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Abstract
We prove a sharp Bernstein-type inequality for complex polynomials which are posi-
tive and satisfy a polynomial growth condition on the positive real axis. This leads to an
improved upper estimate in the recent work of Culiuc and Treil (Int. Math. Res. Not.
2019: 3301–3312, 2019) on the weighted martingale Carleson embedding theorem
with matrix weights. In the scalar case this new upper bound is optimal.
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1 Result

Lemma 1.1 Let n be a positive integer and p : C → C a polynomial such that
p(s) ≥ 0 for all s ≥ 0 and

|p(s)| ≤ s−1(1 + s)n for all s > 0 . (1.1)

Then
|p(0)| ≤ n2 , (1.2)
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with equality if

p(s) = pn(s) := 1

2

(s + 1)n

s

(
1 − Tn

(
1 − s

1 + s

))
. (1.3)

Here, Tn(x) = cos(n arccos x) is the n-th Chebyshev polynomial of the first kind.

The source of motivation for Lemma 1.1 has been the recent work of Culiuc and
Treil [1] on the Carleson embedding theorem with matrix weights. In fact, Lemma 2.2
in [1], which they attribute to F. Nazarov andM. Sodin, provides the (weaker) estimate

|p(0)| ≤ e2n2 (1.4)

for any polynomial p : C → C satisfying (1.1). Developing a sophisticated Bellman
function technique and making use of estimate (1.4), Culiuc and Treil [1] proved the
following result ([1, Theorem 1.2]). We refer to [1] for the relevant terminology and
notation.

Theorem A (Carleson embedding theorem for matrix weights) Let W be a d × d
matrix–valued measure and let AI , I ∈ D be a sequence of positive semidefinite d×d
matrices. Then the following are equivalent:

(i)
∑
I∈D

∣∣∣
∣∣∣A1/2

I 〈W 1/2 f 〉I
∣∣∣
∣∣∣2 |I | ≤ A|| f ||2L2 .

(ii)
∑
I∈D

∣∣∣
∣∣∣A1/2

I 〈W f 〉I
∣∣∣
∣∣∣2 |I | ≤ A|| f ||2L2 .

(iii)
1

|I0|
∑

I∈D,I⊂I0

〈W 〉I AI 〈W 〉I |I | ≤ B〈W 〉I0 for all I0 ∈ D.

Moreover, the best constants A and B satisfy B ≤ A ≤ CB, where C = C(d) =
4e2d2.

In fact, the proof of Theorem A in [1] requires the estimate (1.4) only for polyno-
mials p : C → C with degree n = 2d, which satisfy (1.1) and are real and positive
on the positive real axis. Therefore Lemma 1.1 implies that one can take

C(d) = 4d2

instead of C(d) = 4e2d2 in Theorem A. In the scalar case (d = 1) this new upper
bound produces the upper estimate A ≤ 4B, which is known to be optimal [4, Theorem
3.3].

Remark 1 The method we use for the proof of Lemma 1.1 can also be used to improve
the bound (1.4) given by [1, Lemma 2.2], which holds for any polynomial p : C → C

satisfying (1.1). This leads to

|p(0)| ≤ 2n2 − n , (1.5)

see the next section for the proof. The estimate (1.5) is presumably not best possible.
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2 Proofs

The idea is to view both estimates, (1.2) and (1.5), as Bernstein–type estimates. Recall
that for a polynomial h of degree N the classical Bernstein inequality says that

max|z|=1
|h′(z)| ≤ N · max|z|=1

|h(z)| .

Proof of Lemma 1.1 By assumption, p : C → C is a polynomial satisfying (1.1) and
p(s) ≥ 0 for all s ≥ 0. Then q(z) := zp(z) is polynomial of degree at most n with
q(0) = 0, p(0) = q ′(0), and q(s) ≥ 0 for all s ≥ 0. We define the auxiliary function

f (z) := (1 + z)2n

(4z)n
q

(
−

(
1 − z

1 + z

)2
)

=
n∑

k=−n

akz
k ,

a Laurent polynomial of degree ≤ n. It is not difficult to see that the growth condition
(1.1) for p implies the uniform bound

| f (z)| ≤ 1 for all |z| = 1 .

We also note that

p(0) = q ′(0) = −2 f ′′(1) ,

so our task is to find the best upper bound for | f ′′(1)|.
In order to find such an estimate, it turns out to be essential that the auxiliary

function f is real and positive (i.e., ≥ 0) on |z| = 1. To see this just note that

k(z) = z

(1 + z)2
= 1

4

(
1 −

(
1 − z

1 + z

)2
)

is the Koebe function, familiar from the classical theory of univalent functions, which
maps the unit circle |z| = 1 onto the half–line [1/4,+∞). Hence, on |z| = 1, f (z) is
the product of two real and positive functions.

We are thus in a position to apply the Fejér–Riesz theorem [2] for the Laurent
polynomial f . This gives us a complex polynomial P of degree ≤ n with no zeros in
|z| < 1 such that

f (z) = P(z)P(1/z) , z ∈ C \ {0} .

Clearly, |P(z)| ≤ 1 for all |z| = 1. We can therefore apply a sharpening of Bernstein’s
inequality due to P. Lax [3] (confirming an earlier conjecture of Erdös) which asserts
that

max|z|=1
|P ′(z)| ≤ n

2
· max|z|=1

|P(z)| ≤ n

2
.
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In particular,

|p(0)| = |q ′(0)| = 2| f ′′(1)| = 4|P ′(1)|2 ≤ n2 ,

proving (1.2). Clearly, the polynomial Pn(z) = (zn −1)/2 has the property |P ′
n(1)| =

n/2, so | f ′′
n (1)| = n2/2 for fn(z) := Pn(z)Pn(1/z). It is easy to see that

fn(z) = (1 + z)2n

(4z)n
qn

(
−

(
1 − z

1 + z

)2
)

for a polynomial qn of degree at most n with qn(0) = 0, and it is straightforward to
check that pn(z) := qn(z)/z has the form (1.3). ��
Proof of (1.5) By assumption, p : C → C is a polynomial satisfying (1.1). Then
q(z) := zp(z) is polynomial of degree at most n with q(0) = 0 and p(0) = q ′(0). We
define, closely following the proof of [1, Lemma 2.2], the auxiliary function

g(z) := (1 + z)2n

4n
q

(
−

(
1 − z

1 + z

)2
)

,

a polynomial of degree N ≤ 2n. As before, the polynomial g has the property that

|g(z)| ≤ 1 for all |z| = 1 .

Now note that

p(0) = −2g′′(1) .

Hence, we could apply the classical Bernstein inequality twice, first for g′ and then
for g′′, but this would result in

|p(0)| = 2|g′′(1)| ≤ 2N (N − 1) ≤ 4n(2n − 1) ,

which is not particularly good. However, as observed in [1, Proof of Lemma 2.2] we
can assume without loss of generality that g has no zeros in |z| < 1. We can therefore
apply as above the inequality of Lax which leads to

max|z|=1
|g′(z)| ≤ N

2
· max|z|=1

|g(z)| ≤ n .

This brings us in a position to apply Corollary 14.2.8 in [5] for the polynomial g′
which has degree ≤ 2n − 1. Hence

|g′′(z)| + |(2n − 1)g′(z) − zg′′(z)| ≤ n(2n − 1) , |z| ≤ 1 .

Taking z = 1 and noting that g′(1) = nq(0) = 0, gives 2|g′′(1)| ≤ n(2n − 1), as
required. ��
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3 Remarks

The polynomials p which occur in the proof of Theorem A in [1] are of the form

p(s) =
∑
I∈D

pI (s)|I | ,

with pI (s) ≥ 0 for all s ≥ 0 and each pI a polynomial of degree at most 2(d − 1).
The extremal polynomial p2d in Lemma 1.1 has degree 2(d − 1) and all its 2(d − 1)
zeros are on the positive real axis and are double zeros. This implies that

p(s) = p2d(s) ⇐⇒ ∀I∈D∃c(I )≥0 pI |I | = c(I )p2d .

Hence the extremal polynomial p2d of Lemma 1.1 shows up in the proof of TheoremA
only if each pI is a multiple of p2d .

After acceptance of the paper the authors found another short proof of Lemma 1.1
based on Markov’s inequality [5, Theorem 15.1.4] which allows to identify all
extremal polynomials. In fact, using the change of variables s = (1 − x) / (1 + x)
we have

q(x) := 1 − 21−n(1 + x)n−1(1 − x)p

(
1 − x

1 + x

)
= 1 − 2

sp(s)

(1 + s)n
, x ∈ (−1, 1).

By assumptions, q is a polynomial of degree at most n such that q(1) = 1, q ′(1) =
p(0) and |q(x)| ≤ 1 for all x ∈ [−1, 1]. By Markov’s inequality, |p(0)| = |q ′(1)| ≤
n2 with equality if and only if q(x) = Tn(x). This proves (1.2) with equality if and
only if p = pn as in (1.3).
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