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Abstract
In the last decades, the classical Vehicle Routing Problem (VRP), i.e., assigning a set of orders to vehicles and planning their 
routes has been intensively researched. As only the assignment of order to vehicles and their routes is already an NP-complete 
problem, the application of these algorithms in practice often fails to take into account the constraints and restrictions that 
apply in real-world applications, the so called rich VRP (rVRP) and are limited to single aspects. In this work, we incorpo-
rate the main relevant real-world constraints and requirements. We propose a two-stage strategy and a Timeline algorithm 
for time windows and pause times, and apply a Genetic Algorithm (GA) and Ant Colony Optimization (ACO) individually 
to the problem to find optimal solutions. Our evaluation of eight different problem instances against four state-of-the-art 
algorithms shows that our approach handles all given constraints in a reasonable time.

Keywords  Rich vehicle routing problem · Ant-colony optimization · Genetic algorithm · Real-world application · Logistics

1  Introduction

 In the last two decades, the demand for road freight trans-
port increased worldwide; for example, in Germany it 
increased by 150 billion ton kilometers to around 500 billion 
ton kilometers [1]. Developments such as increased just-in-
time production and online shopping (especially during the 
Covid pandemic) will further increase those numbers in the 
next years. To handle such amount of freight transporta-
tion, efficient and correct planning of tours for transports 
is relevant. Hence, fast and reliable solutions to the Vehicle 
Routing Problem (VRP) are required.

The classical VRP specifies the assignment of customer 
orders to vehicles and the optimization of their tours [21], 
which refers to solving the underlying Traveling Salesman 
Problem (TSP). Tim Pigden stated that the original model 
of the VRP does not match real-world applications since it 
does not include concepts of order, separate resources cor-
responding to the driver, the tractor unit, and the trailer [31]. 

The rich VRP (rVRP) extends this classical VRP by includ-
ing additional constraints required for a real-world applica-
tion, such as pickup and delivery (PD), time windows (TW), 
pause times, trailer capacities, and driver assignments. Since 
the rVRP is an NP-complete problem, exact solutions are 
hard to calculate in short time frames and, hence, logistic 
companies often use meta-heuristics to find so-called good 
enough solutions in a reasonable time. However, due to 
the complexity, those approaches do not consider all rel-
evant aspects of the rVRP, i.e., they miss the requirement of 
multi-objectiveness, and additionally a manual adjustment 
to cope with aspects not inherently integrated in the solution 
is required.

In this paper, we present the application of nature-
inspired algorithms to solve the rVRP within a real-world 
application software of our cooperation partner, which they 
use for planning the logistics of their customers. Hence, this 
paper contributes to the rVRP research by applying nature-
inspired algorithms on a multi-objective capacitated VRP 
with pickup and delivery behavior and time windows. Our 
scientific contributions are three-fold:

–	 We define a two-stage strategy for tackling the formu-
lated rVRP including a (i) VRP-stage that assigns orders 
to vehicles and a (ii) TSP-stage that optimizes the tour 
for each vehicle.
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–	 We propose a timeline algorithm within the solving 
workflow that modifies the planned tours in order to 
handle time windows and fixed pause stops.

–	 We evaluate our approach in a real-world scenario pro-
vided by our cooperation company including eight prob-
lem instances with a complexity of up to 100 orders and 
13 vehicles.

In the following, Section 2 discusses related work. Section 3 
defines our problem domain and Section 4 presents our 
approach. Section 7 evaluates our approach and discusses 
the results. Finally, Section 8 summarizes the findings of 
our paper.

2 � Related work

The TSP and VRP are well-known and highly researched 
transportation problems that were first mentioned in the last 
century: the TSP in 1930, and the VRP in 1959. Hence, the 
literature provides many different approaches to both of the 
problem statements. Besides the classical VRP, that assigns 
customer orders to vehicles and optimizes their tours, several 
extended VRP versions exist. These versions include addi-
tional requirements to the VRP such as capacities of vehi-
cles, time windows, and pickup and delivery behavior. Cord-
eau et al. [11] introduce a capacity constraint for all vehicles 
of the fleet that must not be exceeded and thus define the 
capacitated VRP (C-VRP) [32, 41]. In the VRP with time 
windows (VRP-TW), each customer order can be defined 
using additional time windows that refer to opening hours 
of the location which need to be met by the delivery vehi-
cle [11, 18, 22]. The VRP with pickup and delivery (VRP-
PD) provides the possibility to return goods to depots or 
transport them from one location to another one and to place 
multiple pickup and deliveries at one location [8, 13, 29, 
36]. Further, the combination of time windows and pickup 
and delivery results in the VRP-TW-PD [7, 14, 37, 40] All 
versions of the VRP are highly researched and the litera-
ture provides a large amount of approaches to tackle these 
problems. We are aware, that this summary of related work 
is only an excerpt and does not provide a complete over-
view of all relevant literature in this field. But it represents 
a spectrum of the main research streams in the area of these 
specific problems.

In the following, we analyze relevant literature of the last 
five years that explicitly covers multiple objectives as part of 
their VRP or TSP approach. [17] addresses multi-trip VRP 
with intermediate depots and time windows. The paper pro-
vides a robust Mixed-Integer Linear Programming model 
and addresses the following objectives: travel distances, 
vehicle costs, and earliness and tardiness penalty costs of 
services. They solve their model using CPLEX, but do not 

define the time complexity of their problem. The authors of 
[3] also address a multi-trip VRP in the domain of urban 
waste collection. They seek to minimize cost objectives, 
such as traversing costs, employment costs, and exit penal-
ties from permissible time windows. Unlike the previous 
papers, they use Simulated Annealing to solve their prob-
lem, but also do not specify the time complexity of their 
approach. The advancement of this paper is that they were 
able to compute near-optimal solutions in less computation 
time. In contrast to our work, these two papers do not evalu-
ate their approach using a real-world scenario, but use a 
randomly generated problem set. Moreover, they only deal 
with a limited set of objectives and constraints.

Dutta et al. [16] addresses a multi-objective set orienteer-
ing problem using clusters of customers. The authors assign 
a predefined profit amount per visit to each customer in a 
cluster and specify a maximum service time. Their approach 
has two objectives: maximizing customer satisfaction and 
maximizing profit. The authors use NSGA-II and Strength 
Pareto Evolutionary Algorithm (SPEA2), which have a time 
complexity of O(MN2) (M number of objectives, N popu-
lation size) for NSGA-II and O(K2logK) (K is population 
size and archive size) for SPEA2. The advancement of this 
method is to incorporate customer satisfaction objectives 
instead of standard cost-based objectives. Contrary to this 
work, we consider each customer as an individual service 
unit with individual constraints, restrictions, and objectives, 
and do not consider customer satisfaction metrics.

A multi-objective model of the capacitated VRP for 
perishable goods is proposed in [5]. The objectives of this 
model are to minimize the quality degradation of goods 
and to minimize the delivery costs. The authors propose an 
m-ring star distribution network with two types of vehicles 
and customers, and apply NSGA-II and SPEA2 with the 
same time complexity statements as in the previously men-
tioned paper. The evaluation shows that NSGA-II performs 
better in terms of quality and costs when using two types 
for vehicles. This work differs from our work in the model-
ling approach as they use the m-ring star distribution model 
while we use the two-stage strategy. Further, they also inte-
grate only a limited number of objectives.

The authors of [30] deal with a multi-objective ring tree 
problem with secondary sub-depots. They specify a fixed 
node as depot and define other primary and secondary sub-
depots in combination with three types of customers. The 
objectives include minimizing the total routing cost and 
minimizing the number of type 3 customers. The authors 
use a discrete multi-objective antlion optimizer with a time 
complexity of O(MN2) (M number of objectives, N popula-
tion size). In their evaluation, the authors show that their 
approach has better efficiency for most test instances. Con-
trary to our work, this work focuses on assigning customer 
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orders with basic cost-based objectives, while we apply a 
variety of real-world objectives.

Another set of studies focuses on green approaches to 
VRP variants. First, [39] addresses a multi-trip green capaci-
tated arc routing problem. The authors aim to minimize the 
total cost, which consists of routing costs, vehicle costs, and 
greenhouse gas generation and emission cost. They use a 
hybrid GA with Simulated Annealing for generating initial 
solutions. The authors do not specify the time complexity of 
their approach, but show that their solution performs desir-
ably within a reasonable computation time. Second, [38] 
deals with a green VRP with intermediate depots and inte-
grates urban traffic conditions, fuel consumption, time win-
dows, and uncertainty in demands. They model this prob-
lem as robust Mixed-Integer Linear Programming model 
and solve it using CPLEX. The integration of urban traffic 
conditions is a particular advance of this work. Third, [2] 
proposes a Mixed-Integer Linear Programming model for 
the green inventory routing problem with time windows. 
They attempt to minimize the total cost, which consists of 
fuel consumption, driver cost, inventory cost, and vehicle 
cost. The authors use an original and an augmented Tabu 
Search as well as Differential Evolution, but do not specify 
the time complexity of their approaches. In contrast to our 
work, all the green VRP research approaches focus heavily 
on integrating green objectives and, hence, include only a 
limited set of real-world objectives.

The last set of related works from recent years covers the 
integration of uncertainty in the pickup demand. First, [33] 
addresses uncertainty in urban waste collection and models 
the problem as a two-stage multi-objective transportation 
problem. They model uncertainty as grey parameters and 
apply a procedure to reduce them to real numbers. They 
solve their model using revised multi-choice goal program-
ming but do not specify the time complexity of their prob-
lem. Second, [34] addresses a multi-choice multi-objective 
transportation problem and model cost, demand, and sup-
ply as multi-choice parameters. They reduce their problem 
to a multi-objective transportation problem by introducing 
binary variables and applying revised multi-choice goal pro-
gramming. However, they do not specify the time complex-
ity of their approach. Third, [35] addresses a multi-objective 
multi-item fixed-charge solid transportation problem and 
incorporate fuzzy-rough variables as coefficients of their 
objective functions and constraints. They use a fuzzy-rough 
expected-value operator to transform the problem into a 
deterministic one, and apply weighted goal programming 
and fuzzy programming to find final solutions. The advance-
ment of this paper is to evaluate and apply it on a real-world 
case study. Fourth, [4] also addresses the urban waste col-
lection problem with uncertainties and models the problem 
as a robust bi-objective multi-trip periodic capacitated arc 
routing problem under demand uncertainty. They integrate 

cost and tour length objectives and solve their problem 
using CPLEX and a multi-objective invasive weed opti-
mization for real-world problem instances without defin-
ing the time complexity. The particular advance of these 
approaches is the general applicability of their approaches 
to model uncertainty. The main difference between the pre-
sented approaches and our approach is that our approach 
does not deal with uncertainties, but optimizes with fixed 
predetermined values. Further, the first three approaches are 
not evaluated on a real-world data set, but only provide a 
numerical assessment and sensitivity analyses. Finally, our 
approach considers a broader set of objectives compared to 
the presented approaches.

In line with the observation of  [31], our analysis of 
related work shows that existing approaches fail to address 
the combination of different aspects of the rVRP in such a 
way that all relevant requirements of a real-world applica-
tion are taken into account simultaneously. In this work, we 
address this research gap and integrate a multitude of real-
world requirements.

3 � Problem statement and complexity

We cooperate with a consultancy company which plans the 
logistics operations for many different customers and there-
fore has a diverse set of requirements which we define in 
the following. Figure 1 illustrates the considered version of 
a rVRP as domain model. We define a tour tj as the assign-
ment of customer orders o ∈ O to vehicles v ∈ V and drivers 
d ∈ D : tj = (vi,Dj,Oj) with a set of drivers Dj ⊆ D and a 
set of orders Oj ⊆ O assigned to tour tj driven with vehicle 
vi . The central goal is to find a set of tours T = {tj} so that 
all orders are assigned while minimizing the cost function 
defined in Section 4.2. A tour has a tour start and a tour end, 
each specified by a time and a location. The tour start time 
window defines the range in which the tour must start.

A vehicle vi is always assigned to one tour tj . Each vehi-
cle has a capacity, described by the number of pieces, vol-
ume (m3 ), or weight (kg). The costs for using a vehicle are 
defined per hour, per kilometer, per tour, or per stop on the 
tour. The height, width, length (cm), and weight (kg) of a 
vehicle define its dimensions. Each vehicle has a maximum 
tour duration, after which it must be at the tour end location. 
The tour start/end locations represent a list of locations at 
which the tour can start and a list of locations at which the 
tour can end. The option for a trailer specifies whether the 
vehicle can pull a trailer. Since special properties of a vehi-
cle are required for carrying hazardous goods, we integrate 
the possibility to specify whether a vehicle has the ability 
to carry those goods or not. This enables a valid assign-
ment of orders to vehicles even for hazardous goods. The 
fast-loading property states whether the vehicle can load 
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and unload faster compared to other vehicles. This property 
influences the required service and setup time and, hence, 
the time required at a specific stop. It provides the possibil-
ity to switch to a vehicle with fast-loading property to match 
time windows. A vehicle might provide the possibility to 
wait for a specific time window at a given stop and might be 
allowed to return to a stop multiple times.

Furthermore, up to two drivers Dj are determined for each 
tour tj . For some orders, a co-driver is required for loading 
and unloading bulky goods. Drivers might require a special 
training or certificate, for example, a firearm certificate is 
required for cash transports. By specifying the required cer-
tificates for drivers with regards to a specific order, a valid 
assignment of drivers to tours is possible within the optimi-
zation, making an additional post-processing step unneces-
sary. Legislation might prescribe a fixed set of pause times 
for each driver. Sometimes it may be possible to schedule 
pause times within a service, such as within a pickup or a 
delivery (called SPLIT-Mode). Otherwise, pause time need 
to be scheduled while driving in between two stops.

Additionally, customer orders Oj need to be serviced 
during a tour tj . Each order contains a list of products with 
the amount specified by quantity in pieces, weight (kg), or 
volume (m3 ). For each order, one can specify one or more 
pickup locations, a co-driver requirement, or the assign-
ment of a specific driver. Orders that should or should not 
be delivered in the same tour can be defined as a list of 
(non-) co-located orders. Maximum vehicle dimensions, a 
vehicle from a specific vehicle group, or a lorry-only service 
can be required.

For each order, at least one stop s needs to be scheduled. 
Each stop is either a pickup or a delivery stop and has a spe-
cific location. Hence, we usually schedule two stops for an 
order first, to pick the goods up from a storage facility and a 
delivery stop at the customer location.

The setup/service duration contains the time the vehicle 
stands still while loading or unloading. The speed modifier 
for fast loading vehicles defines the saved time during the 
setup/service duration if this stop is assigned to a vehicle 

with this property. Each stop has a time window that speci-
fies at which interval the driver needs to arrive or finish the 
service.

We now present a mathematical definition for the capaci-
tated VRP using the vehicle flow formulation [12] as origi-
nally applied on the VRP by [26]. Let G = (V ,A) be a graph 
where V = 1,… , n is a set of vertices representing cities, or 
in our case customers, with the depot located at vertex 1. 
A is a set of arcs (i, j) with i ≠ j that are associated with a 
non-negative distance matrix C = (cij) . This distance matrix 
can be interpreted as the travel distance between the ver-
tices or as travel costs of this arc. At the depot, a set of m 
homogeneous vehicles with capacity D are available with 
mL ≤ m ≤ mU . Let xij(i ≠ j) be a binary decision variable 
that is equal to 1 iff the optimal route contains arc (i, j).

In this formula, (1) forms the minimization equation to 
minimize the distances of all routes. Constraints (2) and 
(3) ensure that all vertices are visited exactly once and that 
exactly one vehicle arrives and departs from this vertex. 
Constraint (4) forms the sub-tour elimination constraint 
with v(S) being an appropriate lower bound on the number 

(1)minimize
∑

i≠j

cijxij

(2)subject to

n∑

j=1

xij = 1 (i = 1,… , n),

(3)
n∑

i=1

xij = 1 j = 1,… , n),

(4)
∑

i,j∈S

xij ≤∣ S ∣ −v(S) (S ⊂ V�{1}; ∣ S ∣≥ 2),

(5)xij ∈ {0, 1} (i, j = 1, ...n;i ≠ j).

Fig. 1   Domain model of the 
rich VRP addressed in this 
paper
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of required vehicles for this problem. Finally, Constraint (5) 
forms the integrity constraint defining xij.

This formula models a standard VRP mathematically. 
However, the problem addressed in this paper handles a wide 
variety of constraints and restrictions that are not modeled 
above. Since a full mathematical modeling would go beyond 
the scope of this paper and would unnecessarily lengthen it, 
we briefly outline the concepts that can be applied to model 
our problem. The requirements of a homogeneous fleet, indi-
vidual vehicle capacities, capabilities of vehicles regarding 
fast loading and transporting of hazardous goods, as well as 
fixed costs per vehicle can be addressed by introducing an 
additional set of vehicle types B = 1,… , b similar to [25]. 
To include the decision for one or two drivers, and an 
optional trailer, three indices can be added to the decision 
variable xab

ijkl
 where l represents the optional trailer and a and 

b represent the drivers. Driver requirements can be added 
analogously to the heterogeneous vehicles by introducing 
sets of driver types. The pickup and delivery requirement 
including the possibility of multiple pickup locations is also 
introduced in [25] which requires additional decision vari-
ables for pickup and delivery demand (pi, di ) as well as vari-
ables that summarize the loaded pickup and delivery load at 
each vertex (zij, tij ). To fulfill all order requirements such as 
(non) co-located orders, special vehicle restrictions, whether 
the stop can be planned using the SPLIT mode as well as 
time windows per stop, these factors can be easily integrated 
as individual constraints. Finally, the tour start and end time, 
the start time window, the maximum tour duration, and a set 
of pause times can be integrated by adding variables that 
count the required time per tour as well as start and end 
times per stop. As already mentioned, we do not want to go 
into more detail about the mathematical model, but want to 
refer the interested reader to [28, 43].

In the final paragraphs of this section, we analyze the 
problem space and define the complexity of the addressed 
problem statement. Let V be the number of vehicles and 
O the number of orders. Every order contains at least one 
pickup and one delivery stop, and hence, the number of stops 
to be assigned is 2 ⋅ O . Additionally, the options for start 
and end location of each vehicle as well as required pause 
times are included as stops. However, as tour start and end 
location options as well as the number of pause times are 
fixed constants these do not increase the problem complex-
ity in the O notation. Since multiple options are possible 
for each stop, a virtual vehicle called slack contains the 
unused options for all stops. Theoretically, every stop can be 
assigned to every vehicle including the slack which results 
in (2 ⋅ O)(V+1) possible distributions of stops to vehicles. In 
addition to the distribution problem, the sequence of stops 
is relevant for optimizing the TSP and every assignment of 
S stops to one vehicle has S! possible sequences. Hence, for 

every distribution of stops to vehicles, V different TSPs need 
to be solved. The sequence on the slack is irrelevant since it 
is a virtual vehicle and, therefore, does not need to be con-
sidered in the optimization. To summarize the complexity 
of the problem, we use a chain representation where a VRP 
solution is represented by a chain containing all stops and 
V + 1 indices, where the chain is cut to distribute its parts to 
the vehicles. This representation is feasible since the indi-
vidual TSP chains are independent of each other. Hence, at 
least (2 ⋅ O)! TSP solutions and 2 ⋅ O cut indices exist and the 
complexity of the problem can be defined as follows:

In summary, this section first introduces a detailed software-
engineering based definition of our addressed VRP. Further, 
we provide the mathematical model of a VRP using the vehi-
cle flow formulation and summarize possibilities to model 
all constraints addressed in this work. Then, we discuss the 
problem complexity and show that the problems have super-
polynomial complexity with regards to their input size. Both 
VRP and TSP are proven to be NP-complete problems and 
the required time to solve these problems for all known algo-
rithms is superpolynomial in the input size. Approaches to 
solving NP-complete problems tend to be limited to approxi-
mation, randomization, restriction, parametrization, and 
heuristics. Due to the often large input size of VRPs, often 
meta-heuristics are applied as they may provide a sufficiently 
good solution within reasonable time. Since our work was 
done in cooperation with a consulting company, we defined 
the requirement to deliver a solution within a few seconds to 
minutes in addition to the already mentioned requirements 
for the solution. The high complexity of the problem in com-
bination with the requirement of a fast time-to-solution led 
us to selecting meta-heuristics as solution approaches: (i) 
GA as a prominent evolutionary approach often applied in 
VRP use cases, and (ii) ACO as representative of nature-
inspired, particle swarm optimization. With this selection, 
we aim to test as diverse solutions as possible and at the 
same time be able to meet all our requirements with at least 
one of them.

4 � Approach

This section describes our approach for tackling the multi-
objective optimization of the rVRP and presents the over-
all complexity of our approach. The complexity discussion 
of each part of the overall complexity can be found in the 
according sections. We introduce our two-stage strategy 
and present the Timeline approach for the time windows 
and pause stops as well as the cost function with which we 
address the multi-objective problem. The two-stage strategy 

(6)Complexity = (2 ⋅ O)! ⋅ 2 ⋅ O ∈ O(O! ⋅ O)
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reduces the overall complexity for the optimization mecha-
nisms by dividing the solution space into two individual 
problems. We cannot make firm statements about the impact 
on optimality, however, we assume that our approach does 
not negatively impact optimality; especially in light of the 
fact that the meta-heuristics applied are already non-optimal. 
The Timeline approach further reduces complexity by off-
loading compliance with the specified time windows to a 
third separate step. This complexity reduction allows the 
algorithms to yield valid results already after a few seconds 
optimization time and further optimize the results signifi-
cantly within the first minutes. For a detailed analysis of the 
advantages introduced by the approaches of this section, we 
refer the interested reader to our evaluation in Section 7. 
Finally, we introduce our six-score priority cost function 
which enables the applied approaches to handle the multi-
objective properties of the problem.

Due to the high complexity of the problem, and inspired 
by [9], we divide the problem into two stages as depicted 
in Fig. 2. First, we address the problem of distributing all 
orders, including pickup and delivery options, to the avail-
able vehicles (VRP-stage). In this step, several assignment-
related constraints such as order restrictions are addressed. 
However, many of the above mentioned constraints are 
sequence-dependent and, hence, the nested TSP instance 
for each vehicle needs to be solved. In the TSP-stage, the 
TSP-solver starts and solves an individual TSP instance for 
each vehicle. We retrieve the actual stop-to-stop route from a 
route planning service of our cooperation company and plan 
the order of stops at this stage. The solved TSP instances are 
then sent back to the VRP-stage that performs our Timeline 
algorithm presented in Section 4.1. to determine time win-
dows and pause stops for each tour. Finally, the distribu-
tion can be rated with regards to the cost function explained 
in the next section and the algorithm decides whether the 

current distribution should be kept or discarded. Depend-
ing on the size of the VRP and the nested TSP instances, 
either exact (works for smaller problem spaces) or heuristic 
approaches (for large problem spaces) can be used to solve 
the stages. Since we do not want to restrict applicability of 
our proposed system to only work for small TSP instances, 
we propose our heuristic approaches based on GA and 
ACO for both stages. This two-stage strategy summarizes 
our overall approach to tackle our rVRP. The complexity 
of our approach can be derived by summarizing the above 
mentioned operation steps depicted in Fig. 2 into a runtime 
notation:

with n being the number of stops to plan, n2 being the 
number of stops per tour, m being the number of required 
trucks in the solution. Hence, this formula summarizes the 
complexity of the VRP algorithm for all given stops, the 
complexity of the TSP and the complexity of the timeline 
algorithm multiplied by the number of trucks, and the com-
plexity of the score calculation. The overall O notation can 
be derived by inserting the mentioned O complexities of all 
parts from the according sections.

4.1 � Timeline algorithm for time windows and pause 
stops

In this section, we introduce the timeline algorithm to match 
the pause times and fit as many time windows of stops as 
possible (see Algorithm 1). This algorithm fits all pause 
times first and then tries to fulfill all time window require-
ments. All stops are shifted to fulfill all pause times and 
hence, no pause time violations will be present after the 
execution of this algorithm.

(7)
Toverall(n) = Tvrp(n) + m ⋅ Ttsp(n2) + m ⋅ Ttimeline(n2) + Tcost(n)
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This algorithm iterates over each sequence of stops 
(i.e., once per vehicle and tour) and calculates a penalty 
for the score. It first initializes the timeline with given start 
and end times of a tour, pause times, and time windows. 
Then, it iterates over the sequence of stops and places all 
stops as early as possible taking into account the sequence, 
tour start interval, and its time windows. If the current 
timestamp is too early for the pause time or time window’s 
starting time, the algorithm shifts the whole chain of stops 
(excluding the pauses) to a later starting point while keep-
ing all previous time windows and the tour start interval. 
This also includes a recalculation of all previously placed 
stops by a defined amount of time regarding the start time 
of each stop. In case a shift is not possible, the vehicle 
waits until the time window for this stop starts. In case 
a pause time is reached while driving from one stop to 
another, the algorithm adds a pause on the route. If the 
SPLIT mode is activated, that is, a pause during services 
is possible, the pause time is added to the service time. 
If it is deactivated, the full service needs to be shifted to 
after the pause. After the placement of all stops with time 
windows and the placement of pause times on the time-
line, the scores H3 to S3 are recalculated and fed back to 
the VRP-stage of the algorithm to judge the quality of the 
solution. Since this algorithm iterates once over all stops 
per sequence, that is, all stops per vehicle, the complexity 
of this algorithm can be summarized as:

4.2 � Cost function

Since the rVRP addressed in this paper exhibits a high 
diversity of constraints and restrictions, we propose to use a 
cost function consisting of six priority scores for the evalu-
ation of the generated solutions. These six scores address all 
objectives of the problem defined in Section 3 and enable the 
applied approaches to handle this multi-objective problem. 
The six scores are divided into three hard scores [H1,H2,H3] 
and three soft scores [S1, S2, S3] . The hard scores assess the 
solution’s feasibility and, hence, are handled as hard con-
straints, while the soft scores represent the solution’s quality. 

(8)Ttimeline(n2) ∈ O(n2)

The cost function is designed to form a minimization goal 
for the optimization process.

In case the capacity of vehicles and trailers is exceeded, 
the first hard score H1 sums up the exceeded capacity by 
subtracting the defined vehicle capacity  (vcap ) from the 
planned vehicle capacity (vpcap ). Further, it adds a value of 
100 score points for each fault in existing order restrictions 
such as a co-driver requirement ( for ) and a violation in order 
dependencies like co-located orders ( fod ) where the operator 
# indicates the number of violations. We decided to use the 
multiplier 100 to balance the impact of an order restriction 
violation (counted as number of violations) compared to a 
capacity exceed (counted as difference of weight, volume, 
or the like). The calculation for this score has a complexity 
of O(n) as it requires to iterate over all stops.

The second hard score H2 deals with the pickup and delivery 
order, the entry order, and the vehicle assignment. First, it is 
checked whether the pickup is done prior to the correspond-
ing delivery with 100 score points for each fault ( fpd ). After-
ward, the vehicle-specific tour start and end locations are 
examined and one score point is added for each fault ( fse ). 
Finally, this score evaluates whether all stops that require 
a specific vehicle are serviced by such a vehicle ( fsv ) and 
whether all planned returns to stops are allowed ( fsr ). Any 
fault adds one score point to H2 . Similar to H1 , this score 
also requires to iterate over all stops and check the require-
ments and, hence, has a complexity of O(n) . However, this 
score can also be calculated during the iteration over all 
stops for the first hard score, and, thus, does not increase the 
overall complexity of the score calculation.

The hard score H3 sums the seconds the tour duration (tdur ) 
exceeds the maximum duration (tmaxdur ) and the planned 
tour end (tpend ) exceeds the end constraint (tend ). This score 
iterates over all vehicles and calculates time restrictions 
and, hence, has a complexity of O(m) . Since the number of 
vehicles (m) is constant and significantly smaller than n this 

(9)H1 =
∑

v∈V

max((vpcap − vcap), 0) + 100 ⋅ #for + 100 ⋅ #fod

(10)H2 =
∑

v∈V

100 ⋅ #fpd + #fse + #fsv + #fsr

Fig. 2   Overview of the two-
staged strategy
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calculation can be assumed to be constant in terms of the 
overall score complexity in O notation.

The soft scores assess the quality of the solutions. The 
first soft score S1 assesses how good the solution matches 
each time window (tw) in the set of predefined time win-
dows (TW). It sums up how many seconds the planned time 
window (twp ) exceeds the given time window (twg ). There-
fore, the seconds the planned time window starts (twp,s ) 
ahead of the given time window are calculated and added to 
the seconds the planned time window ends (twp,e ) after the 
given time window ends. For the calculation of this score, 
all stops need to be assessed and, hence, the complexity 
of this calculation can be summarized as O(n) . Again, this 
calculation can be integrated into the calculation of the fist 
two hard scores and does not increase the overall complexity.

The second soft score S2 summarizes driven kilome-
ters (dist), waiting (time

wait
 ), driving (time

drive
 ), and service 

times (time
service

 ). The individual values can be multiplied by 
the costs per vehicle, trailer, and personnel to represent the 
costs for a tour. Since these objectives form the main goal of 
the defined VRP in this work, we decided to integrate them 
into one score and, hence, assign the same priority to these 
objectives. Similar to the previous score, all stops need to 
be assessed and the complexity can be summarized as O(n) . 
Again, this does not increase the overall complexity.

The last soft score S3 refers to the delay of a driver starting 
his/her tour (tpstart ) after the defined start (tstart ), the num-
ber of visited locations (loc), and the chain length (cl), that 
represents the number of stops to be serviced during the 
tour. This score integrates further soft constraints that are 
less important than the main objective goals in S2 and is 
only assessed if several solutions perform equally well on 
S2 . Hence, this score is used to decide which solution per-
forms best, if multiple solutions perform equally well in our 
main objective score S2 . To calculate this score, constants 
for each vehicle need to be summarized and the complexity 
is O(m) which can be seen as constant and does not increase 
the overall complexity.

(11)

H3 =
∑

v∈V

max((tdur − tmaxdur), 0) + max((tpend − tend), 0)

(12)

S1 =
∑

v∈V

∑

tw∈TW

max((twg,s − twp,s), 0) + max((twp,e − twg,e), 0)

(13)S2 =
∑

v∈V

dist + timewait + timedrive + timeservice

(14)S3 =
∑

v∈V

max((tstart − tpstart), 0) + #loc + cl

To save computation time, we only calculate the scores H3 , 
S1 , S2 , and S3 if the previous hard scores are down to zero. 
Otherwise the solution is considered to be infeasible, i.e., the 
hard scores are not down to zero. Since we implemented our 
score system as priority scores that need to be minimized, 
the first smaller value of a score level—starting at H1 and 
ending at S3—decides which of the two solutions performed 
better.

An example score value for a VRP solution that meets all 
capacity constraints, breaks one order restriction and sticks 
to all entry order and location-specific constraints can look 
like Hard [100, 0, 0] , Soft [120, 2919200, 1235] . The H1-
value of 100 represents the order restriction fault of this 
solution, while H2 and H3 have a value of 0 indicating, that 
these constraints are all met. The S1-value of 120 means that 
the vehicles of this solution break time windows by 120 
seconds. The S2-value 2919200 is the sum of all service, 
driving, and waiting times, while the last score (S3 ) refers to 
the delay of starting times and the number of visited tours.

In summary, we define the complexity of the cost func-
tion as:

We argue that the number of vehicles (m) is a constant since 
the number of available vehicles is fixed and significantly 
smaller than the number of orders which results in O(n).

5 � Genetic algorithm

We now describe the genetic algorithm (GA) we applied, 
inspired by the approach in  [23]. Figure 3 presents the 
genome representation used for the GA. Each genome con-
tains a set of vehicles each representing a TSP instance. Each 
vehicle holds a list of orders. This list is passed to the TSP-
stage that determines the most beneficial ordering of this list. 
We define the complexity of our GA individually for both 
stages in their according subsections.

(15)Tcost(n) ∈ O(4 ⋅ n + 2 ⋅ m) = O(n)

TSP
Veh. 1

VR
P Order 1

Order 2
Order 3
...

TSP

Order 4
Order 5
Order 6
...

TSP

Order 7
Order 8
Order 9
...

TSP
...Veh. 3Veh. 2

Fig. 3   Illustration of an object-oriented genome representation of the 
GA
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5.1 � VRP‑stage

We define the complexity of the VRP-stage of the genetic 
algorithm based on the population size P, the number of 
generations G, the crossover probability Probc , the complex-
ity of the crossover Tga

c,vrp , the mutation probability Probm , 
and the mutation complexity Tga

m,vrp . The complexity of the 
TSP-stage, the Timeline approach and the cost function are 

already included in the complexity of the overall approach as 
stated in Equation 7 and thus, they do not need to be added 
here. Again, n is the number of orders, and m represents the 
number of vehicles.

(16)Tga
vrp
(n) = P ⋅ G ⋅ Probc ⋅ T

ga
c,vrp

(n) + Probm ⋅ Tga
m,vrp

(n)

Since the parameters P, G, Probc , Probm , and m are con-
stants, the complexity of the VRP-stage of the GA can be 
reduced to:

In the following, we present the process of our adapted VRP-
stage GA. Each iteration of the VRP-stage GA performs 
four steps after a population initialization phase: (i) breed 
new individuals, (ii) solve the TSP-stage for each vehicle, 
(iii) calculate the score, and (iv) maintain population size. 
These steps are repeated until either a predefined number 
of unimproved iterations or a given computation time is 
reached as summarized in Algorithm 2.

Instead of initializing the population purely at random, 
the GA creates an initial individual by assigning orders to 
vehicles with regards to vehicle restrictions or co-location 
requirements. Afterward, the remaining orders are matched 
to the vehicles based on stop-to-stop distances, that is, a stop 
that has the minimum distance to already assigned stops of a 
vehicle is assigned to this vehicle. This solution is improved 
by iterating over all stops and moving them to other vehicles 

(17)Tga
vrp
(n) = Tga

c,vrp
(n) + Tga

m,vrp
(n)

in order to improve the average stop-to-stop distances for all 
vehicles. Then, for each required individual as specified in 
the population size, the GA selects one mutation operator 
from the list of available operators randomly and applies it 
to the individual to create the whole initial population. For 
each individual in this population and for each vehicle, the 
TSP-stage solves the stop sequence. Afterward, the Timeline 
algorithm is applied, and the already introduced score is 
calculated for each individual and used as its fitness value.

After the initialization phase—the creation of the initial 
population (line 1)— the VRP-stage GA iterates until one 
of the above mentioned termination criteria is met (line 2). 
Each iteration, that is, each generation, breeds new individu-
als until the population size has doubled (line 3). There-
fore, the algorithm randomly selects uniformly distributed 
from three possible selection operators (that are introduced 
later) to breed a new individual from two parent individu-
als (line 4): (i) select two individuals randomly based on a 
uniform distribution; (ii) select two individuals randomly 
based on a predefined probability, where the individual 
with the best score has the highest probability; and (iii) a 
tournament selection where ten solutions compete pair-wise 
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and the winner is selected for recombination. Then, the 
algorithm randomly selects a crossover operator from 
the set of provided operators and applies it on this pair 
of individuals (line 5). Afterward, the algorithm mutates 
the new individual with a probability pvrp = 0.5 using a 
randomly selected mutation operator (line 6). With defin-
ing a set of selection and mutation operations and their 
random selection in each population, we cope with the 
variety of constraints and aim at a higher diversity in the 
population.

For each newly created individual, the algorithm forwards 
the TSP instances to the TSP-stage that solves this instance 
and returns ordered lists of stops (lines 7 and 8). Then, the 
algorithm applies the Timeline algorithm to match the given 
time windows (line 9). Finally, the algorithm calculates the 
score of the new individual and adds it to the current popu-
lation (line 10). Since, the population size doubled during 
this iteration, half of the population needs to be discarded 
to match the predefined population size (line 11). Therefore, 
the algorithm sorts the population according to the achieved 
score and removes the worst half of individuals. This affects 
the next generation of the algorithm as only the best per-
forming individuals are kept for recombination in the next 
iteration and therefore accelerates the convergence of the 
GA.

The crossover operators use two individuals for 
breeding a new offspring. Therefore, chains or parts of 
chains are copied from the parent individuals to the new 
individual. The remaining stops, that is the sub chains 
that are not copied to the new individual, are assigned 
based on the stop-to-stop distance of each vehicle 
regarding already assigned stops. Since our problem 
definition includes diverse constraints, we define the 
following three crossover operators to breed new indi-
viduals in multiple ways to increase the diversity of the 
population: 

1.	 The OverlapCrossover operator copies stops located on 
both parents to the new individual. Remaining stops are 
added to the vehicle of the new individual with lowest 
distance to existing stops of this vehicle. O(n)

2.	 The ScoreBasedCrossover operator copies the chain of 
the parent with lower costs to the new individual. The 
remaining stops from the other parent are added similar 
to the first crossover. O(n)

3.	 The SelectionCrossover operator selects one of the par-
ents randomly and assigns the chain to the new indi-
vidual. The remaining stops from the other parent are 
added similarly to the other crossovers. O(n)

Considering that these operators are applied on pairs of indi-
viduals, we define the overall complexity of the crossover 
computation as:

Mutation operators are used for breeding new individuals 
from a single parent individual and increasing the diver-
sity of the population. For each individual that should be 
mutated, we select one mutation operator randomly. Since 
it is not guaranteed that a mutation operator produces a 
valid individual we restart the mutation with another ran-
domly selected operator in case the individual is invalid. 
Since our problem definition includes diverse constraints, 
we define the following mutation operators, each modify-
ing the genome in a different way, aiming at a specific con-
straint. By providing this diverse set of mutation operators, 
we deal with the variety of constraints and are able to keep 
the diversity of the population as high as possible rather than 
focusing on a single mutation operator. 

1.	 The ClearVehicleMutator removes all stops of a random 
vehicle and assigns them to other vehicles, based on a 
location and distance-based rating. O(n)

2.	 The SwapVehicleMutator swaps chains of two different 
vehicles, excluding the vehicle’s start and end locations. 
Since this operator is applied at the VRP-stage consist-
ing of multiple vehicles and their assigned orders, it is 
considered a mutation. O(1)

3.	 The OutlierMutator iterates through every vehicle’s stop 
chain, selecting the stop pair that contributes most to the 
distance-based rating and moving it to another vehicle. 
O(n)

4.	 The MoveOrderMutator takes up to three orders of one 
vehicle and moves them to another vehicle, based on the 
distance rating. This behavior is repeated for a random 
number of times with a maximum of four times. O(n)

5.	 The CloseToOtherVehicleChainMutator selects a stop 
from a chain close to another chain, and moves the order 
for this stop to the nearby chain. O(n)

6.	 The SavingsMutator iterates over all stops of every vehi-
cle and computes the highest saving of distance when 
moving one order to another vehicle. Additionally, pre-
decessors and successors are moved to another vehicle 
if this reduces the distance. This mutator avoids overlap-
ping tours. O(n)

We define the overall complexity of the mutation computa-
tion as:

5.2 � TSP‑stage

Analogously to the algorithm complexity of the VRP-stage, 
we define the complexity of the TSP-stage as:

(18)Tga
c,vrp

(n) ∈ O

(
n

2
∗ n

)
∈ O(n2)

(19)Tga
m,vrp

(n) ∈ O(n2)
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Since we included the computation of the cost function for 
the VRP-stage explicitly in the overall complexity Toverall 
we do not need this complexity in the VRP-stage. On the 
contrary, this computation complexity is not included for 
the TSP-stage and we need to include it explicitly in Tga

tsp(n2).
The TSP-stage of the algorithm calculates the sequence 

and options (i.e., the list of possible locations) selection for 
each vehicle independently. Hence, the following description 
always captures performed steps for the tour of a single vehi-
cle. At the beginning, the initial population is created simi-
larly to the initialization of the VRP-stage by calculating a 
first valid individual. For this individual, the algorithm starts 
with a random stop and assigns the remaining stops based 
on the stop-to-stop distances, that is, the algorithm selects 
always the nearest stop compared to the last assigned stop. 
Then, the algorithm mutates this individual by applying 
randomly selected mutation operators to create the required 
amount of individuals for the initial population.

After the initialization phase, the TSP-stage GA performs 
similar steps compared to the VRP-GA. It iterates until the 
maximum amount of unimproved iterations are executed 
and breeds new individuals until the population size has 
doubled in each iteration. For the new individuals, the algo-
rithm selects and recombines two randomly chosen parent 
individuals using a random crossover operator. Afterward, 
the algorithm mutates the individual with a certain mutation 
probability ptsp = 0.5 and a randomly selected operator and 
adds it to the population. As the population size is doubled, 
the algorithm omits the worst half of the population to accel-
erate the convergence.

Again, the crossover operators combine two parents into 
one new individual. We define the following three crosso-
ver operators to breed new individuals in different ways and 
keep the diversity of the population high. The crossover 
operators in the TSP-stage are inspired by [24]: 

1.	 The RandomCrossover randomly chooses the next pos-
sible stop from the beginning of the parents’ chain while 
removing stops already contained in the offspring. O(n2)

2.	 The OrderedCrossover performs a classical two-point 
crossover and combines the genome of both parents. 
O(n2)

3.	 The PartiallyMappedCrossover works similar to the 
OrderedCrossover but assigns the remaining stops out-
side the interval at the beginning of the chain based on 
the indices of their parents which is the main difference 
to the one in the literature. O(n2)

In line with the complexity in the VRP-stage, we define the 
overall complexity of the crossover computation at the TSP-
stage as:

(20)T
ga

tsp(n2) = T
ga

c,tsp(n2) + T
ga

m,tsp(n2) + Tcost(n2)

Additionally, we define the following operators concern-
ing the TSP-stage, inspired by related work [24]. Again, we 
decided to provide a diverse set of mutators and select ran-
dom ones in each iteration to increase the diversity of the 
population. 

1.	 The ReverseMutator reverses the sequence of all succes-
sive pickup and delivery pairs. O(n2)

2.	 The SimpleMoveMutator moves one stop to another 
feasible position in the chain, taking into account the 
constraint of pickup-delivery order. The TourBegin and 
TourEnd nodes are protected and omitted. O(1)

3.	 The SimpleSwapMutator swaps the positions of two 
stops on the chain. O(1)

4.	 The MultiOptMutator combines the previous two muta-
tors and applies the SimpleMoveMutator or the Sim-
pleSwapMutator up to three times. O(1)

5.	 The NeighborhoodSwapMutator is similar to the 
SimpleSwapMutator, but it works based on distance 
improvement when swapping stops. It tries all possible 
swaps in the chain for one random stop and performs the 
swap with the highest distance improvement. O(n2)

6.	 The SavingsTSPMutator selects the stop that produces 
the highest saved distance when moving it in the chain. 
The delta of the distance concerning the whole chain 
is calculated and the highest distance savings move is 
executed. O(n2

2
)

7.	 The OptionsMutator selects a random stop with at least 
one option and randomly replaces it with one of the 
other possible options. O(1)

8.	 The OptionsChainMutator rotates the options for the 
whole chain and replaces all stops with a possible option 
of this stop. O(n2)

In line with the complexity in the VRP-stage, we define the 
overall complexity of the mutation computation at the TSP-
stage as:

This section introduced our domain-adapted GA and 
presented complexity definitions. First, we presented our 
object oriented genome presentation used and proposed 
two stages of this algorithm. Then, for each stage of the 
algorithm, we provide a domain-specific set of crosso-
ver and mutation operators that are randomly chosen in 
each offspring computation. These operators enable the 
algorithm to cope with the various constraints included 
in this work and aim at maintaining a high diversity of 
the population.

(21)T
ga

c,tsp(n2) ∈ O

(n2
2

∗ n2

)
∈ O(n2

2
)

(22)T
ga

m,tsp(n2) ∈ O(n2
2
)
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6 � Ant colony optimization

This section explains the developed two-staged ACO algorithm 
inspired by [15]. We modified the classical ACO algorithm for 
both stages to accommodate for the complexity of the rVRP:

–	 We replaced the pheromone initialization by a heuristic 
one concerning the actual stop-to-stop distances to kick-
off the optimization from the first step onward.

–	 We use a deterministic ACO in the VRP-stage, this 
means that we start with an assignment of stops to 
vehicles based on the pheromone matrices. This helps 
to decrease bad performing solutions at the start.

–	 The stops for pickups and deliveries are assigned in pairs, 
so that one vehicle needs to serve both stops in one tour. 
This prevents creating invalid solutions that put pickup 
and deliveries on different vehicles.

6.1 � VRP‑Stage

Similar to the VRP-stage of the GA, the VRP-stage of the ACO 
algorithm assigns stops to vehicles and optimizes the solutions. 
The assignment of stops to vehicles and its optimization works 
with two pheromone matrices as illustrated in Fig. 4, where 
each ant represents one vehicle. The vehicle-to-stop matrix rep-
resents the occupied capacity of vehicles so that ants select the 

vehicles with enough free space first. The algorithm updates 
this matrix after each assignment with the current available 
space of the according vehicle. We performed preliminary tests 
using a single pheromone matrix which showed us that this 
value is not enough to determine a good order to vehicle distri-
bution. Instead, the stops that are already assigned to a vehicle 
have further influence on the final solution as a good clustering 
of stops per vehicle seems to be advantageous. Hence, we intro-
duce the stop-to-stop matrix that covers the distance between 
stops and is used to determine the next stop to be added. By 
implementing the second matrix, stops with a close distance 
to each other are more likely to be assigned to the same vehi-
cle: First, an ant selects a stop based on stop-to-stop matrix 
that is reachable from its current location and has the shortest 
distance. Then, the ant searches for vehicles that have enough 
space for this order. We then assign a probability of selecting 
each of these vehicles by adding the vehicle-to-stop pheromone 
value (available space) and the stop-to-stop pheromones to all 
already assigned stops of this vehicle (stop-to-stop distances). 
Based on these probabilities, the ant selects a vehicle randomly. 
This means, the higher the amount of aggregated pheromones, 
the better the vehicle suits this order, the higher the probability 
to select this vehicle.

Algorithm 3 summarizes the behavior of the ACO algo-
rithm using the two pheromone matrices in the VRP stage. 

Fig. 4   Graph representation of 
the VRP problem for the ACO 
algorithm
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First, the pheromone matrices are initialized with the apri-
ori knowledge of vehicle capacities and stop-to-stop dis-
tances (line 1). Additionally, an empty set of solutions is 
initialized in which the best solutions are stored. The number 
of stored solutions is defined as twice the number of vehicles 
of a specific problem instance. We decided to double the 
vehicle number to have at least one ant per vehicle and a sec-
ond ant for a further optimization round. Then, a loop starts 
iterating until a maximum number of iterations that were not 
able to improve the solution quality are executed (line 2). In 
each iteration, one ant is placed at the graph and assigns all 
stops to the vehicles with regards to both pheromone matri-
ces (line 3). In order to keep the idea of Novelty Search [27] 
and avoid getting stuck in local optima, a small amount of 
distributions are created probabilistic. Afterward, the algo-
rithm passes a TSP instance per vehicle to the TSP-stage 
of the ACO which optimizes its sequence (lines 4 and 5). 
The returned TSP instances are then passed to the Timeline 
algorithm to match time windows (line 6). Afterward, the 
algorithm calculates the final scores for this solution (line 7). 
Then, the algorithm updates the pheromone matrices using 
the scores of the solutions in the set and performs a phero-
mone evaporation step with a probability of 5% which we 
identified in a preliminary parameter study (lines 9 and 10). 
If the found solution is better than the worst one in the solu-
tion set, or the solution set is not yet full, the solution is 
added to this set (lines 11 to 14). If the solution is better than 
the best solution so far, the number of unimproved itera-
tions is reset to zero. Otherwise, the number of unimproved 
iterations is incremented. Afterward, the next iteration starts, 
another ant is placed at the graph, and assigns the stops to 
vehicles.

Derived from the algorithm we define the complexity 
of our VRP-stage ACO using the complexity of the ini-
tialization Taco

init,vrp
(n) , the maximum of the number of 

unimproved iterations ui and the maximum runtime, the 
complexity of the TSP-stage Taco

tsp
(n2) in combination with 

the number of vehicles m, the complexity of the phero-
mone update Taco

upd,vrp
(n) and the pheromone evapora-

tion Taco
evap,vrp

(n) . The complexity of the TSP-stage, the 
Timeline approach and the cost function are already 
included in the complexity of the overall approach as 
stated in (7) and thus, they do not need to be added in this 
complexity definition.

The initialization computation complexity considers the 
initialization of the vehicle-to-stop and the stop-to-stop 

(23)

Taco
vrp

=Taco
init,vrp

(n)

+ max(ui, max. runtime) ⋅ (m ⋅ Taco
tsp

(n2))

+ Taco
upd,vrp

(n)

+ Taco
evap,vrp

(n)

matrices. While the vehicle-to-stop matrix is initialized with 
zero values, its complexity is O(1) . The stop-to-stop matrix 
contains the stop-to-stop distances and requires iteration 
over all stops which results in O(n2) . In summary, we define 
the initialization complexity as:

The matrix update in this stage works with a comparison 
of the score value to the last best and worst scores. Due to 
the fact, that the algorithm deals with a multi-level prior-
ity score, that is any broken constraint in level i is more 
important than any improvement in level i + 1 , we decided 
to include this knowledge in the pheromone update strategy. 
This way, we want to provide more weight for higher score 
levels than to lower score levels and direct the search of the 
algorithm to improve the convergence speed. As summarized 
in (25), the new pheromones for every score level i are calcu-
lated by multiplying the score factor  fi with a pheromone base 
value pi , divided by the score level (one for H1 , two for H2 , and 
so on) to give more weight to the more important scores. We 
distinguish two cases to set pi : if the current score is better than 
the worst score ever found, we set pi = 1 ; if the current score is 
worse than the worst score, we set pi = 0.25 . By this, we give 
the pheromones of reasonable solutions more weight than of 
bad ones and hope to gain a faster improvement of the found 
solutions since many more non-feasible solutions exist. The 
already mentioned idea of integrating Novelty Search brings 
the possibility of worse solutions than the currently worst one.

Equation (26) shows the calculation of the score factor  fi . 
The variable wsi refers to the current worst score, bsi to the 
current best score, and si to the current score value of the 
respective level i. By using this formula, we decrease the 
pheromone amount of solutions with lower scores than the 
current worst score and exponentially award better solutions.

The complexity of the pheromone update includes the num-
ber of score levels, the number of stops and the actual cal-
culation of the new score. While the number of score levels 
is a constant value of six, the number of pheromones to be 
updated is defined as n2 . The actual calculation of the update 
pheromone value can be done in O(1) . This results in an 
overall pheromone update complexity of:

(24)Taco
init,vrp

(n) ∈ O(n2)

(25)pheromones =
∑

i

fi ⋅ pi

i

(26)fi =
|||
||

(wsi − si)
3

(wsi − bsi)
3

|||
||

(27)Taco
upd,vrp

(n) ∈ O(n2)
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The pheromone evaporation complexity depends on the 
number of pheromone values to be updated, which is n2 and 
the complexity of the actual evaporation computation. Since 
we use a fixed evaporation factor in this work, the complex-
ity of the evaporation computation can be reduced to:

6.2 � TSP‑stage

The TSP-stage works with a single stop-to-stop pheromone 
matrix representing the probabilities, that is the distance to 
move from one stop to another. The diagonal values refer 
to the probability of a stop to be the first stop taking the 
vehicle’s start locations into account. The other values rep-
resent the probabilities to move from one stop to another. 
We initialized this matrix again with knowledge about 
the stop-to-stop distances and hence, represent the actual 
distance between the stops from the first iteration onward 
instead of an equal initialization which would require some 
time to converge to the actual distances. However, it might 
happen that order dependencies, order restrictions, or time 
windows require another stop sequence than shortest first, 
so we decided to maintain a small probability for every stop. 
The algorithm starts iterating and places one ant at any loca-
tion in the graph in every iteration. The ant then decides—
depending on the column for the current stop containing the 
values to every other stop—which stop to visit next. We add 
a visibility feature to the matrix to guide the ant in a way to 
first select the pickup stop and Afterward the delivery stop. 
Hence, we set the visibility of a delivery stop to false if the 
ant did not pickup the products for this order beforehand 
and the ant cannot see this stop. This aims at further reduc-
ing the convergence time of the algorithm. After one ant 
finished its walk and returned with a sequence of stops, the 
algorithm calculates the score for this sequence. Afterward, 
the algorithm updates the pheromones similar to the update 
procedure in the VRP-stage and evaporates the pheromones 
with a probability of 5%. Further, we apply the principle of 
Elitism—i.e., the matrix is additionally updated with the 
current and global best solutions so far—to improve the 
solution quality even more  (cf. [6]). This behavior guides 
the algorithm to search for better solutions in the neighbor-
hood of already good solutions. The TSP-stage iterates until 
a maximum number of unimproved iterations occurred, the 
maximum runtime is exceeded or the path of the ants con-
verged, that is, all ants select the same path.

Analogously to the algorithm complexity of the VRP-
stage, we define the complexity of the TSP-stage. How-
ever, we need to add the complexity of the cost function 
computation as this is not part of the overall complexity 
in (7).

(28)Taco
evap,vrp

(n) ∈ O(n2) The initialization computation complexity solely consid-
ers the initialization of the stop-to-stop matrix as this stage 
works with a single matrix. Again, the stop-to-stop matrix 
contains the stop-to-stop distances and requires iteration 
over all stops which results in a complexity of:

Since the pheromone update in the TSP-stage works analo-
gously to the one in the VRP-stage, the complexity can be 
similarly defined as:

Finally, the pheromone evaporation factor is a constant value 
that needs to be assigned to all values in the stop-to-stop 
matrix of this stage. This results in a complexity of:

7 � Evaluation

First, we present our evaluation methodology in Section 7.1, 
where we define the problem instances, algorithms we use for 
comparing our proposed approaches, evaluation procedure, 
and algorithm parameterizations. Then, we present our evalua-
tion results in Section 7.2, derive implications for practitioners 
in Section 7.3, and discuss threats to validity in Section 7.4.

7.1 � Evaluation methodology

In this section, we first introduce the real-world database and 
define the problem instances we derived to use them for our 
evaluation. We then present alternative algorithms that we 
use as reference values in the evaluation. Further, we present 
the parameterization of our algorithms and summarize them 
in Table 3. Finally, we present the methodology we use to 
evaluate our approaches.

Since we handle a real-world rVRP, we decided to use 
a real database for our evaluation instead of a benchmark 
instance since we require a huge level of detail for each 
order, vehicle, and driver. This would force us to adjust the 
available benchmark instances which would reduce the com-
parability of the results what is the main advantage of these 
instances. Therefore, our cooperation company provided a 
database of real VRPs containing 30 vehicles with different 

(29)

Taco
tsp

(n2) =T
aco
init,tsp

(n2)

+ Taco
upd,tsp

(n2)

+ Taco
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(n2)
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costs, capacities, and capabilities, 15 matching trailers with 
different specifications, and 30 drivers that can be assigned 
to vehicles with different capabilities. Further, the database 
contains three depots and 450 orders with according loca-
tions around the German city Stuttgart. Unfortunately, we 
are not allowed to make this dataset publicly available since 
it is part of a non-disclosure agreement.

From this set of data, we define eight different problem 
instances for evaluating our proposed algorithms (Table 1). 
In line with our separated handling of TSP and VRP 
instances, we decided to first evaluate the TSP-stage isolated 
and Afterward apply the algorithms on the VRP-stage that 
includes solving nested TSP instances. For the evaluation 
of the TSP-stage, we define three problem instances: (i) a 
small problem instance of ten orders without pickup and 
delivery (PD) and pause times (TSP-I), (ii) a large problem 
instance of 30 orders without PD and pause times (TSP-II), 
and (iii) the large problem instance of 30 orders without 
PD but with pause times (TSP-II-P). We similarly define 
three problem instances for evaluating the VRP-stage: (i) a 
small problem instance of 53 orders and 5 vehicles with-
out PD and pause times (VRP-I), (ii)  the small problem 
instances combined with pause times (VRP-I-P), and (iii) a 
large problem instance of 100 orders, 13 vehicles without 
PD and pause times (VRP-II). Since we did not include PD 

behavior, that is, each order has differing pickup and deliv-
ery stops, in the previous problem instances, we add two 
further instances that require PD behavior: (i) a TSP problem 
instance with ten orders, one vehicle with PD but without 
pause times (TSP-PD) and (ii) a VRP problem instance with 
62 orders, seven vehicles with PD and pause times (VRP-
PD). In all problem instances, time windows are given for 
orders and need to be handled by the algorithms. However, 
pause times are only integrated if we explicitly stated it, 
that is, in the problem instances TSP-II-P, VRP-I-P, and 
VRP-PD. Using the real-world data explains the unusual 
amount of orders and vehicles since the minimum required 
vehicles depend on the characteristics of the orders. The 
extension P of the problem instance label indicates that for 
this problem instance we add the following pause times: 
9:30-10:00 AM, 11:30 AM-12:00 PM, and 2:30-3:00 PM. 
We here only consider static pause times to evaluate the 
ability of our algorithms to fulfil this requirement. However, 
also flexible pause times can easily be included to replace 
the static ones.

We compare the performance of our algorithms (GA, 
ACO) against four alternative algorithms. Since our coop-
eration company provides several algorithms for comparison 
that are already implemented in OptaPlanner, we decided 
to also use OptaPlanner for an easy comparison of our new 
implementations. Hence, we implement our algorithms in 
the OptaPlanner Framework (cf. https://​www.​optap​lanner.​
org/) using version 7.31.0.Final. Nevertheless, it is of course 
possible to implement our approach without OptaPlanner.

Table 2 provides essential information on the functional 
requirements supported by each compared algorithm. First, 
we apply a deterministic Brute Force algorithm provided 
by OptaPlanner that supports all requirements of our sce-
nario. Since this complete and optimal algorithm requires 
high computation time, it is only applied to the smallest test 
instance. The second algorithm is based on a Savings algo-
rithm [10] and used by our cooperation company in cases 
with a homogeneous vehicle fleet, a single depot, and no 

Table 1   Overview of the evaluated Problem Instances (PI)

PI Orders Vehicles P/D Pause Times

TSP-I 10 1 ✗ ✗
TSP-II 30 1 ✗ ✗
TSP-II-P 30 1 ✗ ✓
VRP-I 53 5 ✗ ✗
VRP-I-P 53 5 ✗ ✓
VRP-II 100 13 ✗ ✗
TSP-PD 10 1 ✓ ✗
VRP-PD-P 62 7 ✓ ✓

Table 2   Overview on the 
compared algorithms and their 
capabilities with respect to the 
requirements of the rVRP

Capabilities Brute Force Blackbox-I Blackbox-II Local Search GA ACO

Capacities ✓ ✓ ✓ ✓ ✓ ✓
Setup Times ✓ ✗ ✗ ✓ ✓ ✓
Time Windows ✓ ✓ ✓ ✓ ✓ ✓
Tour Start Time Window ✓ ✓ ✓ ✓ ✓ ✓
Order Restrictions ✓ ✓ ✓ ✓ ✓ ✓
Fixed Pause Times ✓ (✓) ✓ ✓ ✓ ✓
Heterogeneous Fleet ✓ ✗ ✗ ✓ ✓ ✓
Multiple Depots ✓ ✗ ✓ ✓ ✓ ✓
Pickup/Delivery ✓ ✗ (✓) ✓ ✓ ✓
Stop Options ✓ ✗ ✗ ✓ ✓ ✓
Allow Return ✓ ✗ ✗ ✓ ✓ ✓
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pickup and delivery problem. Even if we know on which 
approach this algorithm is based, we call it Blackbox-I as 
we have no insight into the details of the implementation. 
The third algorithm (Blackbox-II) is an extension to the 
above mentioned Blackbox-I algorithm covering a multi-
depot problem and more complex pause time rules. Both 
Blackbox algorithms are proprietary algorithms developed 
by our cooperation company. The fourth algorithm supports 
all features required for our rVRP as it uses our model of 
the problem inside OptaPlanner and is an implementation 
of Tabu Search [20] provided by default from the OptaPlan-
ner’s Local Search (LS) algorithms.

Since we modelled the rVRP inside OptaPlanner addi-
tional optimization could be applied such as exhaustive 
search, hyperheuristics or partitioned search. However, we 
decided to use the Tabu Search implementation as promising 
representative of Local Search algorithms. Further, other 
optimization techniques could be applied on the rVRP such 
as exact algorithms by using an adjusted penalty function. 
However, several restrictions of our problem statement 
prevented us from using these as for example we retrieve 
the stop-to-stop distance from a service of our cooperation 

company and this information is not available as fixed adja-
cency matrix that could be transferred to other algorithms 
easily. Further, the integration of all handled constraints into 
one penalty function is problematic since diverse constraints 
need to be reduced to one value. This single value is not a 
good indicator which of the constraints is violated and there-
fore a directed search towards an optimum is hardly possible.

We evaluate our two proposed algorithms against the 
alternative four algorithms on all previously defined prob-
lem instances. The probabilistic algorithms (LS, GA, ACO) 
are executed 30 times with different random seeds to deliver 
representative results for comparison. We summarize the 
parametrization of our algorithms in Table 3. For defining 
the population size of the genetic algorithm, we use statistics 
of the problem instance to be solved. Therefore, we use 10% 
of the number of orders, add the number of vehicles to the 
power of 1.25, the number of pickup delivery orders, and 
twice the number of stops containing multiple options. We 
derived these values in a preliminary parameter study and 
focused on providing a reasonable number of individuals 
regarding the complexity of the problem. We set the muta-
tion probability to be 50%, hence, on average half of the 

Table 3   Definition of algorithm-dependent parameters used for the evaluation

Genetic Algorithm

Population size 0.1 ⋅ #o + #v1.25 + #(PD-orders) + 2 ⋅ #(multi-option stops)

Mutation probability ( pvrp , ptsp) 0.5
Max. unimproved iterations 500

Ant Colony Optimization
Evaporation factor 0.05
Size set of best solutions (N) 10
Max. unimproved iterations 500

Table 4   Summary of the evaluation results for S1 (time windows = TW) and S2 (tour length score) for all algorithms and problem instances

For probabilistic algorithms, the mean and standard deviation values over 30 runs are listed (P = with pause times, PD = with pickup and deliv-
ery). The best values are shown in bold

Algorithm Brute Force Blackbox-I Blackbox-II Local Search GA ACO

TW S2 TW S2 TW S2 TW S2 TW S2 TW S2

mean std mean std mean std

TSP-I ✓ 91.52 ✓ 92.55 ✗ 90.95 ✓ 91.52 0 ✓ 91.52 0 ✓ 93.87 2.06
TSP-II – ✓ 161.87 ✗ – ✓ 157.62 5.68 ✓ 156.74 0.89 ✗ 222.00 7.50
TSP-II-P – ✗ 161.87 ✗ – 19/30 207.41 30.50 25/30 190.53 20.26 ✗ 217.74 7.58
VRP-I – ✓ 187.14 ✓ 185.71 ✓ 186.56 8.25 ✓ 177.19 1.22 ✓ 201.81 8.85
VRP-I-P – ✗ 187.14 ✗ 177.82 ✓ 194.10 5.84 ✓ 179.81 0.67 –
VRP-II – ✓ 396.21 ✓ 373.05 28/30 299.03 60.95 ✓ 292.86 14.60 –
TSP-PD – – – 21/30 108.50 2.00 27/30 104.89 17.76 –
VRP-PD – – – ✓ 337.80 18.40 ✓ 332.39 13.96 –
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newly created individuals are mutated and set the termina-
tion criterion to a maximum iterations without improvement 
to be 500. For the ACO we use an evaporation factor of 0.05, 
the size of the set of best solutions so far to ten, and the 
maximum number of iterations without improvement to 500.

For the evaluation runs, we used a server exclusively for 
our measurements with the following specifications: Two 
Intel(R)Xeon(R) CPU E5-2667 v4 processors with 3,20 GHz 
each with 16 GB of RAM. Windows Server 2012 R2 Data-
center runs as a 64-bit operating system on the server.

7.2 � Results and interpretation

In the following we discuss the results of the algorithms on 
all defined problem instances. Since we use the ranked score 
for measuring the quality of the solutions, all hard scores 
need to be reduced to zero to consider a solution feasible. 
In case the hard scores (H1,H2,H3 ) are not down to zero, 
the algorithm does not find a feasible solution, which we 
indicate with dashes (-) in our results table. Further, the soft 
scores aim at the matched time windows in the first soft 
score and the tour length in the second soft score that needs 
to be minimized. The third soft score is only considered 
by the optimization if the previous scores are reduced to 
zero. As this is not the case in any of our evaluation results, 
we omit this score in our evaluation. Please keep in mind, 
that even if pause times and time windows are handled in 
the Timeline algorithm, no pause time violations can occur 
as ensured by our algorithm and we only include the time 
window violations in the score S1 . For better readability, we 
re-scaled all values by dividing them by 10,000 in our result 
presentation. To sum up the evaluation results of all problem 
instances, we provide Table 4, which states whether time 
windows are met as well as mean and standard deviations of 
the tour length (S2 ) over 30 runs for probabilistic algorithms, 
that is, the Local Search, GA, and ACO.

The ticks (✓) indicate, that all time windows are met in 
all runs of the algorithm, the crosses (✗) show that these 
are not met. A value of 19/30 for the time windows shows 

that in 19 out of 30 runs, all time windows are met. We only 
report results of the Brute Force algorithm for the TSP-I 
problem instance since it already took the algorithm 7 hours 
and 15 minutes to find a solution for this problem instance. 
For larger problem instances, for example the TSP-II prob-
lem instance, the algorithm has to assess 33! = 8, 6 ⋅ 1036 
possible solutions of sequences and, hence, was not able to 
calculate the optimum solution within feasible time. Further, 
we consider a maximum calculation time for all algorithms 
that is specified by our cooperation company. This maxi-
mum calculation time is defined to stay within a practically 
applicable runtime of the algorithms between 60 and 300 
seconds. We decided to set these time limits as we want to be 
able to react to changes in the orders, vehicles, stops at any 
point in time and we do not assume that the rVRP is planned 
once at the beginning of the day, but should be adjustable 
at any time. The mean and standard deviation values in the 
table are calculated using the final score values of the solu-
tions provided after the execution time. Both Blackbox algo-
rithms are tested for all problem instances except for the 
pickup and delivery instances since they are not designed 
to handle pickup and delivery problems. Additionally, we 
provide line charts and box plots for all problem instances. 
The line charts represent the course of the mean values over 
30 repetitions of the S2 score throughout the optimization. 
For non-deterministic algorithms (LS, GA, ACO) we fur-
ther show the standard deviations as error bars. The box 
plots represent the final S2 results of the algorithms after 
the execution time is over. To make statements on statisti-
cal significance of the results we perform Wilcoxon signed 
rank tests for the non-deterministic algorithms in all rel-
evant comparisons. We define the null hypotheses to be that 
the mean values are drawn from the same distribution and, 
hence, have no statistically significant difference. Further, 
we define the significance level to be � = 0.05 . In the follow-
ing, we first present the results for the TSP instances, then 
the ones for the VRP instances.

The table shows that for the TSP-I problem instance, the 
LS and GA are able to fulfill all time windows and find 
the best possible score value (determined by the result of 
the brute force algorithm). The Blackbox-II algorithm finds 
a solution with a reduced score value of around 2.6 score 
points less but was not able to fit the time windows. The 
Blackbox-I and ACO algorithms are able to fit all time 
windows but only find solutions with higher score value, 
that is, around 1.00 and 2.35 score points above the opti-
mal score value, respectively. Figure 5 shows the mean and 
standard deviation values of the S2 score for all algorithms 
during the course of optimization. The x-axis shows execu-
tion time in seconds while the y-axis presents the S2 score 
value divided by 10.000 to achieve better visibility of the 
values. The Brute Force algorithm is depicted as constant 
line at 91 score points for better comparability with the other 

Fig. 5   Mean and standard deviations of tour length score ( S
2
 ) to be 

minimized for the TSP-I problem instance for all algorithms
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algorithms even if it took more than seven hours to return 
the result. Both Blackbox algorithms do not provide the pos-
sibility to show the course of optimization but provide a final 
result after their calculation. The result of the Blackbox-I is 
returned after five seconds with a lower value of 90.05 than 
the optimal one of 91.52 but with broken time windows, 
while the Blackbox-II algorithm requires 30 seconds calcu-
lation time and matches the time windows. The LS and GA 
show very fast convergence towards the optimum solution 
in all repetitions while the ACO algorithm is not able to 
achieve the best solution and shows comparably high stand-
ard deviations of two score points. This can also be observed 
in the box plot in Fig. 6. Since LS and GA computed the 
optimal solutions in all repetitions, we do no performed sta-
tistical tests on this problem instance. In summary, LS and 
GA were able to achieve the best possible solution after only 
a few seconds and in all runs while the Blackbox algorithms 
produce worse solutions and the ACO cannot compete with 
the other algorithms.

For the TSP-II instance, the Brute Force algorithm was 
not able to calculate the optimal solution, while Blackbox-
II and ACO were not able to match the time windows. The 
Blackbox-I, LS, and GA find solutions that match all time 
windows and comparable S2 score values of around 160 
score points with GA showing the lowest score with 156.74. 
Figure 7 shows the mean and standard deviation values of 

the S2 score for the algorithms that were able to match all 
time windows during the course of optimization. The Black-
box-I again delivers its solution of 161.87 after it finishes its 
calculation after ten seconds. In the mean time, the LS and 
GA were able to reduce their mean value below the value of 
Blackbox-I and manage to reduce their standard deviations 
as well. Figure 8 shows the results for the three algorithms 
as box plot. The LS shows the larger box and, hence, a wider 
variety of solutions. In contrast, the GA shows stable behav-
ior with a slightly slower mean value with a difference of 
0.9 score points compared to the LS. We performed Wil-
coxon signed rank tests to check for statistical significance 
in the test results between the non-deterministic LS and GA. 
We define the H0 hypotheses to be that the mean values are 
drawn from the same distribution and calculated a p-value 
of 0.185. Hence, we were not able to reject our hypotheses 
with a significance level of � = 0.05 . In summary, the LS 
and GA calculate the best solutions after around ten seconds 
and perform equally well.

When including pause times in the TSP-II-P instance, 
the Blackbox-I, Blackbox-II, and ACO algorithm were not 
able to match all time windows in any of the proposed solu-
tions. Contrary, the LS was able to match time windows 
in 19 out of 30 solutions and the GA in 25 of 30 solutions. 
Additionally, the GA produces results with lower S2 score 
of 190 score points compared to 207 score points and lower 

Fig. 6   Boxplot of the tour length score ( S
2
 ) to be minimized for the 

TSP-I problem instance for all algorithms
Fig. 7   Mean and standard deviations of tour length score ( S

2
 ) to be 

minimized for the TSP-II problem instance for all algorithms

Fig. 8   Boxplot of the our length score ( S
2
 ) to be minimized for the 

TSP-II problem instance for all algorithms
Fig. 9   Mean and standard deviations of tour length score ( S

2
 ) to be 

minimized for the TSP-II-P problem instance for all algorithms
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standard deviation (20 score points for GA and 30 score 
points for LS). Again, Fig. 9 provides the mean and stand-
ard deviation values of the S2 score for the Blackbox-I, LS, 
GA, and ACO algorithms. Since no algorithm was able to 
match all time windows in all runs, we present the results of 
all algorithms and keep the performance regarding the time 
windows in mind. The Blackbox-I algorithm returns its solu-
tion of 161 score points after ten seconds and has a lower 
S2 score compared to the other algorithms. However, as this 
solution does not match any time window, we consider it 
worse than the other algorithms. The course of optimiza-
tion of the LS, GA, and ACO show, that the GA already 
starts with a better value (230 score points) than both other 
algorithms (higher than 280 score points) and continues to 
decrease the score slightly during runtime. The LS is also 
able to decrease its score but a high standard deviation of 
8 score points compared to 1 score point for the GA can be 
observed while the ACO seems to show no improvement at 
all. This can be explained by the fact that the ACO was not 
able to match the time windows in any run and hence, does 
not focus on optimizing the S2 score. The boxplots in Fig. 10 
show similar results with a high mean value for the LS and 
the ACO and a low mean for the GA. As the ACO was not 
able to match the time windows in any run, we consider its 
performance worse than the ones from LS and GA. We again 

performed a Wilcoxon signed rank test to compare LS and 
GA and calculated a p-value of 0.082 and were not able to 
reject our hypotheses with a significance level of � = 0.05 . 
In summary, all algorithms were not able to find solutions 
with matching time windows in all repetitions. However, 
the LS and GA were able to match time windows in some 
of the repetitions and are considered best performing in this 
problem instance.

The results using the first VRP problem instance (VRP-I) 
show, that all tested algorithms are able to match the time 
windows. While the ACO provides solutions with a high 
S2 score of around 200 score points, the scores of the other 
algorithms are comparably low at around 186 score points 
with the GA showing the lowest value of 177 score points. 
The line chart in Fig. 11 shows the course of optimization 
for all algorithms. Blackbox-I delivers its result of 187 
score points after around 18 seconds while the Blackbox-II 
algorithm requires 65 seconds calculation time with a score 
value of 186 score points. Both algorithms deliver results 
with higher S2 score value compared to the GA with a score 
of 177. The GA already starts with a good initialized value 
of around 185 and continues reducing the S2 score over time 
with small standard deviations of around 1 score point. The 
LS algorithm starts with a high mean value (larger than 250 
score points), but reduces the score to the level of the Black-
box algorithms in the first 20 seconds. The ACO algorithm 
shows higher score values of around 208 score points com-
pared to the other algorithms but at least slightly reduces 
the score over time. A similar result can be seen in Fig. 12 
where the GA shows the lowest values and the smallest box 
indicating a very stable low score value.

The mean of the LS is around the values for the Blackbox 
algorithms but has a larger box and hence, shows a larger 
diversity in the results. Finally, the ACO has a higher mean 
value and a larger variety in the results. Using three Wil-
coxon signed rank tests between LS, GA, and ACO, we are 
able to reject the hypotheses with p-values of 0.001 and a 
significance level of � = 0.05 , which means that the mean 
values are drawn from different distributions and hence the 

Fig. 10   Boxplot of the tour length score ( S
2
 ) to be minimized for the 

TSP-II-P problem instance for all algorithms

Fig. 11   Mean and standard deviations of tour length score ( S
2
 ) to be 

minimized for the VRP-I problem instance for all algorithms

Fig. 12   Boxplot of the tour length score ( S
2
 ) to be minimized for the 

VRP-I problem instance for all algorithms

V. Lesch et al.9494



difference is statistically significant between all algorithms. 
In summary, the GA shows significant improvements over 
the LS and ACO algorithms in this problem instance.

For the VRP-I-P problem instance with pause times, both 
Blackbox algorithms are unable to match the time windows. 
On the contrary, the LS and GA solutions match all time 
windows with GA having the lowest mean of 180 score 
points and standard deviation of 0.7 score points. The course 
of the optimization is depicted in Fig. 13. The Blackbox-I 
delivers its result of 187 score points after around 18 seconds 
while Blackbox-II algorithm requires 80 seconds calculation 
time with a final score of 177. Again, the GA starts with 
an already good solution of around 185 score points and 
further reduces the score value throughout the calculation 
time while the LS starts with a very high score larger than 
250 score points. The LS is able to reduce its score within 
the first 30 seconds but still has a difference of around 15 
score points to the GA. The boxplot in Figure 14 supports 
this finding, as the GA has low score value and produces 
very stable results with only few variations, while the LS 
shows worse results and high variability in the solution qual-
ity. In addition, a Wilcoxon signed rank test calculates a 
p-value of 0.001 and we are able to reject the hypotheses 
with a significance level of � = 0.05 , and hence the mean 

values are different. In summary, the GA shows significant 
improvements over the LS and shows the most stable solu-
tion quality.

In the second VRP problem instance  (VRP-II), both 
Blackbox algorithms are able to match all time windows, 
while LS only matches time windows in 28 of 30 runs. The 
solutions of the GA match all time windows in all runs, and 
hence, are considered better than the solutions of the LS. 
Figure 15 shows the course of optimization during calcula-
tion time.

The Blackbox-I algorithm returns its result of 396 score 
points after around 45 seconds, while the Blackbox-II algo-
rithm delivers solutions after around 75 seconds with a score 
of 373. The GA starts with a solution quality in the area of 
the Blackbox algorithms and further reduces the score value 
to 293 and its standard deviation to 15 over time. In contrast, 
the LS starts with a high score above 600 score points and 
reduces its solution to the level of the GA at around 100 
seconds but shows a higher standard deviation of 61 score 
points. The box plots in Fig. 16 shows that the solution qual-
ity and the variety of the quality of the final results of both 
algorithms is comparably good. The Wilcoxon signed rank 
test calculates a p-value of 0.478 and we are not able to 
reject our hypotheses. In summary, the LS and GA algo-
rithms outperform both Blackbox algorithms with regards 

Fig. 13   Mean and standard deviations of tour length score ( S
2
 ) to be 

minimized for the VRP-I-P problem instance for all algorithms

Fig. 14   Boxplot of the tour length score ( S
2
 ) to be minimized for the 

VRP-I-P problem instance for all algorithms

Fig. 15   Mean and standard deviations of tour length score ( S
2
 ) to be 

minimized for the VRP-II problem instance for all algorithms

Fig. 16   Boxplot of the tour length score ( S
2
 ) to be minimized for the 

VRP-II problem instance for all algorithms
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to the second score and perform comparably good. However, 
the LS does not match the time windows in all runs and 
hence, is considered worse than the GA.

For both PD problem instances, we compare the LS and 
the GA since the Blackbox algorithms cannot handle PD 
problems. In the TSP-PD problem instance, LS matches 
time windows in 21 out of 30 runs, and the GA in 27 out 
of 30 runs. Hence, the GA can be considered more stable 
than the LS as the probability to receive solutions with 
matching time windows is higher. Figure 17 shows the 
optimization result during the runtime of the algorithms. 
Both algorithms start with high score values above 130 
and reduce the score in the first two to three seconds to 
values around 108 for the LS and 105 for the GA. The 
GA shows larger standard deviations of around 18 score 
points compared to the LS with a standard deviation of 
two. Figure 18 presents box plots of the final results to 
compare GA and LS. The box plot of the GA is very small 
besides one outlier and the LS box plot is larger spreading 
from 1,080,000 to 1,100,000 score points. The Wilcoxon 
signed rank test was not able to reject the hypotheses with 
a p-value of 0.145. In summary, both algorithms perform 
comparably good in this problem instance as both do not 
match all time windows and deliver nearly the same qual-
ity in the S2 score.

Finally, LS and GA are able to match all time windows 
in the VRP-PD problem instance. Further, the GA produces 
solutions with a lower mean S2 score value of around 332 
score points compared to the LS with a value of 338. In 
Figure 19 the GA start with a high value of 450.00 and the 
LS with a value of 600.00 score points. But both algorithms 
decrease the score in the first 100 seconds to around 350.00 
score points. Still, the GA maintains its advance and the 
mean stays below the mean of the LS. The standard devia-
tion of both algorithms are similar around 14 to 18 score 
points. The box plots in Fig. 20 show that the mean values 
are also very similar. The box and whiskers of the GA span 
a wider range, while the LS has a smaller box but some more 
outliers. In line, the Wilcoxon signed rank test was not able 
to reject the hypotheses with a p-value of 0.329. In summary, 
again both algorithms perform equally good with a slight 
advantage of around 50,000 score points for the GA.

Our evaluation results support the following key findings 
of our paper. First, our approach integrates all constraints 
and requirements given by the real-world application such as 
setup times, a heterogeneous fleet, multiple depots, P/D, stop 
options, and return permissions (Table 4). Compared to the 
existing Blackbox algorithms of our cooperation company, 
we additionally support setup times, a heterogeneous fleet, 
multiple depots, P/D, stop options, and return permissions. 

Fig. 17   Mean and standard deviations of tour length score ( S
2
 ) to be 

minimized for the TSP-PD problem instance for all algorithms

Fig. 18   Boxplot of the tour length score ( S
2
 ) to be minimized for the 

TSP-PD problem instance for all algorithms

Fig. 19   Mean and standard deviations of tour length score ( S
2
 ) to be 

minimized for the VRP-PD problem instance for all algorithms

Fig. 20   Boxplot of the tour length score ( S
2
 ) to be minimized for the 

VRP-PD problem instance for all algorithms
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Second, on the smallest problem instance (TSP-I), the TSP-
stage of our GA computes the best possible score confirmed 
by the Brute Force algorithm (Fig. 5). We were not able to 
prove this behavior for larger problem instances since the 
brute force computation was not feasible. Third, when com-
pared to the existing algorithms Blackbox-I and Blackbox-II, 
we reduced the time to result from 30 seconds to two sec-
onds for the TSP instance, and from 60 seconds to around 
five seconds for the VRP instance, which is a computation 
time reduction of 90% (Figs. 5 and 11). This provides our 
cooperation company the possibility to react to unforeseen 
situations and adapt the tours spontaneously. Finally, in the 
largest VRP-PD problem instance our GA algorithm returns 
meaningful results right from the start contrary to the LS 
algorithm (Fig. 19). The achieved score of the results from 
both algorithms shows that they perform on the same level 
while our GA produces more stable results, indicated by the 
lower standard deviation (Fig. 20). Regarding the GA, the 
performance could make the impression that the initializa-
tion phase of the algorithm already provides good enough 
solutions and the optimization steps are not able to improve 
the score. However, when looking at all line plots showing 
the course of the optimization it can be seen, that the score 
value of the GA can be improved over time. Still, the good 
initialization enables to further reduce the required calcu-
lation time and hence, provides the possibility to adapt to 
changes in a short amount of time. In summary, we highlight 
the following main results of our paper:

–	 Integration of all real-world constraints motivated by and 
defined with our cooperation company.

–	 Time-to-result reduction from 30 to two seconds, and 
from 60 to five seconds for the TSP and VRP instances, 
respectively, which has enormous practical use.

–	 Same level performance of LS and GA on the largest 
VRP test instance, while our proposed GA shows the 
most stable performance.

7.3 � Practical implications

The results as presented in the previous section have sev-
eral implications for practitioners, as also confirmed by our 
partner from our cooperation company. Next, we will shortly 
discuss them.

Real‑world compatible solutions through the integration 
of constraints  In contrast to many approaches in related 
work (cf. Section 2), we focus on integrating real-world con-
straints. We will illustrate the benefits of integrating such 
constraints on two short examples. One relevant constraint 
is the time a driver is allowed to drive. Obviously, this has a 
huge impact on the planning procedure. Having not included 
those constraints, this might lead to delays in the planned 
route due to breaks specified by law. In the worst case, a 

driver is not able to finish the route because the allowed driv-
ing time is achieved. Another constraint are time windows. 
Those windows specify the time when it is possible at a 
customer location to unload the truck. Without considera-
tion, it might be possible that a driver arrives at a time when 
unloading is not possible, e.g., because the specific shop 
is not opened yet. Our approach does not only take both 
constraints (besides other, further relevant constraints) into 
account, but also optimizes them, e.g., if the best possible 
option would require some waiting time at some location due 
to time windows, our approach would try to harmonize this 
with the breaks of drivers. This is really important to gener-
ate plans that are suitable for the practice. State-of-the-art 
today is that companies have to adjust the calculated plans to 
optimize them w.r.t. those constraints; our approach provides 
a significantly higher level of automation..

Preference‑optimized Solutions through multi‑objec-
tiveness The used algorithms all support multi‑objec-
tiveness  Consequently, those can be used to identify 
Pareto-optimal solutions that are able to optimize several 
objectives such as time, distance, or invested resources 
(in terms of drivers, trucks, fuel, etc.) alike. In literature, 
one can identify several works that provide a multi-objec-
tive approach (e.g., [5, 16, 30]). However, none of them 
also integrates such real-world constraints as mentioned 
before, which highly complicates the finding of solutions. 
Further, to achieve the multi-objectiveness, either metrics 
as Hypervolume [42] that are able to balance the differ-
ent objectives for reaching a single score (however, with 
the disadvantage that the balancing process is fixed) or 
introducing weights for the different objective dimensions 
is necessary. Our approach is flexible enough to support 
dynamic changes of the weights for testing several com-
binations while being in control of the balance between 
the objectives. This is achieved through the application of 
nature-inspired algorithms; but also due to the fact that the 
computational time is rather low.

Dynamic planning through runtime performance  Our 
approach was able to reduce the Time-to-result from 30 
to 2 seconds and from 60 to 5 seconds for the TSP and 
VRP instances, respectively. This sounds only marginal; 
but taking into account that we have a multi-objective 
approach with flexible weights for the objectives and that 
a planner of logistic operations might be interested to test 
several ratios for balancing the objectives (or the integra-
tion of different constraints), a reduction of the runtime 
for the planning algorithms by a factor of 15 and 20 for 
the TSP and VRP instances, respectively, this has a huge 
implication for daily work. Especially as our scenarios 
under consideration definitely have the size of real-world 
scenarios and used real-world data rather than artificially 
created, potentially biased, data, the short runtime are 
remarkable. As we are using heuristic-based approaches, 
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one could argue that the short runtime might lead to 
reduced quality in the solutions. However, we have shown 
that LS and GA achieve the same level of performance 
on the largest VRP test instance, while our proposed GA 
shows the most stable performance.

7.4 � Threats to validity

We identified the following threats to validity for our approach. 
In this paper, we focus on nature-inspired algorithms (ACO 
and GA) for tackling the rVRP and compared them to a 
Brute-Force, two Blackbox algorithms implemented by our 
cooperation company, and local search. Those algorithms 
provide heuristic solutions, which provide fast results, how-
ever, require multiple runs to receive reliable results. Further, 
we did not evaluate other common algorithms used for these 
kinds of problems as those often require manual implemen-
tation effort to adjust them for the particular rVRP problem 
as discussed in the beginning of this section. Therefore, we 
decided to compare our algorithms to an existing implemen-
tation of Local Search inside OptaPlanner. In the future, we 
plan to use further algorithms for multi-objective optimiza-
tion such as NSGA-II, particle swarm, or Branch-and-Bound 
algorithms. Additionally, our results are limited to the defined 
problem instances and we plan to also evaluate even larger 
VRP instances in cooperation with our cooperation company 
in the future. Finally, our analysis of related work showed that 
existing approaches simplify the problem by using assump-
tions or neglecting specific aspects. One could argue that we 
over-complicated the problem as so far it has been enough for 
the industry to solve the trimmed-down versions. However, 
as the problem formulation was motivated by and done with 
our cooperation company, these constraints reflect an actual 
need from practice. Further, we think that in the course of 
digitization in industry, companies will be faced with increas-
ingly complex problems and solving them in an automated way 
without limitations might be a competitive advantage.

8 � Conclusion

This work tackles the rich Vehicle Routing Problem (rVRP) 
and its transfer to a real-world application. We assess a 
multi-objective capacitated VRP with pickup and deliv-
ery (PD) stops and time windows (TW) and propose a two-
staged strategy where the first step assigns the orders to the 
vehicles, and the second step optimizes the tours of each 
vehicle. This diverse set of constraints delimits our work 
from other state-of-the-art approaches since these hardly 
cover a small set of these constraints. We apply a six-
dimensional cost function and propose a timeline algorithm 
to match the given TWs and fixed pause times. To solve 
the problem instances on both stages, we apply a Genetic 

Algorithm (GA) and Ant Colony Optimization (ACO). We 
evaluate our approach on a real-world data set composed of 
eight different problem instances with increasing complex-
ity in comparison to a Brute Force approach, two Black-
box algorithms provided by our cooperation company, and 
a Local Search algorithm. Our evaluation has shown that 
our approach is able to tackle the defined rVRP and, hence, 
exceeds the functionality of the existing Blackbox algo-
rithms. Further, it reduces the time to result compared to 
the existing algorithms by 90% to two seconds for the TSP-
stage and five seconds for the VRP-stage. Therefore, our 
cooperation company already integrated our approach into 
their software and uses it actively.

In the future, we plan to investigate other common opti-
mization algorithms such as particle swarm or Branch-and-
Bound algorithms within our two-stage approach. Further, 
we plan to examine whether a mixture of ACO, GA, and 
Local Search on the different stages might be beneficial. 
Also a multi-objective representation of the problem could 
be possible by transferring the constraints such as matching 
the time windows, reducing the required time and driving 
distance to be contrary objectives. Then, we could apply 
common multi-objective optimization techniques such as 
NSGA-II and inspect their performance. Following the 
observation from [19], that the selection of the algorithm 
for planning is situation-aware for adaptive systems, we also 
want to examine whether a situation-aware algorithm selec-
tion—for example based on the number of orders, vehicles, 
and drivers to assign—is meaningful for rVRP. Finally, we 
think that integrating a measure of uncertainty or even fore-
casting mechanisms regarding orders or traffic could be ben-
eficial, since orders cancelled at short notice or spontaneous 
full road closures due to accidents can upset the entire plan.
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