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Abstract
The assumption of multivariate normality underlying the Hotelling 𝑇2 chart
is often violated for process data. The multivariate dependency structure can
be separated from marginals with the help of copula theory, which permits to
model association structures beyond the covariance matrix. Copula-based esti-
mation and testing routines have reached maturity regarding a variety of prac-
tical applications. We have constructed a rich design matrix for the comparison
of the Hotelling 𝑇2 chart with the copula test by Verdier and the copula test by
Vuong, which allows for weighting the observations adaptively. Based on the
design matrix, we have conducted a large and computationally intensive sim-
ulation study. The results show that the copula test by Verdier performs better
thanHotelling 𝑇2 in a large variety of out-of-control cases, whereas the weighted
Vuong scheme often fails to provide an improvement.
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1 INTRODUCTION

Copulae have been used on a large scale for dependence modelling in finance,1 insurance, economics, earth sciences,
meteorology, climate research,2 engineering and chemical process systems engineering.3 Copula theory enables the mod-
elling and empirical analysis of any practically relevant dependence structure in particular beyond multivariate normal
distribution. Further survey of theory and applications is provided by Czado.4 However, applications of copulae in process
monitoring are still marginal as observed by Ren et al.3 The ample treatment by Czado4 leaves process monitoring uncon-
sidered.
The application of copulae to processmonitoring is pursued in amoderate amount of papers only. Ren et al.3 use copula-

based dependence monitoring for the formulation of methods for the detection of different modes of a given chemical
process. Busababodhin and Amphanthong5 review some existing studies on the use of copulae in process monitoring.
The referenced studies concentrate on two subjects: (1) the use of the copula to model serial dependence in data, see
Hryniewicz and Szediw6 as well as Hryniewicz7 and (2) bivariate copulae to model the dependence of exponentially dis-
tributed marginals representing the time between rare events, see Xie et al.8 and Kuvattna et al.9 The latter approaches
consider shifts only in the exponentially distributed marginals and not in the copula describing the dependence structure.
In his monitoring approach, Verdier10 combines the density level set method for the definition of control limits with

copula modelling of a multivariate process. The classical Hotelling 𝑇2 decision rule can then be viewed as a special case
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TABLE 1 The confidence limits for the means and correlation of RWE and HeidelbergCement. The scalar Student-t confidence levels are
95%

Timeframe 𝝁 lower 𝝁 upper 𝝆 lower 𝝆 upper

2017-12-22 through 2018-05-11
(
0.999

0.997

) (
1.01

1.00

)
0.084 0.448

2018-05-11 through 2018-09-28
(
0.999

0.996

) (
1.00

1.00

)
0.059 0.428

2018-09-28 through 2019-02-15
(
0.997

0.995

) (
1.00

1.00

)
0.203 0.540

2017-12-22 through 2018-05-11 2018-05-11 through 2018-09-28 2018-09-28 through 2019-02-15

F IGURE 1 Contour plots of copulae fitted to the daily returns of unadjusted prices of RWE and HeidelbergCement

of the density level method under multivariate normal distribution. With respect to out-of-control models, Verdier also
restricts attention to shifts in the mean only.
In contrast to all previous authors, we consider process monitoring under a shift in the dependence structure repre-

sented by a shift from one copula to another. More specifically, this shift conserves both the marginals and the mean
vector. This behaviour occurs particularly in financial return time series. One example among many is the dependence
structure of the stocks of RWE and HeidelbergCement during three consecutive blocks of 100 trading days from the end
of 2017 through early 2019.
When analysing the dependence structure of the daily returns of the daily unadjusted prices11 of RWE and Heidel-

bergCement over 300 trading days from 22 December 2017 through 15 February 2019 in three blocks of 100 consecutive
trading days the confidence intervals for the mean vector and the correlation all overlap as shown in Table 1. So from this
point of view the contour plots of the estimated dependence copulae in Figure 1 should intuitively be structurally similar.
However, the three corresponding copula estimates shown in Figure 1 indicate that there may nevertheless be shifts in
tail dependence when going from one block of 100 days to the next. Note the stronger lower tail dependence on the lower
left quadrant in the middle plot, which does not appear in the plots on the left or the right. Furthermore, there appears
to be no upper tail dependence between the two stocks in any of the three estimated copulae, as evidenced by the upper
right quadrants.
When considering all pairs of DAX-30 stocks from 28 November 2014 through 28 November 2019 then there are in

total 5234 blocks of 100 trading days. During the analysis of a given pair of stocks, bivariate copula models are estimated
for each block of 100 days. Then for consecutive blocks, the models are compared. Overall, in 302 cases, the correlation
and mean of two consecutive models were the same while the copula families and with them the estimated dependence
structure differed. Therefore, over 5% of the observed dependence changes between two consecutive blocks preserve the
mean and the correlation.
When analysing dependence between two or more variables, it is necessary to model such changes in the dependence

structure. However, in cases such as this one considering mean and correlation only is not sufficient.
This paper describes and analyses a flexible approach to monitoring bivariate dependence and in particular tail-

dependence. The study is organised as follows: Section 2 explains the general rationale of copula theory in process moni-
toring. Section 4 outlines two copula-based monitoring charts. Section 5 lays out the design matrix underlying both sim-
ulation studies. Section 6 presents the results of the two simulation studies put forth in this paper.
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TABLE 2 The design matrix. Please note that 𝑐(𝜽) = 𝒖 ↦ 𝑐(𝒖; 𝜽), where 𝑐 ∈ {𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛, 𝐺𝑢𝑚𝑏𝑒𝑙, 𝐶𝑙𝑎𝑦𝑡𝑜𝑛, 𝐽𝑜𝑒, 𝐹𝑟𝑎𝑛𝑘} and 𝑐 is the
corresponding copula density in the notation used in Section 2

Phase II 𝝆 Phase I Phase II Vuong Phase II weight parameter
0.8572962 Gaussian(0.8572962) Gumbel(3) 𝜆 ∈ {NA, 0.1, 0.2, 0.3, 0.4, 0.5}
0.9714609 (See above) Gumbel(7) (See above)
0.0010472 (See above) Gumbel(1) (see above)
0.7739141 Gaussian(0.7739141) Clayton(3) (See above)
0.9032978 (See above) Clayton(7) (See above)
0.4990976 (See above) Clayton(1) (See above)
0.6993231 Gaussian(0.6993231) Joe(3) (See above)
0.8886440 (See above) Joe(7) (See above)
0.0005751 (See above) Joe(1) (See above)
0.4251543 Gaussian(0.4251543) Frank(3) (See above)
0.7235313 (see above) Frank(7) (See above)
0.1571861 (See above) Frank(1) (See above)
0.6 Gaussian(0.3) Gaussian(0.6) (See above)
0.9 Gaussian(0.6) Gaussian(0.9) (See above)
0.6 Gaussian(0.9) Gaussian(0.6) (See above)

The bold values signify the most advantageous ARLs. In this case the smallest ones.

2 RATIONALE OF COPULAMONITORING

The Hotelling 𝑇2 chart is widely used for multivariate process monitoring. Its control limits depend on the Phase I mean
vector𝝁 and on the Phase I covariancematrix𝚺. These two parametersmiss some of the dependence structure amultivari-
ate distribution may offer as outlined above for the daily returns of RWE and HeidelbergCement. How does the Hotelling
𝑇2 chart fare in situations like these?
In comparison to Figure 1, this paper considers more articulate examples of changes in the dependence structure. It

assumes that all marginal distributions are standard normal and only considers copulae that depend on one parameter,
which shall be called 𝜃. Specifically, the Gaussian, Gumbel, Clayton, Joe and Frank copula families were chosen. Note
that the correlation 𝜌 is strictly increasing in 𝜃 and in the case of the Gaussian copula 𝜌 = 𝜃. Additionally, the changes in
tail dependence are chosen in a way that makes them somewhat more pronounced than in Figure 1, in order to facilitate
detection. Also a fewmore variations or changes in dependence structure are considered in order to get a good overview of
different underlying changes, which may occur during process monitoring. Nevertheless, these simplifications and slight
adjustments yield worthwhile results by providing valuable guidelines.
The targeted examples are the rows in Figures 2 and 3. They show contour plots of bivariate distributions with stan-

dard normal marginals meaning that 𝝁 = 𝟎 and 𝜎2
1
= 𝜎2

2
= 1. The correlations 𝜌 range from about 0.43 to approximately

0.86 and are specified for each row individually. As the variances and the correlation are the same for each row, the cor-
responding covariance matrices are also the same. The plots on the left hand side show bivariate normal distributions
where the dependence only depends on 𝜌. However, the plots on the right hand side are not constructed from the Gaus-
sian copula, meaning they describe non-normal bivariate distributions. Therefore, these examples show that some aspects
of dependence structure are described by the correlation 𝜌 while others are not.
As to the parameters, the copula parameter 𝜃 = 3was chosen as a point of reference. Lower dependence was modelled

with 𝜃 = 1 and higher dependence with 𝜃 = 7, with both values exhibiting visible differences to the reference point. As
the plots clearly show there may be contexts in which it is undesirable to consider two densities on the same row to be
equivalent, ensuring that these examples capture the thrust of the example of RWE and HeidelbergCement. These cases
are later also featured in our design matrix in Table 2.
Naturally, this implies that only estimating themean when applying theHotelling𝑇2 chart cannot differentiate the pairs

of cases given by the rows in Figures 2 and 3, but instead consider them as equivalent, because 𝝁 and 𝚺 are estimated to
be the same. Therefore, two additional approaches for monitoring non-normal multivariate dependence structure beyond
the covariance matrix will be presented, which are both based on copula theory. The results help clarify the applicability
of these two approaches as well as their relationship to the widely used Hotelling 𝑇2 chart.
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F IGURE 2 Contour plots of bivariate
densities with univariate standard normal
marginals. The dependence structure is
given by the respective copulae

3 COPULA THEORY FOR PROCESS MONITORING

Copula theory is motivated by decomposing a multivariate distribution into its marginals and a factor describing the
dependency structure based on Sklar’s Theorem,12 see the exposition by Czado.4 While Nelsen13 offers a general proof of
the theorem for any type of distribution, the focus here lies on distributions of absolutely continuous type where both the
CDF and PDF can be decomposed uniquely. Let the random vector𝑿 follows an absolutely continuous distribution. Then
its PDF can be uniquely decomposed in the following way:

𝑓𝑿(𝒙; 𝜽) = 𝑐
(
𝐹𝑋1

(𝑥1; 𝜽), … , 𝐹𝑋𝑁
(𝑥𝑁; 𝜽); 𝜽

)
⋅ 𝑓𝑋1

(𝑥1; 𝜽)⋯𝑓𝑋𝑁
(𝑥𝑁; 𝜽)
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F IGURE 3 Contour plots of bivariate densities with univariate standard normal marginals. The dependence structure is given by the
respective copulae

where the function 𝑐 ∶ [0; 1]𝑁 × Θ ⟶ ℝ+
0 is called the copula density, 𝑁 is the dimension of the random vector 𝑿 and

Θ denotes the parameter space. The equality means that the copula density 𝑐 describes all of the dependence structure
inherent in the arbitrary absolutely continuous density on the left hand side, as the 𝑁 remaining factors 𝑓𝑋𝑖

(𝑥𝑖; 𝜽), 𝑖 =

1, … ,𝑁 on the right hand side are all univariate marginal densities. Furthermore, as this decomposition is guaranteed to
exist, this equation also permits to construct an arbitrary absolutely continuous distribution’s density by choosing a copula
density and univariate marginals.
As a first example a non-degenerate bivariate normal density is decomposed

𝜑𝑿(𝒙; 𝝁, 𝚺) = 𝑐(Φ1(𝑥1), Φ2(𝑥2); 𝜌) ⋅ 𝜑1
(
𝑥1; 𝜇1, 𝜎

2
1

)
⋅ 𝜑2

(
𝑥2|𝜇2, 𝜎22)

where

𝒙 = (𝑥1, 𝑥2)
⊤
, 𝝁 = (𝜇1, 𝜇2)

⊤
, 𝚺 =

(
𝜎2
1 𝜎12

𝜎12 𝜎22

)

and 𝜌 = 𝜎12 ∕ (𝜎1𝜎2).
Note, that the unique copula resulting from the decomposition of the multivariate normal distribution according to

Sklar’s theorem is called the Gaussian copula with copula density

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑢1, 𝑢2|𝜌) = 1

𝜑(𝑦1)𝜑(𝑦2)

1√
1 − 𝜌2

exp

{
−
𝜌2
(
𝑦21 + 𝑦22

)
− 2𝜌𝑦1𝑦2

2(1 − 𝜌2)

}

where 𝑦1 = Φ−1(𝑢1), 𝑦2 = Φ−1(𝑢2) and Φ, 𝜑 are the distribution function and density of the univariate standard normal
distribution, respectively. This immediately leads to two crucial observations: First, the copula density only depends on
the correlation 𝜌 but neither on the means 𝜇1, 𝜇2 nor the variances 𝜎21, 𝜎

2
2 . Recall, that multivariate normality implies

that two marginals are independent if and only if they are uncorrelated. Second, due to the uniqueness of the density’s
decomposition, an absolutely continuous distribution is bivariate normal if and only if its copula density is the density of
the Gaussian copula and the marginals are univariate normal distributions.
The latter leads to a very useful intuition concerning the nature of the multivariate normal distribution in relation to

other multivariate distributions. It is possible to violate the assumption of multivariate normality by choosing at least one
non-Gaussianmarginal or by choosing a copula that is not the Gaussian copula. This permits to purposefully violate the
normality assumption of the Hotelling 𝑇2 chart.
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For instance, changing one marginal to follow an exponential distribution as outlined in Example 1.15 of Czado4 gives
a good intuition as to what it means for a non-normal multivariate distribution to have the same copula and hence the
same dependence structure as a bivariate normal distribution even though one marginal is non-normal. This sameness
of dependence structure is defined in a strictly formal way. Moreover, the Gaussian copula is an example of a bivariate
dependence structure that is fully described by the correlation.
In this paper, the focus lies on preserving the marginals and changing the copula family, while preserving the correla-

tion. Note, that in general changing the copula family may affect the entire dependence structure. By changing the copula
family and choosing a parameter, which preserves the correlation in spite of the change, examples are constructed where
the dependence is affected in a way that cannot be described by only considering the correlation. Even though this proce-
dure relies on choosing the parameters carefully, the example of RWE and HeidelbergCement demonstrates the practical
interest in these kinds of phenomena. For completeness, we will also consider examples that change both the copula fam-
ily and the correlation. Note, that the marginals remain constant and therefore unaffected by the changes. Section 5 will
demonstrate how these crucial aspects of Figures 2 and 3 are reflected in our design matrix while adding both the above
mentioned structural changes that preserve correlation and the ones that changes correlation. The latter provide insight
into simultaneous changes of the dependence copula and the correlation.
The copulae in Figure 4 are additional copula families available for estimation in the second simulation study. Sum-

marily, the utilised copula densities are given in the following and example contours are plotted in Figures 2–4:

𝐺𝑢𝑚𝑏𝑒𝑙(𝑢1, 𝑢2|𝜃) = 𝜕2

𝜕𝑢1𝜕𝑢2
𝑒𝑥𝑝

[
−{(− ln 𝑢1)

𝜃
+ (− ln 𝑢2)

𝜃
}
1

𝜃

]

𝐶𝑙𝑎𝑦𝑡𝑜𝑛(𝑢1, 𝑢2|𝜃) = (1 + 𝜃)(𝑢−𝜃1 + 𝑢−𝜃2 − 1)
1+2𝜃

𝜃 (𝑢1𝑢2)
−(𝜃+1)

𝐽𝑜𝑒(𝑢1, 𝑢2|𝜃) = 𝜕2

𝜕𝑢1𝜕𝑢2
1 −

(
(1 − 𝑢1)

𝜃
+ (1 − 𝑢2)

𝜃
− (1 − 𝑢1)

𝜃
(1 − 𝑢2)

𝜃
) 1

𝜃

𝐹𝑟𝑎𝑛𝑘(𝑢1, 𝑢2|𝜃) = 𝜕2

𝜕𝑢1𝜕𝑢2
−

1

𝜃
ln

(
1

1 − 𝑒−𝜃
[(1 − 𝑒−𝜃) − (1 − 𝑒−𝜃𝑢1)(1 − 𝑒−𝜃𝑢2)]

)

𝑆𝑡𝑢𝑑𝑒𝑛𝑡 − 𝑡(𝑢1, 𝑢2|𝜈, 𝜌) = 𝑡(𝑇−1
𝜈 (𝑣1), 𝑇

−1
𝜈 (𝑣2)|𝜈, 𝜌)

𝑡𝜈(𝑇
−1
𝜈 (𝑣1))𝑡𝜈(𝑇

−1
𝜈 (𝑣2))

𝐵𝐵1(𝑢1, 𝑢2|𝜃, 𝛿) = 𝜕2

𝜕𝑢1𝜕𝑢2
𝜂(𝜂−1(𝑢) + 𝜂−1(𝑣)), where 𝜂(𝑠) = 𝜂𝜃,𝛿(𝑠) = (1 + 𝑠

1

𝛿 )
−

1

𝜃

𝐵𝐵6(𝑢1, 𝑢2|𝜃, 𝛿) = 𝜕2

𝜕𝑢1𝜕𝑢2
1 −

⎛⎜⎜⎝1 − exp
⎛⎜⎜⎝−((− ln(1 − (1 − 𝑢1)

𝜃
))
𝛿

+ (− ln (1 − (1 − 𝑢2)
𝜃
))
𝛿

)

1

𝛿
⎞⎟⎟⎠
⎞⎟⎟⎠
1

𝜃

𝐵𝐵7(𝑢1, 𝑢2|𝜃, 𝛿) = 𝜕2

𝜕𝑢1𝜕𝑢2
𝜂(𝜂−1(𝑢) + 𝜂−1(𝑣)), where 𝜂(𝑠) = 𝜂𝜃,𝛿(𝑠) = 1 −

[
1 − (1 + 𝑠

−
1

𝛿 )

] 1

𝜃

𝐵𝐵8(𝑢1, 𝑢2|𝜃, 𝛿) = 𝜕2

𝜕𝑢1𝜕𝑢2

1

𝛿
⋅

⎛⎜⎜⎜⎝1 −
(

1

1 − (1 − 𝛿)
𝜃
(1 − (1 − 𝛿𝑢1)

𝜃
)(1 − (1 − 𝛿𝑢2)

𝜃
)

) 1

𝜃
⎞⎟⎟⎟⎠

In summary, copula theory provides a two-pronged approach. First, it permits to examine and evaluate established
monitoring charts in situations where a selection of their assumptions are violated. For example, the Hotelling 𝑇2 chart
can be analysed for cases where the underlying distribution is non-normal in a precisely controlled way. This permits
to examine how different violations of the underlying assumptions affect a monitoring method’s performance in prac-
tice. Second, as demonstrated in Verdier,10 copula theory also gives rise to new methodologies. The types of structural
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F IGURE 4 Contour plots of bivariate densities with univariate standard normal marginals. The dependence structure is given by the
respective copulae
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dependence illustrated in Figures 1–3 indicate that copula theory can provide monitoring charts, which allow to consider
dependence structures other than the covariance matrix.

4 COPULAMONITORING

We analyse two approaches to process monitoring based on copula theory. The first is the approach by Verdier10. The
second is constructed by combining the Vuong14 test statistic with weighted copula estimation.

4.1 Hotelling’s 𝑻𝟐 chart

The Hotelling 𝑇2 chart is used with fixed 𝝁 and 𝚺, which are assumed to be known from phase I, see Mason and Young.15

4.2 Verdier’s monitoring chart

The monitoring chart proposed by Verdier10 uses density level set estimation to obtain a multivariate tolerance region
based on Baíllo and Cuevas.16 The following outline follows Verdier’s paper closely. This general approach is implemented
by estimating copula models for Phase I allowing Monte Carlo estimations of the tolerance regions and computation of
the density values of interest for largeMonte Carlo sample sizes. The underlying and in practice unknown Phase I density
is denoted as 𝑓. The tolerance region 𝐷 depends on the false-alarm rate 𝛼. The desirable properties are the following:

𝐷(𝑐𝛼) =
{
𝑥 ∈ ℝ𝑑|𝑓(𝑥) ≥ 𝑐𝛼

}
(1)

where 𝑐𝛼 satisfies

𝑃(𝑋 ∈ 𝐷(𝑐𝛼)) = ∫
𝐷(𝑐𝛼)

𝑓(𝑥) 𝑑𝑥 = 1 − 𝛼. (2)

In an empirical analysis, 𝑓 is replaced with the estimated 𝑓. Verdier10 demonstrates that the properties (1) and (2) are
compatible with his proposed estimators for both 𝑓 and the level sets of 𝑓.
The illustration in Figure 5 is univariate, even though the Verdier chart is applied to the multivariate Phase I density in

the simulation study. The goal is to find one or two level sets that describe very unlikely or very likely Phase I realisations.
In practice, a Monte Carlo method is used to estimate these level sets. When transferred back to the density’s domain, the
level sets marked in red correspond the measurements, which trigger a signal.
Verdier’s asymptotic analysis hinges on three key assumptions

1. The density 𝑓 is of class 𝐶2 with a bounded Hessian matrix, and 𝑓(𝑥) ⟶ 0 as ||𝑥|| ⟶ ∞.
2. 0 has Lebesgue content 0
3. 𝜆({𝑓 = 𝑐}) = 0 for every 𝑐 > 0.

where

0 =

{
𝑐 ∈

(
0; sup

𝑥∈ℝ𝑑

𝑓(𝑥)

)| inf
{𝑥|𝑓(𝑥)=𝑐} ||▿𝑓(𝑥)|| = 0

}
following Cadre et al.17
Verdier’s approach permits to construct an upper control limit, a lower control limit or both limits at the same time.

Mühlig’s18 analysis demonstrates that choosing both an upper and lower control limit leads to more sensitive change
detection compared to only constructing a lower control limit. The double-sided tolerance region is constructed as

𝐷(𝓁𝛼, 𝑢𝛼) =
{
𝑥 ∈ ℝ𝑑|𝓁𝛼 ≤ 𝑓(𝑥) ≤ 𝑢𝛼

}
(3)
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F IGURE 5 Univariate illustration of the lower
control limit constructed via level sets by Verdier’s10

approach. The lower control-limit is set to 𝑐𝛼 leading to
tolerance region 𝐷(𝑐𝛼) = [−2; 2]

where again

𝑃(𝑋 ∈ 𝐷(𝓁𝛼, 𝑢𝛼)) = ∫
𝐷(𝓁𝛼,𝑢𝛼)

𝑓(𝑥) 𝑑𝑥 = 1 − 𝛼. (4)

In the simulation discussed in Section 4.2 study 𝓁𝛼 and 𝑢𝛼 in Equations (3) and (4) are chosen such that for

𝑈(𝑢𝛼) =
{
𝑥 ∈ ℝ𝑑|𝑢𝛼 < 𝑓(𝑥)

}
,

𝐿(𝓁𝛼) =
{
𝑥 ∈ ℝ𝑑|𝑓(𝑥) < 𝓁𝛼

}
it holds that

𝑃(𝑋 ∈ 𝑈(𝑢𝛼)) = ∫
𝑈(𝑢𝛼)

𝑓(𝑥) 𝑑𝑥 = 𝛼∕2,

𝑃(𝑋 ∈ 𝐿(𝓁𝛼)) = ∫
𝐿(𝓁𝛼)

𝑓(𝑥) 𝑑𝑥 = 𝛼∕2.

The choice of picking 𝛼∕2 for both the lower and upper bound is made in accordance with Mühlig.18

4.3 Weighted copula estimation and the Vuong test

Our second monitoring approach utilises Vuong’s14 test statistic 𝜈 applied to weighted copula estimates. The Phase I PDF
estimation uses noweights. All subsequent samples containing at least one phase II observation areweighted. Theweights
emphasise the newest observations over the older ones in order to make the estimation procedure adaptive to changes in
the copula structure. The use of weights is suggested byNagler.19 Though not used in Vuong’s14 original approach, weights
can be integrated perfectly into his asymptotic analysis of the test statistic.
Vuong’s14 two-sided likelihood ratio test is based on the null hypothesis that twonon-nested copulae are to be considered

the same on a given sample. The null hypothesis can be rejected in favour of one of the two tested copulae, thereby choosing
one copula model over the other.
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The theoretical background of Vuong’s14 test statistic depends on two assumptions: (1) asymptotic of the test statistic
holding for large sample size𝑁 and (2) non-nestedness of models. With respect to (1), Vuong14 does not provide any con-
structive inequalities for the accuracy of the approximation as a function of 𝑁. In analogy to the experience with other
asymptotics, the application on small sample sizes is not unreasonable on principle.With respect to (2), Brechmann et al.20
demonstrate for large sample sizes, that the violation of non-nestedness is not a serious obstacle to a valid application of
Vuong’s test. Hence the application of the Vuong test to overlapping samples is of interest. The use of weighted likelihood
as a basis of Vuong’s test is suggested by Schepsmeier et al.21 In general, weighted likelihood is considered in the litera-
ture in tests related to Vuong’s test, confer Amisano and Giacomini.22 In the following, we call this setting the weighted
Vuong test.
It is prudent to consider a large variety of parametric copula families in order to allow the Phase II copula estimation

to be as sensitive as possible. Since copula families were included where the inversion of Kendall’s tau is impossible,
ML estimation was used throughout. The following copula families were used Gaussian, Gumbel, Clayton, Joe, Frank,
Student-t, BB1, BB6, BB7, BB8.
Weights are infiltrated into theMLE of copula density 𝑐 and the parameter vector 𝜽 according to the following equation:

(𝒖,𝒘) ⟼ (𝑐, 𝜽) ∶= argmax
𝑐,𝜽

𝑁∑
𝑖=1

𝑤𝑖 ⋅ ln 𝑐(𝑢𝑖|𝜽), (5)

where 𝒖 ∈ ℝ𝑁 is the sample vector,𝒘 ∈ ℝ𝑁 is the weight vector,𝑁 ∈ ℕ is the sample size, and the parameters must lie in
the parameter space 𝜽 ∈ 𝚯. Using Equation (5) on two samples 𝒖1, 𝒖2 corresponding weight vectors 𝒘1,𝒘2 yields 𝑐1, 𝜽1
and 𝑐2, 𝜽2. Vuong’s test-statistc 𝜈 has three input quantities: two alternative copula densities 𝑐1, 𝜽1 and 𝑐2, 𝜽2 as well as a
data vector, here the data vector 𝒖2 from the second model.

𝐻0 ∶ E[𝑚1] = E[𝑚2] = 0

𝑚𝑖 ∶= log

[
𝑐1(𝑢2,𝑖|𝜽1)
𝑐2(𝑢2,𝑖|𝜽2)

]

𝜈 ∶=

1√
𝑁

∑𝑁

𝑖=1
𝑚𝑖√∑𝑁

𝑖=1
(𝑚𝑖 − 𝑚)

2

The test is two-sided—denoting the significance level als 𝛼:

𝜈 > Φ−1
(
1 −

𝛼

2

)
leads to rejecting𝐻0 in favour of model 𝑐1, 𝜽1

𝜈 < Φ−1
(
1 −

𝛼

2

)
leads to rejecting𝐻0 in favour of model 𝑐2, 𝜽2

while |𝜈| ≤ Φ−1
(
1 −

𝛼

2

)
means not rejecting𝐻0.

The use of weights makes the estimation process adapted, which permits to analyse mixed samples containing both
Phase I data and Phase II data, while the importance of the Phase II data can be emphasised. This is especially useful
when there are too few Phase II samples available for estimating a copula on a pure Phase-II-sample.
The samples comprised purely of Phase I data are always unweighted𝒘1 = (1, … , 1)

⊤, because all of the data are inter-
preted to have been previously screened and therefore be of relevance irrespective of the samples’ time indices in stark
contrast to Phase II data. The latter has the property that newer samples are interpreted to be of higher importance than
older samples, because being out-of-control should be detected as soon as possible.

4.4 An illustration of the weighted Vuong methodology

Figure 6 illustrates the weighted Vuong methodology. The illustration shows seven consecutive data points across time.
Samples of size𝑁 = 4 are taken consecutively at each time point. Subsequent samples have an overlap of three time points.
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F IGURE 6 Illustration: Vuong’s14 𝜈 and iterated weighted Phase II estimation, see Section 4.4

Let the in-control case be made up of the first four data points. In the figure, all Phase II data points are out-of-control.
The first out-of-control sample at time 5 is comprised of the youngest three in-control data points and the first out-of-
control data point. The second out-of-control sample at time 6 is comprised of the youngest two in-control data points
and the oldest two out-of-control data points. The top of the figure shows the four weights of the four observations in the
out-of-control samples. Pure Phase I samples are always unweighted.
One copula model is estimated for every batch of out-of-control samples, while the in-control model is assumed to

be known. For the out-of-control models, the marginals are assumed to be known, but not the copula. Note, that this
is a very strong assumption. To make the monitoring process adaptive, it seems reasonable to also consider weighted
copula estimation.
The weights for the out-of-control batches are inspired by exponential smoothing. The weighting parameter is called

𝜆 and the sequence of weights is generated as in exponential smoothing. The unweighted Phase II estimation case is
analysed for comparison and is denoted by 𝜆 = 𝑁𝐴. The in-control batch is never weighted, because all in-control samples
are interpreted to be of equal importance. Note, that the first out-of-control sample is also weighted, even though the
illustration only shows weights for the second.
The Phase I model is iteratively tested against Phase II models until the Vuong test refutes its null hypothesis in favour

of the Phase II model. This is subsequently interpreted as a signal that the process is out-of-control.

5 DESIGNMATRIX OF SIMULATION STUDIES

As Sections 1 and 2 discussed that there is a reason to specifically examine changes in the copula density of a given abso-
lutely continuous bivariate distribution. In the following, 12 cases are laid out in which the bivariate copula density is
changed while the given standard normal marginals are preserved. Furthermore, the copula density for copula parameter
𝜃 = 3 is changed in such a way as to preserve both the joint mean 𝝁, the marginal variances and the correlation 𝜌, mean-
ing that the change in dependence structure must lie beyond the covariance matrix. The univariate marginals are always
standard normal.
In our simulation studies, copulae from the Gumbel, Clayton, Joe and Frank copula families are substituted for the

Gaussian copula. All four of these are single parameter copula families. To quantify their effects on the joint mean 𝝁,
four samples of size 10242 are generated and analysed. The results show that the Student-t confidence intervals for the
joint means contain 𝟎 for the copula parameters 𝜃 ∈ {1, 3, 7} for each of the four copula families under consideration.
This is interpreted as these copulae preserving the joint mean. Furthermore, the same samples are used to calculate the
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resulting correlations. All four families’ correlations aremonotone in 𝜃, so 𝜃 = 3 is chosen as a baseline for the four Pearson
correlations, which are to be preserved. Each of the resulting four copulae is paired with a bivariate Gaussian copula of
the same correlation, as seen in Table 2, because this permits to preserve 𝝁 and 𝚺when starting with the Gaussian copula
and a given correlation and then switching to the associated alternative copula, all else and in the particular themarginals
being equal. Note, that this also guarantees Phase I to follow a bivariate normal distribution.
In order to analyse simultaneous changes in the copula and the correlation, the copula parameter 𝜃 of the associated

copula family is set to 7 for a higher correlation and to 1 for a lower correlation. This yields 12 entries in the design matrix
in which Phase I is bivariate normal whereas Phase II is not while the standard normal marginals and the mean vector 𝝁
are preserved.
Finally, three bivariate-normal-to-bivariate-normal cases are added for comparison. These three cases preserve the stan-

dard normal marginals as well as the copula family, see Section 2, and therefore necessarily change the correlation param-
eter of the Phase I Gaussian copula in order to construct an out-of-control Phase II model.
Both simulation studies presented in this paper analyse the estimated average run-lengths𝐴𝑅𝐿 of the in-control and the

out-of-control cases by averaging 10,000 sample run-lengths. For the Verdier approach, the sample size was chosen to be
𝑁 = 10. For the Vuong approach, the sample size was chosen to be𝑁 = 10. The in-control chart calibration for analysing
the Verdier chart targets an average in-control run-length of 1∕𝛼 = 1∕0.00270 ≈ 370 while the calibration for the Vuong
test with weighted or unweighted Phase II samples is calibrated to an in-control average run-length of 365 ± 2.5, which
corresponds to 𝛼 ∈ [0.00272; 0.00276]. The simulation size of 10,000 sample run-lengths is chosen in order to acquire
useful confidence intervals for the Vuong approach.
In summary, the design matrix analyses mean and covariance preserving dependence changes away from bivariate

normality in four cases, the changing of correlation in three bivariate normal cases and the change of both the dependence
and the correlation in eight cases.

6 RESULTS OF SIMULATION STUDY

6.1 Verdier’s monitoring chart

We consider the results pertaining to the Verdier chart. All analysed cases are calibrated to an in-control 𝐴𝑅𝐿0 corre-
sponding to 𝛼 = 0.0027 ≈ 1∕370. The in-control model calibration is validated to guarantee comparability with the help
of a simulation. The calibration results including their confidence intervals are displayed in Figure 7. All models are suc-
cessfully calibrated.
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The out-of-control results are illustrated by Figures 8 and 9. First, three of the Hotelling 𝑇2 chart’s out-of-control 𝐴𝑅𝐿s
excessively overshoot the target𝐴𝑅𝐿0. All three of these cases occur when the correlation increases from Phase I to Phase
II, as illustrated in the left hand plots of Figures 8 and 9. In contrast to the Hotelling 𝑇2 chart, the Verdier chart’s 𝐴𝑅𝐿s
are always significantly shorter than the target 𝐴𝑅𝐿0. This property is desirable.
Second, the Hotelling 𝑇2 chart seems to slightly outperform the Verdier chart in the cases, which preserve both the

mean vector 𝝁 and the covariance matrix 𝚺, so in particular the Pearson correlation.
While the Hotelling 𝑇2 chart had shorter out-of-control estimates in nine cases, they are only on average about 14𝐴𝑅𝐿-

steps shorter. Whereas the six times the Verdier chart outperformed the Hotelling 𝑇2 chart, it is on average about 240
𝐴𝑅𝐿-steps shorter. In the twelve cases where the Hotelling 𝑇2 does not overshoot the in-control average run-length, the
Verdier chart is on average approximately 80 𝐴𝑅𝐿-steps shorter. Overall, the Verdier chart performs better.
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TABLE 3 Weighted Vuong scheme 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0.3) to 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0.6) with confidence level 99%

P I Cop. P II Cop. 𝝀𝑬𝑺 𝜶𝒗 𝑨𝑹𝑳𝟎 𝑨𝑹𝑳

𝑔𝑠𝑠(0.3) 𝑔𝑠𝑠(0.6) NA 0.000275 365.31 136.19 ∈ [132.74; 139.65]

𝑔𝑠𝑠(0.3) 𝑔𝑠𝑠(0.6) 0.1 0.000095 366.95 112.23 ∈ [109.39; 115.09]

𝑔𝑠𝑠(0.3) 𝑔𝑠𝑠(0.6) 0.2 0.000143 367.27 131.22 ∈ [127.92; 134.52]

𝑔𝑠𝑠(0.3) 𝑔𝑠𝑠(0.6) 0.3 0.000107 366.03 119.86 ∈ [116.87; 122.85]

𝑔𝑠𝑠(0.3) 𝑔𝑠𝑠(0.6) 0.4 0.000107 363.02 114.81 ∈ [112.00; 117.63]

𝑔𝑠𝑠(0.3) 𝑔𝑠𝑠(0.6) 0.5 0.000137 363.95 𝟏𝟎𝟒.𝟗𝟗 ∈ [102.39; 107.60]

The bold values signify the most advantageous ARLs. In this case the smallest ones.

TABLE 4 Weighted Vuong scheme 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0.6) to 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0.9) with confidence level 99%

P I Cop. P II Cop. 𝝀𝑬𝑺 𝜶𝒗 𝑨𝑹𝑳𝟎 𝑨𝑹𝑳

𝑔𝑠𝑠(0.6) 𝑔𝑠𝑠(0.9) NA 0.000130 363.32 26.76 ∈ [26.21; 27.30]

𝑔𝑠𝑠(0.6) 𝑔𝑠𝑠(0.9) 0.1 0.000069 363.85 𝟐𝟒.𝟎𝟒 ∈ [23.56; 24.52]

𝑔𝑠𝑠(0.6) 𝑔𝑠𝑠(0.9) 0.2 0.000081 366.79 27.02 ∈ [26.46; 27.58]

𝑔𝑠𝑠(0.6) 𝑔𝑠𝑠(0.9) 0.3 0.000079 365.88 26.50 ∈ [25.98; 27.02]

𝑔𝑠𝑠(0.6) 𝑔𝑠𝑠(0.9) 0.4 0.000084 363.37 25.24 ∈ [24.75; 25.73]

𝑔𝑠𝑠(0.6) 𝑔𝑠𝑠(0.9) 0.5 0.000099 366.92 𝟐𝟑.𝟗𝟎 ∈ [23.47; 24.33]

The bold values signify the most advantageous ARLs. In this case the smallest ones.

TABLE 5 Weighted Vuong scheme 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0.9) to 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0.6) with confidence level 99%

P I Cop. P II Cop. 𝝀 𝜶𝒗 𝑨𝑹𝑳𝟎 𝑨𝑹𝑳

𝑔𝑠𝑠(0.9) 𝑔𝑠𝑠(0.6) NA 0.000816 364.51 𝟕𝟗𝟕.𝟔𝟏 ∈ [776.55; 818.67]

𝑔𝑠𝑠(0.9) 𝑔𝑠𝑠(0.6) 0.1 0.000473 367.49 1090.59 ∈ [1062.72; 1118.46]

𝑔𝑠𝑠(0.9) 𝑔𝑠𝑠(0.6) 0.2 0.000671 363.75 907.81 ∈ [884.39; 931.24]

𝑔𝑠𝑠(0.9) 𝑔𝑠𝑠(0.6) 0.3 0.000641 366.20 886.29 ∈ [863.28; 909.29]

𝑔𝑠𝑠(0.9) 𝑔𝑠𝑠(0.6) 0.4 0.000656 363.58 860.23 ∈ [837.95; 882.52]

𝑔𝑠𝑠(0.9) 𝑔𝑠𝑠(0.6) 0.5 0.000671 366.34 844.51 ∈ [823.05; 865.97]

The bold values signify the most advantageous ARLs. In this case the smallest ones.

6.2 Weighted copula estimation and the Vuong test

The weighted Vuong scheme described in Section 4.4 shows that weighting has a significant influence on the out-of-
control ARL, confer Tables 3–5 as well as Figure 10. Overall the out-of-control performance of the weighted Vuong scheme
is very sensitive to the type of shift in the correlation. For upward shifts, very short out-of-control ARLs are achieved, see
Tables 3 and 4. However, for downward shifts it exhibits high inertia and signals very late, after more than twice the
calibrated in-control time, see Table 5.
Three shortcomings present themselves

(1) Calibrating this model in the Vuong type I error parameter 𝛼𝜈 is very time-consuming and resource intensive. The
analysis of the Vuong approach took a total of 14,000 CPU hours, roughly 8500 of which are needed for calibration
in the 𝛼𝜈 Type-I-error parameter of the Vuong test statistic to achieve a calibrated false-alarm rate of 365 ± 2.5 corre-
sponding to false-alarm rate 𝛼 ∈ [0.00272; 0.00276]. The out-of-control average run-length estimations roughly took
5500 CPU hours.

(2) In the bivariate normal case of decreasing the correlation from 0.9 to 0.6, this scheme takes at least twice as long to
detect the out-of-control distribution compared to the in-control average run-lengths, as illustrated by Table 5. This is
highly undesirable, especially considering the previous results for the Verdier chart.

(3) In nine out of the 15 design matrix entries pertaining to a change in the dependence structure, the out-of-control
𝐴𝑅𝐿 of the unweighted scheme is notably smaller than any of the weighted cases. One of the nine cases is exempli-
fied in Table 5 for all weighting parameters 𝜆 ∈ {NA, 0.1, 0.2, 0.3, 0.4, 0.5}. Furthermore, the weighted cases that are
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F IGURE 10 Weighted Vuong scheme: confidence intervals for level 99%. The unweighted case 𝜆 = NA is encoded as −0.2

significantly better than the unweighted cases did not seem to follow any discernible pattern. Sometimes smaller
weights are better, sometimes larger ones, sometimes weights in-between.

Considering the discussion of the Vuong test in Section 4.4, the problems (2) and (3) have to be assumed to stem from the
small sample size. Seemingly, the results from the asymptotic cannot be applied to small sample sizes in a straightforward
manner. Lower sample size bounds for the validity of Vuong’s test scheme have not been considered in the literature and
are an important subject matter for future research.
The combination of weighted copula estimation and the Vuong approach the sample size of𝑁 = 10 seems to be far too

small for bivariate copula estimation to be useful in the context of such severely constrained sample sizes, even with a
very strong assumption of knowing both the Phase I distribution and the Phase II marginals.

7 CONCLUSION AND OUTLOOK

We have contrasted the Hotelling 𝑇2 chart with the monitoring chart proposed by Verdier10 using an ample variety of
out-of-control situations reflecting different copula-based association structures. It turns out that the Verdier chart is a
robust solution with respect to the out-of-control𝐴𝑅𝐿 for a variety of out-of-control cases whereas 𝑇2 exhibits excessively
large 𝐴𝑅𝐿s in several out-of-control situations. We have demonstrated that the Vuong14 test in combination with weights
requires further investigation with respect to larger sample sizes and the type of shifts it detects well.
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Our results demonstrate that copula-based reasoning is fruitful for the analysis of design of process monitoring tech-
niques. A variety of issues remains for future research

(i) the analysis of Phase I estimation errors with respect to their influence on the in-control and out-of-control 𝐴𝑅𝐿s,
(ii) the extension to higher and possibly large dimensions, as well as
(iii) methods of signal tracking.
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