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Abstract

We investigate the convergence of the proximal gradient method applied to control
problems with non-smooth and non-convex control cost. Here, we focus on con-
trol cost functionals that promote sparsity, which includes functionals of L-type
for p € [0, 1). We prove stationarity properties of weak limit points of the method.
These properties are weaker than those provided by Pontryagin’s maximum princi-
ple and weaker than L-stationarity.

Keywords Proximal gradient method - Non-smooth and non-convex optimization -
Sparse control problems

1 Introduction

In this article, we consider a possibly non-smooth optimal control problem of type

JJuin fw) + /Q g(u(x)) dx, P)
where Q C R” is Lebesgue measurable. The functional f : L*(Q) — R is assumed
to be smooth. Here, we have in mind to choose f(u) := f(y(«)) as the smooth part
of an optimal control problem incorporating the state equation and a smooth cost
functional. The function g : R - R U {400} is allowed to be non-convex and non-
smooth. Examples include
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gw) = |ul”, pe@,l),
and

1 ifu#0
g(u)=|u|0 :={O lfuio

In particular, g is chosen to promote sparsity, that is, local solutions of (P) are zero
on a significant part of Q. We will make the assumptions on the ingredients of the
control problem precise below in Sect. 2.

Due to lack of convexity of g, the resulting integral functional
Jju) 1= [, g(u(x))dx is not weakly lower semicontinuous in L*(€), so it is impos-
sible to prove existence of solutions of (P) by the direct method of the calculus of
variations. Still it is possible to prove that the Pontryagin maximum principle is a
necessary optimality condition. This principle does not require differentiability of g.
In this paper, we will address the question whether weak limit points of the proposed
optimization method satisfy the maximum principle or weaker conditions.

In order to guarantee existence of solutions one has to modify the problem, e.g.,
by introducing some compactness. This is done in [18], where a regularization term
of the type §||M||12L,1 is added to the functional in (P). These regularized problems are
solvable. However, the maximum principle cannot be applied anymore. In addition,
due to the non-local nature of H'-optimization problems, it is much more difficult
to compute solutions numerically. Convergence for a \, 0 of global solutions of the
regularized problem to solutions of the original problem has been proven in [18],
but it is not clear how this can be exploited algorithmically.

In this paper, we propose to use the proximal gradient method (also called for-
ward-backward algorithm [3]) to compute candidates for solutions. The main idea
of this method is as follows: Suppose the objective is to minimize a sum f +j of
two functions f and j on the Hilbert space H, where fis smooth. Here, we have in
mind to choose H = L*(Q) and j(u) = |, g(u(x)) dx.

Given an iterate u,, the next iterate u,; is computed as

. L .

1 € argmin (£l + VFGn) - (0= )+ Sl =l +5) ). (1)
ueH

where L > 0is a proximal parameter, and L~! can be interpreted as a step-size. In our

setting, the functional to be minimized in each step is an integral function, whose

minima can be computed by minimizing the integrand pointwise. Let us introduce

the so-called prox-map, which is defined by

prox ,;(z) 1= argmin (% llx — zlI7, + Vj(x)>, (1.2)
x€H

where y > 0. If j is weakly lower semicontinuous and bounded from below, then

prox ,;(z) is non-empty for all z € H. Let us emphasize that due to the non-convexity

of j, the solution set argmin is multi-valued in general, so that prox,; : H 3 His a

set-valued mapping. Then, (1.1) can be written as
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1
Uy € Prox L“j(uk - va(”k)>-

If j =0, the method reduces to the steepest descent method. If j is the indicator
function of a convex set, then the method is a gradient projection method. The con-
vergence analysis of this method is based on the following observation: under suit-
able assumptions on L, the iterates satisfy |[u;,; — u;|ly — 0. If fand j are convex,
then the convergence properties of the method are well-known: under mild assump-
tions, the iterates (u;) converge weakly to a global minimum of f +j, see, e.g., [3,
Corollary 27.9]. If fis non-convex and H is finite-dimensional, then sequential limit
points u* of (u;) are stationary, that is, they satisfy

Vi) € 0j(u), (1.3)

where dj is the convex subdifferential of j, [5, Theorems 6.39, 10.15]. For infinite-
dimensional spaces a similar result can be proven, if one assumes strong conver-
gence (or in the case of H = L?(Q) pointwise convergence almost everywhere) of
Vf(u,), see below Remark 4.22. Literature on the convergence analysis of the simple
method (1.1) in infinite-dimensional spaces if either f or j is non-convex is relatively
scarce. There are results for projected gradient methods, see, e.g., [14, 17]. Recently,
a stochastic version of the algorithm was analyzed in [16]. However, in these papers
no convergence results for weakly converging subsequences of iterates are given.

If in addition j is non-convex, then much less has been proven. For finite-
dimensional problems it has been shown that limit points u* are fixed points of the
iteration, that is

W e proxL_lj(u - T Vf )). (1.4)

Similar results for problems in the space #2 can be found in [8], where it was
shown that weak limit points are fixed points in the sense of (1.4). There, the set-
ting of the problem in #? was important, as it could be proven that the active sets
{n €N : u(n) # 0} only change finitely often, as is the case in finite-dimensional
problem. This result is not available for problems on L?(Q), where the underlying
measure space is atom-free. In [6] and [4, Chapter 10], points satisfying (1.4) are
called L-stationary. For convex and lower semicontinuous j, conditions (1.3) and
(1.4) are equivalent. For non-convex j it is natural to consider inclusions of type
(1.3), where the convex subdifferential is replaced by some generalized derivative
(e.g., Fréchet or limiting subdifferential). Here it turns out that conditions of type
(1.3) involving generalized derivatives are weaker than L-stationary. Consider the
case H =R!, and g(u) = |ul, or g(u) = |u|” (p € (0,1)). Then the Fréchet and the
limiting subdifferential of g at u* = 0 is equal to R, so the inclusion (1.3) is trivially
satisfied. In contrast to this, the L-stationarity condition still gives some information
of the following type: if u* = 0 is L-stationary, then | Vf(0)| is small, since it can be
shown that 0 € prox ;-1;(¢) if and only if || < g, for some finite g,, compare Lem-
mas 3.5 and 3.6 below.
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Hence, we are interested in proving that weak limit points in L*(€) of the proxi-
mal gradient method are L-stationary. Unfortunately, weak convergence leads to con-
vexification in the following sense: Let R C H X H be such that (u*, —-Vf(u*)) € R
if and only if (u*, —Vf(u*)) satisfies (1.4). The iterates of the method satisfy

(1> LGy — ) — Vf(u)) € R.

Let us assume for simplicity that u;, — u*, Vf(u,) — Vf(u*), and u;, —u; — 0 in
H. Passing to the limit will lead to an inclusion (u*, Vf(u*)) € conv R, where conv
denotes the closed convex hull.

In order to partially prevent this convexification, we will employ an idea of [27].
There the method was analyzed when applied to control problems with Z.°-control
cost.

An essential ingredient of the analysis in [27] was that the function g(u) := |u|,
is sparsity promoting: solutions of the proximal step (1.1) are either zero or have a
positive distance to zero in the following sense: there is ¢ > 0 such that i, ;(x) =0
or |u,,(x)| > o for almost all x. In Sect. 3, we investigate conditions on g under
which this property can be obtained.

Still this is not enough to conclude L-stationarity of weak limit points. We will
show that weak limit points satisfy a weaker condition in general, see Theorem 4.20.
Under stronger assumptions on (Vf(x,)), L-stationarity can be obtained (Theo-
rems 4.21, 4.23). Pointwise almost everywhere and strong convergence of (u,) is
proven under additional assumptions in Theorem 4.26. We apply these results to
gw) = |ul?, p € (0,1)in Sect. 5.1.

Interestingly, the proximal gradient method sketched above is related to algo-
rithms based on proximal minimization of the Hamiltonian in control problems.
These algorithms are motivated by Pontryagin’s maximum principle. First results
for smooth problems can be found in [25]. There, stationarity of pointwise limits of
(u;) was proven. Under weaker conditions it was proved in [7] that the residual in the
optimality conditions tends to zero. These results were transferred to control prob-
lems with parabolic partial differential equations in [9].

Notation We will frequently use R := R U {+00}. Let A C Q be a set. We define
the indicator function of A by

5o {0 ifxed,
A% = +oo otherwise,

and the characteristic function of A by

w1 dfxea
2499 =90 otherwise.

The convex hull and closed convex hull of the set A is denoted by conv A and ‘conv A,
respectively.

For measurable A, we denote the Lebesgue measure of A by IAl. We will abbrevi-
ate the quantifiers “almost everywhere” and “for almost all” by “a.e.” and “f.a.a.”,
respectively. Let X be a non-empty set. For a given function F : X — R we define
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its domain by dom F' := {x : F(x) < +oo}. The open ball centered at x € R" with
radius r > 0 is denoted by B,.(x).

2 Preliminary considerations
2.1 Necessary optimality conditions

In the following we are going to derive a necessary optimality condition for (P),
known as Pontryagin maximum principle, where no derivatives of the functional
are involved. We formulate the Pontryagin maximum principle (PMP) as in [27].
A control i € L*(Q) satisfies (PMP) if and only if for almost all x € Q

Vf(@(x)a(x) + g(a(x)) < V) (x) - v+ g(v) .1
holds true for all v € R. This relation can be rewritten equivalently as
a(x) € argmin (f(a(x)) + V(@) (x) - (u — u(x)) + gw)) faa.xe Q.
ueR
Hence, the iteration (1.1) is nothing else than a fixed point iteration for (2.1) with

an additional proximal term. The following result is shown in [27, Thm. 2.5] for the
special choice g(u) := |ul,.

Theorem 2.1 (Pontryagin maximum principle) Let it € L*(Q) be a local solution
to (P) in L*(Q). Furthermore, assume f satisfies

J) —f@) = V@) - (u—u) + o(llu — il ).

Then u satisfies the Pontryagin maximum principle (2.1).

Proof We will use needle perturbations of the optimal control. Let
E :={(v;,t;), i € N} be a countable dense subset of

epi(g) :={(v,H) ERXR : g(v) <t}
For arbitrary x € Q,r > 0, andi € Nwe define u,.;, € LX(Q) by

rix

u,; () = { v 1€ B,

u(t) otherwise.
Let y, = ¥, then we have u,;, = (1 — y,)it + y,v; and

”Mr,i,x - ﬁ”Ll(Q) = llx; - ﬁ)”Ll(Q) < (vl + ||’7l||Lw(Q))||){r||Ll(g)
= (il + llill 2o (@)) 1B ()]

With j(u) := /g(u(t)) dr we get
Q
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0 <flu.;)+jlu,;,) —f(@)—j@)

- / V(@) — 8t + ol .~ lley) + / (g(u,) — (@) dr
Q Q

< / V@ — )+ (1 — g@) di + ollluy 1 — Tllve)
B,(x)

After dividing above inequality by |B,(x)| and passing to the limit » \, 0, we obtain
by Lebesgue’s differentiation theorem

0 < Vf@)(x) - (v; — u(x)) + (#; — g(in(x))) (2.2)

for every Lebesgue point x € Q of the integrands, i.e., for all x € Q\ N,, where
N, is a set of zero Lebesgue measure, on which the above inequality is not satis-
fied. Since the countable union |J,,\N; is also of measure zero, (2.2) holds
true for all x € Q\ |J; N, for all i. Due to the density of E in epi(g), we find for
(v,g(v)) € epi(g) a sequence (V;,%,) — (v,g(v)) with (¥,,7,) € E, and hence for
almost all x € Q it holds

0 < Vf@@)(x) - (v — u(x)) + (g(v) — ga(x)))

for all v € R which is the claim. O

2.2 Standing assumptions

We define the functional j : L?(Q2) — R by
Jw) = /g(u(x)) dx,
Q

where we set j(u)=+oc0 if g(u) is not integrable. Let us define
domj :={u : j(u) < +o0}.

Throughout the paper, we will assume the following standing assumption on f
and g. Another set of structural assumptions on g will be developed in Sect. 3.

Assumption A

(A1) The function g : R — R is lower semicontinuous.

(A2) The functional f : L?>(Q) — R is bounded from below. Moreover, fis Fréchet
differentiable and Vf : L?>(Q) — L*(Q) is Lipschitz continuous with constant
Lf on domj, i.e.,

IVfQuy) = VW)l 2y < Lelluy — uyll 2

holds for all u;,u, € domj C L*(Q).
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Here, (A1) implies that g is a normal integrand, and g(u) is measurable for each
measurable u, see [15, Section VIII.1.1]. The Lipschitz continuity of the Vf as in
(A2) will be important to prove the basic convergence result Theorem 4.5 below. For
u € L*(Q), we have Vf(u) € L*(Q). With a slight abuse of notation, we will use the
notation Vf(u)v := fQ(Vf(u)(x))v(x) dx for v € L2(Q).

The following optimal control example is covered by Assumption A. Let
Q4 O Q be a bounded domain in R”, n < 3. It will be the domain of the state

y€E H(')(dee) associated to the control u € L*(Q). Let us define

f) i= / L(x,y,(0) dx,
Q.

‘pde

where y, € Hé (,4e) is defined to be the unique weak solution of the elliptic partial
differential equation

(—AY)(x0) +d(x,y(x)) = yo)u(x) ae. in Q..

Let us assume that L and d are Carathéodory functions, continuously differenti-
able with respect to y and such that the derivatives of L, d with respect to y are
bounded on bounded sets. In addition, d is assumed to be monotonically increas-
ing with respect to y. Then the mapping u — y, is Lipschitz continuous from
L*(Q) to Hy(Qyge) N LX(Qq.), see [26, Section 4.5]. The gradient of f is given
by Vf(u) = yqp,. where p, € Hé(Q ) is the unique weak solution of the adjoint
equation

pde

(=AP)®) + d,(x, v, (NP = Ly(x,y,(x)  ae. in Qg

where d, L, denote the partial derivatives of d, L with respect to the argument y.

Suppose that the optimal control problem contains control constraints of the type
|u(x)| < b fa.a. x € Q. This can be modeled by setting g(u) = +oo for all ¥ with
|u| > b. Then the domain of j is a bounded subset of L*(€). The Lipschitz continuity
of u » Vf(u) = yop, can be proven by standard techniques, see, e.g., [23, Lemma
4.1]. The maximum principle holds for such problems as well, see [11].

3 Sparsity promoting proximal operators

The focus of this section is to investigate under which assumptions prox , is sparsity
promoting. Here, we want to prove that there is ¢ > 0 such that for all ¢

u € prox ,(q) = u=0or|ul 2o. 3.1

In [21, 22], this was also investigated for some special cases of non-convex func-
tions. We will show that the following assumption is enough to guarantee the spar-
sity promoting property. It contains the requirements from e.g. [21, Theorem 3.3]
and [8, Lemma 3.1] as a special case.
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Assumption B

(B1) g : R — Rislower semicontinuous, g(x) = g(—x) for all x € R, and g(0) = 0.
(B2) There is u # 0 such that g(u) € R.
(B3) g satisfies one of the following properties:

(B3.a) g is twice differentiable on an interval (0,¢) for some ¢ > 0 and
lim sup g"” (1) € (—c0,0),
u\,0
(B3.b) g is twice differentiable on an interval (0,¢) for some ¢ > 0 and
liilg)g”(u) = —oo,

(B3.c) 0 <liminf, o g(u).
(B4) g(u) >0forallu € R.

By Assumption B, the function g is non-convex in a neighborhood of 0 and
non-smooth at 0. Some examples are given below.

Example 3.1 Functions satisfying Assumption B:

(1) gw) := uly := {(1) "

(2) gw) :=1ul’, pe(©1),
(3) g() :=1In(1 + a|u|), with a given positive constant a,
(4) the indicator function of the integers g(u) := 6,(u).

In order to prove the desired property (3.1), we have to analyze the structure of
the solution set of

min A, () (3.2)

for s > 0 with
h . 1 2
q’s(u) = —qu+ zu + sg(u).

Let us begin with stating basic properties of prox .
Lemma 3.2 Let g : R — R satisfy (B1) and (B4). Then prox 5¢(q) is non-empty for
all g € R. In addition, the graph of prox , is a closed set. Moreover, ¢ = Prox ,(q)
is monotone, i.e., the inequality 0 < (q, — q2)(u1 - uz) is satisfied for all q,,q, € R
and u; € Prox ,(q;), U, € prox ,,(q).

Proof The function hq , is lower semicontinuous, thus closed. Further, it is coercive,

i.e., hg,(u) > 400 as [u| - +oo. This implies the non-emptiness of prox ,, see [5,
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Theorem 6.4]. The closedness of the graph of prox ,, is a consequence of the lower
semicontinuity of g. The monotonicity can be verified by using the optimality for
(3.2). That is for u; € prox ,(¢,) and u, € prox ,(g,) it holds

hy () < hy, () and b, () < by, (),

respectively. Elementary computations yield the claimed inequality. O

Lemma 3.3 Let g : R — R satisfy (BI). Let u € prox 5¢(@)- Then u > 0 if and only
ifg>0.

Proof Due to (B1), we have u € prox s¢(@) if and only if —u € prox ,,(—q). The
claim now follows from the monotonicity of the prox-map. O

Lemma3.4 Let g : R — R satisfy (Bl) and (B4). Then the growth condition
lul <2l|g|  Vu € prox  (¢)
is satisfied.
Proof Letu € prox ,(q). By optimality, the following inequality
%uz —qu+sg(u) <g0)=0
is true. Since g(u) > 0, the claim follows. O
Next, we have to make sure that the image of prox ,, is not equal to {0}.

Lemma 3.5 Let H be a Hilbert space. Let f : H — R be a function with £(0) € R.
Then 0 € prox ((q) for all g € H if and only if f is of the form f(x) = f(0) + 6o, (x).

Proof If f is of the claimed form, then clearly prox ((g) = {0} for all g. Now, let
0 € prox 4(g) for all g € H. Then it holds

Sl =l +£) 2 Jllally +1©) Vg € H.
This is equivalent to
Fw+ 3l > FO) + ey Vg € H.
Setting g := tu and letting t — +oo shows f(u) = +oo for all u # 0. O

Lemma3.6 Letg : R — Rsatisfy (Bl). Let s > 0. Assume there is q, > 0 such that
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648 C. Natemeyer, D. Wachsmuth

Golul < %uz +sg(u) YueR. (3.3)
Then the following statements hold:
(1) u = 0is a global solution to (3.2) iflq| < q,. If|q| < qq, then u = 0 is the unique
global solution to (3.2).
(2) Moreover, if
go 1= 5up(g 2 0 : glul < 2 +580) Vu € R), (3.4)
then|q| < qq is also necessary for u = 0 to be a global solution to (3.2).
Proof Let|q| < g,. Take u # 0, then we have
By = 308+ 59(0) = uq > 327 +58) = lul - 1g] > 508 + 580 = golul > 0= Iy, O).

Note that the second inequality is strict if |g| < g,. To prove (2), assume u = 0 is a
global solution to (3.2). Assume g > 0. Then it holds

qu < %uz +sg(u) Vu>0.
Since g(u) = g(—u), this implies
qlu| < %uz +sg(u) YueR.

By the definition of g,, the inequality g < g, follows. Similarly, one can prove
lg| < g, for negative q. O

Together with Assumption B, these results allow us to show the desired sparsity
promoting property (3.1). A similar statement to the following can be found in [22,
Theorem 1.1].

Theorem 3.7 Let g : R — R satisfy Assumption B. Let us set

" lim sup,~ o 8" () 3.5)

— L if(B.3a)is satisfied,
Sy =
0 if (B.3b) or (B3.c) is satisfied.

Then the following statements hold:

(1) Foreverys > sythere is uy(s) > 0 such that for all g € R every global minimizer
u of (3.2) satisfies

u=0or |ul > uy(s).
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(2) Moreover, for all s > O there is qy = qy(s) > 0 such that u = 0 is a global solu-
tion to (3.2) if and only if |q| < q¢. If |q| < qy then u = 0 is the unique global
solution to (3.2).

Proof We prove the first claim (1) by contradiction. Therefore, assume g satis-
fies Assumption B but the first claim does not hold, i.e., there exists s > s, such
that for all u, > 0 there is g and u with u € prox ;,(¢) and 0 < |u| < u,. Then there
are sequences (u,) and (g,) with u, € prox (q,), u, #0, and u, - 0. W.lo.g.,
(u,) 1s a monotonically decreasing sequence of positive numbers, and hence (g,,)
is monotonically decreasing and non-negative by Lemma 3.3. Let # and ¢ denote
the limits of both sequences. Since u, # 0 is a global minimum of %, ., it follows

oS
h, s(u,) < h, (0)=0.Passing to the limit in this inequality, we obtain

lim 1nfh (un) = liminf g(u,) < 0.
n—+oo n—+oo

Hence, (B3.c) is violated, so at least one of (B.3a) or (B.3b) is satisfied. For n suffi-

ciently large, we have 0 < u, < €, and the necessary second-order optimality condi-

tion h;’ .(u,) > 0 holds, and we obtain

lim sup h” J(u,) >0,

n—+co
which implies

1 + slimsup g”(u,) > 0.

n—+oo

This inequality is a contradiction to (B.3a) and (B.3b) due to the choice of s > s,
and the first claim is proven.

In order to prove the claim (2), we will apply Lemma 3.6. First, assume that
(B.3a) or (B.3b) is satisfied, i.e., there is €; > 0 such that g is strictly concave on
(0,€;]. By reducing ¢, if necessary, we get g(e;) > 0. Since g(0) =0, it holds
gu) > g(e‘) |u| for all u € [0, ;] by concavity. Due to symmetry, this holds for all u

with |u| < €;. Since g(u) > 0 for all u by (B4), it holds 2u +sg(u) > & |u| for all
lu| > €,. This proves u + sg(u) > mm(el Ag(el 20|y for all u, and the sei appearing
in (3.4) is non-empty. Second, if (B3.c) is satlsﬁed, then there are €,, 7 > 0 such that

g(u) > 7 for all u with |u| € (0, ¢,) as g is lower semicontinuous. Therefore, it holds
gw) > v > —|u|if lu| € (0,¢,). Similarly as in the first case, we find that the set in
€

(3.4) is non-empty. By (B2), this set is bounded. Thus, the claim follows with g
from (3.4) and Lemma 3.6. O

Remark 3.8 In general, the constant u, in Theorem 3.7 depends on s and the struc-
ture of g.

Example 3.9 The proximal map of g(u) := |ul|, is_given by the hard-thresholding
0 iflgl<v

operator, defined by prox ,,(¢) = i
q otherwise.
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With the above considerations in mind, let us discuss the minimization
problem

. L
min gy + 2 - w)* + g(u), (3.6)
which arises as the pointwise minimization of the integrand in (1.1).

Corollary 3.10 Let g, u;, € R,L > 0 be given. Then u € R is a solution to (3.6) if
and only if

Lu, — gk>

u € prox ng( I

If % > 5, see Theorem 3.7, then all global solutions u satisfy
u=0 or |ul >uyL™")
with some uy(L~") > 0 as in Theorem 3.7.
Proof Problem (3.6) is equivalent to
. 8 — Luy, 1, 1
irélu? 7 u+ 2u +Lg(u)

and therefore of the form (3.2). The claim follows from Theorem 3.7. O

4 Analysis of the proximal gradient algorithm

In this section, we will analyze the proximal gradient algorithm. Throughout this
section, we assume that f and g satisfy Assumptions A and B.

Algorithm 4.1 (Proximal gradient algorithm) Choose L > 0 and u, € L*(Q). Set
k=0.

(1) Compute u,, as solution of
. L ) .
Jin fu) + VFG) - =) + Sl = Iz ) +G). (4.1)
(2) Setk :=k+1,gotostep 1.
The functional to be minimized in (4.1) can be written as an integral functional.
In this representation the minimization can be carried out pointwise by using the

previous results. The following statements are generalizations of [27, Lemma 3.10,
Theorem 3.12].
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Lemma 4.2 Letu;, € L*(Q) be given. Then

min £ + VA - (0= ) + E = w2y + / s dx  (42)
©@ 2 o

uel?

is solvable, and u,,, € L*(Q) is a global solution if and only if
1
g, (x) € prox L,lg(z(Luk(x) - Vf(uk)(x))) 43)
for almost all x € Q.

Proof Let us show, that we can choose a measurable function satisfying the inclu-
sion (4.3). The set-valued mapping prox ;-i, has a closed graph. Then by [24, Corol-

lary 14.14], the set-valued mapping x = prox L_|g<%(Luk(x) — Vf(u)(x)) | from Q
to R is measurable. A well-known result [24, Corollary 14.6] implies the existence
of a measurable function u such that u(x) € prox i, %(Luk(x) — Vf(u,)(x)) | for

almost all x € Q. Due to the growth condition of Lemma 3.4, we have u € L*(Q),
and hence u solves (4.2). If u, | solves (4.2) then (4.3) follows by a standard argu-
ment, see e.g., [27, Theorem 3.10]. O

Remark 4.3 Due to its non-convexity, the minimization problem in Algorithm 4.1
may not have a unique minimizer, and prox ; ., g<%(Luk(x) - Vf (u,)(x))) is not a sin-

gleton. For the choice g(u) = |u|, or g(u) = |ul’, p € (0, 1), the image of prox con-
tains zero, and we suggest to choose 1, ((x) = 0. For the general case, one can con-
struct a monotonically increasing function P : R — R such that P(q) € prox ;-i,(q)

for all ¢ € R. Then set i, | (x) := P<%(Luk(x) - Vf(uk)(x))).
We introduce the following notation. For a sequence (1;) C L*(Q) define
loi={xe Q) #0}, x 1= 1. (4.4)

Let us now investigate convergence properties of Algorithm 4.1. The following
Lemma will be helpful for what follows. It strongly builds on the sparsity promoting
property of g, and uses all conditions of Assumption B via Theorem 3.7.

Lemma 4.4 Assume % > 5o with s, from Theorem 3.7. Let uy, u;,, € L*(Q) be con-
secutive iterates of Algorithm 4.1. Then

p
”uk+1 - uk”u;(g) > ug”/‘t/k = X+l ”L](Q)

holds for p € [1,+00), where uy = uy(L™") is as in Theorem 3.7.

Proof Since u,(x)#0 and u.,;(x)=0 on I\, by (44), it holds
[t (X) — up(x)| > ug for all x € I \ I, by Corollary (3.10). Hence,
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lletqy — Mk”IZ/,(Q) =/ [ty () — 1 (X)|P dx
Q
Z/ |”k+1(x)—uk(x)|pd)€2“€||)(k+1 _)(k”Ll(Q),
TNy DU \L)

where we have used||)(k+1 - /‘l-/k”Ll(Q) = |(Ik\Ik+1) U (Ik+1 \[k)| |

Now, we are in the position to prove the first, basic convergence result. This
theorem already makes full use of Assumptions A and B.

Theorem 4.5 For L > L; let () be a sequence of iterates generated by Algo-
rithm 4.1. Then the following statements hold:

(1) The sequence (f(u,) + j(u;)) is monotonically decreasing and converging.

(2) The sequences (w,) and (Vf(w,)) are bounded in L*(Q) if f + j is weakly coercive
on L*(Q), i.e., f(u) + j(u) - +oo as ||ull ;2q) — +oo.

(3) Itholdsu,,; —u, — Oin LX(Q) and pointwise almost everywhere on Q.

(4) Letsybe as in Theorem 3.7. If s 8o then the sequence of characteristic func-
tions () is converging in L'(Q) and pointwise a.e. to some characteristic func-
tion y.

Proof (1) Due to the Lipschitz continuity of Vf by (A2) it holds

L
Su) S fu) + Vi) — w) + EfH”/m - uk”iz(g)- 4.5)

Using the optimality of i, ;, we find that the inequality

S Q) + i) < flw) +jlwy) — Tf oty — ”k”Zz(Q) (4.6)

holds. Hence, (f(u;) + j(u,)) is decreasing. Convergence follows because f and j are
bounded from below by Assumptions (A2) and (B1).

(2) Weak coercivity of the functional implies that (&;) is bounded. Furthermore,
because of

IVf @l 2y < 1V () = VO 2q) + IV Ol 12
< Lellugll o) + VOl 12

boundedness of (Vf(i,;)) in L*(Q) follows.
(3) Summation over k = 1, ... ,nin (4.6) yields

n . n . L — Lf 5
];(f(uk-H) +J(”k+1)) < ]; <f(uk) +J(uk) - T||uk+1 - uklle(Q)>

and hence
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L-L,
2

n
. 2 .
FQpy) + () + Z Netgeyr = il o) < SCuy) +j(uy) < +oo.
k=1
+co
Letting n — 400  implies > gy — uk||i2 @ <t and therefore
k=1

llugyy — wyll12) — O. By the Lemma of Fatou, we have further

n

/ lim infz [t (x) — uk(x)|2 dx < lim infz [ty () — uk(x)Hiz(Q) < +o00.

Q n—+oo =0 n—+oo =0

This implies lim inf ZZ_O |11 (X) — 1, (X)|* < +oo0 for almost all x € Q, and the sec-
n—>+oo -

ond claim follows.
(4) By Lemma 4.4, we get

L—-L I L—L, =
T 2 f
7 Z e = Xl < > Z, g — g1l 12y < 00
=1 =1

Hence, (y,) is a Cauchy sequence in L'(Q), and therefore also converging in L'(<),
ie., y; — x for some characteristic function y. Pointwise a.e. convergence of (y;)
can be proven by Fatou’s Lemma. |

4.1 Stationarity conditions for weak limit points from inclusions

In order to make full use of Theorem 4.5, we assume throughout this section that the
proximal parameter L in Algorithm 4.1 satisfies

L> L;and 1 > 50,
: L

where s is from Theorem 3.7, see (3.5).

Under a weak coercivity assumption, Theorem 4.5(2) implies that Algorithm 4.1
generates a sequence (i;) with weak limit point u* € L*(Q), i.e., there exists a sub-
sequence of iterates (u,) converging weakly to u* in L*(Q). Due to the lack of weak
lower semicontinuity in the term u — /g g(u)dx, however, we cannot conclude
anything about the value of the objective functional in a weak limit point. Unfortu-
nately, we are not able to show

FO) + @) < lim fla) +jy)

along the subsequence, as it was done in [27, Thm. 3.14] for the special choice
g(u) := |ul,. Nevertheless, by using results of set-valued analysis we will show that
a weak limit point of a sequence (1) of iterates satisfies a certain inclusion in almost
every point x € Q, which can be interpreted as a pointwise stationary condition for
weak limit points.

By definition, the iterates satisfy the inclusion
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gy, (x) € prox L_1g<%(Luk(x) - Vf(uk)(x)))

for almost all x € Q, see e.g., (4.3). However, this inclusion seems to be useless
for a convergence analysis, as the function u; to the left of the inclusion as well
as the arguments Lu, — Vf(u;) only have weakly converging subsequences at best.
The idea is to construct a set-valued mapping G : R = R such that a solution ., ; of
(4.2) satisfies the inclusion

Uiy (X) € G(z(x)) 4.7

in almost every point x € € for some z;, € L*(Q), where (z;) converges strongly or
pointwise almost everywhere. Here, we will use

Z 1= = (Vf(u) + Lty — ). (4.8)

By Theorem 4.5, we have u;,, — u, — 0 in L*(Q) and pointwise almost everywhere.
With the additional assumption that subsequences of (Vf(i,)) converge pointwise
almost everywhere, the argument of the set-valued mapping converges pointwise
almost everywhere. In the context of optimal control problems, such an assumption
is not a severe restriction.

If Vf : L2(Q) — L*(Q) is completely continuous, then this assumption is ful-
filled. For many control problems, this property of Vf is guaranteed to hold.

So there is a chance to pass to the limit in the inclusion (4.7).

Corollary 4.6 Let (1) be a sequence of iterates generated by Algorithm 4.1 with
weak limit point u* € L*(Q), i.e., w — u*. Assume Vf(uk”)(x) - Vfu*)(x) for
almost every x € Q. Then it follows z, () = —VfW*)(x) for almost every x € Q.

Proof This is a direct consequence of the definition of (z;) in (4.8) and Theo-
rem 4.5(3). O

Let us now give an equivalent characterization of G as defined in (4.7).

Lemma 4.7 Letuy_ | be a solution of (4.2). Then
U () € Gz (X))f .a.a.x € Q,

where the set-valued mapping G : R =3 R is given by

u€ g(z) = u € argmin —zv + é(v —u)? +g(v)
veR 2 (4 9)
Lu+Z) '

S u€ profolg( 7

Unfortunately, the set-valued map G is neither monotone nor single-valued in

general. If g would be convex, then the optimality condition of the minimization
problem in (4.9) implies z € dg(u). Hence, it holds G = dg*, where g* denotes the
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convex conjugate of g, and G would be monotone. If in addition, g is strictly con-
vex, then G would be single-valued.
As a first direct consequence from the definition of G, we get

Corollary 4.8 Let u, := uy(L™") and qq = qo(L™") be the positive constants from

Theorem 3.7. Let u,z € R be such that u € G(z). Then we have: If u> 0 then
Lgy—z Lgy+z
L

u > max (u(,, ) and ifu < 0 then u < min (—uo, - ) In case u = 0 it holds

lz| < Lg,.

Proof Here, we will use the sparsity promoting property of prox ;i in (4. 9) Ifu#0
then by Lemma 3.3 and Theorem 3.7, it follows that u > u, if and only if 24 > 9
and likewise u < —u, if and only if Lt < —qq. The claim follows for u > 0 and
u < 0, respectively. On the other hand u = 0 is a solution if and only if |§| < 4o,
which implies the claim for u = 0. O

4.2 A convergence result for inclusions

In this section, we will prove a convergence result to be able to pass to the limit in
the inclusion (4.7) and to identify the set-valued map that is obtained in this lim-
iting process. First, let us recall a few helpful notions and results from set-valued
analysis that can be found in the literature, see e.g., [2, 24].

Definition 4.9 For a sequence of sets A, C R" we define the outer limit by

limsupA, :={x : 3(x,),x, = xx, €A,}

n—>+o0o

Definition 4.10 LetS : R™ = R” be a set-valued map.

(1) The domain and graph of S are defined by
domS := {x: S(x) # @}, gphS :={(x,y) : y € S)}.
(2) Sis called outer semicontinuous in x if

lim sup Sx) € SX).
(3) Siscalled locally bounded at x € R™ if there is a neighborhood U of x such that
S(U) is bounded.

A set-valued mapping S is outer semicontinuous if and only if it has a closed
graph. The following convergence analysis relies on [2, Thm. 7.2.1]. There the
local boundedness of G is a prerequisite, which is not satisfied in general in our
situation. Hence, we have to extend this result to set-valued maps into R” that are
not locally bounded. Let us define the following set-valued map that serves as a
generalization of x = conv (F(x)) for the locally unbounded situation.
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Definition 4.11 Let F : R™ = R" be a set-valued map.
Define the set-valued map conv ®F : R™ =3 R" by

(conv *F)(x) :=limsup conv (F(x + B, ;4(0))).
k—+o0

By definition, it holds gphF C gph conv®F. In addition, we have
conv (F(x)) C (conv ®F)(x) for all x € R™. If F is locally bounded in x, then
(conv ®)F(x) = conv (F(x)), which can be proven using Carathéodory’s theorem.
In general, dom conv ®F is strictly larger than dom F.

Example 4.12 Define F : R 3 R by
gphF = {(x,y) : yx=1}.

Then F is not locally bounded near x=0. Here it holds
gph (conv ®F) = gph F U ({0} X R), so that dom (conv *F) = R # dom F.

Theorem 4.13 Let (Q, A, ) be a measure space and F . R™ = R" be a set-valued
map. Let sequences of measurable functions (x,),(y,), X, : = R™, y, : Q = R",
be given such that

(1) x, converges almost everywhere to some measurable function x . Q — R",
(2) v, converges weakly to a function'y in L'(Q;R", u),
3) y,(H) € F(x,(t)) for almost all t € Q.

Then for almost all t € Q it holds:
y(t) € (conv CF)(x(1)).

Proof Arguing as in the proof of [2, Thm. 7.2.1], we find

W) € ﬂ conv (F(x() + By 4, (0)))

keN

for almost all + € Q. Note that we can choose VW = {0} as our assumption (3) is
stronger than the condition (7.1) in [2, Thm. 7.2.1].

Take ¢t € Q such that the above inclusion is satisfied. Then there is a
sequence (u;) such that w, — y(t), w, € conv (F(x(t) + By, (0))). This implies
y(t) € limsup,_, ,, conv (F (x(H) + B, /k(O))), or equivalently y(¢) € (conv ®F)(x(?)).

O

Let us close this section with an example that shows that G is not necessarily
locally bounded.

Example 4.14 Let L > 0 and define g(u) := 85(u) the indicator function of integers

with the associated map G defined as in (4.9). Set U := [—é, %]. Then it holds that
G(z) = Zforall z € U, i.e., G is clearly not locally bounded in the origin.
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4.3 Stationarity conditions for weak limit points
Recall that for iterates (u,) of Algorithm 4.1 and the corresponding sequence z;, see
(4.8), we have by construction

w1 (x) € G(z;(x)) f.a.a. x € Q,

with G is defined as in (4.9). By Theorem 4.13, we could expect the inclusion
u*(x) € (conv *G)(—Vf(u*)(x)) to hold pointwise almost everywhere in the subse-
quential limit. However, the convexification of G results in a set-valued map that
is very large. In order to obtain a smaller inclusion in the limit, we will employ the
result of Corollary 4.8: the graph of G can be split into three separated components.
In the sequel, we will show that we can pass to the limit with each component sepa-
rately, which leads to a smaller set-valued map in the limit. This observation moti-
vates the following splitting of the map G.

Definition 4.15 We define the following set-valued mappings.

() G" :R3Rwithu e G'(9):<=uecGiandu > 0,
2) G :R=2Rwithue G (2):<=uecG)andu <0,
3) ¢ :R=zRwithue @:<uecfiandu=0.

Obviously we have by construction

U () €(G UG UG)z(x) faa xeQ. (4.10)
For better illustration, let us give an example of the mappings G*, G~ and G°.
Example 4.16 Let g(u) := %lul2 + plul? + 6,_p, (), p € (0,1), b > 0. In Fig. 1, the
union G° U G* U G~ and the convexified map G° U Conv G U Conv G~ is depicted for
the special choices of the parameters. A more detailed discussion of this choice is
given in Sect. 5.1.
Corollary 4.17 The mappings G, G°, G*, and G~ are outer semicontinuous.
Proof G being outer semicontinuous is equivalent to the closedness of its graph. Let

(u,), (g,) be sequences such that u, — u, g, » q and u, € G(q,). By definition it
holds

L
0 < =g, (v = u,) + (80) = g, ) + S (v = u,)*
for all v € R. Passing to the limit in above inequality yields

0 < —gv — u) + () — g(w) + %(v — )
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Fig.1 The union (G° UGt UG™) and its convexification (G° U Comv G* U Conv G™) (filled area) with
parameters (L, a, f,b) = (0.01,0.01,0.01, 2)

due to the lower semicontinuity of g. Hence,
. L 5
u € argmin —gv+ —(v —u)* + g(v),
veR 2

i.e., u € G(g), which is the claim for G. For G*.G~.G° the claim follows as their
graphs are intersections of closed sets with gph G, which follows from Corollary 4.8,
where we used L™! > s, in case of G*, G O

In the sequel we want to apply Theorem 4.13 to each of the set-valued maps in
(4.10) separately. Let us first show the next helpful result, which gives us finer con-
trol of the subsets of Q, where 1, ,(x) € G"(z,(x)) and u, ,(x) € G~ (z,(x)). It can be
seen as a refinement of claim (4) of Theorem 4.5.

Lemma 4.18 Let (1) be a sequence of iterates generated by Algorithm 4.1. Let real
numbers a < b be given. Define

AN i={x e Q1w (x) > b,
AT ={xeQ: w(x) Lal,

and g} =y x{" 2= Zyg- Then it holds

+o00

b — — b
22+ aia e < +eo.
k=1
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If ){,fJr + x~ = 1for all k almost everywhere, then there are characteristic functions
X%, ¥ such that y** + y= =1 almost everywhere, y/* — y** and y*~ — y°-
strongly in LYQ) and pointwise almost everywhere.

Proof Let xe€ Q. If ;(]f;“l )y (x)=1, then by definition it holds
U (¥) = (0) 2 b—a. This proves || x/F 2 Il < (0 = @) lugey — el @
Similarly, ~ we  obtain ||y, )(ler”Ll(Q) <(b—-a)Hlugy, — uk||iz(g). Since
T ety — uklliz(ﬂ) < +o0, the claim follows. Suppose x7* + y¢~ = 1almost eve-
rywhere for all k. Then a simple calculation using the definitions of y’*, X ylelds

b+ a-— - b+ _ bt b+ b+ b+ _ |, b+ b+
xaaxs Faax” = on0 -0+ 0= iox” =15 - 0"

which implies the second claim. O

As a direct consequence, we obtain the convergence of the characteristic func-
tions associated to the positive and negative parts of (i,). Let us introduce the
notation

[Fi={xeQ: w>0}and ], :={xeQ: k) <0} 4.11)

with associated characteristic functions )(,:r X which we will use in the sequel.

Corollary 4.19 There are characteristic functions y™*, y~ such that ;(k+ — yT and
X, — x in LY(Q) and pointwise almost everywhere as k — +co.

Proof Let u := uy(L™") from Theorem 3.7. By Lemma 4.18 with a = 0 and b = u,
we obtain the claim for ;(k+ — y*. The proof for y,- — y~ follows with a = —u, and
b=0. a

Now, we will pass to the limit in the inclusion (4.10). Using characteristic func-
tions, we will split the inclusion into three inclusions for G*, @.q.

Theorem 4.20 Let () be a sequence of iterates generated by Algorithm 4.1 with
weak limit point u* € L*(Q), i.e., w — u*. Assume Vf(uk”)(x) — Vf(u*)(x) for
almost every x € Q. Let G°.G*. G- :R=Rbeasin Definition 4.15. Then

u*(x) € (Gy U conv®G* U conv ®G™ ) (= Vf(u*)(x)) (4.12)
holds for almost all x € Q.
Proof By Corollary 4.6 we have

z, = (V) + Lty oy — 1)) = =Vf@u*) i=z
pointwise almost everywhere on Q.

Let 7, ¥ as in (4.11). By Corollary 4.19 it holds y — y* and y — y~ in
L'(Q) and pointwise almost everywhere for characteristic functions y*, y~.
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Let us fix (i, ¢') € gph G*. Then the inclusion
Xt + A=t o € G0z, + (= %))

is satisfied almost everywhere on Q. By Theorem 4.13, we obtain

v+ = yHu € conv Gyt + - yHg)
almost everywhere on Q. Similarly, we obtain for (u”,¢"") € gph G~

yu+0 =y e conv®G (y z+(0 - x7)g")
and

(1= € G((1 = 1))

almost everywhere, where y, and y are as in Theorem 4.5 and (4.4). Note that
conv *G° = ¢°. By construction, )(k+ + X, = X Which implies y* + y~ = y. Then
we can combine all the inclusions above into one, which is

u*(x) € (Gy U conv®G* U conv ®G ) (= Vf(u*)(x))

for almost all x € Q. O

Interestingly, we can get rid of the convexification operator conv® if we
assume that the whole sequence (Vf(u;)) converges pointwise almost everywhere.

Theorem 4.21 Let (u;) be a sequence of iterates generated by Algorithm 4.1 with
weak limit point u* € L*(Q). Assume Vf (u;) = Vf(u*) pointwise almost everywhere.
Then

u*(x) € G(=Vf(u)x)

holds for almost all x € Q.

Proof Denote z(x) := —Vf(u*)(x). Then z;(x) — z(x) almost everywhere,
which can be proven similarly to Corollary 4.6.
Let (Z,i1) ¢ gphG. Since gph G is closed, there is € > 0 such that

(B.2)x B.(@) N gph G = 6.
Lete’ € (0, ¢€). Set
[:={x€eQ: [Z-z)| <€},
and

Iy i={xe€l: |Z-z(x)] <e Vk>K}.
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The sequence (/) is monotonically increasing. Since z;(x) — z(x) for almost all
x € Q, we have Ui Iy = I. Here, the pointwise convergence of the whole sequence
(z;) is needed to conclude I C Uy /. Define

A: =xeQ: ux)>u+el,

A-

P =lxeQ ) <i-el,

and ;(]:r Y= dan o X YT Xac By Lemma 4.18 above, we have

> Wt a0 + 2 2 @) < +oo and therefore y" xo + 2 x5 = 0in LY(Q)
and pointwise almost everywhere.

Let x € I. Then there is K such that x € I;. This implies u,(x) & B, (i) for all
k> K. The sum ZZ:; a0 + x5, 400 counts the number of switches
between values larger than it + € and smaller than it — € from u;(x) to u;,(x). Since
this sum is finite for almost all x € Q, there is only a finite number of such switches.
Then there is K’ > K such that either u,(x) > & + ¢ for all k > K’ or u;(x) < it — € for
allk > K'. Set

Sti={xel: wx)>i+e VYk>K},

Sei={xel: wx)<i—e Vk>K}.

The sequences (Sy) and (S;) are increasing, and Ugn (St U S¢) = 1.
Since u;, — u*, this implies u* >t +¢ on Sy and u* <ii—e on S. Since
Ugen(Sg U S3) = 1, this implies

u*(x) & B (it)
for almost all x € I, which implies
((z(x), u*(x)) & B.(2) X B(it)

for almost all x € Q. Since we can cover the complement of gph G by countably
many such sets, the claim follows. O

Remark 4.22 If g is convex, the result above implies that u* is a stationary point.
This follows from the equivalence, see (4.9),

U () € U=V ) < u*(x) € prox L_lg(u*(x) - %Vf@*)(@)

< u*(x) € argmin Vf(u*)(x)v + Ii(v — () + g(v),
veR

which holds for almost all x. By convexity of g, this is equivalent to
—Vf(u*)(x) € dg(u*(x)), where dg is the convex subdifferential of g, see e.g., [3, Cor.
16.44].
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4.4 Pointwise convergence of iterates

So far we were able to show that weak limit points of iterates (i) satisfy a certain
inclusion in a pointwise sense. However, the resulting set in the limit might still
be large or even unbounded in general. Assuming that G is (locally) single-valued
on its components G*, G, go, we can show local pointwise convergence of a sub-
sequence of iterates (1, ) to a weak limit point u* € L*(Q). In the next result this
is illustrated for the ma’i) G*, however, it can be shown for the components G, g°
similarly.

To this end, recall the definition of " in (4.11) and the fact that ;" — y* in
L'(Q) and pointwise almost everywhere by Corollary 4.19.

Theorem 4.23 Let 7 € dom(G*). Assume that G* : R — R is single-valued and
locally bounded on B.(Z) N dom (G*) for some € > 0. Let u — u* in L*(Q) and
assume Vf(ukn)(x) — Vf(u*)(x) pointwise almost everywhere. Define the set

I, :={x e supp(x*) : =Vf(u*)(x) € B,(2)n dom (G")}.
Then
g (x) = u*(x)

holds for almost all x € I,. Furthermore, we have
W*(x) € prox L_1g<%(Lu*(x) - Vf(u*)(x))) faa xel.

Proof By Corollary 4.6, we get z; (x) = z(x) := —Vf(u*)(x) pointwise almost every
where. In addition, ;(,:r converges to 7 pointwise almost everywhere.

Take x € I, such that %, (x) = z(x) and )(,:r (x) = y*(x). Then there is K > 0 such
that |z, (x) —Z| < e for all k, > K. Since x € supp (y™), there is K’ > 0 such that
X € suf)p ( )(/:r ) for all k > K’. Hence, for k,, sufficiently large we have

7, () € B.(2) N dom (G").

Since G' is single-valued, locally bounded and outer semicontinuous in
B.(Z) n dom (G™), it is continuous, see also [24, Cor. 5.20].
This implies

Jim w100 = Tim G5 (0) = G( lim 2, () = G*(z(0).

The continuity property mentioned above implies conv ®*G*(z(x)) = G*(z(x)). Then
by Theorem 4.20, G*(z(x)) = {u*(x)}, and the convergence w (X) > u*(x) follows.
Since Uy 41 (x) = u*(x) as well, we can pass to the limit in the inclusion (4.3), where
we used the closedness of the graph of the proximal operator, which completes the
proof. O
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4.5 Strong convergence of iterates

Many optimal control problems of type (P) include a smooth cost functional of the
formu — §||u||i2 @ @ 0. In this section, we will consider the appearence of above
regularization term as a special case and treat it explicitly in the convergence analy-
sis. This allows us to obtain almost everywhere and strong convergence of a subse-
quence. Let g : R — R satisfy Assumption B and consider a sequence of iterates

computed by

. L
Uy, € argmin f(uy) + Vf(uy) - (u—u) + EHM - uk||iz(g)
UELX(Q) @13)

+ Sl + / Z(u(x)) dx.
Q

2
(%))
tive of this term is not completely continuous.

The solution to (4.13) is now given by

Note, that we do not include the term §||u|| into the functional f; as the deriva-

1
U1 (X) € rox g<m(Luk(x) ~ Vfw)) )
for almost every x € Q. All the analysis that was done in this section still applies in
this case and all results can be transferred except for a possible change of notation.
In particular, we adapt the set-valued map G : R =2 R from Lemma 4.7 which is
now defined by

u €@ < ue€ argmin —zv + é(v —u)’ + L2 4 ).
veR 2 2
In the following it will be essential that dom (g) is convex. Let us for simplicity
assume dom (g) = [—b, b] with b € (0, +0], i.e., the subproblem (4.13) is equivalent
to a box constrained optimization problem with the constraint |u(x)| < b for almost
every x € Q. To obtain strong convergence of iterates in L'(Q) and a L-stationary
condition almost everywhere, we need to put stronger and more restricting assump-
tions on g. To this end, we introduce the following extension of Assumption B.

Assumption B*

(B6) Q has finite Lebesgue measure.

B7) g = %uz + g(u) with @ > 0 and g satisfies Assumption B.

(B8) dom (g) = [—b, b] with b € (0, +o0].

(B9) For all s > 0 there is u; := u;(s) € (0, b) such that u — %uz + s8(u) is strictly
convex on [u;, b].

In the rest of this section, we will assume that Assumption BT is satis-

fied. The goal is to express G in terms of single-valued continuous mappings
G*,G™ : L*(Q) — L*(Q), which will be derived below. Here, (B7)-(B9) are used
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to prove a corresponding result for the scalar-valued case, while (B6) is necessary to
lift this to the L*(Q)-case. Let us start with the following observation.

Lemma 4.24 Let sO, MO(L+ ) qo( = ) be as in Theorem 3.7, and let u;(~ LY be as in
(B9). Assume uo(—) > u,( )and = > %o Then the following smtements are true:

(1) Ifu> 0andu € G(z) for some 7 € R then

. a -
u= argmin —zv 4+ =v* + 3(v).
Vel (3).b]

(2) Similarly, ifu < 0 and u € G(z) for some z € R then

u= argmin —zv+ 424 g).
ve[—b,—ity(3)]

Proof Set u := ”0( ) and u; := u,( ) Let us discuss the case u > u, only. If
u € G(z) for some z € IR then by definition of G and Theorem 3.7, u > uy > u;. This
implies

u = argmin —zv + L(v —u + 202 4+ 3)
veR 2 2

(4.14)

= argmin —zv + Ii(v u)® + L2 4 gWw).

v€Elu;,b] 2 2

Due to (B9), u — ;u + - g(u) is strictly convex on [, b] and therefore also (4.14) is

a strictly convex optlmlzatlon problem. In addition, all involved functions are con-
tinuous on (u;, b) by Assumption B™. Hence, u can be characterized in terms of the
convex subdifferential by

0 € —z+ 08, (u),

where g,(u) 1= %uz + 2(u).
Using again the convexity (B9), u is optimal to

min —zv+ 2 (v),
velu;,b] ga( )

which is the claim. O

Let ;(k+ » X, be as in (4.11). Recall the result of Corollary 4.19: ;(k+ — yt and
X = x~in L'() and pointwise almost everywhere for some characteristic func-
tions y*, y~.

Lemma 4.25 Let s, uo( ), qo( ) as in Theorem 3.7. Suppose uO(Li—a) > u,(i)
andm > 80

L+a
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Assume uy,, is a global solution to (4.13) with |u;,(x)| > uo(ﬁ)for almost all
x € I, . Then there are continuous mappings G*,G~ : L3(Q) — L*(Q) such that

Tk _ _ (%
e = 20 (3)+ 2067 (3):
with z;, € L*(Q) defined as in (4.8). These mappings G*, G~ are independent of L.

Proof Throughout the proof, we use u; := u,(é). Note that @ > 0 by (B7). Let us

consider the case u  (x)>0 firstt By Lemma 424, we have

Z;(x)
Uy, (x) € prox :-lg(AT ), where we define the set prox :_lg(z) forzeR

. 1 “1x
u€ prox* , (z) 1< u € argmin —zv + Vv +a 1g(v).
“s velu;,b] 2

The latter optimization problem is convex by (B9) and therefore uniquely solvable.

Thus, prox ;{lg(z) is single-valued for all z € R. By Lemma 3.2, prox :—lg is outer

semicontinuous on R and monotonically increasing. Let us prove its local bounded-
ness. We have for u € prox :_lg(z) by optimality
1 1~ 1 1
—zu + zuz +a lg(u) < —zu; + Euf +a 1g(u,).
Using g(u) > 0 and —zu > —iuz — 72, we find
lor_2 Lo, iy
74 <z —zu;+ S +a” g(uy), (4.15)

i.e., prox :—lg is locally bounded. Then by [24, Corollary 5.20], prox :—lg is a single-
valued and continuous function on R and it holds

1
K (09 = 5, o prox (=),
Similarly, we obtain
- _ _ 1
Koo @100 = 2, (I prox . (2)).
where the set prox ;ﬁlg(z) for z € R is defined by

— . — l 2 1~
u€ prox _,.(z) i< u € argmin —zv+ —v-+a 3(v).
“8 ve[-b,—u;] 2

Let us define G*, G~ : L*(Q) — L*(Q) by
G*(29)(x) 1= prox :7111,(2(36)) and G~ (2)(x) 1= prox _, (z(x))

for z € L*(Q), respectively. Then by a well-known result, see e.g. [1, Theorem 3.1],
the superposition operators Gt and G~ are continuous from L?(Q) — L*() due to
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the growth condition (4.15), where we have used that Q has finite measure by (B6).
O

Now, we are able to prove strong convergence of a subsequence of (i) follow-
ing the proof of [27, Thm. 3.17].

Theorem 4.26 Suppose complete continuity of Vf and let (1) C L*(Q) be a
sequence generated by solving the corresponding subproblems 4.13 with weak limit
point u*. Under the same assumptions as in Lemma 4.25, u* is a strong sequential
limit point of (u,) in L'(Q).

Proof By Lemma 4.25 there exist continuous mappings G*, G~ : L*(Q) — L*(Q)
such that u;,, = )(QHGJ“(&Z]() + X G izk . Let wy, — u* in L*(Q). By Theo-
rem 4.5 and complete continuity of Vf, we obtain strong convergence of the
sequence

g == (V) + Ly o —w ) = Vi) =:z*
in L*(Q) and u; ., = u* in L*(Q). In addition, we have by 4.19, X = x*+ and
X > X in LP(Q) for all p < +o0, respectively. Hence, the convergence
_+G+1 —G—l +G+1* —G—l*
U 11 = Xp 11 P T X 11 =%k > X P +x P

in L'(Q) follows by Holder’s inequality. Since strong and weak limit points coincide,
it follows u, — w*in L'(Q) and

ver o (Z)era ()
O

With the assumptions in Theorem 4.26 we can find an almost everywhere con-
verging subsequence of iterates, i.e., u;, (x) = u*(x) for almost every x € Q. By

the closedness of the mapping prox ., we get

0@ € prox (=@ - V@) faa €Q @16)

Lta 8

i.e., u* is L-stationary to the problem in almost every point. In the case L = 0, (4.16)
is equivalent to

uw*(x) € argmin f(u)(0)u(x) + %|u(x)|2 +3(u(x) faa. x € Q.
ueR

Hence, in this case u* satisfies the Pontryagin maximum principle.
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4.6 The proximal gradient method with variable step-size

The convergence results of this section require the knowledge of the Lipschitz
modulus L, of Vf. This can be overcome by replacing the assumption L > L, by a
suitable decrease condition.

Here we use the back-tracking algorithm from [5, Section 10.3.3]. Let us define
(compare (4.3)) the set-valued map T, : L*(Q) = L*(Q) by

T, ()(x) := prox L_1g<%(Lu(x) - Vf(u)(x))).

Algorithm 4.27 (Proximal gradient with variable step-size) Choose # > 0, L, > 0,
6 > 1, and u, € L*(Q). Setk = 0.

(1) SetL, :=Ly¢¥ anduy,, := Uy, > Where j is the smallest non-negative integer,
for which with u;, ; € T; 4(u;) the decrease condition

Ml — uk“iZ(Q) < (Fup) +j(u) = (Fuggy ) + (g ) 4.17)

is satisfied.
(2) Setk :=k+ 1, repeat.

Under Assumption A, the back-tracking strategy in step 1 of the algorithm
above terminates after finitely many steps, as Ly — L; > n for j large enough,
compare also (4.6).

For the question on how to choose the minimizers u;,,; € T () in the case
of non-uniqueness, we refer to Remark 4.3.

The basic convergence result of Theorem 4.5 carries over to the variable step-
size situation with the following modifications: The assumption 1/L > s, has to
be replaced by (limsup L,)~! > s,,. The assumption L > L; is no longer necessary,
it was used in the proof of Theorem 4.5 to prove (4.6), which has to be replaced
by the decrease condition (4.17). The remaining convergence theory of Chapter 4
is much more technical to transfer, and will be discussed in a future publication.

5 Applications of the proximal gradient method

5.1 Optimal control with LP control cost, p € (0, 1)

In [27], the discussed proximal method was analyzed and applied to optimal con-
trol problems with LY control cost, i.e., g(u) 1= S0+ |u]o. In this section, we dis-

cuss the problem with g(u) := %uz + Blul? + 6,_p (), p € (0,1), b € (0, +0c0] and
consider
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. 04
ug;&)f(u) + ElluIILz(g) +ﬁ/Q [u(x)[” dx (5.1)

S.t.
ueUy :={uel*Q): |ux)| <b ae. inQ)

witha > 0, f > 0. Q is assumed to have finite Lebesgue measure. In terms of (4.13)
with g(u) = [u|” + 6|_; ;) (u), the subproblem

. L
min f(uy) + V() (u —uw) + = |lu— uklliz(g) + gIIMIILz(Q) + ﬂ/ [u(x)|? dx
uel,, 2 2 Q
(5.2)

has to be solved in every iteration of Algorithm 4.1.
Similarly to Lemma 4.2, one can prove that u;_, is a solution to (5.2) if and only
if

1 (x) € prox L%g<ﬁ(Luk(x) - Vf(uk)(x))>f.a.a.x cQ. (5.3)

A visualization of the prox-map of g is given below in Fig. 2. Due to Theorem 3.7 it
holds u;, (x) = 0 or |uy, ; (x)| > u, for all .

The particular choice of g allows us to compute the constant i, explicitly as a
consequence of Lemma 3.6. By solving Igél(r)l g + L% % we get

u 4 =min| b _a+l =
Na+L) "\ 2p(1 - p) :

Moreover, we observe that with a suitable choice of parameters L and a, Assump-
tion BY is satisfied such that we are able to apply Theorem 4.26 to the L” problem to
obtain a strongly convergent subsequence.

20 20 —
15 15
10 10
05 05
0.0 = 0.0
~05 -05
-1.0 -1.0
-15 -15
-2.0 -2.0
4 3 2 -1 0 1 2 3 a 4 3 2 -1 0 1 2 3 a4

Fig.2 The mapping prox () for parameters (s, b, p) = (0.5,2,0.5) (left) and (s, b, p) = (3,2,0.3) (right)
with g(u) 1= [ul? + 6,_;
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Corollary 5.1 Let a > 0 and () a sequence of iterates. Furthermore, assume
L< (% — Da. Then the assumptions of Theorem 4.26 are satisfied. If in addition Vf

is completely continuous from L*(Q) to L*(Q), then every weak sequential limit point
u* € L*(Q) is a strong sequential limit point in L' (Q).

L
Proof Let k € N. It holds |u;_ (x)| > uy with u, := min <b, <2ﬂ‘:rfp)>”_2 > onl, . A

short calculation yields that the assumptions on the parameters imply

. .
(5i25) = () =
> = u.
2p(1-p) pp(l —p)
Here, u; is the positive point of inflection of
in — a2 p
ufﬂﬁgb 2 (Ou + Zu + flul

and it holds that u — %uz + glulp is convex for all ¢ € R on [u;, +o0) and (—o0, ;),
respectively, which corresponds to (B9). The claim now follows by Lemma 4.25 and
Theorem 4.26. O

5.2 Optimal control with discrete-valued controls
Let us investigate the optimization problem with optimal control taking discrete val-

ues. That is, we choose g(u) as the indicator function of integers, i.e., g := 6. The
problem (P) now reads

Jmin f(u) + /Q 6 (u(x)) dr. (5.4)

Note, this choice satisfies (B3.c). Applying Algorithm 4.1, the subproblem to solve
is given by

. L
Join flu) + V) = ) + = llu = el + /Q 6zu())dx  (5.5)

and can be solved pointwise and explicitly. The analysis carried out in Chapter 4 is
applicable. The special choice of g comes along with the following desirable result.

Lemma 5.2 Letuy,u,, € U,, be consecutive iterates of Algorithm 4.1. Then
P
Nty = welly ) 2 Mt = i
holds for all p € [1,+00).

Proof The claim follows directly, since either |u;,,(x) —u,(x)] =0 or
|ty (X) — u(x)| > 1as the iterates are integer-valued in almost every point. O
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Lemma 5.2 implies strong convergence of iterates (u;) in L' (Q).

Theorem 5.3 Let (1) be a sequence generated by Algorithm 4.1 with weak limit
point u*. Then u, — u*in L'(Q).

Proof As in the proof of Theorem 4.5, we get

+o0

2
D gy = 172 ) < o0
k=1

and therefore by Lemma 5.2

+00 +oo

2
Z s — well oy < Z sy = sl < +o0
k=1 k=1

Thus, () is a Cauchy sequence in L'(Q) and therefore convergent in LY(Q) and it
holds u;, — u*. O

Corollary 5.4 Let g=6,. Then under the assumptions of Theorem 4.20,
u*(x) € G(—VfW*)(x)) holds for almost all x € Q, i.e., u* is L-stationary.

Proof The proof follows by passing to the limit in the inclusion (4.7). O

Let us mention some references that address optimal control problems with dis-
crete valued controls. In [20], the constraint u(x) € Z N[0, N] for some N > 0 is
replaced by u(x) € [0, N]. Then the resulting convex optimization problem is solved
globally. Using a special algorithm, a sequence of discrete-valued controls is con-
structed that converges weakly to the solution of the relaxed problem. In [13] a
penalization of the constraint u(x) € Z N [0, N]is used and convexified. In both ref-
erences [13, 20], the underlying partial differential equation is assumed to be linear.
In [13], the function that corresponds to f in our paper is assumed to be quadratic in
[13], while in [20] it is assumed that the global solution of the relaxed problem can
be computed. These assumptions rule out the situation that fis non-convex. Another
approach is taken in [10]. There the cost functional is assumed to be linear with a
semilinear elliptic state equation such that the control-to-state map is concave, which
is a very restrictive setting, too. The control is assumed to be in a bounded subset of
Z". In these references, finiteness of the admissible set enters the algorithms in an
essential way, so that it is not clear how these results can be generalized to u(x) € Z.

6 Numerical experiments

In this section, we apply the proximal gradient method with variable step-size, Algo-
rithm 4.27, to optimal control problems of type (P) and carry out numerical experi-
ments for cost functionals with different g.

Let us introduce the reduced tracking-type functional
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where S| is the weak solution operator of the linear Poisson equation
—Ay=uin Q,y =0 on 0Q. 6.2)

Clearly, f is Fréchet differentiable, and Vf(u) is linear in u. So Assumption A is
satisfied.

We choose Q := (0, 1)? to be the underlying domain in all following examples.
To solve the partial differential equation, the domain is divided into a regular trian-
gular mesh, and the PDE (6.2) is discretized with piecewise linear finite elements.
The controls are discretized with piecewise constant functions on the triangles. The
finite-element matrices were created with FEnicCS [19]. If not mentioned other-
wise, the mesh-size is approximately & = \/5 /160 ~ 0.00884.

To determine the parameter L, in each iteration, we use Algorithm 4.27 intro-
duced in Sect. 4.6. This ensures decreasing objective values during the iterations.
For all our tests we choose

n=10"% 6=2.
The stopping criterion is as follows:

If |f gy + sy — (Fuy) + ()| < 10712 STOP.

First, we consider control problems with L7 control cost, which were investigated in
Sect. 5.1, i.e., g(u) := |ulP + 6, with p € (0, 1).

Example 1 Let g(u) := |ul|” + 6,_;, for p € (0, 1) and find

min J() 1= fiw) + llull ) + B /Q (u(x)) dx.

ueL?(Q)

Setting U,; := {u € L*(Q) : |u(x)| < b a.e. on Q} the problem is equivalent to
. 2 P
;gg;:dﬁ(u) + llull} g + P /Q lu(x)|” dx.

The first example is taken from [27], where the proximal gradient algorithm was
investigated for (sparse) optimal control problems with L°(Q) control cost. Since
fQ |ulP dx — fQ |u]®dx as p \, 0, we expect similar solutions. We choose the same
problem data as in [18, 27]. That is, if not mentioned otherwise,

v4(x, y) = 10x sin(5x) cos(7y)
anda =0.01, =0.01,b =4.

A computed solution for p = 0.8 is shown in Fig. 3.

Let us comment on how we solved the subproblems (5.2) in practice to obtain
the next iterate u, ;. Recall that i, (x) is given by the global solution to the scalar-
valued problem
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Fig.3 Solution u

b Lo =N w b
\\ \

min V() + 2 — 0,07 + L + plup,
lul <b 2 2

which cannot be computed explicitly in general for p € (0, 1). In our tests, we used a
simple gradient method. Its convergence can be guaranteed, since it can be easily
determined on which interval the function above is convex, and whether its
global minimum is at zero. Within the gradient method we use the standard
Armijo backtracking to determine the step-size. It is stopped if the associated

gradient of the minimization problem falls below 107°. In case that

prox Lg<$(Luk(x) — Vf(uk)(x))> is multivalued, we choose u;_(x) = 0. Note
L+a a

that, due to the monotonicity of g, this is only the case if
’ﬁ(Luk(x) - Vf(uk)(x))| = g, for some g, > 0, compare also Lemma 3.6 and Theo-

rem 3.7. Here, it holds prox g(‘IO) = {0,u,}. In the discretized problem, control
L+a

functions are piecewise constant. Then the minimization in (5.2) decouples into
independent minimization problems for each coefficient of the discretized control.
Convergence for decreasing p values In the following we consider solutions
for different values of p. We use the same data and discretization as above. We set
L, = 0.0001.
In Table 1 it can be seen that J(u*) and j,(u) := / |u*|Pdx converge for

Q
decreasing values of p. The last row in Table 1 shows the result of applying the

iterative hard-thresholding algorithm IHT-LS from [27] to the problem with
p =0, which is in agreement with our expectation. In the implementation we
used a mesh-size of h = \/5/500 =~ 0.0028.

In this table as well as the following ones, the column “#pde solves” refers
to the number of pde solves, which where performed during all iterations. It
includes additional pde solves due to the backtracking procedure. Hence, it can be
interpreted as a measure of the computational effort.
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Table 1 Decreasing values of p

J(u*) AU #pde solves
0.5 5.3831 0.6711 15
0.3 5.3819 0.5725 15
0.1 5.3808 0.4841 15
0.01 5.3804 0.4482 15
0.001 5.3804 0.4448 15
0 5.38034 0.4445 15

Discretization Next, we solved the problem on different levels of discretization to
investigate their influence. Here, we used p = 0.5 and L, = 0.0001. As can be seen
in Table 2 the algorithm appears to be mesh independent.

Convergence in the case L > (2/p — 1)a So far, in every experiment the assump-
tion on the parameters was naturally satisfied, such that strong convergence of iter-
ates can be proven according to Theorem 5.1. The numerical results confirmed the
theory. We will now investigate the case where the assumption is not satisfied, i.e.,
we choose parameters such that L > (2/p — 1)a. In the following we present the
result for the problem parameters

a =0.001,p =0.9,L, = 0.005.

Furthermore, we set b = 6. In our computations the algorithm needed very long to
reach the stopping criteria |J(u;, ) — J(u,)| < 107!2 as can be seen in Table 3. This
might be due to the parameter choice and the step-size strategy. For smaller mesh-
sizes more iterations are needed.

Recall, the problem in the analysis that comes with this choice of parameters is
that the map G in Lemma 4.7 is not necessarily single-valued anymore on the set
of points where an iterate is not vanishing, see also Fig. 1. Let u; := u,(f/a) > 0
denote the constant from (B9) and define the set

Table 2 Influence of mesh-size

h J(u*) Jp®) #pde solves
0.071 5.2239 0.6371 13
0.035 5.3429 0.6581 15
0.0177 5.3732 0.6686 15
0.00884 5.3808 0.6704 15
0.00442 5.3827 0.6710 15
0.00221 5.3832 0.6711 15
Tab!e 3 Performance for bad h T W #ipde solves
choice of parameters across i
different mesh-sizes 0.00884 53567 1.1246 395
0.00442 5.3567 1.1247 601
0.00221 5.3567 1.1253 821
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Qi ={xeQ:0< |yl <ul.

Then Qs the set of points for which the crucial assumption in Lemma 4.25, which
implies the decomposition of G\ {0} into single-valued mappings G*,G~, is not
satisfied. In our numerical experiments, however, we made the observation that the
measure of the set €, is decreasing as k — +o0, see Fig. 4. Across different mesh-
sizes h the measure decreases and tends to zero along the iterations.

Unfortunately, we were not able to prove such a behavior in the analysis and
have no theoretical evidence whether this can be expected in general. However,
assuming

1€/l =0

based on our numerical result, strong convergence of the sequence (u;) can be con-
cluded similar to Theorem 4.26.

Example 2 Let us now consider the problem
min )+l g, + 9 | st

with g(u) = |u|?, p € (0,1). with a semilinear PDE. Here, f,; is given by the stand-
ard tracking type functional u ~ ||y, — ydlli2 @ where y, is the solution of the semi-
linear elliptic state equation

-Ay+y'=u inQ, y=0 onoQ.

As argued in Sect. 2.2, Assumption A is satisfied for this example as well. This
example can be found in [12] for semilinear control problems with L'-cost. The data

10-2
—— h =0.00884
—— h =0.00442
10°2 h =0.00221
10-2
104
10-> L‘ W 2
0 100 200 300 400 500 600 700 800

Fig.4 Measure of €, at iteration k for different discretization levels
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Fig.5 Solution u of the semi-
linear optimal control problem
with g(u) := |u|®®

is given by « = 0.002, f = 0.03, b = 12 and y,; = 4 sin(2zx, ) sin(zx,)e*. We use the
parameter L, = 0.001 (Fig. 5).

We made similar observations as in the case of a linear PDE concerning the influ-
ence of discretization and different values of p.

Example 3 In this last test, we consider the following linear elliptic optimal control
problem with discrete-valued controls:
. [04 2
min i+ Sl g, + | g0 (63)
with f; given in (6.1) and g(u) := 6,(u). The subproblem in Algorithm 4.27 can be
solved pointwise and explicitly by computing

(U — u,(0)* + 2,

U (x) = argmin Vf(u)(x) + L >

uel—b.bINZ 2
where prox ;_is given by rounding. In the case that above minimization problem is
not uniquely solvable, we choose u;_ ;(x) as the minimizer with the smallest absolute
value, i.e., we round towards zero. In Fig. 6, a solution plot of the optimal control is
displayed. We adapted again the setting from Example 1 and used exactly the same
problem data as before in Example 1, but set » = 2 and L, = 0.001. Again, we find
the algorithm is robust with respect to the discretization in the sense of Table 2.
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Fig. 6 Optimal control with discrete values
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