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Abstract 

We derived the necessary conditions to which the vector coupling coefficients (vcc) a:::~ and 
b:::~, describing atomic L,S-multiplets of the configurations d N (1 0;;; N 0;;; 9), should satisfy. Spe­
cial attention is paid to the states of non-Roothaan type for which vcc depend on the choice of 
degenerate d-orbitals basis set determined within the accuracy up to an orthogonal transforma­
tion u. It is shown that for such states the direct sum of matrices lIa:::~11 and Ilb:::~11 must be the non­
symmetric matrix. Obtained vcc were used for the ab initio calculations (basis set (14s9p5d)/ 
[8s4p2d] from [15]) on first-row transition atoms (from Sc to eu) to compare to similar calcula­
tions [16], in which the Peterson's vcc have been used, and with calculations [15] carried out by 
the atomic SCF program [4] as well. 

1. Introduction 

The problem of calculation of transition-metal atoms and ions by the re­
stricted Hartree-Fock method was discussed in the literature for a long period of 
time. A fundamental contribution to the solution of this problem has been made 
by Slater, Racah, Condon, and others [1,2]. The essential result of their investi­
gations was the representation of the energy of a separate state (L,S-multiplet 
[1]) in terms of the Slater-Condon parameters Fk and Gk. Specifically, for most 
of the multiplets 2s+IL, arising from the configurations d N (1 ~ N ~ 9), the en­
ergy E{ = EeS+lL) can be expressed as follows [1,2]: 

(1) 

where l:k c(k)F
k is the energy of electronic repulsion within the open d-shell; E' is 

the rest of the multiplet energy that is described by the same expression for all 
the states of the configuration; Fk = Fk(d, d) are the Slater-Condon parameters; 
and C(k) are numerical constants that characterize the electronic configuration 
and the state under consideration. The main difficulty for the theory was con­
nected to the derivation of similar expressions for the multiplet energies in cases 
of more complicated configurations such as d N

pN2 [1,2]. 
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The first specialized quantum-chemical program for the ab initio calculations 
on atoms by the expansion method appeared in [3]. An analogous but more per­
fect program [4] was widely used later for the systematic calculations on atoms of 
the periodic table [5]. The computational scheme of the programs [3,4] is based 
on the Roothaan-Hartree-Fock equations for atoms [3]. The principal peculiar­
ity of the theory [3] consists in the fact that an arbitrary collection of the par­
tially occupied atomic n, / shells (all with different /) is described as one open 
electronic shell (i.e., all the partially occupied atomic orbitals are described by 
the single open-shell coupling operator FO). Specifically, the atoms with the elec­
tronic configurations d N (1 ~ N ~ 9) are described in such a way. 

Such peculiarity of the algorithm [3], taking explicitly into account the high 
symmetry of an atom, considerably simplifies the Hartree-Fock calculations of 
the transition atoms. However, this technique cannot be used within the stan­
dard "molecular" programs utilizing the restricted Hartree-Fock method (RHF) 

for the open-shell systems [6-10]. In contrast to the theory [3], in the RHF 

method, it is necessary to describe every atomic degenerate d-orbital by its own 
Fock operator (with subsequent eliminating of off-diagonal Lagrange multipliers 
by constructing the general SCF coupling operator R [7-9] or by directly solving a 
system of coupled equations containing these multipliers. [10]). 

In the course of such calculations, the main difficulty consists of the correct 
description of the spin and spatial symmetry of an atom in its definite ("non­
Roothaan" [11,12]) spectroscopic states in terms of the vector coupling coeffi­
cients. This difficulty has not yet been overcome [13,14]. Moreover, Domingo 
and Burgos [14] have voiced the supposition that the problem of calculation on 
the transition-metal atoms within the framework of the coupling operator 
method [9] cannot be solved at all. 

In this paper, we present a detailed analysis of the problem of calculations on 
the transition-metal atoms within the framework of the RHF method [7-10]. We 
derive the necessary conditions that the vector coupling coefficients (vcc) a~~ 
and b~~, which describe in the RHF method the electronic configuration and the 
state, should satisfy. The obtained vcc were used for the ab initio calculations 
(basis set (14s9p5d)j[8s4p2d] from [15]) on the first-row transition atoms (from 
Sc to eu) to compare with similar calculations [16], in which the Peterson's vcc 
have been used, and with calculations [15] carried out by the atomic SCF program 
[4] as well. 

2. Equations Determining vcc for the Configurations d N of Atoms 

In the RHF method, the energy functional for the state of a system with the 
electronic configuration yN (y is a symmetry of degenerate open-shell MOS) can 
be represented as follows [6,9,11]: 

Estate = E' + f2 "i "i (2a~~Jmn - b~~Kmn), (2) 
m n 

where 

E' = 2 "i Ha + "i "i (2Jkl - Kkl ) + 2f{l: Hmm + "i "i (2hm - Kkm)}. (3) 
k k I m k m 
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Here f = N/2n r is the open-shell occupation number; m and n are the indices 
for the open-shell orbitals, and k and I, for the closed-shell orbitals; and af:~ and 
bf:~ are numerical constants characterizing the state and configuration under 
consideration, being also called the vector coupling coefficients (vcc). For all the 
atomic states arising from the configurations pN (1 ~ N ~ 5), these coefficients 
do not depend on indices m and n, i.e., amn = a, b mn = b [6]. In the molecules of 
cubic or tetragonal symmetry with electronic configuration t N (2 ~ N ~ 4) or e2

, 

the coefficients af:~ and bf:~ also depend on the choice of the basis of the open­
shell degenerate MOs [11,12], which are determined within the accuracy up to a 
unitary transformation u. 

Thus, to calculate a transition-metal atom by the RHF method using the exist­
ing open-shell SCF programs (such as MONSTERGAUSS, POLYATOM, etc.), it is 
necessary to determine the coefficients af:~ and bf:~ (or only a and b for the 
Roothaan-type states [6]). These coefficients were first proposed by Guest and 
Saunders in [17]; however, the analysis in [13] showed those coefficients not to 
be quite correct. The coefficients from [17] correspond not to the L,S-multiplet 
(Le., electronic term), but to the S-multiplet, i.e., to the set of states arising from 
the referent electronic configuration and corresponding to the same value of spin 
number S (see Discussion below). 

The general approach to the calculation of the coefficients a f:~ and b f:~ is 
known to be as follows [6,9]: (i) Many-electron wave functions "I'fA!L correspond­
ing to the given values of quantum numbers L, ML , s, and Ms are constructed. 
(ii) Average values of the energy ('I'::'LIHI"I'fA!L) are calculated in terms of inte­
grals H mm , Jmn , and Kmn. (iii) The average energy of the state 

L 1 1 ~ ~ ( LM I "I LM) 
Es = 2+12L + 1 £J £J 'l'SM,L H 'l'sMsL 

S Ms ML 
(4) 

is found. The latter is presented in the form of Eq. (2) from which the coeffi­
cients amn and b mn are determined (here, indices m and n are the numbers of the 
degenerate d-orbitals). Since the real Aa basis set is usually used in routine RHF 

programs, we shall suppose, therefore, that the d-orbitals are given in the follow­
ing form*: 

8' = dxy • (5) 

The scheme, described above for determining the coefficients amn and b mn 

[6,9], does not lead directly to the energy functional in the form of Eq. (2) in the 
case of configuration d N

, and that is an essential peculiarity that makes differ­
ences in states with open d-shell from those arising, e.g., from the configuration 
pN. In the expression for Ef, besides the terms from Eq. (2), there arises an addi­
tional term that consists of the combination of four-indexed integrals (mm' Inn'). 
For instance, one can obtain the expression for the energy of the state 3F arising 

"In the iterative SCF process, the degenerate atomic d-orbitals are determined in a random 
manner that is within the accuracy up to an orthogonal transformation. Therefore, below, we 
should propose that the d-orbitals to be transformed at each iteration into basis set (5) by the cor· 
responding transformation denoted by the symbol uo. 
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from the configuration d 2 in the form of 

ECF,d Z
) == the right side of Eq. (2) + L L L L amm'nn,(mm' Inn'), (6) 

m rn' n 11' 

the latter term in Eq. (6) not being identically equal to zero. 
Similar complications have occurred in [18] when calculating coefficients amn 

and bmn for diatomic molecules in their excited states and in [19] in the calcula­
tions of the molecules of symmetry D4h with the electronic configuration eie~ as 
well. In the atomic case under consideration, one can eliminate the denoted 
complication as follows: 

It is well known [20] that any four-indexed integral with atomic d-orbitals can 
be expressed in terms of the Slater-Condon parameters: 

(Ul)I7T'7T') == -(ul)' 17T7T') == -(Ul) I 7T7T) == 2v3B, 

(7Tl)I7T'O') == -(7TO' 17T'8) == 3B, 

(u7TI7T'O') == -(u7T'I7T'O) == (u7T'I7TO') == (u7TI7TS) == v3B, (7) 

where B = (9F 2 
- 5F4)/441 is the Racah parameter [1] and all the other four­

indexed integrals of this type are equal to zero. 
Using the identities (7) and the analogous relationships that couple two­

indexed integrals (Jmn = (mm Inn), Kmn = (mn I mn» and the Slater-Condon pa­
rameters [20]: 

Jmm = FO + (36F 2 + 36F4)/441, (m == o;7T,7T',S,S'), 

J a.". == J a.".' == FO + (18F 2 
- 24F4)/441, 

J,,6 == J a6' == F U + (-36F 2 + 6F4)/441, 

J.".."., == J.".6 == J.".6' == Jrr '6 == J",6' == FO + (-18F Z - 4F4)/441, 

J66, == FO + (36F 2 
- 34F4)/441; 

Ka.". == Ka.".' == (9F Z + 30F4)/441, 

Kal> == Ka6, = (36F 2 + 15F4)/441, 

K.".."., = K""6 == K.".6' == K.".'6 == K.".'6' = (27F2 + 20F4)/441, 

K 66, == 35F4/441, (8) 

one can replace all the four-indexed integrals in Eq. (6) by the identical combina­
tions of integrals (8) and, thus, express the 3F state energy (6) in the form of 
Eq. (2). 

Evidently, such a procedure [of representation E~ in the form Eq. (2)] can be 
carried out for any state arising from the configuration d N

• Moreover, there is no 
need to use explicit expressions for four-indexed integrals (7) for this purpose. 
As a matter of fact, it is sufficient to level the right sides of Eqs. (1) and (2): 

c(O)F(O) + c(Z)F2 + c(4)F4 = /2 L L (2a~~~Jmn - b~~},Kmn) (9) 
m n 
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and to determine the unknown coefficients a}::~ and b}::~ in terms of the known 
values of e(O), e(2), and e(4). 

From the substitution of values of integrals J mn and Kmn from Eqs. (8) into 
Eq. (9) and leveling separately the coefficients multiplied by FO, F2, and F4 both 
on the left and on the right sides of Eq. (9), we obtain three equations for deter­
mining 50 (5 x 5 x 2) unknown quantities: 

so 
2: A;jxj = e(2(i-I»/j2, 
j=l 

i = 1,2,3; (10) 

where Xj are unknowns a}::~ and b}::~ (Xl = auen Xz = au",.,' •• ,xs = a u 6', X6 = 

a",.en"" X2S = a6'a', X26 == buu,"" xso == ba'a'); and Aij are corresponding coeffi­
cients attached to the unknown quantities and defined in Eqs. (8). 

It is evident that Eqs. (10) can be satisfied with the different sets of coeffi­
cients a}::~ and b}::~. However, not all these sets are equivalent from the physical 
point of view. Dealing with the problem of the calculation of vcc for the states 
arising from the configuration d N

, we meet with an additional complication that 
did not occur in the similar calculations of vcc for other types of the open shells 
[9,12-14]. The gist of this problem can be explained as follows: 

3. Degeneracy of d-Orbitals 

In accordance with the terminology from [11-13], all the states arising from 
the degenerate open electronic shell "IN are divided into the "Roothaan's" and 
"non-Roothaan's" states. The former ones are described only by two vcc, i.e., 
amn = a and b mn == b [6]. The values of these coefficients for the Roothaan states 
arising from the configuration d N can be derived from Eq. (9): 

-630j2b/441 = e(Z) = e(4) 

jZ(50a - 5b) = cID) = N(N - 1)/2 

(l1a) 

(11b) 

(additional equation is e(O) = N(N - 1)/2, which is correct for all the states of 
the configuration d N following from the condition of normalization for the two­
particle density [13]). Thus, all the Roothaan states arising from the configura­
tion d N are characterized by the equalitye(2) = e(4). 

The non-Roothaan states arising from the configuration "IN of the tetragonal 
and cubic symmetry systems investigated before [11-13] are described by the 
symmetric matrices a}::~ and b}::~ with the elements depending on the choice of 
the basis of degenerate orbitals of symmetry "I. Particularly, these matrices can 
be presented in a more simple form [12,21]: 

b (uo) - b 
mn - , (12) 

if the definite choice of basis set corresponding to the "standard" assignment of 
irreducible representation "I = "10 is used [22]. 

The non-Roothaan states occur also in the transition atoms with the elec­
tronic configuration d N• All the states, the energy of which is described by the 
Eq. (1) with e(2) ;i: e(4), are the non-Roothaan ones. In accordance with Eqs. (9) 
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and (11), such states cannot be described only by two coupling coefficients a and 
b; for these states, it is necessary to use the matrices amn and bmn . As these ma­
trices are given in the basis set of the degenerate orbitals, so their elements must 
depend on the choice of the basis set of d-orbitals [12,13] (or, in other words, on 
the choice of orthogonal transformation matrix u, to an accuracy with which the 
d-orbitals are defined). 

It is easy to understand that for the considered non-Roothaan states arising 
from the configuration d N the unknown vcc a~'~) and bf:::> cannot be derived in 
the form of Eq. (12). [In this case, the designations a;::~) and b;::~) mean that cou­
pling coefficients correspond to the basis set of d-orbitals in the form of Eq. (5); 
see also the footnote to Eq. (5)). From the substitution of the Eqs. (8) and (12) 
into Eq. (9), we obtain 

C(2) == C(4) == f2{360(a' - a") - 630 x b}/441 , 

i.e., in case of atoms with the configuration d N
, the coupling coefficients given 

in the form of Eq. (12) correspond to the state of the Roothaan type. 
In the course of calculation of the vcc for different systems with the degener­

ate open-shell 'YN in [9,12-14], the problem related to one-electron energy levels 
of the open-shell {em} = {et. e2, ... ,en), where ny is the dimension of irreducible 
representation 1', was not analyzed. It was tacitly assumed that in case of the 
configuration 'YN the vcc calculated by the scheme [6,9] lead automatically to. 
the degeneration of one-electron energies {em}. Nevertheless, this problem needs 
special discussion. 

One-electron energies {em} in the framework of the open-shell Hartree-Fock 
method [6-9] are the eigenvalues of the general coupling operator R: 

(13) 

Using the general expression for R derived by Hirao (see Eq. (3.8) in [8]), 
we obtain 

= fm{Hmm + L (2hm - Kkm ) + Lfn(2a;::~Jmn - b;::~Kmn)}, (14) 
k n 

where Fm is the Fock operator for orbital c/>m. 
In the definition, in case of the orbitals being transformed by the degenerate 

irreducible representation 1', it should be 

e1 = e2 = ... == en,. (15) 

Because the occupation numbers fm as well as the core integrals Hmm and the 
sums ~k(2hm - Kkm ) have the same values for all the degenerate orbitals {c/>m} [6], 

(16) 
n n 

where m > m and n := 1,2, ... , ny (for d-orbitals n = U, 77",77"', {), {)'). 
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Our analysis showed that the vcc a J::~) and b J::~) calculated in [12, 13] for the 
states of the molecular systems with the configurations tN and eN do satisfy (iden­
tically) Eqs. (15) and (16). On the other hand, the coupling coefficients for the 
non-Roothaan states of the configuration d N calculated by Eq. (9) do not satisfy 
relationships (16) automatically. As a matter of fact, the last ones should be con­
sidered to be the additional equations [together with Eqs. (9) and (10)] for the de­
termination of the coefficients aJ::~) CZS+iL, d N ) and bJ::~) (2s+iL, d N

). 

From the substitution of values of integrals from Eq. (8) into Eq. (16) and car­
rying out the transformations similar to above [see Eqs. (9) and (10) and respec­
tive text], we obtain the 12 = 3 x (nd - 1) linear uniform equations: 

50 

2: AijXj = 0, 
j~l 

i = 4, 5, ... ,15 . (17) 

Thus, keeping in mind Eqs. (10), one has 15 equations for determination of 
50 unknown quantities. The computer analysis of these equations t provided us 
with the following conclusion. In case of the non-Roothaan states [Le., with 
C(2) "# C(4)], Eqs. (10) and (17) are consistent if and only if the matrix IlaJ:::)11 and/or 
matrix IlbJ::~)1I is nonsymmetric.* 

In other words, if one introduces the matrix IIZJ::~)II, which is the direct sum of 
matrices IlaJ::~)11 and IlbJ::~)II, 

(18) 

the necessary condition of consistency of Eqs. (10) and (17), from one side, and 
the inequality C(2) "# C(4), from the other side, can be presented as follows: 

(19) 

where the superscript T denotes the transposition. 
Thus, the non-Roothaan states arising from the configuration d N (2 ::::: N ::::: 8) 

are described in the RHF method by the nonsymmetric matrix IIZJ::~II. To a cer­
tain extent, this result is unusual. For all the open electronic shells investigated 
before (see [9,11-14,18]), it was always possible to present the corresponding ma­
trix in the symmetric form. In this connection, it should be pointed out that the 
nonsymmetricity of the vcc matrix IIZJ::;II does not lead to the nonsymmetricity 
(non-Hermiticity) of the Fock matrices [see Eq. (14)]. 

tBecause of the rationality of the coefficients Aij from Eqs. (10) and (17), the last ones can be 
solved in integers, aJlowing elimination of the truncation errors at computer calculations. 

*If both matrices lIa~.(1I and Ilb~:)11 are symmetric and their elements satisfy Eqs. (17), it may be 
shown that 

50 50 

~ Az.jxj = ~ A3• j xj 
j-I j=1 

with consequence c(Z) = C(4) [see Eq. (10)]. The latter implies that only the Roothaan-type states 
can be described by the symmetric matrices Ila~~)1I and IIb~;)II. 
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The general solution of Eqs. (10) and (17) contains 50 - 15 = 35 arbitrary 
parameters. To obtain the coefficients a}::~) and b}::~) in a more convenient form, 
we introduced the additional relationships that do not contradict Egs. (9), (16), 
and (19): 

b}::~) = /3, a}::~ = a'. (20) 

These relationships reduce the number of the unknowns a}::~) and b}::~) to 22 and 
simultaneously reduce the number of linearly independent Eqs. (17) to 8. More­
over, the coefficients a}::~) were constrained by the conditions 

Q lTTr = a U1T', a uo = auli', am,.' = a"./i = a"./i' 

(21) 

which follow in a natural way from Eqs. (9) and (16). [Unknown quantities a u". 

and a u".', a uo and au/i', ... , enter Eqs. (9) and (16) with equal coefficients; there­
fore, additional relationships (21) do not change the number of linearly indepen­
dent equations but reduce the number of the unknowns to 14]. 

Taking into account Egs. (20) and (21), finally we have 11 Eqs. (10) and (17) to 
determine 14 unknowns. The solution of these equations gives the following ex­
pressions for the coefficients a}::~) es+IL, d N

): 

a' = (2c(O) + 35c(2) + 63c(4»/100F + 3/3/2, 

a/i'u = (-4c(O) - 140c(2) + 189c(4))j100F + /3/2 + 3wo, 

a/i'.". = 3(4c(O) + 35c(2) - 84c(4»/200[2 - 3f3/4 - 2wo; (22) 

a rTrr = (a/i'", + 2wo)/3, 

au/i = a."..".' = a.".,.". = (3a/i'0' + 4a/i'"" - wo)/6, 

a/iu = a/i'u + 3w - 3wo, 

a..". = an'.". - 2w + 2wo, 

a1l"U = a.".'u = -(a/i'u - 3wo)/2, 

a/JO' = w, 

where /3, w, and Wo are arbitrary numbers. 

(23) 

Thus, in case of atoms with the open d-shell, the matrices of coupling coeffi­
cients a}::~) and b}::~l, characterizing within the framework of the coupling opera­
tor method the state and configuration, have only three independent values 
[a mm = a', a/i'u, and a/i'.".; see Eqs. (22)] that correspond to the number of inde­
pendent coefficients (c(O), c(2), and C(4» in Eq. (l).§ 

fin the atomic theory [3] for transition elements instead of coefficients c(ll), c(2), and C(4), the 
coupling coefficients K22tl, Km, and K224 are used [23]. Since the latter are linearly connected 
with the coefficients c(i), one can express the vcc a::~~ (22) in terms of Kw coefficients as well. 
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The obtained relationships [Eqs. (20)-(23)] allow us to present vcc a!::~) in dif­
ferent ways, changing values of arbitrary parameters (3, w, and wo. In particular, 
in case of the Roothaan states [i.e., with C(2) = C(4)], the coupling coefficients 
(20)-(23) can be expressed in the form of Eq. (12) if we put a" = Wo = W = awu. 
Furthermore, if we put the arbitrary parameter {3 to be equal (3 = -7c(2)/ 
lOP = b, we can obtain vcc in the standard Roothaan form a!::~) = a, b!::~) = b 
[6] satisfying Eq. (11). 

It should be pointed out that coefficients a !::~) given in the general form 
[Eq. (20)-(23)] correspond to the definite choice of the degenerate d-orbitals ba­
sis set [Eq. (5)]. When one uses any other basis set, the coefficients a!::~ and b!::~ 
must be changed correspondingly. The independence of vcc on the choice of the 
basis set for the Roothaan states arises only because of the above constraints on 
free parameters {3, w, and wo. 

Table I presents as an example the general form of the matrix Ila !::~)II contain­
ing arbitrary parameters (3, w, and Wo for the state 4p of the configuration d 3. 

Table 11 contains the coefficients a~'~) = a and b!::~) = b for all the Roothaan­
type states arising from the configurations d N (1 ~ N ~ 9). 

In Table III we present the nonsymmetric matrices a !::~) for the several non­
Roothaan states (lowest in energy in the respective electronic configurations d N

), 

which were obtained from Eqs. (20)-(23) with {3 = w = Wo = O. A general form 
of these matrices with non zero arbitrary parameters {3, w, and Wo can be easily 
obtained, as is shown in Table I. 

It is necessary to point out that in our calculations discussed below we used 
different sets of arbitrary parameters (3, w, and Wo for checking the presented 
theory. The calculated values of the energy and other physical characteristics in­
deed do not depend on the values of these parameters. This result is not a trivial 

TABLE I. A general form of the matrix a:::~) for the state 4p of the configuration d 3 satisfying 
Eqs. (9), (16), and (19)-(23). ({3, w, and Wo are the arbitrary numbers; b:::~) = f3). 

u 

TT 

TT 

[)' 

u 

-5 3f3 -+-
3 2 

75 _.!!.. 
18 4 

75 _ l!.. 
18 4 

-150 + l!.. + 3w 
18 2 

-150 f3 
-- +-+ 3Wo 

18 2 

TT 

40 _ l!.. 
18 4 

-5 3f3 -+-
3 2 

2._l!.. 
18 4 

120 _ 3f3 _ 2w 
18 4 

120 3f3 
--- - 2wo 
18 4 

TT 

40 _ l!.. 
18 4 

2._l!.. 
18 4 

-5 3{3 
-+-
3 2 

120 _ 3f3 _ 2w 
18 4 

120 3f3 
- - - - 2wo 
18 4 

~_l!.. 
18 4 

2._l!.. 
18 4 
5 (3 
]8 4 

-5 3{3 
-+-
3 2 

Wo 

[)' 

5 f3 
18 4 

5 f3 
18 4 
5 {3 

18 4 

-5 3f3 
-+-
3 2 

Note: Coefficients a:::~) for any other state arising from the configuration d N (N = 1-9) differ 
from those presented in Table I only by the first term, which does not contain the arbitrary 
parameters f3, w, and Wo (see Tables 11 and Ill). 
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TABLE H. The vector coupling coefficients a:;:;( = a and b:;::) == b for the 
Roothaan atomic states arising from the configurations d N

• 

Configuration, 
state a" b' e(2) == e(·I.b [1] 

d l ,2D 0 0 0 
d 2, IS 0 -5 126/441 
d 4,5D 15/16 15/8 -189/441 
d 5,6S 1 2 -315/441 
d 6,5D 35/36 25/18 -315/441 
d 8, IS 15/16 10/16 -252/441 
d 9,2D 80/81 80/81 -504/441 

"These values of a and b correspond to the following values of arbitrary 
parameters: f3 = -7e(2) /10/ 2 == band w = Wo == a [see Eqs. (20)-(23) and re­
spective text, and Eqs. (11) as well]. 

bValues of e(2) and e(4) presented in Tables H and III differ from those pre­
sented in Slater's monograph (e~!te" dt!te,) [1], as the latter correspond to the 
foHowing expression of the state energy 

where Ea, is the average energy of the configuration d N
: 

Ea, = E' + N(N - 1) X {.!.FO - ~(F2 + F4)} 
2 441 

and E' is defined in Eqs. (1)-(3). Thus, c(O) = N(N - 1)/2, and e(2) '= df!ter -
7N(N - 1)/441, and C(4

1 = dt!ter - 7N(N - 1)/441. 

TABLE Ill. The vector coupling coefficients a:;::) for the lowest non-Roothaan 
states, arising from the configurations dN (b:;::) == f3). 

IT 'Tr 'Tr 
, 

8 (j' 

State Jp (d z
); [e(2) = -72/441, C(4) == -9/441] 

IT -5/4 0 0 15/8 15/8 
'Tr -15/8 -5/4 15/8 15/8 15/8 

'Tr' -15/8 15/8 -5/4 15/8 15/8 
{j 30/8 0 0 -5/4 0 
(j' 30/8 0 0 0 -5/4 

State 4p (d J
); [e(2) = -135/441, e(4) = -72/441] 

IT -5/3 5/6 5/6 10/6 10/6 
'Tr 0 -5/3 10/6 10/6 10/6 

'/T' 0 10/6 -5/3 10/6 10/6 
(j 0 15/6 15/6 -5/3 0 
6' 0 15/6 15/6 0 -5/3 

State·P (dJ
); [em = 0, e(4) = -147/441] 

IT -5/3 40/18 40/18 5/18 5/18 
'Tr 75/18 -5/3 5/18 5/18 5/18 
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TABLE Ill. (Continued) 

u 7r 7r' /) /)' 

7r' 75/18 5/18 -5/3 5/18 5/18 
/) -150/18 120/18 120/18 -5/3 0 
/)' -150/18 120/18 120/18 0 -5/3 

State zG (dJ); [C(2) == -99/441, C(4) == 13/441] 

u 0 5/54 5/54 85/54 85/54 
7r -75/54 0 85/54 85/54 85/54 

7r' -75/54 85/54 0 85/54 85/54 
/) 150/54 15/54 15/54 0 0 

/)' 150/54 15/54 15/54 0 0 

States zH, zp (dJ); [C(21 == -54/441, C(4) == -12/441] 

u 0 5/9 5/9 10/9 10/9 
7r 0 0 10/9 10/9 10/9 

7r 0 10/9 0 10/9 10/9 
/) 0 15/9 15/9 0 0 
/)' 0 15/9 15/9 0 0 

State zF (dJ); [C(2) == 81/441, C(4) == -87/441] 

u 0 35/18 35/18 -5/18 -5/18 
7r 75/18 0 -5/18 -5/18 -5/18 

7r' 75/18 -5/18 0 -5/18 -5/18 
/) -150/18 105/18 105/18 0 0 
S' -150/18 105/18 105/18 0 0 

State 4F (d 7
); [c(1) == -387/441, C(4) == -324/441] 

u -5/7 115/98 115/98 130/98 130/98 
7r 100/98 -5/7 130/98 130/98 130/98 
7r' 100/98 130/98 -5/7 130/98 130/98 
S -200/98 345/98 345/98 -5/7 0 
S' -200/98 345/98 345/98 0 -5/7 

State JF (d'); [C(2) == -450/441, C(4) == -387/441] 

u -35/64 150/128 150/128 165/128 165/128 
7r 135/128 -35/64 165/128 165/128 165/128 
7r' 135/128 165/128 -35/64 165/128 165/128 
S -270/128 450/128 450/128 -35/64 0 
S' -270/128 450/128 450/128 0 -35/64 

Arbitrary values {3, w, and Wo are put to be equal to zero for all the states (see 
Table I for comparison). 

one. The latter means that two proposed equations [Eqs. (9) and (16)] are neces­
sary and enough for calculating the vcc for the configurations d N

• But in accor­
dance with [24], it is not a general case. In analogous calculations of the vcc for 
other atomic configurations, one needs additional equations having no analogy 
with Eqs. (9) and (16). 
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Using the vcc from Tables 11 and Ill, we carried out calculations on the first­
row transition atoms (from Sc to Cu) with the Gaussian basis set (14s9p5d)j 
[8s4p2d] from [15] in order to compare them with similar calculations [16] in 
which the Peterson's vcc were used and with calculations [15] carried out by the 
atomic SCF program [4] as well. We used the MONSTERGAUSS-81 program [25] 
that utilizes the RHF method for the open-shell systems [10]. 

The necessary modifications of the RH ... procedure were made to provide an 
adequate description of the non-Roothaan states. These included (i) the possibil­
ity of dealing with the nonsymmetric matrices Ila~~)11 and Ilb~~)1I being realized 
and (ii) the d-orbitals basis set transformation procedure into the form of Eq. (5) 
being added to. 

The results of our calculations (total atomic energies) are compared with simi­
lar data from [15, 16] in Table IV. To add to this, we carried out calculations on 
several excited states of the vanadium atom (configuration ... d 3

) that were not 
considered in [15,16] to provide possible independent comparison between the 
two methods of calculation on the transition-metal atoms. The respective results 
are given in Table IV as well. 

4. Discussion 

Comparison of our results with the data from [15], obtained by the atomic pro­
gram, points to their coincidence, as it should (see Table IV; the differences in 

TABLE IV, Total energy (a.u.) (basis set (14s9p5d)/[8s4p2d] from [15]). 

RHF calculation using the 
Atom; "molecular" program MONSTERGAUSS Calculation [15] 
state; using the atomic 

configuration Present work a [16]b program [4] 

Sc; 2D; (d l
) -759.705047 -759.705047 -759.7050 

Ti; 3F; (d 2) -848.367900 ( -848.349942) -848.3685 
V; 4F; (d") -942.837196 ( -942.817440) -942.8372 

E .• = 3/2 - 942.817440< 
4p; -942.771401 
2G; -942.770986 
2H,2p -942.749087 
2F; -942.6835()O 

Cr; 5D; (d 4) -1043.249620 -1043.249620 -1043.2497 
Mn; 6S; (d 5

) -1149.787155 -1149.787155 -1149.7872 
Fe; sD; (d6) -1262.350361 -1262.350361 -1262.3504 
Co; 4F; (d 1

) -1381.289383 ( -1381.263774) -1381.2895 
Ni; 3F; (d H

) -1506.720591 ( -1506.693632) -1506.7206 
Cu; 2D; (d 9

) -1638.786455 -1638.786455 -1638.7867 
2S; (d 111s l

) -1638.801243 -1638.801243 -1638.8015 

Contraction of the basis set [15]: CONTRACTION 3 for Sc to Fe and CONTRACTION 1 for 
Co to Cu. 

·Calculations carried out with the vcc from Tables 11 and Ill. 
bCalculations carried out with the vcc obtained by Peterson (see [16, pp. 67-69]). 
<The average multiplet energy [see Eq. (25) and the corresponding text]. 
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total energy at about 0.0001-0.0006 a.u. for Ti, Cr, Co, and Cu atoms can be pre­
sumably ascribed to using the different convergence criteria). On the other hand, 
our data (and the data from [15] as well) are only partially consistent with the 
results of calculation from [16]. Although in cases of Sc, Cr, Mn, Fe, and Cu 
atoms, there is the coincidence of the results; for Ti, V, Co, and Ni atoms, the 
essential discrepancies are observed (see Table IV). 

The analysis of the reasons for these discrepancies reveals that they take place 
only for those atoms, the lowest state of which is of the non-Roothaan type [i.e., 
with C(2) ~ C(4); see Table III]. The corresponding states 3F (Ti, Ni) and 4F (V, Co) 
were calculated in [16] using the coupling coefficients Amn = 2f2amn and Bmn = 
f 2bmn , obtained by Peterson in the symmetric matrix form (see [16, pp. 67-69]): 

Amn = DmnA' + (1 - Dmn)A" 

(24a) 

As shown in this work (see Section 3), the non-Roothaan states arising from 
the configurations dN cannot be described by the symmetric matrices Ilamnll and 
Ilbmnll (or IIAmnl1 and IIBmnID. Our numerical check showed that the vcc from [16] 
describing the 3F (d 2

, d 8
) and 4F (d 3

, d 7
) states do not satisfy Eqs. (9) and (10) and 

therefore cannot be considered as characteristic values of the spectroscopic 
states under consideration. 

Taking into account the results from Section 3, one can conclude that the co­
efficients [Eq. (24a)] correspond in reality to the energy functional of the 
Roothaan type [6] and, hence, can be presented in the form 

Amn = A", (24b) 

[as (A' - B') = (A" - B"); see [16, pp. 67-69]). Comparison of the coefficients 
[Eq. (24b)] with those obtained in [17] shows their identity. On the other hand, 
the vector coupling coefficients derived by Guest and Saunders [17] are shown in 
[13] to correspond not to the separate spectroscopic state energy Ef = EeS+1L) 
but to the average mUltiplet energy E, [13,21]: 

E, == L(2L + 1) x Ef/L(2L + 1). (25) 
L L 

(The coupling coefficients from [17] are reproduced by the general formulas 
determining the values of aCes) and bee,,); see [13, Eqs. (13)]). Therefore, the 
Peterson's coefficients (24a) also correspond to the average multiplet energy Es 
(with S == Smax for the given electronic configuration). To check this conclusion, 
we calculated the average multiplet energy Es~3/2 for the vanadium atom (con­
figuration d 3

, s = 3/2) using the vcc from [17]. The comparison of the energy 
Es~3/2 with the energy of the vanadium atom from [16] points to their equality 
(see the values underlined in Table IV). Consequently, the energies of Ti, V, Co, 
and Ni atoms obtained in [16] do correspond to the average multiplet energy E, 
[Eq. (25)] and therefore cannot be considered as the energies of the lowest spec­
troscopic states. 

To conclude, it should be noted that Eqs. (9) and (16) obtained in the present 
paper for evaluation of the vector coupling coefficients for the configurations d N 
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are not valid for all the possible states. The proposed theory does not describe 
the mUltiple (double) states such as 2D I , 2D2 of the configuration d 3 [1,2], the en­
ergy of which cannot be expressed in the form of Eq. (1). 

The theory discussed above can also be extended to the several electronic 
states arising from the configurations dNs l and d N1pN2. Such generalizations with 
some actual applications will be presented elsewhere [24]. 

5. Some Additional Remarks 

After this paper was completed, the authors became acquainted with a recent 
paper [26], several results from which are in sharp contradiction with the above 
results. 

Particularly, in [26], such states as 2DI (d 3
), ISI (d 4

), 2DI (d 5
) and other multiple 

(double) states are considered as the Roothaan-type ones and the vcc a and b 
for them are presented (see Table III in [26]).11 

It is well known [1,2] that the energy of the multiple states cannot be repre­
sented by Eq. (1) and, consequently, as has been shown above, cannot be ex­
pressed in the form of Roothaan's energy functional [i.e., in the form of Eq. (2) 
with af::~ = a and bf::~ = b] [6], since there is a mutual relationship between the 
coefficients e(O), e(2), and e(4) in Eq. (1), from one side, and the coefficients a and 
b in Eq. (2), from the other side [see Eqs. (11)]. This means that the above­
mentioned multiple states cannot be correctly calculated within the framework 
of the Roothaan open-shell SCF theory [6]. 

To calculate the energy of such states as 2DI and 2D2 (d 3
), one has to solve ad­

ditionally the secular problem in the basis set of two WeD) functions with the 
matrix elements, presented in [1,2]. (For details, see [1, Sec. 21.1]). The same 
problem holds if one uses the general SCF coupling operator method [8] instead of 
the atomic Hartree-Fock theory [1-3]. 

Concerning the values of the coefficients a and b, presented in [26J for 
the state 2D (d 3

) and other multiple ones (including those for the systems of the 
icosahedral symmetry), it should be pointed that they do not correspond to the 
true energy of a state (which is an eigenvalue of the secular problem). These co­
efficients correspond to the one of the diagonal matrix element for which 
C(2) = e(4) (see Table A21a-1 in [1]). 

A complete list of the Roothaan-type states arising from the configurations d N 

(1 ~ N ~ 9) is presented in Table 11. 
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