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SUMMARY 

In distance geometry problems and many other applications, we are faced with the optimization of 
high-dimensional quadratic functions subject to linear equality constraints. A new approach is presented 
that projects the constraints, preserving sparsity properties of the original quadratic form such that 
well-known preconditioning techniques for the conjugate gradient method remain applicable. Very-Iarge­
scale cell placement problems in chip design have been solved successfully with diagonal and incomplete 
Cholesky preconditioning. Numerical results produced by a FORTRAN 77 program illustrate the good 
behaviour of the aJgorithm. 

1. INTRODUCTION 

Quadratic programming with either non-negativity or linear equality constraints is a standard 
model type in quite a large number of applications: we mention only discretization of certain 
optimal control problems or many kinds of distance geometry approaches. In this paper, we 
discuss preconditioned conjugate gradient (CO) methods for large·scaIc quadratic optimization 
problems with linear equality constraints. Our new algorithm has been developed for an initial 
global placement phase in chip design. The presented CO method enables a simultaneous 
treatment of all cells and is applicable to general-cell and standard·cell circuits of several 
thousand cells and nets. Now it is no longer necessary to partition the chip area and to solve 
stand·alone smaller optimization problems. This formerly used local strategy frequently neglects 
the connections between the subproblems, leading to models which are often unrealistic. 

In Section 2 we formulate the constrained problem. Section 3 discussses the various techniques 
of preconditioning. Further, a new CG method for preconditioning in an affine subspace is 
presented. Section 4 contains the model formulation for the chip placement problem and some 
numerical results. 

2. QUADRATIC OPTIMIZATION SUBJECT TO LINEAR EQUALITY CONSTRAINTS 

Consider the quadratic program 

min U xTCx - dTx I Ax = b} 
x 
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where 
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C E /R'" ri, C > 0 (positive definite), d, x E /Rn 

A E jRr,n, rank(A) = r < n, bE Rr 

and the superscript T denotes transposition. 
For the feasible region there exist the following equivalent representations: 

s ~ {xiAx = b} = {x = Xo + WZIZE [Rn-,} (2) 

where Xo E !Rn is a feasible basic solution (Axo = b) and W E [Rn,,, -', A W = O. W can be assumed 
to have orthonormal columns; hence, WTW = In -,. For C > 0 the original problem (1) as well as 
the following transformed problem (3) have a unique minimum: 

min {i(xo + WZ)TC(xo + Wz) - dT(xo + Wz)} 
x 

= min {y + t ZTWTCWZ + (x"l;c - dT)Wz} (3) 
z 

where y = 1 x{;Cxo - dT Xo· 
The n-dimensional problem with r constraints has been reduced to a (n - r)-dimensional 

problem without constraints. 
The well-known classical CG algorithm for the quadratic programs (1) or (3) is not stated 

explicitly. It might be taken from Reference 1 (p. 523) or as a special case of algorithm 3.4 with 
W = I and D = I. 

For problem (3), this algorithm computes a vector Z E w- r which solves the transformed 
optimization problem. The corresponding x-co-ordinates can then be computed by the relation 
x = Xo + Wz, 

The matrix W is not needed explicitly, We use only products of the form 

(a) Wz, Z E [R"-', 

(b) WTx, x E [Rn, 

For that purpose we apply r Householder transformations to the matrix AT: 

P,'P'-l· ... 'Pl'AT = [:] 
\ J 

(4) 

Y 

where RE [R"', Pi E /Rn.", i = 1, ... ,r. 
Partitioning P = (Q I W), Q E [Rn", W E [Rn." -', Q and W represent mappings into span(A T) and 

the orthogonal complement span(A T).l, respectively. Hence, (a) and (b) can be computed from Px 
and pT x, respectively, by partitioning and supplementing with zeros as follows: 

_ def {O}' irDn Z E /R" -, => Z = - E ~ 
Z n-, 

=> Pi = Wz (5) 

(6) 
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Since P is a product of Householder matrices, we have pTp = I" and 

pTp = [~:l [QIWJ = [~:~ ~:; ] = [~ I I"~J = In (7) 

we obtain, among others, WTW = 1,,-,. 
Remark. The efficiency of our method depends heavily on the costs for calculating Wand for 

evaluating a projection WWT x. Generally, the Householder transformations (4) may be too 
expensive. However, in the application of Section 4, the rows of A are pairwise orthogonaI and (4) 
can be specified trivially. 

3. PRECONDITIONING 

The technique of preconditioning is well-known and is described in many textbooks. Neverthe­
less, we give a short summary of the classical approach which is modified later to solve our 
specific problem in the linear subspace. 

3.1. Preconditioning without constraints 

A bound for the speed of convergence in the classical CG algorithm depends on the quotient of 
the largest and smallest eigenvalue of the (positive-definite) matrix C (or WTCW); see Reference 
1 (p. 525): 

(8) 

where IIzlle ~ zTCz, K = cond(C) is the condition number of C (or WTCW) and k denotes the 

iteration index. For the rest of this paper, 11 '11 means the Euclidean norm. 
Lemma 3.1. Assume C E ~".n, C > 0 and WE 1R"·q, q ~ n to have orthonormal columns. Then 

(i) 11 Wz I! = I1 z 11 

(ii) Amax(WTCW) ~ Amax(C) (maximal eigcnvalue) 

(ijj) Amin(WTCW) ~ Amin(C) (smallest eigenvalue) 

(iv) cond(WTCW) ~ cond(C) (condition number) 

Proof 

(i) clear. 
(ii) Amax(WTCW) = max ZTWTCWZ ~ max yTCy = )'m8x(C) 

::1!=1 Ilyll=i 

(iii) Amin(WTCW) ~ Amin(C) analogously 

(iv) cond(WTCW) = ~max(W:CW) ~ Amax(C) = cond(C) 
A.min(W CW) )'min(C) 

Corollary 3.2. The bound (8) on the speed of convergence of the CG method is not reduced 
when working in certain subspaces. 

Given a starting point Zo, convergence can be improved by scaling the matrix C such that K is 
close to unity. The optimal convergence rate is attained at K = 1 (only one iteration needed). 
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Obviously, we can expect an acceleration ofthe convergence by preconditioning the matrix C. We 
have to maintain the following two conditions: 

(c) C ~f n-1cn- T has a better condition number than C (D- T means (O-l)T throughout). 

(d) The system DDTt = y can be solved easily. 

These requirements are consequences of the following well-known transformations. For clarity 
of presentation we relax the constraints for a moment and set 

W def I def 0 d def - def DT = , Xo = an x = Z, x = x 

min gxTCx - dTx} = min {ixTDn-1CD-TDTx - dTD-TDTx} (ifD- 1 exists) 
x x 

= m}n a XTO--1CO-TX - dTO-Tx} = mjn U XTCX -- ,Fx} (9) 
x x 

The algorithm for the modified program (9) can be taken from Reference 1 (p. 529) or as 
a special case of algorithm 3.4. with W = I. 

Remark. An ideal choice would be D = jC or D == L (for C = LLT) leading to C = I with 
optimal convergence rate. In this case, we would have to solve Ct = y as auxiliary problem in the 
algorithm mentioned above. But this is exactly the original one. In the literature essentially the 
following two kinds of preconditioning matrices n are discussed: 

(i) diagonal matrices, 
(ii) triangular matrices or products of triangular matrices. 

Both kinds satisfy requirement (d), but we have to get along with losses in (c). 
In References 1-4 many proposals for the choice of n are discussed. Each of these methods 

reduces the amount of computation when we can utilize special features of the matrix C (e.g. 
tridiagonality, block tridiagonality and so on). 

In the application discussed below none of these features is apparent. Hence, wc restricted 
ourselves to the following alternatives: 

(i) D = diag(~, ... , Jc:) 
(ii) Incomplete Cholesky factorization of the matrix C (see e.g. Reference 1, p. 530) 

(i) is simple to impicment, but gives only a small improvement in our application because the 
diagonal entries Cii do not vary widely in size here. 

The incomplete factorization generates approximate Cholesky factors for C (C ~ LLT
), where 

additionally 

lij = 0 if Cij = 0 

These factors can be computed with numerical stability (and In > 0, i = 1, ... , n) in the applica­
tion of Section 4, because C is diagonally dominant and positive·definite; see 4.2 and Reference 5. 
In the full case, the complexity of the Cholesky decomposition is O(n3 /6). In our application (18), 
the incomplete one needs O(2n + 3m) operations when m is the number of non-zero entries in C. 
Hence, the method is very fast in this case. 

The convergence of the method with preconditioning is guaranteed when we ensure that the 
preconditioner 0 has full rank, because the system matrix remains positive-definite. But until 
now there is no success in proving that the convergence speed is actually accelerated. Numerical 
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experience indicates that we have a considerable speed~up factor when using the preconditioning 
method (ii) compared with the pure CG method for the original problem. 

In Section 4.4 we give comparisons of the implemented methods and illustrate the numerical 
behaviour by three examples with the dimensions n = 108,445 and 1133. We focused on the 
following two criteria, each with and without preconditioning. 

- The number of iterations to attain a certain decrease of the residual 
- The overall computing time including the calculation of the preconditioning matrix. 

3.2. Preconditioning for additional linear equality constraints 

We study again problem (I) 

min {ixTCx - dTxlAx == h} 
x 

According to Section 2 with a feasible basic solution Xo (Axo = b), this problem is equivalent to 

min {t ZTWTCWZ + (xbC - dT)Wz} (10) 
1 

Preconditioning the transformed system matrix W T tw is not appropriate because W T CW is 
usually more dense than C. The new aspect given in this paper is to precondition C itself and to 
transform the constraints ~fterwards. 

We summarize the essential assumptions which have been made until now. After the prepara-
tion of some further quantities, our projected CG algorithm can be formulated. 

Assumption 3.3. 

(a) DE !Rn.n is a non~singular matrix, 
(b) WE /Rn. n -r and WTW :::: In- n ' 

(c) for a given vector U E IRI! the quantities D-Tn -1U and WWT u can be computed efficiently, 
(d) C '> 0 (positive~definite). 

Following (3) we have 

min {t (x~' + zTWT)Dn-1CD-TnT(xo + Wz) - dT(xo + Wz)} 
z 

= min {t x~nD-'lcD-TDTxo + xbDD-1Cn-TnTwz 
z 

+! zTWTOD-·Cn-TDTWz - dT(xo + Wz)} 

= min {y +! ZTWTDD-tCO-TDTWz - (dTW - xbDD-·Cn-TDTW)z} 
1 

= min {y +! zTwTnCnTwz - (dTW - xbDCDTW)z} 
z 

where 

C=n-1cn-T and y=tx6CXo-dTXO 

When preconditioning, we are forced to work in the x-space of dimension n whereas the 

problem itself is actually of dimension n - r. The substitution x ~ nTwz E Rn or, equivalently, 
z = WTD-Ti ~ Rn-r is only needed for formal purposes. With 

(: ~ n-1wwTncnTwwTn-T and dT ~ dTWwTn- T -- xbDCDTWwTn- T 
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we obtain 

mjn U iTn-lwwTDCnTwwTn-Ti - (dTWwTn-T - xanCnTwWTn-T)i} 
x 

= mjn {1 xTCx ~ aTx} 
x 

This problem has exactly the form of the standard minimization problem without constraints 
and, in principle, the algorithm of Section 2 is applicable when 0 and D --T are given diagonal 
scaling matrices. For triangular D, we avoid the explicit use ofn- T in the formulation of our CG 
algorithm. The derivation is explained below. 

CG algorithm 3.4. (Preconditioning in a linear subspace) 

(Initialization): Choose starting point Zo E Ill", 0 < s < 1 (accuracy of solution); 

Let fo:= WWT(d- Cxo -- CWzo) (initial residual) 

b:= \\WWTd\\ 

(Iteration): For k = 0, 1,2, ... do 

(Preconditioning) 
Solve DDTt1 = r1; 

Pk:= rl tk (weighted norm of residual); 

if (JP; ~ e max {l, c5}) STOP; 
(Projected search direction) 
k = 0: So:== to; 

PI<::= WWTSk ; Wk:= WWTCPk; 
(Optimal stepsize) 

tJ rl<: 
!J.k:= ~T-; 

Sit Wit 

(Update) 

k:= k + 1: 

end (Iteration). 

This algorithm can be derived as follows: 
Given a starting point Xo = D TWzo (xo == 0 ( <=> Zo = 0) is a simple choice) the quantities of the 

preceding CG algorithm can be computed as follows: 
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fO = n-1wWTd - O-lWWTCXO - O-lWwTcwwTn-TXO 

= n-lWWT(d - CXO - cwwTn-Txo) 

As the computation of i 0 is expensive, we better work with 

nio = WWT(d - CXo - cwwTn-Txo) = WWT(d - Cxo - CWzo) 

For computation of nib for k> 0, see below. 

Next we need for k ~ 0, an auxiliary vector tk ~ D -Trk which is given by solving 

As 

all quantities for the computation of the update factor Pk are available, namely 

261 

Now we describe how to obtain the quantities corresponding to the search direction Sb the 
stepsize ak and the projection Zk in the subspace. 

n-TSO = to 

Sk = i k + fhsk-l ~ n-Tsk = tk + Pkn-TSk_l 

ink 
al = slCs

k 

(k = 0) 

(k ~ 1) 

(k ~ I) 

The numerator was derived above; the denominator can be calculated as follows: 

sICsk = sIn- 1 WWTcwwTn-TSk = (n-TSk)TWWTCWWT(O-Tsk) 

Xk+l := Xk +aksk ~ n-TXk+l = D-TXk + (XkO-TSk 

~ WTO-TXH I = WTO-TXk + at WTO-TSt 

~ Zldl = Zk + (XkwTn-TSk (z = wTn-Tx) 

~ WZU1 = WZk + akWWTO-Tsk 

Now it is clear that we real1y do not need Xk explicitly. It can always be substituted by Wzk • 

Finally, for the update step we have 

iH 1 = i k - akCSk = i k - akD - 1 WWT CWWTO - TSk 

~Drk+l = Oik - akWWTCWWT(O-Tsk) 

Remark. From Tables I-IV we observe that our preconditioning algorithm reduces the 
number of iterations in the considered non-trivial examples to less than 40%. During the 
iteration, however, there are two multiplications of the form WWTx. In the original problem we 
only need one of this type. Since these multiplications become more expensive for an increasing 
number of constraints the CPU time cannot be reduced by the same factor as the iteration 
number (see also at the end of Section 4.3). 



262 C. KREDtER, C. ZILLOBER, F. JOHANNES AND G. SIGL 

4, AN APPLICA nON: CELL PLACEMENT IN CHIP LAYOUT 

The CG method described above was developed for the following high-dimensional problem 
arising in chip design. 

Recent progress in the area of large-scale integration was only possible by using automatic 
layout tools. These tools should enable a user to design the chip in such a way that the design gets 
wireable with shortest wire length and minimal area. The background of our approach can be 
found, for instance, in Reference 6. 

The input to placement systems of this type consists of a pin list, that describes the connectivity 
of modules J1. E M and signals (J E S, a cell library and a description of the chip geometry. A pin list 
for an introductory sample circuit with seven modules and three signals (a, b, c) is graphically 
presented in Figure 1. This pin list can be mapped into a bipartite graph G = (V, E) (see Figure 2), 
whcre V = SuM are the vertices. Signal (J and module J1 are incident if and only if signal (J is 
connected with module ].l. 

A module J1. represents a complex gate, a storage unit, etc. which can be locatcd on the chip area 
as a rectangle with centre (XII' YII ). Signals arc certain wire nets. Following the mathematical 
model of the bipartite graph, we now view a signal (J as an object concentrated at a point with 
co-ordinates (xq, Yq). The co-ordinates of the double-framed modulues 3 and 7 are fixed a priori. 
For instance, these may be pads or some very important macro cells with predetermined location. 
All other modules are movable. 

In this paper, we are concerned with the relative placement of the modules on the chip area, sce 
Figures 3 and 6. The result of the well-posed convex quadratic optimization problem defined 
below gives raw, but reliable information on the optimal module positions. 

Remaining cell overlaps are eliminated by a postprocessor (Reference 6). The final geometric 
placement for our sample circuit is shown in Figure 4. 

The main loop of this placement strategy consists of an iteration with quadratic optimization 
and partitioning steps. They aim at minimal wire length and uniform distribution of the modules 
over the available placement area, which is a rectangle defined by (Xmin, Ymin) and (xma:o Ymax); sce 
Figure 5. 

Figure I. Electric circuit 

Figure 2. Bipartite graph 
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For another small sample circuit, the results of a sequence of placement steps is shown in 
Figure 6. 

Optimization starts at level 0 with an initial region that comprises the whole chip area and 
contains all modules to be placed. One constraint requires the centre of gravity of all these 
modules to be the centre of this region: 

L XJI./ I M I = Xmin + ! (xmax - Xmin) 
lJeM 

L Y/l/IM\ = Ymin + 1: (Ymax - Ymin) 
(11 ) 

lJeM 

where IMI represents the number of entries of set M. 
In each partitioning step (levels 1-4 in Figure 6) the module set is further divided and the 

placement regions are dissected into subregions accordingly, and new constraints are established 
for the next optimization step. This increasing number of constraints restricts the freedom of 
movement for the modules and forces the modules to drift away from each other and to move 
close to the positions of the final placement. 
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Figure 6. Stepwise placement refinement 

The module set M is partitioned into left ana right subsets MI and Mr according to the modules 
x-eo-ordinates of level O. The single centre of gravity at level 0 is now replaced by two: 

L xIlI' Md = Xmin + i (xmax ' Xmio) 
lleMI 

I. yllIIMd = Ymin + t (Ymax - Ymin) 
IlEMI 

L x)l//Mr / = Xmax - f (Xmax - Xmin) 
)lEM. 

L YJl/IMrl = Ymin + '!(Ymax - Ymin) 
IlEM. 

( 12) 

Optimization of level 1 results in two module clusters. Each of the two subsets is bipartitioned 
again with respect to the modules' y-co-ordinates. Thus, at Jeve12 a placement with four centres of 
gravity results. This process is continued until each region contains only one module. 

4.1. Modelformulation 

The objective function to be minimized is based on the Euclidean lengths of the signals. The 
length La of a signal (] is measured by the sun' of squared distances from the centres of the 
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modules J.l which are connected with signal u, to the co-ordinate of signal u (cf. adjacency relation 
E of graph G; Figure 2): 

(13) 

Summation over all signals gives the objective function 

def 1 " <p(x, Y) = "2 L. L,Ax, y) = <PAx) + <Py(Y) ( 14) 

consisting of two separable positive-semidefinite quadratic forms. So far we have disregarded 
fixed modules and pads. However, in a realistic design, besides the ns = ISI signal co-ordinates 
(xa, Ya) only nm < \ M\ module co-ordinates (x ll ' YIl ) are free. 

Focusing only on x-variables and introducing known pin co-ordinates rail (relative to the 
module centre) which indirectly describe the size of the modules, the following objective function 
is obtained 

(15) 

which is quite close to reality. tt11l are the appropriate 0-1 entries of the binary adjacency matrix 
for the bipartite graph G (see also Figure 2), and W t1 are positive weights to privilege the most 
important signals. The w" can be chosen by the designer. Under weak and realistic requirements 
on the topology of the fixed modules, C is positive-definite and diagonally dominant. The 
bipartite graph G transmits its structure to the symmetric matrix C which has the so-called 
red/black partitioning (cf. Reference 7). This means that there are two groups of variables 
(modules and signals) and these variables are independent of each other within either group. 
Hence, C is of the form 

d· 
1 a 

V T g 
c= (t 6) 

d· 
V 1 a g 

"----y-----J "-------y----' 

ns nm 

The diagonal matrix in the upper left is of dimension ns; that in the bottom on the right is 
diagonal of dimension nm . V has the sparsity structure of the adjacency matrix of G. C itself is 
quadratic and has the same dimension 

(17) 

as the vector x of all free x-variables. 
For the minimization of the quadratic objective function, the broad palette of conjugate 

gradient techniques with convergence acceleration is available. This approach is sometimes 
preferred to other competing relative placement algorithms like Mincut and algebraic multi grid 
(AMG) methods because the designer can easily influence the positioning of specific modules or 
module groups. An experienced designer will manage this by a skilful tuning of the parameters 
rail and the signal weights w". This work must be possible interactively on commonly used CAD 
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workstations. Therefore, a complete relative placement for at least thousand modules must be fast 
enough, say at most few minutes, on such a workstation. 

The red/black partitioning leads to a significant simplification in the computation of the 
incomplete Cholesky factorization, which was introduced in Section 3. 

In the following welJ-known algorithm 

For i = 1, ... , n 

(18) 

the sum 1: [iv[jv in the j loop vanishes completely. Note that we let lij = 0 whenever cij = O. In total, 
there are 3m multiplications and additions, n subtractions and n square roots, where m denotes 
the number of non-zero off-diagonal entries in C. 

4.2. Structure of linear equality constraints 

At the lth level of partitioning, the placement area is divided into r = 21 subregions. The centre 
of gravity constraints on this level is given by 

Ax = bx and Ay = by (19) 

The matrix A has r rows and nm columns. Each row corresponds to a subregion and an entry 
aij = 1 means that module j belongs to subregion i. Since a module can be attached only to onc 
subregion, there is exactly one non-zero entry in each column. We take advantage of this feature 
and save an immense amount of numerical computation when transforming the constraint matrix 
for our algorithm. 

The simple example below illustrates the structure for a circuit with r = 4 subregions and 
nm = 10 modules. 

1 1 1 0 0 0 0 0 0 0 

A= 
0 0 0 1 1 0 0 0 0 0 

0 0 0 0 0 1 1 1 1 0 

0 0 0 0 0 0 0 0 0 

4.3. Projection of constraints 

Now, in each of the described steps one of the following problems is to be solved: 

min g x T ex -- d:! x I Ax = b,j 

minU yTCy - d;yl Ay = by} 

(20) 

(21 ) 

(22) 

The feasible region can be designed as foJIows (it suffices to give the description for the 
x-co-ordinates; y analogously). The constraints have the special structure 

A=r{[O I A] 
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and are only referring to the module co-ordinates. Hence, decomposing 

x = {::} 

we can view the signal variables Xs as free whereas the module variables Xm arc subject to linear 
equality constraints. Consequently, the feasible points range in the subspace 

def } S = {x E W: x = Xo + W z 

where 

x = {~}. i E (Rftm o _, 0 
Xo 

is a feasible solution of 

- def 
AXm = b.x = b (23) 

Denote the entries of A by fijj. As fi jj E {a, 1} and each column of A contains exactly one 
1 a feasible solution io and, hence, Xo can be obtained readily as 

r 

XOj = L liijb;, j = 1, ... , nm 
i= 1 

Or, the starting point XOj is the centre of gravity of region i the module j belongs to. 

(24) 

In the CG algorithm (3.4) we need orthogonal projections WWT x which are computed 
according to (4) by products pT X and ,Pl'. 

The Householder vectors Pi characterizing the factors Pi d,;r I - 2PiP! of P are of the form 

where ai and ej (i = 1, ... "r) denote the rows of A and canonical unit vectors, respectively. Apart 
from one clement, the sparsity structure of the Householder vectors is that of ai- Hence, P is 
completely characterized by O(nm ) essential entries and the time for establishing the vectors Pi 
(i = 1, ... , r) depends not heavily on the constraint number r. 

Using the partitioning P = (Q I W) and equations (4H7), a projection WW T x in the orthogonal 
space of span (A T) is computed as follows: 

(25) 

(26) 

The CPU times of Section 4.4 depend on the number of constraints. There are two reasons: 

(1) The reported times refer to the entire layout algorithm and include a lot of organization 
amount due to an increasing number of module clusters and, hence, on the number of linear 
eq uali ty constraints. 
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(2) The projection WWT x called at each CG iteration consists of 2r Householder multiplica­
tions involving the vectors Pi' As the sparsity structure is exploited completely, the 
computational amount is less than O(nmr), but we cannot do the complete projection in 
a time independent of r (see also a remark at the end of Section 3). 

4.4. Numerical results 

The algorithms were implemented in FORTRAN 77. The CPU times of Tables I-IV refer to 
a CDC CYBER 995 with machine precision epsmach = 5 x 10- 15

. The iteration was stopped, 
when J'P,. ~ e max {l, .JPo'}, e = 10 -14 (see algorithm 3.4). 

F or practical problems, e between 10 - 7 and 10 - 10 would suffice. Hence, the CPU times 
reported in this paper will reduce. For instance, in a problem of dimension n = 1133 with 
incomplete Cholesky preconditioning CPU times are 3,38 s for e = 10- 14 and ;:::; 2 s for 
e = 10 - 7; see also Table I and the graphs in Figure 7. The three examples of dimension n = 108, 
445 and 1133 were run at the Leibniz-Rechenzentrum, Munchen. 

Table I. Iterations/CPU time (s) 
------------------_ .. _---_ .... -

o 
o 

.. 
I 

n 

108 
445 

1133 

o i------ eps 

.. 
I 
o 

~ , 
0 
~.o .5 1.0 

Without 
preconditioning 

67/0'167 
108/0'981 
209/4,798 

eps " 10- 14 

. 
1.5 2.0 

With diagonal 
matrix 

44/0,132 
82/0,918 

161/4'408 

With incomplete 
Cholesky fact 

21/0,092 
41/0·685 
81/3,384 

(W): Without prec. 

(0) Prec. with i!iagonal matrix 

(C) 

. 
2.S 3.0 

Prec. with incomplete 

Cholesky factorization 

(C) 

3.5 4.0 4.S 5.0 

Figure 7. CPU time (s) versus norm of residuaL Dimension: n = 1133; initial residual: j"Po ~ 2107; current residual: JP~; 
k increases according to CPU time 
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4.4.1. The unconstrained problem. Figure 7 shows the CPU time of the CG algorithms 
depending upon the norm of the residual. We observe that diagonal preconditioning behaves not 
essentially better than the simple CG algorithm. Incomplete Cholesky preconditioning performs 
superior throughout (see also Table I). 

4.4.2. The constrained problem. First we recall the most important features of the layout 
algorithm for the constrained problem: 

(i) The preconditioning matrix D needs to be computed only once at the beginning of the 
layout algorithm. 

(ii) Additional amount in the preconditioning algorithm: 

-- Two multiplications with projection matrix WW T during one iteration instead of one 
without preconditioning. 

-- The auxiliary problem DD T t = Y to be solved. 

Since the computational effort for the multiplication with the projection matrix increases with 
the number of constraints and finally becomes dominant, it is important to decrease the number 
of iterations. This happens only in the case of preconditioning with incomplete Cholesky 
factorization. Therefore, this method remains better for many constraints, too. Concerning CPU 
time, the method without preconditioning is worse than incomplete Choiesky, but better 
than preconditioning with a diagonal matrix because here less iterations had been saved (see 
Tables II--IV). 

The numbers in Tables II-TV confirm these assertions. For three methods and various 
constraint sets we listed number of iterations and CPU seconds 

Constraints 

1 
2 
4 
8 

11 

Table 11. Iterations/CPU time (s) for n = 108, nm = 29 

Without 
preconditioning 

63/0'22 
64/0'234 
59/0-235 
57/0'26 
53/0'267 

With diagonal 
matrix 

42/0·186 
42/0-2 
39/0·213 
37/0-251 
35/0·27 

With incomplete 
Cholesky factorization 

21/0·125 
22/0-135 
22/0'149 
22/0'177 
23/0'208 

Table Ill. Iterations/CPU time (s) for n = 445, nm = 202 

Constraints 

1 
2 
4 
8 

16 
32 
61 
91 

Without 
preconditioning 

93/1'318 
92/1-387 
87/1'481 
86/1·811 
86/2'504 
84/3·755 
82/6'006 
72/7·357 

With diagonal 
matrix 

69/1·28 
66/1-372 
62/1-539 
61/2-009 
63/3-094 
57/4·639 
55/7-725 
49/9-977 

With incomplete 
Cholesky factorization 

35/0'856 
34/0·902 
34/1'038 
34/ [-319 
35j }·932 
33/2·88 
33/4-847 
31/6-509 
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Table IV. Iterations/CPU time (s) for n = 1133, nm = 546 

Constraints 

1 
2 
4 
8 

16 
32 
64 

118 
219 

Without 
preconditioning 

173/ 6·163 
177/ 6·808 
166/ 7·35 
168/ 9·38 
166/13'012 
166/20·483 
149/31·606 
120/43·503 
96/61'592 

With diagonal 
matrix 

134/ 6·463 
135/ 7·259 
125/ 8·136 
124/10·715 
121/15·747 
119/25'633 
105/40·661 
84/57'275 
66/80·641 

5. CONCLUSION 

With incomplete 
Cholesky factorization 

71/ 4·479 
72/ 4·97 
67/ 5·403 
70/ 7·249 
70/10'392 
71/16'866 
65/27'023 
53/37'914 
42/53'924 

Relative placement problems as described here have already been solved with over-relaxation 
techniques. The CG algorithm without preconditioning competes with this approach as it does 
for all large-scale quadratic programs. 

For additional linear equality constraints, the behaviour of our projected CG method is 
superior, because we do not destroy the sparsity structure of the large system matrix. Hence, 
convergence acceleration is possible by incomplete Cholesky preconditioning and the numerical 
results document an encouraging speed-up factor (for further details see References 8 and 9). The 
efficiency of the projection depends on the simple structure of the linear equality constraints 
which can be expected in many high-dimensional applications. 

The approach outlined is well-suited for many distance geometry problems which also arise in 
chemistry, molecular biology or physics, for instance. But the proposed technique of precon­
ditioning and separate projection extends to other fields as well. As a further example, we mention 
sequential quadratic programming (SQP) a standard tool for solving (large) non-linear optimiza­
tion problems. There, we have to solve a sequence of quadratic subproblcms, all being of type (1). 
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