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I. Abstracts 

I.1. Zusammenfassung 

Krebsimmuntherapie ist eine viel versprechende Alternative zu den konventionellen 

Therapien, wie Bestrahlung, chirurgische Entfernung des Tumors oder klassische 

Chemotherapie. Der größte Vorteil der Krebsimmuntherapie ist Spezifität, welche 

durch das Zielen des Immunsystems auf so genannte Tumor-Assoziierte Antigene 

erreicht wird. Diese Form der Therapie sollte weniger Nebenwirkungen als 

Standardbehandlungen beinhalten, weiterhin könnte diese Metastasen an Orten fern 

des eigentlichen Tumors bekämpfen. Krebsimmuntherapie zeigte sich jedoch wenig 

erfolgreich in späten klinischen Studien. Zusätzlich ist die Mortalitätsrate bei 

Krebsleiden, trotz allen Fortschritts, immer noch sehr hoch, weshalb die 

Notwendigkeit der Entwicklung alternativer Immuntherapien besteht.  

Ein interessanter Ansatz hierzu ist die Verwendung von Bakterien wie attenuierten 

Salmonellen als Träger heterologer Krebsantigene. Eine Vielzahl präklinischer 

Studien zeigte, dass Vakzine auf der Basis von Salmonellen CD4 und CD8 positive 

zelluläre Immunantworten auslösen können, welche für eine Krebsimmuntherapie 

entscheidend sind. Spezielle Antigenliefersysteme in Salmonellen, wie die 

oberflächengebundene Expression oder die Sekretion von Antigenen sind von Vorteil 

für die Immunogenität der Antigene. 

Diese Arbeit zielte auf die Entwicklung von neuen Salmonella Trägerstämmen für die 

Immuntherapie gegen Krebs. Im ersten Projekt wurde TolC, ein multifunktionelles 

Protein der E. coli Außenmembran, als Membrananker für drei heterologe Antigene 

benutzt um eine oberflächenassoziierte Expression dieser Antigene zu erreichen. Die 

entsprechenden plasmidkodierten TolC Fusionsproteine wurden hinsichtlich ihrer 

Expression, Funktionalität und Plasmidstabilität in verschiedenen, rekombinanten 

Salmonella Stämmen in vivo und in vitro untersucht. Die Menge an 

membranständigem rekombinanten TolC war stark erhöht in tolC-deletierten 

Stämmen. Zusätzlich waren die Fusionsproteine funktionsfähig und die Plasmide 

wurden in vitro und in vivo äußerst stabil vererbt. Leider konnten weder spezifische 

CD4+/CD8+ T-Zellantworten gegen das Modelantigen Ovalbumin noch CD8+ 

Antworten gegen das Krebsantigen BRAFV600E in immunisierten Mäusen detektiert 

werden. Mäuse, die mit einem Salmonella Stamm immunisiert wurden, der ein 

immundominantes Epitop des krebsassoziierten Prostata spezifischen Antigens 
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(PSA) in oberflächengebundener Form produziert, waren jedoch partiell vor PSA 

exprimierenden Melanomzellen geschützt. Das Tumorwachstum in diesen Mäusen 

verlief signifikant langsamer als in Kontrollgruppen, was indiziert, dass dieses System 

schützende Immunantworten gegen Krebs auslösen kann. 

 

In einem zweiten Projekt wurde der zur Typhusimpfung zugelassene Stamm 

Salmonella enterica serovar Typhi Ty21a (Ty21a) für die Hämolysin Sekretion 

verbessert. Dieses aus E. coli stammende Typ I Sekretionssystem wurde oftmals für 

die Sekretion von heterologen Antigenen in lebenden bakteriellen Impfstoffträgern 

verwendet. In dieser Arbeit wurde gezeigt, dass eine Mutation von rpoS in Ty21a mit, 

im Vergleich zu anderen Salmonellen, verminderter Sekretionsfähigkeit von 

Hämolysin korreliert. Komplementation von rpoS oder rfaH, einem vermuteten 

Zielprotein von rpoS in Ty21a, verbesserte die Expression und Sekretion von 

heterologem Hämolysin. RfaH-rekombinante Salmonellen stimulierten höhere 

Serumantikörpertiter gegen Hämolysin in immunisierten Mäusen als vergleichbare 

Kontrollen und sogar rpoS komplementierte Salmonellen, vermutlich durch eine 

Erhöhung der Menge an freiem Hämolysin. Daher könnte dieser Stamm die Basis 

einer neuen Generation von Impfstämmen gegen heterologe (Krebs-) Antigene für 

den humanen Gebrauch bilden. 

 

I.2. Abstract 

Cancer immune therapy represents a promising alternative to conventional anti 

tumour therapy like radiation, surgical excision of the tumour or classical 

chemotherapy. The biggest advantage of cancer immune therapy is specificity, 

achieved by targeting tumour-associated antigens with the effector arms of the host 

immune system. This is believed to result in less adverse effects than standard 

therapy and reaches presumably also metastatic lesions at distant sites from the 

primary tumour. However, cancer immune therapy by vaccination against tumour 

antigens failed to translate into clinical success, yet. Furthermore, despite 

tremendous clinical efforts malignant disease still results in high mortalities giving rise 

to the need for novel vaccination-based therapies against cancer. 

An interesting approach in this respect is the use of bacteria like attenuated 

salmonellae as carriers for heterologous cancer antigens. In numerous preclinical 
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studies Salmonella-based vaccines could elicit cell mediated immune responses of 

the CD4+ and CD8+ type against own and heterologous antigens which make them 

ideally suited for anti tumour therapy. Special delivery systems in Salmonella carriers 

like surface display or secretion of antigens were shown to be advantageous for the 

immunological outcome.  

This work focussed on developing novel Salmonella carriers for immune therapy 

against cancer. In a first project, TolC, a multifunctional outer membrane protein of E. 

coli was utilized as membrane anchor for 3 heterologous antigens. Respective TolC 

fusion proteins encoded on plasmids were analysed for expression, functionality and 

plasmid stability in different engineered Salmonella strains. The amount of membrane 

localized recombinant TolC was enhanced in tolC-deficient strains. Furthermore, 

fusion proteins were functional and plasmid stability was very high in vitro and in vivo. 

Disappointingly, neither specific CD4+/CD8+ T-cell responses against the model 

antigen ovalbumin nor CD8+ responses against the cancer antigen BRAFV600E were 

detectable in murine model systems. However, mice immunized with Salmonella 

strains displaying an immunodominant epitope of the cancer related prostate specific 

antigen (PSA) were partially protected from subsequent tumour challenge with a PSA 

expressing melanoma cell line. Tumour growth in mice immunized with the respective 

strain was significantly decelerated compared to controls, thus indicating that this 

surface display system confers protective immunity against tumours.  

 

In a second study, the approved typhoid vaccine strain Salmonella enterica serovar 

Typhi Ty21a (Ty21a) was improved for the hemolysin type I secretion system of E. 

coli. This secretion system is widely used for heterologous antigen delivery in live 

bacterial vaccines. It was demonstrated throughout this work that a mutation of rpoS 

in Ty21a correlated with decreased ability for hemolysin secretion compared to other 

Salmonella strains. Complementation with rpoS or the presumed downstream target 

of rpoS, rfaH resulted in enhanced expression and secretion of heterologous 

hemolysin in Ty21a. Presumably by raising the amount of free antigen, rfaH-

complemented Ty21a elicited higher antibody titres against heterologous hemolysin 

in immunized mice than controls and even rpoS-positive Ty21a. Therefore, rfaH-

complemented Ty21a could form the basis of a novel generation of vaccines for 

human use based on (cancer) antigen secretion. 
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II. Introduction 

II.1. Cancer immune therapy 

II.1.1. Cancer 

Cellular transformation is initiated by genetic and epigenetic mutations that activate 

oncogenes and inactivate tumour suppressor pathways (1). The path of cancer thus 

requires that somatic cells escape from various intrinsic tumour suppressor 

mechanisms that prevent cell cycle progression. In addition, transformed cells lose 

their responsiveness to extrinsic signals afforded by the extracellular matrix and the 

neighbouring cells that normally operate to maintain tissue homeostasis. Cancer thus 

arises when somatic cells acquire pro-mitotic signals and escape intrinsic and 

extrinsic suppressor mechanisms in the context of their cellular microenvironment (2). 

Furthermore, cancer cells can break away from the malignant solid tumour and 

spread to distant parts of the body (3). Cancer malignancies are among the most life-

threatening diseases in industrialized countries. Although classical cancer therapies, 

including surgical resection of the primary tumour, radiation and chemotherapy, are 

well established, cancer still causes 25 % of mortalities. Annually, about 1 % of the 

population that has been diagnosed with cancer, die. Five-year survival rates range 

from 10-20 % for lung, oesophagus and stomach cancer, to 40-60 % for colon, 

bladder and cervix cancer, and 60–80 % for breast and prostate cancer (4). One 

reason for this is that dysfunctional tumour suppressor genes are selected in the 

course of standard chemotherapy leading to relapse of the disease highly resistant to 

conventional treatment (2). These facts emphasize the need for novel anti cancer 

therapies.  

 

II.1.2. The idea of cancer immune therapy 

One of these novel therapeutic approaches which gained attention in the past 

decades is referred to as cancer immune therapy. It has become evident that the 

development of cancer does not progress unnoticed by the immune system and 

immunity can prevent the occurrence of tumours. This concept has been named 

“immunosurveillance” and several mouse models together with clinical data have 

unambiguously demonstrated its role as an effective tumour suppressor mechanism 
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(5,6) suggesting that the effector arms of the immune system are able to mediate 

tumour regression. It is estimated that immune therapy has less side effects 

compared to standard therapies such as chemotherapy or radiotherapy (7). On the 

other hand, cancer immune therapy has been proposed as therapeutic intervention to 

boost or elicit immune responses in patients with minimal residual disease e.g. after 

surgical excision of the primary tumour before recurrence of cancer at metastatic 

sites (8). However, the first clear indication for effective immune therapy, the 

administration of high dose of interleukin-2 (IL-2), was able to mediate regression of 

even bulky, invasive tumours in selected patients with melanoma, kidney cancer and 

non-Hodgkin’s lymphoma (9).  

 

Multiple studies have been undertaken to clarify the nature of protective immunity 

observed in animal models and it could be shown that cellular rather than humoral 

immune responses were responsible for the rejection of transplanted tumours (10). 

Thus, significant effort has been made towards the identification of antigens 

recognized by human T-lymphocytes (11-13). Both, CD8+ cytotoxic T-cells and CD4+ 

T-helper cells recognize antigens presented as small peptides in the groove of 

surface human leukocyte antigen (HLA, the human analogue of the major 

histocompatibility complex (MHC)) molecules. CD8+ cells recognize peptides of 8-10 

amino acids length, derived from intracellular cytoplasmic proteins, digested in 

proteasomes and presented via the endoplasmatic reticulum on cell surface class I 

HLA (or MHC) molecules. In contrast, CD4+ cells use a different intracellular pathway 

and present engulfed extracellular proteins, digested to peptides in intracellular 

endosomes and presented on cell surface class II HLA (or MHC) molecules (10). In 

principle, cancer immune therapy employing T-cells can be achieved in two ways: (i) 

the adoptive transfer of ex-vivo activated T-cells or (ii) in vivo activation by the use of 

cancer vaccines. As this work deals with vaccination therapy the following sections 

focus on vaccine-based cancer immune therapy knowing that adoptive transfer of T-

cells, the administration of adjuvants for cancer immune therapy and antibodies 

against extracellular receptors e.g. Rituxan and Herceptin reached the clinics (14-16). 

The unique advantage of vaccination-based cancer immune therapy is specificity as 

the immune system is able to recognize epitopes of antigens that are expressed by 

tumour cells and target those cells for destruction without harnessing normal ones. 

Those antigens determining specificity were termed tumour-associated antigens. 
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II.1.3. The cellular basis of cancer immune surveillance 

Tumour associated antigens (TAAs) can be segregated into five categories: (i) 

differentiation antigens e.g. melanocyte differentiation antigens (in melanoma) like 

Melan-A/MART-1, tyrosinase and gp-100; (ii) mutational antigens, e.g. abnormal 

forms of p53; (iii) overexpressed/amplified antigens, e.g. HER-2 neu (breast cancer) 

(iv) cancer testis antigens e.g. MAGE and NY-ESO (germ line tumours, sarcomas 

malignant melanomas), normally expressed only in the germ line, notably the testis, 

but also abundant in various cancer cells; and (v) viral antigens, e.g. EBV and HPV 

(cervix carcinoma) (11,17,18). Epitopes of TAAs are recognized by T-cells. The 

activation of antigen specific CD8+ T-cells can depend on interaction with CD4+ but 

the final effector cell in most mouse models is the CD8+ cytotoxic T-cell (CTL). 

Perforin-mediated cytotoxicity and Fas/Fas ligand interaction are major mechanisms 

for CD8+ T-cell-mediated effector function (19,20). After the TCR engages specific 

antigenic peptides presented by the MHC (or HLA) of target cells, perforin is released 

and causes damage to target cell membranes. Various granzymes and possibly other 

granule constituents co-secreted with perforin enter the target cell and induce 

apoptosis (21). The expression of a variety of cytokines, including Fas ligand (FasL) 

is also enhanced in T-cells after antigen specific activation. FasL cross-links Fas on 

the target cells and in many cells this interaction triggers apoptosis and cell death 

(20). Studies in perforin-deficient mice showed that perforin-mediated cytotoxicity is 

essential for resistance against injected tumour cell lines, viral and chemical 

carcinogenesis as well as spontaneous leukemogenesis (21-23). Although the role of 

Fas dependant cancer cell death was reported to play only a minor role, there are 

hints on FasL mediated cancer rejection of tumour cells which are responsive to this 

pathway (24).  

Additionally, most effective antitumour immune responses in animal models depend 

on the efficient generation of CD4+ T-helper 1 cell (Th 1) immunity that promotes CTL 

responses (8) in contrast to Th 2 helper cells which trigger the humoral immune 

system. The importance of Th 1 helper cells is also strengthened by the fact that 

progressive neoplastic disease is characterized by a response that is skewed 

towards Th 2 cells (25). Among the Th 1 cytokines, Interferon (IFN) γ seems to play a 

crucial role for alarming the immune system and cancer cell cytotoxicity (6).  
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However, classical CD8+ T-cells are not the only source of IFNγ and mediators of 

cytolysis. Components of the innate immune system also participate in the process of 

immunosurveillance. NKG2D is a lectin-like receptor expressed by natural killer cells 

(NK), γδ T-cells, some CD8+ T-cells and natural killer T-cells (NKT) (26). NKG2D 

ligands are often ectopically expressed in a wide range of murine tumours (27) and 

human carcinomas of lung, kidney, prostate, ovary, colon (28), liver (29) as well as 

melanoma (30). Tumour cells can therefore be recognized by immune cells via the 

NKG2D receptor which lead to tumour repressive functions in vivo e.g. by IFNγ 

secretion of γδ T-cells (31). Additionally, tumour necrosis factor related apoptosis 

inducing ligand (TRAIL) can engage the TRAIL-R2 receptor in mice and induce 

cytolysis via apoptosis. TRAIL is expressed on a subset of liver NK cells and is 

induced by interferons in NK cells, monocytes and dendritic cells (DCs) (32) 

representing another mechanism employed by the innate immune system to kill 

cancer cells.  

 

II.1.4. Strategies, challenges and limitations for cancer vaccines 

Attempts at immunotherapy of cancer have included vaccination with viral vectors 

(33,34), antigenic synthetic peptides (35,36), antigen loaded DCs (37,38) and DNA 

encoding tumour-associated antigens (39). All approaches have their own 

advantages and disadvantages but the biggest challenge for every type of anti-

cancer vaccination is tolerance as all cancer antigens are self antigens and even 

large numbers of tumour-infiltrating, specific T-cells may fail to mediate tumour 

regression (40,41). This “anergy” needs to be overcome and therefore basically all 

cancer vaccines employ adjuvants, whether they are composed of whole cells, 

defined proteins or peptides and other molecules (8). Adjuvants can activate antigen 

presenting cells to stimulate T-cells more efficiently or activate NKs and other cells of 

the innate immune system to produce cytokines or promote survival of antigen 

specific T-cells (8). For example, cytokines like IL-2, granulozyte-macrophage colony 

stimulating factor (GM-CSF), IL-12, IL-4 and several others have been used as 

adjuvants in cancer vaccines (42). Two classes of adjuvants even facilitate delivery of 

antigens into the cytoplasmic compartment of antigen presenting cells (APCs) to 

trigger predominantly CD8+ responses: (i) PLGA microspheres and virus like particles 

(43) as well as (ii) immunostimulatory complexes (ISCOMs), a mixture of QuilA and 

cholesterol that forms micelles (44).  
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A phenomenon that could form possible obstacles for efficient immune therapy was 

referred to as cancer “immunoediting”. This term describes the fact that the immune 

system is sculpting tumours which in turn could lead to immune escape of cancer 

cells. Tumour immune escape mechanisms involve cellular and molecular processes. 

Analysis of human tumour specimens has shown that many display losses of HLA 

class I proteins (45,46). In addition, tumour and tumour stroma cells were identified to 

secrete immune suppressive factors like IL-10 and TGF-β (47) or soluble forms of 

NKG2D ligands (28) which attenuate innate and adaptive immune responses against 

cancer cells. Recently, populations of immunosuppressive cells have been identified 

which were generated or activated by tumour cells. Among them are IL-13 producing 

NKT cells (48) and CD4+ CD25+ regulatory T-cells (Tregs), the latter shown to be 

responsible for the failure to reject transplanted tumours in the murine host (49,50). A 

third class of immune-suppressive immune cells is represented by myeloid-derived 

suppressor cells (MSCs) which inhibit CD8+ T-cell functions and trigger T-cell 

apoptosis in response to IFNγ release (51). An often critical but underappreciated 

point deals with the aging immune system. As most cancer patients are of advanced 

age, many years after the thymus stopped producing naïve T-cells, immune 

responses may be hindered. It was clearly shown in mouse models that generation of 

the primary response to antigen and the conversion to memory is compromised with 

age (52,53). Finally, apart from melanoma therapeutic cancer vaccination till now 

failed to translate into convincing clinical response in late stage trials (54,55), further 

underscoring the need for novel immune-stimulating therapies. 

 

II.1.5. Bacteria and cancer: hallmarks for bacterial cancer immune 
therapy  

As tumours or metastases develop, they stimulate angiogenesis to promote the 

formation of new blood vessels. However newly formed vessels are highly 

disorganised with incomplete endothelial linings and blind ends, resulting in inefficient 

nutrient and oxygen delivery to those neoplastic tissues (56). This leads to multiple 

regions of hypoxia and anoxia within tumours (57). Furthermore, these areas are 

believed to represent niches where immunological clearance mechanisms are absent 

(56), thus creating a favourable environment for the growth of obligate and facultative 

anaerobic bacteria. Indeed, it was shown that different bacteria like Clostridia, 
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Salmonella, Vibrio and Bifidobacterium can infiltrate, replicate and then preferentially 

accumulate in tumours (58-61). This tumour-targeting feature of bacteria gave rise to 

several clinical options. For example, Clostridia spores injected into mice harbouring 

transplanted sarcomas resulted in vegetative growth of those bacteria inside necrotic 

areas and finally oncolytic regression of the tumour (62,63). Another approach is the 

use of tumour-infiltrating bacteria as vehicles to deliver cytotoxic proteins or nucleic 

acids encoding them (61,64-66) to allow cancer targeted therapy with the aim of 

reducing adverse effects and achieving treatment “in situ”. 

More interesting with respect to cancer immune therapy are historical findings of the 

surgeon W.B. Coley. He observed that when patients suffering from sarcomas 

developed acute streptococcal infections, their tumours regressed, due to the 

stimulation of the innate immune system (67). More recently, despite their known 

oncolytic activity, Clostridia were found to eradicate tumours due to induction of the 

inflammatory response and generation of CD8+ T-cells reactive to cancer cells in 

experimental animal models (68). Furthermore, bacterial products, like 

lipopolysaccharide (LPS) or unmethylated CpG dinucleotide-containing bacterial DNA 

have been used for many years as effective adjuvants. These bacterial compounds 

are particularly good in activating CTLs, thus being of interest for tumour 

immunologists (69). Bacterial products stimulate pattern recognition receptors 

expressed by DCs, macrophages and perhaps NK cells and other cells of the innate 

system. This induces their maturation, activation and production of pro-inflammatory 

cytokines (8). Many of these receptors belong to the family of Toll-like receptors 

(TLRs) that are located either on the surface or inside cells and recognize invading 

pathogens (70).  

For those reasons, the use of attenuated live bacterial vaccines (LBV) represents an 

interesting alternative for cancer immune therapy. They stimulate innate responses 

as well as adaptive immunity. This and the ability to express foreign proteins make 

them ideal vectors for vaccination against tumour-associated antigens. Features of 

live bacterial vaccines and immune responses elicited by those vectors are discussed 

in depth in the following sections. 
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II.2. Live bacterial vaccines 

II.2.1. General features of live bacterial vaccines 

Live attenuated bacterial vaccines are able to elicit immune responses against own 

antigens and confer protection towards challenge with virulent bacteria. As 

mentioned above, LBV can also be used for the delivery of heterologous antigens 

and these vectors offer many potential clinical advantages: (i) they are easy and 

relatively inexpensive to produce (ii) they are also well-suited to large scale 

manufacture and potentially stable without refrigeration (via lyophilization), (iii) are 

able to carry large or multiple antigens or adjuvants (iv) and can be eradicated with 

antibiotics should the need arise (71). Delivery of vaccine antigens by LBV via the 

mucosal route results in the elicitation of effective humoral and cellular responses at 

the level of both systemic and mucosal compartments, not only at the specific 

inductive site but also at remote mucosal sites (72-74). Mucosal (oral) delivery 

comprises further advantages like high acceptance, easy administration and 

amplification of the carrier at mucosal sites leading to persistent antigen production 

(75). LBV induce the production of multiple cytokines, including Th 1 cytokines like 

TNFα, IFNγ and IL-12 and inflammatory mediators such as nitric oxide which 

enhance early innate immunity and create a local environment favourable to antigen 

presentation (76). There are currently three live bacterial vaccines licensed for 

human use: (i) Salmonella enterica serovar Typhi Ty21a (Ty21a), (ii) Vibrio cholerae 

CVD 103-HgR and (iii) Mycobacterium bovis BCG (BCG). These strains among 

others have been used as vectors to express heterologous antigens and were 

evaluated in numerous animal models, albeit there are no clinically used LBV in this 

respect (71). 

 

II.2.2. Salmonella typhi Ty21a: vaccine and vaccine vector 

Attenuated Salmonella strains were among the first bacteria used as recombinant 

vectors for antigen delivery (77). A prominent example is Ty21a which was isolated in 

the early 1970s by chemical mutagenesis of its respective wildtype S. typhi Ty2 as 

vaccine against typhoid fever in humans. It has a GalE and Vi negative phenotype 

(78). The mutation of the galE gene results in a complete deficiency of the enzyme 

uridine diphosphate (UDP)-galactose-4-epimerase, which is responsible for the 

conversion of UDP-glucose to UDP-galactose and vice versa. Since galactose is 
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incorporated into the lipopolysaccharide (LPS) core moiety via UDP-galactose, the 

absence of galE leads to the formation of rough LPS, devoid of parts of the core and 

the O-antigen. As the O-antigen is the main antigenic determinant on the cell surface, 

Ty21a is supplied with a source of external galactose during production of the 

vaccine. This enables the bacteria to generate UDP-galactose by an alternative 

route, thereby expressing complete immunogenic LPS. Albeit the immunogenic 

capacity is maintained under appropriate growth conditions, the galE phenotype 

contributes to strain attenuation in vivo (76). As a result of the mutagenesis method 

used, Ty21a acquired further spontaneous mutations including via and ilvD genes, 

leading to the loss of Vi polysaccharide and an auxotrophic phenotype for isoleucine, 

respectively and a mutation precluding H2S utilisation (79). 

Interestingly, an additional mutation in the rpoS gene, which also contributes to the 

avirulence of the Ty21a strain (80) was inherited from the wildtype parental strain 

Ty2. This mutation is apparently one of the reasons for the poor capacity of Ty21a to 

survive starvation conditions and resist various environmental stress conditions (81). 

This, combined with the low shedding rate (82), reduces the environmental risks 

posed by use of Ty21a. Ty21a conferred protection against typhoid fever in 70-80 % 

of vaccinees (83) accompanied by only mild and infrequent adverse effects (84). 

Additionally, the multiple mutations render Ty21a genetically stable, thus reversion to 

virulence has neither been observed in vitro nor in vivo (85). The well documented 

safety makes Ty21a an attractive carrier for antigen delivery and this has been 

undertaken in several clinical trials encompassing heterologous bacterial antigens 

(86-89).  

Salmonella typhi strains are human pathogens and restricted to the human host. 

Mice are intrinsically resistant to S. typhi, particularly if administered orally (90). 

However, mice are susceptible to serovar Typhimurium infection developing a 

typhoid-like disease (91), therefore murine Salmonella enterica serovar Typhimurium 

infection serves as model for S. typhi pathogenesis. Furthermore, serovar 

Typhimurium attenuated mutants were assessed as vaccine carriers in various 

mouse models for antigens derived from other bacteria, viruses, parasites and 

tumours, being able to stimulate strong systemic and local immune responses 

against the corresponding antigens (reviewed in (92)). Nevertheless, Ty21a was 

found to be immunogenic in mice when applied intranasally (93), thus this model can 

be used for preclinical evaluation of Ty21a based vaccines. 
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II.2.3. Immune responses elicited by Salmonella 

Development of immunity to Salmonella infection relies on the cellular, humoral and 

mucosal arms of the immune system (94). The concerted action of several cytokines 

like TNFα, IFNγ, IL-12, IL-15 and IL-18, cellular compounds of the innate immune 

system like DCs, macrophages and NK cells but also humoral and T-cell responses 

are essential for the adaptive phase of the immune response and for controlling later 

stages of Salmonella infection (reviewed in (95)). Initiation of an immune response 

usually involves DCs, the most important professional antigen presenting cells, which 

are capable of priming naïve T-cells (96). Salmonella infect DCs in vivo and in vitro 

and can induce activation of and cytokine production by those cells (97-99).  

Following immunization with protective live attenuated Salmonella vaccines, long-

lasting immunological memory develops in animals and humans (95). Cellular 

responses towards Salmonella vaccines are of the Th 1 type (100,101). Ty21a in 

particular, induced strong CD4+ Th 1 responses in human vaccinees, characterized 

by the production of IFNγ in the absence of IL-4 but also humoral responses like 

potent induction of IgG and mucosal IgA type antibodies (102). Vaccination with 

Ty21a also elicited strong CD8+ CTL responses which persisted for at least 2 years 

after immunization. A strong correlation was found between the CTL activity and the 

frequency of IFNγ-secreting CD8+ T-cells (103). When administered intranasally, 

serovar Typhi vaccines were also found to elicit CD8+ responses in the murine host 

(104). Initial studies with live attenuated Salmonella typhimurium showed a clear 

elicitation of CTL responses against a passenger circumsporozoite antigen of 

Plasmodium berghei after oral immunization in mice, furthermore these responses 

were protective (105). CD8+ T-cell responses due to Salmonella encounter are 

surprising as these bacteria reside within defined cellular compartments of 

professional APCs rendering the classical MHC class I pathway unlikely for antigen 

presentation. However, a process termed cross-presentation explains CD8+ 

responses after Salmonella infection by an alternative class I processing pathway for 

exogenous phagocytic antigens (106,107).  

Taken together, live attenuated salmonellae exhibit exactly the immune-stimulatory 

properties which are needed for a TAA-directed immune therapy of cancer (see 

II.1.3). Efficient stimulation of immune responses against heterologous antigens 

relies on proper transfer of antigen into APCs. This is achieved by LBV utilizing 

special delivery systems introduced in the following. 
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II.2.4. Antigen localisation and antigen delivery systems 

Earlier studies have shown that the localization of the antigen within a live bacterial 

vaccine plays a critical role for the immunological outcome. Secretion of an antigen 

into the extracellular medium or expression on the outer surface of a vaccine carrier 

appears to be advantageous in eliciting immune responses. Kang et al. showed that 

the secreted form of Streptococcus pneumoniae PspA elicited a 104 fold increase in 

IgG antibody titres compared with cytoplasmic expressed antigen when delivered via 

attenuated Salmonella typhimurium in mice (108). Several other studies proved this 

superior immunological capacity of secreted versus cytoplasmic antigen delivery 

(109-111). One of the best studied secretion systems for antigen delivery is the E. 

coli α-hemolysin secretion system (112). This transport machinery is the prototype of 

type I secretion systems and consists of three different components: HlyB, HlyD and 

TolC. The HlyA carries a secretion signal, 50-60 amino acids in length at its C-

terminus (HlyAs) which is recognized by the HlyB/HlyD/TolC translocator leading to 

direct secretion of the entire protein into the extracellular medium without periplasmic 

intermediates. Dozens of antigens of bacterial, parasitic and viral origin have been 

fused to the HlyAs and efficiently secreted within Salmonella vaccine vectors. These 

strains showed promising results in diverse animal model systems referring to 

protection against pathogen challenge or induction of humoral and cell-mediated 

immunity (112,113). Recently, our group demonstrated in two separate preclinical 

studies that live attenuated Salmonella typhimurium were able to induce protective, 

antigen-specific CTL responses against different tumour-associated antigens 

delivered via the hemolysin secretion system (114,115).  

Another antigen delivery mechanism utilizes the type III secretion system in 

Salmonella vaccine carriers which allows translocation of proteins into the cytoplasm 

of APCs and therefore directly to the MHC class I restricted antigen processing 

pathway (116,117). Rüssmann et al. demonstrated that a hybrid protein 

encompassing the type III secreted effector protein SptP and the CD8+ epitope of the 

murine lymphocytic choriomeningitis virus (MCLV) nucleoprotein was efficiently 

secreted into the host cytosol and induced potent CTL responses leading to complete 

protection against a lethal intracerebral challenge with the virulent virus in orally 

immunized mice (118). This system was also successfully applied in a murine 

fibrosarcoma model (119). 
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Display of proteins or peptides on the bacterial surface can be mediated in several 

ways (for review see (120)) and became interesting for vaccinology as it was shown 

that surface-anchored antigens also elicit stronger immune responses than antigens 

expressed in cytoplasmic fashion. For this purpose, antigens were fused into different 

outer membrane proteins or membrane attached autotransporter domains. For 

example, the autotransporter domain of the E. coli adhesion molecule AIDA-I was 

applied for surface display of nearly full length or T-helper epitopes of the H. pylori 

UreA protein on a Salmonella carrier. These strains were more protective towards 

challenge with H. pylori than Salmonella expressing UreA antigens in the cytoplasm 

(121). The outer membrane-localized ice nucleation protein of Pseudomonas 

syringae was successfully utilized as carrier for hepatitis antigens in Ty21a and found 

to elicit higher antibody responses in mouse serum than a similar system relying on 

intracellular antigen expression (122). Other methods similar to these approaches 

were based on fusions to outer membrane proteins like the flagella protein FliC of 

Salmonella (123,124), E. coli derived p87 fimbriae (125), LamB (126) and TolC (127). 

 

II.3. Objectives – part I 

II.3.1. Surface display of antigens via TolC 

The first project of the present thesis aimed at developing new recombinant 

Salmonella vaccine strains for immune therapy of cancer. Therefore, we decided to 

apply an existing plasmid-encoded vaccination system based on surface display of 

antigens, for its capacity in a tumour vaccination setting. In the mentioned study 

(127), the outer membrane protein TolC of E. coli was utilized as membrane anchor 

for CD4+ T and B-cell epitopes of the p60 protein from Listeria moncytogenes and 

transferred into the Salmonella enteriditis SM6T strain, lacking endogenous tolC. The 

TolC fusion protein (TolC-LisTB) was stably expressed and functional in SM6T and 

elicited immune responses that were protective against lethal Listeria challenge in 

mice.  

TolC is a trimeric pore-forming protein in the outer membrane of E. coli (6) with 

structurally conserved homologs in virtually all gram-negative bacteria (for a list see 

(128)). TolC is one of the most multifunctional proteins known in gram-negative 

bacteria: it is essential for type I secretion of hemolysin and colicin V, import of colicin 

E1 and serves as receptor for phages U3 and TLS (for review see (129,130)). A 
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clinically relevant role of TolC is its involvement in multidrug efflux, rendering bacteria 

insensitive towards a wide variety of non-related noxious compounds. The most 

important efflux system in E .coli and Salmonella consists of the inner membrane 

complex AcrA/AcrB recruiting TolC as outer membrane channel. This tripartite 

machinery expels antimicrobials directly into the extracellular compartment inhibiting 

intracellular accumulation of toxic drugs (131-133). Apart from multidrug efflux, a role 

for TolC in pathogenesis of gram-negative bacteria is discussed (134). The crystal 

structure of TolC, elucidated by Koronakis et al. (135), shows that a TolC homotrimer 

forms a channel tunnel 140 Å in length, that comprises a 100 Å long α-helical barrel 

(the tunnel domain) anchored in the outer membrane by 12 stranded β-barrel spans 

(the channel domain). The larger part of the protein is located in the periplasm; only 

two small loops (amino acid residues (aa) 52–61 and 257–279) are exposed on the 

surface of the bacteria.  

 
 

 
Figure II.1 Overview of TolC structure and antigen insertion site (taken from (135) and Andersen, C 
unpublished, abridged) 
Left panel: TolC forms a homotrimer with the larger part projecting into the periplasm; the channel 
domain (yellow) is located in the outer membrane. Two loops are protruding outside the bacterium 
(ring-tagged and lower right panel) 
Right panel: Schematic view on surface exposed loops of one TolC monomer. The investigated 
antigens were inserted within the loop comprising aa 257-279.  
 

The loop comprising aa 257-279 contains a unique KpnI restriction site allowing 

genetic insertion of antigens into this permissive, surface-exposed structure (127). A 

structural view of TolC trimers and a schematic picture of the antigen insertion site 
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within the surface exposed loop are depicted in Figure II.1. To investigate the 

established system for its capacity to protect from neoplastic disease, novel 

attenuated Salmonella strains were constructed. Ty21a and S. enterica serovar 

Typhimurium aroA SL7207 (Stm) were deleted for their chromosomal tolC. Three 

different antigens were subject of the present work, among them, chicken ovalbumin 

which served as model antigen, furthermore BRAFV600E and PSA that represent 

tumour-associated antigens. Construction of plasmids encoding ovalbumin and 

BRAF epitopes fused to the TolC loop are described in this study. Construction and 

characterization of the TolC-PSA fusion was accomplished earlier (136). 

Recombinant TolC proteins were assessed for functionality in the different 

Salmonella tolC phenotypes to explore viability of those novel engineered vaccine 

strains. Finally, recombinant strains were tested in various animal model systems for 

their capacity to induce T-cell responses and to confer protection against antigen 

expressing tumour xenografts. The respective antigens and their cognate epitopes 

are described in more detail in the following sections. 

 

II.3.2. Displayed antigens – Ova 

In a first approach, we aimed to elucidate the kind of T-cell response elicited by 

recombinant Salmonella employing the TolC-based antigen expression system. 

Chicken ovalbumin (Ova) was selected to serve as model antigen due to its defined 

epitope structure for mice of the H-2b haplotype and existence of mouse models 

transgenic for TCRs recognizing cognate Ova epitopes (137,138). As the loop 

structure is spatially limited, the class I and class II restricted epitopes of ovalbumin 

were inserted into tolC and assessed in adoptive transfer models well established for 

investigation of T-cell responses after pathogen encounter (139-142). Furthermore, 

Ova expressing tumour cell lines are available and a tumour challenge experiment 

was conducted in mice immunized with Stm carrying Ova epitopes.  

 

II.3.3. Displayed antigens – BRAFV600E 

The first real tumour-associated antigen included in this study was derived from the 

proto-oncogene BRAF. BRAF alleles were identified as somatic mutations in 70 % of 

melanomas and a minority of other cancers including lung, colon and ovary 

carcinomas but not normal cells (143,144) Nearly all (92 %) BRAF mutations in 
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melanoma contain a single amino acid substitution, valine on position 600 to glutamic 

acid (V600E), which is believed to mimic activating phosphorylation of serine 598/ 

threonine 601 of wildtype BRAF. This mutation leads to constitutive activation of the 

protein. BRAFV600E transforms cells in vitro through activation of the mitogen 

activated protein kinase (MAPK) pathway (143) which consists of the kinases RAS-

RAF-MEK-ERK-MAPK mediating cellular responses to growth signals (145). 

Because of its tumour specificity and expression in the majority of melanomas, 

mutated BRAF is a potentially promising target for cancer immunotherapy as it 

represents a TAA of the type II (see II.1.3). Recently, a mutation-specific, HLA-B27 

restricted epitope of BRAFV600E was discovered with spontaneous CTL responses 

in melanoma patients (146). The respective epitope was cloned in triplicate into the 

tolC loop, transferred into Stm and assessed for its capacity to elicit CD8+ responses 

in vaccinated mice transgenic for the human HLA-B27 allele.  

 

II.3.4. Displayed antigens – PSA 

The last investigated antigen in this work is represented by the prostate-specific 

antigen (PSA). PSA is a 34 kDa glycoprotein, primarily produced by the prostate 

ductal and acinar epithelium (147). Interestingly, in prostate cancer cells expression 

of PSA is markedly increased compared to normal prostatic cells (148). Furthermore, 

its expression is restricted to the prostate and not found in normal cells, rendering 

PSA a tumour-associated antigen of class III (see II.1.3). Prostate cancer is the most 

common form of cancer affecting men in the United States, and is the second leading 

cause of cancer deaths among men each year (149). Although several curative 

therapies exist for localized disease, such as radical prostatectomy, radiation 

therapy, and cryotherapy, approximately 20-40 % of treated patients will relapse 

(150,151). Since prostate cancer is dependent upon androgens for growth, treatment 

for advanced, metastatic disease is achieved by systemic androgen deprivation 

(152). Albeit initial success, androgen independent clones arise in most patients 

making the disease untreatable (153). For these reasons, immune therapy targeting 

PSA is an attractive alternative for both hormone-refractory and non-refractory 

cancers. Various approaches have been developed in this respect including DNA 

vaccines, viruses and DC-based vaccines to elicit PSA-specific immune responses 

(154-156). However, due to unknown reasons, results have been very disappointing 

when modalities were extended to clinical trials (157). Recent findings of our group 
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demonstrated that vaccination with Stm secreting PSA in combination with cholera 

toxin subunit B (CtxB) as adjuvant significantly decelerated tumour growth in a PSA 

expressing tumour xenograft model (115). This protection was correlated with CTL 

responses that were elicited emphasizing the promising perspectives for prostate 

cancer immune therapy based on LBV. Moreover, an immunodominant murine, H-

2Db restricted CTL epitope of human PSA was discovered recently (158) allowing to 

investigate PSA directed T-cell response in H-2b mice. The selected epitope contains 

two putative H-2Db binding peptides: a 9-mer, encompassing aa 65-73 and a 10-mer 

consisting of aa 65-74 of the PSA protein. In this work, a recombinant Stm strain 

expressing TolC inserted with the 10-mer PSA epitope was subject of a tumour 

challenge experiment employing a melanoma cell line expressing PSA. 

 

II.4. Objectives – part II 

II.4.1. The hemolysin secretion system in Ty21a 

A second project of the present thesis aimed at improving the hemolysin secretion 

system in Ty21a for vaccination purposes. In an earlier study, the feasibility of this 

system in Ty21a was demonstrated (159). For this initial work, full length HlyA was 

utilized as heterologous antigen and successfully expressed and secreted by Ty21a. 

Furthermore, mice immunized with secretion-competent Ty21a developed serum 

antibodies against hemolysin, demonstrating that the type I secretion system is 

functional in Ty21a and could form the basis for combination vaccines for human use 

e.g. in cancer immunotherapy. 

In order to enhance immunogenicity of this system we sought to increase secretion 

efficiency in Ty21a as the amount of free antigen is linked with immunogenicity. For 

this purpose a closer look at the regulation of type I secretion of hemolysin needs to 

be taken. As aforementioned, the secretion apparatus consist of three components, 

namely TolC/HlyB/HlyD (160) secreting the RTX toxin haemolysin (HlyA), a virulence 

factor of extra-intestinal E .coli (161). HlyC modifies pro-HlyA to its hemolytically 

active form in the cytoplasm due to its function as fatty acid acyltransferase (162). 

The tolC gene is located on the chromosome, being part of the mar-sox regulon 

(163), while the other factors are encoded on one polycistronic mRNA derived from 

the hlyCABD (164) operon located on transmissible plasmids or chromosomal 

pathogenicity islands (165,166). The operon is transcribed from a promoter located 
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upstream of hlyC in a strongly polar manner due to the presence of a rho-

independent terminator in the hlyA-hlyB intergenic region (167). This termination is 

suppressed by RfaH which interacts with a cis-acting 5’ DNA sequence termed 

operon polarity suppressor (ops) element, allowing efficient transcription of the entire 

hly operon by inhibiting transcriptional pausing (168-170). The regulatory cascade is 

schematically envisaged in Figure II.2. 

 
 

 
Figure II.2 Genetic regulation of the hemolysin operon (hlyCABD) and type I secretion of hemolysin 
(HlyA) in E. coli 
A: Transcription of hlyCABD shows strong polarity due to a terminator in the hlyA-hlyB intergenic site. 
RfaH binds to the ops element and suppresses termination leading to transcription of the full length 
polycistronic mRNA and efficient secretion like depicted in B: HlyC activates HlyA in the cytoplasm 
followed by direct secretion of mature hemolysin via the tripartite type I secretion machinery 
HlyB/HlyD/TolC into the extracellular space (ES). ops: operon polarity suppressor element, OM: outer 
membrane, IM: inner membrane 
 

In this part of the work, Ty21a was analysed for its secretion efficiency compared to 

other Salmonella strains. By analysing known Ty21a mutations and genetic 

complementation, it was tried to find factors positively regulating secretion of 

hemolysin in Ty21a and evaluate their contribution to immunogenicity in a mouse 

model by assessing serum antibody titres against hemolysin. This in turn could lead 

to the development of new generation vaccines based on this secretion system 

facilitating enhanced immunogenicity against secreted heterologous antigens.
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III. Material and Methods 

III.1. Material 

III.1.1. Bacterial strains 

 

Name Relevant characteristics  Source or reference 

E. coli DH5α F-, ø80dlacZ M15, (lacZYA-argF) U169 Invitrogen, Karlsruhe, 
  deoR, recA1, endA1, hsdR17(rk-, mk+),  Germany 
  phoA, supE44, λ-, thi-1, gyrA96, relA1 
Listeria monocytogenes trpS, balanced lethal plasmid system (171) 
EGDe ∆trpS  

Salmonella enterica serovar  aroA, fliC::Tn10 Stocker, B. A. D 
Dublin aroA SL5928   

S. enterica serovar  S. typhi Ty2, galE, rpoS, viaB Berna Biotech Ltd.,  
Typhi Ty21a (Ty21a)   Berne, Switzerland 

S. enterica serovar  S. typhi Ty2, galE, rpoS, viaB, tolC this study  
Typhi Ty21aTC 
(Ty21aTC) 

Salmonella enterica serovar  hisG46, DEL407 [aroA544::Tn10 (Tcs)] Stocker, B. A. D 
Typhimurium aroA SL7207 
(Stm)  

Salmonella enterica serovar  hisG46, DEL407 [aroA544::Tn10 (Tcs)] this study 
Typhimurium aroA  tolC 
SL7207TC (StmTC) 

 

III.1.2. Cell lines 

 

Name Relevant characteristics  Source or reference 

B16-Ova mouse melanoma cell line expressing Juergen Hess,  
 chicken ovalbumin Erlangen  
Caco-2 human colon carcinoma ATCC 

EG.7 derivative of EL-4 thymome expressing ATCC 
 chicken ovalbumine 

RAW 264.7 murine leukaemic macrophage-like cells ATCC 

P815-BRAFV600E murine lymphoblast-like mastocytoma cell C. Yone, MSZ, 
 line expressing human BRAFV600E and Würzburg 
 HLA-B2705 
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III.1.3. Animals 
 

Name Relevant characteristics  Source or reference 

C57Bl/6JO1Hsd H-2b haplotype Harlan-Winkelmann 

C57Bl/6-TG(TcraTcrB) transgenic T-cell receptor specific for  (137), obtained from  
1100Mjb (OT-I) OVA257-264

  in context of H2-Kb MHC I Max Planck Centre  
 molecule for Infection Biology,  
  Berlin  

C57Bl/6-TG(TcraTcrB) transgenic T-cell receptor specific for  (138), obtained from  
425Cbn (OT-II) OVA323-339 in context of I-A2 MHCII  Dept. Virology,  
 molecule University Würzburg 
Balb/c HLA-B2705 H-2d haplotype, expressing human HLA-B Prof. Weiss, Munich 
 2705 molecule 

 

III.1.4. Plasmids 

 

Name Relevant characteristics  Source or reference

pACYC184 CmR, TetR (172) 
pANN202-812 AmpR, hlyR, C, A, B, D, derivate of pBR322 (173) 

pCP20 AmpR, CmR, TS, encoding Flp-recombinase (174) 

pKD3 AmpR, CmR, priming sites for generation of (175) 
  KO fragments 

pKD46 AmpR, TS, encoding λ-RED system for  (175) 
  homologous recombination,  

pMKhly1 KanR, derivative of pMOhly1  (115) 

pRfaH CmR, derivate of pACY184, encoding rfaH  this study 
 gene of S. typhi Ty21a  

pRpoS CmR, derivate of pACY184, encoding rpoS  this study 
 gene of S. typhimurium SL7207 

pRSC2 CmR, hlyR, C, A, B, D, derivate of pACYC184 (176) 

pSP118-PSactaOVA EryR, derivative of pUNK, encoding actA  (139)  
 signal sequence-ovalbumin fusion 

pTC derivative of pTolC, KanR deleted, encoding this study 
 tolC from E. coli 

pTC-OVA derivative of pTolC-OVA, KanR deleted,  this study 
 encoding tolC-OVA257-264  and OVA323-339  

 epitopes fusion  

ptolC AmpR, derivative of pBR322, encoding tolC  (127) 
 gene from E. coli 

pTolC KanR, derivative of pMKhly1, encoding tolC  this study 
 gene from E. coli 
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Name Relevant characteristics  Source or reference

pTolC-BRAF KanR, derivative of pTolC, encoding tolC- this study 
 3xB-RAFV600E GRFGLATEK epitope fusion 
pTolC-OVA KanR, derivative of pTolC, encoding tolC- this study 
 OVA257-264  and OVA323-339 epitopes fusion 

pTolC-PSA KanR, derivative of pTolC, encoding tolC (136) 
 PSA65-74  epitope fusion 

AmpR: Ampicillin resistant; CmR Chloramphenicol resistant; EryR: Erythromycin resistant; TetR: 
Tetracycline resistant; TS: temperature sensitive replication 
 

III.1.5. Primers 

 

Name Sequence Characteristics 

BRAF-linker1 5’CGGCGATTTTGGCCTGGCGACCGAAAAAGCGGG  linker for hybridisation of  
 CGATTTTGGCCTGGCGACCGAAAAAGCGGGCGAT  BRAF fragment 
 TTTGGCCTGGCGACCGAAAAAGGTAC3’ 

BRAF-linker2 5’CTTTTTCGGTCGCCAGGCCAAAATCGCCCGCTTT  linker for hybridisation of  
 TTCGGTCGCCAGGCCAAAATCGCCCGCTTTTTCGG  BRAF fragment 
 TCGCCAGGCCAAAATCGCCGGTAC3’ 

c1_down 5´TTTTCACCATGGGCAAATAT3´ detection of CmR cassette 

Cat RT (F) 5´ACGTTTCAGTTTGCTCATGG3´ Chloramphenicol 
  transacetylase mRNA 

Cat RT (R) 5´CCGGCCTTTATTCACATTCT3´ Chloramphenicol 
  transacetylase mRNA 

DhF 5’GCTTAATGTCCAAGATGCCTAC3’ multiplex PCR 

DhR 5’GAGCAACGCCAGTACCATCTG3’ multiplex PCR 

ectolCClaI_up 5’GGGAGAGCATCGATTAACGCCAACC3’ cloning of tolC 

ectolCSalI_down 5’GGCATCGGTCGACTCGAAATTGAAG3’ cloning of tolC 

HlyA RT (F) 5´CAGCTGCAGGTAGCTTCG3´ bicistronic hlyCA mRNA and  
  polycistronic hlyCABD mRNA 

HlyA RT (R) 5´TATGCTGATGTGGTCAGGGT3´ bicistronic hlyCA mRNA and  
  polycistronic hlyCABD mRNA 

HlyD RT (F) 5´ATTCTTACCCGCTCATCTGG3´ polycistronic hlyCABD mRNA 

HlyD RT (R) 5´GTGGCAACAATTTCCACTTG3´ polycistronic hlyCABD mRNA 

htrB_up 5’GCGAGAATACGGAGAATTG3’ detection of htrB 

htrB2_down 5’ GAGGGGAAAAATTGCAG3’ detection of htrB 

InvAF 5’CGAGCAGCCGCTTAGTATTGAG3’  multiplex PCR 

InvAR 5’CCATCAAATTAGCGGAGGCTTC3’ multiplex PCR 

k1_down 5’CAGTCATAGCCGAATAGCCT3’ detection of KanR cassette 
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Name Sequence Characteristics 

OVA-linker1 5’CTCCATTATTAACTTTGAAAAACTGGCCATTTCCC linker for hybridisation of OVA 
 AGGCGGTGCATGCGGCGCATGCGGAAATTAATGA fragment 
 AGCCGGCCGTGCCGGTAC3’ 

OVA-linker2 5’CCGGCACGGCCGGCTTCATTAATTTCCGCATGCG  linker for hybridisation of OVA 
 CCGCATGCACCGCCTGGGAAATGGCCAGTTTTTCA fragment 
 AAGTTAATAATGGAGGTAC3’ 

PrtF 5’CGTTTGGGTTCCTTGGATCACG3’ multiplex PCR 

PrtR 5’CTATAATGGCGGCGGCGAGTTC3’ multiplex PCR 

rfaH_up 5’GAGGATCCACAGGAAGCTTGATGCGTTTTAG3’  cloning of rfaH 

rfaH_down 5’CCTTATGGATCCCTAATGATGATGATGATGATG  cloning of rfaH 

 AATCTTGCGAAAACCGGTG3’  

rpoS_up  5’CATCGCCTGGATCCCCGGGAACG3’ cloning of rpoS 

rpoS_down  5’GACGCAAAAAGCTTTTGATGACGCGCC3’ cloning of rpoS 

RfaH RT (F) 5´AACGTACCTTCGTCAGCGA3´ rfaH mRNA 

RfaH RT (R) 5´GTGGCGTTGATTGTAGTGGT3´ rfaH mRNA 

tolCFR_up 5’CCTCGCCACTCATTTCTCCG3’ detection of tolC deletion 

tolCFR_down 5’ CGCTTACCAGACCTACAAGGGC3’ detection of tolC deletion 

tolCKO_up 5’GCGCTAAATACTGCTTCACAACAAGGAATGCAA chromosomal deletion of tolC 
 ATGAAGAAGTGTAGGCTGGAGCTGCTTC3’ 

tolCKO_down 5’CGTTATTGCTGTTGGCGCGAGCGGCGGTCGGC chromosomal deletion of tolC  
 TGTACTGCTGCATATGAATATCCTCCTTA3’ 

tolSEQ1 5’GGATTTAACGGCTTCTACC3’ detection of tolC insertion 

tolSEQ2 5’CGGCAGCGAGAAGCTCAGG3’ detection of tolC insertion 

ViaBF 5’CACGCACCATCATTTCACCG3’ multiplex PCR 

ViaBR 5’AACAGGCTGTAGCGATTTAGG3’ multiplex PCR 
multiplex primers taken from (177), c1_down and k1_down taken from (175) 

 

III.1.6. Media 

 

Name Composition Manufacturer 

Brain Heart Infusion ready made powder, 37 g/L Difco 
(BHI) 
CY medium 12 mg/ml Yeast extract , 20 mg/ml Hy-Case,  Sigma, Applichem, Roth 
 12 mg/ml pepticase, 1.25 mg/ml sodium  
 hydrogen phosphate, 3.3 mg/ml sodium  
 chloride, 2 mg/ml glucose  
DMEM DMEM, 10 % fetal bovine serum GIBCO 

Luria Bertani (LB) ready made powder, 20 g/L Sigma 
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Name Composition Manufacturer 

RP10 RPMI1640, 10 % fetal bovine serum GIBCO 
 1x MEM non-essential amino acids ,  
 1 mM sodium pyruvate, 2 mM L-glutamine 
 50 mM β-mercaptoethanol 

 

Media for bacterial culture (LB, BHI and CY) were autoclaved for 20 min at 121°C. 

Antibiotics and other temperature sensitive supplements were added after 

autoclaving and cooling of the media. For plates, media were solidified with 1.5 % 

Agar (Difco). 

 

III.1.7. Buffers and solutions 

Name Composition Manufacturer 

Acrylamide/Bis solution ready made solution, 40 % Acrylamide/Bis Bio-Rad 
 37.5:1 (2.6 % C) 
Ampicillin stock 100 mg/ml Ampicillin (Amp) in water Sigma 

Bile salt stock 200 mg cholate/deoxycholate in LB medium Sigma 

Blocking buffer 1 % BSA in PBS Sigma, Applichem 

Carbonate buffer 7 g/L sodium hydrogen carbonate Applichem 

Chloramphenicol stock 20 mg/ml Chloramphenicol (Cm) in ethanol Sigma 

Coating buffer, pH 9.6 4.2 g/L sodium hydrogen carbonate Applichem 
 5.3 g/L di-sodium hydrogen carbonate 

Conjugate buffer 0.05 % TWEEN20®, 1 % BSA in PBS Applichem, Roth, Sigma 

Coomassie Protein ready made solution Thermo Scientific 
assay reagent 

dH2O deionized water in-house desalting  
  device from Millipore 

D-PBS ready made solution, w/o calcium and  GIBCO 
 magnesium chloride 

Erythrocyte-lysisbuffer 100 ml 50 mM Tris, pH 7.65 Applichem 
 900 ml 155 mM ammonium chloride, pH 7.2 

Erythromycin stock 50 mg/ml Erythromycin (Em) in ethanol Sigma 

G418 50 mg/ml G418 sulphate in water Sigma 

Gentamycin ready made solution, 50 mg/ml  Sigma 
 Gentamycin in water  

Kanamycin stock 25 mg/ml Kanamycin (Kan) in water Sigma 

Laemmli buffer  50 mM Tris-HCl pH 6.8, 10 % glycerol,  Sigma, Applichem, Roth 
 5 % β-mercaptoethanol, 2 % SDS, 
 0.05 % bromophenol blue 
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Name Composition Manufacturer 

Loading dye ready made solution, 10 mM Tris-HCl  Fermentas 
 (pH 7.6), 0.03 % bromophenol blue,  
 0.03 % xylene cyanol FF, 60 % glycerol,  
 60 mM EDTA 
Novobiocin stock 100 mg/ml Novobiocin (Novo) in ethanol Sigma 

PBS ready made powder, 9.55 g/L Applichem  

PBS milk 5 % non-fat dried milk powder in PBS Applichem 

PBS TWEEN 0.05 % TWEEN20® in PBS Applichem, Roth 

Pen-strep ready made solution, 10,000 U/ml penicillin G, GIBCO 
 10,000 µg/ml streptomycin in normal saline 

Ponceau S solution ready made solution, 0.1 % Ponceau S in  Sigma 
 5 % acetic acid 

SDS PAGE buffer 3 g/L Tris, 14.4 g/L glycine, 1 g/L SDS Applichem 

Tris borate EDTA buffer  ready made solution (10 x), 20 ml/L Applichem  
(TBE) 

Towbin buffer 3 g/L Tris, 14.4 g/L glycine, 20 % methanol Applichem 

Trypsin/EDTA ready made solution, 0.05 % trypsine PANTM Biotech 
 0.02 % EDTA in PBS w/o calcium and  
 magnesium 

Bis: N,N’ methylene-bis-acrylamide, EDTA ethylene diamine tetra acetic acid, PBS: phosphate 
buffered saline, Tris: tris (hydroxy methyl) aminomethane, Tris-HCl: tris base-hydrogen chloride buffer 
system, SDS: sodium dodecyl sulphate 
 

III.1.8. Antibodies and FACS multimers 

 

Name Specificity Manufacturer 

25D-1.16 OVA257-264 /H-2Kb (178) 
IgG1,κ-PE isotype control BD Pharmingen 

IgG2a,λ-FITC isotype control (anti KLH) BD Pharmingen 

IgG2a,κ-CyChromeTM isotype control BD Pharmingen 

IgG2a,κ-FITC isotype control BD Pharmingen 

BRAFP2GRFGLATEKHLA-B2705- TCR specific for BRAF P2/HLA-B2705 DakoCytomation 
Dextramer-FITC 

BRAFP3GRFGLATVKHLA-B2705- TCR specific for BRAF P3/HLA-B2705 DakoCytomation 
Dextramer-FITC 

OVASIINFEKL –H-2Kb-Tetramer-PE TCR specific for OVA257-264/H-2Kb
 Beckman Coulter 

α-CD4-CyChromeTM (RM4-5) murine CD4 (L3T4) BD Pharmingen 

α-CD4-FITC (GK1.5) murine CD4 (L3T4) BD Pharmingen 

α-CD8a-CyChromeTM (53-6.7) murine CD8a (Ly2) BD Pharmingen 

α-CD8a-FITC (53-6.7) murine CD8a (Ly2) BD Pharmingen 
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Name Specificity Manufacturer 

α-CD16/32 murine FCγIII/II receptor BD Pharmingen 
α-CD62L-FITC (MEL14) murine CD62 (Ly22) BD Pharmingen 

α-IFNγ (R4-6A2) murine γ-Interferon  BD Pharmingen 

α-IFNγ-biotin (XMG 1.2) murine γ-Interferon  BD Pharmingen 

α-HlyAs HlyA secretion signal (115) 

α-mouse IgG-AKP murine IgG Dianova 

α-mouse IgG+IgM-AKP murine IgG and IgM Dianova 

α-mouse IgG-FITC murine IgG BD Pharmingen 

α-rabbit IgG-HRP rabbit IgG GE Healthcare 

α-TolC TolC from gram negative bacteria (179) 

α-Vα2 TCR (20.1) murine α2 side chain of T cell receptor BD Pharmingen 

α-Vβ5.1 TCR (MR9-4)  murine Vβ5.1 side chain of T cell receptor BD Pharmingen

AKP: alkaline phosphatase; FITC: Fluorescein isothiocyanat, HRP: horseradish peroxidase, PE: 
phycoerythrin, TCR: T cell-receptor 
 

III.1.9. Chemicals 

 

All Chemicals not mentioned elsewhere were obtained from Sigma, Difco, Roth and 

Applichem. 

 

III.1.10. Enzymes and special reagents 

 

Name Manufacturer/Source 

4-Nitrophenyl phosphate disodium salt-  Sigma 
hexahydrate substrate (pNPP)  
Agarose for electrophoresis Invitrogen 

BioTherm Taq Polymerase Genecraft 

BCIP/NBT, Sigma FastTM substrate Sigma 

Bovine serum albumin (BSA) Sigma 

BRAF27R2E8 Peptide P2 (GRFGLATEK) KJ Ross-Petersen ApS 

BRAF27R2V8 Peptide P3 (GRFGLATVK) KJ Ross-Petersen ApS 

Calf intestine alkaline phosphatase (CIAP) Fermentas 

Desoxynucleotides (dNTPs) Fermentas 

DNA ladder, 1 kB Fermentas 

Lipopolysaccharide (LPS) from Salmonella typhi Ty21a Berna Biotech 
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Name Manufacturer/Source 

Pfu Polymerase, cloned Stratagene 

Phusion Taq Finnzymes 

OVA257-264 SIINFEKL peptide Dept. Microbiology, Würzburg 

Polynucleotid kinase Fermentas 

Protein ladder, BenchMark Invitrogen 

rATP Fermentas 

recombinant Interleukin-2 (IL-2) Sigma 

Restriction endonucleases Fermentas 

Streptavidin alkaline phosphatase R&D Systems 

T4-Ligase Fermentas 

 

III.1.11. Consumable material 

 

Name Manufacturer 

96-well plates Nunclon, Greiner bio-one 
96-well nitrocellulose plates; millititer HA Millipore 

Cell culture flasks; 75 cm3 and 125 cm3  Greiner bio-one 

Cell culture plates; 24 wells  Greiner bio-one 

Cell scraper Greiner bio-one 

Gene pulser cuvette; 0.1 cm electrode gap  Bio-Rad 

Cryo tubes; 1.5ml  Greiner bio-one 

Insulin syringe  Braun 

Micro tube; 1.5 ml, 2 ml  Sarstedt 

Nitrocellulose; Hybond ECL Amersham 

Parafilm  Hartenstein 

Pasteurpipettes  Hartenstein 

Petri dish; 12 cm  Greiner bio-one 

Pipette tips  Sarstaedt 

Sterile filter Millex-GS; 0.22µm Millipore 

Polypropylene tubes; 15 ml and 50 ml  Greiner bio-one 

Whatman paper 3 mm 190 g/m2  Schleicher & Schuell 

X-ray films  Amersham 
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III.1.12. Instruments 

 

Name Manufacturer 

Bacterial incubator  Heraeus Instruments 
Bacterial shaker Scientific Innova 

Bacterial shredder, Fast Prep FP120  Thermo Electron Corporation 

Cell culture incubator  Heraeus Instruments 

Cell culture microscope  Leica 

Cell counting chamber, Bürker  Marienfeld 

Clean bench  Heraeus 

Developing cassette for Western Blot Dr. Goos-suprema GmbH 

Developing machine for Western Blot Agfa 

DNA Sequencer, ABI PRISM 373  ABI 

Electrophoresis power supply  Bio-Rad 

Electrophoresis unit, MiniProtean II for SDS PAGE Bio-Rad 

Electrophoresis unit, sub-cell GT for DNA electrophoresis Bio-Rad 

Elisa reader TECAN 

ELISPOT reader Autoimmun Diagnostika GmbH 

Flow Cytometer FACSCalibur Becton Dickinson 

Freezer (-20°C)  Liebherr 

Freezer (-80°C)  Nunc Advantage 

Fridge (4-8°C)  Liebherr 

Gene pulser  Bio-Rad 

Glassware Schott 

Heating block  Liebisch 

Ice machine  Scotsman 

Mega centrifuge J-6B Beckman 

Megafuge 1.0 R:  Heraeus 

Microwave  Siemens 

Mini centrifuge, 5417R, Biofuge 15  Eppendorf; Heraeus 

pH-electrode, SenTix 61 WTW 

pH-meter, inolab 720 WTW 

Pipettes  Eppendorf 

Real Time PCR machine, Rotor Gene 2000 Corbett 

Semi-dry blotting device, Trans-Blot SD Bio-Rad 

Sonicater SonoPlus HD70 Bandelin 

Thermocycler, T-Gradient Thermoblock Biometra 

Timer  Roth 

Scale SCALTEC 

Vortex genie  Scientific Industries 
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III.1.13. Kits  
 

Name Manufacturer 

DNeasy® Mini Kit QIAGEN 
DNAfreeTM Kit Ambion 

DyNAmoTM HS SYBR® Green qPCR Kit  Finnzymes 

ECLTM Western Blotting detection Kit Amersham 

First Strand® cDNA Synthesis Kit Fermentas 

RNase-Free® DNase Kit QIAGEN 

RNeasy® Mini kit QIAGEN 

QIAquick® Gel Extraction Kit QIAGEN 

QIAquick® PCR Purification Kit QIAGEN 

QIAquick® Plasmid Mini Kit  QIAGEN 

 

III.1.14. Software 

 

Name Manufacturer 

CellQuest Pro 4 Apple 
GraphPad Prism 4 GraphPad Software, Inc 

MS Excel 2003 Microsoft 

MS Word 2003 Microsoft 

MS Power Point Microsoft 

Photoshop CS2 Adobe 

Rotor-Gene Analysis Software V4.6.70 Corbett 
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III.2. Methods 

III.2.1. Microbiology 

III.2.1.1. General culture 

For overnight (o/n) cultures, one single bacterial colony was picked from a plate and 

resuspended in 5-10 ml of BHI or LB medium containing the appropriate antibiotics 

(usually diluted 1/1000 from the stock solution) and incubated o/n with vigorous 

shaking at 30°C or 37°C. Overnight cultures usually grow to the stationary phase 

within 18 h. For logarithmic cultures, overnight cultures were diluted 1/25 to 1/200 in 

fresh medium and incubated until the desired optical density at 600 nm (OD600) was 

reached. 

 

III.2.1.2. Electrotransformation of bacterial cells 

For electrotransformation of bacteria with plasmid or linear DNA, cell suspensions 

need to be salt free to avoid current flux due to the high field pulse. Cultures with an 

OD600 of approximately 0.6-0.8 were harvested by centrifugation (3,345 × g for 30-

60 min) and washed two times with ice-cold 10 % glycerol, concentrated 100 × in 10 

% glycerol and used immediately for transformation or stored at -80°C. 1-5 µl of DNA 

was mixed with 100 µl cell suspension and DNA was introduced into the bacteria by 

electroporation using a Bio-Rad Gene Pulser at 2.5 kV, 25 µF and 200 Ohm in a 0.1-

cm electroporation cuvette. Transformed cells were dissolved in 900 µl BHI incubated 

at 37°C for 1 h and then plated on LB agar plates containing the appropriate 

antibiotic for selection of the resistance gene. 

 

III.2.1.3. Preparation of infection aliquots 

Immunization aliquots were prepared by cultivating strains overnight at 37°C in 50 

(i.v. injection) to 1000 (oral and intranasal immunization) ml BHI or LB medium 

containing appropriate antibiotics. The next day, cells were harvested by 

centrifugation in a Beckmann-Coulter centrifuge, washed in PBS and concentrated 

10 (i.v.) or 200 (oral, nasal) fold in PBS containing 10-20 % Glycerol and aliquoted in 

500-1000 µl portions. Aliquots were stored at least 24 hours at -80°C before the 

bacterial titre was determined. The number of colony forming units (CFU) was 
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obtained by plating serial dilutions on BHI or LB agar plates and incubation at 37°C 

until bacterial colonies were visible. Plates containing between 30 and 300 colonies 

were counted to determine the CFU. The vials were thawed on ice 30 min prior to 

use. 

 

III.2.1.4. On-plate hemolysin assay 

Plates containing blood erythrocytes were prepared as follows: Erythrocytes were 

collected by centrifugation of 30 ml of sheep blood at 300 × g. Cells were washed 3-4 

times with 0.9 % NaCl solution until the supernatant was clear. Finally, 25 ml of the 

erythrocyte suspension was mixed with 1 L of warm LB agar to prepare blood agar 

plates. For determination of the hemolysin secretion ability, single colonies of 

assayed strains were picked, resuspended in 20 µl of sterile water. 1 µl portions of 

these solutions were spotted on LB blood agar plate and incubated for 24 h at 37°C. 

Secretion-competent colonies can be identified by a corona of lysed erythrocytes. 

 

III.2.1.5. Oxidative stress test 

For the oxidative stress test, bacterial strains were incubated in CY-medium to the 

stationary phase. The cells were harvested by centrifugation, washed with 0.9 % 

NaCl and equally separated into two tubes. Bacteria were then suspended in CY 

medium with none, 3 mM or 30 mM H2O2. Survival was assessed after 20 min 

incubation at 37°C by plating 0.1 ml cell suspension on BHI-agar and o/n incubation 

at 37°C. The percentage of surviving bacteria was determined by comparing the 

numbers of colony forming units (CFU) of H2O2 treated and untreated cells. 

 

III.2.1.6. Determination of the MIC of antimicrobial compounds 

The MIC (minimal inhibitory concentration) is defined as the lowest concentration of 

an antimicrobial agent which is sufficient to inhibit growth of a given bacterial culture. 

For determination of the MIC value 100 µl of LB was applied to a 96-well plate and a 

gradient of the assayed agent was established by twofold dilution steps of an initial 

concentration of this compound over the plate. Mid-logarithmic bacterial cultures 

were diluted to a concentration of 200 cells per µl and 100 µl of this suspension was 

applied in each well of one row per strain. The plate was incubated for 24 h at 37°C 



Chapter III  Material and Methods 

 - 36 -  

and then read-out in an ELISA reader at 620 nm. Cultures with OD620 values below 

0.06 were determined as growth repressed. 

 

III.2.1.7. Determination of plasmid stability in vitro 

To investigate if plasmids are stably replicated without antibiotic selection a plasmid 

stability tests were performed in vitro. Cultures were grown in 5 ml LB to the 

logarithmic phase with selection antibiotics (AB). Afterwards, 50 µl of the culture were 

harvested in a microcentrifuge at 2,000 × g and then resuspended in either medium 

only or medium containing selection antibiotic. Both cultures were grown overnight 

with vigorous shaking at 37°C. The next day, serial dilutions of the cultures were 

plated on LB and LB agar plates and further incubated at 37°C until colonies were 

visible. Plates containing between 30 and 300 colonies were counted. The plasmid 

stability P was calculated with the following equations:  

P (%) = (CFULB AB/CFULB)raised w/o AB * 100 * FP; Def.: P ≤ 100;  

FP = (CFULB/CFULB AB)raised with AB; Def.: FP = 1 if (CFULB AB/CFULB)raised w/o AB ≥ 1 or 

(CFULB/CFULB AB)raised with AB < 1 

 

III.2.2. Molecular Biology 

III.2.2.1. PCR for cloning 

Polymerase chain reaction (PCR) is an enzymatic method for in vitro synthesis of 

multiple copies of specific sequences of DNA. For cloning purposes, high fidelity 

polymerases, namely Pfu and Phusion Taq, were used. For PCR products facilitating 

disruption of chromosomal genes according to the method of Datsenko and Wanner 

(175), BiothermTM Taq polymerase was used similar to the Pfu protocol. Typical 

protocols are shown in the following tables:  

 

1 × mix Pfu/Taq polymerase  program    

5 µl  Dimethylsulfoxid (DMSO) 10 % 95°C 5 min    
5 µl 10 × buffer Pfu/ BiothermTM Taq 1 × 95°C 1 min 
0.5 µl 100 µM primer upstream  1 µM 50°C 1 min 
0.5 µl 100 µM primer downstream  1 µM 72°C 1 min/1kb 

33x 

1 µl 10 mM dNTPs  0.2 mM 72°C 10 min 
1 µl template DNA  4°C ∞ 

} 
 

1 µl Pfu (2.5 U/µl)/Taq (5 U/µl) 2.5 U/5 U     
ad 50 µl dH20      
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1 × mix Phusion polymerase  program    

10 µl 5 × buffer Phusion 1 × 98ºC 30 s    
0.5µl 100 µM primer upstream  1 µM 98ºC 10 s 
0.5 µl 100 µM primer downstream  1 µM 60ºC 20 s 
1 µl 10 mM dNTPs  0.2 mM 72ºC 10 s /1kb 

33x 

1 µl template DNA  4ºC ∞ 
1 µl Phusion polymerase (2 U/µl) 2 U   

} 
 

ad 50 µl dH20      
 

III.2.2.2. Colony PCR 

Colony PCR was used for screening purposes facilitated by BioTherm Taq 

polymerase. With this method, single bacterial colonies or plasmids could be 

analysed for the existence of specific DNA sequences.  

 

1 × mix Taq polymerase  program    

2.5 µl 10 × buffer BioTherm Taq 1 × 95°C 5 min    
0.25 µl 100 µM primer upstream  1 µM 95°C 1 min 
0.25 µl 100 µM primer downstream  1 µM 50°C 1 min 
0.5 µl 10 mM dNTPs  0.2 mM 72°C 1 min/1kb 

30x 

1 µl template DNA/single colony  72°C 10 min 
0.3 µl Taq polymerase (5U/µl) 1.5 U 4°C ∞ 

} 
 

ad 25 µl dH20      
 

III.2.2.3. Multiplex PCR 

Multiplex PCR is used for a rapid detection and discrimination of Salmonella strains 

(in abridged form of (177)). The reaction mix was prepared as follows:  

 

1 × mix multiplex PCR  program    

5 µl 10 × buffer BioTherm Taq 1 x 95°C 5 min    

1 µl 100 µM DhF 2 µM 95°C 1 min 
1 µl 100 µM DhR 2 µM 50°C 1 min 
1 µl 100 µM InvAF 2 µM 72°C 1 min/1kb 

38x 

1 µl 100 µM InvAR 2 µM 72°C 10 min 
1 µl 100 µM PrtF 2 µM 4°C ∞ 

} 
 

1 µl 100 µM PrtR 2 µM     
1 µl 100 µM ViaBF 2 µM     
1 µl 100 µM ViaBR 2 µM     
1 µl 10 mM dNTPs  0.2 mM     
1 x single colony      
1 µl Taq polymerase (5 U/µl) 5 U     
ad 50 µl dH20      
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III.2.2.4. Direct hybridisation of DNA linkers 

For production of small-sized DNA fragments, direct hybridization of two 

complementary DNA linkers is an attractive alternative to PCR. For this purpose, 

oligos were synthesized like common PCR primers, phosphorylated and 

subsequently hybridized in a temporal temperature gradient. As the oligos contain 5’ 

overhangs that mimic restriction by KpnI endonuclease, the hybridization construct 

can be directly ligated in a vector digested with KpnI. Reactions were performed like 

listed below: 

 

phosphorylation  program    

10 µl 100 µM DNA linker 100 µM 66 µM     

1.5 µl 10 × PNK buffer B 1 x 37°C 30 min 
1.5 µl 10 mM rATP  1 mM 70°C 20 min 
0.5 µl T4 PNK (10 U/µl)  15 U   

  

ad 15 µl dH20      
 

hybridisation  program    

3.5 µl 66 µM phosphorylated linker 1 23 µM     
3.5 µl 66 µM phosphorylated linker 2 23 µM 90°C 10 min 
1 µl formamide  10 % gradient*  2 h 

 
 

ad 10 µl dH20      
 
*The temperature gradient was achieved by switching-off the heating block at 90°C and allowing it to 
cool down while leaving samples in. 
 

III.2.2.5. Gel electrophoresis 

DNA samples were mixed 1/10 with loading dye solution and subjected to 

electrophoresis in 1 % (fragments over 500 bp) or 2 % (fragments below 500 bp) 

agarose gels in an electrophoresis unit at 180 V. DNA bands were visualized under 

UV light in a gel imaging system. Agarose gels were prepared in a special gel 

chamber with 10 or 20-well combs as follows: 

 

agarose gels 
     

1 or 2 g agarose for electrophoresis 1 or 2 %     
8 µl 10 mg/ml ethidium bromide solution 4 µg/ml     
ad 200 ml TBE buffer      
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III.2.2.6. DNA purification 

All DNAs were extracted or purified using Qiagen purification kits according to 

manufacturers’ protocols. In general, DNA purification is based on selective binding 

to silica columns, washing and final elution in weak alkaline Tris-HCl buffer. 

Chromosomal DNA was extracted from bacteria with the DNeasy® Mini Kit with slight 

modifications for gram-negative species. Plasmid DNA was obtained using 

QIAquick® Plasmid Mini Kit, PCR products were purified with the QIAquick® PCR 

Purification Kit and the QIAquick® Gel Extraction Kit was used to purify DNA 

fragments after gel electrophoresis. The latter methods were carried out strictly 

following manufacturer’s protocols. 

 

III.2.2.7. DNA restriction and ligation 

DNAs were digested using restriction endonucleases from Fermentas facilitated in 

their respective buffers or according to manufacturers’ recommendations as 

suggested by the DoubleDigest® algorithm (180).  

 

In order to construct new DNA molecules the desired fragments were ligated with T4-

DNA ligase. For the ligation reaction, restricted and therefore sticky ended DNA 

fragments were mixed at a molar ratio of vector to insert 1:3-1:10, respectively. 

Ligation was performed as follows: 

 

ligation mix  program    
16 µl vector-insert mix (1:3-1:10)    
2 µl 10 × T4 ligase buffer  1 x 16°C 12 h 
2 µl T4 ligase (5 U/µl)  10 U 65°C 20 min 

  

ad 20 µl dH20      
 

III.2.2.8. Sequencing 

DNA sequencing was performed in house with an ABI PRISM 373 sequencer. 

Therefore, approx. 1 µg of DNA was mixed with 10 pmol of primer in a total volume of 

14.5 µl and subjected to sequencing according to manufacturers’ protocols.  
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III.2.2.9. RNA isolation and cDNA synthesis 

Cultures were grown in BHI medium containing the appropriate antibiotics to the early 

logarithmic (OD600 = 0.4) or stationary phase (OD600 = 2.5). 5 × 109 from the early 

and 1 × 1010 cells from the late time-point were collected by centrifugation and shock-

frozen in liquid nitrogen at -80°C for storage. Bacterial cells were lysed with a 

FastPrep shredder and total RNA was extracted with the RNAeasy Mini Kit according 

to manufacturers’ protocol. On column DNA digestion with RNase-Free DNase kit 

was performed for 20 min at room temperature. Presence of chromosomal DNA was 

analyzed by PCR with the primers htrB_up and htrB2_down. Residual DNA was 

digested with DNAfree kit, 0.5 µg of total RNA were applied for cDNA synthesis with 

random hexamers using First Strand cDNA Synthesis Kit. 

 

III.2.2.10. Semi-quantitative Real-Time PCR (qRT-PCR) 

Semi-quantitative Real-Time PCR was applied to measure the relative level of 

transcript of certain genes compared to a control strain. The primers Cat RT (F) and 

Cat RT (R) were used to amplify a 136 bp fragment specific for the cat gene. The 

primers HlyA RT (F) and HlyA RT (R) were used to amplify a 121 bp fragment 

specific for the hlyA gene. The primers HlyD RT (F) and HlyD RT (R) were used to 

amplify a 135 bp fragment specific for the hlyD gene. The primers RfaH RT (F) and 

RfaH RT (R) were used to amplify a 91 bp fragment specific for the rfaH gene. qRT-

PCR was performed on the Rotor-Gene 2000 using DyNAmo™ HS SYBR® Green 

qPCR Kit. In a total volume of 20 µl each sample was analysed in triplicate, each 

qRT-PCR was performed in duplicate. 1 µl of tenfold diluted cDNA was used for qRT-

PCR. The presence of the primer specific amplicon was determined by detection of 

one melting-temperature peak and a single band at the expected size on a 2 % 

agarose gel after electrophoresis. The Ct values were determined with the Rotor-

Gene Analysis Software V4.6.70. By raising 2 by the power of the corresponding Ct 

value a relative unit for comparison of the initial RNA amount was calculated. The 

relative changes in gene expression between different strains were calculated after 

normalization with the cat gene as internal control. Significances of regulation were 

calculated using Students T-Test. Conditions applied for qRT-PCR are listed below:  
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1 × mix qRT-PCR  program    
   95°C 15 min    
10 µl 2 × Sybr green Mastermix 1 x 94°C 10 s 
1 µl 10 µM primer upstream  1 µM 57°C 20 s 
1 µl 10 µM primer downstream  1 µM 72°C 30 s 

40x 

1 µl cDNA  72°C 5 min 
ad 20 µl dH2O  70-95°C melt curve 

} 
 

 

III.2.3. Protein analysis 

III.2.3.1. Preparation of bacterial cellular proteins 

Bacteria were grown in BHI or LB medium containing appropriate antibiotics to the 

desired growth phase. 1-20 ml of culture were harvested by centrifugation and lysed 

in an appropriate amount of Laemmli buffer, cooked for 5 min and subjected to SDS 

polyacrylamide gel electrophoresis (PAGE). This fraction was referred to as cellular 

proteins or pellet proteins, as these samples contain the whole proteome of bacterial 

cells. 

 

III.2.3.2. Preparation of bacterial supernatant proteins 

Supernatant proteins were obtained by precipitating bacterial extracellular medium. 

Cultures were raised in BHI or LB medium containing appropriate antibiotics. After 

certain time points, 20 ml culture were taken, bacterial cells were collected by 

centrifugation and discarded. The resulting supernatants were precipitated with 10 % 

trichloric acid overnight at 4°C. The next day, the precipitate was collected by 

centrifugation at 3,345 × g and 4°C for 1 h, washed with 1 ml ice-cold acetone and 

carefully resuspended in 200 µl Laemmli buffer by rinsing the walls of the 

centrifugation tube. Finally, the pH was adjusted by adding 1 µl of saturated Tris 

solution; samples were cooked for 5 min and subjected to SDS PAGE. 

 

III.2.3.3. Preparation of bacterial membrane proteins 

To investigate the abundance of proteins in bacterial membranes, a quick protocol to 

separate this fraction from the cytosol was used. Cultures were grown in 20 ml LB 

medium containing appropriate antibiotics until an OD 600 of 0.9-1.1 was reached. 

Roundabout 7.5 × 109 cells were harvested by centrifugation, washed, and 

concentrated in 1 ml of PBS. Subsequently, the cells were sonicated 6-8 times with 
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15 s pulse length at 70 % output until a clear lysate was visible. Viable cells were 

collected by centrifuging for 3 min at 2,000 × g and discarded. The obtained 

supernatant was centrifuged at 10,000 × g and 4°C for 30 min. The resulting pellet 

was lysed in 200 µl Laemmli buffer w/o β-mercaoptoethanol, half was cooked and 

half was left untreated to investigate heat-labile, multimeric proteins. The pellet 

contains the membrane fraction comprised of inner and outer membrane. 100 µl of 

the supernatant was mixed 1:1 with Laemmli, cooked and referred to as cytoplasmic 

fraction. 

 

III.2.3.4. SDS PAGE 

To separate and analyze proteins, SDS polyacrylamide electrophoresis (PAGE) was 

used. SDS binding enables proteins to be electrophoretically separated according to 

their size in a polyacrylamide gel matrix. 10-40 µl of protein samples and 10 µl 

BenchMark mass standard were loaded onto gels. Electrophoresis was performed in 

a SDS PAGE running buffer containing MiniProtean II device at 180 V until the 

bromphenol front ran out of the gel. Gels were prepared as follows: 

 

Resolving gel (10 %) 
 

Stacking gel 

5 ml 40 % acrylamide/Bis solution  1.1 ml 40 % acrylamide/Bis solution  
2.5 ml 3 M Tris pH 9.0  1.25 ml 1 M Tris pH 6.8  
100 µl 20 % SDS solution  50 µl 20 % SDS solution  
20 µl TEMED  10 µl TEMED  
200 µl 10 % APS  100 µl 10 % APS  
ad 20 ml dH2O  ad 10 ml dH2O  
 
APS: ammonium persulfate, TEMED: N, N, N’, N’-tetramethylethylenediamine  
 

III.2.3.5. Western Blot 

After electrophoresis, SDS gels were equilibrated in Towbin buffer and subsequently 

transferred onto nitrocellulose membranes using a semi dry blotting device at 25 V 

for 40-75 min depending on the target protein size. To evaluate if equal amounts of 

proteins were applied on SDS PAGE, blotted membranes were stained with Ponceau 

S solution. Then, membranes were blocked in PBS milk for 1 h and incubated with 

the primary antibody (1/1000-1/3000) in PBS milk) overnight with gentle agitation at 

4°C. The remaining gels were stained with Coomassie blue to control total protein 
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amount applied for SDS PAGE. The next day, membranes were washed 3 × with 

PBS TWEEN and incubated with secondary HRP coupled antibodies (1/1000 in PBS 

milk) for at least 1 h. After additional 3 washing steps, blots were developed with the 

ECLTM Western Blotting detection Kit. 

 

III.2.4. Eukaryotic cell culture 

III.2.4.1. General culture 

RAW 246.7 macrophages were cultured in RP10; Caco-2 cells were maintained in D-

MEM and B16-Ova cells were grown in RP10 supplemented with 2 mg/ml G418 to 

ensure expression of ovalbumin. All cell lines were kept under 5 % CO2 atmosphere 

at 37°C and subcultured when they reached 90 % confluence. Subcultures of Raw 

cells were obtained by scraping the cell layer and transferring 1/10th of the 

suspension in fresh medium. Subcultures of Caco-2 and B16-Ova cells were 

prepared as follows: cellular monolayers were washed with PBS, treated with 

Trypsin/EDTA to obtain non-adhering single cells and propagated also 1:10 in fresh 

medium. 

 

III.2.4.2. Infection experiments with RAW 264.7 and Caco-2 cells 

For infection studies of eukaryotic cells with live bacteria, 5 × 105 Raw or Caco-2 

cells were seeded in 24-well TC plates 24 h prior to infection. Bacteria were washed 

in PBS, diluted in RPMI 1640 medium (w/o FCS) and then added to the cells at a 

multiplicity of infection of 100 in triplicates. Bacterial cell counts were determined by 

measuring the OD600 and confirmed by plating serial dilutions on LB agar plates. 

Bacteria were centrifuged onto cells at 500 × g for 5 min and then incubated for 2 h at 

37°C in an atmosphere of 5 % CO2. After infection, cells were washed two times with 

PBS and then incubated in RP10 (w/o FCS) containing 100 µg of gentamicin/ml After 

2 and/or 4 h of incubation, cells were washed two times with PBS and lysed with 1 % 

Triton X-100. For enumeration of intracellular bacteria, serial dilutions were plated on 

LB agar plates. CFU were counted after 24 h incubation at 37°C. Differences of 

bacterial entry and survival inside cells were analyzed using Students T-Test. 
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III.2.4.3. Plasmid stability test in macrophages 

To test stable maintenance of plasmids within macrophages, 5 × 105 Raw cells were 

seeded 24 h prior to infection in 24-well TC plates. The next day, cells were infected 

with bacteria as described in III.2.4.2 but at an MOI of 10. After 2 h, extracellular 

bacteria were killed by incubation in RPMI containing 100 µg/ml Gentamycin for 2 h. 

Subsequently, the Gentamycin concentration was lowered to 10 µg/ml and infected 

cells were incubated for 24 in the presence of FCS before cells were lysed in 1 % 

Triton and serial dilutions were plated on LB or LB Cm plates to assess the number 

of intracellular bacteria which maintained CmR conferring plasmids.  

 

III.2.4.4. Flow cytometry (fluorescent activated cell sorting, FACS) 

Flow cytometry is a qualitative method to determine expression of protein markers in 

cell populations at the single-cell level. For this purpose, approximately 1 × 106 cells 

were collected by centrifugation at 250 × g in a microcentrifuge from in vitro culture or 

single-cell splenocyte suspensions (see also III.2.5.3). Cells were washed with PBS 

BSA and incubated with either fluorochrome-conjugated or primary antibodies (1/100-

1/600 in PBS 1 % BSA) at 4°C for 30 min. In the latter case, incubation with a 

fluorochrome-conjugated secondary antibody targeting the primary antibody is 

needed. Finally, cells were washed, eluted in 400 µl of PBS BSA and analyzed in a 

BD FacsCalibur machine. Specificity of antibody mediated fluorescence was 

controlled by staining with fluorochrome-conjugated IgG isotypes or by staining cells 

with the conjugated secondary antibody only. The abundance of a specific population 

of marker positive cells in a total population can be determined by this method. 

 

III.2.5. Immunology and in vivo methods 

III.2.5.1. General animal handling and breeding 

All animal experiments were performed according to the German “Tierschutzgesetz”. 

OT-I mice were obtained from the Max-Planck Institute for Infection Biology in Berlin 

and bred for further studies in the MSZ animal facility. Therefore, one male and three 

female mice were kept together in one cage for 3 weeks. Then, mice were separated 

and 4 weeks after birth, the offspring were separated from the mother. OT-II mice 

were kindly provided by the department of Virology in Würzburg. 
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III.2.5.2. Immunization of mice with bacteria 

Three methods for immunizing mice were applied in this work. For oral immunization, 

mice were given 50 µl of carbonate buffer intragastrically 5 min prior to immunization 

to lower the pH of the stomach. Then, bacteria from infection aliquots (see III.2.1.3) 

were applied in 100-150 µl liquid by the same route. For i.v. injection, immunization 

aliquots were thawed on ice and diluted to 2.5 × 106 bacteria per ml. Mice were put 

under infrared light prior to application and 200 µl of the cell suspension were 

injected into the lateral tail vein. Immunization with Ty21a was carried out 

intranasally. Therefore, bacteria in 10-15 µl from the infection aliquots were applied 

into the nares of mice without anaesthesia using a micropipette. 

 

III.2.5.3. Isolation of murine splenocytes 

To isolate and analyze splenocytes, mice were anesthetized under CO2 atmosphere 

and killed via cervical dislocation. Spleens were removed aseptically, transferred into 

sterile D-PBS and mashed with a steel sieve to obtain a crude cell suspension. The 

suspension was centrifuged at 300 × g and 4°C; the pellet was resuspended in 3 ml 

Erythrocyte-lysisbuffer and incubated for 5 min until erythrocytes were lysed. The 

lysis buffer was neutralized by adding 10 ml of PBS and the suspension was applied 

onto a 40 µm nylon filter to give a single cell suspension. For adoptive transfer, 

splenocytes were washed and finally collected in D-PBS. For FACS analysis cells 

were washed and resuspended in PBS 1 % BSA. 

 

III.2.5.4. Determination of bacterial counts in organs and plasmid stability in vivo 

To determine bacterial counts in organs after infection, spleens or livers were 

removed and single cell suspensions were prepared like described in III.2.5.3 and 

lysed in 0.02 % TWEEN. Serial dilutions of lysates were plated on LB or LB Kan 

plates to determine plasmid stability. Stability (in %) was calculated by dividing CFU 

numbers grown on LB Kan by CFU numbers grown on LB multiplied with 100. To 

obtain plating efficiency and as an alternative to stability test by plating, grown clones 

on LB plates were picked and transferred to Kan plates. If all colonies grew on LB 

Kan, plasmid stability was also defined as 100 %. 
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III.2.5.5. OT-I and OT-II adoptive transfer 

The adoptive transfer model was used to analyze the capacity of an immunization 

strategy to elicit the expansion of ovalbumin-specific CD4+ or CD8+ T-cells. 

Ovalbumin serves as model antigen and the adoptive transfer approach is widely 

used to investigate the CD8+ or CD4+ T-cell response mediated by bacterial 

challenge (139-142). On day 1, 3-5 OT-I or OT-II mice were sacrificed and 

splenocytes were isolated and transferred into syngenic C57Bl/6 mice by i.v injection 

into the lateral tail vein. The next day, 3 of these mice per group were immunized with 

bacteria also by i.v. injection (see III.2.5.2). Three days later, mice were sacrificed 

and splenocytes were analysed by flow cytometry (see also III.2.4.4) to follow the 

expansion of Ova specific CD8+ or CD4+ T-cells. After removal and washing, 

splenocytes were treated for 5 min with the α-CD16/32 antibody on ice to block 

unspecific binding of IgG molecules to the FCγ III/II receptor via their constant part. 

To identify CD8+ cells, splenocytes were stained 30 min with the Ova SIINFEKL 

Tetramer (1/50) followed by an additional 30 min with α-CD8a CyChrome (1/200), α-

Vα-FITC (1/600), α-Vβ-PE (1/200) and/or α-CD62-L-FITC (1/400). For detection of 

CD4 T-cells, splenocytes were stained with α-CD4 CyChrome (1/200), α-Vα2-FITC 

(1/600), α-Vβ5-PE (1/200) and/or α-CD62L-FITC (1/400). All isotypes were applied in 

the same dilution as their respective specific IgG antibody. Significances in 

expansion of T-cells were calculated with 1-way ANOVA followed by Newman-Keuls 

multiple comparison test. 

 

III.2.5.6. Isolation of murine serum 

Mice were anesthetized with carbon dioxide and whole blood was obtained by 

puncturing the left ventricle of the heart. Then, mice were killed by cervical 

dislocation. Serum was extracted by incubating the whole blood for 1 h at room 

temperature following centrifugation at 10,000 × g for 5 min to separate serum from 

the cellular part. Serum was stored at -20°C until used. 

 

III.2.5.7. Enzyme linked immunosorbent assay (ELISA) 

The titres of hemolysin or LPS antibodies present in mouse sera were determined by 

ELISA. For detection of LPS antibodies, 1 µg/ml Ty21a LPS was coated onto NUNC 

96-well MaxiSorp plates at 4°C overnight. For detection of HlyA specific antibodies, 
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HlyA was precipitated from culture supernatants using strain Ty21a pANN202-806 

following the protocol for preparation of supernatant proteins (III.2.3.2) with slight 

modifications. Instead of Laemmli-buffer, the final pellet was resuspended in PBS 

and neutralized with saturated Tris solution. Finally, the solution was diluted 1/500 in 

coating buffer and coated overnight on 96-well plates. Plates were washed twice with 

PBS TWEEN and blocked with 1% BSA in PBS. After washing twice, three dilutions 

of mouse sera (1:33; 1:100; 1:300) in 100 µl conjugate buffer were incubated in 

duplicates for 1.5 h at 37°C. After four washing steps, AKP-coupled sheep anti 

mouse IgG or anti mouse IgG and IgM diluted 1/1,000 in 100 µl conjugate buffer was 

added. After 1 h at 37°C and two washing steps, 50 µl of pNPP substrate in buffer 

was added. The reaction was incubated at room temperature and stopped after 30 

min by 50 µl 1 M NaOH. Optical density was read at a wavelength of 405 nm in a 

microplate reader. Significant differences in absorption were analyzed through 1-way 

ANOVA followed by Newman-Keuls multiple comparison test. 

 

III.2.5.8. Enzyme linked immunospot assay (ELISPOT) 

EILISPOT was performed according to (181) for analyzing the frequency of B-

RAFV600E specific, IFNγ-secreting CD8+ T-cells after immunization. For this 

purpose, 3-4 HLA-B2705 transgenic mice per group were immunized orally 3 times 

fortnightly with 5 × 109 Stm. One week after the last immunization splenocytes were 

removed and restimulated ex-vivo to expand the specific T-cell population. Therefore, 

P815 B-RAFV600E cells were pulsed for 1 h with either 10 µg/ml peptide P2 

(GRFGLATEK), P3 (GRFGLATVK) or Ova SIINFEKL as control and irradiated at 30 

Gray to serve as target cells. 2 × 106 target cells and 1 × 107 splenocytes from 

individual mice were mixed and incubated for 5 days in RP10 supplemented with 60 

U/ml IL-2 and Pen-strep (1/100). If 4 mice were vaccinated, 2 preparations were 

pooled after restimulation. Half of the medium was changed carefully after 2.5 days. 

On day prior to analysis, 96 well nitrocellulose plates were coated with 5 µg/ml IFNγ 

capture antibody (R4) o/n at 4°C. The next day, plates were blocked with 1 % BSA 

for 2 h at 37°C and washed with sterile PBS. Freshly prepared splenocytes from 

HLA-B2705 mice were pulsed with the three peptides as described above and 

irradiated with 10 Gray to serve as feeder cells. Either 1 × 104, 3 × 104 or 1 × 105 

splenocytes were incubated with 1 × 105 feeder cells in 100 µl RP10 medium plus the 

usual supplements in each well of the prepared microtiter plates for 20 h at 37°C 
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under 5 % CO2 atmosphere. Afterwards, plates were washed 10 × with PBS following 

10 × with PBS TWEEN in a microplate washer and incubated with the secondary, 

biotinylated IFNγ detection antibody (XMG 1.2, 0.25 µg/ml in 100 µl PBS Tween) for 

2 h at 37°C. After washing 10 × with PBS TWEEN, plates were incubated with 100 

µl/well streptavidin-conjugated AKP diluted 1/2,000 in conjugate buffer for 1h at 37°C. 

Finally, plates were washed 5 × with PBS TWEEN and 50 µl of BCIP/NBT substrate 

(1 tablet dissolved in 10 ml dH2O) was applied in each well to visualize IFNγ spots. 

Plates were washed, dried, and specific spots were counted and analyzed in an AID 

ELISPOT reader. Each specific spot represents an IFNγ-secreting CD8 T-cell.  

In addition to ELISPOT, splenocytes restimulated with P2 were analyzed by flow 

cytometry. In order to follow the proliferation of specific T-cells after vaccination and 

restimulation, cells were incubated with HLA-B2705 P2 or P3 dextramers (1/25) for 

30 min. CD8+ T-cells were identified with α-CD8 CyChrome as described in III.2.5.5.  

 

III.2.5.9. Tumour challenge in mice 

To analyze the protective capacity of Salmonella based immunization against 

ovalbumin, 8-9 C57Bl/6 mice of 6-8 weeks of age per group were immunized 3 times 

with 2 week intervals with 5 × 109 bacteria. Three weeks after the third immunization, 

mice were challenged with the B16-Ova cell line by two s.c. injections of 5 × 105 cells 

into each flank of shaven abdominal skin. Mice were monitored over a period of 18 

days for tumour appearance and tumour volume was assessed by measuring the 

largest (a) and smallest (b) tumour diameter. Tumour volume (V) was calculated as 

rotation ellipsoid using the following formula: V = π/6 * a * b2; a > b 

The results’ significances were analyzed by Students T-Test and 1-way ANOVA 

followed by Newman-Keuls multiple comparison test. For analysis of the protective 

capacity of salmonellae presenting the PSA epitope, 8-9 C57/Bl6 mice of 6-8 weeks 

of age per group were immunized 3 times weekly with 1 × 1010 bacteria as described 

above. Two weeks after the third immunization, mice were challenged with B16-PSA 

by two s.c. injections of 5 × 105 cells into each flank of shaven abdominal skin. Mice 

were monitored over a period of 21 days for tumour appearance and tumour volume 

was assessed and analysed as described above. Significant differences in tumour 

growth were calculated with the non-parametric Mann-Whitney test as tumour 

volumes within the same groups were not distributed according to Gauss. 
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IV. Results 

IV.1. Part I: surface display of antigens via TolC 

IV.1.1. Construction of Salmonella strains expressing antigens in 
surface-exposed fashion 

IV.1.1.1. Construction of the pTolC plasmid and derivatives 

 
 

 
 
Figure IV.1 Cloning strategy for pTolC vectors 
A: Construction of pTolC. The PCR fragment of tolC included the indicated restriction sites. Vector and 
fragment were digested with SalI and ClaI and the 1.7 insert was ligated into the 4.4 kB backbone of 
pMKhly1 containing the Kanamycin resistance (KanR) and the origin of replication (ori). 
B: Construction of vectors expressing antigen-fused TolC proteins. Antigens were obtained by 
hybridizing two polylinkers carrying 5’ overhangs mimicking KpnI restriction. These fragments were 
inserted into a single KpnI restriction site of tolC on pTolC. In the upper panel, peptide sequences of 
the three investigated antigens are given. Construction of pTolC-PSA encoding the TolC-PSA protein 
is described elsewhere (136). Ova: chicken ovalbumin derived epitopes: CD8+ epitope (black) and 
CD4 + epitope (blue) separated with linker alanines (red). BRAFV600E: CD8+ epitope of BRAFV600E 
in triplicate separated by linker alanines (red). PSA: CD8+ epitope of prostate specific antigen in 
duplicate separated by linker alanines (red). 
 

To display epitopes on the surface of Salmonella vaccine strains, plasmid pTolC, 

encoding tolC from E. coli, was constructed. It formed the basis for later antigen 
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insertion into a single KpnI restriction site within a permissive, surface exposed TolC 

loop to achieve the so called “surface display” of antigens. Ampicillin resistance is 

inadequate for possible human use of these vectors. Kanamycin resistance as 

selection marker was chosen because of higher acceptance and lower risk to the 

environment (182). The cloning strategy is depicted in Figure II.1. For plasmid 

construction, tolC was amplified from ptolC with primers ectolClaI_up and 

tolCSalI_down with Pfu polymerase. The resulting 1.7 kB fragment was cut with ClaI 

and SalI and ligated into the 4.4 kB backbone pMKhly1 obtained by restriction with 

the same enzymes. The ligation mix was transformed into electrocompetent E. coli 

which were plated on LB Kanamycin plates. Clones were screened for insertion by 

colony PCR with primers TolSEQ2 and k1_down. To verify tolC insertion, plasmids of 

PCR-positive clones were isolated and digested with ClaI and SalI (Figure IV.2). 

 
 

 
 
Figure IV.2 Agarose DNA gel colony PCR screen and plasmid digestion of pTolC isolates 
Left panel: Colonies grown after ligation and transformation were screened by PCR with primers 
TolSEQ2 and k1_down to obtain a 1.8 kb fragment indicating insertion of tolC.  
Right panel: pTolC plasmid isolates were digested with ClaI and SalI to visualize the tolC insert of 1.7 
kB size. M: marker  
 

For construction of epitope-bearing pTolC, the vector was cut with KpnI and 

dephosphorylized with CIAP. The insertion fragments were generated by hybridizing 

two complementary linkers (OVA-linker 1 and 2 or BRAF-linker 1 and 2, respectively) 

which carry 5’ overhangs mimicking KpnI digestion. Linkers were first adapted to the 

codon usage of Salmonella using the tables of the Kazusa DNA research institute 

(183). Those fragments were ligated into the prepared vector and clones were 

screened by PCR with primers tolSEQ1 and 2. The resulting plasmids were named 

pTolC-OVA, which carries the H-2Kb restricted Ova CD4+ and CD8+ epitopes, and 

pTolC-BRAF encoding the HLA-B2705 restricted B-RAFV600E epitope in triplicate 
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(Figure IV.1). As tolC is distributed almost ubiquitously in gram-negative bacteria, 

expression of these plasmids might result in a binding competition of chromosomal 

encoded TolC and plasmid-borne, recombinant TolC in the outer membrane of the 

carrier strains. Therefore, the chromosomal copy was deleted with the aim to 

maximize abundance of the recombinant isoforms at the bacterial surface. 

 

IV.1.1.2. Disruption of chromosomal tolC 

First, the two different Salmonella strains, Ty21a and Stm, were screened by 

multiplex PCR according to (177). S. typhi strains can be identified by a typical PCR 

pattern as all four primer pairs (invA, viaB, fliC-d, prt) bind and lead to amplification, 

whereas in serovar typhimurium only one specific PCR fragment (invA) is generated. 

Figure IV.3 A depicts the results of the PCR identification. Both strains showed the 

expected pattern. Chromosomal gene disruption in these strains was performed with 

the method of Datsenko and Wanner (175). An overview of this knock-out approach 

is depicted in Figure IV.3 B.  

 
 

Figure IV.3 Strain identification and overview of chromosomal disruption of bacterial genes  
A: Multiplex PCR with Ty21a and Stm, 4 primer pairs were used to detect typhi specific genes, 1 band 
(invA) is common among Salmonella strains. Ec: E. coli negative control 
B: Overview of the chromosomal deletion of tolC in Salmonella, taken from (175) 
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For disruption of tolC, Ty21a or Stm were transformed with plasmid pKD46 and 

grown in LB medium supplemented with 0.2 % L-(+)-arabinose for induction of gam, 

bet and exo, the gene products on the plasmid conferring the ability for homologous 

recombination with linear PCR products. These strains were incubated at 30°C to 

stably replicate the temperature-sensitive plasmid pKD46 until an OD600 of 0.6 was 

reached. Cells were washed and concentrated 200 × in PBS 10 % glycerol to make 

them electrocompetent. 

PCR products were amplified with Taq polymerase from pKD3 (for tolC KO in Stm) or 

pKD4 (for tolC KO in Ty21a) containing antibiotic resistance cassettes. Primers were 

composed of 5’ and 3’ overhangs homologous to the tolC locus which was the target 

of disruption and priming sites p1 and p2 which annealed to pKD plasmids. The final 

PCR products contained the 5’ homology region followed by an FRT site flanked CmR 

(pKD3) or KanR (pKD4) cassette and a homology region at the 3’ end. Knock-out 

fragments were generated from 400 µl of PCR product, purified, digested with DpnI 

for 3 h, purified again and eluted in 30 µl of EB buffer. Finally, 5 µl of PCR product 

were used to transform 100 µl electrocompetent cells mentioned above. Clones were 

selected on LB agar plates containing 0.2 % arabinose and 10 µg/ml Cm for Stm or 

25 µg/ml Kan for Ty21a at 30°C. Insertion of the PCR fragment into the tolC locus 

was controlled by colony PCR using primers c1_down (Stm) or k1_down (Ty21a) and 

tolCFR_up (Figure IV.4).  

 
 

 
 
Figure IV.4 Agarose DNA gels of colony PCRs to confirm tolC deletion in Ty21a and Stm 
Insertion of KanR and CmR cassettes into the tolC locus was confirmed with primers k1_down and 
TolCFR_up (Kan insert) or c1_down and TolCFR_up (Cm insert), respectively (lanes 2 and 5). 
Deletion of the resistance cassettes were verified with tolCFR primers (TolCFR) leaving a 500 bp scar 
sequence (lanes 4, 7). M: marker, 1: Ty21a, 2 and 3: Ty21a ∆tolC::KanR, 4: Ty21aTC, 5 and 8: Stm 
∆tolC::CmR, 6: Stm, 7: StmTC:  
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To eliminate the antibiotic resistance, insertion-positive clones were cultivated at 

37°C and screened for Amp sensitivity (loss of plasmid pKD46). Those clones were 

transformed with pCP20, a plasmid encoding Flp recombinase which targets the FRT 

sites for recombination. Incubation at 37°C activates the recombinase which 

mediates recombination of FRT sites resulting in CmR loss. Furthermore, pCP20 is 

eliminated as it is not stably replicated at temperatures above 30°C. Clones were 

screened for Amp and Cm sensitivity and the loss of the CmR cassette in the tolC 

locus by PCR, using primers tolCFR_up and tolCFR_down (Figure IV.4). The 

resulting tolC-deficient strains were named Ty21TC and StmTC, respectively. 

Plasmids were introduced into the strains by electroporation. 

 

IV.1.1.3. Expression and localization of recombinant TolC 

After construction of the carrier and plasmids, recombinant protein expression and 

localiztion was analyzed. Therefore, bacterial cells were disrupted and separated into 

cytoplasmic and membrane fractions. To analyze trimer formation, which indicates 

insertion of TolC into the outer membrane, half of the membrane fraction was left 

uncooked during sample preparation to ensure stability of heat-labile multimers. All 

samples were subjected to SDS PAGE and Western Blot using the α-TolC antibody 

(1/3000 in PBS milk). To control the efficacy of the fractionation process, blotted gels 

were stained with Coomassie blue and the protein pattern was analyzed.  

 

The left panel of Figure IV.5 shows the protein pattern after fractionation, SDS PAGE 

and Coomassie staining. Cytoplasmic and membrane fraction differ in their protein 

content as shown by Coomassie staining (Figure IV.5, left panel) which confirms 

proper separation of bacterial compartments by this method. When stained with the 

α-TolC antibody (Figure IV.5 and Figure IV.6), both, endogenous and recombinant 

TolC, can be detected in their monomeric form in the Ty21a and Stm strains. The 

tolC-deficient strains do not possess the chromosomal copy, so the 48 kDa band was 

lacking. Furthermore, recombinant TolC could be found in the cytoplasm as in the 

membrane fraction and built-up trimers in respective transformed Ty21a and Stm 

strains. Most strikingly, the amount of trimeric TolC was much higher in the tolC-

deficient strains and this was true for both investigated strains and both recombinant 

proteins. It is unclear whether the antibody can detect trimeric endogenous TolC as 

the overall trimer abundance in the tolC wildtype strains was low. Nevertheless, it 
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seems that there exists indeed a binding competition between TolC isoforms for a 

limited number of membranous TolC insertion sites. As a result, deletion of 

chromosomal tolC leads to saturation of the outer membrane with recombinant TolC. 

 
 

Figure IV.5 SDS PAGE and Western Blot of Ty21a strains after membrane preparation 
Membrane protein samples of 2 ml or cytoplasmic proteins of 0.2 ml culture were loaded in each lane. 
Left panel: Coomassie staining of a SDS gel after blotting. 
Middle panel: Western Blot of strains expressing TolC-OVA detected with the α-TolC antibody 
Right panel: Western Blot of strains expressing TolC-BRAF detected with the α-TolC antibody 
NC: Ty21aTC w/o plasmid, OVA: pTolC-OVA, BRAF: pTolC-BRAF, WT: Ty21a, TC: Ty21aTC 
C: cytoplasmic fraction, M: membrane fraction, M*: uncooked membrane fraction, TolC3. trimeric TolC, 
TolC1: monomeric endogenous TolC, rTolC1: monomeric recombinant TolC 
 
 

 
Figure IV.6 Western Blot of Stm strains after membrane preparation 
Membrane protein samples of 2 ml or cytoplasmic proteins of 0.2 ml culture were loaded in each lane. 
and TolC was detected with the α-TolC antibody 
OVA: pTolC-OVA, BRAF: pTolC-BRAF, TC: StmTC, WT: Stm, C: cytoplasmic fraction, M: membrane 
fraction, M*: uncooked membrane fraction, TolC3. trimeric TolC, TolC1: monomeric endogenous TolC, 
rTolC1: monomeric recombinant TolC 
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IV.1.1.4. Plasmid stability in vitro 

Plasmid stability is an important prerequisite for plasmid-based, recombinant live 

vaccines. Therefore, plasmid stability was assessed in Salmonella as described (in 

vitro, III.2.1.7). Furthermore, the KanR of plasmids pTolC and pTolC-OVA were 

eliminated by recombination and analyzed for expression and stability in StmTC. This 

strategy was followed to create antibiotic resistance-free vaccines that may be 

advantageous for later human use e.g. in Ty21a.  

The KanR of plasmid pTolC was inherited from pMKhly1 but originally is derived from 

plasmid pKD4, thus the KanR is flanked by FRT sites. Analogous to the deletion of 

resistance cassettes from the chromosome (see IV.1.1.2) this selection marker was 

removed by homologous recombination using Flp from plasmid pCP20. StmTC 

containing plasmids pTolC or pTolC-OVA were transformed with pCP20 and 

incubated at 37°C for simultaneous induction of the recombinase and loss of the 

temperature-sensitive plasmid pCP20. Clones were screened for Kan and Amp 

sensitivity to confirm deletion of KanR on pTolC plasmids and loss of pCP20. 

Retained plasmids were isolated and named pTC and pTC-OVA, respectively. Those 

“marker-free” plasmids could be selected in the presence of 2-4 µg/ml Novobiocin as 

tolC-deficient strains are highly susceptible to this compound, thus leading to 

maintenance of the only functional, plasmid-encoded tolC. 

Table IV.1 shows plasmid stability of all vectors in vitro, Figure IV.7 depicts 

expression of TolC encoded by marker-free vectors in StmTC. 

 

Plasmid Stm StmTC Ty21aTC 

pTolC 97-100% - - 

pTolC-OVA 100 % 91-100 % 100 % 

pTC - 96-100 % 86-91 % 

pTC-OVA - 94-100 % - 

 
Table IV.1 Stability of plasmid replication in 
Salmonella vaccine carriers. 
Cultures were grown o/n in the presence or 
absence of selection antibiotic. The next day serial 
dilutions were plated on LB or LB Novobiocin (2-4 
µg/ml). Plasmid stability was determined as 
described in III.2.1.7. All tests were performed at 
least 2 times; therefore a range of stability is given 
if single results differed. 
 

 

 
Figure IV.7 Western Blot of StmTC harbouring 
pTC or pTC-OVA 
Cultures were grown o/n in the presence (+) or 
absence of (-) 2 µg/ml Novobiocin. Lysates of 
0.1 ml culture were loaded in each lane and 
TolC was detected with the α-TolC antibody. 
TolC1: monomeric TolC, rTolC1: monomeric 
recombinant TolC 
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These results demonstrate that plasmids pTolC and pTolC-OVA are highly stable in 

Salmonella vaccine strains. Plasmid stability ranged from 90-100 % in vitro for KanR 

plasmids. In addition, resistance cassettes were not essential for expression and 

maintenance of plasmids as plasmids pTC and pTC-OVA were as stable as their 

parental vectors and allowed efficient expression of (recombinant) TolC in Stm. 

However, the KanR-bearing plasmids were used for further studies due to easier 

selection with Kanamycin. 

 

IV.1.2. Recombinant TolC proteins are functional 

IV.1.2.1. Investigation of major TolC functions with recombinant proteins 

TolC is a multifunctional protein, involved in type I secretion of hemolysin (160), 

multidrug resistance of Salmonella, invasion/survival of Salmonella in macrophages 

(184,185) and invasion into epithelial cells (186) To assess the capacity of the 

recombinant TolC proteins to substitute TolC functionally in tolC-deleted strains, 

resistance against antimicrobial agents, the ability for hemolysin secretion, invasion 

into Caco-2 cells and survival inside macrophage-like RAW cells were tested.  

 

IV.1.2.2. Resistance against antimicrobial agents 

AcrAB forms a tripartite efflux pump by recruiting TolC as outer membrane pore thus 

mediating resistance against a wide range of noxious, chemically non-related 

compounds (187). The ability for multidrug efflux of different Salmonella strains was 

tested by determining the MIC of bile salts.  

 
Strain Stm StmTC Ty21a Ty21aTC 

Plasmid - - pTolC 
pTolC 

OVA 

pTolC 

BRAF 
- - pTolC 

pTolC 

OVA 

pTolC 

BRAF 

MIC 
(mg/ml) 

>50 0.2 >50 >50 50 >50 0.05 >50 50 50 

 
Table IV.2 Bile salt MIC values of Salmonella strains 
Strains were cultivated 24 h in LB medium on 96-well microtiter plates containing twofold serial 
dilutions of bile salts. The MIC value represents the lowest concentration which repressed growth 
completely. 
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As Table IV.2 shows, tolC deficiency rendered the bacteria highly susceptible to the 

tested compound. All TolC isoforms were able to rescue this phenotype when 

introduced into Salmonella via plasmids. Albeit pTolC encodes tolC from E. coli it was 

fully functional in Salmonella with respect to multidrug efflux. Furthermore, insertion 

of epitopes into the outer loop did not negatively influence the efflux function 

underlining the permissive character of the antigen insertion site.  

 

IV.1.2.3. Ability for hemolysin secretion of recombinant TolC proteins 

Strains were transformed with plasmid pRSC2 which encodes the hly operon of E. 

coli and secretion was investigated employing two different methods. First, an on-

plate hemolysin assay was performed. Secreted hemolysin is diffusing into blood 

agar cells lysing erythrocytes thus resulting in corona formation around secretion-

competent cells. As visible in Figure IV.8 A, all strains lysed red blood cells 

independent of the TolC isoforms. In contrast, the tolC-deficient strain was not able to 

secrete hemolysin. In the second approach, hemolysin was precipitated from 

supernatants and analyzed by Western Blot with an α-HlyAs antibody (Figure IV.8 B)  

 
 

 
 
Figure IV.8 HyA secretion on Salmonella strains 
A On-plate hemolysin assay. Cell suspensions were dropped onto blood agar and incubated 24 h at 
37°C. Coronas indicate lysis of erythrocytes due to secreted hemolysin. NC: StmTC/pRSC2, PC: 
Stm/pRSC2, OVA: StmTC/pRSC2/ pTolC-OVA, BRAF: StmTC/pRSC2/pTolC-BRAF 
B: Western blot of precipitated supernatants of Salmonella strains 
Proteins of 2.5 ml TCA precipitated culture supernatant were applied in each lane. HlyA was detected 
with the a-HlyAs antibody. NC: StmTC/pRSC2, OVA: StmTC/pRSC2/pTolC-OVA, BRAF: 
StmTC/pRSC2/pTolC-BRAF 
 

Western Blot data confirmed the results described above. Again, all (recombinant) 

TolC proteins built-up functional secretion machineries with Hly proteins leading to 
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secretion of hemolysin. Similar results in both assays were obtained with Ty21a 

strains (not shown). 

 

IV.1.2.4. Invasion/survival in epithelial and macrophage-like cells 

In order to test the ability of recombinant Salmonella strains to invade into and 

survive inside epithelial cells, CACO-2 cells were infected with bacteria at an MOI of 

100. After uptake (2 h) and gentamicin mediated killing of extracellular bacteria (2 h), 

cells were lysed and the amount of intracellular bacteria was determined by plating 

serial dilutions of this lysates and counting CFU. The results are shown in Figure 

IV.9. Interestingly, Ty21a invaded and survived in Caco-2 cells approx. 1 log 

magnitude less efficient than Stm. Furthermore, the tolC mutant exhibited decreased 

numbers of intracellular bacteria indicating a role of tolC in the process of invasion or 

the ability to survive in Caco-2 cells. Both, TolC and TolC-OVA were able to restore 

the overall poor invasion ability of Ty21a in the tolC-deficient strain. Stm strains 

showed a similar behaviour but the yield of intracellular bacteria was much higher, 

even though the aroA mutation renders Stm replication defective when grown 

intracellularly (188). 

 

Figure IV.9 Invasion/survival of bacteria in Caco-2 cells 
2 h post infection, Caco-2 cells were lysed and plated for determination of the number of intracellular 
bacteria. 
A: Ty21a strains and B: Stm strains. Significances were calculated by logarithmic transformation of 
CFU values followed by Students T-Test comparing each strain with its respective wildtype (in white). 
* p-value < 0.05 
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When investigating survival behaviour of Salmonella in RAW macrophages 

employing an analogous experimental setting, contrary observations were made. In 

this case, intracellular yield of Ty21a was higher than for Stm strains (Figure IV.10). 

 

Figure IV.10 Invasion/survival of bacteria in RAW cells 
2 h post infection, macrophage-like cells were lysed and plated for determination of the number of 
intracellular bacteria. 
A: Ty21a strains and B: Stm strains. Significances were calculated by logarithmic transformation of 
CFU values followed by Students T-Test comparing each strain with its respective wildtype (in white). 
* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001 
 

Again, a clear dependency on tolC for intracellular survival was observed for Ty21a. 

Complementation with TolC-OVA rescued the tolC phenotype, while TolC alone even 

increased the yield of intracellular bacteria significantly (p-value = 0.047). 

Surprisingly, tolC deletion exerted only a little but significant effect on intracellular 

numbers of Stm cells within macrophages. All S. typhimurium strains tested exhibited 

similar yields of intracellular bacteria. Howsoever, tolC deletion displayed at least no 

substantial negative effect on survival behaviour of Stm when infecting RAW cells. 

 

IV.1.3. Stm strains expressing surface-associated OVA failed to activate 
Ova specific CD4+ and CD8+ T-cells 

IV.1.3.1. OT-I transfer 

To assess the capacity of the newly constructed strains to prime the adaptive 

immune system adoptive transfer models were chosen. In a first attempt the 

expansion of CD8+ T-cells upon stimulation with Stm(TC) pTolC-OVA strains was 

investigated. Therefore, CD8+ T-cells specific for the Ova SIINFEKL peptide in the 
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context of MHCI molecules were purified from OT-I mice and transferred into 

syngenic C57Bl/6 mice. The next day, these mice were immunized with Stm 

displaying SIINFEKL via TolC or control strains. Three days later, mice were 

sacrificed and splenocytes were analysed by FACS for the expansion of OT-I cells. 

The Ova SIINFEKL Tetramer binds specifically to the OT-I T-cell receptor, the type of 

cell was confirmed with anti CD8 staining and CD62L served as activation marker as 

CD62L expression is lost in activated T-cells (CD62Lhi to CD62Llo). Figure IV.11 

illustrates the staining of splenocytes with the different markers. Figure IV.12 shows 

the results of the assay indicated by the mean percentage of OT-I cells in the 

population of splenocytes of 3 mice. 

 
 

 
Figure IV.11 FACS staining of splenocytes after immunization to determine frequencies of OVA 
specific CD8 T-cells. 
OVA SIINFEKL specific T cells (OT-I cells) were transferred into Bl/6 mice, mice were immunized, 
and T-cell frequencies was assessed by FACS.  
A: Splenocytes were stained with α-CD8a CyChrome and α-CD62L-FITC antibodies  
B: CD8a positive cells as indicated in A were gated and investigated for the presence of the OT-I 
TCR (OVA SIINFEKL Tetramer-PE) and activation state (α-CD62L-FITC). Numbers indicate the 
frequencies of cells in %. 
 

As visible, immunization did not result in substantial proliferation of OT-I cells in vivo. 

The overall frequency of these Ova SIINFEKL/MHC-I specific CD8+ cells was low. 

Figure IV.12 A depicts frequencies of non-activated T-cells after immunization. The 

background staining level was rather low as indicated by analysis of splenocytes from 

mice which did not receive OT-I cells. StmTC pTolC-OVA induced significant higher 

frequencies of OT-I cells compared to all other groups. However, the difference was 

marginal and was not reproducible in another experiment (not shown). Furthermore, 

most of the OT-I cells were not activated as the frequency of CD62Llo Tetramer 
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positive cells ranged often far below 0.5 % of the whole splenocyte population 

(Figure IV.12 B). Additionally, no significant differences in expansion of activated T-

cells in between the groups were observed. 

 
 

 
 
Figure IV.12 OT-I cell expansion after immunization with Stm strains. 
OVA SIINFEKL specific T cells (OT-I cells) were transferred into C57Bl/6 mice, mice were immunized, 
and T-cell expansion was assessed by FACS.  
The frequency of A: non-activated (CD62Lhi) and B: activated (CD62Llo) OT-cells is given as mean 
percentage of these cells of the whole splenocyte population (n = 3 mice). Significances were 
calculated by 1-way ANOVA followed by Newman-Keuls multiple comparison test. * p-value < 0.05, ** 
p-value < 0.01 
 

To confirm that Salmonella were able to colonize lymphatic tissue and to rule out that 

the inability to induce proliferation of T-cells was due to defects in infection ability or 

loss of antigen expression, CFU in livers of infected mice and plasmid stability were 

determined. Therefore, livers in parallel to analyzed spleens were extracted, 

homogenised and plated on LB and LB Kan plates. CFU was counted after 24 h of 

incubation at 37°C and plasmid stability was assessed. If plasmid stability was below 

100 %, 200 clones grown on LB agar w/o selection were streaked out on LB Kan 

plates. The next day, clones containing plasmids were assessed by the ability to 

grow in the presence of Kanamycin. This was performed to investigate the plating 

efficiency as clones that did not grow in the presence of Kanamycin may still harbour 

plasmids but did not express the resistance gene initially. 
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Table IV.3 summarizes the results of these control experiments. As visible, the yield 

of bacteria in the liver was similar in different strains, except StmTC pTolC-OVA 

which colonized this organ approx. 2-fold better than the other strains. Nevertheless, 

this difference was not significant (p-value = 0.156 compared to StmTC pTolC) and 

may also be attributed to a higher inoculation titre. Furthermore, plasmid stability 

proved to be very high in this setting, even when bacteria were passaged in vivo 

followed by 24 h incubation on LB agar plates, no colony lost the plasmid in strain 

StmTC pTolC-OVA. To sum up, poor efficacy of stimulating proliferation and 

activation CD8+ T-cells by Stm strains was neither due to loss of antigen nor poor 

capacity to colonize secondary lymphatic organs within 3 days in the murine host. 

 

Strain CFU/liver Plasmid stability Plasmid stability*

Stm pTolC 1.34 × 105 ± 8.54 × 104 100 % - 

Stm pTolC-OVA 1.47 × 105 ± 3.14 × 104 82 % - 

StmTC pTolC 9.8 × 105 ± 2.78 × 104 100 % - 

StmTC pTolC-OVA 2.62 × 105 ± 7.6 × 104 72 % 100 % 

 
Table IV.3 Colonization of the liver and plasmid stability of Stm strains used in the OT-I transfer 
Mice were immunized with 5 × 105 Stm strains, 3 days later mice were sacrificed, spleens and livers 
were removed and homogenised. Splenocytes were analysed as described above, serial dilutions of 
livers were plated on LB or LB Kan agar to determine CFU and plasmid stability. CFU values are 
indicated as means plus/minus standard deviation, differences were not statistically significant. 
Plasmid stability: assessed by plating; Plasmid stability*: assessed by streaking clones on LB Kan 
plates after 3 days passage in mice and 24 h incubation on LB agar. 
 

IV.1.3.2. OT-II transfer 

Analogous to the OT-I approach, CD4+ T-cells specific for OVA323-339 can be 

adoptively transferred into syngenic mice. The schedule was kept identical to the OT-

I approach with exception of the positive control Listeria monocytogenes EGDe ∆trpS 

(Lm) harbouring plasmid pSP118-OVA. This strain was found to induce the 

expansion of OT-I and OT-II cells in an adoptive transfer setting (139). Specific CD4+ 

T-cells were identified by the presence of CD4 and the OT-II T-cell receptor, 

indicated by binding of α-Vα2 and α-Vβ5 antibodies. Again, activated T-cells were 

discriminated from non-activated by loss of CD62L expression. As a result, no Stm 

strain was able to increase frequency of neither activated nor non-activated T-cells 

compared to controls, in contrast to Listeria monocytogenes pSP118-OVA (Figure 

IV.13). Of note, the frequencies of activated OT-II cells (Figure IV.13 B) seemed to be 
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higher than of non-activated (Figure IV.13 A) OT-II cells. This was possibly due to the 

staining procedure, as activated cells were only stained with α-Vβ5 and α-CD4 

antibodies whereas the total cell fraction was identified additionally by Vα2 

expression. Nevertheless, Stm expressing surface bound OVA were not able to 

prime specific CD4+ T-cells and no proliferation or activation of those cells occurred 

as detectable with this system. 

 
 

Figure IV.13 OT-II cell expansion after immunization with Stm and Lm 
OVA323-339 specific T cells (OT-II cells) were transferred into Bl/6 mice, mice were immunized, and T-
cell expansion was assessed by FACS.  
The frequency of A total OT-II cells and B: activated (CD62lo) OT-II cells is given as mean percentage 
of these cells of the whole splenocyte population (n = 3 mice). Significances were calculated by 1-way 
ANOVA followed by Newman-Keuls multiple comparison test. *** p-value < 0.001 as compared to all 
other groups 
 

IV.1.4. Stm strains expressing surface associated B-RAFV600E epitope 
failed to induce BRAF specific CD8+ T-cell response 

IV.1.4.1. IFNγ ELISPOT 

To determine specific immune responses mediated by vaccination of mice with 

salmonellae expressing the BRAFV600E epitope on the bacterial surface, an 

ELISPOT assay was applied. Briefly, 3-4 mice/group were immunized 3 times 

fortnightly with 5 × 109 Stm. One week after the last immunization splenocytes were 

removed and restimulated ex-vivo for 5 days in the presence of IL-2 and target cells 

pulsed with different peptides to expand specific T-cell populations. P2 and P3 

comprised B-RAF derived epitopes which were modified for stricter binding to HLA-
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B27 (D2R exchange) whereas P2 contains the V600E mutation and P3 represents 

the non-mutated wildtype peptide. In addition, an unrelated peptide, namely Ova 

SIINFEKL (P0), was included in the study to serve as negative control. After 

restimulation, cells were co-incubated with feeder cells pulsed with the described 

peptides on ELISPOT plates coated with IFNγ capture antibody. Detection was 

carried out with IFNγ detection antibody in a sandwich-like approach and a final 

phosphatase reaction. Each spot represented one IFNγ secreting T-cell stimulated by 

peptide-HLA complex recognition. The resulting plates were read-out in an AID 

ELISPOT reader device and analysed with the corresponding software. As illustrated 

in Figure IV.14, vaccination with Stm strains expressing the B-RafV600E epitope did 

not result in substantial activation or proliferation of specific T-cells since spot counts 

did not increase when restimulated cells of vaccinated mice were analysed compared 

to controls.  

 

 
Figure IV.14 IFNγ ELISPOT for detection of B-RAF specific CD8 T-cells after immunisation of HLA-
B27 transgenic mice with Stm 
HLA-B2705 transgenic mice were immunized fortnightly with 5 × 109 Stm. One week after the last 
immunization mice were sacrificed and splenocytes were restimulated ex-vivo with B-RAF derived 
peptides and controls. P0 = Ova SIINFEKL, P2 = mutated B-RAF and P3 = wildtype vBRAF. 
ELISPOT was performed by detecting cells secreting IFNγ in response to stimulation by feeder cells 
presenting different peptides in the context of HLA/MHC-class I molecules. Spot counts were 
analysed by 1-way ANOVA to evaluate significance of differences between immunization groups. 
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FNγ cell counts derived from naïve mice were rather high. However this was due to 

the effector/target cell ratio selected for the final analysis, which leads to the 

conclusion that IFNγ-positive cell counts were very low in the immunization groups. 

Furthermore, no significant difference in numbers of IFNγ-secreting T-cells was 

observed when stimulated with different peptides. For a positive result spot counts of 

T-cells stimulated with peptide P2, which contains the V600E mutation, should have 

had increased, as the HLA-B2705 molecule should be able to present the epitope on 

the surface of professional APCs. Taken together, immunization with Stm strains 

failed to induce detectable levels of P2 specific T-cells. 

 

IV.1.4.2. FACS analysis with B-RAF specific dextramers 

To confirm the ELISPOT data, frequencies of P2 and P3 directed CD8+ cells were 

determined by FACS in different splenocyte fractions restimulated with P2. Therefore, 

cells were stained with α-CD8-CyChrome and dextramers of peptides P2 and P3, 

respectively. The frequencies of double positive cells are depicted in Figure IV.15 

indicated as CD8+ T-cells with a TCR specific for peptide P2 (GRFGLATEK, assigned 

D-P2+CD8+) or peptide P3 (GRFGLATVK, assigned D-P3+CD8+) in the context of 

HLA-B2705.  

The overall frequencies of dextramer-positive CD8+ T-cells were low, meaning that 

specific T-cells did not expand extensively after restimulation. In addtion, no 

differences in numbers of specific T-cells were observed when comparing the 

individual immunization groups, which is consent with the ELISPOT data. However, 

frequencies of D-P2 positive are higher than D-P3 positive CD8+ T-cells in these 

populations of P2 restimulated cells. This difference was significant in two 

immunization groups albeit these observations could not be attributed to B-RAF 

mediated immunization as StmTC pTolC-BRAF failed to induce a significant shift 

towards D-P2+ CD8+ T-cells. Taken together, in these experimental settings 

Salmonella-based antigen presentation within surface exposed TolC loops was not 

able to mediate detectable expansion and activation of antigen specific CD4+ or 

CD8+ T-cells in vivo. This was valid for ovalbumin and B-Raf derived epitopes. 

Nevertheless, T-cell responses induced by Salmonella-based immunization might 

ranged under the detection limits of the diverse assays but may be sufficient to 

protect from challenge with antigen expressing tumours. To address this possibility, 

two xenograft models were established as described in the following. 
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Figure IV.15 FACS analysis for detection of B-RAF specific CD8 T-cells after immunisation of HLA-
B27 transgenic mice with Stm 
HLA-B2705 transgenic mice were immunized fortnightly with 5 × 109 Stm. One week after the last 
immunization mice were sacrificed and splenocytes were restimulated ex-vivo with B-RAF derived 
mutated peptide P2 (GRFGLATEK). T-cells specific for the different peptide/HLA-B2705 complexes 
were assessed by staining with α-CD8 antibody and dextramers P2 (D-P2) and P3 (D-P3), 
respectively. Frequencies of peptide specific T-cells were analysed by 1-way ANOVA to evaluate 
significances of differences between immunization groups. Students T-Test was performed to analyse 
differences of frequencies comparing T-cells positive for D-P2 and D-P3 within one immunization 
group. * = p-value < 0.05 
 

IV.1.5. Vaccination of mice with Salmonella expressing surface bound 
antigen was protective against PSA- but not Ova- positive 
tumour cell challenge 

IV.1.5.1. B16-Ova challenge 

To investigate the capacity of Salmonella-based immunization to protect from tumour 

challenge an ovalbumin-positive xenograft model was applied. First, ovalbumin 

expressing cells had to be identified. Two independent cell lines were investigated in 

a Western Blot setting. Surprisingly, neither in B16-Ova nor in EG.7 cells expression 

of ovalbumin was detectable (not shown). Therefore, the ability of cell lines to present 

Ova SIINFEKL peptide in the context of MHC class I molecules on the surface of 

cells was assessed. This assay displays increased sensitivity and ensures already 

that those cells can be targeted by CTLs with their cognate TCR. To address this 
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issue, different cell lines were incubated with the 25D-1.16 antibody that recognizes 

Ova SIINFEKL bound to MHC-I. Detection was carried out by FACS analysis after 

staining with a FITC-labelled secondary antibody. EG.7 cells were pulsed o/n with 25 

µg/ml Ova SIINFEKL peptide to serve as positive control. Figure IV.16 shows the 

results, depicted by the shift in florescence when stained with both antibodies 

compared to staining with primary antibody alone. EG.7 cells showed a very low 

staining intensity (Figure IV.16 A) indicated by a marginal shift compared to staining 

with primary antibody alone. Additionally this shift was also present when stained with 

secondary antibody alone (not shown). As conclusion, EG.7 cells did neither show 

expression of Ova nor presentation of Ova SIINFEKL on MHC-I molecules. 

 
 

Figure IV.16 FACS analysis for Ova SIINFEKL presentation in the context of MHC-I molecules 
Cells were stained with 25D-1.16 antibody recognizing Ova SIINFEKL in the context of MHC-I 
molecules. Empty curves indicate cells stained with primary antibody only. A: EG.7 cells, B: EG.7 cells 
pulsed o/n with 25 µg/ml SIINFEKL peptide, C: B16-Ova cells 
 

To exclude that MHC-I molecules were absent, EG.7 was pulsed with SIINFEKL 

peptide and a clear shift was observed, meaning that this cell type is able to present 

exogenous SIINFEKL (Figure IV.16 B). B16-Ova cells in contrast were able to 

present endogenous Ova SIINFEKL (Figure IV.16 C). Therefore, this cell line was 

used for further tumour challenge studies. 

For the protection assay, 7 C57BL/6 mice per group were immunized 3 times 

fortnightly with 5 × 109 Stm. Three weeks after the last immunization, mice were 

challenged with B16-Ova tumours by s.c. injection of 5 × 105 cells in each flank of 

shaven abdominal skin. Tumour growth was monitored over a period of 16 days. On 

day 18 post injection all mice were sacrificed because of high tumour burden. 

Throughout the whole experiment mice immunized with OVA-presenting Stm 

possessed smaller tumours than other groups (Figure IV.17) of which StmTC pTolC-
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OVA immunized mice harboured the smallest. However, these differences were not 

significant as evaluated with 1-way ANOVA and Newman-Keuls multiple comparison 

test. Immunization therefore failed to translate into efficient deceleration of tumour 

growth in a B16-Ova tumour xenograft model. 

 

Figure IV.17 Tumour growth of B16-Ova xenografts in Salmonella-vaccinated mice 
Mice (n=7/group) were immunized 3 times fortnightly with different Salmonella strains (5 × 109 
bacteria) and challenged 3 weeks after the last immunization with 5 × 105 B16-Ova cells by s.c 
injection into each abdominal flank. The results for days 10, 12, 14 and 16 post injection are depicted 
here. Tumour sizes were obtained by measuring diameters of palpable neoplasias and calculating the 
volume for rotating ellipsoids. Tumour volumes were analysed by 1-way ANOVA followed by Newman-
Keuls multiple comparison test for significant differences. 
 

IV.1.5.2. B16-PSA challenge 

As a result of the challenge experiment with the B16-Ova cell line, group numbers 

were decreased and immunization was performed weekly due to time constraints. 
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Furthermore, the number of applied bacteria for immunization was raised to 1 × 1010 

CFU.  

 

Figure IV.18 Tumour growth of B16-PSA xenografts on Salmonella-vaccinated mice 
Mice (n=8-9/group) were immunized 3 times with one week intervals with 1 × 1010 Salmonella 
intragastrically. Two weeks after the third immunization, mice were challenged with B16-PSA by two 
s.c. injections of 1 × 105 cells into each flank of shaven abdominal skin and tumour sizes were 
measured for 21 days. Differences of tumour volumes were analyzed for significance using the non-
parametric Mann-Whitney test. *: p-value < 0.05, **: p-value < 0.01 
 

Functional characterisation of the Salmonella carrier and generation of a B16 cell line 

stably expressing PSA are described elsewhere (136). In summary, 7-9 Bl/6 mice 
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were immunized weekly with 1 × 1010 Stm and 2 weeks after the last immunization 

these mice were challenged with 5 × 105 B16-PSA cells by s.c. injection into both 

abdominal flanks. Tumour growth was monitored over a period of 21 days. 

 

Tumour volumes measured at days 15–21 are illustrated in Figure IV.18. On day 16 

and 18 one mouse of the StmTC pTolC-PSA group died. This was not due to obvious 

tumour burden, since tumour volumes were rather low in these mice. Nevertheless, 

tumour volumes in StmTC pTolC-PSA immunized mice were significantly lower than 

in the naïve control observed from day 11 on (not shown) until the experiment was 

stopped. Salmonella alone also seem to elicit growth repressive effects on tumours, 

as StmTC pTolC immunized mice suffered from lower tumour sizes than naïve ones. 

However, significances for this observation were only given on day 15 and 19. Most 

strikingly, tumour growth in PSA vaccinated mice was also decelerated significantly 

compared to the Salmonella control group from day 15 on. Therefore, immunization 

with epitope displaying salmonellae facilitated specific and unspecific immune 

stimulation, leading to protection against tumour challenge. It is noteworthy that most 

tumours in this vaccinated group stayed very small throughout the whole experiment 

proving a strong cancer suppressing effect facilitated by an epitope specific immune 

reaction. However, the nature of this specificity remains to be elucidated.  
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IV.2. Part II: Improvement of the hemolysin secretion system in 

Ty21a for vaccination purposes 

IV.2.1. The hemolysin secretion system of E. coli is less efficient in 
Ty21a than in other salmonellae 

IV.2.1.1. Analysis of hemolysin (HlyA) secretion by Western Blot 

To improve the approved strain Ty21a for antigen delivery via the hemolysin 

secretion system, different Salmonella strains were investigated for their ability to 

secrete hemolysin. For this purpose, 3 different serotypes were transformed with 

plasmid pANN202-812 encoding the hly operon, raised in BHI medium and 

supernatant and cytoplasmic proteins were prepared from stationary phase cultures 

as described in III.2.3.2. Figure IV.19 illustrates the results of this assay. As visible, 

Ty21a harbouring pANN202-812 was much less efficient in expressing (Pe fraction) 

and secreting (Sn fraction) HlyA compared to the other serotypes tested. Of course, 

Ty21a alone did neither express nor secrete HlyA.  

 
 

 
 
Figure IV.19 Identification of HlyA secretion ability of different Salmonella strains harbouring plasmid 
pANN202-812 by Western Blot.  
Cellular proteins (Pe) of 0.05 ml and supernatant (Sn) proteins of 2.5 ml logarithmic culture of 
different Salmonella strains were applied on the SDS PAGE in each lane, respectively. Detection was 
carried out with α-HlyAs antibody. SL5928: Salmonella dublin SL5928, pANN: plasmid pANN202-812 
 

IV.2.1.2. Ty21a harbours mutations possibly influencing secretion 

The vaccine strain Ty21a is an attenuated mutant of S. typhi Ty2, achieved by 

multiple mutations induced by chemical mutagenesis (78). Therefore some of the 

mutations could be responsible for the less efficient hemolysin secretion ability. In 

order to test this supposition an approach for testing the effect of single mutations in 

Ty21a on hemolysin secretion was started. It was shown earlier that the galE defect 



Chapter IV  Results 

 - 72 -  

of Ty21a has no influence on its poor capacity for hemolysin secretion (Meier, S.R 

and Gentschev, I.). Supplementing limiting galactose (0.001 %) to the growth 

medium can overcome galE deficiency in Ty21a with respect to LPS biogenesis 

(79,189). However, galactose addition did not alter HlyA secretion efficiency in Ty21a 

pANN202-812 (Meier, S.R. and Gentschev, I.). Another prominent mutation which 

could contribute to the observed phenotype is a nonsense mutation of rpoS mediated 

by a base insertion within the respective gene. To investigate the influence of this 

alternative sigma factor on HlyA expression and secretion, rpoS was cloned from Stm 

and subjected to analysis as stated below. 

 

IV.2.2. RpoS from Stm is functional in the rpoS negative Ty21a strain 

IV.2.2.1. Plasmid construction 

The rpoS gene was amplified from chromosomal DNA of Stm. The PCR fragment 

was generated with Pfu Polymerase with primers rpoS_up and rpoS_down and 

contained putative promoter regions of rpoS as determined by the Neural Network 

Promoter Prediction algorithm (190). The 1.9 kB fragment was ligated into vector 

pACYC184 by restriction with BamHI and HindIII. Expression of rpoS was assayed in 

the rpoS-negative S. typhi Ty21a strain by a positive catalase reaction. RpoS-positive 

clones could be detected by producing visible oxygen bubbles when treated with 

hydrogen peroxide (H2O2). The extent of bubbling indicates absence or reduction of 

catalase production in strains with differing rpoS genotypes (191). The resulting 

plasmid was termed pRpoS. 

 

IV.2.2.2. Growth characteristics of Ty21a pRpoS 

Ty21a harbouring pRpoS was analysed for its growth kinetics to rule out that 

substantial changes in the metabolism occurred by expressing rpoS from plasmid. 

Therefore, Ty21a pACYC184 and Ty21a pRpoS were inoculated in BHI medium 

containing 20 µg/ml Cm, incubated under vigorous shaking at 37°C and OD600 was 

measured every hour. The OD was plotted against time in Figure IV.20. No 

differences in growth kinetics between the two strains were observed.  
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IV.2.2.3. Oxidative stress test 

The indicated strains (Table IV.4) were grown to the mid-logarithmic growth phase, 

washed and treated with different concentrations of hydrogen peroxide or left 

untreated. Then serial dilutions were plated on agar plates and the survival rate was 

assessed as described. The data (Table IV.4) demonstrate that pRpoS is functional 

in Ty21a and that the rpoS-complemented Ty21a strain is less sensitive than Ty21a 

alone. As expected, Stm showed the best survival rate in this assay. 

 
 

Figure IV.20 Growth kinetics of Ty21a strains with 
different rpoS phenotypes 
Cultures were grown in BHI and OD600 was 
measured every hour. The experiment was 
performed at least 3 times with similar results.  

 

 
 

 
 
Table IV.4 Survival rate of bacterial cultures 
treated with H2O2.  
Cells were treated with the indicated 
concentrations of H2O2 or left untreated and 
plated on BHI agar. The survival rate was 
determined by dividing CFU of treated by CFU 
of untreated cells. 

Strain 3 mM 
H2O2 

30 mM 
H2O2 

Ty21a 0 % 0 % 

T21a 
pRpoS 2 % 0 % 

Stm 15 % 0 % 

 

IV.2.3. RpoS influences the hemolysin secretion efficiency in Ty21a 

IV.2.3.1. Western Blot analysis of Ty21a strains with different rpoS phenotypes 

First, Ty21a pRpoS and Ty21a harbouring pACYC184 as control were transformed 

with pANN202-812 and grown in BHI. At different time points (OD600 of 0.4, 0.7, 1.4 

and 2.3) cytoplasmic and supernatant proteins were extracted and analyzed for 

differences in secretion of HlyA (Figure IV.21 left panel). Samples taken from the 

early logarithmic (OD 0.3-0.4) and stationary (OD 2.3-3.0) growth phase were found 

to display characteristic differences in secretion of HlyA between strains and were 

therefore applied for further studies. The tolC-deficient Ty21aTC pANN202-812 strain 

(NC) was not able to secrete HlyA as the outer membrane channel of the export 

machinery is lacking. 
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Figure IV.21 depicts a Western Blot detecting HlyA in Ty21a pANN202-812 

supernatant and cellular fractions. Expression (right panel) and secretion (left and 

right panel) was enhanced in Ty21a harbouring pRpoS. This was true for the 

logarithmic (OD 0.4) and stationary phase (OD 2.5), even though rpoS represents a 

sigma factor induced at the end of bacterial growth. 

 
 

Figure IV.21 Western Blot for HlyA secretion and/or expression of Ty21a strains. 
Cultures were grown in BHI and cytoplasmic or supernatant proteins were taken at indicated densities 
(OD600). Supernatant proteins (Sn) of 2.5 ml and cellular proteins (Pe) of 0.12 ml were loaded on 
each lane, respectively. Detection was carried out with the α-HlyAS antibody. 
Left panel: supernatants of Ty21a pANN202-812 harbouring pRpoS (+) or pACYC184 (-) as control. 
NC: Ty21aTC pANN202-812 
Right panel: supernatant (Sn) and cellular (Pe) proteins of Ty21a pANN202-812 harbouring pRpoS 
(+) or pACYC184 (-) as control.  
 

IV.2.3.2. Transcriptional analysis by qRT-PCR 

One reason the above described observation could be the fact that RpoS is involved 

in the growth dependent regulation of rfaH transcription and O-antigen expression in 

S. typhi (192). RfaH also enhances elongation of Escherichia coli hlyCABD mRNA 

most likely via antitermination (193) thus, increasing the expression and secretion of 

hemolysin. Therefore, the effect of rpoS on the transcription of rfaH, hlyA and hlyD 

was analyzed using transcription of cat present on plasmids pACYC184 and pRpoS 

as internal control. Strains were grown to the early logarithmic or stationary growth 

phase, RNA was isolated and reverse transcribed into cDNA. The indicated genes 

(Figure IV.22) were nanlyzed by qRT-PCR. Change in transcription was calculated by 

comparing profiles of the pRpoS-complemented strain with the control harbouring the 

empty vector pACYC184.  

Unfortunately, results were highly variable and differed from one qRT-PCR to the 

other as illustrated in Figure IV.22. No clear tendency in transcriptional profiles of 

rfaH and hlyD was observed. Taking together the results of 6 independent 
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experiments, only hlyA transcription showed a stable 2-3-fold induction when rpoS 

was present. The nature of RpoS mediated hlyA upregulation in Ty21a is therefore 

not known and can be at least in parts distinct from antitermination via rfaH. 

 

Figure IV.22 Two independent qRT-PCR experiments of the rpoS positive Ty21a strain secreting 
hemolysin  
RNA was isolated from cultures of Ty21a pANN202-812 pACYC184 and Ty21a paNN202-812 pRpoS 
grown to the early logarithmic (OD 0.4) or stationary phase (OD 2.5) and reverse transcribed into 
cDNA. Indicated genes were analyzed by qRT-PCR. The relative changes in gene expression 
between Ty21a pANN202-812 pACYC184 and Ty21a paNN202-812 pRpoS were calculated after 
normalization with the cat gene as internal control. Significances in changes of transcription were 
calculated using Students T-Test. *: P-value < 0.05, ** : P-value < 0.01 
 

Regarding the fact that rpoS regulates the expression of numerous genes, diverse 

regulational effects might have interfered with transcription of the investigated genes. 

Therefore, the influence of sole rfaH overexpression on hly transcript and protein 

levels was studied. 

 

IV.2.4. RfaH regulates hly genes as analyzed on mRNA and protein level 

IV.2.4.1. Plasmid construction 

The rfaH gene was amplified from chromosomal DNA of Ty21a with PhusionTaq and 

primers rfaH_up and rfaH_down. The resulting 800 bp fragment was ligated into 

vector pACYC184 analogous to rpoS. The construct contained the Ty21a rfaH 

promoter and C-terminal 5 × His Tag to confirm expression with a His Tag antibody 

(not shown). Ty21a harbouring pRfaH showed similar growth kinetics than Ty21a 

alone (not shown) 

 



Chapter IV  Results 

 - 76 -  

IV.2.4.2. Western Blot analysis of Ty21a overexpressing RfaH 

Ty21a pANN202-812 complemented with pRfaH was analyzed as described for 

Ty21a harbouring pRpoS. In Western Blot assay a markedly increased expression 

and secretion of HlyA was detected when multiple copies of rfaH were present on 

plasmid pRfaH compared to the control strain. The increase was similar to that 

achieved by rpoS complementation.  

 
 

Figure IV.23 Effects of rfaH on transcription, expression and secretion of HlyA. WB (A), semi-
quantitative RT-PCR (B). 
A: Cultures of Ty21a pANN202-812 pACYC184 (RfaH) and Ty21a pANN202-812 pRfaH (RfaH+) were 
grown in BHI and cytoplasmic or supernatant proteins were taken at indicated densities (OD600). 
Supernatant proteins (Sn) of 2.5 ml and cellular proteins (Pe) of 0.12 ml were loaded on each lane, 
respectively. Detection was carried out with the α-HlyAS antibody. 
B: RNA was isolated from cultures of Ty21a pANN202-812 pACYC184 and Ty21a paNN202-812 
pRfaH grown to the early logarithmic (OD 0.4) or stationary phase (OD 2.5) and reverse transcribed 
into cDNA. Indicated genes were analyzed in a Rotor-gene qRT-PCR. The relative changes in gene 
expression between Ty21a pANN202-812 pACYC184 and Ty21a paNN202-812 pRfaH were 
calculated after normalization with the cat gene as internal control. Significances in changes of 
transcription were calculated using Students T-Test. *: P-value < 0.05, **: P-value < 0.01 
 

IV.2.4.3. qRT-PCR 

On the mRNA level, hlyA increased roundabout twofold when plasmid pRfaH was 

present in Ty21a, measurable in the early logarithmic and stationary phase (Figure 

IV.23 B). Furthermore, the hlyD mRNA level increased up to twofold in the 

logarithmic phase when compared with Ty21a alone, but this benefit was lost in the 

stationary phase. Interestingly, the level of rfaH mRNA is highly increased even in the 

early logarithmic growth phase. It was shown that transcription of rfaH in S. typhi is 

growth phase dependent with peak expression at the end of the logarithmic phase 
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(194). This tight regulation seems to be altered by introducing multiple copies of rfaH 

through pRfaH. Taken together, by complementation with both, pRpoS and pRfaH, 

twofold upregulation of hlyA mRNA was achieved. This alteration of RNA levels 

seemed to be sufficient for significant differences in the level of secreted HlyA protein 

(Figure IV.21 and Figure IV.23 A) since transcription of the hlyD gene was highly 

variable (pRpoS) or not affected in all growth phases (pRfaH). 

 

IV.2.5. RpoS and RfaH effect invasion and survival of Ty21a in RAW 
264.7 macrophages 

IV.2.5.1. Invasion and survival assay 

RpoS was described to improve survival of Salmonella in macrophages by countering 

the action of nitric oxide synthase (195) which in turn could influence antigen 

presentation and immune stimulation. Therefore, the invasion and survival behaviour 

inside Raw macrophages of different Ty21a strains was assessed. Briefly, cells were 

infected for 2 h at an MOI of 100, extracellular bacteria were killed with Gentamycin 

and 2 and 4 h post infection, and cells were lysed to determine the yield of 

intracellular bacteria by plating serial dilutions on LB agar.  

 

Figure IV.24 Invasion and intracellular survival of Ty21a strains in RAW 264.7 macrophage-like cells 
A: Ty21a pRpoS (rpoSTy21a) and B: Ty21a pRfaH (rfaHTy21a). Cells were infected at a multiplicity of 
infection of 100 and lysed after 2 and 4 h post infection (p.i.). CFU was determined by plating serial 
dilutions on LB agar plates. Relative CFU was calculated by dividing the CFU from different strains by 
the CFU from Ty21a at 2 h p.i.. Significant differences in relative CFU were calculated using Students 
T-Test. * = P-value < 0.05; ** = P-value < 0.01 
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Significant differences between the intracellular CFU of Ty21a and Ty21a pRpoS 

strains were found 2 and 4 h post infection. Plasmid pRfaH in contrast, only conferred 

a benefit during the early time-point. Four hours after infection, the number of 

intracellular bacteria was equal for Ty21a and Ty21a pRfaH. While Ty21a replicates 

intracellularly with a doubling time of 2 h, Ty21a pRfaH did not show significant 

intracellular growth (Figure IV.24 B). 

 

IV.2.5.2. Plasmid stability test 

Raw macrophages were infected for 24 h with Ty21a pRpoS and Ty21a pACYC184, 

respectively before cells were lysed and serial dilutions were plated either on LB or 

LB Cm agar. Plasmid stability was determined by dividing CFU values determined by 

counting colonies on Cm containing agar plates by CFU numbers on LB plates. 

Additionally, grown clones were tested for catalase activity by the described H2O2 

reaction. Plasmid pRpoS was stably inherited in Ty21a whereas pACYC184 was 

readily lost during passage within macrophages (Table IV.5). Furthermore, rpoS was 

still functional after cultivation in macrophages since clones were able to express 

catalase. The data demonstrate that rpoS is positively selected within macrophages.. 

 

Strain Plasmid stability catalase expression 

Ty21a pRpoS 100 % 100 % 

Ty21a pACYC184 1-4 % - 
 
Table IV.5 Plasmid stability of pACYC based vectors in Ty21a after 24 h growth in macrophages 
Raw cells were infected for 24 h with indicated Ty21a strains. Serial dilutions of lysed cells were plated 
on LB or LB Cm plates and CFU was determined. Plasmid stability was calculated by comparing CFU 
on LB Cm and LB plates. Catalase expression was determined by the emergence of visible oxygen 
bubbles after H2O2 treatment. 
 

IV.2.6. Antibody responses against hemolysin but not LPS were 
enhanced after intranasal immunization of mice with Ty21a 
strains secreting HlyA 

 

In order to test the immunological effect of rpoS and rfaH, the humoral immune 

responses against HlyA and LPS of recombinant Ty21a were assessed in vivo. For 

this purpose, four groups of C57/Bl6 mice (n = 5 per group) were immunized i.n. 

twice with Ty21a pANN202-812 pRpoS, Ty21a pANN202-812 pRfaH, Ty21a 
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pANN202-812 pACYC184, and Ty21a (control). One addtional group consisted of 

naïve mice. Induction of HlyA and LPS-specific immune responses was analyzed on 

day 49 by HlyA and LPS-specific ELISA like shown in Figure IV.25. Interestingly, 

immunization with the Ty21a pANN202-812 pRfaH strain revealed a significant 

enhancement of antibody responses against HlyA (Figure IV.25 A), but not LPS 

(Figure IV.25 B) in comparison to all other groups. Furthermore, the difference in 

HlyA-specific antibody responses between experimental groups immunized with 

Ty21a pANN202-812 pRpoS and Ty21a pANN202-812 pRfaH was also statistically 

significant (p < 0.05), as determined by 1-way ANOVA followed by Newman-Keuls 

multiple comparison test. The overall reactivity of the sera against LPS was rather 

low, only 4 of 25 mice were responding to this antigen, even though detection was 

carried out with anti IgG and IgM antibodies in this case.  

 

Figure IV.25 Antibody titres present in murine sera after immunization with Ty21a strains 
HlyA (A) and LPS-specific (B) serum antibody responses of mice immunized with Ty21a pANN202-
812 pRpoS (rpoSTy21a/pANN), Ty21a pANN202-812 pRfaH (rfaHTy21a/pANN), Ty21a/pANN202-
812 (Ty21a/pANN), Ty21a (control) and naïve mice, determined by HlyA or LPS-specific ELISA with 
anti IgG (A) and anti IgG + IgM (B) detection antibodies. Data were analyzed by 1-way-Anova followed 
by Newman-Keuls multiple comparison test. * = P-value < 0.05; ** = P-value < 0.01 
 

As a result, immunization with a strain exhibiting increased expression and secretion 

of hemolysin resulted in an increased efficacy of stimulation of humoral immune 

responses against the heterologous HlyA antigen.  
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V. Discussion 

V.1. Part I: Surface display of antigens via TolC 

 

In this project, a surface display system for antigen presentation via the outer 

membrane protein TolC was employed in two different Salmonella vaccine strains. 

The first set of experiments dealt with the construction of the carriers and 

investigation of viability. In the latter part of this project, quantities and qualities of 

immune responses were subject of investigations. Three distinct antigens were 

included in preclinical studies including epitopes of the model antigen Ova and of the 

cancer-related antigens PSA and BRAFV600E.  

 

Several strategies to present epitopes on the surface of live bacterial vaccines were 

developed and it was shown earlier that surface display of antigens is superior in 

inducing immune responses over sole cytoplasmic expression (121,122,125). As 

mentioned, TolC was the membrane anchor of choice for the described antigens. The 

chromosomal tolC copy was deleted in both, Stm and Ty21a, strains to saturate TolC 

insertion sites into the outer membrane with plasmid-encoded epitope-fused TolC. 

This was performed as the level of the immune response in animals is proportionally 

to the amount of expressed antigen in live Salmonella vaccines (196,197). TolC-

BRAF and TolC-OVA were expressed and assembled as stable trimers in Salmonella 

strains and indeed, abundance of recombinant TolC trimers was higher in the knock-

out strains (Figure IV.5 and Figure IV.6).  

It was clearly demonstrated that recombinant TolC was able to complement tolC 

deficiency in the newly constructed strains with respect to multidrug efflux and Type I 

secretion (Table IV.2 and Figure IV.8). The efficiency of HlyA secretion as 

determined by on-plate hemolysin assay was comparable in Salmonella strains 

harbouring either chromosomal-encoded, plasmid-borne E. coli TolC or plasmid-

borne, recombinant E. coli TolC (Figure IV.8). Furthermore, recombinant TolC 

isoforms were able to restore the ability for survival within macrophages and invasion 

and survival in Caco-2 cells in tolC-deficient strains (Figure IV.9 and Figure IV.10). 

This was crucial as TolC plays an important role in pathogenesis of Salmonella 

strains. The exact role of TolC in this processes is discussed, ranging from direct and 

indirect effects on adhesion and invasion, secretion of an unknown factor, to 
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conferring resistance against antimicrobial peptides and bile (134,184-186,198). 

Surprisingly, the ability of Ty21a to invade and survive in Caco-2 cells was low 

compared to Stm although the latter strain has poor intracellular replication capacity 

due to the aroA mutation (188).  

Invasion of intestinal cells strongly depends on expression of genes located on the 

Salmonella pathogenicity island I (SPI-I) including a type III secretion system (199). 

Anyway, Ty21a seems to be devoid of a functional type III secretion system (personal 

communication with H Rüssmann and G. Dietrich) and this fact may explain the low 

invasion ability into Caco-2 cells of this strain. Interestingly, a recent study showed 

that the invasion deficiency of a tolC mutant was mediated by downregulation of SPI-I 

genes in Salmonella typhimurium (186). In contrast, in this work infection of Caco-2 

cells with Ty21a was shown to be dependent on tolC (Figure IV.10) leading to the 

supposition that regulation of SPI-I is not the only function of tolC in this serotype with 

respect to invasion into and survival within epithelial cells. However, TolC may 

preferentially be crucial for intracellular survival in this setting and not for entry, since 

it participates in mediating resistance against host-derived antimicrobial peptides 

(134). The intracellular yield of Stm after infection of macrophages, in contrast to 

Caco-2, was low when compared to Ty21a. Ty21a is able to replicate inside cells 

(see also Figure IV.24) while Stm is not due to its aroA mutation, thus explaining in 

parts the observed difference. Unexpectedly, also the effect of tolC on intracellular 

survival of Stm inside RAW cells was marginal. However, more recent investigations 

in our group employing Stm and its tolC-deficient derivative StmTC could 

demonstrate the crucial role of TolC for this process. The number of intracellular 

bacteria was 30-fold reduced when tolC was absent (136) which is more congruent 

with the published data (184). 

As Salmonella typhi strains are typical human pathogens, Stm strains were applied 

for animal studies and results of these experiments are now discussed. All tested 

recombinant Stm strains were able to colonize the murine liver (Table IV.3) which is a 

target organ for Salmonella typhimurium aroA in mice (200). In secondary lymphatic 

tissues, including spleen and liver, systemic immunity develops (201) and 

colonization of these organs is crucial to prime the immune system. In the same 

setting, it was shown that pTolC plasmids were retained with an astonishing stability. 

No colony of StmTC was found after 3-days passage in the murine host and 18 h on 

LB agar plates that lost antigen-encoding vector pTolC-OVA (Table IV.3). These 
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observations strengthened the results obtained by in vitro stability tests (Table IV.1). 

Usually, plasmids stabilized via antibiotics in vitro are unstably replicated in vivo due 

to the lack of selective pressure. As many live vaccines express heterologous 

antigens via those plasmids, this instability might result in loss of expression and less 

efficient antigen presentation. This can be circumvented by insertion of the antigen 

into the chromosome of the carrier (115) or by using so-called balanced-lethal 

plasmid systems (202). The first approach has limitations as single copy expression 

may also decrease antigen presentation. The latter strategy is accompanied by 

complex genetic manipulations.  

These limitations do not concern this vaccination approach. Plasmid stability and 

expression was high in the tolC-deleted strain. The reason for this stability in vivo 

may be due to: (i) high intrinsic stability of pBR322-based plasmids (203), (ii) low 

metabolic burden by antigen insertion into TolC, (iii) low replication rate of the carrier 

in vivo (188) and (iv) selective pressure to maintain TolC for the export of e.g. bile 

salts and antimicrobial peptides. This in turn leads to sustained antigen expression 

and presentation on the bacterial surface since these antigens are inserted into a 

positively selected protein. Additionally, it was accomplished to delete the Kanamycin 

resistance from plasmid pTolC in StmTC by homologous recombination. Selection in 

vitro was facilitated in the presence of Novobiocin which is a target for TolC-AcrAB 

mediated efflux (132). Plasmid stability of this construct was up to 100 % without 

selection for 18 h in vitro (Table IV.1). Additionally, TolC encoded on these vectors 

was expressed independently from antibiotic selection (Figure IV.7). Antibiotic 

resistance free plasmids are advantageous for a possible human use as they pose 

lower risks for the environment and are of higher acceptance for approving 

institutions. 

In summary, the recombinant Stm carrier strain displayed all prerequisites for efficient 

immunotherapy leading to the second part of this project which aimed to elucidate the 

nature of the immune response against (tumour) antigens and protective capacity of 

immunization. First, the successful immunization of mice with recombinant vaccine 

displaying the PSA epitope will be discussed.  

 

Tolerance is one major problem and limitation of immunotherapy of cancer: as all 

tumour antigens are self antigens specific T-cells might exist but may be attenuated 

and therefore anergic e.g. due to the action of regulatory T-cells (204,205). In 
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general, CTL responses are directed against only a few peptide epitopes of an 

antigen and this is termed immunodominance (206,207). It was suggested that 

dominant and subdominant epitopes might help to break immunotolerance of tumour 

antigens (208,209). Other attempts to override this anergy is the circumvention of 

immune checkpoints or the ablation of regulatory T-cells (for review see (2)) which 

bear the danger of collateral damage due to detrimental autoimmune responses. A 

recently discovered immunodominant epitope of PSA (158) was included in the TolC 

surface display approach. Most strikingly, the StmTC strain expressing the TolC-PSA 

fusion was able to confer protective immunity against challenge with a PSA 

expressing melanoma cell line in mice. Tumour growth was significantly decelerated 

in comparison to controls (Figure IV.18). It is widely known that Salmonella live 

vaccines can induce the proliferation of CTLs (105,210) but stimulate also parts of 

the innate immune system (211-213) which concert in the anti tumour response 

(6,10,214).  

The latter was confirmed in our studies since Salmonella alone exerted inhibiting 

effects on B16 melanoma-driven, PSA-positive tumours. Intrinsic capacity to 

stimulate components of the innate immune system represents a major advantage of 

tumour immune therapy applying LBV. This stimulation may play a key role to 

overcome anergy of T-cells in the tumour microenvironment apart from using 

dominant and subdominant tumour-derived epitopes. However, expression of the 

immunodominant CD8+ epitope within the TolC-loop was superior in decelerating 

tumour growth, suggesting that epitope specific and non-specific mechanisms act 

synergistically to protect from tumour challenge. To conclude, one CD8+ epitope 

instead of a full length protein, inserted 2-fold into the TolC loop, was sufficient to 

promote protective effects without further need of an adjuvant besides carrier 

antigens.  

The data strongly suggest that PSA specific CTLs are at least in parts the cause for 

this protection as the CD8+ epitope was sufficient to mediate significant differences 

between tumour volumes in mice. These results become even more striking when 

considering that the B16 cell line alone is poorly immunogenic and displays strong 

immune escape mechanisms compared to other cell lines (215,216). Employing TolC 

mediated surface expression of antigens circumvents another major obstacle of 

cancer immune therapy which is cancer immune evasion (see II.1.4). We are 
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currently performing an IFNγ ELISPOT (Fensterle, J. and Hotz, C., results not 

obtained yet) to elucidate the role of PSA-specific CTLs in the observed protection.  

The presented vaccination approach was shown to be protective in an infection 

model (127) and it was now demonstrated to mediate protection in a cancer 

immunotherapy approach. Therefore, TolC-based epitope display is functional in 

vaccination against infectious and neoplastic diseases. Because of these promising 

observations and the fact that TolC is almost ubiquitously expressed in gram-

negative bacteria (128), this plasmid encoded delivery system for heterologous 

antigens can be adapted to display a multitude of different epitopes also in other live 

bacterial vaccines. One of these carriers, Salmonella enterica serovar Typhi Ty21a 

that is licensed for human use (79), was engineered the same way as described for 

Stm. TolC fusion proteins were also highly expressed and functional in a tolC-

deficient Ty21a strain (Figure IV.5 and Figure IV.9) implying that this system can be 

easily transferred to human use.  

In order to characterize the cellular basis of the adaptive response mediated by 

vaccination with Salmonella, presenting epitopes on the bacterial surface more 

generally, adoptive transfer models utilizing the model antigen ovalbumin were 

established. Unfortunately, no specific and convincing CD8+ or CD4+ T-cell 

responses were measurable. In one adoptive transfer experiment a slight but 

significant increase in specific CD8+ T-cell frequencies after immunization with an 

OVA displaying Salmonella strain was detectable. However, this was not 

reproducible and cells were not activated as analysed by CD62L abundance. In 

activated (CD62L low) Ova specific T-cells no such increase was observed (Figure 

IV.12). Additionally, in a well established in vitro presentation assay StmTC 

displaying Ova failed to activate specific CD8+ T-cells irrespective of the type of 

antigen presenting cell (DCs or macrophages) used (not shown, conducted in 

cooperation with G. Geginat, RUMMS, Mannheim).  

It was demonstrated in earlier studies that frequencies of Ova specific T-cells after 

vaccination with Ova-expressing salmonellae are low, ranging in similar dimensions 

(approx 1 %) like presented in this work (141,217). The positive signal may therefore 

been overwhelmed by the “background noise”, as non-immunized mice showed 

similar frequencies of specific activated T-cells. However even if not detectable but 

present, these cells were not protective against challenge with B16-OVA xenografts 

(Figure IV.17). Salmonella evolved a multitude of mechanisms for escaping T-cell 



Chapter V  Discussion 

 - 85 -  

recognition explaining those low frequencies. T-cell immune evasion is achieved by 

interfering with APC functions leading to decreased MHC class I and II presentation 

of peptides (for review see (218)) or directly by inhibiting T-cells due to secretion of 

inhibiting virulence factors or downregulation of the specific TCR (219,220). 

Nevertheless, T-cell immunity after Salmonella encounter was demonstrated several 

times (see II.2.3 and (217,221-223)) and also in the context of TolC-mediated surface 

display, protective immune responses were observed most likely facilitated, at least 

in parts, by T-cells recognizing their cognate epitope (127) and (Figure IV.18). These 

findings argue against a general inability of TolC-displayed antigens to prime specific 

T-cells moving the focus of possible explanations for the weak responses more to the 

nature of the individual epitope(s). Similar to TolC-OVA, TolC-BRAF also failed to 

mediate priming of specific T-cells as determined by ELISPOT (Figure IV.14). 

 

In principle, two pathways exist that result in MHC class I presentation of antigens for 

pathogens restricted to vacuoles like Salmonella (i) the vacuolar alternative pathway 

facilitated by professional APCs (DCs and macrophages), involving vacuolar 

processing of antigens loaded on pre-existing pools of MHC I molecules (106,224) 

and (ii) cross-presentation of antigen-containing particles, e.g. apoptotic blebs of 

Salmonella-infected macrophages, mediated through bystander DCs relying on 

classical antigen processing via the endoplasmatic reticulum or the proteasome and 

loading of peptides onto nascent MHC I molecules (225-227). CD4+ T-cell priming via 

MHC class II presentation of Salmonella-derived peptides is facilitated via the 

classical vacuolar pathway for exogenous antigens. Access to these presentation 

pathways may be impeded due to individual structural features of TolC fusion 

proteins.  

In the case of TolC-OVA and TolC-BRAF, the antigen might be buried in the pore of 

its membrane anchor or display other conformational constraints rendering the 

antigen hardly accessible for degradation which is crucial for presentation via MHC 

molecules. To estimate structural features, loops of the different fusion proteins were 

analysed in silico for their hydrophobicity and tendency to build transmembrane 

regions. Comparing these factors might predict if loop structures are buried within the 

protein or membranes which could hinder accessibility for protein degradation and 

presentation by APCs. However, none of the “non-inducer” fusion proteins displayed 

significant higher hydrophobicity or tendency to build transmembrane regions within 
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their antigen-fused loop structure when compared to the “inducer” TolC-PSA (Figure 

V.1). Only the loop of TolC-LisTB shows lower tendency to form transmembrane 

segments and displays less hydrophobicity than the others. Taken together, loops of 

the “inducer” fusion proteins (TolC-PSA and TolC-LisTB) do not share common 

structural features that are distinct from the non-inducers (TolC-OVA and TolC-

BRAF). Quite the contrary, TolC-PSA, TolC-BRAF and TolC-PSA seem to be very 

similar in the investigated structural characteristics with TolC-LisTB being the “odd 

one out”, thus rendering hydrophobicity and membrane affinity of the recombinant 

TolC loop structure unlikely to be the reason for low immunogenicity. Interestingly, 

TolC-PSA and TolC-LisTB exhibit shorter loop insertion fragments. Furthermore, 

TolC-PSA harbours more linker alanines (Figure IV.1) than TolC-OVA and TolC-

BRAF. Those traits might influence immunogenicity, albeit being highly speculative. 

 
 

 
 
Figure V.1 Hydrophobicity and tendency to form transmembrane regions of loop structures derived 
from different TolC fusion proteins  
The respective loops (encompassing aa 257-279 of the non-recombinant TolC protein containing the 
fused antigen) were analysed with ExPASy ProtScale (228) utilizing algorithms for estimating 
hydrophobicity from Rose et al. (229) (upper panel) and the tendency to form transmembrane 
segments (230) (lower panel). The scales were normalized from 0 to 1. 
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More generally, to my knowledge the question why surface displayed antigens are 

superior in eliciting T-cell responses still remains open. It was speculated earlier that 

surface bound expression (i) diminishes the metabolic burden opposed by 

cytoplasmic expression (127), (ii) increases the stability and accessibility of the 

antigen as it is not packaged into inclusion bodies and therefore not degraded in the 

bacteria like cytosolic expressed antigens (231), (iii) enhances immunogenicity as 

surface-exposed antigens co-localize to LPS which possesses intrinsic adjuvant 

properties (232) and (iv) allows easier processing of antigens by the described MHC 

presentation pathways (233).  

However, the latter hypothesis has not been experimentally addressed. A possibility 

for such enhanced accessibility of outer membrane contents for processing prior to 

MHC presentation could be the occurrence of outer membrane vesicles (OMVs). 

Those vesicles are naturally discharged as discrete, closed outer membrane blebs 

from growing gram-negative bacteria (234,235). They encompass contents of the 

outer membrane and periplasm such as porins, receptors, pores and LPS, excluding 

products of the cytoplasm or inner membrane (236). OMVs are central to export and 

toxicity of different virulence factors, inter-bacterial material transfer and 

communication and play a role for pathogenicity of certain gram-negative species (for 

review see (237)). OMVs derived from Salmonella were shown to elicit protective B 

and CD4+ T-cell responses against proteins of the outer membrane and display 

strong pro-inflammatory properties due to potent stimulation of the innate immune 

system (238,239). As TolC is found in those vesicles (Gentschev, I and Mayer, R. S., 

unpublished), shedding of those structures might represent an alternative way for the 

host immune system to gain access to TolC or other membrane proteins fused to 

antigens for MHC presentation besides vacuolar degradation of the whole carrier. On 

the other hand LPS shedding is suggested to inhibit T-cell activation in vivo (240) and 

excessive budding of OMVs could result in a more immune-dampening effect due to 

their LPS content.  

Further studies in this respect may shed light into processing and superior 

presentation of outer membrane-anchored antigens. These observations pose 

possible options for elevating the T-cell stimulatory capacity. Increased shedding of 

these vesicles mediated by interfering with the tol-pal regulatory system (241) may 

form a wanted process to enhance membrane-bound antigen in the vacuolar 

compartment possibly leading to more efficient MHC class II presentation. However, 
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those mutants are fragile and enhanced shedding of OMVs correlates with virulence 

(242-244). An already established way to enhance CD8+ responses is to allow 

excess of Salmonella-derived antigens into the class I presentation compartment, the 

cytosol. Listerolysin, a pore forming protein mediates escape of Listeria 

monocytogenes into the host cytosol (245). Applying this factor for export via the 

hemolysin secretion system allowed Salmonella to open the phagosome to some 

extent, providing access to the cytosolic compartment and thereby inducing potent 

CTL responses (246). Furthermore, a combination of Ova antigen and Listerolysin 

expressed in E. coli elicited potent protection from Ova-positive tumour cell challenge 

in mice compared to poor protection when immunizing with E. coli expressing Ova 

alone. This superior effect was not only achieved by changing the 

compartmentalization of the heterologous antigen but also by unexpectedly inhibiting 

CD4+ CD25+ regulatory T-cells (247) implying a very promising role for those 

modifying enzymes in cancer immune therapy. 

 

As mentioned earlier vaccination with Salmonella expressing the BRAFV600E 

epitope on its surface failed to mediate priming of specific CD8+ T-cells. Despite the 

discussed conformational constraints other observations could explain this low 

immunogenicity. Interestingly, the HLA-B27 allele and infection with pathogens like 

Salmonella are linked to reactive arthritis (248,249). It is hypothesized that HLA-B27-

restricted CTLs activated against Salmonella-derived peptides might cross-react 

through molecular mimicry with endogenous peptides presented by HLA-B27, leading 

to autoimmunity (250). Furthermore, Salmonella interfere with HLA-B27 functions by 

inducing an alternative splicing of the pre-mRNA of this allele in transfected cell lines 

(251) and by downregulation of HLA-B27 molecules in infected patients (252). These 

described alterations of HLA expression could preclude efficient class I presentation 

of the BRAF epitope following vaccination with Salmonella.  

Up to now, we were not able to observe convincing T-cell priming with Salmonella 

vaccines in this setting, earlier vaccination experiments employing secreted antigen 

delivery also failed to elicit specific CD8+ T-cell responses (Yone, C, unpublished) 

and we are currently trying to assess the role of Salmonella itself on HLA-B27 

presentation. By using DNA vaccines against mutated BRAF we want to exclude a 

general incompetence of HLA-B27 transgenic mice to present the epitope of mutated 

BRAF (Polzien, L., Hotz, C., and Fensterle, J.). In addition, colleagues are currently 
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working on the generation of BRAFV600E-positive and BRAFV600E-driven tumour 

xenograft models (Polzien, L.) as well as the generation of transgenic mice with 

BRAFV600E expression targeted to the lung (Luetkenhaus, K, Zanucco, E, Rapp, 

U.R.). These systems might be used in the future for immunization studies in tumour 

xenografts and spontaneous lung tumour settings, respectively. 

In principle, targeting of oncogenes like BRAFV600E in their function as tumour-

associated antigens poses an attractive and promising approach since it is believed 

that oncogene expression is not lost by immune evasion mechanisms due to their 

transforming and therefore indispensable character. This phenomenon was termed 

“oncogene addiction” (253). However, the BRAFV600E genotype was lost during 

transition from primary to metastatic disease in melanoma patients positive for HLA-

B27 and specific T-cells (146), thus indicating the protective role of HLA-B27 but also 

representing a major limitation due to restriction of this epitope for vaccination against 

early stage melanoma. Our further experiments will elucidate the feasibility of 

Salmonella-based vaccination against the HLA-B27 restricted epitope as therapy 

against BRAFV600E-driven cancers. 

 

V.2. Part II: Improvement of hemolysin secretion in Ty21a for 

vaccination purposes 

 

Ty21a, the active compound of Vivotif®, represents the only licensed live typhoid 

vaccine in humans (83) and due to its well studied safety (for review see (254)) it 

represents an attractive carrier for delivery of heterologous antigens. Recently, two 

clinical trials assessed Ty21a as carrier for heterologous Helicobacter pylori antigens 

expressed in the cytoplasm of this live vaccine. The vaccine was safe but showed 

low immunogenicity (86,87). As mentioned several times in this work, the fashion of 

expression of heterologous antigens within live bacterial vaccines is crucial for 

immunogenicity and secreted or surface displayed antigens are superior in eliciting 

immune responses over cytoplasm-located antigens (110,118,127,255). One of the 

promising systems for such a delivery is the use of the hemolysin secretion system of 

E. coli which was used in numerous preclinical studies for delivery of pathogen 

derived (112) or tumour associated antigens (114,115) with Salmonella vaccines. Our 

group already demonstrated that HlyA secretion was functional in Ty21a and potent 
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humoral immune responses were elicited against the heterologous HlyA antigen in 

mice (159).  

In this part of the work, the improvement of S. typhi Ty21a for hemolysin expression 

and secretion was described. In a first trial, it was shown that Ty21a is less efficient in 

expression and secretion of HlyA from plasmid pANN202-812 compared to other 

Salmonella vaccines (Figure IV.19). Different mutations account for attenuation of 

Ty21a of which galE and rpoS were supposed to have effects on hemolysin 

secretion. In contrast to galE, it was demonstrated that rpoS was involved in this 

process and complementation with pRpoS harbouring the Stm homolog of rpoS led 

to increase in expression and secretion of HlyA (Figure IV.21). It was speculated 

earlier in this work that RpoS exerts its action on HlyA via rfaH, a factor downstream 

of rpoS which regulates length of the O-side chain of LPS in S. typhi (192). RfaH also 

enhances elongation of Escherichia coli hlyCABD mRNA most likely via 

antitermination (193). For this reason the effect of rpoS on rfaH, hlyA and hlyD 

mRNAs was investigated. However, transcript levels of hlyD and rfaH were highly 

variable in Ty21a pANN202-812 pRpoS when comparing different experiments 

(Figure IV.22). The reason for this is not known but rpoS regulates various genes 

with in parts unknown functions in Salmonella (256) that could also influence 

expression and secretion via T1SS.  

Complementation with pRfaH in the hemolysin-expressing strain Ty21a pANN202-

812 strain showed a highly increased expression and secretion of hemolysin 

compared to the same strain without rfaH plasmid (Figure IV.23 A). Furthermore, 

hlyA transcript levels were doubled when pRfaH was present. This is not surprising 

as the RfaH protein not only acts as antiterminator but also enhances transcription 

initiation at the hly promoter (193,257). This 2-fold increase of hlyA was also 

observed when rpoS was reconstituted via plasmid pRpoS (Figure IV.22). 

Interestingly, pRfaH exhibited a rather slight effect on hlyD transcript which was only 

visible in the logarithmic growth phase (Figure IV.23 B). This is explainable as the 

effect of plasmid pRfaH on rfaH mRNA level weakened at the end of bacterial growth 

(Figure IV.23 B). Furthermore, Ty21a possesses a functional rfaH copy which may be 

sufficient for effective antitermination in the stationary phase, even though it could not 

be regulated by rpoS due to the rpoS-negative phenotype of Ty21a.  

Finally, Ty21a pANN202-812 pRfaH induced significantly higher antibody titres 

against HlyA than control strains and even Ty21 pANN202-812 pRpoS in C57Bl/6 
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mice immunized intranasally. (Figure IV.25). This was unexpected as the latter strain 

also showed increased expression and secretion of HlyA (Figure IV.21). One 

possible reason for this could be improved survival inside macrophages as explained 

in the following. 

Ty21a complemented with rfaH exhibited a higher titre of intracellular bacteria within 

the first 2 h of infection of RAW cells compared to Ty21a alone. This benefit is lost 

after 4 h because rfaHTy21a does not seem to replicate or the balance between 

killing and replication is shifted towards killing of the bacteria (Figure IV.24 B). The 

reason for this is not known, maybe rfaH mediates increased uptake by macrophages 

and/or increased susceptibility against killing by macrophages. Diametrically opposed 

to this hypothesis is a study by Nagy et al. which demonstrated that an rfaH deletion 

mutant of Salmonella typhimurium displayed increased invasion ability and 

decreased survival inside macrophages (258). However, maybe serovar-specific 

characteristics accounted for this contradictory observation.  

Ty21a complemented with rpoS showed increased intracellular survival in RAW 

macrophages compared to the respective wildtype at 2 and 4 h p.i. (Figure IV.24 A). 

These data correspond to a study by Alam et al. in which a S. typhi rpoS-negative 

strain was more susceptible to intracellular killing by RAW macrophages. This killing 

was dependent on the action of nitric oxide synthetase (195). In contrast to that, a S. 

typhi rpoS deletion mutant showed no such susceptibility to intracellular killing in 

resting THP-I cells, a human acute monocytic leukemia cell line. However, this 

mutant was less cytotoxic than the respective wildtype (259) which indicates that 

RpoS could play a role in the virulence of serovar Typhi strains.  

Furthermore, the observed reduced susceptibility to killing might result in less 

efficient MHC presentation of cytoplasmic or non-secreted antigens, which in turn 

could lead to reduced immunogenicity of the RpoS-positive strain. It was postulated 

earlier that decreased bacterial survival inside macrophages would be expected in 

increased availability of antigenic epitopes within the phagolysosome and 

consequently increased presentation of epitope/MHCII complexes (197). Resistance 

against intracellular killing might explain the lower antibody titres of Ty21a pANN202-

812 pRpoS against the examined antigens (Figure IV.25) since the cytoplasmic 

fraction of hemolysin and LPS of the outer membrane are presumably of limited 

access for recognition when the carrier is not efficiently degraded. Of note, nearly all 

mice with one exception exhibited low antibody titres against the major antigen LPS. 
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This was anticipated due to culture conditions used to prepare Ty21a immunization 

aliquots. Since galactose was lacking in the medium, cells were devoid of full length 

O-antigen which in turn limited immunogenicity of LPS (79,189). 

To rule out that instability of pRpoS accounted for low HlyA antibody titres, RAW cells 

were infected 24 h with strain Ty21a pRpoS and Ty21a pACYC184 as control. All 

colonies retained the CmR phenotype conferred by pRpoS whereas pACYC184 was 

readily lost after passage within macrophages (Table IV.5). A functional rpoS copy 

seems to underlie selective pressure and is therefore stabilized during intracellular 

replication presumably by counteracting nitric oxide. In addition plasmids pRfaH and 

pRpoS harbour the same origin of replication which would argue for at least similar 

stability rates. Taken together, it is unlikely that pRpoS is less stable than pRfaH in 

vivo which would lead to a loss of the beneficial effect on HlyA expression. Highly 

stable replication of pANN202-812 was demonstrated earlier (159). 

 

Interestingly, the rpoS null mutation was inherited from the respective wildtype of 

Ty21a, Salmonella typhi Ty2 (260) and congruent to the presumed role of rpoS in 

virulence, the rpoS-positive Typhi ISP1820 serotype is more virulent in humans than 

Ty2 (261). Additionally, both genes, rpoS and rfaH, contribute to virulence in 

Salmonella typhimurium strains. Mutants of these factors were evaluated as live 

vaccine vectors in several studies (80,262-265). Introduction of these genes into the 

attenuated Ty21a strain might for those reasons increase virulence and affect 

attenuation. However, the exact contribution of rpoS in S. typhi virulence remains 

unclear except for a clear role in fine-tuning of the Vi capsule, balancing 

immunogenicity and adhesion and invasion into target cells (266). Nevertheless, 

Ty21a also lacks Vi antigen expression. Furthermore, the attenuating effect of the 

rfaH mutation in S. typhimurium is mainly due to downregulation of other virulence 

factors by silencing of LPS synthesis genes (258). In contrast, Ty21a represents a 

LPS defective strain resulting in a rough phenotype (78,267). It is therefore tempting 

to assume that overexpression of rfaH in Ty21a will not interfere with safety concerns 

as full LPS synthesis is abrogated downstream of this regulator. 

The present data clearly show that Ty21a pRfaH, secreting heterologous antigens via 

the hemolysin secretion system, allows vaccination against the carrier antigen. The 

feasibility of this system for vaccination against cancer in the murine model was 

demonstrated earlier (114,115). Currently, our group is preparing a Ty21a vaccine 
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based on secretion of a CtxB-PSA fusion protein via the hemolysin system for clinical 

trials (Bergmann, B., Gentschev, I., Kirchgraber, G., Weidmann, V., Meyer, R.S., 

Fischer, B., Fensterle, J., and Rapp, U.R.) and its success will determine the fate of 

cancer vaccines of this type. In future projects, this respective carrier could be 

“upgraded” for cancer immune therapy by rfaH complementation. Indeed, a two 

plasmid-based system is undesirable for a clinical vaccine. Hence, rfaH coupled to an 

active promoter can be incorporated on the antigen-determining plasmid, pMKhly1. 

Or as an alternative, promoters with high transcriptional activity can be integrated 

upstream of the rfaH genomic locus to uncouple this antiterminator from (putative) 

rpoS signalling or other regulation, leading to higher transcription rates in vivo. This 

can be achieved by strong promoters like Ptac, successfully used for antigen 

expression in live vaccines (268) or in vivo activated promoters like nirB (269) and 

dmsA (270) which allow strong transcriptional induction when the carriers localize 

within host cells while decreasing the metabolic burden opposed through growth in 

vitro.  

Reflecting all announced facts, recombinant Ty21a strains, complemented with rpoS-

independent rfaH loci, may form the basis of a novel generation of combination 

vaccines for human use which can be administered orally. 

 



Chapter VI  References 

 - 94 -  

VI. References 
 
1. Hanahan, D., and Weinberg, R. A. (2000) The hallmarks of cancer. Cell 100 (1), 57-70 

2. Stagg, J., Johnstone, R. W., and Smyth, M. J. (2007) From cancer immunosurveillance to 

cancer immunotherapy. Immunol Rev 220, 82-101 

3. Schuster, M., Nechansky, A., and Kircheis, R. (2006) Cancer immunotherapy. Biotechnol J 1 

(2), 138-147 

4. Hompepage of the National Cancer Institute, at www.rex.nci.nih.gov and www.cancer.gov 

5. Smyth, M. J., Dunn, G. P., and Schreiber, R. D. (2006) Cancer immunosurveillance and 

immunoediting: the roles of immunity in suppressing tumor development and shaping tumor 

immunogenicity. Adv Immunol 90, 1-50 

6. Dunn, G. P., Old, L. J., and Schreiber, R. D. (2004) The immunobiology of cancer 

immunosurveillance and immunoediting. Immunity 21 (2), 137-148 

7. Kaminski, J. M., Summers, J. B., Ward, M. B., Huber, M. R., and Minev, B. (2003) 

Immunotherapy and prostate cancer. Cancer Treat Rev 29 (3), 199-209 

8. Finn, O. J. (2003) Cancer vaccines: between the idea and the reality. Nat Rev Immunol 3 (8), 

630-641 

9. Rosenberg, S. A., Lotze, M. T., Muul, L. M., Leitman, S., Chang, A. E., Ettinghausen, S. E., 

Matory, Y. L., Skibber, J. M., Shiloni, E., Vetto, J. T., and et al. (1985) Observations on the 

systemic administration of autologous lymphokine-activated killer cells and recombinant 

interleukin-2 to patients with metastatic cancer. N Engl J Med 313 (23), 1485-1492 

10. Rosenberg, S. A. (2001) Progress in human tumour immunology and immunotherapy. Nature 

411 (6835), 380-384 

11. Rosenberg, S. A. (1999) A new era for cancer immunotherapy based on the genes that 

encode cancer antigens. Immunity 10 (3), 281-287 

12. Boon, T., Coulie, P. G., and Van den Eynde, B. (1997) Tumor antigens recognized by T cells. 

Immunol Today 18 (6), 267-268 

13. Coulie, P. G., Van den Eynde, B. J., van der Bruggen, P., Van Pel, A., and Boon, T. (1997) 

Antigens recognized by T-lymphocytes on human tumours. Biochem Soc Trans 25 (2), 544-

548 

14. Dudley, M. E., Wunderlich, J. R., Robbins, P. F., Yang, J. C., Hwu, P., Schwartzentruber, D. 

J., Topalian, S. L., Sherry, R., Restifo, N. P., Hubicki, A. M., Robinson, M. R., Raffeld, M., 

Duray, P., Seipp, C. A., Rogers-Freezer, L., Morton, K. E., Mavroukakis, S. A., White, D. E., 

and Rosenberg, S. A. (2002) Cancer regression and autoimmunity in patients after clonal 

repopulation with antitumor lymphocytes. Science 298 (5594), 850-854 

15. Krieg, A. M. (2007) Development of TLR9 agonists for cancer therapy. J Clin Invest 117 (5), 

1184-1194 

16. Harris, M. (2004) Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol 5 (5), 

292-302 



Chapter VI  References 

 - 95 -  

17. Boon, T., and van der Bruggen, P. (1996) Human tumor antigens recognized by T 

lymphocytes. J Exp Med 183 (3), 725-729 

18. Old, L. J. (2003) Cancer vaccines 2003: opening address. Cancer Immun 3 Suppl 2, 1 

19. Henkart, P. A. (1994) Lymphocyte-mediated cytotoxicity: two pathways and multiple effector 

molecules. Immunity 1 (5), 343-346 

20. Nagata, S., and Golstein, P. (1995) The Fas death factor. Science 267 (5203), 1449-1456 

21. Trapani, J. A., Davis, J., Sutton, V. R., and Smyth, M. J. (2000) Proapoptotic functions of 

cytotoxic lymphocyte granule constituents in vitro and in vivo. Curr Opin Immunol 12 (3), 323-

329 

22. van den Broek, M. E., Kagi, D., Ossendorp, F., Toes, R., Vamvakas, S., Lutz, W. K., Melief, C. 

J., Zinkernagel, R. M., and Hengartner, H. (1996) Decreased tumor surveillance in perforin-

deficient mice. J Exp Med 184 (5), 1781-1790 

23. Smyth, M. J., Thia, K. Y., Cretney, E., Kelly, J. M., Snook, M. B., Forbes, C. A., and Scalzo, A. 

A. (1999) Perforin is a major contributor to NK cell control of tumor metastasis. J Immunol 162 

(11), 6658-6662 

24. Seki, N., Brooks, A. D., Carter, C. R., Back, T. C., Parsoneault, E. M., Smyth, M. J., Wiltrout, 

R. H., and Sayers, T. J. (2002) Tumor-specific CTL kill murine renal cancer cells using both 

perforin and Fas ligand-mediated lysis in vitro, but cause tumor regression in vivo in the 

absence of perforin. J Immunol 168 (7), 3484-3492 

25. Tatsumi, T., Kierstead, L. S., Ranieri, E., Gesualdo, L., Schena, F. P., Finke, J. H., Bukowski, 

R. M., Mueller-Berghaus, J., Kirkwood, J. M., Kwok, W. W., and Storkus, W. J. (2002) 

Disease-associated bias in T helper type 1 (Th1)/Th2 CD4(+) T cell responses against MAGE-

6 in HLA-DRB10401(+) patients with renal cell carcinoma or melanoma. J Exp Med 196 (5), 

619-628 

26. Hayakawa, Y., and Smyth, M. J. (2006) NKG2D and cytotoxic effector function in tumor 

immune surveillance. Semin Immunol 18 (3), 176-185 

27. Diefenbach, A., Jamieson, A. M., Liu, S. D., Shastri, N., and Raulet, D. H. (2000) Ligands for 

the murine NKG2D receptor: expression by tumor cells and activation of NK cells and 

macrophages. Nat Immunol 1 (2), 119-126 

28. Groh, V., Wu, J., Yee, C., and Spies, T. (2002) Tumour-derived soluble MIC ligands impair 

expression of NKG2D and T-cell activation. Nature 419 (6908), 734-738 

29. Jinushi, M., Takehara, T., Tatsumi, T., Kanto, T., Groh, V., Spies, T., Kimura, R., Miyagi, T., 

Mochizuki, K., Sasaki, Y., and Hayashi, N. (2003) Expression and role of MICA and MICB in 

human hepatocellular carcinomas and their regulation by retinoic acid. Int J Cancer 104 (3), 

354-361 

30. Vetter, C. S., Groh, V., thor Straten, P., Spies, T., Brocker, E. B., and Becker, J. C. (2002) 

Expression of stress-induced MHC class I related chain molecules on human melanoma. J 

Invest Dermatol 118 (4), 600-605 

31. Gao, Y., Yang, W., Pan, M., Scully, E., Girardi, M., Augenlicht, L. H., Craft, J., and Yin, Z. 

(2003) Gamma delta T cells provide an early source of interferon gamma in tumor immunity. J 

Exp Med 198 (3), 433-442 



Chapter VI  References 

 - 96 -  

32. Smyth, M. J., Takeda, K., Hayakawa, Y., Peschon, J. J., van den Brink, M. R., and Yagita, H. 

(2003) Nature's TRAIL--on a path to cancer immunotherapy. Immunity 18 (1), 1-6 

33. Harrop, R., John, J., and Carroll, M. W. (2006) Recombinant viral vectors: cancer vaccines. 

Adv Drug Deliv Rev 58 (8), 931-947 

34. Schlom, J., Arlen, P. M., and Gulley, J. L. (2007) Cancer vaccines: moving beyond current 

paradigms. Clin Cancer Res 13 (13), 3776-3782 

35. Bijker, M. S., Melief, C. J., Offringa, R., and van der Burg, S. H. (2007) Design and 

development of synthetic peptide vaccines: past, present and future. Expert Rev Vaccines 6 

(4), 591-603 

36. Melief, C. J., and van der Burg, S. H. (2008) Immunotherapy of established (pre)malignant 

disease by synthetic long peptide vaccines. Nat Rev Cancer 8 (5), 351-360 

37. Figdor, C. G., de Vries, I. J., Lesterhuis, W. J., and Melief, C. J. (2004) Dendritic cell 

immunotherapy: mapping the way. Nat Med 10 (5), 475-480 

38. Gilboa, E. (2007) DC-based cancer vaccines. J Clin Invest 117 (5), 1195-1203 

39. Rice, J., Ottensmeier, C. H., and Stevenson, F. K. (2008) DNA vaccines: precision tools for 

activating effective immunity against cancer. Nat Rev Cancer 8 (2), 108-120 

40. Speiser, D. E., Miranda, R., Zakarian, A., Bachmann, M. F., McKall-Faienza, K., Odermatt, B., 

Hanahan, D., Zinkernagel, R. M., and Ohashi, P. S. (1997) Self antigens expressed by solid 

tumors Do not efficiently stimulate naive or activated T cells: implications for immunotherapy. J 

Exp Med 186 (5), 645-653 

41. Overwijk, W. W., Theoret, M. R., Finkelstein, S. E., Surman, D. R., de Jong, L. A., Vyth-

Dreese, F. A., Dellemijn, T. A., Antony, P. A., Spiess, P. J., Palmer, D. C., Heimann, D. M., 

Klebanoff, C. A., Yu, Z., Hwang, L. N., Feigenbaum, L., Kruisbeek, A. M., Rosenberg, S. A., 

and Restifo, N. P. (2003) Tumor regression and autoimmunity after reversal of a functionally 

tolerant state of self-reactive CD8+ T cells. J Exp Med 198 (4), 569-580 

42. Salgaller, M. L., and Lodge, P. A. (1998) Use of cellular and cytokine adjuvants in the 

immunotherapy of cancer. J Surg Oncol 68 (2), 122-138 

43. O'Hagan, D. T., Singh, M., and Gupta, R. K. (1998) Poly(lactide-co-glycolide) microparticles 

for the development of single-dose controlled-release vaccines. Advanced Drug Delivery 

Reviews 32 (3), 225-246 

44. Richard Lo-Man, P. R. C. S. E. D. I. C. C. L. (1998) A recombinant virus-like particle system 

derived from parvovirus as an efficient antigen carrier to elicit a polarized Th1 immune 

response without adjuvant. European Journal of Immunology 28 (4), 1401-1407 

45. Algarra, I., Cabrera, T., and Garrido, F. (2000) The HLA crossroad in tumor immunology. 

Human Immunology 61 (1), 65-73 

46. Marincola, F. M., Jaffee, E. M., Hicklin, D. J., Ferrone, S., and Frank, J. D. (1999) Escape of 

Human Solid Tumors from T-Cell Recognition: Molecular Mechanisms and Functional 

Significance. In. Advances in Immunology, Academic Press 

47. Khong, H. T., and Restifo, N. P. (2002) Natural selection of tumor variants in the generation of 

[ldquo]tumor escape[rdquo] phenotypes. Nat Immunol 3 (11), 999-1005 



Chapter VI  References 

 - 97 -  

48. Terabe, M., Matsui, S., Noben-Trauth, N., Chen, H., Watson, C., Donaldson, D. D., Carbone, 

D. P., Paul, W. E., and Berzofsky, J. A. (2000) NKT cell-mediated repression of tumor 

immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol 1 (6), 515-520 

49. Onizuka, S., Tawara, I., Shimizu, J., Sakaguchi, S., Fujita, T., and Nakayama, E. (1999) 

Tumor Rejection by in Vivo Administration of Anti-CD25 (Interleukin-2 Receptor {{alpha}}) 

Monoclonal Antibody. Cancer Res 59 (13), 3128-3133 

50. Shimizu, J., Yamazaki, S., and Sakaguchi, S. (1999) Induction of Tumor Immunity by 

Removing CD25+CD4+ T Cells: A Common Basis Between Tumor Immunity and 

Autoimmunity. J Immunol 163 (10), 5211-5218 

51. Gallina, G., Dolcetti, L., Serafini, P., De Santo, C., Marigo, I., Colombo, M. P., Basso, G., 

Brombacher, F., Borrello, I., Zanovello, P., Bicciato, S., and Bronte, V. (2006) Tumors induce 

a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin 

Invest 116 (10), 2777-2790 

52. Elrefaei, M., Blank, K. J., and Murasko, D. M. (2002) Decreased IL-2, IFN-[gamma], and IL-10 

Production by Aged Mice During the Acute Phase of E55+ Retrovirus Infection. Virology 299 

(1), 8-19 

53. Zoher F. Kapasi, K. M.-K. Michael L. M. R. A. (2002) Defective generation but normal 

maintenance of memory T cells in old mice. European Journal of Immunology 32 (6), 1567-

1573 

54. Rosenberg, S. A., Yang, J. C., and Restifo, N. P. (2004) Cancer immunotherapy: moving 

beyond current vaccines. Nat Med 10 (9), 909-915 

55. Finke, L. H., Wentworth, K., Blumenstein, B., Rudolph, N. S., Levitsky, H., and Hoos, A. 

(2007) Lessons from randomized phase III studies with active cancer immunotherapies - 

Outcomes from the 2006 Meeting of the Cancer Vaccine Consortium (CVC). Vaccine 25 

(Supplement 2), B97-B109 

56. Ryan, R. M., Green, J., and Lewis, C. E. (2006) Use of bacteria in anti-cancer therapies. 

Bioessays 28 (1), 84-94 

57. Brown, J. M. (1999) The hypoxic cell: a target for selective cancer therapy--eighteenth Bruce 

F. Cain Memorial Award lecture. Cancer Res 59 (23), 5863-5870 

58. Yu, Y. A., Shabahang, S., Timiryasova, T. M., Zhang, Q., Beltz, R., Gentschev, I., Goebel, W., 

and Szalay, A. A. (2004) Visualization of tumors and metastases in live animals with bacteria 

and vaccinia virus encoding light-emitting proteins. Nat Biotechnol 22 (3), 313-320 

59. Van Mellaert, L., Barbe, S., and Anne, J. (2006) Clostridium spores as anti-tumour agents. 

Trends Microbiol 14 (4), 190-196 

60. Pawelek, J. M., Low, K. B., and Bermudes, D. (1997) Tumor-targeted Salmonella as a novel 

anticancer vector. Cancer Res 57 (20), 4537-4544 

61. Yazawa, K., Fujimori, M., Amano, J., Kano, Y., and Taniguchi, S. (2000) Bifidobacterium 

longum as a delivery system for cancer gene therapy: selective localization and growth in 

hypoxic tumors. Cancer Gene Ther 7 (2), 269-274 



Chapter VI  References 

 - 98 -  

62. Parker, R. C., Plumber, H. C., Siebenmann, C. O., and Chapman, M. G. (1947) Effect of 

histolyticus infection and toxin on transplantable mouse tumours. Proc Soc Exp Biol 66, 461-

465 

63. Minton, N. P. (2003) Clostridia in cancer therapy. Nat Rev Microbiol 1 (3), 237-242 

64. Theys, J., Landuyt, W., Nuyts, S., Van Mellaert, L., van Oosterom, A., Lambin, P., and Anne, 

J. (2001) Specific targeting of cytosine deaminase to solid tumors by engineered Clostridium 

acetobutylicum. Cancer Gene Ther 8 (4), 294-297 

65. Theys, J., Landuyt, A. W., Nuyts, S., Van Mellaert, L., Lambin, P., and Anne, J. (2001) 

Clostridium as a tumor-specific delivery system of therapeutic proteins. Cancer Detect Prev 25 

(6), 548-557 

66. Lee, C. H., Wu, C. L., and Shiau, A. L. (2004) Endostatin gene therapy delivered by 

Salmonella choleraesuis in murine tumor models. J Gene Med 6 (12), 1382-1393 

67. Coley, W. B. (1991) The treatment of malignant tumors by repeated inoculations of erysipelas. 

With a report of ten original cases. 1893. Clin Orthop Relat Res  (262), 3-11 

68. Agrawal, N., Bettegowda, C., Cheong, I., Geschwind, J. F., Drake, C. G., Hipkiss, E. L., 

Tatsumi, M., Dang, L. H., Diaz, L. A., Jr., Pomper, M., Abusedera, M., Wahl, R. L., Kinzler, K. 

W., Zhou, S., Huso, D. L., and Vogelstein, B. (2004) Bacteriolytic therapy can generate a 

potent immune response against experimental tumors. Proc Natl Acad Sci U S A 101 (42), 

15172-15177 

69. Sieling, P. A., Chung, W., Duong, B. T., Godowski, P. J., and Modlin, R. L. (2003) Toll-Like 

Receptor 2 Ligands as Adjuvants for Human Th1 Responses. J Immunol 170 (1), 194-200 

70. Janeway, C. A., Jr., and Medzhitov, R. (1999) Lipoproteins take their toll on the host. Curr Biol 

9 (23), R879-882 

71. Kotton, C. N., and Hohmann, E. L. (2004) Enteric Pathogens as Vaccine Vectors for Foreign 

Antigen Delivery. Infect. Immun. 72 (10), 5535-5547 

72. Holmgren, J., Czerkinsky, C., Lycke, N., and Svennerholm, A. M. (1992) Mucosal immunity: 

implications for vaccine development. Immunobiology 184 (2-3), 157-179 

73. McGhee, J. R., Mestecky, J., Dertzbaugh, M. T., Eldridge, J. H., Hirasawa, M., and Kiyono, H. 

(1992) The mucosal immune system: from fundamental concepts to vaccine development. 

Vaccine 10 (2), 75-88 

74. Medina, E., and Guzman, C. A. (2000) Modulation of immune responses following antigen 

administration by mucosal route. FEMS Immunol Med Microbiol 27 (4), 305-311 

75. Medina, E., and Guzman, C. A. (2001) Use of live bacterial vaccine vectors for antigen 

delivery: potential and limitations. Vaccine 19 (13-14), 1573-1580 

76. Spreng, S., Dietrich, G., and Weidinger, G. (2006) Rational design of Salmonella-based 

vaccination strategies. Methods 38 (2), 133-143 

77. Curtiss, R., 3rd. (2002) Bacterial infectious disease control by vaccine development. J Clin 

Invest 110 (8), 1061-1066 

78. Germanier, R., and Furer, E. (1975) Isolation and characterization of Gal E mutant Ty 21a of 

Salmonella typhi: a candidate strain for a live, oral typhoid vaccine. J Infect Dis 131 (5), 553-

558 



Chapter VI  References 

 - 99 -  

79. Germanier, R., and Furer, E. (1983) Characteristics of the attenuated oral vaccine strain "S. 

typhi" Ty 21a. Dev Biol Stand 53, 3-7 

80. Coynault, C., Robbe-Saule, V., and Norel, F. (1996) Virulence and vaccine potential of 

Salmonella typhimurium mutants deficient in the expression of the RpoS (sigma S) regulon. 

Mol Microbiol 22 (1), 149-160 

81. Robbe-Saule, V., Coynault, C., and Norel, F. (1995) The live oral typhoid vaccine Ty21a is a 

rpoS mutant and is susceptible to various environmental stresses. FEMS Microbiol Lett 126 

(2), 171-176 

82. Levine, M. M., Tacket, C. O., and Sztein, M. B. (2001) Host-Salmonella interaction: human 

trials. Microbes Infect 3 (14-15), 1271-1279 

83. Levine, M. M., Ferreccio, C., Black, R. E., Tacket, C. O., and Germanier, R. (1989) Progress 

in vaccines against typhoid fever. Rev Infect Dis 11 Suppl 3, S552-567 

84. Griot-Wenk, M., Hartmann, K., Herzog, C., Ackermann, J., and Maspes, B. (2001) Excellent 

long-term safety data established in a recent post-marketing surveillance for the oral typhoid 

fever vaccine, VIVOTIF®. Ital J Trop Med 6, 104-105 

85. Gilman, R. H., Hornick, R. B., Woodard, W. E., DuPont, H. L., Snyder, M. J., Levine, M. M., 

and Libonati, J. P. (1977) Evaluation of a UDP-glucose-4-epimeraseless mutant of Salmonella 

typhi as a liver oral vaccine. J Infect Dis 136 (6), 717-723 

86. Bumann, D., Metzger, W. G., Mansouri, E., Palme, O., Wendland, M., Hurwitz, R., Haas, G., 

Aebischer, T., von Specht, B. U., and Meyer, T. F. (2001) Safety and immunogenicity of live 

recombinant Salmonella enterica serovar Typhi Ty21a expressing urease A and B from 

Helicobacter pylori in human volunteers. Vaccine 20 (5-6), 845-852 

87. Metzger, W. G., Mansouri, E., Kronawitter, M., Diescher, S., Soerensen, M., Hurwitz, R., 

Bumann, D., Aebischer, T., Von Specht, B. U., and Meyer, T. F. (2004) Impact of vector-

priming on the immunogenicity of a live recombinant Salmonella enterica serovar typhi Ty21a 

vaccine expressing urease A and B from Helicobacter pylori in human volunteers. Vaccine 22 

(17-18), 2273-2277 

88. Attridge, S. (1991) Oral immunization with Salmonella typhi Ty21a-based clones expressing 

Vibrio cholerae O-antigen: serum bactericidal antibody responses in man in relation to pre-

immunization antibody levels. Vaccine 9 (12), 877-882 

89. Forrest, B. D., LaBrooy, J. T., Attridge, S. R., Boehm, G., Beyer, L., Morona, R., Shearman, D. 

J., and Rowley, D. (1989) Immunogenicity of a candidate live oral typhoid/cholera hybrid 

vaccine in humans. J Infect Dis 159 (1), 145-146 

90. Carter, P. B., and Collins, F. M. (1974) Growth of typhoid and paratyphoid bacilli in 

intravenously infected mice. Infect Immun 10 (4), 816-822 

91. Tsolis, R. M., Kingsley, R. A., Townsend, S. M., Ficht, T. A., Adams, L. G., and Baumler, A. J. 

(1999) Of mice, calves, and men. Comparison of the mouse typhoid model with other 

Salmonella infections. Adv Exp Med Biol 473, 261-274 

92. Hess, J., Schaible, U., Raupach, B., and Kaufmann, S. H. (2000) Exploiting the immune 

system: toward new vaccines against intracellular bacteria. Adv Immunol 75, 1-88 



Chapter VI  References 

 - 100 -  

93. Galen, J. E., Gomez-Duarte, O. G., Losonsky, G. A., Halpern, J. L., Lauderbaugh, C. S., 

Kaintuck, S., Reymann, M. K., and Levine, M. M. (1997) A murine model of intranasal 

immunization to assess the immunogenicity of attenuated Salmonella typhi live vector 

vaccines in stimulating serum antibody responses to expressed foreign antigens. Vaccine 15 

(6-7), 700-708 

94. Mastroeni, P. (2002) Immunity to systemic Salmonella infections. Curr Mol Med 2 (4), 393-406 

95. Mastroeni, P., and Menager, N. (2003) Development of acquired immunity to Salmonella. J 

Med Microbiol 52 (Pt 6), 453-459 

96. Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y. J., Pulendran, B., and 

Palucka, K. (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18, 767-811 

97. Hopkins, S. A., and Kraehenbuhl, J. P. (1997) Dendritic cells of the murine Peyer's patches 

colocalize with Salmonella typhimurium avirulent mutants in the subepithelial dome. Adv Exp 

Med Biol 417, 105-109 

98. Marriott, I., Hammond, T. G., Thomas, E. K., and Bost, K. L. (1999) Salmonella efficiently 

enter and survive within cultured CD11c+ dendritic cells initiating cytokine expression. Eur J 

Immunol 29 (4), 1107-1115 

99. Svensson, M., Johansson, C., and Wick, M. J. (2000) Salmonella enterica serovar 

typhimurium-induced maturation of bone marrow-derived dendritic cells. Infect Immun 68 (11), 

6311-6320 

100. Harrison, J. A., Villarreal-Ramos, B., Mastroeni, P., Demarco de Hormaeche, R., and 

Hormaeche, C. E. (1997) Correlates of protection induced by live Aro- Salmonella 

typhimurium vaccines in the murine typhoid model. Immunology 90 (4), 618-625 

101. Sztein, M. B., Wasserman, S. S., Tacket, C. O., Edelman, R., Hone, D., Lindberg, A. A., and 

Levine, M. M. (1994) Cytokine production patterns and lymphoproliferative responses in 

volunteers orally immunized with attenuated vaccine strains of Salmonella typhi. J Infect Dis 

170 (6), 1508-1517 

102. Viret, J. F., Favre, D., Wegmuller, B., Herzog, C., Que, J. U., Cryz, S. J., Jr., and Lang, A. B. 

(1999) Mucosal and systemic immune responses in humans after primary and booster 

immunizations with orally administered invasive and noninvasive live attenuated bacteria. 

Infect Immun 67 (7), 3680-3685 

103. Salerno-Goncalves, R., Pasetti, M. F., and Sztein, M. B. (2002) Characterization of CD8(+) 

effector T cell responses in volunteers immunized with Salmonella enterica serovar Typhi 

strain Ty21a typhoid vaccine. J Immunol 169 (4), 2196-2203 

104. Pasetti, M. F., Salerno-Goncalves, R., and Sztein, M. B. (2002) Salmonella enterica Serovar 

Typhi Live Vector Vaccines Delivered Intranasally Elicit Regional and Systemic Specific CD8+ 

Major Histocompatibility Class I-Restricted Cytotoxic T Lymphocytes. Infect. Immun. 70 (8), 

4009-4018 

105. Aggarwal, A., Kumar, S., Jaffe, R., Hone, D., Gross, M., and Sadoff, J. (1990) Oral 

Salmonella: malaria circumsporozoite recombinants induce specific CD8+ cytotoxic T cells. J 

Exp Med 172 (4), 1083-1090 



Chapter VI  References 

 - 101 -  

106. Pfeifer, J. D., Wick, M. J., Roberts, R. L., Findlay, K., Normark, S. J., and Harding, C. V. 

(1993) Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. 

Nature 361 (6410), 359-362 

107. Heath, W. R., and Carbone, F. R. (2001) Cross-presentation in viral immunity and self-

tolerance. Nat Rev Immunol 1 (2), 126-134 

108. Kang, H. Y., and Curtiss, R., 3rd. (2003) Immune responses dependent on antigen location in 

recombinant attenuated Salmonella typhimurium vaccines following oral immunization. FEMS 

Immunol Med Microbiol 37 (2-3), 99-104 

109. Gentschev, I., Glaser, I., Goebel, W., McKeever, D. J., Musoke, A., and Heussler, V. T. (1998) 

Delivery of the p67 sporozoite antigen of Theileria parva by using recombinant Salmonella 

dublin: secretion of the product enhances specific antibody responses in cattle. Infect Immun 

66 (5), 2060-2064 

110. Hess, J., Gentschev, I., Miko, D., Welzel, M., Ladel, C., Goebel, W., and Kaufmann, S. H. 

(1996) Superior efficacy of secreted over somatic antigen display in recombinant Salmonella 

vaccine induced protection against listeriosis. Proc Natl Acad Sci U S A 93 (4), 1458-1463 

111. Kaufmann, S. H., and Hess, J. (1999) Impact of intracellular location of and antigen display by 

intracellular bacteria: implications for vaccine development. Immunol Lett 65 (1-2), 81-84 

112. Gentschev, I., Dietrich, G., and Goebel, W. (2002) The E. coli alpha-hemolysin secretion 

system and its use in vaccine development. Trends Microbiol 10 (1), 39-45 

113. Dietrich, G., Viret, J. F., and Gentschev, I. (2003) Haemolysin A and listeriolysin--two vaccine 

delivery tools for the induction of cell-mediated immunity. Int J Parasitol 33 (5-6), 495-505 

114. Gentschev, I., Fensterle, J., Schmidt, A., Potapenko, T., Troppmair, J., Goebel, W., and Rapp, 

U. R. (2005) Use of a recombinant Salmonella enterica serovar Typhimurium strain 

expressing C-Raf for protection against C-Raf induced lung adenoma in mice. BMC Cancer 5, 

15 

115. Fensterle, J., Bergmann, B., Yone, C. L., Hotz, C., Meyer, S. R., Spreng, S., Goebel, W., 

Rapp, U. R., and Gentschev, I. (2008) Cancer immunotherapy based on recombinant 

Salmonella enterica serovar Typhimurium aroA strains secreting prostate-specific antigen and 

cholera toxin subunit B. Cancer Gene Ther 15 (2), 85-93 

116. Russmann, H. (2003) Bacterial type III translocation: a unique mechanism for cytosolic display 

of heterologous antigens by attenuated Salmonella. Int J Med Microbiol 293 (1), 107-112 

117. Panthel, K., Meinel, K. M., Sevil Domenech, V. E., Trulzsch, K., and Russmann, H. (2008) 

Salmonella type III-mediated heterologous antigen delivery: a versatile oral vaccination 

strategy to induce cellular immunity against infectious agents and tumors. Int J Med Microbiol 

298 (1-2), 99-103 

118. Russmann, H., Shams, H., Poblete, F., Fu, Y., Galan, J. E., and Donis, R. O. (1998) Delivery 

of epitopes by the Salmonella type III secretion system for vaccine development. Science 281 

(5376), 565-568 

119. Panthel, K., Meinel, K. M., Sevil Domenech, V. E., Geginat, G., Linkemann, K., Busch, D. H., 

and Russmann, H. (2006) Prophylactic anti-tumor immunity against a murine fibrosarcoma 

triggered by the Salmonella type III secretion system. Microbes Infect 8 (9-10), 2539-2546 



Chapter VI  References 

 - 102 -  

120. Samuelson, P., Gunneriusson, E., Nygren, P. A., and Stahl, S. (2002) Display of proteins on 

bacteria. J Biotechnol 96 (2), 129-154 

121. Rizos, K., Lattemann, C. T., Bumann, D., Meyer, T. F., and Aebischer, T. (2003) Autodisplay: 

efficacious surface exposure of antigenic UreA fragments from Helicobacter pylori in 

Salmonella vaccine strains. Infect Immun 71 (11), 6320-6328 

122. Lee, J. S., Shin, K. S., Pan, J. G., and Kim, C. J. (2000) Surface-displayed viral antigens on 

Salmonella carrier vaccine. Nat Biotechnol 18 (6), 645-648 

123. Newton, S. M., Kotb, M., Poirier, T. P., Stocker, B. A., and Beachey, E. H. (1991) Expression 

and immunogenicity of a streptococcal M protein epitope inserted in Salmonella flagellin. 

Infect Immun 59 (6), 2158-2165 

124. Newton, S. M., Jacob, C. O., and Stocker, B. A. (1989) Immune response to cholera toxin 

epitope inserted in Salmonella flagellin. Science 244 (4900), 70-72 

125. Chen, H., and Schifferli, D. M. (2000) Mucosal and Systemic Immune Responses to Chimeric 

Fimbriae Expressed by Salmonella enterica Serovar Typhimurium Vaccine Strains. Infect. 

Immun. 68 (6), 3129-3139 

126. Hayes, L. J., Conlan, J. W., Everson, J. S., Ward, M. E., and Clarke, I. N. (1991) Chlamydia 

trachomatis major outer membrane protein epitopes expressed as fusions with LamB in an 

attenuated aro A strain of Salmonella typhimurium; their application as potential immunogens. 

J Gen Microbiol 137 (7), 1557-1564 

127. Spreng, S., Dietrich, G., Goebel, W., and Gentschev, I. (2003) Protection against murine 

listeriosis by oral vaccination with recombinant Salmonella expressing protective listerial 

epitopes within a surface-exposed loop of the TolC-protein. Vaccine 21 (7-8), 746-752 

128. Sharff, A., Fanutti, C., Shi, J., Calladine, C., and Luisi, B. (2001) The role of the TolC family in 

protein transport and multidrug efflux. From stereochemical certainty to mechanistic 

hypothesis. Eur J Biochem 268 (19), 5011-5026 

129. Andersen, C., Hughes, C., and Koronakis, V. (2000) Chunnel vision. Export and efflux through 

bacterial channel-tunnels. EMBO Rep 1 (4), 313-318 

130. Andersen, C. (2003) Channel-tunnels: outer membrane components of type I secretion 

systems and multidrug efflux pumps of Gram-negative bacteria. Rev Physiol Biochem 

Pharmacol 147, 122-165 

131. Nikaido, H. (1998) Antibiotic resistance caused by gram-negative multidrug efflux pumps. Clin 

Infect Dis 27 Suppl 1, S32-41 

132. Sulavik, M. C., Houseweart, C., Cramer, C., Jiwani, N., Murgolo, N., Greene, J., DiDomenico, 

B., Shaw, K. J., Miller, G. H., Hare, R., and Shimer, G. (2001) Antibiotic susceptibility profiles 

of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob Agents Chemother 

45 (4), 1126-1136 

133. Baucheron, S., Tyler, S., Boyd, D., Mulvey, M. R., Chaslus-Dancla, E., and Cloeckaert, A. 

(2004) AcrAB-TolC directs efflux-mediated multidrug resistance in Salmonella enterica serovar 

typhimurium DT104. Antimicrob Agents Chemother 48 (10), 3729-3735 

134. Piddock, L. J. (2006) Multidrug-resistance efflux pumps - not just for resistance. Nat Rev 

Microbiol 4 (8), 629-636 



Chapter VI  References 

 - 103 -  

135. Koronakis, V., Sharff, A., Koronakis, E., Luisi, B., and Hughes, C. (2000) Crystal structure of 

the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405 

(6789), 914-919 

136. Wagner, S. (2008) Konstruktion eines rekombinanten SAlmonellen Vakzinestammes, der 

mittels TolC das immunodominante PSA-Epitop präsentiert. Diploma thesis. MSZ, University 

of Würzburg 

137. Hogquist, K. A., Jameson, S. C., Heath, W. R., Howard, J. L., Bevan, M. J., and Carbone, F. 

R. (1994) T cell receptor antagonist peptides induce positive selection. Cell 76 (1), 17-27 

138. Murphy, K. M., Heimberger, A. B., and Loh, D. Y. (1990) Induction by antigen of intrathymic 

apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250 (4988), 1720-1723 

139. Loeffler, D. I., Schoen, C. U., Goebel, W., and Pilgrim, S. (2006) Comparison of different live 

vaccine strategies in vivo for delivery of protein antigen or antigen-encoding DNA and mRNA 

by virulence-attenuated Listeria monocytogenes. Infect Immun 74 (7), 3946-3957 

140. Anis, M. M., Fulton, S. A., Reba, S. M., Harding, C. V., and Boom, W. H. (2007) Modulation of 

naive CD4+ T-cell responses to an airway antigen during pulmonary mycobacterial infection. 

Infect Immun 75 (5), 2260-2268 

141. Chen, Z. M., and Jenkins, M. K. (1999) Clonal expansion of antigen-specific CD4 T cells 

following infection with Salmonella typhimurium is similar in susceptible (Itys) and resistant 

(Ityr) BALB/c mice. Infect Immun 67 (4), 2025-2029 

142. Yajima, T., Yoshihara, K., Nakazato, K., Kumabe, S., Koyasu, S., Sad, S., Shen, H., Kuwano, 

H., and Yoshikai, Y. (2006) IL-15 regulates CD8+ T cell contraction during primary infection. J 

Immunol 176 (1), 507-515 

143. Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, 

H., Garnett, M. J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., 

Hawes, R., Hughes, J., Kosmidou, V., Menzies, A., Mould, C., Parker, A., Stevens, C., Watt, 

S., Hooper, S., Wilson, R., Jayatilake, H., Gusterson, B. A., Cooper, C., Shipley, J., Hargrave, 

D., Pritchard-Jones, K., Maitland, N., Chenevix-Trench, G., Riggins, G. J., Bigner, D. D., 

Palmieri, G., Cossu, A., Flanagan, A., Nicholson, A., Ho, J. W., Leung, S. Y., Yuen, S. T., 

Weber, B. L., Seigler, H. F., Darrow, T. L., Paterson, H., Marais, R., Marshall, C. J., Wooster, 

R., Stratton, M. R., and Futreal, P. A. (2002) Mutations of the BRAF gene in human cancer. 

Nature 417 (6892), 949-954 

144. Brose, M. S., Volpe, P., Feldman, M., Kumar, M., Rishi, I., Gerrero, R., Einhorn, E., Herlyn, M., 

Minna, J., Nicholson, A., Roth, J. A., Albelda, S. M., Davies, H., Cox, C., Brignell, G., 

Stephens, P., Futreal, P. A., Wooster, R., Stratton, M. R., and Weber, B. L. (2002) BRAF and 

RAS mutations in human lung cancer and melanoma. Cancer Res 62 (23), 6997-7000 

145. Peyssonnaux, C., and Eychene, A. (2001) The Raf/MEK/ERK pathway: new concepts of 

activation. Biol Cell 93 (1-2), 53-62 

146. Andersen, M. H., Fensterle, J., Ugurel, S., Reker, S., Houben, R., Guldberg, P., Berger, T. G., 

Schadendorf, D., Trefzer, U., Brocker, E. B., Straten, P., Rapp, U. R., and Becker, J. C. (2004) 

Immunogenicity of constitutively active V599EBRaf. Cancer Res 64 (15), 5456-5460 



Chapter VI  References 

 - 104 -  

147. Lilja, H., Oldbring, J., Rannevik, G., and Laurell, C. B. (1987) Seminal vesicle-secreted 

proteins and their reactions during gelation and liquefaction of human semen. J Clin Invest 80 

(2), 281-285 

148. Oakley, N. (1998) Clinical implications of prostate-specific antigen (PSA). Curr Opin Urol 8 (5), 

401-406 

149. Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., Smigal, C., and Thun, M. J. (2006) Cancer 

statistics, 2006. CA Cancer J Clin 56 (2), 106-130 

150. Coen, J. J., Zietman, A. L., Thakral, H., and Shipley, W. U. (2002) Radical radiation for 

localized prostate cancer: local persistence of disease results in a late wave of metastases. J 

Clin Oncol 20 (15), 3199-3205 

151. Roehl, K. A., Han, M., Ramos, C. G., Antenor, J. A., and Catalona, W. J. (2004) Cancer 

progression and survival rates following anatomical radical retropubic prostatectomy in 3,478 

consecutive patients: long-term results. J Urol 172 (3), 910-914 

152. Miyamoto, H., Messing, E. M., and Chang, C. (2004) Androgen deprivation therapy for 

prostate cancer: current status and future prospects. Prostate 61 (4), 332-353 

153. Feldman, B. J., and Feldman, D. (2001) The development of androgen-independent prostate 

cancer. Nat Rev Cancer 1 (1), 34-45 

154. Roos, A. K., King, A., and Pisa, P. (2008) DNA vaccination for prostate cancer. Methods Mol 

Biol 423, 463-472 

155. Basler, M., and Groettrup, M. (2007) Advances in prostate cancer immunotherapies. Drugs 

Aging 24 (3), 197-221 

156. Thomas-Kaskel, A. K., and Veelken, H. (2007) [Active immunotherapy of prostate cancer with 

a focus on dendritic cells]. Actas Urol Esp 31 (6), 668-679 

157. Karan, D., Thrasher, J. B., and Lubaroff, D. (2008) Prostate cancer: genes, environment, 

immunity and the use of immunotherapy. Prostate Cancer Prostatic Dis   

158. Pavlenko, M., Leder, C., Roos, A. K., Levitsky, V., and Pisa, P. (2005) Identification of an 

immunodominant H-2D(b)-restricted CTL epitope of human PSA. Prostate 64 (1), 50-59 

159. Gentschev, I., Dietrich, G., Spreng, S., Neuhaus, B., Maier, E., Benz, R., Goebel, W., 

Fensterle, J., and Rapp, U. R. (2004) Use of the alpha-hemolysin secretion system of 

Escherichia coli for antigen delivery in the Salmonella typhi Ty21a vaccine strain. Int J Med 

Microbiol 294 (6), 363-371 

160. Wandersman, C., and Delepelaire, P. (1990) TolC, an Escherichia coli outer membrane 

protein required for hemolysin secretion. Proc Natl Acad Sci U S A 87 (12), 4776-4780 

161. Welch, R. A., Dellinger, E. P., Minshew, B., and Falkow, S. (1981) Haemolysin contributes to 

virulence of extra-intestinal E. coli infections. Nature 294 (5842), 665-667 

162. Issartel, J. P., Koronakis, V., and Hughes, C. (1991) Activation of Escherichia coli 

prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation. Nature 

351 (6329), 759-761 

163. Aono, R., Tsukagoshi, N., and Yamamoto, M. (1998) Involvement of outer membrane protein 

TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organic 

solvent tolerance of Escherichia coli K-12. J Bacteriol 180 (4), 938-944 



Chapter VI  References 

 - 105 -  

164. Hess, J., Wels, W., Vogel, M., and Goebel, W. (1986) Nucleotide sequence of a plasmid-

encoded hemolysin determinant and its comparison with a corresponding chromosomal 

hemolysin sequence. FEMS Microbiol Lett 34, 1-11 

165. Ludwig, A., and Goebel, W. (1999) The familiy of the multigenic encoded RTX toxin. In: Alouf, 

J. E., and Freer, J. H. (eds). Comprehensive Sourcebook of Bacterial Protein Toxins, 

Academic Press 

166. Knapp, S., Hacker, J., Jarchau, T., and Goebel, W. (1986) Large, unstable inserts in the 

chromosome affect virulence properties of uropathogenic Escherichia coli O6 strain 536. J 

Bacteriol 168 (1), 22-30 

167. Welch, R. A., and Pellett, S. (1988) Transcriptional organization of the Escherichia coli 

hemolysin genes. J Bacteriol 170 (4), 1622-1630 

168. Bailey, M. J., Koronakis, V., Schmoll, T., and Hughes, C. (1992) Escherichia coli HlyT protein, 

a transcriptional activator of haemolysin synthesis and secretion, is encoded by the rfaH (sfrB) 

locus required for expression of sex factor and lipopolysaccharide genes. Mol Microbiol 6 (8), 

1003-1012 

169. Bailey, M. J., Hughes, C., and Koronakis, V. (1996) Increased distal gene transcription by the 

elongation factor RfaH, a specialized homologue of NusG. Mol Microbiol 22 (4), 729-737 

170. Artsimovitch, I., and Landick, R. (2002) The transcriptional regulator RfaH stimulates RNA 

chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA 

strand. Cell 109 (2), 193-203 

171. Pilgrim, S., Stritzker, J., Schoen, C., Kolb-Maurer, A., Geginat, G., Loessner, M. J., 

Gentschev, I., and Goebel, W. (2003) Bactofection of mammalian cells by Listeria 

monocytogenes: improvement and mechanism of DNA delivery. Gene Ther 10 (24), 2036-

2045 

172. Chang, A. C., and Cohen, S. N. (1978) Construction and characterization of amplifiable 

multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134 

(3), 1141-1156 

173. Vogel, M., Hess, J., Then, I., Juarez, A., and Goebel, W. (1988) Characterization of a 

sequence (hlyR) which enhances synthesis and secretion of hemolysin in Escherichia coli. 

Mol Gen Genet 212 (1), 76-84 

174. Cherepanov, P. P., and Wackernagel, W. (1995) Gene disruption in Escherichia coli: TcR and 

KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance 

determinant. Gene 158 (1), 9-14 

175. Datsenko, K. A., and Wanner, B. L. (2000) One-step inactivation of chromosomal genes in 

Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97 (12), 6640-6645 

176. Schulein, R., Gentschev, I., Mollenkopf, H. J., and Goebel, W. (1992) A topological model for 

the haemolysin translocator protein HlyD. Mol Gen Genet 234 (1), 155-163 

177. Kumar, S., Balakrishna, K., and Batra, H. V. (2006) Detection of Salmonella enterica serovar 

Typhi (S. Typhi) by selective amplification of invA, viaB, fliC-d and prt genes by polymerase 

chain reaction in mutiplex format. Lett Appl Microbiol 42 (2), 149-154 



Chapter VI  References 

 - 106 -  

178. Porgador, A., Yewdell, J. W., Deng, Y., Bennink, J. R., and Germain, R. N. (1997) 

Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes 

using a monoclonal antibody. Immunity 6 (6), 715-726 

179. Spreng, S., Dietrich, G., Goebel, W., and Gentschev, I. (1999) The Escherichia coli 

haemolysin secretion apparatus: a potential universal antigen delivery system in gram-

negative bacterial vaccine carriers. Mol Microbiol 31 (5), 1596-1598 

180. DoubleDigest® algorithm at www.fermentas.com.   

181. Fensterle, J., Grode, L., Hess, J., and Kaufmann, S. H. (1999) Effective DNA vaccination 

against listeriosis by prime/boost inoculation with the gene gun. J Immunol 163 (8), 4510-4518 

182. Andersson, H. C., Arpaia, S., Bartsch, D., Casacuberta, J., Davies, H., Herman, L., De Loose, 

M., Hendriksen, N., Kärenlampi, S., Kiss, J., Kryspin-Sørensen, I., Kuiper, H., Nes, I., 

Panopoulos, N., Perry, J., Pöting, A., Schiemann, J., Seinen, W., Sweet, J., and Wal, J. (2007) 

Statement of the Scientific Panel on Genetically Modified Organisms on the safe use of the 

nptII antibiotic resistance marker gene in genetically modified plants. In., EFSA 

183. Tables for codon usage at http://www.kazusa.or.jp/codon/index.html.   

184. Buckley, A. M., Webber, M. A., Cooles, S., Randall, L. P., La Ragione, R. M., Woodward, M. 

J., and Piddock, L. J. (2006) The AcrAB-TolC efflux system of Salmonella enterica serovar 

Typhimurium plays a role in pathogenesis. Cell Microbiol 8 (5), 847-856 

185. Baucheron, S., Mouline, C., Praud, K., Chaslus-Dancla, E., and Cloeckaert, A. (2005) TolC 

but not AcrB is essential for multidrug-resistant Salmonella enterica serotype Typhimurium 

colonization of chicks. J Antimicrob Chemother 55 (5), 707-712 

186. Virlogeux-Payant, I., Baucheron, S., Pelet, J., Trotereau, J., Bottreau, E., Velge, P., and 

Cloeckaert, A. (2008) TolC, but not AcrB, is involved in the invasiveness of multidrug-resistant 

Salmonella enterica serovar Typhimurium by increasing type III secretion system-1 

expression. Int J Med Microbiol   

187. Nikaido, H., and Zgurskaya, H. I. (2001) AcrAB and related multidrug efflux pumps of 

Escherichia coli. J Mol Microbiol Biotechnol 3 (2), 215-218 

188. Stocker, B. A., Hoiseth, S. K., and Smith, B. P. (1983) Aromatic-dependent "Salmonella sp." 

as live vaccine in mice and calves. Dev Biol Stand 53, 47-54 

189. Attridge, S. R., Daniels, D., Morona, J. K., and Morona, R. (1990) Surface co-expression of 

Vibrio cholerae and Salmonella typhi O-antigens on Ty21a clone EX210. Microb. Pathog. 8 

(3), 177-188 

190. Neural Network Promoter Prediction algorithm at 

http://www.fruitfly.org/seq_tools/promoter.html.   

191. Robbe-Saule, V., Algorta, G., Rouilhac, I., and Norel, F. (2003) Characterization of the RpoS 

status of clinical isolates of Salmonella enterica. Appl Environ Microbiol 69 (8), 4352-4358 

192. Bittner, M., Saldias, S., Altamirano, F., Valvano, M. A., and Contreras, I. (2004) RpoS and 

RpoN are involved in the growth-dependent regulation of rfaH transcription and O antigen 

expression in Salmonella enterica serovar Typhi. Microb Pathog 36 (1), 19-24 

193. Leeds, J. A., and Welch, R. A. (1996) RfaH enhances elongation of Escherichia coli hlyCABD 

mRNA. J Bacteriol 178 (7), 1850-1857 



Chapter VI  References 

 - 107 -  

194. Rojas, G., Saldias, S., Bittner, M., Zaldivar, M., and Contreras, I. (2001) The rfaH gene, which 

affects lipopolysaccharide synthesis in Salmonella enterica serovar Typhi, is differentially 

expressed during the bacterial growth phase. FEMS Microbiol Lett 204 (1), 123-128 

195. Alam, M. S., Zaki, M. H., Yoshitake, J., Akuta, T., Ezaki, T., and Akaike, T. (2006) Involvement 

of Salmonella enterica serovar Typhi RpoS in resistance to NO-mediated host defense against 

serovar Typhi infection. Microb. Pathog. 40 (3), 116-125 

196. Covone, M. G., Brocchi, M., Palla, E., Dias da Silveira, W., Rappuoli, R., and Galeotti, C. L. 

(1998) Levels of expression and immunogenicity of attenuated Salmonella enterica serovar 

typhimurium strains expressing Escherichia coli mutant heat-labile enterotoxin. Infect Immun 

66 (1), 224-231 

197. Wick, M. J., Harding, C. V., Twesten, N. J., Normark, S. J., and Pfeifer, J. D. (1995) The phoP 

locus influences processing and presentation of Salmonella typhimurium antigens by activated 

macrophages. Mol Microbiol 16 (3), 465-476 

198. Stone, B. J., and Miller, V. L. (1995) Salmonella enteritidis has a homologue of tolC that is 

required for virulence in BALB/c mice. Mol Microbiol 17 (4), 701-712 

199. Patel, J. C., Rossanese, O. W., and Galan, J. E. (2005) The functional interface between 

Salmonella and its host cell: opportunities for therapeutic intervention. Trends Pharmacol Sci 

26 (11), 564-570 

200. Maskell, D. J., Sweeney, K. J., O'Callaghan, D., Hormaeche, C. E., Liew, F. Y., and Dougan, 

G. (1987) Salmonella typhimurium aroA mutants as carriers of the Escherichia coli heat-labile 

enterotoxin B subunit to the murine secretory and systemic immune systems. Microb Pathog 2 

(3), 211-221 

201. Oyston, P. C., Williamson, E. D., Leary, S. E., Eley, S. M., Griffin, K. F., and Titball, R. W. 

(1995) Immunization with live recombinant Salmonella typhimurium aroA producing F1 antigen 

protects against plague. Infect Immun 63 (2), 563-568 

202. Curtiss, R., 3rd, Galan, J. E., Nakayama, K., and Kelly, S. M. (1990) Stabilization of 

recombinant avirulent vaccine strains in vivo. Res Microbiol 141 (7-8), 797-805 

203. Dunstan, S. J., Simmons, C. P., and Strugnell, R. A. (2003) In vitro and in vivo stability of 

recombinant plasmids in a vaccine strain of Salmonella enterica var. Typhimurium. FEMS 

Immunol Med Microbiol 37 (2-3), 111-119 

204. Groux, H., Bigler, M., de Vries, J. E., and Roncarolo, M. G. (1996) Interleukin-10 induces a 

long-term antigen-specific anergic state in human CD4+ T cells. J Exp Med 184 (1), 19-29 

205. Suzuki, T., Tahara, H., Narula, S., Moore, K. W., Robbins, P. D., and Lotze, M. T. (1995) Viral 

interleukin 10 (IL-10), the human herpes virus 4 cellular IL-10 homologue, induces local 

anergy to allogeneic and syngeneic tumors. J Exp Med 182 (2), 477-486 

206. Rodriguez, F., Harkins, S., Slifka, M. K., and Whitton, J. L. (2002) Immunodominance in virus-

induced CD8(+) T-cell responses is dramatically modified by DNA immunization and is 

regulated by gamma interferon. J Virol 76 (9), 4251-4259 

207. Deng, Y., Yewdell, J. W., Eisenlohr, L. C., and Bennink, J. R. (1997) MHC affinity, peptide 

liberation, T cell repertoire, and immunodominance all contribute to the paucity of MHC class 

I-restricted peptides recognized by antiviral CTL. J Immunol 158 (4), 1507-1515 



Chapter VI  References 

 - 108 -  

208. Grossmann, M. E., Davila, T., and Celis, T. (2001) Avoiding tolerance against prostatic 

antigens with subdominant peptide epitopes. J Immunother 24 (3), 237-241 

209. Gross, D. A., Graff-Dubois, S., Opolon, P., Cornet, S., Alves, P., Bennaceur-Griscelli, A., 

Faure, O., Guillaume, P., Firat, H., Chouaib, S., Lemonnier, F. A., Davoust, J., Miconnet, I., 

Vonderheide, R. H., and Kosmatopoulos, K. (2004) High vaccination efficiency of low-affinity 

epitopes in antitumor immunotherapy. J Clin Invest 113 (3), 425-433 

210. Cardenas, L., and Clements, J. D. (1992) Oral immunization using live attenuated Salmonella 

spp. as carriers of foreign antigens. Clin Microbiol Rev 5 (3), 328-342 

211. Kirby, A. C., Yrlid, U., and Wick, M. J. (2002) The innate immune response differs in primary 

and secondary Salmonella infection. J Immunol 169 (8), 4450-4459 

212. Brigl, M., Bry, L., Kent, S. C., Gumperz, J. E., and Brenner, M. B. (2003) Mechanism of CD1d-

restricted natural killer T cell activation during microbial infection. Nat Immunol 4 (12), 1230-

1237 

213. Holtmeier, W., and Kabelitz, D. (2005) gammadelta T cells link innate and adaptive immune 

responses. Chem Immunol Allergy 86, 151-183 

214. Boon, T., Coulie, P. G., Van den Eynde, B. J., and van der Bruggen, P. (2006) Human T cell 

responses against melanoma. Annu Rev Immunol 24, 175-208 

215. Furumoto, K., Soares, L., Engleman, E. G., and Merad, M. (2004) Induction of potent 

antitumor immunity by in situ targeting of intratumoral DCs. J Clin Invest 113 (5), 774-783 

216. Perrotta, C., Falcone, S., Capobianco, A., Camporeale, A., Sciorati, C., De Palma, C., 

Pisconti, A., Rovere-Querini, P., Bellone, M., Manfredi, A. A., and Clementi, E. (2004) Nitric 

oxide confers therapeutic activity to dendritic cells in a mouse model of melanoma. Cancer 

Res 64 (11), 3767-3771 

217. Qimron, U., Madar, N., Mittrucker, H. W., Zilka, A., Yosef, I., Bloushtain, N., Kaufmann, S. H., 

Rosenshine, I., Apte, R. N., and Porgador, A. (2004) Identification of Salmonella typhimurium 

genes responsible for interference with peptide presentation on MHC class I molecules: 

Deltayej Salmonella mutants induce superior CD8+ T-cell responses. Cell Microbiol 6 (11), 

1057-1070 

218. Bueno, S. M., Gonzalez, P. A., Schwebach, J. R., and Kalergis, A. M. (2007) T cell immunity 

evasion by virulent Salmonella enterica. Immunol Lett 111 (1), 14-20 

219. van der Velden, A. W., Dougherty, J. T., and Starnbach, M. N. (2008) Down-modulation of 

TCR expression by Salmonella enterica serovar Typhimurium. J Immunol 180 (8), 5569-5574 

220. van der Velden, A. W., Copass, M. K., and Starnbach, M. N. (2005) Salmonella inhibit T cell 

proliferation by a direct, contact-dependent immunosuppressive effect. Proc Natl Acad Sci U S 

A 102 (49), 17769-17774 

221. Bumann, D. (2001) In vivo visualization of bacterial colonization, antigen expression, and 

specific T-cell induction following oral administration of live recombinant Salmonella enterica 

serovar Typhimurium. Infect Immun 69 (7), 4618-4626 

222. Yrlid, U., Svensson, M., Hakansson, A., Chambers, B. J., Ljunggren, H. G., and Wick, M. J. 

(2001) In vivo activation of dendritic cells and T cells during Salmonella enterica serovar 

Typhimurium infection. Infect Immun 69 (9), 5726-5735 



Chapter VI  References 

 - 109 -  

223. Svensson, M., Pfeifer, J., Stockinger, B., and Wick, M. J. (1997) Bacterial antigen delivery 

systems: phagocytic processing of bacterial antigens for MHC-I and MHC-II presentation to T 

cells. Behring Inst Mitt  (98), 197-211 

224. Yrlid, U., Svensson, M., Johansson, C., and Wick, M. J. (2000) Salmonella infection of bone 

marrow-derived macrophages and dendritic cells: influence on antigen presentation and 

initiating an immune response. FEMS Immunol Med Microbiol 27 (4), 313-320 

225. Yrlid, U., and Wick, M. J. (2000) Salmonella-induced apoptosis of infected macrophages 

results in presentation of a bacteria-encoded antigen after uptake by bystander dendritic cells. 

J Exp Med 191 (4), 613-624 

226. Winau, F., Kaufmann, S. H., and Schaible, U. E. (2004) Apoptosis paves the detour path for 

CD8 T cell activation against intracellular bacteria. Cell Microbiol 6 (7), 599-607 

227. Houde, M., Bertholet, S., Gagnon, E., Brunet, S., Goyette, G., Laplante, A., Princiotta, M. F., 

Thibault, P., Sacks, D., and Desjardins, M. (2003) Phagosomes are competent organelles for 

antigen cross-presentation. Nature 425 (6956), 402-406 

228. ExPASy ProtScale at http://expasy.ch/cgi-bin/protscale.pl.   

229. Rose, G. D., Geselowitz, A. R., Lesser, G. J., Lee, R. H., and Zehfus, M. H. (1985) 

Hydrophobicity of amino acid residues in globular proteins. Science 229 (4716), 834-838 

230. Zhao, G., and London, E. (2006) An amino acid "transmembrane tendency" scale that 

approaches the theoretical limit to accuracy for prediction of transmembrane helices: 

relationship to biological hydrophobicity. Protein Sci 15 (8), 1987-2001 

231. Hone, D. M., Wu, S., Powell, R. J., Pascual, D. W., Van Cott, J., McGhee, J., Fouts, T. R., 

Tuskan, R. G., and Lewis, G. K. (1996) Optimization of live oral Salmonella-HIV-l vaccine 

vectors for the induction of HIV-specific mucosal and systemic immune responses. Journal of 

Biotechnology 44 (1-3), 203-207 

232. Georgiou, G., Stathopoulos, C., Daugherty, P. S., Nayak, A. R., Iverson, B. L., and Curtiss, R., 

3rd. (1997) Display of heterologous proteins on the surface of microorganisms: from the 

screening of combinatorial libraries to live recombinant vaccines. Nat Biotechnol 15 (1), 29-34 

233. Rizos, K., Lattemann, C. T., Bumann, D., Meyer, T. F., and Aebischer, T. (2003) Autodisplay: 

Efficacious Surface Exposure of Antigenic UreA Fragments from Helicobacter pylori in 

Salmonella Vaccine Strains. Infect. Immun. 71 (11), 6320-6328 

234. Mug-Opstelten, D., and Witholt, B. (1978) Preferential release of new outer membrane 

fragments by exponentially growing Escherichia coli. Biochim Biophys Acta 508 (2), 287-295 

235. Zhou, L., Srisatjaluk, R., Justus, D. E., and Doyle, R. J. (1998) On the origin of membrane 

vesicles in gram-negative bacteria. FEMS Microbiol Lett 163 (2), 223-228 

236. McBroom, A., and Kuehn, M. J. (2005) Outer membrane vesicles. In: Curtiss, R., 3rd (ed). 

EcoSal-Escherichia coli and Salmonella: Cellular and molecular biology, Chapter 2.2.4 

(online), ASM Press, Washington, D.C. 

237. Kuehn, M. J., and Kesty, N. C. (2005) Bacterial outer membrane vesicles and the host-

pathogen interaction. Genes Dev 19 (22), 2645-2655 

238. Ernst, R. K., Guina, T., and Miller, S. I. (2001) Salmonella typhimurium outer membrane 

remodeling: role in resistance to host innate immunity. Microbes Infect 3 (14-15), 1327-1334 



Chapter VI  References 

 - 110 -  

239. Alaniz, R. C., Deatherage, B. L., Lara, J. C., and Cookson, B. T. (2007) Membrane vesicles 

are immunogenic facsimiles of Salmonella typhimurium that potently activate dendritic cells, 

prime B and T cell responses, and stimulate protective immunity in vivo. J Immunol 179 (11), 

7692-7701 

240. Srinivasan, A., and McSorley, S. J. (2007) Pivotal advance: exposure to LPS suppresses 

CD4+ T cell cytokine production in Salmonella-infected mice and exacerbates murine typhoid. 

J Leukoc Biol 81 (2), 403-411 

241. Bernadac, A., Gavioli, M., Lazzaroni, J. C., Raina, S., and Lloubes, R. (1998) Escherichia coli 

tol-pal mutants form outer membrane vesicles. J Bacteriol 180 (18), 4872-4878 

242. Lai, C. H., Listgarten, M. A., and Hammond, B. F. (1981) Comparative ultrastructure of 

leukotoxic and non-leukotoxic strains of Actinobacillus actinomycetemcomitans. J Periodontal 

Res 16 (4), 379-389 

243. Wai, S. N., Takade, A., and Amako, K. (1995) The release of outer membrane vesicles from 

the strains of enterotoxigenic Escherichia coli. Microbiol Immunol 39 (7), 451-456 

244. Horstman, A. L., and Kuehn, M. J. (2002) Bacterial surface association of heat-labile 

enterotoxin through lipopolysaccharide after secretion via the general secretory pathway. J 

Biol Chem 277 (36), 32538-32545 

245. Jones, S., and Portnoy, D. A. (1994) Characterization of Listeria monocytogenes 

pathogenesis in a strain expressing perfringolysin O in place of listeriolysin O. Infect Immun 62 

(12), 5608-5613 

246. Dietrich, G., Hess, J., Gentschev, I., Knapp, B., Kaufmann, S. H., and Goebel, W. (2001) From 

evil to good: a cytolysin in vaccine development. Trends Microbiol 9 (1), 23-28 

247. Nitcheu-Tefit, J., Dai, M. S., Critchley-Thorne, R. J., Ramirez-Jimenez, F., Xu, M., Conchon, 

S., Ferry, N., Stauss, H. J., and Vassaux, G. (2007) Listeriolysin O expressed in a bacterial 

vaccine suppresses CD4+CD25high regulatory T cell function in vivo. J Immunol 179 (3), 

1532-1541 

248. Brewerton, D. A., Hart, F. D., Nicholls, A., Caffrey, M., James, D. C., and Sturrock, R. D. 

(1973) Ankylosing spondylitis and HL-A 27. Lancet 1 (7809), 904-907 

249. Yu, D., and Kuipers, J. G. (2003) Role of bacteria and HLA-B27 in the pathogenesis of 

reactive arthritis. Rheum Dis Clin North Am 29 (1), 21-36, v-vi 

250. Benjamin, R., and Parham, P. (1990) Guilt by association: HLA-B27 and ankylosing 

spondylitis. Immunol Today 11 (4), 137-142 

251. Huang, F., Yamaguchi, A., Tsuchiya, N., Ikawa, T., Tamura, N., Virtala, M. M., Granfors, K., 

Yasaei, P., and Yu, D. T. (1997) Induction of alternative splicing of HLA-B27 by bacterial 

invasion. Arthritis Rheum 40 (4), 694-703 

252. Kirveskari, J., He, Q., Leirisalo-Repo, M., Maki-Ikola, O., Wuorela, M., Putto-Laurila, A., and 

Granfors, K. (1999) Enterobacterial infection modulates major histocompatibility complex class 

I expression on mononuclear cells. Immunology 97 (3), 420-428 

253. Weinstein, I. B., Begemann, M., Zhou, P., Han, E. K., Sgambato, A., Doki, Y., Arber, N., 

Ciaparrone, M., and Yamamoto, H. (1997) Disorders in cell circuitry associated with multistage 



Chapter VI  References 

 - 111 -  

carcinogenesis: exploitable targets for cancer prevention and therapy. Clin Cancer Res 3 (12 

Pt 2), 2696-2702 

254. Guzman, C. A., Borsutzky, S., Griot-Wenk, M., Metcalfe, I. C., Pearman, J., Collioud, A., 

Favre, D., and Dietrich, G. (2006) Vaccines against typhoid fever. Vaccine 24 (18), 3804-3811 

255. Gentschev, I., Dietrich, G., Spreng, S., Pilgrim, S., Stritzker, J., Kolb-Maurer, A., and Goebel, 

W. (2002) Delivery of protein antigens and DNA by attenuated intracellular bacteria. Int J Med 

Microbiol 291 (6-7), 577-582 

256. Ibanez-Ruiz, M., Robbe-Saule, V., Hermant, D., Labrude, S., and Norel, F. (2000) 

Identification of RpoS (sigma(S))-regulated genes in Salmonella enterica serovar typhimurium. 

J Bacteriol 182 (20), 5749-5756 

257. Leeds, J. A., and Welch, R. A. (1997) Enhancing transcription through the Escherichia coli 

hemolysin operon, hlyCABD: RfaH and upstream JUMPStart DNA sequences function 

together via a postinitiation mechanism. J Bacteriol 179 (11), 3519-3527 

258. Nagy, G., Danino, V., Dobrindt, U., Pallen, M., Chaudhuri, R., Emody, L., Hinton, J. C., and 

Hacker, J. (2006) Down-regulation of key virulence factors makes the Salmonella enterica 

serovar Typhimurium rfaH mutant a promising live-attenuated vaccine candidate. Infect 

Immun 74 (10), 5914-5925 

259. Khan, A. Q., Zhao, L., Hirose, K., Miyake, M., Li, T., Hashimoto, Y., Kawamura, Y., and Ezaki, 

T. (1998) Salmonella typhi rpoS mutant is less cytotoxic than the parent strain but survives 

inside resting THP-1 macrophages. FEMS Microbiol Lett 161 (1), 201-208 

260. Robbe-Saule, V., and Norel, F. (1999) The rpoS mutant allele of Salmonella typhi Ty2 is 

identical to that of the live typhoid vaccine Ty21a. FEMS Microbiol Lett 170 (1), 141-143 

261. Tacket, C. O., Hone, D. M., Curtiss, R., 3rd, Kelly, S. M., Losonsky, G., Guers, L., Harris, A. 

M., Edelman, R., and Levine, M. M. (1992) Comparison of the safety and immunogenicity of 

delta aroC delta aroD and delta cya delta crp Salmonella typhi strains in adult volunteers. 

Infect Immun 60 (2), 536-541 

262. Fang, F. C., Libby, S. J., Buchmeier, N. A., Loewen, P. C., Switala, J., Harwood, J., and 

Guiney, D. G. (1992) The alternative sigma factor katF (rpoS) regulates Salmonella virulence. 

Proc Natl Acad Sci U S A 89 (24), 11978-11982 

263. Nickerson, C. A., and Curtiss, R., 3rd. (1997) Role of sigma factor RpoS in initial stages of 

Salmonella typhimurium infection. Infect Immun 65 (5), 1814-1823 

264. Lee, H. Y., Cho, S. A., Lee, I. S., Park, J. H., Seok, S. H., Baek, M. W., Kim, D. J., Lee, S. H., 

Hur, S. J., Ban, S. J., Lee, Y. K., Han, Y. K., Cho, Y. K., and Park, J. H. (2007) Evaluation of 

phoP and rpoS mutants of Salmonella enterica serovar Typhi as attenuated typhoid vaccine 

candidates: virulence and protective immune responses in intranasally immunized mice. 

FEMS Immunol Med Microbiol 51 (2), 310-318 

265. Nagy, G., Dobrindt, U., Hacker, J., and Emody, L. (2004) Oral immunization with an rfaH 

mutant elicits protection against salmonellosis in mice. Infect Immun 72 (7), 4297-4301 

266. Santander, J., Wanda, S. Y., Nickerson, C. A., and Curtiss, R., 3rd. (2007) Role of RpoS in 

fine-tuning the synthesis of Vi capsular polysaccharide in Salmonella enterica serotype Typhi. 

Infect Immun 75 (3), 1382-1392 



Chapter VI  References 

 - 112 -  

267. Germanier, R., and Furer, E. (1971) Immunity in experimental salmonellosis. II. Basis for the 

avirulence and protective capacity of gal E mutants of Salmonella typhimurium. Infect Immun 

4 (6), 663-673 

268. John, M., Crean, T. I., Calderwood, S. B., and Ryan, E. T. (2000) In vitro and in vivo analyses 

of constitutive and in vivo-induced promoters in attenuated vaccine and vector strains of Vibrio 

cholerae. Infect Immun 68 (3), 1171-1175 

269. Chatfield, S. N., Charles, I. G., Makoff, A. J., Oxer, M. D., Dougan, G., Pickard, D., Slater, D., 

and Fairweather, N. F. (1992) Use of the nirB promoter to direct the stable expression of 

heterologous antigens in Salmonella oral vaccine strains: development of a single-dose oral 

tetanus vaccine. Biotechnology (N Y) 10 (8), 888-892 

270. Orr, N., Galen, J. E., and Levine, M. M. (2001) Novel use of anaerobically induced promoter, 

dmsA, for controlled expression of fragment C of tetanus toxin in live attenuated Salmonella 

enterica serovar Typhi strain CVD 908-htrA. Vaccine 19 (13-14), 1694-1700 

 

 

 

 



Chapter VII  Appendix 

 - 113 -  

VII. Appendix 

VII.1. Units 

 
% per cent 

Å Angstroms 

bp, kb base pairs, kilo base pairs 

°C degree Celsius 

F farad 

g gram 

h hour(s) 

kDa kilo Dalton 

l liter 

M molar [mol l-1] 

m meter 

min minute(s) 

rpm revolutions per minute 

s second(s) 

V Volt 

× g factor of gravity 

 

VII.2. Prefixes 

 
f femto 10-15 

p pico 10-12 

n nano 10-9 

µ micro 10-6 

m milli 10-3 

c centi 10-2 

d deci 10-1 

h hecto 102 

k kilo 103 

M mega 106 

G giga 109 
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VII.3. Abbreviations 

 
aa amino acid(s) 

approx. approximately 

AKP alkaline phosphatase 

Amp  Ampicillin 

AmpR Ampicillin resistance 

APC antigen presenting cell 

BCG Mycobacterium bovis Bacille Calmette-Guerin 

BHI brain heart infusion 

BSA bovine serum albumin 

CFU  colony forming units 

CIAP calf intestine alkaline phosphatase 

Cm Chloramphenicol 

CmR Chloramphenicol resistance 

CTL cytotoxic T-cell 

CtxB cholera toxin subunit B 

DC dendritic cell 

dH2O de-ionized water 

EDTA  ethylene diamine tetraacetic acid 

ELISA enzyme linked immunosorbent assay 

ELISPOT enzyme linked immunospot assay 

Ery Erythromycin 

EryR Erythromycin resistance 

FACS fluorescence activated cell sorting 

FITC fluorescein isothiocyanate 

Flp flipase recombinase 

FRT  flipase recombinase target 

HLA human leukocyte antigen 

HlyAs HlyA secretion signal 

HRP horseradish peroxidase 

IFN interferon 

IgG immunoglobulin G 

IL interleukin 

Kan Kanamycin 

KanR Kanamycin resistance 

LB Luria Bertani 

LBV live bacterial vaccine 

LisTB T and B cell epitope of the p60 protein from Listeria monocytogenes 

Lm Listeria monocytogenes EGDe ∆trpS 



Chapter VII  Appendix 

 - 115 -  

LPS lipopolysaccharide 

MHC major histocompatibility complex 

MIC minimal inhibitory concentration 

MSZ Institute for Medical Radiation and Cell Research 

NK natural killer cell 

NKT natural killer T-cell 

Novo Novobiocin 

OMVs outer membrane vesicles 

o/n over night 

ops  operon polarity suppressor  

Ova chicken ovalbumin 

OVA ovalbumin CD4 and CD8 epitope 

PAGE polyacrylamide gel electrophoresis 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PE phycoerythrin 

PSA prostate specific antigen 

RTX repeats in toxin 

s.c. subcutaneous 

SDS sodium dodecyl sulphate 

Stm Salmonella enterica serovar Typhimurium aroA SL7207  

StmTC Salmonella enterica serovar Typhimurium aroA ∆tolC SL7207  

TAA tumour associated antigen 

TC tolC deleted 

TCA trichloric acid 

TCR T-cell receptor 

TetR tetracycline resistance 

Th T-helper (cell, response) 

TNF tumour necrosis factor 

Treg regulatory T-cell 

Tris tris (hydroxy methyl) aminomethane 
TS temperature sensitive replication 

Ty21a Salmonella enterica serovar Typhi Ty21a 

Ty21aTC Salmonella enterica serovar Typhi Ty21a ∆tolC 

UDP  uridine diphosphate 

w/o without 

× times 
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VII.4. Publications 

VII.4.1. Articles 

 

Stegmeier, J. F., Polleichtner, G., Brandes, N., Hotz, C., and Andersen, C. (2006) 

Importance of the adaptor (membrane fusion) protein hairpin domain for the 

functionality of multidrug efflux pumps. Biochemistry 45 (34), 10303-10312 

 

Fensterle, J., Bergmann, B., Yone, C. L., Hotz, C., Meyer, S. R., Spreng, S., Goebel, 

W., Rapp, U. R., and Gentschev, I. (2008) Cancer immunotherapy based on 

recombinant Salmonella enterica serovar Typhimurium aroA strains secreting 

prostate-specific antigen and cholera toxin subunit B. Cancer Gene Ther 15 (2), 85-

93 

 

Fueller, J., Becker, M., Sienerth, A. R., Fischer, A., Hotz, C., and Galmiche, A. (2008) 

C-RAF activation promotes BAD poly-ubiquitylation and turn-over by the proteasome. 

Biochem Biophys Res Commun 370 (4), 552-556 

 

Hotz, C., Fensterle, J., Goebel, W., Meyer, S. R., Kirchgraber, G., Heisig, M., Fuerer, 

A., Dietrich, G., Rapp, U. R., and Gentschev, I. (2008) Improvement of the live 

vaccine strain Salmonella enterica serovar Typhi Ty21a for antigen delivery via the 

hemolysin secretion system of Escherichia coli. Int J Med Microbiol accepted 
 

Galmbacher, K., Hotz, C., Heisig, M., Wischhusen, J., Galmiche, A., Bergmann, B., 

Gentschev, I., Goebel, W., Rapp, U. R., and Fensterle, J. Block of tumor growth in an 

experimental breast cancer model by elimination of macrophages with a novel 

attenuated variant of Shigella flexneri. submitted 
 

Hotz, C., Wagner, S., Fensterle, J., Goebel, W., Rapp, U. R., and Gentschev, I. 

Cancer Immunotherapy based on a novel recombinant Salmonella enterica serovar 

Typhimurium strain expressing epitopes of prostate-specific antigen (PSA) in surface 

exposed form. in preparation 
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VII.4.2. Patents 

 

Recombinant bacteria with E. coli hemolysin secretion system and increased 

expression and/or secretion of HlyA, process of manufacturing and uses thereof. 

Patent pending (Z08-02), Æterna Zentaris (Hotz, C, inventor share 35 %) 

 

Attenuated bacteria capable of inducing apoptosis in macrophages, process of 

manufacturing and uses thereof. Patent Pending (Z08-01), Æterna Zentaris (Hotz, C., 

inventor share 5 %)  
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