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Abstract The method of moving asymptotes (MMA) which 
is known to work excellently for solving structural optimization 
problems has one main disadvantage: convergence cannot be guar
anteed and in practical use this fact sometimes leads to unsatisfac
tory results. In this paper we prove agIobaI convergence theorem 
{m a new method which consists iteratively of the solution of thc 
known MMA-subproblem and a line search'performed afterwards. 

1 Introduction 

In the last few years, the concept of convex approximations 
has caused more and more interest in structural optimization. 
A struetural optimization problem written in the form 

mm !(x) (x E JRn), S.t. hj(x) $ 0, j = 1 ... M, 

XEX, (1) 
where X :== {x I ~j $ Xj $ Zj , i = 1 ... n} ia replaced by 
a sequence of easier to solve, convex, separable subproblems 
w'hieh approximate the original problem. The functions / 
and hj (j = 1. " M) are assllmed to be continllously differ
entiable and the feasible region is assumed to be non-empty. 

The most general of these methods, the Method of Mov
ing Asymptotes (MMA), is nowadays implemented in many 
software systems (see e.g. Hörnlein and Sehittkowski 1992). 
The experience of users ia that if MMA eonverges, then it 
approximates a solution rapidly by a sequence of steadily im
proved designs, but the major drawback is that it diverges in 
quite a few of applications. 

This was the reason for the investigations which resulted 
in this paper. By adding a line search subject to a func
tion measuring the global convergenee, the behaviour of the 
method ean be stabilized without losing the known advan
tages. 

In the following section, we will describe the optimization 
methods CONLIN and MMA and outline some of their main 
features. In Section 3 we will explain the new method and for
mulate the most important results including a proof of global 
convergence. Section 4 contains one possibility to overcome 
difficulties concerning the solvability of subproblems. The 
numerical behaviour is illustrated by some examples in the 
final section. 

2 CONLIN and MMA 

Using the idea of using rcciprocal variables, Fleury and 
Braibant (1986) developed the optimization method CON
LlN (convex linearization). An approximation of a function 

is defined by separate linearization for each component de
pending on the sign of the partial derivative at the expansion 
point. If the sign is positive, then the linearization is per
formed with respect to the original variable, if the sign is 
negative, then it ia subject to the inverse variable, leading to 
a convex approximation of the original function. 

The Method of Moving Asymptotes (MMA), howcver, is 
a generalization of CONLIN. Svanberg (1987) proposed a lin
earization with respect to substituted variables 

1 1 
and 

Uj - Xj Xi - Li ' 
respectively, where Uj and Li are some chosen parameters. 

Definition 2.1. Let 9 be a continuously differentiable function 
on X. An MMA approximation g of 9 ia defined by 

g(x) = g(xO) + E ~I [(Ui - x?)2 - (Uj - X Q)] 
+ aXj xO Uj - Xj I 

where meana summation over all components 

ag 
where the partial derivative - at the expansion 

aXj 

point xO ia non-negative (negative); g ia defined on Dg : == 
{x I max(Li,!:j) < Xi < min(Uj,zj), i = 1. .. n}. 

It ia easy to verify that g is a first-order approximation of 
g, i.e. 

g(xO) = g(xO) and 'Vg(xO) = 'Vg(xO) , 
and g is eonvex and separable, where 9 stands for the objec
tive or eonstraint function, respectively. 

Remarlcs 

• The CONLIN method is obtained by letting Li = 0 and 
Ui --> 00 (i == 1 .. . n), and 

• Li and Uj are asymptotea for g. 
The algorithm proposed by Svanberg (1987) ean be outlined 
as folIows. 
Step 0: Choose a starting point xO, let k := O. 
Step 1: Compute f(x k ), hj(xk ), 'V/(xk), 'Vhj(xk ), j 

1...M. 
Step 2: Define a aubproblem, replacing /, hj by j, hj, j = 

1 ... M ,according to (2.1). 
Step 3: Solve this subproblem and let its solution be denoted 

by x k+1. Let k := k + 1 and goto Step 1. 



We neglect here certain details, for example, the choice of the 
asymptotes, which are in general updated in each iteration. 
When applying this algorithm eine sometimes may observe 
difliculties concerning the objective function. It is possible 
that the approximation is linear or almost linear leading to 
useless subproblems. Therefore, Svanberg (1993) suggested 
to append a term to the approximation of the objective func
tion which guarantees strict convexity of the objeetive fune
tion. We use here the following mode, where we first rewrite 
the original approximation, 

}(x) = 7 + L -, _ci_ - L _c;_'. 
+ Vi - xi _ xi- Li 

Definition 2.2. For the (continuously differentiable) objective 
function of (1) we use the approximation 

- ~ ,,[, C;€(Xi-x?)2] ,,[ ci. 
fex) = f + L...J U' _' + U' _ .' - L...J ~-+ ' x, , x, _ x, , .. 

(xi - X~)2] 
xi - Li ' 

where ( is some p~sitiv~ number. 
. This approximation remains separable and is now strictly 

convex with two major advantages. . 
• The subproblem has a unique sol~tion (if it has at least 

one). . 
• A very eflicient duarapproach for solving the subproblem is 

applicab!e (cf. Fleury 1989; Svanberg 1987; Zillo1;>er 1992). 
To simplify the notation, w,e shall use the following "ab-

breviation.,' .' . . 
Definition 2.3. By SP(xk) (§.ubproblem) we state the opti. 
mization problem -

- -. I min fex) subject to hj(x) ~ 0 , J = 1 ... M , x EX, 

where x k is the expansion point and the /Unctions are chosen 
according to (2.1) and (2.2) and X' := {x I max [~i, xf -

w(x7 - Li)] ~ xi ~ min [xi, xf + w(lf; -'- xf)]} , (w E]O,I[ 
~~, , ' 

We note,that always X' '~X and all x E X' are bounded 
away from the asymptotes. Next, we state a result which is 
very important in identifyinga solution. 

Lemma 2.4. x· is a stationary point.oj (1) if and only ifx· 
is a stationary point of SP(x*). 

Proof: Zillober (1992). 

Of course the choice of asymptotes is a crucial point for 
the behaviour of the algorithms discussed in this paper, but 
it is not our central scope. For theoretical purposes we now 
restrict the set of possible choices. 

Definition 2.5. A strategy for the choiee oj asymptotes is 
ealled eontinuous, if for any sequence {xk } -+ x we have 
Lj(xk) --+ Li(X) and Uj(xk) -+ lfj(x), respectively, for all 
i = 1 ... n and for all x,xk EX. 

By the notation Lj(xk), Ui(Xk) we mean the asymptotes 
resultin* from the evaluation of the chosen strategy at the 
point x . These asymptotes may depend on the current iter
ation point, additionally on previous iteration points as the 
strategy in Section 5, or may be independent of the iteration 
point (note that, for example, the CONLIN method results, 
if Li = 0 and Ui = +00 are chosen for all i = 1. .. n). In 
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the theorems stated later we will assurne that the strategy 
for the choke of the asymptotes fulfills (2.5). The reason is 
that (together with other assumptions) the feasible regions of 
the subproblems then vary continuously with respect to the 
expansion point. Tests with different strategies showed that 
global convergence of the new method is observed by apply
ing non-continuous strategies. In other words, the eontinuity 
of the strategy for the choice of the asymptotes is sufficient 
for global convergence, but not necessary. 

For the CONLIN method, Nguyen et al. (1987) gave a 
convergen,ce proof but only for the case that (1) consists of 
concave functions, which is of less practical ihterest". They 
indicated furthermore by some' examples that a generaliza
tion to non-concave funet,ions is not pos~ibl~. Zillober(1992) 
showed that a similar convergence analysis could be applied 
to MMA. Us~ng the flexibility of the asymptotes which in
fluence the cJ.uvature of th~ approximations, it is possible to 
omit the concavity as~umption. Howev~r, the resulting' r~ 
striction on the choice of th" asymptotes le~ds to a ~ery slow 
numerical convergence of the algorithm'so that the theoreti
cal improvement does not reEiult in a more efficient algorithm. 
1'his was the motivation to look for another way to prove cop-, 
vergence of the method without losing the,good behavlour of 
the original method. These results' are, report,ed in the next 
section.' , " 

3 Sequential CODvex prograinming' 

It iswell-known that by,adding' a line seareh with respect 
to a function measuring the global convergenee of an algo. 
rithm, the gehaviour of an optimization methqd is improved. 
Generally, such a line searth needs additional evaluations of 
the original functions 6f (1). Therefore most people reject 
this idea to globalize MMA, since its numericalperformance 
is excellent even without a stabilization. In this section, we 
prove that MMA, together with a line search subject to an 
augmented Lagrange function, leads to a gleibally convergent 
optimization method. The examples in' Sectio'n 5 are chosen 
to illustrate'this fact. However, first we rewrite (1) in order 
to obtain a simplified notation in this section, 

min fex) S.t. hj(x) ~ 0, j = 1 ... m , (2) 

where m = M + 2n, i.e. we also write the box constraints 
in the form hj(x) ~ O. Now we introduce the augmented 
Lagrange function. 

Definition 3.1. The augmented Lagrange function iPr : 
IRn+m --+ IR associated to (2) is for a fixed parameter r > 0 
defined by 

iPr (~) = f(x) + 

otherwise 

This function is also used in the general purpose optirnization 
method SQP (Sequential Quadratic Progrl),mming) by Schitt
kowski (1981) as a merit function and is known to work weil 
for stabilizing the method. 

The motivation to choose the augmented Lagrange merit 
function results from the following two well-known state
ments. 
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(1) A point (~:) is stationary for tPr if and only if (~:) is 
stationary for (2). 

(2) Under some regularity eonditions there is an F > 0 such 
that x* is aglobai minimizer for ~r(x) := tPr(x, u*) for 
all r ~ F. 
To simplify the notation wc use the following definitions. 

Definition 3.2. Let u E R m be a vector of multipliers and 
x E X be an arbitrary point. Then 
- c- - l h -

• U{ ::j ~l 'i; . ~u::; ~,~(~e ui = 
r , 

o , otherwise 

• hex) := (hl (x), ... , hm(x»T , 
• h(x):= (hl(x), ... ,hm(x»T , where 

hj(x) = { hj(x) , if -~ ~ hj(x) 
o , otherwise 

• • • T 
• hex) := (hl (x), ... , hm(x)) ,where 

• { hj(x) , if - Uj ~ hj(x) 
hj(x) = U' r 

_.2., otherwise 
r 

• A(x) := (Vhl (x), ... , Vhm(x)l , 

• J := {j 11 ~ j ~ m; - '; ~ hi(X)} , 

• [( := {j 11 ~ j ~ m; j rt J} . 
Henee, the gradient of the augmented Lagrange function 

IS 

VIP (X\ = { V fex) + AJx)[ii + rh(x)] } 
r uJ hex) . 

Before we formulate the algorithm we state some auxiliary 
results. 
Lemma 9.3. Let us consider SP(xk ) where xk is an arbitrary 
element of X. Then 
(a) h;(x) and fex) are uniformly bounded on X for alt j = 

1 ... m; 
(b) Vhj(x) and Vf(x) are uniformly bounded on X for alt 

j = 1 ... m; 
(e) hj(x) and !(x) are uniformly bounded on X' for all j = 

1 ... mj 
(d) Vhi(x) and vi(x) are uniformly bounded on X' for all 

j = 1 ... mj 

(e) ek : = min {. min [2f (U~ - zt):] , 
1 =1... n (Uj - L j ) 

. min [2f (zt -Lt):]} (> 0) is a lower bound such 
1== 1... n (U j - Li) 

2 -I thai ß { ~ ek for a/l x E D,- (i = 1.. . n). 
ßx· 

I x 
(f) There are € and e > 0 such that € ~ ek ~ e for alt k. 

Corollary 9.4. Let yk+l be the optimal point of SP(xk ). 
Then 
(a) \l f(xk)T (xk _ yk+l) ~ j(xk ) - i(yk+l)+ 

."k Ilyk+1 - xkl12 , where fJk := e: and 11 . 11 denotes 

ihe Euc1idean norm throughout. 
(h) If xk is feasible for (2) then Vf(xk)T(xk _ yk+l) ~ 

."k Ilyk+1 - xkf . 

(e) There are 77 and 7] > 0 such that 1] ~ fJk :::: 7] for all k. 

Lemma 9.5. Ifx E X and 0 ~ Uj ~ Umax for all j = 1 ... m, 

then tPr (~ i8 uniformly bounded /rom below for a/l r ~ 1. 
Thc proofs for these statements are straightforward and 

omitted here. The interested reader is referred to the doctoral 
dissertation by Zillober (1992). 

Now we formulate the SCP (Sequential Convex Program
ming) algorithm in order to show the similarity to the SQP
method. 
Step 0 : Choose xo E X, u o ~ 0, 0 < c < 1 (e.g. 0.001), 

0< Ij; < 1 (e.g. 0.5), r > 0 (e.g. 1), let k := O. 
Step 1 : Compute f(x k ), V f(x k ), hj(xk), Vhj(xk ), j == 

1 ... m. 
Step2 : Compute Lf and Uj

k (i = 1 ... n) by some scheme; 

define j(x) , hj(x), j == 1 ... m [cf. (2.1) and (2.2)]. 
k+l 

Step 3 : Solve SP(xk ); let (~k+l) be the solution, where 

vk+ 1 denotes the corresponding veetar of Lagrange 
multipliers. 

k 
Step 4 : If yk+1 = x k stopj (~k) is the solution. 

Step 5 : Let sk := (~:::::~::~) ,ök := 11 yk+l - xk 11. T}k as 

defined in (3.4). 
x k x k XC T k 

Step 6 ; Compute tPr (uk), V4ir(uk), V4ir(uk) s . 
k T k 7]k(Ök )2 

Step 7 : If V4ir (~k) S < --4- let r ;== 10r and goto 

Step 6; otherwise compute the smallest j E lNo, such 

[ 

k . k] k . k T k 
that4ir (~k)-Ij;JS ::;tPr(~k)-C!J»VtPr(~k) s 

(Armijo); let (1'k:=!f;1. 

( X
k+1) (X

k
) k k Step8:Let u k+1 := u k -(1' s, k:=k+1,gotoStepl. 

The major diffieulties in proving global eonvergence far 
the new metbod are to show that tbe seareb direction defined 
in Step 5 of the algorithm is a deseent direetion for 4ir and 
that the resulting sequenee of penalty parameters is bounded. 
To prepare the proofs we proeeed as folIows. 

For x E X' we rewrite the approximating functions 

i(x) = i(xk ) + Vi(xk)T(x - xk) + Rt<x) , 

hj(x) = hi(xk ) + Vhj(xk)T (x - xk) + Rh. (x) , 
J 

wbere R i' Rhj : m.n 
-4 R are continuously differentiable . 

Sinee we have eonvex approximations we conclude Rj(x), 

Rh.(x) ~ 0 for all x E X'. 
J 
Since the approximations are of first-order for objective 

funetion and non-box-eonstraints, and the box-constraints 
ean be rewritten as hj(x) := hj(x)+K.j with K.j :::: 0 eonstant, 
we further write: 

i(x) = f(x k ) + V f(xk)T (x - xk) + Rj(x) , 

- k kT k . hj(x)=hj(x )+Vhj(x) (x-x )+Rii.(x),J=1...m . 
J 

_ [_ _]T 
Next we define: h(x):= hl (x), ... , hm(x) and Rh (x) ;= 

[ ]
1' - k k T Rh! (x), ... , Rhm (x) . Henee hex) = hex )+A(x ) (x-

x k ) + Rh(x) . 



For the optimal solution yk+l of SP(xk) we define and con
clude as folIows. 

Corollary 3.6. Let Llx. := yk+l ,-- x k . Then 

(80) A(xk)T L1xk = h(yk+l) - h(xk ) - Rh(yk+l), 

(b) Rh(x) ~ 0 for al/x E X', 
(c) ü + rh(x) ~ 0, 
(d) h(yk+l) :5 0 since yk+l is feasible for SP(xk ). 

A result from perturbation theory together with (2.5) teils us 

that Llxk is a continuous function with respect to x k . This 
is the main reason for introducing the qualification (2.5). 

. Th~ 'next lemma sh~ws that the elements of the sequence 
(xk , uk~k=Ö:;,2,,,. are all~iements of a predefined compact 
set., .... .. 

. .' k k . .... 
Lemma 3.7. Let thesequence (x ,u )k=0,1,2", be produced 
by SCP, all subproblems be solvable and gradients of active 
constrai'T}ts at the optimal points . .of SP(xk ) be linear inde-. 
pendent,as weil as those of SP(x*) where x* is any possible 

accumu[ation .point of (Xk)k==0,1,2,,, .. Then aUpoints'xk are 

in X and all u k are in a compact set U. 
Proof: Zillober (1992). . 
Remark. Theproperty x k E X is a: trivial conclusionof the 
definition of X'. . 

Now we are able to st'ate the first main res~lt. 
Theorem 3.8. Let the assumptions of (3.7) be valid; .hence 

there is a umax with u7; ~j+l :5 u~~Jor all k ~ O~nd 
j =': 1 ... m. Let xk E X and u k .~ Obe given where x., is not 
a stationary po(nt or (2);8k ', TJkand 8 k are defined as.in the 
algorithm and let thechoic~ of asymptotes be continuous. 

(1) The~ .ther,e 'i~ a penalty parameter rk > O· such thaisk is 

a directionof descen'/ for' all r ~ rk forlhe augmented 
Lagrange function tPr , .i. e. 

VtP (Xk)Tsk > 7]k(ok)2 for alt r> fk.· 
T u k ~ 4 J' -

(2) For each ji1:ed 0 > 0 there is a finite rO such that for all 
x k . k 

(u k ) with 0 ~ 0 we have 

k T k rhok )2 7]0 2 
VtPr(~k) s ~ -. -4- ~ 4"" for aU r ~ rO . 

x k T k 
Proof· VtPr (uk) s = 
- V f(xkl Llxk - [ük + rh(xk ) ( A(xk)T Llxk -

h(xk)T(vk+l _ u k) = -Vf(xk)T Llxk _ [(uk+ 

rh(xk )( [h(yk+1) - h(xk ) - Rh(yk+1)] _ 

h(xkl (vk+l - u k ) cf. (3.680) = -V f(xk)T L1xk -

Juk + rh(Xk}r h(yk+l),+ [uk + Th(xk)r h(xk) + 

::;0 

Jük +rh(xk)r Rh(yk+l),_h(xk)T(vk+1 _ 

.... 
2:0 

u k) cf. (3.6b, c, d) 2: -V f(xk)T L1xk + (ükl h(xk ) + 
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rh(xk)Th(xk ) _ h(xk)T (vk+1 _ u k) = _ V f(xk)T Llxk + ----....--
(a) 

L u~hj(xk) + r L h;(xk ) - L hj(xk ) (vj+l - u~) + 
JE] JE] JE] 
~~' '" 

(b) (e) (d) 

k 

L 11,: (vj+l - u~) cf. (3.2) . 

jEK , ... 
(e) 

Using the last inequalitywe first prove part (2) of the 
. theorem.:För this purpose, we will show that critical terms 

are sufliciently small for large penalty parameters. . 

Let xk be feasible. By (3.4b) we then have 

-Vf(xk)T Llxk ~ TJk IIL1xk112 = 7]k(ok)2 > O. 

If] = 0: (b), (c) and(d) ar.e empty sums, 

l(e)1 = ;L uj(vj+l-un :5 ;mu~ax independent 
JEK ,. . . 

b( the size ofI<. . ~Hence weha'vefor 'r ,~rl .-
~ 2 2k T 
4umax I I 7]0 h' (X) k m--2-: (e):5 4 T Iß· means 'iltPr uk S ~ 

'. 7]6 . .. 
7]k(ok)2 

3--
4

- for aH r ~ rl. 

If ] # 0·: .. 

We h1).ve(c) ~ 0: Similar to the above is l(e)1 ~ 1'/!2 for aH . 
r ~ Ti. . 

7]0 2 
(b) : .Assume l(b)1 ~ T (otherwise there is nothing to 

show!) 

l(b)1 :5 Umax L h(xk)1 => L Ihj(xk)1 ~ 8
TJ02 

This 
. JE] jE]' Umax 
surn. consists .of. at most m elements anq, is essentially not 

. . " '. . 2 

influenced by those elements where Ihj(xk)1 :5 ~-8TJ{; . 
. m Umax 

Since jE] we ha've for 8011 j with IhJ.(xk)1 > ~~ : 
m 8umax 

uk 1 62 uk 
_-.1. < h '(xk) < ___ 7] __ and _ -.1. > _ umax. 

r - J m 8umax r - r 

However, for r > r2 := m 8u~;x this j is in K and does 
1'/0 

therefore not increase (b). 

(d) : Analogouslyeither Ihj(xk)1 :5 ..!..~, or jE K for 
m8umax 

1)02 

r> r2 such that l(d)1 < S. 
For each feasible x k we conclude 

k T k 7]k(ok)2 
V.pr(~k) S ~ --2- for 8011 r > max{r},r2}' 

Now we assurne that x k is infeasible. Therefore there is 
at least one j with hj(xk ) > O. This j is an element of ] 
for all positive rand is a non-box constraint because of the 
definition of X' . 
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Corollary (3.4a) teils us that (a) ~ j(xk ) - j(yk+l) + 
I]k (6k )2. Since xk is now infeasible we can no longer con
clude that j(xk ) - j(yk+l) ~ O. IIowever, there is ß1 > 0, 

such that for all xk where Ilxk - yk+lll ~ 6 we have: 

. max hj(xk ) ~ ßl => j(xk ) - J(yk+1) ~ - 1]6
2 

; ß1 does 
J=l...m 4 
not depend on x k (E X) since the feasible region is compact. 

I]k(6 k)2 
These conditions yield (a) ~ 3--

4
-, In other words, com-

pared with (3.4b) a weaker condition is also valid for expan
sion points x k , which are "slightly infeasible". Now we have 
to consider the other terms, 

l(d)1 ~ Umax.L Ihj(xk)1 ::; 1]~2 <=> L Ihj(xk)1 ::; 
JE! jEj 

~. This condition is fulfilled, if (e.g.) all Ihj(xk)1 ::; 
8umax 

~ 81]6
2 

=: ß2 . If hj(xk) < 0 it is valid for r > r2, since 
m Umax 
this j then belongs to K. 
(b): Since uj ~ 0 all j E J where hj(xk ) ~ 0 are positive 
elements in (b) and cau therefore be neglectedj i.e. with the 

1]62 
same arguments as above we have for r > r2 : (b) ~ -S. 

Now let ß := min{ßlj ß2} and assume hj(xk ) ::; ß for all 

j. Since (c) ~ 0 and l(e)1 ::; 1]:2 for r ~ rr we conclude : 

x k T k I]k(6 k)2 1]62 1]62 1]62 I]k(6k)2 
'il~r(.I:) s > 3-------- > --

n - 4 884- 4 
far all r> max{r1, r2}' 

Otherwise, there is at least one j with hj(xk ) > ß . Gen
erally we have: 

l(a)1 ::;11'ilf(xk)IIIILlxkll::; max 11'il/(xk)11 max IILlxkli = 
xkEX xkEX 

:'Yl 

l(b)1 ::; mUmax max hj(xk ) =: 1'2, 
xkEX 

l(d)l::; mUmax max hj(xk ) = 1'2 , 
xkEX 

l(e)1 ::; mU~ax =: 1'3 for r ~ 1, 

rh6k
)2 ::; !7j max IILlxk ll2 =: 1'4 . 

4 4 xkEX 

In our situation we have in addition (e) ~ rß2. 

(3.3b) 

(3.3a) 

(3.4) 

k T I]k (6k )2 
=> 'il~r (~k) sk ~ -1'1 - 1'2 - 1'3 + rß2 ~ --4- for r ~ 
r > 11 +1'2+1'3+14 independent of x k (E X) 3 - ß2 

k T I]k(6k )2 
This yields 'ilq;r(~k) sk ~ --4- for r > r6 := 

max{rl,r2,r3}' which proves the second part of the theo
rem. 

Replacing 6 by 6k and I] by I]k we cau show the existence 
of corresponding rf, r~ (instead of rl> r2, independent of k) 

k 
for a fixed ruk) where x k is fcasible, with the same argumen-

tation and hence of Fk. Howevcr, with these arguments we 

can no longer guarantee the boundedness of Fk since 6k can 
be arbitrarily smalI. 

For infeasible x k there is at least one jE {I, ... , m} where 
hj(xk ) = ß > O. Therefore the condition is fulfilled with 

~ 
> 4 + 1'1 + 1'2 + 1'3 S' ß- . h b b' '1 r _ ß2 . mce uug t e ar ltran y 

small we cannot conclude the boundedness of the penalty 
parameter in this case also without further arguments. 

The next theorem shows us conditions which guar an tee 
the boundedness of the penalty parameter also in the case of 
ok --+ O. 

Theorem 3.9. Let the assumptions 0/ (3.7) be valid and as

sume a continuous ehoice 0/ asymptotes. For 6k '" 0 we 
link vk+1 11 2 k 

dejine' Cik .- - Let (x,l:) , where xk is not a . .- (6k )2 . n 

stationary point for (2), be determined by the SCP-algorithm 
and fuljill the following two conditions: 

(a) j E J if and only if hj(yk+l) = 0 (j = 1 ... m) (i.e. 
subproblems and the original problem identify the same 
set of active constraints), 

(b) there is an Ci E IR independent of k, such that ci ~ Ci < 
00 

Then there is a 0r. > 0, such that 

k T k rhok )2 k k 
'ilq;r.(~k) s ~ --4- for all (~k) with 6 ::; 6r., 

where 1: := rnin {lOj : j E INo, lai ~ 2;} . 
Proof. Since we know the couect set of active constraints we 
have uj = vj+l = 0 for all j E K because of the station-

arity conditions of SP(xk). Therefore: nk = uk , v k+1 = 
vH1 ,h,(xk) = h(xk ). Morcover, hj(xk ) = hj(xk ) is valid 
also for active box-constraints. 

Using Taylor's formula and the sufficient differentiability 
of the approximating functions in X', we can write: 

!(x) = f(xk ) + 'il f(xk)T (x - xk) + ~(x - x k )T'il2 J(xk)(x-
2 

x k) + JR(x) , hj(x) = hj(xk ) + 'ilhj(xk)T(x - xk ) + 

~(x - x k )T'il2hj(xk)(x - xk) + hj,R(X) , 

where JR, hj,R (j E J) : IRn --+ IR are differentiable like J 

and hj. Considering Lagrange's remainder we conclude 

Hence, we write the gradients 

'il !(x) = 'il f(x k) + 'il2 J(xk)(x - x k) + 'il !R(X) , 

'ilhj(x) = 'ilhj(xk ) + 'il 2hj(xk)(x - xk) + 'ilhj,R(X) , 

where 11'il!R(X) 11 , 11 'ilhi,R(X) 11 = 0 (lix - xkln . 

Using these equations the stationarity conditions for 
SP(xk) are 



",' 

,,' 
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(i) \1 f(xk) + \12 !(Xk)(yk+1 - Xk) + \1!R(yk+l) = (L\xkl\12 !(Xk)Llxk +(Vk+1 f A(Xk)T.1xk -

- j~1 vj+l [\1hj(xk) + \12h j (xk)(yk+l - x k)+ '2:l1k(.5k )2 (3.4),(3.3e) , 

\1hj,R(yk+l)] , [Uk + r.h(Xk)]T A(Xk)T L\xk _ ~(Xk)T(v~+l _ U
k), + 

(ii) vj+1 [hj(xk) + \1hj(xk)T(yk+1 _ X k) + i(yk+1- =h(xk)T(vk+1_Uk
) 

xkl\12hj (xk)(yk+l - Xk) + hj,R(yk+l)] =0, j = 0[(6k)3] ~ 'r/k(6k )2 + (Vk+1)Th(yk+1) _(vk+1)Th(xk) -
1 ... m ' =0 v( ii) , 

(iii) hj(xk) + \1hj(xk)T(yk+1 - x k) + i(yk+1 -
xk)T\12hj(xk)(yk+l _ x k) + hj,R(yk+l) :::; .0, j = (vk+ll H(L\xk) -,Svk+

1
lhR(rk+1),-

... " l~+lm, ," ." , . O[(6k)3] 
. (IV) v' "~O, J = 1. .. mj .... • . :. 

(i)' y;el~; .':' . ~;f(xk}T6.~k·. "= c' (L\xk jT\12 /(~k)~~k+ . , , [uk + r.h(xJ]T/i(ykH ) +[it + r.h(x~)]Th(xk) + 
VJR(yk:t-l)T Ll~k +'(v;k,+l)T A(x~)! L1X'~+ :::;0, ct(a.) , "." 

. '{J~;v;+l [\12h~ ~~k)4xk' +\1hJ'R(~k~~ )r}T L\x~. ", [ii\~r.~(;Ö]T H(L\~h+ Juk+th(~~~TiiRtyk+ll-' 
. 0[('6k)3] 

FI-om thedeflniti~l!~f hj ~ekhow, .:, ' 

A{''fk{ 4xk ==h(~k+l) _ h(~k) -:~H(L\xk'j - hR (yk+1),; 

, f :wh,ere::",. ".' .. ; ': ' 

·iiR(/+1):=lh1;R(yk+l), .. :;,hm ,R(yk+l)]T, 

~d ~ er. 

',IH4JCk,) :'~H(~k+I ~~k)!'Y2hl(Xk)(yk+l_Xk),,::, 

'~(y~~l'_'Xk)T~~~~~Xk)(y~+~ ~x~')]~< .". ' .. 
Ir jE Jjthen';' " 

ihj(xk)1 = Ihj(xk)j = Ihj(xk) ,_ hj(yk+1)1 

[since hj(yk+ 1) =.0] = . 

Ihj(xk)- hj(xk) - \1hj(xk + O(yk+1_ xk)l (yk+1 _ xk)1 , 

, (where 0 E [Oj 1]) = 
I"':' \1hj(xk +O(yk+1_ xk)l(yk+1_ x k)l:::; Lllyk+l_ x kll, 

with L? 0 (3,3d). " 
Now we are. ahle to derive the necessa~y inequality 

xk T k 
\14>z:.(uk) S = 

-\1f(xk)T L\xk _ (uk + r.h(xk»T A(xk)T L\xk _ 

h(xk)T (vk+1 _ u k) = (L\xk)T\12 !(xk)L\xk + 

\1!R(yk+ll L\xk +(vk+1)T A(xk)T L\xk + 
, v J 

O[(6k)3] 

m 

L vj+1(L\xk)T\12hj(xk)Llxk + 
j=l 
'~--------v-------~ 2:0 (convexity) 

m 

L vj+1\1h j ,R(yk+ll L\xk _(uk + 
j=1 
~----__ ~ ______ -J 

O[(6k)3] 

r.h(xk)l A(xk)T L\xk _ h(xk)T(vk+1 _ u k) ~ 

'.h(Xk)T(Vk+(~1?)+O[(6k)312:,1h6k)2_(Vk+i}Th(Xk)--, , 

~,'" . ." ',:: , .... : .• ' ,.: :·.·:,~(,::k4)r~(~~.; . 
(vk+1 )T H(L\:ich + (uk)T h(xk) +r.h(:JCk)'rh(xk) + ' . 

~,~ 

=~uk)Th(xk) :""h(xk)Th(xk ) 

(ukl H(L\xk) +r.h(?C~)r. h(4xk )'-,h(xk)T (v~+t ...: ,uk) + 
~ . .' .. ' .. :, ....... :::.,: ... 
=(uk)T'lf(4~k) ,.' ...• 

O[(6k)3]\=~k(6~)2+ ·r.h(~k)T[h(~k) + ~(~'i)]'~: . 
(vk+ll[2i(~k) + H(L\xk)] + (ukl[2h(xk) + H(L1xk)] +. 

O[(Sk)3] = 'r/k(6k )2+ ~[h(xk) + H(L\xk)f[h(xk) + 

H(L\xk)] + 2(uk _ v k+1 )T[h(xk )+ H(L\xk )]- r.H(L\xk)T , 

[h(xk) + H(L\xk)]- (uk _ vk+1 )T H(L\xk ) + 0[(6k)3] = 
• .. .. ' .2 

, rh6k)2 + 11v'L[h(xki + H(L\xk)l+ ~(uk _ vk+l) 11 -

'_. v· I 

2:0 

Il
uk - vk+1 11

2 
. 

-"------"- - r.H(L\xk)Th(xk) - r.H(L\xkl H(L\xk)-
r. ~' ... ' 

O[(.5k)3] 0[(.5k)4] 

(uk _ vk+l)T H(L\xk) +0[(6k )3] ~ rh6k )2-
, 'V' ' 

0[(6k)3] d.(b) 

u k vk+l 
11 11

2 

- r. + 0[( 6k)3] ~ ~7l (6 k)2 + ~'r/( 6k)2 -

a(6
k

)2 + 0[(Sk)3] ,cf (b) = ~7]k(ok)2 + 
r. 2 

(~'r/ - ;)(6k)2 + 0[(6k)3] ~ ~1hok)2 + 0[(ok)3]. 
---..,....::... 

2:0 

h ~ :.i, .. 

'- ); 
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k 
Now let g(~k) be the (rest-) function which is 0[(8k)3). 

xk 

Thus, there is an Mr.. E IR (r is fixed !), such that ~;~;1 < 

Mr . 

O:r goal is: Ig(~:) I ~ irh8k )2 . This is fulfilled with 6k ~ 
'1 k T k '1k (6k )2 

4M
r 

=: 8r.. = const. > 0 , such that \i'!Ilr..(~k) s ~ --4-

- x k k 
for all (uk) with 8 ~ 8r... 

xk 
Corollary 3.10. Let the sequence (uk) k=0,1.2 •... be produced 
by SCP. If the assumptions of (3.8) and (3.9) are valid, thw 
the corresponding sequence of penalty parameters is bounded, 
i.e. there is an r < 00, such that rk = r for all k ~ Je ~ o. 
Proo! We consider rand 8r of (3.9). Using (3.8,2) there is 

an ;:6 < 00 such that for 6 :: 6r we have 
kT k(8k )2 - k 

\i'!Ilr(~k) sk ~ T for all l' ~ ;:6 and all (~k) with 

6k > 8 . 
If;:6 ~ r. then the assertion follows directly since then r. 

is the required r. 
If;:6 > r. we have to make some additional considera

tions. By the assumptions of (3.9) we have for the func-
k T 

tion lfI : [1,00[- IR with lfI(r) := \i'!Ilr(~k) sk : lfI is 
one-dimensional and continuously differentiable with 1fI'(r) = 
_h(xk)T A(xk)T ..1xk = const. [cf. first row of the main in

equality in the proof of (3.9) using h(xk ) = h(xk»). That is 
lfI ia linear and since lim lfI(r) > 0 [cf. (3.8,1») we conclude 

r ...... oo 
'1k(8k)2 

that 1fI'(r) ~ O. This means that 1fI(;:6) ~ 1fI(r.) ~ --4- for 
k 

all (~k) where 8k ~ 8 . That is the penalty parameter also 

doea not need to be enlarged in these points and r = ;:6 . 
Now we are able to formulate the main resuIt of trus pa

per. 

o (Xk) Theorem 3.11. Let x EX and the sequence u k k=0.1,2, ... 

produced by SCP fulfill the assumptions of (3.8) and (3.9). 
Then the sequence either terminates at a stationary point, 01' 

it has at least one accumulation point and each accumulation 
point is a stationary point for (2). 

Proo! X is compact and convex. Since each subproblem is 
uniquely solvable, its solution yields yk+1, which is different 
from xk as long as x k is not a stationary point (2.4). Hence 
the search direction sk does not vanish. Theorem (3.8) teIls 
us then that we can find an r > 0 such that sk is a direction of 
descent for the augmented Lagrange function !Ilr . The step 
size procedure (Step 7 of the algorithm) results in a point 

(~!1~) where xk+1 E )xk,yk+1] and uk+1 E )uk,vk+l). 
k 

Using (3.7), (~k) k=0.1,2, ... is therefore a sequence in the com-

x k 
pact set (X, U). Hence, (uk ) k=0.1.2 .... has at least one ac cu-

mulation point (~:) E (X, U). 
Ir a stationary point ia an element of the sequence, then 

the algorithm terminates because of (2.4) and Step 4 of the 

algorithm. Otherwiae an infinite sequence is produced. 
Let us now assurne that there is an accumulation point 

(~:) which is not stationary. 
By (3.10) we have a finite r, such that 

k T '1k(8k)2 
\i'!Ilr(~k) sk ~ --4- for all l' ~ rand k ~ O. 

This means that reaching some iteration index the penalty 
parameter does not need to be enlarged and is therefore con
stant. Let us now consider this remaining sequence with con
stant penalty parameter 1'. Hence, in Step 7 of the algorithm 
we always have the same function !Ilf. The remaining se-

• 
quence now contains a subsequence which converges to (~.). 

Let II..1x*1I =: 28; 8 > 0 because of (2.1). Since ..1xk 

is a continuous function of xk there is a Je E ll'Io such that 
lI..1xkli ~ 8 for all elements of the subsequence wit.h k ~ k, 
Le. for infinitely many iteration points. For these elements 
of the subsequence we conclude now that the scalar product 
of the gradient of the augmented Lagrange function and the 
search direction is uniformly bounded away from zero, i.e. 

xk T k 1/6 2 
\i'!Ilf(uk) s ~ 4' 

Standard arguments of optimization tell us furt her that 
this fact leads to a sequence of step sizes (O'k) which is 
bounded away from zero by a![ > O. This means (cf. Step 7 
of the algorithm) 

xk 
[ xk k k] k x

k 
T k '1

82 
!Ilr(uk) -!Ilr (uk) - 0' s ~ cu \i'!Ilf(uk) S ~ CQ:T' 

k 
for infinitely many iteration points, yielding lim !Ilr (~k) = 

k-->oo 
-00, which is a contradiction to (3.5). Hence the assumption 
is wrong and thc assertion proved. 

At the end of this section we want to prove a result which 
is weaker than (3.11) because it makes no use of (3.9). This 
means that we do not assurne (tk ~ (t any Ion ger , but allow 
an unbounded sequence of (tk . 

o (Xk) Theorem 3.12. Let x E X and the sequence u k k=0.1,2, ... 

produced oy SCP fulfill the assumptions 0/ (3.8). Then the 
sequence either terminates at a stationary point, 01' it has at 
least one accumulation point and at least one accumulation 
point is a stationary point for (2). 
Proof· 

(1) There is at least one accumulation point similar to thc 
first part of thc proof of (3.11). 

(2) If the sequence of penalty parameters is bounded. then 
the proof of (3.11) is transferable and the therein cited 
stronger results hold. Therefore we assume a non-bounded 
sequence of penalty parameters. 

k 

(3) There is an infinite subsequence of (~kh=0,1.2 .... with 

8k -> 0; otherwise the sequence of parameters would bc 
bounded because of (3.8,2). 

(4) Since this subsequence is in the compact set (X, U) it has 
at least one accumulation point where 6k = O. Using 
(2.4), this is a stationary point. 
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4 Artificial variables 

One important assumption in the theorems (3.8) and (3.9) 
is the solvability of the subproblems, i.e. non-empty feasible 
regions. This cannot be ensured in advance and in fact it is 
sometimes not fulfiIled, espeeially in the first· iterations, when 
we are still far away from the solution. However, there are 
various techriiques to overcome this situation (see e.g. Fleury 
and Braibant 1986; Svanberg 1987; Schittkowski 1983). In 
this seebon we briefly deseribe onepossibility and state a 
result which preserves the convergence of the method. 

We look at the situation, wh~re there is at least one 
jE {I, ... ,m} with hJ(xk) > O. Othen,vise x k is feasible and 

therefore SP(xk) is sDlvable. 

Definition .O.The auxiliary proble~ APp(~k, 1) is deflned 
by , . 
min {l'(x, J.L)! i/ex, J-l) :5 0, j == 1 .. .'m; 0 :5 J-Lj :5 1, j E M}, 
x,1' ..J " ' , 

where M:= {JE {1, ... ,m}lhj(xk) >,O}, !'(x,J-L) .-" 
/(x)+~t Pjli}, < 

jEM 

Tl( ).= {' ~j(x) - lijkj(x
k

), if jE M and 
jX,Ii· '. hj(x),' < ifjrf,M 

Pj (j E M) are same positive parameters. 

We, no,te that (xk , 1) is feasible for APp(xk , 1) and that, 
lij(j E M) are additional prima! variables. The function!,of 
the auxiliary problem remain 'eonvexa!ld separable. , . 

The solutionofAPp(xk , 1) still yi:eids' adescentdirectiDn' 
for theaugmented Lagrange functiDn.~, " . ' 

Theorem i2: 'Let x k and u k ?: 0 be gi~en, wherexk is 
not feasible for SP(xk ). "Let O~e gradients of functions kj 
belongingto acilve constraints of APp(xk , 1) in the solution 

point (yH1, yH1 ,lik+1) be linear independent. 1f J-Lj+1 < 
1 for all j 'E M then there is a penalty parameter r > 0, 

, k x k _ y k+l" . . 
such that s := (uk~yk+l) !s adescent d,recilOn for the 
augmented Lagrange funciion cf>r' for all r ?; r, i. e. 

xk T k rh 0 k)'2 ' 
V'cf>r (uk) s ?: --4-' -, for all r ?: r. 
Proot Zillober (1992), 

Now we have to answer the question, whether the solv
ability conditiDn was replaced by another strong condition 
(lij < 1 for all j EM), or if this conditiori is weaker. 

Lemma 4.3. Let the gradienls of hj belanging to active con

straint.9 of APp(xk , 1) be linear independent at each feasible 
point. Then there is for arbitrarily /ixed 0 < Pj < 1 a param-

eter Pj < 00, such that lij+1 :5 Jij for all Pj ?: Pj (j E M) 

in lhe optimal point (yk+l, yk+1, lik+1) of APp(xk , 1). 

Proo/. Zillober (1992). 

The lemma teIls us that an iterative process is needed to 
Dbtain a suitable solution of the auxiliary problem since a 
suflicient parameter P is not known in advance. 

5 Examples 

By the following 2 examples we compare the eonvergence be
haviour of SCP to that of the MMA method. The efliciency of 
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MMA in the case Df convergence is 'l'\"ell-known. The examples 
are computed using the Finite-Element-System LAGRANGE 
(Kneppe et al. 1987). The examples analysed are called "tb
dyn" and "aplate2". In the table below we show the weight 
of the structure in each iteration followed by the maximum 
constraint violation and, in the case of SCP, the step size 
(uk in Step 7 of the a!gorithm). We neglect the units and 
further details since they are not essential for our purposes. 
The asymptotes are chosen identical for both methods due to 
a slightly modified scheme by Svanberg (1987). Let k be the 
iteration index; then fDr all i = 1 ... n we choose as folIows: 

k = 0,1 : Lf =!!;,i - O.I(xj - !!;'j), Ui
k = Xi + O.I(xj - !!;,j), 

k 2 3 'f" (']i k-l) . (1.-'1 k-2) . = , , ... : I slgn Xi - Xi = slgn Xi' - Xi 

. x~-1 _ L~-i Uk- i ~ x~-l 
L~ = x~ - , , ' U~ = x~ + ' " 

" t "I I t 

Ifsign (xf - x~:...c1) i=sign(x~-l- xf-2) 

:, L~ ,;, x~ - t(x~-i ~ L~-'l)' U~ = x~ + t(Uk"':1~ x~-:"l) 
,I I z z J 'l " z. , ' 

where t E ]0, 1[ is a par~meter. We cho~e t = 0.7. 

5.1 Example "tbdyn" 

Weconsider the famotis lO~bar truss and minimize the weigbt 
of the structure subject to one majDr constraint. There is a 

- 10?,erbDuncl on the smallest eigenfrequency. 'Additionally, 
.,.there are lower an~ .upper bounds on the,4es~g!1 variables. 

The initialweight"is363.o.' TheoptimiU'We~ghtis 2185.19. 
,'The constraint is activ.e.ät the optimum. 

I It. I SCP MMA 

0 3630 / 0 / - 3630 / 0 
.. , ... ... 
3 1857.00 / 0.72 / 1 1857.00 / 0.72 
4 1857.01 / 0.70 / 0.10 1857.10 / 0.79 
5 1856.62 / 0.69 / 0.16 1856,.75 / 0.72 
6 1855.89 I 0.68· / 0.1 1852.95 ./ 0.79 
7 1855.85' / 0.68 I 0.03 1855.94 / 0.72 
8 1860.44 / 0.67 / . 0.04 1847.27 / 0.79 
9 1865.56 / 0.65 / 0.04 1853.22 / 0.73 
10 1883.42 / 0.59. / 0.11 1842.03 / 0.79 
11 1905.00 / 0,.52 / 0.13, 1847.78 / 0.73 
12" 1924.59 / 0.46 / 0.13 1960.98 / 0.73 
13 2127.57 / 0.12 L 1 1844.64 / 0.73 
14 2119.35 / 0.11 / 0.1 1953.24 / 0.72 
... ... .. , 
36 2185.19 / 2.5·10'( / 1 1924.78 / 0.53 

The first 3 iterations are equivalent (i.e. uk = 1 in Step 
7 of the algorithm). MMA is cycling between designs that 
are very different from the optimal one. SCP overcomes thia 
situation and finally converges tD the optimum. 

5.2 Example "aplate2" 

This is a minimum weight problem of a plate with 49 finite 
elements, 7 design variables, 49 stress constraints, 2 displace
ment constraints, i:e. 51 major restrietions and lower and 
upper bounds on the variables. The initial weight is (scaled) 
5.282, the optimal weight is 3.217. 
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I It. I SCP MMA 

0 5.282 / 0 / - 5.282 / 0 
... ... .. . 
7 3.159 / 1.36 / 1 3.159 / 1.36 
8 3.148 / 1.11 / 0.1 3.046 7 95.29 
9 3.162 / 0.61 / 0.47 3.093 / 38.75 
10 3.174 / 0.41 / 0.34 3.122 / 15.23 
11 3.177 / 0.37 / 0.1 3.145 / 5.92 
12 3.180 / 0.33 / 0.1 3.175 / 4.45 

13 3.210 / 4.14-10- 2 / 1 3.227 / 1.70 
14 3.211 / 3.9.10-2 / 0.06 3.267 / 0.49 

15 3.217 / 1.07-10 -3 / 1 3.277 / 0.06 

16 3.217 / 8.46·10 .{ / 1 3.258 / 2.20 
17 3.088 / 78.04 
18 3.111 / 17.04 
19 3.143 / 7.23 

... 

The first 7 iterations are equivalent. MMA also cyeles 
in this example, but elose to the optimal solution without 
approximating it. SCP, however, converges directly to the 
optimal design. 

Finally we must mention that in many other test cases 
SCP and MMA produce the same sequence of iteration 
points. Sometimes the seqUences differ but both methods 
converge to the optimal solution and in some examples MMA 
diverges, contrary to SCP. Two of them have been shown in 
this sec tion. 

6 Conclusion 

The method we described in this paper has the advantage 
of guaranteed global convergence in contrast to the original 
MMA method. Numerical experience shows that this is not 
ooly a theoretical property, but has significant practical im
pact. The SCP method is a stabilized version of MMA and 
solves problems for which MMA cyeles. 

In our opinion, more attention should be paid to the 
choice of the asymptotes in the future. These parameters 
are essential for the behaviour of MMA or SCP. First tests 

Receivcd Dec. 4, 19911. 
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showed significant differences bctween some preliminary ver
sions. 
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