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Summary 

Mesenchymal stem/stromal cells (MSCs) are a rare subpopulation of cells first 

identified in bone marrow with the potential to proliferate in plastic-adherent colonies 

and to generate de novo bone marrow stroma and its environment upon serial 

transplantation to heterotopic anatomical sites. Given their multipotency and self-

renewal competence, MSCs are prime prospective candidates for most modern 

musculoskeletal-tissue engineering and regenerative medicine approaches. Still, their 

envisioned therapeutic use is being questioned with concerns regarding their definition, 

characterization and integrative functions in vivo. 

It is well established that microenvironmental cues such as the extracellular matrix 

(ECM)-chemistry, the mechanical environment and local cellular and/or paracrine 

interactions critically control MSCs behavior. Yet, most of the scientific knowledge 

regarding the biology and therapeutic effect of MSCs originates from mechanistic in vitro 

studies where microenvironmental cues are hardly addressed. Therefore, manifestable 

changes in cell proliferation behavior and multilineage differentiation potential might be 

triggered that eventually compromise the translation of results to clinics.  

This thesis aims to address the complexity of MSCs interactions within the skeletal 

niche microenvironment in order to provide alternative methods to bypass the current 

MSCs in vitro culture limitations. 

 Firstly, the influence of ECM-chemistry on MSCs behavior in vitro was explored by 

means of decellularized human bone models here established. Basal or osteogenic 

tailored cell-derived decellularized 2D matrices (dECM), proved to be suitable culture 

substrates for MSCs expansion by providing close-to-native cell-ECM interactions. 

Moreover, quantified morphological shape changes suggested a material osteo-

supportive potential, further functionally validated by observable spontaneous 

mineralization of MSCs. Aiming to identify novel intrinsic ECM regulatory features 

specific to the skeletal niche, 3D decellularized human trabecular bone scaffolds (dBone) 

were additionally developed and comprehensively characterized. Remarkably, the MSCs 

cultured on dBone scaffolds exhibit upregulation of genes associated with stemness as 

well as niche-related protein expression advocating for the conservation of the naïve 

MSCs phenotype. 
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 On the other hand, the effect of biomimetic mineralization on MSCs osteogenic 

lineage differentiation potential was further addressed by hydroxyapatite-

functionalization of type-I collagen in presence of magnesium. Mineralized scaffolds 

exhibited higher cell viability and a clear trend of osteogenic genes upregulation 

comparing with non-mineralized scaffolds.  

 Lastly, in order to mimic the complexity of the native MSCs environment, a 

dynamic culture system was applied to the 3D decellularized bone constructs, previously 

studied in single static conditions. Mechanical stimuli generated by (1) continuous 

perfusion of cell culture medium at 1.7 mL/min and (2) compressive stress from 10% 

uniaxial load at 1 Hz, resulted in an improved cell repopulation within the scaffold and 

boosting of de novo ECM production. The stress-induced gene expression pattern 

suggested early MSCs commitment towards the osteogenic lineage mediated by integrin-

matrix adhesion, therefore further corroborating the recapitulation of a reliable in vitro 

bone niche model in dBone scaffolds. 

 To conclude, the here developed in vitro models provide a progressive increased 

biomimicking complexity through which significant insights regarding MSC interactions 

with microenvironmental features in the skeletal niche can be obtained, thus surely 

paving the way  for a better understanding of the role of MSCs in bone homeostasis and 

regeneration.  
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Zusammenfassung 

 Mesenchymale Stamm-/Stromazellen (MSZ) sind eine seltene Subpopulation von 

Zellen, die erstmals im Knochenmark identifiziert wurden und die das Potenzial haben, 

sich in plastikadhärenten Kolonien zu vermehren und bei serieller Transplantation an 

heterotopen anatomischen Stellen de novo das Knochenmarkstroma und seine Umgebung 

zu bilden. Aufgrund ihrer Multipotenz und ihrer Fähigkeit zur Selbsterneuerung sind MSZ 

erstklassige Kandidaten für moderne Ansätze des muskuloskelettalem Gewebe-

Engineering und der regenerativen Medizin. Dennoch wird ihr therapeutischer Einsatz 

aufgrund von Bedenken hinsichtlich ihrer Definition, Charakterisierung und in vivo 

Integration in Frage gestellt. 

 Es ist hinlänglich bekannt, dass die Mikroumgebung wie die Komposition der 

extrazellulären Matrix (EZM), die mechanische Umgebung und die lokalen zellulären 

und/oder parakrinen Interaktionen das Verhalten der MSZ entscheidend beeinflussen. 

Die meisten wissenschaftlichen Erkenntnisse über die Biologie und die therapeutische 

Wirkung von MSZ stammen jedoch aus mechanistischen In-vitro-Studien, in denen 

Faktoren aus der naiven Mikroumgebung von MSZ kaum berücksichtigt wurden. Dies 

kann zu offensichtlichen Veränderungen des Zellproliferationsverhaltens und des 

Differenzierungspotenzials der Zellen führen, was die Übertragung der Ergebnisse in die 

klinische Praxis beeinträchtigt.  

Diese Arbeit zielt darauf ab, die Komplexität der Interaktionen von MSZ in der 

Mikroumgebung der skelettalen Nische zu untersuchen, um Methoden zur Umgehung der 

derzeitigen Limitationen bei der In-vitro-Kultur von MSZ zu etablieren. 

 Zunächst wurde der Einfluss der EZM auf das Verhalten von MSZ in vitro mit Hilfe 

von dezellularisierten menschlichen Knochenmodellen untersucht. Basale oder 

dezellularisierte 2D-Matrizen (dECM) osteogen differenzierter Zellen erwiesen sich als 

geeignete Zellkultursubstrate für die MSZ-Expansion, da sie nahezu native Zell-EZM-

Interaktionen ermöglichen. Darüber hinaus deutet die quantifizierten morphologischen 

Formveränderungen in MSZ auf ein osteoinduktives Potenzial des Materials hin, was 

durch eine beobachtete spontane Mineralisierung der MSZ funktionell bestätigt wurde. 

Mit dem Ziel, neue intrinsische EZM-Faktoren zu identifizieren, die für die skelettale 

Nische spezifisch sind, wurden zusätzlich dezellularisierte 3D-Gerüste aus menschlichem 
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trabekulärem Knochen (dBone) entwickelt und umfassend charakterisiert. 

Bemerkenswerterweise zeigen die auf dBone-Gerüsten kultivierten MSZ eine 

Hochregulierung von typischen Stammzell-assoziierten Genen, sowie die Expression von 

charakteristischen Nischenproteinen, was für die Erhaltung des Phänotyps naiver MSZ 

spricht. 

 Andererseits wurde die Auswirkung einer biomimetischen Mineralisierung auf 

das osteogene Potenzial von MSZ durch Hydroxyapatit-Funktionalisierung von Typ-I-

Kollagen Trägermaterialien in Gegenwart von Magnesium untersucht. Mineralisierte 

Gerüste zeigten eine höhere Zellviabilität und einen klaren Trend zur Hochregulierung 

osteogener Gene im Vergleich zu nicht-mineralisierten Gerüsten.  

 Um die Komplexität der nativen MSZ-Umgebung zu imitieren, wurde schließlich 

ein dynamisches Kultursystem auf die dezellularisierten 3D-Knochenkonstrukte 

angewandt, die zuvor unter statischen Bedingungen untersucht worden waren. 

Mechanische Stimuli, die durch (1) kontinuierliche Perfusion des Zellkulturmediums bei 

1,7 ml/min und (2) Druckbelastung durch eine einachsige Last von 10 % bei 1 Hz erzeugt 

wurden, führten nachweislich zu einer verbesserten Zellrepopulation innerhalb des 

Gerüsts und zu einer Steigerung der de novo EZM-Produktion. Das stressinduzierte 

Genexpressionsmuster deutet darauf hin, dass es schon früh durch Integrin-Matrix-

Adhäsion zu einer Festlegung der MSZ auf die osteogene Linie kommt, was die 

Rekapitulation eines Zuverlässigen in vitro-Knochennischenmodells in dBone-

Konstrukten weiter bestätigt. 

 Zusammenfassend lässt sich sagen, dass die hier entwickelten in vitro-Modelle 

eine zunehmende Komplexität der zellulären Mikroumgebung darstellen, durch die 

wichtige Erkenntnisse über die Interaktionen von MSZ mit der Mikroumgebung in der 

Knochennische gewonnen werden können, was sicherlich den Weg für ein besseres 

Verständnis der Rolle von MSZ in der Knochenhomöostase und -regeneration ebnet.   
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Chapter 1. 

Introduction 

 

In this introductory chapter the bone tissue structure, the MSCs identity and their 

interactions with the native environment are firstly addressed. It follows a 

comprehensive description of the motivation and aims for this thesis. Lastly, the most 

recent and relevant bioengineering approaches to model the MSCs-niche complexity in 

vitro are extensively reviewed, with special focus on their potentials and limitations. 

 

Parts of this chapter were published as a review-article in the European Cells and 

Materials journal (Volume 37). Reprint permission was obtained from all co-authors and 

from the publisher under Creative Commons license (CC BY-SA). 

Reference: Pereira AR, Trivanović D and Herrmann M. Approaches to mimic the complexity 

of the skeletal mesenchymal stem/stromal cell niche in vitro. Eur. Cell. Mater., 2019, 37, 

pp.88–112. 
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Bone microenvironment: tissue structure and functions  

Bone is a complex, highly organized tissue capable of adapting its structure to 

mechanical or biochemical stimuli, therefore providing support and protective functions 

to the body [1]. Elastic collagen type-I fibers constitute approximately 95% of the bone 

organic matrix, equipping the tissue with appropriated flexibility [2, 3]. On another hand, 

its inorganic mineral phase is mainly composed of highly organized intrafibrillar calcium 

phosphate ions, known as hydroxyapatite, providing the bone with rigidity, thus creating 

the right mechanical balance to handle resistance to fractures [4, 5]. Anatomically, long 

bones are composed of two different compartments: cortical and trabecular/cancellous 

bone. Differences in the structural arrangements of the two bone types are related to their 

primary functions: robust calcified and mineralized structure of cortical bone provides 

mechanical and protective functions, while porous honeycomb-like network of cancellous 

bone permit allocation of bone marrow, facilitating rather metabolic functions [6].   

The major cellular elements that constitute the bone remodeling unit include 

matrix-forming osteoblasts, matrix-resorption osteoclasts, and mature matrix-supporting 

osteocytes, along with MSCs as the precursors of specialized osteoblasts [7]. Disturbances 

in the balance between these complementary processes might result in metabolic bone 

diseases, such as osteoblastic or osteolytic lesions [8].  

Furthermore, the bone lacuna-canicular network is particularly sensible to physical 

signals, where mechanical energy is converted to electrical/biochemical signals by 

mechanical sensing cells, hence guiding precursor cell-fate decisions, and ultimately 

dictating the function of the tissue [9] . Multiple physical stimuli have been identified that 

actively affect and guide MSCs interactions and fate, namely: (1) the trabeculae 

interconnective porosity [10], (2) the surface rough-nanotopography [11], (3) the matrix 

stiffness [12] and external mechanical signals, such as (4) shear stress as a result of 

interstitial fluid movement [13] and (5) strain caused by tension or compression [14]. 

As such, understanding the complex structure of bone tissue and biomechanical 

aspects of bone homeostasis and regeneration in detail is essential for better 

comprehending the integration of stimuli to which cells are subjected to either 

physiologically or pathologically.   
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MSCs skeletal niche  

MSCs were first identified by Friedenstein in 1974 from bone marrow fragments’ 

outgrowths in culture, due to their competence to rapidly form adherent colony units with 

fibroblast-like appearance [15]. Since their first discovery in bone marrow, similar cell 

populations with proliferative competence, undifferentiated phenotype and the ability to 

differentiate into osteoblastic, adipogenic and chondrogenic lineages in vitro, have been 

identified and reported in many adult [16-20] and fetal tissues [21-23].    

In native tissues, MSCs are sheltered in specific microenvironments, also known as 

stem cell niches [24, 25]. Stem cell niches constitute a basic unit of tissue physiology, with 

not only well-defined anatomical as well as functional dimensions, where cell stemness is 

protected, yet tissue-adjacent cells, endocrine signals or external forces may trigger their 

activation and mobilization [26-28]. Recent studies suggested that at least three different 

osteoblastic niches for skeletal progenitor cells exist in bone marrow, in particular at 

endosteal, perivascular and stromal regions [29].  

The primary function of ECM is providing anchorage to the tissue-resident cells by 

exposing pro-adhesive integrin-mediated RGD-peptide motifs, present in fibronectin and 

other ECM proteins [30]. Additionally, ECM also acts like a reservoir of growth factors, 

e.g., bone morphogenetic proteins, transforming growth factor-beta, etc., which are 

released by proteases in a time- and dose-dependent way during ECM remodeling [31, 

32]. It is therefore reasonable to assume that the inherent chemistry, mechanical 

structure, and function of different tissues may have a major influence the single MSCs 

entity, albeit their influence is not fully understood. 

In vitro modelling: novel research tools   

To date, the simplest models for examining biological behavior of MSCs in response 

to microenvironmental factors are conduced by direct exposition to soluble factors [33, 

34] or by cultivating monolayer cells on protein-coated engineering substracts [35, 36]. 

Although very convenient and effective for mechanistic purposes, the results from 

2D cell culture models do not represent the essential and complex features of native 
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microenvironments. A main limitation of in vitro studies in 2D monolayer cultures is the 

lack of spatial and temporal control of multiple signals [37, 38].  

Progress in the development of biomimetic materials have lately been chasing the 

complexity of the mechanical and 3D physical-chemistry arrangement of the biomaterial 

itself, such as hydrogels or scaffolds, commonly used for tissue engineering applications 

[39, 40]. A wide variety of material alternatives have been developed to recreate the 

tissue-specific ECM composition, albeit a single in vitro model that reproduces the in vivo 

microenvironment homeostasis remains a bioengineering challenge. Commonly used 

synthetic biodegradable polymers, mostly -lactic and -glycolic based, are widely used due 

to their reproducible large-scale production, with controlled properties of strength, 

degradation rate, and microstructure [41]. On the other hand, natural polymers such as 

collagen, fibrin, alginate, silk, hyaluronic acid, and chitosan, provide high biological 

integration, yet often lack mechanical structure [42].  

Aiming to address this issue, decellularization of cell-derived ECM, tissues and 

organs emerged with a reverse-engineering concept able to faithfully mimic the native 

tissue complexity [43, 44]. Through physical, chemical and/or enzymatic treatments, the 

central goal of decellularization protocols is to preserve the above-mentioned 

biochemical complexity and mechanical integrity of the tissue, while efficiently removing 

all cellular elements to prevent any immunological reaction [45, 46].  

The future holds great potential for combined in vitro models towards tissue 

engineering and regenerative medicine applications. Progress in engineering, technology, 

chemistry and imaging will surely be at the forefront of MSCs niche modelling revolution. 

Motivation and aims of work 

As aforementioned, MSCs have a vast prospective value for most modern 

musculoskeletal-tissue engineering and regenerative medicine approaches due to their 

multipotency and self-renewing competence [47]. Contrariwise, their envisioned 

therapeutic use is being questioned by the scientific community in spite of decades of 

extensive research in the field with concerns regarding their identification, 

characterization and integrative functions in vivo [48, 49], therefore harshening their 

prospective value.  
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Due to the lack of distinct surface markers that identify these cells in vivo, the 

location and identification of MSCs in adult tissues is a subject of controversy [50-52].  

In fact, most of the MSCs biology knowledge derives from in vitro studies, evidently 

exposing cells to highly artificial situations that do not recapitulate the complexity of the 

naïve environment [53]. As a result, an ambiguous distinction between the physiological 

function of isolated MSCs in culture and their presumed in vivo counterpart often leads to 

a translation gap of results towards the clinics. 

Although several major progresses have been made to mimic the complexity of the 

MSCs niche in vitro, a major challenge is still to understand how the chemical composition 

and mechanical properties of the ECM can functionally influence tissue homeostasis 

under physiological and pathological conditions. Therefore, this thesis is structured in 

two main aims that sequentially address unique niche properties: 

Aim 1. Addressing the bone matrix composition 

In here, unique human bone ECM models (2D and 3D) based on decellularization 

techniques are developed, aiming to identify intrinsic ECM regulatory factors that may be 

responsible for the maintenance of MSCs stem-cell competence in vitro and their response 

to homeostatic and extrinsic signals. Additionally, the effect of bone biomimetic 

mineralization on MSCs osteogenic lineage differentiation potential is further addressed  

through a type I collagen-functionalized scaffold.  

Aim 2. Addressing the bone biomechanics 

Biomaterial design often targets the recapitulation of individual features of the 

natural bone ECM network [54]. As well, several dynamic experimental setups have been 

reported to mimic the above-mentioned mechanical stimuli with observable bone-

forming augmentation effect [55, 56]. Yet, in this thesis the bidirectional influence of 

combined biochemical and biophysical cues are addressed for the first-time in a step-wise 

holistic approach, by means of a laminar flow perfusion bioreactor with integration of 

cyclic compression, thus opening new opportunities to validate bone development, 

remodeling and pathologies studies. 
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Chapter 2. 

Methods: Development of a decellularized bone scaffold 

 

In this chapter information regarding the manufacturing and handling process of 

decellularized human-bone scaffolds is methodically described. Further scaffold 

characterization techniques and corresponding results are shown.  

 

The work presented in this chapter was published as a protocol-article in Methods 

in Cell Biology (Volume 157: Cell-Derived Matrices Part B, Chapter 7). Reprint permission 

was obtained from all co-authors and from the Elsevier Copyrights department.  

Reference: Pereira AR, Rudert M and Herrmann M. Decellularized human bone as a 3D 

model to study skeletal progenitor cells in a natural environment. Methods in cell biology. 

Elsevier, 2020, 157, pp.123-141. 
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Chapter 3. 

Results: Decellularized bone ECM for MSC culture 

 

In this chapter, different in vitro bone models (2D cell-derived matrices and 3D 

tissue-derived scaffold) based on decellularization techniques were developed, aiming to 

provide an alternative method to bypass the limitations imposed by the current 

approaches to study the stem cell niche. Particularly, for the first time, comparative 

exploratory proteomics analysis of both models provided significant insights towards the 

identification of novel targets of native bone tissue-specific ECM. 

 

The work on this chapter was submitted as an original research-article to the 

Journal of Tissue Engineering. At the time of submission of this thesis, peer-review 

process is still in progress. Reprint permission was obtained from all co-authors and from 

the publisher under Creative Commons license (CC BY). 

Reference: Pereira AR, Trivanović D, Stahlhut P, Weissenberger M, Groll J and Herrmann M. 

Preservation of the naïve mesenchymal stromal cell phenotype in vitro: comparison of cell- 

and bone-derived decellularized extracellular matrix. J. Tissue Eng.., 2021 (in revision). 
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Chapter 4. 

Results: Role of mineral nucleation on osteogenesis 

 

Here, the osteoconductive function of mineralization was addressed through 

biomimetic functionalization of recombinant organic collagen with hydroxyapatite 

nanocrystals in presence of magnesium. Additionally, the implementation of a perfusion 

system was used to facilitate cell seeding and 3D culture. This work provides biological 

insights to material science applications towards the development of in vitro models 

which can better recapitulate the in vivo cell niche. 

 

The work in this chapter was previously published as an original research-article in 

the International Journal of Molecular Sciences. Reprint permission was obtained from all 

co-authors and from the publisher under Creative Commons license (CC BY). The author 

of this thesis, AR Pereira, shares the first authorship of the mentioned article with GB R-

Rodriguez, material-scientist from University of Granada, as a result of a collaborative 

partnership, whereas both assumed a major contribution in all aspects of the study 

design, data acquisition/analysis and manuscript writing (detailed information in 

APPENDIX B). 

Reference: Ramírez-Rodríguez GB, Pereira AR, Herrmann M, Hansmann J, Delgado-López 

JM,  Sprio S, Tampieri A and Sandri M. Biomimetic mineralization promotes viability and 

differentiation of human mesenchymal stem cells in a perfusion bioreactor. Int. J. Mol. Sci. 

2021, 22, p. 1447.  

 

 

 

 



        

84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4. Results: Role of mineral nucleation on osteogenesis 

85 



Chapter 4. Results: Role of mineral nucleation on osteogenesis  

 

86 



Chapter 4. Results: Role of mineral nucleation on osteogenesis 

87 



Chapter 4. Results: Role of mineral nucleation on osteogenesis  

 

88 



Chapter 4. Results: Role of mineral nucleation on osteogenesis 

89 



Chapter 4. Results: Role of mineral nucleation on osteogenesis  

 

90 



Chapter 4. Results: Role of mineral nucleation on osteogenesis 

91 



Chapter 4. Results: Role of mineral nucleation on osteogenesis  

 

92 



Chapter 4. Results: Role of mineral nucleation on osteogenesis 

93 



Chapter 4. Results: Role of mineral nucleation on osteogenesis  

 

94 



Chapter 4. Results: Role of mineral nucleation on osteogenesis 

95 



Chapter 4. Results: Role of mineral nucleation on osteogenesis  

 

96 



Chapter 4. Results: Role of mineral nucleation on osteogenesis 

97 



Chapter 4. Results: Role of mineral nucleation on osteogenesis  

 

98 



Chapter 4. Results: Role of mineral nucleation on osteogenesis 

99 

 
 



Chapter 4. Results: Role of mineral nucleation on osteogenesis  

 

100 

 



      

101 

 

 

Chapter 5. 

Results: Effect of mechanical stimuli on osteogenesis 

 

In this chapter, for the first-time the combined effect of the naïve human trabecular 

bone ECM and a dynamic culture system reflecting physiological mechanical forces was 

simultaneously addressed. This study provides a foundation for exploring the early 

effects of external mechanical stimuli on MSCs behavior in a biologically meaningful in 

vitro environment, opening new opportunities to study bone development, remodeling, 

and pathologies. 

 

The work presented in Chapter 5 was published as an original research-article in 

Materials journal. Reprint permission was obtained from all co-authors and from the 

publisher under Creative Commons license (CC BY).  

Reference: Pereira AR, Lipphaus A, Ergin M, Salehi S, Gehweiler D, Rudert M, Hansmann J 

and Herrmann M. Modeling of the Human Bone Environment: Mechanical Stimuli Guide 

Mesenchymal Stem Cell–Extracellular Matrix Interactions. Materials, 2021, 14(16), 4431. 
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Chapter 6. 

Concluding remarks 

Despite the recent developments towards in vitro models seeking to mimic the 

native biochemical and architectural complexity of adult stem cell niches, the significance 

of local interactions for MSCs physiology still remains elusive.  In fact, most of the MSC 

biology knowledge derives from in vitro studies, evidently exposing cells to highly artificial 

situations that do not recapitulate the complexity of the naïve environment [53]. As a 

result, an ambiguous distinction between the physiological function of isolated MSCs in 

culture and their presumed in vivo counterpart often leads to a translation gap of results 

towards the clinics. 

In this thesis, human cell and tissue-derived decellularized models were developed 

in order to address the influence of ECM-chemistry and -biomechanics on MSC behavior.  

At first, cell culture-derived 2D matrices were generated by inducing MSCs to 

synthesize and secrete de novo ECM, followed by a mild decellularization protocol. 

Distinctly, osteo- and basal- cell culture environments resulted in four different models 

with unique chemical composition, in line with literature work [57, 58]. For instance, 

while collagen type-I, the most abundant protein of bone ECM [2, 59], was homogenously 

detected in all the models, bone-specific ECM proteins [4] such as laminin and 

osteopontin, on the contrary, have been only detected punctually distributed in the long-

term cultured osteogenic-induced matrix. Literature studies have previously shown that 

MSCs osteogenic lineage determination may result from communication of cell tension 

signals via mechanotrasduction to the cell nucleus [60, 61]. Here was showed that 

reseeded MSCs establish early-detectable cytoplasmic-extension interactions with the 

fibrous-collagen rich ECM matrices, consequently inciting a significant elliptical-

orientated cell morphological change. Corroborating those assumptions, osteo-induction 

functionality of the long-term cultured osteogenic-induced matrix and its relevance as a 

rather natural substrate for in vitro MSC culture was validated by alizarin-red staining of 
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MSCs mineral deposition after 21 days of culture without external supplementation of 

osteogenic differentiation factors.  

In order to implement the aforementioned tissue third dimensionality, in this thesis 

a human decellularized trabecular bone 3D scaffold was further established as a 

straightforward tissue decellularization-based approach able to retain the bone naïve 

physical and chemical complexity.  

The ultra-topography of the scaffold, particularly its retained-native trabeculae 

structure and pore size distribution and interconnectivity, has been shown to have a 

major influence on MSC proliferation and osteogenic commitment [62, 63]. Not only the 

physical arrangement of the environment is a main constraint to resemble the in vivo 

niche, but the stiffness of the matrix is likewise widely recognized and accounted in favor 

of cell-ECM mechanosignaling [64, 65]. In fact, culture of MSCs in softer materials (15-1.5 

kPa), in opposition to conventional stiff cell culture materials (GPa range) such as glass or 

tissue culture polystyrene, has shown to favor stem-like MSCs phenotype [66]. In line with 

these literature reports, here the stemness potential of MSCs recovered from 

decellularized bone models was confirmed by upregulation of Oct4 and Nestin gene 

expression, and further functionally validated by increased efficiency of colony-forming 

capability of cells.  

 Beyond the dimensionality, proteins specifically present in cell- and/or bone-

derived decellularized models surely play a significant role in MSC in vitro cell fate. In this 

thesis for the first-time a comparative proteomic analysis was performed in order to 

speculate on novel ECM target molecules involved in regulation of MSC behavior and 

functions, such as adhesion, metabolic activity and osteogenic differentiation. 

Interestingly, several proteins involved in hematopoietic compartment function, such as 

immune effector process and antimicrobial humoral response, e.g., proteoglycans, 

hemoglobin, prothrombin, etc. , were exclusively detected in the bone-decellularized 

scaffold, resembling the close association of MSCs to the hematopoietic stem cell niche in 

bone marrow [26]. Further supporting data corroborating the preservation of MSCs naïve 

phenotype was obtained by the detectable expression of CXCL12, an important niche 

factor associated with hematopoietic stem cells maintenance, quiescence and 

mobilization [67], at gene and protein level in MSCs cultured for 5 days in basal conditions 

in 3D bone-decellularized scaffolds. 
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 Additionally, proteomics results further revealed exclusive-presence of important 

non-collagenous proteins produced by hepatic cells in decellularized scaffolds, 

transported to bone by bloodstream, such as fetuin-A [68, 69] and secreted 

phosphoprotein–24 [70]. Both proteins are involved in the bioactivity of the bone mineral 

phase exhibiting high affinity to osteoinductive chemokines and growth factors, possibly 

manifested in an enhanced osteogenic potential of reseeded MSCs observed by alkaline 

phosphatase activity staining as early as day 7 of differentiation.   

 Undoubtedly, bone tissue is a particularly complex composite with multiple stages 

of hierarchical organization. At the molecular level, self-assembly collagen triple helices 

fibrils intercalate with hydroxyapatite that grow within the fibrils, regulating their 

nucleation and growth [5]. However, in bone decellularization protocols partial 

decalcification is usually required, mainly for handling purposes but also to enhance the 

exposition of bone morphogenic proteins and growth factors entrapped in the matrix 

[71]. Accurately, energy-dispersive x-ray spectrometry shown no detectable presence of 

minerals in the 2D cell-derived decellularized matrices. On the other hand, residual 

below-physiological values of calcium and phosphate were detected in 3D decellularized 

scaffolds, therefore conjectured to provide a nucleation initial point for augmented 

mineral deposition during osteogenesis. In order to explore the presence of minerals on 

osteogenesis, in this thesis recombinant collagen-based scaffolds mimicking the 

mineralization of native bone have been manufactured in presence of magnesium, a 

stabilizer for hydroxyapatite crystals nucleation, by freeze-drying. Mineralized scaffolds 

showed to significantly support an increase cell growth and scaffold repopulation 

compared to non-mineralized scaffolds. This observed effect was shown to be a combined 

result from the biocompatibility and osteoinductive properties associated with chemistry 

of hydroxyapatite [72], with the unique rough-topography created by the homogeneous 

incorporation of minerals in the collagen-organic matrix, therefore favoring cell adhesion 

and protein absorption [73].  

Furthermore, biomimetic mineralization has shown to not only improve cell 

viability, but also trigger the osteogenic potential of MSCs with a clear trend of 

upregulated osteogenesis related genes, particularly type-I collagen. Therefore, revealing 

the pivotal interplay between the organic and inorganic components in the bone tissue, 

which ultimately coordinate MSCs fate. 
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It is widely accepted that in vitro models should not be confined to stationary 

conditions [56, 74]. Literature is vast when recognizing the effect of shear stress on 

promoting pro-osteogenic commitment of MSCs [75, 76]. In here, experimental data 

showed superior scaffold repopulation of MSCs due to dynamic rather than static 

conditions, for both decellularized bone and collagen-functionalized scaffolds. Notably, 

flow-induced wall shear stress simulated in micro-computed tomography data for the 

decellularized bone model, revealed a mean value of 8.5 mPa, fitting in the literature 

range reported to promote mineralization [76]. However, local map-visualization showed 

heterogeneous distributed trabeculae-shape dependent shear stress locally sensed by the 

cells, unraveling the naïve heterogeneity of MSCs population where particular cells 

remain physically sheltered to mechanical stimuli.  

Furthermore, dynamic conditions also seem to influence MSC-ECM interactions 

through integrin-mediated cell cytoplasmic extensions [77, 78]. In particular, mechanical 

stimulation seems to reinforce collagen network fiber assembly, therefore providing 

MSCs with a higher surface area for adhesion and migration with abundant oxygen and 

nutrients access. This is in line with previous studies, where perfusion bioreactors and 

loading systems have been shown to not only provide appropriate gas exchange but also 

to have a direct accelerating effect on MSCs-matrix de novo production quality and 

quantity [79-81]. Corroborating these findings, genes expression of proteins associated 

with bone anabolic ECM, such as osteopontin [82] and type-VI collagen [83, 84] were 

found to be early upregulated in dynamic conditions, particularly when compressive 

loading was imposed, indicating an augmented MSC osteogenic lineage determination. 

Finally, the novelty of this thesis lays in the step-wise approach towards the 

complexity of in vitro modelling of MSCs interaction within the skeletal niche.  Altogether, 

the results provided suitable in vitro models to study the overall functions of MSCs in a 

physiological relevant microenvironment, sharing both biochemical and mechanical 

properties of human bone tissue elements.  Ultimately, this work surely offers a valuable 

tool for both fundamental prospective study of MSCs identity counterpart in vivo, as well 

as for clinical biology modelling of diseases and pharmacology approaches. 
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Future perspectives 

It is widely recognized that the interplay with systemic factors and cells of different 

maturation and activation states from each particular niche region surely plays a pivot 

role in MSC behavior and function determination. Reproducing these interactions in 

experimental systems, such as the ones described in this thesis, surely provides a 

foundation to answer significant open questions in the field of fundamental regenerative 

processes as well as to explore novel rational cell-based therapeutic strategies. Some 

potential further model increments of complexity and future applications are mentioned: 

Addressing the mineralization on decellularized models   

In this thesis the lack of physiological-mineralization due to the limitations of the 

decellularization techniques was addressed by material-functionalization of a collagen-

based scaffold. However, the rich-organic composition offered by the decellularized ECM 

was not fully addressed in this system either. Although a material science challenge to be 

addressed, functionalization of the decellularized ECM with hydroxyapatite crystals 

would certainly provide a remarkable interesting tool to study the bio-synergetic effect 

of the fully-mimicking bone ECM on MSCs behavior.  

Addressing other types of mechanical loading   

The relations between mechanical loading and bone metabolism have been 

recognized for more than one century, particularly since Wolff based on anatomical 

dissection studies described how bone mass, and consequently function, is determined 

by the local mechanical stress perceived by the tissue [85]. Different experimental both 

in vivo and in vitro models have been used to study how bone remodeling is affected by 

mechanical forces, for a large spectrum of mechanical deformation. Moreover, the 

literature is vast and occasionally conflicting in regards of how loading approaches affect 

the response of cells towards viability and/or osteogenic differentiation. Namely changes 

on the amplitude of the stimuli [86], the frequency [87], the wave form, i.e., triangular, 

sinusoidal, or trapezoidal shape [88], the total duration, i.e. number of cycles [89], and 

the periodicity of resting [90] may directly influence the outcomes. Given that, addressing 

further combination of loading setting features on the here developed dynamic model, 
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certainly would provide a key fundamental understanding of bone mechanical adaptation 

processes, which are up to now not fully understood.  

Addressing systemic paracrine signals   

 It is known that MSCs are recruited to sites of stress or inflammation through 

biochemical toll-like receptor recognition and further signaling activation [91]. As so, the 

chemotaxis profile and functional effect of inflammatory factors on MSC behavior should 

be addressed with perspectives for new therapeutic approaches. Although most work is 

often performed by stimulation of MSCs to single cytokines [92, 93], platelet-rich plasma 

has successfully been used to mimic the combinatorial effect of several growth factors 

and cytokines that are released during inflammation, e.g., transforming growth factor-β, 

vascular endothelial growth factor, insulin-like growth factor I, basic fibroblast growth 

factor, endothelial growth factor, etc. [94, 95]. Platelet-released factors showed to not 

only enhance MSCs recruitment, proliferation and osteogenic lineage commitment, but 

also promote MSCs immunomodulatory and paracrine activity [96]. Thus, the 

incorporation of such stimuli in experimental designs using the here developed 3D 

decellularized bone model would be of extreme scientific urge in order to access MSCs 

immunomodulatory behavior in the course of regeneration in a unique in vitro model. 

Addressing the hematopoietic stem cell niche  

In this thesis, exclusively MSCs behavior in culture was addressed. Yet, a single 

culture approach is fairly reductant when aiming to model the stem cell niche, 

particularly in respects with the interactions with other neighboring cells. 

The crosstalk between MSCs and hematopoietic cells in bone marrow homeostasis 

have been widely studied in the context of adult tissue regeneration [97, 98]. 

Interestingly, it has been shown that MSC secreted factors, such as stem cell factor and 

CXCL12 are able to control hematopoietic stem cells quiescence, survival, proliferation, 

self-renewal and mobilization [99, 100]. In turn, hematopoietic cells may trigger 

osteogenic differentiation of MSCs through BMP2 and BMP6 signaling [101]. Due to the 

experimentally observed rushed ex vivo differentiation of hematopoietic cells in culture, 

development of improved amplifying strategies where cells retain the stem phenotype 

are a promising tool to support translation to clinical applications. In fact, MSCs have been 

shown to support expansion of hematopoietic stem cells in co-culture systems [102], 
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advocating for the potential of the here developed 3D bone-decellularized model with 

naïve architecture and chemical composition, towards an optimized in vitro tool for 

recapitulation of the bone marrow stromal niche.  

Addressing the bone remodeling multicellular unit  

Bone homeostasis depends on the resorption of aged bone by osteoclasts and 

formation of new bone by osteoblasts [103]. Imbalance of this tightly coupled process can 

cause diseases such as osteoporosis. Studies suggested that osteoblasts could regulate 

osteoclast formation [104, 105], while osteoclasts have been shown to also be able to 

dynamically affect MSCs-osteoblastic differentiation [106] through direct cell-cell 

contact, cytokines and extracellular matrix interaction [107]. Hence, the study of 

mechanisms that regulate communication between osteoclasts and osteoblasts in a 

complex system may be addressed through the 3D bone-decellularized model in order to 

facilitate the macromolecular spatial interactions within the skeletal niche. 

Addressing the perivascular function  

Tissue formation and regeneration, as well as the survival of bone grafts, are under 

the control of vessels, which supply oxygen and nutrients to the cells [108]. At 

perivascular sites, MSCs assume a pericyte-like function as stabilizers of newly formed 

blood vessels, thus modulating the angiogenic response through cross-talk with 

endothelial cells [109-111]. Likewise, MSCs pericyte activity is reported to control 

hematopoietic cells mobility, i.e., low permeable endosteal vessels with high integrity (H-

type) favor hematopoietic cells niche retention, while sinusoidal vessels with low 

integrity (L-type) offer a facilitated cell transference [112]. Therefore, exploring the co-

culture effect of MSCs with endothelial cells may provide significant insights towards 

stem cells mobility and potential role in the systemic response. 

Addressing cancer progression  

Bone marrow niches can also be targeted by metastasizing cancer cells, developing 

a malignant vicious cycle between niche and tumor cells, where the ECM is dynamically 

adapted to each step of tumor progression [113]. It is proposed that MSCs and their 

progeny may in fact facilitate neoplastic growth [114]. MSC derived CXCL12-gradient is 

one of the most described explanations for tumor-to-bone marrow homing, as result of a 
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chemo-attractant gradient for CXCR4-expressing cancer cells [115]. However, the 

interactions with bone resident cells and tissue functionality are still to be further 

explored, particularly in relation with the dynamic of the bone remodeling unit, e.g., 

prostate cancer cells induce an osteoblastic-type lesion, in contrast to breast cancer and 

myeloma cells, which create typically osteolytic bone lesions [116]. Furthermore, 

functional modification of MSCs in hematologic malignancies, including acute 

lymphoblastic, myeloid leukemia, lymphomas, chronic myeloid leukemia, and 

myelodysplastic syndromes must be further addressed, while it is still unknown whether 

malignant hematopoietic progenitors modified MSCs or if leukemia-triggering changes 

occurred first in MSCs and the healthy marrow niche [117, 118].  

In addition, a major feature of solid tumors is hypoxia, which increases patient 

treatment resistance and favors tumor progression [119, 120]. It is known that hypoxia 

environment activates transcription factors such as hypoxia-inducible factor [121], thus 

implicating a broad range of genes targeting several cellular functions such as 

angiogenesis, cell survival/death, metabolism, pH regulation, adhesion, extracellular 

matrix remodeling, migration and metastasis. Although now recognized as a major 

contributor to cancer progression and to treatment failure, the functional consequences 

of hypoxia signaling in cancer should be further addressed. The here developed 3D model 

may provide a unique tool for the study of such experimental setups by recapitulating the 

complex architectural network of bone trabeculae. 

Addressing the aging process  

Lastly, the dynamics of the bone marrow niche is reported to vary strongly also with 

age. Quiescence-to-senescence transition of niche-residing MSCs are reported to occur 

during aging, assumed to be driven either by the age-associated fat tissue expansion [122] 

and/or the inherent modulation of number and type of vessels in bone and bone marrow 

[123]. This phenomenon, albeit still not completely elucidated, strongly impairs the 

interactive signaling network of the overall niche system and ultimately the complete 

regenerative activity. Thus, the possibility to explore co-culture interactions of MSCs with 

mature adipocyte cells in a mimetic complex system that resembles the skeletal niche 

here presented, may provide useful knowledge regarding the root-developing causes of 

MSC senescence phenotype, hardly addressed in the literature.
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