
Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-021-06023-5

1 3

Density‑based weighting for imbalanced regression

Michael Steininger1   · Konstantin Kobs1 · Padraig Davidson1 · Anna Krause1 · 
Andreas Hotho1

Received: 22 November 2020 / Revised: 23 April 2021 / Accepted: 16 June 2021 
© The Author(s) 2021

Abstract
In many real world settings, imbalanced data impedes model performance of learning algo-
rithms, like neural networks, mostly for rare cases. This is especially problematic for tasks 
focusing on these rare occurrences. For example, when estimating precipitation, extreme 
rainfall events are scarce but important considering their potential consequences. While 
there are numerous well studied solutions for classification settings, most of them can-
not be applied to regression easily. Of the few solutions for regression tasks, barely any 
have explored cost-sensitive learning which is known to have advantages compared to 
sampling-based methods in classification tasks. In this work, we propose a sample weight-
ing approach for imbalanced regression datasets called DenseWeight and a cost-sensitive 
learning approach for neural network regression with imbalanced data called DenseLoss 
based on our weighting scheme. DenseWeight weights data points according to their tar-
get value rarities through kernel density estimation (KDE). DenseLoss adjusts each data 
point’s influence on the loss according to DenseWeight, giving rare data points more influ-
ence on model training compared to common data points. We show on multiple differently 
distributed datasets that DenseLoss significantly improves model performance for rare data 
points through its density-based weighting scheme. Additionally, we compare DenseLoss 
to the state-of-the-art method SMOGN, finding that our method mostly yields better per-
formance. Our approach provides more control over model training as it enables us to 
actively decide on the trade-off between focusing on common or rare cases through a single 
hyperparameter, allowing the training of better models for rare data points.

Keywords  Imbalanced regression · Cost-sensitive learning · Sample weighting · Kernel-
density estimation · Supervised learning

Editors: Annalisa Appice, Sergio Escalera, Jose A. Gamez, Heike Trautmann.

 *	 Michael Steininger 
	 steininger@informatik.uni-wuerzburg.de

Extended author information available on the last page of the article

http://orcid.org/0000-0002-3102-481X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06023-5&domain=pdf


	 Machine Learning

1 3

1  Introduction

Many machine learning algorithms, like neural networks, typically expect roughly 
uniform target distributions  (Cui et al. 2019; Krawczyk 2016; Sun et al. 2009). In the 
case of classification that means that there are similar numbers of examples per class. 
For regression there should be a similar density of samples across the complete target 
value range. However, many datasets exhibit skewed target distributions with target val-
ues in certain ranges occurring less frequently than others. Consequently, models can 
become biased, leading to better performance for common cases than for rare cases (Cui 
et al. 2019; Krawczyk 2016). This is particularly problematic for tasks where these rare 
occurrences are of special interest. Examples include precipitation estimation, where 
extreme rainfall is rare but can have dramatic consequences, or fraud detection, where 
rare fraudulent events are supposed to be detected.

There are many solutions to this problem for classification tasks including resa-
mpling strategies  (Chawla et  al. 2002; He et  al. 2008) and cost-sensitive learning 
approaches (Cui et al. 2019; Huang et al. 2016; Wang et al. 2017). However, these can-
not be applied easily to regression tasks because of the inherent differences between 
continuous and discrete, nominal target values. Typical solutions to data imbalance 
require a notion of rarity or importance for a data point in order to know which data 
points to over- and undersample or which data points to weight more strongly. It is 
harder to define which values are rare for regression tasks in comparison to classifica-
tion tasks, since one cannot simply use class frequencies  (Branco et  al. 2017). Only 
few works explore methods improving model performance for rare cases in regression 
settings, mostly proposing sampling-based approaches  (Branco et  al. 2017; Krawczyk 
2016; Torgo et al. 2013). These can have disadvantages in comparison to cost-sensitive 
methods since the creation of new data points via oversampling of existing data points 
may lead to overfitting as well as additional noise, while undersampling removes infor-
mation  (Cui et  al. 2019; Dong et  al. 2017). The success of cost-sensitive learning for 
imbalanced classification tasks suggests that exploring this direction for imbalanced 
regression could also lead to better methods in this domain (Krawczyk 2016).

In this paper, we propose a sample weighting approach for imbalanced regression 
datasets called DenseWeight and, based on this, a cost-sensitive learning method for 
imbalanced regression with neural networks called DenseLoss. Our approach is visual-
ized in Fig. 1: (i) We approximate the density function of the training target values using 
KDE. (ii) The resulting density function forms the basis for calculating DenseWeight’s 
weighting function. (iii) DenseLoss assigns each data point in the training set a weight 
according to DenseWeight, increasing the influence of rare data points on the loss and 
the gradients. We introduce a single, easily interpretable hyperparameter, which allows 
us to configure to which extent we shift a model’s focus towards rare regions of the tar-
get variable’s distribution.

Our contributions are as follows: (i) We propose DenseWeight, a sample weight-
ing approach for regression with imbalanced data. (ii) We propose DenseLoss, a cost-
sensitive learning approach based on DenseWeight for neural network regression mod-
els with imbalanced data. (iii) We analyze DenseLoss ’s influence on performance for 
common and rare data points using synthetic data. (iv) We compare DenseLoss to the 
state-of-the-art imbalanced regression method SMOGN, finding that our method typi-
cally provides better performance. (v) We apply DenseLoss to the heavily imbalanced 



Machine Learning	

1 3

real world problem of downscaling precipitation, showing that it is able to significantly 
improve model performance in practice.

2 � Related work

Imbalanced data can in principle be tackled with data-level methods, algorithm-level meth-
ods, or a combination of both (Krawczyk 2016). Data-level methods typically over- and/
or undersample subsets of a dataset to balance the distribution. Algorithm-level methods 
modify existing learning algorithms to better cope with imbalanced data.

There are many solutions to data imbalance for classification tasks. Data-level methods 
for classification often create new samples for rare classes (oversampling) and/or remove 
samples of common classes (undersampling). Notable examples include ADASYN  (He 
et  al. 2008) and SMOTE  (Chawla et  al. 2002). Recently, KDE was used to estimate the 
feature distribution of minority classes (Kamalov 2020). New minority class samples are 
generated using the estimated feature distribution. In contrast to Kamalov (i) we use KDE 
to measure rarity on a continuous target domain and not to model features, (ii) we do not 
generate samples, and (iii) we devise our method for regression. Algorithm-level meth-
ods for classification typically involve cost-sensitive learning, where the loss of samples 
with rare classes is emphasized in the overall loss  (Cui et  al. 2019). Weighting is often 
based on the inverse class frequency as a measure of rarity (Huang et al. 2016; Wang et al. 
2017). We propose a conceptually similar method, but for regression instead of classifi-
cation. The continuous target variable of regression tasks makes it harder to determine a 
single sample’s rarity, preventing simple adaptations of existing cost-sensitive learning 
approaches (Branco et al. 2017).

While there is work on cost-sensitive learning for regression models, these 
approaches assign different costs to over- and underestimation respectively, regardless 
of a data point’s rarity  (Zhao et  al. 2011; Hernández-Orallo 2013). However, we are 
interested in exploring how cost-sensitive learning can be used to solve the problem 
of imbalanced datasets for regression tasks, for which only few works exist. There is 
a cost-sensitive post-processing technique called probabilistic reframing which adjusts 

Fig. 1   Given the target values of all training examples, we (i) compute a kernel density estimation (KDE) 
that approximates the target value distribution, (ii) calculate a weighting function from the resulting prob-
ability density function, and (iii) weight the loss for each data point in the training procedure



	 Machine Learning

1 3

estimates of previously built models to different contexts (Hernández-Orallo 2014). It 
would be feasible to apply this to imbalanced domains but it was not evaluated for this 
yet (Branco et al. 2016b). A cost-sensitive method for obtaining regression tree ensem-
bles biased according to a utility function is ubaRules (Ribeiro 2011) which is mostly 
used to estimate extreme values as accurately as possible. It is specific to regression tree 
ensembles while our proposal is designed for—but not restricted to—the use with neu-
ral networks. A metric that takes both rare, extreme samples and common samples into 
account for evaluating a model’s ability to predict extreme values is SERA (Ribeiro and 
Moniz 2020). SERA can be considered a loss function that is used for model selection 
and hyperparameter optimization but it is not incorporated in a learning method like 
DenseLoss.

Despite the lack of cost-sensitive approaches, there are sampling-based data-level meth-
ods which are applied during data pre-processing. One approach is SMOTE for regression 
(SmoteR) (Torgo et al. 2013), which is based on the original SMOTE method for classifi-
cation (Chawla et al. 2002). It combines undersampling of common data points and over-
sampling of rare cases, in order to create a more balanced distribution. The authors adjust 
SMOTE to work for regression domains by binning data points into relevant and irrelevant 
partitions using a relevance threshold tR and a relevance function � . They use an automatic 
method for obtaining � based on box plot statistics through which specific control points 
on the target domain are obtained. Each control point is a tuple (y,�(y),��(y)) , where ��(y)

—the derivative of relevance �(y)—is always set to 0, since control points are assumed 
to be local extrema of relevance. The relevance function � is then defined with piecewise 
cubic Hermite interpolation through these control points (Ribeiro 2011). Figure 2 shows a 
resulting � for data following a pareto distribution. This automatic method for obtaining 
� assumes that extreme values are rare, which is in contrast to our work, where rare val-
ues are automatically detected without such assumptions. Data points marked as relevant 
( 𝜙(y) > tR ) are oversampled, creating new synthetic cases via interpolation of features and 
target values between two relevant data points. Irrelevant data points are undersampled.

The SMOGN (Branco et al. 2017) algorithm builds on SmoteR and combines it with 
oversampling via Gaussian noise. For the latter, normally distributed noise is added to the 
features and the target value of rare data points, creating additional, slightly altered replicas 
of existing samples (Branco et al. 2016a). Rare data points are identified using the same 
method for obtaining a relevance function � used by SmoteR. SMOGN iterates over all 
rare samples and selects between SmoteR’s interpolation based oversampling and Gaussian 
noise based oversampling depending on the distance to the k-nearest neighbors. For small 
distances, SmoteR’s interpolation is applied, since interpolation is deemed more reliable 
for close samples. Other rare data points are oversampled with Gaussian noise. Common 
data points are randomly undersampled. The authors report improvements compared to 

Fig. 2   SmoteR and SMOGN’s 
relevance function � for pareto-
distributed data

0 50
y

0.00

0.02

0.04

0.06

p
(y
)

0.0

0.5

1.0

φ
(y
)



Machine Learning	

1 3

SmoteR (Branco et al. 2017). Because of this and a lack of other methods, SMOGN can be 
considered the state-of-the-art.

In contrast to these data-level methods, we propose an algorithm-level, cost-sensitive 
method for imbalanced regression called DenseLoss using our density-based weighting 
scheme DenseWeight. The concept of weighting data points based on the target value dis-
tribution is already present in prior work, e.g. in the automatic method for obtaining rel-
evance functions used by SMOGN, or in SERA. However, DenseWeight does not make 
assumptions about which cases are rare since it determines relative rarity with a density 
function. Contrary to SmoteR and SMOGN, DenseLoss does not explicitly change the 
dataset, e.g. by creating new samples.

3 � Method

In this section we introduce DenseWeight, our proposed sample weighting approach for 
imbalanced datasets in regression tasks, and DenseLoss, our cost-sensitive learning 
approach for imbalanced regression problems based on DenseWeight.

3.1 � DenseWeight

Our goal is to weight individual data points based on the rarity of their target values. Thus, 
we want to calculate a weight for each sample inversely proportional to the probability of 
the target value’s occurrence. This is similar to the relevance functions used by the resam-
pling approach SMOGN but we base our weighting directly on the target distribution’s den-
sity function instead of box plot statistics (Branco et al. 2017). We call our density-based 
weighting scheme DenseWeight. We design its weighting function fw so that the degree of 
weighting can be controlled by a hyperparameter � ∈ [0,∞) with the following properties. 

P.1	� Samples with more common target values get smaller weights than rarer samples.
P.2	� fw yields uniform weights for � = 0 , while larger � values further emphasize the 

weighting scheme. This provides intuition for the effects of �.
P.3	� No data points are weighted negatively, as models would try to maximize the differ-

ence between estimate and true value for these data points during training.
P.4	� No weight should be 0 to avoid models ignoring parts of the dataset.
P.5	� The mean weight over all data points is 1. This eases applicability for model optimi-

zation with gradient descent as it avoids influence on learning rates.

 These weights can theoretically be applied to any type of machine learning model that 
allows for sample weighting to allow fitting models better suited for the estimation of rare 
cases. We will use them for our cost-sensitive imbalanced regression approach for neural 
networks DenseLoss in this work. Next, we define how the rarity of a data point is meas-
ured, before designing the weighting function fw with these properties.

3.1.1 � Measure of rarity

In order to weight data points based on the rarity of their target values, we need a measure 
of rarity for fw . To this end we want to determine the target variable’s density function p. 
Values of density functions can be interpreted as relative measures of density, allowing the 



	 Machine Learning

1 3

distinction between rare and common value ranges (Grinstead and Snell 2012). To obtain 
density function p for a dataset with N data points and target values Y = {y1, y2,… , yN} , 
we approximate it with KDE, which is a non-parametric approach to estimating a density 
function (Silverman 1986):

with kernel function K and bandwidth h. Literature shows that the choice of kernel func-
tion is rather unimportant for KDE with only small differences between common kernel 
functions (Chen 2017), which is why we use Gaussian kernels. For bandwidth selection, 
we found that, in practice, the automatic bandwidth selection method Silverman’s rule (Sil-
verman 1986) produces density functions which follow the distributions well for the data-
sets used in this work. KDE allows calculating a density value per data point. Since it does 
not affect relative density information, we can normalize all data points’ density values in 
the training set to a range between 0 and 1:

where p(Y) is the element-wise application of p to Y.
This normalized density function p� ∈ [0, 1] provides intuitively interpretable values. 

For example, the data point in the most densely populated part of Y is assigned a value of 1, 
while the data point in the most sparsely populated part of Y is assigned a value of 0. Note 
that this normalization does not work for completely uniform data but there is no reason to 
apply DenseWeight with uniformly distributed data anyways.

3.1.2 � Weighting function

In this section, we introduce DenseWeight ’s final weighting function fw in a step wise 
manner. To this end, we use the normalized density function p′ , hyperparameter � , and a 
small, positive, real-valued constant � . Initially, we define a basic weighting function:

This function already satisfies properties P.1 and P.2, since −p� yields larger values for rare 
data points compared to more common data points and � scales p′ , controlling the strength 
of density-based weighting. Setting � = 0 has the intuitive effect of disabling density-based 
weighting, while � = 1 leads to the most common data point’s weight reaching 0 in this 
basic weighting function. Accordingly, all weights are positive for 𝛼 < 1 , while 𝛼 > 1 leads 
to negative weights for the most common data points. The defined behavior of the � values 
0 and 1 provides intuition for the choice of sensible values. However, there are still desired 
properties which f ′

w
 does not satisfy. For example, we want to avoid negative and 0 weights 

as described in properties P.3 and P.4. To this end, we clip f ′
w
 at the small, positive, real-

valued constant �:

Function f ′′
w

 satisfies all desired properties except for P.5. Using it for weighting a cost-
sensitive model optimization approach based on gradient descent like DenseLoss would 

(1)p(y) =
1

Nh

N
∑

i=1

K
(y − yi

h

)

(2)p�(y) =
p(y) − min(p(Y))

max(p(Y)) − min(p(Y))
,

(3)f �
w
(�, y) = 1 − �p�(y).

(4)f ��
w
(�, y) = max(1 − �p�(y), �).



Machine Learning	

1 3

influence the learning rate since � is scaling all gradients without any normalization. 
Changing � would also require a different learning rate if the magnitude of model param-
eter changes is to stay consistent. Finding a sensible learning rate would be tedious. Divid-
ing f ′′

w
 by its mean value over all data points of the training set corrects this. The mean 

weight becomes 1, preventing a change in the average gradients magnitude. This leads us 
to DenseWeight’s weighting function fw:

Figure  3 visualizes DenseWeight for a Gaussian distributed target variable. With 
increasing � , weight differences between common and rare data points are emphasized 
more strongly. Setting � = 1 yields a weighting function that barely reaches � for the most 
common data points. To push more of the common data points towards a weight of � , � can 
be increased beyond 1.

The most suitable � value for a specific task can be found by conducting a hyperparam-
eter study. DenseLoss ’s � allows for easy adjustment of the trade-off between focusing on 
common or rare parts of a dataset. Thus, there needs to be a definition (at least implicitly) 
for the meaning of performance regarding the task at hand, making it impossible to give a 
general rule for an optimal �.

3.2 � DenseLoss

In this work we focus on neural networks due to their broad applicability to both simple 
and complex regression problems through the use of either relatively small multilayer per-
ceptrons (MLPs) or large deep learning neural networks, respectively. Neural networks 
are typically optimized with gradient descent optimization algorithms that, given model 
estimates Ŷ = {ŷ1, ŷ2,… , ŷN} , aim to minimize a metric M that is incorporated into a loss 
function L for which we can apply sample weighting. When combining DenseWeight and 
sample weighting for loss functions we obtain a cost-sensitive approach for regression with 
imbalanced datasets, which we call DenseLoss:

(5)fw(�, y) =
f ��
w
(�, y)

1

N

∑N

i=1
f ��
w
(�, yi)

=
max(1 − �p�(y), �)

1

N

∑N

i=1
(max(1 − �p�(yi), �))

.

Fig. 3   DenseWeight for data 
sampled from a Gaussian 
distribution. With � = 0 each 
sample’s weight is 1. Higher � 
stretches the function, emphasiz-
ing density differences. For 𝛼 > 1 
(neglecting � ) the function is 
partly clipped to avoid negative 
weights

−20 0 20 40 60

y

0

1

2

3

4
fw(0.0, y)
fw(0.5, y)
fw(1.0, y)
fw(1.1, y)
p′(y)



	 Machine Learning

1 3

Weighting the loss per sample with DenseWeight affects the gradients’ magnitude cal-
culated based on each sample. Rarer samples yield larger gradients than more common 
samples even when the model’s estimates are equally good according to the chosen met-
ric. Thus, the gradients focus more on achieving best possible estimates for rare samples 
than for common samples. When updating model parameters with these gradients, this 
leads to models better suited for estimating rare samples. Similarly to cost-sensitive imbal-
anced classification methods weighting samples according to the inverse class frequency 
(Cui et al. 2019), DenseLoss is also cost-sensitive as it adapts the cost for rare samples in 
comparison to common samples according to the weights assigned by DenseWeight. In 
contrast to SMOGN, the state-of-the-art method for imbalanced regression, our approach 
works at the algorithm-level instead of the data-level. Weighting a loss function with 
DenseWeight is a very flexible approach in principle as it allows for optimization using any 
gradient descent optimization algorithm and any metric. Models trained with DenseLoss 
are expected to typically perform better for rare cases compared to models trained with 
uniform sample weights, as we show next.

4 � Experiments

We evaluate DenseWeight and DenseLoss with three experiments: a case study on synthetic 
data, a comparison to the state-of-the-art, and an application to a real world task. First, we 
examine with synthetic datasets how DenseLoss behaves for different � values and different 
distribution characteristics, validating that DenseLoss is working as designed. Second, we 
compare DenseLoss to the state-of-the-art imbalanced regression method SMOGN, show-
ing that our algorithm-level method can typically provide better performance for rare data 
points than SMOGN’s data-level approach. Finally, we apply DenseLoss to the real world 
task statistical downscaling of precipitation, proving that it can also work for larger data-
sets and more complex neural network architectures.

For all experiments, we use the library KDEpy’s convolution-based KDE implementa-
tion FFTKDE. It provides fast density estimation that can, however, only be evaluated on 
an equidistant grid (Odland 2019). Thus, for each training dataset we span a grid over the 
target range and assign each data point the density of the closest grid point. We use an 
equidistant grid with 4096 points, which is 4 times KDEpy’s default resolution, to avoid 
potential negative effects on our method due to low KDE accuracy. In general, the quality 
of the resulting density function with respect to the real target distribution can be limited 
by low quality training data with noisy outliers. While we did not encounter such prob-
lems in this work, careful data cleaning and tuning of the KDE may improve this for such 
datasets. To provide a small, positive value to DenseLoss ’s clipping constant � we set it to 
10−6 for all experiments. When we report significantly different results for the experiments, 
the statistical significance is calculated for the metrics on test datasets with the Wilcoxon 
signed-rank test (Wilcoxon 1945) and a significance level of 0.05. Our experiments’ code 
and data is available1.

(6)LDenseLoss(𝛼) =
1

N

N
∑

i=1

fw(𝛼, yi) ⋅M(ŷi, yi) .

1  https://​github.​com/​SteiMi/​densi​ty-​based-​weigh​ting-​for-​imbal​anced-​regre​ssion   

https://github.com/SteiMi/density-based-weighting-for-imbalanced-regression


Machine Learning	

1 3

4.1 � Case study with synthetic data

In this case study, we aim to validate the expectation that models trained with DenseLoss 
achieve improved performance in underrepresented parts of the dataset compared to a reg-
ular training procedure. To this end, we use four synthetic datasets with varying character-
istics: two heavy-tailed datasets, following a pareto (pareto) and a reversed pareto distribu-
tion (rpareto), respectively. Furthermore, we use a Gaussian dataset (normal) and a dataset 
built from two Gaussians with a sparse middle area (dnormal). Figure 4 shows their target 
distributions. We train models with DenseLoss and different � values to gain insight into 
the practical effects of different degrees of DenseWeight.

4.1.1 � Dataset creation

We use an MLP as a random function to generate synthetic datasets. This guarantees that 
the function can be learned again by an MLP in theory. Our network’s parameters are ini-
tialized with a standard Gaussian distribution. This network is provided with 200,000 sets 
of 10 features each. The features are also drawn from a standard Gaussian distribution. 
The network consists of 3 hidden layers with 10 neurons each and ReLU (Nair and Hinton 
2010) activation. The final hidden layer is connected to a single neuron with linear activa-
tion to obtain target values for a regression task. From the resulting 200,000 data points 
10,000 were sampled in such a way that there are uniformly distributed target values. This 
uniform dataset’s target values range from − 32.13 to 76.42. Then, for each dataset a prob-
ability density function is defined corresponding to the desired target distribution. 1000 

−20 0 20 40 60 80

y

0.000

0.005

0.010

0.015

0.020

0.025
p
(y
)

−20 0 20 40 60 80

y

0.000

0.005

0.010

0.015

0.020

0.025

p
(y
)

−20 0 20 40 60 80

y

0.00

0.02

0.04

0.06

p
(y
)

−20 0 20 40 60 80

y

0.00

0.02

0.04

0.06

p
(y
)

Fig. 4   Distribution of the target variable for each synthetic dataset



	 Machine Learning

1 3

data points are sampled from the uniform dataset weighted by the samples’ desired densi-
ties, creating the datasets pareto, rpareto, normal, and dnormal. Figure 4 visualizes their 
target variable distributions.

Each dataset is split randomly in a training (60%), validation (20%), and test (20%) set. 
The resulting splits are inspected to confirm that their target variables are similarly distrib-
uted. Otherwise it would be possible that sparsely sampled ranges in the target variable are 
not represented in a split through unfortunate random sampling.

4.1.2 � Experimental setup

To illustrate how DenseLoss affects model performance for underrepresented parts of data-
sets based on our weighting scheme DenseWeight, we conduct a parameter study to exam-
ine the effects of different � values. Therefore, we train models with � values ranging from 
0.0 to 2.0 with steps of 0.1. To strengthen confidence in the results of this experiment we 
train 20 model instances per � which are used for testing statistical significance with the 
Wilcoxon signed-rank test and a significance level of 0.05.

The MLP used is structurally equal to the data generator network. Thus, this model also 
consists of 3 hidden layers with 10 neurons each and ReLU activation as well as one neuron 
with linear activation for the output layer. Instead of initializing parameters from a standard 
Gaussian distribution, we use Kaiming Uniform initialization (He et al. 2015). DenseLoss 
is the loss function used in conjunction with the metric mean squared error (MSE). The 
model is trained with Adam optimization (Kingma and Ba 2014), a learning rate of 10−4 , 
and a weight decay coefficient of 10−9 . Training is run for at most 1000 epochs, but it is 
stopped early if the validation loss is not improving for 10 epochs in a row. This improves 
generalization performance (Prechelt 1998).

4.1.3 � Results

To evaluate model performance for separate parts of the target domain, we bin the test 
data points based on their target value. Each bin spans 20% of the target variable’s range in 
the test set. We rank these bins per dataset by the number of data points. The bin with the 
fewest (most) samples has bin rank 1 (5) and is called the least (most) common bin. This 
allows performance comparisons between similarly rare bins over all datasets. We calculate 
the root mean squared error (RMSE) and mean absolute error (MAE) for each individual 
model instance of the 20 instances per tested configuration.

Our MLP without DenseLoss achieves on average over the 20 runs RMSEs (MAEs) 
between 3.53 (2.70) and 6.75 (5.47) for the most common bins, i.e. bin rank 5, and between 
6.68 (6.26) and 27.10 (26.74) for the rarest bins, i.e. bin rank 1, across the synthetic data-
sets. We find that DenseLoss with, for example, � = 1.0 improves average RMSE (MAE) 
for the rarest bins by between 1.21 (1.48) and 7.02 (7.00) while increasing it for the most 
common bins by between 1.12 (0.90) and 1.68 (1.49).

Figure 5 visualizes the mean RMSE of models trained with different � values over all 
synthetic datasets for different bin ranks. DenseLoss typically improves performance in 
sparsely sampled bins (bin ranks 1–3) with a suitable � value. As expected, DenseLoss 
tends to reduce performance for bins with many samples (bin ranks 4 and 5). We find that 
most � values greater than 0 lead to improvements in rare bins. For example, for pareto all 
tested configurations with � ≥ 0.8 yielded improvements in the rarest bin and the same is 
true for all runs with � ≥ 0.2 for dnormal. For rpareto all runs with DenseLoss enabled 



Machine Learning	

1 3

( 𝛼 > 0.0 ) improved the rarest bin except for � = 1.5 and � = 1.6 , where performance 
dropped slightly. normal’s rarest bin is improved with 0.1 ≤ � ≤ 1.2 , which is discussed 
in the next paragraph. As described at the beginning of Sect. 4 we conduct statistical sig-
nificance tests to strengthen confidence in our results. When considering � = 1.0 , which 
seems to provide good performance for rare data points across all datasets, we find that the 
performance for the rarest bin has improved significantly compared to not using DenseLoss 
( � = 0.0 ) for each dataset. Bin rank 2 is improved significantly with � = 1.0 for normal and 
rpareto, while bin rank 3 is significantly better for normal and pareto. We also see with 
𝛼 > 1.0 that the performance for the most common bin deteriorates considerably for nor-
mal and dnormal, as the weight of more and more of these data points is pushed towards 
� . This effect is also noticeable in the other bin ranks albeit with reduced strength the rarer 
the bins get. Interestingly, this performance degradation seems less pronounced for both 
pareto datasets. We find very similar results with regards to the metric MAE.

Figure 6 shows detailed results for datasets normal and pareto. Bins are identified by bin 
rank and ordered to correspond to the dataset’s distribution plot at the top, thus visualizing 
RMSE and density from the lowest (left-most bin) to the highest target values (right-most 
bin). Setting � to around 1 provides improved performance for rare target ranges while only 
slightly reducing performance for common target ranges. For example, with � = 1.0 in 
pareto we observe an increase in RMSE of 1.68 in the most common bin with rank 5 and a 
drop in RMSE of 7.02 in the least common bin with rank 1. In general, error for samples in 
rare target ranges tends to decrease with increasing � while performance in common target 
ranges mostly deteriorates. For normal’s rarest bin with rank 1 too large � values ( � ≥ 1.4 ) 
also show performance degradation. We hypothesize that this can occur when the target 
range in the training set has very few data points and the neighboring, more common data 
points are assigned weights close to 0. In this case the model seems to struggle to learn a 

6

8

10

12

14

R
M
SE

normal
Bin Rank 1
Bin Rank 2
Bin Rank 3
Bin Rank 4
Bin Rank 5

5

10

15

20

25

30

dnormal

0.0 0.5 1.0 1.5 2.0

α

10

20

30

R
M
SE

pareto

0.0 0.5 1.0 1.5 2.0

α

5

10

15

20

25

rpareto

Fig. 5   Mean RMSE per � and bin rank over the synthetic datasets. Bins are ranked in each test set by sam-
ple size. Bins with rank 1 (5) contain the fewest (most) samples



	 Machine Learning

1 3

general function for the higher target ranges, because of the effectively small number of 
samples there.

Given the continuous nature of regression datasets it is also interesting to regard the per-
formance over the datasets’ target domains. To account for different distributions among 
the datasets for this evaluation we calculate the normalized density per test data point’s tar-
get value (as defined in Eq. 2) through KDE (same parameters as for DenseWeight’s KDE) 
on the target variable of its respective test dataset. In contrast to before, we do not use 
this normalized density to weight samples or train models but instead use it as a dataset-
independent metric for each sample’s rarity within its test dataset. This rarity thus provides 
us with a dataset-independent proxy of the target variable domains. It is independent from 
the rarity used during model training and does not influence the estimates for the test sam-
ples. Also, we calculate the MAE over the 20 runs for each test data point of each dataset. 
To enable a continuous evaluation over all datasets we normalize the MAE via division by 
the difference between the maximum and the minimum value of its respective test data-
set’s target variable. The normalized MAE in conjunction with the normalized densities 
allow us to plot Fig. 7 which visualizes the normalized MAE depending on the data point 
rarity across all datasets for regular training ( � = 0.0 ), DenseLoss ( � = 1.0 and � = 2.0 ), 
and also the state-of-the-art imbalanced regression method SMOGN. To account for the 
high variability and to improve interpretability we smoothed the plot by applying a mov-
ing mean with a windows size of 30 data points over the 800 total test data points. We find 
that DenseLoss with both � = 1.0 and � = 2.0 typically reduces error for very rare samples 
( ∼ p�(y) < 0.15 ). Performance with � = 2.0 deteriorates considerably for more common 
data points ( ∼ p�(y) > 0.4 ) while performance of � = 1.0 remains close to � = 0.0 up until 
around p�(y) > 0.75 where a gap emerges.

0.00

0.02

0.04

p
normal

2 4 5 3 1

Bin Rank

10

20

R
M
SE

0.00

0.02

0.04

pareto

5 4 2 3 1

Bin Rank

10

20

0.0
0.2

0.4
0.6

0.8
1.0

1.2
1.4

1.6
1.8

2.0

Fig. 6   Mean RMSE per test bin over 20 runs for datasets normal (left) and pareto (right). Bar charts show 
the density per bin in the test set. Line plots visualize the mean RMSE per test bin for the � values shown in 
the box at the figure’s bottom



Machine Learning	

1 3

While this experiment mainly analyzes DenseLoss in a controlled manner we also 
applied SMOGN to our synthetic datasets, finding mostly better performance for � = 1.0 
than SMOGN, when applying SMOGN as described in Sect. 4.2. Rare parts in pareto and 
rpareto were identified automatically; rare parts in normal and dnormal were identified 
manually, since the automatic method wrongly deemed all samples relevant. For normal 
and dnormal we used the control points (−10, 1, 0), (20, 0, 0), (50, 1, 0) and (0, 0, 0), (20, 1, 
0), (50, 0, 0), respectively. Resulting relevance functions are visualized in the “Appendix”. 
Since SMOGN’s automatic method for obtaining � only works for datasets where rare val-
ues are also extreme, it is not suited for dnormal. With our manual control points it is still 
not ideal as it incorrectly deems low target values as relevant, but it is substantially better 
than considering all data points relevant. normal’s manual � shows no such issues. When 
considering binned evaluation we find that DenseLoss with � = 1.0 performs significantly 
better than SMOGN for the rarest bin on all datasets except pareto.

This experiment confirms that DenseLoss allows shifting a model’s focus to rarer cases 
away from the cases it would have focused on with regular training. Inspecting the model 
performance across the target range with varying � values enables an informed choice for 
the trade-off between performance in common and rare cases. Thus, DenseLoss provides 
additional control over model training, allowing to fit models with better performance for 
rare data points.

4.2 � Comparison with state‑of‑the‑art

SMOGN can currently be considered the state-of-the-art method for imbalanced regres-
sion, as it has shown to be better than the other available method SmoteR  (Branco et al. 
2017). SMOGN’s authors present 20 imbalanced datasets in their paper. We apply both 
SMOGN and DenseLoss to those datasets and compare model performances. Neural net-
works trained without applying any method for imbalanced data are used as a baseline. 
To this end we apply both methods and the baseline to the 20 imbalanced datasets from 
SMOGN’s test section  (Branco et  al. 2017). We obtain the data from their repository2. 

0.0 0.2 0.4 0.6 0.8 1.0

p (y)

0.05

0.10

0.15

0.20

N
or
m
al
iz
ed

M
A
E

α = 0.0
α = 1.0
α = 2.0
SMOGN

Fig. 7   Normalized MAE for test samples from all synthetic datasets per normalized density. Graph is 
smoothed via moving mean (window size 30) to ease interpretability

2  https://​github.​com/​paobr​anco/​SMOGN-​LIDTA​17

https://github.com/paobranco/SMOGN-LIDTA17


	 Machine Learning

1 3

See the “Appendix” for an overview. We also compared DenseLoss with SMOGN using 
DenseWeight for its relevance function in the “Appendix”, finding similar results as pre-
sented in the following, where we compare DenseLoss to SMOGN using its default rel-
evance function.

4.2.1 � Experimental setup

As with the synthetic data, we randomly split each dataset in a training (60%), a validation 
(20%), and a test (20%) set. Considering the small size of some of the datasets, we inspect 
the splits to confirm that they are similarly distributed and redo the random split if the dis-
tributions are too different.

Models trained with DenseLoss use � = 1.0 . For SMOGN we use the python package 
smogn  (Kunz 2019). Since SMOGN’s authors also aim to increase performance for rare 
data points on these datasets we apply the same hyperparameters as they did in their paper: 
Rare target values are determined by their automatic method (Ribeiro 2011) as described 
in Sect. 2. Just as SMOGN’s authors, we consider target values rare where the relevance 
function yields more than  0.8. SMOGN oversamples data points with rare target values 
to obtain a more balanced distribution. For oversampling SMOGN is set to consider the 
5 nearest neighbor samples. The amount of Gaussian noise added for oversampling (i.e. 
perturbation) is set to  0.01. We use the same MLP architecture and hyperparameters as 
described in Sect. 4.1. Additionally, we repeat the experiment with the same hyperparame-
ters but different MLP topologies, namely a deeper model (4 hidden layers with 10 neurons 
each), a shallower model (2 hidden layers with 10 neurons each), a wider model (3 hidden 
layers with 20 neurons each), and a narrower model (3 hidden layers with 5 neurons each), 
to confirm that our results are not due to a specific network architecture. We find very simi-
lar results for all architectures and therefore only report detailed results for one topology (3 
hidden layers with 10 neurons each) for brevity. Models are trained and evaluated 20 times 
per dataset and method to test statistical significance with the Wilcoxon signed-rank test 
and a significance level of 0.05.

4.2.2 � Results

As in Sect. 4.1, we split each test dataset into 5 equidistant bins and rank the bins by the 
number of samples. Metrics RMSE and MAE are calculated for each bin.

Figure 8 visualizes the number of dataset wins of DenseLoss, SMOGN, and the base-
line (None) per bin rank over the 20 datasets for the metric RMSE. Due to some datasets’ 
small sizes there are some bins without data points in the test set. This results in the bars 
for rank 1 and 2 not containing 20 wins, since no winner can be found for empty bins. The 
results show for the rarest bins (bin rank 1) that DenseLoss provides the best performance 
for 8 datasets while SMOGN only performs best on 3 datasets and applying no method 
is best for only 2 datasets. DenseLoss has the highest number of significant dataset wins 
against both methods in this rarest bin rank but also in bin ranks 2–4. For bin ranks 1–4, 
DenseLoss wins more than half of the datasets, with most wins being statistically signifi-
cant against the baseline and SMOGN. Only for bin rank 5 with the most samples, it is typ-
ically best to apply no method for imbalanced data. This, however, is expected, as the usual 
training method is biased towards common target values. We found very similar results 
for the metric MAE. Repeating this experiment with the other network architectures intro-
duced in Sect. 4.2.1 further confirms these findings, as is shown in the “Appendix”. These 



Machine Learning	

1 3

results suggest that DenseLoss typically provides better performance for rare data points in 
comparison to the state-of-the-art imbalanced regression method SMOGN.

Similarly as described in Sect. 4.1.3 we analyze the performance over the datasets’ tar-
get variable domains in a continuous manner. Thus, we visualize the normalized MAE per 
data point rarity across all datasets for regular training ( � = 0.0 ), DenseLoss ( � = 1.0 ), 
and SMOGN in Fig. 9. To account for the high variability and to improve interpretability 
we smooth the plot using a moving mean with a windows size of 300 samples over the 
7188 total test samples. Similarly as in the bin-wise evaluation, we find on average lower 
error with DenseLoss for rarer data points ( ∼ p�(y) < 0.5 ) compared to using no imbal-
anced regression method. Normalized MAE is improved by roughly 10% for rare data 
points with p�(y) < 0.3 while the error increases with larger densities. SMOGN seems to 
not work well on average over all datasets even though we used the same datasets with the 
same hyperparameters as the original SMOGN authors used in their work. We find high 
variability in SMOGN’s performance across the datasets with it working well for some 
datasets (e.g. cpuSm or acceleration) but considerably worse on most others, leading to 
relatively large normalized MAE regardless of density. Also note the two outlier segments 
in the plot showing high MAE that stem from one sample each of the dataset availPwr. 

1

2

3

4

5

B
in

R
an

ks

1

1

5

3

4

1

2

1

6

11

2

3

4

1

1

6

10

9

9

1

1

2

3

1

1

2

Least
common

Most
common

None
None sig.

DenseLoss
DenseLoss sig.

SMOGN
SMOGN sig.

Fig. 8   Number of datasets won per method for each bin based on RMSE. Bins are ranked within each test 
dataset according to the number of data points. Bins with rank 1 (5) contain the fewest (most) samples. 
Each bar section shows the number of datasets won by a method at that bin rank. When a method’s wins are 
denoted as “sig.” they are significant with regards to both other methods. 5 test datasets had a bin without 
data points and 2 test datasets had 2 bins without samples. Because of this the bars for bin rank 1 and 2 are 
smaller as no winner can be determined for empty bins

Fig. 9   Normalized MAE for 
test samples from all 20 datasets 
per normalized density. Graph 
is smoothed via moving mean 
(window size 300) to ease inter-
pretability

1

2 α = 0.0
α = 1.0
SMOGN

0.2 0.4 0.6 0.8 1.0

p (y)

0.1

0.2

N
or
m
al
iz
ed

M
A
E



	 Machine Learning

1 3

Almost all models estimate extremely large values for these two samples, likely due to an 
unusually high feature value, leading to very large MAE for all moving mean windows that 
include these samples.

4.3 � Statistical downscaling of precipitation

To show that DenseLoss can work for larger datasets and more complex neural network 
architectures, we apply it to the real world task statistical downscaling of precipitation. Its 
objective is to generate local scale precipitation projections based on spatially coarse pre-
cipitation projections stemming from Earth System Models. This can be learned based on 
high-resolution historical climate observations (Vandal et al. 2017).

A model that does statistical downscaling of precipitation is DeepSD (Vandal et  al. 
2017). It uses super-resolution convolutional neural networks to improve the resolution of 
precipitation data. The model is supplied with a map showing daily precipitation at a low 
spatial resolution. This map is similar to an image where each pixel contains precipita-
tion data for a specific real world area. Additionally, the model is provided with a high-
resolution elevation map whose pixels are aligned with the precipitation map, so that any 
pixel in one map represents the same area as the corresponding pixel in the other map. This 
information helps the model to take topography as a known influence into account (Daly 
2008). DeepSD’s authors use the PRISM dataset  (Daly 2008) for precipitation data over 
the Continental United States and elevation data from the GTOPO30 dataset (U.S. Geolog-
ical Survey 1996). Commonly, there are far less rainy days than dry days at most locations 
(see “Appendix”). Yet, especially high precipitation events are interesting as they could 
have considerable consequences like flooding. Thus, we apply DenseLoss to this real world 
task in order to improve model performance especially for these rare and extreme events. 
To this end, we conduct a study for DenseLoss ’s � , investigating the influence of � on 
model performance.

4.3.1 � Experimental setup

For our study, we modified DeepSD’s code3 to include DenseLoss. As such, we use three 
convolutional layers with 64, 32, and 1 filters and kernel sizes of 9, 1, and 5, respectively. 
Model training minimizes the MSE with a batch size of 200 and the Adam optimizer with 
a learning rate of 10−4 for the first two layers and 10−5 for the last layer. Precipitation data 
is split into a training (years 1981 to 2005) and a test set (years 2006–2014). In contrast to 
the hyperparameter values described in the DeepSD paper, we trained for 105 instead of 
107 epochs. This saves computation time as we found no further reduction in training loss 
when training longer. These are still many epochs but it is necessary given the relatively 
low learning rates used by DeepSD. We train DeepSD to downscale from 128 to 64 km 
resolution. The study tests � values from 0.0 to 4.0 with steps of 0.2. Compared to Sect. 4.1 
we extend this range to assess at which � performance plateaus considering we have found 
continuous performance gains up to � = 2.0 here. DeepSD is trained 20 times per � with 
different random model initializations to test statistical significance with the Wilcoxon 
signed-rank test and a significance level of 0.05 (Vandal et al. 2017).

3  https://​github.​com/​tjvan​dal/​deepsd.

https://github.com/tjvandal/deepsd


Machine Learning	

1 3

4.3.2 � Results

As before we split the test dataset into 5 equidistant bins, rank the bins by the number of 
samples and calculate RMSE and MAE for each bin.

Figure 10 visualizes the change of mean RMSE in percent with respect to regular train-
ing ( � = 0.0 ) in all bin ranks for models trained with different � . E.g. a ΔRMSE of − 8% 
indicates an 8% lower RMSE compared to not using DenseLoss. Interestingly, DenseLoss 
does not only improve performance for rare samples (e.g. bin rank 1) but also for common 
values (e.g. bin rank 5) here. Improvement is most pronounced in the most common and 
the rarest bin. This suggests that the enormous over-representation of samples with precipi-
tation close to 0 mm may also negatively affect performance for these same very common 
data points. DenseLoss reduces their influence, effectively reducing the over-representa-
tion which in turn seems to lead to better performance for common samples. Performance 
improves with increasing � before plateauing for ∼ � ≥ 2.0 . Our tests for statistical sig-
nificance show that for each � ≥ 0.8 performance improvements compared to � = 0.0 are 
significant for all bin ranks.

As in the previous experiments (e.g. Sect. 4.1.3) we also analyze the performance over 
the target variable domain in a continuous manner. Thus, we visualize the normalized 
MAE per sample rarity for regular training ( � = 0.0 ) and DenseLoss ( 𝛼 > 0.0 ) in Fig. 11. 
To improve interpretability we smooth the plot by applying a moving mean with a window 

Fig. 10   Change in mean RMSE 
with respect to not using 
DenseLoss ( � = 0.0 ) per � for 
each bin rank in PRISM’s test 
set. Bins are ranked within the 
test dataset according to the 
number of samples. The Bin with 
rank 1 (5) contain the fewest 
(most) samples

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

α

−8

−6

−4

−2

0

∆
R
M
SE

(%
)

Bin Rank 1
Bin Rank 2
Bin Rank 3
Bin Rank 4
Bin Rank 5

Fig. 11   Normalized MAE for 
PRISM test samples per normal-
ized density. Graph is smoothed 
via moving mean (window size 
300,000) and logarithmic for 
interpretability

10−2 10−1 100

p (y)

10−2

2× 10−2

N
or
m
al
iz
ed

M
A
E

α = 0.0
α = 1.0
α = 2.0
α = 4.0



	 Machine Learning

1 3

size of 300,000 data points over the 6,143,403 test samples. We see again that DenseLoss 
improves estimates for both rare (left side) and even more so for common samples (right 
side) here. Performance improvements tend to increase with larger � but only marginally 
above � = 2.0.

In this experiment, we observe a different behavior of DenseLoss than before. Here, 
DenseLoss is able to improve performance across the complete target variable range 
instead of trading performance between common and rare samples. We hypothesize that 
DeepSD’s capacity is large enough to learn a good function for both rare and common data 
points at once, while smaller models might lack the capacity for this. DenseLoss seems to 
allow this model to converge to an overall better solution.

5 � Discussion

In this work, we have shown that DenseWeight and DenseLoss can help to improve model 
performance for rare data points. However, there are still aspects to discuss.

While DenseWeight can theoretically be used with any algorithm that supports sample 
weights, we only evaluated it with neural networks using DenseLoss. We expect to see 
similar results for other algorithms but we did not test this assumption here.

We compared our approach to SMOGN in Sect. 4.2 but not in the last experiment as 
we found it to be computationally infeasible. SMOGN’s oversampling algorithm calculates 
the distance between all data points where a data point is the precipitation at one location 
at one time. Using the available implementation we found through initial testing that this 
would take years with any hardware available to us.

We did not systematically check whether the architectures used in the first two experi-
ments generalize well but we expect decent generalization performance due to our use of 
early stopping. Model training is stopped when the validation loss stops improving, which 
inhibits overfitting. Its effectiveness shows in spot checks where we found no model with 
substantially higher training than test or validation performance.

Our approach introduces a new hyperparameter � , controlling the strength of density-
based weighting, which must be set appropriately. While we find that setting � = 1.0 typi-
cally provides good performance for rare samples, there can be better choices. With a val-
idation dataset and a suitable goal it is possible to optimize � , however defining a goal 
is often not trivial in an imbalanced regression setting. It requires domain knowledge to 
define which data points are rare and important. If this knowledge is available one could 
simply search for the � that minimizes the MSE on these rare and important data points to 
achieve optimal performance for a specific domain.

For the data splits in Sect. 4.2 we manually confirmed whether the splits are similarly 
distributed. Random splitting was not able to reliably produce splits with similar distribu-
tions given the small sizes of some datasets. While we do not believe this to influence the 
results, a more automatic method to this would be more objective. One could perhaps try 
to maximize a distribution similarity score and stop redoing splits if a certain threshold is 
exceeded but we did not implement this in this work.



Machine Learning	

1 3

6 � Conclusion

In this work, we have proposed our sample weighting approach for imbalanced regres-
sion DenseWeight and our cost-sensitive learning method DenseLoss, tackling the prob-
lem of imbalanced regression for neural networks based on DenseWeight. We show that 
our approach can improve model performance for rare data points with synthetic datasets, 
specifically designed to represent different kinds of data distributions. Extensive hyperpa-
rameter studies for each dataset provide insight and intuition for how DenseWeight and 
DenseLoss ’s � controls a model’s focus on rare in comparison to common data points. 
Experiments on 20 datasets show that DenseLoss typically outperforms the sampling-
based method SMOGN. Applying DenseLoss to statistical downscaling of precipitation, 
we demonstrate its benefits on a real world task and discuss its potential for higher capacity 
models.

Future work includes examining ensemble approaches for DenseLoss which combine 
models trained with different � . Depending on � , each model is an expert in different target 
variable ranges. A meta-model could learn which ensemble member is likely to perform 
best based on a given sample’s features which may lead to nearly optimal performance 
not only for rare samples but across the whole target range. Furthermore, it is interesting 
to assess the relation between model capacity and performance across the target domain 
with DenseLoss, following the intuition that large enough models might be able to learn a 
function that consistently works well for both rare and common data points. Additionally, 
ideas which are already established for cost-sensitive learning in imbalanced classification 
settings could be transferred for regression tasks. Examples include weighting based on the 
effective number of samples in a target region (Cui et al. 2019) or incorporating sample dif-
ficulty in the weighting (Dong et al. 2017).

Appendix

In the “Appendix” we present some additional details and results of our work.
Figure 12 visualizes detailed results for datasets dnormal and rpareto of our experiment 

with synthetic data. Table 1 lists the datasets used in our comparison to the state-of-the-art 
with their respective sizes. Figure 13 visualizes the relevance functions for SMOGN on the 
synthetic datasets. Figure 14 shows the number of datasets won per method in our com-
parison with the state-of-the-art for additional network architectures. Figure 15 depicts the 
highly skewed precipitation distribution of the PRISM dataset used in our experiment for 
statistical downscaling of precipitation.

SMOGN with DenseWeight

The results in this work show that DenseLoss typically outperforms SMOGN. However, 
it is not clear to which extent the performance differences stem from the different meas-
ures of data point rarity or from the methodological differences between resampling and 
cost-sensitive learning. We therefore adapt SMOGN to use DenseWeight as its relevance 
function and we repeat the experiments involving SMOGN. We call SMOGN with Dense-
Weight SMOGN-DW in the following.



	 Machine Learning

1 3

Experimental Setup

SMOGN identifies the rarity of each data point through a relevance function � ∶ Y ↦ [0, 1] 
which is obtained through an automatic method based on box plot statistics by SMOGN’s 
authors  (Ribeiro 2011; Branco et  al. 2017). This relevance function is similar to Dense-
Weight in that both aim to measure the rarity of a data point. In order to use DenseWeight 
as a relevance function we normalize the weights of all training set data points to a range 
between 0 and 1. We set DenseWeight’s � to 1 which is the same value used for DenseLoss 
in the comparisons with SMOGN. We implement SMOGN with DenseWeight by expand-
ing the existing python implementation smogn (Kunz 2019). This expanded smogn pack-
age is also available in our online repository. All other aspects of the experimental setup 
remain as described in Sect. 4.

0.00

0.02

0.04

p
dnormal

5 3 1 2 4

Bin Rank

10

20

R
M
SE

0.00

0.02

0.04

rpareto

1 2 3 4 5

Bin Rank

10

20

0.0
0.2

0.4
0.6

0.8
1.0

1.2
1.4

1.6
1.8

2.0

Fig. 12   Mean RMSE per test bin over 20 runs for datasets dnormal on the left and rpareto on the right. The 
top charts show the density per bin in the respective test dataset, visualizing the target variable’s distribu-
tion. The line plots below visualize the mean RMSE per test bin for the � values shown in the box at the 
figure’s bottom

Table 1   Datasets with imbalanced target values and their sizes

Dataset N Dataset N Dataset N Dataset N

a1 198 a6 198 AvailPwr 1802 dAiler 7129
a2 198 a7 198 Bank8FM 4499 FuelCons 1764
a3 198 Abalone 4177 Boston 506 MachineCpu 209
a4 198 Acceleration 1732 ConcrStr 1030 MaxTorq 1802
a5 198 Airfoild 1503 cpuSm 8192 Servo 167



Machine Learning	

1 3

0 25 50

y

0.00

0.01

0.02
p
(y
)

0.0

0.5

1.0

φ
(y
)

0 50

y

0.00

0.01

0.02

p
(y
)

0.0

0.5

1.0

φ
(y
)

0 50

y

0.00

0.02

0.04

0.06

p
(y
)

0.0

0.5

1.0

φ
(y
)

0 50

y

0.00

0.02

0.04

0.06

p
(y
)

0.0

0.5

1.0

φ
(y
)

Fig. 13   SMOGN’s relevance function � for the synthetic datasets

1

2

3

4

5

B
in

R
an

ks

1

3

3

3

1

2

7

12

3

3

5

1

1

6

9

9

9 3

1

3

2

1

3

Least
common

Most
common

None
None sig.

DenseLoss
DenseLoss sig.

SMOGN
SMOGN sig.

1

2

3

4

5

B
in

R
an

ks

3

2

4

3

5

1

1

6

9

2

4

6

2

5

9

7

8

1

1

5

3

1

1

1

1

Least
common

Most
common

None
None sig.

DenseLoss
DenseLoss sig.

SMOGN
SMOGN sig.

1

2

3

4

5

B
in

R
an

ks

3

4

4

2

6

1

7

10

3

2

5

2

1

4

10

9

7

1

1

2

3

1

1

1

1

Least
common

Most
common

None
None sig.

DenseLoss
DenseLoss sig.

SMOGN
SMOGN sig.

1

2

3

4

5

B
in

R
an

ks

2

4

3

3

1

1

6

11

2

3

2

2

1

5

10

12

8

1

3

1

4

3

1

1

1

Least
common

Most
common

None
None sig.

DenseLoss
DenseLoss sig.

SMOGN
SMOGN sig.

Fig. 14   Number of datasets won per method and bin based on RMSE with different MLP architectures. 
Subcaptions indicate the number of hidden layers and neurons per hidden layer. E.g., 10–10 represents an 
MLP with two hidden layers each having 10. Bins are ranked in each test dataset according to sample size. 
Bins with rank 1 (5) contain the fewest (most) samples. Bar section’s show the number of datasets won 
by a method at that bin rank. Wins denoted as “sig.” are significant with regards to both other methods. 5 
test datasets had an empty bin and 2 test datasets had 2 empty bins. Thus, the bars for bin rank 1 and 2 are 
smaller as there is no winner for empty bins



	 Machine Learning

1 3

Results

Figure 16 shows the normalized MAE depending on test data point rarity over the synthetic 
datasets (as in Fig. 7) now also with SMOGN-DW. We see that SMOGN and SMOGN-DW 
perform very similarly on these synthetic datasets and that DenseLoss still tends to provide 

Fig. 15   Distribution of precipita-
tion in the PRISM dataset over 
all cells and all days from 1981 
to 2005. Note that the y-axis is 
logarithmic. Negative precipita-
tion values may stem from an 
interpolation method used in the 
original work, but we decided not 
to clean the data to stay consist-
ent with previous work

0 50 100 150 200

Precipitation (mm)

10−6

10−5

10−4

10−3

10−2

p

Fig. 16   Normalized MAE for 
test samples from all synthetic 
datasets per normalized density. 
Graph is smoothed via moving 
mean (window size 30) to ease 
interpretability

0.0 0.2 0.4 0.6 0.8 1.0

p (y)

0.05

0.10

0.15

0.20

N
or
m
al
iz
ed

M
A
E

α = 0.0
α = 1.0
α = 2.0
SMOGN
SMOGN-DW

Fig. 17   Normalized MAE for 
test samples from all 20 datasets 
per normalized density. Graph 
is smoothed via moving mean 
(window size 300) to ease inter-
pretability

1

2 α = 0.0
α = 1.0
SMOGN
SMOGN-DW

0.2 0.4 0.6 0.8 1.0

p (y)

0.1

0.2

N
or
m
al
iz
ed

M
A
E



Machine Learning	

1 3

better performance for more rare data points. For the continuous results over the twenty 
datasets from Sect. 4.2 we see in Fig. 17 that SMOGN and SMOGN-DW also show mostly 
similar performance, with lower normalized MAE for data points with ∼ 0.7 > p�(y) > 0.4 
for the latter. DenseLoss still seems to provide better performance than SMOGN-DW and 
SMOGN.

Figure 18 shows the number of dataset wins (as in Fig. 8) but now with SMOGN-DW 
instead of regular SMOGN and for all evaluated MLP architectures. DenseLoss still has the 
highest number of significant dataset wins against both methods and almost always wins 
more than half of the datasets for bin ranks 1 to 4. Only bin rank 1 with architecture 5–5–5 
shows one more SMOGN-DW win than the DenseLoss wins but even there DenseLoss 
has more significant wins. When comparing these results with the dataset wins of regular 
SMOGN in Figs. 8 and 14 we see that the performance difference between SMOGN and 
SMOGN-DW is rather small with SMOGN-DW occasionally competing slightly better.

1

2

3

4

5

B
in

R
an

ks

1

1

2

1

3

1

2

8

12

2

2

7

1

6

8

7

9

2

4

1

1

3

2

2

1

2

Least
common

Most
common

None
None sig.

DenseLoss
DenseLoss sig.

SMOGN-DW
SMOGN-DW sig.

1

2

3

4

5

B
in

R
an

ks
3

3

5

2

5

7

11

1

3

5

2

6

9

8

8

1

2

2

1

2

2

1

2

Least
common

Most
common

None
None sig.

DenseLoss
DenseLoss sig.

SMOGN-DW
SMOGN-DW sig.

1

2

3

4

5

B
in

R
an

ks

3

3

3

3

5

1

1

7

10

2

2

4

2

5

9

9

7

1

1

2

1

3

2

2

1

2

Least
common

Most
common

None
None sig.

DenseLoss
DenseLoss sig.

SMOGN-DW
SMOGN-DW sig.

1

2

3

4

5

B
in

R
an

ks

1

1

4

2

3

1

1

1

7

12

1

1

3

2

1

4

9

10

8

4

4

1

1

2

2

2

1

2

Least
common

Most
common

None
None sig.

DenseLoss
DenseLoss sig.

SMOGN-DW
SMOGN-DW sig.

1

2

3

4

5

B
in

R
an

ks

1

1

4

4

3

1

1

1

6

12

5

2

5

2

1

4

10

8

8

2

1

1

2

2

1

3

Least
common

Most
common

None
None sig.

DenseLoss
DenseLoss sig.

SMOGN-DW
SMOGN-DW sig.

Fig. 18   Number of datasets won per method and bin based on RMSE with different MLP architectures. 
Subcaptions indicate the number of hidden layers and neurons per hidden layer. E.g., 10–10 represents an 
MLP with two hidden layers each having 10. Bins are ranked in each test dataset according to sample size. 
Bins with rank 1 (5) contain the fewest (most) samples. Bar section’s show the number of datasets won 
by a method at that bin rank. Wins denoted as “sig.” are significant with regards to both other methods. 5 
test datasets had an empty bin and 2 test datasets had 2 empty bins. Thus, the bars for bin rank 1 and 2 are 
smaller as there is no winner for empty bins



	 Machine Learning

1 3

Since using the same measure of rarity for both SMOGN and DenseLoss does not 
improve SMOGN’s performance considerably, we can conclude that most of the perfor-
mance difference seems to stem from the methodological differences between resampling 
and cost-sensitive learning. Using DenseWeight as a relevance function for SMOGN seems 
to provide slight improvements compared to the relevance function used by SMOGN’s 
authors but not enough to close the gap to DenseLoss.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Branco, P., Ribeiro, R. P., & Torgo, L. (2016a). UBL: An R package for utility-based learning. arXiv pre-
print arXiv:​1604.​08079.

Branco, P., Torgo, L., & Ribeiro, R. P. (2017). SMOGN: A pre-processing approach for imbalanced regres-
sion. In LIDTA.

Branco, P., Torgo, L., & Ribeiro, R. P. (2016b). A survey of predictive modeling on imbalanced domains. 
ACM Computing Surveys (CSUR), 49(2), 1–50.

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-
sampling technique. JAIR, 16, 321–357.

Chen, Y.-C. (2017). A tutorial on kernel density estimation and recent advances. Biostatistics and Epidemi-
ology, 1(1), 161–187.

Cui, Y., Jia, M., Lin, T.-Y., Song, Y., & Belongie, S. (2019). Class-balanced loss based on effective number 
of samples. CVPR, 2018, 9268–9277.

Daly, C., et al. (2008). Physiographically sensitive mapping of climatological temperature and precipitation 
across the conterminous United States. International Journal of Climatology, 28(15), 2031–2064.

Dong, Q., Gong, S., & Zhu, X. (2017). Class rectification hard mining for imbalanced deep learning. ICCV, 
2017, 1851–1860.

Grinstead, C. M., & Snell, J. L. (2012). Introduction to probability. AMS.
He, H., Bai, Y., Garcia, E. A., & Li, S. (2008). ADASYN: Adaptive synthetic sampling approach for imbal-

anced learning. In IJCNN 2008. IEEE (pp. 1322–1328).
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level per-

formance on imagenet classification. In ICCV 2015.
Hernández-Orallo, J. (2014). Probabilistic reframing for cost-sensitive regression. In TKDD 8.4.
Hernández-Orallo, J. (2013). ROC curves for regression. Pattern Recognition, 46(12), 3395–3411.
Huang, C., Li, Y., Change Loy, C., & Tang, X. (2016). Learning deep representation for imbalanced 

classification. CVPR, 2016, 5375–5384.
Kamalov, F. (2020). Kernel density estimation based sampling for imbalanced class distribution. Infor-

mation Sciences, 512, 1192–1201.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:​1412.​

6980.
Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future directions. Progress 

in Artificial Intelligence, 5(4), 221–232.
Kunz, N. (2019). Smogn. [Online; version 0.1.2]. https://​git.​io/​JOWoK.
Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. ICML, 

2010, 807–814.
Odland, T. (2019). KDEpy. [Online; version 1.0.10]. https://​git.​io/​JOWrM.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1604.08079
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://git.io/JOWoK
https://git.io/JOWrM


Machine Learning	

1 3

Prechelt, L. (1998). Early stopping-but when? In Neural networks: Tricks of the trade (pp. 55–69). Springer.
Ribeiro, R. P. (2011). Utility-based Regression. PhD thesis. University of Porto.
Ribeiro, R. P., & Moniz, N. (2020). Imbalanced regression and extreme value prediction. Machine Learn-

ing, 109(9), 1803–1835.
Silverman, B. W. (1986). Density estimation for statistics and data analysis (Vol. 26). CRC Press, London
Sun, Y., Wong, A. K., & Kamel, M. S. (2009). Classification of imbalanced data: A review. IJPRAI, 23(04), 

687–719.
Torgo, L., Ribeiro, R. P., Pfahringer, B., & Branco, P. (2013). Smote for regression. In Portuguese confer-

ence on artificial intelligence (pp. 378–389). Springer.
U.S. Geological Survey. (1996). GTOPO30. https://​doi.​org/​10.​5066/​F7DF6​PQS.
Vandal, T., Kodra, E., Ganguly, S., Michaelis, A., Nemani, R., & Ganguly, A. R. (2017). Deepsd: Gener-

ating high resolution climate change projections through single image super-resolution. KDD, 2017, 
1663–1672.

Wang, Y.-X., Ramanan, D., & Hebert, M. (2017). Learning to model the tail. NIPS, 2017, 7029–7039.
Wilcoxon, F. (1945). Individual comparisons by ranking methods. In Biometrics bulletin 1.6 (pp. 80–83). 

http://​www.​jstor.​org/​stable/​30019​68.
Zhao, H., Sinha, A. P., & Bansal, G. (2011). An extended tuning method for cost sensitive regression and 

forecasting. In Decision support systems 51.3.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Michael Steininger1   · Konstantin Kobs1 · Padraig Davidson1 · Anna Krause1 · 
Andreas Hotho1

	 Konstantin Kobs 
	 kobs@informatik.uni-wuerzburg.de

	 Padraig Davidson 
	 davidson@informatik.uni-wuerzburg.de

	 Anna Krause 
	 anna.krause@informatik.uni-wuerzburg.de

	 Andreas Hotho 
	 hotho@informatik.uni-wuerzburg.de

1	 Chair of Computer Science X, University of Würzburg, Würzburg, Germany

https://doi.org/10.5066/F7DF6PQS
http://www.jstor.org/stable/3001968
http://orcid.org/0000-0002-3102-481X

	Density-based weighting for imbalanced regression
	Abstract
	1 Introduction
	2 Related work
	3 Method
	3.1 DenseWeight
	3.1.1 Measure of rarity
	3.1.2 Weighting function

	3.2 DenseLoss

	4 Experiments
	4.1 Case study with synthetic data
	4.1.1 Dataset creation
	4.1.2 Experimental setup
	4.1.3 Results

	4.2 Comparison with state-of-the-art
	4.2.1 Experimental setup
	4.2.2 Results

	4.3 Statistical downscaling of precipitation
	4.3.1 Experimental setup
	4.3.2 Results


	5 Discussion
	6 Conclusion
	References




