C-terminal 

cytoplasmic domain of Mep2p did not impair its ability to induce filamentous growth of 

C. albicans in response to nitrogen limitation. In fact, cells expressing the MEP2ΔC440 allele 

had a hyperfilamentous phenotype, presumably due to increased mRNA levels of the 

truncated allele in comparison to those of the wild-type allele (Biswas & Morschhäuser, 

2005). However, deletion of 17 additional amino acids abolished the capacity of MEP2 to 

induce filamentous growth, although the MEP2ΔC423 allele was expressed at equally high 

levels and ammonium uptake by the truncated Mep2p was not affected. This suggested that at 

least some residues in the region between amino acids 424 and 440 of Mep2p (shown in Fig. 

3A) are part of a signaling domain that is specifically required for morphogenesis but not for 

ammonium transport. In order to define the minimal region that is essential for the induction 

of filamentous growth, progressive C-terminal truncations of Mep2p starting from amino acid 

440 were generated. 

 

Construction of plasmids containing truncated MEP2 alleles 

Plasmid pMEP2K1 (see Fig. 2) (Biswas & Morschhäuser, 2005) which contains the full 

length MEP2 allele served as the basis for generation of C-terminally truncated MEP2 alleles.  

The truncated MEP2 alleles were generated by amplifying the MEP2 gene from pMEP2K1 
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with primer MEP3 and one of the primers MEP81 to MEP87 or MEP59, which introduce stop 

codons at the desired positions (primers are listed in Table 3). The SalI-BglII fragment from 

each PCR (truncated MEP2 allele) was cloned together with a KpnI-SalI fragment from 

pMEP2K1 into KpnI/BglII-digested pMEP2K1, resulting in replacement of the full-length 

MEP2 in pMEP2K1 by a truncated MEP2 allele. The plasmids thus obtained are pMEP2ΔC6 

to pMEP2ΔC13, which contain the MEP2ΔC439 to MEP2ΔC432 alleles, respectively.  

 

 

Fig. 2. Structure of the insert of plasmid pMEP2K1, which contains full-length MEP2 allele, is shown. The 
MEP2 coding region is represented by the red arrow, the transcription termination sequence of the ACT1 gene 
(TACT1) by the filled circle, and the URA3 selection marker by the grey arrow. MEP2 upstream and downstream 
regions are represented by the solid lines. Only relevant restriction sites are indicated: Bg, BglII; K, KpnI; P, 
PstI;  ScI, SacI; Sl, SalI.  

 

In order to express the truncated alleles of MEP2 in mep1Δ mep2Δ double mutants, 

the mutants (strains MEP12M4A/B) were transformed with the KpnI-SacI fragment from the 

plasmids pMEP2ΔC6 to pMEP2ΔC13. Single-copy integration of the constructs into one of 

the genomic MEP2 alleles, which can be distinguished by an EcoRI restriction site polymor-

phism (Biswas & Morschhäuser, 2005), was confirmed by Southern hybridization (data not 

shown) and two independent transformants were used for further analysis in each case (strain 

descriptions are provided in Table 2). 

 The ability of the transformants to filament on SLAD plates was evaluated. As 

expected, all tested truncated alleles rescued the growth defect of the double mutants under 

limiting ammonium conditions and strains expressing the MEP2ΔC439 to MEP2ΔC433 alleles 

also exhibited the hyperfilamentous phenotype (Fig. 3B, panels a-c, and data not shown). In 

contrast, strains expressing the MEP2ΔC432 allele were unable to filament (Fig, 3B, panel d), 

indicating that the tyrosine at position 433 is the last residue that is essential for signaling by 

Mep2p. Interestingly, Mep2p is highly similar in this region to Mep1p, which does not 

normally induce filamentation in C. albicans (see Fig. 3A). Previous studies have shown that 

substituting the C-terminal tail of Mep1p for the C-terminus of Mep2p resulted in 

abolishment of  filamentation (Biswas & Morschhäuser, 2005). To exclude the possibility that 

K                                                            Sl       P               Bg                                                                                       ScI 

1 kb 

  MEP2up                      MEP2                                TACT1                   URA3                        3`MEP2
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the C-terminus of Mep1p, which is longer than that of Mep2p, contains an inhibitory domain, 

new hybrid alleles were generated in which the last 22 codons of the hyperactive  

MEP2ΔC440 and last 17 codons of hyperactive MEP2ΔC435  alleles were replaced by the 

corresponding sequence of MEP1. For construction of these new plasmids, pMEP21H2, 

which contains a hybrid MEP21-418-MEP1417-534 allele, was used (Biswas & Morschhäuser, 

2005). Truncated derivatives in which a stop codon was inserted behind codons 438 or 433 of 

MEP1 were generated by amplification of a part of the hybrid gene with the primer pairs 

MEP39p/MEP23 or MEP39p/MEP91, which was then substituted for the corresponding 

region in pMEP21H2, resulting in plasmids pMEP21H4 and pMEP21H6, respectively. 

Relevant inserts from these plasmids were integrated at the original MEP2 locus and correct 

integrants confirmed by Southern hybridization (data not shown) were selected for further 

studies.  

Strains expressing the hybrid MEP21-418-MEP1417-438 and MEP21-418-MEP1417-433 

alleles did not filament (Fig. 3B, panels e and f), demonstrating that residues in the region 

between amino acids 419 and 433 of Mep2p in which it differs from Mep1p must be essential 

for signaling. As highlighted in Fig. 3A, the important Y433 of Mep2p is replaced by 

phenylalanine at the corresponding position (F431) in Mep1p. Importance of the presence of a 

tyrosine at this position in signaling was investigated by introducing a Y433F mutation in the 

MEP2ΔC433 allele and, also by substituting the phenylalanine to tyrosine in the hybrid MEP21-

418-MEP1417-433 allele. For this, plasmids pMEP2ΔC12M1 and pMEP21H7, which are 

identical to pMEP2ΔC12 and pMEP21H6, respectively, but contain the Y433F mutation, 

were constructed. Using primer pair MEP3/MEP88, plasmid pMEP2ΔC12M1 was created in 

the same way as the other plasmids that contain truncated MEP2 alleles (see page 61-62). In a 

manner analogous to construction of plasmid pMEP21H6 (described above), pMEP21H7 was 

generated using primers MEP39p and MEP92. The substitution of tyrosine by phenylalanine 

resulted in reduced filamentation of cells expressing the MEP2ΔC433 Y433F allele (Fig. 3B, 

compare panels c and h), suggesting that phenylalanine can only partially substitute for the 

function of Y433 in signaling. For expression of MEP2Y433F allele, in which tyrosine is 

replaced by phenylalanine in full-length Mep2p, plasmid pMEP2K15 was generated by 

amplification of the N- terminal and C-terminal parts of MEP2 with the primer pairs 

MEP3/MEP89p and MEP90p/MEP9, followed by ligation of the KpnI- and BglII-digested 

PCR products into the same sites of pMEP2K1. However, transformants carrying the Y433F 

mutant allele of Mep2p exhibited normal filamentation (Fig. 3B, compare panels i and k). 

Conversely, replacement of phenylalanine by tyrosine in the hybrid protein did not confer the 
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ability to filament upon cells expressing the MEP21-418-MEP1417-433 F431Y allele (Fig. 3B, panel 

g), demonstrating that other amino acids in which Mep2p differs from Mep1p are critical for 

the signaling activity of Mep2p. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mep2p  419 DEEMLGTDLAQIGEYAYYADDD 440

Mep1p  417 NGEEAGVDEDQIGEFAYDYVEV 438
*  * *  **** **

433A
Mep2p  419 DEEMLGTDLAQIGEYAYYADDD 440

Mep1p  417 NGEEAGVDEDQIGEFAYDYVEV 438
*  * *  **** **

433

Mep2p  419 DEEMLGTDLAQIGEYAYYADDD 440

Mep1p  417 NGEEAGVDEDQIGEFAYDYVEV 438
*  * *  **** **

433A(A) 

Fig. 3.  (A) Alignment of the region between amino acids 419 and 440 of Mep2p with the corresponding region
in Mep1p. Identical residues are marked by the stars below the alignment. The tyrosine at position 433 of
Mep2p is labeled by an arrowhead. (B) Colony phenotype of mep1Δ mep2Δ double mutants expressing the
indicated MEP2 and MEP2-MEP1 hybrid alleles. Individual colonies were photographed after 6 days of growth
on SLAD plates at 37°C. Following strains were used: MEP12M6A/B, in which only the URA3 gene, but not
MEP2, was reintegrated, were used as controls (mep1Δ mep2Δ), MEP12MK2A/BΔC2 (MEP2ΔC440),
MEP12MK2A/BΔC12 (MEP2ΔC433), MEP12MK2A/BΔC13 (MEP2ΔC432), MEP12MK21H4A/B (MEP21-418-
MEP1417-438), MEP12MK21H6A/B (MEP21-418-MEP1417-433), MEP12MK21H7A/B (MEP21-418-MEP1417-

433F431Y), MEP12MK2A/BΔC12M1 (MEP2ΔC433Y433F), MEP12MK2A/B (MEP2) and MEP12MK16A/B
(MEP2Y433F). The two independently constructed series of strains behaved identically and only one of them is
shown in each case. 
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MEP2ΔC440 

b
MEP2ΔC433 

c
MEP2ΔC432 

d

MEP21-418-MEP1417-438 

e
MEP21-418-MEP1417-433 

f
MEP21-418-MEP1417-433 F431Y 

g
MEP2ΔC433 Y433F 

h

MEP2 
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MEP2Y433F 
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4.1.2 Expression pattern and ammonium uptake capacity of mutated Mep2p 

proteins 

In S. cerevisiae and C. albicans, the signaling activity of the Mep2p is thought to be 

influenced by ammonium binding or transport by Mep2p (Biswas & Morschhäuser, 2005; 

Lorenz & Heitman, 1998). Experimental data indicate that ammonium transport by Mep2p is 

required for its ability to induce pseudohyphal growth in S. cerevisiae (Boeckstaens et al., 

2007; Marini et al., 2006). However, an alternative possibility was suggested for C. albicans 

(Biswas & Morschhäuser, 2005) in which Mep2p can induce filamentous growth in the 

absence of its ammonium transport activity ( i.e., when ammonium is absent or present only at 

low concentrations), and signaling is inhibited when Mep2p is engaged in ammonium trans-

port. This hypothesis for CaMep2p was investigated by generating transport-deficient Mep2p 

derivatives. Mutations were carried out on those conserved residues of CaMep2p which, 

based on structural and biochemical studies of ammonium permeases of other organisms, 

were proposed to be required for ammonium transport (Khademi et al., 2004; Marini et al., 

2006). 

 The conserved aspartate at position 160 of E. coli AmtB (in the mature protein after 

removal of the signal sequence) has been proposed to be an initial ammonium binding site 

(Thomas et al., 2000). Therefore, D180 of Mep2p, which corresponds to D160 of AmtB, was 

mutated to leucine (Biswas & Morschhäuser, unpublished) i.e., to an amino acid that has a 

similar backbone structure but lacks the negatively charged group of aspartate. The D180N 

mutation was also generated because a mutation of the equivalent residue in S. cerevisiae 

Mep2p, D186 to asparagine, is reported to allow normal expression of the protein and 

abolishment of ammonium transport and Mep2p-dependent pseudohyphal growth (Marini et 

al., 2006). Resolution of the AmtB crystal structure has revealed additional highly conserved 

residues that might stabilize ammonium in an outer vestibule of the protein (F103, F107, 

W148, S219) as well as two pore-lining histidines (H168, H318) that are predicted to make 

contacts with ammonium during transport (Khademi et al., 2004; Knepper & Agre, 2004). As 

mutation of these residues might abolish ammonium transport, the corresponding amino acids 

in Mep2p (Y122, F126, W167, H188, S243, H342) as well as W165, which is located near 

W167, were changed to alanine.  

 

Construction of plasmids containing MEP2 alleles with single amino acid substitutions  

For pMEP2D180N, the N-terminal part of MEP2 plus upstream sequences was amplified 

from pMEP2K1 with the primer pair MEP3/MEP67p and the remaining part of the MEP2 
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coding region was amplified with primer pair MEP39p/MEP32. The two fragments were 

digested with KpnI and BamHI, respectively, and ligated together into the vector pBluescript. 

Plasmids pMEP2Y122A, pMEP2F126A, pMEP2W165A, pMEP2W167A, pMEP2H188A, 

pMEP2S243A, and pMEP2H342A were generated in an analogous fashion using the primer 

pairs MEP3/MEP68p and MEP70p/MEP32, MEP3/MEP69p and MEP70p/MEP32, 

MEP3/MEP73p and MEP74p/MEP32, MEP3/MEP68p and MEP80p/MEP32, 

MEP3/MEP71p and MEP72p/MEP32, MEP3/MEP75p and MEP76p/MEP32, and 

MEP3/MEP77p and MEP78p/MEP32, respectively. A PstI-SacI [C-terminal part of MEP2-

TACT1 - URA3-3’ MEP2] fragment from pMEP2K1 (Fig. 2) was then ligated between the same 

sites of the plasmids listed above and also of plasmid pMEP2D180L (Biswas & 

Morschhäuser, unpublished) to generate plasmids pMEP2K4 to pMEP2K12 containing the 

MEP2Y122A, MEP2F126A, MEP2W165A, MEP2W167A, MEP2D180L, MEP2D180N, MEP2H188A, 

MEP2S243A, and MEP2H342A alleles, respectively (summarized in Table 5). Plasmids 

containing GFP-tagged versions of the mutated MEP2 alleles were created by substituting the 

KpnI-BamHI fragments from plasmids pMEP2D180N, pMEP2Y122A, pMEP2F126A, 

pMEP2W165A, pMEP2W167A, pMEP2H188A, pMEP2S243A, and pMEP2H342A for the 

corresponding fragment in the pMEP2G2 (Biswas & Morschhäuser, 2005), resulting in 

plasmids pMEP2G8 to pMEP2G15, respectively (see Table 5). Using relevant inserts from 

the plasmids enlisted in Table 5, the mutated MEP2 alleles were targeted at the original MEP2 

locus and two independent transformants were used for further analysis in each case (strain 

descriptions are provided in Table 2). 
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Table 5. Overview of the single amino acid substitutions in MEP2 alleles. 

 

Primer pairs Substitution in 
MEP2 alleles 

Plasmids containing 
mutated MEP2 alleles 

Plasmids with GFP-tagged 
mutated MEP2 alleles 

MEP3/MEP68p and 
MEP70p/MEP32 

MEP2Y122A pMEP2K4 pMEP2G9 

MEP3/MEP69p and 
MEP70p/MEP32 

MEP2F126A pMEP2K5 pMEP2G10 

MEP3/MEP73p and 
MEP74p/MEP32 

MEP2W165A pMEP2K6 pMEP2G11 

MEP3/MEP68p and 
MEP80p/MEP32 

MEP2W167A pMEP2K7 pMEP2G12 

MEP3/ MEP38p and 
MEP39p/ MEP32 

MEP2D180L pMEP2K8 pMEP2G3 

MEP3/MEP67p and 
MEP39p/MEP32 

MEP2D180N pMEP2K9 pMEP2G8 

MEP3/MEP71p and 
MEP72p/MEP32 

MEP2H188A pMEP2K10 pMEP2G13 

MEP3/MEP75p and 
MEP76p/MEP32 

MEP2S243A pMEP2K11 pMEP2G14 

MEP3/MEP77p and 
MEP78p/MEP32 

MEP2H342A pMEP2K12 pMEP2G15 

MEP3/MEP94p and 
MEP76p/MEP32 

MEP2F239A pMEP2K16 pMEP2G16 

 

 

The capacity of the mutated MEP2 alleles to restore growth of the mep1Δ mep2Δ 

double mutants on plates containing limiting ammonium concentrations was assessed. Strains 

expressing the MEP2W165A, MEP2W167A, and MEP2S243A alleles grew as well as the strains 

containing a wild-type MEP2 allele (Fig. 4), indicating that the mutated proteins were still 

able to transport ammonium, and a weaker growth was restored by the MEP2Y122A and 

MEP2F126A alleles. In contrast, no growth was observed for transformants carrying the D180L, 

D180N, H188A, and H342A mutant alleles of Mep2p that behaved like mep1Δ mep2Δ double 

mutants, indicating that these mutations rendered the ammonium permease nonfunctional. 
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To test whether the mutated Mep2p proteins were correctly expressed in the cell 

membrane, C-terminally GFP-tagged versions of all alleles were introduced into mep1Δ 

mep2Δ double mutants. Expression of these fusion proteins was observed by fluorescence 

microscopy. Mep2p-GFP fusion proteins containing the Y122A, F126A, W165A, W167A, 

and S243A mutations were all correctly localized at the cell periphery (Fig. 5A). Cells 

expressing GFP-tagged MEP2W165A and MEP2S243A alleles exhibited similar fluorescence as 

those expressing a GFP-tagged wild-type MEP2, but the Y122A, F126A, and W167A 

mutations resulted in reduced fluorescence of the corresponding transformants. Fluorescence 

was not detected in strains expressing GFP-tagged Mep2p variants containing the D180L, 

D180N, H188A, and H342A mutations (data not shown). Therefore, these latter mutations, 

which abolished growth at low ammonium concentrations, did not specifically affect 

ammonium transport but rather impaired Mep2p expression or protein stability. With the help 

of strains carrying the GFP-tagged mutated Mep2p alleles, the expression levels of the Mep2p 

variants were analyzed by flow cytometry. Cells containing the MEP2D180L, MEP2D180N, and 

MEP2H342A alleles showed only background fluorescence values (Fig. 5B), hence, confirming 

that these proteins were not expressed at detectable levels. Fluorescence of cells containing 

the MEP2H188A allele was marginally higher (3.5-fold) than that of control cells without a 

GFP-tagged MEP2 gene. The W165A and S243A mutations resulted in only slightly reduced 

Fig. 4. Growth of mep1Δ mep2Δ double mutants expressing wild-type or mutated MEP2 alleles, as indicated,
on plates containing limiting concentrations (1 mM) of ammonium. The plates were incubated for 4 days at
30°C. Following strains were used: MEP12M6A/B, in which only the URA3 gene, but not MEP2, was
reintegrated, were used as controls, MEP12MK2A/B (wild type), MEP12MK6A/B (Y122A), MEP12MK7A/B
(F126A), MEP12MK8A/B (W165A), MEP12MK9A/B (W167A), MEP12MK10A/B (D180L),
MEP12MK11A/B (D180N), MEP12MK12A/B (H188A), MEP12MK13A/B (S243A), and MEP12MK14A/B
(H342A). The two independently constructed series of strains behaved identically and only one of them is
shown in each case. 
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fluorescence as compared with the wild-type control (53% and 62% of wild-type levels). In 

line with the microscopic observations, fluorescence of the cells expressing the MEP2Y122A, 

MEP2F126A, and MEP2W167A alleles was more strongly reduced (20%, 23%, and 21%, 

respectively, of wild-type levels).  
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Fig. 5. Expression of GFP-tagged Mep2p proteins. Overnight cultures of the strains, mep1Δ mep2Δ double
mutants carrying wild-type or mutated MEP2 alleles, in SD-Pro medium were diluted 50-fold in SLAD
medium and were grown for 6 hours at 30°C. (A) Localization of GFP-tagged Mep2p confirmed by
fluorescence microscopy. (B) Fluorescence of the strains was quantified by flow cytometry. The bars represent
the means and standard deviations from five (control, wild type, Y122A, F126A, W165A, W167A, S243A) or
two (D180L, D180N, H188A, and H342A) experiments performed with each of two independently constructed
series of strains. The following strains were used:  MEP12M6A/B (control), MEP12MG2A/B (wild type)
MEP12MG9A/B (Y122A), MEP12MG10A/B (F126A), MEP12MG11A/B (W165A), MEP12MG12A/B
(W167A), MEP12MG4A/B (D180L), MEP12MG8A/B (D180N), MEP12MG13A/B (H188A), MEP12MG14
A/B (S243A), and MEP12MG15A/B (H342A). 
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4.1.3 Signaling activity of mutated Mep2p proteins 

The effect of the various amino acid substitutions on the signaling activity of Mep2p was 

determined by observing the ability of strains expressing the corresponding MEP2 alleles to 

filament under nitrogen limiting conditions. As expected, MEP2 alleles containing the 

D180L, D180N, H188A, and H342A mutations, whose encoded proteins were not detectably 

expressed in the cell membrane, did not restore filamentous growth of mep1Δ mep2Δ double 

mutants on plates containing limiting concentrations of different nitrogen sources (data not 

shown). In contrast, strains expressing the MEP2W165A and MEP2S243A alleles exhibited wild-

type filamentation on SLAD plates (Fig. 6). Filamentous growth was slightly reduced in 

strains expressing the MEP2Y122A allele as compared with the wild-type control, which could 

be explained by the 5-fold reduced expression levels of the mutated Mep2p protein. However, 

filamentation on SLAD plates was completely abolished in strains containing the MEP2F126A 

and MEP2W167A alleles (Fig. 6), although the corresponding Mep2p proteins were expressed at 

similar levels as Mep2p containing the Y122A substitution (Fig. 5), indicating that the F126A 

and W167A mutations impaired the signaling activity of Mep2p. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
  

In order to understand if the signaling activity of mutated Mep2p proteins correlates 

with their ammonium transport ability, ammonium uptake capacities of strains expressing 

mep1Δ mep2Δ MEP2 MEP2Y122A MEP2F126A

MEP2W165A MEP2W167A MEP2S243A

Fig. 6. Filamentation of strains expressing the indicated MEP2 alleles in mep1Δ mep2Δ background. Individual
colonies were photographed after 6 days of growth at 37°C on SLAD plates. The two independently
constructed series of strains behaved identically and only one of them is shown. Strains MEP12M6A/B (mep1Δ
mep2Δ) were used as controls. 
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wild-type, MEP2Y122A, MEP2F126A, MEP2W167A, and MEP2S243A alleles were compared in an 

ammonium removal assay (described in section 3.6.20). The S243A mutation, which did not 

impair growth and filamentation on SLAD plates, had no detectable effect on ammonium 

uptake (Fig. 7A). In contrast, ammonium uptake in cells expressing the MEP2Y122A, 

MEP2F126A, and MEP2W167A alleles was reduced to different levels in comparison to cells 

expressing a wild-type MEP2 allele. Interestingly, the W167A mutation, which abolished 

nitrogen starvation-induced filamentation, had a weaker effect on ammonium uptake than the 

Y122A substitution, which still allowed filamentous growth. Therefore, the signaling activity 

of the mutated Mep2p proteins was not directly correlated with their ammonium transport 

activity. 

 The ammonium uptake capacity of cells expressing the mutated MEP2 alleles 

corresponded well with their ability to grow in liquid medium containing limiting ammonium 

concentrations (Fig. 7B). The F126A mutation, which had the severest effect on ammonium 

uptake, also reduced growth of the cells most strongly. The Y122A mutation, which had an 

intermediate effect on ammonium transport, also resulted in a significant growth reduction. 

However, the minor effect of the W167A mutation on ammonium uptake did not translate 

into a detectable growth defect of the cells.  

Filamentation capacity of cells expressing mutated MEP2 alleles was also analyzed on 

plates containing limiting concentrations of other nitrogen sources, such as urea or the amino 

acid proline. Under these conditions, ammonium permeases are not required for growth, but 

Mep2p is still necessary for the induction of filamentation (Biswas & Morschhäuser, 2005). 

The effect of the various mutations on filamentous growth on plates containing 100 µM urea 

corresponded to that observed on SLAD plates, i.e., the Y122A substitution resulted in a 

slight reduction of filamentation, whereas the F126A and W167A mutations abolished 

filamentous growth (Fig. 8). Interestingly, on plates containing 100 µM proline, strains 

expressing the MEP2F126A allele produced filamentous colonies, whereas the W167A 

mutation abolished filamentation also under these conditions. Proline is known to induce 

filamentation in C. albicans (Land et al., 1975), although at the limiting concentrations used 

here, Mep2p is nevertheless required for filamentous growth. It seems that Mep2p containing 

the F126A mutation can still support filamentation when additional signaling pathways are 

activated. 
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Fig. 7.  (A) Ammonium uptake by mep1Δ mep2Δ double mutants expressing wild-type or mutated MEP2
alleles. Two independently constructed strains were used in each case. Following strains were used:
MEP12M6A/B (mep1Δ mep2Δ), MEP12MK2A/B (MEP2), MEP12MK6A/B (MEP2Y122A), MEP12MK7A/B
(MEP2F126A), MEP12MK9A/B (MEP2W167A), and MEP12MK13A/B (MEP2S243A). (B) Growth of the same
strains in liquid medium under limiting ammonium conditions. Precultures of the strains grown in SD-Pro
medium were diluted 10-2 in SD medium containing 1 mM ammonium as the sole nitrogen source and growth
was monitored by measuring the optical densities of the cultures over time. 
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In a complementary approach to study the effect of MEP2 mutations on signaling 

independent of their effect on growth of the cells, the MEP2Y122A, MEP2F126A, and 

MEP2W167A alleles were introduced into mep2Δ single mutants, which can grow normally on 

SLAD plates because they express Mep1p. The filamentation behavior of these strains 

mirrored that of the mep1Δ mep2Δ double mutants expressing the same alleles (Fig. 8, right 

panels), i.e., the Y122A mutation resulted in reduced filamentous growth and the F126A and 

W167A mutations abolished filamentation. 

Fig. 8. Filamentation of mep1Δ mep2Δ double mutants (left two panels) and mep2Δ single mutants (right
panels) expressing wild-type or mutated MEP2 alleles on agar plates containing 100 µM of the indicated
nitrogen sources. Individual colonies were photographed after 6 days of growth at 37°C. The mep1Δ mep2Δ
double mutants (strains MEP12M6A/B) and the mep2Δ single mutants (strains MEP2M5A/B) were used as
controls. The two independently constructed series of strains behaved identically and only one of them is
shown. 
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4.1.4 An F239A mutation abolishes ammonium uptake and induction of filamentous 

growth by Mep2p 

Very recently, Javelle et al. reported that mutation of the conserved phenylalanine at amino 

acid position 215 in AmtB of E. coli  resulted in abolishment of ammonium transport (Javelle 

et al., 2008). F215, together with F107, is thought to form an extracytosolic gate to the 

conductance channnel of AmtB, and F215 was proposed to be essential for the deprotonation 

of ammonium to allow transport of ammonia into the cell. To obtain a similarly transport-

deficient Mep2p protein in C. albicans, the corresponding residue, F239, was changed to 

alanine. Plasmid pMEP2K16 containing the F239A mutation was generated by ligating the 

PstI-SacI fragment from plasmid pMEP2K1 into the PstI/SacI-digested pMEP2G16 

(described below). Indeed, expression of the MEP2F239A allele did not rescue the growth 

defect of mep1Δ mep2Δ double mutants on SLAD plates (Fig. 9A), indicating that the F239A 

mutation abolished ammonium uptake by Mep2p. In order to investigate if the mutated 

protein is correctly expressed in the cell membrane a plasmid pMEP2G16, which contains 

GFP-tagged MEP2F239A allele, was generated in following manner: the N- terminal and C-

terminal parts of MEP2 were amplified from pMEP2K1 with the primer pairs MEP3/MEP94p 

and MEP76p/MEP32. The PCR products were digested at an internal NsiI site and at the 

introduced BamHI site, respectively, and ligated together into the NsiI/BamHI-digested 

pMEP2G2 (Biswas & Morschhäuser, 2005).  
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Fig. 9. (A) Growth of mep1Δ mep2Δ double mutants expressing wild-type MEP2 or the MEP2F239A allele. The 
strains were grown for 4 days at 30°C on SD plates containing 2 mM ammonium. The strains used were as 
follows: MEP12M6A/B (control), MEP12MK2A/B (MEP2), and MEP12MK17A/B (MEP2F239A)   (B) 
Localization of GFP-tagged wild-type or MEP2F239A alleles. Strains MEP12MG2A/B (MEP2-GFP) and 
MEP12MG16A/B (MEP2F239A-GFP) were grown for 6 hours at 30°C in liquid SLAD medium and observed by 
fluorescence microscopy. The two independently constructed series of strains behaved identically in both 
experiments and only one of them is shown. 
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The mutated protein was properly localized on the cell surface as demonstrated by 

fluorescence microscopy of the cells expressing a GFP-tagged Mep2pF239A (Fig. 9B), and 

quantification of the cellular fluorescence by flow cytometry showed that the expression 

levels of the mutated protein reached approximately 35% of those of wild-type Mep2p (data 

not shown). The transport-deficient Mep2p was then investigated for its ability to induce 

filamentation. mep1Δ mep2Δ double mutants expressing the MEP2F239A allele were unable to 

filament on agar plates containing limiting concentrations of different nitrogen sources (Fig. 

10, left three panels), and the mutated allele did also not restore filamentous growth of mep2Δ 

single mutants on SLAD plates (Fig. 10, right panel). Therefore, F239 is essential for both 

ammonium transport and induction of filamentous growth by Mep2p in C. albicans. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Filamentation of mep1Δ mep2Δ double mutants (left three panels) and mep2Δ single mutants (right 
panels) expressing wild-type MEP2 or the MEP2F239A alleles on agar plates containing 100 µM of the indicated 
nitrogen sources. Individual representative colonies were photographed after 6 days of growth at 37°C. The 
mep1Δ mep2Δ double mutants (strains MEP12M6A/B) and the mep2Δ single mutants (strains MEP2M5A/B) 
were used as controls. The two independently constructed series of strains behaved identically and only one of 
them is shown. 
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4.2 Control of ammonium permease expression and nitrogen starvation- 

induced filamentous growth in C. albicans  

Under nitrogen limiting conditions the morphogenetic regulatory role of Mep2p is attributed, 

at least in part, to its high expression levels. Since the control of MEP2 expression is central 

to the regulation of nitrogen starvation-induced filamentous growth in C. albicans (Biswas & 

Morschhäuser, 2005), factors involved in the induction of its expression were investigated. 

4.2.1  Two putative GATA factor binding sites in the MEP2 promoter are essential 

for the upregulation of MEP2 expression under limiting nitrogen conditions 

In order to understand how expression of Mep2p is regulated, the regulatory elements in the 

MEP2 promoter which mediate its induction in response to nitrogen limitation were 

identified. For this purpose, a GFP-tagged MEP2 gene was used as reporter and expressed 

under the control of wild-type and mutated MEP2 promoters in mep1Δ mep2Δ double 

mutants. By this approach Mep2p expression could be monitored by observing both the 

fluorescence of the cells and the capacity of the tagged ammonium permease to restore 

growth of the double mutants at low ammonium concentrations. The reporter fusions were 

constructed in such a manner so that they could be integrated at the original MEP2 locus (Fig. 

11), since it has been reported that integration of C. albicans genes at a different genomic site 

may affect their expression (Lay et al., 1998).  

 

Plasmid constructions for MEP2 promoter analysis 

Plasmid pMEP2G6, which contains a GFP-tagged MEP2 gene under the control of the wild-

type MEP2 promoter and served as the basis for the introduction of deletions and mutations in 

the MEP2 regulatory region (Fig. 11), was generated in the following way: A KpnI-XhoI 

fragment containing MEP2 upstream sequences from positions -1478 to -5 with respect to the 

start codon was amplified from genomic DNA of C. albicans strain SC5314 with the primer 

pair MEP44/MEP24. The MEP2 promoter fragment was then cloned together with an XhoI-

BamHI [MEP2 coding region] fragment from plasmid pMEP2G5 (Biswas & Morschhäuser, 

2005) into the KpnI/BamHI-digested pMEP2G2 (Biswas & Morschhäuser, 2005). The cloned 

MEP2 promoter fragment contained the polymorphic EcoRI site, which is present only in the 

MEP2-1 allele (Biswas & Morschhäuser, 2005). To construct pMEP2ΔP1, a distal MEP2 

promoter fragment (positions -1478 to -1015) was amplified with the primers MEP44/MEP55 

and a proximal MEP2 promoter fragment (positions -188 to -5) was amplified with the 

primers MEP51/MEP24. The PCR products were digested with KpnI/XbaI and XbaI/XhoI, 
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respectively, and cloned together into the KpnI/XhoI-digested pMEP2G6. To create 

pMEP2ΔP2, a proximal MEP2 promoter fragment (positions -431 to -5) was amplified with 

the primers MEP52/MEP24 and substituted for the XbaI-XhoI fragment in pMEP2ΔP1. 

Additional deletion constructs were made in an analogous fashion: Proximal MEP2 promoter 

fragments from positions -620 to -5, -805 to -5, -287 to -5, and -217 to -5 were amplified with 

the primers MEP53/MEP24, MEP54/MEP24, MEP61/MEP24, and MEP62/MEP24, 

respectively, and substituted for the XbaI-XhoI fragment in pMEP2ΔP1 to generate 

pMEP2ΔP3, pMEP2ΔP4, pMEP2ΔP6, and pMEP2ΔP7. To construct pMEP2ΔP5, a distal 

MEP2 promoter fragment (positions -1478 to -435) was amplified with the primer pair 

MEP44/MEP60 and used to replace the distal MEP2 promoter fragment in pMEP2ΔP1. For 

pMEP2MP1, in which the GATA sequence centered at position -208 is replaced by an XbaI 

site, a distal MEP2 promoter fragment (positions -1478 to -210), amplified with the primers 

MEP44/MEP64 and a proximal MEP2 promoter fragment (positions -205 to -5), amplified 

with the primers MEP63/MEP24, were fused at the introduced XbaI site and substituted for 

the wild-type MEP2 promoter in pMEP2G6. For pMEP2MP2, in which the GATA sequence 

centered at position -266 is replaced by a BglII site, a distal MEP2 promoter fragment 

(positions -1478 to -269), amplified with the primers MEP44/MEP66, and a proximal MEP2 

promoter fragment (positions -266 to -5), amplified with the primers MEP65/MEP24, were 

fused at the introduced BglII site and substituted for the wild-type MEP2 promoter in 

pMEP2G6. To introduce both mutations into the MEP2 promoter, the same proximal MEP2 

promoter fragment was amplified from pMEP2MP1, fused with the distal MEP2 promoter 

fragment, and substituted for the wild-type MEP2 promoter in pMEP2G6 to create 

pMEP2MP3. KpnI-SacI fragment from each of these plasmids (Fig.11) was used to transform 

mep1Δ mep2Δ double mutants. Replacement of the resident wild-type promoter by mutated 

MEP2 promoters was verified by Southern hybridization analysis (data not shown) and two 

independent transformants were used for further analysis in each case (see Table 2 for strain 

descriptions). 

In accord with the earlier results (Biswas & Morschhäuser, 2005), expression of the 

MEP2-GFP fusion from the wild-type MEP2 promoter resulted in strong fluorescence of the 

cells in SLAD medium and restoration of the growth to wild-type levels on plates containing 

limiting ammonium concentrations (Figs. 11 and 12A). 
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Fig. 11.  MEP2 promoter analysis. The structure of the insert of plasmid pMEP2G6, which contains a GFP-
tagged MEP2 gene under control of the wild-type MEP2 promoter, is shown on top. The MEP2 and GFP coding 
regions are represented by the colored box and the green arrow, respectively, the transcription termination 
sequence of the ACT1 gene (TACT1) by the filled circle, and the URA3 selection marker by the grey arrow. MEP2 
upstream and downstream regions are represented by the solid lines, the MEP2 promoter (PMEP2) is symbolized 
by the bent arrow. Relevant restriction sites are shown, the polymorphic EcoRI site, which is present only in the 
MEP2-1 allele, is highlighted in italics. Enlarged representations of the MEP2 regulatory region with the intro-
duced deletions and mutations are shown below and the names of the corresponding plasmids are indicated to the 
left. The extent of MEP2 promoter sequences contained in the various plasmids is given. Internal deletions are 
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indicated by the dashed lines. The locations of GATAA sequences within 1 kb upstream of the MEP2 start codon 
are indicated by the short black bars in the wild-type promoter. The mutations of the GATAA sequences 
centered at positions -266 and -208 are marked by an X. The phenotypes conferred by the various constructs 
upon integration into mep1Δ mep2Δ double mutants are shown to the right. Fluorescence of the cells was 
observed after 6 hours of growth at 30°C in liquid SLAD medium. The fluorescence micrographs show 
representative cells and the mean fluorescence of the two independently constructed reporter strains measured by 
flow cytometry is given. The percentage values in parentheses are with respect to the wild-type MEP2 promoter, 
which was set to 100%. Strain SC5314, which does not carry GFP, was used as a negative control. Background 
fluorescence value of this strain (1.6) was subtracted from those of the reporter strains. Growth of the strains at 
limiting ammonium concentrations was as follows: +, wild-type growth; (+), weak growth; -, no growth. 

 
 

Deletion of MEP2 upstream sequences ranging from positions -1014 up to -288 with 

respect to the start codon (ΔP2, ΔP3, ΔP4, ΔP6) reduced MEP2 expression only by about 50% 

and did not detectably affect growth at limiting ammonium concentrations, but deletion of 

additional sequences to positions -218 or -189 (ΔP1, ΔP7) abolished MEP2 expression and 

transformants carrying these fusions behaved like mep1Δ mep2Δ double mutants. A shorter 

deletion ranging from positions -434 to -189 (ΔP5) produced the same phenotype, suggesting 

that sequences within this region control MEP2 induction in response to nitrogen limitation. 

Inspection of the DNA sequence of this region revealed that it contained two putative GATA 

transcription factor binding sequences (GATAA) (Magasanik & Kaiser, 2002) located at 

positions -264 to -268 and -206 to -210 on the antisense strand. In order to investigate the 

involvement of these GATAA sequences in the regulation of MEP2 expression, these 

sequences were mutated in the full-length MEP2 promoter. The GATAA sequence centered at 

-266 was changed to GATCT, and the other centered at -208 was changed to CTAGA. 

Whereas mutation of the GATAA sequence at -208 alone (MP1) had no effect, mutation of 

the GATAA sequence at -266 (MP2) resulted in strongly reduced MEP2 expression and only 

weak restoration of growth of its transformants at limiting ammonium concentrations. 

Mutation of both GATAA sequences (MP3) reduced MEP2 expression almost to background 

levels and the corresponding transformants were unable to grow at low ammonium 

concentrations, like mep1Δ mep2Δ double mutants. Taken together these results demonstrated 

that two proximal GATAA sequences are important for MEP2 expression, and indicate that 

GATA transcription factors may be involved in the induction of MEP2 under nitrogen 

starvation conditions. Though there are a number of additional GATAA sequences located at 

more distal sites in the MEP2 upstream region (Fig. 11), the results obtained with promoter 

deletion and mutation analysis indicate that these sequences are neither required nor sufficient 

for MEP2 expression. 
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4.2.2 Filamentous growth is correlated with MEP2 expression levels  

Under limiting  nitrogen conditions, the higher expression levels of MEP2 than those of 

MEP1 are reported to be a prerequisite for normal filamentation that is mediated by Mep2p 

(Biswas & Morschhäuser, 2005). The effect of reduced Mep2p expression from mutated 

MEP2 promoters on filamentous growth was analyzed. This was accomplished by expressing 

MEP2 from various mutated MEP2 promoters displaying different activities in a mep2Δ 

background, thus allowing normal ammonium uptake due to the presence of the MEP1 gene. 

To express MEP2 gene from wild-type and mutated MEP2 promoters, a PstI-SacI fragment 

from pMEP2K1 (Fig. 2) (Biswas & Morschhäuser, 2005) was substituted for the PstI-SacI 

fragment in plasmids pMEP2G6, pMEP2ΔP5, pMEP2ΔP6, pMEP2MP1, pMEP2MP2, and 

pMEP2MP3 (see Fig. 11), thereby generating pMEP2K13, pMEP2ΔP5A, pMEP2ΔP6A, 

pMEP2MP1A, pMEP2MP2A, and pMEP2MP3A, respectively, in which the GFP-tagged 

MEP2 is replaced by wild-type MEP2. A KpnI-SacI fragment from each of these plasmids 

was used to transform mep2Δ single mutants and correct integrants were verified by Southern 

analysis (data not shown).  

The normal Mep2p expression levels, as from the MP1 promoter, resulted in wild-type 

filamentation (Fig.12B). A slight reduction of Mep2p expression by about 50%, as from the 

ΔP6 promoter, also did not detectably affect filamentous growth. However, the strongly (ca. 

8-fold) reduced Mep2p expression levels obtained from the MP2 promoter severely affected 

the ability of the strains to produce filamentous colonies in response to nitrogen starvation. 

Most colonies (70-80%) were non-filamentous and a minority (20-30%) showed only weak 

filamentation. As expected, reduction of Mep2p expression to nearly background levels, as 

from the ΔP5 or MP3 promoters, completely abolished filamentous growth. Hence, nitrogen 

starvation-induced filamentous growth directly correlated with Mep2p expression levels. 
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Fig. 12. (A) Growth of mep1Δ mep2Δ double mutants expressing a GFP-tagged MEP2 gene from the wild-type 
MEP2 promoter and derivatives containing the indicated deletions or mutations. The strains were grown for 4 
days at 30°C on SD plates containing 1 mM ammonium. The following strains were used: MEP12M6A/B (neg. 
control), MEP12MG6A/B (pos.control), MEP12MG6ΔP1A/B (ΔP1), MEP12MG6ΔP2A/B (ΔP2), MEP12MG6 
ΔP3A/B (ΔP3), MEP12MG6ΔP4A/B (ΔP4), MEP12MG6ΔP5A/B (ΔP5), MEP12MG6ΔP6A/B (ΔP6), MEP12M 
G6ΔP7A/B (ΔP7), MEP12MG6MP1A/B (MP1), MEP12MG6MP2A/B (MP2), MEP12MG6MP3A/B (MP3). 
(B) Filamentation of mep2Δ mutants expressing MEP2 from the wild-type MEP2 promoter and derivatives 
containing the indicated deletions or mutations. The strains were grown for 6 days at 37°C on SLAD plates and 
individual representative colonies were photographed. The following strains were used: MEP2MK13A/B (pos. 
control), MEP2MK13ΔP5A/B (ΔP5), MEP2MK13ΔP6A/B (ΔP6), MEP2MK13MP1A/B (MP1), MEP2MK13 
MP2A/B (MP2), MEP2MK13MP3A/B (MP3). The two independently constructed strains used in A and B 
experiments behaved identically and only one of them is shown in each case. 

 

4.2.3 GATA factors GLN3 and GAT1 in C. albicans 

In S. cerevisiae, MEP2 expression requires at least one of the two GATA transcription factors 

Gln3p and Gat1p/Nil1p, which are involved in the transcriptional activation of many 

nitrogen-regulated genes (Lorenz & Heitman, 1998; Marini et al., 1997). C. albicans 
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possesses homologs of GLN3 and GAT1 (Braun et al., 2005; Limjindaporn et al., 2003) and 

their roles in regulating MEP2 expression were explored. For this purpose, deletion mutants 

were generated from the C. albicans wild-type strain SC5314, lacking either GLN3, GAT1 or 

both, using the SAT1-flipping strategy (Reuß et al., 2004). 

 

4.2.4 Construction of GLN3 and GAT1 deletion mutants  

Knock-out mutant strains in the diploid C. albicans were constructed using a dominant 

selection marker based method, the SAT1 flipper system (Reuß et al., 2004). The SAT1-

flipping cassette is depicted in Fig. 13A. It consists of C. albicans-adapted nourseothricin 

resistance gene caSAT1 as selection marker; C. albicans-adapted recombinase gene caFLP 

under the control of the inducible MAL2 promoter; and is flanked by direct repeats of 34 bp 

minimal target sequences of the FLP recombinase (FLP recognition target, FRT). The 

strategy for sequential gene disruption using the SAT1 flipper is outlined in Fig. 13B. Gene 

disruption plasmids were created by cloning sequences upstream and downstream of the 

target gene onto either side of the SAT1 cassette. C. albicans is transformed with the 

linearized insert (obtained after digesting the deletion plasmid with appropriate enzymes) and 

transformants were selected on medium containing nourseothricin. The flanking sequences of 

the gene direct integration of the cassette into one allele of the target gene by homologous 

recombination. Transformants containing the correct insertion are nourseothricin resistant 

(NouR) and are grown in medium containing maltose or glucose (since MAL2 promoter is 

leaky) without selection pressure. In this medium MAL2 promoter is induced, resulting in 

expression of the FLP gene and excision of the SAT1 flipper by FLP-mediated site specific 

recombination. The heterozygous nourseothricin sensitive (NouS) derivatives are easily 

identified by their smaller colony size on YPD plates containing 20 μg/ml nourseothricin as 

compared with their NouR parental strains. A second round of integration and subsequent 

excision of the SAT1 cassette in the heterozygous mutants generates the desired homozygous 

knock-out mutants, which differ from the wild-type strain by the two disrupted alleles of the 

target gene, both of which contain one copy of the FRT site. 
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GLN3 mutant series 

 To obtain gln3Δ mutants, a GLN3 deletion cassette pGLN3M2 was constructed. For 

generating this plasmid, an ApaI-XhoI GLN3 upstream fragment (positions -204 to +6) was 

amplified from the genomic DNA of C. albicans strain SC5314 with the primer pair GLN1/ 

GLN2. A SacII-SacI GLN3 downstream fragment (positions +2025 to +2293) was amplified 

(A) 

(B) 

         K     A  Xh                                                                                                                                                                  ScII   ScI

   FRT       PMAL2                                        caFLP                           TACTI                        caSAT1                                       FRT 

SAT1-FLIP

Insertion

Deletion

Deletion

Wild type

Heterozygous Mutant
 (NouR) 

Heterozygous Mutant
 (NouS) 
 

Homozygous Mutant
 (NouR) 

Homozygous Mutant
 (NouS) 

Insertion

Fig. 13. (A) Structure of the SAT1 flipper cassette (Reuß et al., 2004). The C. albicans-adapted recombinase
gene (caFLP) is represented by the yellow arrow; the nourseothricin resistance marker (caSAT1) by the grey
arrow; the inducible MAL2 promoter (PMAL2) by the bent arrow; and the transcription termination of the
C.albicans ACT1 gene (TACT1) by the filled circle. The FLP recombination target sequences (FRT) are indicated
by the black arrows. Only relevant restriction sites are given: A, ApaI; K, KpnI; ScI, SacI; ScII, SacII; Xh,
XhoI. (B) Schematic representation of gene disruption in C. albicans using SAT1 flipper.  
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with the primer pair GLN3/GLN4. The GLN3 upstream and downstream fragments were 

substituted for the OPT1 flanking sequences in pOPT1M3 (Reuß et al., 2004) to result in 

pGLN3M2, in which the GLN3 coding region from position +7 to +2024 (23 bp before stop 

codon) is replaced by SAT1 flipper (Fig. 14A). Nucleotide positions are with respect to the 

GLN3 start codon. 

 

 

 

 
 
Fig. 14. (A) Structure of the deletion cassette from plasmid pGLN3M2 (top), which was used to delete the GLN3 
ORF, and genomic structure of the GLN3 locus in strain SC5314 (bottom). The upstream and downstream 
regions of GLN3 are represented by the solid lines. Details of the SAT1 flipper are presented in Fig.14A. The 
probes used for Southern hybridization analysis of the mutants are indicated by the black bars. (B) Structure of 
the DNA fragment from pGLN3K1 (top), which was used for reintegration of an intact GLN3 copy (represented 
by red arrow) into one of the disrupted GLN3 loci in the gln3Δ single and gln3Δ gat1Δ double mutants (bottom). 
Only relevant restriction sites are given: A, ApaI; B, BamHI; Bg, BglII; C, ClaI; ScI, SacI; ScII, SacII; Sl, SalI; 
Xh, XhoI. Sites shown in parenthesis were destroyed by the cloning procedure. The ClaI site marked in italics is 
present only in the GLN3-1 allele.  

  

The two GLN3 alleles in strain SC5314 could be distinguished by a ClaI restriction 

site polymorphism (Fig. 14A, Fig. 15 lane1) and were arbitrarily designated as allele 1 

(GLN3-1, located on the smaller ClaI fragment) and allele 2 (GLN3-2, larger ClaI fragment). 

Steps involved in construction of GLN3 mutant series are documented in Fig. 15. The wild-

type strain SC5314 was transformed with ApaI-SacI fragment of pGLN3M2. Two 
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independent transformants in which the SAT1 flipper had integrated into either the GLN3-1 

allele (strain GLN3M1A) or into the GLN3-2 allele (strain GLN3M1B) of the parental strain 

were selected. These NouR strains were inoculated in YPM medium for 6 h allowing FLP-

mediated excision of SAT1 flipper cassette resulting in the NouS heterozygous mutants 

GLN3M2A and GLN3M2B (Fig. 15, lanes 2 and 3). In order to inactivate the remaining intact 

allele of GLN3, transformation of the heterozygous mutants was done with the same deletion 

cassette (strain GLN3M3A/B) and subsequent excision of the SAT1 flipper generated NouS 

homozygous gln3Δ mutants  GLN3M4A and GLN3M4B (Fig. 15, lanes 4 and 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reintegration of an intact GLN3 copy into its original locus was done with the help of 

the SAT1 flipper using plasmid pGLN3K1. For generating this plasmid an ApaI-BamHI 

fragment containing the complete GLN3 ORF and upstream sequences (from position -204 to 

+2074) was amplified with the primers GLN1 and GLN5 from genomic DNA of C. albicans 

strain SC5314. This fragment was cloned together with a BglII-SalI fragment from pCBF1M4 

containing the ACT1 transcription termination sequence (Biswas et al., 2003) into the 

ApaI/XhoI-digested pGLN3M2 to create pGLN3K1 (Fig. 14B). The gln3Δ null mutants 

(strains GLN3M4A/B) were transformed with ApaI-SacI fragment of pGLN3K1. NouR 

transformants GLN3MK1A and GLN3MK1B were derived from GLN3M4A and GLN3M4B 

respectively. The SAT1 flipper was then deleted from these transformants resulting in the 

complemented strains GLN3MK2A/B (Fig. 15, lanes 6 and 7).  

SC
53

14

G
LN

3M
2A

G
LN

3M
2B

G
LN

3M
4A

G
LN

3M
4B

G
LN

3M
K2

B

G
LN

3M
K2

A

4.2

9.5 GLN3-2

GLN3-1

gln3-2Δ::FRT

GLN3-FRT

GLN3-FRT

gln3-1Δ::FRT

10.0

2.2

4.7

7.5

1       2         3         4         5         6          7

SC
53

14

G
LN

3M
2A

G
LN

3M
2B

G
LN

3M
4A

G
LN

3M
4B

G
LN

3M
K2

B

G
LN

3M
K2

A

4.2

9.5 GLN3-2

GLN3-1

gln3-2Δ::FRT

GLN3-FRT

GLN3-FRT

gln3-1Δ::FRT

10.0

2.2

4.7

7.5

1       2         3         4         5         6          7

 

 

 
 

 
 
Fig. 15. Southern hybridization of
ClaI-digested genomic DNA of the
wild-type strain SC5314 and GLN3
mutant derivatives with the GLN3-
specific probe 1 shown in Fig. 14A.
The sizes of the hybridizing fragments
(in kb) are given on the left side of the
blot and their identities are indicated
on the right.  
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GAT1 mutant series 

GAT1 gene was deleted in analogous manner in SC5314 and gln3Δ strains to generate gat1Δ 

single as well as gln3Δ gat1Δ double mutants. To create a GAT1 deletion construct, an ApaI-

XhoI fragment containing GAT1 upstream sequences (from position -429 to -69) was 

amplified from the genomic DNA of C. albicans strain SC5314 with the primer pair GAT1/ 

GAT2. A SacII-SacI GAT1 downstream fragment (from position +2003 to +2559) was 

amplified with the primers GAT5 and GAT6. The GAT1 upstream and downstream fragments 

were substituted for the GLN3 flanking sequences in pGLN3M2 to result in pGAT1M2, in 

which the GAT1 coding region from position -68 to +2002 (63 bp before the stop codon) is 

replaced by the SAT1 flipper (Fig. 16A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. (A) Structure of the deletion cassette from plasmid pGAT1M2 (top), which was used to delete the GAT1 
ORF, and genomic structure of the GAT1 locus in strain SC5314 (bottom).The probes used for Southern 
hybridization analysis of the mutants are indicated by the black bars. (B) Structure of the DNA fragment from 
pGAT1K1 (top), which was used for reintegration of an intact GAT1 copy into one of the disrupted GAT1 loci in 
the gat1Δ single and gln3Δ gat1Δ double mutants (bottom). The probes used for Southern hybridization analysis 
of the mutants are indicated by the black bars. The GAT1 coding region is represented by the red arrow and the 
upstream and downstream regions by the solid lines. Only relevant restriction sites are given: A, ApaI; Bg, BglII; 
H, HindIII; ScI, SacI; ScII, SacII; Xh, XhoI. The BglII site marked in italics is present only in the GAT1-1 allele.  

 
 The GAT1 alleles of strain SC5314 can be distinguished by a downstream BglII 

restriction site polymorphism (Fig. 16A, Fig. 17 lane1) and were arbitrarily designated as 

allele 1 (GAT1-1, located on the smaller BglII fragment) and allele 2 (GAT1-2, larger BglII 

fragment). Insertion of the SAT1 flipper (ApaI-SacI fragment from pGAT1M2) into either the 
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GAT1-1 allele (strain GAT1M1A) or into the GAT1-2 allele (strain GAT1M1B) of the 

parental strain and subsequent FLP-mediated excision of the cassette produced the heterozy-

gous mutants GAT1M2A and GAT1M2B (Fig. 17, lanes 2 and 3). Using the same deletion 

cassette, the remaining wild-type GAT1 alleles of heterozygous mutants were inactivated. 

Recycling of the SAT1 flipper from these independently constructed NouR mutants generated 

NouS homozygous gat1Δ mutants GAT1M4A and GAT1M4B (Fig. 17, lanes 4 and 5). 

 

 

 

 

 

 

 

 

 

 

 

 Reintroduction of an intact GAT1 allele in the mutant background was done using 

plasmid pGAT1K1. For generating this plasmid, an ApaI-XhoI fragment containing the GAT1 

coding region and flanking sequences (from positions -429 to +2558) was amplified from 

genomic DNA of strain SC5314 with the primers GAT1 and GAT7. This PCR fragment was 

substituted for the GAT1 upstream region in the plasmid pGAT1M2 (Fig. 16B). GAT1M4A 

and GAT1M4B strains were transformed with ApaI-SacI fragment of pGAT1K1. 

Transformants in which the cassette was targeted to either of the two inactivated gat1Δ alleles 

were selected and recycling of the SAT1 flipper from these strains give rise to complemented 

strains GAT1MK2A and GAT1MK2B (Fig. 17, lanes 6 and 7).  

To construct gln3Δ gat1Δ double mutants, the gln3Δ mutants (strains GLN3M4A and 

GLN3M4B) were used as parental strains and were transformed with the GAT1 deletion 

cassette (pGAT1M2). One transformant from each parental strain, in which the SAT1 flipper 

cassette had integrated either into the GAT1-1 allele (strain Δgln3GAT1M1A) or into the 

GAT1-2 allele (strain Δgln3GAT1M1B) was selected. Excision of the SAT1 flipper from these 

strains by FLP-mediated recombination resulted in NouS derivatives Δgln3GAT1M2A/B (Fig. 

18, lanes 4 and 5). Second round of integration and subsequent excision of GAT1 deletion 

cassette in the heterozygous Δgln3GAT1M2A/B mutants resulted in inactivation of the 

 
Fig. 17. Southern hybridization of 
Hind III-BglII digested genomic DNA 
of the wild-type strain SC5314 and 
GAT1 mutant derivatives with the 
GAT1-specific probe 2 shown in 
Fig.16A. The sizes of the hybridizing 
fragments (in kb) are given on the left 
side of the blot and their identities are 
indicated on the right.  
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remaining intact allele of GAT1, generating gln3GAT1M4A/B (Fig. 18, lanes 6 and 7).  Re-

integration of an intact GLN3 copy (using pGLN3K1 [Fig. 14B]) into either of its inactivated 

loci in the homozygous gln3Δ gat1Δ double mutants, followed by excision of the SAT1 

flipper cassette produced complemented strains Δgln3GAT1MK2A/B (Fig. 18, lanes 8 and 9). 

Similarly an intact GAT1 copy (using pGAT1K1 [Fig.16B]) was reintroduced into gln3Δ 

gat1Δ mutants and subsequent excision of SAT1 flipper yielded the complemented strains 

Δgln3GAT1K4A/B (Fig. 18, lanes 10 and 11). Integrity of the GLN3 locus in the mutants was 

confirmed by probing the blot that is used for Fig. 18 with the GLN3- specific probe 1 (data 

not shown). 

 

 

 

 

 

 

 

 

 
 
 

4.2.5 GATA factors Gln3p and Gat1p control MEP2 expression   

To assess whether GLN3 and GAT1 participate in the induction of MEP2 expression in 

response to nitrogen limitation, expression levels of the GFP-tagged Mep2p in the wild-type 

strain SC5314, the gln3Δ and gat1Δ single mutants, and the gln3Δ gat1Δ double mutants were 

compared. For integration of MEP2-GFP fusion (Fig. 19) into either of the two MEP2 alleles, 

plasmid pMEP2G7 was used. This plasmid was generated in following manner: A BamHI-

PstI [GFP-TACT1-caSAT1] fragment from pADH1G3 (Park and Morschhäuser, unpublished) 

was cloned together with a PstI-SacI [3’MEP2] fragment from pMEP2G2 into the 

BamHI/SacI-digested pMEP2G2. 

 

Fig. 18. Southern hybridization of HindIII-BglII digested genomic of wild-type strain SC5314, the gln3Δ
parental strins GLN3M4A and B, and GAT1 mutant derivatives with the GAT1-specific probe 2 shown in Fig.
16A. The sizes of the hybridizing fragments (in kb) are given on the left side of the blot and their identities are
indicated on the right.   
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Fig. 19. Structure of the DNA fragment from pMEP2G7 (top), which was used to introduce MEP2-GFP fusion 
into the original MEP2 locus (bottom). The MEP2 and GFP coding regions are represented by the red arrow and 
the dark green arrow, respectively, the transcription termination sequence of the ACT1 gene (TACT1) by the filled 
circle, and the caSAT1selection marker by the light green arrow. MEP2 upstream and downstream regions are 
represented by the solid lines. Only relevant restriction sites are given: B, BamHI; EI, EcoRI; K, KpnI; P, PstI; 
ScI, SacI. The polymorphic EcoRI site, which is present only in the MEP2-1 allele, is highlighted in italics.  

 

The Mep2p-GFP reporter strains in different genetic backgrounds were grown in 

liquid media containing limiting amounts (100 µM) of ammonium, glutamine, proline, or urea 

and fluorescence of the cells was measured by flow cytometry. Irrespective of the nitrogen 

source, Mep2p expression was strongly reduced in the gln3Δ and gat1Δ single mutants and 

was below the detection limit in the gln3Δ gat1Δ double mutants under all tested conditions 

(Fig. 21A).  

Additionally, with the help of a PMEP2-GFP fusion (Fig. 20), the effect of the absence 

of GATA factors on MEP2 promoter activity was also compared. For integration of the PMEP2-

GFP fusion at the original MEP2 locus, plasmid pMEP2PG1 was constructed. For this, SalI-

PstI [GFP-TACT1-caSAT1] fragment from pOPT1G22 (Reuß & Morschhäuser, 2006) was 

cloned into XhoI/PstI-digested pMEP2G6. In accord with the results obtained with C-terminal 

fusion of GFP to Mep2p; MEP2 promoter activity was greatly decreased in the mutants 

lacking either GLN3 or GAT1, and abolished in the double mutants (Fig. 21B). 

 

 

 

 

 

Fig. 20. Structure of the DNA fragment from plasmid pMEP2PG1 that was used to introduce PMEP2-GFP fusion 
into the original MEP2 locus. The GFP coding region is represented by the dark green arrow, TACT1 by the filled 
circle, and the caSAT1 selection marker by the light green arrow. MEP2 upstream and downstream regions are 
represented by the solid lines, the MEP2 promoter (PMEP2) is symbolized by the bent arrow. Only relevant 
restriction sites are given: EI, EcoRI; K, KpnI; P, PstI; Sl, SalI;ScI, SacI; Xh,XhoI. Sites shown in parentheses 
were destroyed by the cloning procedure. The polymorphic EcoRI site is highlighted in italics. 
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To confirm that GATA factors mediate MEP2 induction under nitrogen limitation,  

MEP2 mRNA levels were compared in the wild-type and GATA factor mutant backgrounds 

by Northern hybridization. As can be seen in Fig. 22, the result is identical to those obtained 

with GFP quantification experiments. The MEP2 transcript is absent from the gln3Δ gat1Δ 

double mutants, the faint band of slightly higher molecular weight seen in these and all other 

strains represents a cross-hybridizing transcript. In summary, it can be stated that analogous to 

S. cerevisiae, expression of MEP2 in C. albicans is controlled by both GATA transcription 

factors Gln3p and Gat1p.  
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Fig. 21. (A) Expression of GFP-tagged Mep2p and (B) PMEP2-GFP in the wild type, gln3Δ and gat1Δ single
mutants, and gln3Δ gat1Δ double mutants in liquid media containing limiting concentrations (100 µM) of the
indicated nitrogen sources. Overnight cultures of the reporter strains in SD-Pro medium were diluted 50-fold in
the test media and grown for 6 h at 30°C. Fluorescence of the cells was measured by flow cytometry Strain
SC5314, which does not carry GFP, was used as a negative control and the background fluorescence values of
this strain (between 1.6 and 2.45 in the various experimental media) were subtracted from those of the reporter
strains. The first columns show the results obtained with the A series and the second columns show the results
obtained with the B series of the reporter strains (descriptions of strains are provided in Table 2). Note that the
scale of the y-axis is different for Mep2p-GFP and PMEP2-GFP. 
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4.2.6 Ammonium permease MEP1 expression is also regulated by GATA factors  

To test whether the GATA transcription factors also regulate expression of the ammonium 

permease MEP1, reporter strains were generated in wild-type and GATA factor mutant 

backgrounds in a manner analogous to the Mep2p reporter strain constructions. Using the 

fragments from plasmids pMEP1G4 or pMEP1PG1, the GFP-tagged Mep1p or PMEP1-GFP 

fusions were introduced into either of the two MEP1 alleles. For monitoring expression levels 

of Mep1p-GFP as well as promoter activity of MEP1, the reporter strains were grown in 

liquid media containing limiting amounts (100 µM) of ammonium, glutamine, proline, or urea 

and fluorescence of the cells was measured by flow cytometry. In agreement with results from 

previous study (Biswas & Morschhäuser, 2005), Mep1p was found to be expressed at much 

lower levels than Mep2p in the wild-type background (compare mean fluorescence values of  

Fig. 21 with those of Fig. 23). As shown in Fig. 23, Mep1p expression was slightly reduced in 

the gln3Δ mutants in comparison to wild-type. In contrast, MEP1 expression was elevated in 

the gat1Δ mutants. Only very low levels of Mep1p expression were observed in the gln3Δ 

gat1Δ double mutants. Therefore, both Gln3p and Gat1p also regulate MEP1 expression.  
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Fig. 22.  Detection of MEP2 mRNA by Northern hybridization with a MEP2-specific probe. Overnight
cultures of the wild-type strain SC5314 (lane 1), the gln3Δ mutants GLN3M4A (lane 2) and GLN3M4B (lane
5), the gat1Δ single mutants GAT1M4A (lane 3) and GAT1M4B (lane 6), and the gln3Δ gat1Δ double mutants
Δgln3GAT1M4A (lane 4) and Δgln3GAT1M4B (lane 7) in SD-Pro medium were diluted 50-fold in liquid
SLAD medium and RNA was isolated after 6 h of growth at 30°C.  
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Fig. 23. (A) Expression of GFP-tagged Mep1p and (B) PMEP1-GFP in the wild type, gln3Δ and gat1Δ single
mutants, and gln3Δ gat1Δ double mutants in liquid media containing limiting concentrations (100 µM) of the
indicated nitrogen sources. Overnight cultures of the reporter strains in SD-Pro medium were diluted 50-fold in
the test media and grown for 6 h at 30°C. Fluorescence of the cells was measured by flow cytometry. Strain
SC5314, which does not carry GFP, was used as a negative control and the background fluorescence values of
this strain (between 1.6 and 3.72 in the various experimental media) were subtracted from those of the reporter
strains. The first columns show the results obtained with the A series and the second columns show the results
obtained with the B series of the reporter strains (descriptions of strains are provided in Table 2).  

 

4.2.7  Gln3p regulates nitrogen starvation-induced filamentous growth in C. albicans  

Growth of the GATA factor mutant strains was tested on agar plates containing limiting 

concentrations of different nitrogen sources (Fig. 24). All mutants grew as well as the wild-

type strain SC5314 on SLAD plates, indicating that the reduced Mep1p expression levels in 

the gln3Δ gat1Δ double mutants still allowed sufficient ammonium uptake for normal growth. 

However, the gln3Δ mutants showed delayed and strongly reduced filamentation on SLAD 

plates as well as on plates containing 100 µM urea, proline, glutamate or glutamine as the sole 

nitrogen source, conditions in which MEP2 is required for filamentous growth (Biswas & 

Morschhäuser, 2005). While wild-type colonies started to produce filaments after about 3 

days of incubation, no filamentous colonies of gln3Δ mutants were seen at day 4, and fewer 

and shorter filaments than in the wild type were observed after 6 days (Fig. 24 and data not 

shown). On the other hand, deletion of GAT1 did not affect filamentation on these plates and 

gln3Δ gat1Δ double mutants behaved like the gln3Δ single mutants, except on urea plates on 

which no filamentation was observed in the double mutants. Reintroduction of GLN3 into the 
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gln3Δ single and the gln3Δ gat1Δ double mutants restored filamentation to wild-type levels, 

confirming that the filamentous growth defect of the mutants was due to GLN3 inactivation. 

No filamentation defect of the mutants was observed on plates containing serum, indicating 

that GLN3 is specifically required for normal filamentous growth in response to nitrogen 

limitation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To investigate whether the filamentation phenotype of the mutants correlated with 

Mep2p expression on solid media, expression of the GFP-tagged Mep2p in the corresponding 

reporter strains on SLAD plates was inspected microscopically. As in liquid SLAD medium, 

Mep2p expression was strongly reduced in both gln3Δ and gat1Δ single mutants and was 
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Fig. 24. YPD precultures of the strains were appropriately diluted and spread on SD agar plates containing the
indicated nitrogen sources at a concentration of 100 µM or on agar plates containing serum as an inducer of
filamentous growth. Individual colonies were photographed after 6 days of incubation at 37°C. The following
strains were used: SC5314 (wild type), GLN3M4A/B (gln3Δ), GLN3MK2A/B (gln3Δ + GLN3), GAT1M4A/B
(gat1Δ), Δgln3GAT1M4A/B (gln3Δ gat1Δ), Δgln3GAT1MK2A/B (gln3Δ gat1Δ + GLN3). Independently
constructed mutants and complemented strains behaved identically and only one of them is shown in each case.
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undetectable in the gln3Δ gat1Δ double mutants also on filamentation inducing solid medium 

(Fig. 25). Therefore, the reduced MEP2 expression in strains lacking GLN3 correlated with 

their filamentation defect. In contrast, deletion of GAT1 did not affect filamentous growth 

under these conditions, despite the fact that MEP2 expression was similarly reduced in gln3Δ 

and gat1Δ mutants.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

4.2.8 Inactivation of GAT1 activates MEP2-independent filamentation pathways  

The ability of the gat1Δ mutants to filament under limiting nitrogen conditions despite 

strongly reduced Mep2p expression levels suggested that nitrogen starvation-induced 

filamentous growth may not depend on the Mep2p in the prototrophic wild-type strain 

SC5314, in contrast to its auxotrophic derivative CAI4, which was the parent of mep2Δ 

mutants in the previous study (Biswas & Morschhäuser, 2005). To exclude the possibility that 

inappropriate URA3 expression levels at the MEP2 locus were responsible for the 

filamentation defect of the mep2Δ mutants, revertant strains were constructed, in which the 

URA3 gene was inserted back at its original locus in the two independently constructed 

mep2Δ mutants (strains MEP2M4A/B) as well as in the parental strain CAI4, using a 4.8 kb 

 

Fig. 25. Expression of the GFP-tagged Mep2p in wild-type (strains SCMEP2G7A/B), gat1Δ (strains
gat1ΔMEP2G7A/B), gln3Δ (strains gln3ΔMEP2G7A/B), and gln3Δgat1Δ mutant (strains gln3Δ gat1Δ MEP2 
 G7A/B) backgrounds on SLAD plates. The pictures show fluorescence and corresponding phase contrast
micrographs of cells taken from colonies of the reporter strains grown for 6 days at 37°C. 
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BglII-PstI fragment from pUR3 (Kelly et al., 1987). The resulting revertant strains of mep2Δ 

mutants, MEP2M4R1A and B exhibited the same filamentation defect as the previously 

constructed mep2Δ mutants, whereas the wild-type control strains CAI4R1A and B showed 

normal filamentation (Fig. 26A). A further test for the requirement of Mep2p for nitrogen 

starvation-induced filamentous growth in C. albicans was done using strains in which MEP2 

was deleted in the prototrophic wild-type strain SC5314 with the help of the SAT1 flipping 

strategy. For this purpose, plasmid pMEP2M5 was generated in which the caSAT1 selection 

marker was substituted for the URA3 marker in the pMEP2M2 (Biswas & Morschhäuser, 

2005). To obtain pMEP2M5, an EcoRI-PstI [3’caFLP-TACT1-caSAT1] fragment from 

pGLN3M2 was ligated between the same sites of plasmid pMEP2M2 (Biswas & 

Morschhäuser, 2005). Two independently generated mep2Δ mutants (data not shown) 

exhibited the same filamentous growth defect on SLAD plates as the mep2Δ mutants which 

were used in the earlier studies (Fig. 26B, top panels). These results confirmed that Mep2p 

controls nitrogen starvation-induced filamentous growth in C. albicans.  

 

 

 

 

 

 

 

It was hypothesized that the absence of a functional Gat1p might result in the 

activation of filamentation inducing signaling pathways that do not require high MEP2 

expression levels or are even independent of Mep2p. To explore this possibility, GAT1 was 

Fig. 26. (A) Filamentation of URA3 revertant
strains. The following strains were used:
CAI4RU1A/B (wild type), ΜΕP2Μ4RU1A/B
(mep2Δ). (B) Filamentation phenotype of
mep2Δ gat1Δ double mutants was compared to
that of mep2Δ and gat1Δ single mutants. The
following strains were used: SC5314 (wild
type), SCMEP2M4A/B (mep2Δ), GAT1M4
A/B (gat1Δ), and Δmep2GAT1M4A/B (mep2Δ
gat1Δ). In both experiments A and B, YPD
precultures of the strains were appropriately
diluted and spread on SLAD agar plates.
Individual colonies were photographed after 6
days of incubation at 37°C. Independently
constructed mutants behaved identically and
only one of them is shown in each case.  
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deleted in the two mep2Δ mutants constructed from strain SC5314. Strikingly, both 

independently generated mep2Δ gat1Δ double mutants regained the ability to filament under 

nitrogen starvation conditions, albeit not to wild-type levels (Fig. 26B, lower panels). 

Therefore, the ability of the gat1Δ mutants to filament normally despite strongly reduced 

Mep2p expression levels can be explained by the activation of additional signaling pathways, 

which can induce filamentation in response to nitrogen starvation even in the absence of 

Mep2p (see discussion). 

 

4.2.9 Forced MEP2 expression bypasses the requirement of GLN3 for filamentous 

growth 

If the failure to express MEP2 at appropriate levels was the cause of the filamentous growth 

defect of the gln3Δ mutants, then forced expression of MEP2 from a different promoter 

should restore normal filamentation. To test this hypothesis, MEP2 under control of the 

ADH1 promoter was expressed in the wild-type strain SC5314 and in the gln3Δ mutants using 

the relevant insert from pMEP2E4 (Fig. 27). For generation of pMEP2E4, an XhoI-BglII 

[MEP2 coding region] fragment from pMEP2K2 (Biswas & Morschhäuser, 2005)  was 

ligated between the same sites of plasmid pADH1E1 (Reuß & Morschhäuser, 2006). In 

addition, the hyperactive MEP2ΔC440 allele, which is strongly overexpressed presumably due 

to enhanced transcript stability (Biswas & Morschhäuser, 2005), was also expressed from the 

ADH1 promoter. For this, plasmid pMEP2ΔC2E2 was generated in analogous fashion, an 

XhoI-BglII [MEP2ΔC440 allele] fragment from pMEP2ΔC2K2 was cloned into XhoI/BglII-

digested pADH1E1. As a control, the GFP gene was integrated at the ADH1 locus instead of 

MEP2 in an identical fashion by using the plasmid pADH1G4 (Park and Morschhäuser, 

unpublished). 

 

 

 

 

 

 

Fig. 27. Structure of the DNA fragment from plasmid pMEP2E4 which was used to integrate MEP2 allele at the 
ADH1 locus. The MEP2coding region is  represented by the red arrow, TACT1 by the filled circle, and the 
caSAT1selection marker by the light green arrow. ADH1 upstream and downstream regions are represented by 
the solid lines. Relevant restriction sites are indicated. 
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Expression of an additional MEP2 copy from the ADH1 promoter had no detectable 

effect on filamentation of the wild-type strain SC5314 (Fig. 28), but expression of the 

hyperactive MEP2ΔC440 allele from the ADH1 promoter in the same strain resulted in a 

hyperfilamentous phenotype, as was previously reported for strain CAI4 expressing the 

MEP2ΔC440 allele from the native MEP2 promoter (Biswas & Morschhäuser, 2005). Forced 

expression of MEP2 from the ADH1 promoter partially rescued the filamentation defect of the 

gln3Δ mutants and expression of the hyperactive MEP2ΔC440 allele resulted in the same 

hyperfilamentous phenotype as in the wild-type background (Fig. 28). Therefore, forced 

expression of MEP2 overcomes the filamentous growth defect caused by GLN3 inactivation. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 28. Forced expression of MEP2 overcomes the filamentous growth defect of gln3Δ mutants. YPD
precultures of the strains were appropriately diluted and spread on SD agar plates containing the indicated
nitrogen sources at a concentration of 100 µM. Individual colonies were photographed after 6 days of
incubation at 37°C. The following strains were used: SCADH1G4A/B (wild type + control),
Δgln3ADH1G4A/B (gln3Δ + control), SCMEP2E4A/B (wild type + PADH1-MEP2), Δgln3MEP2E4A/B (gln3Δ
+ PADH1-MEP2), SCMEP2ΔC2E2A/B (wild type + PADH1-MEP2ΔC440), Δgln3MEP2ΔC2E2A/B (gln3Δ + PADH1-
MEP2ΔC440). Independently constructed mutants and complemented strains behaved identically and only one of
them is shown in each case.  
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4.3 Secreted aspartic protease expression in C. albicans is controlled by a 

transcription factor regulatory cascade  

C. albicans can use proteins as the sole source of nitrogen for growth. The secreted aspartic 

protease Sap2p degrades proteins mainly to oligopeptides, which are then taken up into the 

cell by oligopeptide transporters encoded by the OPT gene family (Reuß & Morschhäuser, 

2006). Deletion of SAP2 or several members of the OPT gene family renders C. albicans 

unable to grow in YCB-BSA medium, in which a protein, bovine serum albumin (BSA), is 

the only available nitrogen source (Hube et al., 1997; Reuß & Morschhäuser, 2006; Staib et 

al., 2002; 2008).  

4.3.1 The GATA transcription factors Gln3p and Gat1p are required for growth of 

C. albicans on proteins 

Proteins can be considered as secondary nitrogen source for C. albicans, as the expression of 

genes required for their utilization, i.e., SAP2 and the oligopeptide transporters OPT1 and 

OPT3, is induced in the presence of proteins and SAP2 is repressed even in the presence of 

proteins when preferred nitrogen sources, like ammonium or amino acids, are available 

(Banerjee et al., 1991; Hube et al., 1994; Reuß & Morschhäuser, 2006; Ross et al., 1990). In 

fungi, GATA transcription factors are known to regulate the expression of genes required to 

utilize alternative or secondary nitrogen sources. Hence, the growth behaviors of C. albicans 

gln3Δ, gat1Δ, and gln3Δ gat1Δ mutant strains were analyzed in YCB-BSA medium which 

contains BSA as the only available nitrogen source. Growth of the gln3Δ mutants was slightly 

reduced as compared with the wild-type parental strain SC5314 (Fig. 29A). In contrast, the 

gat1Δ mutants had a severe growth defect (Fig. 29B) and growth of the gln3Δ gat1Δ double 

mutants was virtually abolished (Fig. 29C). Complementation of the gln3Δ and gat1Δ single 

mutants with the respective functional alleles restored wild-type growth (Fig. 29 A, B). The 

double mutants complemented with GLN3 behaved like gat1Δ single mutants (compare Fig. 

29 B and C). Reintroduction of GAT1 into the double mutants also restored growth (Fig. 

29C). However, a GAT1 copy number effect was observed in the absence of GLN3, because 

the double mutants in which one GAT1 allele was reintroduced grew less well than the gln3Δ 

single mutants, which contained both GAT1 alleles (compare Fig. 29 A and C). The same 

effect was observed in the gln3Δ mutants in which one of the GAT1 wild-type alleles had 

been deleted (data not shown). These results demonstrated that both GATA factors, but 

especially GAT1, are required to efficiently utilize proteins as a nitrogen source. 



  Results 

  99

Fig. 29.  GAT1 and GLN3 are required for utilization of proteins as a nitrogen source. Overnight cultures of
the strains in YPD medium were diluted 10-2 in YCB-BSA medium and incubated at 30°C. Growth was
monitored by measuring the OD600 (optical density at 600 nm) of the cultures at the indicated times. All
strains were tested in parallel, but the results for the gln3Δ mutants, gat1Δ mutants, and gln3Δ gat1Δ double
mutants are shown separately in panels A-C for better illustration, together with the results for the
corresponding complemented strains. The results for the wild-type strain SC5314 are shown in all three
panels. Besides wild type following strains were used: (A) GLN3M2A/B (GLN3/gln3Δ), GLN3M4A/B
(gln3Δ), GLN3MK2A/B (gln3Δ+GLN3). (B) GAT1M2A/B (GAT1/gat1Δ), GAT1M4A/B (gat1Δ), GAT1M
K2A/B (gat1Δ+GAT1). (C) Δgln3GAT1M4/B (Δgln3Δgat1),   Δgln3GAT1MK2A/B (Δgln3Δgat1+ GLN3),
 Δgln3GAT1MK4A/B (Δgln3Δgat1+GAT1). The two independently constructed series of mutants and
complemented strains behaved identically and only one of them is shown for clarity. 
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4.3.2 Functional analysis of the GAT1 gene  

In assembly 19 of the C. albicans genome sequence, the open reading frame defined as GAT1 

(orf19.1275) is 2067 bp in length and encodes a predicted protein of 688 amino acids. 

However, Limjindaporn et al. obtained a plasmid clone from a genomic library of strain 

SC5314, the strain used for genome sequencing, in which an upstream stop codon was 

changed to a sense codon, extending the N-terminal part of the GAT1 ORF by 201 bp to 

encode a predicted protein of 755 amino acids (Limjindaporn et al., 2003). When GAT1 was 

amplified in this work from strain SC5314 for reintroduction into the gatΔ single and gln3Δ 

gat1Δ double mutants, it was found that the cloned GAT1 gene in the resulting plasmid 

pGAT1K1 (Fig. 16B) contained the stop codon reported in the genome sequence. Since the 

GAT1 alleles of strain SC5314 can be distinguished by a downstream BglII restriction site 

polymorphism, the remaining intact GAT1 allele was amplified from the heterozygous 

GAT1/gat1Δ mutants GAT1M2A and GAT1M2B, in which either of the two alleles was 

inactivated (Fig. 17, lanes 2 and 3). Sequencing of the resulting clones confirmed that strain 

SC5314 contained two polymorphic GAT1 alleles. The allele located on the smaller BglII 

fragment, which was arbitrarily designated as allele 1, was identical to the one reported by 

Limjindaporn et al. (2003), whereas allele 2 was identical to orf19.1275 of the C. albicans 

genome sequence. As both heterozygous gat1 mutants grew as well as the wild-type strain in 

YCB-BSA medium and the growth defect of the homozygous gat1Δ mutants was fully 

complemented by the GAT1-2 allele containing the upstream stop codon (Fig. 29B), both 

GAT1 alleles must be functional.   

Recently, a different start codon located 63 bp further downstream has been assigned 

to orf19.1275 in assemblies 20 and 21 of the C. albicans genome sequence. Now this GAT1 

ORF would be only 2004 bp and would encode a predicted protein of 667 amino acids. In 

order to investigate which of the start codons are included in the GAT1 transcript 5’ RACE 

was performed. This analysis revealed that the GAT1 mRNA starts at an adenine that is 

located 60 nucleotides upstream of the first start codon and therefore includes all three 

potential GAT1 ORFs.  To explore if all three potential GAT1 ORFs, which are referred from 

here onwards as GAT12268, GAT12067, and GAT12004 according to their length, encode 

functional proteins, these different ORFs were expressed from a tetracycline-inducible (Tet) 

promoter in the gat1Δ mutants. Construction of plasmids is documented in Table 6 and 

structure of the relevant DNA fragments used for transformation of gat1Δ mutants is depicted 

in Fig. 30. Growth of the corresponding transformants was monitored in YCB-BSA medium.  
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Table 6 Construction of plasmids in which different GAT1 ORFs are expressed from the tetracycline-inducible 
promoter. Introduced restriction sites and their positions are mentioned. These nucleotide positions are with 
respect to that start codon of  GAT as reported by  Limjindaporn et al., (2003). 

Primers and 
template DNA 

 Restriction sites  
 

Plasmid construction Plasmid  Transformants 

GAT1-3 
GAT1-2 
(GAT1M2B) 

SalI at –7 
BamHI at +2268 

SalI/SmaI and SmaI/BamHI 
digested PCR fragments  cloned 
into SalI /BglII digested pNIM1 

pTET-GAT1-1 
 

Δgat1TET1 
GAT1-1A/B 

GAT1-1 
GAT1-2 
(GAT1M2A) 

SalI at +195 
BamHI at +2268 

SalI/SmaI and SmaI/BamHI 
digested PCR fragments  cloned 
into SalI /BglII digested pNIM1 

pTET-GAT1-2 Δgat1TET1 
GAT1-2A/B 

GAT1-4 
GAT1-2 
(GAT1M2A) 

SalI at +258 
BamHI at +2268 

SalI/SmaI and SmaI/BamHI 
digested PCR fragments  cloned 
into SalI /Bgl II digested pNIM1

pTET-GAT1-3 Δgat1TET1 
GAT1-3A/B 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in Fig. 31, all three GAT1 ORFs fully restored growth of the gat1Δ mutants. 

Therefore, even the short GAT12004 allele seems to encode a functional protein. Recently, 

comparison of Gat1p orthologs among different fungal species revealed presence of a highly 

conserved sequence motif in the N-terminal of the protein (Wong et al., 2008), and in C. 

albicans this motif would be encoded by 27 nucleotides upstream of the third start codon. 

Therefore, it is unlikely that the third start codon (GAT12004) is utilized during translation of 

Gat1p, which if used, would not include this conserved sequence in the protein. The N-

terminal motif has been shown to be dispensable for function of AreA in Aspergillus nidulans 

(Caddick & Arst, 1998), which also seems to be the case for Gat1p (AreA homolog in C. 

albicans) and would explain restoration of growth of gat1Δ mutants by the GAT12004 allele. 

Fig. 30. Structure of the DNA cassettes that were used for expression of the GAT12268, GAT12067, and GAT12004

alleles under control of a tetracycline-inducible promoter (Ptet) after integration into the ADH1 locus of the
gat1Δ mutants. Bent arrow symbolize promoter ADH1 (PADH1), Ptet is represented by the green arrow, the filled
circles represent TACT1, which serves for proper transcription termination of the Candida-adapted, reverse
tetracycline-dependent transactivator (cartTA) and the target genes in this cassette (Park & Morschhäuser,
2005). Only relevant restriction sites explaining plasmid construction or used to excise the whole cassette from
the vector backbone are shown: A, ApaI; B, BamHI; Bg, BglII; S, SmaI; Sl, SalI; ScII, SacII.  
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4.3.3 GLN3 and GAT1 control expression of the secreted aspartic protease SAP2 and 

oligopeptide transporters OPT1 and OPT3 

Secreted aspartic protease Sap2p and oligopeptide transporters are required by  C. albicans 

for  its ability to utilize proteins as a nitrogen source and expression of the SAP2, OPT1, and 

OPT3 genes is induced in YCB-BSA medium (Hube et al., 1994; Reuß & Morschhäuser, 

2006; Staib et al., 2002). To investigate whether expression of these genes depends on GLN3 

and GAT1, reporter gene fusions in which GFP was placed under the control of the respective 

promoters were introduced into the gln3Δ, gat1Δ, and gln3Δ gat1Δ mutants. These strains 

were grown in YCB-BSA-YE medium, which also induces SAP2 and OPT gene expression 

but allows growth of sap2Δ and optΔ mutants (Reuß & Morschhäuser, 2006; Staib et al., 

2002), and the gln3Δ gat1Δ mutants also had no growth defect in this medium. The activity of 

all three tested promoters was reduced in the gln3Δ and gatΔ single mutants, with a 

pronounced effect in the gat1Δ mutants. Very low or undetectable promoter activity was 

observed in mutants lacking both transcription factors (Fig. 32).  

The failure of the gln3Δ gat1Δ mutants to express SAP2 was also confirmed by ana-

lyzing culture supernatants of the wild type and mutants grown in YCB- BSA-YE on SDS-

polyacrylamide gels (Fig. 33). The wild-type strain SC5314 had completely degraded the 

BSA within 8 h of growth in this medium and Sap2p expression was readily detected by 

Western immunoblotting with an anti-Sap2p antibody (Fig. 33, lanes 2). BSA degradation 

was delayed in the gln3Δ (Fig. 33, lanes 3 and 7) and gat1Δ (Fig. 33, lanes 4 and 8) mutants 

and reduced amounts of Sap2p were detected in the culture supernatant of the latter. However, 

the strong differences in SAP2 promoter activity in the wild-type and gln3Δ and gat1Δ 

Fig. 31. Complementation of the growth defect of gat1Δ mutants by different GAT1 alleles. Growth of the
parental strain SC5314 (wild type), gat1Δ mutants, and transformants containing the indicated Ptet-GAT1 fusions
in YCB-BSA medium in the absence (-) or presence (+) of 50 µg/ml doxycycline. The cultures were
photographed after 20 h of growth at 30ºC and their optical densities are given below the tubes. Note that
doxycycline slightly reduced growth of the wild-type strain under these conditions. 
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mutants (Fig. 32) were not reflected in Sap2p levels produced by these strains. It could be due 

to the fact that in all reporter strains the promoter activity of the SAP2-1 allele was determined 

and most of the secreted Sap2p was probably produced from the more strongly expressed 

SAP2-2 allele, which is essential for growth in YCB-BSA (Staib et al., 2002). Only very 

limited BSA degradation was detected in the culture supernatants of the gln3Δ gat1Δ double 

mutants and Sap2p was not detectably expressed in these strains, which behaved similar to a 

sap2Δ mutant (compare lanes 5 and 9 with lane 6 in Fig. 33). These results demonstrate that 

the GATA transcription factors Gat1p and Gln3p control the expression of genes that are 

known to be required for growth of C. albicans on proteins. 

Fig. 32. The GATA transcription factors Gat1p and Gln3p control expression of SAP2 and the oligopeptide
transporters OPT1 and OPT3. Overnight cultures of strains (description provided in Table 2) expressing GFP
under control of the indicated promoter in a wild-type, gln3Δ, gat1Δ, or gln3Δ gat1Δ background in YPD
medium were diluted 10-2 in YCB-BSA-YE medium, grown for 8 h (left panels) or 15 h (right panels) at 30°C
and analyzed by flow cytometry. The mean fluorescence of each cell population is given (arbitrary units). The
first columns show the results obtained with the A series and the second columns show the results obtained
with the B series of the reporter strains. The parental strain SC5314, which does not contain GFP, was used as
a negative control. 

0

5

10

15

20

25

30

35

negative control positive control gln3Δ gat1Δ gln3Δgat1Δ

0

10

20

30

40

50

60

70

80

90

negative control positive control gln3Δ gat1Δ gln3Δgat1Δ

0

5

10

15

20

25

30

35

negative control positive control gln3Δ gat1Δ gln3Δgat1Δ

0

25

50
75

100

125

150
175

200

225

negative
control

positive
control

gln3Δ gat1Δ gln3Δgat1Δ
0

25

50

75

100

125

150

175

200

225

negative control positive control gln3Δ gat1Δ gln3Δgat1Δ

0

10

20

30

40

50

60

70

80

90

negative control positive control gln3Δ gat1Δ gln3Δgat1Δ

PSAP2-GFP
co

ntr
ol

wild
 ty

pe

gln
3Δ

ga
t1Δ

gln
3Δ

ga
t1Δ

POPT1-GFP

POPT3-GFP

co
ntr

ol
wild

 ty
pe

gln
3Δ

ga
t1Δ

gln
3Δ

ga
t1Δ

8 h 15 h

M
ea

n 
flu

or
es

ce
nc

e
M

ea
n 

flu
or

es
ce

nc
e

M
ea

n 
flu

or
es

ce
nc

e



  Results 

  104

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3.4 Forced expression of SAP2 overcomes the growth defect of gln3Δ gat1Δ 

mutants 

To investigate if the growth defect of mutants lacking the GATA transcription factors Gln3p 

and Gat1p was caused by their inability to adequately express SAP2 and oligopeptide trans-

porters, SAP2 and OPT1 were expressed from the strong ADH1 promoter in the gln3Δ gat1Δ 

mutants. Integration of OPT1 and SAP2 at the ADH1 locus was achieved using relevant insert 

from plasmid pOPT1E1 (Reuß & Morschhäuser, 2006) and pSAP2ex7, respectively. For 

creating plasmid pSAP2ex7, a SalI-PstI [N-terminal part of SAP2] fragment and a PstI-

BamHI [C-terminal part of SAP2] fragment from pSAP2ex1 (Staib & Morschhäuser, 

unpublished) were cloned into XhoI-BglII-digested pOPT4E1 (Reuß & Morschhäuser, 2006). 

Previous studies have shown that expression of OPT1 from the ADH1 promoter can rescue 

the growth defect in YCB-BSA of mutants lacking multiple oligopeptide transporters (Reuß 

& Morschhäuser, 2006). Growth of the gln3Δ gat1Δ double mutants expressing SAP2 from 

the ADH1 promoter was restored, though not to wild-type levels, contrastingly, expression of 

OPT1 alone had no effect (Fig. 34). In summary, these results indicate that the failure to 

induce SAP2 expression is the main reason for the inability of the gln3Δ gat1Δ mutants to 

utilize proteins as a nitrogen source. 

Fig. 33. Sap2p expression and BSA degradation by the wild-type strain SC5314 (lane 2) and the two
independently constructed A and B series of gln3Δ (lanes 3 and 7), gat1Δ (lanes 4 and 8), and gln3Δ gat1Δ
mutants (lanes 5 and 9). Strains were grown for 8 h (left) or 15 h (right) in YCB-BSA-YE medium at 30°C and
the culture supernatants were analysed by SDS-PAGE (top) and by Western immunoblotting with an anti
Sap2p-antibody (bottom). A sap2Δ mutant (lane 6) as well as uninoculated medium (lane1) were included as
controls. M, molecular size marker. 
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4.3.5 Forced expression of the transcription factor STP1 bypasses the requirement 

of GATA transcription factors for growth on proteins 

The transcription factor Stp1p is known to regulate expression of SAP2 and OPT1 in response 

to the presence of micromolar concentrations of extracellular amino acids (Martinez & 

Ljungdahl, 2005). Under these conditions, Stp1p is proteolytically processed to its activated 

form and localizes to the nucleus to induce expression of its target genes. Mutants lacking 

STP1 do not express SAP2 and OPT1 and can not utilize proteins as a nitrogen source. In 

order to investigate the relationship between Stp1p and the GATA transcription factors Gln3p 

and Gat1p, the ability of a constitutively active Stp1p that lacks the N-terminal inhibitory 

domain to restore growth of the gln3Δ gat1Δ mutants in YCB-BSA was tested. For this 

purpose, an STP1ΔN61 allele was integrated into the genome of the gln3Δ gat1Δ mutants under 

the control of the Tet promoter using the relevant insert from plasmid pTET1-STP1ΔN61. This 

plasmid was generated by amplifying the STP1 ORF lacking codons 2-61 with the primers 

STP1-1 and STP1-2 and ligating the SalI/BglII-digested PCR product between the same sites 

in pNIM1 (see Fig. 30 for analogy). Doxycycline-induced expression of the STP1ΔN61 allele 

fully restored growth of the mutants (Fig. 35). In fact, the transformants expressing this allele 

started to grow even earlier than the wild-type strain SC5314 after transfer from YPD to 

Fig. 34. Forced SAP2 expression restores growth of gln3Δ gat1Δ double mutants in YCB-BSA. YPD overnight
cultures of the wild-type strain SC5314, gln3Δ gat1Δ double mutants (strains Δgln3GAT1M4A/B), and
transformants expressing OPT1 (strains Δgln3Δgat1OPT1E1A/B) or SAP2 (strains Δgln3Δgat1SAP2ex7A/B)
from the ADH1 promoter were diluted 10-2 in YCB-BSA and incubated at 30°C. Growth was monitored by
measuring the optical density of the cultures at the indicated times. The two independently constructed series of
mutants and transformants behaved identically and only one of them is shown. 
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YCB-BSA medium. This could be due to the fact that expression of the activated transcription 

factor allowed a faster adaptation of the cells to the switch of the nitrogen source even in the 

absence of the GATA transcription factors. This result indicated that Gln3p and Gat1p might 

be regulating either STP1 expression or Stp1p activation. These possibilities were investigated 

by monitoring growth phenotypes of gln3Δ gat1Δ transformants expressing wild-type STP1 

allele from the Tet promoter. For this, the STP1 ORF was PCR-amplified with the primers 

STP1-4 and STP1-2, digested at the SalI site introduced before the start codon and at an 

internal SphI site, and cloned into the SalI/SphI-digested pTET1-STP1ΔN61 to generate 

pTET1-STP1, and the SacII-ApaI fragment from this plasmid was used to transform gln3Δ 

gat1Δ mutants. As shown in Fig. 35, doxycycline-induced expression of wild-type STP1 also 

rescued the growth defect of the gln3Δ gat1Δ mutants, although growth of the strains was 

somewhat delayed in comparison with that of the wild-type strain SC5314. Therefore, forced 

expression of STP1 bypasses the requirement of GLN3 and GAT1 for growth of C. albicans 

on proteins. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In order to examine if, vice versa, forced expression of GLN3 or GAT1 would also 

allow cells lacking Stp1p to grow on proteins, STP1 null mutants were constructed from the 

wild-type strain SC5314 using the SAT1 flipper strategy. To create an STP1 deletion cassette, 

an ApaI-SalI fragment from pSTP1PG1 (described in next section) containing STP1 upstream 

Fig. 35. Forced expression of STP1 overcomes the growth defect of gln3Δ gat1Δ double mutant in YCB-BSA.
YPD overnight cultures, of the wild-type strain SC5314 and transformants of the gln3Δ gat1Δ double mutants
expressing full-length STP1 (strains Δgln3Δgat1TET1-STP1A/B) or the constitutively active STP1ΔN61 allele
(strains Δgln3Δgat1TET1-STP1ΔΝ61A/B) from the Tet promoter, were diluted 10-2 in YCB-BSA in the absence
or presence of 50 µg/ml doxycycline and incubated at 30°C. Growth was monitored by measuring the optical
density of the cultures at the indicated times. The two independently constructed series of transformants
behaved identically and only one of them is shown. 
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sequences (from position -489 to -13) was substituted for the GAT1 upstream fragment in the 

ApaI/XhoI-digested pGAT1M2 (Fig.16A) to result in pSTP1M1. A SacII-SacI STP1 down-

stream fragment (from position +1194 to +1585) was then amplified with the primers STP1-9 

and STP1-8 and cloned between the same sites in pSTP1M1 to generate pSTP1M2. Using the 

ApaI-SacI fragment from pSTP1M2, sequential disruption of STP1 alleles in the strain 

SC5314 was done (verified by Southern analysis, data not shown). GLN3, GAT12268, 

GAT12067, and GAT12004 alleles were expressed from the Tet promoter (Table 6 and Fig. 30) in 

the stp1Δ mutants. For expression of GLN3 from the Tet promoter plasmid pTET1-GLN3 was 

constructed in following manner: the GLN3 coding region was amplified with the primers 

GLN10 and GLN11, and the PCR product digested at the introduced XhoI and BamHI sites 

and cloned in pBluescript to generate pGLN3. The XhoI-BamHI fragment from pGLN3 was 

then ligated between the SalI and BglII sites of pNIM1 to produce pTET1-GLN3. 

 In agreement with a previous report (Martinez & Ljungdahl, 2005), the stp1Δ mutants 

exhibited a growth defect in YCB-BSA medium, which was complemented by expression of 

STP1 from the Tet promoter (Fig. 36). In contrast, tetracycline-induced expression of GLN3 

and GAT1 did not rescue the growth defect of the stp1Δ mutants, indicating that the GATA 

transcription factors can not efficiently induce SAP2 expression in the absence of Stp1p. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 36. Forced expression of GLN3 and GAT1 does not rescue the growth defect of stp1Δ mutants. YPD
overnight cultures, of the wild-type strain SC5314, two independently generated stp1Δ mutants (strains
STP1M4A/B), and transformants expressing STP1 (strains Δstp1TET-STP1A/B), GLN3 (strains Δstp1TET-
GLN3A/B), ORF GAT12268 (strains Δstp1TET-GAT1-1A/B), ORF GAT12067 (strains Δstp1TET-GAT1-2A/B)
or ORF GAT12004 (strains Δstp1TET-GAT1-3A/B), from the Tet promoter were diluted 10-2 in YCB-BSA
containing 50 µg/ml doxycycline. The OD of the cultures was measured after 20 h of growth at 30°C. 
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4.3.6 Expression of the transcription factor STP1 is controlled by Gln3p and Gat1p 

The foregoing results suggest that Gln3p and Gat1p are required for the utilization of proteins 

because they regulate STP1 expression, which in turn induces SAP2. To investigate whether 

STP1 expression is regulated by the GATA transcription factors, STP1 reporter fusion (PSTP1-

GFP) was introduced at the original STP1 locus in the wild-type strain SC5314 and the gln3Δ, 

gat1Δ, and gln3Δ gat1Δ mutants using relevant insert from the plasmid pSTP1PG2. For 

generating this plasmid, the STP1 upstream region was amplified with the primer pair 

STP1-5/STP1-6 and the PCR product was digested at the introduced ApaI/SalI sites and sub-

stituted for the OPT1 upstream region in the ApaI/SalI-digested plasmid pOPT1G22 (Reuß & 

Morschhäuser, 2006) to produce pSTP1PG1. A STP1 downstream fragment was then 

amplified with the primer pair STP1-7/STP1-8, digested at the introduced PstI and SacI sites, 

and ligated between the same sites in pSTP1PG1 to generate pSTP1PG2 (see Fig. 20 for 

analogy). 

 STP1 promoter activity in the reporter strains was compared during growth of the 

strains in YCB-BSA-YE medium. As can be seen in Fig. 37, both GATA transcription factors 

were required for normal STP1 expression levels. However, contribution of Gat1p in 

regulating STP1 expression seems to be higher than that of Gln3p. Nevertheless, basal STP1 

expression was observed in the absence of both transcription factors, as the fluorescence of 

gln3Δ gat1Δ double mutants containing the reporter fusion was significantly above the back-

ground.  
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Fig. 37. STP1 expression is controlled by GATA transcription factors. YPD overnight cultures of reporter
strains expressing GFP under control of the STP1 promoter in a wild-type (strains SCSTP1G1A/B),
gln3Δ (strains Δgln3STP1G1A/B),  gat1Δ (strains Δgat1STP1G1A/B) or gln3Δgat1Δ (strains Δgln3Δgat1
STP1G1A/B) along with control  strain (SC5314) were diluted 10-2 in YCB-BSA-YE medium, grown for 8 h at
30°C, and analyzed by flow cytometry. 
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4.3.7 Nitrogen catabolite repression of SAP2 is mediated by regulation of STP1 

expression 

The fact that GATA factors Gln3p and Gat1p control STP1 expression levels indicated that 

STP1, like SAP2, is regulated by nitrogen catabolite repression. This hypothesis was validated 

by observing the influence of nitrogen source availability on STP1 expression levels. Using 

STP1 reporter fusion, the promoter activity was determined in the wild-type strain SC5314 in 

minimal SD medium containing high (100 mM) and low (100 µM) concentrations of the 

preferred nitrogen source ammonium as well as in YCB-BSA-YE medium in the absence and 

presence of ammonium. For comparison, the activity of the SAP2 promoter was monitored 

under the same conditions. As shown in Fig. 38, high ammonium concentrations repressed 

STP1 expression approximately by twofold, both in minimal SD medium and in YCB-BSA-

YE, demonstrating that STP1 is indeed under nitrogen catabolite repression. SAP2 promoter 

activity was detected only in the inducing medium YCB-BSA-YE and reduced to background 
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PSAP2-GFP fusion (bottom) in a wild-
type background i.e, strains
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levels by the addition of ammonium. High concentration of an amino acid (glutamine) or urea 

in both SD and YCB-BSA-YE medium had similar repressing effect on STP1 and SAP2 

expression (results obtained with SD medium are not shown). These findings suggested that 

nitrogen catabolite repression of SAP2 might be mediated at least in part through the regula-

tion of STP1 expression by the GATA transcription factors Gln3p and Gat1p. In such a 

scenario, forced expression of STP1 should overcome SAP2 repression by preferred nitrogen 

sources. This possibility was investigated by monitoring BSA degradation and Sap2p 

expression during growth of the wild-type strain SC5314 and gln3Δ gat1Δ strains expressing 

wild-type or constitutively active forms of STP1 in YCB-BSA-YE in the absence or presence 

of high ammonium levels. As can be seen in Fig. 39, ammonium suppressed Sap2p 

expression and BSA degradation by the wild-type strain SC5314, regardless of the presence 

or absence of doxycycline (Fig. 39, lanes 1 to 4). In contrast, gln3Δ gat1Δ strains expressing 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 39. Nitrogen catabolite repression of SAP2 is mediated by Gln3p and Gat1p-dependent control of STP1
expression. The wild-type strain (SC5314), and transformants of the gln3Δ gat1Δ double mutants expressing
full-length STP1 (strains Δgln3Δgat1TET1-STP1A/B) or the constitutively active STP1ΔN61 allele (strains
Δgln3Δgat1TET1-STP1ΔΝ61A/B) from the Tet promoter were grown for 27 h at 30°C in YCB-BSA-YE in the
presence (+) or absence (-) of doxycycline (50 µg/ml) and ammonium (100 mM) as indicated. The culture
supernatants were analysed by SDS-PAGE (top) and by Western immunoblotting with an anti Sap2p-antibody
(bottom). Uninoculated growth medium was used as a control. M, molecular size marker. The two
independently constructed series of transformants behaved identically and only one of them is shown. 
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STP1 or STPΔN61 from the Tet-inducible promoter degraded the BSA and expressed Sap2p 

even in the presence of ammonium (Fig. 39, lanes 5 to 8). This result demonstrated that forced 

STP1 expression overcomes the repressive effect of ammonium on Sap2p secretion, and thus 

STP1 expression levels play a decisive role in nitrogen catabolite repression of SAP2. 
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5 Discussion 

5.1 Mutational analysis of Mep2p  

Microorganisms sense the availability of nutrients in the environment to induce the expression 

of genes whose encoded products are required for uptake and utilization of these nutrients 

(Forsberg & Ljungdahl, 2001; Holsbeeks et al., 2004). In many cases, membrane proteins that 

are related to transporters which mediate the uptake of the nutrient into the cell, but have lost 

their transport function, serve as extracellular nutrient sensors and activate signaling pathways 

to induce a cellular response e.g. glucose sensors Rgt2p and Snf3p, amino acid sensor Ssy1p 

in S. cerevisiae (Didion et al., 1998; Iraqui et al., 1999; Klasson et al., 1999; Özcan et al., 

1996). However, there are few examples in which the transporters themselves also have a 

sensing and signaling function such as the general amino acid permease Gap1p and the 

phosphate permeases Pho84p and Pho87p in S. cerevisiae (Donaton et al., 2003; Giots et al., 

2003; Lorenz & Heitman, 1998). The yeast ammonium permease Mep2p and functionally 

related proteins from other fungi, which mediate uptake of ammonium into the cell, are also 

believed to be signaling proteins that sense ammonium in the environment and, as a response, 

activate signal transduction pathways to induce developmental processes in these organisms 

(Biswas & Morschhäuser, 2005; Javelle et al., 2003b; Lorenz & Heitman, 1998; Rutherford et 

al., 2008b; Smith et al., 2003; Teichert et al., 2008). It is presently unknown how exactly 

ammonium controls signaling activity of the ammonium permeases, and what are the 

important structural features that link signaling of ammonium permeases to ammonium 

availability. An N-terminal domain has been implicated in the signaling function of Mep2p in 

S. cerevisiae (Lorenz & Heitman, 1998), and the C-terminal cytoplasmic tail of C. albicans 

Mep2p was shown to contain a specific signaling domain that is required for the induction of 

filamentation, but  dispensable for ammonium uptake (Biswas & Morschhäuser, 2005). A 

signaling function of the C-terminal cytoplasmic tail has also been shown for bacterial 

ammonium permeases. AmtB of E. coli and Rhodobacter capsulatus bind via their C-terminal 

tail to the PII protein GlnK, which controls ammonium uptake and, in R. capsulatus 

nitrogenase activity (Javelle & Merrick, 2005; Tremblay & Hallenbeck, 2008). 

In the present work, the C-terminal signaling domain of C. albicans Mep2p was 

delimited by generating progressive truncated versions of the protein and assessing the ability 

of the mutated Mep2p to induce filamentous growth. This analysis demonstrated that the C-

terminal 47 amino acids of CaMep2p are dispensable for nitrogen starvation-induced 
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filamentation and that Y433 is the last amino acid that is required for signaling. A hybrid 

protein in which the region between amino acid 419 to 435 of Mep2p was replaced by the 

corresponding region from Mep1p was unable to induce filamentation, demonstrating that one 

or more of the eight amino acids in which the two proteins differ in this region are essential 

for the signaling function of Mep2p. It is possible that other residues in this region which are 

present in both Mep1p and Mep2p are also part of the signaling domain. Previously, Mep1p 

was shown to induce a low level of filamentation when overexpressed from the MEP2 

promoter, suggesting  that specific contacts of the C-terminal tail with the remainder of the 

protein also govern the signaling capacity of the ammonium permeases (Biswas & 

Morschhäuser, 2005). This was further supported by the observation that ammonium 

permeases from other fungi can also restore pseudohyphal growth in S. cerevisiae mep2Δ 

mutants (Javelle et al., 2003a; 2003b; Smith et al., 2003; Teichert et al., 2008). Therefore, it is 

likely that signaling competence of an ammonium permease does not depend only on univer-

sally conserved amino acid residues but also on specific interactions within each individual 

protein. It is likely that all these ammonium permeases act similarly on the same signal 

transduction pathway to induce pseudohyphal growth when expressed in S. cerevisiae. 

However, an understanding of how signaling is achieved by ammonium permeases requires 

identification of the interaction partners of these proteins, which are currently not known in 

any of these organisms. Recently, a different model was proposed to explain how Mep2p 

regulates filamentous growth in S. cerevisiae (Boeckstaens et al., 2008). It was shown that 

ScMep1p and ScMep2p have different pH optima and therefore the two proteins may differ in 

the mechanism of ammonium transport. Transport by Mep2p would involve a deprotonation 

step, whereas transport by Mep1p would not, resulting in opposite effects on internal pH 

variations, and it was suggested that Mep2p regulates filamentous growth indirectly by 

influencing pH. In C. albicans such a model of indirect control of filamentation by Mep2p via 

pH regulation is difficult to reconcile with the finding that the C-terminal cytoplasmic tail of 

Mep2p contains a domain that is dispensable for ammonium transport but essential for 

signaling, as it seems unlikely that removal of the cytoplasmic tail would affect the 

deprotonation step at the extracellular gate and alter the mechanism of ammonium transport 

through the channel. 

In an attempt to elucidate how exactly ammonium availability and transport controls the 

signaling activity of Mep2p, mutational analysis of the protein was done. Signaling is 

hypothesized to occur either when Mep2p is engaged in ammonium transport or in absence of 

ammonium transport. In S. cerevisiae, there are several lines of evidence that suggest that the 
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signaling activity of Mep2p depends on its ammonium transport activity. Amino acid 

substitutions that blocked the transport activity of Mep2p abolished pseudohyphal growth and 

a mutation that result in increased transport activity also enhanced pseudohyphae formation 

(Boeckstaens et al., 2007; Marini et al., 2006; Rutherford et al., 2008a). Therefore, the model 

proposed was that ammonium transport by ScMep2p is required for its sensor role in the 

induction of pseudohyphal growth. Since filamentous growth of C. albicans is repressed at 

higher ammonium concentrations, even while Mep2p is still expressed, an alternative model 

was suggested to explain how signaling activity of Mep2p might be regulated. In this model, 

Mep2p would induce filamentous growth as long as ammonium is absent or present at low 

concentrations, i.e., when most Mep2p proteins in the cell membrane are not engaged in 

ammonium transport. At higher ammonium concentrations the transport activity of Mep2p 

would be increased, which in turn would inhibit its signaling activity and explain why 

C. albicans continues to grow in the budding yeast form instead of switching to filamentous 

growth under these conditions. Therefore, ammonium would not induce but inhibit the 

signaling activity of the ammonium sensor Mep2p (Biswas & Morschhäuser, 2005). Such a 

model would be supported by the identification of transport-deficient Mep2p proteins that are 

still able to induce filamentous growth. Therefore, several conserved amino acid residues in 

CaMep2p were mutated in this study, which from structural and functional analyses of 

ammonium permeases of other organisms were supposed to be required for ammonium trans-

port and ability of the mutated proteins to mediate ammonium uptake and filamentous growth 

in C. albicans was tested. 

Mutation of several amino acid residues (D180, H188, and H342) abolished expression 

of Mep2p, indicating that these amino acids are important for the stability of the protein. The 

negatively charged aspartate at D160 of AmtB of E. coli  had been proposed to function as an 

initial binding site for the positively charged ammonium ion (Thomas et al., 2000) and its 

mutation to alanine resulted in complete loss of transport activity, despite wild-type 

expression levels (Javelle et al., 2004). However, substitution of equivalent residue D180 to 

leucine in CaMep2p resulted in abolishment of expression of the mutated Mep2p. A similar 

mutation in Mep2p of S. cerevisiae (D186A) resulted in stacking of the protein in the 

endoplasmic reticulum, but  a D186N substitution allowed normal expression of the protein 

and abolished ammonium transport and Mep2p-dependent pseudohyphal growth (Marini et 

al., 2006). Therefore, D180 was also changed to asparagine in Mep2p of C. albicans in order 

to explore if this substitution would similarly affect ammonium transport and signaling. In 

this case as well, no expression of the mutated protein could be detected. Therefore, no 
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specific function could be assigned to D180 apart from its importance in protein stability. 

Similarly, mutated Mep2p proteins in which the highly conserved histidines H188 and H342 

were changed to alanine could also not be detected in the cell membrane. In contrast, mutation 

of the analogous residues in AmtB of E. coli (H168 and H318) or R. capsulatus (H193 and 

H342) allowed normal expression of the proteins, but abolished ammonium transport (Javelle 

et al., 2006; Tremblay & Hallenbeck, 2008). In the same way, alanine substituted variants of 

corresponding residues (H194 and H348) in Mep2p of S. cerevisiae were normally expressed 

and localized at cell membrane, but while H194A mutant protein was ammonium transport 

deficient (i.e., did not restore growth of mep1Δ mep2Δ mep3Δ mutants at low ammonium 

concentrations), Mep2H342A variant was transport proficient (Rutherford et al., 2008a). 

Therefore, Mep2p of C. albicans seems to be more sensitive to mutations in these highly 

conserved amino acid residues than ammonium permeases from other organisms, which are 

still normally expressed. 

Mutation of four other residues (Y122, F126, W167, S243), which have been predicted 

to participate in the recruitment and coordination of the ammonium ion (Khademi et al., 2004; 

Knepper & Agre, 2004), allowed functional expression of Mep2p. An S243A substitution did 

not affect localization and functions of Mep2p i.e., ammonium transport and signaling by the 

Mep2S243A protein is comparable to that of wild type Mep2p. However, mutation of equivalent 

residue in AmtB of E. coli (S219A) resulted in increased methylammonium transport (four 

times) without much influence on the expression levels of the protein (Javelle et al., 2008). 

Substitution of alanine for Y122, F126, and W167 also allowed expression of the mutated 

ammonium permeases in the cytoplasmic membrane, although at strongly reduced levels, and 

it affected ammonium transport to different degrees. Mutational studies on these three 

residues have been done in other organisms. A Y133I mutation in Amt1;1 from Lycopersicon 

esculentum resulted in decreased methylammonium transport despite normal expression levels 

and cellular localization (Mayer et al., 2006). We found that mutation of the corresponding 

residue Y122 in CaMep2p also decreased ammonium uptake but expression levels of the 

mutated protein were also reduced (20% of wild-type levels). An F131A mutation in AmtB of 

R. capsulatus completely abolished ammonium transport, although the protein was normally 

expressed and localized to the membrane (Tremblay & Hallenbeck, 2008). In contrast, an 

analogous F126A substitution still allowed some ammonium transport by CaMep2p. A 

W178L substitution in LeAmt1;1 (corresponding to W167 of CaMep2p) also decreased 

ammonium transport despite normal expression levels and localization of the protein (Mayer 

et al., 2006). On the contrary, an analogous W148L mutation in AmtB of E. coli even 
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increased ammonium flux (Fong et al., 2007). Minor effect of the W167A mutation on 

ammonium transport was observed for CaMep2p, which may be explained by the reduced 

expression levels of the mutated protein. A F239A mutation in CaMep2p resulted in a 

transport deficient protein which was localized to the membrane, this effect is similar to what 

was observed for mutation of its equivalent residue (F215) in E. coli AmtB (Javelle et al., 

2008). Collectively, these results illustrate that the relative significance of different amino 

acid residues for the function of ammonium permeases may vary between different 

organisms. As shown in the present study, several residues that can be mutated in other 

ammonium permeases without affecting their expression and localization seem to be 

indispensable for the stability of Mep2p in C. albicans.  

It was previously demonstrated that the transport and signaling functions of C. albicans 

Mep2p can be separated (Biswas & Morschhäuser, 2005). However, so far this conclusion 

was based on mutated proteins lacking the C-terminal cytoplasmic tail, which contains (part 

of) the signaling domain. Contrastingly, W167 is located in an extracytoplasmic loop of 

Mep2p and its mutation abolished its ability to induce filamentous growth, although it had 

only a minor effect on ammonium transport. This finding demonstrates that alterations in the 

extracellular portion of Mep2p can affect intracellular signaling without influencing the 

transport activity of the protein. In S. cerevisiae experimental evidence suggest that 

ammonium transport through Mep2p is required for its signaling activity. D186N and H194A 

mutations in ScMep2p abolished both ammonium transport and pseudohyphal growth, despite 

normal localization of the proteins (Marini et al., 2006; Rutherford et al., 2008a). Conversely, 

a G349C mutation in ScMep2p resulted in increased ammonium transport and concomitantly 

enhanced pseudohyphal growth (Boeckstaens et al., 2007). On the other hand, a H194E 

mutation in ScMep2p abolished pseudohyphal growth despite the fact that ammonium 

transport by the mutated protein was increased (Boeckstaens et al., 2008), and a H348A 

mutation despite being transport proficient abolished pseudohyphal growth (Rutherford et al., 

2008a). In the present work a mutated CaMep2p protein was generated that was defective for 

ammonium transport despite normal localization. Mutation of F239 abolished both 

ammonium uptake and induction of filamentous growth by Mep2p in C. albicans, supporting 

the model that signaling by Mep2p depends on ammonium transport. However, results of the 

present study indicate that the effect of mutations on signaling may also be caused by an 

alteration of protein structure and not necessarily be due to altered ammonium transport, as 

exemplified by the W167A mutation which abolished signaling without having a strong effect 

on ammonium transport. Contrastingly, the Y122A mutation had a stronger impact on 
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ammonium transport than the W167A mutation, but nevertheless, hardly influenced Mep2p-

dependent filamentous growth. Therefore, a definite conclusion about how ammonium 

transport affects signaling by Mep2p can not be drawn from mutational analyses alone. 

Apart from the effect of ammonium on the signaling activity of Mep2p, there are differ-

ences in the regulation of filamentous growth by ammonium availability in C. albicans and 

S. cerevisiae. Dominant-active RAS1 or GPA2 alleles, which activate the cAMP-PKA 

signaling pathway, or the addition of exogenous cAMP can bypass the requirement of MEP2 

for filamentous growth in response to limiting nitrogen concentrations in both C. albicans and 

S. cerevisiae. However, increased ammonium concentrations suppress morphogenesis in 

C. albicans strains expressing dominant-active RAS1 or GPA2 alleles or in the presence of 

exogenous cAMP, indicating that ammonium or its metabolic products inhibit filamentation 

downstream of these regulators (Biswas & Morschhäuser, 2005). In contrast, dominant-active 

RAS1 or GPA2 alleles or exogenous cAMP stimulate pseudohyphal growth even at high 

ammonium concentrations in S. cerevisiae (Lorenz & Heitman, 1998). Additionally, forced 

overexpression of MEP2 from a galactose-inducible promoter induced pseudohyphal growth 

also under nitrogen-replete conditions, demonstrating that ammonium limitation per se is not 

required for the induction of the ammonium-responsive dimorphic switch in S. cerevisiae 

(Rutherford et al., 2008a). On the contrary, filamentous growth was suppressed in C. albicans 

cells containing the hyperactive MEP2ΔC440 allele at increased ammonium concentrations 

(10 mM) at which MEP2 is still expressed (Biswas & Morschhäuser, 2005), and the same was 

found when wild-type or the hyperactive MEP2ΔC440 allele was expressed from the 

constitutively active ADH1 promoter (data not shown). Therefore, the control of 

morphogenesis by nitrogen availability differs between C. albicans and S. cerevisiae, and 

these species-specific differences may well extend to the control of Mep2p signaling activity 

itself. 

 

 

5.2 The GATA transcription factors Gln3p and Gat1p control MEP2 

expression and filamentous growth 

The specific role of Mep2p in nitrogen starvation-induced filamentous growth is due, at least 

in part, to its higher expression levels in comparison to Mep1p. Lowering MEP2 expression 

levels, when expressed from the MEP1 promoter, resulted in loss of ability to induce 

filamentous growth (Biswas & Morschhäuser, 2005). The filamentous growth defect of 
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strains expressing MEP2 from the MEP1 promoter in a mep1Δ mep2Δ background was not 

caused simply by the slower growth of these strains on SLAD plates due to inefficient 

ammonium uptake, since the defect was also observed when the PMEP1-MEP2 fusion was 

expressed in mep2Δ single mutants, which can grow at wild-type rates because of the 

presence of an intact MEP1 allele (K. Biswas and J. Morschhäuser, unpublished results). A 

correlation between filamentous growth and Mep2p expression levels was also found in the 

present study when MEP2 was expressed from mutated MEP2 promoters with different levels 

of activity. Strains in which Mep2p expression levels were reduced by 50% showed normal 

filamentous growth, whereas those with strongly reduced Mep2p expression levels (circa 8 

fold) were severely affected in the ability to produce filaments under nitrogen limiting 

conditions. Obviously, expressing Mep2p at appropriate levels is a prerequisite for 

C. albicans to be able to induce the switch from yeast to filamentous growth in response to 

nitrogen starvation. Hence, knowledge of regulators that control MEP2 expression is 

necessary. In C. albicans MEP2 expression, like its counterpart in S. cerevisiae is subject to 

nitrogen control i.e., enhanced MEP2 expression levels under limiting nitrogen conditions 

(Biswas & Morschhäuser, 2005; Marini et al., 1997). Typical for a nitrogen regulated gene 

the upstream regulatory region of MEP2 possesses several 5’-GATA-3’ sequences. In this 

study two putative GATA factor binding sites in the MEP2 promoter were found to be 

essential for upregulation of MEP2 under limiting nitrogen conditions. While mutation of the 

GATAA sequence centered at position -208 alone had no significant effect, the same mutation 

almost completely abolished MEP2 expression when combined with a mutation of the 

GATAA sequence centered at position -266, which by itself already reduced MEP2 

expression very strongly. Since a single GATAA sequence is essential, but not adequate for 

nitrogen regulation in S. cerevisiae (Magasanik & Kaiser, 2002), it is possible that in the 

absence of the GATAA sequence at -208 (as in pMEP2MP1), one of the (dispensable) 

GATAA sequences located further upstream or other regulatory sequences can act in concert 

with the more important GATAA sequence at -266. Importance of the two GATAA sites in 

the induction of MEP2 expression suggested that members of GATA transcription factor 

family might be involved in the regulation of MEP2 expression under limiting nitrogen 

conditions.  

In S. cerevisiae, the GATA transcription factors Gln3p and Gat1p promote high-level 

expression of MEP2, but the contribution of each factor depends on the available nitrogen 

source (Marini et al., 1997). Under nitrogen limiting conditions, when nitrogen sources were 

used at concentrations of 100 μM, MEP2 expression was induced in C. albicans regardless of 
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the nature of the nitrogen source (Biswas & Morschhäuser, 2005). In the present work MEP2 

expression levels were quantified using the same concentrations as stated above and it was 

found that Gln3p and Gat1p both are required for full MEP2 expression in C. albicans. 

Strains lacking either GLN3 or GAT1 had strongly reduced MEP2 expression under all 

conditions tested and no MEP2 expression was detected in the absence of both transcription 

factors. Liao et al., (2008) reported that when using nitrogen source at a concentration of 10 

mM (in contrast to 100 μM used in this study), MEP2 expression become dependent on the 

quality of nitrogen source, low expression in presence of glutamine and enhanced expression 

levels in proline medium. The authors also suggested that Gln3p and Gat1p can regulate 

MEP2 expression independent of the nature of nitrogen source, which is in agreement with 

present results, and added that alternate factors may control MEP2 expression in regard to 

nitrogen quality. In the case of regulation of MEP1 expression, Gln3p was required for 

activation of transcription; unexpectedly Gat1p was found to have a negative effect on Mep1 

expression levels under all tested conditions. These results demonstrated that relative 

contribution of Gln3p and Gat1p on transcription depends on their target gene. 

C. albicans strains deleted for GLN3 were also severely impaired for filamentous 

growth under nitrogen starvation conditions, a phenotype that correlated well with the reduced 

MEP2 expression levels in these mutants. Therefore, the inability of the gln3Δ mutants to 

induce MEP2 expression at appropriate levels may be responsible for their filamentation 

defect. In fact, when a MEP2 copy was expressed from the ADH1 promoter in the gln3Δ 

mutants, filamentation was partially restored, and forced overexpression of a hyperactive 

MEP2 allele completely rescued the filamentation defect of the gln3Δ mutants and resulted in 

a hyperfilamentous phenotype, as in a wild-type background. S. cerevisiae gln3Δ mutants are 

also defective in pseudohyphal differentiation, but expression of MEP2 from a heterologous, 

inducible promoter did not restore filamentation, indicating that Gln3p has additional targets 

that are critical for regulation of pseudohyphal growth (Lorenz & Heitman, 1998). Although 

results of the present study do not exclude the possibility that in C. albicans Gln3p also has 

other targets in addition to MEP2 that are normally required for the induction of filamentous 

growth in response to nitrogen starvation, the expression of the hyperactive MEP2 allele 

bypasses the need to activate these pathways. A similar observation was made in previous 

study which demonstrated that expression of the hyperactive MEP2 allele from its own 

promoter overcame the filamentation defect of cph1Δ and efg1Δ single mutants, but not that 

of cph1Δ efg1Δ double mutants, although both transcription factors, which are at the end of a 

MAP kinase cascade and a cAMP-dependent signaling pathway, respectively, are normally 
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required for nitrogen starvation-induced filamentous growth of C. albicans (Biswas & 

Morschhäuser, 2005).  

Surprisingly, the gat1Δ mutants, despite having similarly reduced MEP2 expression as 

the gln3Δ mutants, do not show a filamentation defect. It is possible that the reduced MEP2 

expression levels seen in both mutants are still sufficient to induce filamentation, but other 

target genes, which are also required for normal filamentous growth, are affected by 

inactivation of GLN3 but not GAT1. In fact, the expression levels of GFP-tagged Mep2p in 

the gln3Δ and gat1Δ mutants were still higher (roughly 2-fold) than those in strains 

expressing the MEP2-GFP fusion from the MEP1 promoter, which were not sufficient for 

filamentation (data not shown). Another possibility that could account for normal 

filamentation observed in gat1Δ mutants is that absence of the Gat1p transcription factor in 

C. albicans may activate filamentation inducing signaling pathways that do not require higher 

MEP2 expression levels or are even independent Mep2p. It was found that in contrast to the 

wild-type, filamentation in gat1Δ mutants has become partially independent of the presence of 

functional MEP2 gene as the mep2Δ gat1Δ mutants can filament on SLAD plates. Wild-type 

filamentation in the gat1Δ mutants still depends on Gln3p activity as gln3Δ gat1Δ double 

mutants exhibited the same strong filamentation defect as gln3Δ single mutants. Increase in 

expression levels of MEP1, when expressed from the MEP2 promoter is reported to confer 

Mep1p the ability to induce a weak filamentation (Biswas & Morschhäuser, 2005). However, 

the increased MEP1 expression levels observed in gat1Δ mutants (ca. 2.5 fold) and gat1Δ 

mep2Δ mutants  could not account for the activation of Mep2p independent pathways, since 

the gat1Δ mep2Δ mep1Δ triple mutant exhibit filaments under nitrogen limitation (Somisetty 

and Morschhäuser, personal communication). Future challenge is to elucidate the molecular 

mechanisms which induce filamentation under nitrogen limiting conditions in a Mep2p and 

Gat1p-independent manner.  

Results of this study show similarities and differences with those reported by Liao et al., 

(2008). In contrast to the findings presented here, they reported that filamentation phenotype 

of gln3Δ and gat1Δ null mutants differed in relation to nitrogen source. They found that 

filamentation of gln3Δ single and gln3Δ gat1Δ double mutants was only marginally reduced 

in medium containing glutamine and proline as nitrogen source, and gat1Δ mutants were 

impaired in filamentation on ammonium and urea. These differences were attributed to the 

variation of the nitrogen limiting conditions, nitrogen sources were used at a concentration of 

1mM in those studies versus 100 μM in the present study, differences in experimental 

procedures or possibly to the genetic backgrounds of the strains (Liao et al., 2008). They 
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proposed that in addition to reduced Mep2p expression levels, the hyphal defect of gln3Δ 

mutants may also be due to defect in ammonium assimilation since non-filamentous 

phenotype of gln3Δ mutants was observed only on ammonium and urea (which is degraded to 

ammonium and then assimilated in similar manner), and expression of GDH3, encoding 

NADP-dependent glutamate dehydrogenase, a key enzyme of ammonium assimilation, was 

greatly reduced in GLN3 null mutants. However, this line of reasoning failed to explain the 

notable reduction in filamentation of gat1Δ mutants observed by them on ammonium and 

urea since GDH3 expression was unaltered in these strains (Liao et al., 2008).  

The present work demonstrated that by placing MEP1 and MEP2 under the control of 

the GATA transcription factors Gln3p and Gat1p, C. albicans ensures that these ammonium 

permeases are expressed only when the preferred nitrogen source ammonium is present at low 

concentrations or absent. The signaling activity of Mep2p then also induces morphogenesis, 

allowing the fungus to fine tune its growth mode according to environmental conditions. 

 

 

5.3 A transcription factor regulatory cascade controls secreted aspartic 

protease expression in C. albicans 

The ability to utilize proteins as a nitrogen source, which is conferred by the secreted aspartic 

protease Sap2p, is important for growth of C. albicans under both in vitro and in vivo 

conditions. Besides being growth defective in YCB-BSA medium, which contains the protein 

bovine serum albumin (BSA) as the sole nitrogen source, the sap2Δ mutants also exhibit 

reduced virulence in animal model of candidiasis (De Bernardis et al., 1999; Hube et al., 

1997; Staib et al., 2002). However, the molecular mechanisms involved in regulating the 

expression of SAP2 are poorly understood. The present study illustrated that GATA 

transcription factors Gln3p and Gat1p control expression of SAP2. Limjindaporn et al., (2003) 

already reported that in preliminary experiments a gat1Δ mutant was deficient in the 

utilization of BSA as a nitrogen source. This observation was confirmed and extended further 

by the findings in the present work that growth of gat1Δ mutants in YCB-BSA medium was 

strongly delayed, although the mutants eventually reached the same optical density as the 

wild-type after several days of growth, while mutants lacking both GLN3 and GAT1 failed to 

grow in this medium. The limiting factor responsible for the growth defect of  gln3Δ gat1Δ 

double mutants was the abolishment of Sap2p expression, whereas Sap2p production was still 
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observed in either of the single mutants. Therefore, both Gln3p and Gat1p contribute to SAP2 

expression, although Gat1p clearly plays a more prominent role than Gln3p. 

The induction of SAP2 expression in the presence of proteins and its repression by suffi-

cient amounts of a preferred nitrogen source, like ammonium or amino acids in high 

concentrations, has been known for many years (Banerjee et al., 1991; Hube et al., 1994; 

Ross et al., 1990). However, insights into molecular basis of SAP2 regulation were missing. 

Initial reports have proposed that peptides which are produced from proteins by basal 

extracellular proteolytic activity serve as the inducers of SAP2 expression (Hube et al., 1994; 

Lerner & Goldman, 1993). However, recently it was suggested that micromolar 

concentrations of amino acids, which may also be produced during the degradation of 

extracellular proteins and signal the availability of proteins, are the actual inducers of SAP2 

(Martinez & Ljungdahl, 2005). Extracellular amino acids are sensed at the cell surface by the 

SPS sensor, which then induces the proteolytic activation of two latent transcription factors 

Stp1p and Stp2p. The activated transcription factors are targeted to the nucleus where each of 

these factors has a specific subset of target genes. While Stp2p induces the expression of 

genes involved in amino acid uptake, Stp1p activates genes that are required for the utilization 

of proteins as a nitrogen source, the secreted aspartic protease SAP2 and the oligopeptide 

transporters OPT1 and OPT3. Stp1p is essential for SAP2 and OPT1 expression (OPT3 is also 

induced by Stp2p) and stp1Δ mutants can not grow on protein as the sole nitrogen source. 

Conversely, cells expressing a truncated, constitutively active STP1 allele, which lacks the N 

terminal inhibitory domain, do not need an inducer and express SAP2 and OPT1 even in the 

absence of proteins. In the presence of high (millimolar) concentrations of amino acids, 

Stp1p, but not Stp2p levels are downregulated, thereby ensuring that amino acid permeases 

are adequately expressed while the expression of enzymes and transporters required for the 

utilization of proteins is shut off. As Stp1p was readily detected in the presence of high 

concentrations of ammonium, Martinez and Ljungdahl concluded that steady-state levels of 

Stp1p are affected by amino acid availability, but not by the overall nitrogen status of the cell 

(Martinez & Ljungdahl, 2005). However, Stp1p levels in media containing high and low 

ammonium levels were not compared by them. Results from the present study clearly 

demonstrated that STP1 expression is downregulated at high concentrations of ammonium or 

other nitrogen sources, like amino acids and urea, which may at least partially explain the 

repression of SAP2 expression when sufficient amounts of preferred nitrogen sources are 

available.  
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In this work a link between the two types of transcription factors that are essential for 

SAP2 expression and growth of C. albicans on proteins, the general regulators Gln3p and 

Gat1p and the specific regulator Stp1p, is provided. In Fig. 40, the schematic representation 

describes how both the positive and negative control of SAP2 expression is achieved. When 

preferred nitrogen sources like ammonium become limiting, Gln3p and Gat1p increase 

expression of STP1, which seems to be a prerequisite for SAP2 expression. However, nitrogen 

starvation alone is not sufficient and SAP2 induction still needs a positive signal, which is 

provided by the presence of low concentrations of amino acids that result in the proteolytic 

activation of Stp1p. Conversely, even in the presence of proteins (inducing signal) SAP2 

expression is repressed when sufficient amounts of preferred nitrogen sources are available, 

because under these conditions STP1 expression is down-regulated to levels that may not be 

adequate for SAP2 expression. It is not clear whether the observed twofold down-regulation 

of STP1 is sufficient to abolish SAP2 expression, and it is well possible that Gln3p and Gat1p 

also directly activate SAP2 or control other genes that contribute to SAP2 expression. 

However, such an additional effect of Gln3p and Gat1p on SAP2 expression would be 

insufficient, as stp1Δ mutants do not detectably express SAP2 and are unable to grow in YCB-

BSA medium. In contrast, forced expression of STP1 from the Tet-inducible promoter 

relieved SAP2 expression from its dependence on Gln3p and Gat1p, demonstrating that the 

control of STP1 expression levels is a central aspect in the regulation of SAP2 and in the 

decision on whether to use available proteins as a nitrogen source. 
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Fig. 40. Schematic explaining the regulation of SAP2 expression by the transcription factors Stp1p, Gln3p, and 

Gat1p. Unshaded block arrows and spheres symbolize genes and proteins, respectively, in their inactive state. 

The activated state is indicated by the green shading. An increase in Stp1p levels is indicated by two 

corresponding spheres instead of only one. 

 (A) Under nitrogen replete conditions (in this model represented by high NH4
+), the GATA factors Gln3p and 

Gat1p have only basal activity and STP1 is expressed at low levels. In the absence of proteins, Stp1p is not 

activated by the SPS sensor and SAP2 is not expressed.  

(B) Under nitrogen limiting conditions, Gln3p and Gat1p are activated and induce expression of their target 

genes, including STP1. However, the absence of proteins prevents activation of Stp1p by the SPS sensor and 

SAP2 is not expressed. 

(C) When proteins are the only available nitrogen source, Gln3p and Gat1p ensure high STP1 expression levels. 

Micromolar concentrations of amino acids generated by basal proteolytic activity induce the SPS sensor to 

activate Stp1p, which in turn induces SAP2 expression. 

(D) When both proteins and sufficient concentrations of a preferred nitrogen source, like ammonium, are 

available, Gln3p and Gat1p are not activated and STP1 expression levels remain low. Stp1p may still be 

activated by the SPS sensor under these conditions, but this is not sufficient to allow SAP2 expression. 

Additional possible regulatory mechanisms, e.g., direct regulation of SAP2 by Gln3p and Gat1p or the 

contribution of other regulators, are not depicted in this model. 
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As discussed in section 5.2, the GATA transcription factor, Gln3p also controls nitrogen 

starvation-induced filamentous growth of C. albicans by regulating expression of MEP2. The 

filamentous growth defect of gln3Δ mutants can be overcome by forced overexpression of 

MEP2 and the requirement of MEP2 can be bypassed by dominant-active RAS1G13V or 

GPA2Q354L alleles (Biswas & Morschhäuser, 2005). However, high concentrations of 

ammonium still suppress filamentous growth in cells expressing hyperactive RAS1 or GPA2, 

demonstrating that ammonium can also act downstream of these regulators. In contrast, 

ammonium could not inhibit SAP2 expression in strains expressing STP1 from a tetracycline-

inducible promoter, lending further support to the idea that the regulation of STP1 expression 

is a decisive factor in the control of SAP2 expression. Therefore, by using a regulatory 

cascade in which the general regulators Gln3p and Gat1p control the expression of the 

specific transcription factor Stp1p, which in turn mediates SAP2 expression, C. albicans 

places SAP2 expression under nitrogen control and ensures proper expression of this long-

known virulence determinant.  

Direct experimental evidences exhibiting the requirement of GATA factors in virulence 

of C. albicans were provided by Limjindaporn et al., (2003) and Liao et al., (2007). In a 

mouse model of disseminated candidiasis, the gln3Δ mutant showed significantly reduced 

virulence, but a gat1Δ mutant was avirulent. Differences in virulence phenotypes of mutants 

indicate that each factor makes distinct contributions to the ability of C. albicans to survive in 

its host. It is likely that Gln3p and Gat1p may each independently or redundantly activate a 

subset of genes involved in virulence, and Gat1p regulated genes have a more critical role. 

Thus nitrogen regulation by GATA factors is central to the pathogenicity of C. albicans. 

 

 

Conclusions and future directions 

The present study provides valuable insights into how the GATA transcription factors, Gln3p 

and Gat1p, control nitrogen regulated virulence traits of C. albicans. These factors exhibit 

partially overlapping, but distinct roles in regulating the expression of those genes that help C. 

albicans to deal with different nitrogen environmental conditions. This is supported by the 

findings that under nitrogen limiting conditions both GATA factors control Mep2p expression 

levels and Gln3p is also an important regulator of this filamentous growth. Gln3p and Gat1p 

also enable growth of C. albicans on proteins by being part of a regulatory cascade that 

governs expression of SAP2 and Gat1p has a prominent role in regulating Sap2p expression 

levels. Hence, the relative contributions of Gln3p and Gat1p vary with their target genes and 
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the availability of nitrogen source. A full appreciation of their role awaits a complete analysis 

of the gene targets and processes regulated by them.  

Further, mutational analysis of the morphogenetic regulatory ammonium permease 

Mep2p reveals residues that are required for ammonium transport and signaling. The 

molecular mechanisms by which Mep2p links ammonium availability to the induction of 

filamentous growth are yet to be identified. The identity of signaling partners that interact 

with Mep2p to activate the signal transduction pathways which induce hyphal development in 

response to nitrogen starvation is yet to be revealed.  
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