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Protein purification is the vital basis to study the function, structure and interaction of pro-
teins. Widely used methods are affinity chromatography-based purifications, which require
different chromatography columns and harsh conditions, such as acidic pH and/or adding
imidazole or high salt concentration, to elute and collect the purified proteins. Here we
established an easy and fast purification method for soluble proteins under mild condi-
tions, based on the light-induced protein dimerization system improved light-induced dimer
(iLID), which regulates protein binding and release with light. We utilize the biological mem-
brane, which can be easily separated by centrifugation, as the port to anchor the target
proteins. In Xenopus laevis oocyte and Escherichia coli, the blue light-sensitive part of iLID,
AsLOV2-SsrA, was targeted to the plasma membrane by different membrane anchors. The
other part of iLID, SspB, was fused with the protein of interest (POI) and expressed in the
cytosol. The SspB-POI can be captured to the membrane fraction through light-induced
binding to AsLOV2-SsrA and then released purely to fresh buffer in the dark after simple
centrifugation and washing. This method, named mem-iLID, is very flexible in scale and eco-
nomic. We demonstrate the quickly obtained yield of two pure and fully functional enzymes:
a DNA polymerase and a light-activated adenylyl cyclase. Furthermore, we also designed
a new SspB mutant for better dissociation and less interference with the POI, which could
potentially facilitate other optogenetic manipulations of protein–protein interaction.

Introduction
The purification of recombinant proteins has increased enormously in recent years with the intensive
demands of protein characterization and engineering. Popular purification techniques are based on pre-
cipitation with pH, salts, or temperature, ion exchange, hydrophobic chromatography or affinity chro-
matography. Because of the highly specific biorecognition, affinity chromatography is now widely used.
Affinity tags, either small peptides like FLAG, poly-His and c-myc or larger protein domains like CBP,
SBP, GST and protein G, are genetically fused to the target proteins and lead to specific binding to the
desired ligand [1]. The bound tag–ligand pairs can be then detached by changing ion concentration or
adding other competitive molecules to release the purified protein.

Over the years, column-free protein purification has been proposed and utilized, based on aggregating
tags. Npro is a highly hydrophobic protein with 168 residues [2], which has been used as an aggregating tag
to increase the expression level of target protein in the form of inclusion body. Some short self-assembling
peptide tags such as ELK16, L6KD and GFIL8 [3] and protein tags like CipA [4] can also induce protein
aggregates. Unlike conventional inclusion bodies, these proteins are highly active. ELP and BRT17 [5],
tag-based strategies have also been used to co-express target proteins in the soluble fraction which aggre-
gate in vitro, mediated by (NH4)2SO4 and CaCl2 for protein separation. Non-chromatographic purifica-
tion based on aggregating tags reduces the purification processes and the experimental costs at laboratory
scale. However, the self-cleaving inteins such as �I-CM, DnaE and DnaB should be co-expressed with
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aggregating tags for self-cleaving, induced by pH shift and/or temperature changes to remove the aggregating tags
and restore the target proteins to the soluble phase [4,5].

Light-gated protein dimerization systems have been developed and applied in the optogenetics field [6–8]. Op-
togenetics is a rapid, reversible and non-invasive technique that controls protein function and thus cell physiology
with light, developed and widely used after the discovery of channelrhodopsin [9,10]. Light-induced protein dimer-
ization systems were developed from natural photoreceptors like cryptochrome [11], LOV (light, oxygen, or voltage)
domain-containing photoreceptors [12,13], and phytochrome [14] etc.

The Cry2/CIB1 pair is developed from plant photoreceptor cryptochrome 2 (Cry2) which shows blue light-induced
dimerization with CIB1. The Cry2/CIB1 system has been used for optogenetic control of protein activity and translo-
cation [15–17]. It is noted that Cry2 oligomerizes into large clusters under blue light in addition to associating with
CIB1 [18]. This character has been applied to optogenetic control of phase transitions [19] but could be a drawback
for applications that require precise stoichiometry. Another dimerization pair—PhyB/PIF—is also developed from a
natural plant photoreceptor [20]. The red-light photoreceptor phytochrome B (PhyB) could be activated by red light
to interact with PIF and dissociate when exposed to far-red light.

The improved light-induced dimer (iLID) [13] utilizes the LOV2 domain of phototropin 1 from Avena sativa
(As) as the photoactive element and incorporates a naturally binding pair from Escherichia coli: seven amino acids
of SsrA peptide and its binding partner SspB, a 13-kDa adaptor protein [21]. In the dark, the SsrA peptide, fused
to AsLOV2, is sterically blocked from binding SspB. When illuminated with blue light, the C-terminal Jα helix of
the LOV2 domain undocks from the protein, allowing the SsrA peptide to bind SspB. The iLID system was used
for optogenetic manipulation of different cells by light-driven protein dimerization or protein localization to specific
subcellular domains [22,23]. Due to the high binding affinity of the heterodimer pair SsrA/SspB, the iLID system (with
the original SspB, SspB nano) showed undesirable dark activity, i.e. binding in the dark [22,24]. Thus, other optimized
iLIDs, such as iLID micro and iLID milli, were designed by point mutations in SspB to decrease the binding affinity
and to meet the requirements of different experimental purposes [25].

In Xenopus laevis oocytes, the blue light-sensitive part of iLID, AsLOV2-SsrA (LOV-A for short in the present
study), was targeted to the plasma membrane by the short membrane anchor Lyn11 [26]. The other part of iLID,
SspB, was fused with the protein of interest (POI) and expressed in the cytosol. The SspB-POI can be captured to the
membrane fraction through light-gated binding to LOV-A and then released purely to a fresh buffer in the dark after
simple centrifugation and washing.

In E. coli, the plasma membrane anchor was changed to helix1021 (H1021 for short in this manuscript) [27].
Furthermore, we also developed a new monomeric SspB mutant showing better dissociation rate and less interference
with the POI function. After characterization of the light-assisted purification method with YFP, we further applied
this method to purify the bacteria photo-activated adenylyl cyclase (bPAC) [28] and a DNA polymerase, proving a
fast and flexible protein purification process.

The mem-iLID method we developed is easy, economic and very flexible in scale. It will facilitate extensive protein
engineering and purification of proteins sensitive to harsh buffer conditions. Our newly engineered iLID pair could
also facilitate other optogenetic applications of light-gated protein interactions.

Results
Light-assisted protein purification based on iLID in Xenopus oocytes
We developed an in vitro system to test the binding efficiency of LOV-A (abbreviation for AsLOV2-SsrA in the
present study) and SspB, both expressed in Xenopus oocytes. We started using the SspB nano version that has a high
binding affinity with LOV-A (4.7 μM in the dark and 0.132 μM in the light) [13]. The LOV-A part was fused with
the membrane anchor Lyn11 (Lyn11-LOV-A) for membrane-targeted expression in the oocyte. The SspB nano part
was fused with YFP and expressed in the cytosol (Figure 1A). After 2 days of expression in the dark, 5 min low-speed
(500×g) centrifugation was applied to remove nuclei, mitochondria, and cell debris of homogenized oocytes. The
membrane fraction and soluble fraction were then separated by 1.5 min high-speed (15000×g) centrifugation. The
isolation process was performed in red light to keep LOV-A in the caged stage. The soluble fraction containing
YFP-SspB nano or SspB nano-YFP was mixed with the membrane fractions expressing Lyn11-LOV-A and placed
in the dark or under the blue light (470 nm, 100 μW/mm2) illumination (Figure 1A). After 30-min illumination, the
re-collected membrane fraction exhibited approximately six-fold YFP fluorescence increase, compared with that in
the dark (Figure 1B), indicating the binding of LOV-A and SspB nano in the light. We then exchanged the position of
LOV-A and SspB nano: SspB nano was anchored to the oocyte membrane by Lyn11 and LOV-A was fused with YFP
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Figure 1. Light-assisted protein purification based on iLID/SspB after Xenopus oocyte expression

(A) SspB (the original SspB, which is also called SspB nano) and iLID were fused with YFP and expressed as soluble fraction, or

fused with Lyn11 and expressed as membrane fraction, separately. The general purification process was shown in the schematic

diagram. The detailed protocol was described in the ‘Materials and methods’ part. (B) The amount of YFP-tagged proteins bound

to the membrane fractions after 30 min in the dark or blue light illumination. The red arrow indicated the corresponding step of the

tested samples. For each reaction, membrane fraction from 25 oocytes was mixed with soluble fraction containing a final 20 nM

YFP-tagged proteins in 300 μl buffer A. n=3, error bars = SEM, all individual data points are shown. (C) Illumination time-dependent

binding efficiency of Lyn11-LOV-A and YFP-SspB. Illumination was performed with blue light. Each reaction contained a soluble

fraction of 40 nM YFP-SspB and membrane fraction from 25 oocytes in 300 μl buffer A. n=3, error bars = SEM, all individual data

points are shown. (D) Time-dependent release efficiency of YFP-SspB from the membrane expressing Lyn11-LOV-A in the dark.

The binding was induced by 20 min blue light of (C). The blue arrow indicated the corresponding step of the tested samples. n=3,

error bars = SEM, all individual data points are shown.
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as a soluble protein, but this combination exhibited weak binding efficacy (Figure 1B). Therefore, YFP-SspB nano
and Lyn11-LOV-A were chosen for further study within the Xenopus oocyte system.

We next checked the time-dependent binding efficacy between YFP-SspB nano and Lyn11-LOV-A. Ten-minute
min illumination already induced the binding dramatically. Twenty-minute illumination increased the binding fur-
ther while longer times improved the binding efficacy moderately (Figure 1C). Whereas long-time blue light exposure
might lead to irreversible photochemical reactions of the LOV2 domain in the dark [29], we finally chose 20-min il-
lumination time considering both the binding efficacy and potential photo damage.

The time-dependent release of YFP-SspB nano from Lyn11-LOV-A was then tested in the dark. The membrane
fraction containing Lyn11-LOV-A and the bound YFP-SspB nano was washed and resuspended in fresh buffer, and
then placed in the dark for different times (Figure 1A). After 1.5 min high-speed (15000×g) centrifugation, the re-
leased YFP-sspB nano in the soluble fraction was collected and monitored by the YFP fluorescence. Thirty minutes
in the dark reached the maximum release, and 10 min in the dark released more than half of that (Figure 1D).

Our experiments showed successful light-controlled binding and release with iLID, when expressed in Xenopus
oocytes. As oocytes are a fast and convenient test system but not useful for large-scale production, we next tested
expression in E. coli.

Light-assisted protein purification after expression in E. coli
We changed the membrane anchor of LOV-A to the transmembrane helix1021 (H1021), a 38-amino acid portion of
the open reading frame sll1021 from the cyanobacterium Synechocystis sp. PCC6803, previously tested in E. coli
[27]. The YFP-SspB nano and H1021-LOV-A were separately inserted into the pET28b vector and transformed into
E. coli BL21(DE3). The soluble fraction and membrane fractions of E. coli were separated by centrifugation after
ultrasonic homogenization. For YFP-SspB nano-expressing E. coli, an expected band of 45 kDa from supernatant
was seen in the soluble fraction after 0.5 mM isopropyl-β-d-thiogalactopyranoside (IPTG) induction (Figure 2A),
whereas H1021-LOV-A protein was detected in both the membrane and soluble fraction of corresponding cells. The
size of 24 kDa confirmed the partial membrane targeting of H1021-LOV-A in E. coli (Figure 2A).

However, we found that the bound YFP-SspB nano is not released efficiently in the dark, due to the high dark affin-
ity and the increased protein content (100-times more than in the Xenopus oocyte system) (Figures 1B and 2B,C).
For SspB, two other variants were published: SspB micro (binding affinity 47 μM in the dark and 0.8 μM in the light)
and SspB milli (binding affinity > 1 mM in the dark and 56 μM in the light) [25]. We then tested the SspB micro
and SspB milli after expression in E. coli BL21(DE3). The binding ability of YFP-SspB nano/H1021-LOV-A,
YFP-SspB micro/H1021-LOV-A and YFP-SspB milli/H1021-LOV-A in the light and dark were compared (Figure
2B). Different amounts of YFP-SspB were mixed with the extracted H1021-LOV-A-expressing E. coli membrane. As
shown in Figure 2B, SspB nano exhibited very high binding ability in the dark with an L/D ratio of ∼1.5 at 4 μM
YFP-SspB nano concentration. The binding ability of SspB micro and SspB milli with H1021-LOV-A was similar in
the light, whereas SspB milli showed lower binding ability in the dark. At 4 μM YFP-SspB level, the L/D ratio for
SspB micro and SspB mili was ∼1.5 and 6, respectively.

Soluble fraction containing 4 μM YFP-SspB and membrane fraction containing H1021-LOV-A from 10 ml E. coli
culture were then mixed and placed in the dark or blue light illumination for 20 min. The membrane fraction was then
collected by centrifugation, washed three times, resuspended in 200 μl fresh buffer and moved into dark to release
the bound YFP-SspB. As shown in Figure 2C, the YFP-SspB milli exhibited the most robust release ability in the dark.
Then, 10μl of each purified sample was loaded in the SDS/PAGE to check the purity. As shown in Figure 2D, only one
band of YFP-SspB milli with the right size can be seen in the light group, indicating that H1021-LOV-A/SspB milli
can be used for optogenetic protein purification with the E. coli system.

Engineering and characterization of a monomeric SspB variant
Although the light-induced dimer set H1021-LOV-A/SspB milli was used for optogenetic protein purification suc-
cessfully, it should be pointed out that SspB naturally forms a strong homodimer, which might influence the activity
of some target proteins (see later part about bPAC activities after fusing with different SspB variants). To check the
oligomeric state of YFP-SspB milli, the purified YFP-SspB milli was loaded in a native PAGE gel together with the
lysate of E. coli expressing YFP-SspB milli. As shown in Figure 3A, the YFP-SspB milli band was at the position of
approximately 100 kDa, indicating the dimeric status. We then introduced eight mutations (L6R, R9E, Y12Q, L13K,
A16E, F17K, W20E, D23K), which has been reported to disturb hydrophobic interaction in the dimer-interface [30],
into YFP-SspB milli to generate the monomeric variant YFP-SspB milli-8M. The YFP-SspB milli-8M exhibited a
monomeric state in native PAGE (Figure 3A). However, the YFP-SspB milli-8M showed very low light-regulated
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Figure 2. Light-assisted protein purification after E. coli expression

(A) Expressions of YFP-SspB (original SspB, SspB nano) and H1021-LOV-A were induced by 0.5 mM IPTG and confirmed in

SDS/PAGE. A total of 50 ml E. coli culture was washed and homogenized in 1 ml buffer A for the crude extraction of membrane

fraction and soluble fraction. The extracted membrane fractions were resuspended in 1 ml buffer A. Five microliters of each sample

was loaded to the SDS/PAGE. Total: the whole cell lysate after ultrasonic homogenization. MF, membrane fraction. SF, soluble

fraction. The YFP-SspB (45 kDa) band in soluble fraction and H1021-LOV-A (24 kDa) band in membrane fraction were indicated

by black arrows. (B) The amounts of different YFP-SspB versions bound the membrane fractions containing H1021-LOV-A were

compared after 20 min binding in the dark or blue light illumination. In each reaction, the membrane fraction from 2.5 ml E. coli

culture was mixed with different concentrations of YFP-SspB in 300 μl buffer A. Michaelis–Menten curves were fitted. n=3, all

individual data points are shown. (C) The amounts of purified proteins with different YFP-SspB versions were compared. The

membrane fraction from 10 ml E. coli was mixed with soluble fraction containing 4 μM YFP-SspB for the purification. The purified

proteins were collected in 200 μl buffer A. Illumination time is 20 min and releasing time in the dark is 30 min. n=3, error bars

= SEM, all individual data points are shown. (D) Ten microliters purified YFP-SspB from (C) were tested in the SDS/PAGE. The

YFP-SspB band was indicated by the black arrow. D, binding in the dark. L, binding in the light.
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Figure 3. Generation and comparison of new monomeric SspB mutants

(A) The extracted and E. coli whole cell lysate expressing YFP-SspB milli and YFP-SspB milli-8M in a native PAGE gel. The whole

cell lysates were prepared from 50 ml E. coli culture resuspended and homogenized in 1 ml buffer A. Five microliters from each

sample was loaded to the native PAGE. The gel was stained by EZBlue. Total: the whole cell lysate after ultrasonic homogenization.

BSA was loaded as a marker, which is 66 kDa in monomeric state and 132 kDa in dimeric state (*: monomer, **: dimer). (B) The

binding efficacy of YFP-SspB milli (dimeric) and YFP-SspB milli-8M (monomeric) to H1021-LOV-A after 20 min blue illumination.

In each reaction, the membrane fraction from 2.5 ml E. coli was mixed with soluble fractions with different concentrations of

YFP-SspB (different versions) in 300 μl buffer A. Michaelis–Menten curves were fitted. n=3, all individual data points are shown. (C)

Sequences of the mutation part (α-helix1) for the newly designed SspB nano mutations. The changed amino acids were labeled

in red. (D) Comparing the binding abilities of different YFP-SspB mutants to H1021-LOV-A after 20 min in the dark or blue light

illumination. In each reaction, the membrane fraction from 2.5 ml E. coli was mixed with different concentrations of YFP-SspB

mutants in 300 μl buffer A. Michaelis–Menten curves were fitted. n=3, all individual data points are shown. (E) Comparing the

purification efficacy of YFP-SspB milli and YFP-SspB nano-3M. The membrane fraction extracted from 5 ml E. coli was mixed with

soluble fractions containing different initial concentrations of YFP-SspB in 300 μl buffer A for the purification. Illumination time is 20

min and releasing time in the dark is 30 min. The final purified proteins were collected in 200 μl buffer A. n=3, error bars = SEM. All

individual data points are shown. (F) The purified YFP-SspB milli and YFP-SspB nano-3M from (E) were checked in a native PAGE

gel. A total of 200 ng of each sample was loaded (*: monomer, **: dimer), BSA was loaded as a marker.
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binding ability to H1021-LOV-A in comparison to YFP-SspB milli (Figure 3B), indicating that YFP-SspB milli-8M
cannot be used for optogenetic protein purification.

The eight mutations might not only affect the dimeric interface but also the monomeric conformation. We thus ex-
amined the SspB dimer structure to design new mutations. Lys9 could interact with Asp100* (* indicates the residue in
the dimer-related chain) through a hydrogen bond in the dimer interface (Supplementary Figure S1). Tyr12 formed a
potential interaction with Asp23* through a hydrogen bond in the dimer-interface and might also participate in main-
taining the monomer structure by interactions with Arg15 and Asn67 (Supplementary Figure S1) [21,30]. Two Leu13 in
antiparallel helices of the dimer interface formed hydrophobic interaction (Supplementary Figure S1). Accordingly,
we designed two new mutants: YFP-SspB nano-3AM (K9A, Y12A and L13A) and YFP-SspB nano-3M (K9A, Y12L
and L13V) (Figure 3C). The YFP-SspB nano with high binding affinity was chosen as backbone, as new mutations
might also decrease the binding abilities like the previous eight mutations. The mutant YFP-SspB nano-3M was de-
signed to preserve relatively long side chains, which might be important for structural integrity and functionality of
the monomer.

We found that YFP-SspB nano-3M showed slightly reduced binding ability in the light but much reduced binding
in the dark compared with YFP-SspB nano (Figure 3D). The YFP-SspB nano-3AM showed much reduced binding
ability in both the light and the dark conditions (Figure 3D), which met our hypothesis that mutation to small residues
might influence the monomer structure and thus affect the binding ability to the SsrA part of H1021-LOV-A. More
interestingly, the YFP-SspB nano-3M/H1021-LOV-A pair showed more than two-fold enhanced purification efficacy
in comparison with the previous YFP-SspB milli/H1021-LOV-A pair (Figure 3E). The purified YFP-SspB nano-3M
and YFP-SspB milli were then loaded in a native PAGE gel (Figure 3F). YFP-SspB nano-3M exhibited a strong band at
approximately 50 kDa and YFP-SspB milli exhibited a strong band at approximately 100 kDa, indicating the monomer
and dimer state, respectively. Similar mutations to the YFP-SspB nano-3M were also introduced to YFP-SspB micro
and YFP-SspB milli. However, both SspB micro-3M and SspB milli-3M showed much reduced binding abilities
(Supplementary Figure S2). We then stuck to the newly engineered YFP-SspB nano-3M/H1021-LOV-A pair for fur-
ther studies and applications.

The required illumination and releasing time of YFP-SspB nano-3M/H1021-LOV-A was then studied. We found
that 10-min illumination for the binding and 10 min in the dark for the releasing were reasonable for the purification
process (Figure 4A,B). Longer time only moderately increased the binding and releasing efficacy. Ten minutes for the
binding and 10 min for the releasing can keep the purification time at approximately 40 min. A shorter preparation
time might also help to keep the protein in a more native condition.

For the optogenetic purification method, only one buffer mimicking the physiological condition is needed through-
out the whole process. The buffer conditions can also be modified accordingly. Salt concentration changes were well
tolerated by this method (Figure 4C). It worked well at around physiological pH (6.8 and 7.6) but not at high pH
9.0 (Figure 4C). At 0◦C, protein with high purity could still be obtained, albeit with reduced yield (approximately
two-fold decreasing); arguing the applicability for purification of thermo-unstable proteins (Figure 4C).

Applications of the optogenetic purification methods to other proteins
bPAC is a photo-activated adenylyl cyclase from the soil bacterium Beggiatoa and the most popular tool for optoge-
netic cAMP manipulation [28]. We fused YFP-SspB nano and YFP-SspB nano-3M to the C-terminal of bPAC and
compared the activities of the fusion constructs. After 3 days’ expression in Xenopus oocyte, the total soluble fraction
was extracted and used for in vitro reaction. The turnover of bPAC-YFP-SspB nano in the light was determined to
be ∼71 min−1 while for bPAC-YFP-SspB nano-3M the turnover was ∼116 min−1 (Figure 5A), indicating that the
dimerized version SspB nano decreased the bPAC activity. We then purified bPAC-YFP-SspB nano-3M after Xeno-
pus oocyte expression using the H1021-LOV-A from E. coli. A dominant protein band of ∼100 kDa was observed
in the SDS/PAGE (Figure 5B), and further confirmed to be bPAC-YFP-SspB nano-3M by Western blot (Figure 5C).
The molecular weight of bPAC-YFP-SspB nano-3M was calculated to be ∼90 kDa, however its real size was more
than 100 kDa in the SDS/PAGE, the bigger than calculated size of bPAC in the SDS/PAGE was also confirmed by
previous studies [31]. The light activity of the purified bPAC-YFP-SspB nano-3M was tested to be 130 min−1 (Figure
5D), which is close to the bPAC activity (156 min−1), detected by Lindner et al. [32] and SUMO-bPAC activity (108
min−1), detected by Stierl et al. [28].

A DNA polymerase fused with SspB nano-3M in its N-terminal was also expressed in E. coli BL21(DE3) for the
purification. The extracted protein from 50 ml E. coli culture was diluted into 200 μl final volume. The purified
polymerase-SspB nano-3M was confirmed in the SDS/PAGE with the right size of ∼120 kDa (Figure 6A). Different
amounts of purified DNA polymerase (2, 1 and 0.5 μl) were tested and compared with 0.2 μl (2 U/μl) commercial
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Figure 4. Characterizations of the H1021-LOV-A/SspB nano-3M

(A) Illumination time-dependent binding efficiency between H1021-LOV-A and YFP-SspB nano-3M. Each reaction contained 4 μM

YFP-SspB and membrane fraction from 5 ml E. coli in 300 μl buffer A. n=3, error bars = SEM, all individual data points are shown.

(B) Time (in the dark)-dependent release efficiency of the YFP-SspB nano-3M bound to H1021-LOV-A. The binding was stimulated

by 20 min blue light. The released (purified) proteins were collected in 200 μl buffer A. n=3, error bars = SEM, all individual data

points are shown. (C) Purification of YFP-SspB nano-3M under different conditions. Each reaction contained 4 μM YFP-SspB and

membrane fraction from 5 ml E. coli in 300 μl buffer A. Purified proteins were collected in 200 μl buffer A. A total of 20 μl samples

were loaded in SDS/PAGE.

Thermo Fisher Scientific Phusion DNA polymerase (Figure 6B). The enzymatic activity of the purified DNA poly-
merase was estimated, based on the yield of the 1.1 kb PCR product. One microliter of purified DNA polymerase
was estimated to be close to 0.4 U Thermo Fisher Scientific Phusion DNA polymerase, meaning that ∼80 units of
functional DNA polymerase were produced from the 50 ml E. coli culture.

Discussion
The iLID system is one of the most popular systems used for light-regulated protein interaction and widely used to
regulate cell signaling and protein expression. In the present study, we chose the iLID system for optogenetic purifi-
cation of soluble proteins because of several reasons: (1) well-studied and applied with several available mutants; (2)

8 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 5. bPAC purification and activity analysis

(A) Light-gated cAMP production abilities of bPAC-YFP-SspB nano and bPAC-YFP-SspB nano-3M. Reactions were illuminated

by blue light (473 nm, 0.3 mW/mm2). Details of the in vitro reaction were described in the ‘Materials and methods’ part. n=3,

error bars = SEM. All individual data points are shown. (B) The purified bPAC-YFP-SspB nano-3M in SDS/PAGE. A total of 100

oocytes injected with bPAC-YFP-SspB nano-3M were homogenized in 300 μl buffer, and then mixed with the membrane extract

from 5 ml E. coli for the purification. The purified protein was collected in 200 μl buffer. Total: the total soluble extract from oocytes

expressing bPAC-YFP-SspB nano-3M, loading amount: 5 μl. D: released proteins after binding in the dark, loading amount: 20 μl.

L: released proteins after binding in the light, loading amount: 20 μl. (C) Confirmation of the purified bPAC-YFP-SspB nano-3M by

Western blot. ctrl: oocyte without cRNA injection. Otherwise, the loading condition was similar to (C). Details of the Western blot

were described in the ‘Materials and methods’ part. (D) cAMP production by purified bPAC-YFP-SspB nano-3M. Samples were

illuminated by blue light (473 nm, 0.3 mW/mm2). Details of the in vitro reaction were described in the ‘Materials and methods’ part.

n=3, error bars = SEM. All individual data points are shown.

small size and (3) the chromophore of LOV domain protein, flavin mononucleotide (FMN), is ubiquitously available
in many different cell types.

However, one potential problem is the strong homodimerization of the SspB part, which might interfere with the
function of proteins fused to it. In the present study, we found that the bPAC activity is decreased when fused with
the previously published dimeric SspB, possibly because the SspB dimer impaired the functionality of bPAC dimer
(Figure 5A). McGinness et al. [30] first introduced eight mutations in the N-terminal α helix of SspB (SspB nano-8M
in the present study) to abolish the dimerization. The binding ability of SspB nano-8M with SsrA became 3-fold

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 6. DNA polymerase purification and activity estimation

(A) Confirmation of IPTG-induced SspB nano-3M tagged DNA polymerase (∼120 kDa) expression and purification in SDS/PAGE.

A total of 50 ml E. coli was homogenized by 1 ml buffer B, and the pellet part was resuspended by 1 ml buffer B before the Gel

loading. Total: the whole cell lysate, loading amount: 5 μl. Pellet: sediment fraction, loading amount: 5 μl. SF: soluble fraction, loading

amount: 5 μl. D: released proteins after binding in the dark, loading amount: 20 μl. L: released proteins after binding in the light,

loading amount: 20 μl. (B) Agarose gel electrophoresis of PCR products with the purified and commercial DNA polymerase. Lanes

1–3: PCR products using 2, 1 and 0.5 μl of the purified DNA polymerase. Lane 4: PCR products using 0.2 μl (0.4 U) commercial

Phusion DNA polymerase.

weaker than wild type SspB due to the slightly hydrophobic groove distortion. However, we found that the binding
affinity between SspB nano-8M and LOV-A was too low to be used for protein precipitation (Figure 3B). Moreover,
truncation of the N-terminal α helix (25 aa) of SspB totally abolished its binding to SsrA, suggesting that the α

helix of SspB not only participates in dimer formation, but also contributes to the conformational stability of SspB
monomer. We then designed a new mutant by introducing only three mutations to SspB (SspB nano-3M in the present
study). The SspB nano-3M exhibited a monomeric state in native-PAGE (Figure 3F). Compared with the previous
SspB, SspB nano-3M showed no influence on the protein activity when fused with bPAC (Figure 5). In addition, the
SspB nano-3M displayed an increased light regulation efficacy (Figure 3E), which makes it ideal not only for protein
purification but also for future optogenetic applications.

Recently, Horner et al. have used the PhyB/PIF system to isolate the tyrosine kinase ZAP70 [33]. Biotinylated PhyB
is immobilized on NeutrAvidin (N)-functionalized agarose beads to pull down the ZAP70-PIF fusion protein when
illuminated with 660 nm red light and released when exposed to 740 nm far-red light. The PhyB requires phyco-
cyanobilin as chromophore, which is not naturally present in many organisms, including mammals [34]. We chose
the iLID system in this study partially because of its ubiquitously available chromophore, FMN. Furthermore, we
make use of the biological membranes instead of columns or beads. We have applied two ideal membrane anchors
for Xenopus oocyte and E. coli. The membrane fractions can be easily separated by routine centrifugation. E. coli
contains the inner membrane and outer membrane, and both tend to form stable vesicles after disruption by soni-
cation, which are native platforms for protein purifications [35]. With all materials from the biological system, the
optogenetic protein purification method mem-iLID can work under physiological conditions and does not require
buffer changing for protein elution, which can sometime damage the POI or cause non-specificity. The purification
efficiency with the mem-iLID is however lower than the traditional method, 10–15% of the total input protein can be
obtained from our optogenentic method. In the present study, we used a relatively small and flexible scale. Large-scale
production of proteins can be achieved by increasing the input amount.

In sum, the newly developed mem-iLID method is easy, fast, economic, flexible in scale and can work under physio-
logical conditions. Furthermore, the mem-iLID can tolerate salt concentration changes (Figure 4C). The purification
process can also be operated on ice at 0◦C when necessary (Figure 4C). This easy and economic method will facili-
tate extensive protein engineering and functional studies. The newly designed SspB variant could also improve other
iLID-based optogenetic applications.

10 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Materials and methods
DNA and plasmids
The iLID [13] consisting of LOV-A (AsLOV2-SsrA) and SspB and the DNA polymerase (Pfu-Sso7d) gene were syn-
thesized by GeneArt Strings DNA fragments (Life Technologies, Thermo Fisher Scientific, Darmstadt) according to
the published DNA sequences. The Lyn11 sequence and H1021 sequence were ordered as DNA primers and fused
to iLID by PCR. The bPAC, YFP, pGEMHE vector and pET28b vector were from the lab stock. The designed con-
structs in Figure 1A were inserted into the Xenopus oocyte expression vector pGEMHE within N-terminal BamHI
and C-terminal HandIII restriction sites. The constructs used for E. coli expression were cloned into pET28b vec-
tor within N-terminal NcoI and C-terminal HandIII restriction sites. Mutations of SspB micro and SspB milli were
made by QuikChange Site-Directed Mutagenesis. All DNA sequences were confirmed by sequencing.

RNA generation for Xenopus oocyte expression
The cloned pGEMHE plasmids containing different constructs were linearized by NheI digestion and used for the
in vitro generation of cRNAs with the AmpliCap-MaxT7 High Yield Message Maker Kit (Epicentre Biotechnologies,
Madison). Thirty nanogram of cRNA (otherwise indicated in the figure) of different constructs were injected to
Xenopus oocytes by Nanoject III (Drummond Scientific Company, Broomall). The oocytes were then incubated in
ND96 buffer (96 mM NaCl, 2 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 5 mM HEPES, pH 7.6) at 17◦C for 3 days before
use.

Extractions of membrane and soluble fractions from Xenopus oocytes
Fifty Xenopus oocytes expressing soluble protein were pooled and homogenized in 1.5 ml Eppendorf tube with 300
μl buffer A (75 mM Tris-HCl, 5 mM MgCl2 and 100 mM NaCl, pH 7.6) simply by pipetting using an Eppendorf
pipette with a 10–100 μl tip. The homogenate was centrifuged at 15000×g for 10 min at 4◦C. The supernatant was
collected and transferred to a fresh tube as the soluble fraction for future use.

Membrane fractions of oocytes expressing Lyn11-associated proteins were isolated by two-step centrifugation. Af-
ter the homogenization step mentioned before, we first used 500×g centrifugation (5 min) to remove the big pellets,
yolk and cell debris. The supernatant was then transferred to a fresh tube and centrifuged at 15000×g for 1.5 min.
The sediment as the membrane fraction was harvested and washed three times by 300 μl buffer A. At last, membrane
extracts from 25 oocytes were kept as pellet in a 1.5-ml Eppendorf tube after centrifugation (15000×g, 1.5 min) for
future use.

Protein expression and membrane/soluble extraction from E. coli
Different pET28b-YFP-SspB plasmids and pET28b-H1021-LOV-A were transformed into E. coli BL21(DE3). Positive
transformants were picked and pre-cultured in 5 ml LB medium with 50 μg/ml kanamycin overnight at 37◦C. Then
1 ml LB medium was inoculated into 100 ml fresh LB medium and cultured for ∼4 h at 37◦C to reach an OD600 value
of ∼0.6. A total of 0.5 mM IPTG was added into LB medium to induce protein expression and the temperature was
changed to 28◦C for overnight culture.

The cells from 50 ml medium were then harvested by centrifugation at 2000×g for 5 min, washed three times and
resuspended in 1 ml buffer A. The cells were disrupted by an ultrasonic processor UP50H at 100% power (working
0.4 s per cycle) for 20 min on ice. To collect the soluble fractions, the lysed mixture was centrifuged at 15000×g, 4◦C
for 30 min, and the supernatant was transferred to a fresh tube as the soluble fraction. The lysed mixture containing
membrane proteins H1021-LOV-A was first centrifuged at 500×g for 2 min and the supernatant was transferred to
a fresh tube. After a second centrifugation at 15000×g for 1 min, the supernatant was discarded and the membrane
fraction containing H1021-LOV-A was resuspended and washed three times. Membrane extracts from 50 ml E. coli
culture were resuspended with 200 μl buffer A. The amount of membrane extract used for protein purification was
indicated in the figure.

Light-assisted purification of proteins
For purifications with Xenopus oocyte extracts, the contents of target proteins in the soluble extract were quantified
by fluorescence emission, and then 300 μl soluble extract (after dilution to desired target protein concentration) was
used to resuspend the extracted membrane pellet (from 25 Xenopus oocytes) in a 1.5-ml Eppendorf tube (Figure
1A). The mixture was stimulated by 10, 20 or 30 min (see different figures) blue light (470 nm LED at 100 μW/mm2,
otherwise indicated in the figure) to induce the binding. After binding, the mixture was centrifuged at 15000×g for
1 min and washed three times by 300 μl buffer A, 1 min 15000×g centrifugation was applied after each wash step.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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The final membrane pellet was resuspended by 300 μl fresh buffer A and placed in the dark for 10, 20 or 30 min (see
different figures) to release the bound target protein. The released (purified) protein in the supernatant was collected
by 15000×g centrifugation at 4◦C for 20 min (5 min was used for fast preparations), and transferred into a fresh tube
for further test.

The purification process with the E. coli system is very similar to above. Only the amounts of soluble extract and
membrane extract were changed (for details, see the figure legends part).

For bPAC purification, 100 injected Xenopus oocytes were homogenized in 300 μl buffer A containing 5 mM
DTT and 1× Protease Inhibitor Cocktail (Roche, Basel), which could stabilize bPAC protein. The soluble extract was
collected as mentioned before, and used to resuspend the membrane extract from 5 ml E. coli. After purification, the
purified bPAC was collected in 200 μl buffer A containing 5 mM DTT and 1× Protease Inhibitor Cocktail (Roche,
Basel).

For the DNA polymerase purification, buffer B (75 mM Tris-HCl, pH 7.6, 5 mM MgCl2 and 300 mM KCl) was used
to increase its solubility. To store the purified SspB nano-3M-tagged DNA polymerase, the buffer was then dialyzed
using an ultra-centrifugal filter tube (Amicon® Ultra-0.5 50k device, Millipore, Darmstadt) extensively with buffer
C (100 mM Tris-HCl pH 8.0, 0.2 mM EDTA, 0.2% NP-40, 0.2% Tween 20, and 2 mM DTT). During purification,
the membrane extract from 5 ml E. coli was resuspended by 300 μl soluble extract without dilution. At last, the total
amount of the purified DNA polymerase from 50 ml E. coli culture was collected in 200 μl storage buffer (mixture
of 100 μl buffer C + 100 μl glycerol).

Protein quantification by fluorescence
The YFP-tagged proteins were quantified by the relative fluorescence units (RFUs). Purified YFP protein standard
(10 μg, RayBiotech, Norcross) was diluted to 2500 ng/ml in buffer A to calibrate the fluorometer. Fluorescence emis-
sion was measured at the range of 510–580 nm using the Quantus™ Fluorometer (Promega, Walldorf) with 495-nm
excitation.

Native PAGE, SDS/PAGE and Western blot
The whole lysates, crude extracts or purified proteins were checked in 10% native PAGE or SDS/PAGE for dimeric
state and purity, respectively. The gel was stained by EZBlue (Sigma, Darmstadt) for 30 min and washed by water
according to its protocol.

For Western blot, the protein samples were loaded on to a 10% SDS/PAGE for electrophoresis and transferred into
PVDF membranes (Millipore, Darmstadt). Membranes were blocked in Tris-buffered saline with Tween 20 (TBST:
1 mM Tris-HCl, 150 mM NaCl, 0.05% Tween-20, pH 7.4) containing 5% BSA for 0.5 h and subsequently incubated
overnight at 4◦C with diluted primary antibody against YFP with HRP conjugation (1:2000 dilution, Life Technolo-
gies, Thermo Fisher Scientific, Darmstadt). The band was imaged using the Odyssey Fc Imaging System from LI-COR
Biosciences.

In vitro reaction of bPAC activity and cAMP detection
For the in vitro reaction to test the bPAC activity, 10 injected oocytes were homogenized by 100μl buffer A containing
5 mM DTT and 1× Protease Inhibitor Cocktail (Roche, Basel). The soluble extract was collected as mentioned before,
and then dialyzed by using an ultra-centrifugal filter tube (Amicon® Ultra-0.5 30k device, Millipore, Darmstadt) to
remove the accumulated cAMP/cGMP from the Xenopus oocyte cytosol. To start the reaction, 0.1μl of 100 mM ATP
stock was added into 10 μl soluble extract or purified bPAC to reach the final concentration of 1 mM. The bPAC light
activity was stimulated by a blue light laser (473 nm, 0.3 mW/mm2). A total of 190 μl sample diluent (containing 0.1
M HCl) was used to stop the 10 μl reaction mix and stabilize the produced cAMP. The cAMP assay was performed
with DetectX High Sensitivity Direct Cyclic cAMP Chemiluminescent Immunoassay Kit (Arbor Assays, Ann Arbor).

Functional assay of DNA polymerase based on PCR amplification
The YFP-SspB DNA with the size of ∼1100 bp was used as the template to assess the activity of the purified DNA
polymerase. Different amounts of purified DNA polymerase (2, 1 and 0.5 μl) were added to 20 μl PCR reactions
separately. The commercial Phusion High-Fidelity DNA Polymerase (Thermo Fisher Scientific, Darmstadt) was used
to estimate the enzymatic activity of purified DNA polymerase. Other components of the PCR reactions like dNTPs
and buffers were added according to the protocol of the Phusion High-Fidelity DNA Polymerase.

12 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
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Data analysis
Results are presented as mean +− standard error of the mean (SEM) with GraphPad Prism software (San Diego, U.S.A.).
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reasonable requests.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [grant numbers
374031971 TRR 240 A04, 417451587]; the Prix-Louis-Jeantet Foundation (to G.N.); and the Open Access Publication Fund of
the University of Wuerzburg.

CRediT Author Contribution
Ruijing Tang: Data curation, Software, Investigation, Visualization, Writing—original draft, Writing—review and editing. Shang
Yang: Investigation, Visualization, Writing—review and editing. Georg Nagel: Conceptualization, Supervision, Funding acquisi-
tion, Validation, Project administration, Writing—review and editing. Shiqiang Gao: Conceptualization, Supervision, Investigation,
Methodology, Writing—original draft, Project administration, Writing—review and editing.

Acknowledgements
We thank all members of the laboratory for mutual help in routine lab work and for discussion.

Abbreviations
bPAC, bacteria photo-activated adenylyl cyclase; Cry2, cryptochrome 2; FMN, flavin mononucleotide; iLID, improved
light-induced dimer; IPTG, isopropyl-β-D-thiogalactopyranoside; LOV, light, oxygen, or voltage; PhyB, phytochrome B; POI,
protein of interest.

References
1 Terpe, K. (2003) Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol.

60, 523–533, https://doi.org/10.1007/s00253-002-1158-6
2 Achmuller, C., Kaar, W., Ahrer, K., Wechner, P., Hahn, R., Werther, F. et al. (2007) N(pro) fusion technology to produce proteins with authentic N termini

in E. coli. Nat. Methods 4, 1037–1043, https://doi.org/10.1038/nmeth1116
3 Lin, Z., Zhao, Q., Xing, L., Zhou, B. and Wang, X. (2015) Aggregating tags for column-free protein purification. Biotechnol. J. 10, 1877–1886,

https://doi.org/10.1002/biot.201500299
4 Chen, Z., Zhao, L., Ru, J., Yu, S., Yu, H., Ren, H. et al. (2019) A novel protein purification strategy mediated by the combination of CipA and Ssp DnaB

intein. J. Biotechnol. 301, 97–104, https://doi.org/10.1016/j.jbiotec.2019.06.002
5 Fan, Y., Miozzi, J.M., Stimple, S.D., Han, T.C. and Wood, D.W. (2018) Column-Free purification methods for recombinant proteins using self-cleaving

aggregating Tags. Polymers 10, 468, https://doi.org/10.3390/polym10050468
6 Khamo, J.S., Krishnamurthy, V.V., Sharum, S.R., Mondal, P. and Zhang, K. (2017) Applications of optobiology in intact cells and multicellular organisms.

J. Mol. Biol. 429, 2999–3017, https://doi.org/10.1016/j.jmb.2017.08.015
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Figure S1. Structure of dimeric SspB yields insight to the mutated residues.  

(A) The dimeric SspB complex in antiparallel form. (generated from PDB ID: 1ZSZ) (B) 

The hydrophobic interaction between Leu13 and Leu13* in the dimer-interface. (C) 

The Tyr12 form a potential interaction with Asp23* through a hydrogen bond in the 

dimer-interface and might also participate in maintaining the monomer structure by 

interactions with Asn67 and Arg15. (D) The Lys9 interacted with Asp100* through a 

hydrogen bond in the dimer-interface. (*: amino acid from the antiparallel SspB) 

 

 



 

 

 

 

 

 

 

 

Figure S2. The binding efficacy comparison of different monomeric SspB mutants.  

Comparing the binding abilities of different YFP-SspB mutants to H1021-LOV-A after 

20 min blue light illumination. In each reaction, the membrane fraction from 2.5 ml 

E. coli was mixed with different concentrations of YFP-SspB mutants in 300 μl buffer 

A. Michaelis-Menten curves were fitted. n = 3, error bars = SEM. All individual data 

points are shown. 

 


