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_________________________________________________________________1. Introduction 

1 Introduction 
 

 
The immune system is a remarkably adaptive defense system that has evolved in vertebrates to 

protect them from invading pathogens and cancer. It is able to generate an enormous variety of 

cells and molecules capable of specifically recognizing and eliminating an apparently limitless 

variety of foreign invaders. These cells and molecules act together in an exquisitely adaptable, 

dynamic and complex network. 

Immunity has both non-specific and specific components, which work in a synchronized manner 

that provides an effective biological defense. Innate, or non-specific immunity refers to the basic 

resistance to disease that comprises four types of defensive barriers: anatomic, physiologic, 

endocytic and phagocytic, and inflammatory. Acquired, or specific, immunity reflects the 

presence of a functional immune system that is capable of specific and selective immune 

responses: humoral and cell-mediated. Generation of an effective humoral immune response 

requires cell interactions between macrophages, TH cells and B cells leading to the production of 

large numbers of antibody molecules specific for a foreign pathogen. The cell-mediated 

immunity is characterized by the generation of various effector immune cells: CD4+ and CD8+ T 

lymphocytes (antigen-specific), macrophages, neutrophils, eosinophils and natural killer cells 

(antigen-non-specific). Unlike the humoral branch of the immune system, which serves mainly to 

eliminate extracellular bacteria and their products, the cell-mediated immunity is responsible for 

the clearance of intracellular pathogens, virus-infected cells, tumor cells and foreign grafts 

(Kuby, 1994). 

The large number of distinct cell types which are involved in the immune responses and their 

functions must be coordinated to insure a response that is appropriate in quality and in magnitude 

to the eliciting antigenic stimulus. A central role in this regulation and co-ordination of functions 

has the action of T lymphocytes, whose receptors are specific for peptides derived from the 

eliciting antigen, bound to a groove in a class I or a class II MHC molecules. Much of their 

function is mediated by a set of small proteins whose expression, secretion, or both is induced as 

a result of antigen-stimulated cellular activation. These proteins, designated cytokines, act by 

binding to high-affinity receptors expressed on target cells and by inducing biochemical signals 

within those cells that profoundly affect their behavior. 
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Cytokines are a diverse group of proteins, which can be subdivided into several families, 

including the haematopoietins, the interferons, tumor necrosis factor (TNF)-related molecules, 

immunoglobulin super-family members, and the chemokines (Paul & Seder, 1994). Among these 

molecules substantial overlap in functions is observed. These pleiotropic mediators act 

synergistically or antagonistically to orchestrate the behavior, proliferation and death of cells, 

acting directly or by regulating the expression of other cytokines. A paradigm of cytokine biology 

arises from the regulation of the differentiation of naive T cells. Among cloned lines of CD4+ T 

cells, two major subsets (TH1 and TH2) have been identified, which have shown a great degree of 

polarization in their cytokine-producing phenotype (Romagnani, 1991). TH1 clones tend to 

produce IL-2, IFNγ and TNFβ as their unique products, while TH2 clones express IL-4, IL-5, IL-6, 

IL-10 and IL-13. TH1 and TH2 cells develop from precursors of T helper cells (pTH), which are bi-

potent and their differentiation is determined by the present cytokines (Figure 1.1). IL-4 appears 

to be essential for priming the differentiation of pTH cells into TH2 cells, while IFNγ inhibits it 

(Seder et al., 1992). The differentiation into TH1 cells is enhanced by IL-12 and diminished by IL-

4 (Hsieh et al., 1993; Seder et al., 1993). 

 

              

+IL-2 and IL-4
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IFN , IL-2, TNFγ β
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Figure 1.1: Differentiation of pTH cells into TH1 and TH2 subtypes is determined by cytokines. A system through, 
which the polarization of CD4+ T cell response toward the production of IFNγ and the expression of cellular 
immunity or toward the production of IL-4 and expression of help for antibody production is mediated (Paul & 
Seder, 1994). 
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Interleukin-4 (IL-4) belongs to the haematopoietin family of cytokines. It was initially described 

in 1982 and first designated B-cell growth factor (Howard et al., 1982). IL-4 is produced by TH2 

cells (Figure 1.1), basophils and mast cells in response to receptor-mediated activation events 

(Seder & Paul, 1994). A specialized subset of T cells, some of which express NK1.1 and appear 

to be specific for CD-1 (NK T cells), has been also shown to produce IL-4 (Yoshimoto & Paul, 

1994; Chen & Paul, 1997). Eosinophils have also been reported to be capable of producing IL-4 

(Dubucquoi et al., 1994). 

Among the cytokine family, IL-4 is one that displays a wide range of biological effects on 

numerous cell types. These effects are either direct or indirect through the modulation of 

secretion of other cytokines. As mentioned above, IL-4 plays a central role in regulating the 

differentiation of antigen stimulated naive T cells into TH1 or TH2 subtypes and determines the 

kind of the following immune response (McKenzie, 2000). 

A second function of major physiologic importance is IL-4´s control of specificity of 

immunoglobulin class switching. IL-4 determines that human B cells switch to the expression of 

IgE and IgG4 and mouse B cells to IgE and IgG1 (Gascan et al., 1991; Coffman et al., 1986). 

This switching function is antagonized by IFNγ. Similarly, IL-4 inhibits the production of IgG2a 

in B cells treated with IFNγ (Pene et al, 1988). Thus, the control of production of this two 

cytokines is a key element in the qualitative nature of immune responses. Indeed, in IL-4 and IL-

4 receptor α (IL-4Rα) deficient mice the serum levels of IgE and IgG1 are strongly reduced 

(Kopf et al., 1993; Kuehn et al., 1991; Noben-Trauth et al., 1997). Taken together, these facts 

have established an important role of IL-4 in Ig isotype selection in vitro and in vivo. 

IL-4 has a variety of other effects in cells of the immune system. It is involved in activation and 

proliferation of T and B cells (Nicola, 1994; Rebollo et al, 1996; Friedrich & Wietek, 2001). In 

resting B cells IL-4 increases the expression of class II MHC molecules (Noelle et al., 1984), 

enhances expression of CD23 (Defrance et al., 1987), up-regulates the expression of the IL-4 

receptor (Ohara & Paul, 1988), and in association with lipopolysaccharide allows B cells to 

express Thy1 (Snapper et al., 1988). It also acts as a co-mitogen for B cell growth (Howard et al., 

1982). Although not a growth factor by itself for resting lymphocytes, it can substantially prolong 

the lives of T and B lymphocytes in culture (Hu-Li et al., 1987). IL-4 also has activity as a 

stimulant of IL-3-mediated mast cell growth. IL-4 acts on macrophages to inhibit the release of 

proinflammatory molecules such as TNF, IL-1, IL-8 and other cytokines (Nicola & Hilton, 1999). 

IL-4 also has an important role in tissue adhesion and inflammation. It acts with TNF to induce 

expression of vascular cell adhesion molecule-1 on vascular endothelial cells (Thornhill et al., 

1991) and it down-regulates the expression of E-selectin (Bennett et al., 1997). This shift in 
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balance of expression of adhesion molecules by IL-4 is thought to favor the recruitment of T cells 

and eosinophils, rather than granulocytes, to the side of inflammation. 

Many cell types respond to IL-4, including some without apparent connection to haematopoiesis 

or to the immune system, e.g. osteoblats, keratinocytes, or fibroblasts (Duschl & Sebald, 1996). 

IL-4 acts as a chemotactic factor for fibroblasts and induces dermal fibroblasts to secrete 

extracellular matrix proteins, such as type I and type III colagens and fibronectin (Chomarat & 

Banchereau, 1997). Although the mechanism remains unclear, IL-4 has been observed to enhance 

the killing of tumor cells in vivo (Tepper & Mule, 1994). 

Studies with transgenic mice have revealed that over-expression of IL-4 results not only in high 

serum IgE levels, but also in inflammatory lesions, which severity and frequency directly 

correlates with the level of transgenically expressed IL-4. These lesions histologically resemble 

those seen in human allergic disorders suggesting the importance of IL-4 in the pathogenesis of 

allergic diseases (Tepper et al., 1990). The pathophysiological features of allergic asthma are 

thought to result of aberrant expression of TH2 cells producing IL-4, IL-5 and IL-13. Such 

conclusion is supported by the fact that TH2 cells are necessary for induction of allergic asthma in 

murine models (Gavett et al., 1994). The type 2 cytokines undergo expansion in these models as 

well as in patients with allergic asthma (Walker et al., 1992). High amounts of these cytokines 

have been detected especially in the airway tissue of asthmatics and animal models (Gavett et al., 

1995; Tsicopoulos et al., 2000). Experiments using IL-4 deficient mice have shown significantly 

attenuated asthma phenotype after repeated allergen exposure, in contrast to wild-type control 

animals, where all asthmatic symptoms have developed (Brusselle et al., 1994; Brusselle et al., 

1995; Hamelmann et al., 1999). 

Recent studies have demonstrated the contribution of another type 2 cytokine, IL-13 for inducing 

allergic asthma in a IL-4-independant manner (Wills-Karp et al., 1998; Gruenig et al., 1998; 

Cohn et al., 1999, Izuhara et al., 2000). IL-13 is a cytokine closely related to IL-4 and both bind 

to IL-4Rα. Linkage analysis has mapped susceptibility to allergic asthma to a region on human 

chromosome 5q25-33, which includes the genes for both IL-4 and IL-13 (Marsh et al., 1996, 

Lonjou et al., 2000). A number of additional regions in the genome have been linked to asthma in 

human studies, suggesting a complex multifactorial phenotype (Nanavaty et al., 2001). However, 

diverse forms of asthma, implicating IL-4 and IL-13 might follow a final common effector 

pathway mediated through signals transduced by IL-4Rα. 

Allergy comprises a group of syndromes that includes asthma, atopic dermatitis and hay fever. 

These diseases have classically been described as caused by an allergic response characterized by 

immediate (type 1) hypersensitivity reactions, increased serum IgE, and increased bronchial 

reactivity to specific or non-specific inhaled allergens. Allergic asthma is a complex disorder 
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characterized by local and systemic allergic inflammation and reversible airway obstruction 

(Anderson & Morrison, 1998). Asthma develops because of both a genetic predisposition and the 

exposure to environmental factors, such as allergens, respiratory tract infections and atmospheric 

pollutants (Manian, 1997). Most major allergens are extremely well characterized. They are 

usually soluble proteins with dimensions that allow penetration into the airways of the nose or 

lung. Allergen sources include house dust mites, domestic and farm animals, and grass or tree 

pollen. 

Recent decades have brought dramatic increases in the prevalence and severity of allergic asthma. 

It is especially an important problem in developed societies, where 10% of the children are 

affected (Cookson & Moffatt, 1998). 

Although some details of the asthmatic pathogenesis remain unclear, the main mechanism and the 

role of IL-4 are well established (Figure 1.2). Processing of the allergen by antigen-presenting 

cells (APC) leads to the formation of an allergen peptide that is presented to the T-cell receptors 

(TCR) of CD4+ T cells in association with MHC class II molecules. IL-4 released by eosinophils, 

basophils and mast cells facilitates the differentiation of pTH cells into TH2 cells which secrete IL-

4, IL-5, IL-6, IL-10 and IL-13. Activated TH2 cells interact through the TCR with the peptide-

MHC complex on B cells. Adhesive interaction between TH2 and B cells are also mediated by the 

surface expression of CD40 ligand on TH2 cells and CD40 on B cells. IL-4 and IL-13, secreted to 

a varied extent by TH2 cells, basophils, mast cells and eosinophils, induce immunoglobulin class 

switching to IgE in B cells. Allergic disease is initiated when allergen comes into contact with 

IgE bound to the high affinity IgE receptor (FcεRI) on mast cells and basophils. Receptor cross-

linking releases a mixture of inflammatory mediators (histamine, peptide leukotrienes and 

platelet-activating factor) that are responsible for the symptoms of allergic asthma. Immediate 

inflammation and associated symptoms resolve and are followed by a second phase, which 

typically peaks 6 to 20 hours after antigen exposure (Marone, 1998). 

The conventional therapy of patients with allergic asthma includes symptomatic treatment with 

inhaled corticosteroids. The long term of steroid therapy has shown different side effects such as 

osteoporosis, skin thinning and hypertension. New, alternative strategies specifically target the 

TH1/TH2 balance of the immune response. Potent candidates for development of anti-allergic 

drugs are IL-4, IL-5 and IL-13. Possible therapies include the use of inhibitory antibodies, soluble 

cytokine receptors or antagonistic cytokine variants (Prasad et al., 2000; Ramshaw et al., 2001). 

An antibody-mediated blockade of IL-4 in a murine model has ablated the development  
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Figure 1.2: Mechanism of immediate (type I) hypersensitivity reactions. Allergens induce disease in sensitized 

individuals by the crosslinking of IgE bound to high-affinity receptors on mast cells. Mast cell degranulation initiates 

an inflammatory cascade and allergic symptoms. Th2 cells up-regulate IgE production, whereas Th1 cells down-

regulate it (Cookson & Moffatt, 1998). 

              

 

of allergic asthma only when the monoclonal antibody has been administered during the period of 

systemic immunization. No effect has been observed when anti-IL-4 has been administrated 

during the period of allergen challenge (Corry et al., 1996; Tanaka et al., 1998). Treatment of 

sensitized mice with soluble IL-4 receptor (sIL-4R) has demonstrated partial success, since the 

late phase pulmonary inflammation has been blocked to some degree (Henderson et al, 2000). 

Antagonistic IL-4 variants have been first described for human IL-4 (Kruse et al., 1992; Kruse et 

al., 1993). The most efficient human antagonist described so far is [R121D, Y124D]-IL-4 (Tony 

et al., 1994). A murine antagonistic variant, [Q116D, Y119D]-mIL-4, has shown inhibition of 

mIL-4 and has prevented completely the development of an allergy phenotype in treated animals 

(Grunewald et al., 1998). Another mutant variant of murine IL-4 (C118 deletion) was recently 

reported to prevent the development of allergic airway eosinophilia and airway 

hyperresponsiveness in mice (Tomkison et al, 2001). These examples demonstrated the 
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therapeutic potential of IL-4 mutant proteins as receptor antagonists that are able to inhibit both 

IL-4 and IL-13 in treatment of allergic asthma. 

Murine IL-4 is a glycoprotein with an approximate molecular weight of 19 kDa when purified 

from T-cell source (Ohara et al., 1985; Grabstein et al., 1986). Recombinant IL-4 produced in 

baculovirus expression system has an approximate molecular weight of 14 to 15 kDa, whereas 

recombinant IL-4 produced in yeast is quite heterogeneous in molecular weight with some forms 

having size of ∼50 kDa. These differences represent variable glycosylation. IL-4 that has been 

deglycozylated has full biologic activity (Le et al., 1988), as does recombinant IL-4 produced in 

E.coli. Human IL-4 has very similar characteristics (Table 1.1). It exists in molecular weight 

forms between 15 and 19 kDa. 

 
Table 1.1: Characteristics of murine and human IL-4 (Beckmann, 1992) 
 

Characteristic Murine IL-4 Human IL-4 
Amino acids   
    Precursor 140 153 
    Mature 120 129 
Molecular weight, kDa   
    Predicted 14 14 
    Expressed 15-19 15-19 
N-linked glycosylation sites 3 2 
Disulphide bonds  Yes (6 Cys) Yes (6 Cys) 
Gene size, Kbp ∼ 6 ∼ 10 
    Number of exons 4 4 
    Chromosomal location 11 5q23.3-31.2 

 

cDNA for both mouse and human IL-4 have been cloned (Lee et al., 1986; Yokota et al., 1986), 

and the proteins encoded by the murine and human cDNAs contain 140 and 153 amino acids, 

respectively. Both murine and human IL-4 contain putative signal sequences at their N-termini 

which following cleavage, result in mature proteins of 120 and 129 amino acids, respectively. 

There is approximately 50% overall identity between human and murine IL-4. 

The gene for human IL-4 has been mapped to the long arm of chromosome 5 at 5q23-31 (Le 

Beau et al., 1988). The IL-4 gene is linked to the genes of a few other cytokines: IL-13, IL-5, 

granulocyte/macrophage colony-stimulating factor (GM-CSF) and IL-3. Due to their close 

localization, the similar exon structure of the genes and their primary sequence homology, this 

cytokines have been termed the IL-4 family (Paul & Seder, 1994). A homologous region has been 

found at mouse chromosome 11 (D´Eustachio et al, 1988). 

The secondary structure of IL-4 has been described in crystals and in solution (Powers et al., 

1992; Smith et al., 1992; Walter et al., 1992; Wlodawer et al., 1992). IL-4 displays the four α-
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helix bundle structure, which is a characteristic of the ligands from class 1 of the cytokine super-

family. The four-helix bundles of haematopoietic ligands have an “up-up-down-down” 

orientation in which the first two helices are parallel to each other and anti-parallel to the last two. 

This is achieved by cross-over connections linking helix A to B and helix C to D. Based on the 

overall length of the polypeptide chain, the length of the main helices, and the inter-helix angles, 

class 1of cytokine superfamily is further classified into two groups: a “long chain” and a “short 

chain” group (Sprang & Bazan, 1993). As seen from the structures of GH, G-CSF, LIF, EPO, IL-

6, and leptin, members of the long-chain group have about 160 to 200 amino acids, long helices 

(about 25 residues), and an angle between the AD and BC helix pairs of about 160°. Based on 

sequence comparisons, it is expected that PRL, ONC, CNTR, IL-11, and IL-12 belong to this 

group as well. In contrast, the ligands of the short-chain group are 105 to 145 amino acids long, 

have shorter helices (about 15 residues), and a large AD/BC packing angle (about 35°), as seen 

from the structure of GM- and M-CSF, IL-2, IL-4, and IL-5. Also IL-3, IL-7, IL-9, IL-13, and 

CSF are expected to show similar structural topology. Most of the ligands are monomeric, with 

the exceptions of the disulfide-linked dimers of M-CSF and IL-5 (for a review see Kossiskoff & 

de Vos, 1998; Nicola & Hilton, 1998). 

The overall structure of IL-4 is highly compact and globular with a predominantly hydrophobic 

core. The helices range in length from 14 to 25 residues. They are connected by one short and 

two long segments to form a left handed bundle topology (Figure 1.3). These connecting 

segments include residues 19-40 (loop AB), 59-69 (loop BC), and 95-108 (loop CD). Residues 

27-31 and 105-108 within the two long connections form a two-stranded anti-parallel β-sheet 

(Walter, et al., 1992).  

Human recombinant IL-4 contains three disulfide bonds and no free cysteine residues. Cys3 and 

Cys127 form a disulfide bond that links the N- and C-termini of the molecule. Cys24 is located at 

the C terminal end of helix A and forms a disulfide bond with Cys65, which is in the BC loop. 

Cys46 is in the middle of helix B and forms a disulfide bond with Cys99 located in the CD loop. 

The three disulfide bonds link the polypeptide chain at the three most spatially parts of the 

molecule (Walter et al., 1992). Exchange of the cysteine residues in human IL-4 with threonine 

residues has revealed that the disulfide bridge formed by Cys46–Cys99 is structural and functional 

essential, whereas the other two disulfide bridges (Cys3–Cys127 and Cys24–Cys65) are less 

important (Kruse et al., 1991). Human IL-4 contains two potential sites for N-linked 

glycosylation at positions 38-40 and 105-107. 
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Figure 1.3: Ribbon model of the IL-4 molecule. 

              

 

The ability of cytokines to influence the course of cell growth and differentiation uniquely 

depends on their recognition and binding by specific receptors. These are cell surface molecules 

that transduce the binding of messenger cytokines into cytoplasmatic signals and trigger 

developmental processes within the cell (Nicola & Hilton, 1998).  

IL-4 receptors (IL-4R) are present in haematopoietic, endothelial, epithelial, muscle, fibroblast, 

hepatocyte and brain tissues. Two types of IL-4R have been established, so far (Table 1.2). The 

type I IL-4R is constituted by the association of a high-affinity (Kd ~ 100 pM) IL-4R α-chain, 

(IL-4Rα) and the IL-2R γ-chain, known as IL-2Rγ or γc (Russell et al., 1993). This kind of 

receptor is especially found on T and B lymphocytes, and monocytes. The type II IL-4R, which is 

expressed on non-haematopoietic cells, is composed of the IL-4Rα and the low-affinity binding 

chain for IL-13 termed IL-13Rα1 (Obiri et al., 1995). The type II receptor is used by both IL-4 

and IL-13, whereas the type I is used only by IL-4 (Murata et al., 1998; Jensen, 2000). 
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Table 1.2: Comparison of IL-4R type I and II. Data from Jensen, 2000 is used. 

 

 Chain composition Type of cells Binding to IL-4 Binding to IL-13

IL-4R type I IL-4Rα, γc T and B lympho-
cytes, monocytes

high affinity no binding 

IL-4R type II IL-4Rα, IL-13Rα1 Cos-7, A431, 
Colo201 cells 

competition 
with IL-13 

high affinity; 
competition 
with IL-4 

 

Cytokine receptors are type I membrane proteins, where extracellular and intracellular domains 

may operate rather independent from each other. Transmembrane signaling is achieved by 

dimerization or oligomerization of receptor subunits. For IL-4, binding is a strictly sequential 

process (Figure 1.4). The ligand is first bound with high affinity by the ectodomain of IL-4Rα, 

and then this 1:1 complex can associate the γc creating in this way an active dimer. A cellular 

signal is generated because the joined intracellular domains can recruit signaling molecules from 

the cytoplasm (Duschl & Sebald, 1996). 

 

              

 Step 2: receptor dimerization Step 1: liga inding 
 

 

IL

 
IL-4Rα 

 

 
Figure 1.4: A two step 

   

 

Based on in vitro a

molecule. Site 1 bi

which is important

end of helix D, in

 

nd b
-4 

active dimer 1:1 complex γc 

mechanism of receptor activation by IL-4 (Duschl & Sebald, 1996). 

           

nd in vivo binding studies, two binding sites have been described in the IL-4 

nds to IL-4Rα and is marked by Glu9 in helix A and Arg88 in helix C. Site 2, 

 for the IL-4-dependent association between IL-4Rα and γc, is located at the 

cluding particularly Arg121, Tyr124, and Ser125. (Kruse et al., 1993). The 
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mechanism of sequential receptor dimerization and the established two binding sites have been 

exploited for design of antagonistic variants of IL-4. Such mutants cannot recruit the γc into the 

receptor complex, since the site 2 has been destroyed, but they bind to IL-4Rα with high affinity 

and in this way block the signaling pathways (Kruse et al., 1992). 

Ligand induced dimerization of cytokine receptors results in the activation of tyrosine kinases 

that phosphorylate cellular substrates and initiate signaling cascades (Miyajima et al., 1992). 

Neither the IL-4Rα nor the γc has endogenous kinase activity and therefore the IL-4R requires 

receptor-associated kinases for the initiation of signal transduction. The Janus-family (Jak) 

tyrosine kinases are critical in the initiation of signaling through the IL-4R system. Jak1 has been 

proposed to associate with IL-4Rα, while Jak3 associates with γc (Miyazaki et al., 1994). IL-4 

stimulation results in tyrosine phosphorylation of Jak1 and Jak3 (Figure 1.5). Activation of IL-

4R-associated kinases leads to tyrosine phosphorylation of the IL-4Rα chain itself, a process that 

occurs rapidly after IL-4R engagement (Smerz-Bertling & Duschl, 1995). The cytoplasmic 

domain of human IL-4Rα contains six conserved tyrosine residues, which are potential sites of 

phosphorylation and subsequent interaction with downstream signaling proteins through Src-

homology 2 (SH2) or phosphotyrosine-binding (PTB) domains within these molecules. The 

cytoplasmic region of IL-4Rα chain appears to have three functionally distinct domains, one that 

acts as an interaction site for Jaks, one required for activation of proliferative pathways 

(containing Tyr497), and a third involved in the activation of pathways leading to induction of 

gene expression (Tyr575, Tyr603, Tyr631). 

Analysis of IL-4Rα deletion mutants have indicated that the region between residues 557 and 657 

of the human IL-4Rα is critical for the induction of signaling pathways leading to expression of 

IL-4-responsive genes (Wang et al., 1996). The three conserved tyrosine residues within this 

region (Tyr575, Tyr603, Tyr631) are potential sites of phosphorylation and subsequent 

association of SH2-containing proteins. As a direct connection between the cytokine receptor and 

the transcription apparatus act molecules termed signal transducers and activators of 

transcription, or STATs. Experimentally it has been shown that Jak activation is required for 

STAT activation (Velazquez et al., 1992). Thus, the STAT activation pathway is often referred to 

as the Jak-STAT pathway. STAT6 is the primary STAT activated in response to IL-4 stimulation. 

IL-4 engagement results in the activation of Jak1 and Jak3, and phosphorylation of specific 

tyrosine residues in the receptor cytoplasmic region. STAT6 then binds to the phosphorylated 

receptor through a highly conserved SH2 domain, enabling the activated kinases to phosphorylate 

STAT6 at a C-terminal tyrosine residue. The conserved Tyr575, Tyr603, Tyr631 have been 

proposed to be docking sites for the SH2 domains of STAT6 (Figure 1.5).  
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Figure 1.5: Signal transduction through the IL-4R complex. A, B, C, and D, IL-4 helixes; IL-4RE, IL-4 responsive 

element; IL-1RA, IL-1R antagonist; GAS, IFNγ activated sequence. 

              

 

Once phosphorylated, the STAT6 molecule disengages from the receptor and forms homodimers 

through interaction of its SH2 domain with the C-terminal phosphotyrosine residue of a second 

STAT6 molecule. The dimerized STAT6 complexes translocate to the nucleus where they bind to 

specific DNA motifs in the promoter of responsive genes. The DNA motifs bound by different 

STATs bear remarkable similarity to each other and reflect a dyad symmetry. STAT6 appears to 

bind in particular to the sequence TTC-N4-GAA (Leonard & O´Shea, 1998). The exact 

mechanism by which STATs activate transcription is still being determined. Activation of gene 

transcription by STAT6 may require co-operative interaction with additional transcription factors 

(Schaefer et al., 1995; Look et al., 1995), or phosphorylation by kinases activated in the 

Ras/MAP kinase cascade (David et al., 1995). Alternatively spliced forms of STAT6 have 
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deletions in the N-terminal (STAT6b) or SH2 (STAT6c) regions (Patel et al., 1998) and may play 

a role in STAT6 regulation. 

Stimulation with IL-4 or IL-13 induces tyrosine phosphorylation of a 170 kDa protein designated 

insulin receptor substrate-2 (IRS-2), due to its high similarity to IRS-1 (Turner et al., 1991; 

Miossec, 1993). The IRS-1/2 molecules link IL-4R to signaling pathways involved in cellular 

proliferation (Sun et al., 1995). It has been shown that IRS-2 becomes phosphorylated as a result 

of interaction with a phosporylated motif of the IL-4Rα including Tyr497, presumably through 

the action of receptor-associated kinases (Wang et al., 1996). Among the molecules that interact 

with the phosphorylated IRS-1/2 are the regulatory subunit of phosphoinositide-3-kinase (PI-3-K) 

and the adapter molecule, Grb-2 (Figure 1.5). These interactions lead to the activation of the PI-3-

K and Ras/MAPK signaling pathways, respectively. The interaction between the regulatory 

subunit of PI-3-K and IRS-1/2 is followed by activation of the catalytic subunit of PI-3-K. Once 

activated, the catalytic subunit is capable of phosphorylating membrane lipids as well as Ser/Thr 

residues of proteins (Dh et al., 1994). The lipid kinase activity mediates phosphorylation of 

inositol in the cellular membrane (Toker et al., 1997). Since phosphoinositides have been 

implicated in the activation of a number of downstream kinases that play a key role in cell 

survival (Franke et al., 1997), it is hypothesized that activation of the PI-3-K pathway by IL-4 

may prevent apoptosis in haematopoietic cells. Although the importance of the Ser/Thr kinase 

activity has not yet been fully defined, it has been suggested that this pathway may result in a 

negative feedback loop, which contributes to the regulation of the IRS-1/2 signaling pathway. IL-

4 activation of Ras/MAPK is not consistently observed. In particular, this activation critically 

depends on cell type and more specifically on the variety of signaling molecules expressed in 

these cells. (Welham et al., 1995; Zamorano et al., 1998) 

The signaling pathways that are activated by IL-4R engagement, such as the Jak-STAT and 

IRS1/2 pathways, mirror those activated by a number of other cytokines. Nevertheless, the 

activation of these pathways results in a unique pattern of cellular responses to IL-4. In the case 

of IL-4, specificity is in part achieved through the activation of STAT6, an event that, among 

class I cytokine receptors, has been demonstrated to occur only through engagement of IL-4Rα. 

Specific cellular responses to IL-4 may also result from the unique character of the IL-4R (for a 

review, see Nelms et al., 1999). 

cDNA encoding the human high-affinity IL-4Rα have been obtained (Idzerda et al., 1990). The 

full-length cDNA contains an open reading frame encoding a 825 amino acids protein, which 

includes a signal sequence of 25 amino acids. The mature receptor chain is a glycoprotein with 

molecular weight of 140 kDa, which displays a 207-amino-acid extracellular domain, a 

transmembrane domain of 24 amino acids, and a 569-amino-acid cytoplasic domain. It contains 
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six potential N-glycosylation sites. Furthermore, an alternatively spliced form of IL-4Rα has 

been identified in mouse serum. It encodes a soluble product (sIL-4R) which binds IL-4 with an 

affinity comparable with that determined for the cell surface receptor chain (Fernandez-Botran & 

Vitetta, 1990). A role of a transport protein that prevents enzymatic degradation of IL-4, has been 

suggested for sIL-4R (Fernandez-Botran & Vitetta, 1991). 

The γc, first identified as a component of IL-2R, has been found to be shared as a common 

subunit among receptors for IL-2, IL-4, IL-7, IL-9 and IL-15. Therefore, it is now called the 

common γc. Neither IL-4 nor any other cytokine up to now could be demonstrated to bind directly 

to a solitary γc in whole cells (Sugamura et al., 1995). Molecular binding studies have indicated 

that the γc recognizes a complex of IL-4 and IL-4Rα and binds to it exhibiting a high dissociation 

constant Kd = 3 µM (Letzelter et al., 1998). Although γc does not contribute to the affinity of the 

IL-4R complex for IL-4, it is essential for formation of the functional IL-4R and activation of 

signaling pathways by IL-4 (Russel et al., 1993). Human cDNA clones encoding the 64 kDa-

protein of the common γc have been isolated (Takeshita et al., 1992). The mature form of γc 

consists of 347 amino acids, including an extracellular domain of 232 amino acids, a 

transmembrane domain of 29 amino acids, and an 86-amino-acid cytoplasmic domain that 

contains two SH2 regions. The human γc gene has been mapped on the same chromosomal locus 

(Xq13) as the putative gene responsible for the human X-linked severe combined 

immunodeficiency (XSCID) characterized by a complete or profound T cell defect. XSCID is 

now understood to be caused by mutations of γc (Sugamura et al., 1996). 

The human IL-13Rα1 cDNA encodes for an open reading frame of 427 amino acids. The signal 

sequence is represented by 20 amino acids and the mature receptor chain is constituted by an 

extracellular domain of 322 amino acids, a transmembrane domain of 24 amino acids, and a 60-

amino acid cytoplasmic domain. The IL-13Rα1 binds IL-13 with a weak affinity (Kd = 2-10 nM), 

but its co-expression with the IL-4Rα markedly increases the affinity of the interaction (Kd = 400 

pM) (Aman et al., 1996). However, in the interaction between IL-13 and IL-4R type II, IL-13Rα1 

is the specificity chain and such an interaction occurs only when this chain is present. Thus, IL-

4Rα has a high-affinity epitope for IL-4 and a low-affinity epitope for IL-13. The epitopes for the 

two ligands overlap, since both IL-4- and IL-13-dependent responses can be inhibited by 

antagonistic IL-4 variants blocking the IL-4Rα chain (Tony et al., 1994; Tomkinson et al, 2001). 

All three chains, which are components of the IL-4R/IL-13R system, belong to the class 1 of the 

cytokine receptor superfamily. The structural basis for the classification of the cytokine receptors 

in one superfamily is a conserved cytokine receptor homology (CRH) region within their 

extracellular portion. This CRH contains the ligand-binding determinants of the receptor. As first 
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proposed by Bazan (1990), the 200 to 250-amino acids long CRH region consists of two domains 

connected by a short linker. Both domains can be classified as fibronectin type III (FNIII) 

modules based on their overall fold and topology. Each domain consists of a β sandwich 

containing seven β strands, sequentially labeled A, B, C, C´, E, F and G following the accepted 

FNIII convention (Leahy et al., 1992). The CHR regions of receptors of class 1 of the super-

family have four strictly conserved cysteine residues in their N-terminal domain and a strongly 

conserved Trp-Ser-X-Trp-Ser sequence, the so-called “WSXWS motif”, near the C-terminus of 

the second domain (X being any residue).  

The crystal structure of the 1:1 complex between human IL-4 and IL-4BP revealed that IL-4BP 

exhibits all features characterizing the class I of the cytokine receptor superfamily (Hage et al., 

1999). It has an overall L shape (Figure 1.6) and is organized in two covalently linked domains, 

D1 (residues 1-91) and D2 (residues 97-197). The antiparallel β sheets are arranged in three-

strand (A, B, E) and four-strand (G, F, C, C´) β-pleated sheets that are twisted against each other 

by ~ 40°. Domain D1 belongs to the h-type topological subclass of the immunoglobulin fold 

where strand C´ interacts first with strand C, and then its direct continuation (designated D) 

switches to interact with strand E. It contains an additional single helical turn in BC loop and six 

cysteine residues that are engaged in three disulfide bridges as follows: Cys9-Cys19, Cys49-Cys61, 

and Cys29-Cys59. The first two are conserved among class I CHR´s (Bazan, 1990), while the third 

is unique to IL-4BP. D2 domain also shows FN III topology with two additional short helices and 

no disulfide bridges. 

The quaternary structure of the complex is assembled by IL-4BP binding to the helix AC face of 

IL-4 and is characterized by an almost perpendicular orientation of the L-shaped IL-4BP to the 

helical axes of αC and αA of IL-4 (Figure 1.7). Loops of IL-4BP that interact with IL-4 are 

almost co-linear with the axes of the IL-4 helices and are oriented in a stack-like fashion. They 

comprise four different levels, namely loop L2 from IL-4BP interacting with helix B of IL-4, 

loops L3 and L1 interacting with αC, and loops L5 and L6 interacting with αA. Loop L4 

connects domains D1 and D2 and has no interaction with IL-4. 
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Figure 1.6: A ribbon model of IL-4BP. Loops which make contacts to IL-4 are showed in blue. In the dark gray is 

loop L2 connecting D1 and D2.  

              

 

An important feature revealed by the complex is the polar character of the interacting epitopes, 

which are highly discontinuous and comprise multiple sequence segments. Contact residues on 

IL-4 are distributed over three helices and comprise mainly polar and charged residues. The 

complementary receptor epitope is assembled from residues of five loops and has a midline of 

hydrophobic side chains. The binding epitope reveals a mosaic-like assembly consisting of three 

discrete clusters of trans-interacting residues. Two of them exhibit conspicuous amphipathic 

structure with an outer mantle of hydrophobic side chain moieties and an inner core of polar 

groups. The third cluster has a completely different design and is dominated by electrostatic 

interactions. 
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Figure 1.7: A ribbon view of the structure of the IL-4/IL-4BP complex (IL-4BP, blue/yellow; IL-4, red). The five IL-

4BP loops that interact with IL-4 are highlighted in yellow. The loop depicted in blue connects D1-D2 and has no 

interactions with IL-4 (Hage et al., 1999). 

              

 

A mosaic-binding pattern has been independently confirmed by a systematic mutational and 

kinetic analysis of IL-4 contacting residues (Wang et al., 1997). This study has shown that 

charged and polar determinants located on helices A and C predominate in the high-affinity 

binding epitope of human IL-4. The binding epitope has been established as a set of side chains 

determining the dissociation rate constant (koff) and a partially overlapping set determining the 

association rate constant (kon) of IL-4/IL-4BP complex. Based on these results, the koff epitope is 

represented by two juxtaposed main determinants (Glu9 and Arg88) surrounded by a few side 

chains of lower importance (Ile5, Thr13, Arg53, Asn89, and Trp91). The kon epitope has been 

postulated as formed by five positively charged residues on helix C (Lys77, Arg81, Lys84, 

Arg85, and Arg88) and two neighboring residues on helix A (Glu9 and Thr13). Thus, both the 

data from the crystal structure and from the mutation analysis have revealed novel features, 

which are different from these known for the hGH, and are unique for the IL-4 functional epitope. 

The formation of complexes between proteins and the specific interactions between a ligand and 

its receptor in particular, are critical events in many biological processes. Structural analysis can 
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reveal the interactions that contribute to protein-protein recognition in atomic details (Jones & 

Thornton, 1996). However, it alone cannot show how these interactions contribute to the overall 

affinity and specificity. Ideally, the high-resolution structure of a complex would be used to guide 

a comprehensive functional survey of residues presented at the interface using site-directed 

mutagenesis, to allow their individual contribution to be assessed. Since the effects of alanine and 

glutamine substitution in IL-4 variants have been examined (Wang et al., 1997), the present study 

concentrates on functional mapping of IL-4BP binding surface. To analyze the contribution of 

individual side chains to overall binding energy in the interaction between IL-4 and IL-4BP, 

residues of the receptor interface implicated in ligand binding were subjected to systematic 

alanine substitution (alanine scanning). The IL-4BP variants were expressed in a eukaryotic 

expression system that allowed their glycosylation. The binding kinetics was measured by the 

means of the BIAcore technology. For this, the IL-4BP variants were immobilized at the 

biosensor matrix. Variants, which demonstrated large changes of the kinetic constants comparing 

to the wild-type interaction, were additionally mutated to a more conservative residue. That gave 

the possibility to assess weather the loss of binding affinity was due to grate conformational 

changes caused during the alanine substitution. In addition, energetic coupling between two 

residues was analyzed using variants in which two different mutations were introduced 

simultaneously. The effects on binding that was produced by the double mutants were compared 

to those observed when the corresponding residues were mutated singly. 

The nature of the interactions between cytokines and their receptors is of fundamental importance 

for detailed understanding of the immune response. While these receptors are clearly specific to 

their ligands, some of them share receptor functions between more than one different ligand. 

Understanding of the similarities and differences between these related proteins, and the 

molecular mechanisms involved in their binding, will provide insights into more general protein-

protein interactions. Moreover, knowledge about the structural and functional binding epitope of 

both IL-4 and IL-4BP, provides the basis for developing molecules with antagonistic properties 

to IL-4 and design of highly effective anti-allergic drugs. 
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2. Materials and Methods 
 

2.1 Abbreviations 
 

γc “common γ chain” 

Ab antibody 

AcNPV Autographa californica nuclear polyhedrosis virus 

Amp ampicillin 

APC antigen presenting cell 

APS ammonium persulfate 

BEVS Baculovirus expression vector system 

bp base pair 

BPB bromphenol blue 

BSA bovine serum albumin 

CD cluster of differentiation 

cDNA complementary deoxyribonucleic acid 

CNTF ciliary neurotrophic factor 

CRH cytokine receptor homology 

Da Dalton 

∆∆G change of binding free energy 

∆∆Gadd the ∆∆G value for a double mutant predicted by adding the ∆∆G values for the 

 corresponding individual mutants 

ddNTPs 2’,3’-dideoxyribonucleoside triphosphates 

DMSO dimethylsulfoxide 

DNA deoxyribonucleic acid 

dNTPs deoxyribonucleoside triphosphates 

dsDNA double-stranded deoxyribonucleic acid 

DTT dithiothreitol 

E.coli Escherichia coli 

EBP erythropoietin binding protein 

EDTA ethylendiamintetraacetic acid 

EPO/EPOR erythropoietin/ erythropoietin receptor 

eq., equilib. equilibrium 

EtBr ethidium bromide 

EtOH ethanol 
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FCS fetal calf serum 

FNIII fibronectin type III 

GCSF granulocyte colony-stimulating factor 

GCSF-R granulocyte colony-stimulating factor receptor 

GH growth hormone 

GM-CSF granulocyte-macrophage colony-stimulating factor 

GuHCl guanidine hydrochloride 

hGH human growth hormone 

hGHbp human growth hormone-binding protein 

HMS high molecular standard 

HPLC high pressure liquid chromatography 

Ig immunoglobulin 

IL-13Rα1 interleukin-13 receptor α1 

IL-4Rα interleukin-4 receptor α chain 

IL-x interleukin-x 

IL-xBP interleukin-x binding protein 

IL-xR interleukin-x receptor 

INF interferon 

IRS-1/2 insulin receptor substrate-1/2 

Jak Janus kinase 

kbp kilo base pair 

Kd dissociation equilibrium constant 

kin. kinetic data 

koff dissociation rate constant 

kon association rate constant 

LB Luria Broth 

LIF leukaemia inhibitory factor 

LMS low molecular standard 

ln logarithm to the basis of “e” 

m mouse 

max. maximal 

MCS multiple cloning site 

M-CSF macrophage colony-stimulating factor 

MHC major histocomatibility complex 

min minute(s) 
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MOI multiplicity of infection (plaque-forming units/cell number) 

mRNA messenger ribonucleic acid 

MS molecular standard 

n number of measurements 

NK natural killer (cell) 

NMR nuclear magnetic resonance 

ORF Open Reading Frame 

PAGE polyacrylamide gel electrophoresis 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PEG polyethylene glycol 

pfu plaque forming unit(s) = virus 

pg130 glycoprotein 130 (kDa) 

PI-3-K phosphoinositide-3-kinase 

PTB phosphotyrosine-binding 

rel. relative value 

RNA ribonucleic acid 

RP-HPLC reverse phase high pressure liquid chromatography 

RT room temperature 

RU resonance units 

s soluble 

SDS sodium dodecyl sulfate 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SE standard error 

sec second(s) 

Sf Spodoptera frugiperda 

SH src homology (domain) 

SPR surface plasmon resonance 

ssDNA single-stranded deoxyribonucleic acid 

STAT signal transducer and activator of transcription 

TB Terrific Broth 

TCA trichloracetic acid 

TCR T cell receptor 

TEMED N,N,N’,N’-tetramethylethylenediamine 

TGR transforming growth factor 
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TH T helper (cell) 

TNF tumor necrosis factor 

TRIS tris(-hydroxylmethyl)-aminomethane 

U unit 

UV ultraviolet 

v/v volume: volume ratio 

Vol volume 

wt wildtype 

XSCID x-linked severe combined immunodeficiendcy 

 

 
2.2 Chemicals and Enzymes 
 
All chemicals and enzymes were purchased from the following companies: Amersham, Biorad, 

Boehringer Mannheim, Fermentas, Fluka, Gibco-BRL, Merck, Pharmacia, Roth, Serva, Sigma. 

All solutions used in the experiments were made with deionized water (Millipore-Q-System).  

 

 

2.3 Bacterial Strains 
 
The following genotypes E. coli were used: 
 
E. coli JM103 recA-  (McCarthy et al., 1985) 

Genotype:   endA, D (lac-pro), thi-1, strA, sbcB15, hsdR4, supE, F´traD36,  

proAB+, lacIq, zDM15, lambda-/F-  

 
E. coli JM109   (Yanisch-Perron et al., 1985) 

Genotype:   recA1, endA1, thi, gyrA96, hsdR17, supE44, relA1, D (lac- 

proAB), F´traD36, proAB+, lacIq 

 

 

2.4 Cell Lines 
 
Sf9 cell line - a cell line, which was originally established from ovarian tissues of Spodoptera 

frugiperda larvae (Vaughn et al., 1977). Sf9 cells may be grown in a monolayer or in a 

suspension. 
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2.5 Antibodies 
 
For detection of Western Blot the following antibodies were used: 

 

X14/38:  mAb from mouse against the extracellular domain of IL-4Rα (Reusch et  

al., 1994) 

anti-mouse IgG-POD: pAb from goat, POD-coupled (Sigma) 

 

 

2.6 Vectors and Oligonucleotides 
 
2.6.1 Expression Vector for E.coli 

(McCarthy et al., 1985) 

 
The bacterial vector RTSpRC109 (3988 bp) was used for expression of recombinant protein under 

the control of the right λ-phage promoter. It contains the CI857 repressor gene coding 

temperature-induced protein translation. 

 

 

2.6.2 Baculovirus Transfer Vector pAcGP67-B 

(Baixeras, E. et al., 1990) 

 
The Baculovirus transfer vector pAcGP67-B (Pharmingen) contains pg67 signal sequence 

upstream of a multiple cloning site. After co-transfection with Baculovirus DNA into Sf9 cells, 

the cloned gene is expressed as a gp67 signal peptide fusion protein under the control of the 

strong Baculovirus polyhedrin promoter. 

 

 

2.6.3 Oligonucleotides 
 
The oligonucleotides, which were used for cloning and sequencing in the work presented here, 

are presented in Table 2.1. 
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Table 2.1: Sequence and function of the used oligonucleotides. The mutated codons are underlined. 
 
 

Name Sequence Function 

5´Y13A 5´CGTCTCCGACGCCATGAGCATC 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 13  

3´Y13A 5´GATGCTCATGGCGTCGGAGACG 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 13 

5´Y13F 5´CGTCTCCGACTTCATGAGCATC 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 13 

3´Y13F 5´GATGCTCATGAAGTCGGAGACG 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 13 

5´L39A 5´CCTGTTGTACCAGGCGGTTTTTCTGC 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 39 

3´L39A 5´GCAGAAAAACCGCCTGGTACAACAGG 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 39 

5´F41A 5´CCAGCTGGTTGCTCGTCTCTCC 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 41 

3´F41A 5´GGAGAGCAGAGCAACCAGCTGG 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 41 

5´L42A 5´GCTGGTTTTTGCGCTCTCCGAAGC 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 42 

3´L42A 5´GCTTCGGAGAGCGCAAAAACCAGC 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position42 

5´L43A 5´CTGGTTTTTCTGGCCTCCGAAGCC 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 43 

3´L43A 5´GGCTTCGGAGGCCAGAAAAACCAG 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 43 

WYH46 5´GCTCATGGATGCCGTGGTCAGTGC 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 67 

WYH47 5´GCACTGACCACGGCATCCATGAGC 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 67 

5´V69A 5´GCTCATGGATGACGTGGCCAGTGC 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 69 

3´V69A 5´GCACTGGCCACGTCATCCATGAGC 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 69 

C4D72A 5 5´GTCAGTGCGGCTAACTATACA 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 72 

C4D72A 3 5´TGTATAGTTAGCCGCACTGAC 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 72 

5´D72N 5´CGTGGTCAGTGCGAATAACTATACACTGG 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 72 

3´D72N 5´CCAGTGTATAGTTATTCGCACTGACCACG 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 72 

C4K91A 5 5´GGCTCCTTCGCGCCCAGCGAG 3` PCR induced mutagenesis/ 
IL-4Rα in AA at position 91 

C4K91A 3 5´CTCGCTGGGCGCGAAGGAGCC 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 91 

5´K91D 5´CTCCTTCGATCCCAGCGAG 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at posotion 91 

3´K91D 5´CTCGCTGGGATCGAAGGAG 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 91 

WYH60 5´CTTCAAGCCCGCCGAGGCATGTG 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 93 

WYH61 5´CACATGCTCGGCGGGCTTGAAG 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 93 

WYH31 5´CCTGACAATGCCCTGTATAATCATC 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 127 
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Name Sequence Function 

WYH32 5´GATGATTATACAGGGCATTGTCAGG 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 127 

5´Y127F 5´CCCCCTGACAATTTCCTGTATAATC 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 127 

3´Y127F 5´GATTATACAGGAAATTGTCAGGGGG 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 127 

5´Y183A 5´GCTCAGGCCGCTTAACACCACCTG 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 183 

3´Y183A 5´CAGGTGGTGTTAGCGGCCTGAGC 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 183 

5´Y183F 5´GCTCAGGCCTTTAACACCACCTGG 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 183 

3´Y183F 5´CCAGGTGGTGTTAAAGCCTGAGC 3´ PCR induced mutagenesis/ 
IL-4Rα in AA at position 183 

WYH37 5´CGCGGATCCATGAAGGTCTTGCAGGAGC 3´ an external primer, a BamHI 
restriction site, IL-4Rα 
mutagenesis 

WYH38 5´GCATAACCGATATATTCGGTCGCTGA 3´ an external wild tipe primer for 
amlifing IL-4Rα 

MF37 5´GGCGCATTCTGCCTTTGCG 3´ a sequencing primer- 
pAcGP67B 

WYH39 5´CAGGAAAGGATCAGATCTGCAG 3´ a sequencing primer- 
pAcGP67B 

5´R53A/IL4 5´CGACTGTCTTAGCGCAGTTCTACAGC 3´ PCR induced mutagenesis/ IL-
4 in AA at position 53 

3´R53A/IL4 5´GCTGTAGAACTGCGCTAAGACAGTCG 3´ PCR induced mutagenesis/ 
IL-4 in AA at position 53 

5´Y56A/IL4 5´TTAAGGCAGTTCGCGAGCCACCATGAGAAG
GACA 3´ 

a cassette for mutagenesis in 
IL4 - AA at position 56 

3´Y56A/IL4 5´CGCGTGTCCTTCTCATGGTGGCTCGCGAACT
GCC 3´ 

a cassette for mutagenesis in 
IL4 - AA at position 56 

MF8 5´CGTTAAATCTATCACCGCAAG 3´ an external wild-type primer 
for amplifing IL-4 

MF14 5´GTCATCACCGAAACGCGCGAG 3´ an external wild-type primer 
for amplifing IL-4 

PWU22-5´ 5´CAGGACTACTACGTTTTAACTGA 3´ a sequencing primer- 
RTSpRC109 

PWU22-3´ 5´CAGGATCGGTCGCTGAGGCTTGCA 3´ a sequencing primer- 
RTSpRC109 

 

 

2.7 Microbiological Methods 
 
2.7.1 Sterilization 
 

Experiments dealing with bacteria were performed at sterilized conditions. Glassware and other 

experimental materials were sterilized at 180oC for 6 hours in a hot-air-cabinet (Heraeus, ST 

5060). Buffers, media and plastic containers were autoclaved (Sterico Vapoclav 

Dampfsterilisator) at 121oC and 1.1 bar for 20 min. Solutions of temperature-unstable substances 

were sterilized by filtering through Millipore-Filter (DynaGard 0.22µm). 
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2.7.2 Culture Media 
 
LB-medium:   10g/l Bacto-Trypton, 5g/l Bacto-Yeast Extract, 10g/l NaCl pH7.5  

(Sambrook et al., 1989) with 0.1N NaOH adjusted  

TB-medium:   13.3g/l Bacto-Trypton, 26.6g/l Bacto-Yeast Extract, 4.4ml/l  

(Sambrook et al., 1989) glycerin 

    before use 10% sterilized 10x Phosphate buffer was added  

10 x Phosphate buffer: 0.17M KH2PO4, 0.72M K2HPO4 

(Sambrook et al., 1989) 

5 x ENB-medium:  40g/l Nutrient Broth, 25g/l Bacto-Pepton, 7.5g/l KH2PO4, 17.5g/l 

(Sambrook et al., 1985) NaH2PO4, 25g/l NaCl 

ENB-amp-plates  15 g agarose in 800 ml H2O was autoclaved. When the agarose  

    solution was cooled to 50oC, 200 ml 5 x ENB-medium, 2.5 ml 2M  

    glucose, 0.5 ml thiamin solution in H2O (10mg/ml) and 50 mg  

    ampicilin in 2ml 1M TrisHCl buffer (pH 8.0) were added. After  

    mixing, the agarose solution was filled into plates, cooled at RT  

    and kept at 4oC 

 

Ampicillin solution, 50 mg/ml in 1M TrisHCl pH 8.0, must be freshly prepared and added to final 

concentration of 50 µg/ml for all kinds of media. 

 

 

2.7.3 Culturing of Bacteria 
 
Glycerin stock-culture was spread over an agar plate and incubated at 30oC or 37oC overnight. A 

colony was picked up and incubated in 2 ml of medium at 30oC or 37oC for a day. This culture 

was further used for making larger culture. 
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2.7.4 Electrocompetent E.coli 
 
2.7.4.1 Preparation of electrocompetent bacterial cells 
 
E.coli from an agar plate or frozen stock were cultivated in 2 ml of TB-medium with ampicillin at 

37oC for 8 h. From this culture was started 200 ml of a new culture, which was incubated and 

shook (200 rpm, Cetromat-R) overnight under the same conditions.  

The overnight culture was centrifuged at 3500 rpm (Beckmann J2-21, JA-10 rotor), 4oC for 10 

min. and then washed with 200 ml cold solution of 10% glycerin/H2O (v/v). The suspension was 

consecutively centrifuged in the same way and resuspended in 100 ml, 50 ml, 20 ml and 2 ml of 

cold 10% glycerol solution. The final suspension was aliquoted in chilled Eppendorf tubes (40µl) 

and frozen in liquid Nitrogen. The competent cells were stored at -70oC. 

 

 

2.7.4.2 Electrotransformation of competent E.coli  
 
The electrocompetent E.coli were placed on ice and thawed out. 10-20 ng of DNA (in TE-buffer) 

were added and the suspension was mixed and transferred to a chilled 0.2 cm electroporation 

cuvette. Immediately after the pulse was applied (Biorad Gene PulserTM: 250 V, 25 mF and 200 

W), 500 µl of LB-medium were added and the cuvette was vigorously shaken. The suspension 

was incubated at 30oC or 37oC for 30 min. For selection the bacterial material was placed in 2 

ENB-amp-plates, which were kept at 30oC or 37oC overnight. 

 

 

2.7.5 Storage of Bacterial Cultures 
 
10 µl bacterial suspension was spread over an agar plate and incubated at 30oC or 37oC overnight 

until colonies appeared. Such a plate can be kept 4 to 6 weeks at 4oC. 

For long-term bacterial storage, a single bacterial colony was cultivated in 50 ml of LB-medium 

with ampicillin at 30oC or 37oC until the suspension reached OD550 of 1.5 - 1.7 (LKB Novaspec). 

The following centrifugation was carried out at 3000 rpm for 10 min. The pellet was resuspended 

in 2 ml of LB-medium/amp and mixed with 2ml of sterilized glycerol (87%). This culture can be 

kept at -20oC several years. 
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2.8 Molecular Biological Methods 
 
2.8.1 Determination of the Concentration of Nucleic Acids 
 
The concentration of nucleic acids was measured by spectrophotometry in the absorption 

spectrum range 240-320 nm. (Kontron Uvikon 930 Spectrophotometer). Considering an 

extinction value of 1, the relation between A260 and the concentration is as follows: 

 

Nucleic acids Concentration 

dsDNA 50 µg/ml 
ssDNA 33 µg/ml 
Oligonucleotide 20 µg/ml 

 

The concentration of DNA can be roughly estimated by using an agarose gel electrophoresis. For 

amounts less than 200 ng, the flourescence of the ethidium bromide, incorporated in the DNA 

fragments is proportional to the concentration of DNA. The intensity of the examined bands was 

compared to this of DNA standards with known concentrations. 

 

 

2.8.2 Phenol Extraction of DNA 
 
phenol solution: saturated phenol, neutralized with 1/50 Vol. 2.5M Tris-HCl pH8.0 

 

To the DNA containing fraction was added the phenol solution (1:1 Vol). After 5 min of shaking, 

the sample was treated with (1/2 Vol.) chloroform/isoamyl alcohol solution (24:1), again shaken 

for 2 min and finally centrifuged for 2 min at 14000 rpm. The aqueous phase was transferred to a 

new tube. 

 

 

2.8.3 Ethanol Precipitation of DNA 
 
DNA solutions were precipitated by adding 1/10 Vol. 3M NaOAc pH 8.0 and 2.5 Vol. EtOH. The 

sample was thoroughly vortexed, incubated for 30 min at -20oC and centrifuged (15 min, 14000 

rpm). The pellet was washed with 70% EtOH and dried under vacuum. The pellet was dissolved 

in desired volume sterile dH2O or TE buffer. 
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2.8.4 DNA Molecular Standards 
 

The following DNA molecular standards were used: 

HMS:  phage λ DNA, digested by HindIII 

LMS:  pBr322 plasmid DNA, digested by AluI 

 
Table 2.2: DNA molecular standards  
 

HMS LMS 

bp % bp % 
23130 47.7 1608 21.2 
9416 19.4 1201 15.9 
6682 13.4 999 13.2 
4361 9.0 711 9.4 
2322 4.8 567 7.5 
2027 4.2 517 6.8 
564 1.2 396 5.2 
125 0.3 360 4.8 

  1222/219/214 9.6 
  132/120/112 4.8 
  76/65/30/27 2.6 

 

 

2.8.5 DNA Agarose Gel Electrophoresis 

(Hermann et al., 1980) 

 
running buffer: 40mM Tris-acetate pH 8.2, 20mM NaOAc, 1M EDTA pH 5.0 

EtBr:   5 mg/ml 

5 x stop buffer: 15% Ficoll, 50mM EDTA, 0.5%SDS, 0.05% XC, 0.05% BPB in running  

   buffer 

 
DNA fragments with different length require different concentrations of the agarose for 

separation by gel electrophoresis (Table 2.3). 

 
Table 2.3: DNA agarose gel electrophoresis 
 

Length of DNA fragments [kbp] Agarose concentration in % 

5 – 60 0.3 
1 – 20 0.6 

0.8 – 10 0.7 
0.4 – 7 1.0 
0.2 – 4 1.5 
0.1 – 3 2.0 
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The agarose was dissolved in running buffer by heating in a microwave oven and kept at 65oC. 

After adding of 1/1000 Vol. EtBr (final concentration 5 µg/ml), the agarose was poured into a 

horizontal gel-plate. A comb was put in the agarose and it was cooled down until the gel was 

formed.  

The examined DNA was mixed with ¼ Vol. of 5 x stop buffer and heated at 65oC for 5 min. The 

DNA samples and 100 ng DNA molecular standard were loaded in parallel starts of the gel. The 

electrophoresis was performed in the electric field of 3 V/cm. The sample was visualized under 

UV light due to the incorporation of EtBr in DNA. The length of the DNA fragments was 

estimated by comparison with the bands of the standard. 

 

 

2.8.6 Purification of DNA by Agarose Gel Electrophoresis 
 
DNA fragments were purified from agarose gels using NukleotrapTM kit (Macherey-Nagel).  

A preparative agarose gel was run and the DNA fragment of interest was cut under a UV light 

panel. 330-350 mg of agarose gel containing DNA were transferred in an Eppendorf tube, where 

300 µl of buffer T1 were added for each 100 mg from agarose material. This suspension together 

with 20µl of the glass beads “Nucleotrap” was incubated at 55oC for 10 min and meanwhile 

vortexed a few times. The sample was centrifuged for 30 sec at 13000 rpm and the supernatant 

was removed. This step was followed by consecutively washing the pellet twice with 500 µl of 

T2 buffer and twice with T3 buffer. After the pellet dried on air, it was resuspended in 50 µl of 

TE buffer pH 8.0 and incubated for 10 min at RT. The suspension solution was centrifuged 1min. 

at 13000 rpm and the DNA containing supernatant was then transferred to a clean Eppendorf 

tube. 2 µl of the DNA solution were analyzed on an agrose gel. 

 

 

2.8.7 Site-directed Mutagenesis by PCR 

(Higuchi et al., 1990) 

 

apparatus:   DNA Termal Cycler 480, Perkin Elmer 

10 mM dNTPs 

Pfu polymerase 

10 x Cloned Pfu buffer: 200mM Tris-HCl pH 8.0, 20mM MgSO4, 100mM KCl,  

    100mM (NH)4SO4, 1% Triton X-100, 1mg/ml nuclease-free BSA 
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Most of the mutations were generated by using a two-step polymerase chain reaction. The first 

step was performed in two different reactions - reaction 1a and reaction 1b. In reaction 1a (Table 

2.4) the 5´-primer carries the mutation of interest and the 3´-primer is external (Table 2.1). The 

3´-primer, which was used in reaction 1b, was mutated and complementary to the 5´-primer in 

reaction 1a. The 5´-primer in reaction 1b was external. 

 
Table 2.4: PCR - reaction 1a and reaction 1b 
 

 Reaction 1a Reaction 1b 

template 50 ng 50 ng 
mutant primer 50 pmol (5´-primer) 50 pmol (3´-primer) 
external primer 50 pmol (3´-primer) 50 pmol (5´-primer) 
dNTPs 10 nmol 10 nmol 
10 x Pfu polymerase buffer 5 µl 5 µl 
Pfu polymerase 2.5 U 2.5 U 
H2O to 50 µl to 50 µl 

 

The synthesized products from reaction 1a and 1b were analyzed by an agarose gel and directly 

used as a template during the second step of the PCR generated mutagenesis. This recombinant 

PCR was performed with the two external primers, used in the first step: the 3´-primer from 

reaction 1a and the 5´-primer from reaction 1b (Table 2.5). 

 
Table 2.5: Second step of the PCR generated mutagenesis 
 

 Reaction 2 

reaction product 1a 2 µl 
reaction product 1b 2 µl 
5´-primer (from reaction 1b)  50 pmol 
3´-primer (from reaction 1a) 50 pmol 
dNTPs 10 nmol 
10 x Pfu polymerase buffer 5 µl 
Pfu polymerase 2.5 U 
H2O to 50 µl 

 

All reactions were performed in safe-lock Eppendorf tubes with the following program: 

 

  denaturation:  95oC  5 min. 
  25 cycles:  95oC  1 min. 
     55oC  1 min. 
     72oC  2 min. 
  extension:  72oC  7 min. 
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The product, synthesized during the second step of the PCR, contains the mutation of choice. 

After visualization on a agarose gel, it was precipitated with EtOH and dissolved in 20 µl of H2O. 

 

 

2.8.8 Site-directed Mutagenesis Using DNA Cassettes 
 
This method was used for generation of mutations in the cDNA of IL-4. The cassette is synthetic 

double-stranded DNA, which contains a mutation of interest. Its ends are designed as restriction 

endonuclease cutting sites. In this way, it is possible using a ligation reaction to insert the cassette 

between the same cutting sites represented in the cDNA of IL-4. 

 

 

2.8.9 Digestion of DNA 
 
All restriction reactions were performed in the presence of recommended 10 x reaction buffer. 

For analytical purposes were digested 100-500 ng DNA in reaction volume of 10 µl, using 1-10 

U restriction endonuclease. The reaction mix was incubated for 1 h at 37oC and then 2-4 µl were 

examined by agarose gel electrophoresis. 

The reaction volume of a preparative digestion is dependent on the amount of the used DNA, 

which should not exceed 1 µg/ml. It is necessary to consider that the standard enzyme solutions 

normally contain 50% glycerol. Some restriction endonucleases work non-specifically in the 

presence of too high glycerol concentrations (“star activity”). Because of this, the glycerol 

content in the reaction volume should not be more than 10%. Every kind of DNA, independent 

on the number of restriction sites, was digested with 1-5 U of restriction endonuclease per µg 

DNA. (1 enzyme unit (U) is defined as the amount of the restriction endonuclease, which is able 

to digest 1 µg of DNA for 1 h.) The incubation was done - if it is not mentioned otherwise - for 2 

h at 37°C. The restriction reaction was stopped by adding ¼ volume 5 x stop buffer (15% ficoll, 

0.5 % SDS, 50mM EDTA, 0.5 % BPB, 0.5% XB in 5 x tris-acetate buffer). A small aliquot was 

examined on an agarose gel. The rest of the DNA was purified by agarose gel electrophoresis, 

before it was used for ligation reaction. 
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2.8.10 Ligation of DNA 
 
T4 DNA ligase 

10 x T4 DNA ligase buffer:  500mM Tris-HCl pH 7.6, 100mM MgCl2, 10mM ATP,  

     10mM DTT 

 
A vector : insert molar ration of 1:3 was determined to be optimal. The total amount of DNA for 

cloning per 10 µl reaction volume was 200 ng. The reaction mix, containing 1-5 U of T4 DNA 

ligase was incubated for 3 h at RT or for 12-16 h at 15oC. The reaction was stopped by heating at 

65oC for 10 min. 25% from the ligation mix were loaded on an agarose gel to examine the 

reaction efficiency. The recombinant plasmid DNA (1 µl of the ligation mixture) was directly 

used to transform electrocompetent E.coli. To monitor the efficiency of the ligation and 

transformation steps, cut vector DNA was ligated in the absence of an insert and competent cells 

were transformed with it as well as with uncut non-recombinant vector. 

 

 

2.8.11 Preparation of Plasmid DNA 
 
2.8.11.1 Lysozyme-alkaline-lysis procedure 

(Birnboim and Doley, 1979) 

 

solution 1:  50mM glucose, 10mM EDTA, 25mM Tris-HCl pH 8.0, 2mg/ml  

lysozyme, 100 µg/ml RNase A (DNase free) 

solution 2:  1% SDS, 0.2M NaOH 

solution 3:  3M KOAc pH4.8 

   (60 ml 5M KOAc with 11.5 ml acetic acid and 28.5 ml H2O) 

 

The described procedure is a simple and fast method for preparation of plasmid DNA and gives 

material with quality sufficient for restriction analysis. DNA for analyses, which require better 

quality (e.g. sequencing), was isolated by other procedures. 

Bacterial cultures were started from single colonies and incubated in 2 ml of TB-medium/amp 

overnight at 30oC or 37oC. 1.4 ml of the bacterial suspensions were transferred into Eppendorf 

tubes and centrifuged (Eppendorf Centrifuge 5415C) for 2 min at 14000 rpm. The supernatant 

was removed by aspiration with a water beam pump. The cell pellet was resuspended in 200 µl of 

solution 1 and then 200 µl of solution 2 were added. The samples were thoroughly mixed by 

inverting the tubes and incubated for 5 min on ice. After 200 µl of solution 3 were added and the 
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tubes were inverted again, the samples were incubated for 15 min on ice. This turbid solution was 

centrifuged for 15 min at 14000 rpm. The clear supernatant was transferred to a fresh Eppendorf 

tube, avoiding floating precipitate. After precipitation with an equal volume of isopropanol, the 

DNA containing pellet was washed with 70% EtOH and dried under vacuum. The pellet was 

dissolved in 20 µl of dH2O. An aliquot of 2-5 µl was used for restriction analysis. 

 

 

2.8.11.2 PEG precipitation procedure 

(Tartof and Hobbs, 1987) 

 

solution 1 (GTE buffer):  50mM glucose, 10mM EDTA, 25mM Tris-HCl pH 8.0 

solution 2:    1% SDS, 0.2M NaOH 

solution 3:    3M KOAc pH4.8 

     (60 ml 5M KOAc with 11.5 ml acetic acid and 28.5 ml  

     H2O) 

RNase solution:  10 mg/ml RNase A (DNase free) 

PEG solution:    13% PEG8000 autoclaved 

 
The following procedure was used for preparation of plasmid DNA for sequencing. 

Aliqouts (1.4 ml) of overnight cultures were transferred to Eppendorf tubes and centrifuged at 

14000 rpm in a microcentrifuge (Eppendorf Centrifuge 5415C). The supernatant was removed by 

aspiration and the bacterial pellet was resuspended in 200 µl of solution 1. Then 300 µl of 

solution 2 were added. The content of the tube was mixed by inversion and incubated for 5 min 

on ice. After this, 300 µl of solution 3 were added, the content was mixed by inversion of the 

tubes and the sample was incubated again for 5 min on ice. Centrifugation at 14000 rpm for 15 

min followed. The supernatant was carefully transferred in a fresh tube, avoiding floating 

precipitates. Solution of RNase A was added to a final concentration of 25 µg/ml and the tubes 

were incubated for 30 min at 37oC. DNA was extracted using 400 µl phenol/Tris and 400 µl 

chloroform/isoamylalcohol (24:1). After centrifugation for 1 min at 14000 rpm, the aqueous 

phase was transferred to a fresh Eppendorf tube. DNA was precipitated with equal volume of 

isopropanol and washed with 70% EtOH. The dried pellet was dissolved in 32 µl of H2O and 

after 8 µl of 4M NaCl and 40 µl of autoclaved PEG8000 solution were added, the sample was 

thoroughly vortexed and placed on ice for 20 min. The following centrifugation was performed at 

4oC, 14000 rpm, for 15 min in a fixed-angle rotor centrifuge (Biofuge A, Heraeus). The 

supernatant was carefully removed and the pellet was rinsed with 70% EtOH and dried under 
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vacuum. The DNA containing pellet was dissolved in 20 µl of dH2O. The so prepared DNA can 

be used for restriction analysis as well as for sequencing. The plasmid DNA was stored at -20oC. 

 

 

2.8.11.3 Preparation of plasmid DNA with LiCl 
 

solution 1:  50mM glucose, 10mM EDTA, 25mM Tris-HCl pH 8.0, 5mg/ml lysozyme 

solution 2:  1% SDS, 0.2M NaOH 

solution 3:  3M KOAc pH4.8 

   (60 ml 5M KOAc with 11.5 ml acetic acid and 28.5 ml H2O) 

solution 4:  5M LiCl 

RNase solution: 10 mg/ml RNase A (DNase free) 

 
The underwritten method is a simple way to prepare more plasmid DNA comparing to the 

described already PEG precipitation. The purity and the amount of the prepared DNA is 

sufficient for co-transfection in Sf9 cells. 

Bacterial culture was started from a single colony in 2 ml of TB-medium/amp and incubated 8 h 

at 37oC. 10-20 µl were transferred in 30-40 ml of fresh medium and cultivated at 37oC overnight. 

The bacterial suspension was transferred in a Falcon tissue culture tube and was spun down by 

centrifugation at 3000 rpm for 5 min (Megafuge1.0, Heraeus). The pellet was resuspended in 2 

ml of solution 1 and after 50 µl of RNase solution were added, the sample was mixed and placed 

on ice for 5-10 min. 3 ml of solution 2 were added, the content was thoroughly but gently mixed 

by inverting the tube and incubated for 5-10 min on ice. After this step, 2 ml of solution 3 were 

added and the tube was thoroughly but gently inverted until a homogeneous suspension was 

formed. The sample was incubated 5-10 min on ice, 6 ml of solution 4 (5M LiCl) were added and 

the content was mixed. After 5-10 min of incubation on ice, the sample was centrifuged for 15 

min at 5500 rpm (Megafuge 1.0, Heraeus). The supernatant was further filtered through 2 layers 

of precision wiper paper and transferred to a new Falcon tissue culture tube. DNA was 

precipitated with an equal volume of isopropanol and after the pellet was rinsed with 70% EtOH, 

it was dried under vacuum. Then the pellet was resuspended in 500 µl of dH2O, transferred to a 

fresh Eppendorf tube and 50 µl of RNase solution were added to the DNA solution. The sample 

was incubated for 30-60 min at 37oC. DNA was extracted with 400 µl saturated phenol/tris and 

400 µl of chloroform/isoamylalcohol (24:1) solution. The aqueous phase was transferred to a new 

Eppendorf tube and 1/10 Vol. of 3M NaOAc and an equal volume of isopropanol were added to 

it. The sample was thoroughly vortexed, incubated at RT for 5 min and centrifuged at high speed 
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(14000 rpm) for 10 min. The pellet was briefly dried under vacuum and redissolved in 40 µl of 

dH2O. When the plasmid DNA was isolated to be used for co-transfection in Sf9 cells, the pellet 

from the last step was dried under sterile conditions and was dissolved in sterile dH2O. 

The concentration of the plasmid DNA was determined by spectrophotometry and the quality was 

examined by agarose gel electrophoresis. 

 

 

2.8.12 DNA Sequencing 
 

The DNA sequencing was performed by Wolgang Haedelt, using an automatic DNA Seguencer 

(Applied Biosystems, Model 373A) and according to manufacturer’s instructions. 

The used method, according to Sanger, relies on the base-specific termination of the DNA chain 

elongation by random integration of labeled ddNTPs at the end of the chain. Four independent 

sequencing reactions were carried out for each analyzed DNA sample. Each reaction contained 

different chain-terminating ddNTP coupled to a corresponding fluorescent day. After the end of 

PCR, the products of the four reactions were mixed together and analyzed on a 7 % 

polyacrylamide gel. Due to the different fluorescence, the single DNA fragments could be 

detected by an argon laser beam. 

 

 

2.9 Protein Chemical Methods 
 
2.9.1 Determination of the Protein Concentration 
 
The concentration of a protein solution, when it is diluted to 0.1-0.5 mg/ml, can be measured by 

spectrophotometry at the absorption spectrum range 250-320 nm (Kontron Uvikon 930 

Spectrophotometer). For calculation was used the absorbency value A at 280 nm. The 

concentration of IL-4 and IL-4BP per absorbency unit (A280 = 1) and the path length equal to 1 

cm are shown in the Table 2.6. 

 
Table 2.6: Molar absorbency factor and concentration of IL-4 and IL-4BP 
 

Protein Molar absorbency factor 
[mol-1*cm-1] 

Concentration per 
absorbency unit 1  [mg/ml] 

IL-4 8610 1.7 
IL-4BP 66930 0.357 
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2.9.2 Lyophilization of Proteins 
 
The purified protein was divided into aliquots of 100 µl each and then placed in an aluminum 

block and frozen at -70oC overnight. The frozen protein aliquots were then transferred to a 

Lyophilizator (Christ Lac-1), which was pre-cooled to -55oC and vacuum pumped to 0.02 bar 

overnight. KOH was kept in the lyophilization chamber as a dry reagent. 

 

 
2.9.3 Molecular Weight Standard for Protein Samples 
 
The molecular weight of the proteins was estimated by comparison with a protein standard 

marker, which was loaded parallel to the samples on a PAGE. This was used to identify the size 

of proteins, loaded on the gel. The characteristic bands of the protein standard and their molecular 

weights are presented in Table 2.7. 

 
Table 2.7: Protein standard used for PAGE 
 

Protein Molecular weight 
[Da] 

phosphorylase b 94000 
albumin 67000 
ovalbumin 43000 
carboanhydrase 30000 
trypsin-inhibitor 20100 
lacalbumin 14400 

 

 

2.9.4 SDS - Polyacrylamide Gel Electrophoresis 

(Laemmli, U.K., 1970) 

 
acrylamide solution:  30% acrylamide, 0.8% N,N´methylenbisacrylamide 

4 x lower Tris:  1.5M Tris-HCl, 0.4% SDS, pH 8.8 

4 x upper Tris   0.5M Tris-HCl, 0.4% SDS, pH 6.8 

glycerol:   87% glycerol 

TEMED 

APS solution:   40% APS 

SDS running buffer:  25mM Tris-HCl pH 8.6, 190mM glycin, 0.15% SDS 

SDS sample buffer:  62.5mM Tris-HCl pH 6.8, 2% SDS, 20% glycerol,  

    2% BPB, 2% β-mercaptoethanol 
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staining solutuion:  0.25% Coomassie Brilliant Blue R250 in destaining solution 

destaining solution:  1 Vol. acetic acid, 1 Vol. isopropanol, 8 Vol. H20 

 

In denaturating SDS-polyacrylamide gels the proteins were separated by their molecular weight. 

The electrophoresis was performed in a vertical gel electrophoresis system Mini-V 8.10 (Gibco 

BRL). Different acrylamide concentrations can be used for different gel preparations (Table 2.8) 

depending on the size of the separated proteins. 

 
Table 2.8: Amount of the different components used for SDS-polyacrylamide gel electrophoresis 
 

Solution Stacking gel Separating gel 
  7.5% 10% 12% 
acrylamide solution 0.25 ml 1.25 ml 1.67 ml 2 ml 
4 x lower Tris - 1.25 ml 1.25 ml 1.25 ml 
4 x upper Tris 0.62 ml - - - 
H2O 1.6 ml 1.5 ml 1.1 ml 0.75 ml 
87% glycerol - 1 ml 1 ml 1 ml 
TEMED 6 µl 5 µl 7 µl 7 µl 
40% APS 6 µl 5 µl 7 µl 7 µl 

 

The separating gel solution was decanted between two vertical glass-slabs (layer thickness 0.75 

mm) with a Pasteur pipette to 2/3 of the glasses upper edge and then covered with a water layer. 

After polymerization, the water was poured out, the stacking gel solution was filled on the top 

and a comb was immediately inserted. 

The protein samples and SDS sample buffer (1:1) were mixed and boiled at 100oC for 5 min. A 

microlitre syringe was used to place the protein solutions in the wells of the slab. For each well 

0.5-2 µg of protein was loaded. In the first lane, parallel to the samples, was loaded the protein 

standard. Until the samples were concentrating, the gel was running at 100 V and for the 

separating part 150 V were used. 

After the end of the electrophoresis, the gel was placed for 30 min in a coomassie solution for 

staining. The destaining was done overnight. The ready gel was kept 1 h in 20 % methanol and 

dried between two pieces of cellophane. 

 

 

2.9.5 Concentration of Protein Samples by TCA 
 

When the protein concentration was low, concentration by TCA was done before the sample was 

loaded on PAGE. To the protein sample, which had to be concentrated was added 1/9 Vol. of 5% 

TCA. After mixing, the protein solution was incubated for 20 min on ice and then centrifuged for 
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20 min at 14000 rpm (Eppendorf Centrifuge). The pellet was dissolved in desired volume of SDS 

sample buffer. When the solution had a yellow color, 1 µl of 2.5M Tris-HCl pH 8.0 was added 

until the color got blue. 

 

 

2.9.6 Biotinylation of Proteins 
 
For biotinylation were used protein solutions of purified IL-4BP in PBS. To 300 µl of such a 

solution 50 µl of 0.5M NaHCO3, pH 8.5 were added. A solution of 1 µg EZ-LinkTM Sulfo-NHS-

LC-Biotin (Pierce) in 300 µl DMSO was prepared. Biotin solution was added to the protein 

sample in such an amount that the protein and the biotin were in a molar ratio of 1:5. The sample 

was shortly vortexed and then incubated on ice for 3 h. 

The biotinylated protein sample was separated from the free biotin by gel filtration through a 

column filled with Biogel P6DG. The column volume was about 14 ml and for elution was used 

PBS. The biotinylated protein was eluted after 4-5 ml flow through. The sample was divided into 

aliquots, which were kept at -20oC.  

 

 

2.10 Immunological methods - Western Blot 
 
2.10.1 Transfer of Proteins to a Nitrocellulose Membrane 

(Gershoni and Palade, 1983) 

 
Transfer buffer:  25mM Tris-HCl, 192 mM glycin, 20% methanol 

Amidoschwarz:  0.1% (w/v) amidoschwarz 10-B, 45% methanol, 10% acetic acid 

destaining solution:  1 Vol. acetic acid, 1 Vol. propanol, 8 Vol. H20 

nitrocellulose membrane (Schleicher and Schmuell BA85) 

Whatman paper 

 
Western blotting was used to verify the expression of IL-4BP by Sf9 cells, after the second step 

of virus amplification. 

First, the proteins were electrophoretically separated on a SDS polyacrylamide gel. 10 µl of virus 

supernatant were mixed with equal volume of protein sample buffer and after 5 min of boiling, 

the sample was loaded on a gel, parallel to a protein standard. As a negative control was used a 

sample of equal volume, which contained only the medium for Sf9 cells. The positive control was 

a sample of wild-type IL-4BP with known concentration. After the end of the electrophoresis, the 
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gel was rinsed shortly in transfer buffer. Then a paper-thin nitrocellulose membrane, which 

tenaciously binds most proteins, was carefully applied on the face of the gel, preventing the 

formation of air bubbles. The gel and its attached membrane were sandwiched between two 

pieces of Whatman paper, two porous pads and the plastic support was tightly fixed. The blotting 

apparatus (Blot Module Mini-V8.10), containing the gel and the membrane, was placed in an 

electrophoresis chamber in a way that the nitrocellulose membrane was toward the anode. The 

chamber was filled with transfer buffer and an electric field was applied (150 V) for 1 h. At this 

step, the proteins were driven out of the gel and transferred to the membrane.  

After the blotting, the membrane was separated from the gel and the first lane, containing the 

protein standard was cut out and stained for 5 min in amidoschwarz solution. Then this part of the 

membrane was placed in destaining solution, washed in H2O and dried. 

All manipulations were carried out with gloves to prevent the transfer of foreign proteins to the 

membrane. 

 

 

2.10.2 Detection of Western Blots by a Peroxidase Coupled Antibody  
 

washing buffer:  10mM Tris-HCl pH 8.0, 150mM NaCl, 0.5% tween 

blocking buffer:  3% BSA in washing buffer 

luminol solution:  2.5 mM luminol (3-aminophthalhydrasid), 100mM Tris-HCl pH  

    8.5, 1% DMSO 

enhancing solution:  90mM p-cumar acid in DMSO 

primary antibody:  3 µg/ml X-14-38 (anti-IL-4BP monoclonal antibody) in blocking  

    buffer 

secondary antibody:  anti-mouse polyclonal antibody from goat, peroxidase coupled 

 
In the next step, the membrane was soaked in a solution of the primary antibody, specific for IL-

4BP. Only the band, which contained this protein, bound the antibody. To identify the band 

containing the protein of interest, the membrane was developed by a secondary antibody, coupled 

with POD. 

After the blotting, the membrane was rinsed once for 5 min in washing buffer. Then it was 

incubated in blocking buffer for 30 min on a platform shaker to reduce the background of non-

specific binding by blocking potential binding sites with irrelevant proteins. The blocking buffer 

was replaced by 5 ml solution of the primary antibody and the membrane was incubated at RT for 

at least 2 h with gentle agitation on a platform shaker. When the antibody solution was removed, 
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the membrane was rinsed 4 times in washing buffer (5 min between each change) at RT. From 

the final wash, the nitrocellulose membrane was transferred in 5 ml solution of the secondary 

antibody (0.5-5.0 µg/ml antibody in blocking buffer) and incubated for 1-3 h at RT with gentle 

agitation on a platform shaker. The reaction with the secondary antibody was stopped by rinsing 

the membrane 4 times in washing buffer (5 min between each change) at RT. For the developing 

solution in two separated tubes were added 2.5 ml of luminol solution and 11 µl of enhancing 

solution or 2.5 ml of 0.1M Tris pH 8.5 and 1 µl of 30% H2O2, respectively. Right before the 

development, the content of the two tubes was mixed. The development was completely carried 

out in a dark room. There the membrane was transferred into the developing solution and was 

incubated until luminescence was seen (usually not more than 30 sec). The nitrocellulose 

membrane was shortly dried, exposed to a X-ray film (Kodak X-100) for 30 sec to 1 min and then 

the film was developed. 

 

 

2.11 Expression of Recombinant Proteins in E.coli 
(Kato et al., 1985; Weigel et al., 1989) 

 
2.11.1 Temperature Induced Protein Expression 
 
medium:  TB medium, 10 x phosphate buffer 

antibiotic:  ampicillin 

TE buffer  10mM Tris-HCl, 1M EDTA pH 8.0 

expression vector: RTSpRC109, containing the insert of interest 

 
Bacterial culture was started in 2 ml of TB-medium from a single colony and incubated for 8 h at 

30oC. 20 µl of this suspension were used to start culture in 50 ml of fresh medium, which was 

incubated overnight at 30oC. In a flask (2 l) was prepared 800 ml TE-medium, containing 

ampicillin (50 µg/ml) and 1.6 ml from the overnight bacterial culture were added. This bacterial 

culture was grown at 30oC on a shaker (Braun Ceromat, 200 rpm) to early logarithmic phase with 

OD550 of 0.5 (LKB Novaspec). The flask was then immediately moved to a rotatory water bath, 

where it was incubated for another 3 h at 42oC and shaken at 200 rpm. After this time, usually 

OD550 of 1.2-1.5 was reached. 

The bacterial cells were harvested by centrifugation for 10 min at 6000 rpm (Beckmann J2-21, 

JA-10 rotor). The pellet was resuspended and washed in 30 ml of TE buffer, pH 8.0. After the 
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bacterial suspension was centrifugated under the same conditions, the pellet was resuspended in 

10 volumes of TE buffer (vol/wet mass) and frozen at -20oC. 

 

 

2.11.2 Preparation of Inclusion Bodies 
 
TE buffer was added to the thawed out cell suspension to about 50 volumes of wet mass. The 

bacterial cells were sonicated eight times (each time 30 sec sonication followed by 30 sec break) 

at 300 W by a sonicator (KLN System 585). During the sonication, the solution was kept in an 

ice bath. The suspension was centrifuged at 11000 rpm (Beckmann J2-21, JA-14 rotor) for 30 

min at 4oC. The tight sediment was resuspended and washed once in 100 ml of TE buffer and 

then centrifuged under the same conditions for 20 min. The final pellet was resuspended in 10 

volumes of TE buffer (vol/wet mass). 

 

 

2.11.3 Denaturation and Renaturation of Proteins 
 
GuHCl solution:  6M guanidine hydrochloride, 100mM Tris-HCl pH 8.0 

PBS:    120mM NaCl, 2mM KCl, 3 mM NaH2PO4 pH 4.8, 7mM  

    Na2HPO4 pH 8.0 

TE buffer:   10mM Tris-HCl, 1mM EDTA, pH 8.0 

acetic acid:   4M acetic acid pH 5.0 

 

To the suspension, containing inclusion bodies slowly were added 3 volumes of 6 M guanidine 

hydrochloride solution and 0.1% (by volume) 2-mercaptoethanol. The mixture was stirred for 30 

min at RT and then centrifuged at 11000 rpm (Beckmann J2, JA-10 rotor) for 15 min at 4oC. 4 

volumes H2O were added drop by drop to the supernatant. The sample was centrifugated at 11000 

rpm for 20 min at 4oC. The supernatant was dialysed against 20 volumes of PBS pH 7.4 for 16-20 

h at 4oC. The cloudy suspension first was adjusted to pH 5.0, using 4 M acetic acid and then was 

centrifuged at 11000 rpm (Beckmann JA-14 rotor) for 20 min at 4oC. The protein containing 

supernatant was further purified by ion exchange chromatography. 
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2.12 Expression of Recombinant Proteins in SF9 cells 
 

2.12.1 General Handling Techniques 
 

2.12.1.1 Insect cell culture media 
 

Insect - Express medium (BioWhittaker) 

SF - 1 medium (BioConcept) 

Sf - 900 II Serum-Free Medium (Gibco BRL) 

Pluronic F68 for ICM - 10% (BioConcept) 

Lipid Ethanol solution for ICM (BioConcept) 

L - Glutamine (Seromed) 

FCS (Gibco BRL) 

 

All of these media provide basic nutrients for Sf9 cells and have a pH of approximately 6.2. 

Insect-Express medium does not require additional supplements and was completed only with 5% 

of FCS. The rest of the mentioned mediums were supplemented as shown in Table 2.9. 

 
Table 2.9: Insect cell culture media and required supplements 
 

Medium Lipid mix Pluronic L-glutamine FCS 
Insect-Express 

1000 ml 
- 
 

- - 50 ml 

SF-1 
950 ml 

1 ml 10 ml 25 ml 50 ml 

SF-900 SFM II 
980 ml 

1 ml 10 ml 10 ml 50 ml 

 

 

2.12.1.2 Cultivation of Sf9 cells 
 

To prevent bacterial or yeast contamination, all experiments dealing with Sf9 cells were 

performed at sterile conditions. Glass pipettes, plastic materials and solutions were sterilized. 

Flasks and tubes, containing cells were opened only in a laminar flow hood (LaminAir HB 

2448S, Heraeus).  

Old medium was exchanged with fresh every second day, since the healthy Sf9 cells double every 

18-24 h. The culture was incubated at 27oC in incubators (Heraeus, Memmert). 

 46



________________________________________________________2. Materials and Methods 

2.12.1.3 Staining and counting of Sf9 cells 
 

trypan blue  0.4% (w/v) solution in PBS 

 
The trypan blue exclusion method was used to count the proportion of viable cells and their 

concentration in the suspension. Since the exclusion of the stain is a selectively working 

definition for viability, the dead cells appear as blue spots, when observed with an inverse 

microscope.  

A small aliquot of cells was mixed with trypan blue solution at a ratio of 1:1 and kept at RT for 1 

min. Apart of this, the suspension was placed in a Neubauer’s chamber and observed with an 

inverse microscope. The viable cells in 16 different squares were counted. To calculate the cell 

density (cells/ml), the sum of cells counted within those squares has to be multiplied by 104. 

 

 

2.12.1.4 Long-term cell storage 
 

freezing medium:  90% culture medium and 10% DMSO, freshly filtered through  

    22 µm filter 

cryovials:   2.0 ml, sterile (Nalgene) 

 

Sf9 cells can be stored for long periods of time by freezing in liquid nitrogen. Sf9 cells from a 

healthy, log-phase culture were spun down at 2500 rpm (Megafuge 1.0, Heraeus) for 10 min. 

After the supernatant was decanted, the cell pellet was kept on ice and resuspended in such a 

volume of freezing medium, that the final cell density was 4 x 106. The cell suspension was 

aliquoted (1 ml) into freezing vials. To freeze the cells slowly, the vials were placed at -20oC for 

1 h and then kept at -80oC overnight. The next day the cells were transferred to liquid nitrogen. A 

week or two after the cells were frozen, one vial was thawed to check for cell viability and 

contamination. 

The frozen cells were quickly thawed by gentle agitation in a 37oC water bath. Then, they were 

transferred to a centrifuge tube (Falcon) and 25 ml of fresh medium were added. The cells were 

spun down by centrifugation at 1000 rpm (Megafuge 1.0, Heraeus) for 5 min. The pellet was 

resuspended in 40 ml of fresh medium and centrifuged again at the same conditions. After the 

supernatant was removed, the cells were resuspended in 10 ml of medium and the suspension was 

seeded in a 25 cm2 culture flask, which was incubated at 27oC. After 12-24 h the old medium was 

replaced with fresh and the culture was incubated at 27oC as long as the cells needed to get 
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confluent. Then they were transferred to a bigger flask (75 cm2) and the medium was exchanged 

with fresh. 

 

 

2.12.1.5 Monolayer culture 
 

tissue culture flasks:  25 cm2 (Falcon) 

    75 cm2 (Falcon) 

    175 cm2 (Falcon) 

 
Insect cells grow well both in suspension and as monolayer cultures and can be transferred from 

one to the other with minimal adaptation. 

Sf9 cells from a monolayer culture were subcultured when they were 80-90% confluent. After the 

culture was examined for contaminations and cells floating in the medium, the old medium was 

discarded and the cells were washed from the surface of the flask by gentle pipetting using 10 ml 

of fresh medium. A small aliquot of this suspension was stained with trypan blue. The cells were 

examined and counted with an inverse microscope. The suspension was diluted and the cells were 

seeded in a new flask with a density of 7.0 x 104 - 1.0 x 105 cells/cm2 in a final volume of 5 ml 

(for 25 cm2 flask), 15 ml (for 75 cm2 flask) or 35 ml (for 175 cm2 flask). A culture prepared with 

such cell density was ready for next passage in 2-3 days. The flasks were incubated in a 

humidified incubator at 27oC. 

 

 

2.12.1.6 Suspension culture 
 

plastic roller bottles:  2 l (Greiner) 

 
Continuous propagation of Sf9 cells in suspension for more than a few passages resulted in 

decreased cell viability and growth rate. That was the reason, that the stock cultures were 

passaged as monolayer and used then to seed suspension cultures when it was required. 

Usually, 2-3 confluent 175 cm2 flasks were used to start one bottle of a suspension culture. After 

the cells were counted, they were inoculated in a plastic roller bottle with a density of 0.8 x 105 - 

1.0x 106 cells/ml in a total volume of 80-100 ml. The bottle was incubated at 27oC in an 

incubator, where it was slowly rolled (5 rpm). When cells from the suspension attached to the 

wall of the bottle and the cell density reached 3-4 x 106 cells/ml, fresh medium was added to the 
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culture. In a roller bottle were incubated maximum 200 ml of cell suspension and the cell density 

was controlled to be not more than 4.5 x 106 cells/ml. 

 

 

2.12.2 Generation of Recombinant Baculoviruses 
 
2.12.2.1 The Baculovirus expression system 
 
Baculoviruses belong to a diverse group of large double-stranded DNA viruses that infect 

different insects as their natural hosts (Matthews, R.E.F., 1982). The Baculovirus genome is 

replicated and transcribed in the nuclei of infected host cells where the large Baculovirus DNA 

(between 80 and 120 kbp) is packaged into rod-shaped nucleocapsids. Since the size of this 

nucleocapsids is flexible, recombinant Baculovirus particles can accumulate large amounts of 

foreign DNA. 

One of the most commonly used Baculoviruses for expression vector work is Autographa 

californica nuclear polyhedrosis virus (AcNPV). Infectious AcNPV particles enter susceptible 

insect cells by endocytosis or fusion and viral DNA is uncoated in the nucleus. DNA replication 

starts 6 h post-infection. The virus infection cycle can be divided into two different phases: early 

and late. During the early phase, the infected insect cell releases extracellular virus particles by 

budding off from the cell membrane of infected cells. During the late phase of the infection cycle, 

occluded virus particles are assembled inside the nucleus. The occluded viruses are embedded in 

a homogenous matrix made predominantly of a single protein, the polyhedrin protein. That is 

why, during the late phase of infection, the polyhedrin protein accumulates to very high levels. 

Although the polyhedrin protein seems to be one of the most abundant proteins in infected insect 

cells, it is not essential for the Baculovirus life cycle in tissue culture. Cloning of a gene of 

interest under the control of the polyhedrin promoter, leads to high expression levels of the 

recombinant protein. This fact defines the Baculovirus expression vector system as one of the 

most powerful available systems for eukaryotic expression of recombinant proteins. 

 

 

2.12.2.2 Co-transfection of BaculoGold DNA and a transfer vector into insect cells 
 
The Baculovirus genome is too large to directly insert foreign genes easily. Hence the foreign 

gene has to be cloned first in a transfer vector, which later is co-transfected with AcNPV DNA 

into Sf9 cells. 
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For co-transfection was used BaculoGold DNA (Pharmingen), which is a modified AcNPV 

Baculovirus DNA, containing a lethal deletion and does not code for viable virus. Co-transfection 

of BaculoGold DNA with a complementing Baculovirus Transfer Vector rescues the lethal 

deletion. The foreign gene has to be cloned into a transfer vector that contains flanking 

sequences, which are homologous to the Baculovirus genome. After co-transfection, 

recombination takes place within the insect cells between the homologous regions in the transfer 

vector and the BaculoGold DNA. Recombinant virus produces recombinant protein and also 

infects additional insect cells, thereby resulting in additional recombinant virus. 

As a transfer vector was used pAcGP67B, where the gene of interest was cloned under the 

control of the strong Baculovirus polyhedrin promoter. It also contains gp67 signal sequence 

upstream of a multiple cloning site, which is one of the most effective Baculovirus-encoded 

signal sequences for protein secretion. The signal peptide mediates the forced secretion of the 

recombinant protein, even if it is normally not secreted. During transport across the cell 

membrane, the signal peptide is cleaved and the native protein can be purified from the infection 

supernatant. The vector has an E.coli origin of replication, which allows to be amplified in 

bacteria. It was prepared for co-transfection by LiCl purification method (see 2.7.11.3). 

 
Co-transfection was performed using BaculoGold transfection kit (Pharmingen). The following 

materials were required: 

confluent monolayer culture of Sf9 cells 

BaculoGold transfection kit:  linearized BaculoGold Baculovirus DNA 

     transfection buffer A 

     transfection buffer B 

     AcNPV wild-type high titer stock solution 

purified recombinant Baculovirus transfer vector (pAcGP67B) 

FCS 

6-well tissue-culture plate 

 
Confluent Sf9 cells were counted and diluted with medium containing 5% FCS to a cell density 

of 7 x 105 cells/ml. In each well of a 6-well tissue culture plate, 1 ml of this cell suspension was 

seeded and 1 ml of fresh medium was added. The plate was incubated shortly at 27oC until the 

cells attached firmly to the bottom. 

In a sterile Eppendorf tube in a laminar hood, 1 µg of the pure recombinant transfer vector was 

mixed with 0.25 µg (2.5 µl) of BaculoGold DNA. After 5 min of incubation at RT, 500 µl of 

transfection buffer B were added to the co-transfection mixture. To prepare the positive control, 
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25 µl of AcPNV wild-type high titer stock solution were added to 1.5 ml of medium. The old 

medium from the cells in the experimental co-transfection well was aspirated and replaced with 

500 µl of transfection buffer A. The medium in the positive control well was replaced with the 

mixture containing wild-type AcNPV. In the negative control well the medium was aspirated and 

1.5 ml of fresh medium were added. Nothing else was added to this well. Drop-by-drop, in the 

experimental co-transfection well was added the earlier prepared solution containing BaculoGold 

DNA and Baculovirus transfer vector. After every 3-5 drops, the plate was gently rocked back 

and forth to mix the drops with the medium. During this procedure, a fine calcium 

phosphate/DNA precipitate with white color was formed. The plate was incubated for 4 h at 27oC 

and then the medium from the experimental and the positive control wells was aspirated. The 

cells there were washed with 1.5 ml of fresh medium, which then was removed. Again 1.5 ml of 

fresh medium was added to each of these wells. The plate was placed in a incubator and kept at 

27oC for 5 days.  

After 5 days the cells in the three wells were examined for signs of infection. The supernatant 

from the experimental co-transfection well was collected and centrifuged at 2500 rpm (Biofuge 

A, Heraeus) for 5 min. The supernatant was stored at 4oC in the dark and later was used for 

plaque purification. 

 
 

2.12.2.3 Generating pure virus stocks by plaque purification 
 
The principle of the following method is to infect cells with extremely low numbers of infectious 

particles, so that only isolated cells become infected. An overlay of agarose keeps the cells stable 

and limits the spread of virus. When the originally infected cell produces virus and eventually 

lyses, only the immediate neighboring cells become infected. Each group of infected cells is 

referred to as a plaque. Uninfected cells are dispersed throughout the culture, surrounding the 

plaques. After several infection cycles, the infected cells in the center of the plaques begin to lyse 

and the peripheral infected cells remain surrounded by uninfected cells. All the virus particles in a 

plaque derive from a single infectious particle. Therefore, clonal virus populations may be 

purified by isolating individual plaques. 

 
confluent monolayer Sf9 culture 

FCS 

Insect Express Medium (2 x) (BioWhittaker) 

agarose solution: 1.8% SeaPlaque Agarose (BioZym) dissolved in H20, autoclaved  

and kept at 65oC 
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MTT solution:   1 mg/ml MTT dissolved in H2O, filtered through 22 µl filter 

6-well tissue culture plate 

 
The cells were counted and diluted to a cell density of 1.2 x 106 cells/ml. In each well was seeded 

1 ml of cell suspension and 1 ml of fresh medium was added. The plate was kept 10-15 min at 

27oC on a level surface to allow the cells to spread evenly over the bottom. Serial dilutions of the 

viral transfection supernatant in fresh medium were made, as it follows:  

   3 x 10-1, 1 x 10-1, 1 x 10-2, 1 x 10-3 and 1 x 10-4. 

All dilutions were performed in a total volume of 1 ml in sterile Eppendorf tubes. The medium 

was aspirated and replaced with the virus in oculum. One well was used for negative control and 

there only fresh medium was added. The plate was incubated at 27oC for 1 h. For each plate was 

prepared a solution containing 5 ml of agarose solution, 4.5 ml of Insect Express Medium (2x), 

and 500 µl of FCS, which was kept fluid at 40oC. The virus dilutions were aspirated and the cells 

were overlaid with an agarose containing solution (1 ml/well). The plate was kept on a leveled 

surface until agarose hardened (about 20 min). The plate was incubated in a humid atmosphere at 

27oC until visible plaques developed (usually 5-6 days). 

To better visualize the plaques, the cells were stained with solution of MTT. To each well was 

applied 1 ml of it and the plate was incubated for 1 h at RT. After this time, the plaques were seen 

as small white points on a violet background.  

 

 

2.12.3 Amplification of Virus Stocks 
 
The generation of a pure high titer virus stock involved the preparation of a stock starting from a 

single infectious unit. During the virus amplification, the following steps were performed to 

increase the volume and the titer of the virus stock. 

 

 

2.12.3.1 Virus amplification from a single virus plaque 
 
The plaques were picked from wells containing not more than 20 single plaques. To pick up the 

plaques, a sterile micropipette tip was used. Each single plaque was placed in a sterile Eppendorf 

tube containing 1 ml of medium and was incubated for 1 h at 27oC. In a 6-well tissue-culture 

plate was seeded 1 ml/well Sf9 cells from confluent culture with a cell density of 1.2-1.5 x 106 

cells/ml and 1 ml of fresh medium was added to each well. After the cells attached to the bottom, 
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the medium was replaced with plaque containing solutions. In the negative control well, 1 ml of 

fresh medium was added. The plate was incubated for 1 h at 27oC and then 1 ml of fresh medium 

was added to each well. 

After 3 days of incubation at 27oC, the supernatant from the different virus clones was collected 

and centrifuged at 2500 rpm (Biofuge A, Heraeus) for 5 min. This amplifying step was repeated 

once more using 500 µl of each virus stock mixed with 500 µl of fresh medium. After the second 

amplification, the virus clones were tested for protein expression by Western blotting (see 2.9). 

The virus clone, which showed the best expression level, was chosen for further amplification. 

 

 

2.12.3.2 Virus amplification in a small volume scale 
 
In a 175 cm2 tissue-culture flask were seeded Sf9 cells with a density of 1.6-2.0 x 105 cells/cm2 in 

a total volume of 35 ml. After the cells attached to the bottom, the medium was aspirated and 

cells were infected with 1 ml of the virus supernatant collected after the second amplification 

step. Additionally, 10 ml of fresh medium were added and the flask was incubated for 1 h at 

27oC. Then 24 ml of fresh medium were added to the flask. After 3 days of incubation at 27oC, 

the virus supernatant was collected and centrifuged (Megafuge 1.0, Heraeus) at 2500 rpm for 5 

min. 

 

 

2.12.3.3 Virus amplification in a large volume scale 
 
5 ml from the virus supernatant collected after the described amplification step were used to 

infect Sf9 cells in a roller bottle (Greiner). 95 ml of suspension culture from Sf9 cells with cell 

density 1.5 x 106 cells/ml were transferred to a fresh plastic roller bottle and then the virus stock 

was added. After 3 days of incubation at 27oC, the supernatant was centrifuged at 2500 rpm 

(Megafuge 1.0, Heraeus) for 5 min and was used for determination of virus titer. 

 

 

2.12.3.4 Determination of virus titer by plaque assay 
 
The titer of a virus stock is the concentration of infectious virus particles in that stock. It was 

determined by a plaque assay. Plaque assay of a virus stock involves essentially the same 

protocol as plaque purification. Because each plaque derives from a single infectious unit, 
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counting the number of plaques formed by different dilutions of a virus stock allows determining 

the concentration of infectious units in the stock. Viral titers determined in this manner are 

expressed in plaque-forming units/ml (pfu/ml). For practical purposes, the virus stock titered by 

plaque assay was diluted as it follows: 

   1 x 10-4, 1 x 10-5, 1 x 10-6, 1 x 10-7 and 1 x 10-8. 

 

 

2.12.3.5 Virus storage 

(Jarvis, D.L. et al., 1994) 

 
Working stocks of recombinant viruses were stored at 4oC in tissue-culture medium containing 

5% of FCS. Infected cells and cell debris were removed from the virus stock by centrifugation at 

1000 x g for 5 min. The stocks were stored in the dark, because the viruses are extremely light 

sensitive. 

For long-term storage, aliquots of the virus stock were frozen in polypropylene cryovials at          

-80oC without any cryoprotectant. Before freezing, FCS was added to 10%. Virus stocks were 

retitrated before use after prolonged storage. 

 

 

2.12.4 Protein Expression 
 
After the virus titer was determined, the high titer virus stock was used for protein expression. 

200 ml of suspension culture with cell density 1.5 x 106 cells/ml, were transferred to a fresh 

plastic roller bottle. The cells were infected with such an amount of high titer virus stock, that the 

multiplicity of the infection (infectious virus units/cell) was between 3 and 5. The bottle was 

rolled (5 rpm) at 27oC. Aliquots were examined under a microscope and depending on the 

number of infected cells, the expression was done for 4 or 5 days. The suspension was 

centrifuged at 3000 rpm for 10 min. The protein containing supernatant was frozen and stored at -

20oC. 
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2.13 Purification of Recombinant Proteins 
 
2.13.1 Purification of Proteins Expressed in E.coli 
 
2.13.1.1 Protein purification by ion exchange chromatography 
 
buffer A:  25mM NH4OAc, pH 5.0 

buffer B:  25mM NH4OAc, 1M NaCl, pH 5.0 

column:  3 x 10 cm (Biorad) 

ion exchanger: CM-Sepharose fast flow 

pump:   LKB 2232 Microperpex S Peristaltic Pump 

detector:  LKB 2238 Uvicord, LKB 2210 Recorder 

collector:  ISCO Retriever II 

 

CM-Sepharose fast flow (Pharmacia) was equilibrated with 4 M NH4OAc, pH 5.0 and washed 

several times with 25 mM NH4OAc, pH 5.0 by a funnel. The so prepared ion exchanger was 

packed in a column (5-10 ml) and washed with solution A, until the elute reached pH 5.0. The 

protein containing solution was slowly loaded (ca. 250 ml/h) into the column. This was followed 

by rinsing with five column volumes of solution A. The elution of proteins was performed by a 

60 ml linear salt gradient from 0 to 0.5 M NaCl/25 mM NH4OAc pH 5.0 with a flow rate ca.0.5 

ml/min. The elute peak was detected with an absorbance device at 280 nm and recorded. The 

described procedure was performed in a 4oC room. The collected fractions (2 ml each) were 

measured at 280 nm (Konto Uvikon 930 Spectrophotometer), using solution A as a blank. 

Further, the fractions (10 µl from each) were examined on a SDS-polyacrylamide gel. The 

fractions, which contained pure protein in a sufficient amount were combined and later purified 

additionally by the use of RP-HPLC. 

 

 

2.13.1.2 Protein purification by RP-HPLC 
 
controller:  LKB 2152 HPLC Controller 

pump:   LKB 2150 HPLC Pump 

detector:  Merk Hitachi 655A Variable Wavelength UV Monitor 

recorder:  LKB 2210 

superrac:  LKB 2210 
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acetonitrile:  acetonitrile (Roth, HPLC Grade), filtered through a 22 µm filter 

TFA:   0.1% TFA (Merck) in H2O, filtered through a 22 µm filter 

protein stock buffer: 12.5 ml of 4 x upper Tris-HCl, 20 ml of 10% SDS, 47.5 ml of H2O, 30 ml  

   of glycerol mix  

 

The protein containing fractions, collected during the ion exchange chromatography, were 

centrifuged at 3000 rpm for 15 min at 4oC. The supernatant was injected into a Vydac C4 HPLC 

column (250 x 4.6 mm or 250 x 8 mm), equilibrated with 0.1% TFA. The protein was eluted by 

acetonitrile gradient from 0 to 100%. The elution was controlled automatically by the presented 

programs (Table 2.10). 

 
Table 2.10: Acetonitrile gradient and retention time, used for analytical and preparative RP-HPLC 
 

 Acetonitrile [%] Retention time [min] 
Analytical RP-HPLC 0 – 35 15 
 35 – 45 40 
 45 – 100 15 
 100 – 100 10 
Preparative RP-HPLC 0 – 30 5 
 30 – 50 45 
 50 – 100 10 
 100 – 100 10 
 100 – 0 10 

 

The flow rate was 0.7 ml/min for the column (250 x 4.6 mm) and 2 ml/min for the column (250 x 

8 mm). The protein concentration of the collected fractions was measured at the absorption 

spectrum range 250-320 nm (Kontron Uvikon 930 Spectrophotometer). An aliquot (10 µl) from 

every fraction was mixed with 30 µl of protein buffer and 5 µl from this solution was analyzed by 

SDS-polyacrylamide gel electrophoresis. The fractions with the highest amount of pure protein 

were combined, aliquoted and lyophilized. 

In addition to the SDS-PAGE, the protein purity was also examined by analytical RP-HPLC, 

performed with the use of the small column (250 x 4.6 mm). The procedure followed the 

described details for preparative RP-HPLC, except that only 100 µg of protein were required for 

analysis and the detection sensitivity was set at 0.08. 
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2.13.2 Purification of Proteins Expressed in Sf9 Cells 
 
2.13.2.1 Affinity chromatography using IL-4 as a ligand 
 
PBS:    120mM NaCl, 2mM KCl, 3mM NaH2PO4, pH 7.4 

eluent:    4M MgCl2  

affinity adsorbent:  IL-4, immobilised to Sepharose gel 

pre-column:   1 x10 cm column (Biorad) 

filling for pre-column: CM Sepharose fast flow (Pharmacia) 

 
The affinity matrix (2 ml) was packed in a sterile Pasture pipette. The so prepared affinity column 

was washed with 10 volumes of PBS and stored at 4oC. The filling for the pre-column (CM 

Sepharose fast flow) was washed several times with 20 x PBS, using a funnel. The gel was stored 

under 20 x PBS at 4oC. Immediately before the purification step, 2-3 ml were used to fill the pre-

column, which was washed with 10 volumes of PBS. 

The protein containing supernatant was thawed out and centrifuged at 2500 rpm (Megafuge 1.0, 

Heraeus) for 10 min to eliminate the precipitate, resulting from freezing. After the affinity 

column and the pre-column were connected, the protein material was loaded in a way that it 

passed slowly (about 100 ml/h) first through the pre-column. The two columns were 

disconnected and the affinity column was washed with 10 column volumes (20 ml) of PBS. 

During the elution, which was performed with 4 M MgCl2, 5-6 protein fractions were collected 

(each 1.5 ml). The described procedure was carried out at 4oC. The protein concentration was 

measured at the absorption spectrum range 250-320 nm (Kontron Uvikon 930 

Spectrophotometer). The quality of the protein was analyzed by an SDS-PAGE, where 15 µl of 

every fraction were loaded. The fractions containing the highest amount of pure protein were 

combined. 

The pre-column could be used only once, and then had to be cleaned and refilled with fresh CM 

Sepharose. After elution, the affinity column was washed with 20 ml of PBS and recovered in 

this way for the next protein purification. It was stored at 4oC under PBS. 

 

 

2.13.2.2 Affinity chromatography using X14/38 as a ligand 
 
PBS:   120mM NaCl, 2mM KCl, 3mM NaH2PO4, pH 7.4 

eluent:   4M MgCl2  

affinity adsorbent: X-14-38, bond to Sepharose gel 
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pre-column:   1 x10 cm column (Biorad) 

filling for pre-column: CM Sepharose fast flow (Pharmacia) 

 
X14/38 is an anti-IL-4BP monoclonal antibody, which was used as a ligand for the purification of 

low-affinity IL-4BP variants that could not be purified by the method described in above.  

The procedure is essentially the same as described in 2.12.2.1. The main difference was, that the 

protein containing supernatant was loaded very slowly (usually overnight) onto the columns.  

 

 

2.13.2.3 Dialysis  
 
After the purification by an affinity column, the fractions containing the highest amount of pure 

IL-4BP, were combined and dialyzed in order to reduce the high salt concentration. The protein 

solution was placed in a semi-permeable dialysis tubing (type 20/32, Roth) made of cellulose 

acetate. The dialysis was performed in 2 l of PBS, which was stirred at 4oC overnight. At the next 

day, the buffer was exchanged with fresh and the dialysis repeated one more night. To prevent 

contamination with foreign proteins, the tubing was touched only through gloves. 

 

 

2.13.2.4 Concentration of proteins by ultrafiltration 
 
ultrafilter:  YM10 = 10000 MW (Amicon) 

apparatus:  stirred cell covering range 1-10 ml (Amicon 8010) 

 
During ultrafiltration, water and other small molecules were driven out of the protein solution 

through a semi-permeable membrane by a transmembrane force, such as high pressure.  

The new membrane was washed according to the manufacturer’s instructions and stored under 

30% ethanol at 4oC. Before use, the filter was washed with dH2O. The system was assembled and 

the membrane was placed with the glossy side toward the solution. It was rinsed by filtering a 

few ml of PBS at 3.5 atm. PBS was replaced by the dialyzed protein solution (10-15 ml) and 

pressure of 4 atm was applied until the protein sample reached a volume of 1-1.5 ml. The 

ultrafilter was rinsed in dH2O and stored under 30% ethanol solution at 4oC. The protein 

concentration was measured at the absorption spectrum range 250-320 nm. Aliquots of 350 µl 

were frozen at -20oC and further biotinylated. 
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2.14 Analysis of Protein-Protein Interactions by BIAcore Technology 
 
The analysis of kinetic and thermodynamic data of protein-protein interactions between the 

extracellular domain of IL-4 receptor (IL-4BP) and its mutated variants with the ligand (IL-4) 

was performed with a BIAcore 2000 (Pharmacia). BIAcore 2000 is an instrument, which 

measures bio-molecular interactions in real time without labeling of the interactants and allows 

detailed investigation of the reaction kinetics by analysis of the resultant signals (Karlsson, R. & 

Fealt, A., 1997). 

For this purpose, one interactant (here IL-4BP or its variants) is immobilized on the surface of a 

sensor chip and a solution containing the other binding partner (IL-4) flows continuously over the 

chip. The sensor chip consists of a glass slide coated with a thin gold film to which is attached, by 

an inert linker layer, a dextran matrix onto which the mentioned interactant can be immobilized 

using well-defined chemistry. The sensor chip forms one wall of a micro-flow cell where its 

matrix covered side comes into contact with the solution containing the second interactant. This 

system uses the detection principle of surface plasmon resonance. During the interaction, light 

passing a prism is focused onto the gold surface of the sensor chip through the glass, and 

reflected light is monitored. Evanescent wave photons produced by the incident polarized light 

interact with free oscillating electrons (plasmons) in the gold surface. Resonance occurs at a 

critical angle of the incident light, and light energy is transferred to electrons in the metal film 

surface, causing a minima in the reflected light. This angle depends on the refractive index at, or 

close to the metal surface opposite to where the light is focused. By measuring small changes in 

refractive index, the instrument monitors the change in mass as a ligand binds to, or dissociates 

from, its binding partner. Data are presented as sensograms that show the change in resonance 

units (RU) versus time. For proteins, which have a refractive index increment of approximately 

0.18, a signal of 1000 RU is equivalent to a surface concentration of 1 ng/mm2 (Stenberg, E. et 

al., 1990). 

Association is monitored when a sample is injected and binding occurs to the immobilized 

interactant. After sample injection, buffer alone flows over the sensor surface and dissociation 

parameters can be recorded. At the end of the experiment, the surface can be regenerated using 

suitable reagents to remove remaining bound analyte without denaturing the immobilized 

reaction partner and the chip can be used for a new cycle of measurements (Nice, E.C. & 

Catimel, B., 1999) 
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2.14.1 Immobilization of Proteins by Streptavidin-Biotin Coupling 
 
After streptavidin was covalently immobilized onto the surface of a sensor chip, the biotinylated 

protein was bound to the prepared matrix. 

 
sensor chip:  CM5 

EDC:   50mM N-Ethyl-N´-(dimethylaminopropyl) carbodiimide 

NHS:   200mM N-Hydroxysuccinimide 

HBS buffer:  10mM HEPES pH 7.4, 150mM NaCl, 3.4 mM EDTA,  

   0.005% Surfactant P20 

streptavidin solution: 100µg/ml streptavidin in 10mM NaOAc, pH 4.5 

regeneration buffer: 100mM HOAc, 1M NaCl, pH 3.0 

 
The immobilization and preparation of a sensor chip was carried out according to the 

manufacturer’s instructions (BIAcore Handbook, 1995). The immobilization of streptavidin was 

run automatically following the program shown in Table 2.11. 

 
Table 2.11: Immobilization of streptavidin by amine coupling 
 

Immobilization procedure 
continuously flow buffer HBS flow rate 5 µl/min 
EDC/NHS (50 mM/200 mM) 35 µl (7 min) 

streptavidin (100 µg/ml) 35 µl (7 min) 
1 M ethanolamine-HCl 35 µl (7 min) 

 

The concentration of biotinylated proteins used for immobilization was usually 0.1 µg/ml. 

 

 

2.14.2 Measuring and Evaluation of Protein-Protein Interactions 
 
A typical sensogram recorded with BIAcore 2000 is characterized by the following three phases: 

1) Association phase - when the sample is injected; increases in the signal correspond to binding 

to the immobilized interactant. 

2) The signal reaches a constant plateau when equilibrium between association and dissociation is 

reached. 

3) Dissociation phase - occurs when buffer alone flows over the sensor surface. The decrease in 

signal reflects dissociation of analyte from the surface-bound complex. 
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Kinetic rate constants can be derived from the association and dissociation phases of the 

sensogram. The height of the plateau represents the thermodynamic affinity of binding.  

The program BIAevaluation 2.0 was used to calculate the kinetic and thermodynamic constants. 

The theoretical equations, which describe the kinetics and equilibrium of interactions in real-time 

BIA, are listed in Appendix 1. 

 

 

2.14.3 Assessment of the Energetic Effects of Introduced Mutations 
 
Substitution of a residue, which is direct or indirect involved in binding is followed by a change 

in the binding energy of the protein-protein complex. The equilibrium dissociation constants 

determined by experiments performed with the BIAcore 2000 analytical system were used to 

calculate the loss of binding free energy (∆∆G) characterizing the mutated variants: 

 
   ∆∆G = R*T*ln (Kd mut/Kd wt) 

 
where R is the gas constant, T is the absolute temperature, Kd mut is the equilibrium dissociation 

constant for the mutant variant, Kd wt is the equilibrium dissociation constant for the wild-type 

interaction. 

The total change in binding free energy (∆G) for the interaction of IL-4 and IL-4BP was 

calculated according to the formula:  

 
   ∆G = -R*T*ln (1/Kd) 

 
where R is the gas constant, T is the absolute temperature, Kd is the equilibrium dissociation 

constant for the IL4/IL-4BP interaction.  
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3. Results 
 

 

3.1 Preparation of Recombinant IL-4BP and Its Variants 
 

In the framework of the present project was analyzed the effect of amino acid substitutions within 

the α-chain of the human IL-4 receptor on the kinetics of the interaction with IL-4. Earlier, it was 

shown that the separately expressed 207-residue ectodomain of the α-chain (IL-4BP) forms a 1:1 

complex with IL-4 and exhibits the same binding affinity as the entire receptor α-chain (Hoffman 

et al., 1995; Shen et al., 1996). Based on these results, the selection of the amino acids subjected 

to mutagenesis was restricted to the mentioned domain.  

 
Table 3.1: IL-4BP variants designed by site-specific mutagenesis.  

IL-4BP Variant IL-4BP Loops 

Y13A A-B L1 
Y13F A-B L1 
L39A C-C´ L2 
F41A C-C´ L2 
L42A C-C´ L2 
L43A C-C´ L2 
D66A E-F L3 
D67A E-F L3 
V69A E-F L3 
D72A E-F L3 
D72N E-F L3 
K91A G-A L4 
K91D G-A L4 
S93A G-A L4 
D125A B-C L5 
N126A B-C L5 
Y127A B-C L5 
Y127F B-C L5 
L128A B-C L5 
Y183A F-G L6 
Y183F F-G L6 
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All variants of IL-4BP, which were constructed by specific substitutions of a single amino acid, 

are shown in Table 3.1. Variants D66A, D67A, V69A, D125A, N126A, Y127A and Y128A were 

expressed and purified by Dr. Yonghong Wang and further examined by the author. The study 

was accomplished by analyses of variants containing two independent mutations (Table 3.2).  

 
Table 3.2: A list of the IL-4BP double mutants. The contact clusters are defined according Hage et al., 1999. 
 

Contact cluster Variant 
I II III 

Y13F/L39A Y13 L39  
Y13F/F41A Y13 F41  
Y13F/D67A Y13  D67 
Y13F/V69A Y13 V69  
Y13F/D72N Y13 D72  
Y13F/Y127A Y13               Y127   
Y13F/Y183F Y13               Y183   
D72N/L39A  D72                   L39  
D72N/F41A  D72                   F41  
D72N/D67A  D72 D67 
D72N/V69A  D72                   V69  
D72N/Y127A Y127 D72  
D72N/Y183F Y183 D72  

 

The proteins representing IL-4BP and its variants, without any exceptions, were recombinantly 

expressed in an eukaryotic expression system (Baculovirus expression system). Since in the 

human IL-4BP six sites of potential N-linked glycosylation are present, the expression of 

functionally active recombinant proteins requires eukaryotic conditions. Therefore, was chosen 

the Baculovirus expression system that offers the advantage to express high levels of soluble 

proteins in which post-translational modifications are performed. 

The kinetics of the binding of IL-4 to the IL-4BP variants was measured by means of the 

BIAcore system after the receptor variants were immobilized on the biosensor matrix. This 

method requires high purity and homogeneity of the examined samples because this is the only 

way to determine the exact concentration of the recombinant IL-4BP variants. The variants that 

had relatively higher affinity to IL-4 were purified by affinity chromatography exploring IL-4 as 

a ligand. For the rest of the proteins a chromatographic step using anti-IL-4BP antibody was 

performed. Both procedures resulted in highly pure protein fractions, which could be used for 

BIAcore measurements without any necessity of further purification.  
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3.1.1 Cloning of IL-4BP and Its Variants in the Baculovirus Transfer Vector pAcGP67B 
 

The cDNA representing the first 207 residues of mature human IL-4 receptor α chain, 

extracellular domain was mutated by recombinant PCR. As a template was used the vector 

pRPR9IL4FD (C. Söder, based on vector RTSpRC109, McCarthy et al., 1985, Appendix 2). It 

contains an IL-4BP cDNA modified at position C182A, in which the free cysteine is substituted 

in order to prevent the formation of disulfide bridges. The complete nucleotide and amino acid 

sequence of hIL-4BP is shown in Figure 3.1. 
 
              

    Y  A  F  K  V  L  Q  E  P  T  C  V  S  D  Y  M  S  I  S  T 
5´CTATGCATTTAAGGTCTTGCAGGAGCCCACCTGCGTCTCCGACTACATGAGCATCTCTAC 3´ 
                10             20             30             40             50             60 

3´GATACGTAAATTCCAGAACGTCCTCGGGTGGACGCAGAGGCTGATGTACTCGTAGAGATG 5´ 
 
    C  E  W  K  M  N  G  P  T  N  C  S  T  E  L  R  L  L  Y  Q 
5´TTGCGAGTGGAAGATGAATGGTCCCACCAATTGCAGCACCGAGCTCCGCCTGTTGTACCA 3´ 
                70             80             90             100            110            120 

3´AACGCTCACCTTCTACTTACCAGGGTGGTTAACGTCGTGGCTCGAGGCGGACAACATGGT 5´ 
 
    L  V  F  L  L  S  E  A  H  T  C  I  P  E  N  N  G  G  A  G 
5´GCTGGTTTTTCTGCTCTCCGAAGCCCACACGTGTATCCCTGAGAACAACGGAGGCGCGGG 3´ 
                130            140            150            160            170            180 

3´CGACCAAAAAGACGAGAGGCTTCGGGTGTGCACATAGGGACTCTTGTTGCCTCCGCGCCC 5´ 
 
    C  V  C  H  L  L  M  D  D  V  V  S  A  D  N  Y  T  L  D  L 
5´GTGCGTGTGCCACCTGCTCATGGATGACGTGGTCAGTGCGGATAACTATACACTGGACCT 3´ 
                190            200            210            220            230            240 

3´CACGCACACGGTGGACGAGTACCTACTGCACCAGTCACGCCTATTGATATGTGACCTGGA 5´ 
 
    W  A  G  Q  Q  L  L  W  K  G  S  F  K  P  S  E  H  V  K  P 
5´GTGGGCTGGGCAGCAGCTGCTGTGGAAGGGCTCCTTCAAGCCCAGCGAGCATGTGAAACC 3´ 
                250            260            270            280            290            300 

3´CACCCGACCCGTCGTCGACGACACCTTCCCGAGGAAGTTCGGGTCGCTCGTACACTTTGG 5´ 
 
    R  A  P  G  N  L  T  V  H  T  N  V  S  D  T  L  L  L  T  W 
5´CAGGGCCCCAGGAAACCTGACAGTTCACACCAATGTCTCCGACACTCTGCTGCTGACCTG 3´ 
                310            320            330            340            350            360 

3´GTCCCGGGGTCCTTTGGACTGTCAAGTGTGGTTACAGAGGCTGTGAGACGACGACTGGAC 5´ 
 
    S  N  P  Y  P  P  D  N  Y  L  Y  N  H  L  T  Y  A  V  N  I 
5´GAGCAACCCGTATCCCCCTGACAATTACCTGTATAATCATCTCACCTATGCAGTCAACAT 3´ 
                370            380            390            400            410            420 

3´CTCGTTGGGCATAGGGGGACTGTTAATGGACATATTAGTAGAGTGGATACGTCAGTTGTA 5´ 
 
    W  S  E  N  D  P  A  D  F  R  I  Y  N  V  T  Y  L  E  P  S 
5´TTGGAGTGAAAACGACCCGGCAGATTTCAGAATCTATAACGTGACCTACCTAGAACCCTC 3´ 
                430            440            450            460            470            480 

3´AACCTCACTTTTGCTGGGCCGTCTAAAGTCTTAGATATTGCACTGGATGGATCTTGGGAG 5´ 
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    L  R  I  A  A  S  T  L  K  S  G  I  S  Y  R  A  R  V  R  A 
5´CCTCCGCATCGCAGCCAGCACCCTGAAGTCTGGGATTTCCTACAGGGCACGGGTGAGGGC 3´ 
                490            500            510            520            530            540 

3´GGAGGCGTAGCGTCGGTCGTGGGACTTCAGACCCTAAAGGATGTCCCGTGCCCACTCCCG 5´ 
    W  A  Q  A  Y  N  T  T  W  S  E  W  S  P  S  T  K  W  H  N 
5´CTGGGCTCAGGCCTATAACACCACCTGGAGTGAGTGGAGCCCCAGCACCAAGTGGCACAA 3´ 
                550            560            570            580            590            600 

3´GACCCGAGTCCGGATATTGTGGTGGACCTCACTCACCTCGGGGTCGTGGTTCACCGTGTT 5´ 
 
    S  Y  R  E  P  F  E  Q  H  ∗ 
5´CTCCTACAGGGAGCCCTTCGAGCAGCACTAG 3´ 
                610            620            630 

3´GAGGATGTCCCTCGGGAAGCTCGTCGTGATC 5´ 
 
 
Figure 3.1: Nucleotide and amino acid sequence of hIL-4BP cDNA. 

              

 

The PCR reactions were divided into two steps. During the first step (PCR 1) two fragments 

(PCR1a and PCR1b) were separately synthesized and a mutation of interest was introduced with 

the help of mutant primers containing one mismatch codon. For variants which were constracted 

by a substitution of a single amino acid, as a template in this reaction was used the wild-type 

cDNA. To produce variants in which two different amino acids were mutated, as a template was 

used a plasmid of hIL-4BP containing already one modified site and applying the described PCR 

techniques a second mutation was created. The length of the fragments differed for the particular 

variants depending on the exact location of the introduced mutation (Figure 3.2). 
 

              
 

 
    LMS    PCR1a       PCR1b PCR2 
 
 
Figure 3.2: Reaction products from PCR 1 and PCR 2 of IL-4BP. 

              

 

The fragments from PCR 1 (20-30 ng) were used as a template in PCR 2. Since the external 

primers specific for PCR 2 were in large excess compared to the amount of primers left from 

PCR 1a and PCR 1b, the purity of the reaction product was ensured. One of the external primers 

 65



______________________________________________________________________3. Results 

in this step introduces a BamHI restriction site (WYH37) and the other (WYH38) contains a 

wild-type sequence. The product of PCR 2 has the length of 682 bp for all mutants in this method 

and yielded 1-3 µg DNA. 

After the reaction mixture from PCR 2 was precipitated in a volume of 30 µl, and than digested 

by BamHI. The restriction product containing the mutated IL-4BP cDNA has a length of 635 bp. 

This fragment was isolated and purified exploring an agrose gel electrophoresis and glass milk 

elusion. It was inserted into the baculovirus transfer vector pAcGP67B cut by BamHI (Appendix 

3). The plasmid caring the mutated IL-4BP (Figure 3.3) was then used for electrotransformation 

of competent E.coli (JM 103 recA- or JM 109). 
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Figure 3.3: Baculovirus transfer vector pAcGP67B with cloned IL-4BP. 

              
 

The first selection of plasmid–containing E.coli was performed by plating the transformation cell 

suspension on ampicillin agar plates. Since the plasmid contains an ampicillin resistance gene, 

only bacterial cells, which carry the plasmid pAcGP67B/IL-4BP, would be able to form colonies. 

The selection procedure was completed by analytical restriction endonuclease digestion. For this 

were prepared plasmid DNAs from several individual clones at analytical scale. The intact 

circular plasmids were digested first with BamHI to confirm the presence of IL-4BP in the 

plasmid. The positive clones showed a band of 635 bp after the restriction reaction, which was 

visualized on a 1 % agarose gel (Figure 3.4a). Only in few plasmid samples an IL-4BP insert was 
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not found. Most likely the reason that bacterial clones, which do not carry IL-4BP, grew up over 

agar plates, is not completed dephosporylation of vector ends. Since only one cutting enzyme was 

used during cloning, the positive plasmid samples were analyzed by a second restriction reaction 

with EcoRV and SacI. The products from this reaction give information about the orientation of 

the inserted IL-4BP fragment within the plasmid pAcGP67B. The cutting site of SacI is unique 

and located asymmetrically within the cDNA sequence of IL-4BP. Therefore plasmids which 

inserted the IL-4BP cDNA parallel to the direction of transcription, showed after such restriction 

reaction a shorter fragment of 320 bp, and those of them which inserted it in the opposite 

direction were characterized by a fragment of 800 bp (Figure 3.4b). Usually, equal number of 

bacterial colonies representing both kinds of plasmids was detected, as it was theoretically 

expected. 

 

              
 
 
 

 
      LMS     1      2       3       4       5       6      7       8        9   MHS                      LMS      1        2        3       4       5        6        7        8       9 
       

 
a) Analytical restriction with BamHI. Lines 1 to 9 
represent positive clones. 
 
 
 
 

 
b) Analytical restriction with EcoRV and SacI. Lines 
1,2,4,6 and 9 represent positive clones. Lines 3, 5, 7 
and 8 represent clones which inserted .the modified 
cDNA but in the “wrong” direction.  

Figure 3.4: Analytical restriction of pAcGP67B containing the modified IL-4BP cDNA. 

              

 

Plasmid DNA was isolated from clones, which were positive after all selection steps. Such 

preparations were used for sequence analyses and therefore another purification procedure was 

used which increased the amount and the quality of purified DNA (see 2.7.11.2). Sequencing was 

performed with 5´- and 3´- external primers (MF37 and WYH39). The sequence analysis 

confirmed the presence of the introduced mutation in all samples. No other mutations in the DNA 

sequence were detected. After the mutation was verified by sequencing, the mutant plasmid DNA 

was prepared at large scale for storage and following co-transfection (see 2.7.11.3). With the used 

method usually 20 to 30 mg of plasmid DNA were obtained from 40 ml of bacterial culture. 
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3.1.2 Co-transfection into SF9 Insect Cells and Amplification of the Recombinant Virus 
 
The first step necessary to construct recombinant Baculoviruses was co-transfection of the 

transfer vector pAcGP67B containing mutated IL-4BP cDNA and BaculoGold DNA into SF9 

insect cells. BaculoGold DNA is a modified AcNPV Baculovirus DNA, which contains a lethal 

deletion and does not code for viable virus. Co-transfection of the BaculoGold DNA with a 

complementing Baculovirus Transfer Vector, such as pAcGP67B, rescues the lethal deletion by 

homologous recombination. Since only the recombinant BaculoGold produces viable virus, a 

recombination frequency of 99 % is expected. To purify the stock of generated recombinant 

viruses during co-transfection, plaque purification was performed. The virus stock after co-

transfection showed titer between 5 x 107 and 5 x 108 pfu/ml. Since each plaque represents a 

single virus, several individual plaques were randomly picked up and used to generate clonal 

virus populations. Usually, the plaques were picked up from plates corresponding to a viral 

dilution of 1:10-7 or 1:10-6. All clonal virus populations were separately amplified in two steps. A 

Western blot was performed with the virus supernatants to verify the protein production (Figure 

3.5). The examined clones were compared to a sample of purified IL-4BP with known 

concentration. As expected, 100 % recombination efficiency was achieved during co-transfection 

and in all tested supernatants expression of IL-4BP was detected. The virus clone, which showed 

the largest amount of recombinant IL-4BP (clone 7), was selected for further amplification. 

 

              

 

    MS 
K+       1              2           3            4            5             6          7 

 
 
Figure 3.5: Western blot analysis of virus supernatants after the second virus amplification. MS, molecular standard; 
K+, positive control (40 ng); lines 1 to 7, examined recombinant virus clones. Clone 7 was chosen for further 
amplification. 
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Two additional steps of virus amplification were performed to produce a larger stock of 

recombinant virus with a high titer. Using a plaque assay the viral titer was determined to vary 

between 3 x 107 to 2 x 108 pfu/ml (Table 3.3). An aliquot was frozen for long-term storage and 

the rest was used to infect SF9 cells for expression of recombinant protein. 

 

 

3.1.3 Expression and Purification of Recombinant IL-4BP and Its Variants 
 
Recombinant proteins were expressed into SF9 insect cells after infection with high titer virus 

stock. For optimal protein production the MOI was estimated to be 5. The infected cells were 

incubated at 27°C for 3, 4, and 5 days and the protein content in the supernatant was examined. 

After the fourth day the level of expressed proteins did not increase and therefore 4 days were 

established as the optimal incubation time. Protein expression was performed in serum-free and 

serum-containing insect culture medium. The presence of serum increased the cell viability and 

respectively the amount of expressed protein. Since it did not interfere with the purification 

procedure, serum was kept in the expression medium. Under these conditions, the expression of 

recombinant IL-4BP and its variants from SF9 cells yielded 2-7 mg protein per liter of insect cell 

suspension (Table 3.3). 

The modified cDNAs were cloned downstream of the gp67 signal sequence in the transfer vector, 

which ensured that the recombinant proteins were expressed as gp67 signal peptide fusion 

proteins. The signal peptide mediates the forced secretion of recombinant proteins. During the 

transport across the cell membrane, the signal peptide is cleaved. Therefore the mature 

recombinant proteins could be purified from the infection supernatant, which was collected at the 

end of the incubation period. 

 

 

3.1.3.1 Purification of IL-4BP and its variants by IL-4 affinity column 
 
The purification of IL-4BP and most of its mutated variants explored the high-affinity binding 

(Kd ≈ 100 pM) of IL-4 to its receptor (Shen, 1996). A column, containing IL-4–Sepharose 6B gel 

was prepared and used for affinity chromatography. After the expression step, the clarified 

culture supernatant was passed over the affinity matrix and washed with PBS to clean the column 

from non-specifically bound proteins. The specifically bound IL-4BP and variants were eluted 

with 4 M MgCl2. The protein amount and purity of the collected fractions were analyzed on a 

SDS-PAGE (Figure 3.6). 
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Table 3.3: Virus titer and protein expression of IL-4BP and its variants 

Virus titer 
[pfu/ml] 

Expressed protein  Column used for 
purification Variant [mg/l cell suspension] 

IL-4BP 1.8 x 10  8 7.0 IL-4 
Y13A 5.6 x 10  7 4.0 Ab 
Y13F 7.0 x 10  7 5.5 IL-4 
L39A 1.0 x 10  8 4.0 IL-4 
F41A 1.1 x 10  8 4.5 IL-4 
L42A 2.2 x 10  8 7.5 IL-4 
L43A 2.3 x 10  8 6.5 IL-4 
D66A 1.5 x 10  8 3.0 IL-4 
D67A 2.0 x 10  8 3.0 IL-4 
V69A 1.5 x 10  8 3.0 IL-4 
D72A 1.4 x 10  8 3.5 Ab 
D72N 1.5 x 10  8 3.5 Ab 
K91A 2.3 x 10  7 4.5 IL-4 
K91D 1.5 x 10  8 4.0 IL-4 
S93A 2.5 x 10  7 4.5 IL-4 
D125A 4.0 x 10  7 3.5 IL-4 
N126A 2.3 x 108 3.5 IL-4 
Y127A 6.0 x 107 2.0 IL-4 
Y127F 8.0 x 107 6.0 IL-4 
L128A 2.3 x 108 2.0 IL-4 
Y183A 1.3 x 108 3.5 Ab 
Y183F 7 4.5 IL-4 
Y13F/L39A 4.0 x 107 2.5 Ab 
Y13F/F41A 2.2 x 108 3.5 Ab 
Y13F/D67A 5.5 x 107 3.0 Ab 
Y13F/V69A 3.8 x 107 2.5 Ab 
Y13F/D72N 8.0 x 107 3.5 Ab 
Y13F/Y127A 2.2 x 107 3.5 Ab 
Y13F/Y183F 5.2 x 107 3.5 Ab 
D72N/L39A 7.9 x 107 2.5 Ab 
D72N/F41A 8.0 x 107 3.5 Ab 
D72N/D67A 6.0 x 107 3.0 Ab 
D72N/V69A 4.3 x 107 3.5 Ab 
D72N/Y127A 6.7 x 107 2.5 Ab 
D72N/Y183F 9.0 x 107 3.0 Ab 

7.0 x 10  

 70



______________________________________________________________________3. Results 

Usually, the first 3 to 4 fractions showed concentrations of pure protein in the range of 100 – 400 

µg/ml and in the rest of the fractions the protein was either of an inadequate quality either of an 

insignificant quantity. The best fractions were collected together, dialyzed against PBS and 

concentrated by ultrafiltration to a total volume of 1.5 ml. The amount of protein in the 

concentrated samples was determined by spectrophotometry and the purity was examined on a 

SDS-PAGE. No difference was found between the quality of protein samples expressed in the 

presence of FCS or in FCS-free culture medium. 

 

              
 
 
 

 
          MS    St 1    2         3  4 
 
 
Figure 3.6: Fractions after purification via IL-4 affinity column (variant F41A). MS, molecular standard; St, standard 

of IL-4BP (1 µg); lines 1, 2, 3, 4, fractions 1 to 4, respectively. 

              

 

IL-4BP and its variants produced in SF9 insect cells are extensively glycosylated. Accordingly, 

on SDS gels they migrate as two bands with apparent molecular masses of 35 kDa and 32.5 kDa. 

Respectively, variant N73A where a potential N-glycosylation site was modified exhibited only 

one band, corresponding to 32.5 kDa (Figure 3.7). 

Using the IL-4 affinity column successfully were purified IL-4BP, most variants included in the 

alanine screening (L39A, F41A, L42A, L43A, D66A, D67A, V69A, N73A, K91A, S93A, 

D125A, N126A, Y127A, and L128A), variants in which the original tyrosine amino acid was 

exchanged by phenylalanine (Y13F, Y127F, and Y183F) and variant K91D (Table 3.3, Figure 

3.7). The total amount of pure protein varied between 200 µg and 1 mg. A correlation between 

the protein amount and purity on the one side, and the subsequently determined binding affinity 

on the other, was observed for the variants purified by an IL-4 affinity column. Mutated variants 
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that later showed a similar Kd to this which characterizes the interaction between IL-4 and IL-

4BP in BIAcore measurements, were yielded in larger amount and with better quality than the 

variants which exhibited grater values of Kd. 

 
              
 

MS IL-4BP Y13F L39A F41A L42A L43A D66A D67A V69A N73A
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K91AMS K91D S93A D125A N126A Y127A L128AY127F Y183F

Total amount
of purified
protein

600 µg 500 µg 600 µg 400 µg 400 µg 200 µg 750 µg 200 µg 450 µg
 
 
Figure 3.7: Variants purified by an IL-4 containing affinity column. 

              

 

Figure 3.8 shows the result of the purification of variant D72A via IL-4 affinity column in 

comparison to IL-4BP, which was prepared in parallel. Since it was the first variant for which the 

purification step did not give a useful protein and the Western blot showed lower levels of 

expression, contamination in the virus clone was considered and a new viral stock was prepared. 

A Western blot after subcloning revealed that the newly generated viral clones expressed the 

recombinant protein in amounts comparable to all other variants, which were already successfully 

purified. Despite the convincing expression demonstrated by Western blot, the second attempt for 
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purification through an IL-4 affinity column failed again. Significant amount of recombinant 

protein was found in the flow-through fraction, which indicated that the column failed to bind 

specifically variant D72A. 

 

              
 
 

 
        MS  1  2 
 
 
Figure 3.8: Purification of variant D72A via IL-4 affinity column. Line 1 represents IL-4BP and line 2, variant 

D72A. Both samples were loaded after dialysis and concentration. 

              

 

Those experiments led to the conclusion that the purification problems did not concern 

expression levels, rather the affinity of variant D72A to IL-4 and respectively to the affinity 

column. Since D72 was suggested to be one of the most prominent amino acids implicated in the 

interaction with IL-4, the alanine substitution at this position was considered to affect the 

functional epitope to such an extent that the binding properties of variant D72A were altered 

completely. Therefore to exam the contribution of D72 in the receptor ligand interaction, an 

alternative variant was designed. In the additional variant the aspartic acid at position 72 was 

replaced by aspargine, which is a more conservative substitution and was expected to influence 

the binding affinity to IL-4 to a minor degree. Surprisingly, variant D72N was not able to bind to 

the IL-4 affinity column and demonstrated already during the purification procedure lower 

binding affinity to IL-4 than anticipated. At a later stage of the study, similar purification 

problems occurred also with variant Y13A and all double mutants included in the study. This was 

the first indication that the variants mentioned above would demonstrate extremely low binding 

affinity to IL-4 during BIAcore measurements. 

The purification of variant Y183A through IL-4 affinity column resulted in larger amount of 

protein compared to D72A and D72N. Although the sample was determined to contain a fraction 
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that migrated on a SDS-PAGE as IL-4BP, generally the purity was of inadequate quality. Since 

the interaction between variant Y183A and IL-4 was characterized by Kd ≈ 60 nM, such a 

constant value seems to settle the affinity limits for purification of IL-4BP variants by the IL-4 

affinity column. 

 

3.1.3.2 Purification of IL-4BP variants through Antibody column 
 
All IL-4BP variants, which could not be purified through the IL-4 affinity column, in spite of 

these negative results, demonstrated an intensive signal when they were examined by Western 

blot. As an example, Figure 3.9 represents the protein expression of variants Y13A, D72A, 

D72N, and Y183A, in SF9 insect cells. For detection was used the monoclonal Ab X14/38, 

against the extracellular domain of IL-4R. Those results suggested that despite the introduced 

mutation, the mAb X14/38 still recognizes the modified proteins. Obviously, two different and 

independent epitopes within the IL-4BP molecule are responsible for the high-affinity interaction 

with IL-4 and the recognition events with the used mAb. Therefore, even when the affinity to IL-

4 was affected due to a mutation introduced in the IL-4-binding epitope, the anti-IL-4BP mAb 

X14/38 was still able to recognize specifically the IL-4BP modified forms. 

  

              
 

         MS     D72A       D72N        Y13A      Y183A        K+ 
 
 
 
Figure 3.9: A Western blot of some IL-4BP variants, which could not be purified using the IL-4 affinity column, 

demonstrated intensive signals after detection with the mAb X14/38. 
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Based on these conclusions, the mAb was used to prepare a column for purification of those IL-

4BP variants, which failed to be purified by the use of the IL-4 affinity column. To examine the 

qualities of the new column and to find a suitable purification procedure, it was tested by 

purification of IL-4BP. At first, conditions similar to these already established for the IL-4 

affinity column were tested. After expression in SF9 cells, the clarified supernatant was applied 

to the column. A washing step with 10 column volumes of PBS was performed. The protein was 

eluted with 4 M MgCl2 and the first 10 collected fractions were examined on a SDS-PAGE. 

Fractions 1 to 4 showed IL-4BP which purity was comparable to the IL-4BP sample purified by 

the IL-4 affinity column. These fractions were combined and the procedure was completed by 

dialysis against PBS and concentration by ultrafiltration. In the analyzed fractions no traces of the 

mAb X-14-38 released from the column were found. The Ab containing column was washed with 

20 volumes of PBS and a following purification of IL-4BP was performed to verify whether the 

column was able to regenerate or not. The collected fractions from the second purification were 

examined specrophotometrically and on a SDS-PAGE. Both analyses confirmed that the column 

recovered fully and could be successfully used more than once. Experiments with different 

column flow rates indicated that the sample had to be applied slower than to the IL-4 column. A 

flow rate of 0.5 ml/min was established as optimal.  

Purification following the described procedure was performed with the variants that failed to be 

purified via IL-4 affinity column. In all experiments the first 3 to 4 eluted fractions contained a 

pure protein, which on a SDS-PAGE migrated in parallel to IL-4BP (Figure 3.10).  

 

              
 

 

                MS      1           2            3            4            5 
 
 
Figure 3.10: Purification of variant D72A through an Ab column. Line 1 represents a control of IL-4BP, lines 2 to 5 

correspond to fractions 1, 2, 3, and 4 of D72A, collected during the purification. 
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Generally, the protein concentration was lower than in the corresponding fractions for variants 

purified by the IL-4 column and varied between 50 and 200 µg/ml. The flow-through was 

examined and residual protein was found there. This suggested that the lower protein 

concentration resulted from a low capacity of the Ab column, rather than from low expression 

levels. However, the column capacity was not optimized, since the amount of pure proteins was 

sufficient for the following experiments.  

The Ab containing column was used to purify variants Y13A, D72A, D72N, Y183A, 

Y13F/L39A, Y13F/F41A, Y13F/D67A, Y13F/V69A, Y13F/Y127A, Y13F/Y183F, D72N/L39A, 

D72N/F41A, D72N/D67A, D72N/V69A, D72N/Y127A, D72N/Y183F, and Y13F/D72N (Table 

3.3, Figure 3.11). 
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Figure 3.11: A full collection of proteins purified by a column containing a mAb against IL-4BP (X14/38). 
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None of them failed to be purified, confirming that the substituted amino acids are located out of 

the epitope recognized by X14/38. Accordingly, independent on the kind of introduced mutation 

and its modifying effect on the measured binding affinity, all analyzed protein samples showed 

similar purity. There was no correlation between the protein quantity and the extent to which a 

mutation affected the binding properties. 

In summary, an alternative procedure for purification of IL-4BP and its variants through an Ab 

containing column was established. The new purification method is simple for accomplishment 

and very similar to the methods for purification required by the IL-4 column. That makes possible 

the simultaneous and reversal use of both columns for more effective purification. 

 

 

3.1.4 Biotinylation of IL-4BP Recombinant Variants 
 
The IL-4BP recombinant variants purified by affinity chromatography or antibody column were 

biotinylated following the procedure described in 2.9.6. The biotinylated protein samples were 

further purified using gel filtration. During the purification step around 50-60 % of the protein 

was lost. Therefore the biotinylated proteins were in a final concentration range between 20 and 

70 µg/ml and the total protein amount varied between 30 and 80 µg. For each variant was 

prepared a dilution with protein concentration of 1 µg/ml, which was further used in biosensor 

experiments. 
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3.2 Preparation of Recombinant IL-4 Variants 
 
Although a collection of different IL-4 variants was previously analyzed, within the framework of 

the presented project two more amino acids of IL-4 were substituted by alanine. The crystal 

structure of the complex between the human IL-4 and IL-4BP suggested a contribution of R53 

and Y56 to possible contacts with the receptor part. Both amino acids are located on helix B of 

IL-4 and are part of the second discrete cluster of trans-interacting residues within the binding 

epitope (Hage et al., 1999). 

 

 

3.2.1 Cloning of IL-4 Mutant Variants 
 
The cDNA of IL-4 was inserted into the expression vector RTSpRC109 under the control of the 

right λ-phage promoter (Figure 3.12; Appendix 4). The regulation of the transcription was 

performed through the temperature sensitive repressor cI185, which is also encoded by this 

expression plasmid. 
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Figure 3.12: Schematic diagram of expression vector RTSpRC109/IL-4. 

              

 

The variant Y56A was generated by cassette mutagenesis. A synthetic doublestranded DNA 

cassette which carried the mutation of interest was inserted between engineered restriction 
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endonuclease cutting sites of AflII and MluI. The complete nucleotide and amino acid sequence 

of hIL-4 cDNA with the restriction sites of both endonucleases is shown in Figure 3.13.  

 

              
 

                                                           M 
5´CCTCGAGTAATTTACCAACACTACTACGTTTTAACTGAAACAAACTGGAGACTGCCATGC 3´ 
                10             20             30             40             50             60 

3´GGAGCTCATTAAATGGTTGTGATGATGCAAAATTGTCTTTGTTTGACCTCTGACGGTACG 5´ 
 
  H  K  C  D  I  T  L  Q  E  I  I  K  T  L  N  S  L  T  E  Q 
5´ACAAGTGCGATATCACCTTACAGGAGATCATCAAAACTTTGAACAGCCTCACAGAGCAGA 3´ 
                70             80             90             100            110            120 

3´TGTTCACGCTATAGTGGAATGTCCTCTAGTAGTTTTGAAACTTGTCGGAGTGTCTCGTCT 5´ 
 
  K  T  L  C  T  E  L  T  V  T  D  I  F  A  A  S  K  N  T  T 
5´AGACTCTGTGCACCGAGTTGACGGTAACCGACATCTTTGCTGCCTCCAAGAACACAACTG 3´ 
                130            140            150            160            170            180 

3´TCTGAGACACGTGGCTCAACTGCCATTGGCTGTAGAAACGACGGAGGTTCTTGTGTTGAC 5´ 
 
  E  K  E  T  F  C  R  A  A  T  V  L  R  Q  F  Y  S  H  H  E 
5´AGAAGGAAACCTTCTGCAGGGCTGCGACTGTCTTAAGGCAGTTCTACAGCCACCATGAGA 3´ 
                190            200            210            220            230            240 

3´TCTTCCTTTGGAAGACGTCCCGACGCTGACAGAATTCCGTCAAGATGTCGGTGGTACTCT 5´ 
           Afl II 

 
  K  D  T  R  C  L  G  A  T  A  Q  Q  F  H  R  H  K  Q  L  I 
5´AGGACACGCGTTGCCTGGGTGCGACTGCACAGCAGTTCCACAGGCACAAGCAGCTGATCC 3´ 
                250            260            270            280            290            300 

3´TCCTGTGCGCAACGGACCCACGCTGACGTGTCGTAAAGGTGTCCGTGTTCGTCGACTAGG 5´ 
     Mho I 

 
  R  F  L  K  R  L  D  R  N  L  W  G  L  A  G  L  N  S  C  P 
5´GATTCCTGAAACGGCTCGACAGGAACCTCTGGGGCCTGGCCGGCTTGAATTCCTGTCCTG 3´ 
                310            320            330            340            350            360 

3´CTAAGGACTTTGCCGAGCTGTCCTTGGAGACCCCGGACCGGCCGAACTTAAGGACAGGAC 5´ 
 
  V  K  E  A  N  Q  S  T  L  E  N  F  L  E  R  L  K  T  I  M 
5´TGAAGGAAGCCAACCAGAGTACGTTGGAAAACTTTCTAGAAAGGCTAAAGACGATCATGA 3´ 
                370            380            390            400            410            420 

3´ACTTCCTTCGGTTGGTCTCATGCAACCTTTTGAAAGATCTTTCCGATTTCTGCTAGTACT 5´ 
 
  R  E  K  Y  S  K  C  S  S  ∗  ∗ 
5´GAGAGAAATATTCAAAGTGTTCGAGCTGAAAGGATCC 3´ 
                430            440            450 

3´CTCTCTTTATAAGTTTCACAAGCTCGACTTTCCTAGG 5´ 
 
Figure 3.13: Nucleotide and amino acid sequence of the hIL-4 cDNA. The modified residues are encircled. The 

endonuclease restriction sites of Afl II and Mlu I were used for cassette mutagenesis.  
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Both complementary oligonucleotides were first phosphorylated, hybridized and then ligated into 

the vector, which was cut, by AflII and MluI. E.coli cells (JM109) were transformed with the 

plasmid RTSpRC109IL-4Y56A by electroporation. 

Since there were not available any suitable endonuclease restriction sites which could be used to 

mutate R53, the site-directed mutagenesis of the variant R53A was accomplished by means of 

PCR technology. Similarly to the approach used to mutate IL-4BP, a two-step PCR was 

performed. The products resulting from the first step (PCR 1a and PCR 1b), when the mutation 

was introduced by internal primers, had lengths of 455 bp and 629 bp, respectively. They were 

used as a template for PCR 2. During this reaction, with the help of two external primers, a 

product of 1057 bp was synthesized (Figure 3.14).  

 

              
 

 
        LMS     PCR 1a    PCR 1b   PCR 2 
 
Figure 3.14: Amplification products from the PCR induced mutagenesis of variant R53A. 

              

 

The PCR 2 reaction product was precipitated and then cut with restriction enzymes XhoI and 

BamHI to produce 3 fragments with the length of 230 bp, 450 bp, and 380 bp. The digestion 

mixture was separated by an agarose electrophoresis and the 450 bp fragment containing the 

mutated IL-4 cDNA was isolated and purified from the gel. The pure fragment was used in a 

ligation reaction with the XhoI/BamHI digested expression vector RTSpRC109. Electrocompetent 

E.Coli (JM 109) were transformed with the recombinant plasmid. 

The transformed E.Coli were plated on selective ampicillin containing medium. Plasmid DNAs 

from a few bacterial colonies representing both variants were isolated for analytical application. 

The intact circular plasmids were digested with restriction enzymes XhoI and BamHI to confirm 

the presence of the insert. All analyzed plasmid samples after separation on an agarose gel, 
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showed the 450 bp fragment representing the hIL-4 cDNA. In addition, the exact DNA sequence 

and the presence of the mutation were verified by DNA sequencing with 5´- and 3´- external 

primer. 

 

 

3.2.2 Expression and Purification of IL-4 Variants 
 
For expression of IL-4 variants, E.coli was cultivated until reaching early logarithm phase with 

OD550 of 0.5-0.6 and then induced by heating at 42°C and incubated for 3 h. Under these 

conditions, the recombinant IL-4 variants were expressed as insoluble aggregate form (inclusion 

bodies) in the cell cytoplasm. The amounts of bacterial cells and inclusion bodies for both 

variants, which were obtained from 1 liter of E.coli culture, are compared in Table 3.4. 

 
Table 3.4: The yields at different steps of preparation of recombinant proteins for the IL-4 variants. 

 

 Cells Inclusion bodies Protein [mg] 

Variant [g] [g] (after CM-Sepharose) (after HPLC) 

 (per 1 liter of E.Coli culture) 

R53A 3.1 1.3 1.6 0.6 

Y56A 3.8 1.7 1.7 0.9 

 

The inclusion bodies were completely dissolved in 6 M guanidine hydrochloride (GuHCl), pH 

8.0. To reduce the disulfide bonds between cysteine residues and to accomplish the protein 

denaturation, 0.1% of β-mercaptoethanol was added. The renaturation of the protein to its native 

form was achieved by slow dialysis in PBS. 

Since the pI of hIL-4 is 10.5 (Callard, R. & Gearing A, 1994) the refolded proteins were applied 

to a CM-Sepharose matrix at pH 5.0. During this cation-exchange chromatography, the acidic and 

neutral contaminating proteins, which comprised most of the impurities, could not bind to the 

column and therefore the IL-4 variants were effectively separated. The bound proteins were 

eluted using a linear salt gradient from 0 M NaCl to 0.5 M NaCl. Only a limited amount of basic 

contaminating proteins overlapped with the IL-4 pick (Figure 3.15). After this step, the purity of 

the IL-4 variants reached over 90%. 
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Figure 3.15: Purification of the IL-4 variants through CM-Sepharose column. (A) The elution chart of variant Y56A. 

(B) SDS-PAGE analysis of collected fractions for variant R53A. The fractions represented here by lines 3, 4, 5, 6, 7, 

and 8 were selected for following purification. (C) SDS-PAGE of the fractions collected during the purification of 

the variant Y56A. The fractions represented by lines 4 and 5 were further purified. MS, molecular standard. 

              

 

Further, the protein purification was accomplished by reversed phase HPLC. Based on 

hydrophobic interactions, the protein bound to the chromatography matrix and then elution with 

increasing concentration of acetonitrile was performed (Figure 3.16 A). The IL-4 variants were 

eluted at around 40% of acetonitrile. Both variants were successfully purified, suggesting that 

neither the protein refolding neither the protein stability were disrupted by the individual 

mutations. The collected fractions during HPLC were monitored by SDS-PAGE, which revealed 

high purity of the obtained protein (Figure 3.16 C, D). In addition, the purity and the refolding 

quality of the proteins were examined by analytical RP-HPLC performed in a small column with 

detective sensitivity of 0.08. Both variants showed only a single sharp peak confirming the high 

homogeneity of the analyzed samples (Figure 3.16 B). The highly purified proteins were divided 

into aliquots lyophilized and in this way stored for following experiments. 
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Figure 3.16: HPLC purification step of the IL-4 variants. (A) The elution chart of the variant Y56A.  

(B) Analytical HPLC of variant Y56A. (C) SDS-PAGE of variant R53A. The fraction represented by line 3 was 

chosen for further applications. (D) SDS-PAGE of the fractions collected for variant Y56A. The fractions 

represented by lines 4 and 5 were combined (line 9) and used in following experiments. MS, molecular standard. 
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3.3 Kinetic Analysis of the Interaction of IL-4 with the IL-4BP Variants Using 
BIAcore Technology 

 
The purified IL-4BP and its variants were used in a biomolecular examination to determine both, 

the kinetic and equilibrium binding constants characterizing the interaction with the ligand. This 

comprehensive analysis was carried out to assess the roles of the mutated side chains in 

modulating the affinity and kinetics of binding. 

A biosensor technology that relies upon surface plasmon resonance to measure changes in 

refractive index upon ligand binding to an immobilized receptor was explored to record binding 

curves and to evaluate the kinetic parameters of the interaction. The evaluation methods are 

described in 2.13.2. 

 

 

3.3.1 Immobilization of the Biotinylated IL-4BP and its Variants on the Sensor Chips 
 
Among the several available immobilization techniques, the amine coupling and streptavidin-

biotin coupling had been chosen to immobilize IL-4BP and its mutated variants on sensor chips. 

Earlier experiments have proven that this method offered a higher ligand binding capacity of the 

chip, considering the certain amount of immobilized receptors (Shen et al., 1996). The reason for 

this seems to be the nonspecific nature of the amine coupling technique and stereo obstacle, 

which gives rise to association perturbation of IL-4 to IL-4BP. Therefore the streptavidin-biotin 

coupling was used as a standard immobilization method in this study. 

First, the four cells of a sensor chip CM5 were coated with streptavidin employing the amine 

coupling procedure as described in 2.13.1 (Figure 3.17). Thereafter, the matrix of flow cells 2, 3 

and 4 was loaded separately with different IL-4BP variants, which earlier were randomly 

biotinylated (Figure 3.18). No receptor was loaded onto flow cell 1. It was used to record a 

background sensogram that was subtracted during the evaluation from the sample sensograms in 

flow cells 2, 3 and 4. 

Experimental conditions connected with different density of the immobilized receptor were 

tested. Usually, in the beginning the variants were loaded on the chip with a density of 

approximately 150 RU. Since the streptavidin-biotin interaction has an extremely high affinity 

(~1015 M-1) (BIAcore Handbook, 1995) the chips could be repeatedly regenerated and the amount 

of the immobilized receptor could be increased. For low affinity variants more receptor was 

added to the chip until a density of 200, 400 or 500 RU was reached (Table 3.5). 
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Figure 3.17: Sensogram showing the immobilization of streptavidin on a sensor chip CM5 by using standard amine 
coupling. (1) Baseline signal for the unmodified sensor chip treated with continuous flow buffer HBS (5 µl/min). (2) 
Injection of 35 µl of NHS/EDC for 7 min. to activate the dextran matrix. (3) 7 min. injection of 35 µl of streptavidin 
(50 µg/ml). (4) Injection of 35 µl of ethanolamine hydrochloride (1 M) to deactivate the matrix and remove non-
covalently bound streptavidin. 
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Figure 3.18: Immobilization of an IL-4BP variant on a streptavidin chip. The protein was manually injected into the 
chip and the injection was stopped at 200 RU. 
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Table 3.5: Amount of the immobilized receptor at the biosensor matrix for IL-4BP and the different variants 

 

Receptor variant Immobilized protein 
 [g] [M] Rel. Resp. [RU]
IL-4BP 4.0 x 10-10 6.6 x 10-11 79 
Y13A 5.4 x 10-9 3.3 x 10-10 243 
Y13F 2.8 x 10-10 6.7 x 10-11 89 
L39A 2.8 x 10-10 6.7 x 10-11 103 
F41A 6.4 x 10-10 6.7 x 10-11 151 
L42A 5.6 x 10-10 6.7 x 10-11 151 
L43A 7.4 x 10-10 6.7 x 10-11 148 
D66A 7.0 x 10-10 1.6 x 10-10 163 
D67A 6.7 x 10-10 1.1 x 10-10 157 
V69A 3.4 x 10-9 3.3 x 10-10 503 
D72A 6.4 x 10-10 1.8 x 10-10 225 
D72N 6.1 x 10-10 1.7 x 10-10 223 
K91A 5.6 x 10-10 6.6 x 10-11 154 
K91D 1.6 x 10-9 6.6 x 10-11 145 
S93A 8.4 x 10-10 6.6 x 10-11 152 
D125A 5.6 x 10-10 6.6 x 10-11 152 
N126A 7.0 x 10-10 1.7 x 10-10 156 
Y127A 2.3 x 10-9 2.9 x 10-10 505 
Y127F 2.4 x 10-10 6.6 x 10-11 102 
L128A 4.0 x 10-10 1.7 x 10-10 154 
Y183A 9.4 x 10-10 6.7 x 10-11 152 
Y183F 3.6 x 10-10 6.6 x 10-11 94 
Y13F/L39A 2.0 x 10-10 3.3 x 10-10 128 
Y13F/F41A 7.0 x 10-10 2.6 x 10-10 97 
Y13F/D67A 4.0 x 10-10 3.3 x 10-10 136 
Y13F/V69A 7.0 x 10-10 1.7 x 10-10 216 
Y13F/D72N 8.0 x 10-9 1.3 x 10-10 423 
Y13F/Y127A 6.0 x 10-10 1.8 x 10-10 225 
Y13F/Y183F 7.0 x 10-10 1.9 x 10-10 248 
D72N/L39A 1.0 x 10-9 1.7 x 10-10 417 
D72N/F41A 1.1 x 10-9 1.7 x 10-10 400 
D72N/D67A 1.3 x 10-9 1.7 x 10-10 394 
D72N/V69A 1.1 x 10-9 1.7 x 10-10 413 
D72N/Y127A 1.2 x 10-9 1.7 x 10-10 410 
D72N/Y183F 9.5 x 10-9 1.8 x 10-10 407 
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3.3.2 Kinetics of the Interaction of IL-4 and IL-4BP 
 
Although the kinetics of binding of IL-4 to IL-4BP was investigated in a earlier study (Shen et 

al., 1996), similar measurement was performed again as a control basis of estimation the changes 

in binding affinity of the mutated variants. Experiments were performed with IL-4 concentrations 

of 2.5, 5.0 and 7.5 nM (Figure 3.19). The sensograms, which recorded the interaction of IL-4 and 

IL-4BP at different IL-4 concentrations, showed the typical model of extremely fast association 

and slow dissociation, observed earlier.  
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Figure 3.19: Overlay of sensograms showing the binding of IL-4 to the immobilized IL-4BP. IL-4 at concentrations 
of 2.5, 5.0 and 7.5 nM was applied. 
              

 

Both, the association and dissociation phases were evaluated with BIAevaluation software to 

yield the association (kon) and dissociation (koff) rate constants, respectively (Figure 3.20). Due to 

the very fast association that in the beginning was diffusion controlled, only a small window (5 

RU) could be evaluated for calculation of the association rate constant before attaining 

equilibrium. Based on this, the association rate constant was determined to be kon =1.3x107 M-1s-1. 

The dissociation phase commenced when the perfusion with IL-4 was exchanged to a perfusion 
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with buffer alone. An exponential dissociation of the complex occurred only during a short initial 

period of 10 s. This part of the sensogram was used to evaluate the dissociation rate constant as 

koff = 1.0 x 10-3 s-1.  
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Figure 3.20: Association (A) and dissociation (B) plots of the recorded interaction of IL-4 and IL-4BP. 

              

 

The constant phase of the sensogram represents the equilibrium level between the IL-4 

dissociation and association reached at a defined IL-4 concentration. Usually, this part is 

evaluated for calculation of the equilibrium dissociation constant Kd. However, this was not 

possible during the present analysis because of technical reasons. The low Kd characterizing the 

IL-4/IL-4BP interaction would have required such low concentrations of IL-4 which could not be 

handled with the used technical device. Therefore, the equilibrium dissociation constant Kd was 

determined from the ratio of the association and dissociation constants (koff/kon) to be 77 pM. 

The results of the kinetic analysis were not only reproducible in the frame of the presented 

experiments, but they are also comparable with the findings of all previous studies dealing with 

this interaction. The association rate constant fits in completely with the earlier established range 

of 1.3-1.8 x 107 M-1s-1. Previously, the dissociation rate constant was evaluated as koff = 1.5-2.1 x 

10-3 s-1. The value of the equilibrium dissociation constant calculated here is as well comparable 

to the Kd of 58-160 pM, determined earlier (Shen et al., 1996; Wang et al., 1997). 
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3.3.3 Effects of Site-Specific Perturbations in IL-4BP on the Interaction with IL-4 
 
Initially, the amino acids from IL-4BP which were submitted to site-directed mutagenesis, were 

selected using the structural alignment between the receptor sequences including human and 

mouse IL-4BP, hGHbp (human growth hormone- binding protein), human and mouse IL-2β and 

γc  (Bamborough et al., 1994). Furthermore, the set of amino acids of interest was extended based 

on the results obtained from the crystal structure of the complex between IL-4 and IL-4BP (Hage 

et al., 1999). With the purpose of establishing the structure-function correlation, as targets for 

mutagenesis were identified residues involved in polar and hydrophobic interactions in the 

complex. Basically, all amino acids of interest were included in an alanine scanning mutational 

analysis. In order to define the results from the alanine scan more accurately, it was necessary to 

replace additionally a few tyrosine residues, involved in potentially important contacts with the 

ligand, by phenylalanine. 

 

 

3.3.3.1 Kinetics of the binding of IL-4 to the alanine variants of IL-4BP 
 
The rationale behind alanine scanning mutagenesis is that all interactions of a side chain except 

for the Cβ are eliminated (Lau & Fersht, 1987; Cunningham & Wells, 1989). This strategy 

assumes that the alanine substitution eliminates interaction without introducing new properties. 

The contribution of the deleted groups relative to the alanine residue is assessed from the 

difference between the properties of the wild-type relative to the alanine mutant. Free energies of 

binding are used to quantify the effect of the alanine substitution at any given site (Di Cera, 

1998). 

To assess the effect of the introduced mutation on the binding of IL-4 to the IL-4BP, every single 

variant was immobilized to a sensor chip as mentioned above (Table 3.5). Sensograms recorded 

at different concentrations of IL-4 were evaluated for the kinetic constants (Table 3.6). Based on 

the results from the BIAcore measurements the alanine variants assessed in the frame of this 

study could be classified into 3 main groups, according to the extent to which the mutation affects 

the functional properties of the IL-4BP molecule. 

1. Variants L42A, L43A, D66A, K91A, S93A, D125A, N126A, and L128A showed a pattern of 

binding very similar to this observed during the interaction of IL-4 and the wild-type IL-4BP. As 

the sensograms revealed (Figure 3.21 - A and B), these variants rapidly associate when perfusion 

with IL-4 is committed and slowly dissociate when it is changed to perfusion with buffer alone. 

IL-4 was applied in concentrations of 2.5, 5 and 7.5 nM. Under such conditions it was possible to 
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evaluate both the association and the dissociation phase for all variants from this group (Figure 

3.22). The alanine substitution in variant K91A merely did not have any effect on the association. 

Variants L42A, L43A, D66A, D125A, and L128A showed association rate constants which were 

only slightly altered due to the present mutation (Table 3.6). The on-rates of variants S93A and 

N126A were found to be negligible faster than that of IL-4BP. 

 
Table 3.6: Kinetic constants for binding of IL-4 to IL-4BP and its variants included in the alanine screening. 

 

Receptor 

variant 

 

n 
kon             (SE) koff            (SE) Kd [M] 

  [x 106M-1s-1] [x 10-3s-1] Kd (kin.) Kd (equilib.) 

IL-4BP 3 13             (0.8) 1.0            (0.3) 7.7 x 10-11   

Y13A 18 ND ND ND 7.9 x 10-7  

L39A 15 4.9            (0.7) 42             (7.8) 8.6 x 10-9  1.6 x 10-8 

F41A 9 5.6            (0.7) 29             (3.4) 5.2 x 10-9  8.8 x 10-9  

L42A 3 12             (0.8) 1.5            (0.4) 1.2 x 10-10   

L43A 3 12             (0.8) 3.1            (0.4) 2.6 x 10-10   

D66A 3 11             (0.6) 6.0            (0.4) 5.6 x 10-10   

D67A 9 3.1            (0.2) 32             (1.2) 1.0 x 10-8  9.3 x 10-9  

V69A 9 6.3            (0.8) 26             (0.9) 4.1 x 10-9  6.1 x 10-9  

D72A 18 ND ND ND 2.0 x 10-7  

D72N 18 ND ND ND 2.7 x 10-7  

K91A 3 13             (2.2) 4.3            (0.4) 3.2 x 10-10   

K91D 9 4.8            (0.6) 12             (0.3) 2.5 x 10-9  1.9 x 10-9  

S93A 3 17             (0.9) 2.6            (0.5) 1.5 x 10-10   

D125A 18 9.4            (0.5) 7.3            (0.6) 7.8 x 10-10   

N126A 9 14             (0.6) 6.8            (0.4) 4.7 x 10-10   

Y127A 18 4.5            (0.2) 19             (0.3) 4.3 x 10-9  6.2 x 10-9  

L128A 18 7.5            (0.4) 11             (1.3) 1.5 x 10-9   

Y183A 18 ND ND ND 6.2 x 10-8  
 n: number of measurements. 

 SE: Standard error. 

 Kd (kin.): Kd calculated from kinetic data. 

 Kd (equilib.): Kd calculated from steady state binding data. The mean standard error for this value over all 

 variants was 9 %. 

 ND: the values could not be accurately determined because they exceeded the limitations of the instrument. 
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No large changes in the dissociation rate constant were observed in the above-mentioned set of 

alanine variants. The off-rate constant increased in variant L128A 12-fold and this was the fastest 

recorded dissociation constant among all variants from this group. Variants D66A, D125A and 

N126A showed a 6-7-fold increase of the dissociation rate constant. A 3-4-fold higher off-rate 

was found in variants L43A and K91A. A marginal increase in koff occurred in IL-4BP variants 

L42A and S93A. 
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Figure 3.21: Overlay of sensograms of IL-4BP variants included in the alanine screening. (A) L42A, (B) K91A 
              

 

Unfortunately, it was not possible for any of those variants to evaluate the part of the sensograms 

representing the equilibrium level between ligand association and dissociation. Similar to the 

interaction of IL-4 and the wild-type IL-4BP, the binding of IL-4 to the variants is characterized 

by such low equilibrium dissociation constants that would require concentrations of the ligand 

under the limit, which the technical device is able to process. Therefore, the equilibrium 

dissociation constants for the variants included in the first group were calculated from the ratio of 

the on- and off-rates (Table 3.6). Regarding Kd, the most considerable difference showed variants 

L128A and D125A, whose binding affinity dropped down 20- and 10-fold, respectively 
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compared to the wild-type. The effect is due to the relatively high ratios of koff, which were 

recorded for both mutant forms. Marginal increases in Kd, 2 to 7-fold, were observed for variants 

L43A, D66A, K91A, and N126A. The equilibrium dissociation constant of variants L42A and 

S93A was almost not altered in comparison to the wild-type receptor (Table 3.7). 
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Figure 3.22: Plots representing the association (A, C) and the dissociation (B, D) phase of variants with high affinity 
to IL-4. (A) and (B), L42A; (C) and (D), K91A. 
              

 

Based on the models of the complex between IL-4 and IL-4BP, K91 was suggested to stabilize 

this complex by forming an ion pair with the IL-4 residue E9 (Bamborough et al., 1994). 

Therefore, K91 was a residue of particular interest, and additionally to the alanine substitution it 

was subjected to a charge conversion. The positive charge was exchanged with negative by 

replacing the original lysine residue with aspartic acid. Although a dramatic effect was expected, 

 92



______________________________________________________________________3. Results 

the charge variant K91D exhibited simply 30-fold decrease in binding affinity. The kinetic 

constants were as well only slightly affected after the negative charge was introduced. Both the 

results from the analyses of the alanine and the charge variant did not support an important 

implication of K91 in contacts to amino acids from IL-4. 

The described features define the alanine variants included in the first group as not highly 

affected due to the introduced amino acid substitution. Alanine substitution at the particular 

positions neither caused large changes of the kinetic constants, nor brought the binding affinity 

drastically down. Generally, the mutated variants retained relatively high binding affinity to IL-4. 

Thus, even if the analyzed amino acids influence the interaction to some extent, they are not main 

binding determinants of the receptor part. 

2. The alanine variants L39A, F41A, D67A, V69A, and Y127A represent a different model of 

binding to IL-4. As the sensograms recorded (Figure 3.23), the association phase is still a rapid 

process. In contrast to the above-mentioned IL-4BP variants, the dissociation phase occurred to 

be much faster. Since lower binding affinity was expected after the preliminary analysis, the 

BIAcore measurements were performed a with wider concentration range of the ligand. The IL-4 

concentration was increased to over 100 nM in some cases. Within such a concentration range it 

was still possible to obtain plots from the association and dissociation phase and to evaluate the 

kinetic constants (Figure 3.24 A, B, D and E). 

The evaluated on-rates for all variants are merely slightly lower than the on-rate for IL-4BP 

(Table 3.6). Variant D67A exhibited a 4-fold decreased association rate constant. 2 to 3-fold 

lower kon compared to the wild-type interaction characterized the rest of the variants. In contrast, 

the complex dissociation was considerably accelerated in all examined receptor mutants. The 

largest effect in this respect was recorded for variant L39A, which off-rate constant increased 

over 40-fold compared to the wild-type receptor. In two further alanine mutants, F41A and 

D67A, koff was found to be 30-fold faster. The variant V69A showed a dissociation rate constant 

that was 25-fold faster. The alanine substitution in variant Y127A resulted in a relatively modest 

effect of 20-fold increase in the off-rate constant.  

The relatively low binding affinity of the alanine variants included in this group allowed an 

independent determination of the dissociation equilibrium constants by evaluating the receptors 

saturation levels obtained at different IL-4 concentrations (Figure 3.24 C and F). The Kd values 

derived from the equilibrium phase are in good agreement with the Kd values calculated from the 

kinetic constants (Table 3.6). A more than 210-fold reduced binding affinity characterizes the 

variant L39A. Over 100- fold decreased the binding affinity for variants F41A and D67A. Both, 

variants V69A and Y127A exhibited 80-fold faster Kd than the IL-4BP (Table 3.7). 
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Figure 3.23: Sensograms which recorded the binding of IL-4 to the IL-4BP mutants F41A (A), D67A (B), V69A (C), 

and Y127A (D). 
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Figure 3.24: Plots for variants L39A and Y127A representing association (A and D), dissociation (C and F), and 

equilibrium phases (C and F). 
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Generally, alanine substitution at the mentioned sites is followed by severely affected receptor 

binding properties, suggesting an important function of the replaced amino acids in forming 

contacts within the complex with IL-4. However, the effect is still limited and does not imply that 

the particular residues are the main contact determinants in the receptor molecule. 

3. Compared to the wild-type the alanine mutants D72A, Y13A, and Y183A revealed the most 

significant changes, as demonstrated by the overlay of the corresponding sensograms (Figure 

3.25 A, B, and D). The three variants still associated rapidly with IL-4, but they as well 

dissociated extremely fast when buffer alone was applied. Due to the low binding affinity, it was 

necessary to increase the amount of the immobilized receptor on the chip, which for the variants 

D72A and Y13A exceeded 200 RU (Table 3.5). In addition, the IL-4 concentration was also 

increased during the experiments until it reached 750 nM.  

The high ligand concentration caused such rapid association phase that could not be evaluated to 

calculate the association rate constant. The alanine substitution enhanced the dissociation phase 

to such an extent that it was impossible to estimate the dissociation rate constant. Therefore, as 

presented in table 3.6, the kinetic constants for those variants are not available.  

The presented data for the equilibrium dissociation constant Kd was obtained by the evaluation of 

the equilibrium phase (Figure 3.26). By far the most affected variant occurred to be Y13A. The 

interaction of IL-4 and Y13A was characterized by over 10000-fold decreased binding affinity. 

Sensitive to the alanine substitution was also variant D72A which binding affinity dropped down 

2600-fold. Although the variant Y183A showed a less remarkable effect, it still demonstrated 

large changes in Kd (Table 3.7). The variant decreased its binding affinity to IL-4 800-fold. The 

observed extreme changes in Kd give a reliable explanation to the fact that particularly these 

variants could not be successfully isolated and purified by an affinity column containing IL-4. 

The strong effect of the alanine substitution on the binding affinity indicates that the replaced 

amino acids provide the largest contribution from the receptor side to the stabilization of the 

complex. However, it has to be considered that if the introduced alanine residues would cause 

structural perturbation in the receptor molecule, the observed effect would rather be structural 

than functional. To assess the exact functional role of the examined residues in the interaction and 

the character of the contacts in which they are implicated, additional experiments were 

performed. 

Furthermore, a mutational variant D72N was analyzed. Originally, the variant was constructed as 

more conservative than D72A and was expected to retain the high binding affinity to IL-4. As 

already mentioned, D72N could not be purified using the IL-4 affinity column, and this was the 

first indication that it was strongly affected due to the amino acid substitution. The overlay of the  
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Figure 3.25: Overlay of sensograms representing the interaction of IL-4 and the low affinity variants of IL-4BP: 

Y13A (A), D72A (B), D72N (C), and Y183F (D). 
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sensograms which recorded the interaction supported this suggestion (Figure 3.25 C). The kinetic 

constants could not be calculated and the equilibrium phase was used to evaluate the equilibrium 

dissociation constant Kd (Figure 3.26 B). Similar to the corresponding D72A, the variant D72N 

revealed largely altered Kd (Table 3.6). Moreover, D72N was characterized by slightly lower 

binding affinity than D72A. 
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Figure 3.26: Equilibrium phase. Variants D72A (A), D72N (B), Y13A (C), Y183A (D). 

              

 

The analysis of variant D72N was of particular significance since the original amino acid and the 

replacing are structurally very similar, implying that the observed effects as to both D72A and 

D72N were caused by functional alterations, but not structural. In addition, the low binding 

affinity of D72N indicates that D72 takes part in the interaction due to the charge of its side 

chain. Thus, the obtained results confirm the functional importance of the aspartic acid at position 
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72 in forming ion pairs within the complex, and define it as one of the main binding determinants 

in the IL-4BP. 

The analyses of the alanine variants and one additional mutant (K91D) performed by BIAcore 

system demonstrate that the rate constant of association between IL-4 and IL-4BP is remarkably 

insensitive to amino acid substitutions. The examined residues did not apparently determine the 

velocity of the complex formation to an appreciable degree. Loss of charge generally did not 

affect the on-rates except in a case of variant D67A. Unfortunately, it was not possible to obtain 

neither association nor dissociation rate constants for the variants which exhibited the largest 

changes regarding binding affinity and therefore to figure out weather the charge of D72 

contributes to the rapid association phase. As far as off-rates could be calculated, they showed 

more significant changes, which were followed by a corresponding decrease in the binding 

affinity of the particular variants. Generally, no correlation was noticed between the side chains 

that had the most affected on- and off-rate. Among the amino acids that showed significant effect 

on the dissociation rate constant after alanine substitutions are some large hydrophobic side 

chains as well as charged residues. That suggests that electrostatic interactions in parallel with 

hydrophobic contacts stabilize the complex between IL-4 and IL-4BP.  

 

 

3.3.3.2 Thermodynamic aspects of the interaction between IL-4 and the IL-4BP variants 
included in the alanine scanning mutagenesis   

 

The introduction of a mutation in the system requires determining the energetic consequences of 

the substitution made. The information about the energetic alteration caused by an amino acid 

substitution indicates how exactly and to which extent the exchanged residue contributes to the 

binding properties of the receptor and its importance for the stability of the complex with the 

ligand. As an estimation of the effect of the site-directed mutation on the binding process often is 

used the change of binding energy relative to the wild-type protein (∆∆G), which in fact measures 

the linkage between the functional properties of the examined molecule and the mutation. 

Therefore, when the contact determinants are defined the data about ∆∆G is considered as 

follows. When ∆∆G >0, the mutation is assumed to reduce the complex stability, whereas 

enhanced stability are reflected by ∆∆G <0, and no effect is considered when ∆∆G = 0 (Di Cera, 

1998). 

The total change in binding free energy (∆G) for the interaction of IL-4 and IL-4BP is 13.8 

kcal/mol, as it was calculated from the corresponding equilibrium dissociation constant of 77 

pmol estimated within the present study. The loss of binding energy in the alanine variants (∆∆G) 
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was calculated according to the change in the dissociation constant Kd relative to the wild-type 

interaction (Table 3.7). The Kd values obtained from the equilibrium phase of the biosensor 

experiments were used where it was possible. For variants which retained high binding affinity 

and the equilibrium dissociation constant could not be directly evaluated were used the Kd ratios 

from kinetic measurements.  

 
Table 3.7: Relative Kd and loss of binding free energy of the IL-4BP variants included in the alanine mutational 

analysis. 

 

Receptor variant 
Relative Kd 

(Mut/Wild-type) 

∆∆G 

[kcal/mol] 

Y13A 10300 5.5 

L39A 210 3.2 

F41A 110 2.8 

L42A 1.6 0.3 

L43A 3.3 0.7 

D66A 7.2 1.2 

D67A 120 2.8 

V69A 80 2.6 

D72A 2600 4.7 

K91A 4.2 0.8 

S93A 2 0.4 

D125A 10 1.4 

N126A 6.1 1.1 

Y127A 80 2.6 

L128A 20 1.7 

Y183A 800 4.0 

 

The most significant loss of binding free energy after alanine substitution was observed for Y13. 

The alanine mutant contributes 5.5 kcal/mol, which accounts for 40 % of the total binding energy. 

The most important polar residue in the functional epitope is D72, which provides over 33 % (4.7 

kcal/mol) to the total binding energy. Another tyrosine residue, at position 183, also makes a 

large apparent contribution with loss of free binding energy of 4 kcal/mol during the alanine scan. 

The sum of the reductions in free energy caused only by the alanine substitutions at these 

particular positions already exceeds the total binding energy for the complex with IL-4. Five 
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additional residues included in the study, L39, F41, D67, V69, and Y127, produced a loss of 2.5 

to 3.5 kcal/mol each after they were replaced by alanine residues. The summed contribution of 

these amino acids is comparable with the total binding energy characterizing the complex. Lesser 

contributions demonstrated D66, D125, N126, and L128 when they were replaced by alanine (1 

to 2.1 kcal/mol). The rest of the examined amino acid side chains showed negligible energetic 

contribution (under 1 kcal/mol). No one of the alanine variants showed a negative value for ∆∆G, 

suggesting that all analyzed residues directly or indirectly stabilize the complex.  

The energetic contribution of single amino acid side chains from IL-4BP to the high-affinity 

interaction with the ligand, according the results obtained from the alanine scanning mutagenesis, 

is indicated the space-filling IL-4 BP model presented in Figure 3.27. The largest contribution 

was established for Y13, D72, and Y183 (colored in red) surrounded by residues of less 

importance. The mixed character of the functional important amino acids suggests mixed 

character of the contacts with IL-4, in contrast to the other well studied receptor-ligand system of 

hGH, where two tryptophan residues form a central hydrophobic patch (Clackson & Wells, 1995; 

Clackson et al., 1998). Furthermore, the present model is in agreement with the crystal structure 

of the complex with IL-4, which proposed a mosaic binding interface (Hage et al., 1999). 

Mutations of amino acids from cluster I and II clearly affected the dissociation rate constant. 

They resulted in greater loss of free binding energy supporting the idea that the residues from 

those clusters have the main role for the stability of the complex with IL-4. The three tyrosine 

residues Y13, Y127, and Y183, with properties for forming hydrogen bonds, have shown 

significant energetic contribution which implies their central role within the first cluster. The 

primary contact residue in the second cluster seems to be D72, surrounded by the hydrophobic 

side chains of L39, F41, and V69, which also have important energetic contribution. In contrast, 

the mutation analysis of residues within cluster III indicates that they have less energetic 

contribution and therefore confirms their minor functional role for complex stability. Their 

binding affinity is altered mainly due to slower association phases (especially for D67) which 

determines the amino acids from this cluster as kon determinants.  

The sum of the apparent binding free energy contributions for the amino acids included in the 

alanine mutational analysis accounts for 35.8 kcal/mol. This value considerably exceeds the 

calculated binding free energy for the complex. The high cumulative loss might indicate that 

some of the examined mutations are not completely independent, but interact with each other 

directly or indirectly. Furthermore, the additivity could be broken down if a mutation causes a 

change in the mechanism or rate-limiting step of the reaction. Another possibility is that some of 

the main binding determinants contribute to more than one single contact. A large loss of binding 

free energy in particular variants, and thereby in the total sum might be explained also with great 
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structural perturbations due to the alanine substitution. Such effects would be rather structural 

than functional. This does not seem to be the case for D72, since the variant D72N, which struct- 
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Figure 3.27: Loss of binding free energy of residues from IL-4BP due to alanine substitution. Residues have been 
color-coded as indicated to denote their apparent contributions to the loss of binding free energy, as determined by 
alanine scanning mutagenesis. Data from a previous study have been used for residues M14, S15, V68, S70, N73, 
Y74, P92, E94, and Y129. 
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urally should be highly similar to the wild-type protein demonstrated as well a large loss of 

binding free energy as D72A. However, structural consequences from the replacement of Y13 

and Y183 by alanine could not be ignored. 

 

 

3.3.3.3 Analysis of the binding of IL-4 to the IL-4BP tyrosine variants 
 
The three phenylalanine side chains which indicated the largest contribution to the loss of binding 

free energy during the alanine scan (Y13, Y127, and Y183) were replaced by tyrosine residues. 

Due to the conservative substitution, these variants were expected to be structurally very similar 

to the wild-type receptor, however without properties to form hydrogen bonds. Therefore the 

tyrosine variants were used to find out whether structural changes were the reason for the 

significant energetic alterations in the corresponding alanine mutant forms, or the effect was 

caused only because of disrupted binding contacts. 

The IL-4BP variants Y13F, Y127F and Y183F were expressed in SF9 insect cells following the 

described procedure (see 2.11). They were easily purified by an IL-4 affinity column, which was 

the first indication that they would retain much higher affinity to IL-4 then the parallel alanine 

variants. Furthermore, this expectation was confirmed by the BIAcore analyses. The sensograms 

(Figure 3.28) revealed a different pattern of interaction compared to the observed within the 

alanine scan. Variant Y127F showed a model of interaction very similar to the wild-type IL-4BP 

(Figure 3.28 B). Although IL-4 was used in a very low concentration rate (2.5, 5, 7.5 nM), fast 

association phase occurred followed by a very slow dissociation. Both the association and 

dissociation constants showed values very similar to the wild-type interaction (Table 3.8). The 

equilibrium dissociation constant could not be evaluated due to the high binding affinity of the 

variant. The calculated Kd based on the kinetic constants is negligibly different from Kd of IL-

4BP, which corresponds to loss of binding free energy of 0.1 kcal/mol. 

 
Table 3.8: Kinetic and thermodynamic constants characterizing the binding of IL-4 to the tyrosine variants of IL-4BP 

Receptor n kon         (SE) koff        (SE) Kd [M] Rel. Kd ∆∆G 

variant  [x 106M-1s-1] [x 10-3s-1] Kd (kin.) Kd (equilib.) (Mut./WT) kcal/mol

Y13F 12 11         (1.4) 26         (2.7) 2.4 x 10–9  3.2 x 10-9  40 2.2 

Y127F 6 16         (1.0) 1.5        (0.4) 9.3 x 10-11   1.2 0.1 

Y183F 9 6.0        (1.0) 190       (12) 3.1 x 10-8  2.4 x 10-8 310 3.4 
  

n: number of measurements; SE: Standard error; Kd (kin.): Kd calculated from kinetic data. 
 Kd (equilib.): Kd calculated from steady state binding data. The mean standard error for this value was 4.2%. 
 Rel. Kd: relative value of Kd. 
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Variant Y13F showed more significant effect (Figure 3.28 A) but still not comparable to the 

alterations observed with Y13A. The association constant was almost not affected due to the 

amino acid substitution. The faster dissociation phase caused a decrease in binding affinity over 

40-fold. The energetic contribution of this variant counted for merely 2.2 kcal/mol in contrast to 

the large contribution of Y13A, implying that the IL-4BP binding properties were significantly  
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Figure 3.28: Overlay of the sensograms representing the interaction of IL-4 and the tyrosine variants of IL-4BP: (A) 

Y13F, (B) Y127F, (C) Y183F. 
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less affected by a phenylalanine substitution at this position than by an alanine replacement.  

The largest effect due to the phenylalanine substitution displayed variant Y183F. While the 

association constant was only slightly changed, the dissociation constant was over 190-fold faster 

compared to the wild-type receptor (Table 3.8). The binding affinity was reduced over 300-fold, 

corresponding to apparent binding energy contribution of 3.4 kcal/mol. In relation to the 

corresponding alanine variant, Y183F still retained an about 2-fold higher binding affinity. 

However, both variants revealed comparable energetic contribution (Table 3.7). 

In summary, the substitution of the mentioned tyrosine side chains with the structurally similar 

phenylalanine dropped down significantly the energetic contribution of the analyzed variants to 

the overall loss of binding free energy. It seems that the hydroxyl group of the tyrosine at this 

position does not take part in hydrogen bonds to IL-4 that are critical for the binding. It is more 

likely that this tyrosine is involved in hydrophobic interactions through its aromatic ring. The 

replacement of Y13 and Y183 by phenylalanine caused considerable effects which suggests that 

their hydroxyl groups contribute to binding contacts. However, comparing the energetic 

contribution of both variants Y13A and Y13F implies that Y13 has rather structural than 

functional importance for the interaction between IL-4 and IL-4BP. It is also possible that Y183 

is involved in more hydrogen bonds than Y13 and therefore the loss of its hydroxyl group results 

in a greater functional effect. In addition, the results obtained from the phenylalanine variants to 

some extent give an explanation for the enormously large sum of binding free energy determined 

within the alanine mutational analysis. 

 

 

3.3.4 Analysis of IL-4BP Double Mutants 
 
Since proteins are highly cooperative structures, it has to be considered that the contribution of a 

particular residue might involve effects of multiple order. In many cases, interactions of several 

amino acids are coupled to one another and may not be reduced simply to a sum of pairwise 

interactions. In order to study experimentally the interaction of a certain amino acid residue in a 

protein with other residues in that protein, it has become common practice to analyse the free 

energy changes of multiple mutants (Wells, 1990; Jin et al., 1994; Hilser et al., 1998; Clackson et 

al, 1998; Di Cera, 1998).  

The analysis of double mutants considers the changes of binding free energy characterizing two 

proteins mutated individually at the sites X and Y, respectively and the double mutant form, 

which is mutated at both sites X and Y. To asses whether the effects between the examined 

residues are cooperative or additive, the losses of binding free energies characterizing the two 
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individual mutations are theoretically summarized (∆∆Gadd) and compared to the value, which is 

estimated for the double mutant. If the effects of the mutations are independent (non-

cooperative), the change in free energy for the double mutant form is equal to the sum of those 

for the two site-specific mutations. If the two examined sites are coupled, then the change in free 

energy for the double mutant differs from the sum of the two single mutants (Carter et al., 1984; 

Di Cera, 1998). It is possible for ∆∆Gadd to be either lower or greater than the experimentally 

estimated value for the double mutant depending upon whether the interactions between the 

examined side chains reduce or enhance the functional properties measured (Wells, 1990). 

In order to study whether the contact residues within IL-4BP are involved in cooperative 

interactions or function in an independent manner, a series of double mutants was produced and 

examined by BIAcore technology. Amino acid side chains from the three IL-4BP clusters 

identified by the crystal structure of the complex were included in the analysis (Table 3.2). The 

double mutant forms were constructed for all residues whose binding affinity decreased during 

the alanine screening over 50 fold (Table 3.7), since they were considered to have significant 

contribution to the binding. In half of the variants the mutation, D72N was uniformly present, 

while the second mutated site was subsequently exchanged to L39A, F41A, D67A, V69A, 

Y127A, or Y183F. The second group of double mutants constantly was modified to Y13F and 

additionally the mutations L39A, F41A, D67A, V69A, Y127A, or Y183F were introduced. 

Furthermore, a variant containing both mutations D72N and Y13F was created. Considering the 

technical limitations of the used device, all the double mutated variants were constructed under 

the condition that the theoretical sum of the change in free energies (∆∆Gadd) for the two 

introduced mutations does not exceed 8 kcal/mol. 

As expected, all examined double mutants demonstrated very low binding affinity to IL-4 (Figure 

3.29). Initially, about 100 RU of receptor were immobilized on the biosensor chip and the IL-4 

concentration was increased to 750 nM. Under those conditions, binding was recorded only for 

variants Y13F/L39A, Y13F/F41A, and Y13F/D67A. To analyze variants Y13F/V69A, 

Y13F/Y127A, and Y13F/Y183F, it was necessary to increase the amount of immobilized 

receptor to 200 RU and the IL-4 concentration to 3000 nM. The experiments for the remaining 

variants were performed with 400 RU of receptor immobilized on the chip, and IL-4 

concentrations up to 3000 nM. Both kinetic constants for the interaction of IL-4 and the double 

mutant variants could not be evaluated due to the high concentration of ligand that was applied 

causing very fast association, on one side, and the extremely rapid dissociation phase, on the 

other. Values for the equilibrium dissociation constant Kd were derived from the plots 

representing the receptor saturation levels at different ligand concentrations (Figure 3.30). 

Generally, the double mutants showed high Kd (between 1.4 x 10-7 and 7.7 x 10-5 M), but as 
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expected the mutant forms containing Y13F were less affected than the variants carrying D72N 

(Table 3.9). Although the receptor variants Y13F/D72N and D72N/D67A were immobilized with 

high density on the chip and extremely high IL-4 concentration was used, saturating binding was  
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Figure 3.29: Overlay of sensograms which recorded the interaction between IL-4 and double mutants of IL-4BP: (A) 

Y13F/L39A, (B) Y13F/F41A, (C) D72N/V69A. 
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not obtained and the equilibrium binding constants could not be determined. It seems that their 

Kd values exceed the detection limits of the used technical device (typically for steady state 

analysis 10-4 – 10-9 M), considering the fact that Kd of 7.7 x 10-5 M was still successfully 

determined. Experiments with higher receptor density were not performed within the present 

study, since for reliable measurements it is recommended to keep the immobilized receptor at 

levels of 100-500 RU (BIAapplications Handbook, 1995). Furthermore, for the system of IL-

4/IL-4BP it was already reported that density above 50 pg/mm2 (1 RU corresponds to 1 pg/mm2) 

resulted in high bulk-phase signals and drift phenomena (Shen, et al., 1996).  

 

 
Table 3.9: Equilibrium dissociation constant and loss of binding free energies for the IL-4BP double mutant variants 

 

Receptor n Kd (equilib.) ∆∆G ∆∆Gadd 
variant  [M] [kcal/mol] [kcal/mol] 

Y13F/L39A 9 2.6 x 10-7 4.8 5.4 
Y13F/F41A 9 2.4 x 10-7 4.8 5.0 
Y13F/D67A 9 3.9 x 10-7 5.1 5.0 
Y13F/V69A 9 2.2 x 10-7 4.7 4.8 
Y13F/D72N 9 ND ND 8.2 
Y13F/Y127A 9 1.4 x 10-7 4.4 4.8 
Y13F/Y183F 9 4.9 x 10-7 5.2 5.6 
D72N/L39A 9 9.0 x 10-7 5.5 8.0 
D72N/F41A 9 2.3 x 10-6 6.1 7.6 
D72N/D67A 9 ND ND 7.6 
D72N/V69A 9 2.8 x 10-6 6.2 7.4 
D72N/Y127A 9 1.6 x 10-5 7.2 7.4 
D72N/Y183F 9 7.7 x 10-5 8.2 8.2 

 
 n: number of measurements. 

 Kd (equilib.): Kd calculated from steady state binding data. The mean standard error for this value was 30 %. 

 ∆∆Gadd: the sum of ∆∆G for the two individual mutations. 

 ND: the values could not be accurately determined because they exceeded the limitations of the instrument. 

 

 

The analysis of double mutants applied to IL-4BP revealed that most of the variants were 

characterized by values of ∆∆G very similar to the theoretically predicted ∆∆Gadd, implying that 

the examined amino acid residues are independent and the observed mutational effects are 
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additive. However, the variants D72N/F41A and D72N/V69A were found to have higher binding 

affinity than expected. From all double mutants of IL-4BP, which were successfully analyzed 

variant D72N/L39A showed the largest difference between the theoretically predicted binding 

free energy and the experimental value. The residues L39, F41, V69, and D72, examined through 

the mentioned variants, were shown to be part from one and the same structural cluster (Hage et 

al., 1999). Therefore, it is likely that they are involved in cooperative contacts, especially 

considering the fact that the present data suggests a favorable kind of interactions. 
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Figure 3.30: Equilibrium phase ofsome double mutants. (A)Y13F/L39A, (B) Y13F/F41A, (C)  Y13F/D67A, (D) 

Y13F/Y183F D72N/V69A. 
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3.4 Biosensor Analysis of the Kinetics of Binding of IL-4 Variants to the IL-
4BP 

 

To further investigate the binding mechanisms of IL-4 to IL-4BP, two additional alanine IL-4 

variants were constructed and the kinetics of their interaction with the receptor was examined. 

The investigation on the IL-4 binding epitope was extended and the both IL-4 variants R53A and 

Y56A were studied in the framework of the current project, since the crystal structure of the 

complex demonstrated that those amino acids were part of the second contact cluster assembled 

around IL-4 R88 (Hage et al., 1999). 

The kinetics of the interaction between the both IL-4 variants and IL-4BP was analyzed using 

biosensor technology (Figure 3.31). The wild-type IL-4BP was immobilized on the streptavidin- 

coated chip with density of 90 RU and perfusion with each IL-4 variant in the concentration 

range of 2.5 to 60 nM was performed. The introduced mutations in the IL-4 molecule nearly did 

not affect the association phase and the evaluated corresponding rate constants remained very 

similar to the wild-type interaction (Table 3.10). A larger effect on the dissociation rate constant 

was observed particularly for the variant R53A, which increased over 20-fold compared to the 

wild-type. The off-rate of the IL-4 variant Y56A was 6-fold faster. The Kd levels of R53A, 

determined independently from the steady-state binding and from the ratio koff/kon, were in good 

agreement. Due to the high binding affinity, which variant Y56A retained it was not possible to 

evaluate its dissociation equilibrium constant and the presented value was calculated based on the 

kinetic constants. Overall, as an effect from the alanine substitution both variants showed 

decreased binding affinity to IL-4BP which was especially noticeable in the case of R53A (over 

30-fold) and merely modest (8-fold) for Y56A. 

 
Table 3.10: Constants and loss in binding free energy representing the interaction of the IL-4 variants to the IL-4BP. 

 

IL-4  n kon         (SE) koff        (SE) Kd [M] Relative Kd ∆∆G 

variant  [x 106M-1s-1] [x 10-3s-1] Kd (kin.) Kd (eq.) (Mut./WT) [kcal/mol] 

R53A 9 8.6        (0.7) 21         (1.6) 2.5 x 10-9 2.7 x 10-9 36 2.1 

Y56A 9 9.9        (0.8) 6.3        (0.9) 6.4 x 10-10  8 1.2 
 
 n: number of measurements. 
 SE: Standard error. 
 Kd (kin.): Kd calculated from kinetic data. 
 Kd (eq.): Data for Kd from equilibrium binding. The mean standard error for this value was 5 %. 
 ∆∆G: loss in free binding energy. 
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The corresponding values of ∆∆G suggest that the examined residues from the IL-4 contact 

epitope should be considered as functionally significant, since the energetic contribution of R53A 

was counted for 2.1 kcal/mol, and this of Y56A for 1.2 kcal/mol. Generally, an introduction of a 

mutation within IL-4 was followed by more moderate alterations of functional properties 

compared to IL-4BP (Wang et al., 1997). Therefore, even though the demonstrated effects were 

less pronounced, they imply that the mentioned amino acids are of importance for the interaction 

with the receptor, and are part of the binding epitope. Furthermore, the data obtained from the 

association and dissociation phases is in agreement with the proposal that the amino acids from 

the second contact cluster stabilize the complex with the receptor (Hage et al., 1999) and in this 

respect they are consistent with results from earlier mutational studies of other residues from the 

same cluster (Wang et al., 1997). 
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Figure 3.31: Sensograms representing the interaction of IL-4 variants R53A (A) and Y56A (B) with IL-4BP. 
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4. Discussion 
 

 
Human IL-4, as most cytokines, has pleiotropic functions and exhibits a wide range of biological 

effects on various tissues and cells. Responses are induced after IL-4 binds to its receptor. A 

central goal of receptor research is to understand, at molecular level, how receptors allow cells to 

sense and to respond to their external environment. A possible approach to this issue is to 

elucidate the binding determinants within both the ligand and the receptor, and to identify the 

molecular recognition mechanisms of the interaction between them. Improving the knowledge of 

the features characterizing the binding mechanisms is not only of theoretical interest, but as well 

is important for the drug development. Extensive information about the binding epitope of the α 

chain of the IL-4 receptor is of special benefit for drug design. With regard to the fact that this 

receptor component is implicated in the binding of two cytokines, which are involved in allergic 

responses (IL-4 and IL-13), a blocking agent directed against its binding epitope would be of 

advantage for both IL-4- and IL-13- mediated allergic diseases. 

Usually, two powerful methods, structural analysis and mutational analysis, are exploited to 

characterize sufficiently the interactions occurring within a receptor-ligand system. Only in 

combination they can explain how energetics and regulatory contacts are encoded into structure, 

and to provide comprehensive understanding of structure-functional correlations. Structural 

analysis reveals the contacts that contribute to protein-protein recognition in atomic details (Jones 

& Thornton, 1996). However, it alone cannot show how these contacts contribute to overall 

affinity and specificity. Ideally, the high-resolution structure of a complex is used to guide an 

extensive functional survey of residues present at the interface using site-directed mutagenesis, to 

allow their individual contributions to be assessed. Furthermore, construction and analyses of 

double mutants provides additional information about cooperative interactions, which link the 

behavior of different amino acid residues within the protein molecule.  

 

 

4.1 Structural Features and Binding Site of Human IL-4BP 
 
Since at the beginning of the presented study there was no structural data about the ligand-

binding epitope of IL-4BP, the initial selection of amino acids subjected to alanine substitution 

relied on two theoretical models of the complex between IL-4 and its receptor, which were 

available at that time (Bamborough et al., 1994; Gustchina et al., 1995). Both models were built, 

using as a starting point the extracellular portion of human growth hormone receptor (hGHbp), 
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since the structural and functional epitopes of the receptor and the ligand have been well 

characterized (De Vos et al., 1992; Cunningham & Wells, 1993). Based on sequence 

conservation and the predicted common structural organization for cytokine receptors, the amino 

acid sequences of a few different extracellular domains of cytokine receptors, including IL-4BP 

were aligned and examined for similarities to hGHbp. 

Although in the hGH/hGHbp complex the major contribution is provided by hydrophobic side 

chains, the IL-4BP interface proposed by the two models contains several polar and charged 

residues. Agreeably, as most prominent contact determinants from the receptor side were defined 

D72 and K91, which were suggested to form ion pairs with IL-4 R88 and E9, respectively. This 

assumption was supported also by the results from the mutagenesis study of human IL-4, which 

showed that charged and polar determinants predominate in its high-affinity binding epitope 

(Wang et al., 1997). According to the alignment of amino acid sequences of hGHbp with IL-4BP 

A71 and Y129 of IL-4BP superimpose the two most important binding determinants of hGHbp, 

W104 and W169, respectively. Therefore, those amino acids and their close surrounding from the 

same loop regions were of principle interest for the mutagenesis study of IL-4BP. Besides this, 

the models implicated particularly residues D66, D67, V69, S70, N126, Y127, and L128 of IL-

4BP in direct contacts with amino acids from the ligand. Additionally, in the mutational analysis 

were included residues M14 and S15, as well as P92, S93, and E94, since they correlate in the 

frame of the sequence alignment to amino acids of hGHbp, which have shown certain functional 

importance for the binding with hGH.  

At a later step, when the crystal structure of the complex between human IL-4 and IL-4BP was 

determined, the set of examined amino acids from IL-4BP interface was extended. Generally, the 

structure revealed an organization similar to the already observed for other hematopoietic 

receptors (Hage et al., 1999). IL-4BP consists of two covalently linked domains (D1 and D2). 

The domains are related to the overall topology of fibronectin type III (FN III) modules and fold 

into a sandwich comprising seven antiparallel β sheets. Moreover, it contains the strictly 

conserved four cysteine residues in the N-terminal domain and the strongly conserved 

“WSXWS” motif near the C-terminus of the second domain, which are distinctive characteristics 

of the cytokine receptor homology (CRH) region, as defined by Bazan, 1990. 

The structural epitope of IL-4BP was shown to be assembled by residues of five loops and has a 

midline of hydrophobic side chains with patches of tyrosine and serine residues situated on one 

side and a patch of aspartic acid side chains on the other side (Figure 4.1). An analysis of the 

possible hydrogen bonds and van der Waals contacts between IL-4 and its receptor revealed that 

their binding epitopes consist of three structurally independent subunits. Two of them (designated 

as cluster I and cluster II) were compared to an “avocado fruit”, since they exhibit a conspicuous 
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amphipathic structure with an outer mantle of hydrophobic side chain moieties and an inner core 

of polar groups. The third assemblage of trans-interacting side chains was demonstrated to have 

completely different design. The main characteristic of this cluster is the domination of 

electrostatic interactions. 
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Figure 4.1: Structural epitope of IL-4BP. Contact residues are colored according to their physicochemical properties 

(red, negatively charged; dark blue, positively charged; light blue, histidine; cyan; glutamine/ asparagine; magenta, 

tyrosine; orange, serine/threonine, green, hydrophobic) (Hage et al., 1999).  

              

 

Considering the structure of the above-mentioned clusters, the contacts formed within them 

between receptor and ligand side chains and the data about the loss of solvent-accessible surface 

area upon the binding (Table 4.1), a few additional amino acids of IL-4BP were submitted to site-

directed mutational analysis. Some of the side chains, which apparently demonstrated 

considerable change of the accessible surface, were already successfully predicted based on the 

 114



  __________________________________________________________________4. Discussion 

theoretical models and included in the study. Since the accessible surface of receptor F41, L42, 

L43 and Y183 showed a large decrease upon association, they were converted to alanine. 

Although L39 does not appear to change its solvent accessibility upon the complex formation to 

the same extent, it is a part of the hydrophobic shell within the second cluster and therefore it was 

included in the alanine scanning mutagenesis. The solvent-accessible surface area of Y13 does 

not change upon IL-4 binding. Nevertheless, according to the crystal structure this amino acid is 

implicated in a hydrogen bond with IL-4 E9 and was of particular interest for the mutational 

analysis. 

 
Table 4.1: Change in the accessible surface of amino acids within IL-4BP upon formation of the 1:1 complex 

between IL-4 and IL-4BP (Hage, 1999). 

 

IL-4BP amino acid ∆ Accessible surface [Å2] 

L39 12 
V40 2 
F41 106 
L42 32 
L43 58 
D66 23 
D67 95 
V69 50 
S70 71 
A71 54 
D72 21 
K91 1 
S93 8 
P123 3 
D125 98 
N126 7 
Y127 119 
N130 12 
H131 27 
A182 24 
Y183 47 

 

Altogether, in the frame of the entire project, 25 different side chains of IL-4BP distributed over 

all six loops of the receptor molecule were individually mutated to alanine (Figure 4.2). To refine 
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the functional epitope, substitutions by more conservative residues were performed, where it was 

necessary. The binding affinity of the mutated variants to IL-4 was examined by the use of a 

biosensor-based technology.  
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Figure 4.2: Side chains within IL-4BP subjected to site-directed mutagenesis. The colour scheme is according to 

traditional amino acid properties. Roughly, polar amino acids are presented in bright colours and non-polar in darker. 

(aspartic acid and glutamic acid, bright red; lysine, mid blue; methionine, yellow; serine, orange; phenylalanine and 

tyrosine, blue; asparagine, cyan; valine, leucine, green; proline, flesh). 

              

 

 

4.2 Defining Functional Important Residues from The Interface of Human IL-
4BP for the Interaction with IL-4 

 

The present study has identified all amino acid side chains within the extracellular domain of the 

IL-4 receptor α chain that are engaged in the high-affinity binding of the ligand. A scanning 
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mutagenesis strategy was used to dissect the contribution of the particular IL-4BP residues to the 

binding energy. Such approaches typically assume that no structural disturbances are caused by 

the mutations, so that the energetic consequences are entirely attributable to the deletion of the 

contacts. 

Undeniably, the site-directed mutational analysis defined the side chain of D72 as one of the 

major functional determinants for the interaction with the ligand. A mutation at this site to alanine 

caused 2600-fold decrease of binding affinity, corresponding to energetic contribution of 4.7 

kcal/mol. Such an effect definitely indicates affected functional properties and cannot be 

attributed to structural perturbation due to the introduced mutation. The assumption is based on 

the analysis of the additional variant D72N. The exchange of the aspartic acid by the structurally 

similar asparagine is followed by the loss of a negative charge, but generally is not expected to 

have disruptive effect on the structure. Despite the conservative character of the substitution 

made, variant D72N demonstrated decrease of binding affinity that basically was the same as the 

observed for the alanine variant. Thus, the original side-chain D72 and especially its negative 

charge is directly implicated in a contact to the ligand. The conclusion about the functional 

importance of D72 for the interaction with IL-4 is consistent with the findings of independent 

experiments using a cell-based selection strategy (Friedrich et al., 1999; Wietek, 1999). Two 

different receptor constructs carrying the receptor mutants D72A and D72R, respectively, were 

expressed in the murine pro-B cell line (Ba/F3) and examined for interaction with IL-4. 

Proliferation assays verified that cells expressing the charge reverse mutation D72R completely 

failed to proliferate in the presence of IL-4, while cell populations carrying D72A showed a weak 

response after treatment with IL-4. In addition, radioligand binding experiments revealed a 

complete loss of specific IL-4 binding by cells expressing D72R receptors, confirming that D72R 

receptors are incapable of productive interaction with IL-4. Furthermore, the results from the 

mutational analysis are in perfect agreement with the crystal structure of the IL-4/IL-4BP 

complex (Figure 4.3 B), which revealed that a salt pair links the side chain of D72 to IL-4 R88 

(Hage et al., 1999). 

The results from the alanine scanning mutagenesis pointed three tyrosine residues, Y13, Y127, 

and Y183, as prominent binding determinants from the receptor side. The mutant variant Y13A 

showed reduction of binding affinity over 10000-fold compared to the wild-type interaction. Its 

contribution to the loss of binding free energy counts 5.5 kcal/mol, which is the largest effect 

observed in the course of the alanine scan for IL-4BP. Further experiments were performed to 

assess if this effect is functional or structural. Replacement of Y13 by a phenylalanine residue 

resulted in merely 40-fold decreased binding affinity in comparison with the wild-type. Since the 

phenylalanine is a structural analog of the originally present amino acid, but without properties 
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for forming hydrogen bonds, it seems that the reason for the large effect demonstrated by Y13A 

is rather structural than functional. The alanine variant could still be recognized by the anti-IL-

4BP monoclonal antibody and therefore overall structural disruption could be excluded. It is more 

likely that the substitution caused only local perturbations within the contact cluster, but was not 

sufficient to destroy the structure as a whole. If Y13 is a structurally important residue for the 

entire cluster such a substitution will affect not only the contact properties of Y13, but of all 

amino acids within the cluster and will give an explanation for the large loss of binding free 

energy demonstrated by Y13A. Further, it has to be considered that in some cases, especially if 

much smaller amino acid replaces a large one, solvent can occupy the place of the missing side 

chain. Regarding the crystal structure (Hage at al., 1999), it seems that the effect shown by Y13F 

represents totally the functional importance of Y13. The hydroxyl group of this residue is 

implicated in a hydrogen bond with IL-4 E9 (Figure 4.3 A), and on that base it is reasonable to 

expect a modest functional effect by variant Y13F. 

Even more dramatic differences between affinity of the alanine and phenylalanine mutant form 

were observed in the case of Y127. Variant Y127A was characterized by 80-fold lower binding 

affinity to IL-4 than IL-4BP, while Y127F did not demonstrate considerable effect (1.2-fold) on 

the binding and in fact behaved as a wild-type receptor. However, the effect of the alanine 

substitution is by far not as large as in the case of Y13A and does not support the idea that 

Y127A is a structurally affected mutant. The structural data suggest that Y127 takes part in a 

series of hydrophobic interactions with the aliphatic side chain of IL-4 E9 (Hage, 1999). 

Therefore, it is likely that the reduced binding affinity of variant Y127A represents the 

contribution of those contacts and they are perhaps not disrupted when variant Y127F plays a part 

in the interaction with IL-4. According to the structure of the complex with IL-4, the hydroxyl 

group of receptor Y127 is involved in a hydrogen bond to IL-4 T13 (Figure 4.3 A) and 

additionally is bridged by a single ordered water molecule to IL-4 N89 (Hage et al., 1999). 

Nevertheless, the analysis of the mutant form Y127F, which is not able to form such contacts, 

indicates that they do not have significant contribution to the binding and should not be 

considered as functionally important for the complex stability. 

Replacement of receptor Y183 by alanine and phenylalanine revealed that both variants Y183A 

and Y183F bound IL-4 with low affinity. The alanine substitution caused a larger effect and the 

binding affinity of Y183A to IL-4 was reduced 800-fold compared to the wild-type interaction. 

Due to the introduced mutation, variant Y183F demonstrated an over 300-fold decrease in 

binding affinity corresponding to 3.4 kcal/mol loss of binding free energy. Definitely, the large 

energetic effect of mutation Y183F is an indication about the important functional role, which the 

hydroxyl group of Y183 takes in the interaction with the ligand. The crystal structure of IL-4/IL-
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4BP complex showed that this group is involved in a hydrogen bond to IL-4 E9 (Figure 4.3 A), 

one of the major binding determinants within the ligand (Hage et al., 1999). Another hydrogen 

bond was suggested to link Y183 to IL-4 K12. Apparently, those are contacts of great 

significance, which have a crucial role for the stability of the complex with IL-4, since their 

destruction was followed by a large functional effect. Furthermore, the side chain of receptor 

Y183 was implicated in van der Waals contacts to IL-4 I5 (Hage, 1999), which might explain to 

some extent the fact that a substitution by alanine has a greater effect on ligand binding. Small 

structural perturbations in variant Y183A cannot be excluded to be partially the reason for the 

reduced binding affinity to IL-4. However, if the mutation Y183A caused some disruptions in the 

receptor structure they certainly were minor and cannot be compared to the case observed with 

variant Y13A. Therefore, it seems that within contact cluster I of IL-4BP the residue Y183 

provides the largest functional contribution to the ligand binding. Moreover, the site-directed 

mutational analysis of IL-4BP established the side chain of Y183 as one of the main binding 

determinants from the receptor side for the high-affinity interaction with IL-4.  

Aspartic acids at positions 66, 67, and 125 were converted to alanine and examined for effects on 

the interaction, as they were determined to be engaged within the third structural cluster of IL-

4BP (Hage et al., 1999). The largest reduction in affinity (120-fold) occurred in variant D67A, 

which energetic contribution was estimated to be 2.8 kcal/mol. Mutations D66A and D125A 

decreased the affinity to a minor degree: 7- and 10-fold, respectively. The lower effects observed 

with these variants are in agreement with the suggestion that the third contact cluster is not 

important for the complex stability (Hage et al., 1999). The amino acids from the cluster were 

supposed to accelerate complex formation through electrostatic steering. Due to an alanine 

mutation certainly was affected the association phase of variant D67A, which appeared to be 4-

fold slower compared to the wild-type interaction. Apparently, the other two alanine mutants 

demonstrated negligible changes in association. However, the overall contribution of D125 to the 

affinity and also to the association of the complex might be partially underestimated, since some 

contacts to the ligand in which this amino acid is involved are built by its main chain. 

The analysis of the hydrophobic sequence of amino acids localized on loop L2 revealed that only 

L39 and F41 are of certain functional importance for the highly-affinity binding between IL-4 

and its receptor. Variant L39A bound IL-4 with over 200-fold lower binding affinity than IL-4BP 

did, while the binding affinity of F41A decreased over 100-fold. The association phase of both 

mutant forms was about 2-fold slower than the wild-type exhibited, but their dissociation was 

significantly affected due to the introduced mutation. Substitution of L42 and L43 by alanine did 

not result in considerable effects on the binding kinetics. As long as the properties of the alanine 

variants from this sequence were affected, the effects did not suggest a direct contribution to the 
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binding, but a supporting function of the original amino acids. Such an assumption is in 

accordance with the crystal structure, which showed that these amino acids are the main part of a 

hydrophobic shell surrounding D72 (Figure 4.3 B), and are involved in a number of van der 

Waals contacts with residues from IL-4 (Hage, 1999). The side chain of V69 localized on another 

loop (L3) in the receptor molecule completes the hydrophobic cluster around D72. Variant V69A 

behaved in a similar way to variants L39A and F41A; since it showed a 2-fold slower association 

and a modest effect on binding affinity (80-fold reduction). Besides the disruption of weak 

contacts, the substitution of large residues by alanine might be followed by penetration of water 

molecules in the hydrophobic cluster. Although no one of those residues demonstrated 

characteristics of a major binding determinant, disorder in the proper hydrophobic environment, 

which they provide alters to some degree the functional properties of IL-4BP as it affects the 

complex stability and to a minor extent concerns the association phase.  

No one of the residues K91, P92, S93, and E94, which are situated on loop L4 of IL-4BP, 

indicated significant contribution to the binding when they were exchanged by alanine. The 

corresponding variants reduced the binding affinity between 2- and 17-fold. In the absence of 

structural data receptor K91 was of special interest for the study, since a theoretical model of IL-

4/IL-4BP complex suggested this residue to be one of the main contact determinants, taking part 

in electrostatic interactions to IL-4 E9 (Bamborough et al., 1994). For that reason an additional 

variant K91D was produced and examined, although the analogous alanine variant showed 

negligible energetic contribution (0.8 kcal/mol). Despite the fact that the charge reversal mutation 

was expected to cause a grate effect on binding, the affinity in this case was reduced merely 30-

fold. Thus, the charge of receptor K91 is not involved in functionally important contacts to the 

ligand and the residue is not considered as a binding determinant. The site-directed mutagenesis 

of K91 should be seen as an example for the limited potential and accuracy of the molecular 

modelling as an approach for defining structural and functional epitopes. Later, in agreement with 

the above-mentioned findings, the structure of the complex confirmed that the entire loop L4 is 

not implicated in contacts to the ligand (Hage et al., 1999).  

The alanine scanning muatgenesis of IL-4BP did not reveal that some of the remaining amino 

acids included in the study provide important contribution to binding. Interestingly, variant S70A 

showed virtually the same binding affinity to IL-4 as the wild-type receptor. This amino acid is 

involved by its main chain in a hydrogen bond to IL-4 E9 (Figure 4.3 A) and additionally by its 

side chain forms a second with IL-4 T6 (Hage, 1999). Disruption of the hydrogen bond, in which 

the side chain of S70 plays a part, clearly showed that this contact is of no functional importance 

for the stability of the complex. This is supported by the fact that mutations of IL-4 T6, caused 

just negligible changes on binding affinity (Wang et al., 1997). It is likely that only the contact 
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made by the main chain of S70 is significant for the interaction with the ligand, but due to 

limitations of the used method that could not be assessed. 

 

              

C 

B 

A 

 
Figure 4.3: Details of the IL-4/IL-4BP contact: A, contact cluster I; B, contact cluster II; C, contact cluster III (Hage 

et al., 1999). 

              

 

In conclusion, the site-directed mutagenesis of IL-4PB residues defined clearly its functional 

epitope for the interaction with IL-4 (Figure 4.4). As major binding determinants were 

established the side chains of Y183 and D72 from binding clusters I and II, respectively. The 

contacts made by the side chain of D72 are strongly enhanced by the hydrophobic shell that 

 121



  __________________________________________________________________4. Discussion 

encircles it, as it was shown for residues L39, F41, and V69. Meanwhile Y183 is functionally 

supported by the other two tyrosine side chains, Y13 and Y127, localized within the same cluster. 

The amino acids included in the third cluster generally indicated lesser contribution to binding. 

However, D67 certainly is involved in contacts to IL-4 and perhaps is supported in this function 

by D125. 

The existence of further binding determinants is unlikely, but cannot be definitely excluded. Due 

to restrictions of the applied approach, contributions from alanine could not be analyzed. For 

instance, the functional importance of A71, which is involved in contacts with ligand residues 

within the first cluster of IL-4BP and shows relatively large change of accessible surface area 

upon association, could not be assessed. Furthermore, the site-directed mutational analysis is not 

able to detect contributions provided by the backbone parts of the amino acids.  
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Figure 4.4: Functional epitope of IL-4BP. Residues have been color-coded according to the loss of binding free 

energy due to alanine substitutions. Mutant variant Y13F has been used to estimated the energetic contribution of 

Y13, as the alanine form represents a structural mutant. 
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Based on the results from the alanine scan, the sum of the apparent binding free energy 

contributions (> 36 kcal/mol) considerably exceeds the estimated binding free energy for the 

complex (13.8 kcal/mol, corresponding to Kd=77 pM). The contributions made only by the 

residues included in the functional epitope of IL-4BP already give a sum of over 26 kcal/mol. 

Certainly, some contributions were overestimated due to structural perturbations caused by the 

introduced alanine residue. Nevertheless, this is only partially the reason for the high sum. The 

most pronounced instance of structural perturbations is presumably variant Y13A, but even in 

this case it seems that only approximately 3 kcal/mol from the loss of binding free energy can be 

attributed to structural effects, while the remaining 2.2 kcal/mol represent disrupted functional 

properties. Likewise, some alanine variants demonstrated large energetic contributions probably 

because the side chains of the original amino acids are involved in more than one single contact 

to the ligand. For example, the crystal structure revealed that the side chain of receptor Y183 

takes part in hydrogen bonds to both IL-4 E9 and K12. Furthermore, high loss of binding free 

energy implies that some of the examined mutations are not independent in their effects. That can 

be explained by the fact that particular side chains are involved not only in interactions to the 

ligand but also in intramolecular contacts. If interactions among residues within the receptor 

molecule are present, as a result the effect of the mutation will be propagated to other residues. In 

such cases the alanine scanning muatagenesis cannot assess properly the real contribution of the 

single side chains because the observed effect depends on the state of other residues (Di Cera, 

1998). Cooperativity is supposed to take place between residues within the binding epitope of IL-

4 (Wang et al., 1997). The small number of amino acids identified in the functional epitope of IL-

4BP and the large energetic contribution which they indicate, suggest that cooperative 

interactions might exist also in IL-4BP. 

In summary, the approach based on an alanine scanning mutagenesis is in principle powerful and 

informative. However, in the course of practical applications some limitations should be 

considered. Substitution by alanine, although is not supposed to introduce additional new 

contacts, might cause structural changes and subsequently large energetic consequences. Such 

effects might be wrongly assessed as functional. Therefore, the residues, which revealed great 

apparent contribution in the present study, were further mutated to produce structurally similar 

variants to the wild-type receptor. Furthermore, results might be misinterpreted in cases when 

interactions of several amino acids are coupled to one another and are not reduced simply to a 

sum of pairwise interactions. To identify if the effects from the site directed mutagenesis of IL-

4BP are independent or not, the present study was completed by analyses of receptor double 

mutant forms. 
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4.3 Additivity and Cooperativity in the Functional Epitope of IL-4BP 
 
Additive and cooperative mutational effects between the residues from the functional IL-4BP 

epitope were examined by applying double mutants. The side chains of amino acids L39, F41, 

D67, V69, Y127, and Y183 were analyzed for potential intramolecular interactions with Y13 and 

D72, respectively. In addition, a variant containing mutations at both sites, D72 and Y13, was 

created.  

Comparison of the theoretically predicted ∆∆Gadd and the estimated change of binding free 

energy (Table 3.9) for variants Y13F/Y127A and Y13F/Y183F indicates that the effects between 

the residues from contact cluster I are additive. This suggests not only that the sites act 

functionally independent, but also that no one of the introduced mutations caused structural 

perturbations. Indirectly this fact confirmed the assumption that mutation Y127A in the 

corresponding single variant was not disruptive to the structure and the observed effect 

represented basically the functional contribution of this residue to binding. Further, the analysis 

of double mutants indicated that the hydroxyl group from the side chain of Y13 is not involved in 

contacts to other residues from the cluster, but just in the interaction with IL-4. Therefore the 

mutational effect demonstrated by variant Y13F (2.2 kcal/mol) should be seen as the entire 

contribution of Y13 to ligand binding. The site-directed mutational analysis revealed that Y13 is 

important probably for the structure of the whole cluster. Since in these double mutated forms of 

the receptor Y13 was exchanged by the similar phenylalanine residue, which clearly did not 

affect the structure, it seems that the aromatic ring of Y13 is a crucial structural element 

supporting the conformation and the integrity of the cluster.  

Independent contributions to binding were shown from the side of Y13 and the hydrophobic shell 

surrounding D72, since the binding free energies of variants Y13F/L39A, Y13F/F41A, and 

Y13F/V69A negligibly differ from the corresponding ∆∆Gadd values. Likewise, additivity was 

established between the effects of Y13F and the binding determinant from cluster III D67. The 

binding free energies characterizing the double mutants, which carry the mutations D72N/Y127A 

and D72N/Y183F were very close to the values predicted by adding the energies of the single 

mutants. This is a clear indication that the main functional determinant D72 behaves in a 

completely independent manner from the two tyrosine residues from cluster I.  

The analyses of variants D72N/L39A, D72N/F41A, and D72N/V69A suggested that the 

examined sites in those double mutants are not independent in their effects. As those residues are 

parts from one and the same binding cluster it is likely that they cooperate and the effects from 

the individual substitutions are not additive. Further, the values of ∆∆Gadd are greater than the 

estimated ∆∆G for the three variants suggesting favorable interactions between the side chains 
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(Wells, 1990). The conclusion that the contacts to the ligand in which D72 is involved are 

enhanced by the hydrophobic shell including L39, F41, and V69 is in agreement with the results 

from the alanine scan of IL-4BP. Accordingly, the structural analysis defined the contact clusters 

as assemblies of trans-interacting residues and did not exclude the possibility that within a cluster 

certain amino acids cooperate (Hage et al., 1999). 

The equilibrium dissociation constants and subsequently the binding free energies for two double 

mutants, Y13F/D72N and D72N/D67A, could not be determined due to their extremely low 

binding affinity to the ligand. If the effects of the individual substitutions in variants Y13F and 

D72N were independent, than the change in binding energy caused due to the simultaneous 

mutation of these sites in variant Y13F/D72N, would be ∆∆Gadd = 7.0 kcal/mol. Correspondingly, 

the equilibrium dissociation constant of the double mutated variant would be Kd = 1.0 x 10-5 M, 

in a case of additivity. Assuming that the mutational effects in sites D72 and D67 are 

independent, a loss of binding free energy ∆∆Gadd = 7.6 kcal/mol and Kd = 2.9 x 10-5 M are 

expected for the interaction between variant D72N/D67A and IL-4. Certainly, those values 

indicate such a low affinity to the ligand which is at the detection limits of the used BIAcore 

system. Nevertheless, considering the fact that binding was recorded even for a variant with Kd = 

7.7 x 10-5 M (variant D72N/Y183F), detection of interaction also in the case of Y13F/D72N and 

D72N/D67A should be still possible. Thus, variants Y13F/D72N and D72N/D67A are 

characterized by considerably lower binding affinity to IL-4 than the theoretically estimated 

values presuming additive mutational effects. However, this does not necessarily indicate 

cooperativity between the examined sites. The structural analysis of IL-4BP strongly suggests 

that the three contact clusters are discrete and independent in their interactions (Hage et al., 

1999). Furthermore, if the low binding affinity is seen as a sign for cooperative interactions, the 

change of binding free energy for those mutants will be grater than the values of the theoretic 

sum ∆∆Gadd. This is not very likely, since such values would suggest that the mutant side chains 

reduce functional properties and the individual substitutions underestimated the contributions of 

the original residues. Considering the high cumulative loss of binding free energies, which was 

assessed in the frame of the alanine scan, effects were probably overestimated but not 

underestimated. Hence, the idea that cooperative interactions between the mutated sites in 

variants Y13F/D72N and D72N/D67A caused the extremely low binding affinity is not in 

agreement neither with the results from the alanine site-directed mutagenesis, nor with the 

structural data. It is more likely that due to the substitutions in the case of D72N/D67A the 

electrostatic steering between receptor and ligand was affected to a great degree. It was shown 

that the extraordinarily fast association rate constant, which is the main reason for the high-

affinity binding of IL-4 to IL-4BP, is caused by complementary electrostatic potentials of both 
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interfaces (Shen et al., 1996; Wang et al., 1997). Accordingly, variant D67A demonstrated the 

slowest association rate constant in the site-directed mutational analysis. The association phase of 

D72N could not be examined. In addition, alanine substitutions of the hydrophobic side chains 

surrounding D72 in cluster II revealed small but systematic reduction of the on-rate for L39, F41, 

and V69, suggesting that perhaps the entire cluster is recognized early in association. The third 

charged residue within the functional epitope of IL-4BP (D125) did not indicate significant effect 

on the association. It is likely that the charges of D72 and D67 are critical for the initiation of 

electrostatic steering between receptor and ligand and therefore their simultaneous loss in variant 

D72N/D67A results in such low electrostatic potential in the receptor that is under the point, 

which allows the complex formation. This suggestion is in agreement with the mechanism of 

association proposed for the complex of hGH and its receptor (Cunningham & Wells, 1993). 

Accordingly, the association is a multi-step process that starts with the formation of an initial 

weak complex, which undergoes further desolvation and cooperative rearrangement.  

Not all amino acids from IL-4BP examined by site-directed mutagenesis were included in the 

analysis of double mutants and therefore perhaps not all cases of cooperativity were identified. 

However, cooperative effects clearly were demonstrated to take part at least between amino acids 

within contact cluster II. This fact gives to some degree an explanation for the high cumulative 

loss of binding free energy, which was calculated according to the contribution of alanine 

variants. 

 

 

4.4 Comparison of the Structural and the Functional IL-4BP Epitopes 
 
Generally, the functional epitope of IL-4BP defined by mutational analyses is in a good 

agreement with the structural data. Similarly to the structural epitope, the functional important 

residues of IL-4BP are assembled in three differentiated clusters. The crystal structure of the IL-

4/IL-4BP complex proposed that the clusters are independent, but did not exclude the possibility 

that cooperative interactions take place in the same contact cluster (Hage et al., 1999). 

Respectively, the present analysis did not show a clear indication for interactions between the 

defined clusters. Furthermore, cooperativity was demonstrated to occur between side chains 

within one and the same cluster. 

The structure revealed that 835 Å2 of the receptor surface area are buried upon complex 

formation (Hage et al., 1999). This indicates that the high-affinity interaction between IL-4 and 

IL-4BP is generated from a relatively small contact area and that its size is not directly connected 

to binding affinity. Accordingly, amino acids localized out of the structural epitope did not appear 
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to have significant effects on binding affinity when they were mutated. Although segregation in 

the contribution of the examined residues present in the structural epitope of IL-4BP was 

observed, nearly all of them showed considerable effect on binding. Thus, the modest size of the 

IL-4BP structural epitope determines a corresponding functional epitope, which has a similar 

size.  

The structure of contact clusters I and II was compared to an “avocado fruit” and was suggested 

to be highly relevant to binding because polar interactions are enhanced in a hydrophobic 

environment (Hage et al., 1999). Agreeably, the mutational analysis indicated as main binding 

determinants residues from the central core of IL-4BP clusters I and II. Particularly large 

contribution to binding demonstrated the side chains of Y183 and D72, respectively. Most of the 

residues from their close surrounding certainly are implicated in the interaction with IL-4, 

although the mutations at those sites caused a loss in binding affinity to a lesser extent. Contact 

clusters I and II were proposed to have the same contribution to binding (Hage et al., 1999). 

However, based on the findings from the mutagenesis study of IL-4BP it seems that, comparing 

functional contributions, cluster II has slight prevalence over cluster I. Estimated from the loss of 

free binding energy in the mutant proteins, the entire cluster II (13.3 kcal/mol) accounts 

approximately for 95 % of binding energy, while the energetic contribution of cluster I 

corresponds to around 60 % (8.8 kcal/mol)1. In agreement with the suggestions based on 

structural data, the mutational analysis indicated that the residues from the third contact cluster 

have minor functional role in complex stability and the entire cluster contributes with 30 % (4.2 

kcal/mol) to binding energy. Additionally, the importance of this cluster, and particularly of the 

side chain of D67, for the association phase was confirmed. Alanine substitutions of a few 

residues present in the defined structural epitope did not produce considerable effect on binding 

affinity. Those are amino acids localized in the periphery of the binding epitope, and it is likely 

that the contacts made by their side chains are not of importance for the high-affinity interaction 

with IL-4. It is possible that some of them are directly involved in binding by their main chains, 

but due to limitations of the used approach such a suggestion could not be verified. Furthermore, 

it cannot be excluded that the periphery of the interface has another important role. For instance, 

it might contribute substantially to the specificity of binding by repulsion of non-target molecules 

through unfavorable electrostatic or steric interactions, or both. 

Comparison between the change of buried surface area upon binding and the change in the free 

energy of binding when the particular side chain was mutated revealed a very poor correlation 

                                                 
1  The contribution of cluster I was estimated considering the loss of binding affinity of variants Y13F, Y127A, and 
Y183A. Variant Y13F was favoured, since it represents better the functional properties of Y13 than the analogous 
alanine variant. Data about variants L39A, F41A, V69A, and D72A, was used for cluster II. Other variants were not 
included, as they demonstrated negligible contribution to binding. 
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(Figure 4.5). The largest decrease of accessible surface upon association was shown to occur for 

Y127 and F41 (Hage et al., 1999). Substitution of both residues by alanine was followed by 

modest effect on binding affinity and therefore they were suggested to have basically a 

supporting role for the interaction with IL-4. Likewise, amino acids L43 and S70 indicated high 

decrease of accessible surface, but did not affect any binding properties of the receptor when they 

were mutated. Meanwhile, the two main functional determinants D72 and Y183 are characterized 

by far lower change in buried surface area. Thus, although the decrease of accessible surface 

upon binding is useful when the entire epitope is defined, this parameter alone is not sufficient to 

assess the role of the individual side chains. Presumably, for the nonfunctional residues the 

energetic cost of desolvation and side chain rearrangement compensates the energy gained 

through the intermolecular interaction and therefore they do not stabilize the complex.  
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Figure 4.5: Decrease in solvent accessibility on complex formation for IL-4BP (data was taken from Hage, 1999) and 

loss of binding free energy when the individual side chains were converted to alanine. 

              

 

In the IL-4BP, molecule is observed a clear hierarchy regarding the functional significance of the 

particular clusters. The mosaic design of the structural epitope of IL-4BP predetermines the 

independent functional behaviors of the clusters in the process of binding. Possibly, this fact 

opens perspectives for drug design based on the mimicry of the assemblies. Compounds with low 

molecular weight might act as antagonists of IL-4, if significant affinity is assured. The most 

promising in this sense seems to be cluster II. Mimicry of cluster I might additionally increase the 

effect. 
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4.5 Complementarity between the Functional Epitopes of Human IL-4 and IL-
4BP  

 
Site-directed mutagenesis has previously been used as a strategy to determine the functional 

epitope on the ligand side of the interface (Wang et al., 1997). A set of alanine, glutamine, and 

charge reversed mutant forms of IL-4 were studied for effects on the interaction with IL-4BP by 

means of the BIAcore technology. The similar approaches used in the previous and current study 

give a reliable basis to compare the functional epitopes of ligand and receptor. In the framework 

of the present project two additional IL-4 variants R53A and Y56A were produced and analyzed. 

The original side chains were shown by the structure to be a part of contact cluster II and were 

implicated in contacts to residues from IL-4BP.  

The results of the systematic mutational analysis of IL-4 contact residues (Wang et al., 1997) 

confirmed that the functional important residues are localized on the helix AC face of the ligand 

(Figure 4.6). Furthermore, they are in agreement with the functional significance of the tree 

clusters of trans-interacting residues identified in the structure of the complex and support the 

existence of a mosaic binding (Wang et al., 1997, Hage et al., 1999). In like manner to the IL-

4BP structure, the contact clusters I and II of IL-4 were shown to resemble an “avocado fruit”. 

Mutations of the central amino acids within those two clusters, namely E9 and R88, had the 

largest effects on binding affinity observed among the IL-4 mutant forms. Their energetic 

contribution to the complex stability was estimated to be over 3.5 kcal/mol for each. Both 

residues are implicated in direct contacts to the corresponding main binding determinants from 

the IL-4BP interface. Accordingly, the carboxylate of E9 accepts three bonds from receptor Y13, 

Y183, and S70, while R88 is linked by a salt pair to the receptor D72. The energetic effect 

resulting from the substitution of receptor D72 by alanine is greater than from an analogous 

replacement of IL-4 R88. Since those residues were not demonstrated to take part in other 

contacts, it is likely that the higher effect in the receptor alanine variant represents the cooperative 

interactions within IL-4BP cluster II where D72 is localized. Mutations of residues from the 

periphery of IL-4 clusters I and II indicated modest contributions of the original side chains to the 

binding. Agreeably, the conversion to alanine of IL-4 residues R53 and Y56, which are parts 

from the shell of cluster II, was followed by 36- and 8-fold reduction in binding affinity. 

Similarly, the mutagenesis analysis of IL-4BP amino acids, which surround the main 

determinants, indicated that their side chains have only indirect but not main functions for the 

interaction.  

The results from substitutions performed in the corresponding clusters III of IL-4 and IL-4BP 

revealed that the residues from the both sides of the interface are important for the association 
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phase rather than to contribute significantly to the stability of the complex. Thus, comparison 

between the energetic effects of mutations introduced in the analogous functional epitopes of IL-

4 and IL-4BP demonstrates a striking complementarity: energetically critical and unimportant 

regions on one molecule match those on the other (Figures 4.4 and 4.6). As a result, the two 

proteins are able to interact with high affinity and specificity and to form a stable complex 

through relatively small functional epitopes. 
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Figure 4.6: The functional epitope of IL-4. Residues are color-coded according to the loss of binding free energy 

upon site directed mutagenesis. Data from Wang et al., 1997 is taken. 

              

 

Additivity analysis shows that summation of the disruptive effects of the alanine mutations of 

amino acids present in the IL-4BP functional epitope produces a value in excess of 26 kcal/mol. 

By comparison, for the mutations performed within the IL-4 functional epitope this value counts 

for over 15.5 kcal/mol. The cumulative loss of binding free energy for IL-4 might be slightly 

higher than the value mentioned above, since data for IL-4 variant E9A is not available and 

therefore the contribution of variant E9Q was used in this calculation (Wang et al., 1997). The 

summations of the energetic effects seen for IL-4 and IL-4BP mutant forms, respectively exceed 

the total change in binding free energy for the interaction of the wild-type ligand and receptor 

(13.8 kcal/mol). Based on this fact, it was assumed that the individual mutations in both proteins 

are not completely independent. However, the cumulative loss of binding free energy estimated 
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for IL-4BP certainly exceeds a lot this for IL-4. This difference cannot be explained with the 

implication of more main-chain interactions from one side of the interface than from the other, 

because both proteins, IL-4 and IL-4BP, were shown to build contacts mainly through side chains 

(Hage, 1999). The substantially greater cumulative loss of binding free energy for the receptor 

molecule is consistent with the findings that some of the residues within the functional epitope of 

IL-4BP are involved in cooperative interactions. It seems that the main functional side chains in 

IL-4 act in a more independent way and if cooperative effects within the epitope exist, they are of 

minor importance. In part, this probably reflects the rigidity of secondary structural scaffolds on 

which the complementary epitopes are presented: the major binding determinants from IL-4 are 

localized on helices whereas those of IL-4BP are displayed from loops.  

 

 

4.6 Comparison of the IL-4BP Functional Epitope to Other Cytokine 
Receptors  

 

Structurally the human IL-4BP is similar to the extracellular domains of other type I cytokine 

receptors that interact with short or long chain helical cytokines (Hage et al., 1999). Based on the 

structural homology and the established pattern of interaction between hGH and hGHbp 

(Clackson & Wells, 1995), hydrophobic contacts were suggested to dominate in the complexes of 

four-helix bundle cytokines (Kossiakoff & De Voss, 1999). However, the present results put 

together with the mutational analysis of IL-4 and the structure of IL-4/IL-4BP complex indicate 

that this is not universally the case, since within the epitopes of both the ligand and the receptor, a 

mixture of charged, polar, and hydrophobic side chains has been identified.  

In contrast to IL-4BP, the functional epitope of hGHbp is represented by a compact patch in the 

center of the contact region in which the hydrophobic residues form a core flanked by charged 

groups. Two tryptophans of the core (W104 and W169), constituting a “hot spot” for the 

interaction with hGH, were shown to account for the majority of the binding free energy. A 

structure-based sequence alignment reveals that IL-4BP Y127 is the direct homologue of W169 

in hGHbp (Figure 4.7). Furthermore, M150 in EPB (Middletone et al., 1999) and V230 in gp130 

(Horsten et al, 1997; Bravo et al, 1998), which superimpose to the same position, are important 

binding determinants for the interactions with their corresponding ligands. Similar to hGHbp 

W169, V230 from gp130 and M150 from EPB are parts of the hydrophobic surface forming the 

functional epitopes of those receptors. Although reduction in binding affinity was seen when 

Y127 in IL-4BP was substituted by alanine, the effect indicates rather supporting than major 

functions of this residue in binding.  
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The other major binding determinant of hGHbp, W104, according to the sequence alignment 

corresponds directly to S70 of IL-4BP (Figure 4.7). Mutational analysis clearly demonstrated that 

the side chain of S70 has no functional importance for the interaction with IL-4. However, the 

same receptor loop (L3) contains the major binding determinant D72 from the second binding 

cluster of IL-4BP that is involved in tight interaction with IL-4 R88. It approximately resembles 

not only W104 of hGHbp, but also F93 of EPB, which is a critical determinant of erythropoietin 

binding (Barbone et al, 1997). Likewise, the position of IL-4BP D72 correlates to Y172 of 

GCSF-R that has been suggested to take part in functionally very important hydrogen bonds to 

residues from the ligand (Layton et al, 1997; Aritomi et al, 1999). Thus, it seems that the 

presence of residues critical for binding in loop L3 might be a common feature of class I cytokine 

receptors. 
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Figure 4.7: Structure-based sequence alignment of different extracellular domains of cytokine receptors (IL-4BP, 

hGHbp, EBP, and gp130). Amino acid sequences are given in one letter code; deletions are marked “-“, sequence 

numbering and secondary structure designations are given for IL-4BP. β strands and α/310 helices are depicted by 

black and red boxes, respectively. A gray background indicates structural superposition (Hage et al., 1999).   

              

 

In accordance with the sequence alignment, no important side chains of hGHpb and EPB 

correspond to IL-4BP Y183. Nevertheless, the structurally guided mutagenesis of IL-4BP 

residues revealed that Y183 is the main binding component of cluster I engaged in interaction 
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with the ligand. Comparison with GCSF-R shows that within the same receptor loop where IL-

4BP Y183 is localized (L6), is positioned residue R287, which obtained the greatest effect on 

binding after alanine substitution (Layton et al., 1997). Another residue Y13, which is also 

present in the first contact cluster of IL-4BP has as a structural homologue R43 from hGHbp. 

Structurally Y13 is a part from the hydrophobic shell surrounding the main binding determinant 

Y183 of IL-4BP and in like manner L43 is a peripheral element from the functional epitope of 

hGHbp. Agreeably, both side chains are characterized by modest effects on binding, when 

replaced in a structurally non-disruptive way.  

The aspartic acid at position 67 from the third contact cluster of IL-4BP appears to be 

homologous to D89 in EBP that has been implicated in contacts to EPO at site 2 (Syed et al., 

1998). Although data from mutagenesis of EPB D89 currently is not available, generally it is 

known that the interactions between EPB and EPO at site 2 are less extensive than at site 1. 

Similarly, the present analysis indicates that the residues within cluster III of IL-4BP provide 

lesser contribution to the stability of the complex with IL-4. The other aspartic acid present in the 

same cluster of IL-4BP D125 resembles D164 in hGHbp. Substitution by alanine of both side 

chains was followed by relatively small effects on binding affinity (Clackson et al., 1998). 

The functions in binding of the hydrophobic sequence localized within loop L2 and comprising 

L39, F41, L42, and L43 is unique for the IL-4/IL-4BP receptor complex. This sequence 

represents the main part of the hydrophobic shell in cluster II, which is completed by V69 from 

loop L3. According to the structural alignment, IL-4BP V69 superimposes I103 from hGHbp and 

L171 from GCSF-R. The effects on binding affinity observed after the hydrophobic residues at 

this position were mutated to alanine suggest that in all receptors they have indirect functional 

contribution to the binding (Clackson & Wells, 1995; Layton et al., 1997). 

In summary, the functional epitope of IL-4BP significantly differs from other structurally well-

characterized cytokine receptors, such as hGHbp and EBP, for which the majority of binding 

energy is attributed to a few hydrophobic residues. In contrast, both the present study and the 

mutational analysis of IL-4 indicate that the critical contacts in the IL-4/IL-4BP complex are 

provided by polar and charged residues. Correspondingly, the crystal structure of IL-4/IL-4BP 

complex revealed that the relative position of IL-4BP is remarkably altered compared to hGHbp 

(Hage et al., 1999). Thus, both the spatial orientation of IL-4 and IL-4BP in the complex and the 

functional properties of the contact establish novel features different from the binding in the 

homodimeric hGH receptor complex. The molecular arrangement of GCSF and its receptor was 

shown to be similar to that of IL-4/IL-4BP complex (Aritomi et al., 1999). Furthermore, the 

distribution of hydrophobic and polar contacts found in the two complexes is comparable. The 

importance of charged residues and polar contacts was demonstrated also for the interaction 

 133



  __________________________________________________________________4. Discussion 

between p35 and p40, the two subunits of IL-12, which is a heterodimeric cytokine similar to the 

class I cytokine-receptor complexes in its overall architecture (Yoon et al., 2000). Based on these 

data, two distinct models of interactions seem to exist for the binding between cytokines and their 

receptors. In the first case, the interfaces are dominated by hydrophobic residues, as it has been 

established for the receptor systems of hGH and EPO. In the second, charged and polar contacts 

are dominating, while the hydrophobic have only indirect contribution to the binding, as it was 

shown for the complexes of IL-4, GCSF and the two subunits of IL-12. Moreover, the binding 

epitope of IL-4BP is further distinguished from those receptors by its unique mosaic-like 

topography consisting of three discrete contact clusters. 

 134



 __________________________________________________________________5. Summary 

5. Summary 
 

 

The cytokine IL-4 is a basic regulator of immune responses that plays a pivotal role in the 

pathophysiology of allergic diseases. Its effects depend upon binding to and signaling through a 

receptor complex composed of the IL-4Rα chain and the common gamma chain (γ ). A first and 

crucial event in receptor activation is the interaction between IL-4Rα chain and IL-4, which is 

characterized by high affinity (K  ≈ 100 pM) and specificity. Signal transduction pathways are 

mediated after the subsequent recruitment of γ . Therefore the IL-4 receptor complex is seen as a 

promising therapeutic target for treatment of allergic disorders.  

c

d

c

The aim of the present study was to define the functional epitope of IL-4BP that is engaged in the 

high-affinity interaction with IL-4. Side chains of IL-4BP amino acids, implicated in contacts to 

the ligand, were analyzed systematically by the means of site-directed mutagenesis. In a first step, 

all residues of interest were replaced by alanine. To verify whether the observed effects in the 

alanine variants were functional or structural, in a few cases, the original amino acids were 

further substituted by structurally similar residues. Moreover, double mutants were constructed 

with the purpose to examine cooperative and additive interactions between residues within the 

functional epitope of IL-4BP. All IL-4BP mutant variants were expressed in an eukaryotic 

expression system (Sf9 insect cells). Variants, which retained relatively high binding affinity to 

the ligand, were successfully purified by IL-4 affinity chromatography. An alternative 

purification procedure using a monoclonal antibody against IL-4BP was established for low-

affinity variants. The effects on binding kinetics, due to the introduced mutations, were measured 

employing biosensor technology. 

The mutagenesis analysis revealed that IL-4BP takes part in the high-affinity interaction with IL-

4 through a relatively small functional epitope. As major binding determinants were identified the 

side chains of two amino acids localized within contact clusters I and II, respectively. The 

residues of six additional amino acids contribute to the binding to a minor extent. In contrast to 

other cytokine receptors, in which the major contributions to binding are from hydrophobic side 

chains, the IL-4BP functional epitope is assembled from charged, polar, and hydrophobic 

residues. Furthermore, the critical contacts for binding to IL-4 are provided by charged and polar 

residues, while the hydrophobic side chains have only supporting functions in the interaction. The 

energetic segregation observed within the IL-4BP binding interface is highly relevant and 

complementary to the already described IL-4 functional epitope. 

The mosaic design of the binding epitope proposed by the crystal structure of the IL-4/IL-4BP 

complex was confirmed in this study. The three contact clusters were demonstrated to act in an 
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independent manner. However, cooperative interactions between residues present in one and the 

same cluster were observed. Moreover, the clusters could be distinguished according to their 

apparent contribution and functional importance for the binding. Estimated from the loss of free 

binding energy in the affected mutant variants, contact cluster II has the greatest contribution to 

binding followed by cluster I and cluster III, respectively. Both clusters I and II appear to have 

important functions in stabilizing the complex between IL-4 and its receptor, since mutations 

introduced in those assembles resulted in considerably affected binding properties. In contrast, 

substitutions of residues from cluster III caused merely small effects on binding affinity, 

indicating that the cluster plays a role mainly in electrostatic steering in order to accelerate 

complex formation. 

The mutational analysis presented in this thesis, together with the already established IL-4 

functional epitope and the structure of the intermediate complex between IL-4 and IL-4BP, 

improves the understanding of the molecular mechanisms of receptor binding and activation for 

members of the cytokine receptor family. Detailed knowledge about the molecular recognition 

between cytokines and their receptors is not only of theoretical interest, but is also important as a 

base for drug design.  
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7. Appendices 
 

 
Appendix 1 Kinetic and equilibrium theory for the evolution of data 

obtained from BIAcore experiments 

 

For the association of an analyte A with an immobilized ligand B 

 

 

a kinetic of first order is assumed: 

 

 
   k : association rate constant a

d: 

 

For the starting concentration of free B,  is valid: 

          ( 3 ) 

 

Equation ( 2 ) can therefore be rearranged to give: 

      ( 4 ) 

 

If one equates [  with the maximal signal of the BIAcore experiment R ,  with the 

actually measured signal R and  with the used concentration of analyte C, equation ( 4 ) can 

be written as: 

 

      ( 5 ) 
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Equation ( 5 ) is the equation of a straight line with k  as gradient. s

 

          ( 6 ) 

s s

d

By measurement at different analyte concentrations C through this graphical representation k  as 

well as k  can be determined. In practice, the determination of k  by graphical representa-tion is 

not very accurate, because in general is valid: 

a

d

 

  

 

d

 

For the dissociation a time law of first order is assumed: 

  

 

This can be transformed into 

  

 

A graphical representation of ln  against  results in a straight line with k  as 

gradient. 

das k    C  x k  k +=

The graphical representation of k  against C results also in a straight line with k  as gradient and 

the k  as ordinate segment. 

 

d

da k    C  x k >>

The determination of k  therefore is achieved according to another method. 

 
)t(t k

0t
0de x R  R −−=

 

)t(t x k    )/R(R ln 0dt0 −=

)/R(R t0 )t(t 0− d
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Appendix 2  Vector pRPR9IL-4FD 
(with IL-4BP cDNA 1278-1970 bp) 

 

 
5’TTCTCATGTTTGACAGCTTATCATCGATTTTATGAATATACAAATAATTGGAGCCAACC  3’ 

5’GCAGGTGATGATTATCAGCCAGCAGAGAATTAAGGAAAACAGACAGGTTTATTGAGCGCT 3´ 
 120 

T
 180 

5’CCATTTACTATGTTATGTTCTGAGGGGAGTGAAAATTCCCCTAATTCGATGAAGATTCTT 3´ 

5’GCTCAATTGTTATCAGCTATGCGCCGACCAGAACACCTTGCCGATCAGCCAAACGTCTCT 3´ 
 300 

5’TCAGGCCACTGACTAGCGATAACTTTCCCCACAACGGAACAACTCTCATTGCATGGGAT  3´ 
 360 

5’ATTGGGTACTGTGGGTTTAGTGGTTGTAAAAACACCTGACCGCTATCCCTGATCAGTTTC 3´ 
 420 

C
 480 

5’TGCTCAGGGTCAACGAGAATTAACATTCCGTCAGGAAAGCTTGGCTTGGAGCCTGTTGGT 3´ 

5’GCGGTCATGGAATTACCTTCAACCTCAAGCCAGAATGCAGAATCACTGGCTTTTTTGGTT 3´ 
 600 

5’GTGCTTACCCATCTCTCCGCATCACCTTTGGTAAAGGTTCTAAGCTTAGGTGAGAACAT  3´ 
 660 

5’CCTGCCTGAACATGAGAAAAAACAGGGTACTCATACTCACTTCTAAGTGACGGCTGCATA 3´ 
 720 

G
 780 

5’CTAACTTTGAGAATTTTTGTAAGCAATGCGGCGTTATAAGCATTTAATGCATTGATGCCA 3´ 

5’TTAAATAAAGCACCAACGCCTGACTGCCCCATCCCCATCTTGTCTGCGACAGATTCCTGG 3´ 
 900 

5’GATAAGCCAAGTTCATTTTTCTTTTTTTCATAAATTGCTTTAAGGCGACGTGCGTCCTC  3´ 
 960 

5’AGCTGCTCTTGTGTTAATGGTTTCTTTTTTGTGCTCATACGTTAAATCTATCACCGCAAG 3´ 
 1020 

C
 1080 

5’ATGTACTAAGGAGGTTGTATGGAACAACGCATAACCCTGAAAGATTATGCAATGCGCTTT 3´ 

5’GGGCAAACCAAGACAGCTAAAGATCAAGAATGTTGATCTTCAGTGTTTCGCCTGTCTGTT 3´ 
 1200 

5’TTGCACCGGAATTTTTGAGTTCTGCCTCGAGCTGGTATAAGTTTTATTGCTTATAGCAA  3´ 
 1260 

5’AAGGTTGAGGTGATTTTATGAAAAAGAATATCGCATTTCTTCTTGCATCTATGTTCGTTT 3´ 
 1320 

G
 1380 

5’ACTACATGAGCATCTCTACTTGCGAGTGGAAGATGAATGGTCCCACCAATTGCAGCACCG 3´ 

T
   1 60 

5’TATCTTTCCCTTTATTTTTGCTGCGGTAAGTCGCATAAAAACCATTCTTCATAATTCAA  3´ 

 240 

C

5’TTGAAGGTAAACTCATCACCCCCAAGTCTGGCTATGCAGAAATCACCTGGCTCAACAGC  3´ 

 540 

C

5’CTAACCGCTTCATACATCTCGTAGATTTCTCTGGCGATTGAAGGGCTAAATTCTTCAAC  3´ 

 840 

A

5’GGATAAATATCTAACACCGTGCGTGTTGACTATTTTACCTCTGGCGGTGATAATGGTTG  3´ 

 1140 

T

5’TTTCTATTGCTACAAATGCCTATGCATTTAAGGTCTTGCAGGAGCCCACCTGCGTCTCC  3´ 

 1440 

5’AGCTCCGCCTGTTGTACCAGCTGGTTTTTCTGCTCTCCGAAGCCCACACGTGTATCCCT  3´ G
 1500 

5’AGAACAACGGAGGCGCGGGGTGCGTGTGCCACCTGCTCATGGATGACGTGGTCAGTGCG  3´ G
 1560 

5’ATAACTATACACTGGACCTGTGGGCTGGGCAGCAGCTGCTGTGGAAGGGCTCCTTCAAG  3´ C
 1620 

5’CCAGCGAGCATGTGAAACCCAGGGCCCCAGGAAACCTGACAGTTCACACCAATGTCTCC  3´ G
 1680 
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5’ACACTCTGCTGCTGACCTGGAGCAACCCGTATCCCCCTGACAATTACCTGTATAATCATC 3´ 
 1740 

5’TCACCTATGCAGTCAACATTTGGAGTGAAAACGACCCGGCAGATTTCAGAATCTATAACG 3´ 
 1800 

5’TGACCTACCTAGAACCCTCCCTCCGCATCGCAGCCAGCACCCTGAAGTCTGGGATTTCC  3´ T
 1860 

5’ACAGGGCACGGGTGAGGGCCTGGGCTCAGGCCTATAACACCACCTGGAGTGAGTGGAGC  3´ C
 1920 

5’CCAGCACCAAGTGGCACAACTCCTACAGGGAGCCCTTCGAGCAGCACTAGGATCCCGCAA 3´ 
 BamHI 1980 

5’AAGCGGCCTTTGACTCCCTGCAAGCCTCAGCGACCGAATATATCGGTTATGCGTGGGCGA 3´ 
 2040 

5’TGGTTGTTGTCATTGTCGGCGCAACTATCGGTATCAAGCTGTTTAAGAAATTCACCTCG  3´ A
 2100 

5’AAGCAAGCTGATAAACCGATACAATTAAAGGCTCCTTTTGGAGCCTTTTTTTTTGGAGAT 3´ 
 2160 

5’TTTCAACGTGAAAAAATTATTATTCGCAATTCCTTTAGTTGTTCCTTTCTATTCTCACTC 3´ 
 2220 

5’CGCTGAAACTGTTGAAAGTTGTTTAGCAAAACCTCATACAGAAAATTCATTTACTAACG  3´ T
 2280 

5’CTGGAAAGACGACAAAACTTTAGATCCGGCCAAGCTTCGTCGACCCTGCCTCGCGCGTT  3´ T
 2340 

5’CGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCT 3´ 
 2400 

5’GTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTG 3´ 
 2460 

5’TCGGGGCGCAGCCATGACCCAGTCACGTAGCGATAGCGGAGTGTATACTGGCTTAACTA  3´ T
 2520 

5’GCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAG  3´ A
 2580 

5’TGCGTAAGGAGAAAATACCGCATCAGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTG 3´ 
 2640 

5’CGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTA 3´ 
 2700 

5’TCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGC  3´ C
 2760 

5’AGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAG 3´ 
 2820 

5’CATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATAC 3´ 
 2880 

5’CAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTAC  3´ C
 2940 

5’GGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTG  3´ T
 3000 

5’AGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCC 3´ 
 3060 

5’GTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGA 3´ 
 3120 

5’CACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGT  3´ A
 3180 

5’GGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGT  3´ A
 3240 

5’TTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGA 3´ 
 3300 

5’TCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACG 3´ 
 3360 

5’CGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCA  3´ G
 3420 

5’TGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACC 3´ 
 3480 

5’TAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACT 3´ 
 3540 
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5’TGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATT  3´ T
 3600 

5’CGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTA 3´ 
 3660 

5’CCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTA 3´ 
 3720 

5’TCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATC  3´ C
 3780 

5’GCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAA  3´ T
 3840 

5’AGTTTGCGCAACGTTGTTGCCATTGCTGCAGGCATCGTGGTGTCACGCTCGTCGTTTGGT 3´ 
 3900 

5’ATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTT  3´ G
 3960 

5’TGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGC  3´ A
 4020 

5’GTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGT  3´ A
 4080 

5’TTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACC  3´ G
 4140 

5’CTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTT 3´ 
 4200 

5’ACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGG  3´ A
 4260 

5’AGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCG  3´ G
 4320 

5’CGACCGAGTTGCTCTTGCCCGGCGTCAACACGGGATAATACCGCGCCACATAGCAGAAC  3´ T
 4380 

5’ATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAG  3´ C
 4440 

5’ATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAA  3´ A
 4500 

5’CAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCAT  3´ T
 4560 

5’ATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTTCAAGA  3´ A
 4620 
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 Appendix 3 A Part of the Expression Vector pAcGP67B 
(with IL-4BP cDNA 4267-4887 bp) 

 

 
5´GATAACCATCTCGCAAATAAATAAGTATTTTACTGTTTTCGTAACAGTTTTGTAATAAA  3´ A
  4020              4080 

5´AAACCTATAAATATTCCGGATTATTCATACCGTCCCACCATCGGGCGCGGATCTATGCT  3´ A
              4140 

5´CTAGTAAATCAGTCACACCAAGGCTTCAATAAGGAACACACAAGCAAGATGGTAAGCGC  3´ T
              4200 

5´ATTGTTTTATATGTGCTTTTGGCGGCGGCGGCGCATTCTGCCTTTGCGGCGGATCTTGG  3´ A
              4260 

5´TCCATGAAGGTCTTGCAGGAGCCCACCTGCGTCTCCGACTACATGAGCATCTCTACTTG  3´ C
              4320 

5´GAGTGGAAGATGAATGGTCCCACCAATTGCAGCACCGAGCTCCGCCTGTTGTACCAGCTG 3´ 
              4380 

5´GTTTTTCTGCTCTCCGAAGCCCACACGTGTATCCCTGAGAACAACGGAGGCGCGGGGTG  3´ C
              4440 

5´GTGTGCCACCTGCTCATGGATGACGTGGTCAGTGCGGATAACTATACACTGGACCTGTGG 3´ 
              4500 

5´GCTGGGCAGCAGCTGCTGTGGAAGGGCTCCTTCAAGCCCAGCGAGCATGTGAAACCCAGG 3´ 
              4560 

5´GCCCCAGGAAACCTGACAGTTCACACCAATGTCTCCGACACTCTGCTGCTGACCTGGAGC 3´ 
              4620 

5´AACCCGTATCCCCCTGACAATTACCTGTATAATCATCTCACCTATGCAGTCAACATTTG  3´ G
              4680 

5´AGTGAAAACGACCCGGCAGATTTCAGAATCTATAACGTGACCTACCTAGAACCCTCCCT  3´ C
              4740 

5´CGCATCGCAGCCAGCACCCTGAAGTCTGGGATTTCCTACAGGGCACGGGTGAGGGCCTG  3´ G
              4800 

5´GCTCAGGCCTATAACACCACCTGGAGTGAGTGGAGCCCCAGCACCAAGTGGCACAACTCC 3´ 
              4860 

5´TACAGGGAGCCCTTCGAGCAGCACTAGGATCCCGGGCCATGGGAATTCCGGAGCGGCCG  3´ C
              4920 

5´TGCAGATCTGATCCTTTCCTGGGACCCGGCAAGAACCAAAAACTCACTCTCTTCAAGGA  3´ A
              4980 

5´ATCCGTAATGTTAAACCCGACACGATGAAGCTTGTCGTTGGATGGAAAGGAAAAGAGTT  3´ C
              5060 

5´TACAGGGAAACTTGGACCCGCTTCATGGAAGACAGCTTCCCCATTGTTAACGACCAAGA  3´ A
              5120 

5´GTGATGGATGTTTTCCTTGTTGTCAACATGCGTCCCACTAGACCCAACCGTTGTTACAA  3´ A
              5180 

5´GCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCA 3´ 
              5240 
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Appendix 4  Sequence of the Expression Vector R pRC109 
(with IL-4 cDNA 1281-1673 bp) 

 

 
5´TTCTCATGTTTGACAGCTTATCATCGATTTTATGAATATACAAATAATTGGAGCCAACC  3´ 

1  60 

5´GCAGGTGATGATTATCAGCCAGCAGAGAATTAAGGAAAACAGACAGGTTTATTGAGCGCT 3´ 
120 

5´TATCTTTCCCTTTATTTTTGCTGCGGTAAGTCGCATAAAAACCATTCTTCATAATTCAAT 3´ 
180 

5´CCATTTACTATGTTATGTTCTGAGGGGAGTGAAAATTCCCCTAATTCGATGAAGATTCT  3´ 
240 

5´GCTCAATTGTTATCAGCTATGCGCCGACCAGAACACCTTGCCGATCAGCCAAACGTCTCT 3´ 
300 

5´TCAGGCCACTGACTAGCGATAACTTTCCCCACAACGGAACAACTCTCATTGCATGGGATC 3´ 
360 

5´ATTGGGTACTGTGGGTTTAGTGGTTGTAAAAACACCTGACCGCTATCCCTGATCAGTTT  3´ 
420 

5´TTGAAGGTAAACTCATCACCCCCAAGTCTGGCTATGCAGAAATCACCTGGCTCAACAGCC 3´ 
480 

5´TGCTCAGGGTCAACGAGAATTAACATTCCGTCAGGAAAGCTTGGCTTGGAGCCTGTTGGT 3´ 
540 

5´GCGGTCATGGAATTACCTTCAACCTCAAGCCAGAATGCAGAATCACTGGCTTTTTTGGT  3´ 
600 

5´GTGCTTACCCATCTCTCCGCATCACCTTTGGTAAAGGTTCTAAGCTTAGGTGAGAACATC 3´ 
660 

5´CCTGCCTGAACATGAGAAAAAACAGGGTACTCATACTCACTTCTAAGTGACGGCTGCATA 3´ 
720 

5´CTAACCGCTTCATACATCTCGTAGATTTCTCTGGCGATTGAAGGGCTAAATTCTTCAAC  3´ 
780 

5´CTAACTTTGAGAATTTTTGTAAGCAATGCGGCGTTATAAGCATTTAATGCATTGATGCCA 3´ 
840 

5´TTAAATAAAGCACCAACGCCTGACTGCCCCATCCCCATCTTGTCTGCGACAGATTCCTGG 3´ 
900 

5´GATAAGCCAAGTTCATTTTTCTTTTTTTCATAAATTGCTTTAAGGCGACGTGCGTCCTC  3´ 
960 

5´AGCTGCTCTTGTGTTAATGGTTTCTTTTTTGTGCTCATACGTTAAATCTATCACCGCAAG 3´ 
1020 

5´GGATAAATATCTAACACCGTGCGTGTTGACTATTTTACCTCTGGCGGTGATAATGGTTGC 3´ 
1080 

5´ATGTACTAAGGAGGTTGTATGGAACAACGCATAACCCTGAAAGATTATGCAATGCGCTT  3´ 
1140 

5´GGGCAAACCAAGACAGCTAAAGATCAAGAATGTTGATCTTCAGTGTTTCGCCTGTCTGTT 3´ 
1200 

5´TTGCACCGGAATTTTTGAGTTCTGCCTCGAGTAATTTACCAACACTACTACGTTTTAACT 3´ 
1260 

5´GAAACAAACTGGAGACTGCCATGCACAAGTGCGATATCACCTTACAGGAGATCATCAAA  3´ 
1320 

5´CTTTGAACAGCCTCACAGAGCAGAAGACTCTGTGCACCGAGTTGACCGTAACAGACATCT 3´ 
1380 

5´TTGCTGCCTCCAAGAACACAACTGAGAAGGAAACCTTCTGCAGGGCTGCGACTGTGCTCC 3´ 
1440 

5´GGCAGTTCTACAGCCACCATGAGAAGGACACTCGCTGCCTGGGTGCGACTGCACAGCAG  3´ 
1500 

5´TCCACAGGCACAAGCAGCTGATCCGATTCCTGAAACGGCTCGACAGGAACCTCTGGGGCC 3´ 
1560 

5´TGGCGGGCTTGAATTCCTGTCCTGTGAAGGAAGCCAACCAGAGTACGTTGGAAAACTTCT 3´ 
1620 

5´TGGAAAGGCTAAAGACGATCATGAGAGAGAAATATTCAAAGTGTTCGAGCTGATAAGGA  3´ 
1680 

TS

T

T

C

T

G

A

T

A

T

T
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5´CCCGCAAAAGCGGCCTTTGACTCCCTGCAAGCCTCAGCGACCGAATATATCGGTTATGCG 3´ 
1740 

5´TGGGCGATGGTTGTTGTCATTGTCGGCGCAACTATCGGTATCAAGCTGTTTAAGAAATTC 3´ 
1800 

5´ACCTCGAAAGCAAGCTGATAAACCGATACAATTAAAGGCTCCTTTTGGAGCCTTTTTTT  3´ 
1860 

5´TGGAGATTTTCAACGTGAAAAAATTATTATTCGCAATTCCTTTAGTTGTTCCTTTCTATT 3´ 
1920 

5´CTCACTCCGCTGAAACTGTTGAAAGTTGTTTAGCAAAACCTCATACAGAAAATTCATTTA 3´ 
1980 

5´CTAACGTCTGGAAAGACGACAAAACTTTAGATCCGGCCAAGCTTCGTCGACCCTGCCTC  3´ 
2040 

5´CGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAG 3´ 
2100 

5´CTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTG 3´ 
2160 

5´GCGGGTGTCGGGGCGCAGCCATGACCCAGTCACGTAGCGATAGCGGAGTGTATACTGGC  3´ 
2220 

5´TAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACC 3´ 
2280 

5´GCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCTCTTCCGCTTCCTCGCTCACTGA 3´ 
2340 

5´CTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAA  3´ 
2400 

5´ACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCA 3´ 
2460 

5´AAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCC 3´ 
2520 

5´TGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTAT  3´ 
2580 

5´AAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCC 3´ 
2640 

5´GCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTC 3´ 
2700 

5´ACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACG  3´ 
2760 

5´ACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCC 3´ 
2820 

5´GGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAG 3´ 
2880 

5´GTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAA  3´ 
2940 

5´GACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAG 3´ 
3000 

5´CTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCA 3´ 
3060 

5´GATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTG  3´ 
3120 

5´CGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGAT 3´ 
3180 

5´CTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGA 3´ 
3240 

5´GTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCT  3´ 
3300 

5´TCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGA 3´ 
3360 

5´GGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCC 3´ 
3420 

5´AGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAA  3´ 
3480 

5´TTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCC 3´ 
3540 

T

G

T

T

A

A

G

A

G

C
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5´AGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTGCAGGCATCGTGGTGTCACGCTCGTC 3´ 
3600 

5´GTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCC 3´ 
3660 

5´CATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGT  3´ 
3720 
T

5´GGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCC 3´ 
3780 

5´ATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTG 3´ 
3840 

5´TATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAACACGGGATAATACCGCGCCACATAG 3´ 
3900 

5´CAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGAT 3´ 
3960 

5´CTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGC 3´ 
4020 

5´ATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAA 3´ 
4080 

5´AAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTA 3´ 
4140 

5´TTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAA 3´ 
4200 

5´AAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGA 3´ 
4260 

5´AACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCT 3´ 
4320 

5´TCAAGAA 3´ 
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