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Dedicated to my family.

We can now see that the whole becomes not merely more, but very different from the sum of its parts.
Philip W. Anderson





Abstract

Emergent phenomena in condensed matter physics like, e.g., magnetism, superconductivity, or non-trivial
topology often come along with a surprise and exert great fascination to researchers up to this day. Within
this thesis, we are concerned with the analysis of associated types of order that arise due to strong electronic
interactions and focus on the high-Tc cuprates and Kondo systems as two prime candidates. The under-
lying many-body problem cannot be solved analytically and has given rise to the development of various
approximation techniques to tackle the problem.

In concrete terms, we apply the auxiliary particle approach to investigate tight-binding Hamiltonians
subject to a Hubbard interaction term to account for the screened Coulomb repulsion. Thereby, we adopt
the so-called Kotliar-Ruckenstein slave-boson representation that reduces the problem to non-interacting
quasiparticles within a mean-field approximation. Part I provides a pedagogical review of the theory and
generalizes the established formalism to encompass Gaussian fluctuations around magnetic ground states as
a crucial step to obtaining novel results.

Part II addresses the two-dimensional one-band Hubbard model, which is known to approximately de-
scribe the physics of the high-Tc cuprates that feature high-temperature superconductivity and various other
exotic quantum phases that are not yet fully understood. First, we provide a comprehensive slave-boson
analysis of the model, including the discussion of incommensurate magnetic phases, collective modes, and
a comparison to other theoretical methods that shows that our results can be massively improved through
the newly implemented fluctuation corrections. Afterward, we focus on the underdoped regime and find
an intertwining of spin and charge order signaled by divergences of the static charge susceptibility within
the antiferromagnetic domain. There is experimental evidence for such inhomogeneous phases in various
cuprate materials, which has recently aroused interest because such correlations are believed to impact the
formation of Cooper pairs. Our analysis identifies two distinct charge-ordering vectors, one of which can
be attributed to a Fermi-surface nesting effect and quantitatively fits experimental data in Nd2�xCexCuO4

(NCCO), an electron-doped cuprate compound. The other resembles the so-called Yamada relation implying
the formation of periodic, double-occupied domain walls with a crossover to phase separation for small
dopings.

Part III investigates Kondo systems by analyzing the periodic Anderson model and its generalizations.
First, we consider Kondo metals and detect weakly magnetized ferromagnetic order in qualitative agreement
with experimental observations, which hinders the formation of heavy fermions. Nevertheless, we suggest
two different parameter regimes that could host a possible Kondo regime in the context of one or two
conduction bands. The part is concluded with the study of topological order in Kondo insulators based
on a three-dimensional model with centrosymmetric spin-orbit coupling. Thereby, we classify topologically
distinct phases through appropriate Z2 invariants and consider paramagnetic and antiferromagnetic mean-



vi | Abstract

field ground states. Our model parameters are chosen to specifically describe samarium hexaboride (SmB6),
which is widely believed to be a topological Kondo insulator, and we identify topologically protected surface
states in agreement with experimental evidence in that material. Moreover, our theory predicts the emergence
of an antiferromagnetic topological insulator featuring one-dimensional hinge-states as the signature of
higher-order topology in the strong coupling regime. While the nature of the true ground state is still under
debate, corresponding long-range magnetic order has been observed in pressurized or alloyed SmB6, and
recent experimental findings point towards non-trivial topology under these circumstances. The ability to
understand and control topological systems brings forth promising applications in the context of spintronics
and quantum computing.



Zusammenfassung

Emergente Phänomene in der Physik der kondensierten Materie, wie z. B. Magnetismus, Supraleitung oder
nicht-triviale Topologie gehen oft mit Überraschungen einher und faszinieren Wissenschaftler bis heute.
Innerhalb dieser Arbeit befassen wir uns mit der Analyse damit assoziierter Art von Ordnung, die durch starke
elektronische Wechselwirkungen entsteht und konzentrieren uns auf die Kuprat-Hochtemperatursupraleiter
und Kondo-Systeme als zwei prominente Kandidaten. Das zugrunde liegende Vielteilchenproblem kann
nicht analytisch gelöst werden und hat zur Entwicklung vielfältiger Näherungsverfahren geführt, um das
Problem anzugehen.

Konkret wenden wir den Hilfsteilchenansatz an, um tight-binding Hamiltonoperatoren zu untersuchen,
die einen Hubbard-Wechselwirkungsterm aufweisen, um die abgeschirmte Coulomb-Abstoßung zu berück-
sichtigen. Dabei benutzen wir die sogenannte Kotliar-Ruckenstein-Slave-Boson-Darstellung, die das Pro-
blem im Rahmen einer Molekularfeldnäherung auf nicht-wechselwirkende Quasiteilchen zurückführt. Teil I
beinhaltet eine pädagogisch aufgearbeitete Zusammenfassung der Theorie und verallgemeinert durch die
Berücksichtigung Gaußscher Fluktuationen um magnetische Grundzustände den etablierten Formalismus,
was sich als entscheidender Schritt herausstellt, um neuartige Ergebnisse erzielen zu können.

Teil II befasst sich mit dem zweidimensionalen Einband-Hubbard-Modell, von dem bekannt ist, dass
es näherungsweise die Physik der Kuprat-Hochtemperatursupraleiter beschreibt, welche Hochtemperatur-
supraleitung und verschiedene andere exotische Quantenphasen aufweisen, die noch nicht vollständig ver-
standen sind. Zunächst machen wir eine ausführliche Slave-Boson-Analyse des Modells, einschließlich der
Diskussion inkommensurabler magnetischer Phasen, kollektiver Moden und eines Vergleichs mit anderen
theoretischen Methoden, der zeigt, dass unsere Ergebnisse durch die neu implementierten Fluktuations-
korrekturen massiv verbessert werden können. Danach konzentrieren wir uns auf den unterdotierten Be-
reich und finden eine Verflechtung von Spin- und Ladungsordnung, die durch Divergenzen der sta-
tischen Ladungssuszeptibilität innerhalb der antiferromagnetischen Domäne signalisiert wird. Es gibt experi-
mentelle Hinweise auf derartige inhomogene Phasen in verschiedenen Kuprat-Materialien, was in letzter Zeit
vermehrt Interesse geweckt hat, da angenommen wird, dass entsprechende Korrelationen die Bildung von
Cooper-Paaren beeinflussen. Unsere Analyse identifiziert zwei unterschiedliche Ladungsordnungsvektoren,
von denen einer einem Fermi-Flächeneffekt zugeschrieben werden kann und quantitativ zu experimentellen
Daten von Nd2�xCexCuO4 (NCCO), einer elektronendotierten Kupratverbindung, passt. Der andere erin-
nert an die sogenannte Yamada-Beziehung und impliziert die Bildung von periodischen, doppelt besetzten
Domänenwänden und einem Übergang zu Phasenseperation für kleine Dotierungen.

Teil III untersucht Kondo-Systeme durch Analyse des periodischen Anderson-Modells und seiner Verallge-
meinerungen. Zunächst betrachten wir Kondo-Metalle und finden schwach magnetisierte ferromagnetische
Ordnung in qualitativer Übereinstimmung mit experimentellen Beobachtungen, welche die Bildung von
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schweren Fermionen hemmt. Dennoch identifizieren wir zwei verschiedene Parameterbereiche, die ein
mögliches Kondo-Regime im Kontext von einem oder zwei Leitungsbändern beherbergen könnten. Der
Teil wird mit der Untersuchung topologischer Ordnung in Kondo-Isolatoren basierend auf einem dreidi-
mensionalen Modell mit zentrosymmetrischer Spin-Bahn-Kopplung abgeschlossen. Dabei klassifizieren
wir topologisch unterscheidbare Phasen durch geeignete Z2-Invarianten und betrachten paramagnetische
und antiferromagnetische Molekularfeld-Grundzustände. Unsere Modellparameter wurden gewählt, um
insbesondere Samariumhexaborid (SmB6) zu beschreiben, von dem allgemein angenommen wird, dass es
sich um einen topologischen Kondo-Isolator handelt, und wir identifizieren topologisch geschützte Ober-
flächenzustände in Übereinstimmung mit experimentellen Befunden in diesem Material. Darüber hinaus
sagt unsere Theorie die Emergenz eines antiferromagnetischen topologischen Isolators mit eindimensionalen
Randzuständen als Merkmal von Topologie höherer Ordnung im Parameterbereich starker Korrelationen
voraus. Während das Wesen des korrekten Grundzustands noch umstritten ist, wurde eine entsprechende
langreichweitige magnetische Ordnung in unter Druck stehendem oder legiertem SmB6 beobachtet und kürz-
liche experimentelle Befunde weisen unter diesen Umständen auf nicht-triviale Topologie hin. Die Fähigkeit,
topologische Systeme zu verstehen und zu kontrollieren, bringt vielversprechende Anwendungen im Kontext
von Spintronik und Quantencomputing hervor.
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Introduction

When it comes to physics, the majority of the general public thinks of black holes or “god particles”, whereas
the field of condensed matter physics (CMP) rarely attracts broad media attention [1]. Nevertheless, a total
of 37 Nobel prizes have been awarded in the context of CMP, and after a rapid growth that started in the
second half of the 20th century, it is the largest branch of contemporary physics by now [2]. As we will further
elaborate, innovations originating from basic research in CMP have had a tremendous impact on technological
progress and society as a whole, shaping our modern way of living in a fundamental way. But what kind of
problems does the field actually address? Originally referred to as solid-state physics, a major part is the study
of insulators, semiconductors, and metals. The term CMP was adopted in the 70s when critical phenomena
such as magnetism and superfluidity in the context of quantum mechanics (QM) and the many-body problem
were brought to attention, making the conception of solid-state physics become insufficient to picture the
variety of the field [3]. It features a broad overlap with other scientific subjects like, e.g., chemistry, material
science, and nanotechnology and can generally be considered as the discipline of physics examining complex
matter [4].

Impact of condensed matter physics

A device that has had a profound impact on technology and society like hardly any other is the transistor,
which was invented by John Bardeen, Walter Brattain, and William Shockley at Bell Labs in 1947 within their
studies of semiconductors [1]. This electronic building block provides the basis for all modern computers,
and after decades of optimization in the industry, in order to create increasingly powerful chips, smartphones
have turned into tiny supercomputers that typically contain over 15 billion transistors. Another prominent
application of CMP is the digital storage of data on hard disk drives (HDDs) that record information by
magnetizing a thin film of a ferromagnetic (FM) material. The emergence of magnetism in solids can be
explained by a microscopic degree of freedom in quantum mechanics called spin, which can be interpreted like
an intrinsic magnetic moment of electrons that aligns parallel for a large number of particles in ferromagnetic
crystals in order to form a net magnetic moment. While HDDs are increasingly being replaced by solid-state
drives (SSDs), there is also ongoing research on storage devices that use antiferromagnetic (AFM) materials,
where spins align anti-parallel rather than parallel. These devices are envisioned to be more robust and
much faster than regular HDDs [5], which has evoked the field of antiferromagnetic spintronics that aims to
manipulate and control the origins of the magnetic order [6].

Another fascinating phenomenon within condensed matter physics is superconductivity (SC), a quantum
state of matter discovered in 1911 [7] that can manifest at low temperatures and features a vanishing electrical
resistivity with dissipation-less currents. At liquid helium cooling (-268.9�C), this technology is already
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applied in medicine to produce strong magnetic fields that are required for magnetic resonance imaging.
In 1986, another class of superconductivity with a differing microscopic origin, so-called high-temperature
superconductivity (HTS), was discovered. Thereby, the critical temperature to uphold the quantum state was
pushed beyond the boiling point of nitrogen (-195.8�C), which significantly simplifies the cooling process [8].
Nevertheless, superconducting materials have, as of now, not found broad applications within electrical grids
due to the costly cooling and because the ceramic HTS compounds are not well suited to form electric wires.
However, a company in Ismaning has developed a technique to overcome that obstacle and provides HTS

material in order to build the longest superconducting cable in the world (12km) as a test project (SuperLink)
in Munich [9]. It is expected to finish in 2023 and could, if successful, lead to an adaptation at a larger scale.
Furthermore, high-temperature superconductors are also being applied in the context of magnetic levitation
and are, e.g., used in the Maglev train that was unveiled in China in 2021 with a peak velocity of up to 620
km/h [10]. Considering the potential of these use cases, it is, of course, a major objective of CMP to achieve a
superconducting state at ambient conditions, but such a material is yet to be discovered.

Despite usually being a long frame from theory to practical applications, these examples show that fun-
damental research can have a tremendous long-term impact, and it is hard to predict which discoveries will
become important in the future. Apart from the previously discussed quantum phenomena, Kondo physics
and topology have approached the center of attention in the last decade. We will further elaborate on the
related properties later on and the exotic quantum states associated with these systems might pave the way
towards possible quantum computers in the future [11, 12].

A brief history of condensed matter physics

In order to provide basic knowledge of CMP and present the most crucial achievements of the past century,
we start off with a brief historical overview. Its origin traces back to the beginning of the 19th century, with
Humphry Davy’s studies of electrical and thermal conductivities of the forty chemical elements that were
known at that time [13]. However, it was not before 1900 that a first classical theory of electrons in solids was
proposed by Paul Drude that was able to explain some of the empirical observations but also came along with
serious omissions [14]. The discovery of superconductivity in 1911 by Heike Kamerlingh Onnes [7] came as a
surprise and raised even more questions that could ultimately only be explained with the advent of quantum
mechanics.

The properties of QM states are determined by the solution of the so-called Schrödinger equation, a
linear differential equation proposed by Erwin Schrödinger in 1925: i~@t �� ↵

⇤ Ĥ �� ↵
[15]. Based on the

Copenhagen interpretation, the absolute square of the wave-function �� ↵
yields probabilities over the outcome

of measurements of a system, and the Hamilton operator Ĥ describes its total energy. The corresponding
problem for the simplest atom, i.e., hydrogen, which contains one proton and one electron, can be solved
analytically. The Hamilton operator of the according two-body-problem is decomposed into the kinetic energy
of the reduced mass and the Coulomb repulsion between both particles

Ĥ ⇤ � ~
2

2µr
2
r �

e2

4⇡✏0r
,

and the respective solution explained the discrete energy levels of hydrogen that had already been measured
via spectroscopy.

The Schrödinger equation for electrons is also bound to the Pauli exclusion principle [16] that dictates
that each quantum state cannot be occupied by more than one electron. With the introduction of the Fermi
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gas of free electrons in 1926 [17, 18], this principle was incorporated into the Drude model, which solved
previous omissions like, e.g., the calculation of the electronic specific heat. However, the apparent success of
the model was somewhat surprising because it completely neglected interactions between different electrons,
and Hendrik Antoon Lorentz once allegedly said: “In a theory which has given results like these, there must
certainly be a great deal of truth” [19].

Experimental breakthroughs that significantly helped to decipher the composition of solids were achieved
by Friedrich et al. and Bragg et al. in the second decade of the 20th century by means of X-ray diffraction
[20, 21]. Their work revealed that most solids are composed of a large number of identical unit cells that
align in a regular way to form specific crystal structures. In 1929, Felix Bloch applied a periodic potential
to the Schrödinger equation that modeled such a structure and pioneered the immensely successful band
theory of solids [22]. He was able to show that those potentials initiate dense energy bands of quantum
states that are filled successively in accordance with the Pauli principle. The specific band structure (BS)
determines most of the key properties of a solid. For example, if there is a finite energy gap between the
highest occupied and lowest unoccupied quantum state, we speak of an insulator or semiconductor because
electrons cannot move freely in such a system due to the Pauli principle. In the opposite case, we have a
metal, which employs different states at the same energy that form the so-called Fermi surface (FS). This band
theory, however, still neglected the Coulomb repulsion between electrons. Lev Landau, with the introduction
of Fermi liquid (FL)-theory in 1956 [23], was finally able to give a satisfactory explanation why this enormous
simplification was justified in many cases. The essence of this theory is that electrons form quasiparticles
(QPs) with well-defined momentum and spin in the presence of interactions that behave like a single electron
with renormalized parameters like, e.g., an effective mass.

“More is di�erent”

There are, however, also instances where the effective one-particle description of FL-theory breaks down,
and something entirely new emerges as a result of a so-called FS-instability that occurs due to electronic
interactions. Philip W. Anderson wrote in his famous essay “More is different” in 1972 on the topic: “The
behavior of large and complex aggregates of elementary particles, it turns out, is not to be understood in terms of a simple
extrapolation of the properties of a few particles. Instead, at each level of complexity entirely new properties appear, and
the understanding of the new behaviors requires research which I think is as fundamental in its nature as any other”
[24]. Such a system of interacting particles defines the quantum many-body problem, where we primarily focus
on vast numbers of electrons that interact through the screened Coulomb repulsion.

The emergent behavior manifests in the form of sudden phase transitions that can depend on internal
degrees of freedom like the energy scale of the interaction, or an external control parameter, e.g., the temper-
ature. Those transitions have indeed been studied long before the advent of quantum mechanics, with water
being an easy-to-grasp example that can be present as ice crystals, liquid, or steam depending on pressure
and temperature. A very successful phenomenological theory for quantum phase transitions was introduced
by Lev Landau in 1937 [25]. He classified different phases by a local order parameter that initiates an ordered
phase by reducing symmetries of the original problem due to spontaneous symmetry breaking. A prominent
illustration is the formation of ferromagnetism. The respective order parameter is the magnetization that can
–with some simplification– be understood as the sum of electronic spins, envisioned as compass needles at
fixed positions of a crystal lattice. Without interactions, these align randomly such that the net magnetization
vanishes. For a ferromagnet, the spins align parallel in a specific direction such that there is a macroscopic
magnetic moment in total. Both cases are illustrated in the top panel of Figure 1.1. At first sight, one might
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(a) Flying Barnacle geese. Source: Shutterstock.com. (b) A flock of starlings. Source: Shutterstock.com.

Figure 1.1: A non-magnetic ground state can, at a simplified level, be visualized by randomly oriented spins with no
net magnetization. We employ a chaotic movement of birds as a picturesque example for such an unordered state in
the classical world. If the birds, however, strongly interact with their neighbors in order to form a flock that makes
them more robust to predators, they move coherently as a whole in an ordered fashion. In the quantum world, we
call the analog to the flock a collective mode of electrons. In our example of ferromagnetism, it comes along with
an interaction-induced parallel alignment of spins, where the carrying electrons are correlated over a macroscopic
distance.

claim that the ordered state appears to be more symmetric than the unordered one, but this is actually not
true. The non-magnetic state is invariant under continuous spin rotations because the random alignment does
not feature a preferential direction, whereas the ferromagnetic ordering spontaneously breaks that symmetry.
But why do the spins order? The actual microscopic reasoning is not simple and will be addressed within this
thesis, but let us consider a descriptive example from biology that can serve as some sort of analogy. Imagine
a large number of flying birds, as illustrated in Figure 1.1. If those only interact weakly with each other, their
movement seems unordered and unpredictable. If, however, a flock is formed, they create the impression of
moving as a whole rather than individually. In such a state, single birds on opposite sides of the flock are
highly correlated due to interactions between neighbored birds that can be extrapolated to large distances.
In CMP, we call the analog to the flock a collective mode of electrons, or specifically a spin-wave, that correlates
spins within a macroscopic distance as a consequence of microscopic, short-ranged interactions. Let us sum-
marize the discussion of ordering phenomena as follows: A phase that emerges due to interaction-induced
symmetry breaking brings forth something unprecedented; or to close the circle to Phil Anderson: “In this
case we can see how the whole becomes not only more than but very different from the sum of its parts” [24].

In the history of interaction-enabled phenomena, first microscopic models to describe ferromagnetism and
antiferromagnetism through the electron spin have been introduced by Ernst Ising and Louis E. F. Néel in
the first half of the 20th century [26, 27]. A theoretical explanation of conventional superconductivity, which is
also an interaction-driven quantum state, was provided by John Bardeen, Leon N. Cooper, and John Robert
Schrieffer in 1957 with the formation of Cooper pairs, almost 50 years after its discovery [28]. However, a
comprehensive understanding of the microscopic pairing mechanism of the unconventional high-temperature
superconductors, discovered in 1986 [8], is still lacking. Another prominent example of strongly correlated
electrons are Kondo systems in the context of magnetic impurities. The Kondo effect was first observed with
a puzzling resistance minimum of metals at low temperatures in 1934 [29], and a theoretical explanation for a
single impurity was given by Jun Kondo in 1964 [30]. For dense Kondo lattices with a periodic arrangement
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of impurities, nonetheless, many open questions remain. These can give rise to so-called heavy fermions,
i.e., quasiparticles that behave like electrons with an up to 1000 times higher effective mass than the bare
particle, or Kondo insulators (KIs), i.e., semiconductors that become insulating at low temperatures due to
interaction effects. With the discovery of the quantum hall effect in 1980 [31], topological systems that feature
robust, topologically protected surface states, and recently especially topological Kondo insulators (TKIs) [32] have
evolved as a major field of research in condensed matter physics. Topological insulators (TIs) are insulating
in the interior but can conduct electrons on the boundaries due to their surface modes. Associated phase
transitions between distinct topological or non-topological states are described by global properties rather
than local order parameters, have initially been described for non-interacting systems, and do not necessarily
break symmetries. These insights led to the paradigm shift that there are also types of order beyond Landau’s
interpretation. Therefore, regarding electronic interactions, one might say with a wink of the eye that “less
is also different” sometimes. TKIs, however, are at the interface of strong correlations and topology, and
associated phases may combine both: local order parameters and global properties.

Approximation techniques

To study those emergent phenomena, one ideally would like to solve the all-encompassing many-body
Schrödinger equation that describes positively charged protons (label I , J) and negatively charged electrons
(label i , j) with their respective Coulomb interactions and the Hamiltonian

Ĥ ⇤ � ~
2

2me

NX

i

r2
r i
� ~

2

2M

NX

I

r2
r I +

NX

i ,I

ZI e2

4⇡✏0 |r i � r I |
� 1

2

NX

i , j

e2

4⇡✏0
���r i � r j

���
� 1

2

NX

I , J

ZI ZJ e2

4⇡✏0
���r I � r J

���
.

The complexity of the problem, however, increases exponentially with the number of particles N , and a
general analytic solution can only be achieved for the previously discussed two-body problem (N ⇤ 2),
whereas a typical macroscopic solid contains electrons in the order of magnitude of N & 1023. We, therefore,
need to rely on approximation techniques that usually aim for a description within statistical physics rather
than to address the dynamics of individual particles.

A first simplification that is applied in most cases is the Born–Oppenheimer approximation, which neglects
the motion of nuclei and replaces associated terms by a periodic potential that is generated by a static lattice
of ions (in analogy to Bloch’s approach), such that the problem is reduced to only encompass interactions
between electrons. An immensely successful tool to tackle respective Hamiltonians is the density functional
theory (DFT), whose development is mainly attributed to Walter Kohn and was awarded the Nobel prize [33].
A strength of DFT is that it requires relatively few assumptions, i.e., it can determine fundamental properties
of molecules and solids ab initio, which also promoted its popularity in theoretical chemistry or even biology
[34]. However, it comes with the downside that it is not suitable to accurately cover the strongly correlated
regime and phase transitions in the sense of spontaneously symmetry breaking.

Thus it is required to employ further methods to investigate emergent phenomena in the context of the
many-body problem. An approach that has proved to be quite successful is to constrain the spatial electronic
degrees of freedom to a discrete set of lattice sites i rather than a continuous variable r i . A kinetic energy
scale is then introduced by a matrix element ti j that describes a hopping process from lattice site i to j,
whose amplitude can be approximated by means of DFT calculations. Since the screened Coulomb repulsion
is maximized when electrons are in close proximity, the simplest form of an effective interaction term is to
apply an energy penalty U > 0 if two electrons with opposite spin occupy the same lattice site, which leads
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up to the Hubbard model [35]

HHub
⇤ �

NX

<i j>,�

ti j f̂
†
i ,� f̂j,� + U

NX

i

f̂†i ,"f̂i ,"f̂
†
i ,#f̂i ,# .

In this second quantized notation, f̂†i ,� creates an electron on lattice site i with spin � 2 {", #}. The problem
is still intriguingly hard to solve, and its inventor John Hubbard once allegedly replied – without even the
faintest attempt of a serious explanation – when asked by his mother-in-law what the book he was reading
(The many-body problem) was about: “A murder mystery” [36]. While some of the mysteries have been unraveled
by now, others remain, and a plethora of methods have been developed to address Hubbard-type models
that are highly relevant up to this day.

Different approximation techniques to investigate this problem of interacting electrons on a lattice have
their strengths and weaknesses, respectively, and the nature of the true ground state should ideally be
evaluated under the consideration of multiple methods. By so-called exact diagonalization (ED), one may
determine properties of the system without additional simplifications, but the approach is limited to small
system sizes (N . 20) since the computational expenditure grows exponentially with the number of lattice
sites [37]. It is a powerful tool that can also serve as a benchmark for other techniques in certain limits but
often suffers from finite-size effects. Quantum Monte Carlo (QMC) simulations are also statistically exact,
and the numerical effort scales only polynomially with the system size [38]. There is, however, the so-called
sign problem that often limits its applicability to specific parameter regimes. A popular approach that works
in the thermodynamic limit and requires less numerical treatment is the mean-field (MF) method, where
spatial- and time-dependent fields are approximated by their QM expectation values [39]. On the plus side,
this procedure is practicable for arbitrarily strong interactions, allows to explicitly determine ground states
of symmetry-broken phases, and often yields analytic expressions that are helpful to gain a physical intuition
about the problem. On the other hand, it requires an a priori ansatz that limits the possible types of order, and
it cannot be ruled out that the severe approximations that come along with this method eliminate essential
physical properties of the problem. In order to partially overcome these downsides, the stability of the MF

ground state should ideally be analyzed through a fluctuation calculation. Other sophisticated techniques
that go beyond mean-field but are limited to finite system sizes or intermediate interaction strength are
dynamical mean-field theory (DMFT) [40], density matrix embedding theory (DMET) [41], perturbation theory,
and functional renormalization group (FRG) [42].

The auxiliary particle approach

Our method of choice is the auxiliary particle approach with a subsequent mean-field treatment plus fluctuation
analysis. The basic concept is to rewrite second quantized operators that enter the Hamiltonian with the use
of additional auxiliary operators in order to rephrase the problem in a way that is beneficial for consecutive
approximations. A bosonic representation of the electronic spin operator proposed by Theodore Holstein and
Henry Primakoff in 1940 [43] can be considered as pioneering work in that regard and was later refined by
Julian Schwinger [44]. Alexei A. Abrikosov introduced an alternative way to express the spin operator through
auxiliary fermionic operators known as pseudofermions in 1965 [45]. Based on these ideas, Stewart E. Barnes
and Pierce Coleman formulated representations to investigate Kondo systems in the strongly interacting limit
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[46, 47]. Auxiliary particles are better known as slave-particles in the scientific community, and we will adopt
this term in the following�.

This thesis will apply an auxiliary particle representation that combines fermionic and bosonic degrees of
freedom based on Gabriel Kotilar’s and Andrei E. Ruckenstein’s approach introduced in 1986 [49], which is
designed to address arbitrary interaction strength in contrast to the previous literature. To be specific, we
adopt its generalization form known as spin-rotation invariant Kotliar–Ruckenstein (SRIKR) slave-bosons (SBs)
[50] that provides a full representation of the spin operator as opposed to the original description, where
the spin was projected onto the z-axis. Within a MF approximation of the occurring bosons, lattice models
with Hubbard-type interactions become quadratic in fermionic operators, such that the MF Hamiltonian
characterizes a renormalized theory of non-interacting quasiparticles. Due to the spin-rotation invariant
form, the formalism allows for the implementation of a magnetic order parameter (magnetization) with an
arbitrary ordering vector, which can describe ferromagnetism, antiferromagnetism, as well as magnetic order
with large unit cells, including incommensurate magnetic order (ICM). Furthermore, we calculate Gaussian
fluctuations around the MF ground state that provide a stability analysis through evaluation of the spin and
charge susceptibility. The fluctuation formalism will also be applied to determine dynamic excitation spectra
like, e.g., the spin-wave dispersion and to calculate leading order corrections to the MF magnetization.

The SRIKR approach is limited to models with one interacting orbital. In the late 2000s, other representations
that can handle more than one have been introduced [51, 52], which, however, come along with an enormous
increase of complexity and numerical cost.

Outline

Within this thesis, we investigate different microscopic lattice models that feature a Hubbard interaction and
evaluate the resulting quantum states in the context of the many-body problem. In order to account for
the associated repulsive electron-electron interaction, we apply the SRIKR slave-boson representation with
consecutive MF approximation and fluctuation analysis.

Part I derives the SB method from scratch in a pedagogical fashion that is intended to address researchers or
students who want to learn the technique or deepen their understanding of condensed matter field theories.
We, moreover, extend the established fluctuation formalism to capture magnetic saddle points and models
with additional non-interacting orbitals and therefore rely on our broad theoretical foundation to build in
those features. If the reader is mainly interested in the applications, that part may be skipped and used as
a work of reference. For convenience, the theoretical overhead is kept as short as possible in the subsequent
parts of the thesis, where relevant details of the formalism are directly referred to the respective sections of
Part I or the appendices in Part IV.

In Part II, we introduce the paradigmatic 2D Hubbard model in the context of the many-body problem as an
effective minimal model for the high-Tc cuprates (HTCCs). We provide a comprehensive slave-boson analysis
that includes the discussion of Mott physics, magnetically- and charge-ordered phases, phase separation,
dynamic excitation spectra, and underlines the consistency between mean-field and fluctuation results. Our
evaluation does not explicitly cover superconducting phases because the current SB formalism is not suitable
to describe the unconventional superconductivity that is observed in these materials. We, however, identify a
domain of intertwined spin and charge order that is in excellent agreement with experimental findings of the
material Nd2�xCexCuO4 (NCCO) and other electron-doped HTCCs. A deeper understanding of such phases is

�To be specific, the term “slave-boson” was proposed to Piers Coleman by Chandra Varma in a conversation at Bell Laboratories in
1983. It was included in a preprint and stuck to the scientific community, although it was removed in the final publication [48].
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desirable because they are believed to have a subtle impact on the formation of Cooper pairs, and there has
not been much success in increasing Tc since the late 90s.

In Part III, we consider Kondo systems based on the periodic Anderson model (PAM) and its generalizations
that can be inferred from the Hubbard model with additional non-interacting orbitals and the possibility of
spin-orbit coupling. First, we elaborate on the Kondo effect in the context of different material classes and
emphasize its relevance in the present literature regarding experimental findings and theoretical modeling.
Afterward, we discuss magnetic order and heavy fermions in the PAM and identify a domain of magnetic
frustration induced by destructive interference of an effective RKKY-interaction that correlates localized spins
mediated by the conduction electrons. Finally, we investigate topological phases in Kondo insulators utiliz-
ing a 3D minimal model. Thereby, we detect multiple topologically-distinct phases and study the interplay
between topology and magnetism and the emergence of higher-order topology in the strongly correlated
regime. Our theoretical predictions qualitatively coincide with experimental evidence in samarium hexa-
boride (SmB6), which is widely believed to be a topological Kondo insulator.

The results that are presented within this thesis are partially included in joint publications [53–56] and also
complemented by the Ph.D. thesis of Michael Klett [57].



I
Slave-boson theory of correlated electrons

Within this part, we present a pedagogical review of the spin-rotation in-
variant Kotliar–Ruckenstein (SRIKR) slave-boson (SB) formalism [49, 50] and
comment on the historical development of the method and possible omis-
sions. We moreover extend the established theory to encompass fluctua-
tions about magnetic mean-field (MF) saddle points with additional non-
interacting orbitals.
Chapter 2 derives the SB representation on operator level and introduces
necessary constraints, which are implemented within the field-theoretical
description of Chapter 3 to recover the physical subspace. Subsequently,
Chapter 4 defines a magnetic MF ansatz that reduces models of interacting
electrons with a quartic Hubbard-term to a renormalized, effectively non-
interacting theory within the approximation. We then derive important
quantities of statistical physics like, e.g., the free energy, magnetization, and
electronic compressibility. Finally, Chapter 5 presents the (para-)magnetic
fluctuation calculation that can, e.g., be applied to investigate the MF stability
by an analysis of the spin and charge susceptibility. We moreover discuss the
onset of possible phase separation (PS) that can consistently be determined
from the MF and fluctuation results.
The content of this part has partially been published in References [53] and
[55].
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Slave-boson formalism on operator level

Kotliar–Ruckenstein (KR) slave-bosons (SBs), originally introduced in 1986 [49], are designed to tackle inter-
acting electrons on a lattice with a quartic Hubbard-type interaction [35, 58], whose ground state can in
general not be determined exactly in the thermodynamic limit. The problem is thus treated approximately
within a mean-field (MF) treatment, where the interaction becomes quadratic in auxiliary bosonic fields. The
theory was refined in the 90s to consider Gaussian fluctuations around paramagnetic PM ground states for
the Hubbard model [59–61] and recently generalized to consider magnetic saddle points with additional
non-interacting orbitals [55, 56].

This theory is, therefore, well-suited to investigate the Hubbard model and variations of the periodic
Anderson model (PAM) [62, 63] that yield from the implementation of additional conduction orbitals. Our
according results in the context of the high-Tc cuprates and Kondo materials are presented in Parts II and III.
To derive the theory in a consistent notation, we define the general Hamiltonian

Ĥ ⇤ ĤHub. + Ĥcond. + Ĥhyb. (2.1)

with
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X
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(2.2c)

in second quantization [64, 65]. In that notation, interacting electrons on lattice site i with spin � ⇤ ±1/2 are
created (annihilated) by the operator f̂†i ,� (f̂i ,�) and non-interacting electrons at site i, spin � and orbital o are
created (annihilated) by ĉ†o ,i ,� (ĉo ,i ,�). Hopping amplitudes between different lattice sites i , j are denoted
by tf , to , and the hybridization of conduction orbitals with the interacting orbital is given by V . Our theory
also allows for spin-orbit coupling (SOC) and additional hybridizations between the conduction orbitals (Ṽ).
Finally, U defines the strength of the Hubbard interaction, ✏f (✏o) characterizes on-site potentials of the
different orbitals that account for the crystal field of the lattice, and µ0 represents the chemical potential that
controls the total electron filling.
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The usual anticommutation relations for fermionic operators that comply with the Pauli principle�
f
ĉo ,i ,� , ĉ†o0 , j,�0

g
+
⇤ �oo0�i j���0 ,f

ĉ†o ,i ,� , ĉ†o0 , j,�0
g
+
⇤

f
ĉo ,i ,� , ĉo0 , j,�0

g
+
⇤ 0 ,

(2.3)

dictate a four-dimensional Hilbert space per lattice site and orbital, where an orbital-site can either be empty
(|vaci), singly (|�i), or doubly occupied (|2i). The respective states are created or annihilated by the fermionic
ladder operators�

|vaci , ĉ±� |vaci ⇤ 0 ,

|�i ⇤ ĉ†� |vaci , ĉ�� |��i ⇤ |vaci ,
|2i ⇤ ĉ†� ĉ†�� |vaci , ĉ� |2i ⇤ |��i .

(2.4)

and the full Fock state is given by the tensor product over all sites and orbitals.
With the SB representation, we introduce auxiliary bosonic fields and construct the physical states by a

combination of fermionic and bosonic ladder operators and the implementation of additional constraints.
As we will show, the interaction term then becomes quadratic in bosonic operators at the cost of a more
complicated hopping scheme that, however, also remains quadratic w.r.t. fermionic degrees of freedom.
While the original Kotliar–Ruckenstein slave-boson representation [49] breaks spin-rotation symmetry [49],
a generalization known as spin-rotation invariant Kotliar–Ruckenstein (SRIKR) slave-boson (SB) scheme was
introduced shortly after [50, 66] to overcome that flaw. It provides a complete, bosonic representation
of the spin operator, which allows for the treatment of SOC, incommensurate magnetic order (ICM) and a
distinction between longitudinal and transversal spin excitation as main advantages over the simplified KR

representation�.
Adopting the SRIKR scheme, we introduce six bosonic operators êi , p̂0,i , p̂ i ⇤ (p̂x ,i , p̂y ,i , p̂z ,i ) and d̂i per lattice

site� i, which are associated with empty, singly and doubly occupied states, and two new auxiliary fermionic
operators f̂i ,", f̂i ,#, which are referred to as pseudofermions (PFs) in the following. Within this representation,
we create the states of the Hilbert space by

|0i ⇤ ê† |vaci , (2.5a)

|�i ⇤
X

�0
p̂†��0 f̂ †�0 |vaci , (2.5b)

|2i ⇤ d̂† f̂ †" f̂ †# |vaci . (2.5c)

Notice that opposed to the representation in Equation (2.4), we explicitly distinguish between the vacuum
and empty state, since the latter contains an ê-boson. The occurring fermionic f̂i ,� and bosonic b̂↵,i 2(

êi , p̂0,i , p̂ i , d̂i

)
operators fulfill the usual (anti-)commutation relations and consequently, any annihilation

�The (anti-)commutator is defined by
f
Â , B̂

g
± ⇤ ÂB̂ ± B̂Â .

�The same also holds for the interacting electrons f̂†� .
�A further generalization is the spin- and charge-rotation invariant Kotliar–Ruckenstein (SCRIKR) SB representation [50], which
makes it possible to address the particle-particle channel and has been applied in the context of conventional superconductivity
[67, 68]. For the applications in this thesis, however, the SRIKR SB scheme is sufficient.

�The lattice site index will be dropped for better readability in the following and it is implied that all operators act on the same site,
if it is not explicitly shown.
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operator applied to the vacuum vanishes
f
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(2.5d)

In Section 2.1, we will derive the explicit form of the matrix p̂†��0 and subsequently the fermionic ladder
operator in SB representation. Afterward, we will learn in Section 2.2 that additional constraints are required
to exclude unphysical states and that the SB representation is an exact mapping of the original problem on
this constrained subspace. Moreover, we show how to enforce these constraints and their impact on gauge
symmetries. Finally, in Section 2.3 we investigate how important fermionic operators are expressed utilizing
the new SB and PF degrees of freedom.

2.1 Slave-boson representation

In order to transfer Hamiltonians into the SB picture, we need to derive the bosonic form of the p̂†��0-matrix
and find the SB representation of the fermionic ladder operator f̂(†)

� , which we do in the following based on
References [50] and [53].

2.1.1 Construction of the p-matrix

Empty and doubly occupied sites transform like scalars under spin rotation, whereas the singly occupied
state is required to transform like a spinor with a spin of S ⇤ 1/2 and can consequently p̂†��0 be represented
by a 2 ⇥ 2 matrix. The total spin per site yields from addition of the PF (S f ⇤ 1/2) and bosonic spin, we thus
introduce a spin zero (Sp0 ⇤ 0) scalar boson p̂0 and a spin one (Sp ⇤ 1) vector boson p̂ ⇤ (p̂x , p̂y , p̂z ) and need
to find a superposition such that the total spin is always 1/2. The irreducible representation for the spin-one
operator is given by [69, 70]

Ŝ ⇤

*.....
,

Sx

Sy

Sz

+/////
-
, with Sx

⇤
1p
2

*.....
,

0 1 0

1 0 1

0 1 0

+/////
-
, Sy

⇤
1p
2

*.....
,

0 �i 0

i 0 �i

0 i 0

+/////
-
, Sz

⇤

*.....
,

1 0 0

0 0 0

0 0 �1

+/////
-
. (2.6a)

We choose the p† operator to create a bosonic spin-one state, which is polarized towards the x , y and z
direction in Cartesian coordinates with the magnetic quantum number m ⇤ 0 respectively, yielding the
spinors

�x ⇤
1p
2

*.....
,

�1

0

1

+/////
-
, �y ⇤

1p
2

*.....
,

i

0

i

+/////
-
, �z ⇤

*.....
,

0

1

0

+/////
-
, with S↵ ���↵↵ ⇤ 0 . (2.6b)

The relative phases of this orthonormal basis of the spin Hilbert space with
D
�↵

�����
E
⇤ �↵� are chosen such

that the spinors are consistent under spin rotations by the angle �, which are generated by the operator
Û� ⇤ e�i�Ŝ [69, 70]

�y ⇤ e�i ⇡2 Sz
�x , �z ⇤ e�i ⇡2 Sx

�y , �x ⇤ e�i ⇡2 Sy
�z . (2.6c)
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In order to add spins, we conveniently apply the basis of eigenstates of the Sz-operator p̂S⇤1,m , with m 2
{�1, 0, 1}, which is given by the superposition

p̂1,1 ⇤ � 1p
2

⇣
p̂x + ip̂y

⌘
, p̂1,0 ⇤ p̂z , p̂1,�1 ⇤

1p
2

⇣
p̂x � ip̂y

⌘
. (2.6d)

Consequently a state with total spin of S ⇤ 1/2, decomposed by the PF f̂�0 (S f ⇤ 1/2) and the vector boson p̂1,m

(Sp ⇤ 1) is given by [50]

|�iS⇤1/2 ⇤

X

�0⇤± 1
2

C
⇣
Sp ⇤ 1, S f ⇤ 1/2 ; mp ⇤ � � �0,m f ⇤ �

0 ��� S ⇤ 1/2 ; �
⌘

p̂†1,mp
f̂ †�0 |vaci ⇤

X

�0⇤±1/2

⇣
p̂†S⇤1

⌘
��0

f̂ †�0 |vaci ,

(2.6e)

with � ⇤ ± 1/2 and the Clebsch-Gordon coefficients [70]

C
⇣
1, 1/2 ; � ⌥ 1/2,±1/2 ��� 1/2, �

⌘
⇤ ⌥

r
3 ⌥ 2�

6 . (2.6f)

In accordance with Equation (2.6e), we express the bosonic degrees of freedom in a convenient matrix notation

p̂†
S⇤1

⇤
*..
,
�
q

1
3 p̂†1,0

q
2
3 p̂†1,1

�
q

2
3 p̂†1,�1

q
1
3 p̂†1,0

+//
-
, (2.6g)

and apply the PF basis
f̂
†
⇤

✓
f̂ †" , f̂ †#

◆
. (2.6h)

Finally, we need to consider the contribution of the p̂0-boson, which acts diagonally in spin space as a
superposition, yielding

p̂† ⇤
*..
,
a p̂†0 + bp̂

†
z b(p̂†x � ip̂†y )

b(p̂†x + ip̂†y ) a p̂†0 � bp̂†z

+//
-
. (2.6i)

The coefficients a and b are constrained by the normalization condition�
X

�0�00
hvac| f̂�00 p̂�00� p̂†��0 f̂ †�0 |vaci ⇤ 1 , (2.6j)

with � ⇤ ±1/2, i.e., we need to enforce 3b2 + a2 ⇤ 1 and ratio a/b is a free parameter. We choose a ⇤ b ⇤ 1/2
and finally find�

p̂† ⇤
1
2

3X

µ⇤0
p̂†µ⌧

µ
⇤

1
2

*..
,

p̂†0 + p̂†z p̂†x � ip̂†y
p̂†x + ip̂†y p̂†0 � p̂†z

+//
-
, (2.7a)

p̂ ⇤
1
2

3X

µ⇤0
p̂µ⌧

µ
⇤

1
2

*..
,

p̂0 + p̂z p̂x � ip̂y

p̂x + ip̂y p̂0 � p̂z

+//
-
, (2.7b)

�In early works featuring SRIKR SB formalism, this normalization was not chosen correctly, leading to a prefactor of 1/
p

2 instead of
1/2 in Equation (2.7) [59, 66, 71, 72]. This was corrected in Reference [50].

�In the following notation, we identify the Cartesian coordinates x , y , z with the numbers 1, 2, 3.
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where ⌧µ is the four-vector of Pauli matrices, including the identity matrix ⌧0 ⇤ 12. The commutator of these
matrix operators is found to be f

p̂�1�2 , p̂†�3�4

g
� ⇤

1
2 ��1�4��2�3 . (2.7c)

2.1.2 Fermionic ladder operators

The fermionic ladder operator can formally be expressed as

f̂†� ⇤ |�i h0| + sgn(�) |2i h�� | . (2.8)

With Equations (2.5b) and (2.7a), we have the tools to create an electron with spin � in an empty side and
thus a representation of the first term of Equation (2.8). For the second term, we need a matrix operator ˆ̃p,
which removes a p̂-boson with opposite spin, which is given by�

ˆ̃p��0 ⇤ sgn(�) sgn(�0)p̂��0�� ⇤
1
2

*.
,

p̂0⌧
0
��0 �

3X

µ⇤1
p̂µ��0

+/
-
. (2.9)

Consequently, we can express the ladder operators of the interacting electrons in SB representation by [50]

f̂†� ⇤

X

�0
ẑ†��0 f̂ †�0 , (2.10a)

f̂� ⇤

X

�0
f̂�0 ẑ�0� , (2.10b)

with

ẑ†��0 ⇤ p̂†��0 ê + d̂† ˆ̃p��0 , (2.11a)

ẑ��0 ⇤ ê† p̂��0 + ˆ̃p†��0 d̂ . (2.11b)

In Section 2.2, we will show that this representation of interacting electrons becomes exact with the addition
of specific constraints to the Fock space. We identify ˆ̃p��0 with the time reversed operator of p̂��0 . Fermionic
operators transform under time-reversal (TR) as

T̂ f̂"T̂
�1

⇤ f̂# , T̂ f̂#T̂
�1

⇤ �f̂" (2.12a)

where T̂ denotes the anti-unitary TR-operator. The behavior of the PF and SB fields under TR can be inferred
by expressing Equation (2.12a) with the SB representation of Equation (2.10) and comparing terms. We find
[53]

T̂ p̂0T̂ �1
⇤ p̂0 , T̂ p̂T̂ �1

⇤ �p̂ , T̂ ê T̂ �1
⇤ ê , T̂ d̂ T̂ �1

⇤ d̂ , T̂ f̂"T̂
�1

⇤ f̂# , T̂ f̂#T̂
�1

⇤ � f̂" , (2.12b)

which is the expected result, considering that p̂0 represents a spin-singlet and p̂ a spin-triplet.

�In this notation � ! �� corresponds to a spin flip i.e., an interchange of rows/columns of the according 2 ⇥ 2 matrix.
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2.2 Constraints

In the following section, we will learn which constraints need to be enforced such that the SB representation
that combines fermionic and bosonic degrees of freedom is an exact mapping of the original purely fermionic
problem. Afterward, we show how to practically enforce these constraints and discuss their impact on gauge
symmetries.

2.2.1 Exact recovery of the physical Hilbert space

Accounting for the fermionic anticommutators of the PFs and bosonic commutators of the SB operators, a
general state is given by

|SBi ⇤
Y

s⇤±1/2

⇣
f̂ †s

⌘ms
Y

b2{e ,p0 ,p1 ,
p2 ,p3 ,d}

⇣
b̂†

⌘nb

p
nb !
|vaci , (2.13)

with ms 2 {0, 1} and nb 2 N0. This general form contains unphysical states that are not designated by
Equation (2.5) and need to be excluded by adequate constraints. To recover the physical subspace, we must
first guarantee that every site is occupied by exactly one boson. Secondly, PF and SB degrees of freedom need
to be coupled such that the remaining other forbidden states are eliminated. These two conditions can be
fulfilled by enforcing [50, 66]

1 ⇤ ê† ê + d̂† d̂ +

3X

µ⇤0
p̂†µ p̂µ , (2.14a)

f̂ †�0 f̂� ⇤ 2
X

�1

p̂†�1� p̂�0�1
+ ���0 d̂† d̂ , (2.14b)

on each lattice site. Equation (2.14b) can be rewritten as four scalar equations by expanding in Pauli matrices
(i.e., applying

P
��0 ⌧

µ
��0 on both sides of the equation) which also allows for a more intuitive interpretation�

X

�

f̂ †� f̂� ⇤

3X

µ⇤0
p̂†µ p̂µ + 2d̂† d̂ , (2.14c)

X

��0
⌧��0 f̂ †�0 f̂� ⇤ p̂†0 p̂ + p̂† p̂0 � ip̂† ⇥ p̂ . (2.14d)

The first constraint defined in Equation (2.14a) can be interpreted to uphold the Pauli principle because it
excludes higher occupations. It comes along with important implications that greatly simplify many different
calculations. Specifically, two bosonic annihilation (creation) operators to the very right (left) of an expression
annihilate every state on the physical subspace, i.e., those terms are zero, which will be exploited in the
following. The second constraint given by Equation (2.14c) matches the charge density of PFs and SBs in
accordance with Equation (2.5). The third constraint in Equation (2.14d) relates the spin of PFs and SBs in
agreement with Equation (2.6e). In Section 2.3, we will learn that it correlates the spin operator of PFs and
SBs, i.e., a spin flip in PFs needs to be accompanied by a spin flip in SBs.

�In early works [59, 66, 71], the indices of the Paul matrix in Equation (2.14d) were mistakenly interchanged, i.e., regular Pauli
matrices were displayed, whereas transposed Pauli matrices are correct. This was adjusted in Reference [50]. Moreover, some
references claimed that additional constraints were necessary to recover the physical subspace [73, 74]. It was later on agreed that
this assumption was incorrect [75, 76].
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With that knowledge and Equations (2.7c) and (2.9), we now can verify that the fermionic ladder operators
defined in Equation (2.10) indeed function as desired on the physical subspace�

f̂†� |0i ⇤

X

�0
ẑ†��0 f̂ †�0 ê

† |vaci ⇤
X

�0
p̂†��0 f̂ †�0 |vaci ⇤ |�i ,

f̂†� |�0i ⇤
X

�1�2

ẑ†��1 f̂ †�1 p̂†�0�2
f̂ †�2 |vaci ⇤ sgn(�)����0 d̂† f †" f †# |vaci ⇤ sgn(�)����0 |2i ,

f̂†� |2i ⇤

X

�0
ẑ†��0 f̂ †�0 d̂

† f̂ †" f̂ †# |vaci ⇤ 0 .

(2.15)

We are left to prove that the SB representation of the fermionic ladder operators fulfills the canonic an-
ticommutation relations on the constrained subspace. We eliminate the PF degrees of freedom through
Equation (2.14b) and apply Equations (2.7c) and (2.9) to achieve an ordering, where bosonic annihilation
operators are on the right side. As discussed, all terms with two annihilation operators in that order vanish.
Thus, we find

f
f̂� , f̂

†
�0

g
+
⇤

X

�1�2

⇣
f̂�1 ẑ�1� ẑ†�0�2

f̂ †�2 + ẑ†�0�2
f̂ †�2 f̂�1 ẑ�1�

⌘

⇤ ���0
⇣
ê† ê + d̂† d̂

⌘
+ 2

X

�1

⇣
sgn(�) sgn(�0)p̂†���1 p̂�1��0 + p̂†�0�1

p̂�1�

⌘
,

(2.16a)

and the terms containing p̂-bosons can be further decomposed

X

�1

p̂†�0�1
p̂�1� ⇤

1
4

3X

µ⇤0
p̂†µ p̂µ���0 +

1
4

3X

µ⇤1
⌧
µ
�0�

⇣
p̂†µ p̂0 + p̂†0 p̂µ

⌘
+

i
4

3X

µµ0⌫⇤1
✏µµ0⌫⌧⌫��0 p̂

†
µ p̂µ0 . (2.16b)

Making use of
⌧
µ
�0� ⇤ � sgn(�) sgn(�0)⌧µ����0 , (2.16c)

with µ 2 {1, 2, 3} the terms containing Pauli matrices in Equation (2.16a) vanish and we find

f
f̂� , f̂

†
�0

g
+
⇤ ���0

*.
,

ê† ê + d̂† d̂ +

3X

µ⇤0
p̂†µ p̂µ

+/
-
⇤ ���0 . (2.16d)

Consequently, the SB representation is an exact mapping of the original fermionic description on the con-
strained subspace.

Due to the constraints, there is considerable freedom of description, allowing for different but equivalent
representations of the ladder operator. To be specific, it can be transformed by

ẑ†��0 ! ˜̂z†��0 ⇤ p̂†��0
⇣
1 + Ô1

⌘
ê + d̂†

⇣
1 + Ô2

⌘
ˆ̃p��0 , (2.17)

and Ô1/2 need to be defined such that their contribution on the constrained subspace is zero. Since two bosonic
annihilation operators to the very right vanish, these expressions may contain an arbitrary (infinite) series
of SB operators under the condition that each summand ends with an annihilation operator. This ambiguity
does not matter for the exact formulation but will be exploited to improve the quality of the approximative
MF solution later on.

�The applicability of annihilation operators can be shown analogously.
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2.2.2 Projectors and gauge symmetries

We define the constraint operators

Â ⇤ ê† ê + d̂† d̂ +

3X

µ⇤0
p̂†µ p̂µ � 1 , (2.18a)

B̂0 ⇤

X

�

f̂ †� f̂� �
3X

µ⇤0
p̂†µ p̂µ � 2d̂† d̂ , (2.18b)

B̂ ⇤

X

��0
⌧��0 f̂ †�0 f̂� �

⇣
p̂†0 p̂ + p̂† p̂0 � ip̂† ⇥ p̂

⌘
, (2.18c)

and need to enforce Â ⇤ B̂0 ⇤ B̂ ⇤ 0 to fulfill the constraints. In practice, this can be achieved by the
projection operators� [53]

P̂↵ ⇤
1

2⇡iT

Z i⇡T

�i⇡T
e↵Â/T d↵ ⇤ �Â ,0 (2.18d)

P̂�0 ⇤
1

2⇡iT

Z i⇡T

�i⇡T
e�0B̂0/T d�0 ⇤ �B̂0 ,0 (2.18e)

P̂� ⇤ lim
N!1

1
(2⇡iNT)3

$ i⇡NT

�i⇡NT

3Y

µ⇤1
e�µB̂µ/T d�µ ⇤ �B̂ ,0 (2.18f)

P̂ ⇤ P̂↵P̂�0 P̂� . (2.18g)

As of now, T is an arbitrary parameter, but we will identify it with the temperature to enforce the constraints
within path integral formalism in Chapter 3. It is important to note that the constraint operators commute
among themselves and with the Hamiltonian on the constrained subspace as shown in Appendix A.1

f
Ĥ , Â

g
� ⇤ 0 ,

f
Ĥ , B̂0

g
� ⇤ 0 ,

f
Ĥ , B̂

g
� ⇤ 0 , (2.19a)f

Â , B̂0
g
� ⇤ 0 ,

f
Â , B̂i

g
� ⇤ 0 ,

f
B̂0 , B̂i

g
� ⇤ 0

f
B̂i , B̂ j

g
� ⇤ 2✏i jkB̂k . (2.19b)

Consequently, the constraint operators and the Hamiltonian have common eigenstates, and all constraints
can be fulfilled simultaneously as desired. According to the Heisenberg equation of motion [75]

@Ô
@t

⇤
f
Ĥ , Ô

g
� (2.20a)

this also implies that the constraint operators are conserved quantities, i.e., a physical state cannot propagate
into an unphysical one. According to Noether’s theorem [77], or to be specific its quantum analog, the
Ward–Takahashi identities [78, 79], each conservation law underlies a continuous symmetry, in this case,
local gauge transformations of the SB and PF operators, where the Lagrange multipliers ↵, �0 and � act as
gauge fields in the field theory. Since the constraint operators are hermitian, they can be utilized as generators
of symmetry transformations [69, 80]

Ŝi ⇤ ei�i Ôi , (2.20b)

�Since Â and B̂0 only contain number operators, their spectrum is given by N0 and it is sufficient to integrate from �i⇡T to �i⇡T,
although the integration could also be extended to infinity. In the case of B̂, one has to integrate to infinity because the spectrum
may include non-integer values.
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with �i 2 R, under which the Hamiltonian remains invariant. The individual operators, however, are subject
to change, and their transformation behavior is given by

b̂0 ⇤ Ŝ†i b̂Ŝi , (2.21a)

f̂ 0� ⇤ Ŝ†i f̂�Ŝi . (2.21b)

By applying the identity

eX̂ Ŷe�X̂
⇤ Ŷ +

1
1!

f
X̂ , Ŷ

g
� +

1
2!

f
X̂ ,

f
X̂ , Ŷ

g
�

g
�
+ ... , (2.22)

we find that Equations (2.18a) and (2.18b) yield a U(1) ⌦ U(1) gauge degree of freedom involving SB and PF

operators

ê0 ⇤ ê e�i�↵ , (2.23a)

d̂0 ⇤ d̂ e�i�↵+2i��0 , (2.23b)

p0 ⇤ p e�i�↵+i��0 , (2.23c)

f̂
0
⇤ f̂ e�i��0 , (2.23d)

and we defined p ⇤ (p0 , p1 , p2 , p3)>. To obtain the transformation properties with respect to the non-diagonal
�-constraint, we may use the identity [81]

ei�X̂ ⇠̂ e�i�X̂
⇤ ⇠̂ e�i�X , (2.24)

where X̂ ⇤
P

i j ⇠̂iX i j ⇠̂ j is a single particle operator associated with a vector of hermitian matrices X and ⇠̂
represents a vector of fermions or bosons. With Equation (2.18c), we identify the single particle operator
X̂ f
� ⇤ f̂

†
⌧> f̂ for the PFs. The bosonic part of the constraint can be rewritten by means of matrices

⇣
p̂†0 p̂ + p̂† p̂0 � ip̂† ⇥ p̂

⌘
⇤ p̂†B p̂ , (2.25a)

with

B1 ⇤

*.........
,

0 1 0 0

1 0 0 0

0 0 0 �i

0 0 i 0

+/////////
-

, B2 ⇤

*.........
,

0 0 1 0

0 0 0 i

1 0 0 0

0 �i 0 0

+/////////
-

, B3 ⇤

*.........
,

0 0 0 1

0 0 �i 0

0 i 0 0

1 0 0 0

+/////////
-

, (2.25b)

and we identify X̂ p
� ⇤ p̂†B p̂. We moreover observe that


�⌧>i /2 , �⌧>j /2

�
�
⇤ i✏i jk

⇣
�⌧>k /2

⌘
and

f
B>i /2 , Bj/2

g
� ⇤

i✏i jkBk . Consequently, we have a SU(2)-gauge symmetry associated to the �-constraint and the transformation
of the fields is given by

f̂
0
⇤ f̂ e�i��⌧> , (2.26a)

p̂0 ⇤ p̂ ei��B . (2.26b)
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Operator rep-

resentations

Creation
operator

Double
occupancy D̂

Charge density
operator n̂ Spin density operator Ŝ

Original
expression f̂†� f̂†" f̂"f̂

†
# f̂#

P
�
f̂†� f̂�

1
2

P
��0

f̂†�⌧��0 f̂�0

Pseudofermionic
representation does not exist f̂ †" f̂" f̂ †# f̂#

P
�

f̂ †� f̂� does not exist

Bosonic
representation does not exist d̂† d̂ 2d̂† d̂ +

3P
µ⇤0

p̂†µ p̂µ 1
2

⇣
p̂†0 ⇢̂ + ⇢̂† p̂0 � i⇢̂† ⇥ ⇢̂

⌘
1

Mixed
representation

P
�0

ẑ†��0 f̂ †�0 not suitable 2 not suitable 2 1
2

P
��0

f̂ †� ⌧��0 f̂�0 � i⇢̂† ⇥ ⇢̂ 1

Table 2.1: Pseudofermionic (PF), bosonic and mixed representations of crucial fermionic operators within the SB scheme.
Different descriptions are equivalent on the physical subspace enforced by the constraints and allow the interacting
Hamiltonian defined in Equation (2.1) to become quadratic in PF operators. The bosonic z-matrix is defined in
Equation (2.10).

Combining Equations (2.23) and (2.26), there is a U(1)⌦U(1)⌦SU(2) gauge degree of freedom on each lattice
site i, which is a direct consequence of the constraints. The five redundant phases are problematic within the
field theory description and need to be gauged away or projected out as we will learn in Chapter 3.

2.3 Slave-boson operator representations

Finally, we discuss the SB representation of crucial physical quantities such as the double occupancy operator
and the charge and spin density operator. As discussed earlier, the representations are not unique, and
in many cases, there exists a purely bosonic and exclusively PF description, and it depends on the specific
application, which one is to be preferred. The results are summarized in Table 2.1 and the respective proofs
can be found in Appendix A.2.

Most importantly, the operator of double occupancy adapts a quadratic and purely bosonic form. On
the other hand, the charge density operator is adventagously represented by the PF expression, which is
form-invariant to the original fermions. Note that the bosonic representation of the spin operator fulfills the
spin algebra

f
Ŝi , Ŝ j

g
� ⇤ i✏i jk Ŝk , which is proven in Appendix A.1. After all, the most complicated terms

are given by the hopping and hybridization between different lattice sites because there is neither a purely
PF nor an exclusively bosonic representation for the fermionic creation operator. Nevertheless, the resulting
Hamiltonian is quadratic in PF operators, which was our initial goal. Consequently, the PF degrees of freedom
can be integrated out in the field theory, while we still have direct access to the physical observables by means
of the bosonic representations, which is the strength of the SB representation.

�We define ⇢̂† ⇤ (p̂†1 ,�p̂†2 , p̂
†
3)>. As we will learn in Chapter 3, ⇢̂† is a real field within the SB field theory after spurious degrees of

freedom have been gauged away. At that point, the cross product vanishes and the fermionic and PF representations of the spin
operators match, as one would expect.

�Because of the constraints, there is a remarkable freedom of description for the same operator and a mixed representation can
always be found. However, pure bosonic or pseudofermionic representations are desired and exist for this operator, thus a mixed
representation is of lesser use.
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Slave-boson field theory

In this chapter, we will learn about the field-theoretical description of the slave-boson (SB) formalism, where
operators are replaced by eigenvalues of coherent states within a functional integral. Section 3.1 summarizes
basic knowledge about the path integral formalism, whose initial idea goes back to P.A.M. Dirac in 1933 [82]
and it was significantly further developed by R. Feynman [83]. The concept initially only allowed bosonic
states but was extended to feature fermions with the introduction of anticommuting numbers that were
proposed by J. Schwinger [84]. In order to study second quantized Hamiltonians in the thermodynamic
limit, we adopt its application to statistical mechanics at finite temperature by means of imaginary time
path integrals [85]. Subsequently, in Section 3.2, we apply the corresponding basis of coherent states to
the SB representation in the radial gauge and calculate the atomic limit to demonstrate the evaluation of an
analytically accessible limit. The final analytic form of the general SB Lagrangian is given by Equation (3.35)
and builds the foundation for the mean-field and fluctuation analysis discussed in Chapters 4 and 5.

3.1 Imaginary time path integrals

In the following, we summarize important knowledge about imaginary time path integrals and quantum
statistical mechanics based on References [86], [48], and [39]. Key results that will be applied throughout the
thesis are the functional integral for the partition function [Equation (3.6)], the two-particle Green’s function
[Equation (5.51a)] and the expression for the Grand potential [Equation (3.19)].

3.1.1 Coherent states

Coherent states [87] are defined as eigenstates of the annihilation operator

⇠̂↵ |⇠i ⇤ ⇠↵ |⇠i , (3.1a)

where the index ↵ represents internal degrees of freedom like spin, orbital or lattice site. For bosons, the
eigenvalues ⇠↵ are complex numbers and Grassmann variables in case of fermions�. The most important
properties of coherent states are summarized by� [86]

�In order to incorporate the anticommutation relation of fermions, fermionic coherent state eigenvalues need to be anticommuting
numbers that fulfill the Grassmann algebra. In particular they obey ⇠a⇠b + ⇠b⇠a ⇤ 0 and ⇠2

a ⇤ 0, which also implicates special
rules for differentiation and integration [88].

�The notation : Ô(â†↵ , â↵) : means normal ordering of the operator Ô(â†↵ , â↵), i.e., it is ordered such that all creation operators are
on the left and all annihilation operators on the right side.
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f
⇠̂↵ , ⇠̂

†
�

g
�⇣

⇤ �↵� , (3.1b)

|⇠i ⇤ e⇣
P
↵ ⇠↵ ⇠̂†↵ |0i , (3.1c)

1 ⇤

Z Y

↵

D
f
⇠⇤↵ , ⇠↵

g
e�

P
↵ ⇠⇤↵⇠↵ |⇠↵i h⇠↵ | , (3.1d)

h⇠ | : Ô(⇠̂†↵ , ⇠̂↵) : |⇠0i ⇤ e
P
↵ ⇠⇤↵⇠

0
↵ Ô(⇠⇤↵⇠0↵) , (3.1e)

Tr Ô ⇤

Z Y

↵

D
f
⇠⇤↵ , ⇠↵

g
e�

P
↵ ⇠⇤↵⇠↵ h⇣⇠ | Ô |⇠i , (3.1f)

Z Y

↵

D ⇥
⇠⇤↵ , ⇠↵

⇤
exp *.

,
�

X

↵�

⇠⇤↵M↵�⇠� +
X

↵

⇣
J⇤↵⇠↵ + ⇠

⇤
↵ J↵

⌘+/
-
⇤

⇣
detM

⌘�⇣
exp *.

,
X

↵�

J⇤↵M�1
↵� J�

+/
-
, (3.1g)

where we defined

D ⇥
⇠⇤↵ , ⇠↵

⇤
⇤

d⇠⇤↵d⇠↵
N , (3.1h)

N ⇤

8>><>>:
2⇡i for ⇠̂↵ bosonic

1 for ⇠̂↵ fermionic
(3.1i)

⇣ ⇤

8>><>>:
1 for ⇠̂↵ bosonic

�1 for ⇠̂↵ fermionic .
(3.1j)

The integrals associated with the differential D are to be understood as multi-integrals over all fields with
the limits �1 to +1, and ⇠⇤ is defined as the complex conjugate of ⇠.

3.1.2 Path integral for the partition function

We aim to calculate the partition function in the grand canonical ensemble�

Z ⇤ Tr e��Ĥ
⇤

Z Y

↵

D
f
⇠⇤↵ , ⇠↵

g
e�

P
↵ ⇠⇤↵⇠↵ h⇣⇠ | e��Ĥ |⇠i , (3.2)

with inverse temperature � ⇤ 1/T by means of the coherent state basis, i.e., utilizing Equation (3.1f). In order
to do so, we first consider the time evolution operator� in the coherent state basis, which is given by [86]

Û
⇣
⇠⇤t f
, ⇠ti

⌘
⇤

D
⇠t f

��� e�
i
~ Ĥ(t f �ti) ��� ⇠ti

E
(3.3a)

for non-explicitly time dependent Hamiltonians. Since e� i
~ Ĥ(t f �ti) is not normal ordered, we cannot directly

replace the creation and annihilation operators by their eigenvalues in the coherent state basis. To overcome
that obstacle, we split the continuous time interval

f
t f , ti

g
into infinitesimal time slices

⌘ ⇤
t f � ti

M
, (3.3b)

�The chemical potential term has been absorbed into the definition of the Hamiltonian.
�In the Schrödinger picture, the time evolution operator generates translations in time, i.e., �� (t)

↵
⇤ Û (t , 0) �� (0)

↵
.
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and find

e�
i
~ Ĥ⌘

⇤: e�
i
~ Ĥ⌘ : +O(⌘2) . (3.3c)

Consequently, we can replace the regular exponential with the normal ordered one in the limit M ! 1 and
have marvelously eliminated the impact of the (anti-)commutator of the creation and annihilation operators.
Now, we insert M�1 closure relations [Equation (3.1d)] between the M exponential factors and further apply
Equation (3.1e) to find [86]

Û
⇣
⇠⇤M , ⇠0

⌘
⇤ lim

M!1

⌧
⇠M

����
⇣
: e�

i
~ Ĥ⌘ :

⌘M ���� ⇠0

�

⇤ lim
M!1

Z Y

↵

*
,

M�1Y

m⇤1
D

f
⇠⇤↵,m⇠↵,m

g
e�⇠⇤↵,m⇠↵,m +

-
MY

m⇤1

⌧
⇠m

���� : e�
i⌘
~ Ĥ(⇠̂†↵ ,⇠̂↵) : +O

⇣
⌘2

⌘ ���� ⇠m�1

�

⇤ lim
M!1

Z *
,

M�1Y

m⇤1

Y

↵

D
f
⇠⇤↵,m⇠↵,m

g
e�⇠⇤↵,m⇠↵,m +

-
✓
e
PM

m⇤1
P
↵ ⇠⇤↵,m⇠↵,m�1� i⌘

~ H
⇣
⇠⇤↵,m ,⇠↵,m�1

⌘ ◆
.

(3.3d)

Now, we identify that the partition function can be written as trace of the time evolution operator under
imaginary time propagation it/~ ! ⌧ with the interval ⌧ f � ⌧i ⇤ � ⇤ M⌘ and application of periodic
boundary conditions (PBC) for bosons and anti-periodic boundary conditions (ABC) for fermions respectively

⇠↵,0 ⇤ ⇠↵ , (3.4a)

⇠⇤↵,M ⇤ ⇣⇠⇤↵ . (3.4b)

Utilizing Equations (3.2) and (3.3d), we finally find

Z ⇤ lim
M!1

MY

m⇤1

Y

↵

D
f
⇠⇤↵,m⇠↵,m

g
e�S[⇠⇤↵,m ,⇠↵,m] , (3.5a)

with the action [86]

S
f
⇠⇤↵,m , ⇠↵,m

g
⇤ ⌘

MX

m⇤2

266664
X

↵

 
⇠⇤↵,k

⇠↵,m � ⇠↵,m�1

⌘
+H

⇣
⇠⇤↵,m , ⇠↵,m�1

⌘!377775 +⌘
266664
X

↵

⇠⇤↵,1
⇠↵,1 � ⇣⇠↵,M

⌘
+H

⇣
⇠⇤↵,1 , ⇣⇠↵,M

⌘377775 .
(3.5b)

This form of the partition function is often symbolically expressed in a continuous notation�

Z ⇤

Z
D

f
⇠⇤(⌧), ⇠ (⌧)

g
e�S[⇠⇤ ,⇠] , (3.6a)

with the action

S [⇠⇤ , ⇠] ⇤
Z �

0
d⌧L [⇠⇤(⌧), ⇠(⌧)] , (3.6b)

�The integral is to be performed over all internal degrees of freedom ↵ and all imaginary times ⌧ under the constraint ⇠ (�) ⇤ ⇣⇠ (0).
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and the Lagrangian

L [⇠⇤(⌧), ⇠(⌧)] ⇤
X

↵

⇠⇤↵ (⌧)@⌧⇠↵ (⌧) + H
⇣
⇠⇤↵ (⌧), ⇠↵ (⌧)

⌘
. (3.6c)

Such an expression is called functional integral, because it involves integrating over the histories of all fields.
It is important to note that the discrete expression is formally correct since the continuum limit is not always
well defined. We adopt the continuous notation in the following, and it is implied that the limit M !1 is to
be taken within the exact, discrete expression given by Equation (3.5).

3.1.3 Green’s functions and correlations

Quantum mechanical expectation values are given by

D
⇠̂↵ (⌧)

E
⇤

R
D [⇠⇤ , ⇠] ⇠↵ (⌧) e�S[⇠⇤ ,⇠]

Z
(3.7)

within path integral formalism, i.e., the quantum mechanics of many-body physics based on commutators
is transformed to a statistical description with distribution function e�S . Time-ordered correlations between
two fields can be calculated analogously and are given by the two-point Green’s function, which is defined
by [48]

Gµ,⌫ (r � r0) ⇤ �
D
T⌧ ⇠̂µ (r) ⇠̂†⌫ (r0)

E
⇤ �

R
D

f
⇠⇤ , ⇠

g
⇠µ (r)⇠⇤⌫ (r0)e�S[⇠⇤ ,⇠]

Z
, (3.8)

where r ⇤ (r i , ⌧) is the space-time four index, µ, ⌫ represent internal degrees of freedom, e.g., orbital and
spin, and T⌧ is the time ordering operator, which is defined by

T⌧ ⇠̂µ (r , ⌧)⇠̂†⌫ (r0, ⌧0) ⇤
8>><>>:
⇠̂µ (r , ⌧)⇠̂†⌫ (r0, ⌧0) if ⌧ > ⌧0

⇣⇠̂†⌫ (r0, ⌧0)⇠̂µ (r , ⌧) if ⌧ < ⌧0 .
(3.9)

The Green’s function depends only on the difference �r ⇤ r � r0 due to translation symmetry, and conse-
quently, the space-time degrees of freedom of the Lagrangian matrix can be diagonalized by means of Fourier
transformation (FT)�. The FT w.r.t. imaginary time has to respect the (anti-)periodic boundary conditions of
the path integral defined in Equation (3.4a), which can be achieved by the definition of Matsubara frequencies
[89, 90]

!n ⇤

8>><>>:
2n⇡
� n 2 Z0 , ⇠̂ bosonic ,

(2n+1)⇡
� n 2 Z0 , ⇠̂ fermionic ,

(3.10a)

�(Anti-)symmetry w.r.t. to imaginary time occurs naturally in the path integral. Since we impose PBC for bulk Hamiltonians, we
also have spatial translation symmetry. For open boundary calculations investigated in the context of topological edge modes in
Chapter 12, translation symmetry is broken, i.e., k is not a good quantum number anymore, and the spatial degrees of freedom
are absorbed into the indices µ, ⌫.

�With symmetric normalization, the FT is a unitary transformation, i.e., the integration measure of the path integral remains
invariant. The FT of hermitian conjugated fields is found by ⇠ ! ⇠⇤ and i! �i.
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where � ⇤ 1/T is the inverse temperature. For discrete imaginary times ⌧m ⇤ m⌘ with M ⇤ �/⌘, we define�

⇠↵,m ⇤
1p
M

M/2X

n⇤�M/2
e�i!n⌧m⇠↵,n ,

⇠↵,n ⇤
1p
M

M/2X

m⇤�M/2
ei!n⌧m⇠↵,m ,

(3.10b)

and find the continuous description after the limit of infinite time slices M !1

⇠↵ (⌧) ⇤
1

p
�

1X

n⇤�1
e�i!n⌧⇠↵,n ,

⇠↵,n ⇤
1

p
�

Z �

0
d⌧ ei!n⌧⇠↵ (⌧) .

(3.10c)

Moreover, the FT from position to momentum space is defined by

⇠↵ (r i ) ⇤
1p
N

X

k

eikr i⇠↵,k ,

⇠↵,k ⇤
1p
N

X

k

e�ikr i⇠↵ (r i ) ,
(3.10d)

where N is the number of lattice sites and the sum is to be performed over the Brillouin zone (BZ) of the
respective lattice. Within the limit of continuous imaginary time, we define the FT of the Green’s function

[Gk]µ,⌫ ⇤
X

�r i

Z �

0
d⌧ Gµ,⌫ (�r) e�ik�r i+i!n�⌧ , (3.11)

where k ⇤ (k , i!n ) is the four-index in momentum-Matsubara frequency space.

3.1.4 Quantum statistics of non-interacting particles

In the following, we calculate the partition function and thermodynamic potentials for free particles with the
Hamiltonian�

Ĥ (0)
⇤

X

↵

"↵⇠̂†↵⇠̂↵ (3.12)

by applying the path integral formalism, which will be of great importance for the MF and fluctuation
treatment of the SB fields in Chapter 4 and Chapter 5.

Discrete imaginary time

The partition function factorizes for the non-interacting particles, and we find with Equation (3.5) and the
solution for the Gaussian integral given by Equation (3.1g) that we are left to determine the determinant of

�The calculation holds also for a non-diagonal Hamiltonian Ĥ (0) ⇤
P
↵ ⇠
†
↵�H↵�⇠� , since it can be diagonalized by a unitary

transformation U↵� and the resulting quasiparticles fulfill the same (anti-)commutation relations. Moreover, the Jacobi determinant
J ⇤ det U det U† ⇤ det U U† ⇤ 1 is equal to one, i.e., the integration measure of the path integral remains invariant.
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the M ⇥M matrix of the Lagrangian, where the number of time slices M goes to infinity

Z(0)
⇤

Y

↵

lim
M!1

⇣
detM

⌘�⇣
↵
. (3.13)

The Lagrangian matrix is defined by the discrete expression in Equation (3.5b) and yields [86]

M ⇤

*..................
,

1 0 0 · · · 0 �⇣�

�� 1 0 0

0 �� 1
. . .

...
... 0 �� . . .

0
. . . 0

0 �� 1

+//////////////////
-

, (3.14a)

with

� ⇤ 1 �
�

M
"↵ . (3.14b)

By Laplace expansion of the first row, the determinant is found to be

detM ⇤ 1 + (�1)M�1(��)M . (3.14c)

Evaluating the limit of infinite time slices, the partition function of free particles is given by

Z(0)
⇤

Y

↵

⇣
1 � ⇣e��"↵

⌘�⇣
. (3.14d)

Continuous imaginary time

The same result can be obtained in the limit of continuous imaginary time described by Equation (3.6). The
Green’s function corresponding to Equation (3.12) is then given by G(0) (⌧) ⇤

⇣
�@⌧ � H0

⌘�1
, which yields�

[39, 48] f
G(0)

i!n

g
↵,�

⇤ �↵,� (i!n � "↵)�1 (3.15)

after FT to Matsubara space. In that basis, the action matrix becomes diagonal,

S(2)
f
⇠⇤i!n ,↵ , ⇠i!n ,↵

g
⇤

X

i$n

X

↵

⇠⇤i!n ,↵

✓
�

f
G(0)

i!n ,↵

g�1◆
⇠i!n ,↵ (3.16)

and the calculation of a determinant to obtain the partition function with Equation (3.1g) is simplified to the
evaluation of an infinite product

Z(0)
⇤

✓
det

✓
�

f
G(0)

g�1◆◆�⇣
⇤

Y

↵

Y

n
(�i!n + "↵)�⇣ . (3.17)

�For simplicity, we adapt the notation �⌧ ! ⌧.
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Now, we consider the grand potential (GP) of free particles

⌦(0)
⇤ �T ln Z(0) , (3.18)

and after applying the identity ln detA ⇤ Tr lnA, we find

⌦(0)
⇤ T⇣ ln det

✓
�

f
G(0)

g�1◆
⇤ T⇣ Tr ln

✓
�

f
G(0)

g�1◆
⇤ T⇣

X

↵,n
ln(�i!n + "↵) . (3.19a)

The occurring Matsubara sum can be evaluated analytically after multiplying with a convergence factor ei!n0+

and mapping on a complex contour integral� [48]

⌦(0)
⇤ T⇣

X

↵,n
ln(�i!n + "↵)ei!n0+

⇤ �⇣
X

↵

I
dz
2⇡i n⇣ (z) ln ("↵ � z) ez0+

⇤ �
X

↵

Z 1

�1

d!
2⇡i n⇣ (!)

⇥
ln

�
"↵ � ! + i0+

� � ln
�
"↵ � ! � i0+

�⇤

⇤ �
X

↵

Z 1

�1

d!
2⇡i n⇣ (!)2⇡i ⇥ (! � "↵) ⇤ �

X

↵

Z 1

"↵
d!n⇣ (!)

⇤ ⇣T
X

↵

ln
⇣
1 � ⇣e��"↵

⌘
,

(3.19b)

with

n+1("↵) ⇤ nB("↵) ⇤
1

e�"↵ � 1
Bose � Einstein distribution (3.20a)

n�1("↵) ⇤ nF("↵) ⇤
1

e�"↵ + 1
Fermi �Dirac distribution . (3.20b)

This result will be used later on to determine the MF grand potential and implicates the same partition function
that we obtained for discrete imaginary times in Equation (3.14d) as desired. Finally, we want to establish a
connection between the equal-time Green’s function and quantum particle statistics.

G(0)
↵ (�⌧ ⇤ 0�) ⇤

1
�

X

i!n

G(0)
↵,i!n

ei!n0+
⇤

X

↵

(i!n � "↵)�1 ei!n0+
⇤ �⇣n⇣ ("↵) . (3.21)

Details on the occurring Matsubara summations are provided in Appendix A.5.

3.2 Slave-boson Lagrangian

Applying the knowledge of Chapter 2, we map the general Hamiltonian in Equation (2.1) to the SB represen-
tation by utilizing the operator representations summarized in Table 2.1. We choose the PF description of the
charge density operator because it can be integrated out exactly later on and adopt the bosonic representation
of the Hubbard interaction that simplifies it to a quadratic form. The resulting theory is decomposed into a
part containing both, PF and SB degrees of freedom and a purely bosonic part

Ĥ ⇤ ĤF + ĤB (3.22)
�The convergence factor needs to be added due to the ill-defined continuum limit. As can be seen in the discrete description,
the fields entering the Hamiltonian differ by a single time slice, which is omitted in the continuous expression and leads to the
necessity of the convergence factor.
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with

ĤF ⇤

X

��0�1�2

X

i, j

f̂ †i ,� ẑ†i ,��1
tfi j,�1�2

ẑ j,�0�2
f̂ j,�0 +

�
✏f � µ0

� X

i ,�

f̂†i ,� f̂i ,�

+

X

��0

2666664
OX

o⇤1

X

i, j

ĉ†o ,i ,� to
i j,��0 ĉo , j,�0 +

OX

o,o0

X

i j

⇣
ĉ†o ,i ,�Ṽ oo0

i j,��0 ĉ j,�0 + h.c.
⌘3777775

+

X

i ,�,o

�
✏o � µ0

�
ĉ†o ,i ,� ĉo ,i ,� ,

+

X

��0�2

OX

o⇤1

X

i j

✓
ĉ†o ,i ,�Vof

i j,��2
ẑ j,�0�2

f̂ j,�0 + h.c.
◆

(3.23a)

ĤB ⇤ U
X

i

d̂†i d̂i . (3.23b)

To calculate the partition function on the physical subspace, we need to evaluate [53]

Z ⇤ Tr
⇣
e��ĤP

⌘
, (3.24)

where P is the projector defined in Equation (2.18). Within the coherent state path integral of SBs and PFs
applied to all lattice sites i, the product of exponentials yielding from the projectors and e��Ĥ can be written as
a sum in one exponential. We, moreover, identify the arbitrary parameter T in the definition of the projectors
with inverse temperature �. Consequently, we may divide the constraint operator terms into the same time
slices as the Hamiltonian, and we need to add these to the Lagrangian. Applying Equation (3.6), we, therefore,
find the effective Lagrangian [50, 53, 66]

L ⇥
 ⇤ , ,�⇤ ,�

⇤
⇤ LF

⇥
 ⇤ , ,�⇤ ,�

⇤
+ LB

⇥
 ⇤ , 

⇤
(3.25)

with

LF
⇥
 ⇤ , ,�⇤ ,�

⇤
⇤ HF

f
 ⇤ , ,�⇤ ,�

g
+

X

i

f
�†i @⌧�i + �0,i f †i ⌧0 f i + �i ·

⇣
f †i ⌧ f i

⌘g
, (3.26a)

LB
⇥
 ⇤ , 

⇤
⇤

X

i

f
 †i @⌧ i + U d⇤i di + ↵i

⇣
e⇤i ei + p⇤0,i p0,i + p⇤i · p i + d⇤i di � 1

⌘

� �0,i
⇣
p⇤0,i p0,i + p⇤i · p i + 2d⇤i di

⌘
� �i ·

⇣
p⇤0,i p i + p⇤i p0,i � ip⇤i ⇥ p i

⌘ g
.

(3.26b)

We, moreover, define

 i ⇤

✓
ei , di , p0,i , p1,i , p2,i , p3,i

◆>
, (3.27a)

�i ⇤

✓
c1,",i , c1,#,i , ... , cO ,",i , cO ,#,i , f",i , f#,i

◆>
(3.27b)

for the collection of SB and PF fields, and  represents the SBs including the Lagrange multipliers (LMs)
↵, �0 , �.

3.2.1 Radial gauge

In Section 2.2.2 it was shown that the constraints are conserved quantities, which according to the Noether
theorem [77] implicate respective continuous symmetries, specifically a SU(2)⌦U(1)⌦U(1) gauge symmetry,
where the LMs ↵, �0 , �1 , �2 , �3 act as gauge fields. The static MF approximation discussed in Chapter 4 does



Ch
ap

te
r3

3.2 Slave-boson Lagrangian | 29

not depend on the choice of gauge. The full functional integral, however, is only applicable if the gauge is
fixed.

The gauge freedom does not correspond to a physical symmetry but is an artifact of the SB representation
associated with the constraints, which is why those gauge fields are also referred to as spurious fields, or
Faddeev–Popov ghosts [91]. In Section 3.2.3, we will explicitly calculate the exact atomic limit and show that
an unfixed yields an incorrect partition function due to over-counting. In the case of Gaussian fluctuations
discussed in Chapter 5, the spurious degrees of freedom cause unphysical divergences, which need to be
projected out in order to evaluate correlation functions. These zero modes can be understood as Goldstone
modes, originating in the spontaneously broken gauge symmetries of the MF approximation.

The correct gauge symmetry has been debated for quite some time, including wrong assumptions of a
higher symmetry group [59, 60, 72, 92–95], until it was agreed to be U(1) ⌦ U(1) ⌦ U(1) for the original
KR representation [96] and SU(2) ⌦ U(1) ⌦ U(1) for the SRIKR representation applied here [50]. Following
References [53] and [50], the spurious degrees of freedom can be removed in the radial gauge, where the fields
on each lattice site are expressed by their absolute value and phase�

e ⇤ ei✓ |e | ,
d ⇤ ei� |d | ,
p ⇤ ei�0ei�⌧q ,

q ⇤
1
2

X3

µ⇤0
qµ⌧µ ,

(3.28a)

with qµ 2 R. In order to do so, we need to simultaneously perform a local SU(2) ⌦U(1) gauge transformation
for the PFs and a U(1) gauge transformation for the d-and p-bosons respectively, where the gauge phases
match their counterparts in the radial description

f ! e�i�0 f e�i�⌧ ,

d ! ei(✓+2�0) d ,

p ! ei✓p ,

p̃ ! ei✓ p̃ .

(3.28b)

Following these transformations, all terms associated with the five phases ✓, �0 , �1 , �2 and �3 can be absorbed
into the Lagrange multipliers by applying

⇣
↵ + i✓̇

⌘
! ↵ , (3.29a)

�
�0 + i�̇0

� ! �0 , (3.29b)
⇣
� � i

⇣
n�̇ + ṅ sin � cos � � ṅ ⇥ n sin2 �

⌘⌘
! � , (3.29c)

which is proven in Appendix A.3. Consequently, the phases of e, p0 , p1 , p2 and p3 are removed, i.e., they real
fields and only the d-field remains complex. Without phases, the p and q matrices are equivalent, and we
will go back to the previous notation involving p , p0 and e in the following and it implied that these fields
are real-valued. This gauge reveals two major simplifications for the bosonic Lagrangian. First of all, the
time derivatives of all real fields vanish due to PBCs of the path integral for which total derivatives vanish

�The gauge transformation is local, i.e., all fields employ the same space-time index r for the whole calculation. We will thus drop
it for better readability, and the transformation is applied for each space-time independently.
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(2e@⌧e ⇤ @⌧e2 ⇤ 0, etc.). Secondly, the cross product p⇤ ⇥ p , which enters the �-constraint vanishes and we
find

LF
f
 i ,�

⇤
i ,�i

g
! HF

⇣
 i ,�

⇤
i ,�i

⌘
+

X

i

f
�†i @⌧�i + �0,i f †i ⌧0 f i + �i ·

⇣
f †i ⌧ f i

⌘g
, (3.30a)

LB[ i]!
X

i

"
d⇤i (@⌧ + U)di + ↵i

⇣
e2

i + p2
0,i + p2

i + d⇤i di � 1
⌘
� �0,i

⇣
p2

0,i + p2
i + 2d⇤i di

⌘
� �i · 2p0,i p i

#
. (3.30b)

The PF part does not explicitly change except for the removed bosonic phases. This radial gauge will be
denoted by the dependency  instead of  ⇤ , in the following. When calculating the partition function in
this gauge, the integration measure also needs to be substituted [50]

Z 1

�1

d ⇤d 
2⇡i !

Z 1

0
d 2 . (3.31)

Moreover, according to the Read-Newns path integral [97, 98], the Lagrange multipliers are promoted to
dynamic potential fields, which need to be integrated along the entire imaginary axis [48].

3.2.2 Momentum-space representation

We impose PBCs to the Hamiltonian, and due to the resulting translation symmetry, the natural basis of LF

is in momentum space. We apply the FT defined in Equation (3.10d) to the collection of PFs �i as well as the
bosonic zi-matrices and LM fields �0,i , �i , where number of lattice sites is denoted by N . We then can rewrite
the PF part of the Lagrangian through a SB-dependent hopping matrix H 

k1 ,k2
[53, 56, 99]

LF
f
�⇤k1
,�k2

, k1,2

g
⇤

X

k1 ,k2

�†k1

⇣
@⌧�k1 ,k2 + H 

k1 ,k2

⌘
�k2
, (3.32)

with

H 
k1 ,k2

⇤ �k1 ,k2

⇣
✏ � µ0

⌘
+

1p
N

⇣
B
⌘>

k1�k2
+

1
N

X

k

⇣
Z†

⌘>
k�k1
H k

⇣
Z

⌘>
k�k2

. (3.33a)

Moreover, we define the bare hopping matrix

H k ⇤

X

i j

eik�i j

✓
to

i j + tfi j + Ṽ i j + Vo f
i j

◆
, (3.33b)

that contains orbital and spin degrees of freedom and �i j connects lattice sites i and j. It describes the
hopping matrix of the non-renormalized Hamiltonian, excluding on-site degrees of freedom. These need to
be considered separately because they are not renormalized by the z-matrices within the SB representation,
and we define

✏ ⇤ diag(✏1 , ..., ✏O , ✏f) . (3.33c)

Also, we define a generalized Z-matrix, where all non-interacting orbitals are represented by the identity
matrix and a generalized Lagrange multiplier matrix, which of course vanishes for the non-interacting orbitals

Zk ⇤ (12O⇥2O

p
N�k ,0) � zk , (3.33d)
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Bk ⇤ 02O⇥2O � �k
, (3.33e)

�
k
⇤

3X

µ⇤0
�µ,k⌧µ . (3.33f)

Finally, we define the PF Green’s function

G 
k1 ,k2

⇤ �
⇣
@⌧ + H 

k1 ,k2

⌘�1
. (3.34)

After all, the SB Lagrangian is given by

L ⇥
�⇤ ,�, 

⇤
⇤ LB

f
 i

g
+ LF

f
�⇤k1
,�k2

, k1,2

g
, (3.35)

where LB defined in Equation (3.30b) is kept in position-space and LF given by Equation (3.32) is more
conveniently handled in momentum-space.

3.2.3 Atomic limit

Our model of interacting electrons associated with the two-particle Hubbard term cannot be integrated out
exactly within the path integral because the action contains terms of the order O

⇣
f4

⌘
in the Lagrangian. This

problem, of course, is not resolved by the SB representation because of the coupling of PF and SB fields in
LF produces terms of the order O

⇣
 4�2

⌘
, which is in general even more complicated. In the atomic limit

where we consider only one lattice site, however, only quadratic terms remain and the fields can principally
be integrated out analytically. The according Hamiltonian is given by

ĤAtom ⇤ �µ0
X

�

f̂†� f̂� + U f̂†" f̂"f̂
†
# f̂# ! �µ0

X

�

f̂ †� f̂� + Ud̂† d̂ . (3.36a)

The Hilbert space is only four dimensional {|0i , |"i , |#i , |2i}, and we find

ZAtom ⇤ Tr e��ĤAtom ⇤ 1 + 2e�µ0 + e�(2µ0�U) . (3.36b)

In the following, we will show that the SB path integral reproduces the correct atomic limit within the radial
gauge under the assumption that the LM fields can be chosen to be time-independent, whereas the Cartesian
gauge yields an incorrect result due to over-counting, which stresses the importance of the gauge fixing. Even
though the LMs are formally time-dependent in the radial gauge, we assume them to be static in the atomic
limit because the charge density n̂ ⇤

P
� f̂
†
� f̂� is a conserved quantity, which can be seen in the Heisenberg

picture
@n̂
@⌧

⇤
1
~

f
ĤAtom , n̂

g
� ⇤ 0 . (3.36c)

It would nevertheless be desirable to set up the formally correct calculation with time-dependent LMs, which
has been established for the KR-SB representation at infinite interactions [100, 101], but is, as far as we know,
still lacking for the general case.

We present the following atomic limit calculation based on Reference [53], which is a generalization from
the KR representation shown in Reference [80] to the SRIKR case. According to Equation (3.30), the SB-atomic
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limit Lagrangian in the radial gauge is given by

LAtom ⇤ �↵ + ↵e2
+ d⇤(U + @⌧ + ↵ � 2�0)d + p>B p + f †F f (3.37a)

with

p ⇤

*.........
,

p0

p1

p2

p3

+/////////
-

, B ⇤

*.........
,

↵ � �0 ��1 ��2 ��3

��1 ↵ � �0 0 0

��2 0 ↵ � �0 0

��3 0 0 ↵ � �0

+/////////
-

,

f ⇤
*..
,

f"

f#

+//
-
, F ⇤

*..
,
@⌧ � µ0 + �0 + �3 �1 + i�2

�1 � i�2 @⌧ � µ0 + �0 � �3

+//
-
.

(3.37b)

To integrate out the fields, one needs to diagonalize the matrices B and F , whose eigenvalues are given by

B1/2 ⇤ ↵ � �0 ,

B3/4 ⇤ ↵ � �0 ± � ,
F1/2 ⇤ @⌧ � µ0 + �0 ± �

(3.37c)

where � ⇤

q
�2

1 + �
2
2 + �

2
3. In this quasiparticle (QP) basis, we have a diagonal Lagrangian of non interacting

fermions and bosons and we apply Equation (3.14d) to integrate out the fields. Consequently, we find

ZAtom ⇤ lim
N!1

1
(2⇡iT)2

1
(2⇡iNT)3

Z i⇡T

�i⇡T
d↵

Z i⇡T

�i⇡T
d�0

$ i⇡NT

�i⇡NT
d3� e↵/T

⇣
1 � e�↵/T

⌘�1 ⇣
1 � e�(↵�2�0+U)/T

⌘�1

⇥
⇣
1 � e�(↵��0)/T

⌘�2 ⇣
1 � e�(↵��0+�)/T

⌘�1 ⇣
1 � e�(↵��0��)/T

⌘�1 ⇣
1 + e�(�0+��µ0)/T

⌘ ⇣
1 + e�(�0���µ0)/T

⌘

(3.38a)

and are left to determine the integrals over the LMs. We start with the integration of ↵, and observe that the
partition function can be written as an integral over a function of e↵/T

ZAtom ⇤
1

2⇡iT

Z i⇡T

�i⇡T
f

⇣
e↵/T

⌘
d↵ , (3.38b)

and after substituting ↵/T ! i↵, we find

1
2⇡iT

Z i⇡T

�i⇡T
f

⇣
e↵/T

⌘
d↵ ! 1

2⇡

Z ⇡

�⇡
f

⇣
ei↵

⌘
d↵ . (3.38c)

Now, we may exploit that the projectors defined in Equation (2.18) are invariant under the addition of an
arbitrary imaginary part to the Lagrange multipliers ↵ ! ↵ + i↵̃, which by substitution z ⇤ e�i↵ maps the
integral onto a complex contour integral with radius e�↵̃ around the origin

1
2⇡

Z ⇡

�⇡
f

⇣
ei↵

⌘
d↵ ! � 1

2⇡i

I
1
z

f
✓ 1

z

◆
dz . (3.38d)
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Since ↵̃ may be chosen arbitrary small, we may determine the integral by its residue at z ⇤ 0 and after
applying the substitution given by Equation (3.38c) to all LMs, we find

ZAtom ⇤ �Res
 1

z
f

✓ 1
z

◆
, z ⇤ 0

�
⇤ lim

N!1
1

2⇡
1

(2⇡N)3

Z ⇡

�⇡
d�0

$ ⇡N

�⇡N
d3�

⇣
1 + e�(2i�0+U/T)

+ 2e�i�0�i�
+ 2e�i�0+i�

⌘

⇥
⇣
1 + ei�0+i�+µ0/T

⌘ ⇣
1 + ei�0�i�+µ0/T

⌘
.

(3.38e)

The �0-integral may be carried out in the same way, yielding

ZAtom ⇤ 1 + e�(U�2µ0)/T
+ 2eµ0/T + eµ0/T lim

N!1
1

(2⇡N)3

$ ⇡N

�⇡N
d3�

�
2 cos(2�) + 4 cos(�)

�
. (3.38f)

The remaining integral vanishes in the limit N ! 1 and thus we recover the correct result for the partition
function of the atomic limit in the radial gauge�

ZAtom ⇤ 1 + 2eµ0/T + e(2µ0�U)/T . (3.38g)

The calculation can be carried out in the same way with complex fields in the Cartesian gauge, with the only
difference that there are additional contributions from the cross product p⇤ ⇥ p . By explicit calculation one
finds that this term causes an over-counting yielding the wrong partition function 1 + e�(U�2µ0)/T + 4eµ0/T

[53]. It is, therefore, crucial to remove the spurious fields in order to have a well-defined path integral�.
We will argue for the Gaussian fluctuations in Chapter 5 that the best way to approximatively fulfill the

↵-constraint is to replace an arbitrary SB field by direct application of 1 ⇤ e2 + d⇤d +
P3
µ⇤0 p2

µ. This, however,
is not correct for exact calculations like the atomic limit, where the replacement yields a wrong partition
function and the result even depends on which field has been replaced�.

�We use
R

x2 (cos(2x) + 2 cos(x)) dx ⇤ x2 (2 sin(x) + sin(x) cos(x))+x
⇣
4 cos(x) + 1

2 cos(2x) � 4 sin(x) � 1
2 cos(x) sin(x)

⌘
and apply

spherical coordinates. Since the trigonometric functions are bounded, we find the integral to be of the orderO
⇣
N2

⌘
and considering

the normalization, we find limN!1
O(N2)
O(N3) ⇤ 0.

�It was understood early in the literature that the cross product of the p-fields is problematic. So it was at some point suggested
in the literature to add an additional constraint �

⇣
p̂† ⇥ p̂

⌘
⇤ 0 to force the cross product to be zero [73, 74]. This, however, was

agreed to be incorrect in the following literature [75, 76]. And an explicit analogous calculation of the partition function would
also yield the wrong result, to be specific 1 + e(2µ0�U)/T .

�Replacing e2, e.g., yields ZAtom ⇤ 1 + 2eµ0/T + e(2µ0�U)/T + 4e2µ0/T , i.e., we explicitly find that not integrating the ↵-constraints
causes states, which are occupied by more than one boson.
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Static mean-field approximation

As we pointed out in Chapter 3, the slave-boson (SB)-Lagrangian is of the order L ⇤ O

⇣
�2 4

⌘
in pseud-

ofermion (PF) and SB fields, and those in total cannot be integrated out exactly. We, therefore, solve the
problem approximately by imposing a static, uniform mean-field (MF) ansatz to the SB and Lagrange mul-
tiplier (LM) fields, i.e., replacing respective space-time dependent fields by their quantum mechanical (QM)
expectation values�

 (⇤)
µ,i (⌧) !

⌧
 (⇤)
µ,i (⌧)

�
⇤  µ . (4.1a)

Following Equation (3.7), the QM expectation value is given by

⌧
 (⇤)
µ,i (⌧)

�
⇤

R
D ⇥

 ,�⇤ ,�
⇤
 (⇤)
µ,i (⌧) e�S(0)[�⇤ ,�]

Z(0) , (4.1b)

where S(0) denotes the MF action and Z(0) the MF partition function, which are of 0th order in bosonic fields.
Because of translation symmetry of the Lagrangian w.r.t. space-time L(r) ⇤ L(r + �r), the expectation
value  µ does not depend on r ⇤ (r i , ⌧) and is thus simply given by a real number. Within this ansatz, the
action becomes quadratic in PF degrees of freedom and can be integrated out exactly. Since S(0) does not
depend on bosonic fields, our MF ansatz does not implicate a direct self consistency equation like e.g., in BCS

theory� [28, 102]. We will rather minimize the MF free energy (FE) F(0) , while enforcing the MF constraints,
to determine the ground state. Within this uniform MF ansatz, the SB-dependent hopping matrix introduced
in Equation (3.32) becomes diagonal, because the z-matrices do not carry space-time degrees of freedom any
more, i.e., H 

k1 ,k2
! Hh ik .

4.1 Spiral magnetic mean-field ansatz

Although the internal spatial degrees of freedom are removed by the uniform MF ansatz, we may impose
non-uniform, symmetry-breaking order by means of an external ordering vector Q. The SB method is well-

�Since the MF Lagrangian is hermitian, its eigenvalues only depend on
D
 µ

E D
 ⇤µ

E
, consequently the MF variables  µ can be chosen

to be real.
�In BCS theory and most other fermionic MF theories, the two-particle vertex of the orderO

⇣
f4

⌘
is replaced by a quadratic expression

times the MF expectation value, yielding the order O
⇣
f2 hfi2

⌘
, which makes the action quadratic. However, in opposite to the SB

case, the BCS MF action still depends on the same fields that also appear in the expectation value, which implicates a self-consistency
condition. It can be shown that solving the resulting gap-equation is equivalent to minimizing the MF free energy (FE) [39]. Since
the SB mean-field variables are coupled to the PFs (which still enter the action as fields) by the constraints, one can, however, argue
that the saddle point equations, which determine the ground state, are also self-consistency equations.
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(a) FM, i.e., Q ⇤ 0. The magnetic unit
cell encompasses one lattice site and
is identical to the PM unit cell.

(b) AFM order, i.e., Q ⇤ (⇡, ⇡)>. The
magnetic unit cell encompasses two
lattice sites and is doubled in size
compared to the PM unit cell.

(c) ICM order with Q ⇤ (1.4, 1.4).
There is no spatial translation in-
variance, i.e., the unit cell is given
by the whole lattice.

Figure 4.1: Visualization of the average spin structure in accordance with the spiral magnetic MF for three different
ordering vectors in two spatial dimensions. The dots represent lattice sites and arrows depict the orientation of the
respective MF spin. The translation invariant magnetic unit cell is displayed by the gray squares.

suited for the investigation of magnetic order because of the simple form of the SB spin operator Ŝi ⇤ ⇢̂i p̂0,i .
Accordingly, we define the MF ansatz [53, 55, 71, 74, 103–105]

p i (⌧) ! p
*.....
,

cos(QRi )

sin(QRi )

0

+/////
-
, (4.2a)

p0,i (⌧) ! p0 , (4.2b)

ei (⌧) ! e , (4.2c)

di (⌧) ! d , (4.2d)

which incorporates a spin spiral in the x-y plane� , where the absolute value of the spin expectation value,
i.e., the (staggered) magnetization is given by

m ⇤
���
D
Ŝ
E��� ⇤ pp0 , (4.3)

and the spatial periodicity, and thus also the size of the magnetic unit cell [19] is controlled by the external
ordering vector Q. For simplicity of notation, we have dropped the brackets h·i, but the MF variables are to
be understood as expectation values, which are positive semidefinite {p , p0 , e , d} 2 R+

0 and we recognize that
p ⇤ ��p��. Moreover, we define the spin-spiral periodicity P as the minimal integer that satisfies

PQ mod 2⇡ ⇤ 0 (4.4)

For a more intuitive understanding, P is also identified with the number of atoms per magnetic unit, i.e., its
size is proportional to P, and the size of the magnetic BZ is reduced by a factor 1/P in comparison to the PM

�For SRI models, the spin-plane is arbitrary, and we can make this choice w.l.o.g. If spin-orbit coupling (SOC) is present, the
orientation may play a role and can be rotated as discussed in Appendix B.4.
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case. The two most important types of magnetic order covered by the MF ansatz are ferromagnetism (FM)

(Q ⇤ (0, 0, 0)>, P ⇤ 1) and antiferromagnetism (AFM) (Q ⇤ (⇡, ⇡, ⇡)>, P ⇤ 2). If components of Q/2⇡ are
not a rational number, we find P ! 1 and the BZ shrinks to a single point, implying that the momentum k
is no longer a good quantum number. This type of order is called incommensurate magnet (ICM). The three
discussed examples of magnetic ground states are illustrated in Figure 4.1.

Since the constraints defined in Equation (2.14) can also not be integrated out exactly within the field theory,
we need to consider them in the static MF ansatz as well. In order to do so, the constraint fields act as Lagrange
multipliers (LMs) to enforce the constraints on average by fixing the occupation of bosons and matching the
expectation values of the SB and PF representations of the spin and charge density

1 ⇤ e2
+ d2

+ p2
0 + p2 , (4.5a)

hn̂Fi ⇤ hn̂Bi ⇤ 2d2
+ p2

0 + p2 , (4.5b)���
D
ŜF

E��� ⇤ ���
D
ŜB

E��� ⇤ pp0 . (4.5c)

Moreover, the PFs need to be constrained to the same spin-spiral as the SBs, which leads to the ansatz [53, 55,
71, 74, 103–105]

↵i ! ↵ , (4.6a)

�0,i ! �0 , (4.6b)

�i ! �

*.....
,

cos(QRi )

sin(QRi )

0

+/////
-
, (4.6c)

with ↵, �0 , � 2 R. Notice that the constraint given by Equation (4.5a) fixes the normalization of the magneti-
zation to the expected continuous interval m 2

f
0, 1

2

g
. PM states, defined by a vanishing magnetization, are

recovered by p ⇤ 0, and the corresponding ground state does not depend on the ordering vector Q. This
limit also implicates � ⇤ 0 because the PF expectation value of the spin does not vanish otherwise.

4.2 Non-interacting limit

The discussed lattice Hamiltonians are exactly solvable in the limit of zero interaction U ! 0 in the original
fermionic description. It is desirable that our MF approach correctly reproduces that limit, which requires
z ⇤ 12 for U ⇤ 0, since the z-matrix renormalizes the hopping and hybridization amplitudes of the PFs.
In order to achieve that goal, we exploit the freedom of description of the exact theory on the constrained
subspace according to Equation (2.17). We may thus renormalize the ẑ-matrix operator� [73]

ẑ ⇤ ê† p̂ + ˆ̃p† d̂ !
✓
ê† L̂ M̂ R̂ p̂ + ˆ̃p† L̂ M̂ R̂d̂

◆
, (4.7a)

�In early works, the renormalization was not correct in the non-interacting limit, which in some cases came along with a wrong
normalization of the p-matrix [50, 59, 61, 66, 71], this was corrected in Reference [73]. It was also recognized that the normalization
factors break the normal order of the path integral [75], which we will further discuss in Section 5.1.
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with

L̂ ⇤

✓
(1 � d̂† d̂ )⌧0 � 2 p̂† p̂

◆�1/2
, (4.7b)

M̂ ⇤
*.
,
1 + d̂† d̂ + ê† ê +

X

µ

p̂†µ p̂µ
+/
-

1/2

, (4.7c)

R̂ ⇤

✓
(1 � ê† ê )⌧0 � 2 ˆ̃p† ˆ̃p

◆�1/2
, (4.7d)

without impacting the exact theory, whereas the MF approximation is subject to change. As shown in Ap-
pendix A.4, the renormalized z-matrix can be expressed in a more convenient way, where the renormalization
factors L̂ and R̂ become diagonal by expansion in the basis of Pauli matrices. Within the spiral MF ansatz
defined in Equation (4.2), it is found to be [53, 99]

zi ⇤
z+ + z�

2 ⌧0
+

z+ � z�
2

3X

µ⇤1

pµ,i
p
⌧µ ⇤

*..
,
Z+ Z� e�iQRi

Z� eiQRi Z+

+//
-
, (4.8a)

with

Z± ⇤
z+ ± z�

2 , (4.8b)

z± ⇤
p0(e + d) ± p(e � d)

p
2

⇥
1 � d2 � (p0 ± p)2/2

⇤ ⇥
1 � e2 � (p0 ⌥ p)2/2

⇤ . (4.8c)

In the PM limit, the matrix reduces to

z0 ⇤
p0(e + d)

q
2(1 � d2 � p2

0/2)(1 � e2 � p2
0/2)

⌧0
⇤ z0⌧0 . (4.8d)

Returning to the question of the non-interacting limit, we may assume Equation (4.8d) to be present because
there is no magnetic order without interaction and need to show that z0 ⇤ 1 for U ⇤ 0. For free particles, the
two possible electronic states |"i , |#i are under consideration of the Pauli principle randomly occupied with
the same probability on each site. For an average filling of 0  n  2 per site, the mean occupation of |"i
or |#i is given by n/2. Consequently, the average number of doubly occupied sites is given by d2 ⇤ (n/2)2,
the mean value of singly occupied sites yields p2

0 ⇤ 2(n/2)(1 � n/2) by accounting for the spin degeneracy.
Finally, it is e2 ⇤ 1 � d2 � p2

0 ⇤ (1 � n/2)2. Inserting these expressions into Equation (4.8d), one finds z0 ⇤ 1
independent of n as demanded, which correctly fixes the non-interacting limit� [53, 99].

�There are still multiple different choices of renormalization factors that fulfill the correct non-interacting limit. The MF renor-
malization, e.g., remains unchanged if creation operators are substituted by annihilation operators. However, the established
choice employing particle operators is reasonable because the renormalized Hamiltonian remains hermitian in the exact theory.
Moreover, the MF solution in the non-interacting limit is invariant under the substitution ˆ̃p† ! p̂†, because it features p ⇤ 0.
However, the particular chosen form is necessary to recover the exact original KR-SB representation [49] in the limit p1 ⇤ p2 ⇤ 0.
Moreover, the chosen form recovers the symmetry of simultaneously interchanging e $ d and ˆ̃p† $ p̂†, which is present in the
exact representation within the MF ansatz. We confirmed by numerical analysis that breaking this symmetry causes inconsistent
and unphysical results for the MF solution. After all, there remains some ambiguity about the choice of the renormalization
factors, but the presented form has been commonly agreed on in the SB community, and we provided strong arguments why
it is reasonable. Finally, another point is that the numerical results calculated with this renormalization compare well to other
theoretical methods.
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4.3 Mean-field Lagrangian

Under application of the MF ansatz defined in Equations (4.2) and (4.6), the SB Lagrangian given by Equa-
tion (3.35) is simplified to [53, 54]

L (0) ⇥
�⇤ ,�

⇤
⇤ L (0)

B + L (0)
F

⇥
�⇤ ,�

⇤
, (4.9a)

with

L (0)
B ⇤ N

f
Ud2

+ ↵(e2
+ d2

+ p2
0 + p2 � 1) � �0(2d2

+ p2
0 + p2) � 2�p0p

g
, (4.9b)

L (0)
F

⇥
�⇤ ,�

⇤
⇤ HF

f
�⇤ ,�

g
+

X

i

f
�†i @⌧�i + �0 f †i ⌧

0 f i + �
⇣

f †i
⇥
cos (QRi ) ⌧x

+ sin (QRi ) ⌧y ⇤ f i

⌘g
, (4.9c)

where N denotes the total number of lattice sites. The corresponding MF action is given by

S(0)
⇤

Z �

0
d⌧L (0) ⇥

�⇤ ,�
⇤
⇤ S(0)

B + S(0)
F (4.10)

and since L (0)
B is constant w.r.t. the field theory, the bosonic part is simply given by

S(0)
B ⇤ �L (0)

B . (4.11)

Since S(0)
F is quadratic in PF fields, it describes a renormalized effectively non-interacting field theory that

can be treated in analogy to the discussion in Section 3.1.4. To integrate out the PFs later on, we exploit the
translation invariance by adapting a diagonal basis in momentum-space and need calculate the SB-dependent
hopping matrix H ,Q

k as MF analog to Equation (3.33a). Despite having only one internal momentum index,
the external ordering vector Q correlates two fields with a momentum overlap of ±Q, which generally
increases the dimension of H ,Q

k as a consequence of an enlarged magnetic unit cell for Q , 0. Since we
require �k+2⇡ ⇤ �k to hold, a suitable basis that captures all possible correlations and exploits translation
invariance w.r.t. the magnetic unit cell, is found by�

�Q
k ⇤

⇣
�k ,�k+Q ,�k+2Q , ... ,�k+(P�1)Q

⌘>
,

�k ⇤
⇣
c1,k ," , c1,k ,# , ... , cO ,k ," , cO ,k ,# , fk ," , fk ,#

⌘>
.

(4.12)

With the definition of the spin-spiral periodicity in Equation (4.4), it enables a ladder of possible momentum
overlaps with PBCs. In analogy to Equation (3.16), the action can then in Matsubara-space be expressed by

S(0)
F ⇤

X

k

⇣
�Q

k

⌘† ⇣
�i$n + H ,Q

k

⌘
�Q

k ⇤ �
X

k

⇣
�Q

k

⌘† f
G k

g�1
�Q

k , (4.13)

with the PF mean-field Green’s function

G k ⇤
⇣
i$n � H ,Q

k

⌘�1
. (4.14)

The specific forms of H ,Q for the three models that we discuss within this thesis, i.e., the Hubbard model,
periodic Anderson model (PAM) and topological Kondo insulator (TKI) model, are derived in Appendix B. In

�As shown in [55], this basis is connected to a real space sublattice basis by a unitary transformation. However, the chosen basis is
more convenient, especially with its simplificaton for spin degenerate models.
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general, the dimension of the SB-dependent hopping matrix is given by dim H ,Q
⇤ 2⇥(O+1)⇥P, proportional

to the spin-spiral periodicity P, which makes the evaluation of large magnetic unit cells numerically costly.
For models without spin-orbit coupling (SOC) (i.e., the Hubbard model and PAM in our case), however, there is
a block-diagonality such that only equal spins with the same momenta and opposite spins with a momentum
transfer of Q couple. In this case, we can express H ,Q in the reduced basis

�Q
k !

⇣
c1,k ," , c1,k�Q ,# , ... , cO ,k ," , cO ,k�Q ,# , fk ," , fk�Q ,#

⌘>
, (4.15)

whose dimension is independent of Q and P. This property comes with the convenience that Q can be
considered as a continuous MF parameter without adapting the respective matrix H ,Q . We can, therefore,
easily determine MF ground-states with arbitrary Q, including the possibility of incommensurate magnetic
(ICM) order. For models with SOC, this cannot be easily achieved, and it is preferred to determine the leading
magnetic ordering vector by means of a PM fluctuation calculation (compare Section 5.3.3) and then determine
the magnetic MF ground state for the corresponding fixed value of Q.

4.4 Saddle point equations

In order to determine the MF ground state, we need to minimize the desired thermodynamic potential,
i.e., grand potential (GP) or free energy (FE) w.r.t. the SB mean-field variables while simultaneously enforcing
the constraints. The GP per lattice site is given by

⌦(0)
⇤ � T

N
ln Z(0) , (4.16a)

with the MF partition function

Z(0)
⇤

Z
D ⇥

�⇤ ,�
⇤

e�S(0)[�⇤ ,�] . (4.16b)

For the MF action defined in Equation (4.10), it factorizes into a purely bosonic and a PF part Z(0) ⇤ Z(0)
B Z(0)

F
which yields

⌦(0)
⇤ ⌦(0)

B +⌦(0)
F (4.17a)

The bosonic part is constant w.r.t. the field theory and thus simply given by

⌦(0)
B ⇤ � T

N
ln Z(0)

B ⇤ � T
N

ln e�S
(0)
B ⇤

1
N
L (0)

B . (4.17b)

The PF contribution is determined by the action in Equation (4.13) and integration over all fields within a
diagonal basis in analogy to Equation (3.19b), yielding

⌦(0)
F ⇤ � T

N

X

k2BZQ

X

o ,s ,p ,k

ln
⇣
1 + e�"

o ,s ,p
k /T

⌘
. (4.17c)

The SB-dependent eigenvalues of H ,Q are denoted by "o ,s ,p
k , where the indices o , s , p represent the orbital,

spin and periodicity degrees of freedom for a total number of (O + 1) ⇥ 2⇥ P bands. The remaining sum is to
be performed over the magnetic BZ, which is defined by back-folding w.r.t. the reciprocal lattice vector Q. For
models without SOC, it holds "p+1

k ⇤ "p
k+Q [56]. Therefore, the reduced basis with (O + 1) ⇥ 2 bands defined
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in Equation (4.15) already considers the back-folding by the reduced number of bands and the momentum
sum has to be performed over the non back-folded, paramagnetic BZ that satisfies

P
k2BZ0 ⇤ P

P
k2BZQ .

4.4.1 Enforcement of mean-field constraints

Since the Lagrange multipliers (LMs) appear linear in the MF action, they behave like chemical potentials, and
we may enforce the constraints by demanding the derivative of the GP w.r.t. the respective LM to vanish. This
can most clearly be seen in the real-space representation

@⌦(0)

@↵
⇤ � T

N
1

Z(0)

Z
D ⇥

�⇤ ,�
⇤
�

⇣
e2

+ d2
+ p2

0 + p2 � 1
⌘

e�S(0)[�⇤ ,�] ⇤ 0 , (4.18a)

@⌦(0)

@�0
⇤ � T

N
1

Z(0)

Z
D ⇥

�⇤ ,�
⇤ *

,�
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2d2

+ p2
0 + p2

⌘
� 1

N

X

i

Z �

0
f †i ⌧

0 f i
+
- e�S(0)[�⇤ ,�] ⇤ 0 , (4.18b)

@⌦(0)

@�
⇤ � T

N
1

Z(0)

Z
D ⇥

�⇤ ,�
⇤

*.....
,
2�pp0 �

1
N

X

i

Z �

0
f †i ⌧

> f i

*.....
,

cos(QRi )

sin(QRi )

0

+/////
-

+/////
-

e�S(0)[�⇤ ,�] ⇤ 0 , (4.18c)

where we identify that the QM expectation values of bosonic and PF representations of the spin and charge
density are matched as claimed in Equation (4.5). An explicit evaluation of PF expectation values for the
Hubbard model through the equal space-time Green’s function is provided in Appendix B.1 to illustrate the
validity of the constraint implementation.

In practice, the purely bosonic ↵-constraint can be enforced by directly replacing an arbitrary bosonic MF

parameter with Equation (4.5a). The remaining two constraints must be enforced numerically, and since the
second derivatives

@2⌦(0)

@�2
0

⇤ � 1
T

D�
nf � n̂f,PF

�2E
⇤ � 1

T
Var n̂f,PF (4.19a)

@2⌦(0)

@�2 ⇤ � 4
T

⌧⇣
Sf � Ŝf,PF

⌘2�
⇤ � 4

T
Var Ŝf,PF (4.19b)

are negative definite quantities related to the variance of the charge and spin density, it is guaranteed that the
MF values of �0 and � are always uniquely determined. The constraints can thus be enforced by maximizing
the GP w.r.t. �0 and �, i.e., the system pays an extremized energy penalty if it deviates from the constraints.

4.4.2 Grand potential

According to Equation (4.17), the GP is given by

⌦(0)
⇤ � T

N

X

k2BZQ

X

o ,s ,p
ln

⇣
1 + e�"

o ,s ,p
k /T

⌘
+ Ud2

+ ↵(e2
+ d2

+ p2
0 + p2 � 1) � �0(2d2

+ p2
0 + p2) � 2�p0p . (4.20)
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The MF ground state is determined by minimizing the GP w.r.t. the SB variables, while simultaneously enforcing
the constraints, i.e., maximizing w.r.t. the LMs. The corresponding saddle point equations are given by�

@⌦(0)

@e
⇤

1
N

X

k2BZQ

X

o ,s ,p
nF

⇣
"s ,o ,p

k

⌘ @"s ,o ,p
k
@e

+ 2↵e ⇤ 0, (4.21a)
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1
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X

k2BZQ

X

o ,s ,p
nF

⇣
"s ,o ,p

k

⌘ @"s ,o ,p
k
@p0

+ 2p0(↵ � �0) � 2�p ⇤ 0 , (4.21b)

@⌦(0)
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1
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X

k2BZQ

X

o ,s ,p
nF

⇣
"s ,o ,p

k

⌘ @"s ,o ,p
k
@p

+ 2p(↵ � �0) � 2�p0 ⇤ 0, (4.21c)
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k2BZQ

X
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⇣
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k

⌘ @"s ,o ,p
k
@d

+ 2d(U + ↵ � 2�0) ⇤ 0 , (4.21d)

@⌦(0)
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+ d2 � 1 ⇤ 0 , (4.21e)
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X
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⇣
"s ,o ,p

k

⌘ @"s ,o ,p
k
@Q

⇤ 0 , (4.21h)

where nF denotes the Fermi-Dirac distribution defined in Equation (3.20). These saddle point equations
smoothly include the PM limit and are applicable to general Hamiltonians that may feature SOC and an
arbitrary number of conduction bands, but also include the well-known cases of the Hubbard model [50, 71]
and the PAM [74].

As stated earlier, Equation (4.21e) should be enforced by directly replacing an arbitrary SB parameter using
Equation (4.5a), which reduces the number of saddle point equations by two. The MF value of ↵ for the
ground state may formally be determined by

↵ ⇤ � 1
2e

1
N

X

k

X

o ,s ,p
nF

⇣
"s ,o ,p

k

⌘ @"s ,o ,p
k
@e

����� , (4.22)

where  denotes a set of MF parameters that satisfies all saddle point equations and the derivative is to be
taken without enforcing the ↵-constraint for the eigenvalues ". However, ↵ does not impact the quasiparticle
(QP) band structure and doesn’t have an important physical interpretation.

If we solely want to study PM solutions and explicitly exclude the possibility of magnetic order, we need
to additionally enforce p ⇤ � ⇤ 0. The resulting GP is independent of Q, only three saddle point equations
remain, and the original KR-SB representation [49] is reproduced for the Hubbard model. Moreover, it has

�We once more remind that "o ,s ,p label the eigenvalues of the SB-dependent hopping matrix H 
k that is derived in Appendix B for

the specific models that we study within this thesis. The indices o , s , p represent orbital, spin and spin-spiral periodicity degrees
of freedom respectively. The index p 2 {0, 1, ..., P � 1} reflects an enlarged magnetic unit cell that occurs for Q , 0, which implies
the summation over the back-folded magnetic BZ that satisfies P

P
BZQ ⇤

P
BZ0 . For spin-rotation-invariant models, we employ the

reduced basis defined in Equation (4.15) that does not feature the index p and requires a summation over the paramagnetic BZ for
arbitrary Q.
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been shown that this PM saddle point solution is equivalent to the Gutzwiller approximation [49, 106–109].
PM ground states, however, may feature magnetic instabilities within the study of Gaussian fluctuations
(compare Section 5.3.3). In our analysis of different models [53–56] within the framework of a combined
(para-) magnetic MF and fluctuation analysis, we found that magnetic instabilities of PM ground states (p ⇤ 0,
enforced) always coincide with a non vanishing magnetization of a magnetic MF analysis (p > 0), where
the ordering vector Q of the MF magnetization matches the leading divergence of the PM spin susceptibility
1/�PM

s (q ⇤ Q) ⇤ 0. We thus find the two approaches to be perfectly consistent. First-order transitions on the
other side cannot be directly seen in the PM fluctuation calculation because the respective GP features a local
minimum at p ⇤ 0 that indicates a meta-stable ground state. In that case, a magnetic phase transition comes
along with a discontinuous jump of the order parameter p that can be seen found within the magnetic MF

analysis by globally minimizing the GP. Correspondingly, there are multiple different saddle points, and it
needs to be taken care that the numerical minimization algorithm does not get stuck in a local minimum.

For models without SOC, where tune Q can be tuned as a continuous MF parameter that is included in the
minimization process, one should always consider the magnetic point equations because the corresponding
ground states automatically resolve magnetic instabilities that would otherwise arise in a PM fluctuation
analysis. We, nevertheless, suggest simultaneously solving the simpler PM saddle point equations as a
benchmark, which can be especially helpful to distinguish between global and local minima in the context of
first-order transitions. On the other hand, for models that feature SOC, Equation (4.21h) cannot be directly
applied because the dimension of H depends on the ordering vector Q. In that case, we recommend
determining the leading ordering vector through a PM fluctuation calculation and afterward solving the
magnetic saddle point equations for the corresponding fixed Q.

4.4.3 Free energy

If it is desired to fix the total electron filling per site n instead of the chemical potential µ0, we may solve
the saddle point equations of the free energy (FE) per lattice site. It is related to the GP by the Legendre
transformation

F(0) (T, n) ⇤ ⌦(0) (T, µ0) � µ0
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, (4.23a)

with  
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⌘
⇤ �n . (4.23b)

The total filling is fixed by an additional constraint in the field theory, where µ0 acts as LM. In the exact path
integral, we would have to integrate over µ0 in the same way as the other LMs, but to determine the MF saddle
point that constraints the filling on average, we need to maximize the FE

F(0)
⇤ � T

N

X

k2BZQ

X

o ,s ,p
ln

⇣
1 + e�"

o ,s ,p
k /T

⌘
+Ud2

+↵(e2
+ d2

+ p2
0 + p2�1)� �0(2d2

+ p2
0 + p2)�2�p0p +µ0n (4.24)

w.r.t. µ0. The role of the chemical potential looks very similar to �0 within the theory. However, both
quantities are different on a physical level of understanding. While µ0 controls the number of electrons in the
system by coupling to an external particle bath, �0 renormalizes the energy level of the interacting electrons
as a response to the energy cost due to interaction. We may, however, reduce the number of saddle point
equations if the filling nf of interacting electrons is fixed by an external bath.
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Hubbard model

For the one-band Hubbard model, it is n ⇤ nf ⇤ 2d2 + p2
0 + p2, and we may fix the total filling by directly

constraining the SB variables. In that case, however, the maximizations w.r.t. µ0 and �0 are not well defined
anymore, since both LMs appear identically the theory. We thus have to substitute µeff ⇤ µ0 � �0. In
these variables, µ0 appears only in the bosonic Lagrangian, while µeff plays the role of an effective chemical
potential, which fixes the filling of the PF band structure and �0 drops out of the equations

F(0) ! � T
N

X

k2BZ0 ,s

ln
✓
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s
k ,µeff
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+Ud2
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0+p2)�2�p0p�µ0

�
2d2

+p2
0+p2�n

�
.

(4.25)
The two purely bosonic constraints connected to ↵ and µ0 can be satisfied by directly enforcing

1 ⇤ e2
+ d2

+ p2
0 + p2 , (4.26a)

n ⇤ 2d2
+ p2

0 + p2 , (4.26b)

µeff ⇤ µ0 � �0 . (4.26c)

and maximizing the FE w.r.t. µeff rather than µ0 and �0. We choose w.l.o.g. to replace e and d by means of
Equation (4.26) and need to solve the saddle pointe equations [53]
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of the constrained FE
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For PM solutions (additionally enforcing p ⇤ � ⇤ 0), only two independent saddle point equations remain
that reduce to a single equation in certain limits where the solution can be determined analytically [49, 50, 53].
We may recover �0 and µ0 by resubstitution of Equations (4.26b) and (4.26c) and evaluating the derivative

�0 ⇤
1

4d

1
N

X

k2BZ0

X

s
nF

✓
"o ,s ,p

k ,µeff

◆ @"o ,s ,p
k ,µeff

@d
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+
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2 . (4.27c)

at the saddle point solution  . While the MF band structure only depends on µeff, it is essential to recover the
original variables µ0 and �0 in order to compare the saddle point of the FE with ground states of the GP, to
calculate the electronic compressibility (compare Section 4.6) and to evaluate Gaussian fluctuations (compare
Chapter 5).

Multi-band models

In models with at least one additional non-interacting orbital, the maximization w.r.t. µ0 and �0 is well
defined, and the saddle point is determined by
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In some cases, especially in the context of Kondo physics, we are interested in directly tuning the filling nf of
the interacting orbital instead of the on-site potential ✏f. This can be achieved by coupling the f -orbital to an
additional independent particle bath and performing a substitution in analogy to the previously discussed
Hubbard model

1 ⇤ e2
+ d2

+ p2
0 + p2 , (4.29a)

nf ⇤ 2d2
+ p2

0 + p2 , (4.29b)

✏eff ⇤ �✏f � �0 . (4.29c)

The according constrained FE is given by� [56]
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and we need to solve the saddle point equations

@F(0)
eff
@p

�����(4.29)
⇤
@F(0)

eff
@p0

�����(4.29)
⇤
@F(0)

eff
@�

�����(4.29)
⇤
@F(0)

eff
@✏eff

�����(4.29)
⇤
@F(0)

eff
@µ0

�����(4.29)
⇤
@F(0)

eff
@Q

�����(4.29)
⇤ 0 . (4.30b)

We may recover �0 by

�0 ⇤
1

4d

1
N

X

k2BZQ

X

o ,s ,p
nF

⇣
"o ,s ,p

k ,✏eff

⌘ @"o ,s ,p
k ,✏eff

@d

�����(4.29a), 
+

U
2 . (4.30c)

While the MF band structure only depends on ✏eff, it is important to recover the original variables ✏f and �0

in order to evaluate Gaussian fluctuations (compare Chapter 5). Guidelines on how to efficiently implement
and numerically solve the previously discussed saddle point equations are provided in Appendix D.

4.5 Interpretation of the mean-field ground state

The interaction-renormalized MF band structure described by the hopping matrix H ,Q is characterized by
five renormalization parameters, involving the so-called z-factorsZ+ ,Z�which are defined in Equation (4.8a)
as functions of the SB parameters e , d1 , p0 , p, the Lagrange multipliers (LMs) �0 , � and the magnetic ordering
vector Q. As discussed earlier, onlyZ+ and �0 are non-zero in the PM limit. The parameterZ+ decreases the
hopping amplitude of the interacting electrons (tf ! Z2

+tf), which reduces the overall bandwidth and can be
interpreted to be a consequence of the reduced mobility of the electrons in order to avoid the interaction cost U
of doubly occupied sites. The LM �0 increases the on-site potential of the interacting electrons (✏f ! ✏f + �0),
because the occupation cost is higher on average for growing U. It has been shown, that the PM saddle point
approximation reproduces results of the Gutzwiller approximation [49, 106–109]. If the magnetic ordering
parameter p is non-zero, the SU(2) spin-rotation-symmetry is spontaneously broken, and the ground state
is magnetic. If Q , 0, translation symmetry is additionally broken but can be recovered with an enlarged
magnetic unit cell, yielding a smaller BZ where Q becomes a reciprocal lattice vector. The energy gap
between different spin species is given by �, and Z� induces a hopping amplitude between opposite spins,

�The term ✏fnf in the bosonic Lagrangian is just a constant and does not impact the saddle point solution. In order to compare
different ground states and fix the absolute energy scale, however, it is essential to add this contribution after the saddle point has
been determined and ✏f can be recovered using Equations (4.29c) and (4.30c).
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MF renormalization

parameters

Equal-spin SB
hopping amplitude

0  Z+  1

Opposite-spin SB
hopping amplitude
�1  Z�  1

LM on-site
energy �0 � 0

LM spin gap
�  0

Generic Z+ ⇤
z+ + z�

2
Z� ⇤

z+ � z�
2 �0 �

Half-filled f -orbital
(nf ⇤ 1) Z+ ! z+ Z� ! 0 �0 �

PM limit (p ⇤ 0) Z+ ! z0 Z� ! 0 �0 � ! 0

Non-interacting
limit (U ⇤ 0) Z+ ! 1 Z� ! 0 �0 ! 0 � ! 0

Table 4.1: The MF renormalization of the PF quasiparticle band structure is determined by the five parameters:
Z+ ,Z� , �0 , � and Q. The table summarizes their behavior under certain limits and shows their respective interval of
possible values on the constrained subspace. In the non-interacting limit, all parameters arrange such that the exact
non-renormalized band structure is recovered. The SB-weights z+ , z� and z0 have been defined in Equation (4.8a).

which additionally modulates the magnetic gap function. Table 4.1 summarizes the properties of the MF

renormalization parameters in prominent limits.
Finally, we want to briefly discuss the MF ground state in the context of Fermi liquid (FL) theory [23, 110].

Interaction effects in FLs are commonly addressed by means of the self-energy ⌃(k , !), which is defined by
the Dyson equation [39, 48]

Gint
k ⇤ G0

k + G0
k⌃(k , i$n )Gint

k , Gint
k ⇤

1
⇣
G0

k

⌘�1 � ⌃ (k , i$n )
. (4.31)

Real and imaginary part of the self-energy are connected to the QP weight Zk and lifetime ⌧k [39]

Z�1
k ⇤ 1 � @

@!
Re⌃(kint

F , !)
�����!⇤0
, (4.32a)

⌧�1
k ⇤ �2Zk Im⌃ (k , !) , (4.32b)

which are measurable by means of the spectral function

A(k , !) ⇤ � 1
⇡

Im G(k , ! + i⌘) . (4.33)

The SB-MF Green’s function defined in Equation (4.14) corresponds to a real valued self-energy ⌃ (k) that is
frequency independent in its diagonalzing basis� , which implies a unity QP weight Z 

k ⇤ 1 and infinite lifetime
⌧k ! 1, i.e., the MF ground state corresponds to an effectively non-interacting FL with a renormalized band
structure. Magnetically ordered states are, nevertheless, not adiabatically connected to the non-interacting
limit [39].

�To be specific, the imaginary part is given by the infinitesimal convergence factor that yields from analytic continuation to the real
axis i$n ⇤ ! + i⌘! Im⌃ ⇤ �⌘.
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4.6 Breakdown of the mean-field ground state

An effective way to assess the stability of the MF ground state is the analysis of static susceptibilities within the
Gaussian fluctuation formalism (compare Section 5.3.3). We may, however, already identify instabilities in
the context of phase separation (PS) and negative electronic compressibility [53, 55, 103, 105, 111] from a mere
MF perspective. In the following, we elaborate on the associated theoretical concepts that will be applied in
Section 8.5 and Chapter 9 to describe inhomogeneous MF ground states of the Hubbard model in the vicinity
to half-filling.

The saddle points of the GP and FE are equivalent if the Legendre transformation [112, 113]

F(0) (T, n) ⇤ ⌦(0) (T, µ0) � µ0

 
@⌦(0)

@µ0

!

T
⇤ ⌦(0) (T, µ0) + µ0n , (4.34a)

⌦(0) (T, µ0) ⇤ F(0) (T, n) �
 
@F(0)

@n

!

T
n ⇤ F(0) (T, n) � µ0n , (4.34b)

between them invertible, i.e., uniquely defined�. This holds, if derivatives
 
@⌦(0)

@µ0

!

T
⇤ �n(µ0) , (4.35a)

 
@F(0)

@n

!

T
⇤ µ0(n) , (4.35b)

of the potentials are monotonous functions, or in other words, if the isothermal electronic compressibility

T ⇤
1
n2

 
@n
@µ0

!
(4.36)

is continuous and positive for all µ0. While this is guaranteed for non-interacting systems, interaction effects
which are embedded in the SB-renormalized MF potentials may cause anomalies that revoke the applicability
of the Legendre transformation in a specific parameter range as a signature of possible FS instabilities that
go beyond magnetic ordering. For a deeper insight, we may investigate the implied non-equivalent ground
states suggested by the GP or FE, and discern that the unusual be occurs if at least one of the potentials
undergoes a first-order phase transition such that its derivative w.r.t. the corresponding base variable µ0 or n
is discontinuous.

4.6.1 Phase separation

Let us consider the ground state of the GP, where we can tune µ0 as a continuous parameter and assume that
there is a first-order phase transition at µ0 ⇤ µc

0. While the differential d⌦(0) is well defined for a second-order
transition, a first-order transition is characterized such that the derivative of the potential w.r.t. the parameter
that induced the phase transition is discontinuous. As a consequence, the filling n jumps at µ0 ⇤ µc

0 according
to

� lim
�µ0!0

@⌦(0)

@µ0

�����µc
0��µ0

⇤ �
@⌦(0)

1
@µ0

�����µc
0 , 1

⇤ n1 , (4.37a)

�In that case, switching between those potentials is just a trick to save calculation time. One could also determine the saddle point
of a particular filling n by extremizing⌦(0) and adapting µ0 by a divide and conquer algorithm until the desired filling is reached.
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� lim
�µ0!0

@⌦(0)

@µ0

�����µc
0+�µ0

⇤ �
@⌦(0)

2
@µ0

�����µc
0 , 2

⇤ n2 (4.37b)

with n1 < n2. In the context of the spiral magnetic MF, this can happen if the GP features multiple local minima
at different saddle points� characterized by two sets of MF parameters  1 ,  2 and the first order transition
occurs, if two minima become energy degenerate ⌦(0)

1 ⇤ ⌦(0)
2 . The discontinuity implicates that there exists

a range of fillings n1 < n < n2 without a corresponding uniform ground state of the GP. Assuming that the
two different energy degenerate phases mix in the sense of phase separation (PS) with a fraction of x [53],

⌦(0)
PS ⇤ x⌦(0)

1 + (1 � x)⌦(0)
2 , (4.38a)

we may, however, recover the full range of fillings

n ⇤ �
@⌦(0)

PS
@µ0

⇤ xn1 + (1 � x)n2 . (4.38b)

This PS can equivalently be identified utilizing of the FE, which gives us access to the function µ0(n) rather
than n(µ0). To recover the MF saddle points  1 and  2 in the phase mix, we need to perform a Maxwell
construction, i.e., determine two fillings such that

0 ⇤

Z n2

n1

⇣
µ0(n) � µc

0

⌘
dn ⇤ F(0)

2 (n2) � F(0)
1 (n1) � µc

0 (n2 � n1) ⇤ ⌦(0)
2 (n2) �⌦(0)

1 (n1) . (4.39)

We can thus recover the energy-degenerate saddle points of the GP, and the two potentials are equivalent
outside of the PS region as expected. The phase-separated FE is given by

F(0)
PS (n) ⇤ ⌦(0)

1/2

⇣
µc

0

⌘
+ nµc

0 , (4.40)

with n1 < n < n2 and a constant chemical potential in the PS domain. It reduces the energy compared to the
homogeneous case�

F(0) (n) � F(0)
PS (n) ⇤ F(0) (n) �⌦(0) (µc

0) � µc
0n + F(0) (n1) � µc

0n1 � F(0) (n1) + µc
0n1

⇤

Z n

n1

⇣
µ0(n) � µc

0

⌘
dn � 0 ,

(4.41)

i.e., PS is identified as the globally minimizing MF ground state.
The phenomenon of PS is most commonly known in the context of an isothermal compression of a gas,

where the liquid and gas phase coexist in a specific range of volumes while the pressure remains constant.
This breakdown of homogeneity is also interaction-induced since the ideal gas law cannot describe phase
transitions. We can see the analogy to our quantum case if we identify the filling n with the volume, the
chemical potential µ0 with the pressure, and the electronic compressibility defined in Equation (4.36) with
the compressibility of the gas.

�These various sets of MF parameters that each satisfy all saddle point equations typically involve different magnetic ordering
vectors Q and deviating magnetizations m.

�The occurring integral is only zero for n ⇤ n2 as shown in Equation (4.39) (except for the trivial case n ⇤ n1). Moreover at the
lower end of the PS domain where the Legendre transformation is still well defined, we have @µ0(n)/@n |n1 > 0 and µ0(n1) ⇤ µc

0,
and consequently the inequality holds.
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4.6.2 Negative electronic compressibility

The type of phase separation described Section 4.6.1, unfortunately, completely neglects boundary effects
between the two coexisting phases. Since those surfaces are usually associated with considerable energy cost,
the possibility of a charge-ordered (CO) phase that minimizes this contribution by periodic domains walls
rather than a completely disordered phase should be taken into account. As alternative to the PS ground state,
we may thus consider the homogeneous saddle point of the FE, which represents some kind of average of the PS

system, and investigate possible emerging FS instabilities through Gaussian fluctuations [55]. This approach
is particulary interesting if the FE does not feature a first-order transition in an interval n1 < n < n2 that is
phase-separated according to the GP. Then, the Maxwell construction described in Equation (4.39) does not
originate in a discontinuity of n(µ0), but rather yields from a continuous regime of negative compressibility

T (n) ⇤
1
n2

" 
@µ0

@n

!

T

#�1
⇤

1
n2

" 
@2F(0)

@n2

!

T

#�1

, (4.42)

which is encompassed by two diverging points. Since it is T / @2⌦(0)/@2µ2
0, we can infer in analogy to

Equation (4.19) that the compressibility is proportional to the variance of the electron filling n. We will
moreover learn in Section 5.3.2, that it is also proportional to the static charge susceptibility at the �-point

T / Var n̂f / �c (q ⇤ 0, ! ⇤ 0) , (4.43)

which associates a diverging compressibility with a FS instability in the charge channel. Overall, states
that feature T < 0 can, therefore, be classified as unstable whereas saddle points of the FE with positive
compressibility within the PS domain are meta-stable.

4.6.3 Specific heat

Theoretically, we could also see PS, of two states with different entropy S, if the Legendre transformation
between the internal energy and FE breaks down

E(0) (S, n) ⇤ F(0) (T, n) � T
 
@F(0)

@T

!

n
⇤ F(0) (T, n) + TS (4.44a)

F(0) (T, n) ⇤ E(0) (S, n) � S
 
@E(0)

@S

!

n
⇤ E(0) (S, n) � TS . (4.44b)

In that case, the specific heat

Cn ⇤ �T
 
@2F(0)

@T2

!

n
(4.45)

would feature discontinuities or negative regimes in analogy to the previous section. We do, however, not
find evidence for such a kind of PS within the analysis of this thesis.
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Gaussian fluctuations around the mean-field
saddle point

Gaussian fluctuations around the paramagnetic saddle point solutions have initially been considered for the
Hubbard model to provide a stability analysis of the MF solution and to analyze dynamic excitation spectra
by means of the charge and spin susceptibility� [59–61, 96]. We extend the fluctuation formalism to be
applicable to models with additional non-interacting orbitals [53, 54, 56, 99], magnetic saddle points [55]
and also suggest a fluctuation basis whose dimension is reduced by two compared to previous studies, but
correctly reproduces established results [53]. As we will learn, this theoretical framework enables us to study
the interplay between emerging spin and charge order, magnon dispersion relations in the symmetry broken
phase, fluctuation corrections to the magnetization, and to evaluate the stability of magnetic saddle points.
Respective results for the Hubbard model and Kondo systems will be discussed in Parts II and III.

From a field theory perspective, the pseudofermions (PFs) have been integrated out exactly within the static
MF approximation introduced in Chapter 4, while only zeroth-order contributions of slave-bosons (SBs) were
considered. The essence of the fluctuation calculation is to refine the approximation of the action

S ⇤

Z �

0
d⌧L ⇥

 (⌧)
⇤
, (5.1a)

by including the next leading order in bosonic fields. Since first-order variations vanish per definition at the
MF saddle point, we will investigate the second-order variation of the action w.r.t. bosonic fields

S ⇤ S(0)
+S(2)

+O
⇣
 3

⌘
⇤ S(0)

����� +
1

p
N�

" �

0
d⌧ d�⌧

X

r i ,�r i

X

µ⌫

� ⇤µ,r i ,⌧ [M(�r i , �⌧)]µ,⌫ � ⌫,r i+�r i ,⌧+�⌧
+O

⇣
 3

⌘

(5.1b)
around the MF saddle point. We define the fluctuation fields � µ,r ⇤  µ,r �  µ with r ⇤ (r i , ⌧) as deviation
from the MF solution and the fluctuation matrix

[M(�r)]µ,⌫ ⇤
1
2
p

N�
@2S

@ ⇤µ,r@ ⌫,r+�r

����� . (5.1c)

Due to translation invariance w.r.t. the magnetic unit cell, the fluctuation matrix only depends on the relative
difference �r i between lattice sites and not on the absolute value. This will be exploited in Section 5.1 to find
a diagonalizing basis through Fourier transformation (FT) to momentum and Matsubara-frequency space in

�In most of the early literature, the radial gauge was applied incorrectly, and dynamic contributions of the complex d-field, which
are crutial for ! , 0 have been overlooked. This omission was corrected later on [114].
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analogy to the MF basis introduced in Section 4.3. In section Section 5.2, we will derive the explicit form of
the fluctuation matrix and show that all PF degrees of freedom can be integrated out exactly. The fluctuation
matrix is connected to the bosonic fluctuation field Green’s function by

G ⇤ �M�1 , (5.1d)

which will be applied in Section 5.3 to calculate dynamic correlation functions in the context of linear response
theory. Corresponding results may be applied to investigate collective modes, evaluate the stability of MF

saddle points, and determine experimentally accessible quantities. Finally, in Section 5.4 we elaborate on
why the effective theory does not represent free bosons despite being quadratic and explain how to compute
fluctuation corrections to the magnetization by means of the bosonic equal space-time Green’s function
G(�r ⇤ 0�).

5.1 Fluctuation basis

Firstly, it must be considered which bosonic fields should be subject to fluctuations for a consistent theory.
To acquire information beyond the MF saddle point, we have to allow deviations from the MF constraints,
which adds �0 and � to the fluctuation basis. As a consequence, the charge and spin expectation values of
the fluctuation fields � go beyond the bosonic and PF mean-field expectation values, which are matched
through the Lagrange multipliers (LMs) �0 and � at the saddle point, and provide a leading order fluctuation
correction. However, the LM ↵ does not couple to a direct physical degree of freedom but rather constraints
the number of auxiliary bosons per lattice site. Its fluctuations could be interpreted as a violation of the Pauli
principle and are to be avoided [53], which can be achieved by eliminating an arbitrary SB field by direct
application of the constraint equation

1 ⇤ e2
+ d⇤d + p2

0 + p2 , (5.2)

in analogy to the MF approach. We have confirmed by thorough numeric analysis that the bosonic propagator
G, and thus all physical observables are invariant under the choice of which field is eliminated from the
effective theory�. This is a strong confirmation of the consistency of our fluctuation basis and we will
w.l.o.g. choose to the eliminate the e-field in the following. We found that the same result for G may be
obtained without eliminating any field from the theory if the M̂-operator that appears in the renormalized
z-matrix [compare Equation (A.19)] is replaced by

p
2 like in previous studies [60, 61, 114].

Secondly, as pointed out in Section 2.2.2, the field theory includes spurious degrees of freedom in the
Cartesian gauge, which are associated with gauge symmetries that are a consequence of the constraints as
conserved quantities. Since the MF solution breaks those continuous symmetries, the field theory of the
fluctuation fields contains unphysical Goldstone modes [115], which manifest as zero-eigenvalues of the
fluctuation matrix that make the bosonic Green’s function ill-defined. As shown in Section 3.2.1, this can
be avoided in the radial gauge, where all spurious phases are removed, and only the d-field remains to be
complex field. For convenience, we define d ⇤ d1 + id2, with d1 , d2 2 R and thus have the basis

 r ⇤
�
d1,r , d2,r , p0,r , �0,r , p1,r , �1,r , p2,r , �2,r , p3,r , �3,r

�> (5.3)

of real valued fields within the space-time domain r ⇤ (r , ⌧).

�In opposite to G, the fluctuation matrix M does depend on which field is eliminated from the theory. The correlations of the
eliminated field are determined by direct application of Equation (5.2), e.g.,

D
e�q eq

E
⇤

D
1 � d1,�q d1,q � d2,�q d2,q �

P3
µ⇤0 pµ,�q pµ,q

E
.
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Thirdly, we want to point out, that the MF renormalized z-matrix defined in Equation (A.19) is not normal
ordered and consequently the coherent state path integral around the saddle point is not applicable in general
[75]. The normal order is broken by the L̂ and R̂ matrices since

f
p̂ , p̂†

g
�
, 0 and by the M̂ factor. In the radial

gauge, however, where p-fields are phaseless it is p̂ ⇤ p̂† and consequently all contributions that violate the
normal ordering are gauged away. As discussed earlier, we exclude fluctuations of the ↵-constraint and thus
it is M̂ !

p
2 and the normal order is recovered. This fact affirms the basis choice of Equation (5.3) and once

more underlines the importance of the radial gauge.
Finally, we need to adapt the basis such that the PF degrees of freedom can be integrated out exactly. This

can be achieved by matching the PF mean-field basis defined by Equation (4.12) in momentum and Matsubara
frequency space q ⇤ (q , i!n ) through FT of  r according to Equation (3.10). The momenta q of the individual
fields are then defined in the magnetic Brillouin zone (BZ), while gaining an additional external index that
corresponds to the spin-spiral periodicity degree of freedom defined in Equation (4.4)

 q ⇤
⇣
d1,q , d2,q , p0,q , �0,q , p1,q , �1,q , p2,q , �2,q , p3,q , �3,q

⌘>
, (5.4a)

 a
q ⇤  q+aQ ,i!n

, (5.4b)

with a 2 {0, 1, ..., P � 1}, where P is the number of lattice sites in the magnetic unit cell, and Q denotes the
corresponding MF ordering vector. It has been shown in Reference [55] that this basis is connected to a basis of
magnetic sublattices in position space by a unitary transformation. Since all fields are real-valued in position
space, it holds

⇣
 a

q

⌘⇤
⇤  �a

�q ⇤  �q�aQ ,�i!n
. (5.4c)

By FT of Equations (5.1b) and (5.1c) and exploiting the translation invariance, we may express the action in
the convenient block-diagonal form [55]

S(2)
⇤

X

i!n

X

q2BZQ

X

µ⌫

X

ab

� �a
µ,�qMa ,b

µ,⌫ (q)� b
⌫,q , (5.5a)

with

Ma ,b
µ,⌫ (q) ⇤

1
2

@2S
@ �a
µ,�q@ 

b
⌫,q

����� . (5.5b)

In opposite to the MF case, the fluctuation matrix does not become block diagonal w.r.t. the periodicity
index a for models without spin-orbit coupling (SOC). Consequently, the dimension of the fluctuation matrix
dimM ⇤ 10P increases linearly with the periodicity P, and the numerical evaluation becomes very costly for
large magnetic unit cells. In the chosen basis, we may calculate correlations between fluctuation fields with
the application of Equation (3.1g) and the addition of source terms, yielding [53]

D
� �a
µ,�q� 

b
⌫,q

E
⇤

f
M�1(q)

g a ,b

µ,⌫
⇤ �Ga ,b

µ,⌫ (q) . (5.6)

5.2 Derivation of the fluctuation matrix

In order to calculate the fluctuation matrix, we need to determine the second derivatives of the action w.r.t. the
bosonic basis given by Equations (5.3) and (5.4) and evaluate them at the MF saddle point. Moreover, we shall



54 | 5 Gaussian fluctuations around the mean-field saddle point

integrate the PFs and trace out the respective momentum, Matsubara frequency, orbital, spin, and periodicity
degrees of freedom. According to Equation (3.35), the Lagrangian splits into a purely bosonic and a mixed
PF and SB part. After eliminating the e field through direct application of the ↵-constraint as discussed in the
previous section, we have

L ⇥
�⇤ ,�, 

⇤
⇤ LB

f
 r

g
+ LF

f
�⇤k1
,�k2

, k1,2

g
(5.7a)

with

LB[ r] ⇤
X

r i

"
U

⇣
d2

1,r + d2
2,r

⌘
+ id1,r@⌧d2,r � id2,r@⌧d1,r � �0,r

⇣
p2

0,r + p2
r + 2d2

1,r + 2d2
2,r

⌘
� �r · 2p0,r pr

#
,

(5.7b)

LF
f
�⇤k1
,�k2

, k1,2

g
⇤

X

k1 ,k2

�†k1

⇣
@⌧�k1 ,k2 + H 

k1 ,k2

⌘
�k2

�����e⇤p1�d2
1�d2

2�p2
0�p2
, (5.7c)

and the fluctuation matrix, therefore, also splits into two parts

Ma ,b
µ,⌫ (q) ⇤

f
MB (i!n )

g a ,b

µ,⌫
+

f
MF (q)

g a ,b

µ,⌫
. (5.7d)

Notice that by the construction of the path integral, all SB and PF degrees of freedom in Equation (5.7c) are
discretized with the same underlying time slices. Consequently, the frequency mesh after FT to Matsubara
space also matches and the summation over a function depending on both, bosonic [!n ⇤ 2n⇡/�] and
fermionic [$n ⇤ (2n + 1)⇡/�] frequencies yields

X

i!n

LF [!n , $n] ⇤
1X

n⇤�1
LF

"
2n⇡
�
,

(2n + 1)⇡
�

#
. (5.8)

Hence, the PF action can be expressed as

SF ⇤

X

k1 ,k2

�†k1

⇣
�i$n1�k1 ,k2 + H 

k1 ,k2

⌘
�k2
, (5.9a)

where
H 

k1 ,k2
⇤ �k1 ,k2

⇣
✏ � µ0

⌘
+

1
p

N�

⇣
�
⌘>

k1�k2
+

1
N�

X

k

⇣
Z†

⌘>
k�k1
H k

⇣
Z

⌘>
k�k2

, (5.9b)

is the SB-dependent Hamiltonian defined in Section 3.2.2 after FT to Matsubara space and the corresponding
Green’s function is given by

G 
k1 ,k2

⇤
⇣
i$n1�k1 ,k2 � H 

k1 ,k2

⌘�1
. (5.9c)

The PF degrees of freedom can be integrated out using Equation (3.17), which yields

ZF ⇤ det
✓
�

f
G 

k1 ,k2

g�1◆
. (5.10a)

Applying the identity ln detA ⇤ Tr lnA, we find the effective SB-dependent action, which results from the
integration of the PFs

SF ⇤ �Tr ln
f⇣
�i$n1�k1 ,k2 + H 

k1 ,k2

⌘g
. (5.10b)
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In order to find the second variation w.r.t. bosonic fields, we employ a series expansion around the saddle
point

S(0)
F + �SF

⇥
� 

⇤
⇤ �Tr ln


�i$n + H 

k + H� 
k1 ,k2

�
⇤ �Tr ln

✓
�i$n + H 

k

◆ ✓
1 � G k1

H� 
k1 ,k2

◆�

⇤ �Tr ln

�i$n + H 

k

�
+ Tr

1X

l⇤1

1
l

✓
G k1

H� 
k1 ,k2

◆ l
.

(5.11)

The variation of the Hamiltonian is given by

H� 
k1 ,k2

⇤

X

q

X

µ

@H 
k1 ,k2

@ q ,µ

������� 
� q ,µ +

1
2

X

q1 ,q2

X

µ⌫

@2H 
k1 ,k2

@ q1 ,µ@ q2 ,⌫

������� 
� q1 ,µ� q2 ,⌫ +O

⇣
� 3

⌘
, (5.12)

and
G k ⇤

✓
i$n � H 

k

◆�1
(5.13)

defines the PF Green’s function at the MF saddle point  . Explicit expressions of SB-dependent MF hopping
matrix H 

k for models discussed within this thesis are derived in Appendix B. The leading order variation
of the action is found by collecting all second-order terms w.r.t. fluctuation fields � in the series expansion
given by Equation (5.11)�

S(2)
F ⇤

1
2

X

q1 ,q2

X

µ⌫

� q1 ,µ� q2 ,⌫ tr
*..
,
X

k

G k
@2H 

k ,k

@ q1 ,µ@ q2 ,⌫

������� 
+

X

k1k2

G k1

@H 
k1 ,k2

@ q1 ,µ

������� 
G k2

@H 
k2 ,k1

@ q2 ,⌫

������� 
+//
-
. (5.14)

The details on how to evaluate the occurring derivatives depend on whether the underlying MF saddle point
spontaneously breaks translation symmetry due to magnetic order. In Section 5.2.1, we provide a complete
derivation for the simplest case, i.e., the PM. The calculation for spiral magnetic saddle points with ordering
vector Q works in principle analogous but is quite elaborate and requires multiple suitable index shifts to
adapt a compact form. It has been thoroughly derived in Reference [55] and we will summarize the results
in Section 5.2.2 and Appendix C.

5.2.1 Paramagnetic ground states

A paramagnetic MF ground state is characterized by p ⇤ � ⇤ Q ⇤ 0. In this limit, there are no external
periodicity or sublattice indices, and the fluctuation matrix simplifies to

Mµ,⌫ (q) ⇤
1
2

@2S
@ µ,�q@ ⌫,q

����� . (5.15)

�Despite the PFs have formally been integrated out exactly, the highest appearing order in the context of Gaussian fluctuations is
O

⇣
�4

⌘
, which is why this calculation is also referred to as a one-loop calculation. This can be seen if the bosonic series expansion

is applied before the PFs are integrated. The fluctuation matrix can then be derived through Wick’s theorem [116]. Our approach,
however, is more elegant and easier to generalize beyond the Hubbard model.
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Bosonic part

Since the bosonic part only contains on-site and equal-time contributions, i.e., �r ⇤ �⌧ ⇤ 0, its derivatives can
be conveniently calculated in the space-time domain. In order to do so, we define

�r,r̃ ⇤ �r i ,r̃ i� (⌧ � ⌧̃) , (5.16)

where ��r i ,0 denotes the Kronecker delta and � (⌧) the Dirac delta function and rewrite the bosonic action
according to

SB ⇤

X

r̃ i ,�r̃ i

" �

0
d ⌧̃ d�⌧̃LB

⇥
 r̃ ,  r̃+�r̃

⇤
��r̃ ,0 . (5.17)

The bosonic part of the fluctuation matrix is then found to be

MB
µ,⌫ (�r) ⇤

p
N�
2

@2SB

@ µ,r@ µ,r+�r

����� ⇤

p
N�
2

X

r̃ i ,�r̃ i

" �

0
d ⌧̃ d�⌧̃

@2L B
@ µ@ ⌫

��r̃ ,0
f
�r,r̃ ��r,�r̃ + �µ,⌫ �r+�r,r̃ �r,r̃+�r̃

g

⇤

p
N�
2

@2L B
@ µ@ ⌫

�(�r) .

(5.18a)

Since the matrix elements are delta-correlated in space-time, they become uniform in the momentum-
Matsubara frequency domain

MB
µ,⌫ (q) ⇤

1
p

N�

Z �

0
d�⌧

X

�r i

eiq�r i e�i!n�⌧ [M(�r)]µ,⌫ ⇤
1
2
@2L B
@ µ@ ⌫

, (5.18b)

and are simply determined by the respective derivatives of the MF Lagrangian. However, we need to dedicate
special notice to the remaining time derivative in the bosonic Lagrangian associated with the complex d-field:�

MB
d1 ,d2

(�r) ⇤
p

N�
2 i@�⌧��r i� (�⌧) ⇤

p
N�
2 i��r i ,0 �

0 (�⌧) , (5.19a)

which yields

MB
d1 ,d2

(q) ⇤
1

p
N�

Z �

0
d�⌧

X

�r

eiq�re�i!n�⌧

p
N�
2 i��r i ,0 �

0 (⌧) ⇤
1
2!n . (5.19b)

��0(�⌧) denotes the distributional derivative of the Dirac delta function.



Ch
ap

te
r5

5.2 Derivation of the fluctuation matrix | 57

Consequently, the bosonic fluctuation matrix for PM saddle points in the basis of Equation (5.4a) is given by
[53]�

MB
⇤

1
2

*................................
,

2U � 4�0 !n 0 �4d1 0 0 0 0 0 0

�!n 2U � 4�0 0 0 0 0 0 0 0 0

0 0 �2�0 �2p0 0 0 0 0 0 0

�4d1 0 �2p0 0 0 0 0 0 0 0

0 0 0 0 �2�0 �2p0 0 0 0 0

0 0 0 0 �2p0 0 0 0 0 0

0 0 0 0 0 0 �2�0 �2p0 0 0

0 0 0 0 0 0 �2p0 0 0 0

0 0 0 0 0 0 0 0 �2�0 �2p0

0 0 0 0 0 0 0 0 �2p0 0

+////////////////////////////////
-

. (5.20)

Pseudofermionic part

In order to calculate the PF part of the fluctuation matrix, we need to evaluate the derivatives of H 
k1 ,k2

determined by the functions

Zk ⇤ (12O⇥2O

p
N� �k ,0) � zk , (5.21a)

Bk ⇤ 02O⇥2O � �k
. (5.21b)

w.r.t. the fluctuation fields and evaluate them at the MF saddle point  . As shown in detail in Appendix A.6
this can be done by exploiting that all fields are uniform at the MF saddle point in the space-time domain

@Zµ,r
@ r,µ̃

����� ⇤
@Z
@ µ̃

����� , (5.22)

which results in

zk
��� ⇤

p
N� �k ,0 z��� , z†k

��� ⇤
p

N� �k ,0 z��� (5.23a)

@zk
@ q ,µ

����� ⇤ �k ,q
@z
@ µ

����� ,
@z†k
@ q ,µ

����� ⇤ �k ,�q
@z†

@ µ

����� (5.23b)

@2zk
@ q1 ,µ@ q2 ,⌫

����� ⇤
1

p
N�

�k ,q1+q2

@2z
@ µ@ ⌫

����� ,
@2z†k

@ q1 ,µ@ q2 ,⌫

����� ⇤
1

p
N�

�k ,�q1�q2

@2z†

@ µ@ ⌫

����� (5.23c)

@�
k

@ µ,q

����� ⇤ ⌧⌫� µ ,�⌫ �k ,q . (5.23d)

The derivatives of Zk and Bk can now be inferred with the definition in Equation (5.21a), i.e., first and second
derivatives of matrix entries associated with non-interacting degrees of freedom vanish, whereas zeroth
derivative terms are considered by the unity matrix as precisely defined in Equation (A.34). Since the LMs

�Following Reference [53], the same result can also be found if the FT is performed before taking the derivatives.
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enter the Hamiltonian linear, only first derivatives are non-zero and their matrix structure follows from the
definition of � in Equation (3.33f). For shortness of notation, we define

Z0 ⇤ Z> ��� , (5.24a)

Zµ ⇤
@Z>

@ µ

����� , (5.24b)

Zµ⌫ ⇤
@2Z>

@ µ@ ⌫

����� , (5.24c)

Bµ ⇤ 02O⇥2O �
�
⌧⌫

�> � µ ,�⌫ (5.24d)

and we call these functions slave-boson weights. Those uniform derivatives are most conveniently evaluated
by in the Pauli-matrix expanded form of the z-matrix

z ⇤ Z+⌧0
+Z�

3X

µ⇤1

p
p
⌧µ , (5.25a)

with

Z± ⇤
z+ ± z�

2 , z± ⇤
p0(e + d) ± p(e � d)

p
2

⇥
1 � d2 � (p0 ± p)2/2

⇤ ⇥
1 � e2 � (p0 ⌥ p)2/2

⇤
������e⇤p1�d2

1�d2
2�p2

0�p2

, (5.25b)

which is deduced in Appendix A.4. Notice that we need to replace the e-field utilizing the ↵ constraint before
taking the derivatives in the chosen basis. Combining all previous results, we may determine the derivatives
of the Hamiltonian defined in Equation (5.9b)

@H 
k1 ,k2

@ q ,µ

������� 
⇤
�q ,k1�k2p

N�

f
Bµ +

⇣
Z†µ

⌘
H k2

Z0 + Z†0H k1
Zµ

g
, (5.26a)

@2H 
k ,k

@ q1 ,µ@ q2 ,⌫

������� 
⇤

1
N�

�q1 ,�q2

"
Z†µ⌫H k Z0 + Z†0H k Zµ⌫ + Z†µH k�q1

Z⌫ + Z†⌫H k+q1
Zµ

#
, (5.26b)

which is shown in detail in Appendix A.6. Applying these results to the action in Equation (5.14) and the
definition of the fluctuation matrix given by Equation (5.15), we find

MF
µ,⌫ (q) ⇤

1
2N�

X

k

tr
"
G k

f
Z†µ⌫H kZ0 + Z0H kZµ⌫ + Z†µH k+qZ⌫ + Z†⌫H k�qZµ

g

+G k
f
Z†µH k+qZ0 + Z0H kZµ + Bµ

g
G k+q

f
Z†⌫H kZ0 + Z0H k+qZ⌫ + B⌫

g #
.

(5.27)

This equation can be interpreted as scattering processes of the bosonic fluctuation fields with the PF mean-field
background as graphically illustrated by the Feynman diagrams in Figure 5.1.



Ch
ap

te
r5

5.2 Derivation of the fluctuation matrix | 59

� †µ,qMµ⌫(q) � ⌫,q =

L
B
µ⌫

� †µ,q � ⌫,q

D (1)

+

Z†µ⌫� †µ,q � ⌫,q

G k
D (2)

HkZ0
+

Zµ⌫� †µ,q � ⌫,q

G k
D (3)

HkZ0
+

Z†µ Z⌫

� †µ,q � ⌫,q

D (4)
Hk+q

G k
+

Z†µ Z⌫

� †µ,q � ⌫,q

D (5)
Hk�q

G k

+

Bµ B⌫

� †µ,q � ⌫,q

D (6)G k

G k+q
+

Bµ Z†⌫

� †µ,q � ⌫,q

D (7)
G k HkZ0

G k+q
+

Bµ Z⌫

� †µ,q � ⌫,q

D (8)
G k+q Z0Hk+q

G k

+

Z†µ B⌫⌫

� †µ,q � ⌫,q

D (9)
Hk+qZ0 G k+q

G k
+

Zµ B⌫⌫

� †µ,q � ⌫,q

D (10)
Z0Hk G k

G k+q
+ Z†µ Z†⌫

� †µ,q � ⌫,q

D (11)
G k HkZ0

Hk+qZ0 G k+q

+ Zµ Z⌫

� †µ,q � ⌫,q

D (12)
Z0Hk G k

G k+q
Z0Hk+q

+

Z†µ Z⌫� †µ,q � ⌫,q

D (13)

Hk+qZ0

G k

G k+q

Z0Hk+q +

Zµ Z†⌫� †µ,q � ⌫,q

D (14)

Z0Hk

G k+q

G k

HkZ0

Figure 5.1: The fluctuation matrix can be interpreted as a result of scattering of bosonic fluctuation fields with the
PF mean-field background. The corresponding scattering processes are illustrated through the Feynman diagrams
D(1)-D(14), where k is the internal energy-momentum four-index, which needs to be integrated out and q represents
the external bosonic index carried by the fluctuation matrix. The diagrams are sorted by the scattering order from
zeroth (D(1): bosonic Lagrangian, no scattering at the MF background), to first (D(2)-D(5): processes including one
interaction line and one MF Green’s function) and second (D(6)-D(14): processes featuring two MF Green’s functions).
The rescaled bare Hamiltonian H k Z0 can be interpreted as a PF static but momentum-dependent interaction. The
bosonic vertices denoted by black circles fulfill energy and momentum conservation. The diagrams D(1)-D(3) yield
constants (except for µ, ⌫ 2 {d1 , d2}). D(4)-D(5) are momentum-dependent but frequency-independent due to the
static interaction lines. Finally, D(6)-D(14) yield dynamic and momentum-dependent contributions because the PF
Green’s function can also carry bosonic Matsubara frequencies.
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The occurring Matsubara summations can be calculated analytically in a basis where the MF hopping matrix
H 

k and the MF Green’s G k function are diagonal

UkH 
k U†k ⇤ "s

k�s ,s0 (5.28a)

UkG k U†k ⇤
⇣
i$m � "s

k

⌘�1
�s ,s0 , (5.28b)

whereat s acts as multi-index, representing orbital and spin degrees of freedom, and the unitary matrices
fulfill UkU†k ⇤ 1. The Matsubara summations are determined by

1
�

X

i$m

tr G k Ak ,q ⇤

X

s ,b ,c

f
U†k

g s ,b 1
�

X

i$m

⇣
i$m � "b

k

⌘�1 f
Uk

g b ,c f
Ak ,q

g c ,s
⇤

X

s
nF

⇣
"s

k

⌘ f
UkAk ,qU†k

g s ,s
, (5.29a)

1
�

X

i$m

tr G k Bk ,qG k+qCk ,q ⇤

X

s ,b ,c
d ,e ,s0

f
U†k

g s ,b 1
�

X

i$m

⇣
i$m � "b

k

⌘�1
Ub ,c

k B
c ,d
k ,q


U†k+q

� d ,e ✓
i$m + i!n � "e

k+q

◆�1
Ue ,s0

k+qC
s0 ,s
k ,q

⇤

X

s ,s0

nF
⇣
"s

k

⌘
� nF

✓
"s0

k+q + i!n

◆

i!n + "s
k � "

s0
k+q

f
UkBk ,qU†k+q

g s ,s0 f
Uk+qCk ,qU†k

g s0 ,s
,

(5.29b)

where specifics are elaborated in Appendix A.5. Notice that we only sum over fermionic Matsubara frequen-
cies $m ⇤ (2n + 1)⇡/�, while the bosonic Matsubara frequency !n ⇤ 2n⇡/� remains as external degree of
freedom of the fluctuation fields. The Fermi-Dirac distribution is invariant under the addition of a bosonic
Matsubara frequency� nF

✓
"s0

k+q + i!n

◆
⇤ nF

✓
"s0

k+q

◆
and by identifying the matricesAk ,q ,Bk ,q , Ck ,q with the

respective matrices in Equation (5.27), we obtain the final form of the PF part of the fluctuation matrix [53, 54,
56, 99]

MF
µ,⌫ (q) ⇤

1
2N

X

k

 X

s
nF

⇣
"s

k

⌘ f
Uk

⇣
Z†µ⌫H kZ0 + Z0H kZµ⌫ + Z†µH k+qZ⌫ + Z†⌫H k�qZµ

⌘
U†k

g s ,s

+

X

s ,s0
LF

✓
"s

k , "
s0
k+q , i!n

◆ f
Uk

⇣
Z†µH k+qZ0 + Z0H kZµ + Bµ

⌘
U†k+q

g s ,s0 f
Uk+q

⇣
Z†⌫H kZ0 + Z0H k+qZ⌫ + B⌫

⌘
U†k

g s0 ,s
!

(5.30)

where

LF
⇣
"s

k , "
s0
k+q , i!n

⌘
⇤

nF
⇣
"s

k

⌘
� nF

✓
"s0

k+q

◆

i!n + "s
k � "

s0
k+q

(5.31a)

is known as Lindhard function. The remaining momentum sum needs to be evaluated numerically and
guidelines for an efficient implementation and analysis are provided in Appendix D. Moreover, we want to
emphasize that the convergence of the Lindhard function is problematic in the static limit (i!n ⇤ 0) but can
be recovered by implementing

lim
"k+q!"k

LF
⇣
"k , "k+q , 0

⌘
⇤
@nF ("k )
@"k

⇤ �
�

4 cosh2 �
�✏k/2

� . (5.31b)

�This is because a condensate of a fermion and a boson is a fermionic quasiparticle.
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An evaluation of real frequencies ! requires the analytic continuation [39] i! ! ! + i⌘ with ⌘ ! 0+

to all occurring Matsubara frequencies, i.e., MB (i!n ) and MF (i!n ). This so-called Wick rotation reverts
the imaginary times applied to the time evolution operator in Equation (3.3d) which was used to derive
the path integral back to real times. Consequently, ! is a continuous frequency suitable for describing
dynamic correlations and excitation spectra. The infinitesimal ⌘ needs to be positive in order to represent
the causal retarded function, whereas the respective advanced function is found for ⌘ < 0. This procedure is
usually applied in the context of Matsubara Green’s functions, which is also the case here since we identify
G(i!n ) ⇤ �M�1(i!n ).

Symmetries of the fluctuation matrix

Since we employ a basis of fluctuation fields, which is real-valued in the space-time domain, the fluctuation
matrix

Mµ,⌫ (q) ⇤
1
2

@2S
@ µ,�q@ ⌫,q

����� (5.32)

satisfiesMµ,⌫ (q) ⇤M⌫,µ (�q) per definition. Moreover, for spin-rotation-invariant (SRI) models, it holds

f
H , Z(†)

µ

g
�
⇤


G , Z(†)

µ

�
�
⇤


G , H k

�
�
⇤


G , Bµ

�
�
⇤ 0 (5.33)

in the PM limit. With Equation (5.27), we can then inferMµ,⌫ (Z†) ⇤M⌫,µ (Z ), i.e., interchanging the indices is
equivalent to conjugate transposing the Z- matrix. Since Z can be written as a superposition of the hermitian
Pauli matrices, we may determine Z† by complex conjugation of the prefactors (Z+ ,Z�) where the imaginary
unit i only occurs together with the d2 field. As a consequence, the PM fluctuation matrix obeys the symmetry
[53]

Mµ⌫ (q) ⇤ �M⌫µ (q) ⇤ �Mµ⌫ (�q) (µ ⇤ d2 , ⌫ , d2) [ (µ , d2 , ⌫ ⇤ d2) ,

Mµ⌫ (q) ⇤M⌫µ (q) ⇤Mµ⌫ (�q) otherwise ,
(5.34)

i.e., it is a symmetric matrix w.r.t. all fields except for d2, where it is antisymmetric�.
Moreover, the spin and charge sector are decoupled for SRIs models, i.e., the fluctuation matrix is block-

diagonal w.r.t. charge fields  c ⇤ (d1 , d2 , p0 , �0) and spin fields (p1 , �1), (p2 , �2), (p3 , �3), i.e., charge and
the spin fluctuations of every Cartesian direction are independent. This property is obvious for the bosonic
fluctuation matrix given by Equation (5.20) and for the PF part, it can be verified by using [53]

@z
@ c

����� / 12 ,
@z
@pµ

����� / ⌧
µ ,

@2z
@pµ@ c

����� / ⌧
µ ,

@2z
@pµ@p⌫

����� ⇤ 0 for µ , ⌫ , (5.35)

which leads to a vanishing trace in Equation (5.27) for all matrix elements that couple the spin and charge
sector or different spin directions. As we will learn in Section 5.3.2, this greatly simplifies the calculation of
susceptibilities�.

�Despite the antisymmetry of the fluctuation matrix w.r.t. d2, the second-order action is real-valued since all antisym-
metric contributions vanish with the Matsubara summation S(2)

A ⇤
P

i!n � µ,�qMµ,d2 (q), �d2,q + �d2,�qMµ,d2 (q)� µ,q ⇤P
i!n � µ,�qMµ,d2 (q)�d2,q + �d2,qMµ,d2 (�q)� µ,�q ⇤

P
i!n � µ,�qMµ,d2 (q), �d2,q � �d2,qMµ,d2 (q)� µ,�q ⇤ 0 .

�The decoupling of spin and charge sector still holds for the TKI model discussed in Chapter 12, although it is not SRI, which can
also be verified by the evaluation of the trace, despite being less apparent.
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5.2.2 Magnetic ground states

The derivation of the magnetic fluctuation matrix, i.e., the second-order variation around a magnetic saddle
point, works principally analogous to the PM case. There is, however, a subtlety that makes the calculation
more complicated and numerical costly. Every type of magnetic order except for ferromagnetism (FM) has an
underlying enlarged magnetic unit cell due to the non-uniform MF

p i ⇤ p
*.....
,

cos(QRi )

sin(QRi )

0

+/////
-
, �i ⇤ �

*.....
,

cos(QRi )

sin(QRi )

0

+/////
-
. (5.36)

We may nevertheless exploit the periodicity in the context of the magnetic unit cell by expanding every
quantity that depends on bosonic fields  i (i.e., Z-matrices and the bosonic Lagrangian) and its derivatives
in a Fourier series w.r.t. the MF ordering vector Q

Zi

����� ⇤

1X

a⇤�1
Z0,a e�iaQRi , @µZi

����� ⇤

1X

a⇤�1
Zµ,a e�iaQRi , @µ⌫Zi

����� ⇤

1X

a⇤�1
Zµ⌫,a e�iaQRi . (5.37)

As shown in Section A.6, the zeroth, first, and second variation in momentum space are then given by

Zk
��� ⇤

p
N�

X

a
Z0,a �(k+aQ ,i!n ),0 , (5.38a)

�Zk
��� ⇤

X

a

X

µ̃

Zµ̃,a � µ̃,k+aQ ,i! , (5.38b)

�2Zk
��� ⇤

1
p

N�

X

a

X

µ̃,⌫̃

X

k1

Zµ̃⌫̃,a� µ̃,k1� ⌫̃,(k+aQ ,i!n )�k1 . (5.38c)

While the dependence on Matsubara frequency i!n is equivalent to the PM case, we notice that the magnetic
MF background initiates additional correlations between fluctuation fields with a momentum difference of
aQ, which makes the enlarged basis defined in Equations (5.4) and (5.5) necessary. Fourier coefficients with
label a and a + P are equivalent and need to be summed up to account for the periodicity of our basis [55]

Za
0 ⇤

1X

n⇤�1
Z0,Pn+a mod P , Za

µ ⇤

1X

n⇤�1
Zµ,Pn+a mod P , Za

µ⌫ ⇤

1X

n⇤�1
Zµ⌫,Pn+a mod P , La

µ⌫ ⇤

1X

n⇤�1
Lµ⌫,Pn+a mod P .

(5.39)

Bosonic part

We consider the bosonic part of the action with the Lagrangian LB ⇤
P

r i Li in momentum-space

SB ⇤

Z �

0
d⌧

X

r i

Li (⌧) ⇤
1

p
N�

Z �

0
d⌧

X

r i

X

q
e�iqr i+i!n⌧Lq ⇤

p
N� L0 . (5.40a)

Next, we apply Equation (5.38c) by identifying Lµ⌫ with Zµ⌫ and find [55]

f
MB (q)

g a ,b

µ,⌫
⇤

1
2

�2pN� L0

� µ,�q�aQ ,�i!n � ⌫,q+bQ ,i!n

⇤
1
2

P
n
P
µ̃,⌫̃

P
k1 Ln

µ̃⌫̃ � µ̃,k1� ⌫̃,(0+aQ ,i!n )�k1

� µ,�q�aQ ,�i!n � ⌫,q+bQ ,i!n

⇤
1
2 Lb�a
µ⌫ . (5.40b)
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Notice that Lb�a
µ⌫ represents the sum over all equivalent Fourier coefficients with the index b � a of the second

derivative of Li evaluated at the MF saddle point as indicated by Equations (C.7) and (5.39). For the spin spiral
of the underlying magnetic MF, all Fourier coefficients with |b � a | > 1 vanish. The explicit matrices for AFM

and FM are summarized in Appendix C.

Pseudofermionic part

For the PF part, we need to consider the Fourier coefficients of the Z-matrix and its first and second derivatives
and further the first derivative of the B-matrix in analogy to the PM calculation. Since the Q dependence of
the Z-matrix is given by the term proportional to p/p, all Fourier coefficients Z0,a vanish for |a | > 1. Taking
the derivative w.r.t. a spin field pµ yields two additional Fourier components, i.e., Zµ,a vanishes for |a | > 2
and Zµ⌫,a for |a | > 3. Since the LMs appear linear, only Bµ,a⇤0 is non zero, i.e., they do not induce coupling

between different Q-blocks. The PF Greens function G at the saddle point has to be defined in the same
basis of Q-blocks as the fluctuation fields, i.e.,

�a
q ⇤ �q+aQ ,i!n

, (5.41)

with a 2 {0, 1, ..., P�1}, where� contains all spin and orbital degrees of freedom as defined in Equation (4.12)�.
As a consequence, it is

dim G ⇤ P dimH ⇤ P dim Z (5.42)

because the bare Hamiltonian H is defined in the non-magnetic basis, which makes the evaluation of the
trace and Matsubara sum in Equation (5.14) tricky. It has been shown in Reference [55] that the fluctuation
matrix can still be expressed in a compact form through several complicated index shifts, and we will only
present the result here

[MF (q)]a ,b
µ,⌫ ⇤

1
2

X

k2BZ0

X

s
nF

⇣
"s

k

⌘ "
Uk

✓ f
Z†µ⌫

g b ⌦
f
H k+aQZa

0

g
+

f
Z†0

g b ⌦
f
H k+bQZa

µ⌫

g

+
f
Z†µ

g b ⌦
f
H k+q+(a+b)QZa

⌫

g
+

f
Z†⌫

g b ⌦
f
H k�qZa

µ

g ◆
U†k

# s ,s

+
1
2

X

k2BZQ

X

s ,s0
LF

⇣
"s

k , "
s0
k+q , i!n

⌘

⇥
" X

v
Uk

⇣ f
Z†µ

g v ⌦
f
H k+q+(v+a)QZv+a

0

g
+

f
Z†0

g v ⌦
f
H k+vQZv+a

µ

g
+Bv ,v+a

µ

⌘
U†k+q

# s ,s0

⇥
" X

u
Uk+q

✓ f
Z†⌫

g u+b ⌦
f
H k+uQZu

0

g
+

f
Z†0

g u+b ⌦ (H k+q+(u+b)QZu
⌫ +B

u+b ,u
⌫

◆
U†k

# s0 ,s

.

(5.43)

We further elaborate on the definition of the Fourier coefficient vectors Za
0 and the dyadic product (“⌦”) in

Appendix C, where we also provide a list of all non-zero Fourier coefficients and show their explicit form in
the case of AFM and FM. Guidelines for an efficient numerical implementation of the fluctuation matrix and
related data analysis are discussed in Appendix D.

�Even though we can express the MF Greens function of SRI models in a reduced basis that does not introduce additional fields
as discussed in Section 4.3, we need to apply the full enlarged basis for the fluctuation calculation, which can be constructed by
symmetrization of the reduced basis. Fluctuations about incommensurate magnetic saddle points are thus not accessible.
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In the PM limit (p ! 0, � ! 0), the magnetic fluctuation matrix becomes block diagonal w.r.t. to the external
momenta indices, i.e., Ma ,b

µ⌫ (q) ! �a ,bMa ,b
µ⌫ (q) and a change of the index can be recast into a momentum

translationMa+1,a+1
µ⌫ (q , i!n ) ⇤Ma ,a

µ⌫ (q + Q , i!n ). Consequently, the full PM Brillouin zone can be recovered
and the theory reduces to that PM case described by Section 5.2.1 [117].

5.3 Dynamic susceptibilities and mean-field stability

This section shows how to calculate dynamic susceptibilities utilizing the fluctuation matrix and how these
expressions are related to measurable quantities and the stability of the MF saddle point. We first summarize
basic knowledge of linear response theory based on Coleman’s textbook [48] in Section 5.3.1. Afterward,
explicit representations of dynamic susceptibilities within the SB formalism are derived in Section 5.3.2.
Finally, we elaborate on the interpretation of these quantities in the context of phase transitions and collective
modes in Section 5.3.3.

5.3.1 Linear response theory

Linear response theory in quantum mechanics addresses systems described by a Hamiltonian Ĥ0 that are
subject to an external force or source field f (t) or f (⌧) which couples to a variable A, which is usually an
operator or a field, i.e.,

Ĥ � Ĥ0 ⇤ Ĥc ⇤ � f (t)Â , Ĥ � Ĥ0 ⇤ Ĥc ⇤ � f (⌧)Â . (5.44)

Since we calculate susceptibilities through the imaginary-time formalism and then recover the real-time
quantities by analytic continuation i!n ⇤ ! + i⌘, we provide equations for both cases. The susceptibility � is
defined by the linear response of A to the external force [48]

h�A(t)i ⇤
Z 1

�1
�(t � t0) f (t0)dt0 , h�A(!)i ⇤ �(!) f (!) , (5.45a)

h�A(⌧)i ⇤
Z �

0
�(⌧ � ⌧0) f (⌧0)d⌧0 , h�A(i!n )i ⇤ �(i!n ) f (i!n ) , (5.45b)

where h�Ai ⇤ hA(t)i � hAi0 represents a deviation from the equilibrium. Utilizing the Heisenberg represen-
tation of operators, one finds [48]

�(t � t0) ⇤ i
Df

Â(t) , Â(t0)
g
�

E
⇥(t � t0) , (5.46a)

�(⌧ � ⌧0) ⇤ hT⌧�A(⌧)�A(⌧0)i . (5.46b)

We moreover define the correlation function

S(t � t0) ⇤ hA(t)A(t0)i ⇤
Z 1

�1

d!
2⇡ e�i!(t�t0)S(!) (5.47)

that can be interpreted as fluctuations of Â and is also called structure factor. Depending on the method
of measurement, either the susceptibility � or the structure factor S are accessible, but both quantities are
connected via the fluctuation-dissipation theorem [118]

S(!) ⇤ 2~
⇣
1 + n⇣ (!)

⌘
Im �(!) , (5.48)
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Susceptibility
Coupling

Hamiltonian Static, uniform limit Experimental
accessibility

�
↵�
s (⌧) ⇤

D
T⌧�S↵ (⌧)�S� (0)

E
Hc ⇤ SBext(⌧) �

↵�
s (q ⇤ 0) ⇤

@
⌧
S↵q⇤0

�

@B�ext,q⇤0

�����Bext⇤0

Spin structure factor
S(q , t) via INS

�c (⌧) ⇤ hT⌧�n(⌧)�n(0)i Hc ⇤ n�ext(⌧) �c (q ⇤ 0) ⇤ @hnq⇤0i
@�ext,q⇤0

������ext⇤0

Im �c (q , !) via
EELS [119] or

RXS [120]

�↵� (⌧) ⇤
D
T⌧� j↵ (⌧)� j� (0)

E
Hc ⇤ jEext(⌧) �↵� (q ⇤ 0) ⇤

@
⌧

j↵q⇤0

�

@E�ext,q⇤0

�����Eext⇤0

Optical conductivity
�(!) via reflection

measurements

Table 5.1: Overview of susceptibilities, their respective coupling to external fields, and experimental accessibility. The
spin susceptibility �s describes the magnetization response to an external magnetic field, and the static limit recovers
the magnetic compressibility. The charge susceptibility �c captures the electron density response to an external
potential, and the static limit yields the electronic compressibility. Finally, the conductivity � represents the response
of charge carriers to an external electric field and reduces to the inverse resistivity known from Ohm’s law in the
static limit.

where n⇣ is the Bose-Einstein distribution if A is bosonic and the Fermi-Dirac distribution if A is fermionic.
Unlike its classical analog, where 2~

⇣
1 + n⇣ (!)

⌘
! 2kBT/!, a quantum system features fluctuations even

at zero temperature. These so-called quantum-fluctuations are also captured within the SB formalism and
manifest, e.g., in non-vanishing structure factors at U ⇤ T ⇤ 0. Real and imaginary parts of susceptibilities
are connected by the Kramers-Kronig relations

�(z) ⇤
Z

d!
⇡

1
z � ! Im �(!) , (5.49)

which allows the interpret the dissipative part Im � as a spectral function for excitations.
Table 5.1 lists the most common types of response functions, i.e., the spin susceptibility, charge susceptibility,

and conductivity, and identifies the respective external coupling force f . Moreover, it provides the static limit
with a spatially uniform source f (q ⇤ 0), which is known as thermodynamic sum rule [121] and presents a
brief overview of how the discussed quantities are experimentally accessible. Since we investigate systems
with time translation invariance, we may w.l.o.g. choose ⌧0 ⇤ 0. Another important quantity that is not directly
related to a response function, is the so-called lesser Green’s function G<, which is the correlation function
of holes (i.e., Â ⇤ ĉk ,�). It can be measured by angle-resolved photoemission spectroscopy (ARPES), where
X-rays are used to eject electrons from the material, and consequently, the measured intensity is proportional
to the hole fluctuations [48]

I(k , !) /
Z

d4r
D
f̂†(r)f̂ (0)

E
e�i(kr�!t)

⇤ G< (k , !) ⇤ 2⇡nF(�!)A(k ,�!) , (5.50)

where A(k , !) ⇤ 1
⇡ Im G(k , !) is the spectral function. This technique can be applied to measure BSs and FSs

at the surface of a probe�.

�References [122] and [123] applied a different SB representation to calculate fluctuation corrections to the electron Green’s function,
which directly relates to the spectral function and allows to access dynamic contributions of the self-energy. An adaptation to
the presented formalism of magnetic fluctuations could be of interest in future studies. The fluctuating part of the PM electron
Green’s function in the space imaginary-time domain is given by �G(r , ⌧) ⇤ �

D
T⌧ f̂ (r, ⌧)f̂†(0, 0)

E
⇤ G (r, ⌧) h�z(r, ⌧)�z(0, 0)i. In

the magnetic domain, the index structure of the MF Green’s function and SB weights need to be considered.
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5.3.2 Slave-boson representation of susceptibilities

To calculate response functions within the SB scheme, we evaluate the Fourier transformation of Equa-
tion (5.46b) in the momentum and Matsubara frequency domain, where susceptibilities adopt a convenient
form due to translation symmetry. The occurring quantum mechanical expectation value can be calculated
with the addition of source fields and the generalized Gaussian integral defined in Equation (3.1g), yielding
[53, 55]�

D
� �a
µ,�q� 

b
⌫,q

E
⇤

1
Z(2)

Z
D

f
� ⇤ , � 

g
� �a
µ,�q � 

b
⌫,q exp

⇣
�S(2)[� ⇤ , � ]

⌘

⇤ lim
J ,J⇤!0

1
Z(2)

Z
D

f
� ⇤ , � 

g
@Ja
µ,q@J�b

⌫,�q
exp

*....
,
�
X

q̃ ,µ̃,⌫̃
ã ,b̃

� �ã
µ̃,�q̃M

ã ,b̃
µ̃,⌫̃ (q̃)� b̃

⌫̃,q̃ +
X

q̃ ,µ̃

J�ã
µ̃,�q̃� 

ã
µ̃,q̃ + � 

�ã
µ̃,�q̃ Jµ̃,q̃

+////
-

⇤
f
M�1(q)

g a ,b

µ,⌫
⇤ �Ga ,b

µ,⌫ (q) .

(5.51a)

Susceptibilities are then determined by superpositions of matrix elements of the bosonic propagator�

�(q) ⇤
X

µ,⌫,a ,b

Ca ,b
µ,⌫

D
� �a
µ,�q� 

b
⌫,q

E
⇤ �

X

µ,⌫,a ,b

Ca ,b
µ,⌫Ga ,b

µ,⌫ (q) . (5.51b)

Spin susceptibility

In order to calculate the spin susceptibility

�
↵�
s (q) ⇤

D
�S↵�q�S�q

E
, (5.52a)

we need to express the fluctuations of the spin operator by means of the bosonic fluctuation field basis � 
around the MF saddle point with magnetic ordering vector Q, resulting in [55]

�Sq ⇤

s
1

N�

Z �

0
d⌧

X

r
eiqr�i!n⌧

⇣
p0�⇢r + ⇢r�p0,r

⌘
⇤ p0�⇢q +

1
2 p

⇣
��p0,q+Q ,i!n + �

⇤�p0,q�Q ,i!n

⌘
, (5.52b)

where we applied the notations � ⇤ (1, i, 0)> and ⇢ ⇤
�
p1 ,�p2 , p3

�>. With Equation (5.52b), one can infer the
general form of the spin susceptibility for an arbitrary ordering vector Q and it is derived in Appendix C. Here,
we want to focus on the most common magnetic orders, i.e., fluctuations around PM, FM and AFM mean-field
saddle points. For these types of magnetic order models without SOC, the spin susceptibility matrix adopts
diagonal form and splits into a longitudinal part �l

s (q) ⇤ �1,1
s (q) parallel to the magnetic MF background and

a transversal component perpendicular to it: �t
s (q) ⇤ �2,2

s (q) ⇤ �3,3
s (q). The full spin-rotation invariance (SRI)

of the unordered state is thus reduced to SRI in the transversal plane of the symmetry-broken state. Explicit
expressions of the spin susceptibility are listed in Table 5.2.

�Remember that the chosen basis satisfies
⇣
� a
µ,q

⌘⇤
⇤ � �a

µ,�q .
�Notice that translation invariant susceptibilities in the space-time domain are given by �(r , ⌧) ⇤

1p
N�

R �
0 d⌧0

P
R

P
µ,⌫,a ,b Ca ,b

µ,⌫

D
T⌧� µ,R (⌧)� ⌫,R+r (⌧ + ⌧0)

E
.
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Magnetic order of the mean-field

background

Dynamic susceptibilities: Longitudinal and transversal spin⇣
�l

s , �
t
s

⌘
, bare (�0) and charge (�c ) susceptibility

PM: p ⇤ 0,Q ⇤ 0;
Number of sites per unit cell:

P ⇤ 1

�l
s (q) ⇤ �t

s (q) ⇤ �p2
0Gp↵ ,p↵ ⇤ p2

0
M�↵ ,�↵

Mp↵ ,p↵M�↵ ,�↵ �Mp↵ ,�↵M�↵ ,p↵

�0(q) ⇤ �2M�0 ,�0 ⇤ �2M�↵ ,�↵

�c (q) ⇤ �4d
2
1G0,0

d1 ,d1
� p2

0G
0,0
p0 ,p0 � 2d1p0

✓
G0,0

d1 ,p0
+ G0,0

p0 ,d1

◆

FM: p , 0,Q ⇤ 0;
Number of sites per unit cell:

P ⇤ 1

�l
s (q) ⇤ �p2

0Gp1 ,p1 � p p0

⇣
Gp1 ,p0 + Gp0 ,p1

⌘
� p2Gp0 ,p0

�t
s (q) ⇤ � p2

0Gp2 ,p2 ⇤ �p2
0Gp3 ,p3

�0(q) ⇤ � 2M�0 ,�0

�c (q) ⇤ � 4d
2
1Gd1 ,d1 � p2

0Gp0 ,p0 � 2d1p0

⇣
Gd1 ,p0 + Gp0 ,d1

⌘

� 2d1p
⇣
Gd1 ,p1 + Gp1 ,d1

⌘
� p0p

⇣
Gp0 ,p1 + Gp1 ,p0

⌘
� p2Gp1 ,p1

AFM: p , 0,
Q 2 {(⇡, 0, 0), (⇡, ⇡, 0), (⇡, ⇡, ⇡)}
and symmetry/lower dimensional
equivalents; Number of sites per

unit cell P ⇤ 2

�l
s (q) ⇤ �p2

0G
0,0
p1 ,p1 � p p0

⇣
G0,1

p1 ,p0 + G
1,0
p0 ,p1

⌘
� p2G1,1

p0 ,p0

�t
s (q) ⇤ �p2

0G
0,0
p2 ,p2 ⇤ �p2

0G
0,0
p3 ,p3

�0(q) ⇤ � 2M0,0
�0 ,�0

�c (q) ⇤ �4d
2
1G0,0

d1 ,d1
� p2

0G
0,0
p0 ,p0 � 2d1p0

⇣
G0,0

d1 ,p0
+ G0,0

p0 ,d1

⌘

� 2d1p
✓
G0,1

d1 ,p1
+ G1,0

p1 ,d1

◆
� p0p

⇣
G0,1

p0 ,p1 + G
1,0
p1 ,p0

⌘
� p2G1,1

p1 ,p1

Table 5.2: This table sums up, how to calculate the spin, charge and bare susceptibility by means of the fluctuation field
propagatorGa ,b

µ,⌫ (q) ⇤ �
f
M�1(q)

g a ,b

µ,⌫
for underlying PM, FM and AFM mean-field saddle points. The spin susceptibility

splits into a longitudinal part �l
s parallel to the MF magnetization and a transversal component �t

s perpendicular to it.

Charge susceptibility

The charge susceptibility
�c (q) ⇤

D
�n�q�nq

E
, (5.53a)

can be obtained analogous, utilizing [55]

�nq ⇤ 2d1�d1,q + p0�p0,q +
p
2

3X

↵⇤1

⇣
�⇤↵�p↵,q+Q ,i!n + �↵�p↵,q�Q ,i!n

⌘
. (5.53b)

The general form is derived in Appendix C, while the most common applications for PM, FM and AFM

order are listed in Table 5.2. The charge susceptibility is directly related to the electronic compressibility
T ⇤ n2@n/@µ0, which can be noticed by identifying the external potential �ext in Table 5.1 with the chemical
potential µ0

�c (q ⇤ 0) ⇤
@

D
nq⇤0

E

@µ0
⇤ n2T . (5.54)
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We, moreover, want to discuss the bare susceptibility �0(q) which is sometimes also called polarizability and
can be understood as charge susceptibility of the effectively free MF band structure with �c (q) ⇤ �0(q) in
the non-interacting limit U ⇤ 0 [124]. It can be evaluated with the PF representation of the charge density
operator and the application of Wick’s theorem

�0(q) ⇤
D
n�q nq

E
0
⇤

1
Z(0)

Z
D[ f ⇤ , f ] f ⇤k1+q f k1

f ⇤k2�q f k2
exp *

,
X

k

f †k

P f G k

��1
f k � S

(0)
B

+
-

⇤ � 1
N�

X

k

tr
✓
P f G k+qP f G k

◆
,

(5.55a)

where P f ⇤ 02O⇥2O � 12 projects onto the interacting electrons. This result can be identified with diagram
D(6) in Figure 5.1 and consequently we find

� 1
2�0(q) ⇤M�0 ,�0 (q) . (5.55b)

In opposite to other susceptibilities, �0 is not directly impacted by the interaction, besides the renormalization
of the MF band structure, and thus not well-suited to investigate FS instabilities in our case. However, it is an
indicator of FS nesting and of major importance for other approximation techniques like, e.g., random phase
approximation (RPA), where the corresponding diagram is summed up to infinite order.

Conductivity

The charge susceptibility and conductivity are not independent because the external potential and electric
field are connected by Eext ⇤ �r�ext and the continuity equation, yielding [39]

j(q) ⇤ �(q)Eext(q) ⇤ �i�(q)q�ext(q) , (5.56a)

0 ⇤ �i!nq + iq j(q) . (5.56b)

Combining these results and using nq ⇤ �c (q)�ext(q), the dynamical conductivity for isotropic systems is
given by

�(q , !) ⇤
�i!
q2 �c (q , !) . (5.57a)

Since we obtain the charge susceptibility via analytic continuation!n ! !+i⌘, we have to add the convergence
factor to all appearing frequencies. The optical conductivity is then found in the limit of vanishing momentum

�(! + i⌘) ⇤ lim
q!0

�i! + ⌘

q2 �c (q , ! + i⌘) . (5.57b)

The convergence parameter ⌘ needs to remain finite for numerical evaluation, and it may be identified with
the inverse scattering time ⌧s ⇤ 1/⌘ of a Drude conductivity [14, 53]

�D (!, ⌧s ) ⇤
�0

1 + !2⌧2
s
+ i �0!⌧s

1 + !2⌧2
s
, (5.58)

and we find lim⌘!0 �0 ⇤ 1, if the model does not feature an explicit source of dissipation.
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5.3.3 Collective modes and phase transitions

Within the analysis of dynamic susceptibilities, we can infer the existence of collective excitations and deter-
mine their dispersion relation. Such a collective mode is characterized by a coherent oscillation of a large
number of electrons with the same wave-vector q and frequency ! in the absence of external fields [125].
They are therefore defined by poles of the susceptibility or equivalently

1/�(q , !) ⇤ 0 ) Dispersion relation!(q) of the collective mode . (5.59a)

Specifically, in the case of a diverging spin susceptibility 1/�s (q) ⇤ 0, the quasiparticles (QPs) represent
spin density waves and are called magnons [126]. In analogy, the QPs of charge density waves come along
with a diverging charge susceptibility 1/�c (q) ⇤ 0 and are called plasmons [125]. In practice, we need
to perform the analytic continuation i!n ! ! + i⌘ with ⌘ ! 0+ in order to evaluate susceptibilities at
finite frequencies. Collective modes manifest in delta-peaks of Im �(q , ! + i⌘), which are broadened by the
convergence parameter ⌘ that acts like a dissipative energy scale or an inverse lifetime in analogy to Im⌃ in
FL-theory. A collective excitation at zero frequency is the signature of a FS instability, i.e., a phase transition
with spontaneous symmetry breaking

1/�(q , ! ⇤ 0) ⇤ 0 ) Phase transition . (5.59b)

Typical broken symmetries are spin-rotation-symmetry (magnons), translation-symmetry (enlargement of
the unit cell due to charge or spin order), lattice symmetries (nematic order) or U(1) gauge-symmetry
(superconductivity).

In the context the Gaussian fluctuations, we may think of susceptibilities as bosonic QP Green’s functions
Gs/c ⇤ ��1

s/c that initiate a breakdown of the path integral for Gs/c  0. Apart from roots of 1/�s/c (! ⇤ 0) at
phase transitions, we do indeed find negative domains if the external parameters are chosen such that the
system is tuned further into the broken symmetry phase, which can be interpreted as condensation energy of
the bound state. However, the MF approximation has already broken down at this point, and the respective
analysis of susceptibilities is not accurate anymore. Reliable information about the nature of the symmetry
broken phase should thus be acquired exactly at the critical point. This way, susceptibilities can also be
applied to determine critical exponents and Landau interaction functions [53, 127].

5.4 Fluctuation corrections to the magnetization

We may also utilize the fluctuation formalism to improve the quality of the MF solution by calculating
second-order corrections that yield from the bosonic theory of fluctuation fields with the action

S(2)
⇤

X

i!n

X

q2BZQ

X

µ⌫

X

ab

� �a
µ,�q

f
G�1(q)

g a ,b

µ,⌫
� b

⌫,q . (5.60)

Despite being quadratic, the effective theory does for two reasons not represent free bosons, which comes
along with subtleties that make the evaluation complicated and numerically costly. First of all Equation (5.60)
contains anomalous contributions w.r.t. the complex d-field that keeps its phase in the radial gauge. As a
consequence, the Lagrangian features terms proportional to dd and d⇤d⇤ that do not enter in a free theory, but
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can principally be integrated out analytically� [80]. Secondly, the fluctuation theory features a complicated
time dependence that is not delta-correlated (�⌧B , 0) as opposed to a free theory. It is due to the fact that
only the original fermions are delta-correlated in time, whereas the PF and SB fields have individual dynamics
with 0 ⇤ �⌧ ⇤ �⌧F + �⌧B . This can be seen by inverse FT of the dynamic Lindhard function, which can be
determined analytically with the application of Reference [128]
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(5.61)

Unlike a free theory, an analytical evaluation of the occurring bosonic Matsubara summations is thus not
possible.

The calculation of the bosonic partition function that yields corrections to the free energy is problematic
because it involves non-convergent Matsubara summations and will not be further discussed in this thesis�.
However, uniform expectation values of the fluctuation fields are easier to access because they do not explicitly
require the integration of bosonic fields and can be interpreted as corrections to the respective MF variables.
These are determined by the respective equal space-time Green’s function

D
� µ� ⌫

E
⇤

D
� a
µ (r)� b

⌫ (r + �r)
E ������r⇤0

⇤ �Ga ,b
µ,⌫ (�r ⇤ 0, �⌧ ⇤ 0�) ⇤ � 1

N�

X

i!n

X

q2BZQ

ei!n0�Ga ,b
µ,⌫ (q) (5.62)

that does not depend on r due to translation symmetry. The occurring Matsubara summation needs to be
performed numerically and converges if Gab

µ⌫ (i!) ⇤ O

⇣
!�(1+✏)

n

⌘
with ✏ > 0. In the case of ✏ ⇤ 0, numerical

convergence can be recovered by a convergence factor 0�, which originates from the discrete nature of the path
integral and preserves causality. The matrix elements of interest decay quadratically for large frequencies,
i.e., the infinite sum numerically converges by employing a suitable cutoff

1X

n⇤�1
Ga ,b
µ,⌫ (i!) !

ncX

n⇤�nc

Gab
µ⌫ (i!) (5.63)

�These terms are "hidden" in the off-diagonal matrix elements Gd1d2 , considering our basis d ⇤ d1 + id2. A free theory is defined by
L (0) ⇤

P
↵ ⇠⇤↵ (�i!n + "↵) ⇠↵ .

�The calculation of F(2) ⇤ �T ln Z(2) ⇤ �T ln
R
D

f
� ⇤ , � 

g
exp

⇣
�� ⇤M� 

⌘
⇤ �T 1

N�
P

i!n

P
q ln detM(q) requires integration

of all bosonic fields and has, as far as we know, not been established in the literature. We quickly sketch the obstacles which
would need to be resolved to evaluate this type of energy correction. Firstly, all normalizations and Jacobi determinants that
conveniently cancel for the analysis of correlation functions, including the impact of dynamic Lagrange multipliers within the
radial Read-Newns gauge, need to be considered here. Secondly, the occurring Matsubara sum does not converge because
M contains eigenvalues of the order O(!n ), which yield from the bosonic part S(2)

B . These divergences are an artifact of the
continuous-time description because only the formalism with discrete-time, where the limit of an infinite number of time slices
is taken at the very end of a calculation, is formally correct, as we pointed out in Chapter 3. This problem also occurs for free
particles and can be resolved through an adequate convergence factor [originating in the fact that two fields are always separated
by a single time slice in the discrete description, see Equation (3.5b)] and complex integration [compare Equation (3.19b)]. This
procedure, however, cannot be directly applied here because the eigenvalues of M have no simple analytic form due to the
occurring Lindhard function. A promising approach to resolve that problem is separating the divergent and convergent part ofM
by means of the matrix identityMdiv. +Mconv. ⇤Mdiv.

⇣
1 +M�1

divMconv.

⌘
and treating the diverging part in an analytical manner,

while remaining part decays fast enough for a successful numerical evaluation. Following Reference [80], the calculation could
also be done in the Cartesian gauge with static Lagrange multipliers to avoid gauge problems in the path integral. In that case,
however, the unphysical zero modes which have been discussed in Section 3.2.1 need to be projected out [86] before the evaluation
of the determinant.
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that should be chosen such that !nc ⇤ 2⇡nc/� & W , where W is the bandwidth of the MF band structure.
Therefore, especially the evaluation at low temperatures becomes numerically costly.

Corrections to the MF magnetization (m (0) ⇤ p0p) are accordingly given by the equal space-time expectation
value of the spin fluctuation m (2) ⇤

⌦
�p0�p

↵
, which is determined by the respective equal space-time Green’s

function matrix element. We explicitly consider the cases of FM, where the MF solution is spatially uniform,
and AFM where we have to consider the non-vanishing Fourier coefficients of p1 w.r.t. the MF ordering vector
Q �

m (2)
FM ⇤ � 1

N�

X

i!n

X

q2BZ0

Gp0 ,p1 (q) , (5.64a)

m (2)
AFM ⇤ � 1

N�

X

i!n

1
2

X

q2BZ0

G0,1
p0 ,p1 (q) . (5.64b)

To sum up, the expectation value of the net magnetization m up to second order is then given by

m ⇤ m (0)
+ m (2)

+O

⇣
� 3

⌘
. (5.65)

The presented evaluation of second-order corrections is numerically expensive because it involves two inde-
pendent momentum summations (the PF sum to determine the fluctuation matrix and the bosonic sum) and
one Matsubara summation (the PF Matsubara summation has been performed analytically).

�In the case of AFM order, we need to multiply by 1
2 to account for the smaller magnetic BZ and we find the matrix elements

G0,1
p0 ,p1 ,G

1,0
p0 ,p1 ,G

0,1
p1 ,p0 ,G

1,0
p1 ,p0 to be equivalent within the summation. Moreover, we find G0,0

p0 ,p1 to vanish due to the sublattice
structure of the AFM.





II
The 2D Hubbard model in the context of

the high-Tc cuprates

In this part, we introduce the two-dimensional one-band Hubbard model as
an archetypal approach to the many-body problem and argue why it serves
as a minimal model for the high-Tc cuprates. We then provide a com-
prehensive analysis of the model by means of the SB technique, including
the discussion of Mott physics, magnetic phases, collective modes, phase-
separation, and compare our findings with results from other theoretical
methods. Finally, we identify a parameter regime that features an intertwin-
ing of spin and charge order, where our results are in excellent agreement
with recent experimental findings in the of electron-doped compounds like,
e.g., Nd2�xCexCuO4 (NCCO).
The content of this part has partially been published in References [53] and
[55].
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The Hubbard model and the many-body problem

The Hubbard model, independently conceived in 1963 by Martin Gutzwiller [106], Junjiro Kanamori [129] and
John Hubbard [35] is one of the legendary models in theoretical physics that captures the essence of various
emergent phenomena despite being simple and descriptive [36]. Almost 60 years later, it has remained
relevant in the current research and puzzles scientists up to this day. Initially, it was intended to explain
itinerant ferromagnetism (FM) in transition metals like, e.g., iron or nickel, as an interaction effect, since
the phenomenon could not be explained with the free electron gas [18], where particles are only indirectly
correlated by the quantum mechanical Pauli exclusion principle [16]. However, as we will learn, FM only
plays a minor role after all, whereas the corresponding phase diagram is dominated by antiferromagnetism
(AFM) and superconductivity (SC).

The model is based on the tight-binding approximation, where electrons are assumed to be fairly localized
around positively charged ions that form a periodic potential or lattice in terms of Wannier states [130]. Wave
functions, associated with different lattice sites i , j hybridize as a result of the transfer integrals ti j between
the orbitals, which introduces a kinetic energy scale and allows the electrons to hop from site to site. The
Hubbard Hamiltonian adds a potential energy scale to the picture, which relates lattice sites occupied by two
electrons with different spin (", #) with the energy cost U > 0, as a consequence of the screened repulsive
Coulomb interaction. We further involve the chemical potential µ0 to control the total number of electrons in
the grand canonical ensemble, which yields

HHub
⇤ �

X

<i j>,�

ti j f̂
†
i ,� f̂j,� � µ0

X

i ,�

f̂†i ,� f̂i ,� + U
X

i

f̂†i ,"f̂i ,"f̂
†
i ,#f̂i ,# (6.1a)

⇤

X

k ,�

⇠k ,� f̂
†
k ,� f̂k ,� + U

X

i

f̂†i ,"f̂i ,"f̂
†
i ,#f̂i ,# , (6.1b)

in the second quantization notation (compare Chapter 2). By imposing periodic boundary conditions (PBC),
the kinetic part of the Hamiltonian can be diagonalized by Fourier transformation (FT) in a basis of Bloch
states [22], which allows for calculating the exact ground state in the non-interacting limit (U ⇤ 0). Within
this thesis, we consider nearest neighbor (NN) hopping with an amplitude t and next-to-nearest neighbor
(NNN) hopping t0 on the square lattice, which leads to the dispersion relation

⇠k ,� ⇤ �2t
⇣
cos kx + cos ky

⌘
� 4t0 cos(kx ) cos(ky ) � µ0 . (6.1c)

We will w.l.o.g. define t ⇤ 1 in the following, i.e., we relate all energy scales to the NN hopping transfer
integral. In the non-interacting limit, the dispersion ⇠k ,� is equivalent to the spin degenerate eigenvalues "k
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Figure 6.1: Band structure on the high symmetry path [� ⇤ (0, 0)> – X ⇤ (0, ⇡)> – M ⇤ (⇡, ⇡)> – �] with according
DOS (left side), and Fermi surfaces (FSs) representing three different electron fillings n (right side) for the Hubbard
model in the non-interacting limit (U ⇤ 0) and t0 ⇤ �0.2. The DOS logarithmically divergences at nvH ⇡ 0.83 (van
Hove divergence). The hopping scheme is chosen such that the model approximately describes the physics of high-Tc
cuprate materials (compare Chapter 7), where the van Hove singularity plays an important role, since a high DOS
may catalyze FS instabilities once interactions are taken into consideration. Figure adapted from [57] with permission
of the author.

of the Hamiltonian in the one-particle picture, where k is a good quantum number to describe the system.
Figure 6.1 exemplarily shows the corresponding band structure (BS) and Fermi surfaces (FSs) for three different
electron fillings n. We observe that there are states below and above the Fermi level as a consequence of the
electron hopping, i.e., the total energy can be minimized by the delocalization of electrons for partially filled
systems, which besides the prediction of energy gaps, is one of the key results of band theory in condensed
matter physics. Figure 6.1 moreover shows the density of states (DOS), which is defined by D(!) ⇤ dn/d!
and can be interpreted as the number of states per energy interval d!. It is given by the trace over the spectral
function� [39]

D(!) ⇤ Trk ,� A(!, k , �) ⇤
2
⇡

lim
⌘!0

X

k

⌘

(! � "k )2 + ⌘2 ⇤ 2
X

k

�(! � "k ) , (6.2)

and employs a logarithmic divergence� at the saddle point of the BS. This so-called van Hove singularity is
named after its discoverer, who first observed the divergence in 1953 in the context of phonons [131]. It is a
special feature of two-dimensional (2D) tight-binding models and does not occur in 1D or 3D� [132]. The value
of the critical filling nvH depends on the details of the hopping scheme, but it always remains present.

Like in most branches of physics, the properties of a system are mainly determined by the interplay of kinetic
and potential energy degrees of freedom, which are here represented by the transfer integrals t , t0 and the
Hubbard interaction U respectively. As we have learned before, the ground state energy can be decreased by
the delocalization of the itinerant electrons. However, this behavior is inhibited by the Hubbard interaction,
which effectively reduces their mobility and, to some extent, favors a localized picture. These competing
processes promote various interesting phenomena, and the Hubbard model has become the archetypical
model to study strong correlations among condensed matter theorists, featuring a plethora of FS instabilities
despite its elegant simplicity. The interest in the model spiked twice in history due to breakthroughs in
experimental physics. First, in 1986 with the discovery of high-temperature superconductivity (HTS) by

�The spectral function is defined by the imaginary part of the Green’s function A(!) ⇤ Im G(! + i⌘), where ⌘ is a positive
infinitesimal, which is introduced by analytical continuation from Matsubara frequencies to real frequencies to preserve causality.
Moreover, �(!) represents the Dirac Delta function that yields from the limit ⌘! 0.

�The electron filling given by the energy integral over the DOS remains well defined due to the logarithmic nature of the divergence.
�In 1D or 3D there still is a critical point, where the DOS is not differentiable. It, however, does not diverge.
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Bednorz and Müller [8] and the high-Tc cuprates (HTCCs) that are approximately described by the Hubbard
model and its high-U limit, the t-J model [133], as we will further discuss in Chapter 7. Since then, researchers
hope to get a deeper insight into the still not fully understood pairing mechanism of unconventional SC by
studying the Hubbard model, and that journey continues up to this day. Secondly, since the 2000s, physicists
were able to directly experimentally realize the Hubbard model by cold atom trapping [134, 135], which gave
its popularity another boost.

The problem, however, is very hard to solve and an exact solution has only been obtained in 1D [136]. Its
physical relevance catalyzed the development of analytical and numerical techniques to approximately solve
the many-body problem. Prominent examples are dynamical mean-field theory (DMFT) [40], quantum Monte
Carlo (QMC) [38], functional renormalization group (FRG) [42], density matrix embedding theory (DMET) [41]
and of course mean-field (MF) plus fluctuation methods like the slave-boson (SB) theory described in Part I
that we will apply in Chapters 8 and 9 to analyze the 2D Hubbard model. These techniques have revealed
various FS instabilities and non-Fermi liquid (FL) behavior like metal-to-insulator or Mott transitions [50, 58,
122, 137], superconductivity [41, 138], different types of magnetic order [53, 105], stripes in the context of
charge-order (CO) [55, 120, 139, 140] and the pseudogap (PG) [141] that cannot be explained without the impact
of interactions.

The dimensionality of the model also plays an important role. Since electrons are more confined in 2D rather
than 3D and feature the van Hove singularity at a critical filling, interactions effects that drive the previously
mentioned phenomena are expected to be more dominant. Theoretically, such long-range order should
not exist in two dimensions in the thermodynamic limit at finite temperatures due to the Mermin-Wagner-
Hohenberg (MWH) theorem [142, 143]. Magnetism and superconductivity, however, have been experimentally
observed in quasi-two-dimensional materials like the HTCCs, which can be explained by interlayer coupling
or anisotropy due to spin-orbit coupling (SOC). Moreover, a recent discussion initiated by Bertrand Halperin
questions the applicability of the MWH theorem in 2D systems due to finite size effects [144, 145]. Finally, it
is important to note that the approximations that come along with the SB theory described in Part I do not
respect the MWH-theorem, i.e., the method is suitable to investigate long-range order in 2D as experimental
findings suggest.

As mentioned previously, a prominent example of such a quasi-two-dimensional system are the HTCCs,
which became famous with the discovery of HTS. In Chapter 7, we will summarize crucial features of these
materials and argue why they can approximately be described by the one-band Hubbard model. Afterward,
we present a comprehensive study of the 2D Hubbard model in Chapter 8, where the results are also compared
with other theoretical methods and contextualized with the HTCCs. Finally, Chapter 9 identifies a parameter
domain featuring intertwined spin and charge order in excellent agreement with recent experimental findings
in electron-doped HTCCs [120, 140].
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The high-Tc cuprates and superconductivity

On April 8th, 1911, the dutch physicist Heike Kamerlingh Onnes wrote into his lab notebook [146] “Kwik
nagenoeg nul. Herhaald met goud” (Mercury[‘s resistance] practically zero [at 3 K]. Repeated with gold) and discovered
superconductivity (SC), a quantum mechanical state where the electrical resistivity goes to zero below a critical
temperature Tc , as a result of his effort to liquefy Helium [7, 147]. Over time, more and more elements and
compounds were identified to feature SC with a rise in critical temperature Tc that saturated around 30 Kelvin
as illustrated by green circles in Figure 7.1. It took 46 years until a theoretical description was established
by John Bardeen, Leon Cooper, and John Robert Schrieffer in 1957, which is referred to as BCS-theory of
conventional superconductivity and explains the phenomenon by the formation of Cooper pairs [28, 102].
The pairing is explained by an effective attractive potential between electrons induced by electron-phonon
coupling, yielding the order parameter �ii ⇤

D
f̂†i ,"f̂

†
i ,#

E
, 0.

In 1986, Bednorz and Müller discovered that a totally different material type, namely the cuprate Ba2Cu3LaO7

(LBCO) also featured superconductivity at a for that time surprisingly high critical temperature of about 35K
and the field of high-temperature superconductors (HTSs) was founded [8]. Shortly after, it was observed
that a substitution of the rare earth element could drastically increase the critical temperature up to 92K
for YBa2Cu3O7�x (YBCO), which was a major breakthrough because it was the first superconductor that
could be cooled with liquid nitrogen [148]. It was succeeded to push Tc for this material class of high-Tc

cuprates (HTCCs) even higher as illustrated by blue diamonds in Figure 7.1, but it still remains far below
room temperature, and there was no major improvement since the late 1990s. The pairing mechanism in
HTSs differs from conventional superconductivity, is still not fully understood and its further deciphering
and the search for room-temperature SCs is a major goal in contemporary condensed matter physics. It is,
however, consensus that the pairing for this so-called unconventional superconductivity is due to electron-
electron interactions (rather than an electron-phonon coupling), where an adequate order parameter is given
by �i j,��0 ⇤

⌧
f̂†i ,� f̂

†
j,�0

�
, 0 with i , j.

A popular theoretical approach to study unconventional SC is to calculate the k-dependent pairing vertex
V�1�2
�,�0 (k , q) (e.g., by FRG) and solve the self-consistent MF gap equation [42]

�q ,��0 ⇤ �
1
N

X

k ,�1�2

V�1�2
�,�0 (k , q)

�k ,�1�2

2"k
tanh

✓ "k

2T

◆
. (7.1)

Unlike conventional SC, which can analyzed by means of the spin- and charge-rotation invariant Kotliar–
Ruckenstein (SCRIKR) slave-boson representation [68], a SB approach for unconventional SC has not been
established. The reason is that the corresponding order parameter would require defining a non-local
constraint that connects neighboring lattice sites, whereas the implemented constraints are local, i.e., on the
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Figure 7.1: Historical overview of discovering superconducting elements and materials with their respective critical
temperature Tc . High-Tc cuprate materials that are discussed within this thesis feature unconventional superconduc-
tivity and are shown in blue; conventional superconductors are represented by green circles and heavy-fermion-based
superconductors by green stars. Figure reprinted from [149].

same lattice site [compare Equation (2.14)]. A SB method that combines both types of constraints consistently
is yet to be found. We will, therefore, not explicitly discuss superconducting phases in this thesis and focus our
discussion on the underdoped regime of the HTCCs, where SC is not present. We are, however, investigating
a method to approximately calculate the frequency-dependent pairing vertex by means of the SB fluctuations
in order to solve the dynamic analog of Equation (7.1) [57].

7.1 E�ective one-band Hubbard model for high-Tc cuprates

A common denominator of all HTCC materials are copper-oxide planes (CuO2), separated by interlayers that
usually contain rare-earth elements that act as charge reservoirs as exemplarily shown in Figure 7.2(a). There
is only weak coupling between different planes such that the main physics is believed to be described by
quasi-2D systems, and the electron density in those planes can be manipulated by a process called doping,
where the rare-earth elements are partially substituted [150].

The copper ions are in the oxidation state Cu2+ with the electron configuration 3d9, and associated orbitals
are energetically split by the crystal field of the surrounding oxygen octahedron into a low energy triplet t2g ,
containing orbitals that feature nodes at the oxygen ions (dx y , dxz , dyz), and a higher energy eg doublet with
the dx2�y2 and d3z2�r2 orbitals. Furthermore, the degeneracy of the eg doublet is lifted by the Jahn-Teller effect
[151], i.e., the distortion from the perfect octahedron, which effectively removes the d3z2�r2 orbital. These
results imply a three-band model, featuring a half-filled dx2�y2 orbital for the copper and doubly occupied
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(a) Crystal structure of the cuprate mate-
rial Hg1201 [157, 158]. Figure created
with crystallica [159].

(b) Schematic universal phase diagram of the HTCCs as function of
temperature T and doping � based on results of the established
literature [133, 140, 157, 160, 161]. The electron filling is given by
n ⇤ 1 + � and the regime for |� | . 0.1 is referred to as underdoped.

Figure 7.2: Basic crystal structure and schematic phase diagram of the high-Tc cuprates based on experimental and
theoretical results. The doping � manipulates the electron density in the two-dimensional CuO2-plane and can be
tuned by partially substituting rare earth elements in the crystal. The system is theoretically well approximated by
the one-band 2D Hubbard model. Figure adapted from [57].

p-orbitals for the oxygen ions O2�, to be an effective model [152, 153] with partially filled bands. Experimental
findings, however, show a large charge gap at half-filling, i.e., a breakdown of the band theory [154], which
can be explained by a Mott transition� as a strong correlation effect [156], which is actually covered by the
single orbital Hubbard model.

Also, for doped HTCCs, experiments suggest that there is only one band at the Fermi-level [162]. Moreover,
as pointed out by Hanke et al. [163] many theoretical studies featuring the one band model find the Fermi-
ology, magnetic ordering and dx2�y2 superconducting pairing in qualitative agreement with experimental
observations [162, 164–167]. In that picture, only the copper dx2�y2 orbital remains, which can be approxi-
mated by the one-band Hubbard model on a 2D simple cubic lattice. Due to these findings, the HTCCs are
commonly believed to incorporate the physics “of doping a Mott insulator” [133]. Doped electrons occupy the
3d10 orbital, whereas holes are mainly absorbed by the oxygen orbitals, which raises the question of why
those can be neglected in the case of hole doping. A possible explanation was given with the formation of
a so-called Zhang-Rice (ZR) singlet between a spin residing in the half-filled copper orbital and a hole on
the adjacent oxygen orbitals [168, 169]. The one band description can be recovered through a second-order
perturbation calculation, where the oxygen orbitals are integrated out. The apparent particle-hole asymmetry
can be recovered by a finite next-to-nearest neighbor (NNN) hopping t0 as a phenomenological parameter,
despite it is not in strict agreement with the ZR picture. Ab initio calculations suggest that t0 ⇡ �0.2 is a
reasonable choice to represent many HTCC materials [170]. We will therefore apply the one-band 2D Hubbard
model given by Equation (6.1) as effective HTCC model and analyze it with the SB scheme. There is, however,
an ongoing discussion on its validity and possible limitations in the scientific community.

�There is another school of thought that the HTCCs should be regarded as charge-transfer insulators, where the insulating properties
arise from hopping between the 3d10 and 2p orbitals within the unit cell rather than hopping between different unit cells like in
the case of Mott physics [155].
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7.2 Generic phase diagram

The two most crucial experimental possibilities to manipulate HTCC compounds are to control the temperature
T and the doping � away from half-filling n ⇤ 1 � � by substituting rare earth elements in the crystal. The
phase diagram as a function of these parameters looks qualitatively very similar for many different HTCC

materials and is summarized by the schematic universal phase diagram in Figure 7.2(b). As discussed earlier,
the undoped ground state is insulating, which can be explained by a Mott transition with antiferromagnetic
spin alignment. The antiferromagnetism (AFM) persists away from half-filling as conducting magnetic ground
state and occupies a larger domain in the case of electron doping. Superconducting domes are present for
both types of doping, but the highest critical temperature Tc is consistently found for hole doping, with its
maximum around n ⇡ nvH (optimally doped). Moreover, a so-called and not yet fully understood pseudogap
(PG) regime is identified at the vicinity to half-filling, up to high temperatures. The PG is characterized by
partial energy gaps at the Fermi surface (FS) resulting in Fermi arcs and is also associated with local minima
of the density of states (DOS) that can be measured by means of the specific heat [171–173]. A significant part
of the remaining phase diagram also shows non-Fermi liquid (FL) behavior, such as a linear resistivity as a
function of temperature rather than a quadratic dependency, and is often called strange metal.

Recently, research on charge-order (CO) and stripe phases have risen in popularity. This type of order is
primarily observed in the underdoped regime for electron doping, intertwines with the AFM ground state,
and could also be relevant to gain a better understanding of PG physics [157]. Ultimately, people hope to get
a deeper insight into the superconducting pairing mechanism by studying spin fluctuations and the nature
of the other surrounding phases in order to demystify the fascinating phenomenon of HTS [174, 175].

The SB method is especially capable of describing intertwined spin and charge order, which is why we set
the main focus on the underdoped regime and present results for the Hubbard model with explicit context
to the HTCCs in Chapter 9.
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Slave-boson analysis of the 2D Hubbard model

In this chapter, we present a comprehensive analysis of the 2D Hubbard model defined in Equation (6.1) on
the square lattice, by means of the slave-boson (SB) theory described in Part I. The discussion includes a Mott
transition at half-filling (Section 8.1), magnetic mean-field (MF) phase diagrams (Section 8.2) as well as static
correlations (Section 8.3) and collective modes (Section 8.4) in the spin and charge channel. Afterward, we
investigate emerging inhomogeneous phases that arise from charge fluctuations about the AFM mean-field
ground state (Section 8.5) and lead up to the discussion of intertwined spin and charge order in the context of
electron doped high-Tc cuprates (HTCCs) in Chapter 9. We, moreover, compare our results with the findings
of other theoretical methods to provide an estimation of the quality of the SB approximation. We do not
explicitly discuss superconducting instabilities because the SB technique presented in Part I is not suitable to
express non-local order parameters, which are required to describe unconventional superconductivity (SC).
The content of this chapter is based on References [53] and [55], but also complemented with a variety of
previously unpublished results. Data that has been published before in the references above is annotated in
the caption of respective figures.

We will keep technical details short in order to achieve a smooth presentation and refer the reader to
respective relevant sections in Part I to get a deeper insight into the underlying formalism. Just for a quick
recap, the SB approach that we apply yields an exact representation of the original model, where the Hubbard
interaction becomes quadratic in fermionic fields at the cost of a more complicated hopping scheme that mixes
fermionic and bosonic degrees of freedom. The corresponding ground state can be determined approximately
through a bosonic MF ansatz, where the remaining fermionic degrees of freedom are integrated out. Gaussian
fluctuations of the bosonic fields around the MF saddle point are applied to analyze dynamic correlations
and to investigate emerging Fermi surface (FS) instabilities of the renormalized band structure (BS) in order
to judge the stability of the MF ground state.

8.1 Mott transition at half-filling

According to Fermi liquid (FL)-theory, it is expected that a half-filled band always features a conducting state
because there are quasi-free electrons at the FS that can carry charge. There are, however, exceptions to that
assumption. In 1949, Nevil Francis Mott proposed his idea of an insulating state for a half-filled band [137],
which was theoretically supported by the analysis of the Hubbard model in 1964 [58] and explained the
phenomenon by interaction effects. The problem can intuitively be understood as follows: We learned in
Chapter 6 that free electrons in metals tend to delocalize in order to minimize their total energy. However,
the Hubbard interaction applies an energy penalty if two electrons occupy the same lattice site, and for a
half-filled system, this potential energy cost cannot entirely be avoided as long as the electrons remain to
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be itinerant. Imagine a critical Uc , where the interaction energy cost is so high that delocalizing does not
minimize the total energy anymore, but the electrons are rather frozen out and localized. The resulting state
is insulating and called Mott insulator (MI), whereby the critical interaction Uc enables the Mott transition.
The existence of such a state is supported experimentally. It is e.g., widely believed that the HTCC are MIs at
zero doping [133].

Within our SB scheme, we have two accessible quantities to search for the signature of an emerging Mott
state. Firstly, the kinetic energy in the system, and secondly, the opening of an energy gap. In order to
investigate those, we minimize the MF free energy (FE) by solving the saddle point equations
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�����(4.26)
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⇤ 0 , (8.1a)
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according to Section 4.4 at half-filling (n ⇤ 1). We distinguish between explicitly paramagnetic (PM) solutions,
where we enforce p ⇤ 0 and solve the reduced saddle point equations given by Equation (8.1a)� and MF

ground states that allow for magnetic order as determined by Equation (8.1b). The eigenvalues "k ,� of the
renormalized BS that enter the FE are derived in Appendix B.1 and yield
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1
2
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+ +Z2
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� µeff , (8.2a)

with the magnetic gap function
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In the PM limit, it isZ� ⇤ � ⇤ 0 and the spin-degenerate eigenvalues adapt the simplified form

"k ⇤ z2
0⇠k � µeff . (8.2c)

Moreover, we defined µeff ⇤ µ0 � �0, ⇠k represents the dispersion of the non-interacting system defined by
Equation (6.1c), and the properties of the SB-weightsZ+ ,Z� , z0 and LMs �0 , � are summarized in Table 4.1.

The hopping amplitudes that dictate the kinetic energy scale are renormalized by ti j ! z2
0 ti j for PM and

ti j ! Z2
+ti j for magnetic saddle points respectively� and the localized Mott state can be identified by a

vanishing hopping amplitude. Equation (8.1a) can be solved analytically for t0 ⇤ T ⇤ 0 [53] and yields
Uc ⇤ 128/⇡2 ⇡ 12.97 with z0 |(Uc ) ⇤ 0 and p0(Uc ) ⇤ 1, i.e., every lattice site is exactly singly occupied, which
describes the frozen insulating state that we illustrated earlier. The numeric solution of the magnetic saddle
point equations yields an antiferromagnetic (AFM) ground state withZ+ > 0 as shown in Figure 8.1(a).

The opening of a Mott gap in the PM ground state can again be shown analytically with a discontinuity of
the chemical potential [50, 53]

�Mott
⇤ lim
�!0

��µ0(n ⇤ 1 + �) � µ0(n ⇤ 1 � �)�� . (8.3)

�The magnetization is given by m ⇤ pp0.
�The interaction-enabled rescaling of the kinetic energy is, however, not simply given by z2

0 , because the LM �0 also affects it by
increasing the effective chemical potential µeff ⇤ µ0 � �0.
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(a) Renormalized hop-
ping amplitudes for
t0 ⇤ 0 at zero temper-
ature and half-filling.

(b) Mott gap vs. AFM band gap on
the high symmetry path of the BZ
for t0 ⇤ 0 at zero temperature,
half-filling and U ⇤ 15.

(c) Interaction-temperature dependent phase dia-
gram for t0 ⇤ 1/

p
3 and half-filling. Dashed lines

indicate first- and solid lines second-order phase
transitions. Figure adapted from [53].

Figure 8.1: The Mott transition can be identified by a vanishing renormalized hopping amplitude z2
0 and the opening of

a gap in the chemical potential within the PM MF. Allowing magnetic ordering, we find an AFM band insulator with
a larger gap to be energetically favored above the Mott state at zero temperature. At finite temperatures, we find a
first order transition from the AFM to the Mott state and a critical point, where TNeel is maximized. Figure 8.1(c) is in
good qualitative agreement with a corresponding DMFT analysis [40].

It opens exactly at U ⇤ Uc and we find �Mott ! U for U ! 1, which is the signature of the upper Hubbard
band that can also be seen as collective modes in the charge susceptibility (compare Section 8.4). The magnetic
solution is also insulating, but the gap �AFM ⇡ ��2��� is due to the finite magnetization� , which is the signature
of a band insulator (BI) rather than a MI. The Mott signature is partially restored in the limit U !1, where we
find �AFM ! �Mott. The respective gaps are shown in Figure 8.1(b) for U > Uc . According to the MF analysis,
the magnetic state is always energetically favored above the PM Mott state for T ⇤ 0 and U < 1, which
is supported by the size of the corresponding gaps. Finite temperatures, however, energetically improve
the PM Mott insulator compared to the AFM band insulator and induce first-order phase transitions among
those states as shown in Figure 8.1(c). We do not find a ground state that can clearly be identified to be an
antiferromagnetic Mott insulator (AFMMI) as expected in the HTCCs, which is likely due to omissions of the
MF theory. Recent studies suggest that doublon-holon binding has to be considered in order to describe such
a state, which has been achieved with a different SB representation at half-filling [122, 176].

To complete the discussion, we want to take a closer look at the average double occupancy, ground-state
energy, and magnetization, which are displayed in Figure 8.2 as a function of the interaction. Conveniently, we
may compare our results at half-filling with statistically exact methods like auxiliary-field quantum Monte
Carlo (AFQMC) and approximative cluster calculations like density matrix embedding theory (DMET) that
often struggle with doping due to the sign problem or finite-size effects. The double occupancy d2 and the
ground state energy E are slightly overestimated by the SB mean-field solution due to missing contributions
of dynamic fluctuations that usually lower the total energy. Nevertheless, the biggest deviation is found in
the MF magnetization (m ⇤ pp0), which tends towards the fully magnetized state (m ! 1/2) for U !1, and
exceeds the exact Heisenberg value mHe ⇡ 0.31 [41, 179] that should be approached by far.

�� is the LM that enforces the equivalence of the PF and bosonic representation of the spin operator.
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(a) Average double occupancy per lat-
tice site.

(b) Ground state energy per lattice site. (c) Staggered magnetization, SRIKR-MF
with fluctuation corrections.

Figure 8.2: Double occupancy, ground state energy and magnetization for the Hubbard model at half-filling, t0 ⇤ 0 and
low temperature for different theoretical methods in comparison. The SB mean-field magnetization (red triangles)
overestimates the expected value that is given by the exact Heisenberg value for high interactions. With the addition
of fluctuation corrections (solid line), the results can be massively improved and become comparable to non-MF
methods. DMET data from [41, 177], AFQMC data from [177, 178], exact Heisenberg value from [179].

We may, however, calculate second corrections to the magnetization through Gaussian fluctuations around
the magnetic MF saddle point and the corresponding bosonic fluctuation field Green’s function
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that we derived by means of the fluctuation matrix
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as a quadratic expansion of the action S in Section 5.2. The basis contains all SB fields and LM-fields

� a
q ⇤

⇣
�d1,q+aQ , �d2,q+aQ , �p0,q+aQ , ��0,q+aQ , �p1,q+aQ , ��1,q+aQ , �p2,q+aQ , ��2,q+aQ , �p3,q+aQ , ��3,q+aQ

⌘>
,

(8.4c)
and describes the second-order deviation � a

q ⇤  a
q� from the static MF saddle point with magnetic ordering

vector Q. Moreover, the four-index q ⇤ (q , i!n ) represents the momentum and bosonic Matsubara frequency.
Following the discussion in Section 5.4, corrections to the magnetization are given by the translation-invariant
equal space-time expectation value of the magnetic fluctuations

⌦
�p�p0

↵
, that can be obtained by numerically

evaluating the Matsubara-frequency and momentum summation back to the real space-time basis. The result
is shown by squares in Figure 8.2(c) and demonstrates a massive improvement over the MF magnetization and
comes even closer to the AFQMC results compared to DMET at intermediate interactions U. We conclude that
the SB mean-field representation seems to have a bias towards magnetism and to overrate the magnetization,
which can significantly be improved by considering fluctuation contributions. While the SB results seem
unfavorable to the other methods at half-filling, the formalism comes along with the advantage that it can
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easily be applied for doping, zero temperature, large unit cells, and inhomogeneous phases, where many
other methods tend to struggle.

8.2 Magnetic mean-field phase diagram

Like the Mott transition, itinerant magnetism is also determined by the competition of kinetic and potential
degrees of freedom. At sufficiently low interactions, the ground state usually remains paramagnetic and
can be described by FL-theory, i.e., an effectively non-interacting state with renormalized parameters. For
the PM slave-boson band structure, the respective renormalization of the hopping amplitude ti j ! z0ti j also
implicates a reduction of the bandwidth (BW) W ! z2

0W along with the effective mass meff ⇤ z�2
0 , and the

on-site energy is increased by �µ0 ! �µ0 + �0. At a critical interaction, the spins become macroscopically
correlated and align with a finite magnetization as long-range order that spontaneously breaks the continuous
SU(2) spin-rotation-symmetry and except for the case of ferromagnetism (FM) also translation-symmetry. A
very common type of magnetic order at intermediate interactions U is antiferromagnetism (AFM). It can
be interpreted as the most itinerant type of magnetism, i.e., it offers a good tradeoff between kinetic and
potential energy in the system. Spins on neighboring lattice sites align anti-parallel, which reduces the
number of doubly occupied sites in order to save potential energy, but still allows a direct hopping between
nearest neighbors (NNs) without conflicting with the Pauli exclusion principle in order to minimize kinetic
energy through delocalization. Ferromagnetism (FM), the most well-known type of magnetic order, on the
other hand, does not allow direct hopping between occupied NNs and is, therefore, a localized rather frozen
state that is often found at higher U and remains to be conducting through doped holes or electrons�. It was,
in fact, proven analytically by Yosuke Nagaoka in 1966 that a single, hole doped to the half-filled Hubbard
model, invokes FM at infinite interaction [180] and the mechanism was recently experimentally observed
in a quantum dot plaquette [181]. Another complementing approach to explain magnetic instabilities is FS

nesting, i.e., the property that a large density of electrons at the Fermi-level is connected by the same wave
vector q, which catalyzes a collective mode with the respective ordering vector in the presence of interactions.
However, this explanation is less intuitive because there is no direct illustration in real space.

The interaction-filling dependent magnetic phase diagrams shown in Figure 8.3 follow from solving the
saddle point equation given by Equation (8.1b) and clearly reflect the intuitive physics discussed above. They
moreover feature spiral magnetic states in the x-y plane according to the MF ansatz

p ⇤ p
*.....
,

cos(QRi )

sin(QRi )

0

+/////
-
, (8.5)

introduced in Section 4.1, where Q is the magnetic ordering vector and Ri represents the position on the
lattice. The ordering vector that minimizes the FE is visualized by the color code, where FM is recovered for
Q ⇤ (0, 0)> (blue squares), and AFM for Q ⇤ (⇡, ⇡)> (red squares). The magnetic unit cells can become very
large for the spiral phases and tend to infinity or, in other words, fill the whole crystal if Q is not given by a

�In models with additional hybridizing orbitals, FM is usually more common because the conduction can also happen in another
orbital, while the strongly interacting orbital can be frozen out without a large energy penalty.
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(a) Magnetic MF phase diagram for t0 ⇤ �0.2 and T ⇤ 0. (b) Magnetic MF phase diagram, t0 ⇤ T ⇤ 0.

Figure 8.3: Magnetic phase diagrams as function of the electron filling n and interaction U. The ordering vector Q
evolves continuously within the spiral magnetic phases, as indicated by the color scheme. An abrupt color change
indicates a first-order phase transition that comes along with a discontinuity of the magnetization m, whereas smooth
color gradients indicate second-order phase transitions. Domains featuring negative electronic compressibility T
indicate an unstable ground state and are annotated with black dots. Figures adapted from [53].

rational number times ⇡. That type of order is called incommensurate magnet (ICM), where the momentum
k is usually not a good quantum number anymore�.

Figure 8.3(a) features a finite next-to-nearest neighbor (NNN) hopping t0 ⇤ �0.2 that breaks particle-hole
symmetry (PHS)�. At the van Hove singularity n ⇤ nvH ⇡ 0.83, AFM order already formates at very low
interaction due the diverging DOS and associated nesting effects. Figure 8.3(b) does not feature NNN hopping,
which recovers PHS (i.e., n ! 2 � n) and the van Hove singularity is situated at half-filling. As previously
discussed in Section 8.1, the half-filled state is an AFM insulator that becomes conducting for arbitrarily
small doping like the rest of the phase diagram. In that context, it is remarkable that the SB mean-field
approximation respects Nagaoka FM where a single doped hole recovers a finite conductivity, since the
FM phase tends towards half-filling for high U according to in Figure 8.3(b). Overall, the FM is the only
magnetic state we find to feature a vanishing double occupation d2 ⇤ 0 and fully maximized magnetization
m ⇤ pp0 ⇤ n/2. A supplementing discussion of the phase diagram that shows band structures and Fermi
surfaces is included in Reference [53]. Figure 8.4 displays the temperature-dependent phase diagram with
fixed interactions. For small U, the magnetic phase boundary centers around the van Hove singularity and the
Neel temperature, which defines the phase boundary to the PM, increases for higher interactions as expected.
Moreover, it is notable that the AFM occupies a larger part of the parameter space at higher temperatures,
which could be explained by a less prominent role of nesting effects due to temperature-induced blurring of
the FS.

�In models without spin-orbit coupling (SOC) like the Hubbard model, we can still use k as a quantum number within the basis
discussed in Section 4.3.

�Results for the opposite sign of the NNN hopping are not independent and can be recovered by the particle hole transformation
f̂i ,� ! (�1) i f̂†i ,� , t0 ! �t0, n ! 2 � n for bipartite lattices [182].
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(a) TNéel for t0 ⇤ �0.2 and different interactions. (b) Magnetic phase diagram for t0 ⇤ �0.2 and U ⇤ 6.5.

Figure 8.4: Magnetic phase diagrams dependent on the electron filling n and temperature T at fixed interactions.
Increasing temperatures favor the AFM over other magnetic orders and decrease the tendency towards negative
compressibilities. Figures adapted from [53].

A common feature of the phase diagrams are domains of negative electronic compressibility

T ⇤
1
n2

@n
@µ0

(8.6)

in the vicinity of half-filling above a certain interaction strength, which are indicated by black dots in Figures 8.3
and 8.4, and have also been observed in previous studies [71, 105, 182]. At the sign change, T diverges,
i.e., an infinitesimal increase of the chemical potential implies the addition of an infinite amount of electrons,
which is clearly unphysical and the signature of an instability of the magnetic MF ground state. We will
further elaborate on the nature of the thereby emerging inhomogeneous phases in Section 8.5 and Chapter 9.
The strong tendency towards AFM in the vicinity of half-filling qualitatively fits the physics of HTCCs. Since
the presented method is blind for superconductivity and likely to be biased towards magnetism as discussed
previously, we expect there to be a superconducting dome hidden below the spiral phases that may be
catalyzed by magnetic correlations as other theoretical methods and experimental evidence suggests [41,
183–185].

8.3 Correlations and criticality

We can acquire momentum and frequency-resolved information about correlations beyond the MF ground
state by utilizing the Gaussian fluctuations derived in Chapter 5. The most prominent application is executing
a stability analysis of the saddle point by means of the static spin and charge susceptibility, i.e., the linear
response functions to an external magnetic field or electric potential, respectively. Due to the SB constraints,
these functions have purely bosonic representations, which are equivalent to the corresponding fermionic
form of the original model (compare Table 2.1)

�
↵�
s (q) ⇤

D
�S↵�q�S�q

E
, (8.7a)

�c (q) ⇤
D
�n�q�nq

E
. (8.7b)
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These functions are given by superpositions of matrix elements of the fluctuation field Green’s function G
that we defined in Equation (8.4), i.e.,
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b
⌫,q
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µ,⌫ (q) . (8.7c)

The explicit expressions for fluctuations about magnetic and non-magnetic saddle points are summarized in
Table 5.2. As elaborated further in Section 5.3.3, a FS instability is signaled by a diverging static susceptibility
in the respective channel that comes along with a breakdown of the path integral formalism about the MF

ground state. If the interaction is increased beyond the onset of the instability, we find an enlarged negative
regime of the susceptibility, which can be interpreted as condensation energy of the emerging bound state.
A quantitative assessment of the fluctuations in this regime, however, is limited because of the breakdown of
the MF.

In the following, we first discuss susceptibilities about PM saddle points that we express using Landau
parameters in Section 8.3.1. We, moreover, show the corresponding structure factors that are measurable
quantities. In Section 8.3.2, we determine critical exponents of the divergences and also include susceptibilities
about AFM ground states. Finally, we take a look at the dynamical conductivity, i.e., the linear response
function to an external electric field, in Section 8.3.3.

8.3.1 Landau factors

We rewrite the static spin susceptibility, which adapts a scalar form due to the spin-rotation-symmetry of the
PM mean-field background, in terms of the auxiliary function Fa [53, 127]

�s (q , ! ⇤ 0) ⇤
�0(q , ! ⇤ 0)

1 + Fa (q)
, (8.8a)

which is a generalization of the Landau factor known from FL-theory [48] to finite wave-vectors. The function
�0(q) defines the bare susceptibility that can be interpreted as the response function of the non-interacting
quasiparticle (QP) system, but it carries an indirect dependence of U due to the renormalization of the PM

mean-field band structure (compare Section 5.3.2). A Landau factor of Fa (q) ⇤ �1 coincides with a diverging
susceptibility and therefore signals a magnetic instability with the respective ordering vector Q ⇤ q, which
is demonstrated in Figure 8.5(a) for an exemplary set of parameters. As discussed in Reference [53], this
method can be applied to determine the whole PM phase boundary, and we find it to be perfectly consistent
with the MF phase diagrams discussed in Section 8.2 for second-order phase boundaries, i.e., a divergence in
�s (! ⇤ 0, q ⇤ Q) coincides with the formation of a finite magnetization m with the magnetic MF ordering
vector Q. First-order phase transitions that come along with a discontinuity in m, however, are not directly
visible to the fluctuation formalism because associated PM mean-field saddle-points feature a local minimum
with a meta-stable ground state in that case.

Leading order frequency contributions can be considered with the Landau damping function �(q , !) and
the parametrization

�s (q , !) ⇤
�0(q , ! ⇤ 0)

1 + Fa (q) � i!/�(q , !)
. (8.8b)

As exemplarily illustrated in Figure 8.5(b), we find �(q , 0) / ��q�� for small ��q��, which hints towards a linear
magnon dispersion relation that will be further discussed in Section 8.4. Moreover, we determine the Landau
damping to be very high for momenta that are larger than the diameter of the FS.
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(a) Landau factor for n ⇤ 0.6, t0 ⇤ 0 at
zero temperature. A magnetic insta-
bility is implicated for �Fa (q) � 1.

(b) Rescaled inverse Landau damping
for n ⇤ 0.6, t0 ⇤ 0 at zero tempera-
ture.

(c) Spin and charge structure factor
for n ⇤ 0.6, t0 ⇤ 0 and U ⇤ 8
in the low temperature limit and
Lorentzian broadening ⌘ ⇤ 0.01.

Figure 8.5: We present Landau factors for two different interactions, where the lower one supports a stable PM and
the higher one indicates a magnetic phase transition towards an ICM with ordering vector Q ⇡ (⇡, 0.625⇡)>. The
determined critical interaction Uc and resulting ordering vector are in perfect agreement with the magnetic MF phase
diagram displayed in Figure 8.3(b). The emerging order can be understood as a nesting effect, where Q connects large
densities on the FS as shown in the inset of Figure 8.5(b). As expected, the Landau damping � becomes very high
for momenta larger than the diameter of the FS. The magnetic instability is also visible in the spin structure factor,
whereas the charge structure factor does not employ a sharp peak and is maximized around the M point. Figures
adapted from [53].

Finally, Figure 8.5(c) shows the spin and charge structure factors [53]

Ss ,c (q) ⇤ �
Z 1

0

d!
⇡

Im �c ,s (q , ! + i⌘) , (8.9)

which are measurable quantities as explained in Section 5.3.1. While the charge structure factor Sc (q) remains
unobtrusive, the spin structure factor Sc (q) also captures the enhancement around q ⇤ Q that is found in
the spin susceptibility. In general, we do not detect any charge instabilities within the PM domain, except for
high temperatures in the vicinity of half-filling due to the Mott transition.

8.3.2 Critical exponents

We can describe the scaling law at the magnetic instability by expanding the spin susceptibility around the
divergence with respective critical exponents ↵, �

�PM
s (Q , ! ⇤ 0) / |n � nc |�↵ , (8.10a)

�PM
s (Q , ! ⇤ 0) / (T � Tc )�� . (8.10b)

As exemplarily shown in Figure 8.6(a), we can numerically evaluate them by fitting, and find ↵ ⇤ 1/2 for the
ICM instability with Q ⇤ (⇡,Q) and ↵ ⇤ 1 for the AFM. The temperature scaling law was determined to be
� ⇤ 1 for both cases [53] like the Curie-Weiß law of FMs�.

�Notice that �PM
s (q ⇤ 0, ! ⇤ 0) does not diverge at AFM transitions, i.e., our results do not contradict the usual scaling laws regarding

the Néel temperature [19].
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(a) Inverse spin susceptibility about
the PM ground state for t0 ⇤ 0 and
U ⇤ 12 in the zero temperature
limit.

(b) Inverse longitudinal spin suscep-
tibility about an AFM ground state
and magnetization for t0 ⇤ �0.2,
U ⇤ 4.5 and T ⇤ 0.1.

(c) Inverse transversal spin suscepti-
bility about an AFM ground state for
t0 ⇤ �0.2, n ⇤ 1.05 and T ⇤ 0.005.

Figure 8.6: We demonstrate scaling laws of the spin susceptibility around the critical point of the magnetic phase
transition as function of the electron filling n and momentum q. Within the AFM domain that features a finite MF
magnetization m, the spin susceptibility splits into a longitudinal and transversal component that become equivalent
to the PM spin susceptibility as the magnetization vanishes. Figures adapted from References [53] and [55].

We moreover analyze the critical behavior of the susceptibility within the AFM ground state. With a finite
MF magnetization, the spin susceptibility splits into a longitudinal component �l

s parallel to the polarization
of the MF spins and a transversal part �t

s in the perpendicular plane, i.e., the full spin rotation symmetry in
the PM is reduced to rotation symmetry in that plane. We demonstrate in Figures 8.6(b) and 8.6(c) that the
scaling laws

�l
s (q , ! ⇤ 0) ⇤

D(0)
r + ⇠2

0 (q �Q)2
, (8.11a)

�t
s (q , ! ⇤ 0) ⇤

D(0)
⇠2

0 (q �Q)2
, (8.11b)

which are also identified within random phase approximation (RPA) [127, 186] are fulfilled for q ⇡ Q [55].
The parameter ⇠0 is the microscopic spin correlation length, and D(0) is approximately given by the DOS at
the Fermi level. The divergence of the longitudinal spin susceptibility disappears with a finite magnetization
due to the coefficient r, which we find to be proportional to the magnetization squared r ⇤ al m2 as expected
[127]. The transversal component remains gapless and features a sharp divergence at q ⇤ Q in the whole
AFM domain. This remaining singularity is the Goldstone mode of the broken SU(2) symmetry and will be
further discussed in the context of spin waves in Section 8.4. Whereas this magnon mode is part of a stable
AFM, we also observe a breakdown of the magnetic MF ground state signaled by divergences in �l

s and �c

at high U in the vicinity of half-filling. The resulting emerging order is inhomogeneous and will be further
discussed in Section 8.5 and Chapter 9.
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(a) Rescaled zero-temperature resistivity as function of U
for n ⇤ 0.5.

(b) Rescaled zero-temperature resistivity as function of n
for U ⇤ 10.

(c) Rescaled temperature-coefficient of the resistivity as
function of U for n ⇤ 0.5.

(d) Rescaled temperature-coefficient of the resistivity as
function of n for U ⇤ 10.

Figure 8.7: We present the coefficients of the dc-resistivity ⇢(T) ⇤ ⇢0 + AT2 as function of filling and interaction for
t0 ⇤ 0 and ⌘ ⇤ 0.1. For the Hubbard model, the SB weight z0 is related to the effective mass by meff ⇤ z�2

0 , and we
find the Kadowaki-Woods ratio A/m2

eff ⇤ const. to be fulfilled for large interactions U. The orange-colored part of the
plots features a divergence in �s , i.e., the PM ground state that we assume for the calculation of the conductivity is to
be understood as hypothetical. Figure adapted from [53].

8.3.3 Conductivity

The dynamical conductivity is the linear response function to an external electric field j(q) ⇤ �(q)Eext(q).
It is not an independent susceptibility, but rather coupled to �c (q), i.e., the response function to an external
electric potential �ext, by the relation Eext ⇤ �r�ext. As shown in Section 5.3.2 their connection is given by

�(! + i⌘) ⇤ lim
q!0

�i! + ⌘

q2 �c (q , ! + i⌘) , (8.12a)

where ⌘ is the broadening due to analytic continuation from Matsubara to real frequencies, and it needs to
remain finite for the numerical evaluation. In Reference [53], we established the dynamical conductivity for
PM ground states of the Hubbard model at low temperatures to fit a Drude model [14]

�D (!, ⌧s ) ⇤
�0

1 + !2⌧2
s
+ i �0!⌧s

1 + !2⌧2
s
, (8.12b)

where the broadening is identified with the inverse scattering time ⌘ ⇤ 1/⌧s . In agreement with the Drude
model, we determine �0 ! 1 for ⌘ ! 0, because our MF ground state does not feature a momentum
dissipation mechanism like phonons or umklapp scattering. We find the temperature-dependence of the
dc-resistivity [53]

⇢(T) ⇤
1

�0(T)
⇤ ⇢0 + AT2 , (8.12c)
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which is the expected result for a Fermi liquid (FL), where the scattering rate of electrons is proportional
to T2. The dependence of the coefficients as a function of interaction and doping is shown in Figure 8.7.
Notably, we observe ⇢0z2

0 to be almost independent of U, i.e., the dc-resistivity scales with the effective mass
⇢0 / meff, which is given by meff ⇤ z�2

0 for the 2D Hubbard model. Moreover, the expression n⇢0/meff that is
density-independent in the Drude model features a weak dependence on the electron filling n.

In 1968, it was observed by Michael Rice that there is a close scaling relation between the resistivity
coefficient A and the coefficient � in the electronic contribution to the specific heat of metals C(T) ⇤ �T [187].
It was generalized to heavy-fermion metals and is now known as Kadowaki-Woods ratio [188]

A
�2 ⇤ const. (8.12d)

and A can vary over eight orders of magnitude for different materials [48]. Since, it is � / D(0) / meff ⇤ z�2
0 ,

Figure 8.7(c) demonstrates that the ratio is be fulfilled at high interactions. For future studies, it could be
of interest to calculate the dc-resistivity for small dopings near the Mott transition at high temperatures to
investigate if there is a switch towards a linear temperature dependence ⇢(T) ⇤ ⇢0 + BT, which is observed
in the strange metal phase of the HTCCs.

8.4 Excitation spectra and collective modes

In agreement with the interpretation of Pines and Bohm in 1953 [189], we find the excitation spectra of
susceptibilities to be composed of a particle-hole continuum as a consequence of incoherent quasiparticle
(QP) excitations (in our case initiated by the MF ground state) supplemented by sharp peaks that indicate
collective excitations generated by fluctuations of the ground state (in our case Gaussian fluctuations about
the saddle point). As we discussed in Section 5.3.3, such a collective mode is characterized by a coherent
oscillation of a large number of electrons with the same wave-vector q and frequency ! in the absence of
external fields [125]. The dispersion relation !(q) is thus determined by poles of the respective susceptibility

1/�s ,c (q , !) ! 0 ) Dispersion relation!(q) of the collective mode , (8.13)

that we calculate according to Equation (8.7). Corresponding modes are identified with spin-density-waves
(SDWs) for �s (also called magnons) and charge-density-waves (CDWs) for �c (also called plasmons) and turn
into gapless Goldstone modes if the collective excitation occurs at zero frequency ! ⇤ 0, which yields a
phase transition as discussed in Section 8.3. In order to calculate susceptibilities at finite frequencies, we need
to perform the analytical continuation i!n ! ! + i⌘, where the convergence parameter ⌘ plays the role of
an inverse lifetime of the bosonic QP excitation that manifests in the imaginary part of the susceptibility in
analogy to the spectral function for electrons. From a theoretical standpoint, the dynamics of the d-field are
essential to describe collective modes because all other SB fields are static in the radial gauge. In the following,
we will investigate the excitation spectra Im �(q , !), where collective modes appear as bright lines, for PM

and AFM ground states.

8.4.1 Paramagnetic ground states

Figure 8.8 shows the frequency-dependent spectrum of the charge susceptibility �c and bare susceptibility
�0 on the high symmetry path of the BZ for n ⇤ 0.6 and different interactions. �0 can be thought of as
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Figure 8.8: Imaginary part of the charge susceptibility (upper panel) and bare susceptibility (lower panel) for three
different interactions at n ⇤ 0.6, t0 ⇤ 0, ⌘ ⇤ 0.005 and zero temperature. Both quantities are equivalent in the
limit of vanishing interactions and show a spectrum of continuous particle-hole excitations. At finite U, the charge
susceptibility develops two collective modes that manifest as sharp, bright lines in the spectrum. The first one is
called upper Hubbard band (UHB) and is situated at ! ⇡ U for high interactions U. The second one is of zero-sound
type and manifests at the high-frequency edge of the particle-hole continuum. Figure adapted from [53, 57].

the susceptibility of the non-interacting system (equally for spin and charge) and does in opposite to �c not
contain fluctuation effects of the SB fields. Expectedly, we find �c ⇤ �0 at U ⇤ 0 in agreement with the
respective limit in RPA [53, 190]. Both quantities show a continuous particle-hole excitation spectrum, whose
bandwidth (BW) is found to be W ⇤ 8z2

0 and coincides with the BW of the underlying MF band structure
according to Equation (8.2c) as expected�. For U ⇤ 0, the non-interacting limit z0 ⇤ 1 is recovered, and the
SB-weight z0 decreases along with the BW for higher interactions (we find z0 ⇡ 0.9 for U ⇤ 10). There is a
gap around the M-point, because the diameter of the FS is smaller than the respective connecting momentum
overlaps.

Fore finite interactions, we see a transfer of spectral weight into two emerging collective modes in the charge
susceptibility that manifest as sharp peaks with a dispersion relation !(q). Firstly, the upper Hubbard band
(UHB) that is separated from the particle-hole continuum by a gap �UHB that increases with interaction and
approaches �UHB ⇡ U for large interactions [53, 190]. The gap can be understood in the limit of zero hopping
(t ⇤ 0), where only two energy levels exist at ! ⇤ 0, and ! ⇤ U and these flat bands are distorted by the
delocalization of the electrons for finite t. We find the gap to grow with doping and the UHB mode to vanish
at half-filling, and, notably, the feature is not captured by RPA calculations [190]. The second collective mode
occurs at the upper edge of the particle-hole continuum and is called zero-sound mode because it features a
linear dispersion relation for small momenta. Both collective modes vanish for q ! 0 and at ! ⇤ 0, i.e., there
is no indication for a gapless charge instability.

�The bare susceptibility features an implicit dependence on U because of the renormalization of the MF band structure that
represents an effectively non-interacting theory of fermionic QPs. The BW of �0, therefore, becomes interaction-dependent, even
though it does not carry any information about Gaussian fluctuations.
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(a) Charge susceptibility with UHB and
zero sound mode around the M-
point.

(b) Longitudinal spin susceptibility
with UHB and gapped magnon mode
around the M-point.

(c) Transversal spin susceptibility with
gapless mode around the M-point,
affirming the AFM MF ground state.

Figure 8.9: We present the spectrum of the charge susceptibility and longitudinal & transversal spin susceptibility about
a stable AFM ground state with n ⇤ 1.05,U ⇤ 5, t0 ⇤ �0.2, T ⇤ 0.005 and ⌘ ⇤ 0.01. The particle-hole continuum
features a gap, which is due to the band gap of the AFM band structure �AFM ⇡ 2, however, it only appears partially
due to the finite doping. The color scheme is analogous to Figure 8.8. Figure adapted from [55].

8.4.2 Antiferromagnetic ground states

Now, we investigate the excitation spectrum for a stable AFM ground state� with small electron doping
n ⇤ 1.05, U ⇤ 5 for the long-range hopping model t0 ⇤ �0.2. As discussed earlier, the spin susceptibility
is decomposed into a longitudinal part �l

s parallel to the MF magnetization and a transversal component �t
s

perpendicular to it. As opposed to PM fluctuations, the spin and charge sector are coupled for the AFM ground
state, which makes the analysis particularly interesting, and the respective spectra are shown in Figure 8.9.

First of all, we notice that all susceptibilities feature a partial energy gap in the particle-hole continuum
that is due to the band gap of the AFM band structure �AFM ⇡ 2. For ! < �AFM, only excitations in the
conduction band contribute, whereas ! > �AFM also allows scattering processes in the valence band. At high
frequencies, we identify the UHB in �c and �l

s , which was also visible in the charge susceptibility of PM ground
states. The zero sound mode is recovered as well in �c , but the spectral weight is more concentrated around
the M-point. The transversal spin susceptibility features a gapless SDW mode around the M-point, which of
course coincides with the MF ordering vector of the AFM Q ⇤ (⇡, ⇡)> and affirms the magnetic ground state.
We determine the magnon dispersion relation by fitting and find the expected scaling [81, 127]

!2
⇤ c2

t (q �Q)2
+ i !
⌧t

(8.14a)

around the Goldstone-mode with spin-wave velocity ct ⇡ 1.32 and QP lifetime ⌧t ⇡ 100 [55].
The longitudinal spin susceptibility �l

s also features a collective magnon mode around the M-point, but it
becomes gapped at the magnetic phase transition, where the spin-rotation invariance (SRI) is broken due to
the finite MF magnetization. The continuous opening of the gap �SDW due to a second-order phase transition
with increasing interaction U is demonstrated in Figure 8.10. By parameter fitting, we recover the dispersion
relation [127]

!2
⇤ �2

SDW + c2
l (q �Q)2

+ i!
⌧l
. (8.14b)

8.5 Phase separation and inhomogeneity

To conclude this chapter, we will investigate the origin of negative compressibilities T / @n/@µ0 that we
identified in parts of the magnetic phase diagrams discussed in Section 8.2. In a non-interacting system,

�i.e., it features a positive compressibility T > 0 and no divergences in the static charge and longitudinal spin susceptibility.
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(a) U=3.25. (b) U=4.25. (c) U=5.25.

Figure 8.10: Longitudinal (�l
s) and transversal (�t

s) spin susceptibility about a stable AFM mean-field ground state for
n ⇤ 1.16, t0 ⇤ �0.2, T ⇤ 0.005 and ⌘ ⇤ 0.01 for different interactions U. At the magnetic phase transition and smaller
interactions U . 3.25 it is �l

s ⇤ �t
s . For higher U, i.e., deeper in the magnetic phase, �l

s opens a gap, while �t
s

remains to feature a gapless spin-density-wave (SDW) around the MF ordering vector Q ⇤ (⇡, ⇡)>. The color scheme
is analogous to Figure 8.8. Figure adapted from [55].

statistical physics dictates that T is always positive, i.e., a rise of the chemical potential increases the total
electron filling, and it is guaranteed the function n(µ0) is unique and invertible. This property allows for a
Legendre transformation between the free energy (FE) F(0) (n , T) with base variable n and the grand potential
(GP) ⌦(0) (µ0 , T) that depends on the chemical potential µ0

F(0) (T, n) ⇤ ⌦(0) (T, µ0) � µ0

 
@⌦(0)

@µ0

!

T
⇤ ⌦(0) (T, µ0) + µ0n , (8.15)

for an equivalent description of the MF ground state for both thermodynamic potentials. Due to the interaction-
induced renormalization of the band structure, however, it becomes possible that µ0(n) is not a monotonous
function, coinciding with discontinuities or divergent and negative domains of T (n), as illustrated in Fig-
ure 8.11 for t0 ⇤ �0.2 and U ⇤ 7 by the red dotted line. This property results in a breakdown of the uniform
statistical physics description, and the saddle points of both potentials are not equivalent. It is also directly
tied to a FS instability in the charge channel since the compressibility is proportional to the static, uniform
charge susceptibility

T ⇤
1
n2

@n
@µ0

/ �c (q ⇤ 0, ! ⇤ 0) /
D
(n � hni)2

E
, (8.16)

and also to the variance of the filling elaborated on in Section 4.6 from a theoretical perspective. This instability
can be circumvented by phase separation (PS), i.e., an inhomogeneous spatial mixture of two different phases
whose boundary effects are neglected within our MF description [55]. Classical examples for the same
phenomenon are e.g., an emulsion of vinegar and oil, i.e., two liquids that do not mix, or the coexistence of
the liquid and gas phase that can be described with the Van der Waals equation [191].

Specifically, in our case, the GP features a first-order phase transition with two different energy degenerate
ground states ⌦(0)

1 (T, µc
0) ⇤ ⌦(0)

2 (T, µc
0) at a critical chemical potential µc

0 that yields two distinct fillings

n1/2 ⇤ �
@⌦(0)

1/2

@µ0

�����µc
0

, (8.17a)
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(a) The PS at lower filling is among the magnetic phases
with ordering vectors (⇡,Q)> + (Q ,Q)> and (⇡,Q)> +

AFM for higher filling.

(b) The PS at lower filling is among the magnetic phases
AFM + AFM and AFM + (Q ,Q)> & (Q ,Q)> + (⇡,Q)>
for higher filling.

Figure 8.11: The lower panel shows the chemical potential µ0 as a function of the filling as it is determined by the
homogeneous ground state of the FE (red dashed line) for U ⇤ 7, t0 ⇤ �0.2 and T ⇤ 0.005. It employs discontinuities
and local extrema, which results in divergences and negative regimes of the electronic compressibility T / @n/@µ0.
The therefore implied FS instability can be circumvented by phase separation (PS) of two different, energy-degenerate
ground states of the GP and a constant chemical potential within the phase separated ground state (green line). The
upper panel shows the energy difference �E ⇤ F �⌦ between the homogeneous and inhomogeneous ground state
and confirms that the phase-separated state minimizes the energy, which was also proven analytically in Section 4.6.

resulting in a discontinuity of n, with n1 < n2 w.l.o.g. There is no uniform ground state of the GP for fillings
in between. Those can, however, be recovered by PS of the two degenerate states

⌦(0)
PS ⇤ x⌦(0)

1 + (1 � x)⌦(0)
2 ⇤) n ⇤ xn1 + (1 � x)n2 , (8.17b)

at the constant chemical potential µ0 ⇤ µc
0, and x 2 [0, 1] represents the proportion of the phase volume of⌦(0)

1
in the crystal. The respective chemical potential as a function of the filling is shown in green in Figure 8.11,
and it differs from the chemical potential of the uniform ground state of the FE only in the phase-separated
domains. The critical fillings n1/2 can equivalently be determined without explicit knowledge of the GP

by a Maxwell construction, where the green areas below and above µc
0 have to be equal in size [compare

Equation (4.39)]. We have proven in Section 4.6 that the phase-separated ground state indeed minimizes
the energy in comparison to the uniform saddle point of the FE and the respective condensation energy
is displayed in the upper panel of Figure 8.11. Since an explicit FS instability is only present for �1

T  0
(annotated by dark gray areas) according to Equation (8.16), the uniform ground state can be considered to
be meta-stable in the remaining part of the phase-separated domain (annotated by light gray areas).

The resulting low-temperature phase diagram that considers PS is shown in Figure 8.12(a) for t0 ⇤ �0.2 and
electron-doping. The PS in the vicinity of half-filling is due to domains with negative compressibility of the
homogeneous state and will be further discussed in the following. On the other side, the PS occurring for
n > 1.15 is due to a discontinuity of µ0(n). It is less relevant because the condensation energy is much smaller
(compare Figure 8.11), the explicit FS instability only happens at a single point of the homogeneous ground
state, and the large doping is of minor interest for the high-Tc cuprates (HTCCs). The AFM1 +AFM2 state in the
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(a) The phase transition from PM to AFM is of first-order, with a large jump
in magnetization around n ⇤ 1 that decreases for higher filling and
becomes a second-order transition at n ⇡ 1.15.

(b) The compressibility T diverges at the crit-
ical point (nc ⇤ 1.008,Uc ⇤ 5.24) and other
points with @µ0/@n ⇤ 0, which signals the
onset of PS.

Figure 8.12: Electron-doped magnetic phase diagram for t0 ⇤ �0.2 and T ⇤ 0.005, where domains of negative compress-
ibility featured in Figure 8.3(a) are circumvented by phase separation (PS) of two individually stable, homogeneous
phases. This approach, however, neglects the impact of phase boundaries that are expected to increase the true
ground state energy. Figure adapted from [55].

underdoped regime is of special interest because that part of the HTCC phase diagram is known to feature AFM

ordering, and nanoscale phase separation has actually been observed by ARPES measurements for n < 1.125
[162] and various other types of charge inhomogeneities have also been reported [120, 140, 192, 193]. The
critical interaction that marks the onset of that type of PS is found to be Uc ⇡ 5.24 and coincides with a saddle
point of µ0(nc ) and a divergence of T as illustrated in Figure 8.12(b). For higher U, the saddle point splits
into two extrema with T < 0 in between, and the singularity disappears for U < Uc . Figure 8.13(a) shows the
static charge susceptibility at the critical filling nc for two different interactions, and we identify a divergence
at the �-point in agreement with Equation (8.16) as expected�. The fluctuation results are, therefore, fully
consistent with the MF analysis in the context of PS. We moreover find the two mixing phases AFM1/2 to be
individually stable, i.e., they do not feature divergences in the static charge or longitudinal spin susceptibility.
The MF properties of the two different AFM ground states allow for a better understanding of the ordering
mechanism. AFM1, for all interactions, represents a half-filled state (n1 ⇤ 1) with a very high magnetization,
where µ0,1 is situated at the lower edge of the conduction band. Thereby, doped electrons are fully absorbed
in AFM2, with n2 > 1 and a much lower magnetization. In conclusion, doped electrons hinder the “ideal”
characteristics of the AFM, where neighbored sites are occupied by exactly one electron with opposite spin,
which is reflected by the decrease in magnetization for larger doping. Thus it is energetically favorable to
partly recover the “ideal” half-filled AFM in specific domains of the real-space crystal in the sense of PS at high
interactions in comparison to the homogeneous state, where doped electrons are distributed evenly.

Similar results w.r.t. PS have been reported in previous SB studies, which also show the hole-doped phase
diagram in agreement with our conclusion but lack the AFM1 + AFM2 phase for electron-doping [53, 71,
105, 111, 182]. For hole-doping, we find PS of the magnetic phases� (Q,Q)> + AFM1. A proper fluctuation

�In general, such a divergence of �c (q ⇤ 0, ! ⇤ 0) could also be explained by a Pomeranchuk instability and emerging nematic
order [194]. We therefore investigated lattice symmetry breaking order parameters ✏ like ⇠(k) ! ⇠(k) + ✏(cos kx � cos ky ) and
found lim✏!0 @F(✏)/@✏ ⇤ 0, i.e., we could not find a propensity for this type of order on MF level.

�For the hole-doped part, the chemical potential of the AFM1 phase is of course situated at the upper edge of the valence band, but
it also features half-filling and similarly large magnetization like the electron-doped part.
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(a) Charge susceptibility. (b) Longitudinal spin susceptibility. (c) Transversal spin susceptibility.

Figure 8.13: Static susceptibilities on the high symmetry path of the BZ for nc ⇤ 1.008, t0 ⇤ �0.2, T ⇤ 0.005 and two
different interactions. The charge susceptibility diverges at the � point for U � Uc , which implicates the onset of PS
in agreement with the MF results. The longitudinal spin susceptibility also diverges for U � Uc around the M-point
due to the coupling of the spin and charge sector. The transversal spin susceptibility employs a pole at the M-point
for both interactions, which affirms the underlying AFM ground state. Figure adapted from [55].

analysis for these phases, however, cannot be provided because the homogeneous ground state of the FE is
an incommensurate magnet that cannot properly be tracked with the existing formalism. The onset of PS has
also been observed by different theoretical methods like DMFT+QMC in the PM domain of the Hubbard model,
which predicts a coexistence of insulating and metallic phases connected by a first-order transition in the
context of a diverging compressibility that could explain the volume collapse in Cerium [195]. Moreover, other
studies report a reentrant behavior of the PS w.r.t. temperature, i.e., its disappearance at T ⇤ 0 and very high
temperatures, and support the particle-hole asymmetry that we also find [196–198]. For the SB formalism,
PS also vanishes for high temperatures, but remains present in the limit T ! 0. The biggest omission of
the described MF phase separation is that boundary effects between the mixing phases are neglected, which
motivates a quantitative comparison with other methods and a more refined approach to investigate domain
walls. We already provided such a benchmark at half-filling in Figure 8.2. Although there is fewer data
available for finite doping due to limitations of many theoretical methods, there are suitable results from a
DMET [41] and SB cluster study [139] that we investigate in the following.

Figure 8.14(a) compares the SB ground state free energy (FE) with the corresponding FE from DMET on a
cluster with 16 lattice sites at U ⇤ 6. Similar to the half-filled case discussed in Figure 8.2, the DMET energy is
smaller because it considers fluctuations effects that are neglected for the MF approach and lower the ground
state energy. Moreover, DMET also includes superconducting order that is expected for n . 0.85 and not
captured by the SB method, which questions the validity of a direct comparison. On the other hand, we find
the ordering vector of the occurring (⇡,Q)> MF phases to fit surprisingly well to the spin profile of the DMET

benchmark data, if the periodicity implied by Q approximately fits the applied 2 ⇥ 8 cluster size. We also
observe a strong correlation between inhomogeneous order in DMET and a negative compressibility within
the SB formalism [53]. The ordering vectors within the (Q ,Q)> phase, however, does match the DMET spin
order. Coincidently, there are enhanced inconsistencies between 2 ⇥ 8 and 4 ⇥ 4 clusters [41], which is a sign
of finite size problems due to large magnetic unit cells that are predicted by the SB theory.

Figure 8.14(b) shows the ground state FE of a slave-boson MF cluster study that combines AFM order with
charge stripes and domain walls, featuring up to 32 lattice sites per unit cell at U ⇤ 12 [139]. Remarkably, it
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(a) Comparison of the FE for different MF saddle points
and a DMET study for t0 ⇤ �0.2 and U ⇤ 6 in the zero-
temperature limit.

(b) Comparison of the FE for different MF saddle points for
t0 ⇤ �0.2 and U ⇤ 12 in the zero-temperature limit.

Figure 8.14: Quantitative comparison of the homogeneous and inhomogeneous SB mean-field ground state energy with
other theoretical methods for hole-doping. Figure 8.14(a) shows DMET data from Reference [41] for a system with
16 lattice sites. The corresponding ground state energy is 3 to 8% lower than the SB results because it also considers
superconducting order and fluctuation contributions. It may, however, be limited w.r.t. inhomogeneous order due to
the associated small number of lattice sites. Figure 8.14(b) shows benchmark data from a SB mean-field cluster study
[139] with up to 32 lattice sites per unit cell that features combined spin and charge-order with almost the same FE as
our phase-separated ground state.

almost exactly matches the FE of the phase-separated ground state at the two available fillings. This could
indicate that the true unit cell is larger 32 sites and that PS is indeed a strong tool to approximate the ground
state. We will further investigate emerging charge-order (CO) and domain walls via fluctuations on the
metastable, homogeneous MF saddle point in Chapter 9 and directly compare the results with experimental
findings in the HTCCs.
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Intertwined spin and charge order in the
electron-doped high-Tc cuprates

In Chapters 6 and 7, we learned that the Hubbard model – with its competing kinetic and potential energy
scales – is archetypical to study itinerant, correlation induced, ordering phenomena and that it acts as a
minimal model to describe the high-Tc cuprates (HTCCs) and their plethora of different phases. Subsequently,
we presented a comprehensive slave-boson analysis of the 2D Hubbard model, with a focus on magnetic
phases and phase separation (PS) in Chapter 8. This chapter will complement our investigation by discussing
charge-density-waves (CDWs) that emerge on top of the antiferromagnetic ground state. Such phases of
intertwined spin and charge order have been observed in the HTCCs [120, 140, 161, 192, 193], and we will
show that our results are in remarkable agreement with recent experimental findings [120]. There is a
high interest in demystifying this type of order because it is on the one side believed to be competing with
superconductivity (SC) or on the other side may also synergize as superconducting pairing glue [174, 175,
183–185]. Moreover, we will present a temperature-dependent phase diagram that includes charge-order
(CO), and we will elaborate on two further experimental observables, the magnetization, and specific heat.

9.1 Competing types of charge-order

In Section 8.5, we identified a domain of PS for small electron doping � . 0.15, where an undoped AFM (AFM1,
n1 ⇤ 1) state mixes inhomogeneously with another AFM state (AFM2, n2 ⇤ 1 + �) that carries the additional
doped electrons with a lower magnetization. The instability of the homogeneous ground state w.r.t. PS is
signaled by a diverging compressibility 1/T ⇤ 0 or equivalently a pole of the static charge susceptibility
at the �-point: 1/�c (0, 0) ⇤ 0. However, for slightly smaller interactions, there is a metastable domain of
the homogeneous AFM with finite T , despite the phase-separated state being lower in energy. We analyzed
static susceptibilities based on those meta-stable saddle points of the free energy (FE) at finite momenta
to investigate further FS instabilities beyond the MF phase separation that unfortunately neglects boundary
effects. We, indeed, find divergences of �c (Qc , ! ⇤ 0) on the �-X high symmetry line (HSL)�. These imply an
intertwining of spin and charge order, whose spatial periodicity is determined by the charge ordering vector
Qc . Corresponding behavior has been measured in the HTCCs via resonant X-ray scattering (RXS) [120, 140,
161, 193], and it has been an open question if the phenomenon can be attributed to FS-nesting effects [120].
We even find two distinct peaks that can be identified as bright features in Figure 9.1(a), which exemplarily

�The longitudinal static spin susceptibility diverges coincidingly with the static charge susceptibility and a momentum shift
�c (Q , 0) $ �l

s (Q + M, 0) due to the spin-charge coupling in the AFM mean-field ground state. As discussed previously, the static
transversal spin susceptibility features a sharp divergence at the M-point, incorporating the Goldstone mode of the symmetry
broken AFM.



104 | 9 Intertwined spin and charge order in the electron-doped high-Tc cuprates

(a) Charge susceptibility �c (q , ! ⇤ 0). (b) Bare susceptibility �0(q , ! ⇤ 0). (c) AFM Fermi surface.

Figure 9.1: Static charge & bare susceptibility in the BZ, and Fermi surface (FS) of the underlying AFM ground state for
n ⇤ 1.0825,U ⇤ 6.6, t0 ⇤ �0.15 and T ⇤ 0.005 in the extended zone scheme. The bare susceptibility employs a flat
maximum as the consequence of a FS nesting effect with ��q�� ⇡ 2k f . The charge susceptibility on the other hand is
significantly enhanced in the vicinity of the �-point and features two sharp peaks in particular that indicate charge
instabilities. The first occurs at Qc

1 ⇡ (0, 2k f ) and can be attributed to the nesting. The second is broader with a
smaller ordering vector Qc

2 ⇡ (0, 0.17⇡) and cannot be understood as a FS effect.

shows the charge susceptibility in the Brillouin zone (BZ) within the extended zone scheme for � ⇤ 0.0825�.
Moreover, Figure 9.1(b) illustrates the static bare susceptibility �0(q) that can be considered as the response
function of the effectively non-interacting MF quasiparticle band structure. It does, in general, not feature
divergences but is suitable to quantify FS nesting. The corresponding FS is displayed in Figure 9.1(c) and
employs a large momentum overlap for ���q�� ⇤ 2k f due to its almost square-like shape that we find to be in
good agreement with previous studies including experimental ARPES data [120, 140]. The resulting finite,
nesting induced, peak can be seen in �0(2k f ) as well as �t

s (Qc
1), and �l

s (Qc
1) and leads to a very sharp

divergence of �c at Qc
1 ⇡ (2k f , 0)>. On the other hand, the second pole of �c (Qc

2) is broader, happens at
lower momentum� Qc

2 < Qc
1 and cannot be explained by nesting since the bare or spin susceptibility does not

have a similar feature.
The resulting charge-ordering vectors Qc

1,2 at the respective critical interaction Uc with ��1
c (Qc

1,2) ⇤ 0 as a
function of the electron filling n are illustrated in Figure 9.2(a). A dashed line visualizes the leading ordering
vector at the corresponding filling, and we detect a discontinuous jump from Qc

2 to Qc
1 at n ⇡ 1.1. These

findings suggest that CO in the HTCCs is determined by multiple competing effects, which has also recently been
hypothesized for the hole-doped regime, due to the detection of non-monotonous behavior of Qc [193]. The
interaction-dependent phase diagram that accounts for the results of the previously discussed susceptibility
analysis, as well as phase separation, and homogeneous AFM ground states, is given by Figure 9.2(b). We
cannot provide a precise distinction between PS and CDW phases for U > Uc as indicated by the dotted line
because our formalism does not allow investigating the emerging, symmetry broken state beyond the nature
of the leading instability.

According to Luttinger’s theorem, the area enclosed by the FS is proportional to the doping, which implies
2k f /

p
2� in our case with the assumption of a square-shaped FS. As illustrated in Figure 9.2(a), Qc

1 closely
follows that curve, which further supports the claim of a nesting effect, and it shows remarkable quantitative
agreement with RXS measurements of the CO wavevector in Nd2�xCexCuO4 (NCCO) [120]. With decreasing
doping, the respective peak loses spectral weight, as itinerant degrees of freedom become less dominant

�Due to C4v symmetry, on eights of the BZ is sufficient to describe the system, i.e., only two of the eight bright peaks are independent.
�We define Qc

1,2 ⇤ (Qc
1,2 , 0)>.
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(a) Ordering vector of the CDW that emerges about the
AFM mean-field ground state at U ⇤ Uc . We find two
distinct peaks with a transition of the leading instability
at n ⇡ 1.1. Experimental RXS data of Qc from [120].
Figure adapted from [200].

(b) The homogeneous, meta-stable AFM is a local minimum
of the FE that does not feature explicit FS instabilities,
despite the global minimum being the phase-separated
state. ��1

c (Qc , 0) ⇤ 0 defines Uc applied in Figure 9.2(a).
Figure adapted from [55].

(c) Schematic illustration of three different types of doped AFMs in real space. Figure adapted from [57].

Figure 9.2: Charge instabilities emerging on the AFM ground state for t0 ⇤ �0.2 and T ⇤ 0.005 as a function of the
electron-doping and interaction. According to ab initio data, the NN transfer integral can be estimated by t ⇡ �0.46eV
[170, 201], i.e., the applied temperature translates to roughly 25 Kelvin. The onset of PS is signaled by a diverging
electronic compressibility T , coinciding with poles of the static charge susceptibility at zero momentum. CDWs that
are found for n & 1.05, whose ordering vectors Qc

1,2 are shown in Figure 9.2(a), yield from divergences of the charge
susceptibility at finite momentum at a lower interaction.

closer to half-filling, and it disappears entirely at � . 0.05, where the FS becomes circular. The behavior
of the second peak features Qc

2/⇡ ⇡ 2� for intermediate dopings [55], reminiscent of the so-called Yamada
relation known from the hole-doped HTCCs [199]. Qc

2 approaches zero at � ⇡ 0.055 in a square-root-like
functional behavior, which we interpret as the transition from a CDW to PS. Fulfillment of the Yamada relation
implies a periodic length of the emerging charge-ordered unit cell, which is inversely proportional to the
doping Qc

2/⇡ ⇤ 2� , P ⇤ 1/�. Thereby, the doped charges can be distributed by the formation of vertical,
doubly occupied domain walls at the edge of the unit cell, while recovering the undoped AFM in between as
illustrated in Figure 9.2(c) [55, 200].

To sum up, we identify three different types of COs that emerge within the doped AFM ground state at
sufficiently high interaction. According to our results, these ordering mechanisms are driven by partially
restoring the “ideal”, half-filled AFM in the real-space lattice by clustering the doped charges. The half-filled
Hubbard model is reduced to an AFM Heisenberg model in the limit of infinite interactions, where the
itinerant degrees of freedom are frozen out and the potential energy can be minimized by the formation
of the antiferromagnetism. If the interaction is sufficiently low (U . 5.25), this localized picture is not yet
accurate and the doped electrons distribute uniformly to form a stable AFM with a reduced MF magnetization
(compare Figure 9.2(c), left). Above the critical interaction we observe that small doping (� . 0.05) leads to
PS, where the half-filled AFM is retained in the major part of the lattice in order to minimize potential energy,
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and the doped charges are randomly distributed to form islands of a weaker magnetized AFM (compare
Figure 9.2(c), middle). For slightly larger doping (0.05 . � . 0.1), this behavior is succeeded by the formation
of a periodic CDW, whose ordering vector approximately satisfies the Yamada relation, which we interpret as
the emergence of doubly occupied domain walls in order to once more partially recover the half-filled AFM

(Figure 9.2(c), right). As the kinetic energy of the electrons becomes more important with larger doping, there
is a transition towards the nesting-enabled CO, which we interpret as an itinerant CDW, where the previously
described localized picture is not accurate anymore. These results pose the question, of why there is yet no
hard experimental evidence for the Yamada-type CO on the electron-doped side. Possible explanations could
be shortcomings of our theoretical description, crystal defects that hinder the formation of the domain walls,
or an interplay with the pseudogap (PG) phase. Especially the relevance of CO for PG physics should be further
investigated because the domain walls, as well as the partially restored half-filled AFM, could hinder electron
transport or reduce the DOS at the Fermi level. Moreover, we find PS and the Yamada-type CO associated with
this behavior to persist up to much higher temperatures than the nesting-enabled CO [200], which is further
reminiscent of the PG appearance.

Finally, we provide a rough approximation of the estimated difference in ground state energies of the
uniform AFM compared to the Yamada-type intertwined AFM and CDW at high interactions in the localized
picture. Thereby, we consider the spin-exchange of a t � J model that describes the Hubbard model in the
strong-coupling limit in the vicinity of half-filling [81]. Furthermore, we neglect the kinetic part (t ! 0) and
apply the SB mean-field approach, assuming AFM order:

H loc.
⇤ | J |

X

<i j>

✓
Ŝi Ŝ j �

1
4 n̂i n̂ j

◆
! � | J |

X

<i j>

✓
p2

i p2
0,i +

1
4 ni n j

◆
. (9.1a)

Moreover, we presume there to be no empty sites (e ⇤ 0), and the MF spin S ⇤ pp0 to be maximized in the
homogeneous AFM, which implies p0 ⇤ p and yields pp0 ⇤ (1� n/2) under consideration of the SB constraints
given by Equations (4.26a) and (4.26b). Under these conditions, we find

H loc.
hom. ! � | J | N

f
2 + 2(n � 1)2

g
, (9.1b)

where N is the number of lattice sites. In order to compute the MF energy of the domain wall structure
illustrated on the right side of Figure 9.2(c), we need to calculate the energy of the unit cell� and multiply it
with the number of unit cells, i.e., N�/2 ⇤ N (n � 1)/2, according to the Yamada relation. The result is given
by

H loc.
CDW ! � | J | N (1 + n) , (9.1c)

and thus the energy is minimized for the vertical stripe phase in the underdoped regime (H loc.
CDW < H loc.

hom.),
which is also supported by a SB mean-field cluster study for hole doping [139]. Unlike our MF description of
phase separation, this emerging CDW takes boundary effects into account and is more sophisticated in that
sense. It, however, becomes less efficient for small dopings because of the respective large unit cells, which
could explain why the stripe order disappears for n . 0.055. After all, the presented SB method is viable for
the types of order associated with the underdoped HTCCs because it does not suffer from finite-size effects,
unlike other approaches like, e.g., QMC or DMET, and our results are supported by experimental evidence.

�This can conveniently be done by considering the energy of the half-filled AFM, which is given by �2 | J | N and taking the energy
differences into account that appear due to the doubly occupied domain walls.
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(a) The phase transition from the PM to the AFM is of first order, with a
maximized gap around half-filling due to the Mott parent state.

(b) Magnetization for
n ⇤ 1.07.

(c) Specific heat for
n ⇤ 1.07.

Figure 9.3: Temperature-dependent SB analysis for U ⇤ 6.5 and t0 ⇤ �0.15. Except for superconducting phases, which
are excluded in our SB analysis, the phase diagram in Figure 9.3(a) qualitatively resembles the generic HTCC phase
diagram shown in Figure 7.2(b). However, magnetism seems to occupy a larger domain than expected, which may be
due to a bias of the SB method, and we find the MF magnetization to be significantly reduced by fluctuations, as shown
in the upper panel of Figure 9.3(a) and Figure 9.3(b). In addition, the specific heat employs anomalous behavior with
a local maximum at low temperatures near emerging PS and CDW phases but recovers the linear dependence CV / T
in the limit T ! 0.

9.2 Temperature-dependent phase diagram

To conclude, we examine the temperature-dependence of crucial, experimentally accessible quantities for
an exemplary set of parameters, i.e., U ⇤ 6.5 and t0 ⇤ �0.15. Figure 9.3(a) shows the temperature- and
doping-dependent phase diagram under consideration of the aforementioned charge-inhomogeneous phases.
Excluding superconductivity, it qualitatively resembles the generic HTCC phase diagram in Section 7.2, since
we identify domes of charge-order in the underdoped regime and a stronger propensity towards AFM order
for electron-doping. As discussed earlier, the type of CDWs that we predict is affirmed by experiments in
the HTCCs [120, 140, 161, 192, 193], and also nanoscale PS has been reported [133, 162]. However, apart from
the fact that we cannot directly track superconductivity with the SB method, we observe the general trend
that the phase volume of magnetic domains is overestimated. This may be due to a bias of the chosen MF,
and thereby we find the magnetization to be significantly reduced by fluctuation corrections, as shown in the
upper panel of Figure 9.3(a) and Figure 9.3(b). Furthermore, ab initio calculations suggest that the effective
interaction decreases with doping [201], which could further reduce the propensity towards magnetism away
from half-filling.

Finally, we calculate the specific heat according to Section 4.6.3 and observe anomalous, plateau-like
behavior with a local maximum at low temperatures (T ⇡ 0.108) that appears coincidingly with the emergence
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of charge-inhomogeneous phases (i.e., CDWs and PS), as shown in Figure 9.3(c)�. Similar properties of the
specific heat have been reported in the pseudogap (PG) phase, which is associated with a partial reduction
of the electronic DOS [171, 172, 202]. Moreover, theoretical studies suggest that charge-ordered phases can
open such partial gaps at the Fermi energy [139], and their relevance to understanding PG physics is debated
in the current literature. We find the charge-ordered domain to extend towards higher temperatures if the
interaction is increased and note that the presented U is rather on the lower end of the expected range of the
one-band HTCC model. Some estimations yield that it could be as high 12 [139, 170] and possibly doping-
dependent [140]. The enhancement of CV at the magnetic transition can be explained by magnon contributions
to the specific heat [203], and the usual behavior CV ⇤ �T is recovered at sufficiently low temperatures. For
future studies, it could be interesting to study the temperature-dependence of the conductivity in analogy to
Section 8.3.3, but in proximity to half-filling and at higher temperatures, in order to investigate if there is a
transition towards a strange-metal phase.

�It is noteworthy that the local maximum only appears, if the implicit temperature dependence of the SB mean-field variables is
considered (@p/@T , 0, etc.). If that dependence is neglected, CV resembles a free electron gas at low temperatures.



III
Magnetism and topology in Kondo

materials

In this part, we discuss interaction-dependent properties of Kondo materials
by means of the slave-boson method. First, we elaborate on the underlying
Kondo effect, emphasize its relevance in the current literature and introduce
commonly applied microscopic models to describe the problem. We then
investigate Kondo metals in the context of heavy fermions, magnetic order,
and an effective RKKY-interaction based on the doped periodic Anderson
model (PAM). Finally, we consider Kondo insulators based on a generalized
periodic Anderson model with additional spin-orbit coupling and clas-
sify emerging magnetic and non-magnetic phases in the regard topology
through corresponding Z2 invariants.
The content of this part has partially been published in Reference [54] or is
in preparation for publication [56].
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Local moments and the Kondo e�ect

After the discovery of superconductivity in 1911, the scientific community was once more surprised by a
temperature-dependent resistivity measurement in Kamerlingh Onnes Laboratory at Leiden University in
1934, when the three dutch physicists W.J. de Haas, J.H. de Boer, and G.J. van den Berg found a puzzling
resistance minimum in gold wires at low temperatures [29]. According to Matthiessen’s rule [204], the resistivity
was believed to be decomposed into a temperature-independent contribution due to crystal defects comple-
mented by an electron-phonon (lattice vibrations) scattering term, whose impact increased with temperature
with a determined proportionality ⇢el-ph / T5 according to Felix Bloch’s theoretical approach in 1930 [205].
At that time, the electrical resistance was, therefore, expected to decrease monotonously by lowering the tem-
perature and, except for superconductors, approach a constant value. The unusual behavior could also not be
explained by electron-electron scattering, which was established by Lev Landau and Isaak J. Pomerantschuk
in 1936 to feature a quadratic temperature dependence [206] and can be understood in the context of Fermi
liquid (FL) theory [23, 48] as previously discussed in Section 8.3.3.

The puzzle remained unsolved for more than 30 years. However, experimental observations in Bell
Laboratories in the early 60s acquired significant hints towards the underlying mechanism that liked the
resistivity minimum to small concentrations of magnetic impurities, e.g., iron in niobium, that did not
always yield a net magnetic moment in the respective compound [207, 208]. This technical achievement to
carefully tune magnetic impurities in the parts per million range attracted theorists to investigate the topic
in the following years. In 1961, Philip W. Anderson formulated an important second quantized model that
describes emerging magnetic moments in metals due to interactions between localized electrons, referred to
as the Anderson impurity model (AIM) [62]. Jun Kondo finally explained the resistance minimum in 1964
through a perturbation calculation of an s-d spin-exchange model, established by Tadao Kasuya in 1956,
which is today known as the Kondo model (KM) [209]. His result was a logarithmic contribution to the
resistivity at low temperatures as a consequence of a many-body effect, yielding in temperature dependence
[210]�

⇢(T) ⇤ ⇢0|{z}
crystal defects

+ AT2
|{z}

el-el scattering

+ BT5
|{z}

el-ph scattering

+ C ln (W/T)|       {z       }
Kondo effect for T&TK

(10.1)

in total. We will introduce the AIM and KM along with their periodic generalizations, the Kondo lattice
model (KLM), and the periodic Anderson model (PAM) in Section 10.3. These two models are connected via
the Schrieffer–Wolff (SW) transformation in the limit of strong correlations and constitute the basis of our
theoretical investigation of Kondo materials in Chapters 11 and 12.

�Dependent on the specific material, additional phononic contributions / T3 arise [22], and the high-temperature regime is
dominated by ⇢ / T as classical limit, where the phonon energy is also / T due to the equipartition theorem.
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A serious omission of Kondo’s result was that the logarithmic term led to a divergence of the resistivity
in the limit T ! 0, which clearly indicated a breakdown of the perturbation calculation at some point. The
search for an appropriate description in the zero-temperature limit, i.e., the Kondo problem, once more attracted
theorists to study the field more deeply in the 60s and 70s. An extension of the perturbative approach proved
to be insufficient but moved the singularity to a finite temperature, which is called Kondo temperature TK [63],
and defines the only characteristic energy scale of the problem [12]. In 1970, Philip W. Anderson suggested an
intuitive explanation of the Kondo effect by means of a perturbative renormalization group method, known
as Poor man’s scaling [211], which was, however, still not applicable for T ⌧ TK . His approach found an
effective coupling of local moments and conduction electrons that increases with lowering the temperature
and effectively screens the net magnetic moment. Shortly after, the Kondo problem was finally solved in 1974
employing a non-perturbative technique, i.e., the numerical renormalization group, that Kenneth G. Wilson
developed himself and refined Anderson’s result [212]�: While local moments are asymptotically free for
T � TK , the conduction electrons start to screen the magnetic impurity for T & TK by forming a many-body
Kondo singlet, whose binding energy is given by the Kondo temperature. In the limit T ! 0, the local
interactions become so strong that the magnetic moment is fully screened, and a Fermi liquid with finite
resistivity is recovered [12].

Although the original Kondo problem for a single impurity was now well understood, it was acknowledged
in the late 70s that the same phenomenon could also occur in dense Kondo lattices with large numbers of
periodically distributed local moments. That insight launched an entirely new material class, the heavy fermion
metals that we will further discuss in Section 10.1. Insulating heavy fermion materials are nowadays referred
to as Kondo insulators (KIs) and will be introduced in Section 10.2. For both material types, many open
questions remain, and we will apply the slave-boson (SB) formalism in Chapters 11 and 12 to address some
of these problems.

After all, the popularity of Kondo physics has again spiked in recent years, since the related interplay
between localized and itinerant degrees of freedom in the presence of strong correlations determines the
unconventional behavior of different quantum materials beyond the original idea of local magnetic moments
and may even provide practical applications [12, 214]. To be specific, the Kondo effect may also occur in
artificial structures like quantum dots or also in the absence of spin, if another quantum number, e.g., orbital
degrees of freedom, gives rise to energy-degenerate states and such an orbital Kondo effect has been observed
in RuO2 in 2020 [215]. Moreover, the phenomenon involves quantum entanglement, and a recent theoretical
study suggests that it becomes long-ranged at the Kondo-destruction near a quantum critical point [216].
Finally, some heavy-fermion materials employ triplet-superconductivity and are possible hosts of Majorana
fermions. Those observations pave the way for possible quantum logic gate devices and quantum computing
within the scope of Kondo physics [12].

10.1 Heavy fermions

In 1975, K. Andres, J. E. Graebner, and H.R. Ott measured an unexpectedly high specific heat coefficient � in
the intermetallic compound CeAl3, which was about 1600 times larger than in copper [217]. It is given by the
proportionality factor of the electronic specific heat at low temperatures and can directly be associated with

�The innovative renormalization group concept was later generalized and broadly applied to different many-body problems,
e.g., high-temperature-superconductivity [213] and has been established as a powerful numeric tool. For his contributions, Wilson
was awarded the Nobel prize in 1982.
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the (renormalized) density of states (DOS) D⇤(0) at the Fermi-level [48]

CV ⇤ �T , � ⇤
⇡2k2

B
3 D⇤(0) . (10.2a)

The therefore implied enhancement of the DOS can also be identified with an increased effective mass m⇤ of
the FL quasiparticles (QPs) that we define by a quadratic expansion of the band dispersion around the Fermi
surface (FS) in order to relate it to a free electron model with mass m ⇤ me �

"k ⇤
k2

2m⇤
+O

⇣
k3

⌘
,

m⇤

m
⇤

D⇤(0)
D(0)

. (10.2b)

For CeAl3, the effective mass yields about 1000 bare electron masses (m⇤/m ⇡ 1000), and with the discovery of
other compounds, e.g., UBe13 and CeCu6 [218] that show similar behavior, the material class of heavy electrons
or heavy fermions was founded. Partially filled f -orbitals were identified to be a common denominator of
these compounds, and it was established that a lattice version of the Kondo effect, i.e., a periodic arrangement
of localized, strongly interacting electrons immersed in a sea conduction electrons, was responsible for the
unusual behavior [219]. The high effective masses were then explained by Kondo resonances of the local
moments at the Fermi-level for an overall paramagnetic (PM) state due to screening by the conduction electrons
[12].

Many heavy fermion materials, however, also employ magnetic ordering, especially antiferromagnetism
(AFM) [220, 221] and in some cases also ferromagnetism (FM) [222], with an oftentimes weak net magnetization
that can be as small as m . 10�2µB . The magnetic instabilities compete with the Kondo effect, and to quote
Piers Coleman: heavy fermions are therefore considered to be “on the edge of magnetism” [218]. The ordering
process is, on the one hand, driven by itinerant magnetism due to the enlarged DOS at the Fermi-level,
and on the other hand, by local moment formation as a consequence of a spin-exchange coupling induced
by hybridization with the sea of conduction electrons, known as Ruderman–Kittel–Kasuya–Yosida (RKKY)
interaction [12]. In opposite to magnetic phases, the Kondo effect emerges continuously by lowering the
temperature, and there is no thermal phase transition. At zero temperature, however, many experiments
indicate that it can be destructed instantaneously at a so-called quantum critical point (QCP), which can,
e.g., be seen in a discontinuous jump of the Hall-coefficient as a function of a suitable control parameter [12].
The corresponding Kondo-destruction is triggered by quantum fluctuations rather than thermal fluctuations
and can manifest in metal-to-metal, metal-to-Mott insulator, or magnetic transitions.

A qualitative classification of chemical elements that feature strong correlations and employ a propensity
to form local moments and heavy fermion compounds was given in 1983 by J. L. Smith and E. A. Kmetko with
their “nearly periodic table of transition elements” [223] that is shown in Figure 10.1. The degree of localization
is governed by two trends: Orbitals with a higher principal quantum number contain more radial nodes and
tend to be more delocalized. Moreover, moving along a row in the periodic table or from d to f orbitals
increases the nuclear charge that pulls the electrons closer towards the nucleus. As a result, the shells can be
ordered by

5d < 4d < 3d < 5 f < 4 f (10.3)

from low to high localization. The itinerant, strongly correlated systems in the lower-left corner of the phase
diagram tend to be conventional superconductors at low temperatures, whereas materials on the upper
right employ a strong propensity towards local moments. The elements on the crossover are particularly

�In a free electron gas, it is D(0) / m [19].
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(a) Elements with a gray background featuring empty (left side) or full (right side)
d and f shells are not directly relevant for the localized interaction picture and
are only included for completeness.

(b) Schematic wave function  
for differently localized or-
bitals.

Figure 10.1: Kmetko-Smith diagram [223], which describes the trend of strongly correlated transition metals with
partially filled orbitals towards localization. The arrangement does not fully recover the order of the periodic table
of elements because the electron configuration is unexpected in some cases due to interaction effects. Elements on
the upper right corner tend to be magnetic Mott insulators, whereas the lower-left corner is dominated by itinerant
non-magnetic behavior that favors superconductivity. Materials on the crossover indicated by the white line are
particularly interesting because their physical properties are very susceptible to perturbations or external forces.
Figure adapted from [48, 57].

interesting due to the competing processes and also especially susceptible to perturbations. In that regard,
e.g., the lattice structure, corrosion resistance, and magnetic properties of iron can be dramatically changed
by adding chromium and nickel to obtain stainless steel [223]. Moreover, the cerium and uranium-based
heavy fermion compounds and the iron-based superconductors are associated with that crossover.

As a matter of fact, Frank Steglich et al. discovered by studying CeCuSi2 in 1979 that heavy fermion materials
themselves could also be superconducting [224], and many more heavy-fermion superconductors (SCs) have
been reported ever since. An earlier observation of superconductivity in UBe13 in 1973 was dismissed as
an artifact, because conventional superconductivity order was believed to be impossible in dense magnetic
systems [225]. An especially interesting heavy-fermion SC is YbRh2Si2, because it features strange metal
behavior with liner resistivity as a function of temperature followed by a superconducting transition at lower
temperatures [226]. This similarity to the high-Tc cuprate raises the question of whether the Cooper-pairing
mechanism of both material classes has a common origin.

10.2 Kondo insulators

Kondo insulators are basically heavy-fermion semiconductors, where the chemical potential lies in a narrow
energy gap that opens at low temperatures due to the hybridization of localized and conduction electrons as a
result of the Kondo effect. From a quasiparticle perspective, KIs can be considered to be highly renormalized
band insulators [218]. The first material to be classified as KI is Samarium hexaboride (SmB6), after it had
already been discovered in the late 60s that the material is a local moment metal at room temperature that
continuously transforms into a PM semiconductor with a tiny gap of approximately 10meV at low temperatures
[227]. Another feature of KIs are mixed-valence states, i.e., a fractional occupation of the f -orbitals where,
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e.g., samarium is present in both Sm2+ and Sm3+ ions [228]. Until now, many other KIs with similar behavior
have been found.

In 2010, Maxim O. Dzero, Kai Sun, Victor M. Galitski, and Piers Coleman suggested that KIs could be
topological, and proposed the term topological Kondo insulator (TKI) [32]. Theoretical studies on SmB6

suggest the existence of three topologically protected Dirac cones at the surface [54, 99, 229, 230] that could
explain the existence of a resistivity plateau that had been measured below 3K and seemed to be unaffected
by the sample quality [231]. We will introduce a minimal model for TKIs in Section 10.3.4 and elaborate on
interaction-induced magnetic and topological properties by means of the SB method in Chapter 12.

10.3 Microscopic models

In Sections 10.3.1 and 10.3.2, we will define the aforementioned impurity models, namely the Kondo model
(KM) and Anderson impurity model (AIM) and their periodic counterparts, i.e., the Kondo lattice model (KLM)
and periodic Anderson model (PAM). The two models are related by the Schrieffer–Wolff (SW) transformation
in the limit of high correlations, as will be discussed in Section 10.3.3. Finally, we introduce a minimal model
for TKIs that is based on the PAM with additional spin-orbit coupling (SOC) in Section 10.3.4. In Chapters 11
and 12, we will apply the SB formalism to the introduced periodic models in order to investigate interaction
effects in heavy-fermion metals and topological Kondo insulators.

10.3.1 Kondo model

The KM was the first model to effectively describe the physics of the Kondo effect and couples a sea of
conduction electrons created by ĉ†k ,� in the tight-binding approximation to a single magnetic impurity with
spin operator Ŝ via a spin-exchange coupling J defined by the Hamiltonian [48, 209]�

HKM
⇤ H0 + HJ ⇤

X

k ,�

ĉ†k ,�⇠k ĉk ,� +
X

kk0

X

��0
J ĉ†k ,�⌧�,�0 ĉk0 ,�0 Ŝ . (10.4)

A convenient method to calculate the resistivity minimum and extract the Kondo temperature TK , is to
apply Abrikosov’s pseudo-fermion (sometimes also called slave-fermion) representation [45], for the local spin
Ŝ ⇤ 1

2 f̂ †� ⌧�,�0 f̂�0 . It is only exact if the occupation of the auxiliary fermionic operators f̂†� is constrained to one
nf ⇤ 1, which can be implemented in full analogy to the slave-boson theory by a projector with a complex
Lagrange multiplier field (compare Section 2.2.2). A consecutive second-order perturbation calculation of the
scattering amplitude T in the resulting fermionic model yields the well known logarithmic contribution to
the resistivity [48, 57]

⇢(T) / |T |2 / (1 + 4JD(0) ln W/T) , (10.5a)

where W is the half-width of the conduction band. The breakdown of the perturbative calculation can be
defined by the temperature, where second-order contributions become larger than the first-order term, which
determines the Kondo scale

1 ⇤ 4JD(0) ln W/TK , TK ⇤ We�
1

4D(0) J . (10.5b)

�The spin operator of the conduction electrons at lattice site i is defined by ŝ i ⇤ 1
2
P
�,�0 ĉ†i ,�⌧�,�0 ĉi ,�0 , which is equivalent to the

respective expression in momentum space in Equation (10.4) for i ⇤ 0, and ⌧ represents the vector of Pauli-matrices. The coupling
constant J may in general be momentum dependent (Jk ,k0 ). For the purpose of this thesis, we restrict ourselves to constant
couplings, which is sufficient for most applications.
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The KLM with momentum-independent coupling constant follows from a periodic arrangement of the impu-
rity Ŝŝ ! P

i Ŝi ŝ i [219, 232]1

HKLM
⇤ H0 + HJ ⇤

X

k ,�

ĉ†k ,�⇠k ĉk ,� +
X

kk0

X

��0
J ĉ†k ,�⌧�,�0 ĉk0 ,�0 Ŝk0�k . (10.6)

10.3.2 Anderson model

The AIM, introduced by Philip W. Anderson in 1961 [62] with the aim to describe local moment formation,
combines two essential ideas. Firstly, the localizing impact of the Coulomb repulsion, represented by a
Hubbard interaction in the f -electrons, which hinders the electron movement and can induce a metal-
to-insulator transition (Mott transition) in the high coupling regime (compare Section 8.1). Secondly, the
formation of virtual-bound state resonances, which Anderson interprets as a tunneling process between the
localized f -electrons (f̂†�) and the conduction sea (ĉ†�) with an amplitude of V that acts as hybridization. The
corresponding Hamiltonian with a singly impurity at i ⇤ 0 and f -electron on-site potential ✏f is given by
[48]�

HAIM
⇤

resonant part
z                                                                  }|                                                                  {X

k ,�

ĉ†k ,�⇠k ĉk ,� +
X

k ,�

⇣
Vĉ†k ,� f̂� + V⇤f̂†� ĉk ,�

⌘
+ ✏f

X

�

f̂†� f̂� + U f̂†" f̂"f̂
†
# f̂#

|                      {z                      }
atomic part

. (10.7)

The PAM follows from a periodic arrangement of the impurities, i.e., the terms of Equation (10.7) associated
with the interacting f -electrons are extended to the whole lattice [63]1

HPAM
⇤ Hd + Hhyb + H f , (10.8a)

with

Hd ⇤ �t
X

hi , ji,�
ĉ†i ,� ĉ j,� � µ0

X

i ,�

ĉ†i ,� ĉi ,� ⇤

X

k ,�

ĉ†k ,�⇠k ĉk ,� , (10.8b)

Hhyb ⇤ V
X

i ,�

⇣
ĉ†i ,� f̂i ,� + f̂†i ,� ĉi ,�

⌘
⇤ V

X

k ,�

⇣
ĉ†k ,� f̂k ,� + f̂†k ,� ĉk ,�

⌘
, (10.8c)

H f ⇤ U
X

i

f̂†i ,"f̂i ,"f̂
†
i ,#f̂i ,# + (✏f � µ0)

X

i ,�

f̂†i ,� f̂i ,� ⇤ U
X

i

f̂†i ,"f̂i ,"f̂
†
i ,#f̂i ,# + (✏f � µ0)

X

k ,�

f̂†k ,� f̂k ,� . (10.8d)

Moreover, we include the chemical potential µ0 that couples to the total electron density to control the filling
n ⇤ nc + nf. In the non-interacting limit, the natural basis is in momentum space, and the energy bands can
be calculated analytically as shown in Appendix B.2. The hybridization leads to the opening of an energy
gap with an insulating ground state at half-filling, which is demonstrated in Figure 10.2(a). Due to the
lack of direct hopping between different f -orbitals, the energy bands are narrow, which makes the PAM a
suitable minimal model to study heavy fermion systems. In Chapter 11, we will apply the SB representation
introduced in Part I to the PAM in order to account for the Hubbard term and study the interaction-dependent
phase diagram.

�In general, the hybridization V may be momentum-dependent (Vk) in analogy to the coupling constant J in the KM, but for the
purpose of this thesis, we only consider a momentum-independent hybridization in the PAM.
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(a) Band structure of the PAM for µ0 ⇤ ✏f ⇤ U ⇤ 0. Finite
hybridizations V open a gap such that the ground state
is insulating at half-filling. The weights of the interacting
f-orbital and conduction orbital are visualized by red and
blue color, respectively.

(b) Band structure of the conduction band in the KLM. It
is equivalent to respective BS of the PAM for vanishing
hybridization [blue dashed line in Figure 10.2(a)].

Figure 10.2: In the PAM, local moments are represented by an f-orbital with a Hubbard-type interaction U and zero
hopping amplitude that hybridizes with the conduction orbital. On the other hand, the KLM considers a spin-exchange
interaction J between the local moment S and the spin s of the conduction electrons. Both models are connected by
the SW transformation and become equivalent for strong correlations in the extended Kondo limit.

10.3.3 Schrie�er-Wol� transformation

The AIM and KM are related by a canonical transformation that was first described by Schrieffer and Wolff in
1966 [233]. It projects out empty and double occupations of the magnetic impurity and only allows virtual
excitations of those within the lowest order perturbation theory [63]. Both models become equivalent in the
so-called Kondo limit, which identifies the KM as a low energy description of the AIM in the strong coupling
regime. Later, it was shown that a similar relation holds between their periodic counterparts, where the KLM

is expected to represent an effective model of the PAM in the Kondo regime, where the Kondo coupling constant
is approximately given by J ⇡ V2

⇣
1

✏f+U + 1
�✏f

⌘
[48, 232]. The mapping from PAM to KLM becomes exact in the

extended Kondo limit (EKL), which is defined by [234]

✏f ⇤ �
U
2 ,

V2

U
⇤ const. , U !1 , V !1 , ) nf ⇤ 1 . (10.9a)

A consequence of the limit is that the f -orbital is half-filled (nf ⇤ 1), which ultimately initiates the spin-
exchange term as a kind of a reverse of Abrikosov’s previously discussed pseudo-fermion representation.
The coupling constant in the EKL is positive [232, 234]

J ⇤
4V2

U
, (10.9b)

which favors AFM ordering in agreement with experimental observations in Kondo materials. Summing up,
the SW transformation projects the interacting f -electrons to local moments by means of the hybridization V ,
while the conduction band recovers its non-hybridized form as illustrated in Figure 10.2.

10.3.4 Minimal model for topological Kondo insulators

A minimal model for TKIs can be built based on the PAM with the addition of a small hopping amplitude
t f

i j between the localized f -electrons. Moreover, a crucial ingredient for topological phases is that the
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hybridization is an odd function of k, which implies that it needs to be non-on-site [32]. This is because
the localized electrons in KIs are usually derived from atomic f -orbitals, which are odd under parity, while
the hybridizing conduction d-orbitals are even under parity. A minimal model with those ingredients that
preserves time-reversal symmetry (TRS) and inversion symmetry (IS) is given by [54, 99, 230]

HTKI
⇤ Hd + Hhyb + H f + Hint , (10.10a)

with

Hd ⇤ �
X

hi ji

X

�

td
i j ĉ
†
d ,i ,� ĉd , j,� � µ0

X

i ,�

ĉ†i ,� ĉi ,� , (10.10b)

Hhyb ⇤

X

↵

X

hi< ji↵

X

��0
iV

⇣
f̂†i ,�⌧

↵
��0 ĉ j,�0 � f̂†j,�⌧

↵
��0 ĉi ,�0 + h.c.

⌘
, (10.10c)

H f ⇤ �
X

<i j>,�

t f
i j f̂
†
i ,� f̂j,� +

X

i ,�

f̂†i ,�
⇣
✏ f � µ0

⌘
f̂i ,� , (10.10d)

Hint ⇤U
X

i

f̂†i ,"f̂i ,"f̂
†
i ,#f̂i ,# , (10.10e)

and features band inversions at time-reversal-invariant momenta (TRIM) that initiate topological transitions.
The model employs spin-orbit coupling (SOC) in the hybridization term given by Equation (10.10c) and
hi < ji↵ indicates NN bonds with i < j in ↵-direction and ⌧↵��0 represents the ↵-th Pauli matrix acting
on spin space. Such a SOC, which features TRS and IS is called centrosymmetric. In Chapter 12, we will
apply the SB representation discussed in Part I to the TKI model to account for the Hubbard term and study
interaction-enabled magnetic and topological transitions.
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Emerging Kondo regime in the periodic Anderson
model

In this chapter, we will investigate the 2D periodic Anderson model (PAM), introduced in Section 10.3.2, by
means of the slave-boson (SB) method that we derived in Part I. Firstly, in Section 11.1, we identify an emerging
Kondo regime in the parameter space of the PAM that features an AFM mean-field (MF) ground state with huge
effective masses that, however, turns out to be unstable w.r.t. Gaussian fluctuations. Section 11.2 adds another
conduction band to the model and discusses a domain that is dominated by the effective RKKY-interaction
inducing magnetic frustration due to destructive interference of the two conduction band pockets. The results
are partially included in Reference [56], which is in preparation for publication.

11.1 Heavy fermions and magnetism

The Kondo problem and theoretical understanding of heavy fermions have driven the development of
auxiliary particle (slave-boson) methods, pioneered by Barnes in 1976 [46, 235] for the Anderson impurity
model (AIM) and the PAM by Coleman in 1984 [47] in the limit of infinite interactions. KR slave-bosons,
which are the foundation for the SB representation applied in this thesis, provided a description for finite
interactions U in 1986 [49]. An advantage of this formalism is that it treats local and non-local physics on
the same footing and allows for both: correlation-induced mass enhancement and the formation of magnetic
order. Early works, however, suggested that the Kondo energy scale (TK) was not recovered [236], whereas
later applications of the KR-SB method at least compared well to QMC calculations at half-filling and found
the occurrence of magnetic order in qualitative agreement with experiments [74]. Other theoretical methods
like, e.g., DMFT tend to struggle with the coinciding importance of localized and itinerant degrees of freedom,
and reliable results have been difficult to obtain despite the problem being around for multiple decades. One
of the remaining fundamental questions is the exact origin of the large quasiparticle (QP) mass.

In the following, we will revisit the problem and fully exploit the capacities of the SB formalism presented
in Part I, including a magnetic MF analysis for arbitrary doping and the evaluation of Gaussian fluctuations
about (para-) magnetic saddle points. In order to target the Kondo regime and seek for heavy fermions in
the PAM defined in Equation (10.8), we aim to tune the free parameters such that the Kondo lattice model
(KLM) represents an effective low energy description. As previously discussed in Section 10.3.3, both models
are connected by the SW transformation that projects out double occupations of the interacting f -orbital. We,
therefore, restrict our analysis to half-filled f -orbitals nf ⇤ 1 in accordance with the extended Kondo limit
(EKL). This constraint can be enforced by coupling the f -electrons to a particle reservoir, where the on-site
energy ✏f acts as effective chemical potential. We moreover fix the hopping and hybridization amplitude
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t ⇤ V ⇤ 1, such that the interaction U and total filling n, which is controlled by the chemical potential µ0,
remain as free parameters.

In order to map out the magnetic phase diagram, we numerically solve the SB saddle point equations [56]

@F(0)
eff
@p

�����(4.29)
⇤
@F(0)

eff
@p0

�����(4.29)
⇤
@F(0)

eff
@�

�����(4.29)
⇤
@F(0)

eff
@✏eff

�����(4.29)
⇤
@F(0)

eff
@µ0

�����(4.29)
⇤
@F(0)

eff
@Q

�����(4.29)
⇤ 0 (11.1)

to minimize the MF free energy (FE). Details on calculating the FE and implementing the additional constraint
of half-filled f -orbitals are provided in Section 4.4.3. The corresponding renormalized QP hopping matrix
is derived in Appendix B.2, and its eigenvalues that enter the FE are given by the roots of a fourth-order
polynomial that is defined in Equation (B.21). The resulting zero-temperature phase diagram in the vicinity
of half-filling (n ⇤ 2) is shown in Figure 11.1(a). The MF ground states are metallic and employ a second-order
FM instability at Uc ⇡ 1 except for half-filling, where the ground state is insulating due to the hybridization gap
with an AFM transition at Uc ⇡ 2. In analogy to our analysis in the Hubbard model, the PM phase boundary
can equivalently be determined by means of a diverging static spin susceptibility 1/�PM

s (q ⇤ Q , ! ⇤ 0) about
the PM ground state, i.e., we find PM fluctuations to be in perfect agreement with results from the magnetic
MF. Explicit expressions for the susceptibilities are summarized in Table 5.2 and given by superpositions of
the fluctuation field propagator Ga ,b

µ,⌫ (q , i!) that we derived in Section 5.2. For half-filled f -orbitals, the PM

spin susceptibility adapts an RPA-like simple form [56]

�PM
s (q , ! ⇤ 0) / �0(q)

1 + �0(q)Mp1 ,p1/
⇣
2p2

0

⌘ . (11.2a)

The matrix element Mp1 ,p1 does not depend on q or ! and the bare susceptibility at zero momentum
�0(q ⇤ 0, ! ⇤ 0) ⇤ D⇤(0) is given by the renormalized DOS at the Fermi-level. FM instabilities can thus be
determined by the equation

1 ⇤ �D⇤(0)Mp1 ,p1/2p2
0 , (11.2b)

similar to the Stoner criterion in the Hubbard model. Those emerge as a direct consequence of the high DOS at
the Fermi-level, that naturally arises in the PAM, and thus hinder the formation of heavy fermions within a PM

ground state. The AFM domain in the vicinity to half-filling at intermediate interactions 2 . U . 3.5 cannot
be explained by such a nesting effect. It is rather to be identified with an emerging Kondo regime, where the
PAM is effectively represented by the KLM with a positive Kondo coupling constant J ⇡ 4V2/U that drives AFM

order, which is also observed in many heavy-fermion materials [218]. This hypothesis is also supported by
the fact that we detect the scaling UAFM

c / V2 for high U, which coincides with the EKL, whereas the critical
interaction towards the FM does not follow such a simple scaling relation.

We now want to investigate the effective masses of the (magnetic) MF band structures (BSs) that are related
to the DOS by

m⇤ ⇤ ⇡D⇤(0) (11.3a)

in two spatial dimensions and are visualized as a function of interaction and filling in Figure 11.1(a) as a 3D
plot. At U ⇤ 0, the effective mass is already relatively large (m⇤ ⇡ 10) due to the construction of the PAM.
With finite interactions, the PM band structure is renormalized by V ! z0V , with z0  0 and ✏f ! ✏f + �0

with �0 � 0, i.e., the effective hybridization ( f -electron on-site energy) is decreased (increased) by interaction
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(a) Magnetic phase diagram of the PAM at T ⇤ 0 around half-
filling, with effective mass m⇤ in the top panel. Figure
adapted from [56].

(b) MF magnetization m with fluctuation corrections and
chemical potential as a function of the filling n for U ⇤ 2.4
at T ⇤ 0.005.

(c) Band structure of the unstable AFM ground state
for n ⇤ 2.01 and U ⇤ 2.4. Red (blue) color indi-
cates the orbital weight of the f -orbital (conduc-
tion orbital).

(d) Band structure of the stable FM ground state for
n ⇤ 2.08 and U ⇤ 2.4. Red (blue) color indicates
the orbital weight of the f -orbital (conduction
orbital).

Figure 11.1: The magnetic phase diagram of the PAM is dominated by FM and AFM order in the low to intermediate
coupling regime. The FM instability arises due to a modified Stoner criterion as a consequence of large densities of the
PM Fermi surface, yielding a stable MF ground state with a small magnetic gap that significantly reduces the DOS at
the Fermi-level. The AFM mean-field ground state competes with the FM and globally minimizes the free energy close
to half-filling and comes along with a drastic interaction-induced enhancement of the effective mass (m⇤max ⇡ 250) in
opposition to the FM state. It, however, appears to be unstable w.r.t. Gaussian fluctuations. Both ground states feature
phase separation for parts of the phase diagram due to the respective first-order transition. The FM employs a very
low magnetization that is even further decreased by fluctuation corrections and almost approaches zero at the phase
transition.

effects, and we find the DOS to follow the scaling relation [237]�

D⇤(0) ⇤ *
,1 +

z2
0V2

�
µ0 � ✏f � �0

�2
+
- D *

,
z2

0V2

µ0 � ✏f � �0
+
- , (11.3b)

�Notice that D⇤(0) represents the renormalized paramagnetic DOS at Fermi-level and D(!) describes the DOS of the bare non-
hybridized conduction band.
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(a) Inverse charge susceptibility. (b) Inverse longitudinal spin suscepti-
bility.

(c) Inverse transversal spin susceptibil-
ity.

Figure 11.2: Inverse static susceptibilities around an AFM mean-field ground state for n ⇤ 2.01,U ⇤ 2.4, and FM mean-
field ground state for n ⇤ 2.03,U ⇤ 1.5, and T ⇤ 0.005. Fermi surface instabilities are indicated by an enlarged
negative domain, i.e., the AFM is unstable, whereas the FM appears to be stable. Gapless spin waves, which arise due
to the finite MF magnetization, can be seen in �t

s and manifest around q ⇤ (⇡, ⇡)> for the AFM and q ⇤ (0, 0)> for the
FM as expected. Figure adapted from [56].

in good approximation. It moderately grows with interaction, but a significant increase of m⇤ cannot be found
in the PM domain because of the formation of magnetic states, which was also concluded in other theoretical
studies [238]. FM ordering even drastically reduces m⇤ to the level of a free-electron mass (m⇤ ⇡ 1) by opening
a small magnetic gap around the �-point, which is exemplarily displayed in Figure 11.1(d). The AFM domain
on the other side employs a massive increase of the effective mass as a function of interaction from m⇤ ⇡ 1 to
m⇤ ⇡ 250 that is finally negated by a first-order transition towards (Q ,Q)> incommensurate order at U ⇡ 3.5,
which recovers m⇤ . 3. An exemplary BS of the corresponding AFM mean-field ground state is shown in
Figure 11.1(c) in the extended zone scheme. The back-folding pushes additional DOS to the Fermi-level and
results in tiny pockets around the � and M-point.

A fluctuation analysis of the magnetic saddle points by means of the static charge and spin susceptibilities
that are exemplarily presented in Figure 11.2, however, reveals that the AFM ground state is unstable due to
divergences of �c and �l

s around the � and M-point. Although the general signature of Kondo physics is
contained in our previous analysis, we, therefore, conclude that KR slave-bosons are not capable of sufficiently
describing the problem because we cannot write down a stable MF ground state that globally minimizes the
FE in that domain. The FM, on the other side, is stable w.r.t. Gaussian fluctuations. It only features a sharp
divergence of the transversal spin susceptibility �t

s (q ⇤ 0) at the �-point, which is expected due to the gapless
spin waves associated with the finite MF magnetization.

Finally, we want to take a look at the doping-dependent properties of the MF ground states. Firstly, there is
phase separation (PS) between the AFM and FM due to a discontinuity of the chemical potential µ0(n) at the
first-order transition, which can be seen for U ⇤ 2.4, and nc ⇡ 2.043 in Figure 11.1(b). The constant chemical
potential of the PS ground state is indicated by the dashed line�. We do, however, not find domains of negative
electronic compressibility like for the Hubbard model discussed in Section 8.5. The apparent competition

�Theoretically, there could also be irregularities in the context of ✏f , which acts as effective chemical potential of the f -orbital to
constrain nf ⇤ 1. In order to have an equivalent description of the free energys F(nf) and F(✏f), we require the compressibility of
the f -electrons  f

T ⇤ �@nf/@✏f be a monotonous function, which is satisfied for our findings.
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between the two magnetic phases can also be seen in the transversal spin susceptibility in Figure 11.2(c),
where �t

s ,AFM is also enhanced around q ⇤ (0, 0)>, and �t
s ,FM employs a maximum around q ⇤ (⇡, ⇡)>. After

all, the instability of the AFM phase cannot be explained by the phenomenon because it also occurs outside of
the PS domain.

Secondly, we investigate the mean-field magnetization m (0) ⇤ mMF, which is also plotted in Figure 11.1(b).
We find the FM to be very weakly magnetized, with a minimum of mMF ⇡ 0.025 at the transition to the AFM (the
fully magnetized state is normalized to m ⇤ 1

2 ). Such a weak FM has also been reported in other theoretical
studies [238] and small magnetic moments have been observed in many heavy-fermion materials, e.g., CeAl3,
UPt3 and YbRhSb [220–222]. The AFM has an overall much higher magnetization. We also computed second
order fluctuation corrections to the magnetization m (2) according to Section 5.4. Interestingly, the resulting
fluctuation-corrected net magnetization m (0) + m (2) ⇤ mMF+Fluc is even lower, as illustrated by the diamond-
shaped data points in Figure 11.1(b), and goes down to a minimal value of mMF+Fluc ⇡ 0.008 at nc . The
strength of the respective order is also reflected in the critical temperature that marks the destruction of the
magnetic state, i.e., the Néel temperature for the AFM with TNeel . 0.12, and Curie temperature for the FM

with TCurie . 0.04 for U ⇤ 2.4. The transitions are of second-order, and the whole demagnetization takes
place in a very small temperature interval of �T ⇡ 0.01. These energy scales indicate that the magnetic order
might be easily destroyed by disorder, which is present in many heavy fermion materials and could possibly
extend the Kondo regime. Related questions are of particular interest because FM heavy-fermion materials
have also been reported to feature unconventional superconductivity, and the fundamental mechanisms of
these compounds are not fully understood [222].

11.2 Generalized model with two conduction bands

We generalize the PAM by adding a second conduction orbital that hybridizes with the f -electrons with the
same on-site amplitude V . We do not allow hybridizations between the conduction bands but define on-site
energies ✏d1,2 , which result in an energy splitting �✏d ⇤ ✏d2 � ✏d1 that is crucial for the Fermiology of the
model [56], and we will analyze its impact on the magnetic properties in this section. The corresponding
Hamiltonian is given by [56]

HPAM
2 cond. ⇤ H̃d + H̃hyb + H f , (11.4a)

with

H̃d ⇤

2X

d⇤1

*.
,
�t

X

hi , ji,�
ĉ†i ,�,d ĉ j,�,d +

X

i ,�

�
✏d � µ0

�
ĉ†i ,�,d ĉi ,�,d

+/
-
⇤

X

k

ĉ†kH
d
k ĉk , (11.4b)

H̃hyb ⇤ V
2X

d⇤1

X

i ,�

⇣
ĉ†i ,�,d f̂i ,� + f̂†i ,� ĉi ,�,d

⌘
, (11.4c)

H f ⇤ U
X

i

f̂†i ,"f̂i ,"f̂
†
i ,#f̂i ,# + (✏f � µ0)

X

i ,�

f̂†i ,� f̂i ,� , (11.4d)

where ĉ†k ⇤

✓
ĉ†k ,",d1

, ĉ†k ,#,d1
, ĉ†k ,",d2

, ĉ†k ,#,d2

◆
is the spinor of conduction electrons in momentum space. The

SW projection introduced in Section 10.3.3 may be generalized to HPAM
2 cond. and maps its low energy physics in

the limit of strong correlations onto a two-conduction-band KLM. The coupling constant in the EKL is given
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(a) U ⇤ 0.8, ✏d1 ⇤ �1, and nf ⇤ V ⇤ 1, µ0 ⇤ �3.5, ✏d2 ⇤ 0. (b) U ⇤ 3.8, ✏d1 ⇤ �4 and nf ⇤ V ⇤ 1, µ0 ⇤ �3.5, ✏d2 ⇤ 0.

Figure 11.3: Solid lines represent the band structure (BS) of the interaction-renormalized two-conduction-band PAM
[Equation (11.4a)] in the PM regime. Red coloring indicates spectral weight of the interacting f -orbital, which
is half-filled. Dashed lines show the BS of the bare conduction Hamiltonian [Equation (11.4b)] that enters the KLM
[Equation (11.5)]. The two sub-figures demonstrate the profound impact of the energy splitting�✏d of the conduction
bands to the Fermiology of the problem, where �kF represents the Fermi-vector difference of the conduction band
pockets.

by J ⇤ 4V2/U, i.e., we may approximate it to be independent of ✏d , resulting in the Hamiltonian [56]

HKLM
2 cond. ⇤

X

k ,k0
ĉ†k J ĉk0 · Ŝk0�k + H̃d , (11.5a)

with the matrix representation of the coupling constant

J ⇤
4V2

U
12 ⌦ ⌧ , (11.5b)

where the unity matrix 12 acts in orbital-space and ⌧ is the vector of Pauli matrices acting on spin-space. The BS

of the interaction-renormalized two-conduction-band PAM in comparison to the bare conduction Hamiltonian
H̃d is illustrated for two different energy splittings �✏d in Figure 11.3.

11.2.1 The RKKY-interaction

An effective long-range correlation of localized spins that is believed to have a profound impact on the
magnetic properties of heavy-fermion materials is the so-called Ruderman–Kittel–Kasuya–Yosida (RKKY)
interaction. It was initially formulated in 1954 to describe the indirect magnetic exchange coupling of nuclear
magnetic moments mediated by conduction electrons in order to explain unexpectedly broad spin resonance
lines in metallic silver [239]. The theory was then generalized by Tado Kasuya and Kei Yosida to spins of
localized f -electrons that are indirectly coupled through a sea of conduction electrons, which initiated its
high relevance to Kondo physics [209, 240].

Following References [56], [57], and [99], we may derive the RKKY interaction based on the two-conduction-
band KLM defined in Equation (11.5) within a path integral scheme by integrating out the conduction electrons
and expanding the resulting action up to second-order in Ŝ. The technical details are in analogy to the
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calculation of SB Gaussian fluctuations in Section 5.2, yielding the partition function

Z ⇤

Z
D [S] exp

⇣
Tr ln

f
�G�1

k �k ,k0 + JSk0�k
g ⌘

⇤

Z
D [S] exp

✓
Tr ln

f
�G�1

k �k ,k0
g
� 1

2 Tr
f
Gk JSk0�k

g2
+O

⇣
S3

⌘◆

⇡
Z
D [S] exp

⇣
Tr ln

f
�G�1

k �k ,k0
g ⌘

exp
✓
�1

2 Tr S↵�qS�qGk ,i!n
J↵Gk+q ,i!n

J�
◆
,

(11.6)

where Gk ,i!n ⇤
⇣
i!n �H d

k

⌘�1
denotes the Green’s function of the conduction Hamiltonian an the linear order

of Ŝ is zero due to the vanishing trace over Pauli the matrices. From Equation (11.6) we may extract the
effective RKKY-Hamiltonian of localized spins Ŝ

HRKKY
⇤

X

↵,�

X

q
Ŝ↵�q JRKKY

↵,�,q Ŝ�q , (11.7a)

and evaluate the occurring Matsubara summation in analogy to Equation (5.29a) to determine the coupling
constant

JRKKY
↵,�,q ⇤

1
2

X

k

X
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J↵Gk+q ,i!n
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1
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k+q ,s0

◆
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k ,s � "
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1
2

 
4V2

U

!2
�d

0 (q)�↵,� .

(11.7b)
The effective momentum-dependent coupling constant is thus proportional to the bare susceptibility �d

0 (q)
of the conduction Hamiltonian H̃d , whose eigenvalues are labeled by "d

k ,s [48, 241]. The spatial dependence
of JRKKY is obtained by inverse Fourier transformation

JRKKY
r ⇤

1p
N

X

q
e iqr JRKKY

q . (11.7c)

For the one-conduction band PAM, it can be obtained analytically under the assumptions of a free electron
gas, which is valid for small, circular FSs with Fermi vector kF in the lattice model, yielding [241]

JRKKY
r /

8>><>>:
1
r3

⇣
cos(2kFr) � sin(2kFr)

2kFr

⌘
for 1 conduction band PAM in 3D

J0(kFr)Y0(kFr) + J1(kFr)Y1(kFr) for 1 conduction band PAM in 2D ,
(11.7d)

where Jn and Yn are Bessel functions of first and second kind, respectively. The RKKY-interaction is thus
very sensitive to the Fermiology of the conduction Hamiltonian and oscillates within an enveloping function
/ 1/r3 in 3D and/ 1/r2 in 2D with a periodicity that is approximately given by ⇡kF. For two conduction bands,
JRKKY
r is decomposed into two terms that can each be approximated by Equation (11.7d) with Fermi-vectors of

the respective pocket plus an additional inter-band contribution. These properties give rise to the existence of
interference effects, which may have a significant impact on the magnetic order in the two-conduction band
PAM.

In order to shape the intuition about the RKKY-interaction and the requirements to the parameter regime
of the PAM where it becomes dominant, we want to point out analogies to the Hubbard model. It has been
known since the late 60s that the strong-coupling regime of the Hubbard model can be represented by the
so-called t-J model, which essentially features a non-interacting orbital in addition to an AFM spin-exchange
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coupling [242, 243]. A very similar relation is given between the PAM and KLM by the SW transformation.
The main difference of those models is that the t-J model couples spins of the same orbital, whereas the
KLM correlates spins of two different orbitals. If the Hubbard model is half-filled, the t-J model reduces to
a short-range AFM Heisenberg model due to the Mott transition [244]. The KLM, on the other hand, can be
mapped to the RKKY-Hamiltonian by integrating out the conduction electrons. It can be interpreted as a
long-range Heisenberg model, whose magnetic ground state precisely depends on the explicit form of JRKKY

r .
In summary, itinerant models with a Hubbard-type interaction reduce to non-itinerant spin-exchange models
in certain limits:

Hubbard model
strong
�������!
coupling

t-J- model
half-filling
��������!
Mott-limit

AFM Heisenberg Hamiltonian

Periodic Anderson model
strong
�������!
coupling

Kondo lattice model
integrate
���������!
d-electrons

RKKY-Hamiltonian .

(11.8)

11.2.2 RKKY-induced magnetic frustration

We aim to find a parameter regime in the two-conduction-band PAM defined in Equation (11.4) that is
dominated by the previously derived RKKY-interaction with a long-range coupling of the localized moments.
Thus, we once more constrain the f -orbital to be half-filled nf ⇤ 1 in accordance with the EKL and fix
V ⇤ t ⇤ 1. We are primarily interested in investigating how the difference of conduction band Fermi vectors
�kF ⇤ kF,2 � kF,1, which determines the interference of JRKKY

r , affects the magnetic ordering. It can be directly
tuned by the energy splitting of the conduction orbitals �✏d ⇤ ✏d2 � ✏d1 . In order to fix one of the pockets as
a reference point, we choose µ0 ⇤ �3.5, ✏d2 ⇤ 0 and keep ✏d1 and U as free parameters.

To map out the magnetic phase diagram by means of the SB method [56], we once solved the saddle point
equations given by Equation (11.1), where the eigenvalues that enter the FE are determined by numerically
diagonalizing the renormalized hopping matrix of the two-conduction-band PAM, i.e., Equation (B.23). The
result is presented by Figure 11.4(a), and we indeed find the critical interaction Uc that marks the onset
of magnetic order to be highly dependent on �kF, with a sharp maximum at �kF ⇡ 0.44⇡�. The respective
conduction-band Fermi surfaces along with another exemplary set with smaller�kF ⇡ 0.18⇡ and an associated
lower critical interaction are shown in Figure 11.4(b). Moreover, Figure 11.3 displays the matching band
structures. In order to investigate whether frustration effects mediated by the RKKY-interaction could explain
the peak, we numerically evaluated the spatial dependence of JRKKY

r by means of Equation (11.7c), and the
result for the two previously chosen �kF is summarized in Figure 11.4(c). For small pockets, we find JRKKY

r to
be relatively short-ranged with a positive NN coupling, similar like one would expect for the one-conduction-
band PAM. Increasing the diameter of the second pocket, however, initiates frustration effects that manifest
as a long-ranged RKKY profile with multiple coupling constants that are in the same order of magnitude in
addition to an overall decreased interaction scale that can especially be seen by comparing the NN coupling
of the two chosen �kF.

In the following, we provide two more arguments, why the domain around the maximum of Uc at
�kF ⇡ 0.44⇡ can be associated with an RKKY-dominated parameter regime of the two-conduction-band PAM.
Firstly, we expect double occupied sites to be mainly projected out in that limit. The applied constraint nf ⇤ 1
that is enforced by tuning the on-site energy ✏f, however, only tunes the total filling, while the distribution to

�In order to achieve the plotted differences in �kF, we tuned ✏d1 from 0 to �7.5. The PM phase boundary is determined by second-
order magnetic transitions and can be equivalently found by divergences of the static spin susceptibility 1/�PM

s (q ⇤ Q , ! ⇤ 0) ⇤ 0.
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(a) SB magnetic MF phase
diagram.

(b) Conduction Hamiltonian
FSs that define �kF .

(c) Normalized, spatially dependent RKKY-interaction
for the two different �kF in Figure 11.4(b).

Figure 11.4: The SB mean-field phase diagram of the two-conduction-band PAM features a sharp peak of the critical
interaction Uc that marks the onset of magnetism as a function of the difference of Fermi surface (FS) diameters �kF
of the bare (non-hybridized) conduction bands. Corresponding FSs are exemplarily shown and can be understood as
Schrieffer–Wolff projection of the PAM. The difference �kF also significantly determines the functional behavior of the
RKKY-interaction that we find to be parametrically frustrated and overall decreased in strength around the maximum
of Uc , which allows the identification of an RKKY-dominated regime of the PAM. Figure adapted from [56, 57].

empty, doubly, and singly occupied sites is determined by the PM saddle point equations with nf ⇤ 2d2 + p2
0.

We find the maximum of single occupation to be aligned with the highest value of Uc (p2
0 ⇡ 0.71 at �kF,2),

which supports the applicability of the SW projection as an approximation in that domain. Secondly, the
frustration also manifests in the slave-boson MF free energy F(0)

Q via multiple (up to six) local minima at
different magnetic ordering vectors Q and the formation of incommensurate magnetism (ICM) around �kF,2.
In opposition, it becomes much more smooth for in the domains of small Uc , where magnetic instabilities are
predominantly of the FM and AFM type. Remarkably, a Luttinger-Tisza analysis [245] of the RKKY-coupling
around �kF,2 even yields qualitatively matching ICM phases, which also supports the applicability of HRKKY

as low energy description of the PAM around that point.
To sum up, we have shown that tuning the size of two different conduction electron pockets can initiate a

sharp maximum of the critical interaction Uc as a consequence of frustration in the effective RKKY-interaction.
Although we cannot directly write down a Kondo ground state within the SB scheme, we expect the interplay
between the RKKY-interaction and Kondo physics to become relevant [246]. Moreover, the maximum in Uc

coincides with a minimum of the Néel temperature TNéel and the frustration effect could be a starting point
to understand why TNéel can differ significantly in various heavy-fermion compounds [218, 247]. Finally, a
PM high-interaction regime is also of interest in the context of heavy-fermion superconductivity.
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Topology and magnetism in Kondo insulators

Three-dimensional (3D) topological insulators (TIs) describe materials that are insulating in the interior due
to a finite energy gap between the valence and conduction band of the bulk Hamiltonian but can transport
electrons on their boundaries because of robust, topologically protected surface states (TSSs). The concept of
topological Kondo insulators (TKIs) was introduced by Maxim O. Dzero et al. in 2010 [32] and combines the
properties of Kondo insulators (KIs) with the occurrence of topologically non-trivial phases. He pointed out
that KIs provide the key ingredients that are required for topological order: Despite being strongly correlated
systems, their renormalized ground state can oftentimes be considered to be adiabatically connected to
non-interacting limit, and their multi-orbital band structure (BS) is insulating at low temperatures due to an
emerging hybridization gap mediated by the Kondo effect. Moreover, KIs feature intrinsically strong spin-orbit
coupling (SOC) that promotes topological phases if it arises in the form of a centrosymmetric hybridization that
preserves inversion- and time-reversal symmetry (TRS). This specific form can be achieved in Hamiltonians,
where the hybridizing f - and conduction orbitals have opposite parity.

A couple of actual materials have been proposed to be TKIs, with the most promising candidate being
samarium hexaboride (SmB6), where multiple theoretical studies predict TSSs in the form of three gapless
surface cones [57, 229, 230, 248, 249]. There is, however, some controversy about the nature of the true ground
state of the material. On the one hand, experimental evidence from transport, scanning tunneling, quantum
oscillation, and ARPES measurements confirms the existence of gapless surface states [250–254], and SARPES

data indicates that these are spin-polarized [255], which implies a topological scenario. On the other hand,
also arguments for a topologically trivial ground state [256, 257] or even a bulk-metallic transition under high
pressure [258] have been reported. In addition, specifics of the magnetic properties are still under debate.
Multiple studies suggest a paramagnetic (PM) ground state with intrinsic spin fluctuations [259, 260], but
also A-type (Q ⇤ [⇡, ⇡, 0]>) [261, 262] and Néel type (Q ⇤ [⇡, ⇡, ⇡]>) antiferromagnetism (AFM) under high
pressure [258, 263] and surface ferromagnetism (FM) [254] have been observed.

This chapter will discuss magnetic and topological phases in KIs based on the two-band TKI model that
we introduced in Section 10.3.4 as a generalization of the periodic Anderson model (PAM) with additional
f -electron hopping and centrosymmetric SOC. First of all, in Section 12.1, we summarize basic knowledge on
topology in condensed matter physics (CMP) that will be necessary to classify the topological phases that arise
within the TKI model. In Section 12.2, we will account for the Hubbard interaction of the f -electrons through
the slave-boson (SB) mean-field approach and elaborate on why the centrosymmetric SOC is an essential
ingredient for non-trivial topology. Based on Reference [54], we map out the interaction-dependent phase
diagram shown in Figure 12.3 and contextualize our findings with the material SmB6. We identify multiple
topologically distinct magnetic and non-magnetic phases and provide a stability analysis that reveals their
robustness w.r.t. Gaussian fluctuations. Resulting from the interplay of topology and magnetism, we find an
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antiferromagnetic topological insulator (ATI) at high interactions and discuss the respective TSSs that emerge
in the form of one-dimensional chiral hinge modes in Section 12.3.

12.1 Basics on topology in condensed matter physics

Topology is a branch in mathematics that addresses the properties of geometrical objects that are conserved
(i.e., topologically invariant) under continuous transformations such as twisting and bending without closing
or opening up holes. Its origin goes back to Euler’s ideas, which arguably provided the first practical
application with the solution of the well-known Seven Bridges of Königsberg problem in 1736 [264]. Poincaré’s
Analysis Situs achieved a further ground-breaking success that broadly established the field in 1895. The
relevance of the concept in CMP was, however, not realized until the 1980s and the discovery of the quantum
Hall effect (QHE) by Klaus von Klitzing in Würzburg [31]. The phenomenon can be theoretically described by
means of the so-called Chern Number, a topological invariant [265–267]. In the following, we will summarize
the basic concepts of topology in CMP based on Reference [99].

12.1.1 Topological phases

After the introduction of Lev Landau’s famous article “On the theory of phase transitions” in 1937 [25], it had
been believed that different phases could be distinguished through their symmetries and the definition of
a local order parameter. Such transitions towards an ordered phase are usually fueled by interaction effects
and arise suddenly below a certain critical temperature by spontaneously breaking symmetries of the initial
system. A prominent example that we have extensively discussed within this thesis are magnetic phases,
where the magnetization m serves as local order parameter (m ⇤ pp0 within the SB scheme) and breaks
spin-rotation invariance (SRI) as well as TRS and depending on the specific problem possibly also translation-
and lattice-symmetries. This point of view had to be adjusted with the discovery of topological phases that
cannot be quantified by a local order parameter but rather depend on the global properties of the ground
state. Those can be classified with so-called topological invariants that are characterized by discrete sets
of integers and will be further discussed in Section 12.1.2. Corresponding phase transitions also appear in
non-interacting systems and without symmetry-breaking.

Within that scope, two phases are – in reminiscence of the geometric origin of the field – topologically equiva-
lent if they are connected by an adiabatic change of parameters of the underlying Hamiltonian. Such a change
has to uphold a one-to-one correspondence between associated states [39], which holds for band insulators
(BIs) due to their finite energy gap�. If the allowed adiabatic transformations are additionally restricted to
uphold certain underlying symmetries of the system, otherwise equivalent phases can be distinguished by
different topological classes, yielding symmetry-protected topological (SPT) phases [268]. A ground state that
is equivalent to an atomic limit, where all electrons are exponentially localized in position space and infinitely
separated, is not topological and referred to as trivial BI [269]. We can summarize topological order in CMP

as follows [99]: Topological phases are characterized by a discrete set of integers called topological invariants
that can only change if the bulk energy gap closes or if the protecting symmetry of the SPT phase is broken.

�There are also topological quantum states that are not BIs, e.g., Weyl semimetals or topological superconductors that will, however,
not be further discussed within this thesis.
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Surface states and the bulk boundary correspondence

A central property of TIs are gapless surface states that are exponentially located at the boundaries of the
system�. While the bulk of a TI is insulating, the energy gap is therefore closed on the surface, which makes
it conducting on the exterior. In CMP, on usually employs periodic boundary conditions (PBC) because the
resulting translation symmetry enables the momentum k in the Brillouin zone (BZ) as a good quantum
number that greatly simplifies the problem. This assumption, however, only allows the investigation of
the bulk, which is arguably the reason why topological order in CMP has been overlooked for so long, and
Wolfgang Pauli once allegedly said: “God made the bulk; the surface was invented by the devil”.

By means of topological invariants that are defined within the bulk, we can, nevertheless, infer the existence
of topologically protected surface states (TSSs), which are robust w.r.t. local perturbations and the geometry
of the probe, without explicitly breaking the PBCs. This remarkable feature can be explained intuitively [99]:
The vacuum as an atomic limit is topologically trivial, while a non-trivial topological invariant of a TI within
the bulk can only change if the energy gap closes or if the protecting symmetry of the SPT phase is broken.
Therefore, if two states with different topological invariants meet at a spatial interface that respects the
protecting symmetry, the energy gap has to close, which creates the TSS. This profound relationship between
the global properties of the bulk and the TSS is known as bulk-boundary-correspondence [270, 271]. A general,
rigorous mathematical proof of the concept is difficult but has been achieved for specific models [272]. Since
2007, the existence of such topological states in quantum matter has experimentally been verified in multiple
materials [273–275].

Higher-order topology

In 3D systems, the concept of the bulk-boundary-correspondence can be generalized to higher-order topolog-
ical insulators (HOTIs) [276, 277]. Under certain conditions, the surface states of the 3D TI gap out, but gapless
one-dimensional states at the hinges or zero-dimensional states at the corners of the system remain. First
experimental evidence of a HOTI has recently been found in elementary Bismuth [278].

12.1.2 Topological invariants

An intuitive mathematical understanding of topological invariants can be given as follows: A function
of continuous parameters is mapped to a discrete integer quantity (the topological invariant) that jumps
discontinuously at topological phase transitions and remains unchanged for parameter changes within the
same phase. In CMP, it often involves an integral of a band structure quantity within the BZ. However, the
concept is not limited to quantum mechanical systems, and topological order can, e.g., also be realized by a
periodic arrangement of mechanical springs or electrical circuits [279].

For the topological classification of the TKI model discussed in this thesis, we will apply the Z2 invariants for
the 3D topological insulator given by Equation (12.7). For completeness, we will nevertheless provide a short
overview of the most important topological invariants with historical context based on Reference [99]. Those
quantities were initially derived for non-interacting systems. Therefore, the SB formalism is quite convenient
to investigate topological order in the context of strong correlations because the interaction-renormalized MF

band structure behaves like an effectively non-interacting quasiparticle Hamiltonian.

�Topology can arise in arbitrary spatial dimensions, by “surface” we generally address boundaries of the respective dimension,
i.e., actual surfaces in 3D, edges in 2D or endpoints in 1D.
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The Chern number

In 1980, Klaus von Klitzing made a surprising discovery while performing experiments with a silicon metal-
oxide-semiconductor field-effect transistor at low temperatures with a strong perpendicular magnetic field.
He observed that the Hall resistivity developed plateaus at integer multiples of e2/h, where e is the elementary
charge and h the Planck constant, while the classical solution according to the Maxwell equations suggested
a linear increase as a function of the magnetic field. Although the plateaus had been theoretically predicted a
few years earlier [280], the apparent robustness w.r.t. sample geometry and local perturbations was puzzling.
An elegant explanation of the exact quantization was then given by Robert B. Laughlin in 1981 by means of
gauge invariance [281], and a first connection to topology was made shortly afterward with the introduction
of the Thouless–Kohmoto–Nightingale–den Nĳs (TKNN) invariant [282]. This integer-valued quantity could
only change if the bulk gap closes and coincides with the number of chiral edge states associated with the
QHE and thereby explained the quantization of the Hall conductivity

�x y ⇤ � e2

h
C . (12.1)

It was later understood that the TKNN invariant was equivalent to the Chern number C, which was known
from the branch of topology in mathematics [265–267]. It is the first topological invariant discussed in CMP

and explains the robustness of the QHE as a topological effect.
The Chern number can intuitively be introduced by analogy with the so-called Euler characteristic, a

geometric quantity. According to the Gauss-Bonnet theorem of differential geometry, it is given by the
integral over the so-called Gaussian curvature FG (x) on a boundary-less 2D compact Riemann surface M [99,
283]

2 � 2g ⇤
1

2⇡

Z

M
d2x FG (x) . (12.2)

The integer-valued number g is a topological invariant called genus and can be interpreted as the number of
holes of an object that does not change by smooth bending or twisting. Based on that property, there is a
well-known joke around mathematicians that “a topologist is a person who can’t tell the difference between a donut
and a coffee cup” [284]. In CMP, the Euler characteristic is replaced by the Chern number [283]

C ⇤
1

2⇡

Z

BZ
d2k F (k) , (12.3a)

the Rieman manifold by the BZ and the analogue of the Gaussian curvature is the so-called Berry curvature
[285]

F (k) ⇤
nX

a⇤1
Fa (k) , (12.3b)

with

Fa (k) ⇤
@Aa ,2(k)
@k1

� @Aa ,1(k)
@k2

. (12.3c)

The sum has to be performed over all occupied energy bands a and the functionA is called Berry connection,
with

Aa , j (k) ⇤ i
D
ua (k) ��� @k j

��� ua (k)
E
, (12.3d)
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where |ua (k)i denote the Bloch-eigenstates of the Hamiltonian. Aligning with the concept of topology, it is
only well defined if there is a finite energy gap between occupied and unoccupied bands.

Periodic table of topological invariants

According to Alex Atland’s and Martin R. Zirnbauer’s work in 1997, non-interacting electron systems can
be categorized by means of the properties of the respective Hamiltonian w.r.t. time-reversal symmetry (TRS)

represented by the operator T̂ , particle-hole symmetry (PHS) P̂ and Chiral symmetry Ĉ ⇤ T̂ P̂ [286]. The
time-reversal (TR) and particle-hole operators are anti-unitary, i.e., T̂ 2 ⇤ ±1, P̂2 ⇤ ±1 and by accounting for
all possible combinations of those values or the absence of respective symmetries, there are ten different
Altland–Zirnbauer (AZ) symmetry classes [287]. In addition, the number of spatial dimensions plays an
important role of whether topological order is feasible or not. In 2008, all AZ classes with non-trivial topology
were identified in 3D, and the concept was generalized to arbitrary dimensions shortly after [288, 289]. It
turned out that the pattern repeats with a periodicity of D ! D + 8, which leads to the Periodic table of
topological invariants. The corresponding topological invariants are either Z-valued (e.g., the Chern number
that does feature an underlying symmetry) or Z2-valued (i.e., the only possible values are 0 and 1).

An important model for a Chern insulator that significantly pushed the field of topology in CMP was
proposed by Dunkin Haldane in 1988 on the 2D honeycomb lattice [290]. It did not require an external
magnetic field like the QHE, but TRS was intrinsically broken by a complex hopping between the sublattices.
In 2005, Charles L. Kane and Eugene J. Mele developed a model that restored TRS by effectively stacking
two copies of the Haldane model, one for spin up and one for spin down, with opposite Chern numbers
[291]. It features the quantum spin Hall effect (QSHE) that employs gapless, counter-propagating edge modes
with opposite spin (helical edge states) that are protected by the so-called spin Chern number as topological
invariant. One year later, Andrei B. Bernevig, Taylor L. Hughes, and Shou-Cheng Zhang introduced their
prominent model for the QSHE in the presence of strong SOC in mercury telluride quantum wells [292] that
was supported by the first experimental observation of the QSHE by Molenkams group in Würzburg in 2007
[273]. While the QSHE requires spin conservation, Charles L. Kane and Eugene J. Mele showed around the
same time that there was another topological invariant if spin conservation was broken, e.g., by a Rashba-type
SOC [291]. To be specific, it is a Z2 invariant, where the value 0 yields trivial and 1 non-trivial topology and
coincides with the AII AZ-symmetry class in the presence of TRS with T̂ 2 ⇤ �1� and can also be generalized
to 3D. Finally, we will conclude our summary on topology in CMP with the discussion of those TRS protected
Z2 invariants that we will later apply to topologically classify the TKI model.

Z2 invariant for the 2D topological insulator

The protecting symmetry of the Z2 invariant in TIs is time-reversal symmetry (TRS) and the respective trans-
formation reverses the arrow of time T̂ : t ! �t. The fulfillment of the canonic commutator

⇥
x̂ , p̂

⇤
� ⇤ i~

dictates that it is anti-unitary, i.e., it can be represented by a unitary matrix U times the operator of complex
conjugationK

T̂ ⇤ UK . (12.4a)

�T̂ 2 ⇤ �1 holds for fermionic spin- 1
2 systems.
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For a spin- 1
2 system, it fulfills [293]

T̂ 2
⇤ �1 , T̂ † ⇤ T̂ ⇤ �T̂ �1 , (12.4b)

and flips the spin � as well as the momentum k of the corresponding fermionic creation operator

T̂ ĉ†k ,"T̂
�1

⇤ �ĉ†�k ,# . (12.4c)

A concrete operator-representation is therefore given by

T̂ ⇤ �i⌧yK , (12.4d)

where ⌧y is the second Pauli-matrix in spin space, and T̂ acts diagonal in orbital space. It can be shown that
the Bloch matrix H k of a TR-symmetric Bloch Hamiltonian H ⇤

P
k ĉ†kH k ĉk with

f
H , T̂

g
� ⇤ 0 transforms

like� [293]
T̂H k T̂

�1
⇤ H�k . (12.5a)

Also, TRS implies a relationship between the Bloch wave-function |ua (k)i that satisfiesH k |ua (k)i ⇤ "a
k |ua (k)i

and its time-reversed counterpart, which is an eigenstate ofH�k with the same eigenvalue

H�k T̂ |ua (k)i ⇤ T̂H k T̂
�1T̂ |ua (k)i ⇤ T̂ "a

k |ua (k)i ⇤ "a
k T̂ |ua (k)i . (12.5b)

Moreover, these states are orthogonal according to Kramers theorem [294]
D
ua (k) ��� T̂ ��� ua (k)

E
⇤ 0 . (12.5c)

As a consequence, the energy bands are two-fold degenerate at time-reversal-invariant momenta (TRIM) �i

that satisfy �i ⇤ ��i + G, where G is a reciprocal lattice vector. In 2D, there are four TRIM

�i 2
(
(0, 0)> , (0, ⇡)> , (⇡, 0)> , (⇡, ⇡)>

)
, (12.6a)

and the respective degenerate states are called Kramers pairs.
According to the pioneering work in 2005, the Z2 invariant ⌫ of the 2D topological insulator can be calculated

the evaluation of the Pfaffian of the matrix
D
ua (k) ��� T̂ ��� ub (�k)

E
at the TRIM, where the band indices a , b label

occupied Kramers pairs [291, 295]. In 2007, Liang Fu and C. L. Kane were able to show that the formula
was simplified in the presence of additional inversion symmetry Î : r ! �r , where ⌫ is determined by the
inversion eigenvalues of the Bloch states at the TRIM [274]

(�1)⌫ ⇤
4Y

i⇤1

Y

a
⇠i ,a . (12.6b)

Inversion symmetry guarantees the parity

⇠i ,a ⇤
D
ua (�i )

��� Î ��� ua (��i )
E
⇤ ±1 (12.6c)

�The Bloch matrix may contain spin and orbital degrees of freedom that are contained in the spinor ĉ†k and will be labeled by the
multi-index a in the following.
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to be well defined at the TRIM and a labels all occupied Kramers pairs. The TSSs for a non-trivial Z2 invariant
⌫ ⇤ 1 are helical edge states in analogy to the QSHE, with time-reversal being the protecting symmetry [99].

Z2 invariants for the 3D topological insulator

The same concept can be generalized to 3D systems with TRS [296, 297], which yields four Z2 invariants
(⌫0 , ⌫1 , ⌫2 , ⌫3) for a total of 24 ⇤ 16 topologically distinct states. First of all there are three Z2 invariants
(⌫1 , ⌫2 , ⌫3) that classify so-called weak topological insulators (WTIs). These correspond to a stacking of 2D TI

layers, which requires translation invariance. WTIs are thus susceptible to disorder. With additional inversion
symmetry, the invariants can be calculated by [99]

(�1)⌫i ⇤

Y

j,ki⇤⇡

Y

a
⇠ j,a , (12.7a)

where the parities ⇠i ,a defined in Equation (12.6c) have to be evaluated at the TRIM in 3D

�i 2
(
(0, 0, 0)> , (0, 0, ⇡)> , (0, ⇡, 0)> , (⇡, 0, 0)> , (0, ⇡, ⇡)> , (⇡, 0, ⇡)> , (⇡, ⇡, 0)> , (⇡, ⇡, ⇡)>

)
(12.7b)

that satisfy ki ⇤ ⇡ and the index a again labels all occupied Kramers pairs. The strong index ⌫0 does not
require any additional symmetry besides TRS and can be thought of as a true 3D invariant. In the presence of
inversion symmetry, it is given by�

(�1)⌫0 ⇤

8Y

i⇤1

Y

a
⇠i ,a , (12.7c)

and the respective topological phase is referred to as strong topological insulator (STI). Non-trivial indices
⌫i ⇤ 1 implicate TSSs on boundaries of the 3D crystal. These manifest as gapless Dirac cones on the surface
Brillouin zone (SBZ) and are spin-polarized. This effect is called spin-momentum-locking as a unique feature of
3D TIs [99, 271]. The STI features an odd number of surface cones, whereas the WTI employs an even number.
According to the fermion-doubling-theorem theorem proved by Holger B. Nielsen and Masao Ninomiya in 1981,
chiral Dirac cones in 2D systems always come in pairs [298, 299]. This theorem still holds, but in 3D, they
may appear on opposite boundaries, i.e., they can be spatially separated [271]. The previously discussed
symmetry-protected gapless surface cones occur at high symmetry points (HSPs) of the SBZ if an odd number
of band inversions of the respective bulk HSPs is projected onto them [99, 274].

Topological crystalline insulators

For completeness, we want to mention that there are additional topological invariants, which are protected
by point group symmetries of the lattice (e.g., mirror or rotation symmetry), and constitute the class of
topological crystalline insulators (TCIs) [300]. A systematic approach to classify topological phases in all
possible BSs of weakly correlated materials was proposed by Bernevig’s group with the topological quantum
chemistry [269]. The key insight is to define a topologically non-trivial phase by the property that it “cannot
be continued to any atomic limit without either closing a gap or breaking a symmetry” [269] and analyzing all 230
crystal symmetry groups in that regard. The approach was recently generalized to the 1651 magnetic space
groups [301].

�Without inversion, symmetry the STI and WTI phases are still well defined, but the calculation of the respective invariants is more
complicated [293].
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12.2 Topological Kondo insulator phase diagram

In order to map out the interaction-dependent phase diagram of the minimal TKI model and study its magnetic
and topological properties, we apply the slave-boson representation introduced in Part I to Equation (10.10)
and employ a static, uniform MF approximation for the bosonic fields [57]. We start off with a PM ansatz
(p ⇤ � ⇤ 0), which results in the 4 ⇥ 4 quasiparticle (QP) hopping matrix

HPM
k ⇤

*..
,

⇣
⇠d

k � µ0
⌘
⌧0 z0V k⌧

z0V k⌧
⇣
z2

0⇠
f
k + ✏f + �0 � µ0

⌘
⌧0

+//
-

(12.8a)

that is derived in Appendix B.3 with the according basis

�̂k ⇤

✓
ĉk ,", ĉk ,#, f̂k ,", f̂k ,#

◆>
. (12.8b)

Conduction electrons with spin � and momentum k are represented by ĉk ,� and f̂k ,� describes pseudofermions
(PFs) that are associated with the interacting f -electrons within the SB representation. The dispersions ⇠d , f

k
of the conduction and f -electrons depend on the specific hopping scheme but are even functions of k. Due
to the spin-dependent nearest neighbor (NN) hybridization V of the TKI model in real space, it features a
momentum dependent SOC

V k⌧ ⇤ �2V
⇣
sin kx⌧x

+ sin ky⌧y
+ sin kz⌧z

⌘
, (12.8c)

where ⌧↵ denotes the ↵-th Pauli matrix and ⌧0 the unity matrix in spin space. In analogy to the PAM that
we analyzed by means of the SB method in Chapter 11, the hopping amplitudes of the interacting electrons
are renormalized by t f ! z2

0 t f , V ! z0V with z0  1 and the effective on-site potential of the f -electrons is
increased by ✏f ! ✏f + �0 with �0 � 0. The specific values are determined by the solution of the saddle point
equations that depend on the Hubbard interaction U and recover z0 ! 1, �0 ! 0 in the non-interacting limit
U ! 0.

As previously discussed, the conduction electrons are even under parity, whereas the f -electrons are odd,
i.e., the respective operators transform under inversion Î according to

Î ĉ (†)
k ,�Î

�1
⇤ ĉ (†)

�k ,� , (12.9a)

Î f̂ (†)
k ,�Î

�1
⇤ � f̂ (†)

�k ,� . (12.9b)

As we elaborated on in Section 12.1.2, the TR-transformation T̂ yields�

T̂ ĉ (†)
k ,�T̂

�1
⇤ sgn(�) ĉ (†)

�k ,�� , (12.9c)

T̂ f̂ (†)
k ,�T̂

�1
⇤ sgn(�) f̂ (†)

�k ,�� . (12.9d)
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After all, inversion acts diagonal in spin space and TR diagonal on orbital space, which allows for the following
matrix representations of the operators:

Î ⇤
*..
,
⌧0 0

0 �⌧0

+//
-
, (12.9e)

T̂ ⇤
*..
,
�i⌧y 0

0 �i⌧y

+//
-
K . (12.9f)

Finally, since the diagonal elements of HPM
k w.r.t. orbital space are even functions of k and the off-diagonal

hybridization is odd Vk ⇤ �V�k , we can directly verify that the Hamiltonian fulfills inversion and time-reversal
symmetry, i.e.,

Î HPM
k Î�1

⇤ HPM
�k , (12.9g)

T̂ HPM
k T̂ �1

⇤ HPM
�k , (12.9h)

which is due to the centrosymmetric form of the SOC. The coinciding presence of both of these symmetries
allows for classifying the topological phases of the Hamiltonian through the Z2 invariant of the 3D topological
insulator by means of Equation (12.7). Moreover, the hopping matrix remains invariant under the application
of both symmetry transformations T̂ Î HPM

k Î�1 T̂ �1 ⇤ HPM
k , which implicates that the energy spectrum is

doubly degenerate with the eigenvalues

"PM
k ,± ⇤

1
2

⇣
⇠d

k + z2
0⇠

f
k + ✏f + �0 � 2µ0

⌘
±

r
1
4

⇣
⇠d

k � z2
0⇠

f
k � ✏f � �0

⌘2
+ (2Vz0)2

⇣
sin2 kx + sin2 ky + sin2 kz

⌘
.

(12.10)
This property can be thought of as Kramer’s pair at each momentum k that reduces to a degeneracy at the
TRIM if inversion symmetry is broken. It becomes apparent that the gap of the corresponding BS can close at
the TRIM, which enables the possibility of topological phase transitions. The hybridization gap of the PAM,
whose PM eigenvalues are given by Equation (B.22), on the other hand, can never close for V , 0, which
explains why it is not topological.

12.2.1 Model parameters for SmB6

The previously derived minimal model can be considered to describe the physics of TKIs in general. However,
in the following, we want to specifically address the most promising candidate of being a TKI, i.e., samarium
hexaboride (SmB6). Its 3D crystal structure, which is sketched in Figure 12.1(a), is of the caesium-chloride
type, where a cube of samarium atoms encloses a boron octahedron with a lattice constant of aSmB6 ⇡ 4.13Å.
It shows the KI typical metal to semiconductor transition at around 50K with the opening of a small bulk gap
�B ⇡ 20meV. Moreover, it is a mixed-valence compound, where the samarium ion is simultaneously present
in the Sm2+ and Sm3+ state, with an average valence of Sm2.56+ [227, 228, 255]. The crystal field of the boron
octahedron splits its 5d orbitals into a t2g triplet and an eg doublet, where only the eg orbitals, which are even
under parity, remain in the low energy description. The situation of the 4 f -orbitals is more complicated, but
DFT calculations predict a split into three 4 f5/2 and four 4 f7/2 orbitals that are odd under inversion [56, 228]. A

�Notice that we have shown in Section 2.1.2 that the PFs within the SB representation behave analogous to the original fermions
under TR.
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(a) Crystal structure of SmB6. Figure adapted from
[99].

(b) Renormalized band structure for U ⇤ 11.25, ✏f ⇤ �12,
zero temperature and half-filling (n ⇤ 2).

Figure 12.1: Paramagnetic, interaction-renormalized band structure of the minimal TKI model according to Equa-
tion (12.10). While the model is expected to contain essential physics of TKIs in general, we aim to specifically describe
samarium hexaboride, whose crystal structure is shown in Figure 12.1(a). Following Reference [99], we, therefore,
chose the hopping amplitudes td ⇤ 1, t0d ⇤ �0.4, t f ⇤ �0.1, t0f ⇤ 0.04, and V ⇤ 0.5. In Figure 12.1(b), red coloring
indicates spectral weight of the interacting f -electrons and blue coloring of the conduction electrons. Consequently,
there is a band inversion at the X point that identifies the ground state of being a STI according to Equation (12.7c).
The MF solution for the given parameters yields z0 ⇤ 0.84, �0 ⇤ 9.96, µ0 ⇤ �1.84.

comprehensive description of SmB6 would, therefore, require to consider five orbitals [99], but our minimal
two-band model captures the essential physics of even conduction orbitals hybridizing with odd, localized
f -orbitals.

Based on Reference [99], we choose the hopping amplitudes of the TKI model to recover the physics of
SmB6 as realistically as possible. Multiple ab initio calculations expect a band inversion at the X-point [248,
302, 303], which can be realized by introducing a finite NNN hopping in our model. Besides, an insulating
ground state is only possible if the d- and f -orbital hoppings (td and t f ) have opposite signs and if the ratio
between NN and NNN hoppings is approximately equal for both orbitals. Also, we expect td � t f in a Kondo
material. In compliance with these constraints, we fix [99]

td ⇤ 1 , t0d ⇤ �0.4 , t f ⇤ �0.1 , t0f ⇤ 0.04 , V ⇤ 0.5 (12.11)

for the rest of our discussion, and analyze the insulating state at half-filling (n ⇤ 2) with ✏f and U as free
parameters. The respective dispersions ⇠d , f

k are given by Equation (B.30). The interaction-renormalized
paramagnetic MF ground state is determined by the solution of the saddle point equations�

@F(0)

@e
⇤
@F(0)

@d
⇤
@F(0)

@�0
⇤
@F(0)

@µ0
⇤ 0 (12.12)

that were derived in Section 4.4, and the eigenvalues that enter the free energy F(0) are given by Equa-
tion (12.10). The mixed-valence of SmB6 is only considered on average with the MF occupation of the f -orbital
nf ⇤ 2d2 + p2

0 + p2, which is determined by the saddle point and strongly depends on the on-site potential
✏f and its renormalization �0. The band structure of the ground state is exemplarily shown in Figure 12.1(b)
for ✏f ⇤ �12 and U ⇤ 11.25. As expected, it features a small energy gap and a band inversion, i.e., f -orbital

�Notice that we explicitly set p ⇤ � ⇤ 0 for PM solutions, which also removes the magnetic ordering vector Q from the equations.
Furthermore, we can eliminate an arbitrary SB field due to the constraints and choose p0 w.l.o.g.
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character in the d-band, at the X-point. Because of the opposite parity of d- and f -orbitals, we can effectively
determine the Z2 invariants given by Equation (12.7) by counting the number of band inversions at the TRIM,
where an odd number yields non-trivial topology. Accordingly, the presented band structure represents a
STI phase with (⌫0 , ⌫x , ⌫y , ⌫z ) ⇤ (1, 1, 1, 1), which is expected to feature topologically protected surface states
at the �̄- and X̄-point of the surface Brillouin zone (SBZ). The existence of such gapless Dirac cones at all
theoretically predicted surfaces has been numerically confirmed in Reference [99]. Coinciding surface sates
have been experimentally observed in SmB6 [255], which indicates that the STI(X) phase of our model is the
most promising regime of describing the actual material. The implied surface conductivity could explain the
long-lasting mystery of a for KIs unusual resistivity plateau in SmB6 at low temperatures [227, 231, 304]. A full
analysis of the topological phases in the PM domain is given in Reference [99], and those are also included in
our final phase diagram in Figure 12.3 that we will further discuss in the following. The trivial band insulator
is generally recovered if the energy splitting ✏f + �0 between the conduction and f -orbital becomes so large
enough that one of the orbitals is almost fully occupied (nf ⇡ 0 or nf ⇡ 2).

12.2.2 Antiferromagnetic instability

Due to the spin-orbit coupling in the TKI model, we cannot write down a general SB hopping matrix for
arbitrary magnetic ordering vectors Q like in case of Hubbard model or PAM. Instead, we have to explicitly
increase the dimension of the matrix in accordance with the size of the respective magnetic unit cell as we
explained in Section 4.3. We, therefore, determine the leading ordering vector through divergences of the
static spin susceptibility around a PM saddle point [54]. The explicit expressions for the susceptibilities are
summarized in Table 5.2 and they are given by superpositions of matrix elements of the fluctuation field
propagator Gab

µ⌫ that we derived in Chapter 5. Charge and spin susceptibilities about the ground state that
matches the band structure in Figure 12.1(b) are plotted in Figure 12.2 with a gray dashed line. The presented
PM ground state is stable because none of the susceptibilities features a divergence, and we find �s to be
a scalar quantity despite the SOC of the model. The spin susceptibility, however, is significantly enhanced
around the R-point [q ⇤ (⇡, ⇡, ⇡)>], which identifies Néel antiferromagnetism (AFM) to be the leading type
of magnetic order with a divergence of �s (q ⇤ R) at slightly higher interaction.

To describe the implied AFM mean-field ground states, we need to calculate the slave-boson quasiparticle
hopping matrix HAFM

k with magnetic ordering vector Q ⇤ (⇡, ⇡, ⇡)>. Since there are two atoms in the
respective magnetic unit cell, it is given by an 8 ⇥ 8 matrix, which is derived in Appendix B.3.1 with the final
result being Equation (B.28). Now, we can map out the magnetic phase diagram by solving the AFM saddle
point equations

@F(0)

@e
⇤
@F(0)

@d
⇤
@F(0)

@�0
⇤
@F(0)

@µ0
⇤
@F(0)

@p
⇤
@F(0)

@�
⇤ 0 . (12.13)

The energy bands that enter the corresponding free energy are given by the eigenvalues of HAFM
k , denoted

by "AFM
k , and need to be determined numerically. Notice that despite the SOC of the model, "AFM

k does not
depend on the orientation of the MF spin, which is proven in Appendix B.4. The resulting magnetic and
topological phase diagram as a function of the free parameters ✏f and U is shown in Figure 12.3. As expected,
the AFM domain is centered around the ideal case of a half-filled f -orbital (nf ⇤ 1), and there is no magnetic
order for U ⌧ ��✏f�� and ✏f & 0, because it is fully occupied (nf ⇤ 2) or empty (nf ⇤ 0) in these limits. The
transition from the PM to AFM is of second order and yields an antiferromagnetic insulator (AFMI) that turns
into a metallic state at high interactions because a warping of the band structure pushes d-electrons towards
the Fermi surface. Exemplary band structures of the AFM ground state are included in Reference [305].
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(a) Charge susceptibility. (b) Longitudinal spin susceptibility. (c) Transversal spin susceptibility.

Figure 12.2: Static susceptibilities for ✏f ⇤ �12, T ⇤ 0.005 and different interactions. The lowest shown interaction
(U ⇤ 11.25) describes a stable PM, which can be identified because �l

s and �t
s are degenerate and finite. However,

the spin susceptibility features a sharp peak at Q ⇤ R ⇤ (⇡, ⇡, ⇡)>, which points towards an emerging Néel AFM
instability at higher interactions. A corresponding solution of the AFM mean-field equations yields a magnetic saddle
point for U � 11.6. Fluctuations about the respective AFM ground states feature gapless spin-waves that manifest in
sharp divergences of the transversal spin susceptibility �t

s (q ⇤ Q) (polarized perpendicular the MF magnetization)
as expected. Since �l

s and �c stay finite within the AFM domain, these phases are stable w.r.t. Gaussian fluctuations.

From the previously discussed fluctuation analysis of PM ground states, we could, strictly speaking, only
infer the leading magnetic ordering vector in the vicinity of the PM phase boundary. However, the stability
of the AFM ground state could not be guaranteed deeper into the phase. Therefore, we also calculated
fluctuations around magnetic saddle points and evaluated the corresponding susceptibilities, which are
exemplarily displayed in Figure 12.2 for an insulating and metallic AFM at ✏f ⇤ �12. In analogy to the PAM,
the spin susceptibility splits into a longitudinal part �l

s parallel to the MF magnetization and a transversal
part �t

s perpendicular to it. �t
s features a sharp divergence at q ⇤ Q, which is no indication for a FS instability

but rather the expected signature of gapless spin-waves associated with the Néel AFM. �l
s does not employ

any divergences and is even suppressed for higher interactions, which confirms Q ⇤ (⇡, ⇡, ⇡)> as the
correct magnetic ordering vector. Moreover, the charge susceptibility �c stays finite and is overall small. We
find similar results for other pairs of (✏f ,U) and thus conclude that the whole magnetic domain is stable
w.r.t. Gaussian fluctuations.

12.2.3 Z2 invariant for the antiferromagnetic topological insulator

Finally, we want to topologically classify the occurring AFMI phase. The previously discussed Z2 invariants,
however, are not applicable because the anti-parallel ordering of neighbored spins breaks TRS. Nevertheless,
based on the pioneering work by Roger et al. in 2010 [306], there is another Z2 invariant for the antiferromag-
netic topological insulator (ATI), which can be understood as analog to the STI. In contrast, WTIs cannot be
recovered due to the broken translation symmetry. In the following, we will again apply a Fu-Kane-type of
classification for the ATI in the presence of inversion symmetry, which was established by Fang et al. in 2013
[307].
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Figure 12.3: Magnetic and topological phase diagram for the TKI model dependent on the Hubbard interaction U and on-
site potential ✏f of the f -electrons at zero temperature. Following Reference [99], the hopping amplitudes are chosen
such that the STI(X) phase matches experimental findings in SmB6, i.e., td ⇤ 1, t0d ⇤ �0.4, t f ⇤ �0.1, t0f ⇤ 0.04,V ⇤ 0.5.
Levels of equal f -orbital occupation (nf) are indicated by gray dashed lines. Besides the trivial BI, we find two
topological phases, i.e., the WTI and STI in the paramagnetic regime. The red-colored domain marks a Néel AFM
[Q ⇤ (⇡, ⇡, ⇡)>] ground state that has been shown to be stable w.r.t. Gaussian fluctuations and centers around nf ⇤ 1.
An antiferromagnetic topological insulator (ATI) emerges as a back-folded version of the STI at the magnetic phase
boundary. Moreover. we identify a topologically-trivial antiferromagnetic insulator (AFMI) and antiferromagnetic
metal (AFMM).The bulk gap of the ground state at U ⇤ 15 is illustrated in the top panel. It closes at every topological
transition except for the magnetic phase boundary, where, however, the breaking of time-reversal symmetry allows
for the determined change in topology. Figure adapted from [54].

Since T̂ effectively flips the spin, we can recover a symmetry transformation, which leaves magnetic
Hamiltonian invariant, by combining time-reversal with a translation by one lattice site in ↵-direction T̂r↵ :

T̂ 0 ⇤ T̂ T̂r↵ ⇤ T̂ e�ik↵ r↵ ,
f
HTKI , T̂ 0

g
� ⇤

f
T̂r↵ , T̂ 0

g
� ⇤ 0 . (12.14)

Because T̂ 0 commutes with the Hamiltonian and HAFM
k preserves inversion symmetry, the energy bands "AFM

k
are doubly degenerate at every momentum k in analogy to the Kramers pairs in the PM phase. Therefore
T̂ 0 serves as a suitable replacement for T̂ in the context of a topology protecting symmetry. Due to the AFM

order, Q ⇤ (⇡, ⇡, ⇡)> becomes a reciprocal lattice vector, with the associated magnetic BZ being halved in
size compared to the paramagnetic BZ. Accordingly, the R-point is folded onto the �-point, and the M-point
becomes equivalent to the X-point. As a consequence, the ki ⇤ ⇡ plane is folded onto the ki ⇤ 0 plane, which
removes the WTI as potential topological phase. Therefore, a single Z2 invariant for the ATI remains, which is
given by [56, 57, 307]

(�1)⌫AFM ⇤

4Y

i⇤1

Y

a
⇠i ,a , (12.15a)

where a labels the two associated degenerate pairs of occupied bands, and

⇠i ,a ⇤
D
ua (�i )

��� Î ��� ua (��i )
E
⇤ ±1 (12.15b)
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Phase Bulk gap
Magnetic

order

Z2 invariants

(⌫0; ⌫x , ⌫y , ⌫z ; ⌫AFM)
Band in-

versions

TSSs on suitable

surfaces

BI Yes No (0; 0, 0, 0;�) - No
WTI(�X) Yes No (0; 1, 1, 1;�) �,X 2D surface states
STI(R̄) Yes No (1; 1, 1, 1;�) �,X,M 2D surface states
STI(X) Yes No (1; 1, 1, 1;�) X 2D surface states

ATI(X) Yes Yes (�;�,�,�; 1) X 2D surface states
& 1D hinge states

ATI(R̄) Yes Yes (�;�,�,�; 1) �,X2 2D surface states
& 1D hinge states

AFMI Yes Yes (�;�,�,�; 0) �,X No
AFMM No Yes (�;�,�,�;�) - No

Table 12.1: Overview over topological and magnetic phases in the TKI model based on References [54, 57, 99]. The
two phases that are associated with SmB6 are printed in bold. Quantities that are not well defined are denoted by
“�”. The Z2 invariants are calculated via Equations (12.7) and (12.15a), and the underlying (para-) magnetic band
structures yield from solutions of the saddle point Equations (12.12) and (12.13). Topological gapless surface cones
occur at HSPs of the SBZ if an odd number of band inversions of the respective bulk HSPs is projected onto them.

defines the inversion eigenvalues of the respective Bloch eigenstates at the four remaining time-reversal-
times-translation invariant points

�i 2
(
(0, 0, 0)> , (0, 0, ⇡)> , (0, ⇡, 0)> , (⇡, 0, 0)>

)
. (12.15c)

In order to evaluate Equation (12.15a), the AFM hopping matrix needs to adapt a Bloch form that satisfies
HAFM

k ⇤ HAFM
k+Q . A respective gauge along with a suitable matrix representation of the inversion operator Î is

derived in Appendix B.3.1.
Within our numerical analysis, we do indeed find an ATI phase with non-trivial index (⌫AFM ⇤ 1) that

appears as folded version of the STI at the magnetic phase boundary. We also identify a trivial AFMI phase
(⌫AFM ⇤ 0) that can be interpreted as folded version of the WTI [57]. Similar results have also been found
in a previous slave-boson study at infinite interaction (U ! 1) [308]. We have now classified all occurring
topological and magnetic phases that are summarized in Table 12.1 and built up the phase diagram shown
in Figure 12.3. In Section 12.1.1, we argued that a topological phase transition could only occur due to a non-
adiabatic deformation of the band structure, e.g., through closing the bulk gap or if the protecting symmetry
of the SPT phase is broken. The top panel of Figure 12.3 demonstrates exemplarily for U ⇤ 15 that a bulk
gap closing happens between all topologically distinct phases except for the transition from the STI to ATI

phase. The onset of magnetic order, however, breaks TRS as protecting symmetry of the STI, which enables the
topological phase transition, although there is a finite bulk gap. Also, the emerging AFM is not connected to
the PM state by adiabatic continuity�, since the spin gap closes [1/�l

s (q ⇤ Q) ⇤ 0] at the magnetic transition.
It is remarkable how much of the experimental findings in SmB6 are captured in our simple model.

As pointed out earlier, the TSSs in the STI(X) phase match the experimentally measured surface cones in
the material [255]. Moreover, SmB6 is known to develop long-range magnetic order under pressure that
ultimately leads to a metallic phase [258, 263, 309]. Since increasing pressure usually initiates a higher
effective interaction by confining the localized electrons, this transition can be identified in Figure 12.3 for

�i.e., it cannot be described with a perturbative renormalization of parameters within Fermi liquid theory [39].
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(a) Gapless surface states for the (1, 0, 0)-surface termina-
tion that preserves T̂ 0.

(b) Gapped surface states for the (1, 1, 1)-surface termina-
tion that breaks T̂ 0.

Figure 12.4: Energy spectrum of the TKI model on the high-symmetry-lines of the surface Brillouin zone (SBZ) for
U ⇤ 15, ✏f ⇤ �15 with broken PBCs in one direction to investigate the impact of the thereby created surfaces.
Accordingly, we used 40 unit cells in our numeric open boundary calculation. Localization on the surface is denoted
by orange coloring. Figure reprinted from Reference [56] with permission of the author.

a constant ✏f . �6 in the STI(X) phase by increasing the interaction U. Moreover, Nakajima et al. reported
surface-ferromagnetism with gapless one-dimensional edge states in SmB6, which points towards a possible
ATI phase [254]. Furthermore, long-range magnetic order at ambient pressure was recently observed in
magnetically alloyed Sm1�xEuxB6, which also features robust surface states and appears as a promising
candidate for the experimental realization of an ATI [310].

12.3 Topologically protected surface states

Finally, we want to investigate the topologically protected surface states (TSSs) in the ATI. A comprehensive
study of the TSSs in the PM domain has already been provided in Reference [99].

12.3.1 Two-dimensional surface states

First of all, we consider 2D surface states by breaking the periodic boundary conditions (PBC) in a specific
direction to create two surfaces, i.e., we are left with two momentum quantum numbers that define the
surface Brillouin zone (SBZ). The respective energy spectrum is given by the eigenvalues of a large hopping
matrix, whose dimension grows linearly with the distance of the surfaces. We solved the problem numerically
employing a Mathematica script with 40 magnetic unit cells. The result for two different surface terminations
of the ATI is shown in Figure 12.4. The spectrum features many densely packed modes because a large number
of bulk states are projected onto the SBZ. The point of interest, however, is the appearance of gapless surface
states that cannot be found in the bulk spectrum under the application of PBCs.

The surface termination with normal vector (1, 0, 0)> chosen in Figure 12.4(a) respects the T̂ 0-symmetry
and features the expected TSS at the �-point of the SBZ and also a gapless mode around the M-point [57]. On
the other hand, the (1, 1, 1)-surface termination displayed in Figure 12.4(b) breaks the T̂ 0-symmetry, and the
respective spectrum remains gapped. Interestingly, we also find gapless modes in the AFMI phase. These are,
however, not protected by the AFM Z2 invariant and also feature a trivial mirror Chern number [57] but appear
to be quite robust in our numeric calculation. Therefore, they could just appear accidentally or be protected
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(a) Nanowire geometry along
the (1,0,1) direction. Blue
and red represent opposite
spins.

(b) Energy spectrum of open the boundary calculation
that features a 1D chiral gapless hinge mode, while the
2D surface states are gapped.

(c) Exponentially localized
eigenstate at the hinge for
k ⇤ ⇡/2.

Figure 12.5: Open boundary calculation for a 1D nanowire geometry, whose lateral surfaces break T̂ 0. PBCs are kept
in (1, 0, 1)-direction, which yields the quantum number k. The color code of the energy eigenstates shows that the
gapless mode is exponentially localized at the hinges of the wire. A magnetic unit cell contains two lattice sites, and
we used 20 ⇥ 20 + 19 ⇥ 19 sites for the numeric open boundary calculation. Figure adapted from [54, 57].

by another, yet unknown, topological invariant. We moreover observe that the position of the surface cones
weakly depends on the orientation of the MF spins that did not play a role for the bulk spectrum.

12.3.2 One-dimensional hinge states

The ATI phase can additionally be classified as an axion insulator (AXI) that is characterized by a finite
magnetoelectric polarization and was initially studied in the field of electrodynamics [311]. On surface
terminations that break T̂ 0 and preserve Î, AXIs feature gapless chiral hinge modes that are also the signature
of a higher-order topological insulator (HOTI) [56, 57, 271, 312]. A suitable geometry can be achieved by
stacking squares in the (1,0,1) direction, as illustrated in Figure 12.5(a). The lateral surfaces of the according
nanowire employ a parallel spin alignment and correspond to (1,1,1) surfaces that break T̂ 0. The respective
energy spectrum is determined by an open boundary calculation, where PBCs are kept in the (1,0,1)-direction,
i.e., a single scalar momentum k remains a good quantum number. Figure 12.5 demonstrates that the gapless
chiral mode is present and exponentially localized at the hinges of the nanowire. Experimental evidence for
such an AXI has recently been observed in MnBi2Te4 and Bi2Se3 thin films [313, 314], and also the previously
mentioned detection of 1D edge states in the context of surface FM in SmB6 points towards a possible HOTI

phase [254].
After all, the TKI model serves as a neat example to demonstrate the bulk-boundary-correspondence in

topological systems and provides a rich collection of topologically distinct phases that also considers the
interplay between topology and magnetism. According to the theoretical predictions that show remarkable
qualitative agreement to experimental findings, pressurized SmB6 might actually be an ATI.
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Conclusions and outlook

The goal of this thesis was to study emergent phenomena like e.g., magnetism or charge inhomogeneities
in strongly correlated electron systems by utilizing Kotliar–Ruckenstein slave-bosons [49]. Part I provided
a pedagogical review of the slave-boson method that built up to generalizations of the established theory,
which proved to be essential to obtain novel results in the context of the high-Tc cuprates and Kondo systems
that we discussed in Parts II and III. In the following, we summarize the main achievements of each part and
finally provide an outlook that addresses further ideas and open questions in condensed matter physics.

Methodological development

Within this thesis, we were concerned with electrons on a lattice being subject to a quartic Hubbard interaction
that cannot be treated exactly by analytical measures. The spin-rotation invariant Kotliar–Ruckenstein (SRIKR)
slave-boson (SB) representation reviewed in Chapter 2 recasts such models into an effective quadratic theory
for the fermions with the complication of additional bosonic degrees of freedom. To exactly recover the
physical subspace, additional constraints are required that we implemented within the field-theoretical
description of Chapter 3. As discussed in Chapter 4, a mean-field (MF) approximation of the bosons reduces
the problem to renormalized, effectively non-interacting fermions, whose ground state is determined by a
solution of the saddle point equations. Besides magnetic order, these allow for phase separation (PS), i.e., an
inhomogeneous mixture of different phases, which comes along with subtleties for the analytic and numeric
treatment, as we thoroughly discussed. Finally, in Chapter 5, we extended the established formalism of
Gaussian fluctuations around paramagnetic (PM) saddle points to allow additional non-interacting orbitals
and also encompass magnetic saddle points [55]. Moreover, we proposed a reduced fluctuation basis while
reproducing previous results and thoroughly elaborated on the gauge problem, which is a subtlety of the
fluctuation calculation. The essence of the fluctuation calculation is to integrate out the fermions and expand
fluctuation fields up to leading order for an overall quadratic bosonic theory that can again be addressed by
analytical measures to assess the MF stability. For magnetic saddle points, we also newly proposed a method
to determine second-order corrections to the MF magnetization.

In order to quantify the quality of approximations that come along with the SB treatment of the electronic
Hubbard interaction, we provided various consistency checks and compared our results to other theoretical
methods: First of all, we found that second-order magnetic instabilities can equally be determined by a di-
vergence of the spin susceptibility around a paramagnetic ground state or the onset of a finite magnetization
within a magnetic MF ansatz. This consensus affirms the consistency between MF and fluctuation calcula-
tions that are technically quite different and makes possible remaining errors in the analytics or numerical
implementation highly unlikely. We observe similar conformance in the charge channel in the context of
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phase separation (PS) that we find between different magnetic phases in certain domains. While the onset of
PS can be studied from a mere MF perspective through an analysis of the chemical potential, it is expected
to be accompanied by a divergence of the charge susceptibility at the �-point that we consistently identify
within the magnetic fluctuation results. Secondly, we showed that an evaluation of dynamic SB susceptibilities
qualitatively recovers well-known physical properties like, e.g., a Drude-like dynamical conductivity within
a PM Fermi liquid (FL) phase (see Figure 8.7), and a linear spin-wave dispersion for the antiferromagnet (see
Figure 8.10). Finally, the well-studied 2D Hubbard model provides a broad pool of data from different theo-
retical methods [177] that we applied to benchmark our results from SB theory. A comparison of the staggered
magnetization with statistically exact quantum Monte Carlo (QMC) simulations at half-filling reveals an over-
estimation of the respective slave-boson MF data, especially at high interactions. With addition of the newly
implemented fluctuation corrections, however, our results closely approach the QMC data and even compare
favorable to density matrix embedding theory (DMET) at low to intermediate interactions (see Figure 8.2).
Furthermore, we were able to qualitatively reproduce a phase diagram from dynamical mean-field theory
(DMFT) in the context of Mott physics (see Figure 8.1), and our phase-separated ground state energy matches
the outcome of a previous MF cluster study for finite doping (see Figure 8.14).

After all, we, therefore, acknowledge the SB technique as a proper tool to investigate models with Hubbard-
type interactions, which is applicable for arbitrary doping and interaction and in the thermodynamic limit. Its,
arguably, most unique virtues are the analysis of ordered phases with large unit cells (e.g., incommensurate
magnetic or charge order) and Kondo systems where localized and itinerant degrees of freedom are equally
important. These characteristics were discussed broadly within this thesis and are particularly challenging
for many other theoretical methods.

Application to the high-Tc cuprates

Chapter 6 introduced the Hubbard model as an archetypal problem to study emergent phenomena in the
context of the many-body problem and provided a suitable literature overview. One of the main reasons why it
is still popular after more than 50 years is its applicability to the high-Tc cuprates (HTCCs) as minimal 2D model.
For these materials, many open questions, especially regarding the pairing mechanism of unconventional
superconductivity and the corresponding role of magnetic, charge-inhomogeneous, and strange metal phases,
remain, as we elaborated in Chapter 7. Therefore, Chapter 8 provided an extensive SB analysis of the 2D

Hubbard model, where we discussed Mott physics, magnetic phases, critical exponents, and collective modes
apart from the aforementioned consistency checks. We also highlighted the emergence of incommensurate
magnetic order and phase separation between different magnetic phases in the underdoped regime. In
Chapter 9, we discussed this type of order more deeply in the electron-doped regime with context to actual
materials and experimental data. The evaluation of magnetic fluctuations around AFM mean-field ground
states revealed emerging charge-order (CO) that we find based on the bare Hubbard model without additional
assumptions in agreement with experimental evidence [120, 161, 193]. Interestingly, we identify two distinct,
competing charge ordering vectors [QCO

1/2 ⇤ (Q1/2 , 0)>] and the respective dominant type of order varies
with doping and temperature (see Figure 9.2). The larger ordering vector Q1 appears for higher doping
(� . 0.15), can be explained by a Fermi surface (FS) nesting effect and matches experimental data of the
material Nd2�xCexCuO4 (NCCO) [120] even quantitatively. The second peak at Q2 < Q1 cannot be attributed
to FS nesting and rather resembles the Yamada relationship [199], implying the formation of periodic, doubly
occupied domain walls to distribute the doped electrons (� . 0.1). It shows a transition towards phase
separation (Q ⇤ 0) at very small doping (� . 0.05). We interpret these three drivers of charge-inhomogeneities
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as mechanisms to partially restore the localized, half-filled AFM in the real-space lattice by clustering doped
charges. While recent experimental data provides indications for the existence of competing effects in regard
of CO for hole doping [193], hard evidence for a Yamada-type instability with electron doping is still lacking.
Finally, we find the charge-inhomogeneous phases to be accompanied by a local maximum in the specific heat
as a function of temperature, which could be of interest for further experimental investigations, especially in
the context of pseudogap physics (see Figure 9.3).

Application to Kondo systems

Chapter 10 initiated the discussion of Kondo systems with a general review of the Kondo effect and the
introduction of associated material classes, i.e., heavy fermion metals and Kondo insulators, within the
historical context. We, moreover, elaborated on the most successful microscopic models to describe the
phenomenon, i.e., the periodic Anderson model (PAM) and Kondo lattice model (KLM), and on how they are
connected by the Schrieffer–Wolff (SW) transformation in the strong-coupling limit.

In Chapter 11, we then studied magnetism and heavy fermions in Kondo metals based on the PAM and
accounted for the associated Hubbard interaction through the SB formalism. We conclude that we do not
find heavy fermions in the paramagnetic regime because an interaction-enabled increase of the density of
states (DOS) yields ferromagnetic order as the consequence of an adapted Stoner criterion. The respective MF

magnetization, however, is very low and almost drops to zero under consideration of fluctuation corrections
such that a non-magnetic heavy-fermion state might be recovered with the impact of disorder in actual
materials. Furthermore, we identify an AFM domain associated with parameters of an expected Kondo regime
at low doping that features huge effective masses but proves to be unstable w.r.t. Gaussian fluctuations. In
that part of the phase diagram, we cannot determine a stable ground state within the SB scheme, which
points towards a possible Kondo state whose complexity may be beyond the capabilities of mean-field
theory. Furthermore, we elaborated on the role of the RKKY interaction, an effective spin-exchange coupling
mediated by the conduction electrons, for the two-conduction-band PAM. In that context, we reported magnetic
frustration due to destructive interference of two conduction band pockets with different diameters that might
impact the Néel temperatures of actual materials or could be a host to different types of order.

Finally in Chapter 12, we investigated Kondo insulators (KIs) with respective topological and magnetic
properties based on a 3D PAM with additional centrosymmetric spin-orbit coupling (SOC). We thereby com-
plemented the analysis of the model in the paramagnetic regime [99] by considering the possibility for
magnetic FS instabilities and identifying an AFM domain at intermediate to high interaction that proves to be
stable w.r.t. Gaussian fluctuations. With the evaluation of appropriate Z2 invariants, we topologically classify
an antiferromagnetic topological insulator (ATI) featuring one-dimensional chiral hinge modes, and other
non-trivial phases, which are summarized in Figure 12.3. While our approach in general concerns possible
phases in the material class of topological Kondo insulators (TKIs), our hopping amplitudes are tuned such
that we specifically address the material SmB6, which is widely believed to be the first TKI. In that regard, we
predict the ground state of being a strong topological insulator (STI) with a f -electron filling of nf ⇡ 1.3 that
accounts for the mixed-valence of the compound on average, and features topologically protected surface
states (TSSs) that are supported by experimental evidence in SmB6 [255]. According to our calculations, an
increase of the interaction strength leads to a transition towards the ATI phase that ultimately turns into a
metallic state. Correspondingly, long-range AFM order and a metallic state have been observed in pressurized
[258] and alloyed [310] SmB6 and there is experimental evidence pointing towards an ATI phase [254]. While
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the exact nature of the ground state of SmB6 is still under debate, our results support the hope to discover
exciting physical properties associated with the material.

Outlook

One of the most extensive research areas in condensed matter physics remains to be unconventional su-
perconductivity. While we discussed phases that arise in its close proximity, we did not explicitly address
the superconducting ground because the applied slave-boson representation is not suitable to describe cor-
responding non-local order parameters. For future investigations in the context of superconductivity, we,
therefore, propose the idea to construct an effective vertex by utilizing the SB Gaussian fluctuations [57] and
to solve the superconducting gap equation accordingly through conventional fermionic mean-field theory.
This approach allows to study the full frequency dependence of the superconducting order parameter and is
not limited to high-Tc cuprates (HTCCs) but could also be applied to the PAM in order to study heavy-fermion
superconductivity.

Another open question is the detailed understanding of strange metals [48] that employ a linear temperature-
dependence of the conductivity rather than a quadratic one expected for Fermi liquids. This characteristic
is well known from the HTCCs but also appears in other superconducting compounds, e.g., twisted bilayer
graphene [315], infinite-layer nickelates [316], heavy-fermion superconductors, and Kondo systems near
quantum critical points. Strange metal behavior is thus a common denominator of different material classes
employing unconventional superconductivity, and its understanding could be a key to deciphering the un-
derlying pairing mechanism [226]. Within this thesis, we developed the framework to obtain the temperature
coefficient of the conductivity through the SB charge susceptibility and demonstrated corresponding results
in a Fermi liquid environment. For future studies, this technique could be applied to parameter regimes
with expected strange metal behavior in order to investigate the phenomenon in the context of the HTCCs and
Kondo materials based on non-magnetic and magnetic ground states.

Finally, we want to bring to mind a generalization of the KR slave-bosons [51] that allows for multiple
interacting orbitals and has lately been further developed to consider fluctuations in order to study s-wave
superconducting pairing [52]. This formalism could be applied to high-parametric strongly correlated systems
in the future and, e.g., be of particular interest in the context of magic-angle twisted bilayer graphene, which
has recently been associated with heavy fermion physics [317].

After all, we elaborated on various emergent phenomena within condensed matter physics. Some of
them are now well understood, while others remain puzzling. With the rise of topology and especially the
observation of higher-order topological insulators (HOTIs) [277], new phases have been added to the list. As
history has taught, emergence often comes with a surprise, so who knows what kind of exotic quantum states
are still waiting to be discovered?
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Details on the slave-boson formalism

A.1 Proof of slave-boson related commutation relations

In the following, we adopt Einsteins sum convention, where summation over every index that appears at
least twice in a summand is implied. We moreover will apply the identities

✏i jk✏ilm ⇤ � jl�km � � jm�kl , (A.1a)

⌧i⌧ j
⇤ �i j12 + i✏i jk⌧

k , (A.1b)

where ✏i jk represents the Levi-Civita symbol and ⌧i the i-th Pauli matrix.

Commutators of constraint operators with the Hamiltonian

As stated in Section 2.2, the Hamiltonian commutes with all five constraint operatorsA, B0 and Bi defined in
Equation (2.18). To be specific, the constraint operators even commute with the fermionic creation operator

f
f̂†� , Â

g
� ⇤ 0 ,

f
f̂†� , B̂0

g
� ⇤ 0 ,

f
f̂†� , B̂

g
� ⇤ 0 , (A.2a)

whose SB representation is given by

f̂†� ⇤

X

�0
ẑ†��0 f̂ †�0 ⇤

X

�0

⇣
p̂†��0 ê + d̂† ˆ̃p��0

⌘
f̂ †�0 . (A.2b)

Since the constraint operators are hermitian (A ⇤ A† ,B0 ⇤ B†0 , B̂µ ⇤ B̂†µ) they also commute with the
fermionic annihilation operator and thus with the Hamiltonian. We exemplarily prove the most difficult
commutator in the context of

B̂µ ⇤
X

��0
⌧
µ
��0 f̂ †�0 f̂� �

⇣
p̂†0 p̂µ + p̂†µ p̂0 � i✏µi j p̂†i ⇥ p̂ j

⌘
, µ 2 {1, 2, 3} , (A.2c)

while the remaining others can be calculated in the same manner. We start with the bosonic part of the
constraint operator, and after application of the canonic commutation relations, we find

f
p̂†µ p̂0 + p̂†0 p̂µ � i✏µil p̂†i p̂l , ẑ†��0 f̂ †�0

g
� ⇤


p̂†µ p̂0 + p̂†0 p̂µ � i✏µil p̂†i p̂l ,

✓1
2 ê p̂†µ0⌧

µ0

��0 +
1
2 d̂†

⇣
p̂0⌧

0
��0 � p̂µ0⌧

µ0

��0

⌘◆
f̂ †�0

�
�

⇤
1
2 ê

⇣
p̂†µ⌧

0
��0 + p̂†0⌧

µ
��0 � i✏µil p̂†i ⌧

l
��0

⌘
f̂ †�0 +

1
2 d̂†

⇣
p̂0⌧

µ
��0 � p̂µ⌧

0
��0 + i✏µil p̂l⌧

i
��0

⌘
f̂ †�0 . (A.2d)
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The PF part yields

f
⌧
µ
�2�0

f̂ †�0 f̂�2 , ẑ†��1 f̂ †�1

g
� ⇤ ẑ†��1⌧

µ
�1�0

f̂ †�0 ⇤ *
,

1
2 ê

3X

i⇤0
p̂†i ⌧

i
��1⌧

µ
�1�0

+
1
2 d̂† *

,p̂0���1⌧
µ
�1�0
�

3X

i⇤1
p̂i⌧

i
��1⌧

µ
�1�0

+
-

+
- f̂ †�0 ,

(A.2e)
and after multiplying out the Pauli matrices, we find that the commutators of Equations (A.2d) and (A.2e)
yield the same result and thus confirm f

B̂i , ẑ†��1 f̂ †�1

g
� ⇤ 0 . (A.2f)

Proof of the spin algebra in slave-boson representation

In the following, we show that the spin operator within the SB representation defined in Equation (A.5a)
fulfills the SU(2) spin algebra.

f
Ŝi , Ŝl

g
� ⇤

1
4

f
p̂†0 ⇢̂i + ⇢̂

†
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†
j ⇢̂k , p̂

†
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†
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†
m ⇢̂n
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(A.3)

Commutators between constraint operators

As stated in Section 2.2, the constraint operatorsA, B0 and Bi defined in Equation (2.18) commutate among
themselves in the constrained subspace. We exemplarily calculate the most difficult commutator

B ⇤ p̂†0 p̂ + p̂† p̂0 � ip̂† ⇥ p̂ �
X

��0
⌧��0 f̂ †�0 f̂�

!
⇤ 0 , (A.4a)

while the others can be derived analogously. Since fermions and bosons commute among each other, we
are left to calculate the commutators of the bosonic and fermionic parts, respectively. The fermionic part is
most conveniently evaluated by commutating two fermions from the very left to the very right of the quartic
expression. The commutator is then given by the extra terms which yield from the fermionic anticommutation
relation

f
f̂ †� , f̂�0

g
+
⇤ ���0 :

f
⌧i
�1�2 f̂ †�2 f̂�1 , ⌧

j
�3�4 f̂ †�4 f̂�3

g
⇤ ⌧ j

�3�1⌧
i
�1�2 f̂ †�2 f̂�3 � ⌧

i
�1�2⌧

j
�2�4 f̂ †�4 f̂�1 ⇤ �2i✏i jk⌧

k
�1�2 f̂ †�2 f̂�1 . (A.4b)

The bosonic commutator is evaluated in full analogy to Equation (A.3) since the sign of p2 does not change
the result of the calculation. Both parts independently fulfill the spin algebra if rescaled by a factor of 1

2 ,
yielding f

B i/2 , B j/2
g
� ⇤ i✏i jkBk/2 , (A.4c)
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and consequently the commutator vanishes on the constrained subspace.

A.2 Proof of slave-boson operator representations

The general strategy to find representations of the original fermionic operators within the SB scheme is to
apply Equation (2.10a) and exploit the constraint given by Equation (2.14b) to simplify respective terms to
ideally find a purely bosonic or purely pseudofermionic expression in the end. Due to Equation (2.14a), two
annihilation operators on the very right side annihilate any state on the constrained subspace, and thus those
terms vanish. Consequently, the best strategy to simplify terms is to commutate all bosonic annihilation
operators to the right side until only quadratic terms remain.

Spin density operator

The spin density operator is given by

Ŝ ⇤
1
2

X

��0
f̂†�⌧��0 f̂�0 ⇤

1
2

X

��0�1�2

ẑ†��1 f̂ †�1⌧��0 ẑ�2�0 f̂�2 ⇤

✓
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1
2 d̂† d̂��1�2���0

◆ 1
2⌧��0 f̂ †�1 f̂�2

⇤
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��0�1

p̂†��1⌧��0 p̂�1�0 ⇤ tr p̂ ⌧> p̂† ⇤
1
2

⇣
p̂†0 ⇢̂ + ⇢̂† p̂0 � i⇢̂† ⇥ ⇢̂

⌘
,

(A.5a)

with
⇢̂ ⇤

⇣
p̂1 ,�p̂2 , p̂3

⌘>
. (A.5b)

The mixed representation shown in Table 2.1 can be derived by applying Equation (2.14b) to the first term in
Equation (A.5a).

Charge density operator

The charge density operator is defined by

n̂ ⇤

X

�

f̂†� f̂� ⇤

X

��1�2

ẑ†��1 f̂ †�1 ẑ�2� f̂�2 ⇤
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p̂†��1 p̂�2� + d̂† d̂��1�2

⌘
f̂ †�1 f̂�2

⇤ 4p̂†��1 p̂�1� + d̂† d̂ *.
,

3X

µ⇤0
p̂†µ p̂µ + 2d̂† d̂+/

-
⇤

3X

µ⇤0
p̂†µ p̂µ + 2d̂† d̂ .

(A.6a)

By direct comparison with Equation (2.14c), we identify that a solely PF representation that is equivalent on
the constrained subspace is given by

n̂ ⇤

X

�

f̂ †� f̂� . (A.6b)

Operator of double occupancy

The operator of double occupancy is defined by

D̂ ⇤ f̂†� f̂� f̂
†
�� f̂�� , (A.7a)
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which can be recast to squaring the charge density operator in the different representations given by Equa-
tions (A.6a) and (A.6b)

n̂2
⇤ n̂ + f̂†� f̂� f̂

†
�� f̂�� ⇤ n̂ + f̂ †� f̂� f̂ †�� f̂�� ⇤ n̂ + d̂† d̂ . (A.7b)

By comparison of terms, we find the bosonic representation

D̂ ⇤ d̂† d̂ , (A.7c)

and its PF counterpart
D̂ ⇤ f̂ †� f̂� f̂ †�� f̂�� . (A.7d)

A.3 Gauge fixing

Based on References [50] and [53], we explicitly show in the following that the phases of the e , p0 and p fields
can be removed in the radial gauge by a SU(2) ⌦U(1) ⌦U(1) gauge transformation. The ghost phases appear
because of the five constraints as conserved quantities and need to be removed or projected out in order to
have a well-defined functional integral. At the end of the calculation, the spurious phase information will
be absorbed in the Lagrange multipliers, promoting them to time-dependent fields. We start with the SB

Lagrangian given by Equation (3.25) and rewrite it via the p-matrices�

L ⇤

X

i, j

H (0)
⇣

z†
⌘

i ,��0
f ⇤i ,�0 , f j,�1

z j,�2�1

�
� µ0

X

i

X

�

f ⇤i ,� fi ,� (A.8a)

+

X

i

2666664
↵i *

,e⇤i ei + 2
X

�1�

⇣
p†i

⌘
�1�

pi ,��1
+ d⇤i di � 1+

- �
3X

µ⇤0
�µ,i

X

��0

*
,2

X

�1

⇣
p†i

⌘
�1�0

⌧
µ
�0�pi ,��1

+ d⇤⌧µ�0����0d � f ⇤�⌧
µ
�0� f�0+-

3777775
(A.8b)

+

X

i

266664d⇤i (@⌧ + U)di + e⇤i @⌧ei + 2
X

�1�

⇣
p†i

⌘
�1�

@⌧pi ,��1
+

X

�

f ⇤�@⌧ f�
377775 . (A.8c)

Now, we rewrite all fields on each lattice site in the radial gauge by means of their absolute value and phase

e ⇤ ei✓ |e | , e⇤ ⇤ e�i✓ |e | , d ⇤ ei� |d | , d⇤ ⇤ e�i� |d | , (A.9a)

p��0 ⇤
X

�1

ei�0 U��1 q�1�0 ,
⇣
p†

⌘
��0

⇤

X

�1

e�i�0 q��1

⇣
U†

⌘
�1�0
, (A.9b)

and define

q��0 ⇤
1
2

3X

µ⇤0
qµ⌧

µ
��0 , (A.9c)

U��0 ⇤ exp *
,i

3X

↵⇤1
�↵⌧↵��0

+
- ⇤ ���0 cos � + i

3X

↵⇤1

sin �
�

�↵⌧↵��0 , (A.9d)

�The non-interacting degrees of freedom remain invariant and are summarized in the function H (0) , which only depends on the
creation and annihilation operators in SB representation.
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with qµ 2 R. Moreover, we need to find the consistent transformation of the time reversed p̃-matrix�

p̃��0 ⇤ sgn(�) sgn(�0)p��0�� ⇤ sgn(�0) sgn(�00) exp *.
,
i

3X

µ⇤0
�µ⌧

µ
��0��00

+/
-

sgn(�00) sgn(�)q��00��

⇤ e i�0 q̃��00 *
,��00�0 cos � � i

3X

↵⇤1

sin �
�

�↵⌧↵�00�0
+
- ⇤ ei�0 q̃��00

⇣
U†

⌘
�00�0
,

⇣
p̃†

⌘
��0

⇤ e�i�0 U��00 q̃�00�0 .

(A.9e)

We simultaneously apply the following SU(2) ⌦ U(1) ⌦ U(1) gauge transformation, where the phases match
their counterparts in the radial expressions given by Equation (A.9)

f� ! e�i�0 f�0
⇣
U†

⌘
�0�
, (A.10a)

d ! ei(✓+2�0) d , (A.10b)

p��0 ! ei✓p��0 , (A.10c)

p̃��0 ! ei✓ p̃��0 . (A.10d)

In the following, we show term by term that the Lagrangian remains invariant except for removing five phases
that are absorbed into Lagrange multipliers, promoting them to time-dependent fields.

Pseudo-fermionic terms

X

��0
f ⇤����0 f�0 !

X

��0
ei�0 U��1 f ⇤�1���0e

�i�0 f�2 U†�2�0 ⇤

X

�,�0
f ⇤����0 f�0 ,

⇣
z†

⌘
��0

f ⇤�0 ! q��0 |e | f ⇤�0 + d⇤ q̃��0 f ⇤�0 ,

f�0z�0� ! f�0 |e |q�0� + f�0 q̃�0�d .

(A.11)

Lagrange-multiplier terms

↵ *
,e⇤e + 2

X

�1�

p†�1�p��1 + d⇤d � 1+
-! ↵ *

,
��e2�� + 2

X

�1�

q�1�q��1 + d⇤d � 1+
- . (A.12)

Rather than directly considering the second term in Equation (A.8b), we look at the transformation properties
of the second constraint given by Equation (2.14b) in matrix representation

X

�2�3

U��2 f ⇤�2 f�3

⇣
U†

⌘
�3�0

⇤ 2
X

�1�2�3

q�1�2

⇣
U†

⌘
�2�0

U��3 q�3�1 + ���0d
⇤d . (A.13)

In order to obtain four scalar equations, we expand by means of Pauli matrices in the unitary rotated basis.
Applying

P
��0 U�0�4

⌧
µ
�4�5 (U)†�5� with µ 2 {0, 1, 2, 3} on both sides of Equation (A.13) yields the transformation

�Within the calculation, we apply the identity sgn(�0) sgn(�)⌧↵����0 ⇤ �⌧↵��0 .
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properties of the second constraint enforced by new static Lagrange multipliers �µ

�
3X

µ⇤0
�µ

X

��0

*
,2

X

�1

⇣
p†

⌘
�1�0

⌧
µ
�0�p��1 + d⇤⌧µ�0����0d � f ⇤�⌧

µ
�0� f�0+-

!
X

��0
f ⇤�

*.
,
�0���0 +

3X

µ⇤1
�µ⌧

µ
�0�

+/
-

f�0 � �0
*.
,

3X

µ⇤0
q2
µ + 2d⇤d+/

-
�

3X

µ⇤1
�µ2qµq0.

(A.14)

Again, the p-fields lose their phase information, which vanishes the cross product p⇤ ⇥ p , while the rest
remains invariant.

Time-derivative terms

Finally, we investigate the time derivative terms given by Equation (A.8c). Notice that total derivatives like
2|e |@⌧ |e | ⇤ @⌧ |e |2 vanish due to the periodic boundary conditions of the path integral

d⇤(@⌧ + U)d + e⇤@⌧e + 2
X

�1�

⇣
p†

⌘
�1�

@⌧p��1 +

X

�

f ⇤�@⌧ f�

! (i✓̇ + 2i�̇0 + U)d⇤d + i✓̇��e2�� + X

��1�2�3


�2i(�̇ + ✓̇)q�1�q��1 + U̇�3�1

⇣
U†

⌘
�1�2

q�2�q��3

�

+

X

��1�2

f
f ⇤�@⌧ f� � i�̇0 f ⇤� f� + f ⇤�1 (U̇†)�2�U��1 f�2

g
.

(A.15)

With n↵ ⇤ �↵/�, the time derivatives of the unitary matrix are found to be�

X

��1�2�3

U̇�3�1

⇣
U†

⌘
�1�2

q�2�q��3 ⇤ iq0

3X

↵⇤1
q↵

*.
,

n↵�̇ + ṅ↵ sin � cos � �
X

i j

✏↵i j ṅi n j sin2 �+/
-
, (A.16a)

X

�

⇣
U̇†

⌘
�2�

U��1 ⇤ �i
3X

↵⇤1

*.
,

n↵�̇ + ṅ↵ sin � cos � �
X

i j

✏↵i j ṅi n j sin2 �+/
-
⌧↵�2�1 . (A.16b)

Using all previous results, terms containing the phase factors �0, � and ✓ can be absorbed into the Lagrange
multipliers by

⇣
↵ + i✓̇

⌘
! ↵ , (A.17a)

�
�0 + i�̇0

� ! �0 , (A.17b)
⇣
� � i

⇣
n�̇ + ṅ sin � cos � � ṅ ⇥ n sin2 �

⌘⌘
! � . (A.17c)

A.4 Pauli matrix expansion of the z-matrix

Any hermitian 2 ⇥ 2 matrix can be expressed in the basis of Pauli matrices ⌧ and the identity matrix ⌧0

A ⇤ a0⌧0
+ a · ⌧ , (A.18a)

�Notice that @⌧1 ⇤ @⌧ (U�3�1 U†�1�2 ) ⇤ 0 , U̇�3�1 U†�1�2 ⇤ �U�3�1 U̇†�1�2 and 0 ⇤ @⌧ (n↵n↵) , P
↵ n↵ ṅ↵ ⇤ 0.
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and it can be diagonalized by a unitary transformation

U†âAU â ⇤ a0⌧0
+ a⌧3 , (A.18b)

such that U†â only depends on â ⇤ a/a with a ⇤ |a |. Consequently it holds

U†â
⇣
a0⌧0 ± a · ⌧

⌘
U â ⇤ a0⌧0 ± aU†â

�
â · ⌧� U â . (A.18c)

These properties will be applied to rewrite the z-matrix, which reproduces the correct non-interacting limit
defined in Equation (A.19), in the basis of Pauli matrices in order to eliminate non-diagonal matrices in the
denominator. We consider z w.r.t. the field theory basis of coherent states in the radial gauge, i.e., operators
are replaced by fields, and only the d-field remains as a complex variable, while e , p0, and p are real-valued.
We moreover replace the M-factor defined in Equation (4.7) by

p
2 utilizing the ↵-constraint�. With these

assumptions, it is

z ⇤
⇣
e L
p

2R p + p̃† L
p

2 Rd
⌘
, (A.19a)

with

L ⇤
⇣
(1 � d⇤d)⌧0 � 2 p†p

⌘�1/2
, (A.19b)

R ⇤
⇣⇣

1 � e2
⌘
⌧0 � 2 p̃† p̃

⌘�1/2
. (A.19c)

We can rewrite the products

4 p†p ⇤

X

µ,µ0

⇣
p0⌧0

+ pµ⌧µ
⌘ ⇣

p0⌧0
+ pµ0⌧µ

0⌘
⇤ p2

0⌧
0
+ 2p0(p · ⌧) + p2⌧0 ,

4 p̃† p̃ ⇤

X

µ,µ0

⇣
p0⌧0

+ pµ⌧µ
⌘ ⇣

p0⌧0
+ pµ0⌧µ

0⌘
⇤ p2

0⌧
0 � 2p0(p · ⌧) + p2⌧0 ,

(A.20)

and realize that
f
R , p

g
�
⇤

f
L , p̃†

g
�
⇤ 0. We may thus express the z-matrix as [99]

z ⇤

✓
1 � d⇤d � p2

0+p2

2

◆
⌧0 � p0(p · ⌧)

�� 1
2 1p

2


(e + d)p0⌧0

+ (e � d)(p · ⌧)
� ✓

1 � e2 � p2
0+p2

2

◆
⌧0

+ p0(p · �)
�� 1

2
.

(A.21)
With Equation (A.18c), we realize that all three matrices can be diagonalized by the same unitary transforma-
tion� U p̂ . Consequently, we may insert 12 ⇤ U†p̂U p̂ between them and diagonalize each matrix independently
by means of Equation (A.18b) and the eigenvalues of z are thus given by the product of respective diagonal
entries

U p̂ z U†p̂ ⇤
*..
,

z+ 0

0 z�

+//
-
⇤

z+ + z�
2 ⌧0

+
z+ � z�

2 ⌧3
⇤ Z+⌧0

+Z�⌧3 , (A.22)

�On MF level, this constraint is exactly fulfilled, and the replacement is justified. As we argue in Section 5.1, we also do not consider
fluctuations of M because those would have an unphysical origin and need to be inhibited.

�The inverse square root terms can be expanded in a power series and one may insert 12 ⇤ U†p̂U p̂ between each appearing power
to diagonalize all occurring matrices separately and express the diagonalized infinite series again as an inverse square root.
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Summand function g(i!n ) Matsubara summation S⇣ ⇤ 1
�

+1P
n⇤�1

g(i!n )

1
i!n � "

�⇣n⇣ (")

1
(i!n � "1)(i!n � "2) �⇣ n⇣ ("1) � n⇣ ("2)

"1 � "2

⇣ ln(�i!n + ") ⇣ ln
⇣
1 � ⇣e�"/T

⌘

"3

(i!n � "1)(i!n � "2) � "2
3

⇣
n⇣[("1 + "2 � �)/2] � n⇣[("1 + "2 + �)/2]

�
"3

i!n � "1

(i!n � "1)(i!n � "2) � "2
3

�⇣ ("1 � "2 + �)n⇣[("1 + "2 � �)/2] + ("2 � "1 + �)n⇣[("1 + "2 + �)/2]
2�

Table A.1: List of Matsubara summations applied within in this thesis and evaluated by means of Reference [128]. We
define � ⇤

q
("1 � "2)2 + 4"2

3. Moreover, n⇣ denotes the statistical distribution and !n the Matsubara frequency
defined by Equations (A.25) and (A.26).

with
z± ⇤

p0(e + d) ± p(e � d)
p

2
⇥
1 � d2 � (p0 ± p)2/2

⇤ ⇥
1 � e2 � (p0 ⌥ p)2/2

⇤ . (A.23)

We may now rotate back to the original basis by means of Equations (A.18b) and (A.18c) and find

z ⇤ U†p̂

 
Z+⌧0

+
Z�
p

p⌧3
!

U p̂ ⇤ Z+⌧0
+Z�

p
p
⌧ . (A.24)

A.5 Matsubara summations

In the context of the imaginary-time path integral formalism, we often need to evaluate summations over
discrete frequencies that respect the periodic (anti-periodic) boundary conditions of the bosonic (fermionic)
time evolution operator. These so-called Matsubara frequencies are given by

!n ⇤
2n⇡
�

n 2 Z0 for bosons , (A.25a)

!n ⇤
(2n + 1)⇡

�
n 2 Z0 for fermions , (A.25b)

with the inverse temperature �. In the limit of infinitesimal time slices, i.e., continuous imaginary time
where the path integral becomes exact, summations must be performed from minus infinity to infinity.
Corresponding infinite series can be evaluated analytically by mapping to a complex contour integral utilizing
a weight function with simple poles situated at the Matsubara frequencies. Suitable functions are the Bose-
Einstein distribution for bosons and the Fermi-Dirac distribution for fermions

n1(z) ⇤ nB(z) ⇤
1

e�z � 1
, (A.26a)

n�1(z) ⇤ nF(z) ⇤
1

e�z + 1
, (A.26b)
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with
Res

⇥
n⇣ (i!n )

⇤
⇤ ⇣

1
�
, (A.27)

and ⇣ denotes the statistical sign, being ⇣ ⇤ 1 for bosons and ⇣ ⇤ �1 for fermions. Consequently, it is [39]

S⇣ ⇤
1
�

+1X

n⇤�1
g(i!n ) ⇤ ⇣

I
dz g(z)n⇣ (z) , (A.28)

and the complex contour integral can by evaluated by means of the residue theorem. If the summand is of the
order g(i!n ) ⇤O (1/i!n ) or higher, the sum does not converge and it needs to be evaluated with the addition
of a convergence factor g(z) ! g(z)e�⌘z with ⌘ ! 0+. The necessity of this factor originates in the fact that
only the discrete formulation of the path integral, where "equal-time" terms actually differ by a single time
slice ⌘ ⇤ �/M [compare Equation (3.5b)] is formally correct. The limit to continuous time is well defined
if taken at the very end of a calculation. However, the Matsubara representation takes this limit before the
evaluation of the sum, which needs to be compensated by the convergence factor. Table A.1 summarizes
results for Matsubara summations, which are applied within this thesis. They have been evaluated utilizing
the Mathematica script of Yi-Zhuang You from the university of San Diego, which is publicly available on
Github [128].

A.6 Di�erentials of fluctuation-fields

In order to compute Gaussian fluctuations, we are required to calculate derivatives of the bosonic Zk factors
in momentum space w.r.t. individual fluctuation fields � µ,q and evaluate them at the MF saddle point  as
discussed in Section 5.2. In the following, we present the occurring calculations in detail. We aim to calculate

the derivatives
@H 

k1 ,k2
@ q ,µ

����� and
@2H 

k ,k
@ q1 ,µ@ q2 ,⌫

����� of the SB-dependent Hamiltonian

H 
k1 ,k2

⇤ �k1 ,k2

⇣
✏ � µ0

⌘
+

1
p

N�

⇣
B
⌘>

k1�k2
+

1
N�

X

k

⇣
Z†

⌘>
k�k1
H k

⇣
Z

⌘>
k�k2

, (A.29)

with

Zk ⇤ (12O⇥2O

p
N� �k ,0) � zk , (A.30a)

Bk ⇤ 02O⇥2O � �k
. (A.30b)

Spatially uniform mean-field saddle point

We start with the analysis of a spatially uniform MF saddle point that satisfies

@Zµ,r
@ r,µ̃

����� ⇤

@Zµ
@ µ̃

����� , (A.31)
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which holds for PM or FM order. The zeroth, first and second order differentials around the MF saddle point
are found to be

zk ⇤
1

p
N�

X

r i

Z �

0
d⌧ e�ikr i+i!n⌧zr

��� ⇤ z ��� 1
p

N�

X

r i

Z �

0
d⌧ e�ikr i+i!n⌧ ⇤

p
N� �k ,0 z ��� ,

�zk ⇤
1

p
N�

X

r i

X

µ̃

Z �

0
d⌧ e�ikr i+i!n⌧

@zr
@ r,µ̃

����� � r,µ̃ ⇤
X

µ̃

@z
@ µ̃

����� � k ,µ̃ ,

�2zk ⇤
1

p
N�

X

r i

X

µ̃,⌫̃

Z �

0
d⌧ e�ikr i+i!n⌧

@2zr
@ µ̃,r@ ⌫̃,r

����� � µ̃,r� ⌫̃,r ,

⇤
1

p
N�3

X

µ̃,⌫̃

@2z
@ µ̃@ ⌫̃

����� 
X

k1 ,k2

X

r i

Z �

0
d⌧eir i (k1+k2�k)ei⌧(!n�!n1�!n2 )� µ̃,k1� ⌫̃,k2

⇤
1

p
N�

X

µ̃,⌫̃

@2z
@ µ̃@ ⌫̃

����� 
X

k1

� k1 ,µ̃� k�k1 ,⌫̃ .

(A.32)

Consequently, derivatives w.r.t. SB fields are given by

@zk
@ q ,µ

����� ⇤ �k ,q
@z
@ µ

����� ,
@z†k
@ q ,µ

����� ⇤ �k ,�q
@z†

@ µ

����� , (A.33a)

@2zk
@ q1 ,µ@ q2 ,⌫

����� ⇤
1

p
N�

�k ,q1+q2

@2z
@ µ@ ⌫

����� ,
@2z†k

@ q1 ,µ@ q2 ,⌫

����� ⇤
1

p
N�

�k ,�q1�q2

@2z†

@ µ@ ⌫

����� . (A.33b)

Derivatives or the Zk-factors with additional non-interacting orbitals can be inferred with the definition in
Equation (A.30a) by adding a direct sum of unity or zero matrices

Zk

����� ⇤
p

N� �k ,0

✓
12O⇥2O � z��� 

◆
, (A.34a)

@Z(†)
k

@ q ,µ

����� ⇤ 02O⇥2O �
@z (†)

k
@ q ,µ

����� , (A.34b)

@2Z(†)
k

@ q1 ,µ@ q2 ,⌫

����� ⇤ 02O⇥2O �
@2z (†)

k
@ q1 ,µ@ q2 ,⌫

����� . (A.34c)

The remaining MF derivatives of the z-matrix can conveniently be evaluated in the Pauli matrix expanded
form given by Equation (A.24). Notice that in the basis chosen for the fluctuations, we need to replace the
e-field by means of the ↵-constraint 1 ⇤ e2 + d2

1 + d2
2 + p2

0 + p2 before taking derivatives. The derivatives of
the LM-fields are particularly easy because they enter the Lagrangian only linearly. Hence, it is

@Bk
@ µ,q

����� ⇤ 02O⇥2O �
X

µ̃,⌫

@�⌫⌧⌫

@ µ̃

@� k ,µ̃

@ µ,q
⇤ 02O⇥2O � ⌧

⌫� µ ,�⌫ �k ,q . (A.35)

For shortness of notation, we define

Z0 ⇤ Z> ��� , (A.36a)
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Zµ ⇤
@Z>

@ µ

����� , (A.36b)

Zµ⌫ ⇤
@2Z>

@ µ@ ⌫

����� , (A.36c)

Bµ ⇤ 02O⇥2O �
�
⌧⌫

�> � µ ,�⌫ , (A.36d)

and find

@H 
k1 ,k2

@ q ,µ

������� 
⇤

1
p

N�
Bµ�q ,k1�k2 +

1
N�

X

k

f
�k�k1 ,�qZ†µH k Z0�k�k2 ,0

p
N� +

p
N��k�k1 ,0Z†0H k Zµ�k�k2 ,q

g

⇤
�q ,k1�k2p

N�

f
Bµ +

⇣
Z†µ

⌘
H k2

Z0 + Z†0H k1
Zµ

g
,

@2H 
k ,k

@ q1 ,µ@ q2 ,⌫

������� 
⇤

1
N�

X

k̃

"
� k̃�k ,�q1�q2

Z†µ⌫H k̃ Z0� k̃�k ,0 + � k̃�k ,0Z†0H k̃ Zµ⌫� k̃�k ,q1+q2

+ � k̃�k ,�q1
Z†µH k̃ Z⌫� k̃�k ,q2

+ � k̃�k ,�q2
Z†⌫H k̃ Zµ� k̃�k ,q1

#

⇤
1

N�
�q1 ,�q2

"
Z†µ⌫H k Z0 + Z†0H k Zµ⌫ + Z†µH k�q1

Z⌫ + Z†⌫H k+q1
Zµ

#
.

(A.37)

Spatially periodic mean-field saddle point

In order to calculate fluctuations around a MF saddle point with an enlarged magnetic unit cell, we need
to expand every non-uniform quantity ⌅r (i.e., the Z-matrices and the bosonic Lagrangian) and respective
derivatives at the saddle point as a Fourier series of the MF ordering vector Q

⌅r i

����� ⇤

1X

a⇤�1
⌅a e�iaQr i , (A.38a)

@µ⌅r i

����� ⇤

1X

a⇤�1
⌅a ,µ e�iaQr i , (A.38b)

@µ⌫⌅r i

����� ⇤

1X

a⇤�1
⌅a ,µ⌫ e�iaQr i , (A.38c)

and we reemploy the notation where the index µ represents taking the derivative w.r.t.  µ

⌅ ⇤ ⌅
����� , ⌅µ ⇤

@⌅
@ µ

����� , ⌅µ⌫ ⇤
@2⌅

@ µ@ ⌫

����� . (A.39)

We now can repeat the calculation presented in Equation (A.32). Since the MF ansatz is still static, the
frequency dependence is unchanged, but the Fourier series results in an additional sum over Kronecker
deltas with a momentum kick of Q
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⌅k
��� ⇤

p
N�

X

a
⌅a �i!n ,k+aQ ,0 (A.40a)

�⌅k
��� ⇤

X

a

X

µ̃

⌅a ,µ̃ � i!n ,k+aQ ,µ̃ (A.40b)

�2⌅k
��� ⇤

1
p

N�

X

a

X

µ̃,⌫̃

X

k1

⌅a ,µ⌫� k1 ,µ̃� (i!,k+aQ)�k1 ,⌫̃ . (A.40c)

The fluctuation basis has thus to be enlarged to include correlations between fields with a momentum
difference of aQ. For commensurate Q, this basis stays finite.
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Derivation of mean-field matrices

In the following, we explicitly derive the SB mean-field (MF) hopping matrices for the three different models,
i.e., the Hubbard model, periodic Anderson model (PAM), and topological Kondo insulator (TKI) model,
discussed in this thesis based on References [53] and [54]. We moreover provide the respective eigenvalues
that define the magnetic MF band structure if analytically accessible and discuss the impact of rotating the MF

magnetization axis.
According to Section 4.3, the MF action

S(0)
⇤ S(0)

B + S(0)
F (B.1a)

decouples into a purely bosonic part that does not depend on details of the models

S(0)
B ⇤ N�

f
Ud2

+ ↵(e2
+ d2

+ p2
0 + p2 � 1) � �0(2d2

+ p2
0 + p2) � 2�p0p

g
, (B.1b)

and a PF part whose particular basis of spinors and explicit form yields from specifics of the hopping scheme
but can generally be expressed by

S(0)
F ⇤

X

k

⇣
�Q

k

⌘† f
�i$n + H ,Q

k

g
�Q

k ⇤ �
X

k

⇣
�Q

k

⌘† f
G k

g�1
�Q

k , (B.1c)

with the MF Green’s function
G k ⇤

⇣
i$n � H ,Q

k

⌘�1
. (B.1d)

The SB-dependent hopping matrix H ,Q
k is to be determined by application of the spiral magnetic MF

p i (⌧) ! p
*.....
,

cos(QRi )

sin(QRi )

0

+/////
-
, �i (⌧) ! �

*.....
,

cos(QRi )

sin(QRi )

0

+/////
-
, (B.2a)

p0,i (⌧) ! p0 , (B.2b)

ei (⌧) ! e , (B.2c)

di (⌧) ! d , (B.2d)

↵i (⌧) ! ↵ , (B.2e)

�0,i (⌧) ! �0 , (B.2f)
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defined in Section 4.1 for the bosonic degrees of freedom and consecutive Fourier transformation of the
pseudofermions (PFs) in Equation (3.30a). The Lagrange multiplier (LM) part of H ,Q

k does not depend on the
specifics of the model and is given by�

H� ⇤

X

i

f †i
*..
,

�0 � eiQRi

� e�iQRi �0

+//
-

f i ⇤
1
N

X

k ,k0

X

i

e�ikRi eik0Ri f †k
*..
,

�0 � eiQRi

� e�iQRi �0

+//
-

f k0

⇤

X

k ,k0
f †k

*..
,
�0 �k ,k0 � �k0 ,k�Q

� �k0 ,k+Q �0 �k ,k0

+//
-

f k0 ⇤
X

k

⇣
f Q

k

⌘† *..
,
�0 �

� �0

+//
-

f Q
k ,

(B.3)

with

f k ⇤
*..
,

fk ,"

fk ,#

+//
-
, (B.4a)

f Q
k ⇤

*..
,

fk ,"

fk�Q ,#

+//
-
, (B.4b)

and we define the periodicity index a that is associated with a momentum shift w.r.t. the magnetic ordering
vector Q

f a
k ,� ⇤

f
f k+aQ

g
�
. (B.4c)

B.1 Hubbard model

The Hamiltonian of the one-band Hubbard model in SB representation within the field theoretical description
is given by

HHub
⇤ Ht + Hloc. + Hint. ⇤ �

X

<i j>

X

��1�0
t f

i j f ⇤i ,�z†i ,�1�
z j,�0�1

f j,�0 � µ0
X

i ,�

f ⇤i ,� fi ,� + U
X

i

d⇤i di . (B.5)

B.1.1 Slave-boson-dependent quasiparticle matrix

In order to calculate the SB dependent MF hopping matrix H ,Q , we need to Fourier-transform the PF part
of the Hamiltonian after applying the MF ansatz to the z-matrices according to Equation (4.8a) [53]. We

�In the last calculation step, we exploit that the sum is invariant under index shifts:
P

k f ⇤k�Q ,� fk�Q ,�0 ⇤
P

k f ⇤k ,� fk�0 .
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moreover define Ri � R j ⇤ Ri j and utilize the basis f †i ⇤
⇣

f ⇤i ," , f ⇤i ,#
⌘
:

Ht f ⇤

X

<i j>

t f
i j f †i

*..
,
Z+ Z� eiQRi

Z� e�iQRi Z+

+//
-

*..
,
Z+ Z� eiQR j

Z� e�iQR j Z+

+//
-

f j

⇤

X

<i j>

t f
i j f †i

*..
,
Z2

+ +Z2
� eiQ(Ri�R j) Z+Z�

⇣
eiQRi + eiQR j

⌘

Z+Z�
⇣
e�iQRi + e�iQR j

⌘
Z2

+ +Z2
� e�iQ(Ri�R j)

+//
-

f j

⇤
1
N

X

kk0

X

<i j>

t f
i j e�ikRi eik0(Ri�Ri j) f †k

*..
,

Z2
+ +Z2

� eiQRi j Z+Z� eiQRi
⇣
1 + e�iQRi j

⌘

Z+Z� e�iQRi
⇣
1 + eiQRi j

⌘
Z2

+ +Z2
� e�iQRi j

+//
-

f k0

⇤

X

kk0

X

Ri j

t f
i j e�ik0Ri j f †k

*..
,
�k0 ,k

⇣
Z2

+ +Z2
�eiQRi j

⌘
�k0 ,k�QZ+Z�

⇣
1 + e�iQRi j

⌘

�k ,k0�QZ+Z�
⇣
1 + eiQRi j

⌘
�k ,k0

⇣
Z2

+ +Z2
�e�iQRi j

⌘
+//
-

f k0 .

(B.6a)

We define the dispersion
⇠k ⇤

X

Ri j

t f
i je
�ikRi j , (B.6b)

and with appropriate index shifts in momentum k ! k + Q, we may express Ht in the basis f Q
k defined in

Equation (B.4b)

Ht f ⇤

X

k

⇣
f Q

k

⌘† *..
,
Z2

+⇠k +Z2
�⇠k�Q Z+Z�

⇣
⇠k�Q + ⇠k

⌘

Z+Z�
⇣
⇠k�Q + ⇠k

⌘
Z2

+⇠k�Q +Z2
�⇠k

+//
-

f Q
k . (B.6c)

With the inclusion of the diagonal chemical potential term and the LM part given by Equation (B.3), we finally
find the SB-dependent MF hopping matrix

H ,Q
k ,Hub ⇤

*..
,
Z2

+⇠k +Z2
�⇠k�Q + �0 � µ0 Z+Z�

⇣
⇠k�Q + ⇠k

⌘
+ �

Z+Z�
⇣
⇠k�Q + ⇠k

⌘
+ � Z2

+⇠k�Q +Z2
�⇠k + �0 � µ0

+//
-
. (B.7)

In a two-dimensional (2D) hopping scheme with nearest neighbor (NN) hopping t and next-to-nearest neighbor
(NNN) hopping t0 on the square lattice, it is

⇠k ⇤ �2t
⇣
cos kx + cos ky

⌘
� 4t0 cos kx cos ky . (B.8)

The eigenvalues of H ,Q
k ,Hub are given by

"±k ,Hub ⇤
1
2

f⇣
Z2

+ +Z2
�
⌘ ⇣
⇠k + ⇠k�Q

⌘
± �Q

k

g
+ �0 � µ0 , (B.9)

with the magnetic gap function

�Q
k ⇤

rf⇣
Z2

+ �Z2�
⌘ ⇣
⇠k � ⇠k�Q

⌘g2
+ 4

f
Z+Z�

⇣
⇠k + ⇠k�Q

⌘
+ �

g2
. (B.10)

In the PM limit, it isZ� ⇤ � ⇤ 0 and the spin-degenerate eigenvalues adapt the simplified form

"PM
k ,Hub ⇤ z2

0⇠k + �0 � µ0 . (B.11)
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B.1.2 Constrained expectation values

In Sections 4.1 and 4.4.1, we argued that the MF constraints match the quantum mechanical expectation values
of the SB and PF representations of the spin and charge density. In the following, we support that claim with
an explicit calculation for the Hubbard model utilizing the respective equal space-time Green’s function

D
f †� f�0

E
⇤ G ��0 (�r ⇤ 0�) ⇤

1
N�

X

k

G k ,��0 . (B.12)

Based on the operator representations summarized in Table 2.1, the afore mentioned expectation values in
Fourier-space are given by

D
n̂F,q

E
⇤

1
N�

Z �

0
d⌧

X

ri

eiqr i+i$n⌧ ⌦
n̂F,ri

↵
⇤

1
N�

X

k

⌧
f̂
†
k f̂ k�q

�
, (B.13a)

D
ŜF,q

E
⇤

1
N�

Z �

0
d⌧

X

ri

eiqr i+i$n⌧
D
ŜF,ri

E
⇤

1
N�

1
2

X

k

⌧
f̂
†
k ⌧ f̂ k�q

�
, (B.13b)

D
n̂B,q

E
⇤

1
N�

Z �

0
d⌧

X

ri

eiqr i+i$n⌧ ⌦
n̂B,ri

↵
⇤

⇣
p2

0 + p2
+ 2d2

⌘
�q ,0 , (B.13c)

D
ŜB,q

E
⇤

1
N�

Z �

0
d⌧

X

ri

eiqr i+i$n⌧
D
ŜB,ri

E
⇤ pp0

*.....
,

1
2

⇣
�q ,Q + �q ,�Q

⌘

1
2i

⇣
�q ,Q � �q ,�Q

⌘

0

+/////
-
�i$n ,0 . (B.13d)

Utilizing Equation (B.7), the MF Green’s matrix for the Hubbard model in the basis f Q
k is found to be

G k ⇤
1

Dk ,Q

*..
,
i$n + µ0 + �0 �Z2

�⇠k �Z2
+⇠k�Q � +Z+Z�

⇣
⇠k + ⇠k�Q

⌘

� +Z+Z�
⇣
⇠k + ⇠k�Q

⌘
i$n + µ0 + �0 �Z2

+⇠k �Z2
�⇠k�Q

+//
-
, (B.14a)

where

Dk ,Q ⇤
⇣
i$n + µ0 + �0 �Z2

�⇠k �Z2
+⇠k�Q

⌘ ⇣
i$n + µ0 + �0 �Z2

+⇠k �Z2
�⇠k�Q

⌘ ⇣
� +Z+Z�

⇣
⇠k + ⇠k�Q

⌘⌘2
.

(B.14b)
To evaluate PF expectation values within the MF approximation, we need to identify the momentum q with
the MF spinor that only allows correlations with an overlap of q 2 {0,Q}. Within the applied basis given by
Equation (B.4b), we therefore find�

D
n̂F,q

E
⇤

1
N�

X

k

✓
G k ,"" + G k ,##

◆
�q ,0 , (B.15a)

D
ŜF,q

E
⇤

1
N�

X

k

*......
,

1
2

✓
G k ,"#�q ,Q + G k ,#"�q ,�Q

◆

1
2i

✓
G k ,"#�q ,Q � G k ,#"�q ,�Q

◆

✓
G k ,"" � G k ,##

◆
�q ,0

+//////
-
�i$,0 . (B.15b)

�The Fourier components of
⌧

f̂ †k ,# f̂k�q ,"

�
, which do not explicitly show in the basis can be inferred by shifting k ! k +Q and using

P
k f̂ †k f̂k ⇤

P
k f̂ †k+Q f̂k+Q .
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The occurring Matsubara summations can be carried out analytically (for details see Appendix A.5) and the
remaining momentum-sum needs to be evaluated numerically at the saddle point, yielding

1
N�

X

i$n

X

k2BZ0

✓
G k ,"" + G k ,##

◆
⇤

1
N

X

k

f
nF

⇣
"+k

⌘
+ nF

⇣
"�k

⌘g
⇤ 2d2

+ p2
0 + p2 , (B.16a)

1
N�

X

k

✓
G k ,"" � G k ,##

◆
⇤

1
N

X

k

⇣
Z2

+ �Z2
�
⌘ ⇣
⇠k � ⇠k�Q

⌘ nF

⇣
"+k

⌘
� nF

⇣
"�k

⌘

�Q
k

⇤ 0 , (B.16b)

1
N�

X

k

G k ,"# ⇤
1

N�

X

k

G k ,#" ⇤
1
N

X

k

⇣
� +Z+Z�

⇣
⇠k + ⇠k�Q

⌘⌘ nF

⇣
"+k

⌘
� nF

⇣
"�k

⌘

�Q
k

⇤ pp0 . (B.16c)

The quantities "±k and �Q
k have been defined in Equations (B.9) and (B.10) and nF(!) denotes the Fermi-

Dirac distribution. Combining the results of Equations (B.13), (B.15), and (B.16), we realize that all Fourier
components of the PF and SB expectation values of the charge and spin operator match at the saddle point
and thus the MF constraints are fulfilled exactly.

B.2 Periodic Anderson model

Based on Reference [56] by Klett, Riegler et al., we discuss two types of PAMs in this thesis. These do not employ
hopping amplitudes within the interacting orbital but feature on-site hybridizations between non-interacting
conduction electrons and interacting f -electrons expressed by the Hamiltonian�

HPAM
⇤

X

d⇤1,2
Hd + Hhyb + H f , (B.17a)

with

Hd ⇤ �t
X

hi , ji,�
c⇤d ,i ,�cd , j,� + (✏d � µ0)

X

i ,�

c⇤d ,i ,�cd ,i ,� , (B.17b)

Hhyb ⇤ V
X

d ,i ,�,�0

⇣
c⇤d ,i ,�zi ,�0� fi ,�0 + f ⇤i ,�z†i ,�0�cd ,i ,�0

⌘
, (B.17c)

H f ⇤ U
X

i

d⇤i di + (✏f � µ0)
X

i ,�

f ⇤i ,� fi ,� , (B.17d)

within the field theoretical description in SB representation. In analogy to Section B.1, we apply the basis
f †i ⇤

⇣
f ⇤i ," , f ⇤i ,#

⌘
and c†i ⇤

⇣
c⇤i ," , c⇤i ,#

⌘
and calculate Hhyb for one d-orbital

Hhyb ⇤ V
X

i

c†i
*..
,
Z+ Z� eiQRi

Z� e�iQRi Z+

+//
-

f i + h.c. ⇤ 1
N

X

kk0
V

X

i

c†ke�ikRi eik0Ri
*..
,
Z+ Z� eiQRi

Z� e�iQRi Z+

+//
-

f k0 + h.c.

⇤

X

kk0
c†k

*..
,
�k ,k0VZ+ �k ,k0�QVZ�
�k ,k0�QVZ� �k ,k0VZ+

+//
-

f k0 + h.c. .

(B.18a)

�This Hamiltonian could easily be extended to allow f -electron hopping in full analogy to the SB-dependent hopping matrix of the
Hubbard model or non-local spin diagonal hybridization.
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With appropriate index shifts in momentum k ! k + Q, we find

HHyb ⇤

X

k

⇣
�Q

k

⌘†

*.........
,

0 0 VZ+ VZ�
0 0 VZ� VZ+

VZ+ VZ� 0 0

VZ� VZ+ 0 0

+/////////
-

�Q
k , (B.18b)

within the basis

�Q
k ⇤

*.........
,

c",k

c#,k�Q

f",k

f#,k�Q

+/////////
-

. (B.18c)

The remaining terms are calculated in full analogy to Section B.1.

B.2.1 One-conduction-band model

For the PAM with one d-orbital, we chose w.l.o.g. ✏1 ⇤ 0. The hopping terms of the c-electrons have to be
expressed in the Q-shifted basis as well, yielding

H ,Q
k ,PAM ⇤

*.........
,

⇠k � µ0 0 VZ+ VZ�
0 ⇠k�Q � µ0 VZ� VZ+

VZ+ VZ� ✏f + �0 � µ0 �

VZ� VZ+ � ✏f + �0 � µ0

+/////////
-

, (B.19)

with
⇠k ⇤ �2t(cos kx + cos ky ) . (B.20)

The eigenvalues "o ,s
k ,PAM are given by the roots of the quartic equation

a
�" + µ0

�4
+ b

�" + µ0
�3

+ c
�" + µ0

�2
+ d

�" + µ0
�
+ e ⇤ 0 , (B.21)

with

a ⇤ 1 ,

b ⇤ �2�̃0 �
⇣
⇠k + ⇠k�Q

⌘
,

c ⇤ �̃ + ⇠k⇠k�Q + 2�̃0
⇣
⇠k + ⇠k�Q

⌘
� V2Zp ,

d ⇤ ��̃(⇠k + ⇠k�Q ) � 2�̃0⇠k⇠k�Q + V2
✓1
2Zp (⇠k + ⇠k�Q ) +Z�

◆
,

e ⇤ �̃⇠k⇠k�Q �
V2

2 Z� (⇠k + ⇠k�Q ) + V4
⇣
Z2
� �Z2

+

⌘2
,
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and

�̃0 ⇤ �0 + ✏f ,

Zp ⇤ 2
⇣
Z2

+ +Z2
�
⌘
,

�̃ ⇤ �̃2
0 � �2 ,

Z� ⇤ 2�̃0
⇣
Z2

+ +Z2
�
⌘
� 4�Z+Z� .

They can be calculated analytically utilizing Ferrari’s method [318, 319]. The explicit analytic form is not
very descriptive but comes with a considerable performance boost in the numerical evaluation compared to
numerical diagonalization algorithms. In the PM limit, the eigenvalues adapt the simple form

"PM,±
k ,PAM ⇤

1
2

�
⇠k + ✏f + �0 � 2µ0

� ±
r

1
4

�
⇠k � ✏f � �0

�2
+ (Vz0)2 . (B.22)

B.2.2 Two-conduction-band model

The hopping matrix of the three orbital model is determined analogously, yielding

H ,Q
k ,PAM0 ⇤

*.................
,

⇠k + ✏1 � µ0 0 0 0 VZ+ VZ�
0 ⇠k�Q + ✏1 � µ0 0 0 VZ� VZ+

0 0 ⇠k + ✏2 � µ0 0 VZ+ VZ�
0 0 0 ⇠k�Q + ✏2 � µ0 VZ� VZ+

VZ+ VZ� VZ+ VZ� ✏f + �0 � µ0 �

VZ� VZ+ VZ� VZ+ � ✏f + �0 � µ0

+/////////////////
-

,

(B.23)
with the extended basis �Q

k ⇤
⇣
c1,",k , c1,#,k�Q , c2,",k , c2,#,k�Q , f",k , f#,k�Q

⌘>
. There is no general analytic

form for the eigenvalues, i.e., they need to be evaluated numerically.

B.3 Topological Kondo insulator model

Based on Reference [54] by Klett, Ok, Riegler et al., the 3D Hamiltonian of the TKI model on the simple cubic
lattice in within the effective SB field theory is given by

HTKI
⇤ Hd + Hhyb + H f + Hint , (B.24a)

with

Hd ⇤ �
X

hi ji

X

�

td
i j c
⇤
d ,i ,�cd , j,� � µ0

X

i ,�

c⇤i ,�ci ,� , (B.24b)

Hhyb ⇤H f c
hyb + Hc f

hyb ⇤

X

↵

X

hi< ji↵

X

��0�1

iV
⇣

f ⇤i ,�z†i ,�1�
⌧↵�1�0

c j,�0 � f ⇤j,�z†j,�1�
⌧↵�1�0

ci ,�0 + h.c.
⌘
, (B.24c)

H f ⇤ �
X

<i j>

X

��1�0
t f

i j f ⇤i ,�z†i ,�1�
z j,�0�1

f j,�0 +
X

i ,�

f ⇤i ,�
⇣
✏ f � µ0

⌘
fi ,� , (B.24d)
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Hint ⇤U
X

i

d⇤i di , (B.24e)

where ⌧↵ denotes the ↵th Pauli-matrix in spin space. In the following, we derive the SB-dependent MF

hopping matrix for the TKI model based on References [54] and [305]. Because of the spin-orbit coupling
(SOC) in the context of hybridization terms, the matrix cannot be represented in a minimal basis independent
of Q like the previously discussed spin-diagonal models. The basis has rather to be explicitly enlarged by the
factor P, such that PQ is a reciprocal lattice vector G with k + G ⇤ k as we discussed in Section 4.3.

B.3.1 Antiferromagnetic order

We choose the ordering vector to describe AFM or stripe order with P ⇤ 2, i.e.,

Q 2
(
(⇡, ⇡, ⇡)> , (⇡, ⇡, 0)> , (⇡, 0, 0)>

)
, (B.25)

consequently H ,Q
k ,TKI represents a 8 ⇥ 8 matrix. In analogy to Section B.1, we apply the basis f †i ⇤

⇣
f ⇤i ," , f ⇤i ,#

⌘

and c†i ⇤
⇣
c⇤i ," , c⇤i ,#

⌘
and further define R̂↵ to be the unit vector in ↵-direction, with ↵ 2 {x , y , z} to calculate�

H f c
hyb ⇤ i V

N/2

X

k ,k0

X

i ,↵

f †ke�ikRi
⇣
eik0R̂↵ � e�ik0R̂↵

⌘ *..
,
Z+ Z�eiQRi

Z�e�iQRi Z+

+//
-
⌧↵eik0Ri ck0

⇤ iV
X

k ,k0

X

↵

f †k
*..
,

Z+ �k0 ,k 2i sin
⇣
kR̂↵

⌘
Z� �k0 ,k�Q 2i sin

⇣
(k �Q)R̂↵

⌘

Z� �k0 ,k+Q 2i sin
⇣
(k + Q)R̂↵

⌘
Z+ �k0 ,k 2i sin

⇣
kR̂↵

⌘
+//
-
⌧↵ck0 .

Since we adopt a basis, where 2Q is a reciprocal lattice vector, it is k + Q ⇤ k �Q, and thus we may write

H f c
hyb ⇤ iV

X

k ,k0

X

↵

f †k
f
Z+ �k0 ,k 2i sin

⇣
kR̂↵

⌘
⌧0

+Z� �k0 ,k+Q 2i sin
⇣
(k + Q)R̂↵

⌘
⌧x

g
⌧↵ck0 .

After appropriate index shifts, we may express the hybridization terms by

H f c
hyb ⇤

X

k

⇣
f Q

k

⌘†
H f c

hybcQ
k , (B.26a)

with

H f c
hyb ⇤ �V

*.........
,

Z+sz ,k Z+(sx ,k � isy ,k ) Z�(sx ,k+Q + isy ,k+Q ) �Z�sz ,k+Q

Z+(sx ,k + isy ,k ) �Z+sz ,k Z�sz ,k+Q Z�(sx ,k+Q � isy ,k+Q )

Z�(sx ,k + isy ,k ) �Z�sz ,k Z+sz ,k+Q Z+(sx ,k+Q � isy ,k+Q )

Z�sz ,k Z�(sx ,k � isy ,k ) Z+(sx ,k+Q + isy ,k+Q ) �Z+sz ,k+Q

+/////////
-

, (B.26b)

f Q
k ⇤

⇣
fk ,", fk ,#, fk+Q ,", fk+Q ,#

⌘>
, (B.26c)

cQ
k ⇤

⇣
ck ,", ck ,#, ck+Q ,", ck+Q ,#

⌘>
, (B.26d)

s↵,k ⇤ 2 sin (k↵) . (B.26e)

�Since we explicitly double the number of bands in the magnetic basis, there are only N/2 different momenta, with N being the
number of lattice sites, which is considered in the normalization of the Fourier transformation.
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The remaining terms Hd and H f are calculated in full analogy to Sections B.1 and B.2. However, the respective
matrices have to be symmetrized to the extended basis Hk ! Hk + Hk+Q , yielding

HQ
d ,k ⇤

*.........
,

⇠d
k � µ0 0 0 0

0 ⇠d
k � µ0 0 0

0 0 ⇠d
k+Q � µ0 0

0 0 0 ⇠d
k+Q � µ0

+/////////
-

,

HQ
f ,k ⇤

*.........
,

Z2
+⇠

f
k +Z2

�⇠
f
k+Q + ✏f � µ0 0 0 Z+Z�

⇣
⇠ f

k+Q + ⇠ f
k

⌘

0 Z2
+⇠

f
k +Z2

�⇠
f
k+Q + ✏f � µ0 Z+Z�

⇣
⇠ f

k+Q + ⇠ f
k

⌘
0

0 Z+Z�
⇣
⇠ f

k + ⇠ f
k+Q

⌘
Z2

+⇠
f
k+Q +Z2

�⇠
f
k + ✏f � µ0 0

Z+Z�
⇣
⇠ f

k + ⇠ f
k+Q

⌘
0 0 Z2

+⇠
f
k+Q +Z2

�⇠
f
k + ✏f � µ0

+/////////
-

,

H� ⇤

*.........
,

�0 0 0 �

0 �0 � 0

0 � �0 0

� 0 0 �0

+/////////
-

. (B.27)

With these definitions, the final result is given by�

H ,Q
k ,TKI ⇤

*..
,

HQ
d ,k H f c

hyb✓
H f c

hyb

◆†
HQ

f ,k + H�

+//
-
, (B.28)

within the basis

�Q
k ⇤

✓
ck ,", ck ,#, ck+Q ,", ck+Q ,#, fk ,", fk ,#, fk+Q ,", fk+Q ,#

◆>
. (B.29)

In Chapter 12, we consider NN and NNN hopping for the d- and f -electrons with the dispersions

⇠d
k ⇤ �2td

⇣
cos kx + cos ky + cos kz

⌘
� 4t0d

⇣
cos kx cos ky + cos kx cos kz + cos ky cos kz

⌘
, (B.30a)

⇠ f
k ⇤ �2t f

⇣
cos kx + cos ky + cos kz

⌘
� 4t0f

⇣
cos kx cos ky + cos kx cos kz + cos ky cos kz

⌘
. (B.30b)

The eigenvalues of H ,Q
TKI are doubly degenerate due to Kramer’s pairs [294] and are determined numerically.

To avoid over-counting in the free energy (FE), the occurring k-summation must be performed over the
magnetic Brillouin zone BZQ , which is halved in size compared to the paramagnetic BZ of the original basis

X

k2BZQ

⇤
1
2

X

k2BZ0

. (B.31)

As shown in Reference [305], the MF analysis can, in principle, be adapted to investigate arbitrary commen-
surate ordering vectors. The dimension of H ,Q

k ,TKI, however, grows with the number of atoms in the unit
magnetic unit cell P and consequently, a numerical analysis becomes costly.

�This 8⇥ 8 description correctly contains the ferromagnetic (Q ⇤ 0) and paramagnetic limit. However, these cases can be expressed
within a more convenient 4 ⇥ 4 matrix.
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Bloch form

Equation (B.28) does not represent a Bloch matrix, i.e., H ,Q
k ,TKI , H ,Q

k+Q ,TKI. A Bloch form, which satisfies

H̃ ,Q
k ,TKI ⇤ H̃ ,Q

k+Q ,TKI can be found by means of a unitary transformation

H̃ ,Q
k ,TKI ⇤ U†B,kH ,Q

k ,TKIUB,k . (B.32)

A suitable basis transformation is given by [305]

c†1,k ⇤
1p
2

e ikx c†k +
1p
2

c†k+Q ,

c†2,k ⇤ � 1p
2

e ikx c†k +
1p
2

c†k+Q ,

f †1,k ⇤
1p
2

e ikx f †k +
1p
2

f †k+Q ,

f †2,k ⇤ � 1p
2

e ikx f †k +
1p
2

f †k+Q ,

(B.33)

with ⇣
�̃

Q
k

⌘†
⇤ U†B,k

⇣
�Q

k

⌘†
, (B.34)

where
⇣
�̃

Q
k

⌘†
represents the basis on the left side of Equation (B.33). This unitary transformation does, of

course, not impact the eigenvalues. Eigenvectors, however, are subject to change. This subtlety is important
to calculate topological invariants through eigenvalues of the inversion operator, which are only well defined
for Bloch matrices (compare Section 12.2.3). The inversion operator Î in the Bloch basis is given by

Î ⇤ U†B,�k

*........................
,

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 �1 0 0 0

0 0 0 0 0 �1 0 0

0 0 0 0 0 0 �1 0

0 0 0 0 0 0 0 �1

+////////////////////////
-

UB,k . (B.35)

The inversion eigenvalues of the n-th Kramer’s pair at time-reversal-invariant momentum (TRIM) � j can be
obtained by evaluating

⇠[n , � j] ⇤ h±�, n ,�k | I |±�, n , ki , (B.36)

where |±�, n , ki represents the two eigenvectors for the n-th Kramer’s pair of the hopping matrix defined in
Equation (B.32), with wave vector k and pseudo spin �.
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B.3.2 Ferromagnetic order

For ferromagnetic (FM) order, i.e., Q ⇤ 0, the SB-dependent hopping matrix reduces to

H ,0
k ,TKI ⇤

*..
,

H0
d ,k H ,0

hyb,k✓
H ,0

hyb,k

◆†
H ,0

f ,k + H�

+//
-

(B.37a)

within the four-dimensional basis

�k ⇤

✓
ck ,", ck ,#, fk ,", fk ,#

◆>
, (B.37b)

and

H0
d ,k ⇤

*..
,
⇠d

k � µ0 0

0 ⇠d
k � µ0

+//
-
, (B.37c)

H ,0
hyb,k ⇤ V

X

↵

⇣
Z+⌧↵s↵,k +Z�⌧↵⌧1s↵,k

⌘
, (B.37d)

H ,0
f ,k ⇤

*..
,
Z2

+⇠
f
k +Z2

�⇠
f
k � µ0 + ✏f 2Z+Z�⇠ f

k

2Z+Z�⇠ f
k Z2

+⇠
f
k +Z2

�⇠
f
k � µ0 + ✏f

+//
-
, (B.37e)

H� ⇤
*..
,
�0 �

� �0

+//
-
. (B.37f)

The matrix employs a Bloch form and the respective inversion operator I is given by

Î ⇤

*.........
,

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

+/////////
-

. (B.38)

In the PM limit, i.e., p !, � ! 0, the SB weights reduce toZ+ ! z0 andZ� ! 0 (compare Table 4.1). In this
case the two-fold degenerate eigenvalues of H ,0

k ,TKI adapt the simple form

"PM,±
k ,TKI ⇤

1
2

⇣
⇠d

k + z2
0⇠

f
k + ✏f + �0 � 2µ0

⌘
±

r
1
4

⇣
⇠d

k � z2
0⇠

f
k � ✏f � �0

⌘2
+ (2Vz0)2

⇣
sin2 kx + sin2 ky + sin2 kz

⌘
.

(B.39)

B.4 Mean-field spin rotation

In Section 4.1, we chose the bosonic MF spin to form a spiral in the x-y plane. In the following, we will
discuss the impact on the MF hopping matrices H ,Q , if that polarization plane is rotated. A spin rotation by
✓ around the axis n̂ of a second quantized Hamiltonian may be achieved by rotating the spinor f† ⇤

⇣
f̂†" , f̂

†
#
⌘
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by means of the unitary spin rotation operator [70]

U n̂ ,✓ ⇤ e�i✓n̂⌧/2 , (B.40a)

via
f̂
†
rot ⇤ U†n̂ ,✓ f̂

†
⇤ U†n̂ ,✓

⇣
ẑ†

⌘>
U n̂ ,✓U†n̂ ,✓ f̂

†
. (B.40b)

In order to rotate the MF spin, we only rotate the bosonic part of the SB spinor, and we need to apply the same
transformation to the Lagrange multiplier �, i.e.,

*..
,
Z+ Z� eiQR

Z� e�iQR Z+

+//
-
! U†n̂ ,✓

*..
,
Z+ Z� eiQR

Z� e�iQR Z+

+//
-

Un̂ ,✓ ,

*..
,

0 � eiQR

�e�iQR 0

+//
-
! U†n̂ ,✓

*..
,

0 �eiQR

�e�iQR 0

+//
-

Un̂ ,✓ .

(B.41)

For spin-rotation invariant models, this results in an overall unitary transformation of the hopping matrix
H ,Q , whose eigenvalues remain invariant. Moreover, since the bosonic Lagrangian is diagonal in spin space,
the FE is invariant as well, and all rotations are equivalent on MF level. For Hamiltonians, which break
spin-rotation symmetry, the MF can be extended to include the parameters ✓ and n̂ through Equation (B.41).
In the case of H ,Q

TKI,k , the sub-matrices transform as

H f c
hyb ! �V

X

↵

*..
,

Z+s↵,k⌧↵ Z�s↵,k+QU†n̂ ,✓ ⌧
1 Un̂ ,✓⌧

↵

Z�s↵,kU†n̂ ,✓ ⌧
1 Un̂ ,✓⌧

↵ Z+s↵,k+Q⌧↵

+//
-
,

H ,Q
f ,k !

*..
,

⇣
Z2

+⇠
f
k +Z2

�⇠
f
k+Q + �0 � µ

⌘
⌧0

⇣
Z+Z�

⇣
⇠ f

k+Q + ⇠ f
k

⌘
+ �

⌘
U†n̂ ,✓ ⌧

1 Un̂ ,✓⇣
Z+Z�

⇣
⇠ f

k + ⇠ f
k+Q

⌘
+ �

⌘
U†n̂ ,✓ ⌧

1 Un̂ ,✓

⇣
Z2

+⇠
f
k+Q +Z2

�⇠
f
k + �0 � µ

⌘
⌧0

+//
-
.

(B.42)

It becomes apparent that rotating the magnetization plane of the MF ansatz is equivalent to rotating the
direction of the spin-orbit coupling (SOC). It can be shown, e.g., using Mathematica, that the eigenvalues of
H ,Q

k ,TKI remain invariant under this transformation, and thus the polarization of the MF spin does not impact
the saddle point solution. This is due to the time-reversal (TR) and inversion symmetry of HTKI, where a
rotation of the SOC occurs on a degenerate subspace of the Hamiltonian

Un̂ ,✓ |�, n , ki ⇤ U1,n̂ ,✓ |�, n , ki + U2,n̂ ,✓ |��, n , ki with H ,Q
k ,TKI |±�, n , ki ⇤ "

⌫
k |±�, n , ki , (B.43)

where |±�, n , ki represents the two eigenvectors for the n’th Kramer’s pair with the degenerate eigenvalues
"⌫k , wave vector k and pseudo spin �.
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Details on magnetic fluctuations

Based on Reference [55], we further elaborate on the result for the PF part of the magnetic fluctuation matrix
introduced in Section 5.2.2

[MF (q)]a ,b
µ,⌫ ⇤

1
2

X

k2BZ0

X

s
nF

⇣
"s

k

⌘ "
Uk

✓ f
Z†µ⌫

g b ⌦
f
H k+aQZa

0

g
+

f
Z†0

g b ⌦
f
H k+bQZa

µ⌫

g

+
f
Z†µ

g b ⌦
f
H k+q+(a+b)QZa

⌫

g
+

f
Z†⌫

g b ⌦
f
H k�qZa

µ

g ◆
U†k

# s ,s

+
1
2

X

k2BZQ

X

s ,s0
LF

⇣
"s

k , "
s0
k+q , i!n

⌘

⇥
" X

v
Uk

⇣ f
Z†µ

g v ⌦
f
H k+q+(v+a)QZv+a

0

g
+

f
Z†0

g v ⌦
f
H k+vQZv+a

µ

g
+Bv ,v+a

µ

⌘
U†k+q

# s ,s0

⇥
" X

u
Uk+q

✓ f
Z†⌫

g u+b ⌦
f
H k+uQZu

0

g
+

f
Z†0

g u+b ⌦ (H k+q+(u+b)QZu
⌫ +B

u+b ,u
⌫

◆
U†k

# s0 ,s

.

(C.1)

Thereby, we provide definitions of the momentum-shifted Fourier coefficient matrices Za , and we list the
explicit expressions for all non-vanishing coefficients. Moreover, we elaborate on the special cases of AFM and
FM order, and exemplarily demonstrate the construction of [MF (q)]a ,b

µ,⌫ to illustrate the applied index-shifts.
In analogy to the PM case, all fermionic Matsubara summations have been evaluated analytically to derive

Equation (C.1). In order to do so, the pseudofermion MF Green’s function and consequently "s
k and Uk must

be written in the fermionic basis
�a

k ⇤ �k+aQ ,i!n
, (C.2)

with a 2 {0, 1, ..., P � 1}, and �a
k ⇤ �a+P

k that has been defined in Equation (4.12). The second momentum
sum needs to be performed over the magnetic, back-folded BZ, which relates to the paramagnetic BZ by
P

P
k2BZQ ⇤

P
k2BZ0 . Although MF Hamiltonians for SRI models can be expressed in the reduced basis defined

in Equation (4.15) that exploits a block-diagonality between spin and momentum shifts, we need to apply the
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full, symmetrized Bloch basis here. The corresponding MF Green’s matrix is of the form

G k ⇤

*.............
,

G k ,k G k ,k+Q . . . G k ,k+(P�1)Q

G k+Q ,k G k+Q ,k+Q

...
. . .

G k+(P�1)Q ,k G k(P�1)Q ,k+(P�1)Q

+/////////////
-

, (C.3)

i.e., momentum degrees of freedom are relabeled to band degrees of freedom by means of magnetic back
folding. As a consequence it is

dim G k ⇤ P dimH k ⇤ P dim Za , (C.4)

because the bare HamiltonianH k is defined in the non-magnetic basis. The Fourier coefficient matrix Za as
been introduced in Equation (5.39)�. The complicated index structure in Equation (C.1) achieves that the bare
Hamiltonian is back-folded to the magnetic basis of the Green’s function under consideration of the external
indices a , b. In order to do so, we define a vector of the Fourier coefficient matrices

Z ⇤
⇣
Z0 , Z1 , ... , ZP�1

⌘>
, (C.5a)

and introduce an external index that cyclically rotates the order of the vector components

Za
⇤

⇣
Z(�a) mod P , Z(�a+1) mod P , ... , Z(�a+P�1) mod P

⌘>
, (C.5b)

while the dimension dim Za ⇤ P dim Z is unchanged. The dyadic product of these vectors is constructed by

Za ⌦H kZb
⇤

*.....
,

Z(�a) mod PH kZ(�b) mod P . . . Z(�a) mod PH kZ(�b+P�1) mod P

...
. . .

...

Z(�a+P�1) mod PH kZ(�b) mod P . . . Z(�a+P�1) mod PH kZ(�b+P�1) mod P

+/////
-
. (C.5c)

We also employ the basis-adapted LM matrix

Ba ,b
µ ⇤

*.....
,

B(�a) mod P, (�b) mod P
µ . . . B(�a) mod P, (�b+P�1) mod P

...
. . .

...

B(�a+P�1) mod P, (�b) mod P . . . B(�a+P�1) mod P, (�b+P�1) mod P

+/////
-
, (C.6a)

where

Ba ,b
µ ⇤

8>><>>:
Bµ if a ⇤ b ⇤ 0 ,

0 otherwise
(C.6b)

and Bµ has been defined in Equation (5.24).

�We have droped the subindex that denotes the order of the derivative w.r.t. the bosonic fields  µ ,  ⌫ for simplicity. It is implied
that Za represents Za

0 , Za
µ , and Za

µ⌫ in full analogy.
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Fourier coe�cient matrices

Following Reference [55], we subsequently provide the Fourier coefficients of the z-matrix and its derivatives
within the expansion

zi

����� ⇤

1X

a⇤�1
z0,a e�iaQRi , @µzi

����� ⇤

1X

a⇤�1
zµ,a e�iaQRi , @µ⌫zi

����� ⇤

1X

a⇤�1
zµ⌫,a e�iaQRi . (C.7)

These determine the Fourier coefficients of the Z-matrix�

Z ⇤ 12O⇥2O � z , (C.8)

introduced in Section 5.2.2. It has been shown in Equation (A.24) that the z-matrix can conveniently be
expressed by

z ⇤

2666664
Z+⌧0

+Z�
3X

µ⇤1

pµ
p
⌧µ

3777775 e⇤
p

1�d2
1�d2

2�p2
0�p2

. (C.9)

Remember that we have to replace the e field by means of the ↵-constraint in our fluctuation basis before
taking derivatives, which is implied in the following. All quantities are to be evaluated at the saddle point of
the magnetic MF ansatz defined in Equation (4.2), where the p-field carries the spatial dependence

p i ⇤ p
*.....
,

cos(QRi )

sin(QRi )

0

+/////
-
, (C.10)

Zeroth derivative

z0,0 ⇤ Z+
��� ⌧0 , (C.11a)

z0,±1 ⇤
1
2Z�

��� 
✓
⌧1 ± i

f
⌧2

g>◆
. (C.11b)

Notice that only the zeroth Fourier coefficient is unity for the non interacting orbitals Z0,0 ⇤ 12O⇥2O � z0,0,
while all other Fourier coefficients are zero in that regard Z0,a,0 ⇤ 02O⇥2O � z0,a,0.

First derivatives

Due to the magnetic MF ansatz, taking the derivative w.r.t. a spin field  s 2 {p1 , p2 , p3} yields two extra
non-vanishing Fourier coefficients, while derivatives w.r.t. a charge field  c 2 {p0 , d1 , d2} do not impact the
spatial dependence:

zµ,0 ⇤
@Z+

@ c
µ

����� ⌧
0 , (C.12a)

zµ,±1 ⇤
1
2
@Z�
@ c
µ

����� 
✓
⌧1 ± i

f
⌧2

g>◆
. (C.12b)

�The number of non-interacting orbitals is denoted by O.



178 | C Details on magnetic fluctuations

We further have to distinguish between in-plane spin fields (p1 , p2) and the perpendicular spin field with
p3 ⇤ 0. In the following, we adapt the notation p±1 ⇤ 1

2 p and p±2 ⇤ ± 1
2i p and find for the derivatives

w.r.t. in-plane spin fields µ 2 �
p1 , p2

 

zµ,0 ⇤

 
@Z�
@p

+
Z�
p

! ����� 
⇥
⌧µ

⇤>

2 , (C.12c)

zµ,±1 ⇤
@Z+

@p

����� 
p⌥µ
p
⌧0 , (C.12d)

zµ,±2 ⇤

 
@Z�
@p
� Z�

p

! ����� 
3X

⌫⇤1

p⌥µp⌥⌫
p2

⇥
⌧⌫

⇤> , (C.12e)

and

zp3 ,0 ⇤
Z�
p

����� ⌧
3 . (C.12f)

For first and second derivatives, the non-interacting unity part is of course zero Zµ,a ⇤ 02O⇥2O � zµ,a .

Second derivatives

Derivatives w.r.t. two charge fields  c are given by

zµ⌫,0 ⇤
@2Z+

@ c
µ@ 

c
⌫

����� ⌧0 , (C.13a)

zµ⌫,±1 ⇤
1
2
@2Z�
@ c
µ@ 

c
⌫

����� 
✓
⌧1 ± i

f
⌧2

g>◆
. (C.13b)

Mixed derivatives w.r.t. a charge field  c
⌫ and an in-plane spin field µ 2 {p1 , p2} are given by

zµ⌫,0 ⇤

 
@2Z�
@p@ c

⌫
+
@Z�
p@ c

⌫

! ����� 
⇥
⌧µ

⇤>

2 , (C.13c)

zµ⌫,±1 ⇤
@2Z+

@p@ c
⌫

����� 
p⌥µ
p
⌧0 , (C.13d)

z±2
µ⌫ ⇤

 
@2Z�
@p@ c

⌫
� @Z�

p@ c
⌫

! ����� 
3X

↵⇤1

p⌥µp⌥↵
p2

⇥
⌧↵

⇤> , (C.13e)

and mixed derivatives featuring p3 yield

zµp3 ,0 ⇤
@Z�
p@ c

µ

����� ⌧3 . (C.13f)

Finally, second derivatives w.r.t. two in-plane spin fields µ, ⌫ 2 {p1 , p2} are found to be

zµ⌫,0 ⇤

 
@2Z+

@p2 +
@Z+

p@p

! ����� 
�µ⌫⌧0

2 , (C.13g)
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zµ⌫,±1 ⇤
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+
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zµ⌫,±3 ⇤
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⇥
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and derivatives w.r.t. one arbitrary spin field µ 2  s
µ and ⌫ ⇤ p3 yield

zµp3 ,0 ⇤ �µ3
@Z+

p@p
⌧0 , (C.13l)
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,
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⇥
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⇤>+
- . (C.13m)

Susceptibilities

As discussed in Section 5.3.2, dynamic susceptibilities around the MF saddle point are given by superpositions
of matrix elements of the fluctuation field Green’s function G ⇤ �M�1. The spin susceptibility around a MF

saddle point with arbitrary ordering vector Q can be inferred with Equation (5.52b) and is given by [55]

�
↵�
s (q) ⇤

D
�S↵�q�S�q
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⇤ (�1)↵+��1

"
p2
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0,0
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2 p p0
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p0 ,p0 (q)
!#
,

(C.14a)
with ↵, � 2 {1, 2, 3} and � ⇤ (1, i, 0)>. The general charge susceptibility can be found analogously with
Equation (5.53b) [55]
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(C.14b)

C.1 Antiferromagnetic mean-field ground states

AFM saddle points are defined by the periodicity P ⇤ 2, i.e., Q 2 {(⇡, 0, 0)> , (⇡, ⇡, 0)> , (⇡, ⇡, ⇡)>} in addition
to its lower-dimensional and symmetry equivalents. Consequently it is a , b 2 {0, 1} and we need to sum up
all equivalent Fourier coefficients, i.e., odd and even ones respectively in accordance with Equation (5.39).
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Bosonic part

The bosonic part of the fluctuation matrix is found with Equation (5.40b), yielding

f
MB

g0,0

AFM
⇤

f
MB

g1,1

AFM
⇤

1
2

*................................
,

2U � 4�0 !n 0 �4d1 0 0 0 0 0 0
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0 0 �2�0 �2p0 0 0 0 0 0 0

�4d1 0 �2p0 0 0 0 0 0 0 0

0 0 0 0 �2�0 �2p0 0 0 0 0

0 0 0 0 �2p0 0 0 0 0 0

0 0 0 0 0 0 �2�0 �2p0 0 0

0 0 0 0 0 0 �2p0 0 0 0

0 0 0 0 0 0 0 0 �2�0 �2p0

0 0 0 0 0 0 0 0 �2p0 0

+////////////////////////////////
-

,

(C.15a)
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+////////////////////////////////
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. (C.15b)

Since p2 ⇤ p sin(QRi ) ⇤ 0, the magnetization is polarized towards the x-direction and matrix elements that
couple to p2 and �2 vanish with the Fourier coefficient sum. As a consequence, the longitudinal spin fields
(p1 , �1) couple to the charge fields, while the transversal spin fields (p2 , �2) and (p3 , �3) remain decoupled
and block diagonal.

Pseudofermionic part

Summing up all equivalent Fourier coefficients yields

z1
0 ⇤ z0,�1 + z0,1 , (C.16a)

z0
µ ⇤ zµ,�2 + zµ,0 + zµ,2 , (C.16b)
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z1
µ ⇤ zµ,�1 + zµ,1 , (C.16c)

z0
µ⌫ ⇤ zµ⌫,�2 + zµ⌫,0 + zµ⌫,2 , (C.16d)

z1
µ⌫ ⇤ zµ⌫,�3 + zµ⌫,�1 + zµ⌫,1 + zµ⌫,3 . (C.16e)

Based on Reference [55], we provide a list of all coefficient matrices. In the following, the indices µ, ⌫ represent
charge fields  c 2 {p0 , d1 , d2} while the spin fields p1 , p2 , p3 are denoted explicitly.
Zeroth derivatives:
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Second derivatives:
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Finally, we illustrate the matrix construction featuring the dyadic product with a simple example
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C.2 Ferromagnetic mean-field ground states

For a FM saddle point, it is Q ⇤ 0, P ⇤ 1 and thus a ⇤ b ⇤ 0, i.e., the basis is spatially uniform like in the PM

case. Consequently, all Fourier coefficients are equal and need to be summed up. In order to do so, we may
use the results of the previous section

MB
FM ⇤

f
MB

g0,0

AFM
,+

f
MB

g0,1

AFM
, (C.19a)
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����FM
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����AFM
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0
����AFM

, (C.19b)

zµ
����FM

⇤ z0
µ

����AFM
+ z1
µ

����AFM
, (C.19c)

zµ⌫
����FM

⇤ z0
µ⌫

����AFM
+ z1
µ⌫

����AFM
. (C.19d)

In the limit p ! 0 and � ! 0, the theory reduces to fluctuations around a PM saddle point as derived in
Section 5.2.1.



A
pp

en
di

x
D

A������� D

On the numerical implementation and performance

A significant amount of my Ph.D. time was spent to numerically implement SB mean-field and fluctuation
equations, to optimize the performance, and to analyze the respective results. The following therefore shares
insights gained during that time on how to effectively fulfill these numerical tasks.

In that regard, we want to acknowledge Markus Legner, who provided a working C++ code to evaluate PM

mean-field saddle point equations and PM fluctuations. In close collaboration with Michael Klett and Jannis
Seufert, we further developed the numerics in C++ to encompass magnetic MFs, respective fluctuations, and
implemented the novel applications presented within this thesis. We want to also acknowledge Florian Goth,
who was a major help in regard of performance optimization. Publishing a unified, fully documented code
in collaboration with all developers is considered as a future project.

D.1 Minimization algorithm

A (magnetic) SB mean-field solution is determined by the saddle points of the grand potential (GP) [Equa-
tion (4.21)] or free energy (FE) [Equations (4.27) and (4.28)], where the respective potential needs to be
minimized w.r.t. the SB parameters and maximized w.r.t. the Lagrange multipliers (LMs). The ground state
is given by the respective global minimum, which makes the extremization a non-trivial problem because a
general analytical solution cannot be obtained and numerical algorithms are susceptible to converge towards
local rather than global minima.

To determine saddle point solutions, we applied the simplex algorithm provided by the GNU Scientific
Library within gsl_multimin.h [320]. Thereby, we performed a full maximization (i.e., minimization of the
potential times a minus sign) w.r.t. the Lagrange multipliers (i.e., �, �0, and µ0/µeff in case of the FE) between
every minimization step, which effectively yields a minimization on the constrained subspace. As shown in
Section 4.4.1, the potentials are concave functions of the LMs, i.e., the maximization is unique and converges
quickly. The minimization algorithm may, however, become stuck in a local minimum rather than the global
one. For the PM saddle point equations (i.e., � and p are explicitly set to zero and do not participate in
the minimization), this is a minor issue because there is usually only a single minimum according to our
numerical experience with the models presented within this thesis�. For the magnetic saddle point equations
it is, however, a different story and local minima as a function of the order parameter p and ordering vector
Q are common for finite doping.

The following algorithm has proven quite successful to find the global minimum for models without
spin-orbit coupling (SOC), where Q can be tuned as a continuous parameter:

�The only parameter regime where we identified two distinct minima of the FE within the PM description is in proximity to the Mott
limit (n ⇡ 1) of the PM Hubbard model at high temperatures, with minima for d ⇤ 0 and d , 0 respectively.
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1. Sample the ordering vector Q on the high symmetry lines (HSLs) with NHSL equally distributed points,
such that Q ! Q becomes a scalar quantity on these lines�.

2. Perform a minimization at each sample point for constant Q with two different sets of starting parameters
(e , p0 , p , d), one of which featuring a small magnetic order parameter (p ⇡ 0.1) and the second featuring
a large one (p ⇡ 0.5)�.

3. Choose the global minimum of the FE (or equivalently GP) from all previously calculated saddle points
and perform a minimization, where Q is added to the simplex algorithm as a continuous variable on
the respective HSL�.

4. Compare the resulting saddle point energy with the ground state energy of an explicit PM calculation
(i.e., without dependence on Q,p , �) and pick the lower one as the global minimum�.

For many applications, however, sampling only the high symmetry points (HSPs) or excluding certain
HSLs may be sufficient and should be considered to save calculation time. The above algorithm is especially
recommended in the situation of multiple competing magnetic phases. In that context it is helpful to gain an
intuition by plotting the FE as function of Q and p (while minimizing w.r.t. all other parameters).

D.2 Performance optimization

To boost the performance of the code, we need to identify the computational bottleneck, which is usually a
momentum sum in condensed matter physics. In our case the calculation of the pseudofermion (PF) part of
the FE [or equally GP, i.e., Equations (4.24) and (4.20)] for the MF and the PF part of the fluctuation matrix
[i.e., Equations (5.30) and (5.43)] for the Gaussian fluctuations. The bottlenecks are, therefore, the respective
integrands, which need to be evaluated on a discrete mesh of Nd momenta in the Brillouin zone (BZ), with d
being the spatial dimension. In order to save calculation time, consider the following remarks.

Analytical vs. numerical diagonalization

If possible, implement analytic solutions for eigenvalues of the MF-renormalized Hamiltonian. These can,
e.g., be obtained for magnetic saddle points of the Hubbard model and PAM, as shown in Appendix B,
which comes along with a significant speed boost compared to the application of numerical diagonalization
algorithms.

Momentum grid

Avoid unnecessary function calls in the integrands by storing data in advance that is called multiple times
during a calculation (time–memory trade-off ). In concrete terms, we save relevant data on a grid of N discrete
integers ni 2 [0, 1, ...N � 1] per dimension d that represent the possible momenta ki ⇤ 2⇡ni/N in the BZ of a
simple cubic lattice. The corresponding momentum sum is to be performed over the respective Nd momenta.

�The HSLs for a simple cubic lattice are � � X �M � � in 2D and � � X �M � � � R �M � X � R in 3D.
�To be even safer to find the global minimum, this could be repeated multiple times with random starting parameters. However,
the suggested procedure is mostly sufficient according to our numerical experience. In proximity to expected Mott physics, it is
recommended to also implement two sets of starting parameters, with d ⇤ 0 and d > 0.

�This process refines the solution due to the continuous Q, which is relevant for incommensurate magnetism and the calculation
of the compressibility [Equation (4.42)] by means of the finite difference method.

�This is important to track first-order transitions from the PM to a non-magnetic ground state. Also, the PM minimization converges
quickly and serves as a benchmark/consistency check of the magnetic solution in the limit p ! 0.
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Application for the MF: Renormalized MF eigenvalues that enter the integrand depend on the dispersion
⇠k of the free system, which contains trigonometric functions that are numerically costly. Therefore ⇠k , ⇠k+Q ,
and related quantities should be stored on the momentum grid to avoid such function calls during the
minimization procedure in order to significantly reduce the calculation time�. Moreover, the dependence on
MF parameters can be reduced to the variables Z+ ,Z� , �0 , �, µ0 (compare Table 4.1). Suitable functions of
these parameters can also be prestored, but need to be updated every time before evaluating of the sum.

Application for the fluctuations: Storing data in advance can drastically reduce computation time if it is
desired to determine the fluctuation matrixMµ,⌫ (q , !) at multiple momenta or frequencies at the same saddle
point. Thereby, we save the eigensystem ("k ,Uk) and corresponding values of the Fermi-Dirac distribution
nF("k ) of the MF Hamiltonian, as well as the bare HamiltonianHk on the momentum-grid. This same grid can
now be applied to calculate the fluctuation matrix at multiple different momenta if q is chosen such that k + q
is also a grid point. This procedure enormously saves calculation time in regard of the weight matricesWs ,s0

that enter Equations (5.30) and (5.43). IfMµ,⌫ is calculated at constant momentum for different frequencies
!, the weight matrices as a whole can be stored to further optimize.

Lattice symmetries and reduced momentum integration

It is well known, that lattice symmetries can be utilized to effectively express momentum sums through
only a fraction of the BZ, while the rest can be recovered via symmetry transformations from the respective
irreducible wedge. This can, e.g., be exploited in the momentum sum of the MF free energy in order to save
calculation time. With four-fold rotation and mirror symmetry (C4v symmetry), coinciding with the models
discussed within this thesis, the irreducible portion of the BZ is 1/8 in 2D and 1/48 in 3D and applicable to
magnetic ordering vectors Q that do not break the C4v symmetry (i.e., PM, FM, and AFM). Thereby, HSPs, HSLs,
and other remaining points are scaled by weight factors (i.e., the number of symmetry-equivalent points) that
are listed in the following and need to be considered as proportionality factors during the momentum sum�:

Two dimensions: Weight 1: HSPs (�,M); Weight 2: HSP (X); Weight 4: HSLs (�-X,X-M,M-�, excluding the
HSPs); Weight 8: Remaining triangle with kx 2 (0, ⇡) ^ ky < kx , excluding the HSLs.

Three dimensions: Weight 1: HSPs (�,R); Weight 3: HSPs (X,M); Weight 6: HSLs (�-X,M-R); Weight
8: HSL (�-R); Weight 12: HSLs (�-M,X-M,X-R); Weight 24 for the four triangular surfaces cornered by the
HSLs: kx 2 (0, ⇡) ^ ky < kx ^ kz ⇤ 0 , kx 2 (0, ⇡) ^ ky < kx ^ kz ⇤ ky , kx 2 (0, ⇡) ^ ky ⇤ kx ^ kz < kx

, kx ⇤ ⇡ ^ ky 2 (0, ⇡) ^ kz < ky ; Weight 48 for the enclosed volume of the triangular pyramid, i.e., kx 2
(0, ⇡) ^ ky < kx ^ kz < ky .

Parallelization

The code can conveniently be parallelized, e.g., by using OpenMP. It is usually most efficient to parallelize
the evaluation of different input parameters, but also parallelizing the momentum sum can be effective if the
integration grid is not too small.

�If Q is included as a continuous parameter of the simplex minimization algorithm, we have to either calculate ⇠k+Q without the
grid (not recommended) or employ a very large grid of ⇠k to extract ⇠k and ⇠k+Q accurately for every Q and respective discretized
momenta of the summation.

�Be aware of the correct integral normalization, i.e., (2N)d , if there are N discretized momenta between � and X and d spatial
dimensions.
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D.3 Pitfalls to avoid

Last but not least, consider the following remarks to avoid pitfalls during the numerical implementation or
data analysis:

• Benchmark results with certain known limits in order to eliminate implementation errors: For the
MF minimization, e.g., the analytical solution for the half-filled Hubbard model [53], or the PM and
non-interacting limit (Table 4.1). Moreover, the PM limit of the magnetic fluctuation matrix has been
established in Section 5.2.2. Also, consider the consistency checks discussed in Chapter 13.

• Make sure that results from the parallelized code are recovered without parallelization in order to

eliminate possible errors from race conditions.

• Choose efficient basis of MFs and consistent starting values for the simplex minimization algorithm:

Apply the substitutions suggested in Section 4.4.3 to reduce the number of minimization parameters
for the FE. This is especially required for the Hubbard model to guarantee convergence. For a correct
evaluation of fluctuations, one has to resubstitute according to Equations (4.27c) and (4.30c) at the
respective saddle point. Moreover, the starting values of the SBs need to satisfy all MF constraints and
these quantities are required to remain positive semidefinite during the minimization process�.

• Be aware of local minima: The simplex minimization may get stuck in local minima, especially for
competing magnetic phases or near the Mott transition. Consider the algorithm presented in Section D.1
to seek the global minimum.

• Perform a consistent back-folding in the context of the momentum grid: I.e., make sure that terms
like "k+q back-folded to the BZ by exploiting k + 2⇡n ! k.

• Be aware of the convergence parameter ⌘ that yields from analytical continuation (i!n ! ! + i⌘):

Static susceptibilities can be calculated most efficiently for ! ⇤ ⌘ ⇤ 0, and finite but arbitrarily small
temperature T. In that case, however, the zero momentum limit of the occurring Lindhard function
needs to be implemented according to Equation (5.31b). Finite! requires ⌘ > 0 for convergent numerics.
Remember that ⌘ does not only enter the Lindhard function but also the bosonic part of the fluctuation
matrix [Equation (5.20)], and it must be consistently chosen in Equation (5.57b) for the evaluation of the
conductivity.

• Monitor the convergence of the momentum summations: The sufficient number of integration points
Nd strongly depends on the specific application. MF integrals usually converge faster than fluctuation
quantities�. Fluctuations around gapped ground states converge much quicker than metallic states that
employ a FS. In that context, an enhanced DOS at the Fermi-level requires a higher number of integration
points, which makes fluctuation calculations in the context of heavy fermions in the PAM particularly
challenging. Finally, finite (!, ⌘) usually leads to a slower convergence of the associated Lindhard
function, and ⌘ should typically be much smaller than all other energy scales. Decreasing ⌘, however,
requires increasing N in order to uphold convergence, where N / 1/⌘ can act as a rule of thumb.

�This can, e.g., be achieved by adding a large energy penalty to the FE if this additional constraint is violated.
�Reasonable MF convergence for the Hubbard model and PAM can already be achieved for N2 & 1002 and N3 & 203 for the AFM TKI
model with exploiting the previously discussed irreducible 3D wedge, although a higher resolution is recommended to refine the
results. For fluctuations, we typically applied N2 & 5122, N3 & 643, dependent on the specific parameter regime.
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