Aus der Klinik und Poliklinik für Mund-, Kiefer- und Plastische Gesichtschirurgie der Universität Würzburg Direktor: Professor Dr. med. Dr. med. dent. A. C. Kübler

Inhibitoren des NF-κB pathways zur *in vitro* Blockade der Inflammation und proapoptotischen Sensitivierung des oralen Plattenepithelkarzinoms für den prospektiven Einsatz in der Tumortherapie

Inaugural-Dissertation zur Erlangung der Doktorwürde der Medizinischen Fakultät der Julius-Maximilians-Universität Würzburg

vorgelegt von Dr. med. dent. Mario Joachim Johannes Scheurer aus Offenburg

Würzburg, April 2021

Referent: Priv.-Doz. Dr. med. Dr. med. dent. Roman C. Brands

Korreferent: Univ.-Prof. Dr. rer. nat. Jürgen Groll

Dekan: Univ.-Prof. Dr. med. Matthias Frosch

Tag der mündlichen Prüfung: 07.04.2022

Der Promovend ist Arzt und Zahnarzt

Meiner geliebten Familie

INHALTSVERZEICHNIS

1 EINLEITUNG	1
1.1 Das Plattenepithelkarzinom der Kopf-Hals-Region	1
1.1.1 EPIDEMIOLOGIE	1
1.1.2 ÄTIOLOGIE	1
1.1.3 KARZINOGENESE	2
1.2 THERAPIE DES HNSCC	2
1.2.1 KONVENTIONELLES KONZEPT	2
1.2.2 MODERNE ANSÄTZE DER ZIELGERICHTETEN TUMORTHERAPIE	3
1.3 TUMORIMMUNOLOGIE	4
1.3.1 WECHSELWIRKUNG ZWISCHEN TUMORZELLE UND TUMORMIKROUMGEBUNG	5
1.3.2 NF-кВ ратнway	6
1.3.2.1 Der klassische Signalweg	7
1.3.2.2 Der alternative Signalweg	9
1.3.2.3 Der TNF- α – NF- κ B – Interleukin-Loop als mögliche Ursache für Autoinflammation der Keiner der Kei	tion
und Therapieresistenz solider Malignome	. 11
1.4 TNF-REZEPTOR ALS AUSGANG DIVERGENTER SIGNALTRANSDUKTION	. 13
1.5 DER PROGRAMMIERTE ZELLTOD	. 14
1.5.1 APOPTOSE	. 15
1.5.2 CROSSTALK ZWISCHEN APOPTOSE UND INFLAMMATION	. 16
1.6 NF-κB-PATHWAY-INHIBITION ZUR MOLEKULAREN TUMORTHERAPIE	. 17
1.6.1 GLUCOCORTICOIDE	. 17
1.6.2 MLN4924	. 18
1.6.3 QNZ	. 19
1.6.4 TPCA-1	. 19
1.7 ZIEL DER ARBEIT	. 20
2 MATERIAL & METHODEN	.21
2.1 Materialien	. 21
2.1.1 GERÄTE	. 21
2.1.2 Software	. 22
2.1.3 VERBRAUCHSMATERIALIEN	. 23
2.1.4 NÄHRMEDIEN	. 23
2.1.5 CHEMIKALIEN, INHIBITOREN & REAGENZIEN	. 24
2.1.5.1 Kits	. 25
2.1.6 LÖSUNGEN & PUFFER	. 25
2.1.7 OLIGONUKLEOTID-PRIMER	. 26
2.1.8 Zellpanel	. 26
2.2 Methoden	. 27
2.2.1 Zellkultur	. 27
2.2.1.1 Automatisierte Zellzählung	. 27
2.2.2 Zytotoxizitätsassay	. 27
2.2.2.1 Kolorimetrische Quantifizierung der Zellviabilität	. 28
2.2.3 ENZYME-LINKED IMMUNOSORBENT ASSAY	. 28
2.2.3.1 sELISA zur Quantifizierung der Zytokinsekretion	. 29
2.2.3.1.1 Validierung des ELISA-Kits	. 29
2 2 3 1 2 SELISA zur Quantifizierung der II -8-Sekretion	. 31

2.2.4 TWO-STEP REVERSE-TRANSCRIPTION QUANTITATIVE REAL-TIME POLYMERASE CHAIN	
REACTION	. 31
2.2.4.1 Präparation der Gesamt-RNA	. 31
2.2.4.1.1 Spektralphotometrische Nukleinsäureanalyse	. 31
2.2.4.2 Synthese komplementärer DNA	. 32
2.2.4.3 Farbstoffbasierte real-time two-step RT-qPCR	. 33
2.2.5 FLUORESCENCE-ACTIVATED CELL SORTING	. 33
2.2.5.1 Annexin V PE/7-AAD-Doppelmarkierung	. 34
2.2.5.1.1 Positionierung des Quadrantenmarkers	. 36
2.2.6 DATENAUSWERTUNG	. 37
2.2.6.1 Bestimmung der absoluten Zytokintiter	. 37
2.2.6.2 Standardisierung der Zytokintiter	. 37
2.2.6.3 ΔΔCt-Methode zur relativen Quantifizierung der Genexpression	. 38
2.2.6.4 Deskriptive Statistik der Zytotoxizitätsassays	. 41
2.2.6.5 Induktive Statistik zur Hypothesentestung	. 42
2.2.6.6 Berechnung der Halbhemmkonzentrationen	. 42
2.2.6.7 Interaktionsindex y nach Tallarida	. 44
3 ERGEBNISSE	45
3.1 BASALE VERSUS STIMULIERTE SEKRETION VON IL-8	. 45
3.2 KONZEPT DER AUTOKRINEN NF- κ B-AKTIVIERUNG DURCH I NF- α	. 47
3.2.1 TNF-α-FREISETZUNG DES HNSCC	. 49
3.2.1.1 Basalsekretion	. 49
3.3 BIOLOGISCHE AKTIVITÄT VON NF-κB-INHIBITOREN	. 51
3.3.1 PROLIFERATIONSHEMMUNG DURCH NF-KB-PATHWAY-INHIBITION	. 51
3.4 SUPPRESSION DER INFLAMMATION DURCH ZIELGERICHTETE INHIBITION DES NF-κB	
PATHWAYS VON HNSCC-ZELLEN.	. 53
3.4.1 WIRKSTOFFSPEZIFISCHE SENKUNG DER IL-8-SEKRETION	. 53
3.4.2 ANTIINFLAMMATORISCHE EFFEKTE	. 55
3.4.3 NF-κB-INHIBITOREN HEMMEN DIE ZELLPROLIFERATION	. 57
3.4.3.1 TPCA-1 sensitiviert das HNSCC für den TNF-α-induzierten Zelltod	. 59
3.5 ANALYSE DER ZELLTODINDUKTION IN DER KOMBINATIONSTHERAPIE MIT NF-KB-PATHWA	Y-
INHIBITOREN	. 61
3.5.1 HETEROGENE SENSITIVIERBARKEIT FÜR DIE FASL-INDUZIERTE APOPTOSE	. 61
3.7 GENEXPRESSIONSANALYSE NF-κB-ABHÄNGIGER ZIELGENE	. 67
3.7.1 HETEROGENE EXPRESSION NF-KB-MEDIJERTER ZIELGENE NACH TARGETIERTER	
PATHWAY-INHIBITION	. 67
3.8 DURCHFLUSSZYTOMETRISCHE ANALYSE DER APOPTOSEINDUKTION	. 69
3.8.1 ETABLIERUNG EINER VALIDEN APOPTOSE-BESTIMMUNG	. 69
3.8.2 APOPTOSEINDUKTION DURCH NF-κB-PATHWAY-INHIBITOREN	. 71
4 DISKUSSION	.73
	. 73
4.1.1 ANALYSE DES AUTOKRINEN DURCH TINF- α GETRIGGERTEN FEEDBACKMECHANISMUS Z	.UR
	.13
4.1.2 IL-0 ALS DIOMARKER FUR AUF INFLAMMATION EINGESTELLTE HINSUU-ZELLEN	. 14

4.2 VERGLEICHENDE ANALYSE DER NF-κB-PATHWAY-INHIBITOREN FÜR DIE PROSPEKTIVE	
THERAPIE DES HNSCC	. 75
4.2.1 ANALYSE DER HOHEN WIRKSAMKEIT VON TPCA-1 IM HNSCC	. 75
4.2.1.1 Die Bedeutung von IKKβ als target zielgerichteter Tumortherapie	. 77
4.2.2 ANALYSE DER INSUFFIZIENT WIRKENDEN INHIBITOREN	. 78
4.2.2.1 Cortisol	. 78
4.2.2.2 MLN4924	. 78
4.2.2.3 QNZ	. 79
4.2.3 APOPTOSE ALS (NEBEN-) EFFEKT DER TARGETIERTEN NF-KB-INHIBITION	. 80
4.3 DIE BEDEUTUNG DER REGULATION ONKOGENER NF-κB-ZIELGENE	. 81
4.4 PERSPEKTIVEN ANTIINFLAMMATORISCHER TUMORTHERAPIEN	. 82
4.4.1 DIE BEDEUTUNG DES TME FÜR DIE AKTIVIERUNG DES NF-κB PATHWAYS	. 83
4.4.2 MÖGLICHKEITEN NF-κB-TARGETIERENDER STRATEGIEN FÜR DIE ONKOTHERAPIE	. 83
4.4.3 Gefahren NF-κB-targetierender Tumortherapien	. 84
5 ZUSAMMENFASSUNG	.86
6 LITERATURVERZEICHNIS	.87

APPENDIX

- I ABKÜRZUNGSVERZEICHNIS
- II ABBILDUNGSVERZEICHNIS
- III TABELLENVERZEICHNIS
- IV DANKSAGUNG
- V LEBENSLAUF
- VI EIGENE VERÖFFENTLICHUNGEN UND KONGRESSTEILNAHME

EIDESSTATTLICHE ERKLÄRUNG

ANHANG

1 Einleitung

1.1 Das Plattenepithelkarzinom der Kopf-Hals-Region

Kopf-Hals-Karzinome umfassen eine heterogene Gruppe solider Malignome und werden oberbegrifflich zum *head and neck squamous cell carcinoma* (HNSCC) zusammengefasst. Neben Malignomen des Oropharynx und Larynx werden insbesondere Karzinome des Cavum oris hierunter subsumiert¹. Es handelt sich um invasive Tumoren ektodermalen Ursprungs mit keratogener Differenzierung und Tendenz zur lokoregionären Filialisierung².

1.1.1 Epidemiologie

Mit etwa 600.000 Neuerkrankungen und 6 % aller Tumorerkrankungen ist das HNSCC das sechsthäufigste Malignom weltweit³. Seine Mortalitätsrate liegt bei 350.000¹. In Deutschland erkranken aktuell ca. 17.500 Patienten mit etwa 7.200 Todesfällen pro Jahr. Für 2020 wurde ein Anstieg der Inzidenz um etwa 2.300 vorhergesagt⁴. Prognostisch überleben aufgrund hoher Rezidivraten nur 40 bis 50 % der Patienten die ersten 5 Jahre, was individuell stark stadienabhängig ist⁵. Die Mortalitätsraten werden auf die hohe Aggressivität, lokoregionäre Lymphknoten- bzw. Fernmetastasierung, Rezidive und Resistenzen des HNSCC gegenüber konventionellen Radio- bzw. Systemtherapien zurückgeführt^{6,7}.

1.1.2 Ätiologie

Das HNSCC unterliegt einer multifaktoriellen Genese. Orale Karzinome können spontan durch Mutationen wachstumsregulierender Gene entstehen. Außerdem sind genetische Dispositionen durch Fehlregulationen des Zellwachstums und von Reparaturmechanismen bekannt¹. Auch Defekte der körpereigenen Abwehr bei kompromittiertem Immunstatus durch Alkoholabusus oder Immunsuppression können die Eliminierung entarteter Zellen behindern^{8,9}. Hauptrisikofaktor ist der lebensstilabhängige Konsum von mukosaschädigenden Noxen. Hierbei sind Tabak und hochprozentige Alkoholika wesentliche Trigger in der Synkarzinogenese des HNSCC¹⁰. Vor allem der simultane Konsum bedingt eine Potenzierung des Erkrankungsrisikos¹¹. *Slaughter et al.* prägten hierfür den Begriff der Feld-kanzerisierung, was syn- bzw. metachrone Tumoren beschreibt. Diese entstehen aufgrund alterierter Stammzellen als Folge anhaltender Noxenexposition des Aerodigestivtrakts¹². Daneben spielt die virale Genese mit onkogenen Viren eine

bedeutende Rolle. Das epitheliotrope humane Papillomavirus (HPV), insbesondere der Hochrisiko-Serotyp 16, lässt bei jungen, männlichen und sexuell aktiven Personen die Inzidenzraten ansteigen¹³. Weitere Risikofaktoren sind eine defizitäre Mundhygiene, mechanische Traumata, chronische Entzündungen, vitaminarme und fleischbetonte Ernährung, reduzierte Salivation, Seneszenz, ionisierende Strahlungen sowie allergisch-toxische Irritationen der oralen Mukosa^{14,15}.

1.1.3 Karzinogenese

Die Entstehung maligner Tumoren unterliegt einem mehrstufigen, sequenziellen Prozess¹⁶. Nach dem Stammzellkonzept beginnt die Transformation zur Tumor (-stamm)-zelle [engl.: tumor stem cell (TSC)] mit der Initiationsphase, wodurch sie Autonomie erlangt. Nach frustranen Reparatur- und Zerstörungsversuchen expandiert die TSC klonal in der Promotionsphase. Während der Progressionsphase vollzieht sich der Dignitätswechsel. Kennzeichnend sind irreversible Alterationen mit Karyotypeninstabilität, Anaplasie, aggressives und destruierendes Wachstum sowie Filialisierung^{17,18,19}. Die Proliferation der TSC bildet die Tumormasse und verleiht ihr unerschöpfliche Selbsterneuerungskapazität sowie die Fähigkeit zur Absiedelung, Rezidivierung und Therapieresistenz^{8,20}. Auch die enorm heterogene Tumorbiologie des HNSCC ist durch das Stammzellkonzept erklärbar. Durch den hierarchischen Aufbau des TSC-Proliferationskompartiments entstehen aufgrund diverser Mutationen stark entdifferenzierte Subklone mit vielfältigen Eigenschaften hinsichtlich Invasivität, Karyotyp, Proliferationsgeschwindigkeit, Metastasierungsfähigkeit, hormoneller Rezeptivität sowie Suszeptibilität gegenüber antineoplastischen Therapien^{20,21}.

1.2 Therapie des HNSCC

1.2.1 Konventionelles Konzept

Leitliniengemäß soll die Therapie des HNSCC in interdisziplinärer Zusammenarbeit, eingebettet in einem multimodalen Gesamtkonzept, erfolgen. Deren klassische Eckpfeiler aus Chirurgie, Strahlen- und eventuell Chemotherapie wurden um Immun-, Hormon- und zielgerichtete Therapien ergänzt. Das Vorgehen wird individuell anhand des Stagings adaptiert. Im Initialstadium stellt die chirurgische Intervention das Mittel der Wahl in kurativer Intention dar²². Zielsetzung dieser zumeist radikalen Therapie ist die Resektion des Tumorgewebes mit plastischer Defektdeckung. Dabei ist der R0-Status einer der wichtigsten Prognosefaktoren bezüglich Gesamtüberlebenszeit und lokoregionärer Rezidivprophylaxe²³. Da 20 bis 50 % der Kopf-Hals-Tumoren okkult in zervikale Lymphstationen metastasieren, kann eine Lymphadenektomie indiziert sein^{24,25}. Bei fortgeschrittenem Tumorstadium und positivem N-Status ist die Strahlentherapie indiziert, die den zweiten Pfeiler darstellt. Das Standardprotokoll ist die alternierende hyperfraktionierte oder akzelerierte Radiatio. Durch primäre Bestrahlungen werden Überlebensraten von 30 % im Zeitraum von zwei Jahren erreicht²⁶. Vorteile bezüglich der Gesamtüberlebenszeit und lokoregionären Kontrolle zeigen systemisch wirksame Kombinationstherapien²⁷.

Vor allem die Induktionschemotherapie nach dem TPF-Schema aus Taxan, Platin und 5-Fluorouracil (5-FU) kombiniert mit der Radiatio hat sich bei Inoperabilität als vorteilhaft erwiesen^{28,29}. Die Systemtherapie zielt auf okkulte Tumorstammzellen sowie Fern- bzw. Mikrometastasen ab. Klassische Vertreter sind Platinderivate, 5-FU, Taxane, Methotrexat (MTX) sowie Vincaalkaloide, die weiterhin die Basis der medikamentösen HNSCC-Therapie darstellen³⁰. Ihr kombinatorischer Einsatz unter Ausnutzung von Synergieeffekten erzielt erhöhte Ansprechraten, jedoch ohne positive Effekte auf die Gesamtüberlebenszeit auszuüben^{31,32}. Nachteilig ist die Induktion starker Nebenwirkungen und therapiebedingter Letalität durch die Applikation im Gießkannenprinzip, was durch ihre geringe Selektivität und universale Zytotoxizität bedingt ist^{33,34,35}.

1.2.2 Moderne Ansätze der zielgerichteten Tumortherapie

Die intensive Erforschung molekularer Pathomechanismen beförderte neue Therapieoptionen, welche es erlauben, Tumorzellen zielgenau und hochselektiv zu attackieren. Hierdurch verspricht man sich effektivere Maßnahmen, die vorhersagbare und langanhaltende Remissionen sowie einen funktionellen Organerhalt gewährleisten könnten. Die Herausforderung besteht in der Identifikation molekularer Treiber kritischer Signalwege, deren zielgerichtete Eliminierung zuverlässig zum Therapieerfolg führt³⁶.

Aktuelle Strategien umfassen u. a. monoklonale Antikörper. Cetuximab, ein Rezeptorantikörper, der gegen den von Kopf-Hals-Karzinomen überexprimierten epidermal growth factor receptor (EGFR) gerichtet ist, ist Teil der

3

Standardtherapie des rezidivierenden oder metastasierten HNSCC^{37,38}. Durch die kombinierte Radiotherapie konnten *Bonner et al.* signifikante Verbesserungen der 5-Jahresüberlebensrate zeigen^{39,40}. Small molecules wie Tyrosinkinase-Inhibitoren (TKI) zeigten nur mäßige Effekte⁴¹. Die Induktion des programmierten Zelltods mittels SMAC mimetics durch Antagonisierung überexprimierter Inhibitoren der Apoptose (IAP) hat sich ebenfalls als plausibler Ansatz erwiesen⁴². Immunonkologische Strategien, die auf immune-escape-Mechanismen der Tumorzellen abzielen, etablierten sich als Erstlinientherapie des rezidivierenden und metastasierenden HNSCC^{43,44}. Beispielweise heben Immuncheckpoint-Inhibitoren (bspw. Nivolumab oder Pembrolizumab) die immunsuppressive Wirkung des tumor microenvironment (TME) gegen T-Zellen auf, was die immunologische Eliminierung der Tumorzellen rekonstituiert⁴⁵. Dementsprechend konnte der cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)-Antikörper Ipilimumab kombiniert mit Nivolumab die vollständige Remission eines therapierefraktären und metastasierenden HNSCC erzielen⁴⁶.

1.3 Tumorimmunologie

Paul Ehrlich stellte Anfang des 20. Jahrhunderts die These auf, dass maligne Zellen durch das Immunsystem überwacht würden⁴⁷. Antigene Fremdproteine (bspw. Tumorzellen) werden während der zellulären Immunantwort durch antigenpräsentierende Zellen den T-Lymphozyten präsentiert. Hierdurch werden CD4- bzw. CD8-positive T-Lymphozyten zu T-Helferzellen bzw. zytotoxischen T-Zellen aktiviert. Klassischerweise kommt es durch Fas Ligand (FasL), Granzym, Perforin oder TNF-related apoptosis-inducing ligand (TRAIL) über Aktivierung der Signaltransduktion zur Apoptose⁴⁸. *Burnet und Thomas* prägten hierfür das Konzept der cancer immunosurveillance. Spezifische Antigene prämaligner Zellen werden immunologisch erkannt und eliminiert bevor es zur Entstehung eines invasiven Karzinoms kommt^{49,50}. Dennoch können Tumorzellen diese Immunantwort umgehen. Dieses Phänomen wird als cancer immunoediting beschrieben, wobei schwach immunogene Tumorzellen einen Selektionsvorteil erhalten⁵¹.

Ein weiteres immunonkologisches Konzept verknüpft Krebs mit Inflammation, welches auf *Rudolf Virchow* zurückgeht, der das lymphoretikuläre Infiltrat als

4

Ursprung von Krebserkrankungen definierte⁵². Inzwischen ist bekannt, dass die übermäßige Sekretion von Zytokinen, Wachstumsfaktoren, Matrix-Metalloproteasen (MMP) und anderer Mediatoren über chronische Entzündungszustände zur Karzinogenese beiträgt⁵³. Auf diesem Weg beeinflusst u. a. das TME die Tumorprogression. Maßgeblich verantwortlich hierfür ist der Nuclear factor kappalight-chain-enhancer of activated B cells (NF- κ B) pathway, dessen Aktivierung, v. a. durch Tumor necrosis factor-alpha (TNF- α), die Immunabwehr sowie die Inflammation und Karzinogenese induzieren kann^{54,55}. Als proinflammatorischer Transkriptionsfaktor reguliert NF- κ B die Expression diverser Gene (IL-1, IL-6, IL-8, IL-18, TNF-α, MCP-1, CCL-5, c-FLIP, IAP, Survivin, MMP u. v. a. m.), die das Zellüberleben, Proliferation, Therapieresistenz, Invasion und Inflammation beeinflussen^{56,57}. Bei soliden Malignomen korreliert die Höhe der Interleukin (IL)-Freisetzung mit der Schwere der Erkrankung. Besonders IL-1, -6 und -8 bedingen die Progression und Therapieresistenz von Tumorzellen, weshalb sie als Biomarker angewendet werden⁵⁸. IL-1 induziert über die interleukin-1 receptor-associated kinase (IRAK) und NF-κB-Aktivierung die Expression proinflammatorischer und antiapoptotischer Gene, was ebenfalls für IL-6 beschrieben wurde^{59,60}. IL-8, das spezifisch von Epithelzellen gebildet wird, fördert über den Chemokin-Rezeptor (CXCR)-vermittelten nucleotide-binding oligomerization domain-containing protein 1 (NOD1)/receptor-interacting protein 2 (RIP2)-Signalweg die Proliferation von HNSCC-Zellen^{61,62}. Auch Chemotherapeutika können über Aktivierung des NF-κB pathways die Resistenz von Tumorzellen induzieren⁶³. Diese Mechanismen fördern die NF-kB-vermittelte Inflammation und Tumorprogression, wodurch wirksame Therapien blockiert werden können.

1.3.1 Wechselwirkung zwischen Tumorzelle und Tumormikroumgebung

Tumorzellen liegen eingebettet in einem komplexen Verbund nicht transformierter Zellen, die als Tumormikroumgebung bzw. TME definiert sind. Zusammengesetzt wird diese aus extrazellulärer Matrix (EZM), Stroma-, Immunzellen, vaskulären Endothel- und neuroendokrinen Zellen sowie Fibroblasten bzw. Tumor-assoziierten Fibroblasten (TAF). Durch Bildung eines dichten desmoplastischen Stromas verhindern TAFs, dass Chemotherapeutika in ausreichender Konzentration auf die Tumorzellen einwirken können. Sie mauern Tumorzellen fibrotisch

5

ein und bilden ein chemostabiles Mikromilieu⁶⁴. Daneben bedingen reziproke Interaktionen die von *Hanahan und Weinberg* beschriebenen hallmarks of cancer, welche die Karzinogenese durch parakrines signaling unterhalten⁵³. Freigesetzte Wachstumsfaktoren, Chemo- oder Zytokine induzieren die maligne Transformation von Epithelzellen mit Proliferation, Metastasierung, Resistenz und Inflammation^{64,65}. Neben dem Transforming growth factor-beta (TGF-β) und IL-1β wird TNF- α von TAFs sezerniert. *Erez et al.* konnten *in vitro* die inflammatorische Stimulation plattenepithelialer Tumorzellen mittels parakriner TNF- α -Sekretion von TAFs zeigen. Diese wiesen ein proinflammatorisches Genom auf, welches durch TNF- α - und NF- κ B-Expression die Karzinogenese und Proliferation beeinflusste⁶⁶. Eine weitere TNF- α -Quelle sind Tumor-assoziierte Makrophagen (TAM) des TME, die ebenfalls zum Tumorprogress beitragen können⁶⁷.

1.3.2 NF-κB pathway

NF-κB ist eine Familie ubiquitärer, schnell induzierbarer Transkriptionsfaktoren, die regulatorisch auf die Genexpression des Immunsystems, der Inflammation, der Zellproliferation und des Zelltods wirken. Entdeckt wurde NF-KB von Baltimore und Sen als konstitutiv aktive Dimere in B-Zellen, die die Transkription des κ -Leichtketten-Gens von Immunglobulinen regulieren⁶⁸. NF- κ B besteht aus Desoxynukleinsäure (DNA)-bindenden Homo- oder Heterodimeren, die aus Mitgliedern der Rel-Familie zusammengesetzt werden. Charakteristisch ist ihre Rel homology domain (RHD). Funktionell dient diese der Bindung von DNA oder inhibitorischen Proteinen sowie der Dimerisierung. Fünf Proteine der Rel-Familie sind bekannt, die in zwei Gruppen unterteilt werden. RelA (p65), RelB und c-Rel werden fertig prozessiert mit transkriptorisch wirksamer Transaktivierungsdomäne synthetisiert. Dagegen werden p50 (NF- κ B1) und p52 (NF- κ B2) nach posttranslationaler Modifikation aus den Vorläufermolekülen p105 bzw. p100 gebildet. In ruhenden Zellen ist NF-kB als inaktives Dimer im Zytoplasma lokalisiert. Stabilisiert wird dieser Zustand durch Komplexierung mit Proteinen der inhibitor of KB $(I\kappa B)$ -Familie $(I\kappa B\alpha, I\kappa B\beta$ und $I\kappa B\epsilon$). Mit ihrer Ankyrin-Tandemdomäne binden sie über RHD an Rel-Proteine. Aufgrund dieser Wechselwirkung wird NF-κB inhibiert und kann nicht in den Zellkern translozieren. Induziert wird die Signaltransduktion

durch proinflammatorische Zytokine (bspw. TNF- α oder Interleukine), oxidativen Zellstress, Infektionen sowie Chemo- oder Radiotherapien. Es sind zwei Signalwege für die Aktivierung der verschiedenen NF- κ B-Proteine bekannt, die sich mechanistisch wie funktionell unterscheiden⁶⁹.

1.3.2.1 Der klassische Signalweg

Der klassische (bzw. kanonische) pathway wird, vermittelt durch diverse Transmembranrezeptoren (TNF-, IL-1-, Toll-like- oder B- bzw. T-Zell-Rezeptor), über den zytoplasmatischen IkB Kinase (IKK)-Komplex induziert (Abb. 1). IKK setzt sich aus den drei Untereinheiten ΙΚΚα, ΙΚΚβ und ΙΚΚγ [bzw. NF-κB essential modifier (NEMO)], einer regulatorischen Domäne, zusammen. Die NF-κB-Proteine (p50, p65 bzw. RelA und c-Rel) dimerisieren. Im inaktiven Zustand sind die NF-kB-Heterodimere an IkB gebunden. Die Signaltransduktion startet durch Formierung von Komplex I. Diese Aktivierungsplattform wird von der receptor-interacting serine/threonine-protein kinase 1 (RIPK1), TRADD, TRAF2, cellular inhibitor of apoptosis protein (cIAP) und dem linear ubiquitin chain assembly complex (LUBAC) gebildet. Letztere ubiquitinieren RIPK1. Der gebildete Polyubiquitinstrang dient als Leitschiene zur Anlagerung von IKK und Auslösung der Kinase-Kaskade. IKKy wird ubiquitiniert sowie IKK α und IKK β nach Phosphorylierung durch die transforming growth factor beta-activated kinase 1 (TAK1) und das TAK1-binding protein (TAB) aktiviert. IKK β phosphoryliert I κ B α , welches nach Ubiguitinierung durch den Skp, Cullin, F-box containing (SCF)-Komplex, einer Multiprotein-Ubiguitin-Ligase, proteasomal degradiert wird. Nach Desinhibition von $I\kappa B\alpha$ transloziert p50/p65 (bzw. NF- κB) in den Zellkern und reguliert als Transkriptionsfaktor die Genexpression⁷⁰.

Abb. 1: Schema des klassischen pathways. D e B ndung von TNF- α nduz ert d e TNF-Rezeptortrmer s erung und Form erung von Komp ex I (TRADD, TRAF2/5, RIPK1, cIAP1/2 und LUBAC). Nach Po yub qu t n erung von RIPK1 agern s ch TAB, TAK1 und der IKK-Komp ex an. Durch Phosphory erung von IKK α und IKK β durch TAK1 w rd d e regu ator sche Untere nhe t IKK γ (bzw. NEMO) abgespa ten. IKK β akt v ert den heterotr meren Komp ex aus I κ B α , p50 und p65. Phosphory ertes I κ B α w rd ub qu t n ert und proteasoma degrad ert. Das fre gesetzte Heterod mer p50/p65 (bzw. NF- κ B) trans oz ert n den Ze kern und regu ert d e Express on ant apoptot scher und pro nf ammator scher Z e gene (cIAP1/2, c-FLIP, Inter euk n, TNF- α etc.). D ese Abb dung wurde neu konz p ert auf Grund age der Veröffent chung von *Dondelinger et al.* Po yub qu t nat on n TNFR1-med ated necroptos s. Ce Mo L fe Sc. 2016;73(11-12):2165-76.

1.3.2.2 Der alternative Signalweg

Der alternative (bzw. nicht-kanonische) pathway wird über eine Vielzahl von Rezeptoren der TNF-R-Superfamilie vermittelt (Abb. 2). Hierzu zählen u. a. der lymphotoxin-β receptor (LTβR), B-cell activating factor receptor (BAFF-R), receptor activator of NF- κ B (RANK), cluster of differentiation 40 (CD40), TNF-R2 und fibroblast growth factor-inducible factor 14 (Fn14). Im Unterschied zum schnell und passager induzierbaren klassischen Signalweg erfolgt hierbei eine langsame, aber langanhaltende Aktivierung dieses pathways. Die NF- κ B-inducing kinase (NIK) ist das zentrale Protein dieser Signalkaskade. Unstimuliert wird diese Kinase durch cIAP, TRAF2 und TRAF3 für den proteasomalen Abbau markiert. Wird TNF-R aktiviert, ubiquitiniert cIAP TRAF3 zwecks proteasomaler Degradation, wodurch NIK akkumuliert und IKK α phosphoryliert. Dieses markiert das Vorläufermolekül p100 für die partielle Proteolyse. Die hieraus prozessierte Untereinheit p52 dimerisiert mit ReIB, welche als heterodimerer Transkriptionsfaktor NF- κ B in den Zellkern translozieren^{71,72}.

Abb. 2: Schema des alternativen pathways. Durch TNF- α -B ndung und Rezeptortr mer s erung erfo gt d e Indukt on des n cht-kanon schen S gna wegs durch d e cIAP-verm tte te Ub qu t n erung von TRAF3. Nach proteasoma er Degradat on von TRAF3 zerfä t der E3-Ub qu t n-L gase-Komp ex aus cIAP, TRAF2 und TRAF3, wodurch NIK stab s ert w rd. D e Akkumu at on von NIK verursacht über IKK α -Phosphory-erung d e Prozess erung von p100 zu p52. Im Komp ex m t Re B trans oz ert d eses a s Heterod mer (bzw. NF- κ B) n den Ze kern und expr m ert bspw. pro nf ammator sche Z e gene. D ese Abb dung wurde neu konz p ert auf Grund age der Veröffent chung von *Sun SC*. The non-canon ca NF-kappaB pathway n mmun ty and nf ammat on. Nat Rev Immuno . 2017;17(9):545-58.

1.3.2.3 TNF-α – NF-κB – Interleukin-Loop als mögliche Ursache für Autoinflammation und Therapieresistenz solider Malignome

Seit Virchows Hypothese zur Entstehung von Krebs durch Inflammation wird über das therapeutische Potential der NF-kB-Inhibition zur Therapie von Malignomen diskutiert. Erfolgreich beschrieben wurde dieser Ansatz bereits für das kolorektale Karzinom, wo die Hemmung von IKK durch Acetylsalicylsäure (ASS) seine Entstehung und Fortschreiten blockiert⁷³. Greten und Pikarsky konnten den NF-κB pathway als Bindeglied von Inflammation und Krebs nachweisen, mit IKKβ als dem entscheidenden Protein^{74,75}. Tumorzellen und das TME sezernieren auto- bzw. parakrin proinflammatorische Zytokine (Abb. 3). Über den klassischen NF- κ B pathway werden von Tumorzellen inflammatorische Mediatoren (TNF- α , IL-1, IL-6 und IL-8) oder Inhibitoren der Apoptose (Bcl-XL und cIAPs) ausgeschüttet, die Resistenz und Zellüberleben verursachen^{76,77}. Die autokrine TNF-a-Sekretion mit konstitutiver Aktivierung des NF-kB pathways stimuliert die weitere Sekretion von TNF- α und Interleukinen, wie Jackson-Bernitsas et al. für das HNSCC beschrieben. TNF- α wirkt u. a. als Wachstumsfaktor, der in einer autokrinen Signalschleife Tumorzellen immunisiert⁷⁸. Deshalb bezeichnen Bonomi et al. HNSCC-assoziierte Entzündungsreaktionen als siebtes krebsspezifisches Merkmal⁷⁹.

Daneben ist das Tumorlysesyndrom ein weiteres Modell der tumorassoziierten Inflammation⁸⁰. Hierbei werden u. a. Zytokine freigesetzt, die über Aktivierung des NF-κB pathways zur Sekretion proinflammatorischer Mediatoren führen⁸¹. Die extrinsische Aktivierung des NF-κB-Wegs durch Chemotherapeutika kann ebenfalls einer wirksamen Therapie entgegenwirken. Dieses Phänomen wurde für Platin beschrieben, wobei die Aktivität von NF-κB umgekehrt mit der Sensitivität der Tumorzellen für Platin korreliert und bei längerer Therapiedauer zur Resistenzbildung führt^{82,83,84}.

Therapieresistenz

Abb. 3: Der TNF- α – **NF-** κ **B** – **Interleukin-Loop.** TNF- α , entweder aus der Umgebung des Tumors (TME) oder autokr n sezern ert, nduz ert d ese entzünd che S gna sch e fe der Tumorze e. Dadurch kann NF- κ B konst tut v akt v ert vor egen, was d e kont nu er che Express on pro nf ammator scher Gene bew rkt. D e h erdurch sezern erten Inter euk ne bzw. TNF- α nduz eren Auto nf ammator nnerha b der Tumorze en, was zu deren Therap eres stenz führt. D ese schemat sche Abb dung wurde neu konz p ert auf Grund age der Veröffent chung von *Jackson-Bernitsas et al.* Ev dence that TNF-TNFR1-TRADD-TRAF2-RIP-TAK1-IKK pathway med ates const tut ve NF-kappaB act vat on and pro ferat on n human head and neck squamous ce carc noma. Oncogene. 2007;26(10):1385-97.

1.4 TNF-Rezeptor als Ausgang divergenter Signaltransduktion

Ausgehend von Rezeptorkomplexen der TNF-R-Superfamilie [bspw. FS7-associated cell surface antigen (Fas bzw. CD95), TNF-R1 bzw. -R2 und TRAIL-Rezeptor] divergieren unterschiedliche Signalwege (Abb. 4). Je nach Konfiguration dieses Multiproteinkomplexes werden unterschiedliche Signalkaskaden (Apoptose, Nekroptose, Inflammation oder Zellüberleben) induziert. Ausschlaggebend für die Balance zwischen diesen Signalwegen ist die Dominanz signalspezifischer Proteine⁸⁵. Nach Rezeptortrimerisierung und Exponierung der death domain (DD) binden Adaptorproteine (TRADD, TRAF2 bzw. 5, cIAP1 bzw. 2, LUBAC und RIPK1). Diese Aktivierungsplattform (bzw. Komplex I) löst neben dem proinflammatorischen NF-kB- proliferative Signalwege [bspw. MAPK oder c-Jun N-terminal kinase (JNK)] aus⁸⁶. NF-κB fördert, neben der Transkription proinflammatorischer Gene, die Expression antiapoptotischer Proteine (c-FLIP, cIAP1/2 und TRAF2/5). cIAPs tragen durch Ubiquitinierung von RIPK1 zur konstitutiven Aktivierung des NF-kB pathways bei. Außerdem wird die Induktion der Apoptose an Komplex II bzw. dem death-inducing signaling complex (DISC) unterdrückt⁸⁷. Dieser formiert sich, wenn die cIAP- bzw. LUBAC-vermittelte RIPK1-Polyubiquitinierung ausbleibt. FADD, das über TRADD an TNF-R angelagert wird, aktiviert Caspase 8. Dieser Komplex IIa induziert die extrinsische Apoptose. Unter Inhibition von cIAP1/2, TAK1 und NEMO bildet sich bei TNF-R-Stimulation Komplex IIb (RIPK1, RIPK3, FADD, TRADD und Caspase 8), der ebenfalls apoptotisch ist⁸⁸. Die NF- κ B-induzierte Expression des antiapoptotischen cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (c-FLIP) inhibiert die Apoptose durch Komplexierung von Caspase 8. Es formiert sich Komplex IIc. bzw. Nekrosom [RIPK1, RIPK2 und mixed-lineage kinase domain-like protein (MLKL)], welches die Nekroptose als alternative Form des programmierten Zelltods auslöst^{89,90,91}.

Abb. 4: Übersicht der Signaltransduktionen ausgehend von TNF-R. D e B ndung von TNF- α an TNF-R1 bzw. -R2 kann d verse S gna wege aus ösen. Membrangebundenes TNF- α akt v ert be de Rezeptorsubtypen (TNF-R1 und TNF-R2), wobe TNF-R2 nur zur En e tung des NF-κB pathways fäh g st, da hm d e DD feh t, wesha b s ch ke ne Effektormo ekü e (TRADD, FADD und RIPK) an agern können. TNF-R1, der auch durch fre es TNF- α st mu ert w rd. b ndet über se ne DD den Komp ex I (TRADD, TRAF2/5, RIPK1, cIAP1/2 und LUBAC). Über die polyub guit nierte RIPK1 wird der proinf ammatorische NF- κ Bpathway und d e Transkr pt on bspw. pro nf ammator scher Zytok ne nduz ert. In Abwesenhe t oder unter Inh bt on der Ub qut n-L gasen von cIAP oder LUBAC und dem Ausbe ben der RIPK1-Ub qut nerung form ert s ch Komp ex IIa. Über Akt v erung von Caspase 8 w rd d e Apoptose nduz ert. Komp ex IIb (RIPK1, RIPK3, FADD, TRADD und Caspase 8), ebenfa s apoptot sch, w rd durch d e akt v erte K naseakt v tät der RIPK1 nduz ert. Inh b tor sches c-FLIP komp ex ert m t Caspase 8. W rd Caspase 8 be ger ngem c-FLIP-Leve aufgrund reduz erter NF-κB-Akt v erung n se ner Akt v tät gedrosse t, kann es durch Restenzymakt v tät we terh n RIPK1 und RIPK3 proteo yt sch spa ten. H erüber w rd d e Nekroptose unterdrückt und d e Apoptose über Komp ex IIb akt v ert. Ist Caspase 8 vo ständ g nh b ert, form ert s ch Komp ex IIc, bzw. das Nekrosom. D eser Prote nkomp ex (RIPK1, RIPK3 und MLKL) nduz ert d e Nekroptose a s a ternat ve Form des programm erten Ze tods. De schemat sche Darste ung des Crossta ks am TNF-R wurde neu konz p ert auf Grund age der Veröffent chung von Han et al. Programmed necros s: backup to and compet tor w th apoptos s n the mmune system. Nat Immuno . 2011;12(12):1143-9.

1.5 Der programmierte Zelltod

Als Suizidprogramm multizellulärer Organismen ist der Zelltod ein physiologischer Prozess während des Zellumsatzes mit grundlegender Bedeutung für die Zellhomöostase. Er dient dem Immunsystem zur Abwehr und Beseitigung infizierter oder aberranter Zellen. Störungen führen zur Pathogenese autoimmuner, entzündlicher oder neoplastischer Erkrankungen⁹². Somit ist der Zelltod ein wichtiger Mechanismus zur Vorbeugung von Malignomen. Neben der Apoptose gibt es ein Repertoire alternativer Formen des Zelltods, wie Nekroptose, Anoikis, Autophagie, Ferroptose, Pyroptose, Parthanatos u. v. a. m.⁹³

1.5.1 Apoptose

Diese Form des programmierten Zelltods ist morphologisch durch Zytoplasmaschwund, Pyknosis, Karyorrhexis und Abschnürung von Apoptosekörperchen definiert. Letztere werden phagozytotisch abgeräumt, was Entzündungen und der Aktivierung des Immunsystems entgegenwirkt. Molekular betrachtet handelt es sich um die Aktivierung proteolytischer Enzyme, den Cysteinyl-Aspartyl-Proteasen (bzw. Caspasen), die ihre Substrate spezifisch hinter Aspartat-Resten spalten⁹⁴. Diese werden entweder ex- oder intrinsisch aktiviert (Abb. 5). Die extrinsische Apoptose wird über Signale des extrazellulären Milieus, die von Rezeptoren der TNF-R-Familie (Kap. 1.4) detektiert werden, induziert. Caspase 8 wird an Komplex II autoproteolytisch gespalten und setzt die Caspasenkaskade in Gang. Dahingegen initiieren DNA-Schäden, durch reaktive Sauerstoffspezies (ROS) oder Strahlung induzierter Zellstress, Mitosedefekte, Mangel an Wachstumsfaktoren, Chemotherapeutika u. v. a. m. die intrinsische Apoptose. Proapoptotische Proteine der B-cell lymphoma 2 (Bcl-2)-Familie permeabilisieren die Mitochondrienmembran. Über diese Membranporen werden u. a. second mitochondria-derived activator of caspases/direct IAP-binding protein with low pl (SMAC/Diablo) und Cytochrom c freigesetzt. Letzteres bindet an den apoptotic protease activating factor-1 (Apaf-1) und Caspase 9, wodurch das Apoptosom gebildet wird. An diesem Proteinkomplex startet die kaskadenartige Caspasenaktivierung. Durch Inhibition von IAPs, die ihrerseits Caspasen hemmen, kann SMAC/Diablo die Wirkung von Cytochrom c auf Caspasen und die Apoptose verstärken^{93,95}.

Abb. 5: Signalwege der Apoptose. a) Intr ns sch w rd d e Apoptose durch Ze stress aus ösende St mu w e Chemotherapeut ka, Strah ung oder DNA-Schäden nduz ert. Sensorprote ne w e p53 veran assen d e Akt v erung von Bc -2 homo ogy (BH)3-ha t gen Prote nen auf transkr pt one er und posttrans at ona er Ebene, d e proapoptot sche M tg eder der Bc -2-Fam e (Bax, Bak und Bad) st mu eren. Das Übergew cht proapoptot scher Faktoren bew rkt durch Membranpermeab s erung d e Fre setzung von Cytochrom c und SMAC/D ab o m t Akt v erung der Caspasenkaskade. b) D e extr ns sche Apoptose w rd rezeptorverm tte t ausge öst. Nach L gandenb ndung tr mer s ert Fas und form ert DISC, we cher d e Caspasenakt v erung nduz ert. D eser S gna weg kann über Caspase 8 und d e Prozess erung von BH3-Prote nen den ntr ns schen S gna weg st mu eren und d e Akt v erung der Effektorcaspasen 3 und 7 verstärken. Daneben bes tzt Caspase 8 auch n chtenzymat sche Funkt onen. A s Gerüst kann es zur Form erung des FADDosoms (Caspase 8, FADD und RIPK1) d enen, das NF-κB-abhäng g Inf ammat on und Res stenz bed ngt. D e Abb dung wurde neu konz p ert auf Grund age der Veröffent chung von *Ashkenazi et al.* Regu ated ce death: s gna ng and mechan sms. Annu Rev Ce Dev B o . 2014;30:337-56 und *Henry et al.* Caspase-8 Acts n a Non-enzymat c Ro e as a Scaffo d for Assemb y of a Pro- nf ammatory "FADDosome" Comp ex upon TRAIL St mu at on. Mo Ce . 2017;65(4):715-29 e5.

1.5.2 Crosstalk zwischen Apoptose und Inflammation

Die Umgehung des Zelltods ist ein Charakteristikum maligner Zellen. Pathogenitätsfaktoren, welche zum Überleben von Tumorzellen führen, sind von grundlegender Bedeutung für die Entwicklung und Etablierung zielgerichteter Therapien. Jedoch unterliegen diese einer enormen Heterogenität. U. a. sind IAPs für das HNSCC beschrieben. Diese antiapoptotischen Proteine induzieren durch Ubiquitinierung von RIPK1 und Induktion des NF-κB pathways Proliferation, Überleben und Resistenz von Tumorzellen⁹⁶. Mutationen der Procaspase 8 inhibieren die extrinsische Apoptose und verstärken das NF-κB-signaling, da Caspasen nach Verlust ihrer Proteasefunktion als Gerüstproteine für FADD und RIPK1 zum FADDosom komplexieren⁹⁷. Dieser Signalkomplex stimuliert über den klassischen NF-κB-Signalweg die Inflammation anstelle der extrinsischen Apoptose (Abb. 5)⁹⁸. Ein weiterer Resistenzfaktor des HNSCC ist c-FLIP. Seine Bindung an FADD und Caspase 8 unterdrückt die Formierung von DISC. Außerdem stimuliert es den NF- κ B pathway⁹⁹. Umgekehrt berichten *Jackson-Bernitsas et al.*, dass NF- κ B aufgrund konstitutiver IKK-Aktivierung sowie autokriner und wachstumsstimulierender TNF- α -Sekretion permanent stimuliert ist, was seinerseits proliferativ und antiapoptotisch wirkt⁷⁸.

1.6 NF-κB-pathway-Inhibition zur molekularen Tumortherapie

Aufgrund des geschilderten Beitrags des proinflammatorischen NF- κ B-Signalwegs zur Karzinogenese erscheint die Inhibition dieses Transkriptionsfaktors als plausibles target molekularer Tumortherapie. Sein Einfluss auf Inflammation, Proliferation, Tumorzellüberleben und Resistenz gegen System- und Strahlentherapien machen die spezifische Inhibition des NF- κ B pathways zu einer vielversprechenden Strategie. *In vitro* und *in vivo* Studien zeigen, dass dieser Ansatz die TNF- α -getriggerte Apoptose therapieresistenter Tumorzellen induzieren kann¹⁰⁰.

1.6.1 Glucocorticoide

Cortisol (bzw. Hydrocortison), ein körpereigenes Stresshormon aus der Gruppe der Glucocorticoide (GC), besitzt ein weites Spektrum physiologischer Funktionen. Neben katabolen Stoffwechselwirkungen besitzt es antiphlogistische, antiproliferative und immunsuppressive Eigenschaften, weshalb es therapeutisch bei chronisch-entzündlichen Erkrankungen eingesetzt wird. Seine glucocorticoiden Effekte werden über intrazelluläre Rezeptoren vermittelt, die als ligandenaktivierte Transkriptionsfaktoren die Expression spezifischer Gene regulieren. Seine antiinflammatorische Wirkung entfaltet es durch Herunterregulierung proinflammatorischer Gene, durch direkte Inhibition des NF- κ B pathways und durch Steigerung der GC-Rezeptorexpression. Dexamethason kann nach GC-Rezeptorbindung über direkte Protein-Protein-Interaktionen p65 inhibieren. Außerdem stimulieren GC die Transkription des antiinflammatorischen I κ B α -Gens, wodurch die Aktivierung und nukleäre Translokation von NF- κ B unterbunden wird. Für Systemtherapien sensitivierende Effekte von GC sind für hämatologische und solide Malignome beschrieben¹⁰¹. Jedoch scheint es gewebsspezifische Unterschiede hinsichtlich ihrer Wirksamkeit zu geben. Eine Vielzahl von Tumoren ist resistent bzw. GC wirken zytoprotektiv. Die zugrundeliegenden Mechanismen beruhen auf veränderten Expressionsmustern von Rezeptor-Isoformen, verringerten Rezeptor-Expressionsleveln und zytoprotektiven Dysbalancen zwischen pro- und antiapoptotischen Faktoren. Dies schützt Tumorzellen bei Kombination von GC mit Radio- oder Systemtherapien vor der Induktion von Apoptose. Deshalb gibt es große Vorbehalte gegenüber ihrer Anwendung als Tumortherapeutikum, weshalb eine generelle GC-Therapie bislang als kontraindiziert abgelehnt wird^{101,102}. In Studien konnte der NF-κB pathway durch Dexamethason bei Kombinationsbehandlung mit SMAC mimetics erfolgreich inhibiert werden. Es wurden signifikante Erfolge bei der *in vitro* Therapie der akuten lymphatischen Leukämie (ALL) gezeigt und durch cIAP-Inhibition die Apoptose induziert¹⁰³.

1.6.2 MLN4924

Als antiproliferativer und antiinflammatorischer Wirkstoff inhibiert MLN4924 (bzw. Pevonedistat oder TAK-924) spezifisch das NEDD8 (neural precursor cell expressed, developmentally down-regulated 8)-aktivierende Enzym (NAE). NAE aktiviert durch Konjugation mit NEDD8 (bzw. Neddylierung) die Cullin-RING-Ligase (CRL), eine E3-Ubiquitin-Ligase, die Proteine für den proteasomalen Abbau markiert¹⁰⁴. Dysregulationen der CRL, besonders von CRL1 bzw. SCF-E3-Ligase, sind mit der Karzinogenese verknüpft. CRL ubiquitiniert I κ B α , ein Inhibitor des klassischen NF-kB pathways, welcher proteasomal abgebaut wird. Die NAE-Hemmung durch MLN4294 führt zur Akkumulation von CRL-Substraten, bspw. $I\kappa B\alpha$ oder zellzyklusregulierender Proteine. Durch die MLN4924 inhibierte $I\kappa B\alpha$ -Ubiguitinierung wird der klassische NF-kB-Signalweg gehemmt, was für diverse Neoplasien [bspw. akute myeloische Leukämie (AML), Lymphome und Multiples Myelom] gezeigt wurde^{105,106}. Zusätzlich induziert MLN4924 die intrinsische Apoptose durch Stimulation proapoptotischer Bcl-2-Proteine und Herunterregulation von IAPs^{107,108}. Vielversprechende Daten für die Wirksamkeit dieses Wirkstoffs beim HNSCC sind publiziert. In vitro konnten Vanderdys et al. mit MLN4924 die Zellproliferation hemmen und das HNSCC erfolgreich radiosensitivieren¹⁰⁹. Zhao et al. konnten das HNSCC durch Senkung des c-FLIP-Levels für die TRAILinduzierte Apoptose sensitivieren¹¹⁰.

1.6.3 QNZ

Das Quinazolin-Derivat N4-[2-(4-Phenoxyphenyl)Ethyl] Quinazolin-4,6-Diamin (bzw. QNZ oder EVP4593) ist ein spezifischer Inhibitor des NF- κ B pathways und der TNF- α -Freisetzung^{111,112}. QNZ wirkt inhibierend auf die Angiogenese, Metastasierung und Inflammation (IL-1 β , IL-6 und TNF- α) durch spezifische Hemmung von p65 auf Proteinebene. Hierdurch wurde die Zellviabilität des hepatozellulären Karzinoms *in vitro* signifikant reduziert^{113,114}. Außerdem wurde an Glioblastomzellen die Hemmung der antiapoptotischen Proteine c-FLIP und myeloid cell leukemia 1 (MCL-1) gezeigt¹¹⁵.

1.6.4 TPCA-1

Das small molecule 2-[(Aminocarbonyl)amino]-5-(4-Fluorophenyl)-3-Thiophencarboxamid, bzw. TPCA-1, ist, als ATP-kompetitiver Inhibitor des IκB kinase (IKK)-Komplexes, eine spezifisch wirkende Verbindung zur Hemmung des klassischen NF-κB-Signalwegs mit hoher Selektivität für IKKβ. Außerdem inhibiert TPCA-1 den signal transducer and activator of transcription 3 (STAT3), ein HNSCC-Onkogen, das unter konstitutiver Aktivierung die Apoptose inhibiert und zytokinabhängig die Inflammation und Zellproliferation stimuliert¹¹⁶. *Nan et al.* berichten, dass aufgrund der dualen NF-κB- und STAT3-Inhibition das nicht-kleinzellige Bronchialkarzinom (NSCLC) durch TPCA-1 für Gefitinib sensitiviert wird. Durch Suppression der autokrinen IL-6-Sekretion wird Apoptose induziert¹¹⁷. *Podolin et al.* berichten, dass die IKKβ-Inhibition die Produktion von IL-6, -8 und TNF- α wirksam in Monozyten hemmt¹¹⁸. Des Weiteren induzierten *Rauert-Wunderlich et al.* durch TPCA-1 den Zelltod des Multiplen Myeloms¹⁰⁶.

1.7 Ziel der Arbeit

Die vorliegende Arbeit soll den Zusammenhang zwischen Inflammation und Therapieresistenz maligner Neoplasien am Beispiel eines in vitro Modells des HNSCC untersuchen. Grundlage hierfür ist die NF-kB-abhängige Induktion proinflammatorischer Gene, deren (Über-) Expression Tumorzellen auf Inflammation und Proliferation programmiert. Es soll die Hypothese überprüft werden, ob die Resistenz des HNSCC gegen immunologische Zelltodinduktoren (FasL oder TNF- α) durch zielgerichtete Inhibition des NF- κ B pathways aufgehoben werden kann. Hierbei wird die von Karin und Greten aufgestellte These, wonach die NF- κ B-Aktivierung über den klassischen, IKK- β -abhängigen NF- κ B pathway ein entscheidender Mediator der entzündungsinduzierten Karzinogenese ist, auf das HNSCC übertragen. Dabei soll überprüft werden, ob dieser Signalweg eine plausible molekulare Zielstruktur für therapeutische Zwecke darstellen könnte⁸¹. Hierfür wird die Wirkung von vier unterschiedlich targetierenden NF-κB-pathway-Inhibitoren auf fünf Zelllinien des HNSCC und eine keratinozytische Referenzzelllinie in vitro untersucht. Es soll analysiert werden, ob das Zytokin IL-8, ein Marker der Inflammation, sezerniert und durch TNF- α stimuliert wird. Ferner wird validiert, ob die Inflammation des HNSCC auf einer autokrinen Signalschleife via TNF- α , NF- κ B und IL-8 beruht. Durch Expressionsanalysen soll der Einfluss o. g. Inhibitoren auf proapoptotische, antiapoptotische und proinflammatorische Gene studiert werden. Ferner sollen FACS-Apoptose-Assays klären, ob Apoptose durch Inhibition dieses Signalwegs induziert werden kann.

2 Material & Methoden

2.1 Materialien

Die angegebenen Produktbezeichnungen sind, wenn auch im weiteren Verlauf dieser Arbeit nicht explizit darauf hingewiesen wird, urheberrechtlich geschützt. Eine fehlende oder fehlerhafte Kennzeichnung soll nicht auf eine freie Verfügbarkeit schließen lassen.

2.1.1 Geräte

Name	Bezeichnung	Hersteller	Herkunft
Absaugmotor	HLC by DITABIS	DITABIS AG	Pforzheim
Brutschrank	Heracell [™] 150i	Thermo Fisher Scientific	Darmstadt
Durchflusszytometer	BD FACSCalibur™ Flow Cytometer	Becton Dickinson GmbH	Heidelberg
Gefrierschrank	7084 311-00	Liebherr-International Deutschland GmbH	Biberach
Großsterilisator	Selectomat PL	MMM Münchener Medizin Mechanik GmbH	Planegg
Kühlschrank	7084 311-00	Liebherr-International Deutschland GmbH	Biberach
Magnetrührer	MR 3001	Heidolph Instruments GmbH & Co. KG	Schwabach
Mehrkanalpipette	Eppendorf Research plus	Eppendorf AG	Hamburg
Mikrovolumen-Spek- tralphotometer	NanoDrop™ Spectro- photometer ND-2000c	Thermo Fisher Scientific	Darmstadt
PCR-Thermocycler	CFX Connect™ Real- Time PCR Detection System	Bio-Rad Laboratories, Inc.	München
pH-Meter	Inolab pH level 1	Xylem Analytics Germany Sales GmbH & Co. KG	Weilheim
Pipetten	Eppendorf Research plus	Eppendorf AG	Hamburg
Pipettierhilfe	Accu-jet® pro	Brand GmbH + Co. KG	Wertheim
Photometer	Tecan Infinite® F50 Absorbance Microplate Reader	Tecan Deutschland GmbH	Crailsheim
Präzisionswaage	KB 2400-2N	Kern & Sohn GmbH	Dürrwangen
Sicherheitswerkbank	Safe 2020	Thermo Fisher Scientific	Darmstadt

Umwälzthermostat	MB-5	Julabo GmbH	Seelbach
Thermoschüttler	TS-100	Biosan Medical-Biological Research & Technologies	Riga, Lettland
Vakuumpumpe	N 816.3 KT.18	KNF Neuberger GmbH	Freiburg
Vortexmischer	Vortex Genie 2	Scientific Industries, Inc.	Karlsruhe
Wasserbad	VWB 26	VWR International GmbH	Darmstadt
Wippschüttler	Single-Tier Rocking Platform	VWR International GmbH	Darmstadt
Zellkulturmikroskop	CK40	Olympus Europa SE & Co. KG	Hamburg
Zellzählgerät	Casy® TT Cell Counter + Analyzer	Roche Innovatis AG	Reutlingen
Zentrifugen	Centrifuge 5427 RCentrifuge 5424	Eppendorf AG	Hamburg
	Universal 320R	Andreas Hettich GmbH & Co. KG	Tuttlingen

Tab. 1: Geräteverzeichnis. Angaben über d e verwendeten Geräte m t Produktbeze chnung, Herste er und Herkunft.

2.1.2 Software

Name	Version	Hersteller	Herkunft
BD CellQuest Pro ^M	5.1	BD Biosciences	Heidelberg
CASYstat	4.0	Schärfe System GmbH	Reutlingen
CFX Manager™ Software	3.1	Bio-Rad Laboratories, Inc.	München
EndNote™	X7.8	Clarivate Analytics	München
FlowJo®	10.0	FlowJo LLC	Ashland, USA
GraphPad Prism	6.04	GraphPad Software, Inc.	La Jolla, USA
Magellan™	7.0	Tecan Deutschland GmbH	Crailsheim
MEDAS	-	Grund EDV-Systeme	Margetshöchheim
Microsoft® Office Word 2016	16.16.10	Microsoft Corporation	München
Microsoft® Office Excel 2016	16.16.10	Microsoft Corporation	München
NanoDrop 2000 Software	1.0	Thermo Fisher Scientific	Darmstadt

 Tab. 2: Softwareverzeichnis.
 Auf stung der e ngesetzten Computerprogramme zur Datenerhebung, -anayse und -darste ung mt Angabe von Softwarevers on, Herste er und Herkunft.

Name	Bezeichnung	Hersteller	Herkunft
ELISA-Mikroplatten	MICROLON M	Greiner Bio-One GmbH	Frickenhausen
Einmalspritzen	BD Discardit ^M II	Becton Dickinson GmbH	Heidelberg
FACS-Röhrchen	5 ml Tubes	Sarstedt AG & Co	Nürnberg
Falcons	50 mm Polypropylene	Corning GmbH	Kaiserslautern
Kanülen	BD Microlance ^M	Becton Dickinson GmbH	Heidelberg
Messgefäße	CASYcups	Omni Life Science GmbH	Bremen
Mikroreaktionsgefäß	Safe-Lock Tubes	Eppendorf AG	Hamburg
Pasteurpipette	Glass Pasteur Pipettes	Kimble Chase Germany	Meiningen
Petrischalen	Nunc™	Thermo Fisher Scientific	Darmstadt
Pipetten	Cellstar	Greiner Bio-One GmbH	Frickenhausen
Pipettenspitzen	epT.I.P.S.	Eppendorf AG	Hamburg
Versiegelungsfolie	Microseal®	Bio-Rad Laboratories GmbH	Rüdesheim
Zellkulturflaschen	Nunc ^M EasYFlask ^M	Thermo Fisher Scientific	Darmstadt
Zellschaber	Cell Scraper	Thermo Fisher Scientific	Darmstadt
6-Well-Platten	Nunc™ Zellkultur-Mul- tischalen	Thermo Fisher Scientific	Darmstadt
96-Well-Platten	 Nunc[™] MicroWell[™] 96 Well Mikroplatten 	Thermo Fisher Scientific	Darmstadt
	 Multiplate® PCR Plates™ 96-well 	Bio-Rad Laboratories GmbH	Rüdesheim

2.1.3 Verbrauchsmaterialien

 Tab. 3: Materialliste.
 Verze chn s der e ngesetzten Verbrauchsmater a en mt Angabe von Art ke beze chnung, Herste er und Herkunft.

2.1.4 Nährmedien

Name	Supplemente	ProdNr.	Hersteller	Herkunft
DMEM	10 % FCS 1 % P/S	41965-039	Thermo Fisher Scientific	Darmstadt
DMEM, low glucose	10 % FCS 1 % P/S 5 ml Glutamin	31885-023	Thermo Fisher Scientific	Darmstadt
DMEM/F-12, HEPES	10 % FCS 1 % P/S 5 μl Hydrocortison	31330-038	Thermo Fisher Scientific	Darmstadt

Tab. 4: Zellkulturmedien. Verze chn s, nk us ve der Mod f kat onen, des Ze ku turmed ums Du becco's Mod f ed Eag e Med um (DMEM), der Supp emente und Produktnummern (Prod.-Nr.) m t Angaben zu Herste er und Herkunft.

Name	ProdNr.	Hersteller	Herkunft
CASYclean	5651786	Omni Life Science GmbH	Bremen
CASYton	177603	Omni Life Science GmbH	Bremen
Cortisol (C-106)	50-23-7	Sigma-Aldrich Chemie GmbH	Schnelldorf
Dimethylsulfoxid (DMSO)	RNBD9128	Sigma-Aldrich Chemie GmbH	Schnelldorf
Fc-FLAG-FasL	[500 µg/ml]	Laborgruppe Prof. Dr. Wajant	Würzburg
Fetal calf serum (FCS)	10270	Thermo Fisher Scientific	Darmstadt
Hydrocortison (≥ 98 %)	H4001-10G	Sigma-Aldrich Chemie GmbH	Schnelldorf
Kristallviolett	42555	Carl Roth GmbH + Co. KG	Karlsruhe
L-Glutamin [20 mM]	K 0283	Biochrom GmbH	Berlin
Methanol (≥ 99,8 %)	322415-1L	Sigma-Aldrich Chemie GmbH	Schnelldorf
MLN4924	HY-10484	Hycultec GmbH	Beutelsbach
Penicillin/Streptomycin	15140-122	Thermo Fisher Scientific	Darmstadt
QNZ (bzw. EVP4593)	S4902	Selleck Chemicals Europe	München
R&D Substrate Reagent	DY999	Thermo Fisher Scientific	Darmstadt
Salzsäure (1 M)	318949-6X1L	Sigma-Aldrich Chemie GmbH	Schnelldorf
TNF(wt)-FLAG	[300 µg/ml	Laborgruppe Prof. Dr. Wajant	Würzburg
TPCA-1	S2824	Selleck Chemicals Europe	München
Trypsin/EDTA solution	L2143	Biochrom GmbH	Berlin
(0.05 %/0.02 % in PBS)			

2.1.5 Chemikalien, Inhibitoren & Reagenzien

 Tab. 5: Chemikalien, Inhibitoren & Reagenzien.
 Verze chn s der verwendeten Reagenz en mt Angabe von Produktnummer, Herste er und Herkunft.

Die Zelltodliganden Fc-FLAG-FasL (bzw. FasL) und TNF(wt)-FLAG (bzw. TNF-α) wurden durch die Abteilung für Molekulare Innere Medizin des Universitätsklinikums Würzburg (Professor Dr. Wajant) hergestellt und freundlicherweise zur Verfügung gestellt. Hierfür wurden FLAG-Tag-markierte Rekombinanten durch Immunpräzipation mittels anti-FLAG M2 Agarose beads isoliert. Die Proteinaufreinigung wurde mit Hilfe von Affinitätschromatographie der Überstände transfizierter HEK293-Zellen durchgeführt¹¹⁹.

Die kommerziell erworbenen Inhibitoren des NF-κB pathways Cortisol, MLN4924, QNZ und TPCA-1 wurden gemäß Herstellerangaben in Dimethylsulfoxid (DMSO) gelöst, zu 10 mM Stocklösungen aliquotiert und bei -20 °C gelagert.

2.1.5.1 Kits

Name	ProdNr.	Hersteller	Herkunft
Annexin V PE Apoptosis Detection Kit PE	88-8102-74	Thermo Fisher Scientific	Darmstadt
BD OptEIA ^M Human IL-8 ELISA Set	555244	Becton Dickinson GmbH	Heidelberg
BD OptEIA ^M Human TNF ELISA Set	555212	Becton Dickinson GmbH	Heidelberg
QuantiTect® Reverse Transcription Kit	2045313	Quiagen Deutschland GmbH	Hilden
QuantiTect® SYBR® Green PCR Kit	204145	Quiagen Deutschland GmbH	Hilden
RNeasy® Mini Kit	74106	Quiagen Deutschland GmbH	Hilden

Tab. 6: Kits. Verze chn s der e ngesetzten, kommerz e verfügbaren Labor-K ts m t Angabe von Produktnummer, Herste er und Herkunft.

2.1.6 Lösungen & Puffer

Name	Zusammensetzung
Assay diluent	40,5 ml dH₂O 4,5 ml (10x) PBS 5 ml FCS
Capture Ansatz	Capture antibody purified IL-8 bzw. TNF- α 1:250 Coating buffer
Coating buffer	8,4 g/l NaHCO₃ 3,56 g/l Na₂CO₃
Kristallviolettlösung	0,5 g Kristallviolett 100 ml Methanol 400 ml dH ₂ 0
Phosphate-buffered saline (10x) (PBS)	133,25 g Na₂HPO₄ 15,6 g NaH₂PO₄ 409,5 g NaCl 5 I dH₂O
Stop solution (2N H ₂ SO ₄)	5,33 ml H ₂ SO ₄ 94,67 ml dH ₂ O
Tris-EDTA (TE) Puffer (1x)	1,211 g/l (10 mM) Tris 0,372 g/l (1 mM) EDTA-Na₂
Working detector	Assay diluent 1:250 Detection antibody biotinylated IL-8 bzw. TNF- α 1:250 Enzyme reagent streptavidin horseradish peroxidase

Tab. 7: Lösungen & Puffer. Zusammensetzung se bstständ g hergeste ter Puffer und Lösungen.

Name	Beschreibung	Gen	Spezies	ProdNr.	Hersteller
Hs_BAX_1_SG	proapoptotisch	BAX	human	QT00031192	Quiagen
Hs_BCL2_1_SG	antiapoptotisch	BCL2	human	QT00025011	Quiagen
Hs_BIRC2_1_SG	antiapoptotisch	BIRC2	human	QT00083587	Quiagen
Hs_BIRC3_1_SG	antiapoptotisch	BIRC3	human	QT00021798	Quiagen
Hs_CFLAR_1_SG	antiapoptotisch	CFLAR	human	QT00064554	Quiagen
Hs_XIAP_1_1_SG	antiapoptotisch	XIAP	human	QT00042854	Quiagen
Hs_IL6_1_SG	inflammatorisch	IL-6	human	QT00083720	Quiagen
HS_IL8_1_SG	inflammatorisch	IL-8	human	QT00000322	Quiagen
Hs_ACTB_2_SG	Haushaltsgen	β-Actin	human	QT01680476	Quiagen

2.1.7 Oligonukleotid-Primer

Tab. 8: Primer. Kata og der O gonuk eot de für d e reverse-transcr pt on quant tat ve rea -t me po ymerase cha n react on (RT-qPCR). Angabe der verwendeten O gonuk eot de zum Nachwe s der re at ven Express - ons eve o. g. Gene nach *in vitro* St mu at on der Ze en mt den v er zu untersuchenden Inh b toren des NF- κ B pathways n der SYBR® Green-bas erten Genexpress onsana yse. D e Pr mer wurden n 1,1 m TE-Puffer ge öst und gemäß Herste erangaben ge agert.

2.1.8 Zellpanel

Zelllinie	Beschreibung & Ursprung	TNM ¹²⁰	Medium
PCI 1-1*	Glottisches Larynxkarzinom	pT2N0M0G2	DMEM (low)
PCI 9-1*	Zungenbasiskarzinom	pT4N3M0G2	DMEM (low)
PCI 13-1*	Retromolares Mundhöhlenkarzinom	pT4pN1M0G3	DMEM (low)
PCI 52*	Karzinom der Plica aryepiglottica	pT2N0M0G2	DMEM (low)
SCC-25**	Zungenkarzinom	T1N1M0	DMEM/F-1 2
HaCaT**	Immortalisierte humane Keratinozyten	-	DMEM

Tab. 9: Zellpanel. Kata og der untersuchten HNSCC-Ze en (nk us ve der Referenzze n e HaCaT) m t Angabe des jewe gen Resekt onsorts, der TNM-K ass f kat on und der e ngesetzten Basa med en [m t * mark erte Ze en wurden vom Krebs nst tut der Un vers tät P ttsburgh (USA) etab ert¹²¹, mit ** gekennze chnete Ze en wurden von Amer can Type Cu ture Co ect on kommerz e erworben].

2.2 Methoden

2.2.1 Zellkultur

Die Zelllinien (Tab. 9) wurden als adhärente und permanente Kulturen unter einer Schutzatmosphäre bei 5 % CO₂, 95 % gesättigter Luftfeuchtigkeit und 37 °C kultiviert. Dem Proliferationsverhalten adaptiert erfolgte die Subkultivierung mit Medienwechsel im Intervall von 72 Stunden unter keimfreien Kautelen. Der konfluente Monolayer wurde mit vorgewärmter phosphatgepufferter Salzlösung (PBS bzw. PBS low) gewaschen. Gelöst wurden die adhärenten Zellen enzymatisch im Detachment- und shake-off-Verfahren mittels einer Trypsin-EDTA-Lösung. Zur Passagierung wurden die Zellsuspensionen gesplittet und mit frischem Nährmedium ergänzt (Tab. 4)¹²².

2.2.1.1 Automatisierte Zellzählung

Die Quantifizierung vitaler Suspensionszellen erfolgte mit dem Zellzähler Casy® TT im Coulter-Prinzip. Dieses automatisierte und volumenbasierte Aggregationsmessverfahren beruht auf der Impedanzmessung und Pulsflächenanalyse. Sie dient der Bestimmung der Zellkonzentration sowie von -viabilität, -volumen, -aggregation und -debris. Hierfür wurden 10 µl der aliquotierten Zellsuspension in 10 ml einer isotonen, elektrisch leitfähigen Lösung überführt (1:1.000). Während dem Messverfahren liegt ein elektrischer Widerstand an der Durchflusskapillare an. Treten Zellen mit intakter Zytoplasmamembran durch die Messpore erhöht sich analog der elektrische Widerstand, da vitale Zellen mit unversehrter Oberflächenintegrität isolatorisch wirken. Diese Impendanzverschiebungen werden in elektrische Pulse umgewandelt und durch die Analysesoftware CASYstat als Konzentration Zellzahl pro ml umgerechnet. Hierbei ist die Impulszahl mit der Zellkonzentration und die Impulsamplitude mit dem Zellvolumen korreliert¹²³.

2.2.2 Zytotoxizitätsassay

Die Zellen [1 x 10⁴ pro Well in 100 µl] wurden als Triplikate auf 96-Well-Mikrotiterplatten ausgesät und über Nacht inkubiert. Für die *in vitro* Monotherapien wurden Cortisol, MLN4924, QNZ, TPCA-1 sowie FasL in log₂-Stufen seriell verdünnt, wobei je nach biologischer Aktivität der Wirkstoffe unterschiedliche Startkonzentrationen gewählt wurden. Zur prozentualen Normierung (auf 100 %) der zytotoxischen Effekte wurden die Zellen in Spalte zehn als Kontrollen streng nur mit Nährmedium behandelt. Nach 72-stündiger Inkubation wurden die Zellen im Kristallviolettassay quantifiziert (Kap. 2.2.2.1). Aus diesen Daten konnten initial-inhibitorische Wirkstoffdosen [IC₁₀ (*engl.: inhibitory concentration of 10 %*)] bestimmt werden, die die relative Zellzahl (%) um ein Zehntel reduzierten. War aufgrund einer eingeschränkten biologischen Aktivität einzelner Wirkstoffe kein IC₁₀-Wert festzustellen, wurde die Verdünnungsstufe, welche als erste zu einer signifikanten Zellzahlreduktion führte, als IC₁₀-Wert definiert und mit 1o bezeichnet. Diese individuell bestimmten Konzentrationen wurden in den Kombinationstherapien mit FasL als log₂-Verdünnungsreihe konstant appliziert.

2.2.2.1 Kolorimetrische Quantifizierung der Zellviabilität

Zur Bestimmung der zytotoxischen Effekte der zu untersuchenden Inhibitoren wurde die Kristallviolettmethode nach *Gillies et al.* verwendet¹²⁴. Hierbei infiltriert der basische Farbstoff Kristallviolett adhärente bzw. vitale Zellen des Monolayers und interkaliert in deren DNA. Somit korreliert die optische Dichte der photometrisch messbaren Extinktion mit der Zellzahl¹²⁵. Zur Versuchsanalyse wurden die Zellen nach Aspiration des Überstands mit 50 µl Kristallviolettlösung (Tab. 7) für 12 Minuten gefärbt. In mehreren Waschzyklen wurde ungebundener Farbstoff mit deionisiertem Wasser von der Platte gespült und diese für 24 Stunden luftgetrocknet. Der gebundene Farbstoff wurde mit Methanol (100 µl pro Well) gelöst und photometrisch im Mikroplatten-Reader Tecan Infinite® F50 bei einer Wellen-länge von 595 nm (OD_{595nm}) quantifiziert¹²⁶.

2.2.3 Enzyme-linked immunosorbent assay

Der quantitative Nachweis der Zytokinsekretion wurde mittels enzyme-linked immunosorbent assay (ELISA) erbracht. Diese Methode, bei der ein Antikörper zum Antigennachweis mit einem Indikatorenzym konjugiert wird, geht auf *Engval et al.* und *van Weemen et al.* zurück^{127,128}. In vorliegenden Fall wurde das Prinzip der indirekten sandwich-ELISA (sELISA) genutzt. Hierbei wird ein Antigen durch Anwendung unterschiedlicher Antikörper, welche dieses beidseits binden, detektiert. Capture-Antikörper adsorbieren das nachzuweisende Antigen an die Plattenoberfläche. Unmarkierte Detektionsantikörper sowie mit Meerrettichperoxidase-konjugierte Zweitantikörper binden an das fixierte Antigen und setzen eine enzymatische Farbreaktion in Gang. Diese verhält sich linear zur ausgebrachten Antigenmenge und kann photometrisch quantifiziert werden. Vorteil dieser Methode ist der Nachweis geringer Antigenkonzentrationen¹²⁹. Für die durchgeführten Versuche wurden kommerziell erhältliche Kits eingesetzt (Tab. 6) und wie im Folgenden erläutert modifiziert angewendet.

2.2.3.1 sELISA zur Quantifizierung der Zytokinsekretion

Zur Bestimmung der Zytokintiter wurden 2 x 10⁴ Zellen pro Well in 100 µl Medium als Duplikate ausgesät und die Überstände nach 24 bzw. 48 Stunden geerntet. Um die Zytokinkonzentration mit der Zellproliferation korrelieren zu können, wurde die Zellzahl im Kristallviolettassay quantifiziert (Kap. 2.2.2.1). Hochbindungsaffine Mikrotiterplatten wurden mit dem capture-Antikörper-Ansatz (50 µl pro Well) bei 4 °C über Nacht beschichtet. Am Folgetag wurden die Platten dreimal mit PBS-Tween gewaschen und freie Bindungsstellen mit 200 µl assay diluent für 1 Stunde bei Raumtemperatur gesättigt. Nach dreimaligem Waschen wurden je 70 µl Standards [0 - 0,5 - 1 - 2 ng/ml] sowie die Proben aufgetragen und für 2 Stunden inkubiert. Es folgten fünf Waschzyklen und der Auftrag von 50 µl mit Streptavidin-Meerrettichperoxidase konjugierter Antikörper (bzw. working detector). Nach einstündiger Inkubation und sieben Waschschritten wurde die Substratlösung (100 µl pro Well) enzymatisch umgesetzt. Je nach Reaktionsgeschwindigkeit wurde der Farbumschlag mit 2 N H₂SO₄ (bzw. stop solution) gestoppt und bei 405 nm (OD_{405nm}) im ELISA-Mikroplatten-Reader gemessen.

2.2.3.1.1 Validierung des ELISA-Kits

Zur Prüfung der Güte des eingesetzten Testverfahrens wurden TNF-α-Standards als Positivkontrollen gemessen. Die seriell verdünnten Konzentrationen der rekombinanten Standardlösungen konnten photometrisch verifiziert werden, weshalb von einer validen Versuchsdurchführung ausgegangen werden konnte. Um die Messwerte vom metho-

Abb. 6: Positivkontrolle der TNF- α -sELISA. Zur Va d erung und Best mmung abso uter Zytok nkonzentrat onen der TNF- α -sELISA wurden rekomb nante TNF- α -Standards a s og2-Verdünnungsre he aufgetragen und photometr sch gemessen. H eraus wurden m tte s nearer Regress onsana yse d e abso uten Zytok nkonzentrat onen [ng/m] berechnet.

dischen Hintergrundsignal zu bereinigen, wurde der Background durch Kontrollproben ohne TNF-α bestimmt. Hierfür wurden frische Zellkulturmedien analysiert. Die Bestimmung absoluter Zytokinkonzentrationen erfolgte durch lineare Regressionsanalyse. Dabei wurde die optische Dichte bzw. Extinktion der einzelnen Verdünnungsstufen gegen die jeweiligen Konzentrationen der Standards aufgetragen und die Steigung dieser linearen Funktion berechnet:

y = 0,0568x

Die Konversion der photometrisch quantifizierten Extinktionswerte in absolute Zytokinkonzentrationen [ng/ml] wurde folgendermaßen durchgeführt:

$$x = y/0,0568$$

Dabei gilt:

0,12

0,1

0,08

0.04

0,02

OD [405 nm]

 $x = TNF - \alpha [ng/ml]$ $y = OD_{405nm}$

 0
 0,0
 0,5
 1,0
 1,5
 2,0

 TNF-α [ng/ml]

 Abb. 7: Lineare Regressionsanalyse zur Bestimmung der Zytokinkonzentration [ng/ml]. D e opt sche D chte (OD405nm) der rekomb nant hergeste ten TNF-α-Standard-Lösungen wurde gegen d e entsprechende TNF-α-Konzentrat on aufgetragen und m tte s Trend n e a s Ste gungsfunkt on dargeste t. D e Ste gung der Standardkurve wurde durch neare Approx mat on m t der Software M crosoft Exce berechnet.

y = 0.0568x
2.2.3.1.2 sELISA zur Quantifizierung der IL-8-Sekretion

Zum Nachweis der durch die Inhibitoren des NF- κ B pathways gehemmten IL-8-Freisetzung wurden die Proben entsprechend präpariert (Kap. 2.2.3.1). Vor Inkubation der Zellen wurden die Überstände aspiriert, um das Hintergrundsignal der basalen IL-8-Sekretion zu minimieren. Kombiniert behandelte Proben (NF- κ B-Inhibitor + TNF- α) wurden initial mit den Inhibitoren [IC₁₀] in doppelter Konzentration (50 µl pro Well) vorstimuliert. Um sicherzustellen, dass alle Proben einheitlich behandelt werden, wurden die monotherapeutisch nur mit dem jeweiligen Inhibitor oder TNF- α behandelten Proben mit frischem Medium (50 µl pro Well) vorinkubiert. Nach 6 Stunden wurden die NF- κ B-Inhibitoren [IC₁₀] und TNF- α [5 ng/ml] in jeweils doppelter Dosis (50 µl/Well) appliziert. Die Überstände wurden nach 48 Stunden geerntet und bis zur Versuchsdurchführung bei -20 °C gelagert. Zur Korrelation der sezernierten IL-8-Level [ng/ml] mit der relativen Zellzahl (%) wurden diese als Kristallviolett-Assay quantifiziert (Kap. 2.2.2.1).

2.2.4 Two-step reverse-transcription quantitative real-time polymerase chain reaction

Für diesen Assay (bzw. RT-qPCR) wurden 3 x 10^6 Zellen je Probe auf 6-Well-Platten ausgesät. Nach Inkubation über Nacht und anschließender Aspiration des Mediums am Folgetag wurde der konfluente Zellrasen mit vorgewärmtem PBS (bzw. PBS low) gewaschen und mit den NF- κ B-pathway-Inhibitoren [IC₁₀₀ (Tab. 13)] für 24 Stunden inkubiert.

2.2.4.1 Präparation der Gesamt-RNA

Die RNA-Extraktion erfolgte mit dem Quiagen RNeasy® Mini Kit in der Silicagel-Membran-Technik¹³⁰. Hierbei adsorbieren mit positiv geladenen Siliziumdioxid beschichtete Membranen polyanionische Ribonukleinsäuren^{131,132}. Die Aufreinigung der RNA erfolgte gemäß Herstellerangaben. Die isolierte RNA wurde bis zur Versuchsdurchführung bei -20 °C gelagert.

2.2.4.1.1 Spektralphotometrische Nukleinsäureanalyse

Die Quantifizierung der extrahierten Gesamt-RNA-Konzentration erfolgte mit dem Spektralphotometer NanoDrop® ND-2000c in den Wellenlängenbereichen von 260 und 280 nm. Die RNA-Konzentration [ng/µl] wurde wie folgt nach dem Lambert-Beer`schen Gesetz berechnet:

$$c = \frac{A \times \epsilon}{d}$$

Dabei gilt:

c = RNA-Konzentration [ng/µl]

- A = Absorption bei gegebener Wellenlänge λ
- ϵ = Wellenlängenabhängiger Extinktionskoeffizient [$\frac{ng \times cm}{ul}$]

bei λ = 260 nm beträgt ε = 40 [$\frac{ng \times cm}{\mu l}$]

d = Schichtdicke bzw. Messstrecke (cm)

Die Ratio OD_{260nm}/OD_{280nm} soll gemäß *Desjardins et al.* bei etwa 2 liegen, um von einer reinen RNA-Lösung ausgehen zu können¹³³. Da der Absorptionswert von A_{260nm} einer Konzentration von 40 µg einzelsträngiger RNA pro ml entspricht, kann die RNA-Konzentration [µg/ml] folgendermaßen berechnet werden:

 $c [\mu g/ml] = A_{260} \times 40 [\mu g/ml]$

2.2.4.2 Synthese komplementärer DNA

Die Gesamt-RNA wurde mit dem Quiagen QuantiTect® Reverse Transcription Kit in komplementäre DNA *[engl.: complementary DNA (cDNA)]* umgeschrieben. Die cDNA-Erststrang-Synthese erfolgte gemäß Herstellerangaben. Hierfür wurde das Probenvolumen mit 1.000 ng RNA wie folgt berechnet:

$$V(\mu l) = \frac{1.000 \text{ ng}}{c \left[\frac{ng}{\mu l}\right]}$$

Dabei gilt:

V = Benötigtes Volumen der RNA-Lösung der jeweiligen Probe (μl)

c = RNA-Konzentration der entsprechenden RNA-Lösung $[ng/\mu l]$

Das mit RNAse-freiem H₂O auf 12 µl ergänzte Gesamtvolumen wurde mit 2 µl wipeout-Puffer für 2 Minuten bei 42 °C inkubiert, um residuale genomische DNA zu eliminieren. Der Reverse Transkriptase (RT)-Mastermix wurde folgendermaßen angesetzt:

- 4 µl RT buffer
- 1 µl RT primer mix
- 1 µl RT

Die templates wurden mit 6 µl Mastermix versetzt und für 15 Minuten bei 42 °C inkubiert. Zur Inaktivierung der Transkriptase wurden die Proben für 3 Minuten bei 95 °C inkubiert und abschließend mit TE-Puffer (pH 8) ergänzt.

2.2.4.3 Farbstoffbasierte real-time two-step RT-qPCR

Die Genexpressionsanalyse wurde in einem zweizeitigen Verfahren mit primärer cDNA-Erststrang-Synthese und anschließender Amplifikation im Thermocycler (CFX ConnectTM Real-Time PCR Detection System) als SYBR[®] Green-basierte quantitative real-time-PCR durchgeführt. Der Fluoreszenzfarbstoff SYBR[®] Green interkaliert hochspezifisch in die kleine Furche der zu amplifizierenden DNA und emittiert bei einer Wellenlänge von λ = 494 nm ein Fluoreszenzsignal mit einem Maximum bei λ = 521 nm¹³⁰. Für diesen Assay wurden 12,5 µl QuantiTect® SYBR[®] Green Mastermix mit 10,5 µl template (20 ng cDNA) je Probe als Reaktionsmix pipettiert. Dieser wurde als Duplikat mit 2 µl Primer je Probe versetzt. Das für β-Actin kodierende housekeeping-Gen ACTB wurde als Referenztranskript zur Quantifizierung der relativen Genexpression des Zieltranskripts genutzt¹³⁴. Um die im Mastermix enthaltene HotStarTaq® DNA Polymerase zu aktivieren, wurden die Proben initial bei 95 °C für 15 Minuten inkubiert. Hieran anschließend wurden 40 Zyklen der folgenden Reaktionsschritte durchlaufen:

- DNA-Denaturierung: 94 °C für 15 Sekunden
- Primer-annealing: 54 °C für 30 Sekunden
- Elongation: 72 °C für 30 Sekunden

2.2.5 Fluorescence-activated cell sorting

Fluorescence-activated cell sorting (FACS) ist eine Variante der Durchflusszytometrie, welche mit Fluoreszenzfarbstoffen markierte Zellen entsprechend ihrer Lichtemission analysiert^{135,136}. Durch Vibrationen werden Proben zu Einzelzellsuspensionen hydrodynamisch fokussiert¹³⁷. Fluorochrome emittieren nach Anregung durch energetisierte Elektronen Photonen eines spezifischen Emissionsspektrums¹³⁸. Gemäß dem Prinzip der Lichtstreuung an Grenzflächen wird die Ausbreitungsrichtung des Lichts beim Auftreffen auf die Zelloberfläche abgelenkt. Hieraus lassen sich Rückschlüsse auf Größe, Oberflächenbeschaffenheit und Granularität ziehen, was eine Zelldifferenzierung ermöglicht¹³⁹. Die Datenakquisition erfolgte mit dem Durchflusszytometer BD FACSCALIBUR™, die Analyse mit der Software BD CellQuest[™] Pro und die Datenauswertung sowie graphische Darstellung mit der Software FlowJo[®] V10.

2.2.5.1 Annexin V PE/7-AAD-Doppelmarkierung

Die Vital-Fluoreszenz-Doppelfärbetechnik mit den Farbstoffen Annexin V PE und 7-Aminoactinomycin D (7-AAD) erlaubt die durchflusszytometrische Evaluation des programmierten Zelltods. Dabei können unterschiedliche Formen und Stadien bestimmt werden. Die Apoptose ist charakterisiert durch die Translokation von Phosphatidylserin auf die Zelloberfläche. Durch diesen Flip-Flop-Mechanismus wird die Zelle für den phagozytotischen Zellverdau gekennzeichnet¹⁴⁰. Das mit Phycoerythrin (PE) gelabelte Annexin V ist ein phospholipidbindendes Protein, welches durch Ca²⁺ vermittelt hochspezifisch an externalisiertes Phosphatidylserin assoziiert. Somit dient es dem Nachweis frühapoptotischer Zellen. Bei spätapoptotischen Zellen kommt es zusätzlich zur Desintegration der Zellmembran¹⁴¹. Hierdurch kann das Chromopeptid 7-AAD, ein Vitalitätsfarbstoff mit hoher DNA-Bindungsaffinität für Guanin-Cytosin-reiche Seguenzen, die Zellen nukleär anfärben¹⁴². Durch den kombinierten Einsatz beider Farbstoffe lassen sich außerdem tote Zellen subdifferenzieren. Für die Versuchsdurchführung wurde das eBioscience[™] Annexin V Apoptosis Detection Kit PE genutzt. 1 x 10⁶ Zellen wurden pro Probe auf 6-Well-Platten transferiert und über Nacht inkubiert. Vor der Stimulation wurden die Überstände aspiriert und das Zellayer mit PBS (bzw. PBS low) gewaschen. Anschließend wurden die Zellen mit den NF-KB-Inhibitoren [IC100 (Tab. 13)] für 48 Stunden inkubiert. Nach dem Ernten der Überstände und der trypsinierten Zellen wurden diese pelletiert und mit PBS und 1x binding buffer gewaschen. Vor Anfärbung mit Annexin V PE (5 µl je Probe) wurde das Pellet in 1x binding buffer gelöst. Nach 15-minütiger Inkubation wurden die Zellen mit 1x binding buffer gewaschen und resuspendiert. Mit 5 µl 7-AAD je Probe erfolgte die Doppelfärbung. Die Proben wurden in Analyseröhrchen transferiert und bis zur Messung bei 4 °C unter Lichtausschluss gelagert. Zum Setup des Zytometers wurde das Zellpanel ohne Annexin V PE- oder 7-AAD-Färbung vermessen. Da alle Zelllinien eine homogene Beschaffenheit aufwiesen, wurden einheitliche Messparameter angewendet:

Parameter	Detektor	Spannung	Verstärkung	Modus
P1	FSC	E1	3,32	Lin
P2	SSC	295	1	Lin
P3	FL1	412	1	Log
P4	FL2	290	1	Log
P5	FL3	390	1	Log
P6	FL2-A	-	1	Lin
P7	FL4	800	-	Log

Tab. 10: Instrument-Setting. E nste ungen der Detektoren des Durchf usszytometers BD FACSCa bur™ bezüg ch der gewäh ten Spannungen, F uoreszenzkanä e und Verstärkungen, um m t der Annex n V PE/7-AAD-Doppe färbemethode d e Indukt on der Apoptose durch NF-κB-pathway-Inh b toren zu ana ys eren.

Die Messungen wurden als Zweiparameterdarstellungen (bzw. dot plots) abgebildet (Abb. 8). Das Signal des in Richtung des Messlasers gestreuten Lichts bzw. Vorwärtsstreulichts [forward scatter height (FSC-H)] wurde auf der x-Achse aufgetragen. Hiermit werden die flach nach vorne abgelenkten Strahlen bzw. die relative Zellgröße detektiert¹⁴³. Auf der y-Achse wurde das Seitwärtsstreulicht [side scatter height (SSC-H)] dargestellt. Dies ist die Strahlung, die nahezu rechtwinklig an der Zelloberfläche gebrochen wird. Hieraus lassen sich Rückschlüsse auf die Granularität und die innere Beschaffenheit der Zellen ziehen¹⁴⁴. Aufgrund der Doppelfärbetechnik wurden im acquisition density plot der fluorescent channel 2-height (FL2-H) in der x-Achse und FL3-H in der y-Achse gewählt (Abb. 8). Der FL2-H-Kanal detektiert mit PE-konjugiertes Annexin V bei einer Erregungswellenlänge von λ = 488 nm. Im FL3-H-Kanal wird 7-AAD bei λ = 635 nm gemessen. Dabei bedeutet "H" (*engl.: height*), dass die Signalhöhe, also die maximale Fluoreszenzemission, registriert wird.

Abb. 8: Geräte-Setup. Nat ve, ungefärbte HaCaT wurden durchf usszytometr sch auf hr Aussehen und Verha ten m Durchf usszytometer BD FACSCa bur™ ana ys ert, um d e Messparameter für den FACS-Apoptose-Assay zu def n eren.

2.2.5.1.1 Positionierung des Quadrantenmarkers

HaCaT-Zellen wurden entsprechend des Protokolls präpariert und als Standard analysiert (Kap. 2.2.5.1). Der Quadrantenmarker wurde derart positioniert, dass > 90 % der gesamten Zellpopulation in Q4 lokalisiert war (Abb. 9). Dieser Quadrant ist definiert als Bereich, in dem weder Annexin V PE- noch 7-AAD-positive Zellen zu liegen kommen und somit als vital gelten. Q1 stellt die Annexin V-negative und 7-AAD-positive Population dar. Dies sind Zellen, die sich im unspezifischen Zelltod befinden. In Q3 werden frühapoptotische, also Annexin V-positive und 7-AAD-negative Zellen, wohingegen in Q2 Annexin V- und 7-AAD-postive Zellen in einem spätapoptotischen Stadium abgebildet werden. Diese Einstellung wurde für alle weiteren Messungen und Auswertungen übernommen.

Abb. 9: Positionierung des Quadrantenmarkers. Durchf usszytometr e unst mu erter HaCaT zur Parameterbest mmung m Annex n V PE/7-AAD-Apoptose-Assay. Darste ung des acqu st on dot p ots (nks) m t gat ng der popu at on of nterest (≥ 95 % der Bezugspopu at on). Der Quadrantenmarker m acqu st on dens ty p ot (rechts) egt d e Quadranten Q1 (Annex n V-/7-AAD+), Q2 (Annex n V+/7-AAD+), Q3 (Annex n V+/7-AAD-) und Q4 (Annex n V-/7-AAD-) unter Angabe des Ante s der Ze popu at on (%) fest. D ese E nste ungen wurden für a e we teren Messungen d eser Versuchsre he übernommen.

2.2.6 Datenauswertung

Die statistische Auswertung erfolgte wie in den anschließenden Unterkapiteln detailliert beschrieben. Dazu kamen folgende Softwares zu Einsatz:

Name	Version	Hersteller	Herkunft
Microsoft® Office Excel 2016	16.16.10	Microsoft Corporation	München
GraphPad Prism	6.04	GraphPad Software, Inc.	La Jolla, USA
MEDAS	-	Grund EDV-Systeme	Margetshöchheim

 Tab. 11: Verzeichnis der statischen Softwares. Auf stung der eingesetzten Computerprogramme zur statischen Datenana yse und -darste ung mit Angabe von Softwarevers on, Herste er und Herkunft.

Durchgeführt wurden die statistischen Auswertungen von Herrn Dr. med. dent. Mario J. J. Scheurer mit freundlicher Unterstützung und fachkundiger Beratung durch Frau Dr. rer. nat. Imme Haubitz.

2.2.6.1 Bestimmung der absoluten Zytokintiter

Die Konzentrationsbestimmung der im sELISA analysierten Zytokintiter wurde durch eine lineare Regressionsanalyse realisiert. Zwecks absoluter Quantifizierung wurden externe Standards als Verdünnungsreihe [0 - 0,5 - 1 - 2 ng/ml]vermessen und die duplikat aufgetragenen Proben zu arithmetischen Mittelwerten (MW) zusammengefasst. Die Extinktionswerte [y-Achse, OD_{405nm}, (Abb. 7)] wurden in einer linearisierten Standardkurve gegen die jeweiligen Verdünnungsstufen (x-Achse) aufgetragen. Aus der hieraus resultierenden Trendlinie konnte über eine lineare Funktion die Steigung dieser Geraden berechnet werden:

$$x = \frac{y}{m}$$

Dabei gilt:

x = Konzentration [ng/ml]

 $y = OD_{405nm}$

m = Steigung

2.2.6.2 Standardisierung der Zytokintiter

Um die sezernierten Zytokinmengen mit der Zellproliferation zu korrelieren, wurden die Zytokinkonzentrationen mit der relativen Zellzahl (%) in Beziehung gesetzt. Hierfür wurde die absolute Konzentration des sezernierten Zytokins [ng/ml] auf die entsprechende Kontrolle [ng/ml] normiert:

$$ELISA_{R} = \frac{ELISA_{S}}{ELISA_{C}}$$

Dabei gilt:

ELISA_R = Relatives Zytokinexpressionslevel ELISA_S = Sezerniertes Zytokin [ng/ml] ELISA_C = Kontrolle [ng/ml]

Die Normierung der relativen Zytokinfreisetzung auf die relative Zellzahl wurde wie folgt berechnet:

$$E_{R} = \frac{ELISA_{R}}{CV_{R}}$$

Dabei gilt:

 E_R = Quotient aus rel. Zytokintiter und rel. Zellzahl ELISA_R = Relatives Zytokinexpressionslevel CV_R = Rel. Zellzahl im Kristallviolettassay

Die statistische Analyse erfolgte mit dem Wilcoxon-Rangsummentest (Kap. 2.2.6.5). Das Signifikanzniveau wurde auf p < 0,05 festgelegt, was statistisch signifikante Effekte indizierte.

2.2.6.3 $\Delta\Delta$ Ct-Methode zur relativen Quantifizierung der Genexpression

Die mittels PCR gewonnenen Rohdaten wurden mit der Software CFX Manager[™] erhoben. Um die Wirkung der NF-κB-pathway-Inhibitoren auf transkriptioneller Ebene zu untersuchen, wurden Expressionsunterschiede (bzw. Ratios) von Proben, die mit den Inhibitoren vorbehandelt wurden, mit den unbehandelten Kontrollproben verglichen. Hierfür wurde das Prinzip der Normalisierung der Expression auf ein stabil exprimiertes, unreguliertes und ubiquitär vorkommendes housekeeping-Gen (β -Actin) angewendet¹⁴⁵. Als Maß für die Quantifizierung wird der Schwellenwertzyklus bzw. Ct-Wert *(engl.: cycle treshhold)* herangezogen. Dieser Wert bezeichnet den PCR-Zyklus, bei dem es am Übergang der lag- zur log-Phase zu einem exponentiellen Anstieg des Fluoreszenzsignals als Indikator der Amplifikation des Genprodukts kommt. Je mehr cDNA in der Probe vorliegt, desto weniger Zyklen sind nötig, um diese Grenze zu überschreiten¹⁴⁶. Zunächst wurde aus den Ct-Werten der in Duplikaten gemessenen Proben das arithmetische Mittel gebildet und die Standardabweichung der Grundgesamtheit σ berechnet:

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2}$$

Dabei gilt:

 σ = Standardabweichung der Grundgesamtheit n = Anzahl der Messwerte bzw. Umfang der Grundgesamtheit x_i = Merkmalsausprägung am i-ten Element μ = Erwartungswert

Die Berechnung der Ratio bzw. des auf β -Actin normierten relativen Expressionslevels wurde mit der modifizierten $\Delta\Delta$ Ct-Methode nach *Pfaffl* durchge-führt^{147,148,149}:

$$\begin{split} \Delta Ct &= Ct^{\beta-Actin} - Ct^{Probe} \qquad (1)^{\star} \\ \Delta \Delta Ct &= Ct^{Probe} \quad \Delta Ct^{Kontrolle} \qquad (2) \\ Ratio &= 2^{\Delta\Delta Ct} \qquad (3)^{\star} \\ (\text{Mod } fz \text{ erte Forme n wurden m tte s Sternchen gekennze chnet.}) \end{split}$$

Ein fold change (FC) > 1 bedeutet, dass es zu einer Steigerung des Expressionslevels im Vergleich zur Kontrolle kam. Dementsprechend ist FC < 1 als Senkung der Genexpression zu werten. Aufgrund der exponentiellen Berechnungsweise kann man bei FC-Werten im Bereich von - 2 bis + 2 keine sichere Aussage über die Genregulation treffen, weshalb diese als unreguliert definiert wurden. Deshalb wurden Zu- bzw. Abnahmen des FC-Werts > 2 als signifikant definiert und folgendermaßen graduell klassifiziert:

> Leicht: Faktor 2 bis 5 Mittel: Faktor > 5 bis 10 Stark: Faktor > 10

2.2.6.4 Deskriptive Statistik der Zytotoxizitätsassays

Zur Realisierung einer hohen statistischen Reliabilität innerhalb des erhobenen Datensatzes wurden die Assays in drei voneinander unabhängigen Experimenten reproduziert. Die zu arithmetischen Mittelwerten (MW) zusammengefassten Extinktionen wurden durch Subtraktion des unspezifischen Backgrounds (BG_{OD595nm}) vom methodischen Hintergrundsignal der Kristallviolettfärbung bereinigt. Die Standardabweichung (SD) der Grundgesamtheit σ wurde mit folgender Formel berechnet:

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2}$$

Dabei gilt:

 σ = Standardabweichung der Grundgesamtheit n = Anzahl der Messwerte bzw. Umfang der Grundgesamtheit x_i = Merkmalsausprägung am i-ten Element μ = Erwartungswert

Die vom Hintergrund bereinigten Messwerte wurden mit den als Standard definierten Mittelwerten (MW_{OD595nm}) der unstimulierten Kontrolle in prozentuale Relation gesetzt. Dabei wurde der MW des Standards auf 100 % normiert. Die Berechnung der relativen Zellzahl (%) geschah wie folgt:

$$\left(\frac{(MW_{OD595nm (stimulierte Zellen)} - BG_{OD595nm})}{(MW_{OD595nm (Standard)} - BG_{OD595nm})}\right) \times 100 = rel. Zellzahl (\%)$$

Aus den Triplikaten der MW_{0D595nm (stimulierte Zellen)} wurde die SD in % ermittelt:

$$\left(\frac{\text{SD}_{\text{OD595nm (stimulierte Zellen)}}}{\text{MW}_{\text{OD595nm (stimulierte Zellen)}} - \text{BG}_{\text{OD595nm}}}\right) \times \text{ rel. Zellzahl (\%) = SD (\%)}$$

2.2.6.5 Induktive Statistik zur Hypothesentestung

Die statistische Testung und Berechnung der Halbhemmkonzentrationen (Kap. 2.2.6.6) erfolgte mit den Softwares GraphPad und MEDAS. Zur Datenanalyse und Überprüfung der aufgestellten Hypothesen wurde der Mann-Whitney-Test genutzt. Dabei wurden die Monotherapien (FasL) mit den Kombinationstherapien (FasL + Inhibitoren) verglichen. Entsprachen die Ergebnisse der Gauß-Verteilung, wurde der unabhängige t-Test verwendet. Hierbei werden Mittelwerte zweier unabhängiger Gruppen, welche metrische und normalverteilte Eigenschaften aufweisen, miteinander verglichen.

Der nichtparametrische Wilcoxon-Rangsummentest wurde eingesetzt, um zentrale Tendenzen zweier unabhängiger Stichproben zu testen, wenn die Voraussetzungen für einen t-Test (s. o.) nicht erfüllt wurden¹⁵⁰.

Zum quantitativen Vergleich der Therapien wurden Signifikanzwerte bestimmt, um das zufällige Zustandekommen der Ergebnisse ausschließen und die Alternativhypothese annehmen zu können. Dabei demonstrierte ein p-Wert < 0,05 einen statistisch signifikanten Unterschied, wodurch diese Testergebnisse als Therapieerfolg, induziert durch den Wirkstoff, interpretiert werden konnten. Signifikante p-Werte < 0,05 wurden mit *, hochsignifikante p-Werte < 0,01 mit ** und höchstsignifikante p-Werte < 0,001 mit *** gekennzeichnet.

2.2.6.6 Berechnung der Halbhemmkonzentrationen

Zwecks Vergleichbarkeit der untersuchten Wirkstoffe wurde die Halbhemmkonzentration IC₅₀ (*engl.: half maximal inhibitory concentration*) berechnet. Dies bezeichnet die Konzentration, bei der die 50%ige biologische Aktivität des Wirkstoffs erreicht bzw. die relative Zellzahl um die Hälfte reduziert wurde. Diese rechnerische Methode wurde folgendermaßen durchgeführt:

Well	1	2	3	4	5	6	7	8	9
Konzentration [ng/ml]	0	1,6	3,1	6,3	12,5	25	50	100	200
Konzentration [log2]		0,2	0,5	0,8	1,1	1,4	1,7	2	2,3
Relative Zellzahl (%)	100	64,9	41,6	27,9	19,5	3	0,4	0,6	0,3

Die Feststellung des IC₅₀-Werts (%) als Mittelwert von Maximum zu Minimum:

$$IC_{50}(\%) = \frac{(100 + 0.3)}{2} = 50.2\%$$
 (1)

Berechnung der IC₅₀ [µM]:

$$\mathbf{x}_1 = \log 1.5 \times 2 = \log 3 \tag{2}$$

$$y_1 = 64,9 y_2 = 41,6 y_0 = 50,2 \ \mu M$$
 (3)

Berechnung von x₀ (vertikales Lot):

$$\frac{x_2 - x_1}{y_1 - y_2} = \frac{x_2 - x_0}{y_0 - y_2} \tag{4}$$

$$\frac{(x_2 - x_1) \times (y_0 - y_2)}{(y_1 - y_2)} = x_2 - x_0$$
(5)

Abb. 10: Regressionsanalyse zur Bestimmung der Halbhemmkonzentrationen. Darste ung der rechner schen IC₅₀-Best mmung m tte s Lotbrechung nach Festste ung der Dos s, be der noch 50 % der behande ten Ze en v ta s nd (D ese Abb dung wurde freund cherwe se von Frau Dr. rer. nat. Haub tz zur Verfügung geste t).

2.2.6.7 Interaktionsindex y nach Tallarida

Zum quantitativen Nachweis synergistischer Effekte, welche durch die Kombinationstherapien induziert wurden, kam der Interaktionsinde*x y* nach Tallarida zum Einsatz¹⁵¹. Um zwischen additiven, subadditiven und synergistischen Effekten zu unterscheiden, wurde zunächst der IC₅₀-Wert der Mono- und der Kombinationstherapien berechnet. Der Interaktionsindex y ist definiert als Gleichung der Konzentrationen von Wirkstoff A (NF- κ B-pathway-Inhibitor) und Wirkstoff B (FasL):

$$y = \frac{a}{A} + \frac{b}{B}$$

Dabei gilt:

 $a = IC_{10}$ von A (Inhibitor) in Kombinationstherapie mit B (FasL)

 $b = IC_{50}$ von B (FasL) in Kombination mit A (Inhibitor)

A = IC_{50} von Wirkstoff A (Inhibitor) in Monotherapie

B = IC₅₀ von Wirkstoff B (FasL) in Monotherapie

Analyse:

 $y = 1 \rightarrow additiver Effekt$

 $y < 1 \rightarrow$ superadditiver bzw. synergistischer Effekt

 $y > 1 \rightarrow$ subadditiver bzw. antagonistischer Effekt

3 Ergebnisse

Aufgrund der zentralen Rolle von NF- κ B als Transkriptionsfaktor bei der Induktion von Inflammation in Tumorzellen, die zur Progression und zur Ausbildung von Therapieresistenzen beiträgt, soll die Wirkung heterogen targetierender NF- κ B-pathway-Inhibitoren – Cortisol, MLN4924, QNZ und TPCA-1 – auf die Sekretion proinflammatorischer Zytokine (IL-8 und TNF- α), die Proliferation und die Sensitivierung von HNSCC-Zellen für die Todesliganden-induzierte Apoptose *in vitro* analysiert werden.

3.1 Basale versus stimulierte Sekretion von IL-8

Speziell für das HNSCC ist der NF- κ B-Signalweg aufgrund seiner konstitutiven Aktivierung von Bedeutung, da dieser die robuste Produktion u. a. von Entzündungsfaktoren induziert^{78,152,153,154}. Deshalb wurde zu Beginn dieser Arbeit die Sekretion proinflammatorischer Mediatoren untersucht. Analysiert wurde die basale und die durch TNF- α stimulierte IL-8-Ausschüttung (Abb. 11), da dieses Zytokin als etablierter Biomarker der Karzinogenese und der Inflammation im HNSCC gilt^{155,156,157}. IL-8 konnte insgesamt betrachtet bei allen untersuchten Zelllinien nachgewiesen werden. Jedoch demonstrierte das Zellpanel eine heterogene Verteilung der basalen Sekretionsraten. Bei drei Zelllinien (*PCI 1-1, PCI 9-1 und PCI 13-1*) konnte ein zeitabhängiger Konzentrationsanstieg nachgewiesen werden. Dagegen lagen die Titer von PCI 52 und SCC-25 nahe der Nachweisgrenze und wurden kaum über den Stimulationsintervall gesteigert. Auffälligerweise sezernierte die Referenzzelllinie HaCaT insgesamt deutlich erhöhte IL-8-Titer, die im Bereich der stimulierten Sekretion der Karzinomzelllinien lagen¹⁵⁸.

Da TNF- α ein hochpotenter Trigger der Inflammation von Tumorzellen ist, diente es zur Analyse der induzierten IL-8-Freisetzung. Alle HNSCC-Zelllinien reagierten hochresponsiv auf TNF- α mit deutlichen Zunahmen der IL-8-Spiegel (Abb. *11*). Die Stimulation bewirkte in allen untersuchten HNSCC-Zelllinien einen signifikanten (p < 0,05) bis höchstsignifikanten (p < 0,001) Anstieg.

45

Abb. 11: IL-8-Sekretion. D e IL-8-Sp ege wurden m tte s sELISA der Probenüberstände ana ys ert. H erfür wurden d e Ze en (2×10^4) m t und ohne TNF- α für 24 und 48 Stunden st mu ert. Insgesamt wurden dre unabhäng ge Exper mente durchgeführt, um M tte werte und Standardabwe chungen berechnen zu können (n = 3). D e stat st sche Auswertung wurde m t dem W coxon-Rangsummentest durchgeführt. P-Werte < 0,05 kennze chneten s gn f kante IL-8- nduz erende Effekte von TNF- α . D ese wurden m t * gekennze chnet, hochs gn f kante Effekte m t ** (p < 0,01) und höchsts gn f kante Effekte m t *** (p < 0,001).

3.2 Konzept der autokrinen NF-κB-Aktivierung durch TNF-α

Abb. 12: Modell der konstitutiven NF- κ B-Aktivierung im HNSCC. De autokr ne Sekret on von TNF- α könnte den k ass schen NF- κ B-S gna weg nduz eren und über d e pro nf ammator sche IL-8-Sekret on de Pro ferat on und Res stenz des HNSCC hervorrufen. D eses Schema wurde modf z ert nach *Jackson-Bernitsas et al.* Ev dence that TNF-TNFR1-TRADD-TRAF2-RIP-TAK1-IKK pathway med ates const tut ve NF-kappaB act vat on and pro ferat on n human head and neck squamous ce carc noma. Oncogene. 2007;26 (10):1385-97.

Die TNF- α -induzierte Expression und Sekretion von Interleukinen könnte eine Ursache der Zellproliferation und Resistenz von Tumorzellen sein. Jackson-Bernitsas et al. stellten das Konzept eines Feedback-Mechanismus mit konstitutiver Aktivierung des klassischen NF-kB-Signalwegs (Abb. 12) vor78. Autokrines TNF- α könnte Tumorzellen proinflammatorisch programmieren und dergestalt als Wachstums- und Resistenzfaktor wirken¹⁵⁹. Um diesen Effekt zu untersuchen und auszuschließen, dass die TNF-α-abhängige Induktion der Zellproliferation (bzw. Zelltod) für die veränderte IL-8-Sekretion verantwortlich ist, erfolgte die Quantifizierung der relativen Zellzahl (Abb. 13). Dabei wurden die nach Aspiration der Probenüberstande adhärenten Zellen im Zytotoxizitätsassay analysiert (Kap. 2.2.2). In allen Proben stieg die relative Zellzahl über die Zeit an, was bei vier Zelllinien mit einer gesteigerten basalen IL-8-Sekretion korrelierte. Bei PCI 52 nahm die Zellzahl, trotz gleichbleibend

geringem IL-8-Level (Abb. 11), deutlich zu. HaCaT zeigte, trotz Zellwachstum, konstant hohe IL-8-Titer. TNF- α führte bei signifikanter Induktion der IL-8-Ausschüttung bei keiner Zelllinie zur Steigerung der Proliferation. Die NF- κ B-vermittelte Hochregulation von IL-8 könnte somit durch Induktion der Inflammation zur Resistenz führen, was die zielgerichtete Inhibition dieses Signalwegs als plausibles target erscheinen lässt, um HNSCC-Zellen proapoptotisch zu sensitivieren.

Abb. 13: Proliferatives Verhalten der HNSCC-Zellen unter TNF- α **-Stimulation.** Nach Asp rat on der Probenüberstände des IL-8-Assays wurde d e re at ve Ze zah (%) ana ys ert. D e Ze en (2 x 10⁴) wurden m t TNF- α [100 ng/m] für 24 bzw. 48 Stunden st mu ert (graue Ba ken). D e we ßen Ba ken ste en d e unst mu erten Kontro en dar. D e re at ve Ze zah (%) wurde auf d e Kontro gruppe (100 %) zum Ze t-punkt 24 Stunden norm ert. D eser Versuch wurde nsgesamt n dre unabhäng gen Exper menten durch-geführt, um M tte werte und Standardabwe chungen berechnen zu können (n = 3). Zur stat st schen Auswertung wurde der W coxon-Rangsummentest durchgeführt. TNF- α konnte d e Ze v ab tät n cht s gn f-kant bee nf ussen.

3.2.1 TNF-α-Freisetzung des HNSCC

Zur Analyse der TNF- α -Sekretion im HNSCC wurden die Zellen für 24, 48 bzw. 72 Stunden inkubiert und die Überstände mittels sELISA auf freies TNF- α untersucht.

3.2.1.1 Basalsekretion

TNF- α konnte in fünf der sechs untersuchten Zelllinien detektiert werden (Abb. 14). Bei zwei Zellen kam es zum zeitabhängigen Anstieg der TNF- α -Titer. Nach 72-stündiger Inkubation konnte bei PCI 1-1 231 pg/ml (±130 pg/ml) und bei PCI 9-1 316 pg/ml (±19 pg/ml) sezerniertes TNF- α nachgewiesen werden. HaCaT setzte über o. g. Zeitintervalle konstant TNF- α mit durchschnittlich 100 pg/ml frei. Bei PCI 13-1 und PCI 52 konnten nach 48 bzw. 72 Stunden Inkubation durch-schnittlich 37,3 pg/ml (±42,6 pg/ml) TNF- α dokumentiert werden. Nach Bereinigung der Messwerte vom unspezifischen Hintergrundsignal ergaben sich für SCC-25 negative Werte, weshalb diese mit Null gleichgesetzt wurden. Die geringe Ausschüttung von TNF- α war auch bei Wiederholung des Versuchs mit einem zweiten Kit, was die Reliabilität des gewählten Verfahrens bestätigte, weiterhin konsistent. Somit konnte von einer validen Methodik ausgegangen werden, was durch die TNF- α -Bestimmung der mitgelieferten Standards bestätigt wurde.

Abb. 14: TNF- α -**Freisetzung.** Zum Nachwe s der basa en TNF- α -Sekret on wurden d e Ze en für 24, 48 bzw. 72 Stunden nkub ert und d e Probenüberstände m tte s sELISA ana ys ert. D e Sekret on von TNF- α konnte n PCI 1-1, PCI 9-1, PCI 13-1, PCI 52 und HaCaT nachgew esen werden. D e TNF- α -T ter agen be SCC-25 an der Nachwe sgrenze des e ngesetzten K ts, wesha b Proben m t negat ven Messwerten nach Bere n gung der Ext nkt onswerte vom unspez f schen H ntergrunds gna g e ch Nu gesetzt wurden. D e we ßen Ba ken demonstr eren d e Kontro en zur Va d erung des Versuchs, d e a s Referenzstandards m t rekomb nantem TNF- α [1 ng/m] behande t wurden. Dargeste t s nd repräsentat ve Ergebn sse des Versuchs, der zwe fach (m t zwe untersch ed chen K ts) durchgeführt wurde (n = 2).

3.3 Biologische Aktivität von NF-κB-Inhibitoren

Um die Wirkung der Inhibitoren auf die Viabilität des HNSCC zu untersuchen, wurden die Zellen in Verdünnungsreihen inkubiert und die biologische Aktivität der Wirkstoffe im Zytotoxizitätsassay quantifiziert (Abb. 15).

Die konstitutive Aktivierung von NF-κB induziert durch Überexpression antiapoptotischer und proinflammatorischer Gene die Zellproliferation⁷⁸. Durch die spezifische Inhibition dieses Signaltransduktionswegs könnte diese gehemmt werden, wobei jedoch kein direkter Zusammenhang zwischen der Wirkung der Inhibitoren auf den NF-κB-Signalweg und der Proliferation bestehen muss¹⁶⁰.

3.3.1 Proliferationshemmung durch NF-κB-pathway-Inhibition

Nach monotherapeutischer Behandlung wurden die initiale Proliferationshemmung [IC₁₀], bzw. 10 % der maximal induzierbaren biologischen Aktivität, sowie die halbmaximale Hemmkonzentration [IC₅₀] bestimmt.

Abb. 15: Biologische Aktivität der NF-_K**B-pathway-Inhibitoren.** D e Ze en (1 x 10⁴/We) wurden m t Cort so [µg/m], MLN4924, QNZ bzw. TPCA-1 [µM] für 72 Stunden nkub ert. D e Pro ferat onshemmung wurde m kr sta v o ettbas erten Zytotox z tätstest a s re at ve Ze zah (%) va d ert, we che auf d e unbehande te Kontro e (100 %) norm ert wurde. D e Abb dungen repräsent eren M tte werte und Standardabwe chungen der n Tr p katen durchgeführten Assays. D e Ergebn sse wurden n dre unabhäng gen Versuchsdurchführungen reproduz ert (n = 3). Für d e Ana yse der zytotox schen W rksamke t wurden IC₅₀-Werte für jeden Inh b tor und jede Ze n e best mmt (Tab. 13).

Insgesamt war eine heterogene Responsivität feststellbar (Abb. 15). MLN4924 reduzierte die relative Zellzahl auf 4,4 bis 39,4 % (Tab. 12). Mit IC₅₀-Werten von 0,8 bis (>) 17,4 µM war es der in dieser Studie am stärksten antiproliferativ wirkende NF-kB-Inhibitor (Tab. 13). Auffällig war, dass ab der zweiten Verdünnungsstufe Sättigungsplateaus ausgebildet wurden und weitere Dosiseskalationen nur mäßige Effektsteigerungen bewirkten. Drei Zelllinien waren responsiv für QNZ. Konzentrationen um 1 µM waren suffizient, um die Halbhemmkonzentration zu erreichen. Seine hohe antiproliferative Potenz zeigte sich bei PCI 1-1 und PCI 13-1, wo durch Konzentrationen \geq 2,5 μ M maximale Effekte induziert wurden. Bei gleicher Behandlung war dagegen bei HaCaT noch die sechsfache Zellzahl vital, was möglicherweise auf eine spezifische Wirkung bei ausgewählten Zelllinien hindeuten könnte. Diese Annahme wird durch die fehlende Responsivität von PCI 9-1, PCI 52 und SCC-25 unterstrichen, bei denen QNZ im analysierten Dosierungsbereich keine Wirkung zeigte. TPCA-1 bildete sigmoidale Dosis-Wirkungs-Kurven und induzierte bei 25 bis 100 µM maximale antiproliferative Effekte mit Zellzahlreduktionen auf 10,6 bis 36,2 %. Die einhergehenden Halbhemmkonzentrationen lagen zwischen 5,3 und 24,2 µM. PCI 52 war mäßig responsiv und zeigte eine zu MLN4924 kongruente, linear verlaufende Zytotoxizitätskurve. Da diese Wirkstoffe keine vollständigen Regressionskurven induzierten, wurden hier approximative IC₅₀-Werte bestimmt. Cortisol besaß in allen Zelllinien die geringsten antiproliferativen Effekte. Bei Applikation der höchsten eingesetzten Konzentrationsstufe wurden relative Zellzahlreduktionen auf 51,8 bis 81,1 % induziert, weshalb keine exakten IC₅₀-Werte bestimmbar waren.

Inhibitor	PCI	1-1	PCI	9-1	PCI	13-1	PC	52	SCC	-25	HaC	CaT
	MW	SD	MW	SD	MW	SD	MW	SD	MW	SD	MW	SD
Cortisol	51,8	3,5	59	5,7	57	5,3	81,1	1,2	75,8	0,7	64,7	4,1
MLN4924	9,9	4,2	39,4	4,7	4,4	1,9	35,6	4,1	15,1	2,6	18,5	5,5
QNZ	5,7	3,9	96,3	3,2	6	5,7	77	5,6	81,2	3,6	39,1	8,2
TPCA-1	11,5	2,3	29,9	5,2	18	6,3	36,2	2,1	10,6	3,9	18,6	8,4

Tab. 12: Analyse der biologischen Aktivität der NF-κB-pathway-Inhibitoren. Re at ve Ze zah en (%) nduz ert durch d e höchsten W rkstoffkonzentrat onen. D e Tabe e ze gt M tte werte (fett gedruckt) nach Inkubat on m t Cort so [100 μg/m], MLN4924 [100 μM], QNZ [10 μM] und TPCA-1 [100 μM] für 72 Stunden. D ese Werte entsprechen den n Abb dung 15 dargeste ten Daten der höchsten app z erten Konzentrat - onsstufe. D ese Angaben beruhen auf den M tte werten und Standardabwe chungen von dre , unabhäng g vone nander durchgeführten Versuchsdurchführungen (n = 3).

Zelllinie	Cortisol [µM]		MLN4924 [μM]		QNZ [μM]		ΤΡϹΑ-1 [μΜ]					
	IC ₁₀	IC ₅₀	IC100	IC ₁₀	IC ₅₀	IC100	IC10	IC ₅₀	IC100	IC ₁₀	IC ₅₀	IC100
PCI 1 1	20*	> 280**	280	0,2	1	66,7	0,05	1	3,8	4,6	9,7	66,7
PCI 9 1	140*	> 280**	280	3,1*	> 4,8*	100	1†	> 10**	10	3,3	13,8	50
PCI 13 1	140*	> 280**	280	0,2	0,8	41,7	0,4	1,2	2,5	5,2	24,2	100
PCI 52	140*	> 280**	280	7,3*	> 17,4*	100	1†	> 10**	10	6,3*	> 17*	100
SCC 25	140*	> 280**	280	0,2	1,4	100	10*	> 10**	10	3,5	6,1	41,7
HaCaT	140*	> 280**	280	0,2	0,8	100	0,4	1,1	2,5	2	5,3	66,7

Tab. 13: Zelllinienspezifische inhibitorische Konzentrationen der NF-κB-Inhibitoren. De Ze en (1 × 10⁴/We) wurden für 72 Stunden mt Cort so, MLN4924, QNZ und TPCA-1 st mu ert. De Konzentratonsangaben von Cort so wurden von µg/m n µM umgerechnet. A e Werte wurden nd v due für jeden W rkstoff und jede Ze n e erhoben. Zur Best mmung der M tte werte wurden dre unabhäng ge Exper mente durchgeführt (n = 3). Ze n en, für d e aufgrund mange nder Respons v tät ke ne IC₁₀- oder IC₅₀-Werte erm tte t werden konnten, wurden mt * gekennze chnet. IC₅₀-Werte von Inh b toren, d e ke ne oder nur ger nge W rkung ze gten, wurden mt ** mark ert. In d esen Fä en wurde d e max ma app z erte Konzentrat on (IC₁₀₀) angegeben. Be PCI 9-1 und PCI 52 konnten für QNZ ke ne IC₁₀-Werte best mmt werden, wesha b s e m t † gekennze chnet und 1 µM a s IC₁₀ def n ert wurde.

3.4 Suppression der Inflammation durch zielgerichtete Inhibition des NF-κB pathways von HNSCC-Zellen

Zur Analyse des antiinflammatorischen Potenzials der NF- κ B-Inhibitoren wurden die Zellen für 48 Stunden [IC₁₀], in oder ohne Kombination mit TNF- α [5 ng/ml], inkubiert und IL-8 quantifiziert (Kap. 2.2.3.1). Dieses gilt als etablierter Biomarker der Inflammation und NF- κ B-Aktivität, weshalb es in diesem Kontext als Surrogatmarker zur Analyse der zielgerichteten NF- κ B-pathway-Inhibition genutzt wurde^{154,161}. Die eingesetzte TNF- α -Konzentration wurde aufgrund von Voruntersuchungen gewählt, die zeigten, dass diese ausreichend ist, um die IL-8-Produktion zu stimulieren, ohne dabei den NF- κ B-Signalweg überzustimulieren und somit die Wirksamkeit der zu untersuchenden Inhibitoren zu beeinträchtigen.

3.4.1 Wirkstoffspezifische Senkung der IL-8-Sekretion

TPCA-1 war der stärkste antiinflammatorisch wirkende Inhibitor (Abb. 16). In fünf Zelllinien konnte TPCA-1 den basalen IL-8-Titer senken. Die Kombination mit TNF- α verstärkte diesen Effekt und reduzierte die Inflammation im gesamten Zellpanel signifikant. Dagegen hatte Cortisol keine signifikante Wirkung auf die basale oder TNF- α -induzierte IL-8-Sekretion. Demgegenüber induzierten MLN4924 und QNZ die Inflammation. MLN4924 ließ IL-8 im gesamten Panel massiv ansteigen, in drei Zelllinien vor allem bei Kombination mit TNF- α .

Abb. 16: IL-8-Titer nach NF-\kappaB-pathway-Inhibition im HNSCC. D e Ze en (2 x 10⁴/We) wurden m t Cort so, MLN4924, QNZ bzw. TPCA-1 [IC₁₀] - n oder ohne Komb nat on m t TNF- α [5 ng/m] - nkub ert. D ese wurden für 6 Stunden m t der ze n enspez f schen IC₁₀-Konzentrat on des Inh b tors (Tab. 13) vor nkub ert und ansch eßend für we tere 48 Stunden - m t oder ohne TNF- α - behande t. Das fre gesetzte IL-8 [ng/m] wurde m tte s sELISA (Kap. 2.2.3) quant f z ert. Zur stat st schen Ana yse wurde der n chtparametr sche, gepaarte W coxon-Rangsummentest durchgeführt. S gn f kante Effekte m t p-Werten < 0,05 wurden m t * gekennze chnet. Dargeste t s nd repräsentat ve Ergebn sse d eses dre fach reproduz erten Exper ments (n = 3).

Dabei induzierte MLN4924 signifikante Anstiege der IL-8-Titer, die verglichen zur Basalsekretion bis 15-fach verstärkt waren. QNZ demonstrierte ein analoges Verhalten der HNSCC-Zellen und induzierte eine mehrheitlich signifikante Progression, vor allem der durch TNF- α induzierten IL-8-Freisetzung.

HaCaT diente als Referenzstandard. Da diese nichtmalignen Keratinozyten phänotypisch den *in vitro* Zellen des HNSCC im Sinne des oralen Plattenepithels entsprechen und ihre Immortalisierung u. a. durch die Deregulation des NF- κ B pathways bedingt ist, eignen sie sich zur Validierung der zielgerichteten NF- κ B-Inhibition im HNSCC¹⁵⁸. Die Wirkungen der NF- κ B-Inhibitoren auf diese Zelllinie waren nahezu vernachlässigbar. TPCA-1 erwies sich als wirkungsvollster NF- κ B-Inhibitor dieser Zelllinie, der eine Reduktion der basalen IL-8-Level induzierte, die bei kombinatorischer Inkubation mit TNF- α als signifikant imponierte.

3.4.2 Antiinflammatorische Effekte

Zur Analyse, ob die zuvor beschriebenen Ergebnisse auf eine veränderte Zellproliferation zurückzuführen waren, wurden zusätzlich Zytotoxizitätsassays dieser Proben durchgeführt (Kap. 2.2.2). Zur Standardisierung wurde die relative Zytokinkonzentration mit der relativen Zellzahl in Bezug gesetzt (Kap. 2.2.6.2). Nach Korrelation dieser Parameter zeigten sich, verglichen mit der absoluten IL-8-Sekretion (Abb. 16), fast deckungsgleich konfigurierte Balkendiagramme (Abb. 17). Dies weist auf eine proliferationsunabhängige Wirkung der untersuchten Inhibitoren hin. Die Effekte von Cortisol und TPCA-1 blieben auf einem vergleichbaren Niveau. TPCA-1 war bei Kombination mit TNF- α weiterhin der einzige Inhibitor mit signifikanter Senkung der IL-8-Titer. Nach Korrelation dieser Parameter war die Verstärkung der Effekte durch die NF- κ B-Inhibitoren auffällig, die eine Zunahme der IL-8-Titer zeigten. Die proinflammatorische Wirkung von MLN4924 und QNZ imponierte mit einer Vervielfachung von IL-8 relativ zur Zellzahl, was auf die gleichzeitig proliferationshemmende Wirkung dieser Inhibitoren zurückgeführt werden kann.

Abb. 17: Korrelation von IL-8 und Zellzahl. D e aus den Probenüberständen va d erten IL-8-Leve wurden mt der re at ven Ze zah der entsprechenden Probe korre ert (Kap. 2.2.6.2). Zwecks stat st scher Auswertung wurde der n chtparametr sche, gepaarte W coxon-Rangsummentest durchgeführt. S gn f-kante Effekte m t p-Werten < 0,05 wurden m t * gekennze chnet. Dargeste t s nd repräsentat ve Ergebn sse (n = 3).

3.4.3 NF-κB-Inhibitoren hemmen die Zellproliferation

Die Bestimmung der relativen Zellzahl (%) zur Proliferationsanalyse nach Inkubation mit den NF- κ B-Inhibitoren erfolgte im Kristallviolettassay (Kap. 2.2.2.1). Den applizierten IC₁₀-Werten (Tab. 13) entsprechend, konnten grundsätzlich nur mäßige zytotoxische Effekte induziert werden (Abb. 18). Auffällig war, dass die Kombinationsbehandlung von MLN4924 [IC₁₀] mit TNF- α [5 ng/ml] bei vier Zelllinien, unter gleichzeitig massiver Induktion der IL-8-Sekretion (Abb. 16), die Zellzahl reduzierte. Die Kombination von QNZ [IC₁₀] und TNF- α [5 ng/ml] induzierte in fünf Zelllinien signifikante Zellzahlreduktionen. Interessanterweise konnte TPCA-1 [IC₁₀] kombiniert mit TNF- α [5 ng/ml], neben der signifikanten Inhibition der IL-8-Freisetzung (Abb. 16), signifikante Reduktionen der Viabilität induzieren.

Abb. 18: Antiproliferative Effekte der Inhibitoren des NF- κ B pathways. D e Ze en (2 x 10⁴/We) wurden mt Cort so, MLN4924, QNZ bzw. TPCA-1 [IC₁₀] für 48 Stunden nkub ert. Um d e W rkstoffe be nduz erter Inf ammat on (bzw. IL-8-Sekret on) va d eren zu können, wurden d e Proben für 6 Stunden mt den Inh b toren vorst mu ert und ansch eßend mt TNF- α [5 ng/m] komb n ert st mu ert. D e Ana yse der Ze v ab tät erfo gte m Kr sta v o ettassay. D e re at ve Ze zah (%) wurde auf d e unbehande te Kontro e (100 %) norm ert. Zur stat st schen Auswertung wurde der n chtparametr sche, gepaarte W coxon-Rangsummentest angewendet. S gn f kante Effekte mt p-Werten < 0,05 wurden mt * gekennze chnet. Darste ung repräsentat ver Ergebn sse (n = 3).

3.4.3.1 TPCA-1 sensitiviert das HNSCC für den TNF-α-induzierten Zelltod

Die kombinierte Inkubation mit TNF- α [5 ng/ml] und TPCA-1 [IC₁₀ (Tab. 13)] führte wie oben demonstriert zur signifikanten Reduktion der IL-8-Titer (Abb. 16 & 17). Prinzipiell kann TNF- α den klassischen NF- κ B pathway aktivieren und damit die Expression diverser apoptotischer und inflammatorischer Gene induzieren (Kap. 1.3). Die NF-κB-Inhibition kann neben einer veränderten Homöostase von pro- und antiapoptotischen Genen den Entzündungsfaktor TNF- α induzieren, der als Todesligand die extrinsische Apoptose auslösen kann^{162,163,164}. Das klassische Experiment besteht aus der Inkubation von HaCaT mit dem Antibiotikum Cycloheximid (CHX)¹⁶⁵. CHX hemmt die *de novo* Proteinsynthese an Ribosomen, was beispielsweise zur Inhibition des antiapoptotischen Proteins c-FLIP führt, wodurch Tumorzellen für die TNF-a-induzierte Apoptose sensitiviert werden können¹⁶⁶. Eine vergleichbare Wirkung könnte mit NF- κ B-Inhibitoren erzielt werden. MLN4924 sensitiviert Monozyten und dendritische Zellen für die TNF-a-abhängige und -unabhängige Nekroptose¹⁶⁷. Zur Validierung, ob die Kombination von TNF- α und TPCA-1 die relative Zellzahl im vorliegenden Zellpanel reduzieren kann, wurden die Zellen mit den spezifischen IC₁₀-Konzentrationen von TPCA-1 (Tab. 13) und TNF- α [100 ng/ml] für 72 Stunden inkubiert (Abb. 19). Dabei zeigten die Zellen ein weitestgehend resistentes Verhalten gegenüber TNF- α in der Monotherapie. TPCA-1 konnte die relative Zellzahl (%) in allen Zelllinien reduzieren, die Zellen für TNF- α signifikant sensitiveren und blockierte damit neben der IL-8-Sekretion über den klassischen NF-kB-Signalweg, auch die Induktion des TNF- α -abhängigen Zelltods.

Abb. 19: TPCA-1-vermittelte Sensitivierung des HNSCC für den TNF- α **-induzierten Zelltod.** Zur Vad erung, ob TPCA-1 n der Komb nat onsbehand ung m t TNF- α das HNSCC für den Ze tod sens t v ert, wurden d e Ze n en (1 × 10⁴/We) m t TNF- α [100 ng/m] und der ze n enspez f schen IC₁₀-Dos s von TPCA-1 für 72 Stunden nkub ert. D e V ab tät wurde m Kr sta v o ettassay quant f z ert. D e Ergebn sse wurden m t dem n chtparametr schen, gepaarten W coxon-Rangsummentest ana ys ert. Das S gn f kanz-n veau wurde auf p < 0,05 festge egt, um stat st sch s gn f kante Effekte zu ze gen. D ese wurden m t * mark ert. In der Abb dung hande t es s ch um d e Darste ung repräsentat ver Ergebn sse (n = 3).

3.5 Analyse der Zelltodinduktion in der Kombinationstherapie mit NF-κB-pathway-Inhibitoren

Aufgrund der NF-κB-bedingten Proliferation und Resistenz wurde validiert, ob die HNSCC-Zellen durch Inhibitoren des NF-κB pathways für die FasL-induzierte, extrinsische Apoptose sensitiviert werden können. Bekannt ist, dass HNSCC-Zellen trotz Fas-Rezeptor-Ausstattung resistent gegen extrinsische Todessignale sind, was u. a. auf überexprimierte Inhibitoren der Apoptose zurückzuführen ist^{168,169}. Eigene Studien konnten bereits proapoptotische Sensitivierungseffekte für FasL der zu untersuchenden Zelllinien aufzeigen^{170,171,172,173}.

3.5.1 Heterogene Sensitivierbarkeit für die FasL-induzierte Apoptose

Die Zellen wurden mit den NF-κB-Inhibitoren [IC₁₀ (Tab. 13)] und FasL koinkubiert (Kap. 2.2.2). Die FasL-Monotherapie zeigte insgesamt eine heterogene Responsivität (Abb. 20Abb. 23). Drei Zelllinien waren FasL-suszeptibel und demonstrierten distinkte zytotoxische Effekte (PCI 1-1, PCI 13-1 und HaCaT). Demgegenüber verhielten sich PCI 9-1, PCI 52 und SCC-25 resistent. Analog zu den Monotherapien (Kap. 3.3.1) zeigten die Kombinationstherapien spenderabhängige Zytotoxizitätsmuster (Abb. 20 bisAbb. 23). Mehrheitlich konnten keine Sensitivierungseffekte induziert werden (Tab. 14). Als Ausnahme wurde die Referenzzelllinie HaCaT erfolgreich sensitiviert. Durch Applikation von vergleichsweise geringen Wirkstoffkonzentrationen [0,2 bis 2 μ M] konnten signifikante (p < 0,05) bis höchstsignifikante (p < 0,001) Effekte induziert werden. MLN4924 war aufgrund synergistischer Effekte (y < 1) mit etwa vierfacher Maximierung der Wirkung von FasL der potenteste NF-kB-Inhibitor. QNZ und TPCA-1 erzielten ähnliche Ergebnisse (Tab. 14). Synergistische Effekte konnten zudem durch QNZ bei PCI 13-1 und durch MLN4924 bei SCC-25 beobachtet werden. Cortisol induzierte antagonistische Effekte (y > 1). Bei den FasL responsiven Zelllinien PCI 1-1 und PCI 13-1 bewirkte Cortisol eine signifikante Antagonisierung der FasL-Wirkung. Die Zelllinie PCI 13-1 entwickelte unter Cortisol eine Resistenz gegenüber FasL. Die FasL-resistenten Zelllinien (PCI 9-1 und PCI 52) konnten von keinem der vier Inhibitoren sensitiviert werden. Bemerkenswerterweise wurde die resistente Zelllinie SCC-25 durch MLN4924 mit einem superadditiven Synergismus (y < 1) höchstsignifikant (p < 0.001) sensitiviert.

Zelllinie	IC ₅₀	Sensitivierung	Interaktionsindex	p-Wert	
W rkstoff/-Komb nat on	[ng/m]	(FasL _{mono} /FasL _{kombi})	y (nach Tallarida)	(t-Test)	
PCI 1-1					
FasL	37,3	-	-	-	
Cort so [IC ₁₀] + FasL	> 88,8±	0,4-fach [±]	2,4***	0,00006***	
MLN4924 [IC ₁₀] + FasL	33,6	1,1-fach	1,1***	0,32	
QNZ [IC ₁₀] + FasL	44,3±	0,8-fach [±]	1,2***	0,08	
TPCA-1 [IC ₁₀] + FasL	41,9±	0,9-fach [±]	1,6***	0,13	
PCI 9-1					
FasL	_†	-	-	-	
Cort so [IC ₁₀] + FasL	> 200†	1-fach	1,5***	0,072	
MLN4924 [IC ₁₀] + FasL	> 200†	1-fach	1,7***	0,12	
QNZ [IC ₁₀] + FasL	> 200†	1-fach	1,1***	0,12	
TPCA-1 [IC ₁₀] + FasL	> 200†	1-fach	1,2***	0,074	
PCI 13-1					
FasL	55,5	-	-	-	
Cort so [IC ₁₀] + FasL	> 200±	0,3-fach [±]	4,1***	0,00031***	
MLN4924 [IC ₁₀] + FasL	> 71,9 *	0,8-fach [±]	1,6***	0,0039**	
QNZ [IC ₁₀] + FasL	24,4	2,3-fach	0,8'	0,11	
TPCA-1 [IC ₁₀] + FasL	> 55,1±	1-fach	1,2***	0,0014**	
PCI 52					
FasL	_†	-	-	-	
Cort so [IC ₁₀] + FasL	> 200†	1-fach	1,5**	0,015*	
MLN4924 [IC ₁₀] + FasL	> 200†	1-fach	1,4***	0,027*	
QNZ [IC ₁₀] + FasL	> 200†	1-fach	1,1**	0,23	
TPCA-1 [IC ₁₀] + FasL	> 200†	1-fach	1,4***	0,13	
SCC-25					
FasL	_†	-	-	-	
Cort so [IC ₁₀] + FasL	> 200†	1-fach	1,5***	0,00075***	
MLN4924 [IC ₁₀] + FasL	39,7	5-fach	0,3'	0,0031**	
QNZ [IC ₁₀] + FasL	> 200†	1-fach	2***	0,0017**	
TPCA-1 [IC ₁₀] + FasL	> 200†	1-fach	1,6***	0,00045***	
HaCaT	-				
FasL	> 68,7‡	-	-	-	
Cort so [IC ₁₀] + FasL	> 59,1	1,2-fach	1,4***	0,3	
MLN4924 [IC ₁₀] + FasL	17,6	3,9-fach	0,5	0,004**	
QNZ [IC ₁₀] + FasL	28,7	2,4-fach	0,8'	0,014*	
TPCA-1 [IC ₁₀] + FasL	27,5	2,5-fach	0,8'	0,00077***	

Tab. 14: Analyse apoptotischer Sensitivierungseffekte durch NF-kB-Inhibitoren. De IC50-Werte der FasL-Mono- bzw. Komb nat onstherap en m t Angabe der W rksamke tsmax m erungen nach konstanter, komb nator scher Inkubat on m t Cort so , MLN4924, QNZ bzw. TPCA-1 [IC10]. Der Interakt ons ndex y nach Ta ar da (Kap. 2.2.6.7) zur Best mmung synerg st scher Therap eeffekte: • = superadd t v, •• = add t v, •• = antagon st sch. Proben, be denen Sens t v erungseffekte erz e t werden konnten, wurden fett gedruckt hervorgehoben. Ze n en, für d e ke ne IC₅₀-Werte best mmt werden konnten, sow e Ze en, d e nach Komb nat onstherap e therap eres stent waren, wurden mt † mark ert. H er erfo gte d e Berechnung von y fo gendermaßen: Für b [IC50 von B (FasL) n Komb nat on m t A (Inh b tor)] sow e B [IC50 von B (FasL) n der Monotherap e] wurden 200 ng/m FasL a s IC₅₀-Wert angenommen. Des We teren wurden Proben, n denen FasL ke ne vo ständ gen Sätt gungskurven zur IC50-Best mmung nduz eren konnte, mt [‡] mark ert. Proben, be denen de zusätz che App kat on der NF-kB-Inh b toren zu e ner Verm nderung der FasL-W rkung führte, wurden m t [±] gekennze chnet. Zur stat st schen Auswertung wurde der t-Test genutzt. H erfür wurden M tte werte und Standardabwe chungen aus dre unabhäng gen Exper menten, jewe s n Tr p katen durchgeführt, berechnet. Angabe von repräsentat ven p-Werten der jewe gen og2-Verdünnungstufe, d e an der berechneten IC₅₀-Dos s der Komb nat onstherap e agen. S gn f kante p-Werte < 0,05 wurden m t *, hochs gn f kante p-Werte < 0,01 wurden m t ** und höchsts gn f kante p-Werte < 0,001 wurden m t *** gekennze chnet.

Abb. 20: Cortisol antagonisierte die Wirkung von FasL. Das Ze pane wurde m t FasL [ng/m] n den angegebenen Konzentrat onsstufen bzw. komb n ert m t Cort so [konstant IC_{10}] behande t. D e Ze v abtät wurde nach 72-stünd ger Inkubat on m tte s kr sta v o ettbas erten Zytotox z tätstests a s re at ve Ze zah (%), n Bezug zur auf 100 % norm erten Kontro e, va d ert. Be dre Ze n en ze gten s ch dos sabhäng ge Effekte n der Monotherap e m t FasL. Cort so konnte ke ne Ze n e für FasL sens t v eren. Es kam be zwe Ze en (*PCI 1-1 und PCI 13-1*) unter Cort so -Behand ung zu höchsts gn f kanten Rechtsversch ebungen (p = 0,00006 bzw. 0,00031) der Zytotox z tätskurven. D e Abb dungen repräsent eren M t te werte und Standardabwe chungen der n Tr p katen durchgeführten Verdünnungsre hen. D e Ergebn sse wurden n jewe s dre vone nander unabhäng gen Versuchsdurch äufen reproduz ert (n = 3). D e stat st sche Ana yse erfo gte m t dem t-Test.

Abb. 21: MLN4924 sensitivierte die resistente Zelllinie SCC-25 hochsignifikant für FasL. Das Zepane wurde m t FasL [ng/m] n den angegebenen Konzentrat onsstufen nkub ert. Um d e Sens t v erung des HNSCC für FasL ana ys eren zu können, wurden d e Ze en m t MLN4924 [konstant IC₁₀] a s Kombnat onstherap e behande t. D e Ze v ab tät wurde nach 72-stünd ger Inkubat on m tte s kr sta v o ettbas erten Zytotox z tätstests a s re at ve Ze zah (%), n Bezug zur auf 100 % norm erten Kontro e, va d ert. Be dre Ze n en (*PCI 1-1 PCI 13-1 und HaCaT*) ze gten s ch dos sabhäng ge Effekte n der Monotherap e m t FasL. MLN4924 konnte zwe Ze n en (*SCC-25 und HaCaT*) hochs gn f kant (p = 0,0031 bzw. 0,004) für FasL sens t v eren. Bemerkenswerterwe se ge ang d e Sens t v erung der FasL-res stenten Ze n e SCC-25. D e Abb dungen repräsent eren M tte werte und Standardabwe chungen der n Tr p katen durchgeführten Verdünnungsre hen. D e Ergebn sse wurden n jewe s dre vone nander unabhäng gen Versuchsdurchführungen reproduz ert (n = 3). D e stat st sche Ana yse erfo gte m t dem t-Test.

Abb. 22: QNZ induzierte in zwei Zelllinien synergistische Effekte mit FasL. Das Ze pane wurde m t FasL [ng/m] n den angegebenen Konzentrat onsstufen nkub ert. Um die Sens tiv erung des HNSCC für FasL zu ana ys eren, wurden die Ze en mit QNZ [konstant IC₁₀] als Komb nationstherapie behandet. Die Ze vielb tät wurde nach 72-stünd ger Inkubation mittels kristal violettasis erten Zytotox zitätstests als reative Ze zah (%), n Bezug zur auf 100 % norm erten Kontrole, val diert. Bei dre Zein ein zeigten sich dos sabhäng ge Effekten nier Monotherapie mit FasL. QNZ konnte zwe Zein ein (*PCI 13-1 und HaCaT*) mit synergistischen Therapieeffekten (y = 0,8) für FasL sens tivieren. Be den weiteren Proben (*PCI 1-1 PCI 9-1 PCI 52 und SCC-25*) waren keine sens tivierenden Effekte dieser Komb nationstherapie nachweisbar. Die Abbildungen repräsent eren Mitte werte und Standardabweichungen der nit Trip katen durchgeführten Verdünnungsreihen. Die Ergebnisse wurden nit jeweisigter voneinander unabhäng gen Versuchsdurch äufen reproduziert (n = 3). Die statistische Analyse erfolgte mit dem t-Test.

Abb. 23: TPCA-1 sensitivierte HaCaT höchstsignifikant für FasL. Das Ze pane wurde mt FasL [ng/m] n den angegebenen Konzentrat onen nkub ert. Um d e Senst v erung des HNSCC für FasL zu ana ys eren, wurden d e Ze en mt TPCA-1 [konstant IC_{10}] a s Komb nat onstherap e behande t. D e Ze - v ab tät wurde nach 72-stünd ger Inkubat on m tte s kr sta v o ettbas erten Zytotox z tätstests a s re at ve Ze zah (%), n Bezug zur auf 100 % norm erten Kontro e, va d ert. Be dre Ze n en ze gten s ch dos s-abhäng ge Effekte n der Monotherap e mt FasL. TPCA-1 konnte e ne Ze n e (HaCaT) höchsts gn f kant (p = 0,00077) für FasL sens t v eren. D e Abb dungen repräsent eren M tte werte und Standardabwe - chungen der n Tr p katen durchgeführten Verdünnungsre hen. D e Ergebn sse wurden n jewe s dre vone nander unabhäng gen Versuchsdurch äufen reproduz ert (n = 3). D e stat st sche Ana yse erfo gte m t dem t-Test.
3.7 Genexpressionsanalyse NF-κB-abhängiger Zielgene

Manche der NF- κ B-Inhibitoren induzierten IL-8-senkende Effekte, andere wirkten proinflammatorisch (Kap. 3.4). Außerdem zeigten sich anti- und proliferative Effekte (Kap. 3.5.1). Um dieses heterogene Verhalten zu validieren, wurde die Expression ausgewählter pro- und antiapoptotischer sowie proinflammatorischer Gene analysiert, die klassischerweise über den NF- κ B-Signalweg reguliert werden. Das Expressionsniveau des zu untersuchenden Genpanels wurde nach Inhibitor-Inkubation [IC₁₀₀ (Tab. 13)] als RT-qPCR analysiert (Kap. 2.2.4). Dieses wurde auf β -Actin normiert und zur Kontrolle als relatives Expressionslevel validiert. Dabei wurden FC-Werte > 2 bzw. < (-) 2 als signifikant im Sinne einer differenziellen Expressionsregulation definiert. Zur Datenvisualisierung wurde eine geclusterte heatmap mit gradueller Farbcodierung erstellt (Abb. 24).

3.7.1 Heterogene Expression NF-κB-mediierter Zielgene nach targetierter pathway-Inhibition

Die Zelllinien wurden entsprechend ihrer zytotoxischen Suszeptibilität für FasL (Kap. 3.5.1) als responsiv, sensitivierbar oder resistent klassifiziert (Abb. 24). Das Expressionsprofil war nach Behandlung mit den NF-kB-pathway-Inhibitoren von einer auffallenden Heterogenität gekennzeichnet. Viele Proben bzw. Gene zeigten ein inhomogenes Ansprechen, weshalb diese grau gekennzeichnet wurden. Es ist anzunehmen, dass diese Gene keiner spezifischen Regulation unterlagen. Bei den responsiven Zelllinien dominierte die Herabregulation der antiapoptotische Gene. Die homogensten, clusterartigen Effekte induzierte MLN4924. Bei PCI 1-1 und PCI 13-1 induzierte es eine mittlere bis starke Herabregulation der Expression der Gene BIRC2, BIRC3 und CFLAR. Andererseits bewirkte MLN4924 die gesteigerte Expression des IL-8-Gens, was vereinbar mit der induzierten Sekretion auf Zytokinebene war (Kap. 3.4). Daneben imponierte die Hochregulation antiapoptotischer Gene in den resistenten Zelllinien. Cortisol und QNZ zeigten spenderabhängige, inhomogene Expressionsmuster. Dagegen regulierte TPCA-1 homogen das IL-8-Gen herab. Mit Ausnahme von PCI 13-1, kam es im gesamten Zellpanel zur ausgeprägten Reduktion der IL-8-Expression, was mit den IL-8-sELISAs übereinstimmte (Abb. 16 & Abb. 17), wo TPCA-1 die IL-8-Titer auf Zytokinebene signifikant senken konnte (Ausnahme: PCI 13-1).

Cortisol		responsiv			sensitivierbar	resistent			
		PCI 1-1	PCI 13-1	HaCaT	SCC-25	PCI 9-1	PCI 52		
proapoptotisch	BAX	(-) 1,1/(+) 1,2	(-) 2,3/(-) 1,1	(-) 3,1 / (-) 1,8	(-) 1,4 / (-) 1,9	(+) 1,4/(-) 1,1	(-) 1,1/(-) 2,2		
	BCL2	(-) 1,2/(-) 4,5	(+) 2,3/(+) 1,4	(-) 1,2/(+) 2,9	(+) 1,3/(-) 1,9	(-) 1,1 / (-) 20,5	(-) 1,5/(+) 1,6		
	BIRC2	(-) 1,4/(+) 1,8	(-) 1,3/(-) 1,1	(-) 3,8/(+) 1,1	(-) 1,7 / (-) 2,4	(+) 1,5/(-) 2,6	(+) 1,2/(+) 9,3		
antiapoptotisch	BICR3	(+) 14,2/(+) 16,7 (+) 11/(+) 16	(+) 3,3/(+) 14	(-) 1,2/(+) 8,4 (-) 37/(+) 11	(+) 1,3/(-) 1,2	(+) 16, 7 (+) 5, 1 (+) 39 (+) 10	(+) 11,1/ $(+)$ 339,9 (+) 17/ $(+)$ 17.6		
	XIAP	(-) 1.2/(+) 1.6	(-) 1,2/(+) 2,2	(-) 3,7/(+) 1,4	(-) 2.3/(-) 1.1	(+) 1.6/(-) 3.2	(+) 1.9/(+) 35.5		
inflammatorisch	IL-6	(-) 1,1/(+) 1,1	(+) 1,1/(+) 3,8	(-) 9,3 / (-) 14,2	(-) 1,8/(-) 1,5	(+) 1,4/(-) 1	(+) 6,1/(+) 28,9		
innaminatorisch	I IL-8	(-) 2,0/(+) 1,8	(+) 2,5/(+) 4,4	(-) 6,5/(+) 1,4	(-) 3,7 / (-) 2,8	(+) 2,4/(-) 1,1	(+) 23,9/(+) 36,9		
MLN4924		responsiv			sensitivierbar	resistent			
		PCI 1-1	PCI 13-1	HaCaT	SCC-25	PCI 9-1	PCI 52		
proapoptotisch	BAX	(-) 2,3/(-) 2,4	(-) 5,5 / (-) 3,1	(+) 1,1/(+) 1,6	(+) 3,4/(+) 1,7	(+) 1,1/(+) 1,5	(+) 1,2/(+) 1,3		
	BCL2	(-) 1,1/(+) 1	(-) 2,3/(+) 1,2	(-) 1,6 / (-) 9,0	(+) 10/(+) 1,7	(+) 2,5/(+) 4,5	(+) 5,3/(+) 9		
	BIRC2	(-) 8,3/(-) 2,1	(-) 5,2/(-) 5,0	(+) 1,3/(+) 2,5	(+) 1,9/(-) 1,2	(-) 1,3/(+) 1,2	(+) 1,4/(+) 1,9		
antiapoptotisch	CELAR	(-) 30,77(-) 10,5	(-) 14,5/ $(-)$ 4,1	(-) 5,3/(-) 1,0	(-) 4,9/ $(-)$ 19,3 (+) 23/ $(-)$ 14	(-) 5,47(-) 4,9 (+) 127(+) 12	(-) 2,2/(-) 1,0 (-) 11/(+) 22		
	XIAP	(-) 1,6/(+) 1,9	(-) 4,3/(+) 1,6	(+) 1,3/(+) 7,4	(+) 3,4/(+) 2,6	(+) 1,3/ $(+)$ 1,8	(+) 2/(+) 9,2		
inflammatorisch	IL-6	(-) 9,3/(-) 2,5	(-) 5,1/(+) 1,3	(-) 22,4 / (-) 19,7	(-) 1,2/(-) 2,8	(+) 2,7/(+) 3,0	(+) 4,8/(+) 7		
innanmatorisen	IL-8	(+) 4,5/(+) 25,6	(+) 45,1/(+) 70,8	(+) 1,3/(+) 2,9	(+) 7,4/(-) 1,3	(+) 2,1/(+) 1,4	(+) 248,1 / (+) 53,7		
QNZ		responsiv			sensitivierbar	resistent			
		PCI 1-1	PCI 13-1	HaCaT	SCC-25	PCI 9-1	PCI 52		
proapoptotisch	BAX	(-) 1,4/(+) 1	(-) 1,8/(-) 1,4	(-) 1,1/(+) 1,4	(+) 1,9/(-) 1,2	(-) 1,3/(-) 1,1	(-) 1,2/(+) 1,5		
	BCL2	(+) 1,2/(+) 2,3	(-) 1,3/(+) 1,1	(-) 1,5 / (-) 2,7	(+) 1,1/(-) 2,8	(-) 6,1/(-) 3,1	(+) 1,3/(+) 2,2		
	BIRC2	(-) 10,6/(+) 1,2	(-) 1,5/(-) 2,4	(-) 1,5/(-) 1,7	(+) 6,2/(-) 2,4	(-) 1,4/(-) 2,8	(-) 1,2/(-) 1,8		
antiapoptotisch	BICR3	(+) 1,8/ $(+)$ 3,1	(+) 1/(+) 1,4	(-) 1,1/(+) 1,5	(+) 3,2/(-) 4,5 (+) 28/(-) 4.2	(-) 3,4 / (-) 2,1	(-) 2,5/(-) 2,2 (-) 2,5/(+) 1,6		
	XIAP	(-) 2/(+) 2,4	(-) 1,8/(-) 1,6	(-) 1,1/(+) 1,6	(+) 3,2/(-) 1,6	(-) 2,6/(-) 2,3	(-) 2,4/(+) 3,2		
inflommatoriash	IL-6	(+) 3,3/(+) 21,7	(-) 1,2/(+) 3	(-) 1,1/(-) 1,6	(+) 2,5/(-) 1	(+) 2,3/(+) 2,8	(+) 1,6/(+) 1,6		
innammatorisch	IL-8	(+) 11,1/(+) 83,4	(+) 1,1/(+) 7,2	(-) 2,4/(+) 8,9	(+) 5/(-) 2,9	(-) 1,2/(-) 1,2	(+) 2,1/(-) 1,5		
TPCA-1		responsiv		sensitivierbar	resistent				
		PCI 1-1	PCI 13-1	HaCaT	SCC-25	PCI 9-1	PCI 52		
proapoptotisch	BAX	(+) 1,9/(+) 1,5	(-) 2,3/(-) 1,7	(+) 1/(+) 1,2	(-) 1,2/(+) 1	(+) 1,4/(-) 1,2	(-) 1,4/(-) 1,3		
	BCL2	(-) 1,1/(+) 1,6	(-) 8/(-) 7,4	(+) 1,2/(-) 18,5	(-) 14,5 / (-) 3,2	(+) 2,2/(+) 1,5	(-) 4,2/(-) 1,1		
antian antatiach	BIRC2	(-) 3/(+) 1,7	(-) 3,1/(-) 2,4	(+) 1,3/(-) 2,8	(+) 1,6/(-) 2,1	(+) 1,3/(-) 3,5	(-) 1,2/(+) 1,1		
antiapoptotisch	BICR3	(-) 1,5/(-) 1,2 (+) 1 1/(+) 1 7	(+) 1,4/(+) 2,4	(-) 6,5 / (-) 4,5	(-) 2,77(-) 21,3	(+) 1/(-) 4,2 (+) 17/(-) 36	(-) 1,2/(+) 1,1		
	XIAP	(+) 1,9/(+) 5,9	(+) 1,3/ $(+)$ 6,2	(+) 1.9/(+) 1.5	(+) 1,1/(+) 1,9	(+) 2,3/(-) 2,9	(-) 1,5/(+) 2		
inflammatorisch	∫IL-6	(-) 3,2/(-) 1,2	(+) 4,4/(+) 4,7	(+) 2,1/(-) 5,5	(-) 4,2/(-) 4,9	(-) 2/(-) 1,2	(+) 14,1/(+) 1,4		
innaminatorisch	IL-8	(-) 14,8/(-) 1	(+) 1,6/(+) 1,8	(-) 296,7 / (-) 10,9	(-) 1,5/(-) 114,1	(-) 3,5/(-) 2,8	(-) 1,2/(-) 3		
	Fold c Hochre	hange (Expres egulation des G egulation des G	sionslevel C/E ens in beiden V ens in einem Ve	Expressionslev ersuchsdurchg ersuchsdurchg	vel Probe) jängen ≥ Faktoi ang ≥ Faktor (+	· (+) 2) 2			
	Hochregulation des Gens in beiden Versuchsdurchgängen zwischen Faktor (+) 1 bis < (+) 2								
	Inkons	istente Genexp	ression (+ und	-)		()	()		
	Herunt	Herunterregulation des Gens in heiden Versuchsdurchgängen zwischen Faktor (-) 1 his $<$ (-) 2							
	Herunterregulation des Gens in beiden Versuchsdurchgangen ≥ Kaktor (-) 2 Herunterregulation des Gens in einem Versuchsdurchgang ≥ Faktor (-) 2 Herunterregulation des Gens in beiden Versuchsdurchgängen ≥ Faktor (-) 2								
	_ noruni				ongungen = 1 a	(-) Z			
	Expres	Expressionsregulation							
	Leicht: > 2 bis < 5-fach Mittel: ≥ 5 bis < 10-fach								
	Stark:	≥ 10-fach							

Abb. 24: Heatmap zur Expressionsanalyse apoptotischer und inflammatorischer Gene. D e Ze en wurden für 24 Stunden m t den NF- κ B-pathway-Inh b toren [IC₁₀₀] nkub ert und d e Genexpress on m tte s RT-qPCR ana ys ert. Dargeste t s nd d e Daten von zwe , unabhäng g vone nander durchgeführten Messre hen (n = 2). D e Herunterregu at on der Genakt v tät wurde sequenz e rot, d e Heraufregu at on entsprechend grün dargeste t. Graue F ächen bedeuten e n nhomogenes Verha ten. D e Datenauswertung erfo gte m t der mod f z erten $\Delta\Delta$ Ct-Methode nach Pfaff (Kap. 2.2.6.3). D e Prof e der e nze nen Expressonsana ysen s nd m Append x (Abb. 29 & 30) angehängt.

3.8 Durchflusszytometrische Analyse der Apoptoseinduktion

Die NF-κB-pathway-Inhibitoren wirkten spender- und wirkstoffabhängig antiproliferativ (Kap. 3.3.1). Zur Analyse, ob Antiproliferation, Apoptose oder andere Zelltodformen induziert wurden, erfolgte nach 48-stündiger Inkubation [IC₁₀₀ (Tab. 13)] ein durchflusszytometrischer Annexin V PE/7-AAD-Assay.

3.8.1 Etablierung einer validen Apoptose-Bestimmung

Um die Validität des Tests (Kap. 2.2.5.1) zu überprüfen, wurde die Referenzzelllinie HaCaT für 24 Stunden mit FasL [200 ng/ml] inkubiert und mittels FACS vermessen (Abb. 25). In der Kontrolle waren etwa 90 % der Zellen Annexin V- und 7-AAD-negativ (Q4). Nach FasL-Inkubation verlagerte sich die Population nach Q2 (Annexin V+/7-AAD+). In diesem Quadranten, der spätapoptotische Zellen darstellt, konnte mehr als die Hälfte der Gesamtpopulation detektiert werden. Die Zunahme von Annexin V PE angefärbten Zellen war im Histogramm (FL2-H) mit einem distinkten Peak bei 50 RFU (relative fluorescence units) nachweisbar.

Abb. 25: Kontrollversuch zur Methodenvalidierung des FACS-Apoptose-Assays. D e Referenzze - n e HaCaT wurde a s Pos t vkontro e m t FasL [200 ng/m] nkub ert, m t der Annex n V PE/7-AAD-Doppe färbemethode vorbehande t und durchf usszytometr sch m BD FACSCa bur ^M (Kap. 2.2.5) ana ys ert. Es ze gten s ch, verg chen zur Kontro e, d st nkte Versch ebungen der FasL- nkub erten Probe von Q4 (Annex n V-/7-AAD-) nach Q2 (Annex n V+/7-AAD+) m dens ty p ot und H stogramm, was d e va de Detekt on von Apoptose anze gte.

Zur weiteren Validierung des Assays wurde die FasL-responsive Zelllinie PCI 1-1 vermessen (Abb. 26). Nach FasL-Stimulation zeigte sich eine distinkte Verlagerung der Zellpopulation von Q4 nach Q2, welche im Histogramm einen prominenten Peak bei 50 RFU präsentierte. Da die für HaCaT beschriebenen Messergebnisse (Abb. 25) mit PCI 1-1 reproduzierbar waren, wurde von einem validen Verfahren zur Detektion von Apoptose bei den zu untersuchenden Zelllinien des HNSCC ausgegangen. Diese Zellen stellten sich als nicht konzentrische Populationen in den Messungen dar. Dieses Verhalten zeigten u. a. auch Zellen in Untersuchungen von *Azizi et al.* beim Einsatz dieses Kits¹⁷⁴.

Abb. 26: Methodenvalidierung zum Nachweis der Apoptose im HNSCC. D e Ze n e PCI 1-1 wurde a s Post vkontro e für 24 Stunden m t FasL [200 ng/m] nkub ert. D e nach FasL-Behand ung zum Kontro versuch m t HaCaT ana oge Quadrantenversch ebung der Lebendze popu at on von Q4 nach Q2 demonstr erte den va den Nachwe s von Apoptose m t dem Annex n V PE/7-AAD-Apoptose-Assay.

3.8.2 Apoptoseinduktion durch NF-KB-pathway-Inhibitoren

Die FACS-Analysen ergaben bei zwei Drittel der Proben eindeutige proapoptotische Effekte der Inhibitoren mit signifikanten Verschiebungen von Q4 nach Q2 [Tab. 15 (fett gedruckt)]. Als signifikant wurde ein Ergebnis bezeichnet, wenn mehr als 50 % der Zellen nach Inkubation mit den NF-κB-pathway-Inhibitoren in Q2 zu liegen kamen und im Histogramm distinkte Annexin V-Peaks (FL2-H) nachweisbar waren.

Es imponierte eine teilweise heterogene Responsivität für die NF- κ B-Inhibitoren. Am wirksamsten war MLN4924 [IC₁₀₀ von Ø 84,7 µM], welches im gesamten Zellpanel eindeutige Verschiebungen nach Q2 induzierte. Es wurden 59,3 bis 82 % der Zellpopulationen positiv auf Annexin V PE und 7-AAD getestet. TPCA-1 [IC₁₀₀ von Ø 70,9 µM] demonstrierte mit einer signifikanten Induktion Annexin V- und 7-AAD-positiver Zellen (69 bis 82,3 %) bei fünf der sechs Zelllinien ebenfalls eine hohe proapoptotische Wirkung. QNZ [IC₁₀₀ von Ø 6,5 µM] konnte bei vier Zelllinien effektive Verlagerungen nach Q2 bewirken. Hierbei waren 61,2 bis 93,8 % der Zellpopulation Annexin V- und 7-AAD-positiv. Cortisol [IC₁₀₀ von Ø 280 µM] induzierte Apoptose nur bei PCI 52, weshalb gegebenenfalls eine spenderabhängige, schwach Apoptose-induzierende Wirksamkeit für Cortisol anzunehmen ist.

Zelllinie	Proben	Q1	Q2	Q3	Q4
	(n = 1)	(%)	(%)	<mark>(%)</mark>	(%)
PCI 1-1	Kontrolle	9,7	17	4,1	69,2
	Cortisol	3,1	13,6	5,3	78,1
	MLN4924	5,6	82	2,6	9,8
	QNZ	2,6	93,1	2,6	1,7
	TPCA-1	4,2	73,4	7,7	14,7
PCI 9-1	Kontrolle	4,6	22,4	16,9	56,1
	Cortisol	3,3	38,5	19,6	38,7
	MLN4924	13,8	69,2	4,6	12,4
	QNZ	5,8	93	0,3	0,9
	TPCA-1	9,2	82,3	2,4	6,1
PCI 13-1	Kontrolle	15	18,9	5,9	60,2
	Cortisol	5,4	32,5	12,7	49,4
	MLN4924	8,3	75,6	2	14,1
	QNZ	36,9	61,2	0,3	1,6
	TPCA-1	2,6	31,8	8	57,6
PCI 52	Kontrolle	4,2	16,7	14,3	64,8
	Cortisol	26,3	54,8	6,4	12,5
	MLN4924	14	79,6	1,8	4,6
	QNZ	5,7	93,8	0,2	0,3
	TPCA-1	11,1	73,4	6,4	9,1
SCC-25	Kontrolle	3,7	18,4	13,3	64,6
	Cortisol	3,2	33,1	15,5	48,2
	MLN4924	3,7	59,3	11,3	25,7
	QNZ	2,7	31,7	15,8	49,8
	TPCA-1	7,4	69	2,7	20,9
HaCaT	Kontrolle	8,1	9,4	3,4	79,1
	Cortisol	10,4	33	3,6	53
	MLN4924	9,5	67,8	3,1	19,7
	QNZ	8,8	42,1	5,3	43,8
	TPCA-1	4,6	72,3	5,4	17,6

Tab. 15: Analyse des Annexin V PE/7-AAD-FACS-Apoptose-Assays. St mu at on der Ze n en mt Cort so, MLN4924, QNZ bzw. TPCA-1 [IC_{100}] für 48 Stunden. Dabe wurden n Q1 Ze en abgeb det, d e s ch m unspez f schen Ze tod bef nden, n Q2 spätapoptot sche (he grau mark erte Tabe enspate), n Q3 frühapoptot sche und n Q4 v ta e Ze en. Fett gedruckte Werte n Spate Q2 sp ege n d e s gn f kante Indukt on von Apoptose m Verg e ch zur Kontro e w der. D ese Beurte ung erfo gte sem quant tat v, wenn s ch d e prozentua größte Ze frakt on n d esem Quadranten befand.

4 Diskussion

Die Inflammation ist ein zentraler Aspekt der Tumorbiologie, da sie zur Initiation und Progression neoplastischer Prozesse beiträgt. Obwohl die Bedeutung inflammatorischer Prozesse im Zusammenhang von Tumorerkrankungen schon lange bekannt ist, gewinnen diese im Zuge der aktuellen Entwicklung zielgerichteter Tumortherapien zunehmendes Interesse¹⁷⁵.

4.1 "Back to Virchow"¹⁷⁶

Rudolf Virchow begründete mit seiner Erstbeschreibung des lymphoretikulären Infiltrats die Tumorimmunologie und legte das Fundament für das Verständnis über die Entstehung von Tumoren aus chronisch-entzündeten Geweben. Das Immunsystem trägt zur Karzinogenese bei, weshalb Balkwill und Mantovani titelten *"Inflammation and cancer: back to Virchow?"*¹⁷⁶. Der genetische Schaden ist der initiale Auslöser, die Entzündung der Akzelerator^{177,178}. Diese Erkenntnis ist für die moderne Onkotherapie von zentraler Bedeutung und macht *Virchows* Erkenntnis aktuell. Der NF- κ B pathway ist einer der wichtigsten proinflammatorischen und antiapoptotischen Signalwege und bietet als molekulares Bindeglied zwischen Inflammation und Krebs ein plausibles target der Tumortherapie. Da das HNSCC durch Inflammation und ausgeprägte Aktivierung des NF- κ B pathways gekennzeichnet ist, erscheinen NF- κ B-pathway-Inhibitoren in diesem Kontext von besonderem Nutzen sein zu können. Durch die Auswahl von Cortisol, MLN4924, QNZ und TPCA-1 wurden vier Inhibitoren analysiert, die diesen Signalweg auf unterschiedlichen Ebenen adressieren.

4.1.1 Analyse des autokrinen durch TNF- α getriggerten Feedbackmechanismus zur Induktion der Inflammation im HNSCC

Die dichotome, dosisabhängige Rolle von TNF- α ist bekannt¹⁷⁹. Einerseits kann es durch Aktivierung des Akt-Signalwegs das Zellüberleben induzieren¹⁸⁰. Andererseits kann TNF- α durch die veränderte Homöostase zellulärer Signalproteine proapoptotisch wirken¹⁸¹. TNF- α ist der potenteste Induktor des NF- κ B pathways^{55,182}. Nach *Jackson-Bernitsas et al.* ist dieser Signalweg konstitutiv durch die autokrine Freisetzung von TNF- α in HNSCC-Zellen aktiviert (Abb. 3)⁷⁸. Dies konnte ebenfalls für das untersuchte Zellpanel auf Zytokinebene gezeigt werden (Abb. 14). Die Titer lagen zwar nahe der Nachweisgrenze, dennoch entsprachen sie den von *Nakano* und *von Biberstein et al.* für das HNSCC publizierten Daten^{183,184}. Dem gegenüber konnten *Chen* und *Woods et al.* keine Sekretion von TNF- α im HNSCC nachweisen, was auf eine spenderabhängige Freisetzung [vgl. SCC-25 (Abb. 14)] hinweisen könnte^{185,186}.

TNF- α induzierte im vorliegenden Panel keine antiproliferativen Effekte, was die Resistenz des HNSCC gegen extrinsische Apoptosestimuli zeigt¹⁸⁷. Es ist anzunehmen, dass kein inadäquater Rezeptorbesatz hierfür verantwortlich ist, wie *Jackson-Bernitsas* und *von Biberstein et al.* bestätigen^{78,184}. Die Überexpression löslicher TNF-Rezeptoren könnte durch kompetitiven Antagonismus funktionell inhibierend bzw. senkend auf die TNF- α -Level wirken¹⁸³. Dies könnte, neben der vermutlich geringen Testsensitivität, die beschriebenen niedrigen Messwerte erklären (Abb. 14). Entsprechend berichten *Aderka et al.*, dass Tumorzellen lösliche TNF-Rezeptoren freisetzen können, was *Su et al.* für das HNSCC belegen^{188,189}.

Die Relevanz von TNF- α als proinflammatorischem Trigger des HNSCC zeigte sich in seiner signifikanten Induktion der IL-8-Sekretion (Abb. 11), was *Cohen et al.* bestätigen¹⁶¹. Ferner zeigen *Reers et al.* für das HNSCC, dass es induziert durch Chemo- oder Strahlentherapie TNF- α ausschüttet, was die Bedeutung dieses Signalwegs auch im Zusammenhang mit konventionellen Tumortherapien andeutet¹⁹⁰. Somit kann die Hypothese der NF- κ B-mediierten, selbstverstärkenden Inflammation, getriggert durch autokrines TNF- α , grundsätzlich als plausibel erachtet werden. Dennoch ist bei Betrachtung der TNF- α -Konzentrationen, die zur Induktion der IL-8-Sekretion notwendig waren (Kap. 3.4.1), fraglich, ob die nachweisbaren TNF- α -Werte ausreichend für eine adäquate Induktion des NF- κ B-Signalwegs wären oder ob extrinsische Quellen in Frage kommen müssten.

4.1.2 IL-8 als Biomarker für auf Inflammation eingestellte HNSCC-Zellen

Die starke Ausschüttung von IL-8 ist charakteristisch für das HNSCC, weshalb es als Biomarker in Patientenseren nachweisbar ist⁵⁸. Die untersuchten HNSCC-Zelllinien sezernierten hohe IL-8-Basal-Level, die von TNF- α signifikant getriggert wurden (Abb. 11). Auch *Chen et al.* konnten vergleichbare IL-8-Level

verifizieren, ohne eine TNF- α -Sekretion nachweisen zu können⁵⁸. Das könnte dafür hinweisgebend sein, dass die detektierten TNF- α -Werte unerheblich für die IL-8-Expression sind. Diese Annahme wird durch *Pries et al.* unterstützt, die vergleichbare, TNF- α -unabhängige IL-8-Level im HNSCC beschreiben¹⁹¹. Daher erscheint es in diesem Kontext als plausibel, Signalproteine des NF- κ B pathways durch zielgerichtete Therapiestrategien zu attackieren.

4.2 Vergleichende Analyse der NF-κB-pathway-Inhibitoren für die prospektive Therapie des HNSCC

Als potentieller Wirkstoff für den klinischen Einsatz qualifizierte sich in der vorliegenden Studie lediglich TPCA-1. Während Cortisol kaum zytotoxische (bzw. antagonistische) Effekte induzierte, hemmten TPCA-1, MLN4924 und QNZ die Zellproliferation bereits bei niedrigen mikromolaren IC₅₀-Werten. Obwohl diese Konzentrationen für den Einsatz einer rein antiproliferativ intendierten Therapie als zu hoch erscheinen könnten, wäre diese Wirkung als zusätzlicher positiver (Neben-) Effekt zu beurteilen. Im Hinblick auf die Anwendung als entzündungshemmende Therapeutika zeigten weder Cortisol noch QNZ signifikante IL-8-senkende Effekte. Bemerkenswert war die starke IL-8-Zunahme unter Therapie mit MLN4924, wodurch sich diese Wirkstoffe für den weiteren Einsatz disqualifizierten.

TPCA-1 kristallisierte sich aufgrund der nachfolgend erläuterten Eigenschaften als geeigneter NF-κB-Inhibitor für die prospektive klinische Therapie des HNSCC heraus:

- 1) TPCA-1 wirkte in niedrig mikromolaren Dosen antiproliferativ (Abb. 15),
- 2) hemmte signifikant die TNF- α -induzierte IL-8-Sekretion (Abb. 17),
- 3) regulierte spezifisch die IL-8-Expression herab (Abb. 24),
- 4) wirkte sensitivierend für den TNF- α -induzierten Zelltod (Abb. 19),
- 5) interferierte gering mit der FasL-vermittelten Apoptose (Abb. 23) und
- 6) induzierte nachweislich Apoptose (Tab. 15).

4.2.1 Analyse der hohen Wirksamkeit von TPCA-1 im HNSCC

Es stellt sich die Frage, warum TPCA-1 im Vergleich der vier NF-κB-Inhibitoren insgesamt am effektivsten wirkt. Nach derzeitigem Kenntnisstand ist seine

Wirkung nicht auf einen detaillierten molekularen Mechanismus zurückzuführen. TPCA-1 adressiert hochspezifisch die IKKβ-Untereinheit des IKK-Komplexes im klassischen NF- κ B pathway, während die anderen Inhibitoren indirekt die I κ B α -Phosphorylierung bzw. den NF-kB pathway beeinflussen. Es ist davon auszugehen, dass TPCA-1 im analysierten Zellpanel der einzige Inhibitor war, der den klassischen NF-kB-Signalweg zielgerichtet hemmen konnte, da nur TPCA-1 die IL-8-Sekretion als dessen Surrogatmarker signifikant blockierte. Die weiteren Wirkstoffe könnten den klassischen oder alternativen Weg beeinflusst haben, mutmaßlich unspezifisch. In den HNSCC-Zellen induzierten sie ein Ungleichgewicht der NF-κB-regulierten Genexpression, was die unspezifische und teilweise proinflammatorische Zellreaktion erklären könnte. Der Hauptvorteil von TPCA-1 liegt in seiner selektiven und zielgerichteten Wirksamkeit¹⁰⁶. Bekannt ist, dass der NF-kB-Signalweg im HNSCC konstitutiv aktiviert ist. Ausgelöst wird seine permanente Aktivierung durch IKK, was mit der gesteigerten Phosphorylierung seines Kinaseprodukts $I\kappa B\alpha$ (p $I\kappa B\alpha$) korreliert ist. p $I\kappa B\alpha$, welches in ruhenden Zellen im dephosphorylierten Zustand inhibierend wirksam ist, wird nach Stimulation mit TNF- α proteasomal degradiert und der kanonische Signalweg aktiviert⁷⁸. Die deutliche Reduktion der Entzündung könnte durch die spezifische Wirkung von TPCA-1 als IKKβ-Inhibitor induziert worden sein. Bemerkenswerterweise kam es unter TNF- α -Inkubation zur Verstärkung der Reduktion des IL-8-Titers. Dies lässt vermuten, dass TPCA-1 eine höhere Wirksamkeit unter getriggerter Inflammationslage besitzen könnte und möglicherweise eine hohe Spezifität für Krebszellen hat, die extrinsisch proinflammatorisch stimuliert werden. Des Weiteren sensitivierte TPCA-1 die Zellen für den TNF- α -induzierten Zelltod, was erstmalig gezeigt werden konnte und die Bedeutung des NF-κB pathways für Therapieresistenzen unterstreicht. Hervorzuheben ist, dass dieser Effekt bei allen Zelllinien zu finden war. Im Vergleich induzierten die anderen Inhibitoren keine bzw. deutlich geringere Effekte, weshalb von einer spezifischen Wirkung von TPCA-1 ausgegangen werden kann. Seine molekulare Wirksamkeit beruht auf der Hemmung der TNF- α -induzierten I κ B α -Degradation, was *Rauert-Wunderlich et al.* für das Multiple Myelom zeigen konnten. Sie inhibierten durch TPCA-1 die Hochregulation von IL-8 durch Blockade des klassischen NF-κB pathways¹⁰⁶.

4.2.1.1 Die Bedeutung von ΙΚΚβ als target zielgerichteter Tumortherapie

Der NF-KB pathway ist als ein wesentlicher Pathomechanismus des HNSCC anerkannt¹⁹². Krebsgenomanalysen zeigen, dass 8,5 % der Patienten Mutationen in den IKK-kodierenden Genen tragen, wovon 5 % auf IKBKB entfallen^{193,194}. Diverse Autoren berichten von einer konstitutiven Aktivierung des IKK-Komplexes, was den NF-κB pathway in Tumorzellen induziert⁷⁸. Karin et al. beschrieben IKKβ als molekularen Linker zwischen Inflammation und Krebs^{81,195}. Dies kann durch die Ergebnisse der vorliegenden Arbeit bestätigt werden. Als einziger Wirkstoff konnte TPCA-1 die IL-8-Sekretion, bei gleichzeitiger Sensitivierung der HNSCC-Zellen für den TNF- α -induzierten Zelltod, inhibieren. Korrelationsanalysen ergaben, dass die Effekte unabhängig von der Zellviabilität erzielt wurden, was auf die zielgerichtete Inhibition des klassischen NF-kB pathways hinweist. Anzunehmen ist, dass IKKß ein zentraler Promotor der Inflammation im HNSCC ist, was es als sinnvolle Zielstruktur qualifiziert. Dies ist konsistent mit den Angaben von Li et al. Diese Arbeitsgruppe konnte durch spezifische IKKβ-Inhibition therapieresistente HNSCC-Zellen proapoptotisch sensitivieren und einen proliferativen Rückkopplungsmechanismus ausgehend vom epidermal growth factor receptor (EGFR) durchbrechen¹⁹⁶. Dies könnte es als target zur Sensitivierung für Systemtherapien bzw. Inhibitoren in Form von Kombinationsbehandlungen interessant machen, was Li et al. beispielsweise für Gefitinib zeigen¹⁹⁷. Bislang ist jedoch unklar, welche Mechanismen die IKK-Daueraktivierung induzieren. Grundsätzlich bewirkt die Phosphorylierung von Serin 177 und 181 die Aktivierung von IKKβ¹⁹⁸. Jackson-Bernitsas et al. weisen auf RIPK1, TAK1, PI3K, AKT1 und Ras als mögliche Ursachen hin⁷⁸. Tatsächlich ergaben Krebsgenom-Analysen des HNSCC signifikante Koexpressionen des IKBKB-Gens mit den Genen RIPK1, AKT1 und HRAS^{193,194} Außerdem ist ein Feedback-Mechanismus ausgehend von EGFR über PI3K, Akt, mTORC1, IKK bis NF-κB für das HNSCC bekannt, dessen Hemmung durch IKK_β-Inhibition die Zellproliferation blockiert, Apoptose induziert und IKKβ als Schlüsselprotein beider Signalwege identifiziert¹⁹⁹.

4.2.2 Analyse der insuffizient wirkenden Inhibitoren

4.2.2.1 Cortisol

Cortisol wies stark antagonistische Effekte auf, deren mechanistische Grundlagen bislang nicht vollständig verstanden sind¹⁰¹. Zwei Studien beschreiben die Ineffizienz von Cortisol bei der Therapie von HNSCC. Thurnher et al. erklären diese mit der geringen Wirksamkeit von Cortisol auf die Expression des antiapoptotischen Bcl-2-Proteins, was mit den vorliegenden Daten übereinstimmt (Abb. 24)^{200,201}. Auch weitere Autoren verweisen auf die verstärkte Expression antiapoptotischer Gene^{102,202,203}. Tatsächlich stimulierte Cortisol die Bcl-2-Expression der Zelllinie PCI 13-1 (Abb. 24), was die induzierte FasL- bzw. Apoptose-Resistenz dieser Zelllinie erklären könnte (Abb. 20). Außerdem wäre eine refraktäre NF-κB-Funktion denkbar¹⁰¹. Die antiinflammatorischen glucocorticoiden Effekte beruhen u. a. auf der gesteigerten Expression des NF- κ B-Inhibitors I κ B α^{204} . Aufgrund der konstitutiven IKK-Aktivierung kann spekuliert werden, ob durch die gesteigerte proteasomale Degradation von IkBa die Wirkung der Glucocorticoide auf den NF-κB pathway kompensiert wird. Der klinische Einsatz von Cortisol zur Hemmung der Inflammation und proapoptotischen Sensitivierung des HNSCC muss äußerst kritisch bewertet werden, weshalb aufgrund der vorliegenden Daten davon abgeraten werden muss.

4.2.2.2 MLN4924

Die Inflammation der HNSCC-Zellen wurde durch MLN4924 massiv induziert, was eine neue Erkenntnis ist. Der zugrunde liegende Mechanismus ist bislang unbekannt. Wie Genexpressionsanalysen zeigten (Abb. 24), könnte er transkriptionell bedingt, möglicherweise NF- κ B-induziert und relativ spezifisch für die Expression des IL-8-Gens sein. Deshalb muss die Verwendung von MLN4924 für die klinische Tumortherapie intensiv evaluiert werden, da IL-8 die Tumorprogression begünstigt^{205,206}. Es wurde die Hypothese überprüft, ob MLN4924 die TNF- α -Sekretion induziert, was auto- bzw. parakrin die IL-8-Sekretion verstärken könnte (Abb. 3). Es waren keine signifikanten TNF- α -Signale nachweisbar, weshalb dieser Mechanismus ausgeschlossen werden kann (Daten nicht gezeigt). Interessanterweise inhibierte MLN4924 effizient die Zellproliferation, interferierte

kaum mit FasL und wirkte teilweise sogar sensitivierend für den FasL- und TNF-α-induzierten Zelltod. *Zhang et al.* konnten detailliertere Einblicke in diesen Wirkmechanismus geben. MLN4924 induziert die Akkumulation von c-Myc, eines CRL-Ligasesubstrats des NEDD8-Konjugationswegs, welches das proapoptotische Protein Noxa transkriptionell aktiviert²⁰⁷. Auch andere Autoren konnten zelltodinduzierende Effekte von MLN4924 für das HNSCC darlegen, das durch die Reduktion von c-FLIP für die TRAIL-induzierte Apoptose sensitiviert wurde. *Zhao et al.* konnten die MLN4924-abhängige, JNK-mediierte proteasomale c-FLIP-Degradation nachweisen, was die unspezifische Wirkung auf transkriptioneller Ebene erklärt (Abb. 24). Dies könnte möglicherweise eine Ursache der MLN4924-induzierten IL-8-Expression sein. Es ist bekannt, dass MLN4924 den mitogenen JNK-Signalweg im HNSCC aktiviert¹¹⁰. *Gross et al.* konnten im HNSCC durch Inhibition dieses pathways die IL-8-Sekretion hemmen, was den JNK/AP-1-Signalweg als mögliche Ursache der MLN4924-induzierten IL-8-Sekretion in Frage kommen lässt^{208,209}.

4.2.2.3 QNZ

QNZ konnte sich ebenfalls nicht als wirksamer antiinflammatorischer Wirkstoff erweisen, da es - ähnlich wie MLN4924 - die TNF-α-induzierte IL-8-Freisetzung verstärkte (Abb. 17). Der Wirkmechanismus von QNZ ist bislang unbekannt^{111,112}. Daten für das HNSCC sind nicht publiziert. *In vitro* konnte gezeigt werden, dass QNZ die Aktivierung der NF-κB-Untereinheit p65 inhibiert, ohne dabei IkB zu degradieren^{113,114}. Dies entspricht den Arbeiten von Vigont und Wu et al., wonach QNZ den IKK-Komplex nicht hemmt, was möglicherweise eine Erklärung für die TNF- α -getriggerte IL-8-Freisetzung im HNSCC liefern könnte (Abb. 17)^{210,211}. QNZ hemmte hocheffektiv die Zellproliferation und wirkte sensitivierend für den FasL-induzierten Zelltod (Abb. 15 &Abb. 22), jedoch spenderabhängig, was die einzigen positiven Aspekte zugunsten von QNZ waren. Dies ist vereinbar mit den Daten von Liu und Tsai et al., die zeigten, dass QNZ über die Reduktion antiapoptotischer Proteine (bspw. MCL-1, XIAP und c-FLIP) wirkt. Übereinstimmende genregulatorische Wirkungen konnten in der Expressionsanalyse gezeigt werden, die eine herabregulierende Wirkung von QNZ vorzugsweise auf antiapoptotische Gene zeigte, die jedoch von einer stark inhomogenen

Spenderabhängigkeit geprägt war (Abb. 24). Daneben gibt es Hinweise, dass QNZ nicht direkt, sondern über vorgeschaltete, Ca²⁺-vermittelte Schritte den NF- κ B pathway inhibiert, wodurch *Pozzobon et al.* die IL-8-Sekretion inhibieren konnten^{212,213}. Dies könnte erklären, warum QNZ in HNSCC-Zellen mit konstitutiver IKK-Aktivierung die IL-8-Sekretion kontraproduktiv beeinflusste.

4.2.3 Apoptose als (Neben-) Effekt der targetierten NF-κB-Inhibition

Zytotoxische Effekte wurden validiert, wie beispielsweise der durch TPCA-1 sensitivierte TNF-α-induzierte Zelltod (Abb. 19). Überraschenderweise konnten die NF-κB-Inhibitoren auch den FasL-vermittelten Zelltod begünstigen (Abb. 21 - 23). Da die NF-kB-Inhibition genregulatorisch wirkt, kann nicht notwendigerweise von einer direkten Induktion der Apoptose ausgegangen werden. Durchflusszytometrisch konnte ein signifikanter Anstieg der apoptosespezifischen Fluoreszenzfarbstoffe nachgewiesen werden (Tab. 15), was die Induktion der Apoptose durch targetierte NF-kB-Inhibition beschreibt. Somit stellt sich die Frage, ob es sich hierbei um einen Nebeneffekt handelt oder ein direkter Zusammenhang besteht. *Pikarsky et al.* konnten ebenfalls durch NF-κB-Inhibition Apoptose induzieren⁷⁵. Greten et al. zeigten, dass mittels IKKβ-Inhibition Apoptose durch Suppression des antiapoptotischen Proteins Bcl-XL induziert wird⁷⁴. Duffey et al. berichten, dass sie durch Expression des NF-kB-Inhibitors IkBaM die Apoptose bei TNF-aresistenten HNSCC-Zellen induzieren konnten¹⁸⁷. Somit kristallisiert sich IKKß, auch bei der Induktion von Apoptose, als möglicherweise entscheidendes Schlüsselprotein heraus. Dementsprechend konnten Li et al. durch IKKB-Inhibition HNSCC-Zellen proapoptotisch sensitivieren, was Caspasenaktivierungen anzeigen. SCC-25 wies hierbei einen signifikanten Anstieg der Caspasenaktivität um 50 % auf¹⁹⁹. Bemerkenswerterweise zeigte sich bei TPCA-1 eine vergleichbare Zunahme spätapoptotischer SCC-25-Zellen (Tab. 15), was die proapoptotische Wirkung der IKKβ-Inhibition demonstriert. Dies bestätigen Nan et al., die die TPCA-1-induzierte Apoptose durchflusszytometrisch validierten¹¹⁷. Jedoch scheinen auch weitere Mechanismen die Apoptose induzieren zu können. Für QNZ, welches in der vorliegenden Studie hochpotent, aber spenderspezifisch Apoptose auslöste, konnten Shi et al. zeigen, dass es ROS-abhängig und durch Einleitung des Zellzyklusarrest wirkt²¹⁴. Zhao et al. konnten die proapoptotische Potenz von MLN4924 ebenfalls durchflusszytometrisch nachweisen und diese auf die Degradation von c-FLIP zurückführen¹¹⁰.

4.3 Die Bedeutung der Regulation onkogener NF-κB-Zielgene

NF-κB reguliert als Transkriptionsfaktor u. a. antiapoptotische und proinflammatorische Gene, welche die maligne Transformation induzieren. Die Unterdrückung der Regulationsmechanismen dieser Zielgene könnte zur Beseitigung von Resistenzmechanismen beitragen. Die Wirksamkeit der IKKB-Inhibition war auf Transkriptionsebene durch die homogene Herunterregulation der inflammatorischen Gene durch TPCA-1 erkennbar. Die Bedeutung von IKKβ bezüglich Induktion und Hemmung der Inflammation von Tumorzellen wird im Vergleich mit MLN4924 und QNZ deutlich, die die Inflammation bei Adressierung anderer Signalproteine des NF-kB pathways massiv verstärkten, was sich ebenfalls auf transkriptioneller Ebene abzeichnete. Zusätzlich besaß TPCA-1 proapoptotische Eigenschaften. Jedoch war das Expressionsmuster dieser Gene ausgeprägt heterogen, was die Analyse erschwert und keine spezifische Wirkung vermuten lässt. Dagegen induzierten MLN4924 und QNZ die Inflammation, was die transkriptionelle Hochregulation der Interleukin-Gene demonstrierte. Diese Wirkstoffe scheinen vielmehr proapoptotisch auf Tumorzellen zu wirken (Kap. 4.2.2.2 & 4.2.2.3). Jedoch war hier kein einheitliches Expressionsmuster erkennbar. QNZ regulierte in einer HNSCC-Zelllinie das antiapoptotische Genpanel herab, was die Apoptoseinduktion in der Durchflusszytometrie erklären könnte und eine Spenderspezifität andeutet. Eine gewisse Affinität von QNZ für proapoptotische, NF-kB-mediierte Proteine konnten auch Yen und Tsai et al. feststellen^{115,215}. Hierzu kongruent verhielt sich MLN4924. Wie andere Autoren darlegen, werden durch MLN4924 proapoptotische Proteine hoch- und antiapoptotische Proteine herunterreguliert^{108,207,216}. Möglicherweise beruhen die Effekte von MLN4924 und QNZ auf Proteinebene, was die unspezifischen Wirkungen in der Expressionsanalyse andeuten. Letztlich könnten sich individuelle Indikationen für den Einsatz von NF- κ B-Inhibitoren anbieten, die, je nach Genexpressionssignatur, vorteilhaft sein könnten und individuell geprüft werden müssten. Insgesamt betrachtet exponierte sich insbesondere TPCA-1 aufgrund seiner selektiven antiinflammatorischen und proapoptotischen Effekte auf Transkriptions- und Zytokinebene für die prospektive klinische Tumortherapie.

4.4 Perspektiven antiinflammatorischer Tumortherapien

Das Verständnis von Krebs als chronisch-entzündlicher Erkrankung hat die Onkologie revolutioniert. Gelänge es, die angeborene Immunität gegenüber entarteten Zellen therapeutisch zu nutzen bzw. durch Reduktion einer überschießenden Immunreaktion die Tumorpromotion zu stoppen, stünden neue Therapieoptionen bereit. Um die körpereigene Immunabwehr zur Bekämpfung der Tumorzellen zu nutzen, bedarf es eines profunden Verständnisses der Tumorbiologie. Dabei zeichnet sich das HNSCC durch eine enorm heterogene Mutationslandschaft aus, die wirksame Therapien erschwert²¹⁷. Die Entschlüsselung von spenderspezifischen Konstellationen, die von einer antiinflammatorischen Therapie profitieren würden, könnte durch next generation sequencing erfolgen, um personalisiert und maßgeschneidert therapieren zu können^{218,219}.

Was Tumoren jedoch eint, ist die chronische Inflammation. Als Relaisstation und gemeinsamer Endstrecke diverser Signalwege dient dabei NF-kB²²⁰. Die zielgerichtete Inhibition des NF-kB pathways erscheint daher aus mehrfacher Sicht sinnvoll zu sein. Zum einen könnte durch eine entzündungshemmende Therapie die Tumorpromotion limitiert und das Krebsrisiko prophylaktisch gesenkt werden, wie es für nichtsteroidale Antirheumatika bekannt ist^{221,222}. Diese Therapie wäre zwar nicht primär kurativ intendiert, jedoch könnte es, ähnlich einer HIV-Therapie, zur funktionellen Heilung mit latentem Verbleib des Tumors kommen²²³. Letztlich könnte dies zur Lebenszeitverlängerung und Steigerung der Lebensqualität der Patienten beitragen. Zum anderen könnten in Folge der NF-kB-Inhibition Resistenzmechanismen aufgehoben werden. Durch die Kombination mehrerer zielgerichteter Wirkstoffe könnte das komplexe Geflecht dysregulierter Signalwege effektiv attackiert werden, um immunescape-Mechanismen des Tumors zu blockieren²²⁴. Durch das konzeptionelle Verständnis von Krebs als inflammatorischer Erkrankung könnten sich außerdem bereits etablierte Therapieregimen, beispielsweise aus dem rheumatischen Formenkreis oder chronisch-entzündlicher bzw. infektiöser Erkrankungen, anbieten und das therapeutische Arsenal erweitern.

4.4.1 Die Bedeutung des TME für die Aktivierung des NF-κB pathways

Direkte onkogene Mutationen von Signalproteinen des NF-κB pathways sind selten. Beispielweise besitzen weniger als 10 % der HNSCC-Patienten Mutationen der für IKK-kodierenden Gene^{193,194}. Jedoch können extrinsische Stimuli zur NF-κB-Daueraktivierung beitragen²²⁵. Das direkte Tumorumfeld triggert den NF-κB pathway durch parakrine Freisetzung von TNF-α. *Takahashi et al.* zeigten, dass tumorassoziierte Fibroblasten eine erhöhte TNF-Genexpression aufweisen²²⁶. Auch mesenchymale Stammzellen und Makrophagen können durch TNF-α-Sekretion den NF-κB pathway induzieren^{227,228}. Wie *Scherzad et al.* fordern, muss die lokale Tumor-Wirts-Interaktion in die Therapie des HNSCC einbezogen werden, um Fortschritte beim Therapieoutcome erzielen zu können²²⁹.

4.4.2 Möglichkeiten NF-κB-targetierender Strategien für die Onkotherapie Klassische Tumortherapien können aufgrund der Aktivierung des NF-κB pathways proinflammatorisch wirken, was ihre intendierte Wirkung konterkariert und zu Tumorprogression und Therapieresistenz beiträgt⁷⁶. Daher könnten durch die zielgerichtete Inhibition von NF-kB die Effekte konventioneller Therapien gesteigert und möglicherweise ihre Nebenwirkungen reduziert werden. Synergistisch wirkende Kombinationstherapien sind sinnvoll, da antiinflammatorische Therapien per se keine zytotoxischen Effekte induzieren und insgesamt geringere therapeutische Wirkstoffdosen gestatten könnten²³⁰. Insbesondere die spezifische IKKβ-Inhibition erscheint hierbei als aussichtsreich, da TPCA-1 antiinflammatorische mit proapoptotischen Eigenschaften vereint. Deshalb kann vermutet werden, dass Kombinationen mit anderen target-Inhibitoren oder Chemo- bzw. Radiotherapien wirkungsvoll sein und bestehende Resistenzen auflösen könnten. Erste Berichte zeigen, dass TPCA-1 in vitro sensitivierend für TKI wirkt¹¹⁷. Aufgrund von IAP-Überexpressionen kämen für das HNSCC beispielsweise SMAC mimetics in Frage. Hierdurch konnten die beschriebenen Zelllinien bereits in vitro erfolgreich für Todeslidanden sensitiviert werden^{170,171,172,173,231}. Bei der Referenzzelllinie HaCaT, bei der eine Überaktivierung des NF- κ B pathways vorliegt, zeigten sich in der vorliegenden Arbeit hochsignifikante Sensitivierungseffekte, weshalb sie modellhaft für eine erfolgreiche proapoptotische Sensitivierung durch NF-κB-Inhibition stehen kann²³². Da TPCA-1 nur mäßig sensitivierend für FasL wirkt, könnten hierdurch apoptotische Effekte induziert werden. Dies bestätigen *Ren et al.*, die durch NF- κ B-Inhibition TRAIL-resistente HNSCC-Zellen sensitivieren konnten²³³. Des Weiteren ist bekannt, dass es nach IAP-Inhibition zur NIK-Akkumulation mit Aktivierung beider NF- κ B-Signalwege kommt, was die kombinierte Anwendung mit SMAC mimetics plausibel macht²³⁴.

Da inflammatorische Prozesse die Tumorpromotion im Frühstadium der Karzinogenese triggern, könnte die Anwendung von NF-κB-pathway-Inhibitoren präventiv wirksam sein, wie beispielsweise bei der prophylaktischen Einnahme von ASS beim kolorektalen Karzinom²²¹. *In vivo* wurde bereits gezeigt, dass die Einnahme nichtsteroidaler, entzündungshemmender Medikamente das Überleben von HNSCC-Patienten signifikant verlängert²²². Eine antiphlogistische Medikation wäre vermutlich deutlich verträglicher als konventionelle zytotoxische Therapien und könnte in frühen Tumorstadien als Progressionsprophylaxe verabreicht werden. Um zu diesem Zweck das HNSCC frühzeitig diagnostizieren zu können, sind hochsensitive Marker notwendig. Möglicherweise könnte der IL-8-Spiegel als Screeningparameter im Serum oder Speichel bestimmt werden, was die Wechselwirkung der Tumorzellen mit dem NF-κB-induzierenden TME anzeigen könnte^{156,235}.

4.4.3 Gefahren NF-κB-targetierender Tumortherapien

Trotz aller positiven Aspekte muss auch die Kehrseite antiinflammatorischer Therapiekonzepte berücksichtigt werden. Die systemische Immunsuppression durch Inhibition des NF-κB pathways hätte aufgrund seines ubiquitären Vorkommens massive Nebenwirkungen zur Folge. Beschrieben sind u. a. hepatotoxische Effekte, Embryopathien und opportunistische Infektionen^{236,237}. Eine entscheidende Nebenwirkung der Langzeit-IKKβ-Hemmung ist die ausgeprägte Fähigkeit von NF-κB-Inhibitoren durch exzessive Aktivierung des Inflammasoms die IL-1β-Freisetzung bei bakteriellen Infektionen zu verstärken. Dies würde zum septischen Schock mit Organversagen und dem acute respiratory distress syndrome führen²³⁸. Um dies zu vermeiden, wäre die zeitlich begrenzte Applikation unter antibiotischer Abschirmung und Hospitalisierung angezeigt²³⁴. Da bislang kaum klinische Studien zu den untersuchten Wirkstoffen durchgeführt wurden, bleibt es offen, ob diese ebenfalls zu diesem Nebenwirkungsprofil führen. Eine Phase-I- Studie von MLN4924 an soliden Tumoren ergab vielversprechende Ergebnisse, jedoch auf Kosten hoher Nebenwirkungen²³⁹. Von daher sind weitere Studien indiziert, um Vor- und Nachteile dieser Wirkstoffe in Mono- und adjuvanten Kombinationstherapien sowie die erforderlichen Konzentrationen und deren Pharmakologie zu überprüfen. Letztlich könnte es durch die selektive Inhibition spezifischer NF-kB-Proteine bzw. -Untereinheiten, wie dem beim HNSCC überaktivierten IKKß, möglich sein, die Toxizität von Systemtherapien zu minimieren. Durch Synergieeffekte könnte zudem die Therapiesensitivität des HNSCC gesteigert werden. Außerdem müssen für eine effektive Therapie die Wechselwirkungen mit dem inflammatorischen TME mitbetrachtet werden, da diese durch parakrines signaling möglicherweise den zentralen Induktor des NF-kB pathways darstellen, weshalb sie im Mittelpunkt weiterer Forschungen stehen sollten. Bemühungen, die dichotomen Eigenschaften von NF-kB als molekularem Hauptschalter diverser Signalwege vollständig zu verstehen, könnten zur Entwicklung neuer Therapien beitragen. Künftige Immuntherapien müssen alle Aspekte der Karzinogenese, wie der Tumorpromotion, berücksichtigen, um die infausten Prognosen von HNSCC-Patienten entscheidend zu verbessern. Wie Prescott und Cook kritisch reviewten, sind noch viele Gesichtspunkte der Wirksamkeiten und Wechselwirkungen von NF-κB-pathway- bzw. IKKβ-Inhibitoren zu klären, bevor diese in die klinische Tumortherapie Einzug halten können²²⁵.

Würde es gelingen, Wirkstoffe bzw. Kombinationstherapien zu entwickeln, die zielgerichtet Tumorzellen und proinflammatorische Wechselwirkungen mit dem TME adressieren, ohne die Immunantwort systemisch zu supprimieren, könnte der Tumor in Schach gehalten und somit die Letalität von Krebserkrankungen durch Tumorprogression und Metastasierung gesenkt werden. Die Erkenntnisse der vorgelegten Arbeit zur zielgerichteten NF-κB-pathway-Inhibition durch den Wirkstoff TPCA-1 könnten möglicherweise hierzu einen bescheidenen Beitrag geleistet haben.

85

5 Zusammenfassung

Entzündliche Prozesse stellen einen zentralen Aspekt der Karzinogenese dar und können sowohl zur Induktion als auch zum Progress von Tumoren beitragen. Der NF-kB-Signalweg ist einer der wichtigsten Signaltransduktionswege der Inflammation und Tumorpromotion, was ihn zur plausiblen Zielstruktur für die prospektive klinische Tumortherapie machen könnte. In der vorliegenden Arbeit wurden die Eigenschaften von vier unterschiedlich targetierenden NF-kB-pathway-Inhibitoren - Cortisol, MLN4924, QNZ und TPCA1 - auf die Inflammation, Zellproliferation und proapoptotische Sensitivierung am in vitro Modell des HNSCC untersucht. Es konnte gezeigt werden, dass die spezifische Auswahl des Inhibitors bzw. seines targets entscheidend für den wirkungsvollen Einsatz dieser Wirkstoffgruppe in der antiproliferativen Therapie des HNSCC zu sein scheint. Beispielsweise vermittelte MLN4924 die Freisetzung von IL-8. Cortisol bewirkte die Resistenz der FasL-induzierten Apoptose von HNSCC-Zellen. QNZ wirkte in einigen Zelllinien antiproliferativ und sensitivierend für den FasL-induzierten Zelltod, beeinflusste jedoch in diesem Zusammenhang kontraproduktiv die IL-8-Sekretion. Dies disgualifizierte diese Wirkstoffe für die Anwendung in der Therapie von Kopf-Hals-Tumoren. Dahingegen gualifizierte sich TPCA-1 aufgrund folgender Eigenschaften als geeigneter Wirkstoff für den prospektiven klinischen Einsatz:

- 1) TPCA-1 wirkte antiproliferativ,
- 2) hemmte die TNF- α -induzierte Inflammation,
- 3) regulierte die IL-8-Expression herab,
- 4) wirkte sensitivierend für den TNF- α -induzierten Zelltod,
- 5) interferierte kaum mit der FasL-vermittelten Apoptose und
- 6) induzierte Apoptose.

6 Literaturverzeichnis

- 1. Vigneswaran N, Williams MD. Epidemiological Trends in Head and Neck Cancer and Aids in Diagnosis. Oral and maxillofacial surgery clinics of North America. 2014;26(2):123-141. doi:10.1016/j.coms.2014.01.001.
- **2.** Krisanaprakornkit S, Iamaroon A. Epithelial-mesenchymal transition in oral squamous cell carcinoma. ISRN Oncol. 2012;2012:681469.
- **3.** Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74-108.
- **4.** Robert Koch-Institut. Bericht vom Krebsgeschehen in Deutschland 2016. Zentrum für Krebsregisterdaten im Robert Koch-Institut (Hrsg) Berlin, 2016.
- **5.** Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11(1):9-22.
- **6.** Coordes A et al. Role of miRNA in Malignoma of Head and Neck. Laryngo-Rhino-Otol 2014; 93: 201–210.
- Le Campion A, Ribeiro CMB, Luiz RR, da Silva Junior FF, Barros HCS, Dos Santos KCB et al. Low Survival Rates of Oral and Oropharyngeal Squamous Cell Carcinoma. Int J Dent. 2017;2017:5815493.
- **8.** Horch HH. Mund-Kiefer-Gesichtschirurgie. 4. Auflage. München: Elsevier GmbH; 2007. ISBN 978-3-437-05417-4.
- **9.** Schwenzer N. Mund-Kiefer-Gesichtschirurgie. 4. Auflage. Stuttgart: Thieme-Verlag; 2010. ISBN 978-3-13-593504-1.
- **10.** DGZMK. S3-Leitlinie "Diagnostik und Therapie des Mundhöhlenkarzinoms" der Deutschen Gesellschaft für Mund-, Kiefer- und Gesichtschirurgie. In: AWMF online (Stand September 2012).
- **11.** Lubin JH, Purdue M, Kelsey K, Zhang ZF, Winn D, Wei Q, et al. Total exposure and exposure rate effects for alcohol and smoking and risk of head and neck cancer: a pooled analysis of case-control studies. Am J Epidemiol. 2009;170(8):937-47.
- **12.** Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6(5):963-8.
- **13.** Garbuglia AR. Human papillomavirus in head and neck cancer. Cancers (Basel). 2014;6(3):1705-26.
- **14.** Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45(4-5):309-16.
- **15.** Hougeir FG, Yiannias JA, Hinni ML, Hentz JG, el-Azhary RA. Oral metal contact allergy: a pilot study on the cause of oral squamous cell carcinoma. Int J Dermatol. 2006;45(3):265-71.
- **16.** Hiddemann W. Die Onkologie. 2. Auflage. Heidelberg: Springer Medizin Verlag; 2010. ISBN 978-3-540-79724-1.
- **17.** Pitot HC. The molecular biology of carcinogenesis. Cancer. 1993;72(3 Suppl):962-70.

- **18.** Foulds L. The experimental study of tumor progression: a review. Cancer Res. 1954;14(5):327-39.
- **19.** Hennings H, Glick AB, Greenhalgh DA, Morgan DL, Strickland JE, Tennenbaum T, et al. Critical aspects of initiation, promotion, and progression in multistage epidermal carcinogenesis. Proc Soc Exp Biol Med. 1993;202(1):1-8.
- 20. Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124-34.
- **21.** Vinay Kumar: Robbins Basic Pathology. 10. Auflage. Elsevier, Philadelphia, 2018. ISBN 978-0-323-35317-5.
- **22.** Cognetti DM, Weber RS, Lai SY. Head and neck cancer: an evolving treatment paradigm. Cancer. 2008;113(7 Suppl):1911-32.
- **23.** Backes C, Bier H, Knopf A. Therapeutic implications of tumor free margins in head and neck squamous cell carcinoma. Oncotarget. 2017;8(48):84320-8.
- 24. Jones AS, Phillips DE, Helliwell TR, Roland NJ. Occult node metastases in head and neck squamous carcinoma. Eur Arch Otorhinolaryngol. 1993;250(8):446-9.
- 25. Pimenta Amaral TM, Da Silva Freire AR, Carvalho AL, Pinto CA, Kowalski LP. Predictive factors of occult metastasis and prognosis of clinical stages I and II squamous cell carcinoma of the tongue and floor of the mouth. Oral Oncol. 2004;40(8):780-6.
- **26.** Semrau R, Fietkau R, Werner JA, Mueller RP (2007) Radiochemotherapie als Behandlungsstandard fortgeschrittener Kopf-Hals-Karzinome. Onkologe 13:165–173.
- **27.** Semrau R. The Role of Radiotherapy in the Definitive and Postoperative Treatment of Advanced Head and Neck Cancer. Oncol Res Treat. 2017;40(6):347-52.
- **28.** Vermorken JB, Remenar E, van Herpen C, Gorlia T, Mesia R, Degardin M, et al. Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N Engl J Med. 2007;357(17):1695-704.
- **29.** Posner MR, Hershock DM, Blajman CR, Mickiewicz E, Winquist E, Gorbounova V, et al. Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N Engl J Med. 2007;357(17):1705-15.
- **30.** Munker R, Wollenberg B, Schalhorn A. Grundzüge der Chemotherapie bei Kopf-Hals-Tumoren. In: Wollenberg B, Zimmermann F (Hrsg.) Klinik des Rezidivtumors im Kopf-Hals-Bereich. München: Zuckschwerdt Verlag; 2003. ISBN 978-3-86371-134-4.
- **31.** Vogl SE, Schoenfeld DA, Kaplan BH, Lerner HJ, Engstrom PF, Horton J. A randomized prospective comparison of methotrexate with a combination of methotrexate, bleomycin, and cisplatin in head and neck cancer. Cancer. 1985;56(3):432-42.
- **32.** Velez-Garcia E, Sridhar KS, Knight W, Hochster H, et al. A phase III randomized study comparing cisplatin and fluorouracil as single agents and in combination for advanced squamous cell carcinoma of the head and neck. J Clin Oncol. 1992;10(2):257-63.
- **33.** Forastiere AA, Metch B, Schuller DE, Ensley JF, Hutchins LF, Triozzi P, et al. Randomized comparison of cisplatin plus fluorouracil and carboplatin plus fluorouracil versus methotrexate in advanced squamous-cell carcinoma of the head and neck: a Southwest Oncology Group study. J Clin Oncol. 1992;10(8):1245-51.
- **34.** Vega-Stromberg T. Chemotherapy-induced secondary malignancies. J Infus Nurs. 2003;26(6):353-61.

- **35.** Blagosklonny MV. Analysis of FDA approved anticancer drugs reveals the future of cancer therapy. Cell Cycle. 2004;3(8):1035-42.
- **36.** Green MR. Targeting targeted therapy. N Engl J Med. 2004;350(21):2191-3.
- **37.** Dassonville O, Formento JL, Francoual M, Ramaioli A, Santini J, Schneider M, et al. Expression of epidermal growth factor receptor and survival in upper aerodigestive tract cancer. J Clin Oncol. 1993;11(10):1873-8.
- **38.** Vermorken JB, Mesia R, Rivera F, Remenar E, Kawecki A, Rottey S, et al. Platinumbased chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359(11):1116-27.
- **39.** Bonner JA, Harari PM, Giralt J, Cohen RB, Jones CU, Sur RK, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 2010;11(1):21-8.
- **40.** Saba NF, Mody MD, Tan ES, Gill HS, Rinaldo A, Takes RP, et al. Toxicities of systemic agents in squamous cell carcinoma of the head and neck (SCCHN); A new perspective in the era of immunotherapy. Crit Rev Oncol Hematol. 2017;115:50-8.
- **41.** Price KA, Cohen EE. Current treatment options for metastatic head and neck cancer. Curr Treat Options Oncol. 2012;13(1):35-46.
- **42.** Raulf N, El-Attar R, Kulms D, Lecis D, Delia D, Walczak H, et al. Differential response of head and neck cancer cell lines to TRAIL or Smac mimetics is associated with the cellular levels and activity of caspase-8 and caspase-10. Br J Cancer. 2014;111(10):1955-64.
- **43.** Ferris RL. Immunology and Immunotherapy of Head and Neck Cancer. J Clin Oncol. 2015;33(29):3293-304.
- **44.** Moy JD, Moskovitz JM, Ferris RL. Biological mechanisms of immune escape and implications for immunotherapy in head and neck squamous cell carcinoma. Eur J Cancer. 2017;76:152-66.
- 45. Ribas A. Tumor immunotherapy directed at PD-1. N Engl J Med. 2012;366(26):2517-9.
- **46.** Schwab KS, Kristiansen G, Schild HH, Held SEA, Heine A, Brossart P. Successful Treatment of Refractory Squamous Cell Cancer of the Head and Neck with Nivolumab and Ipilimumab. Case Rep Oncol. 2018;11(1):17-20.
- **47.** Ehrlich P. Über den jetzigen Stand der Karzinomforschung. Ned Tijdschr Geneeskd. 1909;5:273–90.
- **48.** Martinez-Lostao L, Anel A, Pardo J. How Do Cytotoxic Lymphocytes Kill Cancer Cells? Clin Cancer Res. 2015;21(22):5047-56.
- **49.** Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res. 1970;13:1-27.
- **50.** Thomas L. On immunosurveillance in human cancer. Yale J Biol Med. 1982;55(3-4):329-33.
- **51.** Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science. 2011;331(6024):1565-70.

- **52.** Virchow R. Cellular pathology. As based upon physiological and pathological histology. Lecture XVI--Atheromatous affection of arteries. 1858. Nutr Rev. 1989;47(1):23-5.
- **53.** Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74.
- **54.** Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res. 2014;2014:149185.
- **55.** Aggarwal BB. Nuclear factor-kappaB: the enemy within. Cancer Cell. 2004;6(3):203-8.
- **56.** Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1(4):a000034.
- **57.** Lewis AM, Varghese S, Xu H, Alexander HR. Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J Transl Med. 2006;4:48.
- **58.** Chen Z, Malhotra PS, Thomas GR, Ondrey FG, Duffey DC, Smith CW, et al. Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer. Clin Cancer Res. 1999;5(6):1369-79.
- **59.** Jain A, Kaczanowska S, Davila E. IL-1 Receptor-Associated Kinase Signaling and Its Role in Inflammation, Cancer Progression, and Therapy Resistance. Front Immunol. 2014;5:553.
- **60.** Kumari N, Dwarakanath BS, Das A, Bhatt AN. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol. 2016;37(9):11553-72.
- **61.** Mann EA, Spiro JD, Chen LL, Kreutzer DL. Cytokine expression by head and neck squamous cell carcinomas. Am J Surg. 1992;164(6):567-73.
- **62.** Chan LP, Wang LF, Chiang FY, Lee KW, Kuo PL, Liang CH. IL-8 promotes HNSCC progression on CXCR1/2-meidated NOD1/RIP2 signaling pathway. Oncotarget. 2016;7(38):61820-31.
- **63.** Jones VS, Huang RY, Chen LP, Chen ZS, Fu L, Huang RP. Cytokines in cancer drug resistance: Cues to new therapeutic strategies. Biochim Biophys Acta. 2016;1865(2):255-65.
- **64.** Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125(Pt 23):5591-6.
- **65.** Limoge M, Safina A, Beattie A, Kapus L, Truskinovsky AM, Bakin AV. Tumor-fibroblast interactions stimulate tumor vascularization by enhancing cytokine-driven production of MMP9 by tumor cells. Oncotarget. 2017;8(22):35592-608.
- **66.** Erez N, Truitt M, Olson P, Arron ST, Hanahan D. Cancer-Associated Fibroblasts Are Activated in Incipient Neoplasia to Orchestrate Tumor-Promoting Inflammation in an NFkappaB-Dependent Manner. Cancer Cell. 2010;17(2):135-47.
- **67.** Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30(7):1073-81.
- **68.** Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986;46(5):705-16.

- **69.** Hayden MS, Ghosh S. NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 2012;26(3):203-34.
- **70.** Dondelinger Y, Darding M, Bertrand MJ, Walczak H. Poly-ubiquitination in TNFR1-mediated necroptosis. Cell Mol Life Sci. 2016;73(11-12):2165-76.
- **71.** Sun SC. The non-canonical NF-kappaB pathway in immunity and inflammation. Nat Rev Immunol. 2017;17(9):545-58.
- **72.** Brown KD, Claudio E, Siebenlist U. The roles of the classical and alternative nuclear factor-kappaB pathways: potential implications for autoimmunity and rheumatoid arthritis. Arthritis Res Ther. 2008;10(4):212.
- **73.** Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest. 2001;107(2):135-42.
- **74.** Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004;118(3):285-96.
- **75.** Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431(7007):461-6.
- **76.** Taniguchi K, Karin M. NF-kappaB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18(5):309-24.
- 77. Wu Y, Zhou BP. TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer. 2010;102(4):639-44.
- 78. Jackson-Bernitsas DG, Ichikawa H, Takada Y, Myers JN, Lin XL, Darnay BG, et al. Evidence that TNF-TNFR1-TRADD-TRAF2-RIP-TAK1-IKK pathway mediates constitutive NF-kappaB activation and proliferation in human head and neck squamous cell carcinoma. Oncogene. 2007;26(10):1385-97.
- **79.** Bonomi M, Patsias A, Posner M, Sikora A. The role of inflammation in head and neck cancer. Adv Exp Med Biol. 2014;816:107-27.
- **80.** Howard SC, Jones DP, Pui CH. The tumor lysis syndrome. N Engl J Med. 2011;364(19):1844-54.
- **81.** Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005;5(10):749-59.
- **82.** Baldwin AS. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest. 2001;107(3):241-6.
- **83.** Godwin P, Baird AM, Heavey S, Barr MP, O'Byrne KJ, Gately K. Targeting nuclear factorkappa B to overcome resistance to chemotherapy. Front Oncol. 2013;3:120.
- **84.** Chuang SE, Yeh PY, Lu YS, Lai GM, Liao CM, Gao M, et al. Basal levels and patterns of anticancer drug-induced activation of nuclear factor-kappaB (NF-kappaB), and its attenuation by tamoxifen, dexamethasone, and curcumin in carcinoma cells. Biochem Pharmacol. 2002;63(9):1709-16.
- **85.** Heyninck K, Beyaert R. Crosstalk between NF-kappaB-activating and apoptosis-inducing proteins of the TNF-receptor complex. Mol Cell Biol Res Commun. 2001;4(5):259-65.

- **86.** Au PY, Yeh WC. Physiological roles and mechanisms of signaling by TRAF2 and TRAF5. Adv Exp Med Biol. 2007;597:32-47.
- **87.** Naude PJ, den Boer JA, Luiten PG, Eisel UL. Tumor necrosis factor receptor cross-talk. FEBS J. 2011;278(6):888-98.
- **88.** Dondelinger Y, Aguileta MA, Goossens V, Dubuisson C, Grootjans S, Dejardin E, et al. RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death Differ. 2013;20(10):1381-92.
- **89.** Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015;517(7534):311-20.
- **90.** Han J, Zhong CQ, Zhang DW. Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol. 2011;12(12):1143-9.
- **91.** Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science. 2002;296(5573):1634-5.
- **92.** Bai L, Smith DC, Wang S. Small-molecule SMAC mimetics as new cancer therapeutics. Pharmacol Ther. 2014;144(1):82-95.
- **93.** Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486-541.
- **94.** Heinrich PC. Löffler/Petrides Biochemie und Pathobiochemie. 9. Auflage. Berlin: Springer-Verlag; 2014. ISBN 978-3-642-17971-6.
- **95.** Ashkenazi A, Salvesen G. Regulated cell death: signaling and mechanisms. Annu Rev Cell Dev Biol. 2014;30:337-56.
- **96.** Derakhshan A, Chen Z, Van Waes C. Therapeutic Small Molecules Target Inhibitor of Apoptosis Proteins in Cancers with Deregulation of Extrinsic and Intrinsic Cell Death Pathways. Clin Cancer Res. 2017;23(6):1379-87.
- **97.** Li C, Egloff AM, Sen M, Grandis JR, Johnson DE. Caspase-8 mutations in head and neck cancer confer resistance to death receptor-mediated apoptosis and enhance migration, invasion, and tumor growth. Mol Oncol. 2014;8(7):1220-30.
- **98.** Henry CM, Martin SJ. Caspase-8 Acts in a Non-enzymatic Role as a Scaffold for Assembly of a Pro-inflammatory "FADDosome" Complex upon TRAIL Stimulation. Mol Cell. 2017;65(4):715-29 e5.
- **99.** Safa AR. c-FLIP, a master anti-apoptotic regulator. Exp Oncol. 2012;34(3):176-84.
- **100.** Wang CY, Mayo MW, Baldwin AS, Jr. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science. 1996;274(5288):784-7.
- **101.** Erstad DJ, Cusack JC, Jr. Targeting the NF-kappaB pathway in cancer therapy. Surg Oncol Clin N Am. 2013;22(4):705-46.
- **102.** Gruver-Yates AL, Cidlowski JA. Tissue-specific actions of glucocorticoids on apoptosis: a double-edged sword. Cells. 2013;2(2):202-23.
- **103.** Belz K, Schoeneberger H, Wehner S, Weigert A, Bonig H, Klingebiel T, et al. Smac mimetic and glucocorticoids synergize to induce apoptosis in childhood ALL by promoting ripoptosome assembly. Blood. 2014;124(2):240-50.

- **104.** Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 2009;458(7239):732-6.
- **105.** Lan H, Tang Z, Jin H, Sun Y. Neddylation inhibitor MLN4924 suppresses growth and migration of human gastric cancer cells. Sci Rep. 2016;6:24218.
- **106.** Rauert-Wunderlich H, Siegmund D, Maier E, Giner T, Bargou RC, Wajant H, et al. The IKK inhibitor Bay 11-7082 induces cell death independent from inhibition of activation of NFkappaB transcription factors. PLoS One. 2013;8(3):e59292.
- **107.** Godbersen JC, Humphries LA, Danilova OV, Kebbekus PE, Brown JR, Eastman A, et al. The Nedd8-activating enzyme inhibitor MLN4924 thwarts microenvironment-driven NFkappaB activation and induces apoptosis in chronic lymphocytic leukemia B cells. Clin Cancer Res. 2014;20(6):1576-89.
- **108.** Wang Y, Luo Z, Pan Y, Wang W, Zhou X, Jeong LS, et al. Targeting protein neddylation with an NEDD8-activating enzyme inhibitor MLN4924 induced apoptosis or senescence in human lymphoma cells. Cancer Biol Ther. 2015;16(3):420-9.
- **109.** Vanderdys V, Allak A, Guessous F, Benamar M, Read PW, Jameson MJ, et al. The Neddylation Inhibitor Pevonedistat (MLN4924) Suppresses and Radiosensitizes Head and Neck Squamous Carcinoma Cells and Tumors. Mol Cancer Ther. 2018;17(2):368-80.
- **110.** Zhao L, Yue P, Lonial S, Khuri FR, Sun SY. The NEDD8-activating enzyme inhibitor, MLN4924, cooperates with TRAIL to augment apoptosis through facilitating c-FLIP degradation in head and neck cancer cells. Mol Cancer Ther. 2011;10(12):2415-25.
- **111.** Tobe M, Isobe Y, Tomizawa H, Nagasaki T, Takahashi H, Hayashi H. A novel structural class of potent inhibitors of NF-kappa B activation: structure-activity relationships and biological fects of 6-aminoquinazoline derivatives. Bioorg Med Chem. 2003;11(18):3869-78.
- **112.** Tobe M, Isobe Y, Tomizawa H, Nagasaki T, Takahashi H, Fukazawa T, et al. Discovery of quinazolines as a novel structural class of potent inhibitors of NF-kappa B activation. Bioorg Med Chem. 2003;11(3):383-91.
- **113.** Boaru SG, Borkham-Kamphorst E, Van de Leur E, Lehnen E, Liedtke C, Weiskirchen R. NLRP3 inflammasome expression is driven by NF-kappaB in cultured hepatocytes. Biochem Biophys Res Commun. 2015;458(3):700-6.
- **114.** Liu YC, Wu RH, Wang WS. Regorafenib diminishes the expression and secretion of angiogenesis and metastasis associated proteins and inhibits cell invasion via NF-kappaB inactivation in SK-Hep1 cells. Oncol Lett. 2017;14(1):461-7.
- **115.** Yen TH, Hsieh CL, Liu TT, Huang CS, Chen YC, Chuang YC, et al. Amentoflavone Induces Apoptosis and Inhibits NF-kB-modulated Anti-apoptotic Signaling in Glioblastoma Cells. In Vivo. 2018;32(2):279-85.
- **116.** Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, et al. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta. 2014;1845(2):136-54.
- **117.** Nan J, Du Y, Chen X, Bai Q, Wang Y, Zhang X, et al. TPCA-1 is a direct dual inhibitor of STAT3 and NF-kappaB and regresses mutant EGFR-associated human non-small cell lung cancers. Mol Cancer Ther. 2014;13(3):617-29.

- **118.** Podolin PL, Callahan JF, Bolognese BJ, Li YH, Carlson K, Davis TG, et al. Attenuation of murine collagen-induced arthritis by a novel, potent, selective small molecule inhibitor of IkappaB Kinase 2, TPCA-1 (2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophene-carboxamide), occurs via reduction of proinflammatory cytokines and antigen-induced T cell Proliferation. J Pharmacol Exp Ther. 2005;312(1):373-81.
- **119.** Lagler C, El-Mesery M, Kübler AC, Müller-Richter UDA, Stühmer T, Nickel J, Müller TD, Wajant H, Seher A. The anti-myeloma activity of bone morphogenetic protein 2 predominantly relies on the induction of growth arrest and is apoptosis-independent. Hsieh Y-H, ed. PLoS ONE. 2017;12(10):e0185720.
- **120.** Huang SH, O'Sullivan B. Overview of the 8th Edition TNM Classification for Head and Neck Cancer. Curr Treat Options Oncol. 2017 Jul;18(7):40.
- **121.** Heo DS, Snyderman C, Gollin SM, Pan S, Walker E, Deka R, Barnes EL, Johnson JT, Herberman RB, Whiteside TL. Biology, cytogenetics, and sensitivity to immunological effector cells of new head and neck squamous cell carcinoma lines. Cancer Res. 1989 Sep 15;49(18):5167-75.
- **122.** Schmitz S. Der Experimentator: Zellkultur. 3. Auflage. Spektrum Akademischer Verlag, Heidelberg 2011, ISBN 3-8274-2572-7.
- **123.** Roche Innovatis AG. CASY® Cell Counter + Analyser System Model TT Operator Manual. Version 2.3E
- **124.** Gillies RJ, Didier N, Denton M. Determination of cell number in monolayer cultures. Anal Biochem. 1986 Nov 15;159(1):109-13.
- **125.** Noeske K. Die Bindung von Kristallviolett an Desoxyribonukleinsäure Cytophotometrische Untersuchungen an normalen und Tumorzellkernen. Histochemie September 1966, Volume 7, Issue 3, pp 273-287.
- **126.** Feoktistova M, Geserick P, Leverkus M. Crystal Violet Assay for Determining Viability of Cultured Cells. Cold Spring Harb Protoc. 2016 Apr 1;2016(4):pdb.prot087379.
- **127.** Engvall E, Perlmann P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry. 1971 Sep;8(9):871-4.
- **128.** Van Weemen BK, Schuurs AH. Immunoassay using antigen-enzyme conjugates. FEBS Lett. 1971 Jun 24;15(3):232-236.
- **129.** Stanker LH, Hnasko RM. A Double-Sandwich ELISA for Identification of Monoclonal Antibodies Suitable for Sandwich Immunoassays. Methods Mol Biol. 2015;1318:69-78.
- **130.** Monika Jansohn, Sophie Rothhämel (Hrsg.): Gentechnische Methoden. Eine Sammlung von Arbeitsanleitungen für das molekularbiologische Labor. 5. Aufl. 2012. Spektrum Akademischer Verlag. ISBN: 978-3-8274-2429-7.
- **131.** Vogelstein B, Gillespie D. Preparative and analytical purification of DNA from agarose. Proceedings of the National Academy of Sciences of the United States of America. 1979;76(2):615-619.
- **132.** Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J. Rapid and simple method for purification of nucleic acids. Journal of Clinical Microbiology. 1990;28(3):495-503.
- **133.** Desjardins P, Conklin D. NanoDrop Microvolume Quantitation of Nucleic Acids. Journal of Visualized Experiments : JoVE. 2010;(45):2565.

- **134.** Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E. Housekeeping genes as internal standards: use and limits. J Biotechnol. 1999 Oct 8;75(2-3):291-5.
- **135.** Herzenberg LA, Sweet RG. Fluorescence-activated cell sorting. Sci Am.1976 Mar;234(3):108-17.
- **136.** Göhde W, Dittrich W. Flow-through chamber for photometers to measure and count particles in a dispersion medium. Patent DE1815353, 1975.
- **137.** Shuler ML, Aris R, Tsuchiya HM. Hydrodynamic focusing and electronic cell-sizing techniques. Appl Microbiol. 1972 Sep;24(3):384-8.
- **138.** Radbruch A. Flow Cytometry and Cell Sorting. Berlin: Springer-Verlag; 2000. ISBN 978-3-540-65630-2.
- **139**. Loken MR, Sweet RG, Herzenberg LA. Cell discrimination by multiangle light scattering. J Histochem Cytochem. 1976 Jan;24(1):284-91.
- **140.** Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM: Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207, 1992.
- **141.** Sgonc R, Gruber J. Apoptosis detection: an overview. Exp Gerontol. 1998;33(6):525-33.
- **142.** Philpott NJ, Turner AJ, Scopes J, Westby M, Marsh JC, Gordon-Smith EC, Dalgleish AG, Gibson FM. The use of 7-amino actinomycin D in identifying apoptosis: simplicity of use and broad spectrum of application compared with other techniques. Blood. 1996 Mar 15;87(6):2244-51.
- **143.** Robertson BR, Button DK, Koch AL (1998) Determination of the biomasses of small bacteria at low concentrations in a mixture of species with forward light scatter measurements by flow cytometry. Appl Environ Microbiol 64: 3900–3909.
- **144.** Longobardi Givan A. Flow Cytometry: First Principles. 2. Auflage. Hoboken: Wiley-Liss; 2001. ISBN 0-471-38224-8.
- **145**. Rasmussen R: Quantification on the LightCycler. In: Meuer, S, Wittwer, C, and Nakagawara, K, eds. Rapid Cycle Real- time PCR, Methods and Applications. Springer Press, Heidelberg (2001). ISBN 3-540- 66736-9, 21-34.
- **146.** Kück U. Praktikum der Molekulargenetik. Heidelberg: Springer-Verlag. 2005. ISBN: 3-540-21166-7.
- **147.** Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research. 2001;29(9):e45.
- **148.** Pfaffl MW. Real-time RT-PCR: Neue Ansätze zur exakten mRNA Quantifizierung. BIO-Spektrum 2004; 1/2004: 92-95.
- **149.** Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001 Dec;25(4):402-8.
- **150.** Weiß C. Basiswissen Medizinische Statistik. 6. Auflage. Springer-Verlag, Berlin 2013, ISBN 978-3-642-34260-8.
- **151.** Tallarida RJ. The interaction index: a measure of drug synergism. Pain. 2002 Jul;98(1-2):163-8.

- **152.** Ondrey FG, Dong G, Sunwoo J, Chen Z, Wolf JS, Crowl-Bancroft CV, et al. Constitutive activation of transcription factors NF-(kappa)B, AP-1, and NF-IL6 in human head and neck squamous cell carcinoma cell lines that express pro-inflammatory and pro-angiogenic cytokines. Mol Carcinog. 1999;26(2):119-29.
- **153.** Wolf JS, Chen Z, Dong G, Sunwoo JB, Bancroft CC, Capo DE, et al. IL (interleukin)-1alpha promotes nuclear factor-kappaB and AP-1-induced IL-8 expression, cell survival, and proliferation in head and neck squamous cell carcinomas. Clin Cancer Res. 2001;7(6):1812-20.
- **154.** Chan LP, Liu C, Chiang FY, Wang LF, Lee KW, Chen WT, et al. IL-8 promotes inflammatory mediators and stimulates activation of p38 MAPK/ERK-NF-kappaB pathway and reduction of JNK in HNSCC. Oncotarget. 2017;8(34):56375-88.
- **155.** Liu Q, Li A, Tian Y, Wu JD, Liu Y, Li T, et al. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. 2016;31:61-71.
- **156.** St. John MAR, Li Y, Zhou X, et al. Interleukin 6 and Interleukin 8 as Potential Biomarkers for Oral Cavity and Oropharyngeal Squamous Cell Carcinoma. Arch Otolaryngol Head Neck Surg. 2004;130(8):929–935.
- **157.** Elashoff D, Zhou H, Reiss J, Wang J, Xiao H, Henson B, et al. Prevalidation of salivary biomarkers for oral cancer detection. Cancer Epidemiol Biomarkers Prev. 2012;21(4):664-72.
- **158.** Ren Q, Kari C, Quadros MR, Burd R, McCue P, Dicker AP, et al. Malignant transformation of immortalized HaCaT keratinocytes through deregulated nuclear factor kappaB signaling. Cancer Res. 2006;66(10):5209-15.
- **159.** Jia D, Li L, Andrew S, Allan D, Li X, Lee J, et al. An autocrine inflammatory forward-feedback loop after chemotherapy withdrawal facilitates the repopulation of drug-resistant breast cancer cells. Cell Death Dis. 2017;8(7):e2932.
- **160.** Lin S, Shang Z, Li S, Gao P, Zhang Y, Hou S, et al. Neddylation inhibitor MLN4924 induces G2 cell cycle arrest, DNA damage and sensitizes esophageal squamous cell carcinoma cells to cisplatin. Oncol Lett. 2018;15(2):2583-9.
- **161.** Cohen RF, Contrino J, Spiro JD, Mann EA, Chen LL, Kreutzer DL. Interleukin-8 expression by head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 1995;121(2):202-9.
- **162.** Leong KG, Karsan A. Signaling pathways mediated by tumor necrosis factor alpha. Histol Histopathol. 2000;15(4):1303-25.
- **163.** Varfolomeev EE, Ashkenazi A. Tumor necrosis factor: an apoptosis JuNKie? Cell. 2004;116(4):491-7.
- **164.** Kreuz S, Siegmund D, Scheurich P, Wajant H. NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol. 2001;21(12):3964-73.
- **165.** Anany MA, Kreckel J, Fullsack S, Rosenthal A, Otto C, Siegmund D, et al. Soluble TNFlike weak inducer of apoptosis (TWEAK) enhances poly(I:C)-induced RIPK1-mediated necroptosis. Cell Death Dis. 2018;9(11):1084.
- **166.** Pajak B, Gajkowska B, Orzechowski A. Cycloheximide-mediated sensitization to TNFalpha-induced apoptosis in human colorectal cancer cell line COLO 205; role of FLIP and metabolic inhibitors. J Physiol Pharmacol. 2005;56 Suppl 3:101-18.

- **167.** EI-Mesery M, Seher A, Stuhmer T, Siegmund D, Wajant H. MLN4924 sensitizes monocytes and maturing dendritic cells for TNF-dependent and -independent necroptosis. Br J Pharmacol. 2015;172(5):1222-36.
- **168.** Derakhshan A, Chen Z, Van Waes C. Therapeutic Small Molecules Target Inhibitor of Apoptosis Proteins in Cancers with Deregulation of Extrinsic and Intrinsic Cell Death Pathways. Clin Cancer Res. 2017;23(6):1379-87.
- **169.** Chen YK, Huse SS, Lin LM. Expression of inhibitor of apoptosis family proteins in human oral squamous cell carcinogenesis. Head Neck. 2011;33(7):985-98.
- **170.** Brands RC, Herbst F, Hartmann S, Seher A, Linz C, Kübler AC, et al. Cytotoxic effects of SMAC-mimetic compound LCL161 in head and neck cancer cell lines. Clin Oral Investig. 2016;20(9):2325-32.
- **171.** Brands RC, Scheurer MJJ, Hartmann S, Seher A, Kübler AC, Muller-Richter UDA. Apoptosis-sensitizing activity of birinapant in head and neck squamous cell carcinoma cell lines. Oncol Lett. 2018;15(3):4010-6.
- **172.** Scheurer MJJ, Seher A, Steinacker V, Linz C, Hartmann S, Kubler AC, et al. Targeting inhibitors of apoptosis in oral squamous cell carcinoma in vitro. J Craniomaxillofac Surg. 2019;47(10):1589-99.
- **173.** Brands RC, Scheurer MJJ, Hartmann S, Seher A, Freudlsperger C, Moratin J, Hoffmann J, Kübler AC, Müller-Richter UDA. Sensitization to apoptosis in head and neck squamous cell carcinoma in vitro. J Craniomaxillofac Surg. 2020.
- **174.** Azizi M, Ghourchian H, Yazdian F, Bagherifam S, Bekhradnia S, Nyström B. Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Sci Rep. 2017 Jul 12;7(1):5178.
- 175. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860-7.
- **176.** Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357(9255):539-45.
- **177.** Mantovani A. Effects on in vitro tumor growth of murine macrophages isolated from sarcoma lines differing in immunogenicity and metastasizing capacity. Int J Cancer. 1978;22(6):741-6.
- **178.** Moore RJ, Owens DM, Stamp G, Arnott C, Burke F, East N, et al. Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat Med. 1999;5(7):828-31.
- **179.** Bertazza L, Mocellin S. The dual role of tumor necrosis factor (TNF) in cancer biology. Curr Med Chem. 2010;17(29):3337-52.
- **180.** Sandra F, Matsuki NA, Takeuchi H, Ikebe T, Kanematsu T, Ohishi M, et al. TNF inhibited the apoptosis by activation of Akt serine/threonine kinase in the human head and neck squamous cell carcinoma. Cell Signal. 2002;14(9):771-8.
- **181.** Wajant H. The role of TNF in cancer. Results Probl Cell Differ. 2009;49:1-15.
- **182.** Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol. 2000;18:621-63.

- **183.** Nakano Y, Kobayashi W, Sugai S, Kimura H, Yagihashi S. Expression of tumor necrosis factor-alpha and interleukin-6 in oral squamous cell carcinoma. Jpn J Cancer Res. 1999;90(8):858-66.
- **184.** von Biberstein SE, Spiro JD, Lindquist R, Kreutzer DL. Enhanced tumor cell expression of tumor necrosis factor receptors in head and neck squamous cell carcinoma. Am J Surg. 1995;170(5):416-22.
- **185.** Chen Z, Malhotra PS, Thomas GR, Ondrey FG, Duffey DC, Smith CW, et al. Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer. Clin Cancer Res. 1999;5(6):1369-79.
- **186.** Woods KV, El-Naggar A, Clayman GL, Grimm EA. Variable expression of cytokines in human head and neck squamous cell carcinoma cell lines and consistent expression in surgical specimens. Cancer Res. 1998;58(14):3132-41.
- **187.** Duffey DC, Crowl-Bancroft CV, Chen Z, Ondrey FG, Nejad-Sattari M, Dong G, et al. Inhibition of transcription factor nuclear factor-kappaB by a mutant inhibitor-kappaBalpha attenuates resistance of human head and neck squamous cell carcinoma to TNF-alpha caspase-mediated cell death. Br J Cancer. 2000;83(10):1367-74.
- **188.** Aderka D, Englemann H, Hornik V, Skornick Y, Levo Y, Wallach D, et al. Increased serum levels of soluble receptors for tumor necrosis factor in cancer patients. Cancer Res. 1991;51(20):5602-7.
- **189.** Su TR, Chang KL, Lee CH, Chen CH, Yang YH, Shieh TY. Expression of tumor necrosis factor-alpha and its soluble receptors in betel-quid-chewing patients at different stages of treatment for oral squamous cell carcinoma. Oral Oncol. 2004;40(8):804-10.
- **190.** Reers S, Pfannerstill AC, Rades D, Maushagen R, Andratschke M, Pries R, et al. Cytokine changes in response to radio-/chemotherapeutic treatment in head and neck cancer. Anticancer Res. 2013;33(6):2481-9.
- **191.** Pries R, Thiel A, Brocks C, Wollenberg B. Secretion of tumor-promoting and immune suppressive cytokines by cell lines of head and neck squamous cell carcinoma. In Vivo. 2006;20(1):45-8.
- **192.** Chaturvedi MM, Sung B, Yadav VR, Kannappan R, Aggarwal BB. NF-kappaB addiction and Its role in cancer: 'one size does not fit all'. Oncogene. 2011;30(14):1615-30.
- **193.** Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1.
- **194.** Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401-4.
- **195.** Karin M. The IkappaB kinase a bridge between inflammation and cancer. Cell Res. 2008;18(3):334-42.
- **196.** Li Z, Yang Z, Lapidus RG, Liu X, Cullen KJ, Dan HC. IKK phosphorylation of NF-kappaB at serine 536 contributes to acquired cisplatin resistance in head and neck squamous cell cancer. Am J Cancer Res. 2015;5(10):3098-110.
- **197.** Li Z, Liao J, Yang Z, Choi EY, Lapidus RG, Liu X, et al. Co-targeting EGFR and IKKbeta/NF-kappaB signalling pathways in head and neck squamous cell carcinoma: a

potential novel therapy for head and neck squamous cell cancer. Br J Cancer. 2019;120(3):306-16.

- **198.** Israel A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol. 2010;2(3):a000158.
- **199.** Li Z, Yang Z, Passaniti A, Lapidus RG, Liu X, Cullen KJ, et al. A positive feedback loop involving EGFR/Akt/mTORC1 and IKK/NF-kB regulates head and neck squamous cell carcinoma proliferation. Oncotarget. 2016;7(22):31892-906.
- **200.** Thurnher D, Bakroeva M, Formanek M, Knerer B, Kornfehl J. Non-steroidal anti-inflammatory drugs inhibit telomerase activity in head and neck squamous carcinoma cell lines. Head Neck. 2001;23(12):1049-55.
- **201.** Thurnher D, Bakroeva M, Schutz G, Pelzmann M, Formanek M, Knerer B, et al. Nonsteroidal anti-inflammatory drugs induce apoptosis in head and neck cancer cell lines. Acta Otolaryngol. 2001;121(8):957-62.
- 202. Pufall MA. Glucocorticoids and Cancer. Adv Exp Med Biol. 2015;872:315-33.
- **203.** Lin KT, Wang LH. New dimension of glucocorticoids in cancer treatment. Steroids. 2016;111:84-8.
- **204.** Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M. Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science. 1995;270(5234):286-90.
- **205.** Chan LP, Wang LF, Chiang FY, Lee KW, Kuo PL, Liang CH. IL-8 promotes HNSCC progression on CXCR1/2-meidated NOD1/RIP2 signaling pathway. Oncotarget. 2016;7(38):61820-31.
- **206.** Chan LP, Liu C, Chiang FY, Wang LF, Lee KW, Chen WT, et al. IL-8 promotes inflammatory mediators and stimulates activation of p38 MAPK/ERK-NF-kappaB pathway and reduction of JNK in HNSCC. Oncotarget. 2017;8(34):56375-88.
- **207.** Zhang W, Liang Y, Li L, Wang X, Yan Z, Dong C, et al. The Nedd8-activating enzyme inhibitor MLN4924 (TAK-924/Pevonedistat) induces apoptosis via c-Myc-Noxa axis in head and neck squamous cell carcinoma. Cell Prolif. 2018:e12536.
- **208.** Gross ND, Boyle JO, Du B, Kekatpure VD, Lantowski A, Thaler HT, et al. Inhibition of Jun NH2-terminal kinases suppresses the growth of experimental head and neck squamous cell carcinoma. Clin Cancer Res. 2007;13(19):5910-7.
- **209.** Wolf JS, Chen Z, Dong G, Sunwoo JB, Bancroft CC, Capo DE, et al. IL (interleukin)-1alpha promotes nuclear factor-kappaB and AP-1-induced IL-8 expression, cell survival, and proliferation in head and neck squamous cell carcinomas. Clin Cancer Res. 2001;7(6):1812-20.
- **210.** Vigont, V.A., Zimina, O.A., Glushankova, L.N. et al. Store-operated calcium entry into SK-N-SH human neuroblastoma cells modeling huntington's disease. Biochem. Moscow Suppl. Ser. A (2012) 6: 206.
- **211.** Wu J, Shih HP, Vigont V, Hrdlicka L, Diggins L, Singh C, et al. Neuronal store-operated calcium entry pathway as a novel therapeutic target for Huntington's disease treatment. Chem Biol. 2011;18(6):777-93.

- **212.** Choi S, Kim JH, Roh EJ, Ko MJ, Jung JE, Kim HJ. Nuclear factor-kappaB activated by capacitative Ca2+ entry enhances muscarinic receptor-mediated soluble amyloid precursor protein (sAPPalpha) release in SH-SY5Y cells. J Biol Chem. 2006;281(18):12722-8.
- **213.** Pozzobon T, Facchinello N, Bossi F, Capitani N, Benagiano M, Di Benedetto G, et al. Treponema pallidum (syphilis) antigen TpF1 induces angiogenesis through the activation of the IL-8 pathway. Sci Rep. 2016;6:18785.
- **214.** Shi H, Li Y, Ren X, Zhang Y, Yang Z, Qi C. A novel quinazoline-based analog induces G2/M cell cycle arrest and apoptosis in human A549 lung cancer cells via a ROS-dependent mechanism. Biochem Biophys Res Commun. 2017;486(2):314-20.
- **215.** Tsai JJ, Pan PJ, Hsu FT. Regorafenib induces extrinsic and intrinsic apoptosis through inhibition of ERK/NF-kappaB activation in hepatocellular carcinoma cells. Oncol Rep. 2017;37(2):1036-44.
- **216.** Wang J, Wang S, Zhang W, Wang X, Liu X, Liu L, et al. Targeting neddylation pathway with MLN4924 (Pevonedistat) induces NOXA-dependent apoptosis in renal cell carcinoma. Biochem Biophys Res Commun. 2017;490(4):1183-8.
- **217.** Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157-60.
- **218.** Zhang J, Spath SS, Marjani SL, Zhang W, Pan X. Characterization of cancer genomic heterogeneity by next-generation sequencing advances precision medicine in cancer treatment. Precis Clin Med. 2018;1(1):29-48.
- **219.** Roychowdhury S, Iyer MK, Robinson DR, Lonigro RJ, Wu YM, Cao X, et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med. 2011;3(111):111ra21.
- **220.** Stadler ME, Patel MR, Couch ME, Hayes DN. Molecular biology of head and neck cancer: risks and pathways. Hematol Oncol Clin North Am. 2008;22(6):1099-124, vii.
- **221.** Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011;377(9759):31-41.
- **222.** Hedberg ML, Peyser ND, Bauman JE, Gooding WE, Li H, Bhola NE, et al. Use of nonsteroidal anti-inflammatory drugs predicts improved patient survival for PIK3CA-altered head and neck cancer. J Exp Med. 2019;216(2):419-27.
- **223.** Mousseau G, Mediouni S, Valente ST. Targeting HIV transcription: the quest for a functional cure. Curr Top Microbiol Immunol. 2015;389:121-45.
- **224.** Matta A, Ralhan R. Overview of current and future biologically based targeted therapies in head and neck squamous cell carcinoma. Head Neck Oncol. 2009;1:6.
- **225.** Prescott JA, Cook SJ. Targeting IKKbeta in Cancer: Challenges and Opportunities for the Therapeutic Utilisation of IKKbeta Inhibitors. Cells. 2018;7(9).
- **226.** Takahashi H, Sakakura K, Kawabata-Iwakawa R, Rokudai S, Toyoda M, Nishiyama M, et al. Immunosuppressive activity of cancer-associated fibroblasts in head and neck squamous cell carcinoma. Cancer Immunol Immunother. 2015;64(11):1407-17.
- **227.** Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71-8.

- **228.** Curry JM, Sprandio J, Cognetti D, Luginbuhl A, Bar-ad V, Pribitkin E, et al. Tumor microenvironment in head and neck squamous cell carcinoma. Semin Oncol. 2014;41(2):217-34.
- **229.** Scherzad A, Steber M, Gehrke T, Rak K, Froelich K, Schendzielorz P, et al. Human mesenchymal stem cells enhance cancer cell proliferation via IL-6 secretion and activation of ERK1/2. Int J Oncol. 2015;47(1):391-7.
- **230.** Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883-99.
- **231.** Eytan DF, Snow GE, Carlson SG, Schiltz S, Chen Z, Van Waes C. Combination effects of SMAC mimetic birinapant with TNFalpha, TRAIL, and docetaxel in preclinical models of HNSCC. Laryngoscope. 2015;125(3):E118-24.
- **232.** Ren Q, Kari C, Quadros MR, Burd R, McCue P, Dicker AP, et al. Malignant transformation of immortalized HaCaT keratinocytes through deregulated nuclear factor kappaB signaling. Cancer Res. 2006;66(10):5209-15.
- **233.** Ren X, Xu Z, Myers JN, Wu X. Bypass NFkappaB-mediated survival pathways by TRAIL and Smac. Cancer Biol Ther. 2007;6(7):1031-5.
- **234.** Baud V, Karin M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov. 2009;8(1):33-40.
- **235.** Dahiya K, Dhankhar R. Updated overview of current biomarkers in head and neck carcinoma. World J Methodol. 2016;6(1):77-86.
- **236.** Wolenski FS, Fisher CD, Sano T, Wyllie SD, Cicia LA, Gallacher MJ, et al. The NAE inhibitor pevonedistat (MLN4924) synergizes with TNF-alpha to activate apoptosis. Cell Death Discov. 2015;1:15034.
- **237.** Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol. 2002;2(10):725-34.
- **238.** Greten FR, Arkan MC, Bollrath J, Hsu LC, Goode J, Miething C, et al. NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell. 2007;130(5):918-31.
- **239.** Lockhart AC, Bauer TM, Aggarwal C, Lee CB, Harvey RD, Cohen RB, et al. Phase Ib study of pevonedistat, a NEDD8-activating enzyme inhibitor, in combination with docet-axel, carboplatin and paclitaxel, or gemcitabine, in patients with advanced solid tumors. Invest New Drugs. 2018.

Appendix

I Abkürzungsverzeichnis

Abkürzung	Bezeichnung		
Akt	AKR thymoma		
AML	Akute myeloische Leukämie		
ALL	Akute lymphatische Leukämie		
ARDS	Acute respiratory distress syndrome		
ASS	Acetylsalicylsäure		
BAFF-R	B-cell activating factor receptor		
Bcl-2	B-cell lymphoma 2		
BG	Background		
BH	Bcl-2 homology		
Bspw.	Beispielsweise		
Caspase	Cysteinyl-aspartate specific protease		
CD40	Cluster of differentiation 40		
CDKN2A	Cyclin-dependent kinase inhibitor 2A		
cDNA	Complementary DNA		
CFLAR	CASP8 and FADD-like apoptosis regulator		
c-FLIP	Cellular FLICE (FADD-like IL-1 β -converting enzyme)-inhibitory protein		
CHX	Cycloheximid		
cIAP	Cellular inhibitor of apoptosis protein		
Cis	Carcinoma in situ		
CRL	Cullin-RING-ligase		
CTLA-4	Cytotoxic T-lymphocyte-associated protein 4		
Ct-Wert	Cycle threshold		
CXCL8	C-X-C motif chemokine ligand 8 (bzw. IL-8)		
CXCR	Chemokine receptor		
CYLD	Cylindromatosis tumor suppressor protein		
DD	Death domain		
DMEM	Dulbecco's Modified Eagle Medium		
DNA	Desoxynukleinsäure		
DISC	Death-inducing signaling complex		
DMSO	Dimethylsulfoxid		
EZM	Extrazelluläre Matrix		
EDTA	Ethylendiamintetraessigsäure		
EGFR	Epidermal growth factor receptor		
ELISA	Enzyme-linked Immunosorbent Assay		
FACS	Fluorescence-activated cell sorting		
FADD	Fas-associated death domain		
Fas	FS7-associated cell surface antigen		
FasL	Fas Ligand		
FC	Fold change		
FL2-H	Fluorescent channel 2-height		
Fn14	Fibroblast growth factor-inducible factor 14		
FSC-H	Forward scatter height		
GC	Glucocorticoid		
-------------------	---	--	--
Gy	Gray		
HaCaT	Human adult low calcium high temperature keratinocyte cells		
HNSCC	Head and neck squamous cell carcinoma		
HPV	Humanes Papillomavirus		
IAP	Inhibitor of apoptosis proteins		
IC ₁₀	Inhibitory concentration of 10 %		
IC ₁₀₀	Maximum inhibitory concentration		
lκB	Inhibitor of kappa B		
IKK	lκB kinase		
IL	Interleukin		
lgG1	Immunglobulin G1		
IRAK	Interleukin-1 receptor-associated kinase		
JNK	C-Jun N-terminal kinase		
LL	Lower left		
LR	Lower right		
LTβR	Lymphotoxin-β receptor		
LUBAC	Linear ubiquitin chain assembly complex		
MAPK	Mitogen-activated protein kinase		
MCL-1	Myeloid cell leukemia 1		
MHC	Major histocompatibility complex		
MLKL	Mixed-lineage kinase domain-like protein		
MLN4924	Inhibitor des NF-κB pathways (bzw. Pevonedistat)		
MMP	Matrix-Metalloprotease		
MSC	Mesenchymale Stammzellen		
MTX	Methotrexat		
MW	Mittelwert		
NAE	NEDD8 activating enzyme		
NEDD8	Neural precursor cell expressed, developmentally down-regulated 8		
NEMO	NF-κB essential modifier		
NF-κB	Nuclear factor kappa-light-chain-enhancer of activated B cells		
NIK	NF-κB-inducing kinase		
NOD1	Nucleotide-binding oligomerization domain-containing protein 1		
NSCLC	Non-small cell lung cancer		
OD	Optical density		
PBS	Phosphate-buffered saline		
PE	Phycoerythrin		
ρικΒα	Phospho-I κ B α		
PI3K	Phosphatidylinositol-3-kinase		
P/S	Penicillin/Streptomycin		
PTEN	Phosphatase and tensin homolog		
QNZ	N4-[2-(4-Phenoxyphenyl)Ethyl] Quinazolin-4,6-Diamin		
RANK	Receptor activator of NF-ĸB		
Ras	Rat sarcoma		
Rb	Retinoblastom		
KHD	Rel nomology domain		
RIP2	Receptor-interacting protein 2		

RIPK1	Receptor-interacting serine/threonine-protein kinase 1
ROS	Reactive oxygen species
Rpm	Revolutions per minute
RPMI	Roswell Park Memorial Institute
RT	Reverse Transkriptase
RT-qPCR	Reverse-transcription quantitative real-time polymerase chain reaction
RFU	Relative fluorescence units
SCF	Skp, Cullin, F-box containing
SD	Standardabweichung
sELISA	Sandwich-ELISA
SODD	Silencer of death domain
SMAC/Diablo	Second mitochondria-derived activator of caspases/direct IAP-binding protein with low \ensuremath{pl}
SSC-H	Side scatter height
STAT3	Signal transducer and activator of transcription 3
STABW	Standardabweichung
TAB	TAK1-binding protein
TAF	Tumor-associated fibroblasts
TAK1	Transforming growth factor beta-activated kinase 1
TAM	Tumor-associated macrophages
TE	Tris-EDTA
TF	Transkriptionsfaktor
TGF-β	Transforming growth factor-beta
TKI	Tyrosinkinaseinhibitor
TME	Tumor microenvironment (bzw. Tumormikroumgebung)
TNF-α	Tumor necrosis factor-alpha
TNF-R	Tumor necrosis factor receptor
TPCA-1	2-[(Aminocarbonyl)amino]-5-(4-Fluorophenyl)-3-Thiophencarboxamid
TPF	Docetaxel, Cisplatin, 5-Fluorouracil
TRADD	TNFR1-associated death domain protein
TRAF	TNF receptor-associated factor
TRAIL	TNF-related apoptosis-inducing ligand
TRAILR	TNF-related apoptosis-inducing ligand receptor
TRIS	Tris(hydroxymethyl)-aminomethan
TSC	Tumor stem cell
TWEAK	TNF-like weak inducer of apoptosis
Ub	Ubiquitin
UL	Upper left
UR	Upper right
VEGF	Vascular endothelial growth factor
ZfKD	Zentrum für Krebsregisterdaten
2-JÜR	2-Jahres-Überlebensrate
5-FU	5-Fluorouracil
7-AAD	7-Aminoactinomycin

II Abbildungsverzeichnis

Abb. 1: Schema des klassischen pathways.	8
Abb. 2: Schema des alternativen pathways.	10
Abb. 3: Der TNF- α – NF- κ B – Interleukin-Loop.	12
Abb. 4: Übersicht der Signaltransduktionen ausgehend von TNF-R.	14
Abb. 5: Signalwege der Apoptose.	16
Abb. 6: Positivkontrolle der TNF- α -sELISA.	29
Abb. 7: Lineare Regressionsanalyse zur Bestimmung der Zytokinkonzentration [ng/ml].	30
Abb. 8: Geräte-Setup.	36
Abb. 9: Positionierung des Quadrantenmarkers.	36
Abb. 10: Regressionsanalyse zur Bestimmung der Halbhemmkonzentrationen.	43
Abb. 11: IL-8-Sekretion.	46
Abb. 12: Modell der konstitutiven NF-κB-Aktivierung im HNSCC.	47
Abb. 13: Proliferatives Verhalten der HNSCC-Zellen unter TNF- α -Stimulation.	48
Abb. 14: TNF- α -Freisetzung.	50
Abb. 15: Biologische Aktivität der NF- AB-pathway-Inhibitoren.	51
Abb. 16: IL-8-Titer nach NF- <i>k</i> B-pathway-Inhibition im HNSCC.	54
Abb. 17: Korrelation von IL-8 und Zellzahl.	56
Abb. 18: Antiproliferative Effekte der Inhibitoren des NF-κB pathways.	58
Abb. 19: TPCA-1-vermittelte Sensitivierung des HNSCC für den TNF- α -induzierten Zelltod.	60
Abb. 20: Cortisol antagonisierte die Wirkung von FasL.	63
Abb. 21: MLN4924 sensitivierte die resistente Zelllinie SCC-25 hochsignifikant für FasL.	64
Abb. 22: QNZ induzierte in zwei Zelllinien synergistische Effekte mit FasL.	65
Abb. 23: TPCA-1 sensitivierte HaCaT höchstsignifikant für FasL.	66
Abb. 24: Heatmap zur Expressionsanalyse apoptotischer und inflammatorischer Gene.	68
Abb. 25: Kontrollversuch zur Methodenvalidierung des FACS-Apoptose-Assays.	69
Abb. 26: Methodenvalidierung zum Nachweis der Apoptose im HNSCC.	70

III Tabellenverzeichnis

Tab. 1: Geräteverzeichnis.	22
Tab. 2: Softwareverzeichnis.	22
Tab. 3: Materialliste.	23
Tab. 4: Zellkulturmedien.	23
Tab. 5: Chemikalien, Inhibitoren & Reagenzien.	24
Tab. 6: Kits.	25
Tab. 7: Lösungen & Puffer.	25
Tab. 8: Primer.	26
Tab. 9: Zellpanel.	26
Tab. 10: Instrument-Setting.	35
Tab. 11: Verzeichnis der statischen Softwares.	37
Tab. 12: Analyse der biologischen Aktivität der NF-AB-pathway-Inhibitoren.	52
Tab. 13: Zelllinienspezifische inhibitorische Konzentrationen der NF-kB-Inhibitoren.	53
Tab. 14: Analyse apoptotischer Sensitivierungseffekte durch NF-κB-Inhibitoren.	62
Tab. 15: Analyse des Annexin V PE/7-AAD-FACS-Apoptose-Assays.	72

IV Danksagung

Hiermit möchte ich mich ganz herzlich bei allen Personen bedanken, die durch ihr Zutun zum Gelingen dieser Arbeit beigetragen haben.

Mein Dank gilt Herrn Professor Dr. med. Dr. med. dent. Alexander C. Kübler, Direktor der Klinik und Poliklinik für Mund-, Kiefer- und Plastische Gesichtschirurgie der Universität Würzburg, sowie seinem Oberarzt Herrn Privatdozent Dr. med. Dr. med. dent. Roman C. Brands für die freundliche Überlassung dieses Forschungs- und Promotionsthemas sowie der Zurverfügungstellung des wissenschaftlichen Labors zur Durchführung meiner Experimente. Lieber Roman, herzlichen Dank Dir für die großartige Betreuung dieser Arbeit.

Des Weiteren möchte ich mich ganz herzlich für die intensive Betreuung während der experimentellen Phase bei Herrn Dr. rer. nat. Axel Seher, Leiter des wissenschaftlichen Labors der Klinik und Poliklinik für Mund-, Kiefer- und Plastische Gesichtschirurgie der Universität Würzburg bedanken, der mir immer mit Rat und Tat zur Seite stand.

Auch den Mitarbeiterinnen des wissenschaftlichen Labors Frau Margit Schleyer und Frau Irina Kucerov gilt mein Dank für ihre hilfsbereite und kollegiale Zusammenarbeit.

Außerdem geht ein Dankeschön an Frau Dr. rer. nat. Imme Haubitz für ihre Unterstützung und Ratschläge bei der statistischen Auswertung.

Für die Zurverfügungstellung ihres Geräteparks möchte ich mich beim Lehrstuhl für Tissue Engineering und Regenerative Medizin der Universität Würzburg bedanken. Außerdem ein großer Dank an das Labor von Herrn Professor Dr. Harald Wajant für die Überlassung der Zelltodliganden.

Zu guter Letzt gebührt der größte Dank meiner Familie und ganz besonders meiner Anja, die mir diesen Weg ermöglicht haben und immer zu mir stehen.

V Lebenslauf

Name	Dr. med. dent. Mario Joachim Johannes Scheurer			
Geburt	07. Juli 1990 in Offenburg/Baden-Württemberg			
Schule	1997-2001	Grundschule am Alten Schloss Lörzweiler		
	2001-2010	Bischöfliches Willigis-Gymnasium Mainz		
	März 2010	Allgemeine Hochschulreife		
Grundwehrdienst	April 2010	5./LazReg. 21 Rennerod &		
	bis April 2011	Bundeswehrzentralkrankenhaus Koblenz,		
		Abt. für Anästhesie und Intensivmedizin &		
		Abt. für Mund-, Kiefer- und Plastische Ge-		
		sichtschirurgie		
Studium	April 2011	Studium der Zahnheilkunde		
		Julius-Maximilians-Universität Würzburg		
	Juni 2016	Zahnärztliche Prüfung		
		Auszeichnung für das beste Examen		
		Adolf-und-Inka-Lübeck-Preis		
		Julius-Maximilians-Universität Würzburg		
	Juli 2016	Approbation als Zahnarzt		
	Oktober 2016	Studium der Humanmedizin		
		Julius-Maximilians-Universität Würzburg		
	September 2017	Erster Abschnitt der Ärztlichen Prüfung		
		Julius-Maximilians-Universität Würzburg		
	März 2020	Promotion zum Dr. med. dent.		
		Julius-Maximilians-Universität Würzburg		
	November 2021	Ärztliche Prüfung		
	November 2021	Approbation als Arzt		

VI Eigene Veröffentlichungen und Kongressteilnahme

 Scheurer MJJ, Brands RC, El-Mesery M, Hartmann S, Müller-Richter UDA, Kübler AC et al. The Selection of NFkappaB Inhibitors to Block Inflammation and Induce Sensitisation to FasL-Induced Apoptosis in HNSCC Cell Lines Is Critical for Their Use as a Prospective Cancer Therapy. Int J Mol Sci. 2019;20(6).

Beiträge zu weiteren Publikationen:

- Hartmann S, Zwick L, Scheurer MJJ, Fuchs AR, Brands RC, Seher A, Böhm H, Kübler AC, Müller-Richter UDA. MAGE-A11 expression contributes to cisplatin resistance in head and neck cancer. Clin Oral Investig. 2017 Oct 15.
- Brands RC, Scheurer MJJ, Hartmann S, Seher A, Kübler AC, Müller-Richter UDA. Apoptosis-sensitizing activity of birinapant in head and neck squamous cell carcinoma cell lines. Oncology Letters. 2018;15(3):4010-4016.
- Scheurer MJJ, Seher A, Steinacker V, Linz C, Hartmann S, Kübler AC et al. Targeting inhibitors of apoptosis in oral squamous cell carcinoma in vitro. J Craniomaxillofac Surg. 2019.
- Brands RC, Scheurer MJJ, Hartmann S, Seher A, Freudlsperger C, Moratin J, Hoffmann J, Kübler AC, Müller-Richter UDA. Sensitization to apoptosis in head and neck squamous cell carcinoma in vitro. J Craniomaxillofac Surg. 2020.

Eidesstattliche Erklärung

Hiermit erkläre ich, Dr. med. dent. Mario J. J. Scheurer, an Eides statt, die Dissertation "Inhibitoren des NF-κB pathways zur *in vitro* Blockade der Inflammation und proapoptotischen Sensitivierung des oralen Plattenepithelkarzinoms für den prospektiven Einsatz in der Tumortherapie" eigenständig, d. h. selbständig und ohne Zuhilfenahme Dritter, angefertigt und keine anderen als die von mir angegebenen Quellen und Hilfsmittel verwendet zu haben. Ich erkläre außerdem, dass die Dissertation weder in gleicher noch in ähnlicher Form bereits in einem anderen Prüfungsverfahren vorgelegen hat.

Würzburg, 2022

Anhang

Expressionsprofil NF-κB-mediierter Zielgene im HNSCC

Abb. 29: Expressionsanalyse (I). D e Ze en wurden für 24 Stunden m t den NF- κ B-pathway-Inh b toren [IC₁₀₀] nkub ert und d e re at ve Genexpress on m tte s RT-qPCR ana ys ert. D e Express on des ana ys erten Gene wurde auf das Hausha tsgen β -Act n norma s ert. D e Datenauswertung erfo gte m t der mod f z erten $\Delta\Delta$ Ct-Methode nach Pfaff (Kap. 2.2.6.3).

Abb. 30: Expressionsanalyse (II). D e Ze en wurden für 24 Stunden m t den NF- κ B-pathway-Inh b toren [IC₁₀₀] nkub ert und d e re at ve Genexpress on m tte s RT-qPCR ana ys ert. D e Express on des ana ys erten Gene wurde auf das Hausha tsgen β -Act n norma s ert. D e Datenauswertung erfo gte m t der mod f z erten $\Delta\Delta$ Ct-Methode nach Pfaff (Kap. 2.2.6.3).