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Coupling N identical emitters to the same field mode is a well-established method to enhance light-matter
interaction. However, the resulting ~/N boost of the coupling strength comes at the cost of a “linearized”
(effectively semiclassical) dynamics. Here, we instead demonstrate a new approach for enhancing the coupling
constant of a single quantum emitter, while retaining the nonlinear character of the light-matter interaction.

We consider a single quantum emitter with N nearly degenerate transitions that are collectively coupled to
the same field mode. We show that in such conditions an effective Jaynes-Cummings model emerges with
a boosted coupling constant of order ~/N. The validity and consequences of our general conclusions are
analytically demonstrated for the instructive case N = 2. We further observe that our system can closely match
the spectral line shapes and photon autocorrelation functions typical of Jaynes-Cummings physics, proving
that quantum optical nonlinearities are retained. Our findings match up very well with recent broadband
plasmonic nanoresonator strong-coupling experiments and will, therefore, facilitate the control and detection

of single-photon nonlinearities at ambient conditions.
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I. INTRODUCTION

Strongly coupled light-matter systems, described by the
Jaynes-Cummings (JC) model [1], are of fundamental interest
in testing the quantized nature of coupled light and matter
degrees of freedom in the context of cavity QED [2]. Im-
portantly, JC physics requires that a single two-level emitter
interacts with a single-mode electromagnetic field. Such sys-
tems can be relevant for quantum information processing,
for example, in interfacing flying and static qubits [3] or for
quantum-state engineering [2—6]. Yet strong coupling of light
and a single emitter is not easy to achieve in practice, due
to the large mismatch in the spatial extension of free-space
photons and typical emitters (i.e., artificial or real atoms) that
feature electronic transitions in the optical domain [7,8].

A possible route to overcome this difficulty is to engineer
an “effective” emitter with a large dipole moment. This is
most commonly implemented by combining N >> 1 identical
emitters coupled to the same field, resulting in the well-
known “Dicke enhancement” of light-matter interaction: The
effective coupling strength is boosted by a factor of order
/N, compared to the single-emitter case [9-12]. However,
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the relevant theory in such systems is the many-emitter limit
of the Tavis-Cummings (TC) model [13], whose low-energy
dynamics is effectively linear; i.e., indistinguishable from that
of coupled harmonic oscillators [14].

The key achievement of our paper is to bypass this seemingly
inevitable trade-off between coupling strength and (quantum)
nonlinearity: We open an innovative route to a “Dicke-like”
enhancement of the coupling constant which preserves the
precious quantum optical nonlinearities of the JC model.

In this paper we indeed show how the exploitation of a
multilevel emitter, with N nearly degenerate excited states
coupled to the same field mode, increases the effective light-
matter coupling constant by a factor of order /N. Although
this is the same scaling found in the Dicke [15] and TC models
[13] with N emitters, the crucial difference is that in our case
the quantum nonlinearity of the interaction is preserved: We
demonstrate this based on emission spectra and second-order
photon autocorrelation functions. More precisely, our system
can closely approximate the behavior of a JC model, in princi-
ple, for arbitrary values of N. These findings, in their simplest
form, are schematized in Fig. 1.

Additionally, we find that our predictions are robust against
typical sources of decoherence (such as cavity decay and
emitter dephasing) that are common at elevated temperatures.
Even though our results are fully general and independent
of the physical implementation of the model, we anticipate
that our approach can be particularly useful in the context of
room-temperature strong coupling. We, thus, find it useful to
provide some context on the current state of the art of this
research field and to highlight how our research can help it
move forward.

Published by the American Physical Society
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FIG. 1. Visual summary of the light-matter interaction models treated here. For multilevel, TC, and Dicke models, only energy levels
that have a direct correspondence in the Jaynes-Cummings model (JCM) are shown. For the TC model, the limit N > 1 is considered. Left:
Standard Jaynes-Cummings model in which a single two-level emitter couples resonantly to a single-mode field with strength g. The resulting
anharmonic spectrum is a cornerstone of modern quantum optics but challenging to probe experimentally: The required regime g >> « is
difficult to achieve, where « is the cavity decay rate. Center: Multilevel model, the focus of this paper. A quasidegenerate multilevel emitter
with N closely spaced excited states interacts with a single-mode field. When all the transitions are approximately resonant with the field,
an effective coupling constant ge, enhanced by a factor of order +/N, is established. In principle, the resulting low-energy spectrum can
closely approximate the JC spectrum for any value of N. Right: Tavis-Cummings and Dicke models in which N 3> 1 nearly identical two-level
systems interact with the same field. A boosted effective coupling constant g o +/N is established also in this case, but the spectrum becomes

approximately harmonic as N is increased.

Recently, room-temperature strong coupling with many
emitters [16-19] and even single quantum emitters [20-24]
have been experimentally demonstrated. These experiments
rely on the remarkable coupling strengths achievable in plas-
monic nanoresonators, thanks to the deeply subwavelength
mode volumes of the latter [43—47]. In order to relax the
mode volume requirements (which are currently pushing the
limits of nanofabrication techniques) and obtain more robust
experimental realizations, it would be of great interest to find
emitter systems with increased dipole moments. This would
result in larger coupling constants while still allowing to
harness the single-emitter quantum nonlinearity of the JCM
[25,26]. So far, only the “first rung” of the JC ladder, i.e., the
single-excitation regime of the model, has been experimen-
tally detected at ambient conditions. Efforts are still ongoing
to detect higher rungs of the ladder to shed light on (and
harness) the quantum nonlinearity of the model.

In order to realize the JCM experimentally, great efforts
have been made over the years in the fabrication of artificial
atoms—such as semiconductor quantum dots [27]—that are
close to ideal two-level emitters. Indeed, so far the multilevel
nature of such emitters has mainly been treated as a mod-
eling nuisance, i.e., as a source of errors with respect to an
idealized two-level scenario. In this context, Madsen et al.
[28] and our previous paper [22] have recently mentioned the
possible effects of a more complicated energy-level structure
of the emitter. Additionally, our previous work [22] explicitly
suggested that an emitter with multiple (>2) energy levels

can even bring about some advantages: In the right conditions
it may be used to simulate a JC system with an enhanced
coupling constant. With reports of quantum dots featuring as
much as 64 quasidegenerate excited states [29,30], a general
quantum-mechanical analysis of such a system (multilevel
model for brevity) is in order.

Therefore, the findings presented here will be of impor-
tance for the selection and the design of suitable emitters for
nanoscale strong-coupling experiments at ambient conditions
and for the interpretation of such experiments. Importantly,
our approach lives independently of the contentious issues
regarding the calculation of mode volumes and coupling
constants in quantum (and classical) nanophotonics, see, for
example, Refs. [31-33]. These approaches will, of course, de-
termine the numerical values of coupling constants in different
experimental situations, but they do not affect the nature of
our quantum optical model and the general conclusions we
can draw from it.

The paper is organized as follows. In Sec. II we introduce a
Hamiltonian that models an emitter with NV excited levels cou-
pled to the same ground state via a single-mode field. We will
show that our system can be understood as a JC model which
is weakly interacting with N — 1 “dark states” of the emitter.
In Sec. III we generalize our model to an open system via a
master equation. This takes into account incoherent processes,
such as photon loss, dephasing, and emitter pumping, all of
which may be required for describing realistic experimental
scenarios. In Sec. IV we support our general arguments with
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detailed analytical results for the special case N = 2: We find
that our system’s emission spectrum features approximately
the same resonances as a JC model, plus additional features
(due to the dark states) that we fully characterize. Section V
presents numerical studies for N = 3, comparing common ex-
perimental observables in our model with the same quantities
calculated in reference JC and TC/Dicke models. In Sec. VI
we draw our conclusions. For completeness, the Appendix
contains some useful reminders and formulas pertaining to JC,
TC, and coupled-oscillator models, since those are referenced
throughout the paper.

II. MODEL

Our multilevel model features a quantum emitter with
electronic ground-state |G) and a collection of excited states
lex), also called sublevels, where k = 1,2, ..., N. Each in-
ternal transition of the emitter |G) <> |e;) is coupled to a
single-mode field (cavity for brevity) with strength g, € R.
The typical physical system we have in mind is a multilevel
quantum dot embedded in a plasmonic nanoresonator where
the cavity resonance is broadband, in the sense that it over-
laps with all the emitter transitions. Additionally, the strong
field gradients of nanoresonators may allow for light-matter
couplings beyond the dipole approximation, for example
by activating quadrupole-allowed transitions of the emitter.
Hence, this is a scenario where the field can potentially in-
teract with a larger number of emitter levels as compared to
the standard cavity-QED setup which is typically restricted to
dipole transitions. Yet, it is important to note that our quantum
optical formalism applies to any type of emitter or resonator
that satisfies our modeling assumptions.

As usual, the cavity mode is described via the annihilation
operator a with [a, all=1. Taking 7 = 1 for convenience,
the cavity resonance has average frequency (hence, energy)
wop, the energy of |G) can be set to zero without loss of
generality, whereas each state |e;) has energy wy + Ay. Here
Ay is the detuning between the kth emitter transition (|ex) <>
|G)) and the cavity. For convenience we assume A; < Ay <
.-+ < Ay; we indicate the full range of energy detunings as
& = Ay — Aj and the average detuning as A = 1lv Zk Ar. We
can write the total Hamiltonian as

H=Hy+V, e))
N
Hy = wod'a+ Y (w0 + A)le) (exl, )
k=1
N
V=" g(alec) (Gl +a|G)exl), 3)

k=1

where Hj,V are, respectively, the free and interaction
Hamiltonians and we have neglected counter-rotating and
diamagnetic terms in the light-matter interaction. Such ap-
proximations are justified provided that the overall coupling
constant g.¢ (defined below) is significantly smaller than the
“bare” frequency wg [34]. In passing we do note that recent
experiments in nanoplasmonic QED are pushing the limits of
validity of this assumption as, for example, g.ir =~ 0.07wq in
Ref. [22]. Therefore, in future work it will be interesting to

(a) Bare emitter basis (b) Radiation basis
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FIG. 2. Tllustration of the transformation between the bare emit-
ter basis and the radiation basis, for N = 2 sublevels, and the
resulting appearance of a boosted effective coupling. The same prin-
ciples hold for larger values of N. (a) In the bare emitter basis the two
levels |e; ) are not directly coupled to each other, whereas ¢ plays
the role of a relative detuning between them. Both |G) <> |e; 1) tran-
sitions couple to the cavity field, and we are assuming for simplicity
that the associated coupling constants are the same: g, = g, = g.
(b) In the radiation basis, the bright- and dark-states |B), |D) have the
same frequency but are coupled to each other with strength ¢/2. The
transition |G) <> |B) is coupled to the field with enhanced strength
geir = v/2g, whereas the dark-state |D) does not directly interact with
the field.

extend our theory to the ultra-strong-coupling regime where
geft 2 0.1awp [34].

The physics of Hamiltonian (1) can, in general, be
quite complicated, despite H being number conserving—
i.e., H commutes with the number operator Nmt =a'a+
>, lex){ex]. However, here we are interested in the special
case of quasidegenerate emitters that are near resonant with
the cavity, i.e., we assume the parameter regime |Az| < gx.
This approximation holds, e.g., for colloidal quantum dots
coupled to plasmonic nanoresonators. In such a case, A are
of the order of a few meV, whereas the coupling strengths g;
are of the order of 100 meV [22]. In this scenario a number of
qualitative observations can be made.

A. Bare emitter basis versus radiation basis

To aid understanding, the main ideas behind this subsection
are illustrated in Fig. 2 for the simplest case N = 2. We begin
our study of the general N-sublevel model by considering the
case of exact degeneracy of the excited states, Ay = A Vk,
or, equivalently, ¢ = 0 in terms of the full range of energy
detunings. The resulting mathematics follow in a straightfor-
ward manner from the well-known JCM. This simple starting
point will set the stage to investigate small deviations from
an idealized scenario, i.e., cases with small but nonzero ¢.
For ¢ = 0, we find that any linear combination of the states
lex) is itself a valid emitter excited state, or more precisely, an
eigenstate of Hy with eigenvalue wy + A. Among all the states
that can be constructed in this way, of particular significance
is the coherent superposition,

_ D ok 8k lex)
28

|B) “
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where the denominator ensures normalization. We will refer
to |B) as the bright state or superradiant state (mimicking the
terminology of the Dicke model). State |B) can be interpreted
as the only emitter excited state that couples directly to the
cavity field. Indeed it is easy to check that the light-matter
interaction term in Eq. (1) may be rewritten in the simple form

V = gi(a|B) (G| + a'|G)(B), &)

where we have defined an effective coupling constant,

g = |y & (6)

k

Hence, through an appropriate change of basis for the emitter,
the N-degenerate transitions |G) <> |e;) can be replaced by
a single transition |G) <> |B), characterized by an enhanced
coupling to the cavity field. Equation (6) indeed shows that
the effective coupling features the scaling gegr ~ +/N with
the number of sublevels. This boosting of the effective light-
matter coupling is analogous to what happens in the Dicke
[15] and TC [13] models, where N identical emitters are
coupled to the same field. A crucial difference from the TC
model is that Eq. (5) retains the structure of a JC interaction
Hamiltonian so that in the model studied here there is, in
principle, no loss of anharmonicity as the number of sublevels
N is increased.

To fully specify the mentioned change of basis, we can
define N — 1 further linear combinations of the excited
states |ex), say {|D1), |D2), ..., |Dy—1)}, which together with
{|G), |B)} form a complete orthonormal set for the emitter
internal levels. When ¢ = 0 each |Dy) is also an eigenstate
of Hy with eigenvalue wy + A, due to the N-fold degeneracy.
By construction, these additional basis states do not directly
interact with the cavity field, i.e.,

VIDi) = (DelV =0, k=1,2,...,N—1, @)

and may be called subradiant states or dark states. In
practice, explicit expressions for the dark states may be
found by standard orthogonalization procedures (details
not shown). The above discussion suggests that the set
{IG), |B), |D1), |D2), ..., |Dn-1)}, which we will call the ra-
diation basis, may be a more meaningful conceptual tool to
study light-matter interaction in our system as compared to
the bare emitter basis {|G), |e1), |e2), ..., len)}.

For the purpose of modeling the optical properties of the
system, it is now tempting to simply neglect all the dark states
and retain only the two emitter levels |B), |G). This is justified
if there are no additional processes, coherent or incoherent,
that are able to populate the dark states and/or couple them
to the two levels |B), |G). When all these conditions are satis-
fied, the system is exactly described by a JCM with coupling
constant gefr.

We are now in a position to study small deviations from the
ideal case. As anticipated, the most obvious deviation from
pure JC physics occurs when the excited-states |e;) are not
exactly resonant with each other (i.e., ¢ # 0). In the radiation
basis, the (small) relative detunings between the levels |e)
will translate into (weak) couplings between the bright and the
dark states and between the dark states themselves. In other
words, |B) and |Dy) cease to be eigenstates of Hy when ¢ # 0.

Note, however, that Egs. (5) and (7) remain valid in general, so
that the dark states may interact with the field only indirectly,
i.e., through the mediation of state |B). These additional inter-
actions will bring about deviations from the well-understood
JC physics described above. Although a general calculation
of these effects would be cumbersome and beyond the scope
of this paper, the case N = 2 sublevels is simple enough to
be treated analytically and already contains all the essential
ingredients in our problem—see Sec. IV below and Fig. 2.

In some cases, the exact equivalence to a JC system may be
lost even in the case of perfect degeneracy between the excited
sublevels. This can happen if incoherent processes couple the
pair {|G), |B)} to the dark states. We will see in Sec. IV, for ex-
ample, that emitter dephasing provides a common mechanism
for interconverting bright and dark states. Yet, our analytical
and numerical results suggest that the multilevel model can
provide an excellent approximation to JC physics even when
these imperfections are taken into account.

III. MASTER EQUATION

In order to predict relevant observables for future ex-
periments, we now introduce an open system generalization
of our model, via the well-established Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) master equation [35]. As antici-
pated above, the main experimental scenario we have in mind
is a quantum dot interacting with a plasmonic nanoresonator,
yet the ideas presented here may be applicable to a wider
variety of setups. We will include cavity photon loss as the
primary channel for energy dissipation, whereas the decay
rate of the emitter into free-space modes y will be assumed
negligible. Such an assumption is reasonable due to the large
B factors achievable in plasmonic resonators. For a brief dis-
cussion on the effects of small but nonzero y, see Ref. [36].
On the other hand, we will assume that the emitter excited
states can be broadened well beyond their radiative linewidth
by additional dephasing processes—typically thought of as a
drawback of room-temperature operation.

We consider two ways in which energy can be supplied to
the coupled system: incoherent pumping of the emitter or a
coherent driving field applied to the cavity. Although the first
is a common method to feed excitations into quantum dots, the
second is arguably the standard avenue to test nonlinearities
in a quantum optical system. For a visual summary, the main
ingredients of our open system model are sketched in Fig. 3. In
formulas, the following master equation will be used to model
the emitter-cavity system,

1
p = —ilH + Vaive. P+ 3 5QLpL" — L'Lp — pL'L),

Leg
(3)
where H is the Hamiltonian (1) and
Virve = Q(ae™"" + a'e™™ 1) ©)

is an interaction term describing coherent driving of the cavity
by a classical laser at frequency w; (2 quantifies the driving
field amplitude). The L’s appearing on the right-hand side
of Eq. (8) are the jump operators, used to model incoherent
processes. They are collected in set J, which features the
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FIG. 3. Schematic of the investigated setup. The system may be excited through an incoherent pump of intensity A applied to the emitter
or via coherent driving of the (plasmonic) cavity with field amplitude €2 and frequency w,. The bright state of the emitter is coupled to the
cavity with the effective strength g.¢, and the emitter sublevels are spread in frequency over a range €. k is the loss rate of the cavity, and y
is the decay rate of all the emitter sublevels, which are also subject to dephasing at rate y, (not shown). All the observables discussed in this

paper can be measured by collecting the cavity output field.

following elements:

(i) Cavity decay (photon loss) at rate «: L = /« a.

(ii) Radiative decay of the emitter y: L = /¥ |G){ex|.

(iii) Emitter dephasing yy: L = /va lex){exl.

(iv) Emitter pumping of total rate A: L = \/§ lex) (G,
where k =1,2,..., N. We assumed that the decay and de-
phasing rates are the same for all sublevels and that the pump
power A is split symmetrically over the N sublevels. In re-
ality, how much each level will be individually pumped will
depend on microscopic details of the model, a study that goes
beyond the scope of our present paper. Importantly, however,
these details do not affect our general conclusions, provided
that the total pump power is the smallest parameter of the
problem: Under these conditions the locations of the spec-
tral resonances of our coupled system are (approximately)
independent of the details of the pump process (however, the
relative intensities of different spectral peaks can be detail
dependent in general).

We also consider equal couplings gx = gefr/~/N for all k,
whereas the detunings A; are equally spaced in the interval
[A—¢e/2, A+ ¢/2]. All the assumed symmetries between
the sublevels are, of course, an idealization. Many gener-
alizations of this basic model can be included in principle.
However, we do not expect that these can bring about signif-
icant qualitative departures from the physics described here.
Hence, in this paper we confine our analysis to the above
setting for simplicity and computational efficiency.

IV. ANALYTICAL RESULTS FOR TWO SUBLEVELS

We here present the analytical diagonalization of Hamilto-
nian (1) for the case N = 2 with equal couplings g; = g, = g
as well as the associated implications for the system’s open
dynamics. This instance of the model, illustrated in Fig. 2, is

particularly transparent and fully captures the essence of our
paper. We note that for the case N = 2 we obtain an emitter
structure known as the “vee atom”. Cavity QED with vee
atoms was extensively investigated in the 1980s in the con-
text of producing squeezed light and laser light with reduced
phase fluctuations [37-39]. We verified that analytical solu-
tions are also available for the cases N = 3, 4, using similar
methods, but these are significantly more complex without
adding fundamentally new insights. For N = 2 the detunings
are givenby A} = A —¢/2 and A, = A + ¢/2, respectively.
Furthermore, there are only one bright and one dark state
given by |B) = %, |D) = % In the radiation basis
representation, the Hamiltonian may be recast as
H=H,+V, (10)

Hj = wod'a + (w9 + A)(|B)(B| + |D)(D)), L
V' = gei(a1B)(G| + a'|G) (B]) — %(IB) (D] + ID)(B]), (12)

where in this case ger = +/2g. As for the general case treated
in the previous section, a JC interaction describes the cou-
pling between the two levels {|G), |B)} and the cavity field.
However, we can also see that the relative detuning of the
sublevels ¢ translates into a small coupling between |B) and
|D) so that even the dark-state |D) can indirectly influence the
optical behavior of the system. The ground state of H is easily
spotted as |G, 0) with eigenvalue E = 0. Exploiting excitation
number conservation, i.e., [H, Ntm] = 0, where /Q/tot =ata+
|B)(B| + |D)(D|, one can show that the remaining eigenvalues
and eigenvectors of H can be found by diagonalizing the 3 x 3
matrices(n = 1,2, ..., 00),

nwo gefi/1 0
H, = geff\/ﬁ nwy + A —&/2 s (13)
0 —&/2 nwy + A
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FIG. 4. Eigenvalues of H,; as a function of the average detuning
A for & = 0.25g.¢ (blue continuous lines). The anticrossing behavior
of eigenvalues E, 4 around A = 0 approximates well (the maximum
relative error in the plotted range being ~1.3%) the reference JCM
with coupling g.s (red circles). The energy E; p of the quasidark state
is instead approximately linear in the detuning and sits in between the
JCM-like energies. An elementary perturbation theory calculation
indeed yields E, p >~ A(1 — 2 /4g%.n), which agrees well with the
exact value in the considered regime (relative error below 0.2%).
Qualitatively similar results are obtained for higher excitation num-
bers n > 2, and, in fact, it is easy to see that the relative weight of ¢
and A decreases with n.

which describe the Hamiltonian restricted to the subspace,
{Now = n} = Span{|G, n), |B,n = 1),ID,n = 1)}.  (14)

The behavior of the eigenvalues of H; is shown in Fig. 4 as a
function of the detuning A. Even at the non-negligible ratio
e/gerf = 0.25 used in the figure, the commonalities with a
JCM spectrum are evident. Note also that the eigenvalues of
H, for n > 2 will follow the same qualitative structure as a
generic H, may be obtained from H; by a simple rescaling
geff —> &eftn/N, wo — nawy. Although a general analytical di-
agonalization of Eq. (13) is cumbersome, for the resonant case
A = 0 one can obtain simple analytical expressions. For this
case, the eigenvalues of H, read

82
Enﬁi = nwoigeff‘}n‘l' s (15)
4g§ff

E,p = nwy. (16)

The corresponding normalized eigenvectors |E, 1), |E, p) are

1 28eii/n

|Ent) = —=| ———1IG,n) = |B,n—1)
V2\ fagyn + ¢
S — ) W T (17)
8¢y + 262
2 n
i Gett /11 D
4g§ffn + 82 4g§ffl’l + 82

(18)

The above expressions suggest that in the regime & < gefr
it is natural to identify {|E, +), E, +} as a weakly perturbed
JC eigensystem (the latter is indeed recovered exactly for
& — 0). For brevity, we refer to those as the “JCM-type”
eigenvalues and eigenvectors. The eigenstates |E, p), which

instead are associated with the same energy levels of an empty
cavity, may be understood as dressed quasidark states of the
emitter, accompanied by approximately n — 1 cavity photons.
They indeed result from a hybridization of states |G, n) and
|D,n — 1), the second state being dominant in the superpo-
sition. It is interesting to note that the two states involved
in such a superposition are only coupled indirectly in the
Hamiltonian, through the mediation of state |B, n — 1).

Exploiting the analytical results obtained here, it is possible
to calculate the Hamiltonian dynamics of a generic initial state
via standard methods. In fact, although our paper focuses on
the regime ¢ < gefr, the above diagonalization procedure is
valid for a general choice of the model parameters.

A. Qualitative analysis of the master equation for N = 2

The closed expressions obtained so far are particularly
helpful in analyzing the open system behavior of our multi-
level model, as well as its relationship to the JC model. Since
in this paper we focus on the regime of low pumping (or low
coherent driving) and negligible emitter decay, we can gain
valuable intuition about the properties of the master equation
(8) by setting y = A = Q = 0. First, we observe that the
introduction of a photon loss rate « results in a finite lifetime
for the excited states of H, such that eigenstates with Nwt =n
will tend to decay towards states with Nmt =n — 1, until the
ground-state |G, 0) is finally reached. For a given eigenstate
|E;), an estimate of the decay rate induced by photon loss can
be obtained via the perturbation theory formula,

I; ~«(Ej|la"alE;), (19)
which at second order in ¢ yields (n > 1),
&2
F,,sz<n—l+@), (20)
I“,,i:ic<n—l— e ) Q1)
2 Sngiff

We may immediately note that the lowest quasi-dark-state
|E1p) is long lived, whereas all the remaining excited states
have approximately the same lifetime of either the JCM ex-
cited states or the Fock states of an empty and lossy cavity.
Next, emitter dephasing will induce further broadening of the
Hamiltonian energy levels, which can be estimated as

8E; = va(l{erlEp + [eal E)P). (22)
Some straightforward algebra yields
&2
SEup =~ )/d(l - —) (23)
l Angeyy
2
Vd €
$Ept —(1 + ) (24)
2 4ng§ff

where again we have expanded our results at second order in
. In this case we can see that the quasidark states are the
most affected, since they feature a larger overlap with the
bare excited states of the emitter. Note also that the 6E;’s are
not associated with a decay towards states of lower excitation
number (more below). The exact broadening of the energy
levels, induced by the combined effect of photon loss and
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emitter dephasing, can be obtained as —2 Im(E i), where the
E;’s are the eigenvalues of the non-Hermitian operator,

A =H—iga*a—i%2k:|ek><ek|. (25)

The resulting expressions are unwieldy, however, we checked
via a numerical optimization that —2Im(E;) ~ T'; + §E;
with a relative error below ~3.1% in the ranges 0 < ¢ <
0.25g¢¢r, 0 < k6 < 28ett, 0 < vy < 2getr, Which is more than
enough for our scope.

In order to gain qualitative understanding of photon emis-
sion processes in our system, we next look at the (squared)
matrix elements of the annihilation operator 4,

Aisp = KEflalE) %, (26)

between an initial energy eigenstate |E;) and a final one |Ey).
The quantum jump approach to GKSL master equations [35]
provides a useful interpretation for these quantities: A, ; is
proportional to the probability that the transition |E;) — |Ef)
occurs upon loss of a cavity photon [in the master equation
(8), such transitions are triggered by the term xé@pa']. When
the transition occurs, a photon is emitted into extra-cavity
modes with (approximately) frequency ws; = Ef — E; and
bandwidth T'; + 'y + 6E; + 6Ef. The A;_ s terms involving
only JCM-type eigenstates do not present any particular sur-
prises: They approximate the well-known JCM results for
& K geff, and converge to them for ¢ — 0. We, thus, omit such
cases for brevity and focus only on the matrix elements involv-
ing quasidark states, which yield the following expressions:

82

Alpsog = ———, 27

-0 = 32 s 27
482ff”

Aupsn— =n-—- ;, 28

D->n—1,0 =1 prCp——pe (28)

AnD—m—l,i - 07 (29)

28%&‘82 (30)

Aroonto [482e(n — 1) + &2] (482 + £2) ‘
From Eqgs. (27)—(29) we note that, once the system is in one
of the quasi-dark-states |E,p), the loss of a cavity photon can
only produce the quasi-dark-state |E,_; p) forn > 2 or |G, 0)
for n = 1. This corresponds to the emission of a photon at the
cavity frequency wy with the associated matrix element of or-
der ~n — 1. Assuming for the moment y,; = 0 (no dephasing),
this implies that once the system has evolved into a quasidark
state, it essentially reproduces the open dynamics of an empty
cavity until state |1, D) is reached. From there the system will
decay slowly towards the lowest state |G, 0), resulting again in
the emission of a photon at the cavity frequency wy but with
a much narrower bandwidth I';p ~ k&? /4g§ff. On the other
hand, from Eq. (30) we can also see a small probability that
a JCM-like state decays into a quasidark state by loss of a
cavity photon. This process results in the emission of photons
at average frequency wo = gesr+/n: These exactly overlap with
the JCM spectral resonances for n = 1, whereas they provide
novel emission peaks for n > 2. Putting back finite dephasing
va 7 0 into the picture, we see that, in addition to introducing
further broadenings of the levels, dephasing events are capa-

ble of interconverting states |B) and |D). More in detail, we
find |(f|L|i))*> = y4/2 for L = Jvalex){ex| withk = 1,2 and
i, f € {D, B}. Referring again to the quantum jump approach
[35] this will swap the states |B) and |D) with probability 1/2
if a dephasing event occurs.

To summarize, we have provided a detailed characteriza-
tion of the processes occurring in our open system for the
emblematic case N =2, A=A =y =Q =0. Although
the multilevel model can approximate all features of a JCM
for & < gefr, it displays additional phenomena due to the
indirect interaction of dark states and cavity field. In the next
section we explore these issues quantitatively via numerical
simulations.

V. CLIMBING THE JC LADDER

In the following numerical studies, we will investigate
how closely the physics of our system—as relevant for typ-
ical quantum optics experiments—resembles a JCM with
enhanced coupling constant geg +/N. For the sake of com-
parison, we will also display the behavior of a TC model with
N atoms and the same effective coupling constant g.g—see
the Appendix for further details. Simulations are performed
for N = 3: This is one step up in complexity compared to the
previous section but simple enough that the resulting calcula-
tions can be handled by a standard computer.

Our analysis focuses on two observables that are ubiqui-
tous in both theoretical and experimental investigations of the
JC model (proper definitions will be given below):

(1) The steady-state spectrum S,(w) of the cavity output
field when the system is excited via incoherent pumping of
the emitter.

(i) The photon autocorrelation function g®(0) when the
emitter is excited via a coherent driving field with variable
detuning.

The first observable provides valuable information about
the energy-level structure of a quantum system, in particular,
highlighting its optically allowed transitions. Instead, g (0)
may be seen as a witness of optical nonlinearity: We will
use it in our model to show that the /N enhancement of
the coupling constant g & v/N does not come at the cost
of “linearizing” the light-matter interaction (something that
instead happens in the TC scenario as N is increased, as we
will see below). To support this last point, we will indeed com-
pare our autocorrelation functions with 2®(0) obtained for
a reference coupled-oscillator model—i.e., the quintessential
linear system in our context (see the Appendix for details).
Note that we are focusing only on observables that can be
measured via the cavity output field. The latter has indeed
the same definition in all models considered here, facilitating
direct comparisons between them. On the other hand, emitter
observables do not have an unambiguous correspondence in
the different models as they are defined on Hilbert spaces of
different dimensions.

In detail, according to standard input-output theory [40],
the portion of the cavity output field that reaches our detector,
say Eqy (scalar for simplicity), may be expressed as a function
of the cavity annihilation operator a as follows:

Eout =Ea+ Evac» (31)
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where E. is a constant depending on the details of the
cavity-plus-detector setup, whereas the operator Ey,. captures
all “vacuum noise” contributions from the detector’s envi-
ronment. Thanks to the assumption of a zero temperature
environment for the cavity field, which is justified for optical
frequencies at room temperature, Evac does not contribute to
any normally ordered observable constructed from E, —and
these are precisely the types of observables employed here.

In the interest of brevity, we restrict ourselves to an experi-
mentally desirable situation in which A = 0 and the hierarchy
& K k < ger holds. In other words we consider a strongly
coupled system where the average transition frequency of the
emitter is at resonance with the cavity, whereas the range
of sublevel detunings is within the bare cavity bandwidth.
This scenario is indeed appropriate for the case of quantum
dots embedded in plasmonic nanoresonators as anticipated
in Sec. II. We will also take the driving strengths (2 for
the coherent and A for the incoherent case) as the smallest
parameters in the problem. This ensures that the driving will
not induce significant modifications to the intrinsic resonances
of the coupled system nor to the conditions for achieving
strong coupling [4—6,41-47]. In this setting, we focus on two
representative parameter regimes:

(i) gerr = « or the “single-excitation regime,”

(i1) getr = 20« or the “biexcitation regime.”

Loosely speaking, case (i) gives access to the first rung of
the energy ladder, thus, the resulting Physics should be similar
to that of a pair of coupled oscillators in all models. Case (ii)
instead allows us to explore the “second rung” of the lad-
der where the anharmonic nature of the investigated models
becomes more prominent. In both situations we will analyze
the role of emitter dephasing by considering three scenarios:
no dephasing, low dephasing (i.e., one order of magnitude
smaller than the cavity decay rate « ), and high dephasing (i.e.,
dephasing and cavity decay rates of the same order). This is
particularly relevant for quantum-dot implementations of our
models especially at room temperature, where emitter dephas-
ing rates can be comparable to the cavity decay rate. Finally
it is important note that we will adopt a logarithmic scale
in our plots, since the examined quantities display features
of very different magnitudes. This implies that the weaker
features displayed in our plots (e.g., the second-rung spectral
resonances) may be challenging to detect in experiments.

A. Steady-state spectra

As anticipated, our first set of numerical examples investi-
gates the optical emission properties of our multilevel model
under incoherent pumping of the emitter, as relevant in many
quantum dot experiments also at ambient conditions. Specifi-
cally, we set 2 = 0 (no coherent driving) and A # 0. In this
setting we are interested in the steady-state spectrum of the
cavity output field, i.e.,

Sa(w) = 2Re( / OO<E§;t<r>Eout(0>>ooe—fw’dr),
0

o 2Re (/w(&1'(r)&(0))ooeiw’dr), (32)
0

where Eq. (31) has been used, the two-point correlation func-
tion (af(1)a(0))o is calculated via the quantum regression
theorem [35], and the expectation value is calculated on pn,
the steady state of the master equation. The latter is found
by solving the linear system Lpo = 0, Tr[ps] = 1 where
the superoperator L is implicitly defined by rewriting the
master equation (8) as p = Lp. We perform such calculations
numerically with PYTHON by truncating the Hilbert space of
the cavity to a sufficiently high dimension to obtain numerical
convergence. In addition to the cavity spectrum, we will also
be interested in the quantity

Pdark

> Trl oo | Di) (Di]
k

= 1—Trlp(IB)(B| + |G){G]], (33)

i.e., the steady-state probability that the emitter has settled
in a dark state (or a mixture thereof). The resulting spectra,
on the logarithmic scale, are plotted in Fig. 5 together with
those of the reference TC and JC models (again, see the
Appendix for details). For a fairer visual comparison among
the three models we have also rescaled the spectrum of JC
and TC models by a factor of 1 — pg,k. We indeed recall from
Sec. IV A that the multilevel model cannot display JC physics
once it gets “stuck” into a dark state.

In the single-excitation regime [Figs. 5(a)-5(c)], we find
that all three models display the expected resonances at @ =~
wo £ getr, but the multilevel model presents additional sharp
features at w ~ wy. In the case of no dephasing, these reso-
nances account for a significant portion of the total emitted
energy, and, correspondingly, pgak is close to one. We argue
that the w >~ wq features can be ascribed to the slow decay of
the long-lived quasidark states of the single-excitation sector:
Referring to our discussion and notation in Sec. IV A, this
involves transitions of the form |Ep) — |G, 0) (where |E;p)
can be any of the two quasidark states occurring for N = 3).
As dephasing is increased, going left to right in Fig. 5, we
find that the three models show increasing agreement, and at
the same time pg,k is significantly reduced. Referring again
to our analytical discussion in Sec. IV A, we recall that de-
phasing is indeed able to swap bright and dark states. This
opens a new decay channel for the quasi-dark-states |E|p):
As dephasing is increased, we may reach a parameter regime
where the quasi-dark-states |E;p) are more likely to decay
by a process of the form |E\p) — |E1+) — |G, 0) where the
first step is due to dephasing, and the second step is due to
photon emission. Hence, in such conditions JC-like features
can become more prominent in the measured spectrum. At
high dephasing [y, = «, Fig. 5(c)], the dark-state features are
effectively invisible in the emission spectrum.

The biexcitation scenario [Figs. 5(d)-5(f)] is where the
multilevel model truly shines, compared to the reference TC
model: We can see in the bottom half of Fig. 5 that multilevel
and JC models are indeed in agreement on the location of
both single-excitation (w =~ wy £ gefr, gray dot-dashed lines)
and biexcitation [w >~ wy £ (ﬁ 4 1)gesr, gray dotted lines]
resonances, whereas the biexcitation peaks of the TC model
are visibly shifted. Also in this case the multilevel model
presents an additional resonance (or perhaps a collection of
closely spaced resonances) at w >~ wy. Referring again to the
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FIG. 5. Comparison of cavity emission spectra under incoherent pumping (A # 0, € = 0). Spectra S,(w) are plotted for the multilevel
model with N = 3, ¢ = 0.05g. (solid blue), as well as reference JC (dashed red) and TC models (dot-dashed green). Plots (a)—(c) are in the
single-excitation regime with k = g and A = 0.01«. Plots (d)—(f) are in the biexcitation regime with x = 0.05g.¢ and A = 0.02«. Dephasing
increases from left to right: (a) y; = 0, (b) y4 = 0.1k, (¢) yu =k, (d) y4 = 0, (e) y4 = 0.2k, and (f) y; = . Spectra for the TC and JC models
are rescaled by a factor (1 — pguk ). Gray vertical lines indicate the resonances corresponding to the first (dot dashed) and second rung (dotted)
of the JC ladder. See the Appendix for further details on the TC and JC models employed here.

notation of Sec. IV A, these can be ascribed to two processes:
The photons emitted in the |E;p) — |G, 0) transition, which
is associated with a small decay rate, and those emitted in the
second-rung process |E>p) — |Eip), which we recall is very
similar to photon emission by an empty cavity and, hence,
has a significantly higher decay rate >~ x. We again note that
the w >~ wy resonance can be weakened in the presence of
dephasing, however, it remains prominent even in the high
dephasing scenario [Fig. 5(f)]. Our interpretation for this is
the following: Although dephasing of order x can suppress
the |E1p) — |G, 0) process, as discussed above, the |Eyp) —
|E1p) decay channel remains a probable process since it is also
associated with a decay rate of order «.

It is worth pointing out that if one goes beyond our
symmetric pump hypothesis (populating all the emitter ex-
cited states with equal probability—see Sec. III), it may
be possible to reduce the value of pg,kx and, hence, the
prominence of dark-state features in the cavity emission
spectrum.

To summarize, the results of this subsection tell us that the
multilevel model is a viable system to test the characteristic
o +/nges splitting of energy levels that is still the holy grail
of experimental JC research. In this light, the main strength
of the multilevel model is that the effective coupling g may
be significantly boosted by considering emitters with many
closely spaced sublevels.

B. Photon autocorrelation function

As a second step, we will look at the steady-state behavior
of the zero-delay photon autocorrelation function, under weak
coherent driving of the cavity. In all the models employed here
this quantity is defined as follows:

§2(0) =

(34)

t—>00

where again we made use of Eq. (31) in order to obtain an
expression that only features system operators. In detail, in
this subsection we consider the master equation (8), setting
A =0, Q #0, and we will vary the driving field frequency
wr. Although the resulting master equation is explicitly time
dependent, it is still possible to define a steady state by con-
sidering an interaction picture with respect to the Hamiltonian
H =wd'a+ o Zf(v:l lex)(ex]. This is a standard proce-
dure in quantum optics, and it amounts to replacing Vgrive —
Vd(rllnvte) =Q(@+a" and H - H™ = H — H; in the master
equation (8). In turn, this procedure implicitly defines a time-
independent superoperator £ which does admit a steady
state pé,ig“). Such a steady state is again found numerically with
the same process described in the previous section, and it can
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FIG. 6. Steady-state photon autocorrelation, g»(0), versus driving field detuning. Results are plotted for the multilevel model with N =
3, & = 0.05g. (solid blue), reference JC (dashed red), TC (dot-dashed green), and coupled-oscillator models (gray dotted). Driving strengths
are setto A =0, Q2 = 0.01g.g in all cases. Plots (a)—(c) are in the single-excitation regime with k = g.i. Plots (d)—(f) are in the biexcitation
regime with x = 0.05g.. Dephasing increases from left to right as in Fig. 5: Dephasing values are (a) y;, =0, (b) y;, = 0.1«, (¢c) Y4 = «,
(d) y4 =0, (e) ya = 0.2, and (f) y; = k. See the Appendix for further details on JC, TC, and coupled-oscillator models.

be easily shown that it provides the correct expectation values
involved in Eq. (34). The obtained autocorrelation functions
for multilevel, JC, TC, and coupled-oscillator models are dis-
played in Fig. 6 as functions of the driving field detuning.
We note that in this case we do not need to rescale JC,
TC, and coupled-oscillator plots since g?(0) is normalized by
definition.

We observe that, excluding the region w >~ g, the mul-
tilevel model does a good job at matching the JC model
predictions, capturing both the position and the magnitude
of resonances and dips. These observations are true both in
the single- and in the biexcitation regimes. In contrast, g?)(0)
of the TC model displays features that are significantly less
pronounced than their JC counterparts (recall that we are using
a logarithmic scale) as well as being shifted in frequency in
the biexcitation regime. This is compatible with the intuition
that the TC model is “more linear” than both the JC and
the multilevel ones. Finally, the coupled-oscillator model is,
of course, even farther off from the JC predictions: it in-
deed displays features that are several orders of magnitude
smaller than those in all the other models. Additionally, the
coupled-oscillator model satisfies g (0) > 1 at all times. As
anticipated, however, the multilevel model displays additional
features in the region w >~ wy: At low or no dephasing a
double-peak structure can be clearly seen, likely due to pro-
cesses involving the quasidark states (we recall that for N = 3
there are two quasidark states for each value of the excitation
number n > 1). As dephasing is increased, the prominence of

these peaks is reduced, presumably due to the introduction
of additional decay channels for the quasidark states (see
also the previous subsection). However, dephasing also results
in the appearance of a central peak in g®(0), which may
be due to an increased likelihood that two driving photons
excite a quasidark state of the system and are later emitted
at the frequency of the empty cavity by a process of the form
|Eap) — |E1p) — |G, 0). Although a more rigorous analysis
of these effects would be certainly worthwhile to confirm our
intuitions, we feel that it goes beyond the scope of this paper.

It is also interesting to note the stronger photon antibunch-
ing effect observed in the biexcitation regime (as compared to
the single-excitation regime). This occurs around the frequen-
cies of the two lowest excited states E; ;.. The biexcitation
regime is indeed achieved by a higher quality system where
the light-matter coupling is significantly larger than the deco-
herence and dephasing rates. In such conditions, the JC and
multilevel models yield a strong nonlinear effect known as
“photon blockade”: The coupled light-matter system can only
absorb or emit one photon at a time, causing the pronounced
antibunching in the emitted field [40].

As anticipated, g»(0) is one of the most commonly
adopted witnesses of nonlinearity in emitter-cavity systems,
such as the ones we are investigating. The results of this sub-
section, therefore, confirm that the multilevel model closely
matches the nonlinear signatures of JC physics, and in this
respect it clearly outperforms the reference TC model with
the same values of N and geg;.
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VI. CONCLUSIONS

We explored a novel route to realize the strong coupling
regime of light-matter interaction, exploiting a multilevel
emitter coupled to a single-mode electromagnetic field. When
the N excited sublevels of the emitter are nearly degenerate,
we showed both analytically and numerically that our pro-
posed system can closely approximate many aspects of JC
physics. The associated light-matter coupling constant scales
as gefr X +/N and, crucially, the quantum nonlinearities of our
model are not suppressed with increasing N. Indeed, we are
able to observe the characteristic energy-level splitting of or-
der ~./n, where n is the number of combined (emitter + field)
excitations, as well as the associated nonlinear signatures in
emission spectra and photon autocorrelation functions. More-
over, we have been able to characterize the main effects
associated with the additional levels of the emitter: The ap-
pearance of very interesting sharp resonances in the middle
of the emission spectrum, associated with the slow decay of
quasidark states. Although it may be possible to observe such
resonances in an experiment, our analysis shows that these
are quickly washed out in the presence of dephasing. Ob-
serving dark-state signatures would, thus, require cryogenic
temperatures.

Our findings are particularly relevant in solid-state and
plasmonic implementations of cavity QED, where the emitters
of choice are often multilevel quantum dots, and may pave the
way towards the observation and exploitation of light-matter
strong coupling at room temperature.
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APPENDIX: AUXILIARY MODELS

Here we briefly list the Hamiltonians and Lindblad opera-
tors for the auxiliary models used throughout the paper. In all
cases the field mode is described by the same annihilation op-
erator a (and corresponding Hilbert space) as in the main text.
In turn, photon loss and coherent cavity driving are described
by the same operators shown in the main text (Sec. III). What

changes between the different models is the structure of the
emitter and the associated Lindblad operators.

1. Jaynes-Cummings model

The Hamiltonian of the JC model adopted in the main text
reads

Hyc = wo(d'a + le)(el) + ger(a’lg) (el + ale)(gl).

where the emitter is a two-level system with excited-state
le) and ground-state |g). The Lindblad operators for emitter
decay, dephasing, and incoherent pumping are, respectively,

(AD)

L= J7lg)lel, (A2)
L = J/Vale){el, (A3)
L =/Ale)(g| (A4)

2. Tavis-Cummings model with NV atoms

The TC model used in the main text with N atoms and
effective coupling g.¢ reads

~

J Zeff /5 A
Hrc = wod'a+ oy = + == (STa+a'J),
TC 0 05 \/N( )
where fx, JA‘ and fz are spin-N/2 operators and JEt = fx +
iJAy are the spin-ladder operators. The Lindblad operators for
emitter decay, dephasing, and incoherent pumping, respec-
tively, are

(A5)

L= /yJ, (A6)
L= val/2, (A7)
L =+AJ*. (A8)

3. Coupled-oscillators model

In the rotating-wave approximation, the Hamiltonian of
two coupled harmonic oscillators (both having the same fre-
quency) reads

Hoe = wo(d'a+ b'b) + ger(a'h + b'a),  (A9)
where a, b are annihilation operators of distinct Bosonic
modes. The Lindblad operator for emitter decay, dephasing,
and incoherent pumping, respectively, are

L= /yb, (A10)
L= yab'b, (Al1)
L =AD" (A12)
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