
https://doi.org/10.1007/s10489-021-03035-5

Tackling the rich vehicle routing problem with nature‑inspired
algorithms

Veronika Lesch1  · Maximilian König2 · Samuel Kounev1  · Anthony Stein3  · Christian Krupitzer3 

Accepted: 22 November 2021
© The Author(s) 2022

Abstract
In the last decades, the classical Vehicle Routing Problem (VRP), i.e., assigning a set of orders to vehicles and planning their
routes has been intensively researched. As only the assignment of order to vehicles and their routes is already an NP-complete
problem, the application of these algorithms in practice often fails to take into account the constraints and restrictions that
apply in real-world applications, the so called rich VRP (rVRP) and are limited to single aspects. In this work, we incorpo-
rate the main relevant real-world constraints and requirements. We propose a two-stage strategy and a Timeline algorithm
for time windows and pause times, and apply a Genetic Algorithm (GA) and Ant Colony Optimization (ACO) individually
to the problem to find optimal solutions. Our evaluation of eight different problem instances against four state-of-the-art
algorithms shows that our approach handles all given constraints in a reasonable time.

Keywords  Rich vehicle routing problem · Ant-colony optimization · Genetic algorithm · Real-world application · Logistics

1  Introduction

 In the last two decades, the demand for road freight trans-
port increased worldwide; for example, in Germany it
increased by 150 billion ton kilometers to around 500 billion
ton kilometers [1]. Developments such as increased just-in-
time production and online shopping (especially during the
Covid pandemic) will further increase those numbers in the
next years. To handle such amount of freight transporta-
tion, efficient and correct planning of tours for transports
is relevant. Hence, fast and reliable solutions to the Vehicle
Routing Problem (VRP) are required.

The classical VRP specifies the assignment of customer
orders to vehicles and the optimization of their tours [21],
which refers to solving the underlying Traveling Salesman
Problem (TSP). Tim Pigden stated that the original model
of the VRP does not match real-world applications since it
does not include concepts of order, separate resources cor-
responding to the driver, the tractor unit, and the trailer [31].

The rich VRP (rVRP) extends this classical VRP by includ-
ing additional constraints required for a real-world applica-
tion, such as pickup and delivery (PD), time windows (TW),
pause times, trailer capacities, and driver assignments. Since
the rVRP is an NP-complete problem, exact solutions are
hard to calculate in short time frames and, hence, logistic
companies often use meta-heuristics to find so-called good
enough solutions in a reasonable time. However, due to
the complexity, those approaches do not consider all rel-
evant aspects of the rVRP, i.e., they miss the requirement of
multi-objectiveness, and additionally a manual adjustment
to cope with aspects not inherently integrated in the solution
is required.

In this paper, we present the application of nature-
inspired algorithms to solve the rVRP within a real-world
application software of our cooperation partner, which they
use for planning the logistics of their customers. Hence, this
paper contributes to the rVRP research by applying nature-
inspired algorithms on a multi-objective capacitated VRP
with pickup and delivery behavior and time windows. Our
scientific contributions are three-fold:

–	 We define a two-stage strategy for tackling the formu-
lated rVRP including a (i) VRP-stage that assigns orders
to vehicles and a (ii) TSP-stage that optimizes the tour
for each vehicle.

 *	 Veronika Lesch
	 veronika.lesch@uni-wuerzburg.de

1	 University of Würzburg, Germany, Würzburg
2	 PASS Logistics Solutions AG, Germany, Aschaffenburg
3	 University of Hohenheim, Hohenheim, Germany

/ Published online: 6 January 2022

Applied Intelligence (2022) 52:9476–9500

http://orcid.org/0000-0001-7481-4099
http://orcid.org/0000-0001-9742-2063
http://orcid.org/0000-0002-1808-9758
http://orcid.org/0000-0002-7275-0738
http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-03035-5&domain=pdf

–	 We propose a timeline algorithm within the solving
workflow that modifies the planned tours in order to
handle time windows and fixed pause stops.

–	 We evaluate our approach in a real-world scenario pro-
vided by our cooperation company including eight prob-
lem instances with a complexity of up to 100 orders and
13 vehicles.

In the following, Section 2 discusses related work. Section 3
defines our problem domain and Section 4 presents our
approach. Section 7 evaluates our approach and discusses
the results. Finally, Section 8 summarizes the findings of
our paper.

2 � Related work

The TSP and VRP are well-known and highly researched
transportation problems that were first mentioned in the last
century: the TSP in 1930, and the VRP in 1959. Hence, the
literature provides many different approaches to both of the
problem statements. Besides the classical VRP, that assigns
customer orders to vehicles and optimizes their tours, several
extended VRP versions exist. These versions include addi-
tional requirements to the VRP such as capacities of vehi-
cles, time windows, and pickup and delivery behavior. Cord-
eau et al. [11] introduce a capacity constraint for all vehicles
of the fleet that must not be exceeded and thus define the
capacitated VRP (C-VRP) [32, 41]. In the VRP with time
windows (VRP-TW), each customer order can be defined
using additional time windows that refer to opening hours
of the location which need to be met by the delivery vehi-
cle [11, 18, 22]. The VRP with pickup and delivery (VRP-
PD) provides the possibility to return goods to depots or
transport them from one location to another one and to place
multiple pickup and deliveries at one location [8, 13, 29,
36]. Further, the combination of time windows and pickup
and delivery results in the VRP-TW-PD [7, 14, 37, 40] All
versions of the VRP are highly researched and the litera-
ture provides a large amount of approaches to tackle these
problems. We are aware, that this summary of related work
is only an excerpt and does not provide a complete over-
view of all relevant literature in this field. But it represents
a spectrum of the main research streams in the area of these
specific problems.

In the following, we analyze relevant literature of the last
five years that explicitly covers multiple objectives as part of
their VRP or TSP approach. [17] addresses multi-trip VRP
with intermediate depots and time windows. The paper pro-
vides a robust Mixed-Integer Linear Programming model
and addresses the following objectives: travel distances,
vehicle costs, and earliness and tardiness penalty costs of
services. They solve their model using CPLEX, but do not

define the time complexity of their problem. The authors of
[3] also address a multi-trip VRP in the domain of urban
waste collection. They seek to minimize cost objectives,
such as traversing costs, employment costs, and exit penal-
ties from permissible time windows. Unlike the previous
papers, they use Simulated Annealing to solve their prob-
lem, but also do not specify the time complexity of their
approach. The advancement of this paper is that they were
able to compute near-optimal solutions in less computation
time. In contrast to our work, these two papers do not evalu-
ate their approach using a real-world scenario, but use a
randomly generated problem set. Moreover, they only deal
with a limited set of objectives and constraints.

Dutta et al. [16] addresses a multi-objective set orienteer-
ing problem using clusters of customers. The authors assign
a predefined profit amount per visit to each customer in a
cluster and specify a maximum service time. Their approach
has two objectives: maximizing customer satisfaction and
maximizing profit. The authors use NSGA-II and Strength
Pareto Evolutionary Algorithm (SPEA2), which have a time
complexity of O(MN2) (M number of objectives, N popu-
lation size) for NSGA-II and O(K2logK) (K is population
size and archive size) for SPEA2. The advancement of this
method is to incorporate customer satisfaction objectives
instead of standard cost-based objectives. Contrary to this
work, we consider each customer as an individual service
unit with individual constraints, restrictions, and objectives,
and do not consider customer satisfaction metrics.

A multi-objective model of the capacitated VRP for
perishable goods is proposed in [5]. The objectives of this
model are to minimize the quality degradation of goods
and to minimize the delivery costs. The authors propose an
m-ring star distribution network with two types of vehicles
and customers, and apply NSGA-II and SPEA2 with the
same time complexity statements as in the previously men-
tioned paper. The evaluation shows that NSGA-II performs
better in terms of quality and costs when using two types
for vehicles. This work differs from our work in the model-
ling approach as they use the m-ring star distribution model
while we use the two-stage strategy. Further, they also inte-
grate only a limited number of objectives.

The authors of [30] deal with a multi-objective ring tree
problem with secondary sub-depots. They specify a fixed
node as depot and define other primary and secondary sub-
depots in combination with three types of customers. The
objectives include minimizing the total routing cost and
minimizing the number of type 3 customers. The authors
use a discrete multi-objective antlion optimizer with a time
complexity of O(MN2) (M number of objectives, N popula-
tion size). In their evaluation, the authors show that their
approach has better efficiency for most test instances. Con-
trary to our work, this work focuses on assigning customer

Tackling the rich vehicle routing problem with nature-inspired algorithms 9477

orders with basic cost-based objectives, while we apply a
variety of real-world objectives.

Another set of studies focuses on green approaches to
VRP variants. First, [39] addresses a multi-trip green capaci-
tated arc routing problem. The authors aim to minimize the
total cost, which consists of routing costs, vehicle costs, and
greenhouse gas generation and emission cost. They use a
hybrid GA with Simulated Annealing for generating initial
solutions. The authors do not specify the time complexity of
their approach, but show that their solution performs desir-
ably within a reasonable computation time. Second, [38]
deals with a green VRP with intermediate depots and inte-
grates urban traffic conditions, fuel consumption, time win-
dows, and uncertainty in demands. They model this prob-
lem as robust Mixed-Integer Linear Programming model
and solve it using CPLEX. The integration of urban traffic
conditions is a particular advance of this work. Third, [2]
proposes a Mixed-Integer Linear Programming model for
the green inventory routing problem with time windows.
They attempt to minimize the total cost, which consists of
fuel consumption, driver cost, inventory cost, and vehicle
cost. The authors use an original and an augmented Tabu
Search as well as Differential Evolution, but do not specify
the time complexity of their approaches. In contrast to our
work, all the green VRP research approaches focus heavily
on integrating green objectives and, hence, include only a
limited set of real-world objectives.

The last set of related works from recent years covers the
integration of uncertainty in the pickup demand. First, [33]
addresses uncertainty in urban waste collection and models
the problem as a two-stage multi-objective transportation
problem. They model uncertainty as grey parameters and
apply a procedure to reduce them to real numbers. They
solve their model using revised multi-choice goal program-
ming but do not specify the time complexity of their prob-
lem. Second, [34] addresses a multi-choice multi-objective
transportation problem and model cost, demand, and sup-
ply as multi-choice parameters. They reduce their problem
to a multi-objective transportation problem by introducing
binary variables and applying revised multi-choice goal pro-
gramming. However, they do not specify the time complex-
ity of their approach. Third, [35] addresses a multi-objective
multi-item fixed-charge solid transportation problem and
incorporate fuzzy-rough variables as coefficients of their
objective functions and constraints. They use a fuzzy-rough
expected-value operator to transform the problem into a
deterministic one, and apply weighted goal programming
and fuzzy programming to find final solutions. The advance-
ment of this paper is to evaluate and apply it on a real-world
case study. Fourth, [4] also addresses the urban waste col-
lection problem with uncertainties and models the problem
as a robust bi-objective multi-trip periodic capacitated arc
routing problem under demand uncertainty. They integrate

cost and tour length objectives and solve their problem
using CPLEX and a multi-objective invasive weed opti-
mization for real-world problem instances without defin-
ing the time complexity. The particular advance of these
approaches is the general applicability of their approaches
to model uncertainty. The main difference between the pre-
sented approaches and our approach is that our approach
does not deal with uncertainties, but optimizes with fixed
predetermined values. Further, the first three approaches are
not evaluated on a real-world data set, but only provide a
numerical assessment and sensitivity analyses. Finally, our
approach considers a broader set of objectives compared to
the presented approaches.

In line with the observation of [31], our analysis of
related work shows that existing approaches fail to address
the combination of different aspects of the rVRP in such a
way that all relevant requirements of a real-world applica-
tion are taken into account simultaneously. In this work, we
address this research gap and integrate a multitude of real-
world requirements.

3 � Problem statement and complexity

We cooperate with a consultancy company which plans the
logistics operations for many different customers and there-
fore has a diverse set of requirements which we define in
the following. Figure 1 illustrates the considered version of
a rVRP as domain model. We define a tour tj as the assign-
ment of customer orders o ∈ O to vehicles v ∈ V and drivers
d ∈ D : tj = (vi,Dj,Oj) with a set of drivers Dj ⊆ D and a
set of orders Oj ⊆ O assigned to tour tj driven with vehicle
vi . The central goal is to find a set of tours T = {tj} so that
all orders are assigned while minimizing the cost function
defined in Section 4.2. A tour has a tour start and a tour end,
each specified by a time and a location. The tour start time
window defines the range in which the tour must start.

A vehicle vi is always assigned to one tour tj . Each vehi-
cle has a capacity, described by the number of pieces, vol-
ume (m3 ), or weight (kg). The costs for using a vehicle are
defined per hour, per kilometer, per tour, or per stop on the
tour. The height, width, length (cm), and weight (kg) of a
vehicle define its dimensions. Each vehicle has a maximum
tour duration, after which it must be at the tour end location.
The tour start/end locations represent a list of locations at
which the tour can start and a list of locations at which the
tour can end. The option for a trailer specifies whether the
vehicle can pull a trailer. Since special properties of a vehi-
cle are required for carrying hazardous goods, we integrate
the possibility to specify whether a vehicle has the ability
to carry those goods or not. This enables a valid assign-
ment of orders to vehicles even for hazardous goods. The
fast-loading property states whether the vehicle can load

V. Lesch et al.9478

and unload faster compared to other vehicles. This property
influences the required service and setup time and, hence,
the time required at a specific stop. It provides the possibil-
ity to switch to a vehicle with fast-loading property to match
time windows. A vehicle might provide the possibility to
wait for a specific time window at a given stop and might be
allowed to return to a stop multiple times.

Furthermore, up to two drivers Dj are determined for each
tour tj . For some orders, a co-driver is required for loading
and unloading bulky goods. Drivers might require a special
training or certificate, for example, a firearm certificate is
required for cash transports. By specifying the required cer-
tificates for drivers with regards to a specific order, a valid
assignment of drivers to tours is possible within the optimi-
zation, making an additional post-processing step unneces-
sary. Legislation might prescribe a fixed set of pause times
for each driver. Sometimes it may be possible to schedule
pause times within a service, such as within a pickup or a
delivery (called SPLIT-Mode). Otherwise, pause time need
to be scheduled while driving in between two stops.

Additionally, customer orders Oj need to be serviced
during a tour tj . Each order contains a list of products with
the amount specified by quantity in pieces, weight (kg), or
volume (m3 ). For each order, one can specify one or more
pickup locations, a co-driver requirement, or the assign-
ment of a specific driver. Orders that should or should not
be delivered in the same tour can be defined as a list of
(non-) co-located orders. Maximum vehicle dimensions, a
vehicle from a specific vehicle group, or a lorry-only service
can be required.

For each order, at least one stop s needs to be scheduled.
Each stop is either a pickup or a delivery stop and has a spe-
cific location. Hence, we usually schedule two stops for an
order first, to pick the goods up from a storage facility and a
delivery stop at the customer location.

The setup/service duration contains the time the vehicle
stands still while loading or unloading. The speed modifier
for fast loading vehicles defines the saved time during the
setup/service duration if this stop is assigned to a vehicle

with this property. Each stop has a time window that speci-
fies at which interval the driver needs to arrive or finish the
service.

We now present a mathematical definition for the capaci-
tated VRP using the vehicle flow formulation [12] as origi-
nally applied on the VRP by [26]. Let G = (V ,A) be a graph
where V = 1,… , n is a set of vertices representing cities, or
in our case customers, with the depot located at vertex 1.
A is a set of arcs (i, j) with i ≠ j that are associated with a
non-negative distance matrix C = (cij) . This distance matrix
can be interpreted as the travel distance between the ver-
tices or as travel costs of this arc. At the depot, a set of m
homogeneous vehicles with capacity D are available with
mL ≤ m ≤ mU . Let xij(i ≠ j) be a binary decision variable
that is equal to 1 iff the optimal route contains arc (i, j).

In this formula, (1) forms the minimization equation to
minimize the distances of all routes. Constraints (2) and
(3) ensure that all vertices are visited exactly once and that
exactly one vehicle arrives and departs from this vertex.
Constraint (4) forms the sub-tour elimination constraint
with v(S) being an appropriate lower bound on the number

(1)minimize
∑

i≠j

cijxij

(2)subject to

n∑

j=1

xij = 1 (i = 1,… , n),

(3)
n∑

i=1

xij = 1 j = 1,… , n),

(4)
∑

i,j∈S

xij ≤∣ S ∣ −v(S) (S ⊂ V�{1}; ∣ S ∣≥ 2),

(5)xij ∈ {0, 1} (i, j = 1, ...n;i ≠ j).

Fig. 1   Domain model of the
rich VRP addressed in this
paper

Vehicle v

Capacity

Costs

Dimensions

Max tour duration

Tour start/end locations

Trailer capacity

Hazardous goods

Seat for co-driver

Fast loading

Can wait for time windows

Can return to location

Driver d

Firearm certificate

Pause times

Rest in SPLIT-Mode

Order o

List of products and amounts

List of pickup locations

Req. co-driver

Specific driver

(Non-) Co-located orders

Max. vehicle dimensions

Specific vehicle group

Lorry-only

Stop s

Type (pickup/delivery)

Location

Service/setup duration

Speed modifier fast loading

Time window

Arrival constraint

Tour t

Tour start (time/location)

Tour end (time/location)

Tour start time window

1

1...*
1

1...*

1

1...2

11

Tackling the rich vehicle routing problem with nature-inspired algorithms 9479

of required vehicles for this problem. Finally, Constraint (5)
forms the integrity constraint defining xij.

This formula models a standard VRP mathematically.
However, the problem addressed in this paper handles a wide
variety of constraints and restrictions that are not modeled
above. Since a full mathematical modeling would go beyond
the scope of this paper and would unnecessarily lengthen it,
we briefly outline the concepts that can be applied to model
our problem. The requirements of a homogeneous fleet, indi-
vidual vehicle capacities, capabilities of vehicles regarding
fast loading and transporting of hazardous goods, as well as
fixed costs per vehicle can be addressed by introducing an
additional set of vehicle types B = 1,… , b similar to [25].
To include the decision for one or two drivers, and an
optional trailer, three indices can be added to the decision
variable xab

ijkl
 where l represents the optional trailer and a and

b represent the drivers. Driver requirements can be added
analogously to the heterogeneous vehicles by introducing
sets of driver types. The pickup and delivery requirement
including the possibility of multiple pickup locations is also
introduced in [25] which requires additional decision vari-
ables for pickup and delivery demand (pi, di ) as well as vari-
ables that summarize the loaded pickup and delivery load at
each vertex (zij, tij ). To fulfill all order requirements such as
(non) co-located orders, special vehicle restrictions, whether
the stop can be planned using the SPLIT mode as well as
time windows per stop, these factors can be easily integrated
as individual constraints. Finally, the tour start and end time,
the start time window, the maximum tour duration, and a set
of pause times can be integrated by adding variables that
count the required time per tour as well as start and end
times per stop. As already mentioned, we do not want to go
into more detail about the mathematical model, but want to
refer the interested reader to [28, 43].

In the final paragraphs of this section, we analyze the
problem space and define the complexity of the addressed
problem statement. Let V be the number of vehicles and
O the number of orders. Every order contains at least one
pickup and one delivery stop, and hence, the number of stops
to be assigned is 2 ⋅ O . Additionally, the options for start
and end location of each vehicle as well as required pause
times are included as stops. However, as tour start and end
location options as well as the number of pause times are
fixed constants these do not increase the problem complex-
ity in the O notation. Since multiple options are possible
for each stop, a virtual vehicle called slack contains the
unused options for all stops. Theoretically, every stop can be
assigned to every vehicle including the slack which results
in (2 ⋅ O)(V+1) possible distributions of stops to vehicles. In
addition to the distribution problem, the sequence of stops
is relevant for optimizing the TSP and every assignment of
S stops to one vehicle has S! possible sequences. Hence, for

every distribution of stops to vehicles, V different TSPs need
to be solved. The sequence on the slack is irrelevant since it
is a virtual vehicle and, therefore, does not need to be con-
sidered in the optimization. To summarize the complexity
of the problem, we use a chain representation where a VRP
solution is represented by a chain containing all stops and
V + 1 indices, where the chain is cut to distribute its parts to
the vehicles. This representation is feasible since the indi-
vidual TSP chains are independent of each other. Hence, at
least (2 ⋅ O)! TSP solutions and 2 ⋅ O cut indices exist and the
complexity of the problem can be defined as follows:

In summary, this section first introduces a detailed software-
engineering based definition of our addressed VRP. Further,
we provide the mathematical model of a VRP using the vehi-
cle flow formulation and summarize possibilities to model
all constraints addressed in this work. Then, we discuss the
problem complexity and show that the problems have super-
polynomial complexity with regards to their input size. Both
VRP and TSP are proven to be NP-complete problems and
the required time to solve these problems for all known algo-
rithms is superpolynomial in the input size. Approaches to
solving NP-complete problems tend to be limited to approxi-
mation, randomization, restriction, parametrization, and
heuristics. Due to the often large input size of VRPs, often
meta-heuristics are applied as they may provide a sufficiently
good solution within reasonable time. Since our work was
done in cooperation with a consulting company, we defined
the requirement to deliver a solution within a few seconds to
minutes in addition to the already mentioned requirements
for the solution. The high complexity of the problem in com-
bination with the requirement of a fast time-to-solution led
us to selecting meta-heuristics as solution approaches: (i)
GA as a prominent evolutionary approach often applied in
VRP use cases, and (ii) ACO as representative of nature-
inspired, particle swarm optimization. With this selection,
we aim to test as diverse solutions as possible and at the
same time be able to meet all our requirements with at least
one of them.

4 � Approach

This section describes our approach for tackling the multi-
objective optimization of the rVRP and presents the over-
all complexity of our approach. The complexity discussion
of each part of the overall complexity can be found in the
according sections. We introduce our two-stage strategy
and present the Timeline approach for the time windows
and pause stops as well as the cost function with which we
address the multi-objective problem. The two-stage strategy

(6)Complexity = (2 ⋅ O)! ⋅ 2 ⋅ O ∈ O(O! ⋅ O)

V. Lesch et al.9480

reduces the overall complexity for the optimization mecha-
nisms by dividing the solution space into two individual
problems. We cannot make firm statements about the impact
on optimality, however, we assume that our approach does
not negatively impact optimality; especially in light of the
fact that the meta-heuristics applied are already non-optimal.
The Timeline approach further reduces complexity by off-
loading compliance with the specified time windows to a
third separate step. This complexity reduction allows the
algorithms to yield valid results already after a few seconds
optimization time and further optimize the results signifi-
cantly within the first minutes. For a detailed analysis of the
advantages introduced by the approaches of this section, we
refer the interested reader to our evaluation in Section 7.
Finally, we introduce our six-score priority cost function
which enables the applied approaches to handle the multi-
objective properties of the problem.

Due to the high complexity of the problem, and inspired
by [9], we divide the problem into two stages as depicted
in Fig. 2. First, we address the problem of distributing all
orders, including pickup and delivery options, to the avail-
able vehicles (VRP-stage). In this step, several assignment-
related constraints such as order restrictions are addressed.
However, many of the above mentioned constraints are
sequence-dependent and, hence, the nested TSP instance
for each vehicle needs to be solved. In the TSP-stage, the
TSP-solver starts and solves an individual TSP instance for
each vehicle. We retrieve the actual stop-to-stop route from a
route planning service of our cooperation company and plan
the order of stops at this stage. The solved TSP instances are
then sent back to the VRP-stage that performs our Timeline
algorithm presented in Section 4.1. to determine time win-
dows and pause stops for each tour. Finally, the distribu-
tion can be rated with regards to the cost function explained
in the next section and the algorithm decides whether the

current distribution should be kept or discarded. Depend-
ing on the size of the VRP and the nested TSP instances,
either exact (works for smaller problem spaces) or heuristic
approaches (for large problem spaces) can be used to solve
the stages. Since we do not want to restrict applicability of
our proposed system to only work for small TSP instances,
we propose our heuristic approaches based on GA and
ACO for both stages. This two-stage strategy summarizes
our overall approach to tackle our rVRP. The complexity
of our approach can be derived by summarizing the above
mentioned operation steps depicted in Fig. 2 into a runtime
notation:

with n being the number of stops to plan, n2 being the
number of stops per tour, m being the number of required
trucks in the solution. Hence, this formula summarizes the
complexity of the VRP algorithm for all given stops, the
complexity of the TSP and the complexity of the timeline
algorithm multiplied by the number of trucks, and the com-
plexity of the score calculation. The overall O notation can
be derived by inserting the mentioned O complexities of all
parts from the according sections.

4.1 � Timeline algorithm for time windows and pause
stops

In this section, we introduce the timeline algorithm to match
the pause times and fit as many time windows of stops as
possible (see Algorithm 1). This algorithm fits all pause
times first and then tries to fulfill all time window require-
ments. All stops are shifted to fulfill all pause times and
hence, no pause time violations will be present after the
execution of this algorithm.

(7)
Toverall(n) = Tvrp(n) + m ⋅ Ttsp(n2) + m ⋅ Ttimeline(n2) + Tcost(n)

Tackling the rich vehicle routing problem with nature-inspired algorithms 9481

This algorithm iterates over each sequence of stops
(i.e., once per vehicle and tour) and calculates a penalty
for the score. It first initializes the timeline with given start
and end times of a tour, pause times, and time windows.
Then, it iterates over the sequence of stops and places all
stops as early as possible taking into account the sequence,
tour start interval, and its time windows. If the current
timestamp is too early for the pause time or time window’s
starting time, the algorithm shifts the whole chain of stops
(excluding the pauses) to a later starting point while keep-
ing all previous time windows and the tour start interval.
This also includes a recalculation of all previously placed
stops by a defined amount of time regarding the start time
of each stop. In case a shift is not possible, the vehicle
waits until the time window for this stop starts. In case
a pause time is reached while driving from one stop to
another, the algorithm adds a pause on the route. If the
SPLIT mode is activated, that is, a pause during services
is possible, the pause time is added to the service time.
If it is deactivated, the full service needs to be shifted to
after the pause. After the placement of all stops with time
windows and the placement of pause times on the time-
line, the scores H3 to S3 are recalculated and fed back to
the VRP-stage of the algorithm to judge the quality of the
solution. Since this algorithm iterates once over all stops
per sequence, that is, all stops per vehicle, the complexity
of this algorithm can be summarized as:

4.2 � Cost function

Since the rVRP addressed in this paper exhibits a high
diversity of constraints and restrictions, we propose to use a
cost function consisting of six priority scores for the evalu-
ation of the generated solutions. These six scores address all
objectives of the problem defined in Section 3 and enable the
applied approaches to handle this multi-objective problem.
The six scores are divided into three hard scores [H1,H2,H3]
and three soft scores [S1, S2, S3] . The hard scores assess the
solution’s feasibility and, hence, are handled as hard con-
straints, while the soft scores represent the solution’s quality.

(8)Ttimeline(n2) ∈ O(n2)

The cost function is designed to form a minimization goal
for the optimization process.

In case the capacity of vehicles and trailers is exceeded,
the first hard score H1 sums up the exceeded capacity by
subtracting the defined vehicle capacity (vcap ) from the
planned vehicle capacity (vpcap ). Further, it adds a value of
100 score points for each fault in existing order restrictions
such as a co-driver requirement (for ) and a violation in order
dependencies like co-located orders (fod ) where the operator
indicates the number of violations. We decided to use the
multiplier 100 to balance the impact of an order restriction
violation (counted as number of violations) compared to a
capacity exceed (counted as difference of weight, volume,
or the like). The calculation for this score has a complexity
of O(n) as it requires to iterate over all stops.

The second hard score H2 deals with the pickup and delivery
order, the entry order, and the vehicle assignment. First, it is
checked whether the pickup is done prior to the correspond-
ing delivery with 100 score points for each fault (fpd ). After-
ward, the vehicle-specific tour start and end locations are
examined and one score point is added for each fault (fse ).
Finally, this score evaluates whether all stops that require
a specific vehicle are serviced by such a vehicle (fsv ) and
whether all planned returns to stops are allowed (fsr ). Any
fault adds one score point to H2 . Similar to H1 , this score
also requires to iterate over all stops and check the require-
ments and, hence, has a complexity of O(n) . However, this
score can also be calculated during the iteration over all
stops for the first hard score, and, thus, does not increase the
overall complexity of the score calculation.

The hard score H3 sums the seconds the tour duration (tdur )
exceeds the maximum duration (tmaxdur ) and the planned
tour end (tpend ) exceeds the end constraint (tend ). This score
iterates over all vehicles and calculates time restrictions
and, hence, has a complexity of O(m) . Since the number of
vehicles (m) is constant and significantly smaller than n this

(9)H1 =
∑

v∈V

max((vpcap − vcap), 0) + 100 ⋅ #for + 100 ⋅ #fod

(10)H2 =
∑

v∈V

100 ⋅ #fpd + #fse + #fsv + #fsr

Fig. 2   Overview of the two-
staged strategy

Order to Vehicle
Assignment Timeline Score

VR
P

TS
P Ordering of

Stops (TSP)

For each
vehicle

V. Lesch et al.9482

calculation can be assumed to be constant in terms of the
overall score complexity in O notation.

The soft scores assess the quality of the solutions. The
first soft score S1 assesses how good the solution matches
each time window (tw) in the set of predefined time win-
dows (TW). It sums up how many seconds the planned time
window (twp ) exceeds the given time window (twg ). There-
fore, the seconds the planned time window starts (twp,s )
ahead of the given time window are calculated and added to
the seconds the planned time window ends (twp,e ) after the
given time window ends. For the calculation of this score,
all stops need to be assessed and, hence, the complexity
of this calculation can be summarized as O(n) . Again, this
calculation can be integrated into the calculation of the fist
two hard scores and does not increase the overall complexity.

The second soft score S2 summarizes driven kilome-
ters (dist), waiting (time

wait
 ), driving (time

drive
 ), and service

times (time
service

 ). The individual values can be multiplied by
the costs per vehicle, trailer, and personnel to represent the
costs for a tour. Since these objectives form the main goal of
the defined VRP in this work, we decided to integrate them
into one score and, hence, assign the same priority to these
objectives. Similar to the previous score, all stops need to
be assessed and the complexity can be summarized as O(n) .
Again, this does not increase the overall complexity.

The last soft score S3 refers to the delay of a driver starting
his/her tour (tpstart ) after the defined start (tstart ), the num-
ber of visited locations (loc), and the chain length (cl), that
represents the number of stops to be serviced during the
tour. This score integrates further soft constraints that are
less important than the main objective goals in S2 and is
only assessed if several solutions perform equally well on
S2 . Hence, this score is used to decide which solution per-
forms best, if multiple solutions perform equally well in our
main objective score S2 . To calculate this score, constants
for each vehicle need to be summarized and the complexity
is O(m) which can be seen as constant and does not increase
the overall complexity.

(11)

H3 =
∑

v∈V

max((tdur − tmaxdur), 0) + max((tpend − tend), 0)

(12)

S1 =
∑

v∈V

∑

tw∈TW

max((twg,s − twp,s), 0) + max((twp,e − twg,e), 0)

(13)S2 =
∑

v∈V

dist + timewait + timedrive + timeservice

(14)S3 =
∑

v∈V

max((tstart − tpstart), 0) + #loc + cl

To save computation time, we only calculate the scores H3 ,
S1 , S2 , and S3 if the previous hard scores are down to zero.
Otherwise the solution is considered to be infeasible, i.e., the
hard scores are not down to zero. Since we implemented our
score system as priority scores that need to be minimized,
the first smaller value of a score level—starting at H1 and
ending at S3—decides which of the two solutions performed
better.

An example score value for a VRP solution that meets all
capacity constraints, breaks one order restriction and sticks
to all entry order and location-specific constraints can look
like Hard [100, 0, 0] , Soft [120, 2919200, 1235] . The H1-
value of 100 represents the order restriction fault of this
solution, while H2 and H3 have a value of 0 indicating, that
these constraints are all met. The S1-value of 120 means that
the vehicles of this solution break time windows by 120
seconds. The S2-value 2919200 is the sum of all service,
driving, and waiting times, while the last score (S3 ) refers to
the delay of starting times and the number of visited tours.

In summary, we define the complexity of the cost func-
tion as:

We argue that the number of vehicles (m) is a constant since
the number of available vehicles is fixed and significantly
smaller than the number of orders which results in O(n).

5 � Genetic algorithm

We now describe the genetic algorithm (GA) we applied,
inspired by the approach in [23]. Figure 3 presents the
genome representation used for the GA. Each genome con-
tains a set of vehicles each representing a TSP instance. Each
vehicle holds a list of orders. This list is passed to the TSP-
stage that determines the most beneficial ordering of this list.
We define the complexity of our GA individually for both
stages in their according subsections.

(15)Tcost(n) ∈ O(4 ⋅ n + 2 ⋅ m) = O(n)

TSP
Veh. 1

VR
P Order 1

Order 2
Order 3
...

TSP

Order 4
Order 5
Order 6
...

TSP

Order 7
Order 8
Order 9
...

TSP
...Veh. 3Veh. 2

Fig. 3   Illustration of an object-oriented genome representation of the
GA

Tackling the rich vehicle routing problem with nature-inspired algorithms 9483

5.1 � VRP‑stage

We define the complexity of the VRP-stage of the genetic
algorithm based on the population size P, the number of
generations G, the crossover probability Probc , the complex-
ity of the crossover Tga

c,vrp , the mutation probability Probm ,
and the mutation complexity Tga

m,vrp . The complexity of the
TSP-stage, the Timeline approach and the cost function are

already included in the complexity of the overall approach as
stated in Equation 7 and thus, they do not need to be added
here. Again, n is the number of orders, and m represents the
number of vehicles.

(16)Tga
vrp
(n) = P ⋅ G ⋅ Probc ⋅ T

ga
c,vrp

(n) + Probm ⋅ Tga
m,vrp

(n)

Since the parameters P, G, Probc , Probm , and m are con-
stants, the complexity of the VRP-stage of the GA can be
reduced to:

In the following, we present the process of our adapted VRP-
stage GA. Each iteration of the VRP-stage GA performs
four steps after a population initialization phase: (i) breed
new individuals, (ii) solve the TSP-stage for each vehicle,
(iii) calculate the score, and (iv) maintain population size.
These steps are repeated until either a predefined number
of unimproved iterations or a given computation time is
reached as summarized in Algorithm 2.

Instead of initializing the population purely at random,
the GA creates an initial individual by assigning orders to
vehicles with regards to vehicle restrictions or co-location
requirements. Afterward, the remaining orders are matched
to the vehicles based on stop-to-stop distances, that is, a stop
that has the minimum distance to already assigned stops of a
vehicle is assigned to this vehicle. This solution is improved
by iterating over all stops and moving them to other vehicles

(17)Tga
vrp
(n) = Tga

c,vrp
(n) + Tga

m,vrp
(n)

in order to improve the average stop-to-stop distances for all
vehicles. Then, for each required individual as specified in
the population size, the GA selects one mutation operator
from the list of available operators randomly and applies it
to the individual to create the whole initial population. For
each individual in this population and for each vehicle, the
TSP-stage solves the stop sequence. Afterward, the Timeline
algorithm is applied, and the already introduced score is
calculated for each individual and used as its fitness value.

After the initialization phase—the creation of the initial
population (line 1)— the VRP-stage GA iterates until one
of the above mentioned termination criteria is met (line 2).
Each iteration, that is, each generation, breeds new individu-
als until the population size has doubled (line 3). There-
fore, the algorithm randomly selects uniformly distributed
from three possible selection operators (that are introduced
later) to breed a new individual from two parent individu-
als (line 4): (i) select two individuals randomly based on a
uniform distribution; (ii) select two individuals randomly
based on a predefined probability, where the individual
with the best score has the highest probability; and (iii) a
tournament selection where ten solutions compete pair-wise

V. Lesch et al.9484

and the winner is selected for recombination. Then, the
algorithm randomly selects a crossover operator from
the set of provided operators and applies it on this pair
of individuals (line 5). Afterward, the algorithm mutates
the new individual with a probability pvrp = 0.5 using a
randomly selected mutation operator (line 6). With defin-
ing a set of selection and mutation operations and their
random selection in each population, we cope with the
variety of constraints and aim at a higher diversity in the
population.

For each newly created individual, the algorithm forwards
the TSP instances to the TSP-stage that solves this instance
and returns ordered lists of stops (lines 7 and 8). Then, the
algorithm applies the Timeline algorithm to match the given
time windows (line 9). Finally, the algorithm calculates the
score of the new individual and adds it to the current popu-
lation (line 10). Since, the population size doubled during
this iteration, half of the population needs to be discarded
to match the predefined population size (line 11). Therefore,
the algorithm sorts the population according to the achieved
score and removes the worst half of individuals. This affects
the next generation of the algorithm as only the best per-
forming individuals are kept for recombination in the next
iteration and therefore accelerates the convergence of the
GA.

The crossover operators use two individuals for
breeding a new offspring. Therefore, chains or parts of
chains are copied from the parent individuals to the new
individual. The remaining stops, that is the sub chains
that are not copied to the new individual, are assigned
based on the stop-to-stop distance of each vehicle
regarding already assigned stops. Since our problem
definition includes diverse constraints, we define the
following three crossover operators to breed new indi-
viduals in multiple ways to increase the diversity of the
population:

1.	 The OverlapCrossover operator copies stops located on
both parents to the new individual. Remaining stops are
added to the vehicle of the new individual with lowest
distance to existing stops of this vehicle. O(n)

2.	 The ScoreBasedCrossover operator copies the chain of
the parent with lower costs to the new individual. The
remaining stops from the other parent are added similar
to the first crossover. O(n)

3.	 The SelectionCrossover operator selects one of the par-
ents randomly and assigns the chain to the new indi-
vidual. The remaining stops from the other parent are
added similarly to the other crossovers. O(n)

Considering that these operators are applied on pairs of indi-
viduals, we define the overall complexity of the crossover
computation as:

Mutation operators are used for breeding new individuals
from a single parent individual and increasing the diver-
sity of the population. For each individual that should be
mutated, we select one mutation operator randomly. Since
it is not guaranteed that a mutation operator produces a
valid individual we restart the mutation with another ran-
domly selected operator in case the individual is invalid.
Since our problem definition includes diverse constraints,
we define the following mutation operators, each modify-
ing the genome in a different way, aiming at a specific con-
straint. By providing this diverse set of mutation operators,
we deal with the variety of constraints and are able to keep
the diversity of the population as high as possible rather than
focusing on a single mutation operator.

1.	 The ClearVehicleMutator removes all stops of a random
vehicle and assigns them to other vehicles, based on a
location and distance-based rating. O(n)

2.	 The SwapVehicleMutator swaps chains of two different
vehicles, excluding the vehicle’s start and end locations.
Since this operator is applied at the VRP-stage consist-
ing of multiple vehicles and their assigned orders, it is
considered a mutation. O(1)

3.	 The OutlierMutator iterates through every vehicle’s stop
chain, selecting the stop pair that contributes most to the
distance-based rating and moving it to another vehicle.
O(n)

4.	 The MoveOrderMutator takes up to three orders of one
vehicle and moves them to another vehicle, based on the
distance rating. This behavior is repeated for a random
number of times with a maximum of four times. O(n)

5.	 The CloseToOtherVehicleChainMutator selects a stop
from a chain close to another chain, and moves the order
for this stop to the nearby chain. O(n)

6.	 The SavingsMutator iterates over all stops of every vehi-
cle and computes the highest saving of distance when
moving one order to another vehicle. Additionally, pre-
decessors and successors are moved to another vehicle
if this reduces the distance. This mutator avoids overlap-
ping tours. O(n)

We define the overall complexity of the mutation computa-
tion as:

5.2 � TSP‑stage

Analogously to the algorithm complexity of the VRP-stage,
we define the complexity of the TSP-stage as:

(18)Tga
c,vrp

(n) ∈ O

(
n

2
∗ n

)
∈ O(n2)

(19)Tga
m,vrp

(n) ∈ O(n2)

Tackling the rich vehicle routing problem with nature-inspired algorithms 9485

Since we included the computation of the cost function for
the VRP-stage explicitly in the overall complexity Toverall
we do not need this complexity in the VRP-stage. On the
contrary, this computation complexity is not included for
the TSP-stage and we need to include it explicitly in Tga

tsp(n2).
The TSP-stage of the algorithm calculates the sequence

and options (i.e., the list of possible locations) selection for
each vehicle independently. Hence, the following description
always captures performed steps for the tour of a single vehi-
cle. At the beginning, the initial population is created simi-
larly to the initialization of the VRP-stage by calculating a
first valid individual. For this individual, the algorithm starts
with a random stop and assigns the remaining stops based
on the stop-to-stop distances, that is, the algorithm selects
always the nearest stop compared to the last assigned stop.
Then, the algorithm mutates this individual by applying
randomly selected mutation operators to create the required
amount of individuals for the initial population.

After the initialization phase, the TSP-stage GA performs
similar steps compared to the VRP-GA. It iterates until the
maximum amount of unimproved iterations are executed
and breeds new individuals until the population size has
doubled in each iteration. For the new individuals, the algo-
rithm selects and recombines two randomly chosen parent
individuals using a random crossover operator. Afterward,
the algorithm mutates the individual with a certain mutation
probability ptsp = 0.5 and a randomly selected operator and
adds it to the population. As the population size is doubled,
the algorithm omits the worst half of the population to accel-
erate the convergence.

Again, the crossover operators combine two parents into
one new individual. We define the following three crosso-
ver operators to breed new individuals in different ways and
keep the diversity of the population high. The crossover
operators in the TSP-stage are inspired by [24]:

1.	 The RandomCrossover randomly chooses the next pos-
sible stop from the beginning of the parents’ chain while
removing stops already contained in the offspring. O(n2)

2.	 The OrderedCrossover performs a classical two-point
crossover and combines the genome of both parents.
O(n2)

3.	 The PartiallyMappedCrossover works similar to the
OrderedCrossover but assigns the remaining stops out-
side the interval at the beginning of the chain based on
the indices of their parents which is the main difference
to the one in the literature. O(n2)

In line with the complexity in the VRP-stage, we define the
overall complexity of the crossover computation at the TSP-
stage as:

(20)T
ga

tsp(n2) = T
ga

c,tsp(n2) + T
ga

m,tsp(n2) + Tcost(n2)

Additionally, we define the following operators concern-
ing the TSP-stage, inspired by related work [24]. Again, we
decided to provide a diverse set of mutators and select ran-
dom ones in each iteration to increase the diversity of the
population.

1.	 The ReverseMutator reverses the sequence of all succes-
sive pickup and delivery pairs. O(n2)

2.	 The SimpleMoveMutator moves one stop to another
feasible position in the chain, taking into account the
constraint of pickup-delivery order. The TourBegin and
TourEnd nodes are protected and omitted. O(1)

3.	 The SimpleSwapMutator swaps the positions of two
stops on the chain. O(1)

4.	 The MultiOptMutator combines the previous two muta-
tors and applies the SimpleMoveMutator or the Sim-
pleSwapMutator up to three times. O(1)

5.	 The NeighborhoodSwapMutator is similar to the
SimpleSwapMutator, but it works based on distance
improvement when swapping stops. It tries all possible
swaps in the chain for one random stop and performs the
swap with the highest distance improvement. O(n2)

6.	 The SavingsTSPMutator selects the stop that produces
the highest saved distance when moving it in the chain.
The delta of the distance concerning the whole chain
is calculated and the highest distance savings move is
executed. O(n2

2
)

7.	 The OptionsMutator selects a random stop with at least
one option and randomly replaces it with one of the
other possible options. O(1)

8.	 The OptionsChainMutator rotates the options for the
whole chain and replaces all stops with a possible option
of this stop. O(n2)

In line with the complexity in the VRP-stage, we define the
overall complexity of the mutation computation at the TSP-
stage as:

This section introduced our domain-adapted GA and
presented complexity definitions. First, we presented our
object oriented genome presentation used and proposed
two stages of this algorithm. Then, for each stage of the
algorithm, we provide a domain-specific set of crosso-
ver and mutation operators that are randomly chosen in
each offspring computation. These operators enable the
algorithm to cope with the various constraints included
in this work and aim at maintaining a high diversity of
the population.

(21)T
ga

c,tsp(n2) ∈ O

(n2
2

∗ n2

)
∈ O(n2

2
)

(22)T
ga

m,tsp(n2) ∈ O(n2
2
)

V. Lesch et al.9486

6 � Ant colony optimization

This section explains the developed two-staged ACO algorithm
inspired by [15]. We modified the classical ACO algorithm for
both stages to accommodate for the complexity of the rVRP:

–	 We replaced the pheromone initialization by a heuristic
one concerning the actual stop-to-stop distances to kick-
off the optimization from the first step onward.

–	 We use a deterministic ACO in the VRP-stage, this
means that we start with an assignment of stops to
vehicles based on the pheromone matrices. This helps
to decrease bad performing solutions at the start.

–	 The stops for pickups and deliveries are assigned in pairs,
so that one vehicle needs to serve both stops in one tour.
This prevents creating invalid solutions that put pickup
and deliveries on different vehicles.

6.1 � VRP‑Stage

Similar to the VRP-stage of the GA, the VRP-stage of the ACO
algorithm assigns stops to vehicles and optimizes the solutions.
The assignment of stops to vehicles and its optimization works
with two pheromone matrices as illustrated in Fig. 4, where
each ant represents one vehicle. The vehicle-to-stop matrix rep-
resents the occupied capacity of vehicles so that ants select the

vehicles with enough free space first. The algorithm updates
this matrix after each assignment with the current available
space of the according vehicle. We performed preliminary tests
using a single pheromone matrix which showed us that this
value is not enough to determine a good order to vehicle distri-
bution. Instead, the stops that are already assigned to a vehicle
have further influence on the final solution as a good clustering
of stops per vehicle seems to be advantageous. Hence, we intro-
duce the stop-to-stop matrix that covers the distance between
stops and is used to determine the next stop to be added. By
implementing the second matrix, stops with a close distance
to each other are more likely to be assigned to the same vehi-
cle: First, an ant selects a stop based on stop-to-stop matrix
that is reachable from its current location and has the shortest
distance. Then, the ant searches for vehicles that have enough
space for this order. We then assign a probability of selecting
each of these vehicles by adding the vehicle-to-stop pheromone
value (available space) and the stop-to-stop pheromones to all
already assigned stops of this vehicle (stop-to-stop distances).
Based on these probabilities, the ant selects a vehicle randomly.
This means, the higher the amount of aggregated pheromones,
the better the vehicle suits this order, the higher the probability
to select this vehicle.

Algorithm 3 summarizes the behavior of the ACO algo-
rithm using the two pheromone matrices in the VRP stage.

Fig. 4   Graph representation of
the VRP problem for the ACO
algorithm

s2

s1

s3

s4

 Veh. 1 Veh. 2

Stop s1 0 1
Stop s2 1 0
Stop s3 2 3
Stop s4 3 2

s1 s2
s1 1 2
s2 2 0
s3 2 1
s4 1 2

s3 s4
2 1
1 2
0 2
2 1

Vehicle-to-Stop Matri Sx top-to-Stop Matrix

Tackling the rich vehicle routing problem with nature-inspired algorithms 9487

First, the pheromone matrices are initialized with the apri-
ori knowledge of vehicle capacities and stop-to-stop dis-
tances (line 1). Additionally, an empty set of solutions is
initialized in which the best solutions are stored. The number
of stored solutions is defined as twice the number of vehicles
of a specific problem instance. We decided to double the
vehicle number to have at least one ant per vehicle and a sec-
ond ant for a further optimization round. Then, a loop starts
iterating until a maximum number of iterations that were not
able to improve the solution quality are executed (line 2). In
each iteration, one ant is placed at the graph and assigns all
stops to the vehicles with regards to both pheromone matri-
ces (line 3). In order to keep the idea of Novelty Search [27]
and avoid getting stuck in local optima, a small amount of
distributions are created probabilistic. Afterward, the algo-
rithm passes a TSP instance per vehicle to the TSP-stage
of the ACO which optimizes its sequence (lines 4 and 5).
The returned TSP instances are then passed to the Timeline
algorithm to match time windows (line 6). Afterward, the
algorithm calculates the final scores for this solution (line 7).
Then, the algorithm updates the pheromone matrices using
the scores of the solutions in the set and performs a phero-
mone evaporation step with a probability of 5% which we
identified in a preliminary parameter study (lines 9 and 10).
If the found solution is better than the worst one in the solu-
tion set, or the solution set is not yet full, the solution is
added to this set (lines 11 to 14). If the solution is better than
the best solution so far, the number of unimproved itera-
tions is reset to zero. Otherwise, the number of unimproved
iterations is incremented. Afterward, the next iteration starts,
another ant is placed at the graph, and assigns the stops to
vehicles.

Derived from the algorithm we define the complexity
of our VRP-stage ACO using the complexity of the ini-
tialization Taco

init,vrp
(n) , the maximum of the number of

unimproved iterations ui and the maximum runtime, the
complexity of the TSP-stage Taco

tsp
(n2) in combination with

the number of vehicles m, the complexity of the phero-
mone update Taco

upd,vrp
(n) and the pheromone evapora-

tion Taco
evap,vrp

(n) . The complexity of the TSP-stage, the
Timeline approach and the cost function are already
included in the complexity of the overall approach as
stated in (7) and thus, they do not need to be added in this
complexity definition.

The initialization computation complexity considers the
initialization of the vehicle-to-stop and the stop-to-stop

(23)

Taco
vrp

=Taco
init,vrp

(n)

+ max(ui, max. runtime) ⋅ (m ⋅ Taco
tsp

(n2))

+ Taco
upd,vrp

(n)

+ Taco
evap,vrp

(n)

matrices. While the vehicle-to-stop matrix is initialized with
zero values, its complexity is O(1) . The stop-to-stop matrix
contains the stop-to-stop distances and requires iteration
over all stops which results in O(n2) . In summary, we define
the initialization complexity as:

The matrix update in this stage works with a comparison
of the score value to the last best and worst scores. Due to
the fact, that the algorithm deals with a multi-level prior-
ity score, that is any broken constraint in level i is more
important than any improvement in level i + 1 , we decided
to include this knowledge in the pheromone update strategy.
This way, we want to provide more weight for higher score
levels than to lower score levels and direct the search of the
algorithm to improve the convergence speed. As summarized
in (25), the new pheromones for every score level i are calcu-
lated by multiplying the score factor fi with a pheromone base
value pi , divided by the score level (one for H1 , two for H2 , and
so on) to give more weight to the more important scores. We
distinguish two cases to set pi : if the current score is better than
the worst score ever found, we set pi = 1 ; if the current score is
worse than the worst score, we set pi = 0.25 . By this, we give
the pheromones of reasonable solutions more weight than of
bad ones and hope to gain a faster improvement of the found
solutions since many more non-feasible solutions exist. The
already mentioned idea of integrating Novelty Search brings
the possibility of worse solutions than the currently worst one.

Equation (26) shows the calculation of the score factor fi .
The variable wsi refers to the current worst score, bsi to the
current best score, and si to the current score value of the
respective level i. By using this formula, we decrease the
pheromone amount of solutions with lower scores than the
current worst score and exponentially award better solutions.

The complexity of the pheromone update includes the num-
ber of score levels, the number of stops and the actual cal-
culation of the new score. While the number of score levels
is a constant value of six, the number of pheromones to be
updated is defined as n2 . The actual calculation of the update
pheromone value can be done in O(1) . This results in an
overall pheromone update complexity of:

(24)Taco
init,vrp

(n) ∈ O(n2)

(25)pheromones =
∑

i

fi ⋅ pi

i

(26)fi =
|||
||

(wsi − si)
3

(wsi − bsi)
3

|||
||

(27)Taco
upd,vrp

(n) ∈ O(n2)

V. Lesch et al.9488

The pheromone evaporation complexity depends on the
number of pheromone values to be updated, which is n2 and
the complexity of the actual evaporation computation. Since
we use a fixed evaporation factor in this work, the complex-
ity of the evaporation computation can be reduced to:

6.2 � TSP‑stage

The TSP-stage works with a single stop-to-stop pheromone
matrix representing the probabilities, that is the distance to
move from one stop to another. The diagonal values refer
to the probability of a stop to be the first stop taking the
vehicle’s start locations into account. The other values rep-
resent the probabilities to move from one stop to another.
We initialized this matrix again with knowledge about
the stop-to-stop distances and hence, represent the actual
distance between the stops from the first iteration onward
instead of an equal initialization which would require some
time to converge to the actual distances. However, it might
happen that order dependencies, order restrictions, or time
windows require another stop sequence than shortest first,
so we decided to maintain a small probability for every stop.
The algorithm starts iterating and places one ant at any loca-
tion in the graph in every iteration. The ant then decides—
depending on the column for the current stop containing the
values to every other stop—which stop to visit next. We add
a visibility feature to the matrix to guide the ant in a way to
first select the pickup stop and Afterward the delivery stop.
Hence, we set the visibility of a delivery stop to false if the
ant did not pickup the products for this order beforehand
and the ant cannot see this stop. This aims at further reduc-
ing the convergence time of the algorithm. After one ant
finished its walk and returned with a sequence of stops, the
algorithm calculates the score for this sequence. Afterward,
the algorithm updates the pheromones similar to the update
procedure in the VRP-stage and evaporates the pheromones
with a probability of 5%. Further, we apply the principle of
Elitism—i.e., the matrix is additionally updated with the
current and global best solutions so far—to improve the
solution quality even more (cf. [6]). This behavior guides
the algorithm to search for better solutions in the neighbor-
hood of already good solutions. The TSP-stage iterates until
a maximum number of unimproved iterations occurred, the
maximum runtime is exceeded or the path of the ants con-
verged, that is, all ants select the same path.

Analogously to the algorithm complexity of the VRP-
stage, we define the complexity of the TSP-stage. How-
ever, we need to add the complexity of the cost function
computation as this is not part of the overall complexity
in (7).

(28)Taco
evap,vrp

(n) ∈ O(n2) The initialization computation complexity solely consid-
ers the initialization of the stop-to-stop matrix as this stage
works with a single matrix. Again, the stop-to-stop matrix
contains the stop-to-stop distances and requires iteration
over all stops which results in a complexity of:

Since the pheromone update in the TSP-stage works analo-
gously to the one in the VRP-stage, the complexity can be
similarly defined as:

Finally, the pheromone evaporation factor is a constant value
that needs to be assigned to all values in the stop-to-stop
matrix of this stage. This results in a complexity of:

7 � Evaluation

First, we present our evaluation methodology in Section 7.1,
where we define the problem instances, algorithms we use for
comparing our proposed approaches, evaluation procedure,
and algorithm parameterizations. Then, we present our evalua-
tion results in Section 7.2, derive implications for practitioners
in Section 7.3, and discuss threats to validity in Section 7.4.

7.1 � Evaluation methodology

In this section, we first introduce the real-world database and
define the problem instances we derived to use them for our
evaluation. We then present alternative algorithms that we
use as reference values in the evaluation. Further, we present
the parameterization of our algorithms and summarize them
in Table 3. Finally, we present the methodology we use to
evaluate our approaches.

Since we handle a real-world rVRP, we decided to use
a real database for our evaluation instead of a benchmark
instance since we require a huge level of detail for each
order, vehicle, and driver. This would force us to adjust the
available benchmark instances which would reduce the com-
parability of the results what is the main advantage of these
instances. Therefore, our cooperation company provided a
database of real VRPs containing 30 vehicles with different

(29)

Taco
tsp

(n2) =T
aco
init,tsp

(n2)

+ Taco
upd,tsp

(n2)

+ Taco
evap,tsp

(n2)

+ Tcost(n2)

(30)Taco
init,tsp

(n2) ∈ O(n2
2
)

(31)Taco
upd,tsp

(n2) ∈ O(n2
2
)

(32)Taco
evap,tsp

(n2) ∈ O(n2
2
)

Tackling the rich vehicle routing problem with nature-inspired algorithms 9489

costs, capacities, and capabilities, 15 matching trailers with
different specifications, and 30 drivers that can be assigned
to vehicles with different capabilities. Further, the database
contains three depots and 450 orders with according loca-
tions around the German city Stuttgart. Unfortunately, we
are not allowed to make this dataset publicly available since
it is part of a non-disclosure agreement.

From this set of data, we define eight different problem
instances for evaluating our proposed algorithms (Table 1).
In line with our separated handling of TSP and VRP
instances, we decided to first evaluate the TSP-stage isolated
and Afterward apply the algorithms on the VRP-stage that
includes solving nested TSP instances. For the evaluation
of the TSP-stage, we define three problem instances: (i) a
small problem instance of ten orders without pickup and
delivery (PD) and pause times (TSP-I), (ii) a large problem
instance of 30 orders without PD and pause times (TSP-II),
and (iii) the large problem instance of 30 orders without
PD but with pause times (TSP-II-P). We similarly define
three problem instances for evaluating the VRP-stage: (i) a
small problem instance of 53 orders and 5 vehicles with-
out PD and pause times (VRP-I), (ii) the small problem
instances combined with pause times (VRP-I-P), and (iii) a
large problem instance of 100 orders, 13 vehicles without
PD and pause times (VRP-II). Since we did not include PD

behavior, that is, each order has differing pickup and deliv-
ery stops, in the previous problem instances, we add two
further instances that require PD behavior: (i) a TSP problem
instance with ten orders, one vehicle with PD but without
pause times (TSP-PD) and (ii) a VRP problem instance with
62 orders, seven vehicles with PD and pause times (VRP-
PD). In all problem instances, time windows are given for
orders and need to be handled by the algorithms. However,
pause times are only integrated if we explicitly stated it,
that is, in the problem instances TSP-II-P, VRP-I-P, and
VRP-PD. Using the real-world data explains the unusual
amount of orders and vehicles since the minimum required
vehicles depend on the characteristics of the orders. The
extension P of the problem instance label indicates that for
this problem instance we add the following pause times:
9:30-10:00 AM, 11:30 AM-12:00 PM, and 2:30-3:00 PM.
We here only consider static pause times to evaluate the
ability of our algorithms to fulfil this requirement. However,
also flexible pause times can easily be included to replace
the static ones.

We compare the performance of our algorithms (GA,
ACO) against four alternative algorithms. Since our coop-
eration company provides several algorithms for comparison
that are already implemented in OptaPlanner, we decided
to also use OptaPlanner for an easy comparison of our new
implementations. Hence, we implement our algorithms in
the OptaPlanner Framework (cf. https://​www.​optap​lanner.​
org/) using version 7.31.0.Final. Nevertheless, it is of course
possible to implement our approach without OptaPlanner.

Table 2 provides essential information on the functional
requirements supported by each compared algorithm. First,
we apply a deterministic Brute Force algorithm provided
by OptaPlanner that supports all requirements of our sce-
nario. Since this complete and optimal algorithm requires
high computation time, it is only applied to the smallest test
instance. The second algorithm is based on a Savings algo-
rithm [10] and used by our cooperation company in cases
with a homogeneous vehicle fleet, a single depot, and no

Table 1   Overview of the evaluated Problem Instances (PI)

PI Orders Vehicles P/D Pause Times

TSP-I 10 1 ✗ ✗
TSP-II 30 1 ✗ ✗
TSP-II-P 30 1 ✗ ✓
VRP-I 53 5 ✗ ✗
VRP-I-P 53 5 ✗ ✓
VRP-II 100 13 ✗ ✗
TSP-PD 10 1 ✓ ✗
VRP-PD-P 62 7 ✓ ✓

Table 2   Overview on the
compared algorithms and their
capabilities with respect to the
requirements of the rVRP

Capabilities Brute Force Blackbox-I Blackbox-II Local Search GA ACO

Capacities ✓ ✓ ✓ ✓ ✓ ✓
Setup Times ✓ ✗ ✗ ✓ ✓ ✓
Time Windows ✓ ✓ ✓ ✓ ✓ ✓
Tour Start Time Window ✓ ✓ ✓ ✓ ✓ ✓
Order Restrictions ✓ ✓ ✓ ✓ ✓ ✓
Fixed Pause Times ✓ (✓) ✓ ✓ ✓ ✓
Heterogeneous Fleet ✓ ✗ ✗ ✓ ✓ ✓
Multiple Depots ✓ ✗ ✓ ✓ ✓ ✓
Pickup/Delivery ✓ ✗ (✓) ✓ ✓ ✓
Stop Options ✓ ✗ ✗ ✓ ✓ ✓
Allow Return ✓ ✗ ✗ ✓ ✓ ✓

V. Lesch et al.9490

https://www.optaplanner.org/
https://www.optaplanner.org/

pickup and delivery problem. Even if we know on which
approach this algorithm is based, we call it Blackbox-I as
we have no insight into the details of the implementation.
The third algorithm (Blackbox-II) is an extension to the
above mentioned Blackbox-I algorithm covering a multi-
depot problem and more complex pause time rules. Both
Blackbox algorithms are proprietary algorithms developed
by our cooperation company. The fourth algorithm supports
all features required for our rVRP as it uses our model of
the problem inside OptaPlanner and is an implementation
of Tabu Search [20] provided by default from the OptaPlan-
ner’s Local Search (LS) algorithms.

Since we modelled the rVRP inside OptaPlanner addi-
tional optimization could be applied such as exhaustive
search, hyperheuristics or partitioned search. However, we
decided to use the Tabu Search implementation as promising
representative of Local Search algorithms. Further, other
optimization techniques could be applied on the rVRP such
as exact algorithms by using an adjusted penalty function.
However, several restrictions of our problem statement
prevented us from using these as for example we retrieve
the stop-to-stop distance from a service of our cooperation

company and this information is not available as fixed adja-
cency matrix that could be transferred to other algorithms
easily. Further, the integration of all handled constraints into
one penalty function is problematic since diverse constraints
need to be reduced to one value. This single value is not a
good indicator which of the constraints is violated and there-
fore a directed search towards an optimum is hardly possible.

We evaluate our two proposed algorithms against the
alternative four algorithms on all previously defined prob-
lem instances. The probabilistic algorithms (LS, GA, ACO)
are executed 30 times with different random seeds to deliver
representative results for comparison. We summarize the
parametrization of our algorithms in Table 3. For defining
the population size of the genetic algorithm, we use statistics
of the problem instance to be solved. Therefore, we use 10%
of the number of orders, add the number of vehicles to the
power of 1.25, the number of pickup delivery orders, and
twice the number of stops containing multiple options. We
derived these values in a preliminary parameter study and
focused on providing a reasonable number of individuals
regarding the complexity of the problem. We set the muta-
tion probability to be 50%, hence, on average half of the

Table 3   Definition of algorithm-dependent parameters used for the evaluation

Genetic Algorithm

Population size 0.1 ⋅ #o + #v1.25 + #(PD-orders) + 2 ⋅ #(multi-option stops)

Mutation probability ( pvrp , ptsp) 0.5
Max. unimproved iterations 500

Ant Colony Optimization
Evaporation factor 0.05
Size set of best solutions (N) 10
Max. unimproved iterations 500

Table 4   Summary of the evaluation results for S1 (time windows = TW) and S2 (tour length score) for all algorithms and problem instances

For probabilistic algorithms, the mean and standard deviation values over 30 runs are listed (P = with pause times, PD = with pickup and deliv-
ery). The best values are shown in bold

Algorithm Brute Force Blackbox-I Blackbox-II Local Search GA ACO

TW S2 TW S2 TW S2 TW S2 TW S2 TW S2

mean std mean std mean std

TSP-I ✓ 91.52 ✓ 92.55 ✗ 90.95 ✓ 91.52 0 ✓ 91.52 0 ✓ 93.87 2.06
TSP-II – ✓ 161.87 ✗ – ✓ 157.62 5.68 ✓ 156.74 0.89 ✗ 222.00 7.50
TSP-II-P – ✗ 161.87 ✗ – 19/30 207.41 30.50 25/30 190.53 20.26 ✗ 217.74 7.58
VRP-I – ✓ 187.14 ✓ 185.71 ✓ 186.56 8.25 ✓ 177.19 1.22 ✓ 201.81 8.85
VRP-I-P – ✗ 187.14 ✗ 177.82 ✓ 194.10 5.84 ✓ 179.81 0.67 –
VRP-II – ✓ 396.21 ✓ 373.05 28/30 299.03 60.95 ✓ 292.86 14.60 –
TSP-PD – – – 21/30 108.50 2.00 27/30 104.89 17.76 –
VRP-PD – – – ✓ 337.80 18.40 ✓ 332.39 13.96 –

Tackling the rich vehicle routing problem with nature-inspired algorithms 9491

newly created individuals are mutated and set the termina-
tion criterion to a maximum iterations without improvement
to be 500. For the ACO we use an evaporation factor of 0.05,
the size of the set of best solutions so far to ten, and the
maximum number of iterations without improvement to 500.

For the evaluation runs, we used a server exclusively for
our measurements with the following specifications: Two
Intel(R)Xeon(R) CPU E5-2667 v4 processors with 3,20 GHz
each with 16 GB of RAM. Windows Server 2012 R2 Data-
center runs as a 64-bit operating system on the server.

7.2 � Results and interpretation

In the following we discuss the results of the algorithms on
all defined problem instances. Since we use the ranked score
for measuring the quality of the solutions, all hard scores
need to be reduced to zero to consider a solution feasible.
In case the hard scores (H1,H2,H3 ) are not down to zero,
the algorithm does not find a feasible solution, which we
indicate with dashes (-) in our results table. Further, the soft
scores aim at the matched time windows in the first soft
score and the tour length in the second soft score that needs
to be minimized. The third soft score is only considered
by the optimization if the previous scores are reduced to
zero. As this is not the case in any of our evaluation results,
we omit this score in our evaluation. Please keep in mind,
that even if pause times and time windows are handled in
the Timeline algorithm, no pause time violations can occur
as ensured by our algorithm and we only include the time
window violations in the score S1 . For better readability, we
re-scaled all values by dividing them by 10,000 in our result
presentation. To sum up the evaluation results of all problem
instances, we provide Table 4, which states whether time
windows are met as well as mean and standard deviations of
the tour length (S2 ) over 30 runs for probabilistic algorithms,
that is, the Local Search, GA, and ACO.

The ticks (✓) indicate, that all time windows are met in
all runs of the algorithm, the crosses (✗) show that these
are not met. A value of 19/30 for the time windows shows

that in 19 out of 30 runs, all time windows are met. We only
report results of the Brute Force algorithm for the TSP-I
problem instance since it already took the algorithm 7 hours
and 15 minutes to find a solution for this problem instance.
For larger problem instances, for example the TSP-II prob-
lem instance, the algorithm has to assess 33! = 8, 6 ⋅ 1036
possible solutions of sequences and, hence, was not able to
calculate the optimum solution within feasible time. Further,
we consider a maximum calculation time for all algorithms
that is specified by our cooperation company. This maxi-
mum calculation time is defined to stay within a practically
applicable runtime of the algorithms between 60 and 300
seconds. We decided to set these time limits as we want to be
able to react to changes in the orders, vehicles, stops at any
point in time and we do not assume that the rVRP is planned
once at the beginning of the day, but should be adjustable
at any time. The mean and standard deviation values in the
table are calculated using the final score values of the solu-
tions provided after the execution time. Both Blackbox algo-
rithms are tested for all problem instances except for the
pickup and delivery instances since they are not designed
to handle pickup and delivery problems. Additionally, we
provide line charts and box plots for all problem instances.
The line charts represent the course of the mean values over
30 repetitions of the S2 score throughout the optimization.
For non-deterministic algorithms (LS, GA, ACO) we fur-
ther show the standard deviations as error bars. The box
plots represent the final S2 results of the algorithms after
the execution time is over. To make statements on statisti-
cal significance of the results we perform Wilcoxon signed
rank tests for the non-deterministic algorithms in all rel-
evant comparisons. We define the null hypotheses to be that
the mean values are drawn from the same distribution and,
hence, have no statistically significant difference. Further,
we define the significance level to be � = 0.05 . In the follow-
ing, we first present the results for the TSP instances, then
the ones for the VRP instances.

The table shows that for the TSP-I problem instance, the
LS and GA are able to fulfill all time windows and find
the best possible score value (determined by the result of
the brute force algorithm). The Blackbox-II algorithm finds
a solution with a reduced score value of around 2.6 score
points less but was not able to fit the time windows. The
Blackbox-I and ACO algorithms are able to fit all time
windows but only find solutions with higher score value,
that is, around 1.00 and 2.35 score points above the opti-
mal score value, respectively. Figure 5 shows the mean and
standard deviation values of the S2 score for all algorithms
during the course of optimization. The x-axis shows execu-
tion time in seconds while the y-axis presents the S2 score
value divided by 10.000 to achieve better visibility of the
values. The Brute Force algorithm is depicted as constant
line at 91 score points for better comparability with the other

Fig. 5   Mean and standard deviations of tour length score ( S
2
 ) to be

minimized for the TSP-I problem instance for all algorithms

V. Lesch et al.9492

algorithms even if it took more than seven hours to return
the result. Both Blackbox algorithms do not provide the pos-
sibility to show the course of optimization but provide a final
result after their calculation. The result of the Blackbox-I is
returned after five seconds with a lower value of 90.05 than
the optimal one of 91.52 but with broken time windows,
while the Blackbox-II algorithm requires 30 seconds calcu-
lation time and matches the time windows. The LS and GA
show very fast convergence towards the optimum solution
in all repetitions while the ACO algorithm is not able to
achieve the best solution and shows comparably high stand-
ard deviations of two score points. This can also be observed
in the box plot in Fig. 6. Since LS and GA computed the
optimal solutions in all repetitions, we do no performed sta-
tistical tests on this problem instance. In summary, LS and
GA were able to achieve the best possible solution after only
a few seconds and in all runs while the Blackbox algorithms
produce worse solutions and the ACO cannot compete with
the other algorithms.

For the TSP-II instance, the Brute Force algorithm was
not able to calculate the optimal solution, while Blackbox-
II and ACO were not able to match the time windows. The
Blackbox-I, LS, and GA find solutions that match all time
windows and comparable S2 score values of around 160
score points with GA showing the lowest score with 156.74.
Figure 7 shows the mean and standard deviation values of

the S2 score for the algorithms that were able to match all
time windows during the course of optimization. The Black-
box-I again delivers its solution of 161.87 after it finishes its
calculation after ten seconds. In the mean time, the LS and
GA were able to reduce their mean value below the value of
Blackbox-I and manage to reduce their standard deviations
as well. Figure 8 shows the results for the three algorithms
as box plot. The LS shows the larger box and, hence, a wider
variety of solutions. In contrast, the GA shows stable behav-
ior with a slightly slower mean value with a difference of
0.9 score points compared to the LS. We performed Wil-
coxon signed rank tests to check for statistical significance
in the test results between the non-deterministic LS and GA.
We define the H0 hypotheses to be that the mean values are
drawn from the same distribution and calculated a p-value
of 0.185. Hence, we were not able to reject our hypotheses
with a significance level of � = 0.05 . In summary, the LS
and GA calculate the best solutions after around ten seconds
and perform equally well.

When including pause times in the TSP-II-P instance,
the Blackbox-I, Blackbox-II, and ACO algorithm were not
able to match all time windows in any of the proposed solu-
tions. Contrary, the LS was able to match time windows
in 19 out of 30 solutions and the GA in 25 of 30 solutions.
Additionally, the GA produces results with lower S2 score
of 190 score points compared to 207 score points and lower

Fig. 6   Boxplot of the tour length score ( S
2
 ) to be minimized for the

TSP-I problem instance for all algorithms
Fig. 7   Mean and standard deviations of tour length score ( S

2
 ) to be

minimized for the TSP-II problem instance for all algorithms

Fig. 8   Boxplot of the our length score ( S
2
 ) to be minimized for the

TSP-II problem instance for all algorithms
Fig. 9   Mean and standard deviations of tour length score ( S

2
 ) to be

minimized for the TSP-II-P problem instance for all algorithms

Tackling the rich vehicle routing problem with nature-inspired algorithms 9493

standard deviation (20 score points for GA and 30 score
points for LS). Again, Fig. 9 provides the mean and stand-
ard deviation values of the S2 score for the Blackbox-I, LS,
GA, and ACO algorithms. Since no algorithm was able to
match all time windows in all runs, we present the results of
all algorithms and keep the performance regarding the time
windows in mind. The Blackbox-I algorithm returns its solu-
tion of 161 score points after ten seconds and has a lower
S2 score compared to the other algorithms. However, as this
solution does not match any time window, we consider it
worse than the other algorithms. The course of optimiza-
tion of the LS, GA, and ACO show, that the GA already
starts with a better value (230 score points) than both other
algorithms (higher than 280 score points) and continues to
decrease the score slightly during runtime. The LS is also
able to decrease its score but a high standard deviation of
8 score points compared to 1 score point for the GA can be
observed while the ACO seems to show no improvement at
all. This can be explained by the fact that the ACO was not
able to match the time windows in any run and hence, does
not focus on optimizing the S2 score. The boxplots in Fig. 10
show similar results with a high mean value for the LS and
the ACO and a low mean for the GA. As the ACO was not
able to match the time windows in any run, we consider its
performance worse than the ones from LS and GA. We again

performed a Wilcoxon signed rank test to compare LS and
GA and calculated a p-value of 0.082 and were not able to
reject our hypotheses with a significance level of � = 0.05 .
In summary, all algorithms were not able to find solutions
with matching time windows in all repetitions. However,
the LS and GA were able to match time windows in some
of the repetitions and are considered best performing in this
problem instance.

The results using the first VRP problem instance (VRP-I)
show, that all tested algorithms are able to match the time
windows. While the ACO provides solutions with a high
S2 score of around 200 score points, the scores of the other
algorithms are comparably low at around 186 score points
with the GA showing the lowest value of 177 score points.
The line chart in Fig. 11 shows the course of optimization
for all algorithms. Blackbox-I delivers its result of 187
score points after around 18 seconds while the Blackbox-II
algorithm requires 65 seconds calculation time with a score
value of 186 score points. Both algorithms deliver results
with higher S2 score value compared to the GA with a score
of 177. The GA already starts with a good initialized value
of around 185 and continues reducing the S2 score over time
with small standard deviations of around 1 score point. The
LS algorithm starts with a high mean value (larger than 250
score points), but reduces the score to the level of the Black-
box algorithms in the first 20 seconds. The ACO algorithm
shows higher score values of around 208 score points com-
pared to the other algorithms but at least slightly reduces
the score over time. A similar result can be seen in Fig. 12
where the GA shows the lowest values and the smallest box
indicating a very stable low score value.

The mean of the LS is around the values for the Blackbox
algorithms but has a larger box and hence, shows a larger
diversity in the results. Finally, the ACO has a higher mean
value and a larger variety in the results. Using three Wil-
coxon signed rank tests between LS, GA, and ACO, we are
able to reject the hypotheses with p-values of 0.001 and a
significance level of � = 0.05 , which means that the mean
values are drawn from different distributions and hence the

Fig. 10   Boxplot of the tour length score ( S
2
 ) to be minimized for the

TSP-II-P problem instance for all algorithms

Fig. 11   Mean and standard deviations of tour length score ( S
2
 ) to be

minimized for the VRP-I problem instance for all algorithms

Fig. 12   Boxplot of the tour length score ( S
2
 ) to be minimized for the

VRP-I problem instance for all algorithms

V. Lesch et al.9494

difference is statistically significant between all algorithms.
In summary, the GA shows significant improvements over
the LS and ACO algorithms in this problem instance.

For the VRP-I-P problem instance with pause times, both
Blackbox algorithms are unable to match the time windows.
On the contrary, the LS and GA solutions match all time
windows with GA having the lowest mean of 180 score
points and standard deviation of 0.7 score points. The course
of the optimization is depicted in Fig. 13. The Blackbox-I
delivers its result of 187 score points after around 18 seconds
while Blackbox-II algorithm requires 80 seconds calculation
time with a final score of 177. Again, the GA starts with
an already good solution of around 185 score points and
further reduces the score value throughout the calculation
time while the LS starts with a very high score larger than
250 score points. The LS is able to reduce its score within
the first 30 seconds but still has a difference of around 15
score points to the GA. The boxplot in Figure 14 supports
this finding, as the GA has low score value and produces
very stable results with only few variations, while the LS
shows worse results and high variability in the solution qual-
ity. In addition, a Wilcoxon signed rank test calculates a
p-value of 0.001 and we are able to reject the hypotheses
with a significance level of � = 0.05 , and hence the mean

values are different. In summary, the GA shows significant
improvements over the LS and shows the most stable solu-
tion quality.

In the second VRP problem instance (VRP-II), both
Blackbox algorithms are able to match all time windows,
while LS only matches time windows in 28 of 30 runs. The
solutions of the GA match all time windows in all runs, and
hence, are considered better than the solutions of the LS.
Figure 15 shows the course of optimization during calcula-
tion time.

The Blackbox-I algorithm returns its result of 396 score
points after around 45 seconds, while the Blackbox-II algo-
rithm delivers solutions after around 75 seconds with a score
of 373. The GA starts with a solution quality in the area of
the Blackbox algorithms and further reduces the score value
to 293 and its standard deviation to 15 over time. In contrast,
the LS starts with a high score above 600 score points and
reduces its solution to the level of the GA at around 100
seconds but shows a higher standard deviation of 61 score
points. The box plots in Fig. 16 shows that the solution qual-
ity and the variety of the quality of the final results of both
algorithms is comparably good. The Wilcoxon signed rank
test calculates a p-value of 0.478 and we are not able to
reject our hypotheses. In summary, the LS and GA algo-
rithms outperform both Blackbox algorithms with regards

Fig. 13   Mean and standard deviations of tour length score ( S
2
 ) to be

minimized for the VRP-I-P problem instance for all algorithms

Fig. 14   Boxplot of the tour length score ( S
2
 ) to be minimized for the

VRP-I-P problem instance for all algorithms

Fig. 15   Mean and standard deviations of tour length score ( S
2
 ) to be

minimized for the VRP-II problem instance for all algorithms

Fig. 16   Boxplot of the tour length score ( S
2
 ) to be minimized for the

VRP-II problem instance for all algorithms

Tackling the rich vehicle routing problem with nature-inspired algorithms 9495

to the second score and perform comparably good. However,
the LS does not match the time windows in all runs and
hence, is considered worse than the GA.

For both PD problem instances, we compare the LS and
the GA since the Blackbox algorithms cannot handle PD
problems. In the TSP-PD problem instance, LS matches
time windows in 21 out of 30 runs, and the GA in 27 out
of 30 runs. Hence, the GA can be considered more stable
than the LS as the probability to receive solutions with
matching time windows is higher. Figure 17 shows the
optimization result during the runtime of the algorithms.
Both algorithms start with high score values above 130
and reduce the score in the first two to three seconds to
values around 108 for the LS and 105 for the GA. The
GA shows larger standard deviations of around 18 score
points compared to the LS with a standard deviation of
two. Figure 18 presents box plots of the final results to
compare GA and LS. The box plot of the GA is very small
besides one outlier and the LS box plot is larger spreading
from 1,080,000 to 1,100,000 score points. The Wilcoxon
signed rank test was not able to reject the hypotheses with
a p-value of 0.145. In summary, both algorithms perform
comparably good in this problem instance as both do not
match all time windows and deliver nearly the same qual-
ity in the S2 score.

Finally, LS and GA are able to match all time windows
in the VRP-PD problem instance. Further, the GA produces
solutions with a lower mean S2 score value of around 332
score points compared to the LS with a value of 338. In
Figure 19 the GA start with a high value of 450.00 and the
LS with a value of 600.00 score points. But both algorithms
decrease the score in the first 100 seconds to around 350.00
score points. Still, the GA maintains its advance and the
mean stays below the mean of the LS. The standard devia-
tion of both algorithms are similar around 14 to 18 score
points. The box plots in Fig. 20 show that the mean values
are also very similar. The box and whiskers of the GA span
a wider range, while the LS has a smaller box but some more
outliers. In line, the Wilcoxon signed rank test was not able
to reject the hypotheses with a p-value of 0.329. In summary,
again both algorithms perform equally good with a slight
advantage of around 50,000 score points for the GA.

Our evaluation results support the following key findings
of our paper. First, our approach integrates all constraints
and requirements given by the real-world application such as
setup times, a heterogeneous fleet, multiple depots, P/D, stop
options, and return permissions (Table 4). Compared to the
existing Blackbox algorithms of our cooperation company,
we additionally support setup times, a heterogeneous fleet,
multiple depots, P/D, stop options, and return permissions.

Fig. 17   Mean and standard deviations of tour length score ( S
2
 ) to be

minimized for the TSP-PD problem instance for all algorithms

Fig. 18   Boxplot of the tour length score ( S
2
 ) to be minimized for the

TSP-PD problem instance for all algorithms

Fig. 19   Mean and standard deviations of tour length score ( S
2
 ) to be

minimized for the VRP-PD problem instance for all algorithms

Fig. 20   Boxplot of the tour length score ( S
2
 ) to be minimized for the

VRP-PD problem instance for all algorithms

V. Lesch et al.9496

Second, on the smallest problem instance (TSP-I), the TSP-
stage of our GA computes the best possible score confirmed
by the Brute Force algorithm (Fig. 5). We were not able to
prove this behavior for larger problem instances since the
brute force computation was not feasible. Third, when com-
pared to the existing algorithms Blackbox-I and Blackbox-II,
we reduced the time to result from 30 seconds to two sec-
onds for the TSP instance, and from 60 seconds to around
five seconds for the VRP instance, which is a computation
time reduction of 90% (Figs. 5 and 11). This provides our
cooperation company the possibility to react to unforeseen
situations and adapt the tours spontaneously. Finally, in the
largest VRP-PD problem instance our GA algorithm returns
meaningful results right from the start contrary to the LS
algorithm (Fig. 19). The achieved score of the results from
both algorithms shows that they perform on the same level
while our GA produces more stable results, indicated by the
lower standard deviation (Fig. 20). Regarding the GA, the
performance could make the impression that the initializa-
tion phase of the algorithm already provides good enough
solutions and the optimization steps are not able to improve
the score. However, when looking at all line plots showing
the course of the optimization it can be seen, that the score
value of the GA can be improved over time. Still, the good
initialization enables to further reduce the required calcu-
lation time and hence, provides the possibility to adapt to
changes in a short amount of time. In summary, we highlight
the following main results of our paper:

–	 Integration of all real-world constraints motivated by and
defined with our cooperation company.

–	 Time-to-result reduction from 30 to two seconds, and
from 60 to five seconds for the TSP and VRP instances,
respectively, which has enormous practical use.

–	 Same level performance of LS and GA on the largest
VRP test instance, while our proposed GA shows the
most stable performance.

7.3 � Practical implications

The results as presented in the previous section have sev-
eral implications for practitioners, as also confirmed by our
partner from our cooperation company. Next, we will shortly
discuss them.

Real‑world compatible solutions through the integration
of constraints  In contrast to many approaches in related
work (cf. Section 2), we focus on integrating real-world con-
straints. We will illustrate the benefits of integrating such
constraints on two short examples. One relevant constraint
is the time a driver is allowed to drive. Obviously, this has a
huge impact on the planning procedure. Having not included
those constraints, this might lead to delays in the planned
route due to breaks specified by law. In the worst case, a

driver is not able to finish the route because the allowed driv-
ing time is achieved. Another constraint are time windows.
Those windows specify the time when it is possible at a
customer location to unload the truck. Without considera-
tion, it might be possible that a driver arrives at a time when
unloading is not possible, e.g., because the specific shop
is not opened yet. Our approach does not only take both
constraints (besides other, further relevant constraints) into
account, but also optimizes them, e.g., if the best possible
option would require some waiting time at some location due
to time windows, our approach would try to harmonize this
with the breaks of drivers. This is really important to gener-
ate plans that are suitable for the practice. State-of-the-art
today is that companies have to adjust the calculated plans to
optimize them w.r.t. those constraints; our approach provides
a significantly higher level of automation..

Preference‑optimized Solutions through multi‑objec-
tiveness The used algorithms all support multi‑objec-
tiveness  Consequently, those can be used to identify
Pareto-optimal solutions that are able to optimize several
objectives such as time, distance, or invested resources
(in terms of drivers, trucks, fuel, etc.) alike. In literature,
one can identify several works that provide a multi-objec-
tive approach (e.g., [5, 16, 30]). However, none of them
also integrates such real-world constraints as mentioned
before, which highly complicates the finding of solutions.
Further, to achieve the multi-objectiveness, either metrics
as Hypervolume [42] that are able to balance the differ-
ent objectives for reaching a single score (however, with
the disadvantage that the balancing process is fixed) or
introducing weights for the different objective dimensions
is necessary. Our approach is flexible enough to support
dynamic changes of the weights for testing several com-
binations while being in control of the balance between
the objectives. This is achieved through the application of
nature-inspired algorithms; but also due to the fact that the
computational time is rather low.

Dynamic planning through runtime performance  Our
approach was able to reduce the Time-to-result from 30
to 2 seconds and from 60 to 5 seconds for the TSP and
VRP instances, respectively. This sounds only marginal;
but taking into account that we have a multi-objective
approach with flexible weights for the objectives and that
a planner of logistic operations might be interested to test
several ratios for balancing the objectives (or the integra-
tion of different constraints), a reduction of the runtime
for the planning algorithms by a factor of 15 and 20 for
the TSP and VRP instances, respectively, this has a huge
implication for daily work. Especially as our scenarios
under consideration definitely have the size of real-world
scenarios and used real-world data rather than artificially
created, potentially biased, data, the short runtime are
remarkable. As we are using heuristic-based approaches,

Tackling the rich vehicle routing problem with nature-inspired algorithms 9497

one could argue that the short runtime might lead to
reduced quality in the solutions. However, we have shown
that LS and GA achieve the same level of performance
on the largest VRP test instance, while our proposed GA
shows the most stable performance.

7.4 � Threats to validity

We identified the following threats to validity for our approach.
In this paper, we focus on nature-inspired algorithms (ACO
and GA) for tackling the rVRP and compared them to a
Brute-Force, two Blackbox algorithms implemented by our
cooperation company, and local search. Those algorithms
provide heuristic solutions, which provide fast results, how-
ever, require multiple runs to receive reliable results. Further,
we did not evaluate other common algorithms used for these
kinds of problems as those often require manual implemen-
tation effort to adjust them for the particular rVRP problem
as discussed in the beginning of this section. Therefore, we
decided to compare our algorithms to an existing implemen-
tation of Local Search inside OptaPlanner. In the future, we
plan to use further algorithms for multi-objective optimiza-
tion such as NSGA-II, particle swarm, or Branch-and-Bound
algorithms. Additionally, our results are limited to the defined
problem instances and we plan to also evaluate even larger
VRP instances in cooperation with our cooperation company
in the future. Finally, our analysis of related work showed that
existing approaches simplify the problem by using assump-
tions or neglecting specific aspects. One could argue that we
over-complicated the problem as so far it has been enough for
the industry to solve the trimmed-down versions. However,
as the problem formulation was motivated by and done with
our cooperation company, these constraints reflect an actual
need from practice. Further, we think that in the course of
digitization in industry, companies will be faced with increas-
ingly complex problems and solving them in an automated way
without limitations might be a competitive advantage.

8 � Conclusion

This work tackles the rich Vehicle Routing Problem (rVRP)
and its transfer to a real-world application. We assess a
multi-objective capacitated VRP with pickup and deliv-
ery (PD) stops and time windows (TW) and propose a two-
staged strategy where the first step assigns the orders to the
vehicles, and the second step optimizes the tours of each
vehicle. This diverse set of constraints delimits our work
from other state-of-the-art approaches since these hardly
cover a small set of these constraints. We apply a six-
dimensional cost function and propose a timeline algorithm
to match the given TWs and fixed pause times. To solve
the problem instances on both stages, we apply a Genetic

Algorithm (GA) and Ant Colony Optimization (ACO). We
evaluate our approach on a real-world data set composed of
eight different problem instances with increasing complex-
ity in comparison to a Brute Force approach, two Black-
box algorithms provided by our cooperation company, and
a Local Search algorithm. Our evaluation has shown that
our approach is able to tackle the defined rVRP and, hence,
exceeds the functionality of the existing Blackbox algo-
rithms. Further, it reduces the time to result compared to
the existing algorithms by 90% to two seconds for the TSP-
stage and five seconds for the VRP-stage. Therefore, our
cooperation company already integrated our approach into
their software and uses it actively.

In the future, we plan to investigate other common opti-
mization algorithms such as particle swarm or Branch-and-
Bound algorithms within our two-stage approach. Further,
we plan to examine whether a mixture of ACO, GA, and
Local Search on the different stages might be beneficial.
Also a multi-objective representation of the problem could
be possible by transferring the constraints such as matching
the time windows, reducing the required time and driving
distance to be contrary objectives. Then, we could apply
common multi-objective optimization techniques such as
NSGA-II and inspect their performance. Following the
observation from [19], that the selection of the algorithm
for planning is situation-aware for adaptive systems, we also
want to examine whether a situation-aware algorithm selec-
tion—for example based on the number of orders, vehicles,
and drivers to assign—is meaningful for rVRP. Finally, we
think that integrating a measure of uncertainty or even fore-
casting mechanisms regarding orders or traffic could be ben-
eficial, since orders cancelled at short notice or spontaneous
full road closures due to accidents can upset the entire plan.

Funding  Open Access funding enabled and organized by Projekt
DEAL.

Declarations 

Conflicts of interest  The authors have no relevant financial or non-
financial interests to disclose.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

V. Lesch et al.9498

http://creativecommons.org/licenses/by/4.0/

References

	 1.	 Transportleistung im Straßengüterverkehr 2019 Statista (2021)
https://​de.​stati​sta.​com/​stati​stik/​daten/​studie/​2979/​umfra​ge/​entwi​
cklung-​der-​trans​portl​eistu​ng-​des-​stras​sengu​eterv​erkeh​rs. [Online;
acc. 3. Feb. 2021]

	 2.	 Alinaghian M, Tirkolaee EB, Dezaki ZK, Hejazi SR, Ding W
(2021) An augmented tabu search algorithm for the green inven-
tory-routing problem with time windows. Swarm and Evolution-
ary Computation 60:100802. https://​doi.​org/​10.​1016/j.​swevo.​
2020.​100802

	 3.	 Babaee Tirkolaee E, Abbasian P, Soltani M, Ghaffarian SA (2019)
Developing an applied algorithm for multi-trip vehicle routing
problem with time windows in urban waste collection: A case
study. Waste Management & Research 37(1-suppl):4–13

	 4.	 Babaee Tirkolaee E, Goli A, Pahlevan M, Malekalipour Kord-
estanizadeh R (2019) A robust bi-objective multi-trip periodic
capacitated arc routing problem for urban waste collection using
a multi-objective invasive weed optimization. Waste Management
& Research 37(11):1089–1101

	 5.	 Barma PS, Dutta J, Mukherjee A, Kar S (2021) A multi-objec-
tive ring star vehicle routing problem for perishable items. J
Ambient Intell Humaniz Comput 1–26. https://​doi.​org/​10.​1007/​
s12652-​021-​03059-2

	 6.	 Çatay B (2009) Ant Colony Optimization and Its Application
to the Vehicle Routing Problem with Pickups and Deliveries.
Springer, Berlin, pp 219–244

	 7.	 Chami ZA, Manier H, Manier MA, Fitouri C (2017) A hybrid
genetic algorithm to solve a multi-objective Pickup and Delivery
Problem. IFAC-PapersOnLine 50(1):14656–14661 (20th IFAC
World Congress)

	 8.	 Chávez JJS, Escobar JW, Echeverri MG (2016) A multi-objective
Pareto ant colony algorithm for the Multi-Depot Vehicle Routing
problem with Backhauls. Int J Ind Eng Comput 7:35–48

	 9.	 Chen CH, Ting CJ (2010) Applying two-stage ant colony optimi-
zation to solve the large scale vehicle routing problem. Journal of
the Eastern Asia Society for Transportation Studies 8:761–776

	10.	 Clarke G, Wright JW (1964) Scheduling of vehicles from a cen-
tral depot to a number of delivery points. Operations research
12(4):568–581

	11.	 Cordeau JF, Laporte G, Savelsbergh MW, Vigo D (2007) Chap-
ter 6 vehicle routing. In: Transportation, handbooks in opera-
tions research and management science, vol 14. Elsevier, pp
367 – 428

	12.	 Dantzig G, Fulkerson R, Johnson S (1954) Solution of a large-
scale traveling-salesman problem. Journal of the operations
research society of America 2(4):393–410

	13.	 Desaulniers G, Desrosiers J, Erdmann A, Solomon MM, Soumis
F (2002) 9. VRP with pickup and delivery. In: The vehicle rout-
ing problem, pp 225–242, Society for Industrial and Applied
Mathematics

	14.	 Doerner K, Hartl RF, Reimann M (2000) Ant colony optimization
applied to the pickup and delivery problem. Working papers SFB
“Adaptive Information Systems and Modelling in Economics and
Management Science” 76, Vienna

	15.	 Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimiza-
tion by a colony of cooperating agents. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics) 26(1):29–41

	16.	 Dutta J, Barma PS, Mukherjee A, Kar S, De T (2020) A multi-
objective open set orienteering problem. Neural Computing and
Applications 32(17):13953–13969

	17.	 Erfan Babae Tirkolaee Alireza Goli MBIM (2017) A robust multi-
trip vehicle routing problem of perishable products with interme-
diate depots and time windows. Numerical Algebra, Control &
Optimization 7(4):417–433

	18.	 Espinoza-Nevárez D, Ortiz-Bayliss JC, Terashima-Marín H, Gat-
ica G (2016) Selection and generation hyper-heuristics for solving
the vehicle routing problem with time windows. In: Proceedings
of the 2016 on genetic and evolutionary computation conference
companion, GECCO ’16 Companion, pp 139–140

	19.	 Fredericks EM, Gerostathopoulos I, Krupitzer C, Vogel T (2019)
Planning as optimization: dynamically discovering optimal con-
figurations for runtime situations. In: 2019 IEEE 13th Interna-
tional conference on self-adaptive and self-organizing systems
(SASO), IEEE, pp 1–10

	20.	 Glover F (1986) Future paths for integer programming and links
to artificial intelligence. Computers & Operations Research
13(5):533–549

	21.	 Golden BL, Raghavan S, Wasil EA (2008) The vehicle routing
problem: latest advances and new challenges, vol 43. Springer
Science & Business Media

	22.	 Hintsch T, Irnich S (2018) Exact solution of the soft-clustered
vehicleRouting problem. Working papers 1813, gutenberg school
of management and economics, johannes gutenberg-universität
mainz

	23.	 Holland JH (1992) Genetic Algorithms. Scientific American
267(1):66–73

	24.	 Hussain A, Muhammad YS, Sajid MN, Hussain I, Shoukry AM,
Gani S (2017) Genetic Algorithm for Traveling Salesman Problem
with Modified Cycle Crossover Operator. Computational Intel-
ligence and Neuroscience 2017:1–7

	25.	 Keçeci B, Altıparmak F, Kara İ (2021) A mathematical formu-
lation and heuristic approach for the heterogeneous fixed fleet
vehicle routing problem with simultaneous pickup and delivery.
Journal of Industrial & Management Optimization 17(3):1069

	26.	 Laporte G (1992) The vehicle routing problem: An overview of
exact and approximate algorithms. European journal of opera-
tional research 59(3):345–358

	27.	 Lehman J, Stanley KO (2008) Exploiting open-endedness to solve
problems through the search for novelty. In: ALIFE, pp 329–336

	28.	 Martello S, Minoux M, Ribeiro C, Laporte G (2011) Surveys in
combinatorial optimization. Elsevier

	29.	 Montero A, José Miranda-Bront J, Méndez-Díaz I (2017) An
ILP-based local search procedure for the VRP with pickups and
deliveries. Annals of Operations Research 259(1):327–350

	30.	 Mukherjee A, Barma PS, Dutta J, Panigrahi G, Kar S, Maiti M
(2021) A multi-objective antlion optimizer for the ring tree prob-
lem with secondary sub-depots. Oper Res 1–39. https://​doi.​org/​
10.​1007/​s12351-​021-​00623-8

	31.	 Pigden T (2013) Missing from the model: Orders, drivers, trac-
tors and trailers and non-linear loading. In: Proceedings of the
15th annual conference companion on genetic and evolutionary
computation, GECCO ’13 Companion, p 1079-1084

	32.	 Rabbouch B, Saâdaoui F, Mraihi R (2020) Empirical-type simu-
lated annealing for solving the capacitated vehicle routing prob-
lem. Journal of Experimental & Theoretical Artificial Intelligence
32(3):437–452

	33.	 Roy SK, Maity G, Weber GW (2017) Multi-objective two-stage
grey transportation problem using utility function with goals. Cen-
tral European Journal of Operations Research 25(2):417

	34.	 Roy SK, Maity G, Weber GW, Gök SZA (2017) Conic scalariza-
tion approach to solve multi-choice multi-objective transporta-
tion problem with interval goal. Annals of Operations Research
253(1):599–620

	35.	 Roy SK, Midya S, Weber GW (2019) Multi-objective multi-item
fixed-charge solid transportation problem under twofold uncer-
tainty. Neural Computing and Applications 31(12):8593–8613

	36.	 Shahdaei AM, Rahimi AM (2016) Solving vehicule routing prob-
lem with simultaneous pick-up and delivery with the application
of genetic algirithm. 247–259

Tackling the rich vehicle routing problem with nature-inspired algorithms 9499

https://de.statista.com/statistik/daten/studie/2979/umfrage/entwicklung-der-transportleistung-des-strassengueterverkehrs
https://de.statista.com/statistik/daten/studie/2979/umfrage/entwicklung-der-transportleistung-des-strassengueterverkehrs
https://doi.org/10.1016/j.swevo.2020.100802
https://doi.org/10.1016/j.swevo.2020.100802
https://doi.org/10.1007/s12652-021-03059-2
https://doi.org/10.1007/s12652-021-03059-2
https://doi.org/10.1007/s12351-021-00623-8
https://doi.org/10.1007/s12351-021-00623-8

	37.	 Tchoupo MN, Yalaoui A, Amodeo L, Yalaoui F, Lutz F (2017)
Ant colony optimization algorithm for pickup and delivery
problem with time windows. In: Springer proceedings in math-
ematics & statistics, Springer International Publishing, pp
181–191

	38.	 Tirkolaee EB, Hadian S, Weber GW, Mahdavi I (2020) A robust
green traffic-based routing problem for perishable products dis-
tribution. Computational Intelligence 36(1):80–101

	39.	 Tirkolaee, E.B., Hosseinabadi, A.A.R., Soltani, M., Sangaiah,
A.K., Wang, J.: A hybrid genetic algorithm for multi-trip green
capacitated arc routing problem in the scope of urban services.
Sustainability 10(5) (2018). https://​doi.​org/​10.​3390/​su100​51366

	40.	 Wang J, Zhou Y, Wang Y, Zhang J, Chen CLP, Zheng Z (2016)
Multiobjective vehicle routing problems with simultaneous deliv-
ery and pickup and time windows: formulation, instances, and
algorithms. IEEE Transactions on Cybernetics 46(3):582–594

	41.	 Wei L, Zhang Z, Zhang D, Leung SC (2018) A simulated anneal-
ing algorithm for the capacitated vehicle routing problem with
two-dimensional loading constraints. European Journal of Opera-
tional Research 265(3):843–859

	42.	 Zhang Y, Harman M, Ochoa G, Ruhe G, Brinkkemper S (2014)
An empirical study of meta-and hyper-heuristic search for multi-
objective release planning. RN 14(07):1–32

	43.	 Zirour M (2008) Vehicle routing problem: models and solu-
tions. Journal of Quality Measurement and Analysis JQMA
4(1):205–218

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Veronika Lesch  is a doctoral researcher at the chair of software engi-
neering at the University of Würzburg. She received her bachelor’s and
master’s degree in Computer Science from the University of Würzburg
in 2015 and 2017, respectively. Her research topics include self-aware
computing systems and self-adaptive systems. She researches in the
field of IoT and CPS concerning Industry 4.0 and Logistics as well as
Platooning and Intelligent Transportation Systems.

Maximilian König  is with PASS Consulting Group and an industrial
partner of the paper. He received his Bachelor’s and Master’s degree
in Computer Sciene from the University of Würzburg in 2016 und
2020, respectively.

The main part of his research topics in cooperation with the Uni-
versity of Würzburg, includes evolutionary probabilistic optimizations
algorithms implemented for solving the vehicle routing problem and
the traveling salesman problem and similar.

Samuel Kounev   is a professor and chair of software engineering at the
University of Würzburg. His research is focused on the engineering of
dependable and efficient software systems, systems benchmarking and
experimental analysis; as well as autonomic and self-aware computing.
He received a Ph.D. in computer science from TU Darmstadt. He is a
member of ACM, IEEE, and the German Computer Science Society.

Anthony Stein  is a tenure track professor at the University of Hohen-
heim in Stuttgart, Germany. Since 2020, he leads the newly founded
department for Artificial Intelligence in Agricultural Engineering there.
Prior to his current position he was a research associate at the Chair of
Organic Computing at the University of Augsburg. He holds a doctor-
ate (Dr. rer. nat.) in computer science from the University of Augsburg
for his dissertation in the context of self-learning adaptive systems. His
current research is concerned with the development of Artificial Intel-
ligence methods for their application to complex technological systems,
with a special focus on the domain of digital agriculture. Dr. Stein has
been involved in the organization of workshops on lifelike comput-
ing systems and evolutionary machine learning. He serves as reviewer
for numerous international conferences and journals, including ACM
GECCO, IEEE CEC, ACM TAAS or IEEE T-EVC. In 2021, he was
elected as the spokesperson of the Special Interest Group `Organic
Computing’ of the German Informatics Society (GI).

Christian Krupitzer  received a bachelor’s, master’s, and Ph.D. degree
from the University of Mannheim, Germany, in 2010, 2012, and 2018,
respectively. Since October 2020, he is tenure track professor and leads
the Department of Food Informatics at the University of Hohenheim in
Stuttgart, Germany. His research interests include applying principles
of adaptive systems and machine learning for IIoT (focusing on food
production), intelligent transportation, and sports.

V. Lesch et al.9500

https://doi.org/10.3390/su10051366

	Tackling the rich vehicle routing problem with nature-inspired algorithms
	Abstract
	1 Introduction
	2 Related work
	3 Problem statement and complexity
	4 Approach
	4.1 Timeline algorithm for time windows and pause stops
	4.2 Cost function

	5 Genetic algorithm
	5.1 VRP-stage
	5.2 TSP-stage

	6 Ant colony optimization
	6.1 VRP-Stage
	6.2 TSP-stage

	7 Evaluation
	7.1 Evaluation methodology
	7.2 Results and interpretation
	7.3 Practical implications
	7.4 Threats to validity

	8 Conclusion
	References

