
Vol.:(0123456789)

Computational Optimization and Applications (2021) 80:639–677
https://doi.org/10.1007/s10589-021-00308-0

1 3

A proximal gradient method for control problems 
with non‑smooth and non‑convex control cost

Carolin Natemeyer1 · Daniel Wachsmuth1

Received: 22 July 2020 / Accepted: 4 August 2021 / Published online: 3 September 2021 
© The Author(s) 2021

Abstract
We investigate the convergence of the proximal gradient method applied to control 
problems with non-smooth and non-convex control cost. Here, we focus on con-
trol cost functionals that promote sparsity, which includes functionals of Lp-type 
for p ∈ [0, 1) . We prove stationarity properties of weak limit points of the method. 
These properties are weaker than those provided by Pontryagin’s maximum princi-
ple and weaker than L-stationarity.

Keywords  Proximal gradient method · Non-smooth and non-convex optimization · 
Sparse control problems

1  Introduction

In this article, we consider a possibly non-smooth optimal control problem of type

where Ω ⊂ ℝ
n is Lebesgue measurable. The functional f ∶ L2(Ω) → ℝ is assumed 

to be smooth. Here, we have in mind to choose f (u) ∶= f (y(u)) as the smooth part 
of an optimal control problem incorporating the state equation and a smooth cost 
functional. The function g ∶ ℝ → ℝ ∪ {+∞} is allowed to be non-convex and non-
smooth. Examples include

(P)min
u∈L2(Ω)

f (u) + ∫Ω

g(u(x)) dx,
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and

In particular, g is chosen to promote sparsity, that is, local solutions of (P) are zero 
on a significant part of Ω . We will make the assumptions on the ingredients of the 
control problem precise below in Sect. 2.

Due to lack of convexity of g, the resulting integral functional 
j(u) ∶= ∫

Ω
g(u(x)) dx is not weakly lower semicontinuous in L2(Ω) , so it is impos-

sible to prove existence of solutions of (P) by the direct method of the calculus of 
variations. Still it is possible to prove that the Pontryagin maximum principle is a 
necessary optimality condition. This principle does not require differentiability of g. 
In this paper, we will address the question whether weak limit points of the proposed 
optimization method satisfy the maximum principle or weaker conditions.

In order to guarantee existence of solutions one has to modify the problem, e.g., 
by introducing some compactness. This is done in [18], where a regularization term 
of the type �

2
‖u‖2

H1
 is added to the functional in (P). These regularized problems are 

solvable. However, the maximum principle cannot be applied anymore. In addition, 
due to the non-local nature of H1-optimization problems, it is much more difficult 
to compute solutions numerically. Convergence for � ↘ 0 of global solutions of the 
regularized problem to solutions of the original problem has been proven in [18], 
but it is not clear how this can be exploited algorithmically.

In this paper, we propose to use the proximal gradient method (also called for-
ward-backward algorithm [3]) to compute candidates for solutions. The main idea 
of this method is as follows: Suppose the objective is to minimize a sum f + j of 
two functions f and j on the Hilbert space H, where f is smooth. Here, we have in 
mind to choose H = L2(Ω) and j(u) = ∫

Ω
g(u(x)) dx.

Given an iterate uk , the next iterate uk+1 is computed as

where L > 0 is a proximal parameter, and L−1 can be interpreted as a step-size. In our 
setting, the functional to be minimized in each step is an integral function, whose 
minima can be computed by minimizing the integrand pointwise. Let us introduce 
the so-called prox-map, which is defined by

where 𝛾 > 0 . If j is weakly lower semicontinuous and bounded from below, then 
prox �j(z) is non-empty for all z ∈ H . Let us emphasize that due to the non-convexity 
of j, the solution set argmin is multi-valued in general, so that prox �j ∶ H ⇉ H is a 
set-valued mapping. Then, (1.1) can be written as

g(u) = |u|p, p ∈ (0, 1),

g(u) = |u|0 ∶=
{

1 if u ≠ 0

0 if u = 0.

(1.1)uk+1 ∈ argmin
u∈H

�
f (uk) + ∇f (uk) ⋅ (u − uk) +

L

2
‖u − uk‖2H + j(u)

�
,

(1.2)prox �j(z) ∶= argmin
x∈H

�
1

2
‖x − z‖2

H
+ �j(x)

�
,
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If j ≡ 0 , the method reduces to the steepest descent method. If j is the indicator 
function of a convex set, then the method is a gradient projection method. The con-
vergence analysis of this method is based on the following observation: under suit-
able assumptions on L, the iterates satisfy ‖uk+1 − uk‖H → 0 . If f and j are convex, 
then the convergence properties of the method are well-known: under mild assump-
tions, the iterates (uk) converge weakly to a global minimum of f + j , see, e.g., [3, 
Corollary 27.9]. If f is non-convex and H is finite-dimensional, then sequential limit 
points u∗ of (uk) are stationary, that is, they satisfy

where �j is the convex subdifferential of j, [5, Theorems 6.39, 10.15]. For infinite-
dimensional spaces a similar result can be proven, if one assumes strong conver-
gence (or in the case of H = L2(Ω) pointwise convergence almost everywhere) of 
∇f (uk) , see below Remark 4.22. Literature on the convergence analysis of the simple 
method (1.1) in infinite-dimensional spaces if either f or j is non-convex is relatively 
scarce. There are results for projected gradient methods, see, e.g., [14, 17]. Recently, 
a stochastic version of the algorithm was analyzed in [16]. However, in these papers 
no convergence results for weakly converging subsequences of iterates are given.

If in addition j is non-convex, then much less has been proven. For finite-
dimensional problems it has been shown that limit points u∗ are fixed points of the 
iteration, that is

 Similar results for problems in the space �2 can be found in [8], where it was 
shown that weak limit points are fixed points in the sense of (1.4). There, the set-
ting of the problem in �2 was important, as it could be proven that the active sets 
{n ∈ ℕ ∶ uk(n) ≠ 0} only change finitely often, as is the case in finite-dimensional 
problem. This result is not available for problems on L2(Ω) , where the underlying 
measure space is atom-free. In [6] and [4, Chapter 10], points satisfying (1.4) are 
called L-stationary. For convex and lower semicontinuous j, conditions (1.3) and 
(1.4) are equivalent. For non-convex j it is natural to consider inclusions of type 
(1.3), where the convex subdifferential is replaced by some generalized derivative 
(e.g., Fréchet or limiting subdifferential). Here it turns out that conditions of type 
(1.3) involving generalized derivatives are weaker than L-stationary. Consider the 
case H = ℝ

1 , and g(u) = |u|0 or g(u) = |u|p ( p ∈ (0, 1) ). Then the Fréchet and the 
limiting subdifferential of g at u∗ = 0 is equal to ℝ , so the inclusion (1.3) is trivially 
satisfied. In contrast to this, the L-stationarity condition still gives some information 
of the following type: if u∗ = 0 is L-stationary, then |∇f (0)| is small, since it can be 
shown that 0 ∈ prox L−1j(q) if and only if |q| ≤ q0 for some finite q0 , compare Lem-
mas 3.5 and 3.6 below.

uk+1∈ prox L−1j

(
uk −

1

L
∇f (uk)

)
.

(1.3)−∇f (u∗) ∈ �j(u∗),

(1.4)u∗ ∈ prox L−1j

(
u∗ −

1

L
∇f (u∗)

)
.
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Hence, we are interested in proving that weak limit points in L2(Ω) of the proxi-
mal gradient method are L-stationary. Unfortunately, weak convergence leads to con-
vexification in the following sense: Let R ⊂ H × H be such that (u∗,−∇f (u∗)) ∈ R 
if and only if (u∗,−∇f (u∗)) satisfies (1.4). The iterates of the method satisfy

Let us assume for simplicity that uk ⇀ u∗ , ∇f (uk) → ∇f (u∗) , and uk+1 − uk → 0 in 
H. Passing to the limit will lead to an inclusion (u∗,∇f (u∗)) ∈ convR , where conv 
denotes the closed convex hull.

In order to partially prevent this convexification, we will employ an idea of [27]. 
There the method was analyzed when applied to control problems with L0-control 
cost.

An essential ingredient of the analysis in [27] was that the function g(u) ∶= |u|0 
is sparsity promoting: solutions of the proximal step (1.1) are either zero or have a 
positive distance to zero in the following sense: there is 𝜎 > 0 such that uk+1(x) = 0 
or |uk+1(x)| ≥ � for almost all x. In Sect.  3, we investigate conditions on g under 
which this property can be obtained.

Still this is not enough to conclude L-stationarity of weak limit points. We will 
show that weak limit points satisfy a weaker condition in general, see Theorem 4.20. 
Under stronger assumptions on (∇f (uk)) , L-stationarity can be obtained (Theo-
rems  4.21, 4.23). Pointwise almost everywhere and strong convergence of (uk) is 
proven under additional assumptions in Theorem  4.26. We apply these results to 
g(u) = |u|p , p ∈ (0, 1) in Sect. 5.1.

Interestingly, the proximal gradient method sketched above is related to algo-
rithms based on proximal minimization of the Hamiltonian in control problems. 
These algorithms are motivated by Pontryagin’s maximum principle. First results 
for smooth problems can be found in [25]. There, stationarity of pointwise limits of 
(uk) was proven. Under weaker conditions it was proved in [7] that the residual in the 
optimality conditions tends to zero. These results were transferred to control prob-
lems with parabolic partial differential equations in [9].

Notation We will frequently use ℝ̄ ∶= ℝ ∪ {+∞} . Let A ⊆ Ω be a set. We define 
the indicator function of A by

and the characteristic function of A by

The convex hull and closed convex hull of the set A is denoted by convA and convA , 
respectively.

For measurable A, we denote the Lebesgue measure of A by |A|. We will abbrevi-
ate the quantifiers “almost everywhere” and “for almost all” by “a.e.” and “f.a.a.”, 
respectively. Let X be a non-empty set. For a given function F ∶ X → ℝ̄ we define 

(
uk+1, L(uk+1 − uk) − ∇f (uk)

)
∈ R.

�A(x) =

{
0 if x ∈ A,

+∞ otherwise,

�A(x) =

{
1 if x ∈ A,

0 otherwise.
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its domain by domF ∶= {x ∶ F(x) < +∞} . The open ball centered at x ∈ ℝ
n with 

radius r > 0 is denoted by Br(x).

2 � Preliminary considerations

2.1 � Necessary optimality conditions

In the following we are going to derive a necessary optimality condition for (P), 
known as Pontryagin maximum principle, where no derivatives of the functional 
are involved. We formulate the Pontryagin maximum principle (PMP) as in [27]. 
A control ū ∈ L2(Ω) satisfies (PMP) if and only if for almost all x ∈ Ω

holds true for all v ∈ ℝ . This relation can be rewritten equivalently as

Hence, the iteration (1.1) is nothing else than a fixed point iteration for (2.1) with 
an additional proximal term. The following result is shown in [27, Thm. 2.5] for the 
special choice g(u) ∶= |u|0.

Theorem 2.1  (Pontryagin maximum principle) Let ū ∈ L∞(Ω) be a local solution 
to (P) in L2(Ω) . Furthermore, assume f satisfies

Then ū satisfies the Pontryagin maximum principle (2.1).

Proof  We will use needle perturbations of the optimal control. Let 
E ∶= {(vi, ti), i ∈ ℕ} be a countable dense subset of

For arbitrary x ∈ Ω , r > 0 , and i ∈ ℕ we define ur,i,x ∈ L2(Ω) by

Let �r ∶= �Br(x)
 , then we have ur,i,x = (1 − 𝜒r)ū + 𝜒rvi and

With j(u) ∶= ∫Ω

g(u(t)) dt we get

(2.1)∇f (ū)(x)ū(x) + g(ū(x)) ≤ ∇f (ū)(x) ⋅ v + g(v)

ū(x) ∈ argmin
u∈ℝ

(f (ū(x)) + ∇f (ū)(x) ⋅ (u − ū(x)) + g(u)) f.a.a. x ∈ Ω.

f (u) − f (ū) = ∇f (ū) ⋅ (u − ū) + o(‖u − ū‖L1(Ω)).

epi (g) ∶= {(v, t) ∈ ℝ ×ℝ ∶ g(v) ≤ t}.

ur,i,x(t) ∶=

{
vi t ∈ Br(x),

ū(t) otherwise.

‖ur,i,x − ū‖L1(Ω) = ‖𝜒r(vi − ū)‖L1(Ω) ≤ (�vi� + ‖ū‖L∞(Ω))‖𝜒r‖L1(Ω)
= (�vi� + ‖ū‖L∞(Ω))�Br(x)�.
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After dividing above inequality by |Br(x)| and passing to the limit r ↘ 0 , we obtain 
by Lebesgue’s differentiation theorem

for every Lebesgue point x ∈ Ω of the integrands, i.e., for all x ∈ Ω ⧵ Ni , where 
Ni is a set of zero Lebesgue measure, on which the above inequality is not satis-
fied. Since the countable union 

⋃
i∈ℕ Ni is also of measure zero, (2.2) holds 

true for all x ∈ Ω ⧵
⋃

i Ni for all i. Due to the density of E in epi (g) , we find for 
(v, g(v)) ∈ epi (g) a sequence (ṽk, t̃k) → (v, g(v)) with (ṽk, t̃k) ∈ E , and hence for 
almost all x ∈ Ω it holds

for all v ∈ ℝ which is the claim. 	�  ◻

2.2 � Standing assumptions

We define the functional j ∶ L2(Ω) → ℝ̄ by

where we set j(u) = +∞ if g(u) is not integrable. Let us define 
dom j ∶= {u ∶ j(u) < +∞}.

Throughout the paper, we will assume the following standing assumption on f 
and g. Another set of structural assumptions on g will be developed in Sect. 3.

Assumption A 

	(A1)	 The function g ∶ ℝ → ℝ̄ is lower semicontinuous.
	(A2)	 The functional f ∶ L2(Ω) → ℝ is bounded from below. Moreover, f is Fréchet 

differentiable and ∇f ∶ L2(Ω) → L2(Ω) is Lipschitz continuous with constant 
Lf  on dom j , i.e., 

 holds for all u1, u2 ∈ dom j ⊂ L2(Ω).

0 ≤ f (ur,i,x) + j(ur,i,x) − f (ū) − j(ū)

= �Ω

∇f (ū)(ur,i,x − ū) dt + o(‖ur,i,x − ū‖L1(Ω)) + �Ω

(g(ur,i,x) − g(ū)) dt

≤ �Br(x)

∇f (ū)(vi − ū) + (ti − g(ū)) dt + o(‖ur,i,x − ū‖L1(Ω))

(2.2)0 ≤ ∇f (ū)(x) ⋅ (vi − ū(x)) + (ti − g(ū(x)))

0 ≤ ∇f (ū)(x) ⋅ (v − ū(x)) + (g(v) − g(ū(x)))

j(u) ∶= ∫Ω

g(u(x)) dx,

‖∇f (u1) − ∇f (u2)‖L2(Ω) ≤ Lf‖u1 − u2‖L2(Ω)
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Here, (A1) implies that g is a normal integrand, and g(u) is measurable for each 
measurable u, see [15, Section VIII.1.1]. The Lipschitz continuity of the ∇f  as in 
(A2) will be important to prove the basic convergence result Theorem 4.5 below. For 
u ∈ L2(Ω) , we have ∇f (u) ∈ L2(Ω) . With a slight abuse of notation, we will use the 
notation ∇f (u)v ∶= ∫

Ω
(∇f (u)(x))v(x) dx for v ∈ L2(Ω).

The following optimal control example is covered by Assumption  A. Let 
Ωpde ⊃ Ω be a bounded domain in ℝn , n ≤ 3 . It will be the domain of the state 
y ∈ H1

0
(Ωpde) associated to the control u ∈ L2(Ω) . Let us define

where yu ∈ H1
0
(Ωpde) is defined to be the unique weak solution of the elliptic partial 

differential equation

Let us assume that L and d are Carathéodory functions, continuously differenti-
able with respect to y and such that the derivatives of L,  d with respect to y are 
bounded on bounded sets. In addition, d is assumed to be monotonically increas-
ing with respect to y. Then the mapping u ↦ yu is Lipschitz continuous from 
L2(Ω) to H1

0
(Ωpde) ∩ L∞(Ωpde) , see [26, Section  4.5]. The gradient of f is given 

by ∇f (u) = �Ωpu , where pu ∈ H1
0
(Ωpde) is the unique weak solution of the adjoint 

equation

where dy, Ly denote the partial derivatives of d, L with respect to the argument y.
Suppose that the optimal control problem contains control constraints of the type 

|u(x)| ≤ b f.a.a. x ∈ Ω . This can be modeled by setting g(u) = +∞ for all u with 
|u| > b . Then the domain of j is a bounded subset of L2(Ω) . The Lipschitz continuity 
of u ↦ ∇f (u) = �Ωpu can be proven by standard techniques, see, e.g., [23, Lemma 
4.1]. The maximum principle holds for such problems as well, see [11].

3 � Sparsity promoting proximal operators

The focus of this section is to investigate under which assumptions prox sg is sparsity 
promoting. Here, we want to prove that there is 𝜎 > 0 such that for all q

In [21, 22], this was also investigated for some special cases of non-convex func-
tions. We will show that the following assumption is enough to guarantee the spar-
sity promoting property. It contains the requirements from e.g. [21, Theorem 3.3] 
and [8, Lemma 3.1] as a special case.

f (u) ∶= ∫Ωpde

L(x, yu(x)) dx,

(−Δy)(x) + d(x, y(x)) = �Ω(x)u(x) a.e. in Ωpde.

(−Δp)(x) + dy(x, yu(x))p(x) = Ly(x, yu(x)) a.e. in Ωpde,

(3.1)u ∈ prox sg(q) ⇒ u = 0 or |u| ≥ �.
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Assumption B 

	(B1)	 g ∶ ℝ → ℝ̄ is lower semicontinuous, g(x) = g(−x) for all x ∈ ℝ , and g(0) = 0.
	(B2)	 There is u ≠ 0 such that g(u) ∈ ℝ.
	(B3)	 g satisfies one of the following properties: 

	 (B3.a)	 g is twice differentiable on an interval (0, �) for some 𝜖 > 0 and 
lim sup

u↘0

g��(u) ∈ (−∞, 0),

	 (B3.b)	 g is twice differentiable on an interval (0, �) for some 𝜖 > 0 and 
lim
u↘0

g��(u) = −∞,
	 (B3.c)	 0 < lim infu↘0 g(u).

	(B4)	 g(u) ≥ 0 for all u ∈ ℝ.

By Assumption B, the function g is non-convex in a neighborhood of 0 and 
non-smooth at 0. Some examples are given below.

Example 3.1  Functions satisfying Assumption B: 

(1)	 g(u) ∶= |u|0 ∶=
{

1 u ≠ 0,

0 u = 0,

(2)	 g(u) ∶= |u|p, p ∈ (0, 1),
(3)	 g(u) ∶= ln(1 + �|u|) , with a given positive constant �,
(4)	 the indicator function of the integers g(u) ∶= �

ℤ
(u).

In order to prove the desired property (3.1), we have to analyze the structure of 
the solution set of

for s > 0 with

Let us begin with stating basic properties of prox sg.

Lemma 3.2  Let g ∶ ℝ → ℝ̄ satisfy (B1) and (B4). Then prox sg(q) is non-empty for 
all q ∈ ℝ . In addition, the graph of prox sg is a closed set. Moreover, q ⇉ prox sg(q) 
is monotone, i.e., the inequality 0 ≤ (q1 − q2)

(
u1 − u2

)
 is satisfied for all q1, q2 ∈ ℝ 

and u1 ∈ prox sg(q1) , u2 ∈ prox sg(q2).

Proof  The function hq,s is lower semicontinuous, thus closed. Further, it is coercive, 
i.e., hs,q(u) → +∞ as |u| → +∞ . This implies the non-emptiness of prox sg , see [5, 

(3.2)min
u∈ℝ

hq,s(u)

hq,s(u) ∶= −qu +
1

2
u2 + sg(u).
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Theorem 6.4]. The closedness of the graph of prox sg is a consequence of the lower 
semicontinuity of g. The monotonicity can be verified by using the optimality for 
(3.2). That is for u1 ∈ prox sg(q1) and u2 ∈ prox sg(q2) it holds

respectively. Elementary computations yield the claimed inequality. 	�  ◻

Lemma 3.3  Let g ∶ ℝ → ℝ̄ satisfy (B1). Let u ∈ prox sg(q) . Then u ≥ 0 if and only 
if q ≥ 0.

Proof  Due to (B1), we have u ∈ prox sg(q) if and only if −u ∈ prox sg(−q) . The 
claim now follows from the monotonicity of the prox-map. 	�  ◻

Lemma 3.4  Let g ∶ ℝ → ℝ̄ satisfy (B1) and (B4). Then the growth condition

is satisfied.

Proof  Let u ∈ prox sg(q) . By optimality, the following inequality

is true. Since g(u) ≥ 0 , the claim follows. 	�  ◻

Next, we have to make sure that the image of prox sg is not equal to {0}.

Lemma 3.5  Let H be a Hilbert space. Let f ∶ H → ℝ̄ be a function with f (0) ∈ ℝ . 
Then 0 ∈ prox f (q) for all q ∈ H if and only if f is of the form f (x) = f (0) + �{0}(x).

Proof  If f is of the claimed form, then clearly prox f (q) = {0} for all q. Now, let 
0 ∈ prox f (q) for all q ∈ H . Then it holds

This is equivalent to

Setting q ∶= tu and letting t → +∞ shows f (u) = +∞ for all u ≠ 0 . 	�  ◻

Lemma 3.6  Let g ∶ ℝ → ℝ̄ satisfy (B1). Let s > 0 . Assume there is q0 ≥ 0 such that

hq1,s(u1) ≤ hq1,s(u2) and hq2,s(u2) ≤ hq2,s(u1),

|u| ≤ 2|q| ∀u ∈ prox sg(q)

1

2
u2 − qu + sg(u) ≤ g(0) = 0

1

2
‖u − q‖2

H
+ f (u) ≥ 1

2
‖q‖2

H
+ f (0) ∀u, q ∈ H.

f (u) +
1

2
‖u‖2

H
≥ f (0) + (u, q)H ∀u, q ∈ H.
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Then the following statements hold:

(1)	 u = 0 is a global solution to (3.2) if |q| ≤ q0 . If |q| < q0 , then u = 0 is the unique 
global solution to (3.2).

(2)	 Moreover, if

then |q| ≤ q0 is also necessary for u = 0 to be a global solution to (3.2).

Proof  Let |q| ≤ q0 . Take u ≠ 0 , then we have

Note that the second inequality is strict if |q| < q0 . To prove (2), assume u = 0 is a 
global solution to (3.2). Assume q > 0 . Then it holds

Since g(u) = g(−u) , this implies

By the definition of q0 , the inequality q ≤ q0 follows. Similarly, one can prove 
|q| ≤ q0 for negative q. 	�  ◻

Together with Assumption B, these results allow us to show the desired sparsity 
promoting property (3.1). A similar statement to the following can be found in [22, 
Theorem 1.1].

Theorem 3.7  Let g ∶ ℝ → ℝ̄ satisfy Assumption B. Let us set

 Then the following statements hold:

(1)	 For every s > s0 there is u0(s) > 0 such that for all q ∈ ℝ every global minimizer 
u of (3.2) satisfies

(3.3)q0|u| ≤ 1

2
u2 + sg(u) ∀u ∈ ℝ.

(3.4)q0 ∶= sup{q ≥ 0 ∶ q|u| ≤ 1

2
u2 + sg(u) ∀u ∈ ℝ},

hq,s(u) =
1

2
u2 + sg(u) − uq ≥ 1

2
u2 + sg(u) − |u| ⋅ |q| ≥ 1

2
u2 + sg(u) − q0|u| ≥ 0 = hq,s(0).

qu ≤ 1

2
u2 + sg(u) ∀u ≥ 0.

q|u| ≤ 1

2
u2 + sg(u) ∀u ∈ ℝ.

(3.5)s0 ∶=

{
−

1

lim supu↘0 g
��(u)

if (B.3a) is satisfied,

0 if (B.3b) or (B3.c) is satisfied.

u = 0 or |u| ≥ u0(s).
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(2)	 Moreover, for all s > 0 there is q0 ∶= q0(s) > 0 such that u = 0 is a global solu-
tion to (3.2) if and only if |q| ≤ q0 . If |q| < q0 then u = 0 is the unique global 
solution to (3.2).

Proof  We prove the first claim (1) by contradiction. Therefore, assume g satis-
fies Assumption  B but the first claim does not hold, i.e., there exists s > s0 such 
that for all u0 > 0 there is q and u with u ∈ prox sg(q) and 0 < |u| < u0 . Then there 
are sequences (un) and (qn) with un ∈ prox sg(qn) , un ≠ 0 , and un → 0 . W.l.o.g., 
(un) is a monotonically decreasing sequence of positive numbers, and hence (qn) 
is monotonically decreasing and non-negative by Lemma 3.3. Let u and q denote 
the limits of both sequences. Since un ≠ 0 is a global minimum of hqn,s , it follows 
hqn,s(un) ≤ hqn,s(0) = 0 . Passing to the limit in this inequality, we obtain

Hence, (B3.c) is violated, so at least one of (B.3a) or (B.3b) is satisfied. For n suffi-
ciently large, we have 0 < un < 𝜖 , and the necessary second-order optimality condi-
tion h��

qn,s
(un) ≥ 0 holds, and we obtain

which implies

This inequality is a contradiction to (B.3a) and (B.3b) due to the choice of s > s0 , 
and the first claim is proven.

In order to prove the claim (2), we will apply Lemma  3.6. First, assume that 
(B.3a) or (B.3b) is satisfied, i.e., there is 𝜖1 > 0 such that g is strictly concave on 
(0, �1] . By reducing �1 if necessary, we get g(𝜖1) > 0 . Since g(0) = 0 , it holds 
g(u) ≥ g(�1)

�1
|u| for all u ∈ [0, �1] by concavity. Due to symmetry, this holds for all u 

with |u| ≤ �1 . Since g(u) ≥ 0 for all u by (B4), it holds 1
2
u2 + sg(u) ≥ �1

2
|u| for all 

|u| ≥ �1 . This proves 1
2
u2 + sg(u) ≥ min(

�1

2
,
sg(�1)

�1
)|u| for all u, and the set appearing 

in (3.4) is non-empty. Second, if (B3.c) is satisfied, then there are 𝜖2, 𝜏 > 0 such that 
g(u) ≥ � for all u with |u| ∈ (0, �2) as g is lower semicontinuous. Therefore, it holds 
g(u) ≥ � ≥ �

�2
|u| if |u| ∈ (0, �2) . Similarly as in the first case, we find that the set in 

(3.4) is non-empty. By (B2), this set is bounded. Thus, the claim follows with q0 
from (3.4) and Lemma 3.6. 	�  ◻

Remark 3.8  In general, the constant u0 in Theorem 3.7 depends on s and the struc-
ture of g.

Example 3.9  The proximal map of g(u) ∶= |u|0 is given by the hard-thresholding 

operator, defined by prox sg(q) =

�
0 if �q� ≤ √

2s,

q otherwise.

lim inf
n→+∞

hqn,s(un) = lim inf
n→+∞

g(un) ≤ 0.

lim sup
n→+∞

h��
qn,s

(un) ≥ 0,

1 + s lim sup
n→+∞

g��(un) ≥ 0.
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With the above considerations in mind, let us discuss the minimization 
problem

which arises as the pointwise minimization of the integrand in (1.1).

Corollary 3.10  Let gk, uk ∈ ℝ,L > 0 be given. Then u ∈ ℝ is a solution to (3.6) if 
and only if

If 1
L
> s0 , see Theorem 3.7, then all global solutions u satisfy

with some u0(L−1) > 0 as in Theorem 3.7.

Proof  Problem (3.6) is equivalent to

and therefore of the form (3.2). The claim follows from Theorem 3.7. 	�  ◻

4 � Analysis of the proximal gradient algorithm

In this section, we will analyze the proximal gradient algorithm. Throughout this 
section, we assume that f and g satisfy Assumptions A and B.

Algorithm  4.1  (Proximal gradient algorithm) Choose L > 0 and u0 ∈ L2(Ω) . Set 
k = 0 . 

(1)	 Compute uk+1 as solution of 

(2)	 Set k ∶= k + 1 , go to step 1.

The functional to be minimized in (4.1) can be written as an integral functional. 
In this representation the minimization can be carried out pointwise by using the 
previous results. The following statements are generalizations of [27, Lemma 3.10, 
Theorem 3.12].

(3.6)min
u∈ℝ

gku +
L

2
(u − uk)

2 + g(u),

u ∈ prox L−1g

(
Luk − gk

L

)
.

u = 0 or |u| ≥ u0(L
−1)

min
u∈ℝ

gk − Luk

L
u +

1

2
u2 +

1

L
g(u)

(4.1)min
u∈L2(Ω)

f (uk) + ∇f (uk) ⋅ (u − uk) +
L

2
‖u − uk‖2L2(Ω) + j(u).
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Lemma 4.2  Let uk ∈ L2(Ω) be given. Then

is solvable, and uk+1 ∈ L2(Ω) is a global solution if and only if

for almost all x ∈ Ω.

Proof  Let us show, that we can choose a measurable function satisfying the inclu-
sion (4.3). The set-valued mapping prox L−1g has a closed graph. Then by [24, Corol-
lary 14.14], the set-valued mapping x ⇉ prox L−1g

(
1

L
(Luk(x) − ∇f (uk)(x))

)
 from Ω 

to ℝ is measurable. A well-known result [24, Corollary 14.6] implies the existence 
of a measurable function u such that u(x) ∈ prox L−1g

(
1

L
(Luk(x) − ∇f (uk)(x))

)
 for 

almost all x ∈ Ω . Due to the growth condition of Lemma 3.4, we have u ∈ L2(Ω) , 
and hence u solves (4.2). If uk+1 solves (4.2) then (4.3) follows by a standard argu-
ment, see e.g., [27, Theorem 3.10]. 	� ◻

Remark 4.3  Due to its non-convexity, the minimization problem in Algorithm 4.1 
may not have a unique minimizer, and prox L−1g

(
1

L
(Luk(x) − ∇f (uk)(x))

)
 is not a sin-

gleton. For the choice g(u) = |u|0 or g(u) = |u|p , p ∈ (0, 1) , the image of prox con-
tains zero, and we suggest to choose uk+1(x) = 0 . For the general case, one can con-
struct a monotonically increasing function P ∶ ℝ → ℝ such that P(q) ∈ prox L−1g(q) 
for all q ∈ ℝ . Then set uk+1(x) ∶= P

(
1

L
(Luk(x) − ∇f (uk)(x))

)
.

We introduce the following notation. For a sequence (uk) ⊂ L2(Ω) define

Let us now investigate convergence properties of Algorithm  4.1. The following 
Lemma will be helpful for what follows. It strongly builds on the sparsity promoting 
property of g, and uses all conditions of Assumption B via Theorem 3.7.

Lemma 4.4  Assume 1
L
> s0 with s0 from Theorem 3.7. Let uk, uk+1 ∈ L2(Ω) be con-

secutive iterates of Algorithm 4.1. Then

holds for p ∈ [1,+∞) , where u0 ∶= u0(L
−1) is as in Theorem 3.7.

Proof  Since uk(x) ≠ 0 and uk+1(x) = 0 on Ik ⧵ Ik+1 by (4.4), it holds 
|uk+1(x) − uk(x)| ≥ u0 for all x ∈ Ik ⧵ Ik+1 by Corollary (3.10). Hence,

(4.2)min
u∈L2(Ω)

f (uk) + ∇f (uk) ⋅ (u − uk) +
L

2
‖u − uk‖2L2(Ω) + ∫Ω

g(u(x)) dx

(4.3)uk+1(x) ∈ prox L−1g

(
1

L
(Luk(x) − ∇f (uk)(x))

)

(4.4)Ik ∶= {x ∈ Ω ∶ uk(x) ≠ 0},�k ∶= �Ik
.

‖uk+1 − uk‖
p

Lp(Ω)
≥ u

p

0
‖�k − �k+1‖L1(Ω)
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where we have used ‖�k+1 − �k‖L1(Ω) = �(Ik ⧵ Ik+1) ∪ (Ik+1 ⧵ Ik)� . 	�  ◻

Now, we are in the position to prove the first, basic convergence result. This 
theorem already makes full use of Assumptions A and B.

Theorem  4.5  For L > Lf  let (uk) be a sequence of iterates generated by Algo-
rithm 4.1. Then the following statements hold:

(1)	 The sequence (f (uk) + j(uk)) is monotonically decreasing and converging.
(2)	 The sequences (uk) and (∇f (uk)) are bounded in L2(Ω) if f + j is weakly coercive 

on L2(Ω) , i.e., f (u) + j(u) → +∞ as ‖u‖L2(Ω) → +∞.
(3)	 It holds uk+1 − uk → 0 in L2(Ω) and pointwise almost everywhere on Ω.
(4)	 Let s0 be as in Theorem 3.7. If 1

L
> s0 , then the sequence of characteristic func-

tions (�k) is converging in L1(Ω) and pointwise a.e. to some characteristic func-
tion �.

Proof  (1) Due to the Lipschitz continuity of ∇f  by (A2) it holds

Using the optimality of uk+1 , we find that the inequality

holds. Hence, (f (uk) + j(uk)) is decreasing. Convergence follows because f and j are 
bounded from below by Assumptions (A2) and (B1).

(2) Weak coercivity of the functional implies that (uk) is bounded. Furthermore, 
because of

boundedness of (∇f (uk)) in L2(Ω) follows.
(3) Summation over k = 1,… , n in (4.6) yields

and hence

‖uk+1 − uk‖
p

Lp(Ω)
=�Ω

�uk+1(x) − uk(x)�p dx

≥�(Ik⧵Ik+1)∪(Ik+1⧵Ik)

�uk+1(x) − uk(x)�p dx ≥ u
p

0
‖�k+1 − �k‖L1(Ω),

(4.5)f (uk+1) ≤ f (uk) + ∇f (uk)(uk+1 − uk) +
Lf

2
||uk+1 − uk||2L2(Ω).

(4.6)f (uk+1) + j(uk+1) ≤ f (uk) + j(uk) −
L − Lf

2
‖uk+1 − uk‖2L2(Ω)

‖∇f (uk)‖L2(Ω) ≤ ‖∇f (uk) − ∇f (0)‖L2(Ω) + ‖∇f (0)‖L2(Ω)
≤ Lf‖uk‖L2(Ω) + ‖∇f (0)‖L2(Ω),

n�

k=1

(f (uk+1) + j(uk+1)) ≤
n�

k=1

�
f (uk) + j(uk) −

L − Lf

2
‖uk+1 − uk‖2L2(Ω)

�



653

1 3

A proximal gradient method for control problems with non‑smooth…

Letting n → +∞ implies 
+∞∑
k=1

‖uk+1 − uk‖2L2(Ω) < +∞ and therefore 

‖uk+1 − uk‖L2(Ω) → 0 . By the Lemma of Fatou, we have further

This implies lim inf
n→+∞

∑n

k=0
�uk+1(x) − uk(x)�2 < +∞ for almost all x ∈ Ω , and the sec-

ond claim follows.
(4) By Lemma 4.4, we get

Hence, (�k) is a Cauchy sequence in L1(Ω) , and therefore also converging in L1(Ω) , 
i.e., �k → � for some characteristic function � . Pointwise a.e. convergence of (�k) 
can be proven by Fatou’s Lemma. 	�  ◻

4.1 � Stationarity conditions for weak limit points from inclusions

In order to make full use of Theorem 4.5, we assume throughout this section that the 
proximal parameter L in Algorithm 4.1 satisfies

where s0 is from Theorem 3.7, see (3.5).
Under a weak coercivity assumption, Theorem 4.5(2) implies that Algorithm 4.1 

generates a sequence (uk) with weak limit point u∗ ∈ L2(Ω) , i.e., there exists a sub-
sequence of iterates (uk) converging weakly to u∗ in L2(Ω) . Due to the lack of weak 
lower semicontinuity in the term u ↦ ∫

Ω
g(u) dx , however, we cannot conclude 

anything about the value of the objective functional in a weak limit point. Unfortu-
nately, we are not able to show

along the subsequence, as it was done in [27, Thm. 3.14] for the special choice 
g(u) ∶= |u|0 . Nevertheless, by using results of set-valued analysis we will show that 
a weak limit point of a sequence (uk) of iterates satisfies a certain inclusion in almost 
every point x ∈ Ω , which can be interpreted as a pointwise stationary condition for 
weak limit points.

By definition, the iterates satisfy the inclusion

f (un+1) + j(un+1) +

n�

k=1

L − Lf

2
‖uk+1 − uk‖2L2(Ω) ≤ f (u1) + j(u1) < +∞.

�Ω

lim inf
n→+∞

n�

k=0

�uk+1(x) − uk(x)�2 dx ≤ lim inf
n→+∞

n�

k=0

‖uk+1(x) − uk(x)‖2L2(Ω) < +∞.

L − Lf

2
u2
0

+∞�

k=1

‖𝜒k − 𝜒k+1‖L1(Ω) ≤ L − Lf

2

+∞�

k=1

‖uk − uk+1‖L2(Ω) < +∞

L > Lf and
1

L
> s0,

f (u∗) + j(u∗) ≤ lim
k→+∞

f (uk) + j(uk)



654	 C. Natemeyer, D. Wachsmuth 

1 3

for almost all x ∈ Ω , see e.g., (4.3). However, this inclusion seems to be useless 
for a convergence analysis, as the function uk+1 to the left of the inclusion as well 
as the arguments Luk − ∇f (uk) only have weakly converging subsequences at best. 
The idea is to construct a set-valued mapping G ∶ ℝ ⇉ ℝ such that a solution uk+1 of 
(4.2) satisfies the inclusion

in almost every point x ∈ Ω for some zk ∈ L2(Ω) , where (zk) converges strongly or 
pointwise almost everywhere. Here, we will use

By Theorem 4.5, we have uk+1 − uk → 0 in L2(Ω) and pointwise almost everywhere. 
With the additional assumption that subsequences of (∇f (uk)) converge pointwise 
almost everywhere, the argument of the set-valued mapping converges pointwise 
almost everywhere. In the context of optimal control problems, such an assumption 
is not a severe restriction.

If ∇f ∶ L2(Ω) → L2(Ω) is completely continuous, then this assumption is ful-
filled. For many control problems, this property of ∇f  is guaranteed to hold.

So there is a chance to pass to the limit in the inclusion (4.7).

Corollary 4.6  Let (uk) be a sequence of iterates generated by Algorithm  4.1 with 
weak limit point u∗ ∈ L2(Ω) , i.e., ukn ⇀ u∗ . Assume ∇f (ukn )(x) → ∇f (u∗)(x) for 
almost every x ∈ Ω . Then it follows zkn (x) → −∇f (u∗)(x) for almost every x ∈ Ω.

Proof  This is a direct consequence of the definition of (zk) in (4.8) and Theo-
rem 4.5(3). 	�  ◻

Let us now give an equivalent characterization of G as defined in (4.7).

Lemma 4.7  Let uk+1 be a solution of (4.2). Then

where the set-valued mapping G ∶ ℝ ⇉ ℝ is given by

Unfortunately, the set-valued map G is neither monotone nor single-valued in 
general. If g would be convex, then the optimality condition of the minimization 
problem in (4.9) implies z ∈ �g(u) . Hence, it holds G = �g∗ , where g∗ denotes the 

uk+1(x) ∈ prox L−1g

(
1

L
(Luk(x) − ∇f (uk)(x))

)

(4.7)uk+1(x) ∈ G(zk(x))

(4.8)zk ∶= −
(
∇f (uk) + L(uk+1 − uk)

)
.

uk+1(x) ∈ G(zk(x))f .a.a.x ∈ Ω,

(4.9)
u ∈ G(z) ⟺ u ∈ argmin

v∈ℝ

−zv +
L

2
(v − u)2 + g(v)

⟺ u ∈ prox L−1g

(
Lu + z

L

)
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convex conjugate of g, and G would be monotone. If in addition, g is strictly con-
vex, then G would be single-valued.

As a first direct consequence from the definition of G , we get

Corollary 4.8  Let u0 ∶= u0(L
−1) and q0 ∶= q0(L

−1) be the positive constants from 
Theorem  3.7. Let u, z ∈ ℝ be such that u ∈ G(z) . Then we have: If u > 0 then 
u ≥ max

(
u0,

Lq0−z

L

)
 , and if u < 0 then u ≤ min

(
−u0,−

Lq0+z

L

)
 . In case u = 0 it holds 

|z| ≤ Lq0.

Proof  Here, we will use the sparsity promoting property of prox L−1g in (4.9). If u ≠ 0 
then by Lemma 3.3 and Theorem 3.7, it follows that u ≥ u0 if and only if Lu+z

L
≥ q0 

and likewise u < −u0 if and only if Lu+z
L

≤ −q0 . The claim follows for u > 0 and 
u < 0 , respectively. On the other hand u = 0 is a solution if and only if | z

L
| ≤ q0 , 

which implies the claim for u = 0 . 	�  ◻

4.2 � A convergence result for inclusions

In this section, we will prove a convergence result to be able to pass to the limit in 
the inclusion (4.7) and to identify the set-valued map that is obtained in this lim-
iting process. First, let us recall a few helpful notions and results from set-valued 
analysis that can be found in the literature, see e.g., [2, 24].

Definition 4.9  For a sequence of sets An ⊂ ℝ
n we define the outer limit by

Definition 4.10  Let S ∶ ℝ
m ⇉ ℝ

n be a set-valued map. 

(1)	 The domain and graph of S are defined by 

(2)	 S is called outer semicontinuous in x̄ if 

(3)	 S is called locally bounded at x ∈ ℝ
m if there is a neighborhood U of x such that 

S(U) is bounded.

A set-valued mapping S is outer semicontinuous if and only if it has a closed 
graph. The following convergence analysis relies on [2, Thm. 7.2.1]. There the 
local boundedness of G is a prerequisite, which is not satisfied in general in our 
situation. Hence, we have to extend this result to set-valued maps into ℝn that are 
not locally bounded. Let us define the following set-valued map that serves as a 
generalization of x ⇉ conv (F(x)) for the locally unbounded situation.

lim sup
n→+∞

An ∶= {x ∶ ∃(xnk ), xnk → x, xnk ∈ Ank
}.

dom S ∶= {x ∶ S(x) ≠ �}, gph S ∶= {(x, y) ∶ y ∈ S(x)}.

lim sup
x→x̄

S(x) ⊆ S(x̄).
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Definition 4.11  Let F ∶ ℝ
m ⇉ ℝ

n be a set-valued map.
Define the set-valued map conv∞F ∶ ℝ

m ⇉ ℝ
n by

By definition, it holds gphF ⊂ gph conv∞F . In addition, we have 
conv (F(x)) ⊂ ( conv∞F)(x) for all x ∈ ℝ

m . If F is locally bounded in x, then 
( conv∞)F(x) = conv (F(x)) , which can be proven using Carathéodory’s theorem. 
In general, dom conv∞F is strictly larger than domF.

Example 4.12  Define F ∶ ℝ ⇉ ℝ by

Then F is not locally bounded near x = 0 . Here it holds 
gph ( conv∞F) = gphF ∪ ({0} ×ℝ) , so that dom ( conv∞F) = ℝ ≠ domF.

Theorem 4.13  Let (Ω,A,�) be a measure space and F ∶ ℝ
m ⇉ ℝ

n be a set-valued 
map. Let sequences of measurable functions (xn), (yn) , xn ∶ Ω → ℝ

m, yn ∶ Ω → ℝ
n , 

be given such that

(1)	 xn converges almost everywhere to some measurable function x ∶ Ω → ℝ
m,

(2)	 yn converges weakly to a function y in L1(Ω;ℝn,�),
(3)	 yn(t) ∈ F(xn(t)) for almost all t ∈ Ω.

Then for almost all t ∈ Ω it holds:

Proof  Arguing as in the proof of [2, Thm. 7.2.1], we find

for almost all t ∈ Ω . Note that we can choose W = {0} as our assumption (3) is 
stronger than the condition (7.1) in [2, Thm. 7.2.1].

Take t ∈ Ω such that the above inclusion is satisfied. Then there is a 
sequence (uk) such that uk → y(t) , uk ∈ conv (F(x(t) + B1∕k(0))) . This implies 
y(t) ∈ lim supk→+∞ conv

(
F(x(t) + B1∕k(0))

)
 , or equivalently y(t) ∈ ( conv∞F)(x(t)) . 	

� ◻

Let us close this section with an example that shows that G is not necessarily 
locally bounded.

Example 4.14  Let L > 0 and define g(u) ∶= �
ℤ
(u) the indicator function of integers 

with the associated map G defined as in (4.9). Set U ∶= [−
L

2
,
L

2
] . Then it holds that 

G(z) = ℤ for all z ∈ U , i.e., G is clearly not locally bounded in the origin.

( conv∞F)(x) ∶= lim sup
k→+∞

conv
(
F
(
x + B1∕k(0)

))
.

gphF = {(x, y) ∶ yx = 1}.

y(t) ∈ ( conv∞F)(x(t)).

y(t) ∈
⋂

k∈ℕ

conv
(
F(x(t) + B1∕k(0))

)
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4.3 � Stationarity conditions for weak limit points

Recall that for iterates (uk) of Algorithm 4.1 and the corresponding sequence zk , see 
(4.8), we have by construction

with G is defined as in (4.9). By Theorem  4.13, we could expect the inclusion 
u∗(x) ∈ ( conv∞G)(−∇f (u∗)(x)) to hold pointwise almost everywhere in the subse-
quential limit. However, the convexification of G results in a set-valued map that 
is very large. In order to obtain a smaller inclusion in the limit, we will employ the 
result of Corollary 4.8: the graph of G can be split into three separated components. 
In the sequel, we will show that we can pass to the limit with each component sepa-
rately, which leads to a smaller set-valued map in the limit. This observation moti-
vates the following splitting of the map G.

Definition 4.15  We define the following set-valued mappings. 

(1)	 G
+ ∶ ℝ ⇉ ℝ with u ∈ G

+(z) ∶⟺ u ∈ G(z) and u > 0,
(2)	 G

− ∶ ℝ ⇉ ℝ with u ∈ G
−(z) ∶⟺ u ∈ G(z) and u < 0,

(3)	 G
0 ∶ ℝ ⇉ ℝ with u ∈ G

0(z) ∶⟺ u ∈ G(z) and u = 0.

Obviously we have by construction

For better illustration, let us give an example of the mappings G+,G− and G0.

Example 4.16  Let g(u) ∶= �

2
|u|2 + �|u|p + �[−b,b](u) , p ∈ (0, 1) , b > 0 . In Fig. 1, the 

union G0 ∪ G
+ ∪ G

− and the convexified map G0 ∪ convG+ ∪ convG− is depicted for 
the special choices of the parameters. A more detailed discussion of this choice is 
given in Sect. 5.1.

Corollary 4.17  The mappings G , G0 , G+ , and G− are outer semicontinuous.

Proof  G being outer semicontinuous is equivalent to the closedness of its graph. Let 
(un), (qn) be sequences such that un → u, qn → q and un ∈ G(qn) . By definition it 
holds

for all v ∈ ℝ . Passing to the limit in above inequality yields

uk+1(x) ∈ G(zk(x)) f.a.a. x ∈ Ω,

(4.10)uk+1(x) ∈ (G+ ∪ G− ∪ G0)(zk(x)) f.a.a. x ∈ Ω.

0 ≤ −qn(v − un) + (g(v) − g(un)) +
L

2
(v − un)

2

0 ≤ −q(v − u) + (g(v) − g(u)) +
L

2
(v − u)2
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due to the lower semicontinuity of g. Hence,

i.e., u ∈ G(q) , which is the claim for G. For G+,G−,G0 the claim follows as their 
graphs are intersections of closed sets with gphG , which follows from Corollary 4.8, 
where we used L−1 > s0 in case of G+,G− . 	�  ◻

In the sequel we want to apply Theorem 4.13 to each of the set-valued maps in 
(4.10) separately. Let us first show the next helpful result, which gives us finer con-
trol of the subsets of Ω , where uk+1(x) ∈ G

+(zk(x)) and uk+1(x) ∈ G
−(zk(x)) . It can be 

seen as a refinement of claim (4) of Theorem 4.5.

Lemma 4.18  Let (uk) be a sequence of iterates generated by Algorithm 4.1. Let real 
numbers a < b be given. Define

and �b+
k

∶= �Ab+
k

 , �a−
k

∶= �Aa−
k

 . Then it holds

u ∈ argmin
v∈ℝ

−qv +
L

2
(v − u)2 + g(v),

Ab+
k

∶={x ∈ Ω ∶ uk(x) ≥ b},

Aa−
k

∶={x ∈ Ω ∶ uk(x) ≤ a},

+∞�

k=1

‖𝜒b+
k+1

𝜒a−
k

+ 𝜒a−
k+1

𝜒b+
k
‖L1(Ω) < +∞.

Fig. 1   The union (G0 ∪ G
+ ∪ G

−) and its convexification (G0 ∪ convG+ ∪ convG−) (filled area) with 
parameters (L, �, �, b) = (0.01, 0.01, 0.01, 2)
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If �b+
k

+ �a−
k

= 1 for all k almost everywhere, then there are characteristic functions 
�b+,�a− such that �b+ + �a− = 1 almost everywhere, �b+

k
→ �b+ and �a−

k
→ �a− 

strongly in L1(Ω) and pointwise almost everywhere.

Proof  Let x ∈ Ω . If �b+
k+1

(x)�a−
k
(x) = 1 , then by definition it holds 

uk+1(x) − uk(x) ≥ b − a . This proves ‖�b+
k+1

�a−
k
‖L1(Ω) ≤ (b − a)−2‖uk+1 − uk‖2L2(Ω) . 

Similarly, we obtain ‖�a−
k+1

�b+
k
‖L1(Ω) ≤ (b − a)−2‖uk+1 − uk‖2L2(Ω) . Since 

∑+∞

k=1
‖uk+1 − uk‖2L2(Ω) < +∞ , the claim follows. Suppose �b+

k
+ �a−

k
= 1 almost eve-

rywhere for all k. Then a simple calculation using the definitions of �b+
k
,�a−

k
 yields

which implies the second claim. 	�  ◻

As a direct consequence, we obtain the convergence of the characteristic func-
tions associated to the positive and negative parts of (uk) . Let us introduce the 
notation

with associated characteristic functions �+
k
,�−

k
 , which we will use in the sequel.

Corollary 4.19  There are characteristic functions �+,�− such that �+
k
→ �+ and 

�−
k
→ �− in L1(Ω) and pointwise almost everywhere as k → +∞.

Proof  Let u0 ∶= u0(L
−1) from Theorem 3.7. By Lemma 4.18 with a = 0 and b = u0 , 

we obtain the claim for �+
k
→ �+ . The proof for �−

k
→ �− follows with a = −u0 and 

b = 0 . 	�  ◻

Now, we will pass to the limit in the inclusion (4.10). Using characteristic func-
tions, we will split the inclusion into three inclusions for G+,G0,G−.

Theorem 4.20  Let (uk) be a sequence of iterates generated by Algorithm 4.1 with 
weak limit point u∗ ∈ L2(Ω) , i.e., ukn ⇀ u∗ . Assume ∇f (ukn )(x) → ∇f (u∗)(x) for 
almost every x ∈ Ω . Let G0,G+,G− ∶ ℝ ⇉ ℝ be as in Definition 4.15. Then

holds for almost all x ∈ Ω.

Proof  By Corollary 4.6 we have

pointwise almost everywhere on Ω.
Let �+

k
,�−

k
 as in (4.11). By Corollary  4.19 it holds �+

k
→ �+ and �−

k
→ �− in 

L1(Ω) and pointwise almost everywhere for characteristic functions �+,�−.

�b+
k+1

�a−
k

+ �a−
k+1

�b+
k

= �b+
k+1

(1 − �b+
k
) + (1 − �b+

k+1
)�b+

k
= |�b+

k+1
− �b+

k
|,

(4.11)I+
k
∶= {x ∈ Ω ∶ uk(x) > 0} and I−

k
∶= {x ∈ Ω ∶ uk(x) < 0}

(4.12)u∗(x) ∈
(
G0 ∪ conv∞G

+ ∪ conv∞G
−
)
(−∇f (u∗)(x))

zkn = −
(
∇f (ukn ) + L(ukn+1 − ukn )

)
→ −∇f (u∗) ∶= z
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Let us fix (u�, q�) ∈ gphG+ . Then the inclusion

is satisfied almost everywhere on Ω . By Theorem 4.13, we obtain

almost everywhere on Ω . Similarly, we obtain for (u��, q��) ∈ gphG−

and

almost everywhere, where �k and � are as in Theorem  4.5 and (4.4). Note that 
conv∞G

0 = G
0 . By construction, �+

k
+ �−

k
= �k , which implies �+ + �− = � . Then 

we can combine all the inclusions above into one, which is

for almost all x ∈ Ω . 	�  ◻

Interestingly, we can get rid of the convexification operator conv∞ if we 
assume that the whole sequence (∇f (uk)) converges pointwise almost everywhere.

Theorem 4.21  Let (uk) be a sequence of iterates generated by Algorithm 4.1 with 
weak limit point u∗ ∈ L2(Ω) . Assume ∇f (uk) → ∇f (u∗) pointwise almost everywhere. 
Then

holds for almost all x ∈ Ω.

Proof  Denote z(x) ∶= −∇f (u∗)(x) . Then zk(x) → z(x) almost everywhere,
which can be proven similarly to Corollary 4.6.
Let (z̃, ũ) ∉ gphG . Since gphG is closed, there is 𝜖 > 0 such that

Let �� ∈ (0, �) . Set

and

�+
kn+1

ukn+1 + (1 − �+
kn+1

)u� ∈ G
+(�+

kn+1
zkn + (1 − �+

kn+1
)q�)

�+u∗ + (1 − �+)u� ∈ conv∞G
+(�+z + (1 − �+)q�)

�−u∗ + (1 − �−)u�� ∈ conv∞G
−(�−z + (1 − �−)q��)

(1 − �)u∗ ∈ G0((1 − �)z)

u∗(x) ∈
(
G0 ∪ conv∞G

+ ∪ conv∞G
−
)
(−∇f (u∗)(x))

u∗(x) ∈ G(−∇f (u∗)(x))

(
B𝜖(z̃) × B𝜖(ũ)

)
∩ gphG = �.

I ∶= {x ∈ Ω ∶ |z̃ − z(x)| < 𝜖�},

IK ∶= {x ∈ I ∶ |z̃ − zk(x)| < 𝜖 ∀k > K}.
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The sequence (IK) is monotonically increasing. Since zk(x) → z(x) for almost all 
x ∈ Ω , we have ∪K∈ℕIK = I . Here, the pointwise convergence of the whole sequence 
(zk) is needed to conclude I ⊆ ∪K∈ℕIK . Define

and �+
k
∶= �A+

k
 , �−

k
∶= �A−

k
 . By Lemma  4.18 above, we have ∑+∞

k=1
‖𝜒+

k+1
𝜒−
k
+ 𝜒−

k+1
𝜒+
k
‖L1(Ω) < +∞ and therefore �+

k+1
�−
k
+ �−

k+1
�+
k
→ 0 in L1(Ω) 

and pointwise almost everywhere.
Let x ∈ I . Then there is K such that x ∈ IK . This implies uk(x) ∉ B𝜖(ũ) for all 

k > K . The sum 
∑+∞

k=K+1
(�+

k+1
�−
k
+ �−

k+1
�+
k
)(x) counts the number of switches 

between values larger than ũ + 𝜖 and smaller than ũ − 𝜖 from uk(x) to uk+1(x) . Since 
this sum is finite for almost all x ∈ Ω , there is only a finite number of such switches. 
Then there is K′ > K such that either uk(x) ≥ ũ + 𝜖 for all k > K′ or uk(x) ≤ ũ − 𝜖 for 
all k > K′ . Set

The sequences (S+
K
) and (S−

K
) are increasing, and ∪K∈ℕ(S

+
K
∪ S−

K
) = I.

Since ukn ⇀ u∗ , this implies u∗ ≥ ũ + 𝜖 on S+
K

 and u∗ ≤ ũ − 𝜖 on S−
K

 . Since 
∪K∈ℕ(S

+
K
∪ S−

K
) = I , this implies

for almost all x ∈ I , which implies

for almost all x ∈ Ω . Since we can cover the complement of gphG by countably 
many such sets, the claim follows. 	�  ◻

Remark 4.22  If g is convex, the result above implies that u∗ is a stationary point. 
This follows from the equivalence, see (4.9),

which holds for almost all x. By convexity of g, this is equivalent to 
−∇f (u∗)(x) ∈ �g(u∗(x)) , where �g is the convex subdifferential of g, see e.g., [3, Cor. 
16.44].

A+
k
∶={x ∈ Ω ∶ uk(x) ≥ ũ + 𝜖},

A−
k
∶={x ∈ Ω ∶ uk(x) ≤ ũ − 𝜖},

S+
K
∶= {x ∈ I ∶ uk(x) ≥ ũ + 𝜖 ∀k > K},

S−
K
∶= {x ∈ I ∶ uk(x) ≤ ũ − 𝜖 ∀k > K}.

u∗(x) ∉ B𝜖(ũ)

((z(x), u∗(x)) ∉ B𝜖� (z̃) × B𝜖(ũ)

u∗(x) ∈ G(−∇f (u∗)(x)) ⟺ u∗(x) ∈ prox L−1g

(
u∗(x) −

1

L
∇f (u∗)(x)

)

⟺ u∗(x) ∈ argmin
v∈ℝ

∇f (u∗)(x)v +
L

2
(v − u∗(x))2 + g(v),
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4.4 � Pointwise convergence of iterates

So far we were able to show that weak limit points of iterates (uk) satisfy a certain 
inclusion in a pointwise sense. However, the resulting set in the limit might still 
be large or even unbounded in general. Assuming that G is (locally) single-valued 
on its components G+,G−,G0 , we can show local pointwise convergence of a sub-
sequence of iterates (ukn) to a weak limit point u∗ ∈ L2(Ω) . In the next result this 
is illustrated for the map G+ , however, it can be shown for the components G−,G0 
similarly.

To this end, recall the definition of �+
k

 in (4.11) and the fact that �+
k
→ �+ in 

L1(Ω) and pointwise almost everywhere by Corollary 4.19.

Theorem  4.23  Let z̄ ∈ dom (G+) . Assume that G+ ∶ ℝ → ℝ is single-valued and 
locally bounded on B𝜖(z̄) ∩ dom (G+) for some 𝜖 > 0 . Let ukn ⇀ u∗ in L2(Ω) and 
assume ∇f (ukn )(x) → ∇f (u∗)(x) pointwise almost everywhere. Define the set

Then

holds for almost all x ∈ I� . Furthermore, we have

Proof  By Corollary 4.6, we get zkn (x) → z(x) ∶= −∇f (u∗)(x) pointwise almost every 
where. In addition, �+

k
 converges to �+ pointwise almost everywhere.

Take x ∈ I� such that zkn (x) → z(x) and �+
k
(x) → �+(x) . Then there is K > 0 such 

that |zkn (x) − z̄| < 𝜖 for all kn > K . Since x ∈ supp (�+) , there is K′ > 0 such that 
x ∈ supp (�+

k
) for all k > K′ . Hence, for kn sufficiently large we have

Since G
+ is single-valued, locally bounded and outer semicontinuous in 

B𝜖(z̄) ∩ dom (G+) , it is continuous, see also [24, Cor. 5.20].
This implies

The continuity property mentioned above implies conv∞G
+(z(x)) = G

+(z(x)) . Then 
by Theorem 4.20, G+(z(x)) = {u∗(x)} , and the convergence ukn(x) → u∗(x) follows. 
Since ukn+1(x) → u∗(x) as well, we can pass to the limit in the inclusion (4.3), where 
we used the closedness of the graph of the proximal operator, which completes the 
proof. 	�  ◻

I𝜖 ∶=
{
x ∈ supp (𝜒+) ∶ −∇f (u∗)(x) ∈ B𝜖(z̄) ∩ dom (G+)

}
.

ukn(x) → u∗(x)

u∗(x) ∈ prox L−1g

(
1

L
(Lu∗(x) − ∇f (u∗)(x))

)
f.a.a. x ∈ I� .

zkn (x) ∈ B𝜖(z̄) ∩ dom (G+).

lim
n→+∞

ukn+1(x) = lim
n→+∞

G
+(zkn (x)) = G

+( lim
n→+∞

zkn (x)) = G
+(z(x)).
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4.5 � Strong convergence of iterates

Many optimal control problems of type (P) include a smooth cost functional of the 
form u →

�

2
‖u‖2

L2(Ω)
 , 𝛼 > 0 . In this section, we will consider the appearence of above 

regularization term as a special case and treat it explicitly in the convergence analy-
sis. This allows us to obtain almost everywhere and strong convergence of a subse-
quence. Let g̃ ∶ ℝ → ℝ satisfy Assumption B and consider a sequence of iterates 
computed by

Note, that we do not include the term �
2
‖u‖2

L2(Ω)
 into the functional f, as the deriva-

tive of this term is not completely continuous.
The solution to (4.13) is now given by

for almost every x ∈ Ω . All the analysis that was done in this section still applies in 
this case and all results can be transferred except for a possible change of notation. 
In particular, we adapt the set-valued map G ∶ ℝ ⇉ ℝ from Lemma  4.7 which is 
now defined by

In the following it will be essential that dom (g̃) is convex. Let us for simplicity 
assume dom (g̃) = [−b, b] with b ∈ (0,+∞] , i.e., the subproblem (4.13) is equivalent 
to a box constrained optimization problem with the constraint |u(x)| ≤ b for almost 
every x ∈ Ω . To obtain strong convergence of iterates in L1(Ω) and a L-stationary 
condition almost everywhere, we need to put stronger and more restricting assump-
tions on g̃ . To this end, we introduce the following extension of Assumption B.

���������� �+

 
	(B6)	 Ω has finite Lebesgue measure.
	(B7)	 g(u) = 𝛼

2
u2 + g̃(u) with 𝛼 > 0 and g̃ satisfies Assumption B.

	(B8)	 dom (g̃) = [−b, b] with b ∈ (0,+∞].
	(B9)	 For all s > 0 there is uI ∶= uI(s) ∈ (0, b) such that u ↦

1

2
u2 + sg̃(u) is strictly 

convex on [uI , b].

In the rest of this section, we will assume that Assumption B+ is satis-
fied. The goal is to express G in terms of single-valued continuous mappings 
G+,G− ∶ L2(Ω) → L2(Ω) , which will be derived below. Here, (B7)–(B9) are used 

(4.13)

uk+1 ∈ argmin
u∈L2(Ω)

f (uk) + ∇f (uk) ⋅ (u − uk) +
L

2
‖u − uk‖2L2(Ω)

+
𝛼

2
‖u‖2

L2(Ω)
+ ∫Ω

g̃(u(x)) dx.

uk+1(x) ∈ prox 1

L+𝛼
g̃

(
1

L + 𝛼
(Luk(x) − ∇f (uk)(x))

)

u ∈ G(z) ∶⟺ u ∈ argmin
v∈ℝ

−zv +
L

2
(v − u)2 +

𝛼

2
v2 + g̃(v).
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to prove a corresponding result for the scalar-valued case, while (B6) is necessary to 
lift this to the L2(Ω)-case. Let us start with the following observation.

Lemma 4.24  Let s0 , u0(
1

L+�
) , q0(

1

L+�
) be as in Theorem 3.7, and let uI(

1

�
) be as in 

(B9). Assume u0(
1

L+�
) ≥ uI(

1

�
) and 1

L+𝛼
> s0 . Then the following statements are true:

(1)	 If u > 0 and u ∈ G(z) for some z ∈ ℝ then

(2)	 Similarly, if u < 0 and u ∈ G(z) for some z ∈ ℝ then

Proof  Set u0 ∶= u0(
1

L+�
) and uI ∶= uI(

1

�
) . Let us discuss the case u ≥ u0 only. If 

u ∈ G(z) for some z ∈ ℝ , then by definition of G and Theorem 3.7, u ≥ u0 ≥ uI . This 
implies

Due to (B9), u ↦
1

2
u2 +

1

𝛼
g̃(u) is strictly convex on [uI , b] and therefore also (4.14) is 

a strictly convex optimization problem. In addition, all involved functions are con-
tinuous on (uI , b) by Assumption B+ . Hence, u can be characterized in terms of the 
convex subdifferential by

where g̃𝛼(u) ∶=
𝛼

2
u2 + g̃(u).

Using again the convexity (B9), u is optimal to

which is the claim. 	�  ◻

Let �+
k
,�−

k
 be as in (4.11). Recall the result of Corollary  4.19: �+

k
→ �+ and 

�−
k
→ �− in L1(Ω) and pointwise almost everywhere for some characteristic func-

tions �+,�−.

Lemma 4.25  Let s0 , u0(
1

L+�
) , q0(

1

L+�
) as in Theorem 3.7. Suppose u0(

1

L+�
) ≥ uI(

1

�
) 

and 1

L+𝛼
> s0.

u = argmin
v∈[uI (

1

𝛼
),b]

−zv +
𝛼

2
v2 + g̃(v).

u = argmin
v∈[−b,−uI (

1

𝛼
)]

−zv +
𝛼

2
v2 + g̃(v).

(4.14)
u = argmin

v∈ℝ

−zv +
L

2
(v − u)2 +

𝛼

2
v2 + g̃(v)

= argmin
v∈[uI ,b]

−zv +
L

2
(v − u)2 +

𝛼

2
v2 + g̃(v).

0 ∈ −z + 𝜕g̃𝛼(u),

min
v∈[uI ,b]

−zv + g̃𝛼(v),
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Assume uk+1 is a global solution to (4.13) with |uk+1(x)| ≥ u0(
1

L+�
) for almost all 

x ∈ Ik+1 . Then there are continuous mappings G+,G− ∶ L2(Ω) → L2(Ω) such that

with zk ∈ L2(Ω) defined as in (4.8). These mappings G+,G− are independent of L.

Proof  Throughout the proof, we use uI ∶= uI(
1

�
) . Note that 𝛼 > 0 by (B7). Let us 

consider the case uk+1(x) > 0 first. By Lemma  4.24, we have 
uk+1(x) ∈ prox +

𝛼−1g̃

(
zk(x)

𝛼

)
 , where we define the set prox +

𝛼−1g̃
(z) for z ∈ ℝ

The latter optimization problem is convex by (B9) and therefore uniquely solvable. 
Thus, prox +

𝛼−1g̃
(z) is single-valued for all z ∈ ℝ . By Lemma 3.2, prox +

𝛼−1g̃
 is outer 

semicontinuous on ℝ and monotonically increasing. Let us prove its local bounded-
ness. We have for u ∈ prox +

𝛼−1g̃
(z) by optimality

Using g̃(u) ≥ 0 and −zu ≥ −
1

4
u2 − z2 , we find

i.e., prox +
𝛼−1g̃

 is locally bounded. Then by [24, Corollary 5.20], prox +
𝛼−1g̃

 is a single-
valued and continuous function on ℝ and it holds

Similarly, we obtain

where the set prox −
𝛼−1g̃

(z) for z ∈ ℝ is defined by

Let us define G+,G− ∶ L2(Ω) → L2(Ω) by

for z ∈ L2(Ω) , respectively. Then by a well-known result, see e.g. [1, Theorem 3.1], 
the superposition operators G+ and G− are continuous from L2(Ω) → L2(Ω) due to 

uk+1 = �+
k+1

G+
( zk
�

)
+ �−

k+1
G−

( zk
�

)
,

u ∈ prox +
𝛼−1g̃

(z) ∶⟺ u ∈ argmin
v∈[uI ,b]

−zv +
1

2
v2 + 𝛼−1g̃(v).

−zu +
1

2
u2 + 𝛼−1g̃(u) ≤ −zuI +

1

2
u2
I
+ 𝛼−1g̃(uI).

(4.15)
1

4
u2 ≤ z2 − zuI +

1

2
u2
I
+ 𝛼−1g̃(uI),

𝜒+
k+1

(x)uk+1(x) = 𝜒+
k+1

(x) prox +
𝛼−1g̃

(
1

𝛼
zk(x)

)
.

𝜒−
k+1

(x)uk+1(x) = 𝜒−
k+1

(x) prox −
𝛼−1g̃

(
1

𝛼
zk(x)

)
,

u ∈ prox −
𝛼−1g̃

(z) ∶⟺ u ∈ argmin
v∈[−b,−uI ]

−zv +
1

2
v2 + 𝛼−1g̃(v).

G+(z)(x) ∶= prox +
𝛼−1g̃

(z(x)) and G−(z)(x) ∶= prox −
𝛼−1g̃

(z(x))
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the growth condition (4.15), where we have used that Ω has finite measure by (B6). 	
� ◻

Now, we are able to prove strong convergence of a subsequence of (uk) follow-
ing the proof of [27, Thm. 3.17].

Theorem  4.26  Suppose complete continuity of ∇f  and let (uk) ⊂ L2(Ω) be a 
sequence generated by solving the corresponding subproblems 4.13 with weak limit 
point u∗ . Under the same assumptions as in Lemma 4.25, u∗ is a strong sequential 
limit point of (uk) in L1(Ω).

Proof  By Lemma  4.25 there exist continuous mappings G+,G− ∶ L2(Ω) → L2(Ω) 
such that uk+1 = �+

k+1
G+

(
1

�
zk

)
+ �−

k+1
G−

(
1

�
zk

)
 . Let ukn ⇀ u∗ in L2(Ω) . By Theo-

rem  4.5 and complete continuity of ∇f  , we obtain strong convergence of the 
sequence

in L2(Ω) and ukn+1 ⇀ u∗ in L2(Ω) . In addition, we have by 4.19, �+
kn
→ �+ and 

�−
kn
→ �− in Lp(Ω) for all p < +∞ , respectively. Hence, the convergence

in L1(Ω) follows by Hölder’s inequality. Since strong and weak limit points coincide, 
it follows ukn → u∗ in L1(Ω) and

	�  ◻

With the assumptions in Theorem 4.26 we can find an almost everywhere con-
verging subsequence of iterates, i.e., ukn(x) → u∗(x) for almost every x ∈ Ω . By 
the closedness of the mapping prox sg̃ , we get

i.e., u∗ is L-stationary to the problem in almost every point. In the case L = 0 , (4.16) 
is equivalent to

Hence, in this case u∗ satisfies the Pontryagin maximum principle.

zkn ∶= −
(
∇f (ukn ) + L(ukn+1 − ukn)

)
→ −∇f (u∗) =∶ z∗

ukn+1 = �+
kn+1

G+
(
1

�
zkn

)
+ �−

kn+1
G−

(
1

�
zkn

)
→ �+G+

(
1

�
z∗
)
+ �−G−

(
1

�
z∗
)

u∗ = �+G+
(
z∗

�

)
+ �−G−

(
z∗

�

)
.

(4.16)u∗(x) ∈ prox 1

L+𝛼
g̃

(
1

L + 𝛼
(Lu∗(x) − ∇f (u∗)(x))

)
f.a.a. x ∈ Ω,

u∗(x) ∈ argmin
u∈ℝ

f (uk)(x)u(x) +
𝛼

2
|u(x)|2 + g̃(u(x)) f.a.a. x ∈ Ω.
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4.6 � The proximal gradient method with variable step‑size

The convergence results of this section require the knowledge of the Lipschitz 
modulus Lf  of ∇f  . This can be overcome by replacing the assumption L > Lf  by a 
suitable decrease condition.

Here we use the back-tracking algorithm from [5, Section 10.3.3]. Let us define 
(compare (4.3)) the set-valued map TL ∶ L2(Ω) ⇉ L2(Ω) by

Algorithm 4.27  (Proximal gradient with variable step-size) Choose 𝜂 > 0 , L0 > 0 , 
𝜃 > 1 , and u0 ∈ L2(Ω) . Set k = 0 . 

(1)	 Set Lk ∶= L0�
j and uk+1 ∶= uk+1,j , where j is the smallest non-negative integer, 

for which with uk+1,j ∈ TL0�j(uk) the decrease condition 

 is satisfied.
(2)	 Set k ∶= k + 1 , repeat.

Under Assumption  A, the back-tracking strategy in step 1 of the algorithm 
above terminates after finitely many steps, as L0�j − Lf ≥ � for j large enough, 
compare also (4.6).

For the question on how to choose the minimizers uk+1,j ∈ TL0�j(uk) in the case 
of non-uniqueness, we refer to Remark 4.3.

The basic convergence result of Theorem 4.5 carries over to the variable step-
size situation with the following modifications: The assumption 1∕L > s0 has to 
be replaced by (lim supLk)

−1 > s0 . The assumption L > Lf  is no longer necessary, 
it was used in the proof of Theorem 4.5 to prove (4.6), which has to be replaced 
by the decrease condition (4.17). The remaining convergence theory of Chapter 4 
is much more technical to transfer, and will be discussed in a future publication.

5 � Applications of the proximal gradient method

5.1 � Optimal control with Lp control cost, p ∈ (0, 1)

In [27], the discussed proximal method was analyzed and applied to optimal con-
trol problems with L0 control cost, i.e., g(u) ∶= �

2
u2 + |u|0 . In this section, we dis-

cuss the problem with g(u) ∶= �

2
u2 + �|u|p + �[−b,b](u) , p ∈ (0, 1) , b ∈ (0,+∞] and 

consider

TL(u)(x) ∶= prox L−1g

(
1

L
(Lu(x) − ∇f (u)(x))

)
.

(4.17)�‖uk+1,j − uk‖2L2(Ω) ≤ (f (uk) + j(uk)) − (f (uk+1,j) + j(uk+1,j))
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s.t.

with 𝛼 ≥ 0, 𝛽 > 0 . Ω is assumed to have finite Lebesgue measure. In terms of (4.13) 
with g̃(u) ∶= |u|p + 𝛿[−b,b](u), the subproblem

has to be solved in every iteration of Algorithm 4.1.
Similarly to Lemma 4.2, one can prove that uk+1 is a solution to (5.2) if and only 

if

A visualization of the prox-map of g̃ is given below in Fig. 2. Due to Theorem 3.7 it 
holds uk+1(x) = 0 or |uk+1(x)| ≥ u0 for all k.

The particular choice of g allows us to compute the constant u0 explicitly as a 
consequence of Lemma 3.6. By solving min

u≠0
u

2
+

𝛽

L+𝛼

g̃(u)

u
 we get

Moreover, we observe that with a suitable choice of parameters L and � , Assump-
tion B+ is satisfied such that we are able to apply Theorem 4.26 to the Lp problem to 
obtain a strongly convergent subsequence.

(5.1)min
u∈L2(Ω)

f (u) +
�

2
‖u‖L2(Ω) + � ∫Ω

�u(x)�p dx

u ∈ Uad ∶= {u ∈ L2(Ω) ∶ |u(x)| ≤ b a.e. in Ω}

(5.2)

min
u∈Uad

f (uk) + ∇f (uk)(u − uk) +
L

2
‖u − uk‖2L2(Ω) +

�

2
‖u‖L2(Ω) + � ∫Ω

�u(x)�p dx

(5.3)uk+1(x) ∈ prox 𝛽

L+𝛼
g̃

(
1

L + 𝛼
(Luk(x) − ∇f (uk)(x))

)
f .a.a.x ∈ Ω.

u0

(
�

� + L

)
= min

(
b,

(
� + L

2�(1 − p)

) 1

p−2

)
.

Fig. 2   The mapping prox sg̃(q) for parameters (s, b, p) = (0.5, 2, 0.5) (left) and (s, b, p) = (3, 2, 0.3) (right) 
with g̃(u) ∶= |u|p + 𝛿[−b,b]
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Corollary 5.1  Let 𝛼 > 0 and (uk) a sequence of iterates. Furthermore, assume 
L ≤ (

2

p
− 1)� . Then the assumptions of Theorem 4.26 are satisfied. If in addition ∇f  

is completely continuous from L2(Ω) to L2(Ω) , then every weak sequential limit point 
u∗ ∈ L2(Ω) is a strong sequential limit point in L1(Ω).

Proof  Let k ∈ ℕ . It holds |uk+1(x)| ≥ u0 with u0 ∶= min

(
b,
(

�+L

2�(1−p)

) 1

p−2

)
 on Ik+1 . A 

short calculation yields that the assumptions on the parameters imply

Here, uI is the positive point of inflection of

and it holds that u ↦
1

2
u2 +

�

�
|u|p is convex for all q ∈ ℝ on [uI ,+∞) and (−∞, uI) , 

respectively, which corresponds to (B9). The claim now follows by Lemma 4.25 and 
Theorem 4.26. 	�  ◻

5.2 � Optimal control with discrete‑valued controls

Let us investigate the optimization problem with optimal control taking discrete val-
ues. That is, we choose g(u) as the indicator function of integers, i.e., g ∶= �

ℤ
 . The 

problem (P) now reads

Note, this choice satisfies (B3.c). Applying Algorithm 4.1, the subproblem to solve 
is given by

and can be solved pointwise and explicitly. The analysis carried out in Chapter 4 is 
applicable. The special choice of g comes along with the following desirable result.

Lemma 5.2  Let uk, uk+1 ∈ Uad be consecutive iterates of Algorithm 4.1. Then

holds for all p ∈ [1,+∞).

Proof  The claim follows directly, since either |uk+1(x) − uk(x)| = 0 or 
|uk+1(x) − uk(x)| ≥ 1 as the iterates are integer-valued in almost every point. 	�  ◻

(
� + L

2�(1 − p)

) 1

p−2 ≥
(

�

�p(1 − p)

) 1

p−2

=∶ uI .

min
u∶|u|≤b−zk(x)u +

�

2
u2 + �|u|p

(5.4)min
u∈L2(Ω)

f (u) + ∫Ω

�
ℤ
(u(x)) dx.

(5.5)min
u∈L2(Ω)

f (uk) + ∇f (uk)(u − uk) +
L

2
‖u − uk‖2L2(Ω) + ∫Ω

�
ℤ
(u(x)) dx

‖uk+1 − uk‖
p

Lp(Ω)
≥ ‖uk+1 − uk‖L1(Ω)
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Lemma 5.2 implies strong convergence of iterates (uk) in L1(Ω).

Theorem 5.3  Let (uk) be a sequence generated by Algorithm  4.1 with weak limit 
point u∗ . Then uk → u∗ in L1(Ω).

Proof  As in the proof of Theorem 4.5, we get

and therefore by Lemma 5.2

Thus, (uk) is a Cauchy sequence in L1(Ω) and therefore convergent in L1(Ω) and it 
holds uk → u∗ . 	�  ◻

Corollary 5.4  Let g = �
ℤ
 . Then under the assumptions of Theorem  4.20, 

u∗(x) ∈ G(−∇f (u∗)(x)) holds for almost all x ∈ Ω , i.e., u∗ is L-stationary.

Proof  The proof follows by passing to the limit in the inclusion (4.7). 	�  ◻

Let us mention some references that address optimal control problems with dis-
crete valued controls. In [20], the constraint u(x) ∈ ℤ ∩ [0,N] for some N > 0 is 
replaced by u(x) ∈ [0,N] . Then the resulting convex optimization problem is solved 
globally. Using a special algorithm, a sequence of discrete-valued controls is con-
structed that converges weakly to the solution of the relaxed problem. In [13] a 
penalization of the constraint u(x) ∈ ℤ ∩ [0,N] is used and convexified. In both ref-
erences [13, 20], the underlying partial differential equation is assumed to be linear. 
In [13], the function that corresponds to f in our paper is assumed to be quadratic in 
[13], while in [20] it is assumed that the global solution of the relaxed problem can 
be computed. These assumptions rule out the situation that f is non-convex. Another 
approach is taken in [10]. There the cost functional is assumed to be linear with a 
semilinear elliptic state equation such that the control-to-state map is concave, which 
is a very restrictive setting, too. The control is assumed to be in a bounded subset of 
ℤ

n . In these references, finiteness of the admissible set enters the algorithms in an 
essential way, so that it is not clear how these results can be generalized to u(x) ∈ ℤ.

6 � Numerical experiments

In this section, we apply the proximal gradient method with variable step-size, Algo-
rithm 4.27, to optimal control problems of type (P) and carry out numerical experi-
ments for cost functionals with different g.

Let us introduce the reduced tracking-type functional

+∞�

k=1

‖uk+1 − uk‖2L2(Ω) < +∞

+∞�

k=1

‖uk+1 − uk‖L1(Ω) ≤
+∞�

k=1

‖uk+1 − uk‖2L2(Ω) < +∞
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where Sl is the weak solution operator of the linear Poisson equation

Clearly, f is Fréchet differentiable, and ∇f (u) is linear in u. So Assumption  A is 
satisfied.

We choose Ω ∶= (0, 1)2 to be the underlying domain in all following examples. 
To solve the partial differential equation, the domain is divided into a regular trian-
gular mesh, and the PDE (6.2) is discretized with piecewise linear finite elements. 
The controls are discretized with piecewise constant functions on the triangles. The 
finite-element matrices were created with FEnicCS [19]. If not mentioned other-
wise, the mesh-size is approximately h =

√
2∕160 ≈ 0.00884.

To determine the parameter Lk in each iteration, we use Algorithm  4.27 intro-
duced in Sect.  4.6. This ensures decreasing objective values during the iterations. 
For all our tests we choose

The stopping criterion is as follows:

If |f (uk+1) + j(uk+1) − (f (uk) + j(uk))| ≤ 10−12 :    STOP.

First, we consider control problems with Lp control cost, which were investigated in 
Sect. 5.1, i.e., g(u) ∶= |u|p + �[−b,b] with p ∈ (0, 1).

Example 1  Let g(u) ∶= |u|p + �[−b,b] for p ∈ (0, 1) and find

Setting Uad ∶= {u ∈ L2(Ω) ∶ |u(x)| ≤ b a.e. on Ω} the problem is equivalent to

The first example is taken from [27], where the proximal gradient algorithm was 
investigated for (sparse) optimal control problems with L0(Ω) control cost. Since 
∫
Ω
|u|p dx → ∫

Ω
|u|0 dx as p ↘ 0 , we expect similar solutions. We choose the same 

problem data as in [18, 27]. That is, if not mentioned otherwise,

and � = 0.01, � = 0.01, b = 4.

A computed solution for p = 0.8 is shown in Fig. 3.

Let us comment on how we solved the subproblems (5.2) in practice to obtain 
the next iterate uk+1 . Recall that uk+1(x) is given by the global solution to the scalar-
valued problem

(6.1)fl(u) ∶= ‖Slu − yd‖2L2(Ω),

(6.2)−Δy = u in Ω, y = 0 on �Ω.

� = 10−4, � = 2.

min
u∈L2(Ω)

J(u) ∶= fl(u) + ‖u‖2
L2(Ω)

+ � ∫Ω

g(u(x)) dx.

min
u∈Uad

fl(u) + ‖u‖2
L2(Ω)

+ � ∫Ω

�u(x)�p dx.

yd(x, y) = 10x sin(5x) cos(7y)
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which cannot be computed explicitly in general for p ∈ (0, 1) . In our tests, we used a 
simple gradient method. Its convergence can be guaranteed, since it can be easily 
determined on which interval the function above is convex, and whether its  
global minimum is at zero. Within the gradient method we use the standard  
Armijo backtracking to determine the step-size. It is stopped if the associated  
gradient of the minimization problem falls below 10−6 . In case that 
prox 𝛽

L+𝛼
g̃

(
1

L+𝛼
(Luk(x) − ∇f (uk)(x))

)
 is multivalued, we choose uk+1(x) = 0 . Note 

that, due to the monotonicity of g̃ , this is only the case if 
|||

1

L+�
(Luk(x) − ∇f (uk)(x))

||| = q0 for some q0 > 0 , compare also Lemma 3.6 and Theo-
rem 3.7. Here, it holds prox 𝛽

L+𝛼
g̃

(
q0
)
= {0, u0} . In the discretized problem, control 

functions are piecewise constant. Then the minimization in (5.2) decouples into 
independent minimization problems for each coefficient of the discretized control.

Convergence for decreasing p values In the following we consider solutions 
for different values of p. We use the same data and discretization as above. We set 
L0 = 0.0001.

In Table  1 it can be seen that J(u∗) and jp(u) ∶= ∫Ω

|u∗|pdx converge for 

decreasing values of p. The last row in Table 1 shows the result of applying the 
iterative hard-thresholding algorithm IHT-LS from [27] to the problem with 
p = 0 , which is in agreement with our expectation. In the implementation we 
used a mesh-size of h =

√
2∕500 ≈ 0.0028.

In this table as well as the following ones, the column “ #pde solves” refers 
to the number of pde solves, which where performed during all iterations. It 
includes additional pde solves due to the backtracking procedure. Hence, it can be 
interpreted as a measure of the computational effort.

min
|u|≤b∇f (uk)(x)u +

L

2
(u − uk(x))

2 +
�

2
u2 + �|u|p,

Fig. 3   Solution u 
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Discretization Next, we solved the problem on different levels of discretization to 
investigate their influence. Here, we used p = 0.5 and L0 = 0.0001 . As can be seen 
in Table 2 the algorithm appears to be mesh independent.

Convergence in the case L > (2∕p − 1)𝛼 So far, in every experiment the assump-
tion on the parameters was naturally satisfied, such that strong convergence of iter-
ates can be proven according to Theorem 5.1. The numerical results confirmed the 
theory. We will now investigate the case where the assumption is not satisfied, i.e., 
we choose parameters such that L > (2∕p − 1)𝛼 . In the following we present the 
result for the problem parameters

Furthermore, we set b = 6 . In our computations the algorithm needed very long to 
reach the stopping criteria |J(uk+1) − J(uk)| ≤ 10−12 as can be seen in Table 3. This 
might be due to the parameter choice and the step-size strategy. For smaller mesh-
sizes more iterations are needed.

Recall, the problem in the analysis that comes with this choice of parameters is 
that the map G in Lemma 4.7 is not necessarily single-valued anymore on the set 
of points where an iterate is not vanishing, see also Fig. 1. Let uI ∶= uI(𝛽∕𝛼) > 0 
denote the constant from (B9) and define the set

� = 0.001, p = 0.9, L0 = 0.005.

Table 1   Decreasing values of p  p J(u∗) jp(u
∗) #pde solves

0.5 5.3831 0.6711 15
0.3 5.3819 0.5725 15
0.1 5.3808 0.4841 15
0.01 5.3804 0.4482 15
0.001 5.3804 0.4448 15
0 5.38034 0.4445 15

Table 2   Influence of mesh-size h J(u∗) jp(u
∗) #pde solves

0.071 5.2239 0.6371 13
0.035 5.3429 0.6581 15
0.0177 5.3732 0.6686 15
0.00884 5.3808 0.6704 15
0.00442 5.3827 0.6710 15
0.00221 5.3832 0.6711 15

Table 3   Performance for bad 
choice of parameters across 
different mesh-sizes

h J(u∗) jp(u
∗) #pde solves

0.00884 5.3567 1.1246 395
0.00442 5.3567 1.1247 601
0.00221 5.3567 1.1253 821
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Then ΩI,k is the set of points for which the crucial assumption in Lemma 4.25, which 
implies the decomposition of G ⧵ {0} into single-valued mappings G+,G− , is not 
satisfied. In our numerical experiments, however, we made the observation that the 
measure of the set ΩI,k is decreasing as k → +∞ , see Fig. 4. Across different mesh-
sizes h the measure decreases and tends to zero along the iterations.

Unfortunately, we were not able to prove such a behavior in the analysis and 
have no theoretical evidence whether this can be expected in general. However, 
assuming

based on our numerical result, strong convergence of the sequence (uk) can be con-
cluded similar to Theorem 4.26.

Example 2  Let us now consider the problem

with g(u) = |u|p , p ∈ (0, 1) . with a semilinear PDE. Here, fsl is given by the stand-
ard tracking type functional u ↦ ‖yu − yd‖2L2(Ω) , where yu is the solution of the semi-
linear elliptic state equation

As argued in Sect.  2.2, Assumption  A is satisfied for this example as well. This 
example can be found in [12] for semilinear control problems with L1-cost. The data 

ΩI,k ∶= {x ∈ Ω ∶ 0 < |uk(x)| < uI}.

|ΩI,k| → 0

min
u∈Uad

fsl(u) + ‖u‖2
L2(Ω)

+ � ∫Ω

g(u(x)) dx

−Δy + y3 = u in Ω, y = 0 on �Ω.

Fig. 4   Measure of ΩI,k at iteration k for different discretization levels
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is given by � = 0.002 , � = 0.03 , b = 12 and yd = 4 sin(2�x1) sin(�x2)e
x1 . We use the 

parameter L0 = 0.001 (Fig. 5).

We made similar observations as in the case of a linear PDE concerning the influ-
ence of discretization and different values of p.

Example 3  In this last test, we consider the following linear elliptic optimal control 
problem with discrete-valued controls:

with fl given in (6.1) and g(u) ∶= �
ℤ
(u). The subproblem in Algorithm 4.27 can be 

solved pointwise and explicitly by computing

where prox �
ℤ

 is given by rounding. In the case that above minimization problem is 
not uniquely solvable, we choose uk+1(x) as the minimizer with the smallest absolute 
value, i.e., we round towards zero. In Fig. 6, a solution plot of the optimal control is 
displayed. We adapted again the setting from Example 1 and used exactly the same 
problem data as before in Example 1, but set b = 2 and L0 = 0.001 . Again, we find 
the algorithm is robust with respect to the discretization in the sense of Table 2.

(6.3)min
u∈Uad

fl(u) +
�

2
‖u‖2

L2(Ω)
+ ∫Ω

g(u) dx

uk+1(x) = argmin
u∈[−b,b]∩ℤ

∇f (uk)(x) +
L

2
(u − uk(x))

2 +
�

2
u2,

Fig. 5   Solution u of the semi-
linear optimal control problem 
with g(u) ∶= |u|0.5
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