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Abstract
In this work, we consider impulsive dynamical systems evolving on an infinite-
dimensional space and subjected to external perturbations. We look for stability
conditions that guarantee the input-to-state stability for such systems. Our new dwell-
time conditions allow the situation, where both continuous and discrete dynamics
can be unstable simultaneously. Lyapunov like methods are developed for this pur-
pose. Illustrative finite and infinite dimensional examples are provided to demonstrate
the application of the main results. These examples cannot be treated by any other
published approach and demonstrate the effectiveness of our results.

Keywords Stability · Robustness · Impulsive systems · Infinite-dimensional
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1 Introduction

Impulsive dynamical systems provide a mathematical modeling framework for prac-
tical processes where a combination of continuous and discrete dynamics takes place.
Such a hybrid dynamics appears inmany applications, for example, in case of mechan-
ical collisions or in control systems involving a combination of analog and digital
controllers. As well in pandemic systems, a mass vaccination can be modeled as an
impulsive action meaning a (nearly instantaneous) transition of a large amount of
susceptible individuals to become immune.
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A combination of discrete and continuous dynamics leads to a higher complexity in
the behavior of solutions comparedwith a purely discrete or purely continuous system.
Such unexpected effects as instability [27] or chaos [14] can arise. In particular, such
properties as stability and robustness are more difficult to investigate, especially in
case of nonlinear systems.

Stability in the sense of Lyapunov of nonlinear impulsive systems has a long history
of investigations, see [17,23]. Later, more general stability notions were developed for
hybrid systems, which include impulsive ones as a particular case, see [12,28]. These
notions use the generalized (hybrid) time concept, which allows to develop rather
general results for a wide class of hybrid systems, including impulsive, switched and
sampled data systems.

In case of systems having input signals, the notion of input-to-state stability (ISS)
was introduced in [26] and was found very fruitful in many applications [16]. This
framework was also successfully used for studying robust stability of impulsive sys-
tems, see [4,6,13,18,22]. In particular, [6] derives dwell-time conditions to establish
the ISS property for nonlinear impulsive systems on infinite dimensional state spaces.
This result is based on certain stability assumptions imposed either on the continuous
or on the discrete dynamics. The ISS is assured by the stability property of either of both
dynamics using a suitable dwell-time condition. Stability of interconnected impulsive
systems is then studied in the case, when the ISS-Lyapunov functions are known for
the subsystems, which leads to a combination of the dwell-time and small-gain con-
ditions. The ISS property of impulsive systems where impulsive actions depend on
time was studied in [4], where new and rather general dwell-time conditions were
developed.

A small-gain theorem for n ≥ 2 interconnected hybrid systems was established
in [22] for the case where not all subsystems are assumed to be ISS, which extends
the results of [6]. Similar results for nonlinear interconnected impulsive systems were
developed in [8] for the case of absent external perturbations. This work derives suf-
ficient stability conditions for interconnected systems by means of vector Lyapunov
functions, which leads to conditions similar to the small-gain ones.

In most of works (e.g., in those mentioned above) studying stability of impulsive
systems bymeans of Lyapunovmethods, it is assumed that the discrete and continuous
dynamics share a commonLyapunov functionV which decays either on jumps or along
the continuous flow. A dwell-time condition allows to compensate the destabilizing
effect of one type of dynamics by the stabilizing property of the other one. Certainly,
if V increases in both cases, then the system is unstable. However, in general, it can
happen that the whole system is asymptotically stable even in the case when both
discrete and continuous dynamics are unstable. Identification of such systems needs
a more refined consideration of the interaction between both dynamics types. It is
expected that stability conditions become more involved in this case. It should be
noted that there are not many stability results in the literature that cover the case of
simultaneous instability of discrete and continuous dynamics: [1,9–11,19,24], see also
[3] and [2] for the linear case. However, these results cannot be extended directly to
the case of nonlinear infinite-dimensional systems with inputs, also we note that only
local stability was studied in the first group of these papers.
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Vector Lyapunov functions were used in [19] to establish stability results, where
second-order derivatives of Lyapunov functions along solutions enter to the stability
conditions. These results were generalized in [9,10], where higher-order derivatives
of Lyapunov functions are employed. This approach cannot be used in case of systems
with inputs as one would need to require infinitely smooth disturbances, which is very
restrictive in real applications.

Averaged dwell-time conditions were considered in [1,24] to establish stability
of a linear impulsive system on a Banach space. Based on the identities from the
commutator calculus new comparison theorems, constructions of Lyapunov functions
and conditions for the local asymptotic stability were developed there. In this work,
we are interested in global stability properties for nonlinear systems with inputs.

With an exception of [22], in the most of works devoted to investigations of the ISS-
like properties of hybrid systems, it is assumed that either the continuous or discrete
dynamics satisfies the ISS property. Hence, it is interesting to further develop the direct
Lyapunov method for the case, when both types of dynamics fail to be ISS. Our paper
contributes into this direction, providing a new approach and new stability conditions.

In this work, we improve the results of [9,10] and extend them to the case of ISS for
nonlinear impulsive systems. We derive stability conditions by means of a series of
Lyapunov-like functions. Instead of higher-order derivatives of Lyapunov functions
employed in [9,10], we use an infinite sequence of auxiliary functions to provide
estimates of the dwell-time in order to guarantee the ISS property. The obtained results
are then applied to the studying of the global asymptotic stability of linear impulsive
systems with continuous dynamics governed by a parabolic PDE. The ISS property
is also studied for this type of systems. Moreover, we derive conditions for the ISS
property of nonlinear locally homogeneous finite-dimensional impulsive systems.

The paper consists of six sections. Section 2 introduces the notation and several
auxiliary inequalities used in the paper. The problem statement is described in Sect. 3.
Section 4 contains the main results with their proofs. Application of the results to
the investigation of GAS and ISS properties of linear impulsive systems in infinite-
dimensional spaces and of nonlinear finite-dimensional systems is provided in Sect. 5.
A brief discussion and conclusions are collected in Sect. 6. Proofs of several technical
results are placed in Appendix.

2 Notation and preliminaries

We use the following classes of comparison functions:
K = {γ : R+ → R+ : continuous, strictly increasing and γ (0) = 0},
K∞ = {γ : R+ → R+ : γ ∈ K, γ (s) → ∞ for s → ∞},
L = {γ : R+ → R+ : continuous, strictly decreasing and limt→∞ γ (t) = 0},
KL = {β : R+ × R+ → R+ : continuous β(·, t) ∈ K, β(s, ·) ∈ L}.

By C[0, l] we denote the space of continuous functions, defined on [0, l]
with values in R with norm ‖ f ‖C[0,l] = maxx∈[0,l] | f (x)|, Ck[0, l] denotes
of k-times continuously differentiable functions with the norm ‖ f ‖Ck [0,l] =
maxp=0,...,k maxx∈[0,l] | f (p)(x)|. H0[0, l] = L2[0, l] is the Hilbert space of mea-
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surable square integrable functions with scalar product ( f , g)L2[0,l] =
l∫

0
f (z)g(z) dz.

LetL(L2[0, l]) be the Banach algebra of linear bounded operators defined on L2[0, l].
For M ⊂ R and a Banach space X by L∞(M, X), we denote the space of

mappings f : M → X with the norm ‖ f ‖L∞ = ess supm∈M ‖ f (m)‖X . For
M = Z+:= N ∪ {0}, we write L∞(Z+, X) = l∞(X). By Br (x0), we denote the
open ball of radius r > 0 in X centered at x0.

C1(U ,Rn),U ⊂ R is the set of continuously differentiablemappings f : U → R
n .

C1(Rn) is the space of continuously differentiable functions f : Rn → R
n , and for

f ∈ C1(Rn) by ∂x f (x), we denote the corresponding Jacobi matrix.
For a linear bounded operator A acting on a Banach space, σ(A) denotes the spec-

trum of A and rσ (A) denotes its spectral radius.
R
n×m is the space of n × m-matrices, for m = n the set Rn×n is then a Banach

algebra. We use the norm on R
n×n induced by the Euclidean norm in R

n : ‖A‖ =
sup‖x‖=1 ‖Ax‖ = λ

1/2
max(AT A).

We will use the following well-known inequalities. For any a, b ∈ R+ and � ∈ K
holds

�(a + b) ≤ �(2a) + �(2b); (1)

for p1, p2 ∈ (1,∞) with 1
p1

+ 1
p2

= 1, the Young’s inequality is

xy ≤ x p1

p1
+ y p2

p2
, x ≥ 0, y ≥ 0. (2)

3 Problem statement and related stability notions

We consider dynamical systems with inputs defined similarly to [5,21,26] as follows

Definition 1 Let X be the state space with the norm ‖ · ‖X and U1 ⊂ { f : R → U1}
be the space of input signals normed by ‖ · ‖U1 with values in a nonempty subset U1
of some linear normed space and invariant under the time shifts, that is, if d1 ∈ U1 and
τ ∈ R, then Sτd1 ∈ U1, where Ss : U1 → U1, s ∈ R is the linear operator defined by
Ssu(t) = u(t + s).

The triple Σc = (X ,U1, φc) is called dynamical system with inputs if the mapping
φc : (t, t0, x, d1) 
→ φc(t, t0, x, d1) defined for all (t, t0, x, d1) ∈ [t0, t0 + εt0,x,d1)×
R × X × U1 for some positive εt0,x,d1 and satisfies the following axioms

(Σc1) for t0 ∈ R, x ∈ X , d1 ∈ U1, t ∈ [t0, t0 + εt0,x,d1), the value of φc(t, t0, x, d1)
is well-defined and the mapping t 
→ φc(t, t0, x, d1) is continuous on (t0, t0+εt0,x,d1)

with limt→t0+ φc(t, t0, x, d1) = x ;
(Σc2) φc(t, t, x, d1) = x for any (x, d1) ∈ X × U1, t ∈ R;
(Σc3) for any t0 ∈ R, (t, x, d1) ∈ [t0, t0 + εt0,x,d1) × X × U1 and d̃1 ∈ U1 with

d1(s) = d̃1(s) for s ∈ [t0, t], and it holds that φc(t, t0, x, d1) = φc(t, t0, x, d̃1);
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(Σc4) for any (x, d1) ∈ X × U1 and t ≥ τ ≥ t0 with τ ∈ [t0, t0 + εt0,x,d1),
t ∈ [τ, τ + ετ,φc(τ,t0,x,d1),d1) ∩ [t0, t0 + εt0,x,d1) it holds that

φc(t, t0, x, d1) = φc(t, τ, φc(τ, t0, x, d1), d1),

(Σc5) for any (x, d1) ∈ X × U1 and t ∈ [t0, t0 + εt0,x,d1), it holds that

εt0+τ,x,d1 = εt0,x,Sτ d1,

φc(t + τ, t0 + τ, x, d1) = φc(t, τ, x,Sτd1).

Note that (Σc5) implies that for all t ∈ [τ, τ + ετ,x0,d1), τ ≤ t

φc(t, τ, x, d1) = φc(t − τ, 0, x,Sτd1). (3)

Systems with impulsive actions are defined as follows:

Definition 2 Let E = {τk}∞k=0, τk ∈ R be a strictly increasing time sequence of impul-
sive actions with lim

k→∞ τk = ∞. Let U2 ⊂ { f : Z+ → U2} be the space of input

signals normed by ‖ · ‖U2 and taking values in a nonempty subset U2 of some linear
normed space. Let g : X × U2 → X be a mapping defining impulsive actions and
the mapping φ be defined for all (t, t0, x, d1, d2) ∈ R × R × X × U1 × U2, t ≥ t0.

The following data Σ = (X ,Σc,U2, g, φ, E) defines an impulsive system if
(Σ1) for all (k, x, d1) ∈ Z+ × X × U1 the system Σc satisfies

τp(t0) − t0 < εt0,x,d1 , Tk := τk+1 − τk < ετk ,x,d1

where we denote p(t0) := min{k ∈ Z+ : τk ∈ Et0} with Et0 = [t0,∞) ∩ E ; and
(Σ2) the mapping φ satisfies

φ(t, t0, x, d1, d2) = φc(t, t0, x, d1), for all t ∈ [t0, τp(t0)],
φ(t, t0, x, d1, d2) = φc(t, τk, g(φ(τk, t0, x, d1, d2), d2(k)), d1)

for all t ∈ (τk, τk+1], k ∈ Z+, k ≥ p(t0).

We will denote for short

φ(τ+
k , t0, x, d1, d2) = g(φ(τk, t0, x, d1, d2), d2(k)), k ≥ p(t0), τk ≥ t0

The conditions (Σc1) and (Σ2) imply

lim
t→τk+

φ(t, t0, x, d1, d2) = φ(τ+
k , t0, x, d1, d2),

lim
t→τk−

φ(t, t0, x, d1, d2) = φ(τk, t0, x, d1, d2);
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and (Σc4), (Σc5), (Σ2) imply that for t ≥ τ ≥ t0, (x, d1, d2) ∈ X × U1 × U2, the
following holds:

φ(t, t0, x, d1, d2) = φ(t, τ, φ(τ, t0, d1, d2), d1, d2). (4)

The systemΣc describes the continuous dynamics of the impulsive systemΣ . One
can also consider its discrete dynamics separately as a system Σd defined next

Definition 3 A discrete dynamical system with input Σd = (X , g, φd ,U2) is given
by a normed state space (X , ‖ · ‖X ); a space of input signals U2 ⊂ { f : Z+ → U2}
with norm ‖ · ‖U2 and values in a nonempty subset U2 of a linear normed space; a
mapping g : X × U2 → X ; and a mapping φd : (k, l, x, d2) 
→ φd(k, l, x, d2), for
(k, l, x, d2) ∈ Z+ × Z+ × X × U2, k ≥ l such that

(Σd1) φd(k, k, x, d2) = x , φd(k + 1, l, x, d2) = g(φd(k, l, x, d2), d2(k)) for all
k ≥ l.

Assumption For any τ ≥ 0, there exist ξ, ξτ ∈ K∞ and χτ , χ ∈ K∞ such that for all
(x, d1, d2) ∈ X × U1 × U2, it holds that

‖φc(t, 0, x, d1)‖ ≤ ξτ (‖x‖) + χτ (‖d1‖U1) for all t ∈ [0, τ ] (5)

and

‖g(x, d2)‖ ≤ ξ(‖x‖) + χ(‖d2‖U2). (6)

This assumption is not restrictive; for example, if g is continuous, then (6) is satisfied.
We are interested in the stability properties of the system Σ and its robustness with

respect to the input signals d1 and d2. To this end, we use the notion of input-to-state
stability (ISS). It was originally introduced in [25] for time invariant finite-dimensional
systems. In our case, we adapt it as follows for Σ

Definition 4 For a fixed time sequence E of impulsive actions, the system Σ is called
ISS if there exist βt0 ∈ KL, γt0 ∈ K∞, such that for any initial state x ∈ X , any t ≥ t0
and any (d1, d2) ∈ U1 × U2, it holds that

‖φ(t, t0, x, d1, d2)‖ ≤ βt0(‖x‖, t) + γt0(d), d := ‖d1‖U1 + ‖d2‖U2 . (7)

Next, we introduce a class of functions that we will use as Lyapunov functions to study
the ISS property.

Definition 5 A function V : [t0,∞) × X → R is said to be of class V(T0), where
T0 := [t0,∞) \ E , if it satisfies the following properties:

(1) V is continuous at any point (t, x) ∈ T0 × X , left continuous in t for t ∈ E , that is
limh→0− V (t + h, x) = V (t, x) for all (t, x) ∈ E × X and such that there exists
limh→0+ V (t + h, x) := V (t + 0, x) for all (t, x) ∈ E × X ;
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(2) The Lie derivative V̇ (t, x, ζ ) exists for all (t, x, ζ ) ∈ T0×X×U1 which is defined
by

V̇ (t, x, ζ ) := lim
h→0+

1

h
(V (t + h, φc(t + h, t, x, ζ )) − V (t, x)), (8)

(3) For (t, x, ζ ) ∈ E × X × U1 the limits V̇ (t ± 0, x, ζ ) = limh→0+ V̇ (t ± h, x, ζ )

exist and V̇ (t − 0, x, ζ ) = V̇ (t, x, ζ )

4 Main results

In this section, we provide sufficient conditions to guarantee the ISS property for
Σ . Complementary stability conditions are given in Theorems 1 and 2, respectively.
Application of these results are illustrated in Sect. 5.

Theorem 1 Assume that for Σ there are functions Vi ∈ V(T0), i ∈ Z+ with

(1) for some α1, α2 ∈ K∞, it holds that

α1(‖x‖) ≤ V0(t, x) ≤ α2(‖x‖), for all (t, x) ∈ [t0,∞) × X; (9)

(2) there is a sequence ηp ∈ K∞, p ∈ Z+ such that for all (t, x, ζ ) ∈ T0 × X × U1
holds

V̇0(t, x, ζ ) ≤ V1(t, x) + η0(‖ζ‖U1),

−V̇p(t, x, ζ ) ≤ Vp+1(t, x) + ηp(‖ζ‖U1), p ∈ N; (10)

(3) there are η ∈ K∞ and Wk : X → R, k ∈ Z+ so that ∀ (k, x, ζ ) ∈ Z+ × X ×U2

V0(τk + 0, g(x, ζ )) − V0(τk, x) ≤ Wk(x) + η(‖ζ‖U2); (11)

holds;
(4) there exists δ ∈ K∞ such that for all (k, x) ∈ Z+ × X, it holds that

Gk+1(x) := Wk+1(x) +
∞∑

p=1

Vp(τk+1, x)
(τk+1 − τk)

p

p! ≤ −δ(‖x‖); (12)

(5) for anyρ > 0 exists qρ ∈ [0, 1) such that lim p→∞
ηp(s)

(p+1)ηp−1(s)
= qρ uniformly for

s ∈ [0, ρ] and for any k ∈ Z+, there is ωk ∈ K∞ such that |Vp(s, x)| ≤ ωk(‖x‖)
for all (p, s) ∈ Z+ × (τk, τk+1].

Then, Σ satisfies the ISS property.

Remark 1 The inequality (12) in condition (4) of the theorem restricts the time
intervals between jumps, which is a dwell-time condition. If both continuous and
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discrete dynamics are stable, the existence of Wk and Vp so that Wk+1(x) and
∑∞

p=1 Vp(τk+1, x)
(τk+1−τk )

p

p! are negative is guaranteed, so that (12) implies no restric-
tions on E . However if one of the dynamics is unstable, the dwell-time is restricted.
For example, if the discrete dynamics is stable but the continuous one is not, we have
Wk+1(x) < 0, but the second summand in (12) can be positive, and hence it needs to
be small enough in order to satisfy (12). This implies that the time distances τk+1 − τk
need to be small enough. Moreover, (12) allows the situation, where both dynamics
types are not stable. This will be illustrated in our examples.

Let us fix any (t0, x0) ∈ R×X as the initial data and assume without loss of generality
that t0 ≤ τ0. For any disturbances (d1, d2) ∈ U1 × U2, the corresponding solution to
Σ will be denoted by x(t) = φ(t, t0, x0, d1, d2).

Lemma 1 Under the conditions of Theorem 1 for any k ∈ Z+, n ≥ 2 the following
inequality holds true:

V0(τk + 0, x(τk + 0)) ≥ V0(τk+1, x(τk+1)) −
n−1∑

p=1

Vp(τk+1, x(τk+1))
(τk+1 − τk)

p

p!

−
τk+1∫

τk

τk+1∫

s1

. . .

τk+1∫

sn−2

Vn(sn−1, x(sn−1)) ds0 . . . dsn−1

−
n∑

p=1

ηp−1(‖d1‖U1)θ
p

p! .

(13)

The proof can be found in Appendix.

Corollary 1 Under the conditions of Theorem 1, the following estimate is true:

V0(τk+1, x(τk+1)) − V0(τk + 0, x(τk + 0))

≤
∞∑

p=1

Vp(τk+1, x(τk+1))
(τk+1 − τk)

p

p! +
∞∑

p=1

ηp−1(‖d1‖U1)θ
p

p! .
(14)

Proof The estimate follows after taking the limit for n → ∞ in the inequality (13),
which is possible under the conditions of Theorem 1. �

Proof (of Theorem 1) The combination of (11) and (14) implies that

V0(τk+1 + 0, x(τk+1 + 0)) − V0(τk + 0, x(τk + 0))

≤ Wk+1(x(τk+1)) +
∞∑

p=1

Vp(τk+1, x(τk+1))
(τk+1 − τk)

p

p! +
∞∑

p=1

ηp−1(‖d1‖U1)θ
p

p!
+ η(‖d2‖U2).
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Let η̂(s) := ∑∞
p=1

ηp−1(s)θ p

p! + η(s), then η̂ ∈ K∞. Recall that d = ‖d1‖U1 + ‖d2‖U2 ,
then for all k ∈ Z+, we have

V0(τk+1 + 0, x(τk+1 + 0)) − V0(τk + 0, x(τk + 0)) ≤ Gk+1(x(τk+1)) + η̂(d).

From this inequality together with condition (4) of Theorem 1, it follows that for all
k ∈ Z+

V0(τk+1 + 0, x(τk+1 + 0)) − V0(τk + 0, x(τk + 0)) ≤ −δ(‖x(τk+1)‖) + η̂(d). (15)

Let ε ∈ (0, 1), r = δ−1(
η̂(d)
1−ε

). Let us show by contradiction that for some k∗ ∈ Z+, it
holds that x(τk∗) ∈ Br (0). Assume that this is not true, that is for all k ∈ Z+, we have
‖x(τk)‖ ≥ r , then from (15) follows:

V0(τk+1 + 0, x(τk+1 + 0)) − V0(τk + 0, x(τk + 0))

≤ −δ(r) + η̂(d) = − η̂(d)

1 − ε
+ η̂(d) < 0.

This means that the bounded from below sequence {V0(τk + 0, x(τk + 0))}k∈Z+ is
decreasing, hence there exists the limit m := limk→∞ V0(τk + 0, x(τk + 0)). From
(15) follows then lim supk→∞ δ(‖x(τk+1)‖) ≤ η̂(d). This implies that

η̂(d)

1 − ε
= δ(r) ≤ lim sup

k→∞
δ(‖x(τk+1)‖) ≤ η̂(d),

which leads to a contradiction. Hence, for some k∗, it holds that ‖x(τk∗)‖ < r . Let
R := max{(α−1

1 ◦ α2)(ξ(r) + χ(d)), r}. We show that for k ≥ k∗, the inequality
‖x(τk + 0)‖ ≤ R is true. Indeed, if for some m ≥ k∗

‖x(τm)‖ < r , ‖x(τm+i )‖ ≥ r for all i = 1, . . . , j(m),

where 1 ≤ j(m) ≤ ∞, then from (15) follows that

V0(τm+i + 0, x(τm+i + 0)) − V0(τm+i−1 + 0, x(τm+i−1 + 0))

≤ −δ(‖x(τm+i )‖) + η̂(d) < 0;

hence, by condition (1) of Theorem 1, we obtain

‖x(τm+i + 0)‖ ≤ (α−1
1 ◦ α2)(‖x(τm + 0)‖).

Taking (6) into account, we obtain ‖x(τm + 0)‖ ≤ ξ(‖x(τm)‖) + χ(d). Hence,

‖x(τm+i + 0)‖ ≤ (α−1
1 ◦ α2)(ξ(r) + χ(d)) ≤ R.
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Let Sr := {k ∈ Z : ∀l, 0 ≤ l ≤ k ‖x(τl)‖ ≥ r} and

N :=
{
max Sr , for Sr �= ∅,

0 for Sr = ∅

We need to consider the case N ≥ 1. Let k ∈ N be such that 1 ≤ k ≤ N , then
η̂(d) ≤ (1 − ε)δ(‖x(τk)‖) and from (15), it follows that

V0(τk + 0, x(τk + 0)) − V0(τk−1 + 0, x(τk−1 + 0))

≤ −δ(‖x(τk)‖) + η̂(d) ≤ −εδ(‖x(τk)‖). (16)

The inequality (6) implies that

‖x(τk + 0)‖ ≤ ξ(‖x(τk)‖) + χ(d)

≤ ξ(‖x(τk)‖) + χ(̂η−1((1 − ε)δ(‖x(τk)‖))) := ϕ(‖x(τk)‖).

It is easily seen that ϕ ∈ K∞, hence ‖x(τk)‖ ≥ ϕ−1(‖x(τk + 0)‖) and from (16)
follows

V0(τk + 0, x(τk + 0)) − V0(τk−1 + 0, x(τk−1 + 0))

≤ −ε(δ ◦ ϕ−1)(‖x(τk + 0)‖)
≤ −ε(δ ◦ ϕ−1 ◦ α−1

2 )(V0(τk + 0, x(τk + 0))).

(17)

We denote δ1 := δ ◦ ϕ−1 ◦ α−1
2 ∈ K∞, vk := V0(τk + 0, x(τk + 0)), and conclude

that for all k, 1 ≤ k ≤ N , the inequality (17) can be written as

vk − vk−1 ≤ −εδ1(vk). (18)

Let us define the sequence v̂k for k ∈ N by v̂k := vk for 1 ≤ k ≤ N and so that for
k ≥ N + 1 the v̂k satisfies the difference equation v̂k − v̂k−1 = −εδ1(̂vk).

Hence for all k ∈ N, the sequence {̂vk}k∈N satisfies the inequality

v̂k − v̂k−1 ≤ −εδ1(̂vk). (19)

Together with the inequality (19), we consider the comparison equation

wk − wk−1 = −εδ1(wk), w0 = v̂0. (20)

First, let us show that for all k ∈ Z+, the inequality v̂k ≤ wk is true. Indeed, if for
some k1 ∈ N v̂k1−1 ≤ wk1−1 and v̂k1 > wk1 , then from id +εδ1 ∈ K∞, it follows that

0 < v̂k1 − wk1 ≤ (id +εδ1)
−1(̂vk1−1) − (id +εδ1)

−1(wk1−1) ≤ 0,
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which is a contradiction. From (20) follows wk = (id +εδ1)
−1(wk−1), k ∈ N. By the

properties of comparison functions, there exists δ2 ∈ K∞ such that (id +εδ1)
−1 =

id −δ2, hence (20) can be written as

wk − wk−1 = −δ2(wk−1), w0 = v̂0. (21)

Let δ̂2(s) := min{s, δ2(s)}, then

wk − wk−1 ≤ −δ̂2(wk−1), w0 = v̂0. (22)

We define Δv0(s) :=
v0∫

s

dτ

δ̂2(τ )
, then Δv0(s) → +∞ for s → 0+. By the mean value

theorem for some s∗ ∈ (wk, wk−1) from (22), we obtain

Δv0(wk) − Δv0(wk−1) =
wk−1∫

wk

ds

δ̂2(s)
= wk−1 − wk

δ̂2(s∗)
≥ δ̂2(wk−1)

δ̂2(s∗)
≥ 1.

Hence, Δv0(wk) ≥ Δv0(v0) + k = k, which implies the estimate

V (τk + 0, x(τk + 0)) ≤ Δ−1
v0

(k) for all k ∈ Z+.

This means that for all k, 0 ≤ k ≤ N , we can estimate ‖x(τk +0)‖ ≤ (α−1
1 ◦Δ−1

v0
)(k).

From (5), we have that for all k ∈ Z+ follows

‖x(t)‖ ≤ ξθ (‖x(τk + 0)‖) + χθ (d) for all t ∈ (τk, τk+1]

That is for all t ∈ (τk, τk+1], 0 ≤ k ≤ N − 1, the following inequality holds:

‖x(t)‖ ≤ (ξθ ◦ α−1
1 ◦ Δ−1

v0
)(k) + χθ (d). (23)

Let ϑk := (ξ2 ◦ α−1
1 ◦ Δ−1

v0
)(k), and we define the function

β̃(v0, t) = ϑk−1 + t − τk−1

τk − τk−1
(ϑk − ϑk−1) for t ∈ (τk−1, τk], k ∈ N.

It is easily seen that β̃ ∈ KL. From (23), we get for all t ∈ (τ0, τN ], the inequality

‖x(t)‖ ≤ β̃(V (τ0 + 0, x(τ0 + 0)), t) + χθ (d) ≤ β̃(α2(‖x(τ0 + 0)‖), t) + χθ (d).

(24)

Applying the estimates

‖x(τ0 + 0)‖ ≤ ξ(‖x(τ0)‖) + χ(d) and ‖x(τ0)‖ ≤ ξτ0−t0(‖x0‖) + χτ0−t0(d)
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and the inequality (1), we obtain that for some functions ξ̃τ0−t0 , χ̃τ0−t0 ∈ K∞

‖x(τ0 + 0)‖ ≤ ξ̃τ0−t0(‖x0‖) + χ̃τ0−t0(d)

Applying again (1), we derive

α2(‖x(τ0 + 0)‖) ≤ (α2 ◦ 2̃ξτ0−t0)(‖x0‖) + (α2 ◦ 2χ̃τ0−t0)(d).

From (24) using again (1), we get that for all t ∈ (τ0, τN ], the inequality

‖x(t)‖ ≤ β̃(2(α2 ◦ 2̃ξτ0−t0)(‖x0‖), t) + β̃(2(α2 ◦ 2χ̃τ0−t0)(d), t) + χθ (d)

≤ β̂t0(‖x0‖, t) + χ̂t0(d).
(25)

holds, where we have denoted

β̂t0(s, t) := β̃(2(α2 ◦ 2̃ξτ0−t0)(s), t),

χ̂t0(d) = β̃(2(α2 ◦ 2χ̃τ0−t0)(d), τ0 + 0) + χθ (d)

It easy to check by definition that β̂t0 ∈ KL, χ̂t0 ∈ K∞. There exists a function
βt0 ∈ KL such that βt0(s, t) ≥ β̂t0(s, t) for t ∈ (τ0, τN ] and βt0(s, t) ≥ ξ̃τ0−t0(s) for
t ∈ [t0, τ0]. Hence, from (25), it follows that for all t ∈ [t0, τN ]

‖x(t)‖ ≤ βt0(‖x0‖, t) + χ̂t0(d) + χτ0−t0(d). (26)

Recall that for k ≥ N , we have ‖x(τk + 0)‖ ≤ R. Hence from the estimate ‖x(t)‖ ≤
ξθ (‖x(τk + 0)‖) + χθ (d), t ∈ (τk, τk+1] it follows that

‖x(t)‖ ≤ ξθ (R) + χθ (d) := χ̂ (d), t > τN , (27)

where χ̂ ∈ K∞ by definition. Combining the inequalities (26) and (27), we see that
for some γt0 ∈ K∞, the following estimate holds

‖x(t)‖ ≤ βt0(‖x0‖, t) + γt0(d), t ≥ t0,

which proves the theorem. �
Remark 2 Condition (5) of Theorem 1 assures the convergence of three last terms in
(14) for n → ∞. However, if Vn(t, x) ≤ 0 for some n ≥ 1, then we can set Vp(t, x) ≡
0 for all p > n and this condition (5) can be dropped. Stability investigation in this
case is essentially easier because we deal with a finite number of auxiliary functions
instead of an infinite sequence. The class of systems, where this simplification is
possible becomes wider due to the next result (see the difference in the sign before
V̇p in conditions (2) of the previous and the next theorem). Such simplification will
be used in some of our examples later.

Theorem 2 Assume that for the system Σ , there are Vi ∈ V(T0) such that
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(1) for some α1, α2 ∈ K∞ it holds that

α1(‖x‖) ≤ V0(t, x) ≤ α2(‖x‖), for all (t, x) ∈ [t0,+∞) × X , (28)

(2) there is a sequence ηp ∈ K∞, p ∈ Z+ such that ∀ (t, x, ζ ) ∈ T0 × X ×U1

V̇p(t, x, ζ ) ≤ Vp+1(t, x) + ηp(‖ζ‖U1), p ∈ Z+, (29)

(3) there are η ∈ K∞ and Wk : X → R, k ∈ Z+ so that ∀ (k, x, ζ ) ∈ Z+ × X ×U2

V0(τk + 0, g(x, ζ )) − V0(τk, x) ≤ Wk(x) + η(‖ζ‖U2), (30)

(4) there are Qkp : X → R and πp ∈ K∞, (k, p) ∈ Z+ ×N, (x, ζ ) ∈ X ×U2 with

Vp(τk + 0, g(x, ζ )) − Vp(τk, x) ≤ Qkp(x) + πp(‖ζ‖U2), (31)

(5) there is δ ∈ K∞ such that for all (k, x) ∈ Z+ × X, the next inequality holds

Gk(x) := Wk(x) +
∞∑

p=1

(Vp(τk, x) + Qkp(x))
(τk+1 − τk)

p

p! ≤ −δ(‖x‖), (32)

(6) For any ρ > 0, there exists qρ ∈ [0, 1) such that limp→∞ ηp(s)
(p+1)ηp−1(s)

≤ qρ and

lim p→∞ πp(s)
(p+1)πp−1(s)

≤ qρ exist uniformly for s ∈ [0, ρ], and for each k ∈ Z+
exists ωk ∈ K∞ such that

|Vp(s, x)| ≤ ωk(‖x‖), |Qkp(x)| ≤ ωk(‖x‖)

for all (p, s, x) ∈ Z+ × (τk, τk+1] × X. Then, system Σ is ISS.

Lemma 2 Under the conditions of Theorem 2, we have for all k ∈ Z+, n ≥ 2

V0(τk+1, x(τk+1)) ≤ V0(τk + 0, x(τk + 0))

+
n−1∑

p=1

Vp(τk + 0, x(τk + 0))
(τk+1 − τk)

p

p!

+
τk+1∫

τk

s1∫

τk

. . .

sn−2∫

τk

Vn(sn−1, x(sn−1)) ds0 . . . dsn−1

+
n∑

p=1

ηp−1(‖d‖U1)θ
p

p! . (33)
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Corollary 2 Under the conditions of Theorem 2, the following holds:

V0(τk+1, x(τk+1)) ≤ V0(τk + 0, x(τk + 0))

+
∞∑

p=1

Vp(τk + 0, x(τk + 0))
(τk+1 − τk)

p

p!

+
∞∑

p=1

ηp−1(‖d1‖U1)θ
p

p! .

(34)

Proof Condition (6) of Theorem 2 assures the possibility to take the limit for n → ∞
in (33) which implies the assertion. �
Proof (of Theorem 2) From (30) and (34) follows

V0(τk+1, x(τk+1)) ≤ V0(τk, x(τk)) + Wk(x(τk))

+
∞∑

p=1

Vp(τk + 0, x(τk + 0))
(τk+1 − τk)

p

p!

+ η(‖d2‖U2) +
∞∑

p=1

ηp−1(‖d1‖U1)θ
p

p! .

(35)

Taking (31) into account, we obtain

V0(τk+1, x(τk+1)) ≤ V0(τk, x(τk)) + Wk(x(τk))

+
∞∑

p=1

(Vp(τk, x(τk)) + Qkp(x(τk)))
(τk+1 − τk)

p

p!

+η(‖d2‖U2) +
∞∑

p=1

(πp(‖d2‖U2) + ηp−1(‖d1‖U1))θ
p

p! . (36)

Let η̂(s) := η(s) + ∑∞
p=1

(πp(s)+ηp−1(s))θ p

p! . Obviously η̂ ∈ K∞ and from (32) and
(36) follows (recall that d = ‖d1‖U1 + ‖d2‖U2 )

V0(τk+1, x(τk+1)) ≤ V0(τk, x(τk)) − δ(‖x(τk)‖) + η̂(d). (37)

Let ε ∈ (0, 1), r = δ−1(
η̂(d)
1−ε

). First we show by contradiction that there exists k∗ ∈ Z+
such that ‖x(τk∗)‖ < r . Indeed, otherwise, for all k ∈ Z+ ‖x(τk)‖ ≥ r and hence
from (37), it follows that

V0(τk+1, x(τk+1)) − V0(τk, x(τk)) ≤ −δ(r) + η̂(d) = − η̂(d)

1 − ε
+ η̂(d) < 0.

Thismeans that the sequence {V0(τk, x(τk))}k∈Z+ is strictly decreasing and is bounded
from below, hence it possesses a nonnegative limitm∗ = limk→∞ V0(τk, x(τk)). From
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(37) follows

η̂(d)

1 − ε
≤ δ(r) ≤ lim sup

k→∞
δ(‖x(τk)‖) ≤ η̂(d),

which leads to a contradiction.
We denote R := max{(α−1

1 ◦ α2)(ξθ (ξ(r) + χ(d)) + χθ (d)), r}. Let us show that
for k ≥ k∗ the inequality ‖x(τk)‖ ≤ R is true. Indeed, if for some m ≥ k∗

‖x(τm)‖ < r , ‖x(τm+i )‖ ≥ r for all i = 1, . . . , j(m),

where 1 ≤ j(m) ≤ ∞, then from (37), we have that for i ≥ 2

V0(τm+i , x(τm+i )) − V0(τm+i−1, x(τm+i−1)) ≤ −δ(‖x(τm+i−1)‖) + η̂(d) < 0,

and hence from (5) and by the condition (1) of Theorem 2, it follows that

‖x(τm+i )‖ ≤ (α−1
1 ◦ α2)(‖x(τm+1)‖) < (α−1

1 ◦ α2)(ξθ (‖x(τm + 0)‖) + χθ (d)).

Taking (6) into account, we obtain

‖x(τm+i )‖ ≤ (α−1
1 ◦ α2)(ξθ (ξ(r) + χ(d)) + χθ (d)) ≤ R.

Similarly, for i = 1 we get

‖x(τm+1)‖ ≤ ξθ (‖x(τm + 0)‖) + χθ (d) ≤ ξθ (ξ(‖x(τm)‖) + χ(d)) + χθ (d)

≤ ξθ (ξ(r) + χ(d)) + χθ (d) ≤ R.

Let Sr := {k ∈ Z+ : ∀l, 0 ≤ l ≤ k ‖x(τl)‖ ≥ r} and

N =
{
max Sr , for Sr �= ∅,

0 for Sr = ∅

It is enough to consider the case N ≥ 1. Let k be such that 0 ≤ k ≤ N , then
η̂(d) ≤ (1 − ε)δ(‖x(τk)‖), and from (37), the next inequality follows:

V0(τk+1, x(τk+1)) ≤ V0(τk, x(τk)) − εδ(‖x(τk)‖). (38)

By condition (1) of Theorem 2, we obtain ‖x(τk)‖ ≥ α−1
2 (V0(τk, x(τk))) and hence

(38) can be written as

V0(τk+1, x(τk+1)) ≤ V0(τk, x(τk)) − εδ1(V0(τk, x(τk))),
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where δ1 = δ ◦α−1
2 ∈ K∞. Let us denote vk := V0(τk, x(τk)), then for all k ∈ Z+, we

have the inequality vk+1 − vk ≤ −εδ1(vk). Let δ̂1(s) := min{s, δ1(s)} ∈ K∞, then

vk+1 − vk ≤ −εδ̂1(vk).

We define the {̂vk}k∈Z+ sequence recurrently setting v̂k := vk for 0 ≤ k ≤ N and

v̂k+1 − v̂k = −εδ̂1(̂vk)

for k ≥ N . From this definition follows that for all k ∈ Z+

v̂k+1 − v̂k ≤ −εδ̂1(̂vk) (39)

and 0 ≤ v̂k ≤ v0.

Let Δv0(s) :=
v0∫

s

dτ

δ̂1(τ )
. By the mean value theorem ∃ s∗ ∈ (̂vk+1, v̂k) with

Δv0 (̂vk+1) − Δv0 (̂vk) =
v̂k∫

v̂k+1

ds

δ̂1(s)
= v̂k − v̂k+1

δ̂1(s∗)
≥ ε

δ̂1(̂vk)

δ̂1(s∗)
≥ ε.

Hence, Δv0 (̂vk) ≥ kε for all k ∈ Z+. From its definition, it follows that Δv0(s) is
strictly growing with respect to v0 for a fixed s and strictly decreasing in s for a fixed
v0 with Δv0(s) → ∞ for s → 0+. This implies that

V (τk, x(τk)) ≤ Δ−1
v0

(kε) for all k ∈ Z+.

The desired ISS estimate follows similarly as in the proof of Theorem 1, which proves
Theorem 2. �
Remark 3 If for some n ≥ 1 we have Vn(t, x) ≤ 0, then we can take Vp(t, x) ≡ 0 for
all p > n, and in this case, condition (5) of Theorem 2 can be dropped.

5 Examples

5.1 Heat equation with variable coefficients

Let X be the normed linear vector space defined by

X = { f : [0, l] → R | f ∈ C1(0, l), f |(0,2δ) ∈ C2(0, 2δ), f |(2δ,l) ∈ C2(2δ, l)},
with l > 0, 0 < 2δ < l and the norm ‖ · ‖X := ‖ · ‖L2[0,l].

Consider the following linear system with impulsive actions

ut (z, t) = a2uzz(z, t) + b(z)u(z, t), t /∈ E
u(z, t+) = u(z, t) + c(z)u(z, t), t ∈ E

(40)
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with the following initial and boundary conditions

u(0, t) = u(l, t) = 0,

u(z, 0 + 0) = ϕ(z), ϕ ∈ X , ϕ(0) = ϕ(l) = 0,
(41)

where (z, t) ∈ [0, l] × [0,∞), u : [0, l] × [0,∞) → R. We assume that a > 0,
b : [0, l] → R is piecewise continuous bounded function which can be discontinuous
only at z = 2δ, and c : [0, l] → R, c ∈ C2[0, l].

We are interested in the properties of classical solutions to (40)–(41) defined next.
Let us denote TT = [0, T ] ∩ T0, ET = [0, T ] ∩ E for T > 0.

Definition 6 A function u : [0, l] × [0, T ] → R is called classical solution to (40)-
(41), if

ut (z, t) = a2uzz(z, t) + b(z)u(z, t), (z, t) ∈ ((0, 2δ) ∪ (2δ, l)) × TT ;

For z = 2δ, it holds that

u(2δ + 0, t) = u(2δ − 0, t), uz(2δ + 0, t) = uz(2δ − 0, t), t ∈ R+;
u(z, t+) = u(z, t) + c(z)u(z, t), (z, t) ∈ [0, l] × ET ;

and u satisfies the initial and boundary conditions (41).

Since c ∈ C2[0, l], it follows that the state space X is invariant under jumps, that is,
f ∈ X implies (1+ c) f ∈ X . It is also clear that the jump operator is consistent with
the boundary conditions. Theorem 1 from [15] implies the existence and uniqueness
of solutions to (40)—(41) so that u(·, t) ∈ X for t ≥ 0.

We consider the question of asymptotic stability of solutions to (40)–(41) with
respect to the norm in L2[0, l]. The next proposition verifies the estimates (5)–(6).

Proposition 1 Solutions of (40)—(41) satisfy the estimates (5)–(6) with the following
choice of functions

ξτ (s) = eτbmaxs, ξ(s) = (1 + cmax)s, χτ (s) = 0 χ(s) = 0,

where bmax = supz∈[0,l] |b(z)|, cmax = supz∈[0,l] |c(z)|.
The proof can be found in Appendix.

To study stability properties, we introduce the following Lyapunov function:

V0(u(·, t)) =
l∫

0

u2(z, t) dz,
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for which we have

V̇0(u(·, t)) = 2

l∫

0

u(z, t)ut (z, t) dz = 2

l∫

0

u(z, t)(a2uzz(z, t) + b(z)u(z, t)) dz

= −2a2
l∫

0

u2z (z, t) dz + 2

l∫

0

b(z)u2(z, t) dz := V1(u(·, t)).
(42)

Let us calculate the full time derivative of V1(u(·, t)) along solutions to (40)–(41):

V̇1(u(·, t)) = −4a2
l∫

0

uz(z, t)uzt (z, t) dz + 4

l∫

0

b(z)u(z, t)ut (z, t) dz

= 4a2
l∫

0

uzz(z, t)(a
2uzz(z, t) + b(z)u(z, t)) dz

+4

l∫

0

b(z)u(z, t)(a2uzz(z, t) + b(z)u(z, t)) dz

= 4

l∫

0

(a2uzz(z, t) + b(z)u(z, t))2 dz ≥ 0.

Hence, we can apply Theorem 1 taking V2 = 0. From (40) for t ∈ E , we obtain

V0((1 + c(z))u(·, t)) − V0(u(·, t))

≤
l∫

0

(2c(z) + c2(z))u2(z, t) dz = W (u(·, t)). (43)

With help of Theorem1,we arrive to the following conditions for the global asymptotic
stability

G(u(·, z)) = V1(u(·, z))Tk + W (u(·, t)) < −ε0‖u(·, t)‖2L2[0,l] (44)

for some ε0 > 0, where Tk = τk+1−τk denotes the dwell-time between two impulsive
actions. By means of the Friedrich’s inequality, we arrive to the following condition
guaranteeing the GAS property of the system (40)–(41)

sup
k∈Z+

max
z∈[0,l]

(
Tk

(
b(z) − π2a2

l2
) + c(z) + 1

2
c2(z)

)
< 0. (45)
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For illustration, we apply this condition to the following particular case of (40)-(41):
a = 1, l = π and

b(z) =
{
1 − 2ε, z ∈ [0, 2δ],
1 + ε, z ∈ (2δ, π ],

c(z) =

⎧
⎪⎨

⎪⎩

ε, z ∈ [0, δ],
ε(−18( z

δ
)5 + 135( z

δ
)4 − 390( z

δ
)3 + 540( z

δ
)2 − 360 z

δ
+ 94), z ∈ (δ, 2δ],

−2ε, z ∈ (2δ, π ],

where ε > 0, δ < π/2, c ∈ C2, −2ε ≤ c(z) ≤ ε . We will see that for some choice
of parameters ε, δ both continuous and discrete dynamics have unstable behavior.

In this case, the dwell-time condition (45) reduced to the following two inequalities:

−2εTk + ε + 1

2
ε2 < 0, Tkε − 2ε + 2ε2 < 0

or equivalently to the following explicit condition applied on the dwell-times

ε ∈ (0, 2/3), 0.5 + 0.25ε < inf
k∈Z+

Tk ≤ sup
k∈Z+

Tk < 2 − 2ε. (46)

Let us consider continuous and discrete dynamics of (40)–(41) separately.
First, we consider the stability properties of the differential equation

ut (z, t) = uzz(z, t) + b(z)u(z, t), (47)

with the following boundary and initial conditions

u(0, t) = u(π, t) = 0, t ∈ R+, u(z, 0 + 0) = ϕ(z), ϕ ∈ X . (48)

The corresponding self-adjoint spectral problem is

ψ ′′(z) + b(z)ψ(z) = λψ(z), ψ(0) = ψ(π) = 0. (49)

We can show that at least for ε small enough there exists some critical δ∗, (δ∗ ≈
0.651331) such that for all δ < δ∗ the linear system (47)–(48) is not stable, and for
δ > δ∗, this system is asymptotically stable.

This follows immediately from the next proposition proved in Appendix:

Proposition 2 The largest eigenvalue λmax(ε) of the spectral equation (49) can be
represented asymptotically as

λmax(ε) = 2

π

(3

4
sin(4δ) + π

2
− 3δ

)
ε + O(ε2), ε → 0 + .
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Indeed, the function f (δ) = 3
4 sin(4δ) + π

2 − 3δ is decreasing on [0, π/2], and we
have f (0) f (π/2) < 0, hence the equation f (δ) = 0 has a unique solution in [0, π/2],
which we denote by δ∗. Then for δ < δ∗ for sufficiently small ε, we have λmax(ε) > 0,
and for δ > δ∗, we have λmax(ε) < 0.

This mens that for sufficiently small ε, the parameter δ can be chosen so that the
partial differential equation (47)–(48), which describes the continuous dynamics of
the original impulsive system (40)–(41), is unstable.

We consider the difference equation in the state space X , that describes the dis-
crete dynamics of the original impulsive system (40)—(41), and demonstrate its
unstable behavior. Let Cψ := (1 + c(z))ψ for ψ ∈ X , then C ∈ L(X) and
‖Cn‖ = sup‖ψ‖L2[0,π ]=1 ‖(1 + c(z))nψ‖L2[0,l] ≥ sup‖ψ‖L2[0,π ]=1,supp ψ⊂[0,δ] ‖(1 +
ε)nψ‖L2[0,l] = (1 + ε)n, which implies that rσ (C) ≥ 1 + ε > 1, showing the insta-
bility property.

Remark 4 Let us note that in case of an unstable scalar ODE of the first order subjected
to destabilizing impulsive actions, the overall dynamics of the whole impulsive system
is always unstable. In contrary to this, our example shows that for the considered
unstable PDE with destabilizing impulses the overall dynamics is stable under certain
condition on dwell times.

5.2 Nonlinear impulsive ODE

Consider the following nonlinear ODE system with impulsive actions

ẋ(t) = f (x(t)) + d1(t)√
1 + ‖x(t)‖2m , t �= kθ,

x(t+) = x(t) + g(x(t)) + d2(k)√
1 + ‖x(t)‖2m , t = kθ,

(50)

where x ∈ R
n , f , g : Rn → R

n are homogeneous functions of the order m > 1 with
oddm, that is, f (λx) = λm f (x), g(λx) = λmg(x) for all (λ, x) ∈ R

n+1, f ∈ C1(Rn).
Let U1 = U2 = R

n , U1 = L∞(R+,Rn), U2 = L∞(Z+,Rn) = l∞(Rn).
Let there exist a positive definite matrix P such that for all x ∈ R

n such that the
function f , g satisfies the inequalities

‖g(x)‖ ≤ b0‖x‖m, xT P(θ f (x) + g(x)) ≤ −c0‖x‖m+1,

× (P f (x) + ∂x f
T (x)Px)T f (x) ≥ ν0‖x‖2m,

× ‖x‖2(P f (x) + ∂x f
T (x)Px)T f (x) − mxT P f (x)xT f (x) ≥ ν1‖x‖2m+2

(51)

for some positive constants b0, c0, ν0 and ν1. For short, we denote

a0 := sup
‖x‖=1

‖ f (x)‖, a1 := sup
‖x‖=1

‖∂x f (x)‖.
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Proposition 3 Solutions of the system (50) satisfy the estimates (5)—(6) with functions

ξτ (s) = ω1(τ )s, χτ (s) = ω2(τ )s(m+1)/2m, ξ(s) = (1 + b0)s, χ(s) = s,

where ωi , i = 1, 2 are certain positive functions (provided explicitly in the proof).

The proof can be found in Appendix.
Stability properties will be studied with help of the following Lyapunov function

V0(x) = xT Px , P � 0. Its time derivative along solutions to (50) for t �= kθ is

V̇0(x, d1) = 2xT P f (x) + 2xT Pd1√
1 + ‖x‖2m . (52)

By means of the Young’s inequality (2), we have

2|xT Pd1| ≤ 2‖P‖‖x‖‖d1‖ ≤ 2‖P‖
(

τm+1

m + 1
‖x‖m+1 + mτ−(m+1)/m

m + 1
‖d1‖1+1/m

)

for any τ > 0. Hence from (52), we obtain

V̇0(x, d1) ≤ 2xT P f (x) + 2‖P‖ τm+1

m+1 ‖x‖m+1

√
1 + ‖x‖2m + 2‖P‖mτ−(m+1)/m

m + 1
‖d1‖1+1/m .

(53)

We chose

V1(x) := 2xT P f (x) + 2‖P‖ τm+1

m+1 ‖x‖m+1

√
1 + ‖x‖2m , η0(s) := 2‖P‖mτ−(m+1)/m

m + 1
s1+1/m .

(54)

On the jumps due to impulsive actions from the definition of V0, we calculate

V0
(
x + g(x) + d2√

1 + ‖x‖2m
)

− V0(x) = 2xT Pg(x)
√
1 + ‖x‖2m + gT (x)Pg(x)

1 + ‖x‖2m

+ 2xT Pd2√
1 + ‖x‖2m + 2gT (x)Pd2 + dT2 Pd2

1 + ‖x‖2m .

(55)

Again by the Young’s inequality (2), we obtain

2|xT Pd2| ≤ 2‖P‖
(

τm+1

m + 1
‖x‖m+1 + mτ−(m+1)/m

m + 1
‖d2‖1+1/m

)

,

2|gT (x)Pd2| ≤ 2‖P‖b0‖x‖m‖d2‖ ≤ ‖P‖b0
(
τ‖x‖2m + τ−1‖d2‖2

)
.
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From (51), it follows that |gT (x)Pg(x)| ≤ ‖P‖b20‖x‖2m . Hence from (55), the fol-
lowing estimate follows:

V0
(
x + g(x) + d2√

1 + ‖x‖2m
)

− V0(x) ≤ 2xT Pg(x) + 2‖P‖ τm+1

m+1 ‖x‖m+1

√
1 + ‖x‖2m

+ (b0 + τ)‖P‖b0 ‖x‖2m
1 + ‖x‖2m + 2‖P‖mτ−(m+1)/m‖d2‖1+1/m

(m + 1)
√
1 + ‖x‖2m

+ b0τ−1 + 1

1 + ‖x‖2m ‖P‖‖d2‖2

≤ W (x) + η(‖d2‖),

where

W (x) = 2xT Pg(x) + 2‖P‖ τm+1

m+1 ‖x‖m+1

√
1 + ‖x‖2m + (b0 + τ)‖P‖b0 ‖x‖2m

1 + ‖x‖2m ,

η(s) = 2‖P‖ m

m + 1
τ−(m+1)/ms1+1/m + (b0τ

−1 + 1)‖P‖s2. (56)

Now, consider V̇1(x, d1) for t �= kθ

V̇1(x, d1) = (2 f T (x)P + 2xT P∂x f (x) + 2τm+1‖P‖‖x‖m−1xT )( f (x) + d1)

1 + ‖x‖2m

− 2m

(

xT P f (x) + ‖P‖ τm+1

m + 1
‖x‖m+1

) ‖x‖2m−2xT ( f (x) + d1)

(1 + ‖x‖2m)2

= 2(P f (x) + ∂x f T (x)Px)T f (x)

1 + ‖x‖2m − 2mxT P f (x)‖x‖2m−2xT f (x)

(1 + ‖x‖2m)2

+ 2τm+1‖P‖‖x‖m−1xT f (x)

1 + ‖x‖2m − 2m‖P‖ τm+1

m + 1
‖x‖3m−1 xT f (x)

(1 + ‖x‖2m)2

+ (2 f T (x)P + 2xT P∂x f (x) + 2τm+1‖P‖‖x‖m−1xT )d1
1 + ‖x‖2m

− 2m

(

xT P f (x) + ‖P‖ τm+1

m + 1
‖x‖m+1

) ‖x‖2m−2xT d1
(1 + ‖x‖2m)2

.

By means of the Cauchy inequality and from (51), it follows that

|xT f (x)| ≤ a0‖x‖m+1, ‖ f T (x)P + xT P∂x f (x)

+ τm+1‖P‖‖x‖m−1xT ‖ ≤ ‖P‖(a0 + a1 + τm+1)‖x‖m .
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Hence,

V̇1(x, d1) ≥ 2ν0‖x‖2m + 2ν1‖x‖4m
(1 + ‖x‖2m)2

− 2‖P‖a0τm+1‖x‖2m
1 + ‖x‖2m − 2ma0τm+1‖P‖‖x‖4m

(m + 1)(1 + ‖x‖2m)2

− 2‖P‖(a0 + a1 + τm+1)‖x‖m‖d1‖
1 + ‖x‖2m − 2m‖P‖(a0 + τm+1

m+1 )‖x‖3m‖d1‖
(1 + ‖x‖2m)2

.

Now, we apply the Young’s inequality with the parameter τ > 0

‖x‖m‖d1‖ ≤ τ

2
‖x‖2m + τ−1

2
‖d1‖2,

‖x‖3m‖d1‖ ≤ 3τ 4/3

4
‖x‖4m + τ−4

4
‖d1‖4

and obtain

V̇1(x, d1) ≥ (2ν0 − τ‖P‖(a0 + a1 + τm+1) − 2a0‖P‖τm+1)‖x‖2m
(1 + ‖x‖2m)2

+ (2ν1 − 3
2mτ 4/3‖P‖(a0 + τm+1

m+1 ) − 4m+2
m+1 a0τ

m+1‖P‖ − τ‖P‖(a0 + a1 + τm+1))‖x‖4m
(1 + ‖x‖2m)2

− τ−1‖P‖(a0 + a1 + τm+1)‖d1‖2 − mτ−4‖P‖(a0 + τm+1

m+1 )

2
‖d1‖4.

Denoting

ϑ1(τ ) = 2ν0 − τ‖P‖(a0 + a1 + τm+1) − 2a0‖P‖τm+1,

ϑ2(τ ) = 2ν1 − 1.5mτ 4/3‖P‖
(

a0 + τm+1

m + 1

)

− 2(2m + 1)

m + 1
a0τ

m+1‖P‖ − τ‖P‖(a0 + a1 + τm+1),

η2(s) = τ−1‖P‖(a0 + a1 + τm+1)s2 + mτ−4‖P‖(a0 + τm+1

m+1 )

2
s4,

we can write

V̇1(x, d1) ≥ ϑ1(τ )‖x‖2m + ϑ2(τ )‖x‖4m
(1 + ‖x‖2m)2

− η2(‖d1‖) := −V2(x) − η2(‖d1‖).

For sufficiently small τ > 0, we have ϑ1(τ ) > 0, ϑ2(τ ) > 0. Since V2(x) ≤ 0, we
have

−V̇1(x, d1) ≤ η2(‖d1‖) (57)
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and we can set V3(x) = 0.
In order to apply Theorem 1 (see Remark 2), we need to estimate the function

G(x) = θV1(x) + W (x).

From the estimates (54) and (56), we obtain

G(x) ≤
(

−2c0 + 2‖P‖(θ + 1)
τm+1

m + 1

) ‖x‖m+1
√
1 + ‖x‖2m

+ ‖P‖(b20 + b0τ)
‖x‖2m

1 + ‖x‖2m

= − ‖x‖m+1
√
1 + ‖x‖2m

(

σ3(τ ) − σ4(τ )
‖x‖m−1

√
1 + ‖x‖2m

)

,

(58)

where σ3(τ ) = 2c0 − 2‖P‖(θ + 1) τm+1

m+1 , σ4(τ ) = ‖P‖(b20 + b0τ).

Proposition 4 If

σ4(0)
(m − 1)(m−1)/2m

√
m

< σ3(0),

then for τ > 0 small enough and for all s ∈ R+, the next inequality is true

σ3(τ ) − σ4(τ )
sm−1

√
1 + s2m

> 0.

The proof can be found in Appendix.

Proposition 5 Let system (50) satisfy the conditions of (51) as well as the inequality

‖P‖b20
(m − 1)(m−1)/2m

√
m

< 2c0.

Then, system (50) is ISS.

Proof Number τ > 0 can be chosen small enough, so that from the inequality

‖P‖b20
(m − 1)(m−1)/2m

√
m

< 2c0

the following estimationG(x) ≤ −δ(‖x‖) c δ(s) = ε1sm+1/
√
1 + s2m , followswhere

ε1 > 0 is small enough. Hence, system (50) satisfies all conditions of Theorem 1 (see
Remark 2) from which desired assertion follows. �
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To illustrate this result, we take

f (x) =
(−2.5x31 + 0.1x21 x2

0.1x22 x1 + 0.3x32

)

, g(x) =
(
0.5x31 − 0.1x21 x2−0.1x22 x1 − x32

)

,

P = I , θ = 1, then b20 = 1.003329653, c0 = 0.5185185185, ν0 = 0.2511999583,
ν1 = 0.08780118723.

It is easy to see that conditions of the last proposition are satisfied. Hence, the
nonlinear impulsive system (50) is ISS. Note that in this case, both continuous and
discrete dynamics are unstable.

6 Discussion and conclusions

Themain results of this paper are given byTheorems 1 and 2. They allowus to study the
ISS property of nonlinear impulsive systems with different assumptions imposed on
the discrete and continuous dynamics. These theorems can establish the ISS property
even for the casewhen neither discrete nor continuous dynamics are ISS. Our approach
enables usage of a wider class of ISS-Lyapunov functions to study the ISS property
of nonlinear impulsive systems. One advantage of our approach, demonstrated in
the examples, is that a rather simple (energetic) Lyapunov function equipped with a
sequence of auxiliary functions allows to derive desired stability condition to assure
the ISS or GAS property.

An interesting direction for future research would be to develop an approach of
stability investigation of nonlinear impulsive systems by means of a combination of
a Lyapunov and Chetaev functions, which was used for studying local stability of
finite-dimensional systems without inputs [11]. This can provide stability conditions
alternative to the ones developed in the current paper. First steps in this direction can
be found in [7].

Another interesting direction of research is to explore an extension possibility of
our results to the strong ISS notion in the context of time varying impulsive systems
(see [20]).
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7 Appendix

7.1 Proof of Lemma 1

The proof is by induction as follows. First, we check that the statements is true for
n = 2 from the obvious equality

V0(τk + 0, x(τk + 0)) = V0(τk+1, x(τk+1)) −
τk+1∫

τk

V̇0(s, x(s), d1(s)) ds.

and the first inequality of (10) for s ∈ (τk, τk+1]:

V̇0(s, x(s), d1(s)) ≤ V1(s, x(s)) + η0(‖d1(s)‖U1)

it follows that

V0(τk + 0, x(τk + 0)) = V0(τk+1, x(τk+1)) −
τk+1∫

τk

V̇0(s, x(s), d1(s)) ds

≥ V0(τk+1, x(τk+1)) −
τk+1∫

τk

V1(s, x(s)) ds

−
τk+1∫

τk

η0(‖d1(s)‖U1) ds.

From the next two obvious relations

V1(s, x(s)) = V1(τk+1, x(τk+1)) −
τk+1∫

s

V̇1(s1, x(s1), d1(s1)) ds1,

τk+1∫

τk

η0(‖d1(s)‖U1) ds ≤ η0(‖d1‖U1)(τk+1 − τk)
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we obtain the desired inequality

V0(τk + 0, x(τk + 0)) ≥ V0(τk+1, x(τk+1)) − V1(τk+1, x(τk+1))(τk+1 − τk)

−
τk+1∫

τk

τk+1∫

s0

V2(s1, x(s1))ds0ds1 −
τk+1∫

τk

τk+1∫

s0

η1(‖d1(s1)‖U1)ds0 ds1

− η0(‖d1‖U1)(τk+1 − τk) ≥ V0(τk+1, x(τk+1))

− V1(τk+1, x(τk+1))(τk+1 − τk)

−
τk+1∫

τk

τk+1∫

s0

V2(s1, x(s1))ds0ds1 − η1(‖d1‖U1)θ
2

2! − η0(‖d1‖U1)θ.

Now, let the statement be true for n = q, that is

V0(τk + 0, x(τk + 0)) ≥ V0(τk+1, x(τk+1)) −
q−1∑

p=1

Vp(τk+1, x(τk+1))
(τk+1 − τk)

p

p!

−
τk+1∫

τk

τk+1∫

s1

. . .

τk+1∫

sq−2

Vq(sq−1, x(sq−1)) ds0 . . . dsq−1

−
q∑

p=1

ηp−1(‖d1‖U1)θ
p

p! .

(59)

Similarly to the previous step, we write

Vq(sq−1, x(sq−1)) =Vq(τk+1, x(τk+1))

−
τk+1∫

sq−1

V̇q(sq , x(sq), d1(sq))dsq , sq−1 ∈ (τk, τk+1],

and from the inequalities (10), we obtain

Vq(sq−1, x(sq−1)) ≤ Vq(τk+1, x(τk+1)) +
τk+1∫

sq−1

Vq+1(sq , x(sq)) dsq

≤ Vq(τk+1, x(τk+1)) +
τk+1∫

sq−1

Vq+1(sq , x(sq)) dsq

+ ηq(‖d1‖U1)(τk+1 − sq−1).
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We substitute this estimate into (59) and obtain the desired inequality

V0(τk + 0, x(τk + 0)) ≥ V0(τk+1, x(τk+1)) −
q−1∑

p=1

Vp(τk+1, x(τk+1))
(τk+1 − τk)

p

p!

−
τk+1∫

τk

τk+1∫

s1

. . .

τk+1∫

sq−2

Vq(τk+1, x(τk+1)) ds0 . . . dsq−1

−
τk+1∫

τk

τk+1∫

s1

. . .

τk+1∫

sq−1

Vq+1(sq , x(sq)) ds0 . . . dsq−1dsq

−
τk+1∫

τk

τk+1∫

s1

. . .

τk+1∫

sq−2

ηq(‖d1‖U1)(τk+1 − sq−1) ds0 . . . dsq−1

−
q∑

p=1

ηp−1(‖d1‖U1)θ
p

p!

≥ V0(τk+1, x(τk+1)) −
q∑

p=1

Vp(τk+1, x(τk+1))
(τk+1 − τk)

p

p!

−
τk+1∫

τk

τk+1∫

s1

. . .

τk+1∫

sq−1

Vq+1(sq , x(sq)) ds0 . . . dsq

−
q+1∑

p=1

ηp−1(‖d1‖U1)θ
p

p! ,

which proves the Lemma.

7.2 Proof of Lemma 2

The proof is again by the mathematical induction. Let n = 2, then from (29), it follows
that
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V0(τk+1, x(τk+1)) = V0(τk + 0, x(τk + 0)) +
τk+1∫

τk

V̇0(s, x(s), d1(s)) ds

≤ V0(τk + 0, x(τk + 0)) +
τk+1∫

τk

V1(s, x(s)) ds

+
τk+1∫

τk

η0(‖d1(s)‖U1) ds.

Applying (29) for s ∈ (τk, τk+1], we obtain

V1(s, x(s)) = V1(τk + 0, x(τk + 0)) +
s∫

τk

V̇1(s, x(s), d1(s)) ds

≤ V1(τk + 0, x(τk + 0)) +
s∫

τk

V2(s1, x(s1)) ds1 +
s∫

τk

η1(‖d1(s1)‖U1) ds1

which implies the desired inequality:

V0(τk+1, x(τk+1)) ≤ V0(τk + 0, x(τk + 0)) +
τk+1∫

τk

V1(τk + 0, x(τk + 0)) ds

+
τk+1∫

τk

s0∫

τk

V2(s1, x(s1)) ds0 ds1

+
τk+1∫

τk

s∫

τk

η1(‖d1(s1)‖) ds0 ds1 +
τk+1∫

τk

η0(‖d1(s)‖U1) ds

≤ V0(τk + 0, x(τk + 0)) + V1(τk + 0, x(τk + 0))(τk+1 − τk)

+
τk+1∫

τk

s0∫

τk

V2(s1, x(s1)) ds0 ds1 + η1(‖d1‖U1)θ
2

2! + η0(‖d1‖U1)θ

1! .
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Now, we assume that the Lemma 2 is true for n = q; then from (29), it follows for
sq−1 ∈ (τk, τk+1] that

Vq(sq−1, x(sq−1)) = Vq(τk + 0, x(τk + 0)) +
sq−1∫

τk

V̇q(sq , x(sq), d1(sq)) dsq

≤ Vq(τk + 0, x(τk + 0)) +
sq−1∫

τk

Vq+1(sq , x(sq)) dsq

+
sq−1∫

τk

ηq(‖d1(sq)‖U1) dsq .

using the induction assumption we obtain the desired inequality for n = q + 1:

V0(τk+1, x(τk+1)) ≤ V0(τk + 0, x(τk + 0)) +
q−1∑

p=1

Vp(τk + 0, x(τk + 0))
(τk+1 − τk)

p

p!

+
τk+1∫

τk

s1∫

τk

. . .

sq−2∫

τk

Vq (sq−1, x(sq−1)) ds0 . . . dsq−1 +
q∑

p=1

ηp−1(‖d1‖U1)θ
p

p!

≤ V0(τk + 0, x(τk + 0)) +
q−1∑

p=1

Vp(τk + 0, x(τk + 0))
(τk+1 − τk)

p

p!

+
τk+1∫

τk

s1∫

τk

. . .

sq−2∫

τk

Vq (τk + 0, x(τk + 0)) ds0 . . . dsq−1

+
τk+1∫

τk

s1∫

τk

. . .

sq−1∫

τk

Vq+1(sq , x(sq))ds0 . . . dsq

+
τk+1∫

τk

s1∫

τk

. . .

sq−1∫

τk

ηq (‖d1(sq)‖U1)ds0 . . . dsq

+
q∑

p=1

ηp−1(‖d1‖U1)θ
p

p!

≤ V0(τk + 0, x(τk + 0)) +
q∑

p=1

Vp(τk + 0, x(τk + 0))
(τk+1 − τk)

p

p!

+
τk+1∫

τk

s1∫

τk

. . .

sq−1∫

τk

Vq+1(sq , x(sq))ds0 . . . dsq +
q+1∑

p=1

ηp−1(‖d1‖U1)θ
p

p! .

The Lemma is proved.
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7.3 Proof of Proposition 1

We take V (u(·, t)) =
l∫

0
u2(z, t) dz as a Lyapunov function, and calculate its derivative

along the flow φc for t ∈ [0, τ ]:

V̇ (u(·, t)) = 2

l∫

0

(a2uzz(z, t) + b(z)u(z, t))u(z, t) dz

= −2

l∫

0

a2u2z (z, t) dz + 2

l∫

0

b(z)u2(z, t) ≤ 2bmaxV (u(·, t)),

which implies thefirst of the needed inequalities:‖u(·, t)‖L2[0,l] ≤ eτbmax‖u(·, 0)‖L2[0,l].
The second inequality becomes trivial.

7.4 Proof of Proposition 2

We consider the eigenvalue problem (49) where b depends on ε treated as a small
parameter. It is easy to see that λ < maxz∈[0,π ] b(z) = 1 + ε. For ε = 0 we have
λmax(0) = 0, hence for the largest eigenvalue, we can write λmax(ε) = λ1ε + O(ε2).
The solution of (49) for ε > 0 small enough is given by

ψ(z) =
{
Cl sin(ωl z), z ∈ [0, 2δ),
Cr sin(ωr (π − z)), z ∈ (2δ, π ] ,

where Cl and Cr are some real constants, ωl := √
1 − 2ε − λ, ωr := √

1 + ε − λ,
and must satisfy the continuity conditions

ψ(2δ − 0) = ψ(2δ + 0), ψ ′(2δ − 0) = ψ ′(2δ + 0).

These conditions are satisfied if ωlctg(2ωlδ) = −ωrctg(ωr (π − 2δ)).
We use the following two basic facts from analysis

(1 + x)1/2 = 1 + 1/2x + O(x2), x → 0,

ctg(x) = ctg(x0) − (x − x0)/ sin
2(x0) + O((x − x0)

2), x → x0,
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that enable us to write for ε → 0+ the next equalities.

ωrctg(ωr (π − 2δ)) = (
1 + 1

2
(1 − λ1)ε

)(
ctg(π − 2δ) − (π − 2δ)(1 − λ1)ε

2 sin2(2δ)

) + O(ε2)

= −ctg(2δ) + 1

2
(1 − λ1)

(
− ctg(2δ) − π − 2δ

sin2(2δ)

)
ε + O(ε2).

ωlctg(2ωlδ) = (
1 − 1

2
(2 + λ1)ε

)(
ctg(2δ) + 2δ(2 + λ1)

2 sin2(2δ)
ε
) + O(ε2)

= ctg(2δ) + 1

2
(2 + λ1)

(
− ctg(2δ) + 2δ

sin2(2δ)

)
ε + O(ε2).

From which we finally conclude that

(2 + λ1)
(

− ctg(2δ) + 2δ

sin2(2δ)

)
= (1 − λ1)

(
ctg(2δ) + π − 2δ

sin2(2δ)

)

π

sin2(2δ)
λ1 = ctg(2δ) + π − 2δ

sin2(2δ)
+ 2ctg(2δ) − 4δ

sin2(2δ)

From which we calculate λ1 = 2
π

(
3
4 sin(4δ) + π

2 − 3δ
)
. This proves the statement.

7.5 Proof of Proposition 3

From the condition of Proposition 1, the following estimate follows:

d

dt
(xT (t)x(t)) = 2xT f (x) + 2xT d1(t)√

1 + ‖x(t)‖2m ≤ 2a0‖x‖m+1 + 2‖x‖‖d1‖√
1 + ‖x(t)‖2m .

By the Young’s inequality (2)

‖x‖‖d1‖ ≤ ‖x‖m+1

m + 1
+ m

m + 1
‖d1(t)‖(m+1)/m,

we further obtain

d

dt
(xT (t)x(t)) ≤ 2

(

a0 + 1

m + 1

) ‖x(t)‖m−1
√
1 + ‖x(t)‖2m ‖x(t)‖2 + 2m

m + 1
‖d1(t)‖(m+1)/m .

Since sups∈R+
sm−1√
1+s2m

= (m−1)(m−1)/2m√
m

< ∞, denotingμ0 = (
a0+ 1

m+1

)
(m−1)(m−1)/2m√

m
,

we arrive to the following differential inequality

d

dt
‖x(t)‖2 ≤ 2μ0‖x(t)‖2 + 2m

m + 1
‖d1(t)‖(m+1)/m .
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Hence by the comparison principle, we obtain

‖x(t)‖2 ≤ e2μ0τ‖x0‖2 + m

μ0(m + 1)
(e2μ0τ − 1)‖d1‖(m+1)/m

U1

for t ∈ [0, τ ]. The inequality (5) follows then immediately, if we take ω1(τ ) = eμ0τ ,

ω2(τ ) =
√

m
μ0(m+1) (e

2μ0τ − 1). The estimate (6) for t = kθ can be obtained easier:

‖x(t+)‖ ≤ (
1 + b0‖x‖m√

1 + ‖x(t)‖2m
)‖x(t)‖ + ‖d2(k)‖√

1 + ‖x(t)‖2m
≤ (1 + b0)‖x(t)‖ + ‖d2‖U2 .

This finishes the proof.

7.6 Proof of Proposition 4

From the condition of the proposition, we have that σ4(τ )
(m−1)(m−1)/2m√

m
< σ3(τ ), is

satisfied for τ = 0. By the continuity, the inequality is also true for some small enough

τ > 0. A simple calculation shows thatmaxs∈R+
sm−1√
1+s2m

= (m−1)(m−1)/2m√
m

, so that from
the last inequality, we conclude

σ3(τ ) − σ4(τ )
sm−1

√
1 + s2m

≥ σ3(τ ) − σ4(τ )
(m − 1)(m−1)/2m

√
m

:= ε1 > 0,

which proves the Proposition 4.
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