
Computation of multi-branch-point
covers and applications in Galois

theory

Dissertation zur Erlangung des
naturwissenschaftlichen Doktorgrades

der Bayerischen Julius-Maximilians-Universität
Würzburg

vorgelegt von

Dominik Barth

Würzburg, 2022

This document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):  
http://creativecommons.org/licenses/by-sa/4.0 This CC license does not apply to third party material (attributed to another source) in this publication.



Eingereicht am 22.02.2022
bei der Fakultät für Mathematik und Informatik

der Bayerischen Julius-Maximilians-Universität Würzburg.

Erster Gutachter: Prof. Dr. Peter Müller
Zweiter Gutachter: Prof. Dr. Michael Dettweiler



Acknowledgements

First and foremost, I would like to thank my supervisor Peter Müller for his
guidance throughout the last years. This dissertation was only made possible
by his excellent mathematical intuition.

My special gratitude goes to Andreas Wenz who was my research partner
for the last six years. Thanks for many fruitful discussions and for carefully
reading earlier versions of this work.

More thanks are due to Joachim König for collaborating with me on the
project on computing polynomials with symplectic Galois groups. Also, his
PhD thesis served me as an inexhaustible source of knowledge many times
during my research.

Additionally, I would like to thank Stephan Elsenhans for valuable discus-
sions on the verification of Galois groups and for sharing his Magma expertise
with me.

Finally, I am grateful to the Magma team for quickly fixing several bugs
reported by me; cf. the release notes for the versions 2.23-41, 2.23-122 and
2.25-53. Fixing these bugs greatly helped me with my computations.

Würzburg, February 2022 Dominik Barth

1https://magma.maths.usyd.edu.au/magma/releasenotes/2/23/4
2https://magma.maths.usyd.edu.au/magma/releasenotes/2/23/12
3https://magma.maths.usyd.edu.au/magma/releasenotes/2/25/5

iii

https://magma.maths.usyd.edu.au/magma/releasenotes/2/23/4
https://magma.maths.usyd.edu.au/magma/releasenotes/2/23/12
https://magma.maths.usyd.edu.au/magma/releasenotes/2/25/5




Contents

Acknowledgements iii

Chapter 1. Introduction 1

Chapter 2. Theoretical background 3
2.1. Covers of the Riemann sphere 3
2.2. Monodromy and Galois theory 5
2.3. Families of covers and Hurwitz spaces 7
2.4. Curves on Hurwitz spaces 9

Chapter 3. Computation of families of covers 15
3.1. Main idea 15
3.2. Outline of our algorithm 17
3.3. An algorithm to compute genus-0 Belyi maps 21

Chapter 4. Verification techniques 31
4.1. Definitions and basic properties 31
4.2. Gathering information about subgroups of a Galois group 32
4.3. Reduction and specialization in function fields 37
4.4. Avoiding the classification of finite simple groups 39

Chapter 5. Computation of polynomials with symplectic Galois groups 43
5.1. Multi-parameter polynomials with Galois groups PSp4(3).C2

and PSp4(3) 43
5.2. Totally real polynomials with Galois group PSp6(2) 49
5.3. Multi-parameter degree-36 polynomials with Galois group PSp6(2) 56

Chapter 6. Families of polynomials with Galois groups PSL4(3) and
PGL4(3) over Q(t) 63

6.1. Theoretical properties 63
6.2. A complex approximation of a single 4-point cover 64
6.3. Turning a single cover into a family 66
6.4. Verification 67
6.5. From PGL4(3) to the index-2 subgroup PSL4(3) 69

v



vi CONTENTS

6.6. Polynomials with Galois group Aut(PGL4(3)) 70

Chapter 7. A family of 4-point covers with monodromy group PSL6(2) 73
7.1. Computation 73
7.2. Verification and Consequences 79
7.3. Extensions with Galois group Aut(PSL6(2)) 83
7.4. Addendum: A Belyi map with monodromy group PSL6(2) 84

Chapter 8. On Elkies’ method to bound the transitivity degree of Galois
groups 87

8.1. Preliminaries 87
8.2. A method by Elkies 88
8.3. New Applications 90

Bibliography 93



CHAPTER 1

Introduction

This dissertation deals with the explicit computation of (families of) multi-
branch-point covers of P1C with prescribed ramification.

Such calculations are in several ways important for the inverse Galois
problem. On the one hand, they yield explicit polynomials with interesting
Galois groups. On the other hand, they sometimes seem to be necessary to
decide existence problems that can not be answered by theoretical criteria alone:
for example, the question whether a Hurwitz space contains rational points.

Techniques for such computations as well as examples of interest have been
exhibited in several papers, notably Malle [37], Couveignes [18], Hallouin [29]
and König [33, 34]. Methods used include Gröbner basis calculations (often
referred to as “direct methods”), complex and p-adic deformation methods,
interpolation techniques, Riemann–Roch space computations etc. Since direct
methods become expensive quite quickly as the degree and number of branch
points increase, an idea used extensively was the deformation of covers with
small branch point number into covers with larger branch point number, ideally
reducing the computation of a cover with many branch points to computation
of covers with only three branch points. While this procedure has been applied
successfully in several special cases, it also has obvious downsides, notably
possible problems with numerical instability as well as its length in case of
iterative application.

Here, we present an alternative approach, reducing the computation of
Galois covers with group G and r branch points directly to the computation of
3-point covers. This comes at the cost of increasing the degree of the cover;
however, in light of recent improvements regarding the calculation of 3-point
covers (see the joint article [11] with Andreas Wenz), this is a price worth
paying.

This dissertation is structured as follows: The required theoretical back-
ground will be established in Chapter 2, including covers of the Riemann sphere,
their connection to Galois theory, families of covers parameterized by Hurwitz
spaces, and the Hurwitz curves on them. Chapter 3 introduces the key idea
of reducing multi-branch-point covers to those with three branch points, and
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2 1. INTRODUCTION

how this helps to compute an entire family of polynomials with prescribed
Galois group. We also present the technique for computing high degree genus-0
Belyi maps used in the journal article [11] to calculate polynomials for several
interesting Galois groups up to degree 280. Some verification techniques for
Galois groups, in particular for 2-transitive Galois groups, are presented in
Chapter 4.

In Chapter 5 we compute polynomials for several symplectic groups. More
precisely, we present polynomials over Q(α, t) for the primitive rank-3 groups
PSp4(3) and PSp4(3).C2 of degree 27 and for the 2-transitive group PSp6(2)

in its actions on 28 and 36 points, respectively. Moreover, the degree-28
polynomial for PSp6(2) admits infinitely many totally real specializations.
Chapter 6 contains the first (to the best of our knowledge) explicit polynomials
for the 2-transitive linear groups PSL4(3) and PGL4(3) of degree 40, and the
imprimitive group Aut(PGL4(3)) of degree 80. In Chapter 7 we negatively
answer a question by Joachim König whether there exists a degree-63 rational
function with rational coefficients and monodromy group PSL6(2) ramified
over at least four points. This is achieved due to the explicit computation
of the corresponding hyperelliptic genus-3 Hurwitz curve parameterizing this
family, followed by a search for rational points on it. As a byproduct of our
calculations we obtain the first explicit Aut(PSL6(2))-realizations over Q(t).

In the last and self-contained Chapter 8 we present a technique by Elkies for
bounding the transitivity degree of Galois groups. This provides an alternative
way to verify the Galois groups from the previous chapters and also yields a
proof that the monodromy group of a degree-276 cover computed by Monien [44]
is isomorphic to the sporadic 2-transitive Conway group Co3.



CHAPTER 2

Theoretical background

This chapter contains the necessary theoretical background regarding covers
of the Riemann sphere, their connection to Galois theory, families of covers
parameterized by Hurwitz spaces, and the Hurwitz curves on them.

2.1. Covers of the Riemann sphere

We present some basic properties of covers of the Riemann sphere, see e.g.
[52, Chapter 4] and [36, Chapter 1] as references.

Definition 2.1. Let R and S be topological manifolds. An (unramified)
covering from R to S is a surjective map f : R → S with the property that
every p ∈ S has a connected open neighbourhood U such that each of the
connected components of f−1(U) is open and mapped homeomorphically onto
U by f .

If S is connected, then all fibers f−1(p), p ∈ S, have the same number of
elements. This common cardinality is called the degree of the covering and is
denoted by deg(f).

An important property of a covering is its monodromy action, indeed it
even determines the cover topologically.

Definition 2.2. Let f : R → S be a degree-n covering and p0 ∈ S a
base point. Then the topological fundamental group π1(S, p0) acts on the fiber
f−1(p0) by lifting of paths, yielding the monodromy action

π1(S, p0) → Sym f−1(p0) ∼= Sn

of f . The image of this action is called the monodromy group of the cover f . It
is unique up to conjugation in Sn.

An important special case are coverings of the form f : R → P1C \ P for
some finite r-set P = {p1, . . . , pr}. Such a cover can always be extended (in
a unique way) to a branched cover of compact Riemann surfaces X → P1C.
Conversely, a meromorphic function f : X → P1C always restricts to an
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4 2. THEORETICAL BACKGROUND

(unramified) covering X \f−1(P ) → P1C\P where P is the set of branch points
of f ; that is, the set of points having less than deg(f) preimages.

It is well known that the fundamental group of P1C \ {p1, . . . , pr} with
base point p0 ̸∈ {p1, . . . , pr} is generated by (the homotopy classes of) the
paths γ1, . . . , γr where γi is a path winding counter-clockwise only around pi

(and no other pj). Furthermore, we always assume that the pi are ordered
counter-clockwise such that the relation γ1 · · · γr = 1 holds. We remark that
the group π1(P1C \ {p1, . . . , pr}, p0) is free of rank r− 1, see [38, Theorem 1.1]
where this theorem is attributed to Hurwitz.

Definition 2.3. Let X → P1C be a degree-n (branched) cover of compact
Riemann surfaces with branch points p1, . . . , pr. Then the tuple of images
(σ1, . . . , σr) of (γ1, . . . , γr) under the monodromy action of π1(P1C\{p1, . . . , pr})
is called the branch cycle description of the cover.

The elements σ1, . . . , σr satisfy σ1 · · ·σr = 1, generate a transitive group
and are unique up to simultaneous conjugation in Sn.

Riemann’s famous existence theorem, see [36, Theorem 1.8.14], asserts that
for given elements σ1, . . . , σr having the above properties there always exists a
(basically unique) cover with the prescribed branch cycle description:

Theorem 2.4 (Riemann’s existence theorem). Let σ1, . . . , σr ∈ Sn such that
σ1 · · ·σr = 1 and σ1, . . . , σr generate a transitive subgroup of Sn. Then, for any
given distinct p1, . . . , pr ∈ P1C there exists a ramified covering f : X → P1C
ramified over p1, . . . , pr with branch cycle description (σ1, . . . , σr). Furthermore,
f is unique up to isomorphism of covers: if f ′ : X ′ → P1C is another such
cover, then there is an isomorphism i : X → X ′ such that f = f ′ ◦ i.

The important Riemann–Hurwitz formula, see [36, Remark 1.2.21], relates
the genus of the curve X to the branch cycle description of f : X → P1.

Theorem 2.5 (Riemann–Hurwitz genus formula). Let f : X → P1 be a
meromorphic function of degree n with branch cycle description (σ1, . . . , σr).
Then the genus g of the compact Riemann surface X is given by

g = 1− n+
1

2

r∑
i=1

ind(σi) (2.1)

where ind(σi) is defined as n minus the number of cycles of σi ∈ Sn.

Definition 2.6. A tuple σ1, . . . , σr ∈ Sn with σ1 · · · σr = 1 generating a
transitive group will be called genus-g tuple where g is given by (2.1).
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Obviously, knowledge of the cycle structures of σ1, . . . , σr suffices to compute
the genus g. Consequently, a class vector C = (C1, . . . , Cr) consisting of
conjugacy classes Ci of a group G will be called a genus-g class vector for G,
when there exist σi ∈ Ci such that (σ1, . . . , σr) is a genus-g tuple generating G.

2.2. Monodromy and Galois theory

There is an important correspondence between covers of P1C and complex
function fields of one variable, i.e., finite extensions of C(t):

A (branched) cover f : X → P1
t of compact Riemann surfaces naturally

yields an extension C(X) | C(P1
t ) = C(t) of their fields of meromorphic functions.

The (topological) monodromy then translates into field-theoretic properties:
The monodromy group of f : X → P1

t is isomorphic to the Galois group of (a
Galois closure of) C(X) | C(t). Furthermore, if f is ramified over p1, . . . , pr

with branch cycle description (σ1, . . . , σr), then the conjugacy class of σi is the
class of inertia group generators of any extension of the ramified place t 7→ pi in
the Galois closure of C(X) | C(t). Conversely, given a finite extension L | C(t)
there always exists a compact Riemann surface X and a meromorphic function
f : X → P1

t yielding the function field extension L | C(t) in the above sense.
Let G be a finite group. By choosing r sufficiently large we may assume

that G admits a generating r-tuple satisfying the product-1 condition. Now,
Riemann’s existence theorem yields the existence of a cover f : X → P1

t having
G as its monodromy group. Thus, G is the Galois group (of the Galois closure)
of the function field extension C(X) | C(t). Consequently, the inverse Galois
problem for the field C(t) has a positive answer: every finite group occurs as a
Galois group over C(t).

In order to tackle the inverse Galois problem for smaller fields we introduce
some notion of descent meaning that the extension C(X) | C(t) actually comes
from a smaller extension L | K(t) for some number field K. To preserve the
geometric nature of the field extension it is natural to demand that L | K(t) is
regular :

Definition 2.7. We call an extension L | K(t) of function fields regular if
K is algebraically closed in L; that is, when L ∩K = K holds.

A cover f : X → P1
t is called Galois cover if the corresponding field

extension C(X) | C(t) is a Galois extension.

Definition 2.8 (see Section 3.1.1 in [52]). Let f : X → P1
t be a Galois

cover with corresponding function field extension C(X) | C(t). We say f (or
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equivalently C(X) | C(t)) is defined over a subfield K of C if there exists a
subfield L of C(X), Galois over K(t) and regular over K with [L : K(t)] =

[C(X) : C(t)].

If f is defined over K, then the Galois groups of C(X) | C(t) and L | K(t)

are naturally isomorphic, and in particular the monodromy group of f occurs
regularly over K. Hilbert’s famous irreducibility theorem then realizes G over
the number field K.

Although some properties (such as the genus) carry over from C(X) | C(t)
to L | K(t), a genus-0 function field over a non-algebraically closed constant
field is no longer guaranteed to be rational. However, if the ramification of
L | K(t) is known, then it is sometimes possible to deduce the existence of a
place of odd degree and, therefore, ensuring the rationality of L | K(t). This
yields a sufficient criterion, in the following usually referred to as oddness
condition, for a genus-0 function field to be rational.

Remark 2.9. Let L | K(t) be a regular extension with branch cycle
description (σ1, . . . , σr) and Galois group G. If (σ1, . . . , σr) is of genus 0 and
for some i = 1, . . . , r

• at least one exponent in the cycle description of σi is odd, or
• the normalizer of the inertia group ⟨σi⟩ in G fixes a cycle of σi,

then [38, Theorem I.9.1] implies that the genus-0 function field L contains
a divisor of odd degree. Consequently, L is a rational function field, see [1,
Theorem XVI.7].

A necessary condition for descending to Q is given by Fried’s branch cycle
argument, see [52, Lemma 2.8] or [33, Lemma 3.3]. It roughly states that the
absolute Galois group of Q acts on the ramification locus in the same way as it
acts on the inertia classes where the latter action is given by the cyclotomic
character.

Theorem 2.10 (Fried’s branch cycle argument). Let L | Q(t) be a finite
regular Galois extension with Galois group G of order n. For a ramified place
t 7→ p let Cp denote the corresponding inertia class. Let ζn be a primitive n-th
root of unity, and γ ∈ Aut(Q | Q), m ∈ N such that γ−1(ζn) = ζmn . Then the
inertia class associated to γ(p) is equal to (Cp)

m.
In particular, the set of branch points is invariant under Aut(Q | Q).
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Corollary 2.11. Let L | Q(t) be as in the previous theorem with inertia
class vector C. Then the following holds.

(i) The class vector C = (C1, . . . , Cr) must necessarily be rational: for all
integers m coprime to the order of G the tuple ((C1)

m, . . . , (Cr)
m) is a

permutation of (C1, . . . , Cr).
(ii) If C consists only of distinct rational classes, then all branch points

are rational.
(iii) If C = (C1, C1, C2, C3) with distinct rational conjugacy classes C1, C2,

C3, then either
• all four branch points are rational, or
• the branch points corresponding to C2 and C3 are rational and the

remaining two branch points (with inertia class C1) are algebraic-
ally conjugate of degree 2.

Recall that Riemann’s existence theorem states that a G-cover is determined
by its branch cycle description and its ramification locus. Although for a given
group G the possible branch cycle descriptions of a given length are finite, the
set of possible ramification loci is infinite.

This motivates the following question: What is a good choice for the
ramification locus such that the field of definition becomes as small as possible?
To answer this question one studies families of covers and their associated
Hurwitz spaces, see the next two sections. In particular, we present a sufficient
criterion for realizing a group G regularly over Q, thus complementing the
necessary conditions given in Theorem 2.10.

2.3. Families of covers and Hurwitz spaces

We present the basic definitions and results regarding families of covers and
their Hurwitz spaces, see e.g. [52, Chapter 10], [26] or [46] for further details.
A few sentences were taken over from the journal article [4] joint with Joachim
König and Andreas Wenz.

Fix a finite group G and an integer r ≥ 3 such that G can be generated by
r − 1 elements. Assume further that Z(G) = 1. Then, by Riemann’s existence
theorem the set of all Galois covers of P1C with Galois group G and with exactly
r branch points is non-empty. The set of equivalence classes of these covers is
denoted by Hin

r (G) (we refer to [26, Section 1.2] for the precise definition of
the equivalence relation).

The set Hin
r (G) carries a natural topological structure, and also the struc-

ture of an algebraic variety, see [26, Theorem 1]. Finding rational points
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on this variety is crucial when tackling the inverse Galois problem, see [52,
Corollary 10.25] or [24, Theorem 4.3]:

Theorem 2.12. Let G be a finite group with Z(G) = 1. There is a unique
family of ramified coverings F : Tr(G) → Hin

r (G) × P1, such that for each
h ∈ Hin

r (G), the fiber cover F−1(h) → P1 is a ramified Galois cover with
group G. This cover is defined regularly over a field K ⊆ C if and only if h
is a K-rational point. In particular, the group G occurs regularly as a Galois
group over Q if and only if Hin

r (G) has a rational point for some r.

The search of rational points on Hin
r (G) in view of Theorem 2.12 leads

to the problem of finding the (absolutely) irreducible components of Hin
r (G)

defined over Q.
The main tool to answer this question is the monodromy action of the

branch point reference map

Ψ : Hin
r (G) → Ur

mapping a cover to its ramification locus, where Ur denotes the space of
(unordered) r-sets in P1. In order to understand the monodromy of Ψ we first
need a description of the fundamental group of Ur, the Hurwitz braid group:

Definition 2.13. The Hurwitz braid group Br is the group generated by
elements β1, . . . , βr−1 satisfying the following relations:

(i) βiβi+1βi = βi+1βiβi+1 for i = 1, . . . , r − 2,
(ii) βiβj = βjβi for |i− j| ≥ 2,
(iii) β1β2 · · · βr−1βr−1βr−2 · · · β1 = 1.

After fixing a base point p0 ∈ Ur, for example, p0 = {1, 2, . . . , r}, it is well
known that the fundamental group of Ur is isomorphic to Br:

π1(Ur, p0) ∼= Br.

By identifying a cover with its branch cycle description, Riemann’s exist-
ence theorem implies that the fiber Ψ−1(p0) consisting of all G-covers with
ramification locus p0 is parameterized by E in

r (G) := Er(G)/ Inn(G) where

Er(G) := {(σ1, . . . , σr) ∈ (G \ {1})r | σ1 · · ·σr = 1, ⟨σ1, . . . , σr⟩ = G}

and Inn(G) acts by conjugating the tuples simultaneously. Through this
translation the monodromy action of π1(Ur, p0) ∼= Br on Ψ−1(p0) is as follows:

(σ1, . . . , σr)
βi := (σ1, . . . , σi−1, σi+1, σ

σi+1

i , . . . , σr), i = 1, . . . , r − 1. (2.2)
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By basic covering theory the connected components of Hin
r (G) now cor-

respond to the orbits of Br on E in
r (G) — which can be computed in a purely

group-theoretical way by using the braiding operations defined in (2.2).
An important invariant of a component of Hin

r (G), or equivalently of an
orbit of the braid group on E in

r (G), is the unordered tuple of conjugacy classes
of the elements σi in the branch cycle description (σ1, . . . , σr) ∈ Er(G). This
motivates the following definition.

Definition 2.14. Let C = (C1, . . . , Cr) be a class vector of G; that is, a
tuple of non-trivial conjugacy classes of G. We define the Nielsen class Ni(C) of
C to be the set of all (σ1, . . . , σr) ∈ Er(G) such that there exists a permutation
π ∈ Sr with the property σi ∈ Cπ(i) for all i ∈ {1, . . . , r}. Furthermore, we
define the straight Nielsen class SNi(C) to be the subset of Ni(C) by forcing
π = id (i.e., σi ∈ Ci for all i). Factoring out Inn(G) yields the definitions of
Niin(C) and SNiin(C), the inner Nielsen class and straight inner Nielsen class,
respectively.

Accordingly we define the (inner) Hurwitz space Hin(C) to be the union of
all components of Hin

r (G) that correspond to the class vector C. From now on
we assume that Br acts transitively on Niin(C) and, consequently, that Hin(C)

is connected. A necessary and sufficient condition for Hin(C) to be defined
over Q is that C is a rational class vector, see Corollary 2.11 for the definition
of rationality. Since we are only interested in Hurwitz spaces defined over Q,
we always assume that our class vector C is rational.

These conditions together with Z(G) = 1 imply that Hin(C) is an absolutely
irreducible variety defined over Q. Denoting the restriction of the branch point
reference map to Hin(C) again by Ψ we have a cover

Ψ : Hin(C) → Ur

of degree |Niin(C)| with monodromy given by the (transitive) action of Br

on Niin(C).

2.4. Curves on Hurwitz spaces

In order to find rational points on the r-dimensional Hurwitz spaces a
common strategy is to study certain curves on them. Using theoretical criteria
the inspected curves sometimes turn out to be rational and consequently contain
lots of rational points. We only study “standard curves” obtained by fixing
all but one branch point. A more sophisticated approach is described by
Dettweiler [21].
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Of particular importance is the case of four branch points, as it turns out
that for r = 4 the question of existence for rational points on Hurwitz spaces
often can be answered completely by considering suitable curves on them:

Remark 2.15. Suppose C = (C1, C2, C3, C4) with distinct rational con-
jugacy classes C1, . . . , C4 and assume that there exists a cover f of P1 with
class vector C that is defined (regularly) over Q.

Under the given conditions Corollary 2.11 implies that all branch points
of f are rational, i.e., f is ramified over p1, . . . , p4 ∈ P1Q. Applying an outer
Möbius transformation µ ∈ Q(X) mapping p1, p2, p3 to 0, 1,∞ (in this order)
we obtain a cover µ ◦ f ramified over 0, 1,∞, λ for some λ ∈ Q \ {0, 1}. Of
course, µ ◦ f is still defined over Q.

So we have seen that the 4-dimensional variety Hin(C) has a rational point
if and only if the curve C on Hin(C) consisting of all covers with branch point
locus of the form 0, 1,∞, λ has a rational point. In the following we will
describe how properties of C such as the genus can be computed, sometimes
guaranteeing the existence of rational points by purely theoretical criteria.

Let C = (C1, . . . , Cr) be a class vector with distinct conjugacy classes
C1, . . . , Cr of a finite group G with non-empty Nielsen class. Then, the branch
point reference map Ψ : Hin(C) → Ur from Section 2.3 factors through the
space U r of ordered r-sets of P1 as follows

Hin(C)
Ψ′
→ U r → Ur,

where the cover Ψ′ : Hin(C) → U r has degree | SNiin(C)| and its monodromy
is given by the action of π1(U r) on SNiin(C).

Of course, the fundamental group of U r is the subgroup of Br consisting
exactly of those braids that fix all branch points. It is called the pure braid
group and is generated by the elements

βi,j := (β2
i )

β−1
i+1···β

−1
j−1 for 1 ≤ i < j ≤ r.

Now restrict to the case r = 4. Motivated by Remark 2.15 we study the
curve

C := Ψ′−1({(0, 1,∞, λ) | λ ∈ C \ {0, 1}})

on Hin(C) consisting of all G-covers with ramification as follows:

branch point 0 1 ∞ λ

inertia class C1 C2 C3 C4
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The branch point reference map Ψ′ : Hin(C) → U r restricts to a Belyi map
Ψ′ : C → P1

λ ramified over 0, 1,∞ with branch cycle description

(β̃1, β̃2, β̃3) := (β1,4, β2,4, β3,4), (2.3)

see [38, Section III.5.2]. Geometrically, the braid group element βi,4, i = 1, 2, 3,
can be interpreted as moving the fourth branch point λ around the i-th (fixed)
branch point (one of 0, 1,∞).

Apart from the case where C1, C2, C3, C4 are distinct the only other case
occurring in the work at hand is the following: C = (C1, C1, C2, C3) with
distinct and rational classes C1, C2, C3. Here, we consider the curve C on
Hin(C) consisting of covers with ramification as follows:

branch point 1−
√
λ 1 +

√
λ 0 ∞

inertia class C1 C1 C2 C3

Again, restriction of the branch point reference map yields a Belyi map Ψ′ :

C → P1
λ with branch cycle description

(β̃1, β̃2, β̃3) := (β1,4, β1β1,4, β1) (2.4)

in their action on the straight inner Nielsen class SNiin(C), see [38, Theorem
III.7.8].

In both cases we refer to C as the Hurwitz curve corresponding to C; in the
literature the term reduced Hurwitz space is also used.

A sufficient criterion for realizing G over Q. Knowledge of the branch
cycle description (β̃1, β̃2, β̃3) of Ψ′ : C → P1

λ is very useful, e.g., for computing
the genus of C and potentially deducing the rationality of C. We outline a
useful application to the inverse Galois problem:

Assume that C is a rational class vector and that (β̃2, β̃2, β̃3) as defined
above is a genus-0 triple in its action on SNiin(C). Then, as (β̃2, β̃2, β̃3) is the
branch cycle description of the cover C → P1

λ, the genus of C turns out to
be 0 by the Riemann–Hurwitz formula. If, in addition, (β̃2, β̃2, β̃3) fulfils an
oddness condition as described in Remark 2.9, then C is a Q-rational curve. In
particular, in this case, C contains lots of rational points leading to infinitely
many regular realizations of G over Q. Note that this criterion is of purely
theoretical nature and works without explicitly computing a single cover of the
family. A particular simple special case occurs when C is a rigid class vector,
i.e., when | SNiin(C)| = 1 holds. Then, C ∼= P1

λ is of course rational.
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In the following cases, however, we can not deduce the existence of rational
points a priori:

• The genus of C is 0, but the triple (β̃2, β̃2, β̃3) does not satisfy an
oddness condition. Here, C is a conic but possibly without rational
points.

• The genus of C is larger than 0.

In both cases it seems necessary to compute explicit equations for C in order to
search for rational points on C. This approach is carried out in Chapter 6 for
the group PSL4(3) where C is of genus 0 not satisfying an oddness condition,
and in Chapter 7 for the group PSL6(2) where C is hyperelliptic of genus 3.

Hurwitz curves and the function field setting. For the explicit com-
putation of multi-parameter polynomials with prescribed Galois group it is
important to know how Hurwitz curves translate into the function field setting.
This will be outlined in the following.

Restricting the universal family Tr(G) from Theorem 2.12 to the Hurwitz
curve C consisting only of G-covers with class vector C and branch point set
0, 1,∞, λ (or 1±

√
λ, 0,∞, respectively), we obtain the following varieties and

morphisms:

TC
|G|−→ C × P1

t

| SNiin(C)|−→ P1
λ × P1

t

In the function field setting this gives us1

Q(TC) > Q(C)(t) > Q(λ)(t)

where Q(TC) is Galois over Q(C)(t) with group G. The main goal in the following
chapters is to compute explicit defining equations for C and the extension
Q(TC) | Q(C)(t). More precisely, assume G acts transitively and faithfully
on n elements, then we usually compute the degree-n minimal polynomial
f ∈ Q(C)(t)[X] for some primitive element of the fixed field K of a point
stabilizer.

The genus of K can be computed by applying the Riemann–Hurwitz genus
formula for function fields, see [48, Corollary 3.4.14], to elements in the class
vector C in their action of degree n. In all of our cases K turns out to have
genus 0. Furthermore, in all examples presented in the thesis the rationality
of the function field K can be deduced a priori via an oddness condition as
described in Remark 2.9.

1Under our general assumptions that C is rational, Z(G) = 1, and Br acts transitively on
Niin(C).
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Now assume K | Q(C)(t) is rational, i.e., K = Q(C)(x) for some x ∈ K.
Then there exist coprime polynomials p, q ∈ Q(C)[X] such that t = p(x)/q(x).
In particular, the degree-n polynomial

f := p(X)− tq(X) ∈ Q(C)(t)[X]

defines a regular Galois extension of Q(C)(t) with Galois group G and class
vector C. The explicit computation of p, q and C is the main goal in this thesis
and methods for it are presented in the next chapter.





CHAPTER 3

Computation of families of covers

We describe the method used for the explicit computation of families of
4-point covers for the examples presented in this thesis. More precisely, assume
we are given a class vector C of length 4 for a transitive group G ≤ Sn with
the following properties:

(i) Z(G) = 1,
(ii) C is of genus 0 and fulfils an oddness condition as stated in Remark 2.9,
(iii) Niin(C) is non-empty and B4 acts transitively on it,
(iv) either C = (C1, C2, C3, C4) with distinct rational classes C1, C2, C3, C4

or C = (C1, C1, C2, C3) with distinct rational classes C1, C2, C3.

Then, by the theory of Hurwitz spaces as explained in Chapter 2, there exist
an absolutely irreducible curve C defined over Q — the inner Hurwitz curve —
and coprime polynomials p, q ∈ Q(C)[X] such that p(X)− tq(X) has regular
Galois group G over Q(C)(t). Furthermore, p(X) − tq(X) parameterizes all
covers P1C → P1C with class vector C ramified over 0, 1,∞, λ or 1±

√
λ, 0,∞

for λ ∈ C \ {0, 1}.
In this chapter we describe an approach by Joachim König, Andreas Wenz

and the author on how to compute defining equations for C as well as the
polynomials p, q ∈ Q(C)[X]. This algorithm was previously outlined in the
journal article [4] from which some passages in the following chapter have
been taken. The approach heavily makes use of the fact that recently powerful
methods to compute Belyi maps were developed, see for example [11] or [53].

3.1. Main idea

3.1.1. Reducing to Belyi maps. Recall that a covering f : X → P1C
is called a Belyi map if it is unramified outside of {0, 1,∞}. Belyi’s famous
theorem asserts that every compact Riemann surface which can be defined over
Q admits a Belyi map to P1. Belyi’s proof uses a clever composition of covers,
successively reducing the number of branch points. It was first suggested to us
by Peter Müller to use such an idea to reduce calculation of multi-branch-point

15
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covers to Belyi maps. This can be achieved efficiently due to the following
result.

Proposition 3.1. Let r ≥ 3, and let C = (C1, . . . , Cr) be a class vector for
the finite group G with non-empty Nielsen class Ni(C). Then for every Belyi
map g : P1C → P1C of degree at least r − 2, there exists a cover f : X → P1C
of type C such that g ◦ f : X → P1C is a Belyi map. Furthermore, r − 2 is the
minimal degree with this property.

Proof. Assume that g is as above with deg(g) ≥ r−2. From the Riemann–
Hurwitz genus formula, it follows that the set g−1({0, 1,∞}) ⊂ P1 is of cardi-
nality exactly deg(g)+2 ≥ r. Using Riemann’s existence theorem, we may pick
a cover f : X → P1 of type C ramified only inside g−1({0, 1,∞}). By construc-
tion, g ◦ f is then unramified outside {0, 1,∞}. Conversely, if deg(g) < r − 2,
then the above shows that any cover of type C has to be ramified at some point
outside g−1({0, 1,∞}), implying that g ◦ f is not a Belyi map. □

The point of Proposition 3.1 is that, assuming that we have an efficient
algorithm to compute explicit equations for Belyi maps with a prescribed
ramification type, we automatically get, as a component of the resulting map
g ◦ f , an explicit equation for some cover in a prescribed family with more than
three branch points. The technique for computation of Belyi maps which we use
(see Section 3.3) has been developed by Andreas Wenz and the author, and has
previously been applied to calculate Belyi maps with interesting monodromy
groups of degree up to 280 (see [5], [6], [7], [8], [11] and [53]). Of course, any
other method that allows the computation of high degree Belyi maps works as
well. Alternative approaches for computing Belyi maps are discussed in [47],
[45], [51], [31], [42], [43] and [44].

3.1.2. Comparison with previous approaches. There have been many
previous papers on the computation of families of covers, notably by Malle ([37]),
Couveignes ([18]) and König ([33], [34]). In these, either the permutation
degree of the group in question is sufficiently low to allow finding an equation
for at least one cover of the prescribed ramification type “directly” (e.g., via
a Gröbner basis approach, or via brute-force search modulo a small prime,
followed by p-adic lifting), or the starting point of the calculation is an (r − 1)-
point cover with monodromy (σ1σ2, σ3, . . . , σr), which is then deformed into an
r-point cover with monodromy (σ1, . . . , σr) — possibly iteratively, to eventually
get from a 3-point cover to an r-point one. Unless the permutation degree
and the number of branch points are “small”, these methods have obvious
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downsides. Firstly, direct methods like the Gröbner basis approach become
very expensive as the number of variables (which is roughly the permutation
degree times r − 2, where r is the number of branch points) grows.1 Also, for
r ≥ 5, the iterated deformation process to obtain a larger number of branch
points is quite time-consuming. Finally, the complex deformation techniques
turn out to be numerically rather delicate in many cases. Especially where
there is no transitive tuple (σ1σ2, σ3, . . . , σr) available, experiments by Joachim
König showed numerically unstable behaviour in many examples. The main
improvement in the use of Proposition 3.1 — which can be considered a “vertical”
approach (going from three to many branch points by composing covers on top
of each other), compared to the “horizontal” one of deformation and moving
branch points in P1 — is to circumvent the lengthy process of deformation
and get directly into the prescribed family of r-point covers, after which the
remaining calculations are rather smooth. The obvious price is that the degree
of the initial Belyi map is increased by a factor of r − 2. However, due to the
far-developed methods in computation of Belyi maps, this is (often) worth the
effort.

3.2. Outline of our algorithm

Here, we give a brief description of our algorithmic application of Proposi-
tion 3.1 to compute explicit equations for the Hurwitz curve C and polynomials
p, q ∈ Q(C)[X] that parameterize covers with class vector C. The algorithm
can be divided into the following parts:

(1) We obtain a single multi-branch-point cover of ramification type C

(2) and interpolate the whole Hurwitz curve C starting from the single
cover computed in (1).

In the first part the number r of branch points is arbitrary, while the second
part is described only for the case r = 4 since we have introduced the notions
of (reduced) Hurwitz spaces and Hurwitz curves only for r = 4. However, one
could iterate the second step to obtain Hurwitz spaces of higher dimensions.

1While it is of course not possible to give a precise bound, computations with 3 branch points
are generally considered feasible for a degree into the 20s, and correspondingly lower degree
for a larger branch point number.
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3.2.1. A complex approximation of a single r-point cover.

Step 1: Finding the monodromy for a suitable Belyi map. We are given
a class r-tuple C = (C1, . . . , Cr) of a group G. We choose g : P1 → P1 to be
the cyclic cover g : x 7→ xr−2, ramified only at 0 and ∞. We then compute
a triple (σ0, σ1, σ∞) corresponding to a Belyi map g ◦ f as in Proposition 3.1.
This can be done rather easily by observing some elementary group-theoretical
invariants of such a cover g ◦ f . In particular,

(i) its Galois group embeds naturally into the imprimitive wreath product
G ≀Cr−2 = Gr−2⋊Cr−2, with Cr−2 permuting the copies of G cyclically.

(ii) Its monodromy (σ0, σ1, σ∞) has the following properties: σr−2
0 (resp.,

σr−2
∞ ) is an element of Gr−2 projecting into class C1 (resp., Cr) in every

copy of G; and σ1 is an element of C2 × · · · × Cr−1 ⊆ Gr−2.

Indeed, the embedding of the Galois group in (i) is an elementary fact in
Galois theory, see Section 14.2 in [19]; in the same way, (ii) follows directly from
our choice of branch points and inertia group generators in Proposition 3.1.

Permutation triples fulfilling the above conditions are then found via com-
puter search.

Step 2: Computation of the Belyi map. Using the permutation triple
(σ0, σ1, σ∞) from the first step, we calculate a complex approximation of an
equation F (u,X) = 0 (with F ∈ C[u,X]) for the underlying Belyi map g ◦ f .
Using the definition of g, we can set u = tr−2 and factor F over C[t], which
gives us an approximate equation for the (r-point) subcover f : X → P1 as
described in Proposition 3.1.

Especially for this step, we refer to Section 3.3 for details where our method
to compute Belyi maps is described.

3.2.2. Turning a single cover into a family. In the following, we
describe how to obtain an equation for the entire universal family starting from
a single member. This part of the computation is relatively “routine”, see e.g.
previous occurrences in [34].

To simplify the exposition we only describe the case where the class vector
C = (C1, C2, C3, C4) consists of distinct rational classes Ci and C parameterizes
covers ramified over 0, 1,∞, λ. The case of partially ordered ramification locus
1±

√
λ, 0,∞ can be carried out analogously with minor changes.

Recall, there exists a polynomial f ∈ Q(C)(t)[X] with Galois group G

that parameterizes (through specialization at points on C) the universal family
TC → C × P1

t of all covers with class vector C and ramified over 0, 1,∞, λ. As
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C is assumed to be of genus 0 and to satisfy an oddness condition as described
in Remark 2.9, the root field of f is rational. Thus, we may assume that f is
linear in t, i.e., f(t,X) = p(X)− tq(X) with coprime p, q ∈ Q(C)[X].

The ramification at the places t 7→ 0 and t 7→ ∞ implies an inseparability
behaviour of p and q of the following form (see e.g. [33, Lemma 3.6]):

f(t,X) = pe11 · · · perr − tqm1
1 · · · qms

s ,

where pi and qi are separable and pairwise coprime polynomials in Q(C)[X].
Analogously, the ramification indices at 1 and λ yield similar conditions on the
factorizations of f(1, X) and f(λ,X), respectively.

Since a generator of the (rational!) root field of f(t,X) is only unique up
to PGL2-action, we may apply Möbius transformations in X to assert certain
normalization conditions :

In all examples discussed in this thesis, it is a priori clear that
at least one place lying above t 7→ 0 or t 7→ ∞ is rational,
and, consequently, can and will be assumed to lie at X 7→ ∞.
Afterwards, if possible, some linear translation X 7→ aX + b

is applied to fix the traces of two of the polynomials pi or qi

to be 0 and 1, respectively; see also [33, Lemma 3.9].

Up to Möbius transformation, the computed genus-0 Belyi map F (from
the first part 3.2.1) of degree 2n is of the form f0(X)2 with a rational function
f0 of degree n having the four branch points 0, 1,∞,−1, monodromy group
G and the prescribed ramification type C. We now apply an inner Möbius
transformation to f0 such that f0 satisfies the aforementioned normalization
conditions. Then, we use f0 as a starting point to compute the Hurwitz curve C
of all covers with ramification type (C1, C2, C3, C4) and branch points 0, 1,∞, λ,
with λ ∈ C \ {0, 1}, by assembling equations for many fiber covers TC(h) → P1

in our universal family.
This can be done by complex deformation techniques, slowly increasing the

parameter λ and using Newton approximation to adjust the coefficients of f0.
The point is that this is numerically stable, since the starting point is already
a cover with 4 sufficiently separated branch points, leading to a sufficiently “far
from singular” matrix in Newton’s method.2

As Q(C) is of transcendence degree 1, two “random” (non-constant) coeffi-
cients of f can usually be expected to generate the entire function field Q(C).

2Of course, this observation should be understood as a qualitative statement, not something
that can be quantified in generality.
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We use this and let a coefficient β (of one of the polynomials pi or qi) converge
to a rational value, using Newton approximation. Then any further coefficient
γ will converge to an algebraic number of degree at most [Q(β, γ) : Q(β)]

(which is bounded by the index of Q(β) in the function field of the Hurwitz
curve), and given a sufficient complex precision, we can recognize this algebraic
number γ using the LLL algorithm. Doing this for several rational values of β,
we obtain by interpolation the algebraic dependency between β and γ (viewed
as transcendentals) parameterizing the function field of our Hurwitz curve C,
i.e., Q(C) = Q(β, γ).

The remaining steps depend on whether the curve C is birationally iso-
morphic to P1.

(i) If C is a rational curve, we use Riemann–Roch space computations
as explained in [33, Lemma 3.16] to explicitly obtain a parameter α

with Q(α) = Q(β, γ). Next, we use Newton approximation again to
let α converge to several rational values. Then all the coefficients of
the pi and qi must also be rational values and can easily be recognized
from their complex approximations by using continued fractions. Inter-
polating between these several values once again yields dependencies
between α and each coefficient, i.e., expressions of each coefficient
as a rational function in α. This, finally, yields a multi-parameter
polynomial f(α, t,X) ∈ Q(α, t)[X].

(ii) If C is not rational (for example, if the genus of C is non-zero) one may
at least try and search for rational points on C (possibly after obtain-
ing a nicer equation for C using Riemann–Roch space computations)
leading to covers of the prescribed ramification type defined over Q,
cf. Theorem 2.12.

In Chapter 7, we carry out this approach for the group PSL6(2)

where C turns out to be a hyperelliptic genus-3 curve unfortunately
having no (unramified) rational points.

In the above algorithm recognizing algebraic numbers from their complex
approximations can be quite tedious, especially if their degrees become large.
Therefore, we conclude with some remarks on how to reduce the degrees of the
algebraic numbers occurring in the algorithm.

As mentioned before, when letting β converge to a rational value, all other
coefficients converge to algebraic numbers of degree at most [Q(C) : Q(β)] for
which no a priori bound can be given. However, for the particular choice of
β := λ, we have an explicit upper bound of [Q(C) : Q(λ)] = | SNiin(C)| making



3.3. AN ALGORITHM TO COMPUTE GENUS-0 BELYI MAPS 21

λ a good choice for β when the straight inner Nielsen class is small. Additionally,
if the branch point reference map Ψ : C → P1

λ is indecomposable (which can
be decided by checking its monodromy group ⟨β̃1, β̃2, β̃3⟩ for primitivity), we
already know that λ together with any other coefficient γ not contained in
Q(λ) generates the full function field Q(C).

However, sometimes the imprimitivity of Ψ : C → P1
λ may be even more

valuable than the primitivity: In the following we outline an approach to reduce
the degrees of the algebraic numbers provided the branch point reference map
Ψ : C → P1

λ has a genus-0 subcover and we have an algorithm at hand to
compute (genus-0) Belyi maps.

Suppose Ψ : C → P1
λ splits3 as follows

Ψ : C → P1
µ

Ψ′
→ P1

λ

and assume further that the genus-0 Belyi map Ψ′ : P1
µ → P1

λ has been computed
(for example, with the algorithm described in Section 3.3) and, consequently, a
relation between λ and µ is explicitly known. Then, after letting µ converge
to a rational value, all coefficients of f become algebraic numbers of degree at
most [Q(C) : Q(µ)] which may be considerably smaller than the previous upper
bound [Q(C) : Q(λ)].

In Chapter 7 we present a successful application of this approach where we
reduce the algebraic degree of the occurring numbers from 48 to 2.

3.2.3. Verification of computed results. In the above computation
process there are some potential points of failure (e.g., Newton’s method
converges to a wrong cover, algebraic numbers are inaccurately recognized from
their complex approximations, or the interpolation process fails), mostly due
to the fact that the algorithm works with inexact complex approximations.

Thus, as a last step, it remains to strictly verify that the obtained polynomial
p(X) − tq(X) ∈ Q(C)(t)[X] indeed has the prescribed Galois group. Some
verification techniques are presented in the next Chapter 4.

3.3. An algorithm to compute genus-0 Belyi maps

In the following we will provide the missing ingredient in Section 3.2.1
by sketching an algorithm developed by Andreas Wenz and the author for
computing genus-0 Belyi maps. The algorithm outlined here is used for the
examples presented in this thesis but of course any other algorithm capable of
computing high degree Belyi maps may be used as well.
3The special case where C is already rational, i.e. C = P1

µ and Ψ = Ψ′, is also allowed.
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Our algorithm combines and extends ideas from both [31] and [39, 14, 3].
In the work at hand we only give a terse overview; for a more detailed description
and an implementation using Magma [15] and Matlab [40] see Andreas Wenz’
doctoral dissertation [53]. The method has also been sketched in the article [11]
by Andreas Wenz and the author; in the following description some passages
were taken over from this article.

The algorithm takes as input permutations σ0, σ1, σ∞ ∈ Sn with the follow-
ing properties

(i) σ0, σ1, σ∞ generate a transitive subgroup of Sn,
(ii) σ0σ1σ∞ = 1,
(iii) the genus of (σ0, σ1, σ∞) is 0,
(iv) (σ0, σ1, σ∞) is hyperbolic4, i.e., 1/ ord(σ0)+1/ ord(σ1)+1/ ord(σ∞) < 1,

and tries to compute a complex approximation of a Belyi map f : P1 → P1

with branch cycle description (σ0, σ1, σ∞).
In order to present the algorithm we firstly recall some basic facts about

Belyi maps and their dessin d’enfants.

3.3.1. Preliminaries: Belyi maps and dessin d’enfants. To a Belyi
map f : X → P1C of degree n we associate its dessin d’enfant or just dessin for
short. It is the bipartite graph (drawn on the Riemann surface X) consisting of

• the set f−1(0) as black vertices,
• the set f−1(1) as white vertices,
• the connected components of f−1(]0, 1[) as edges.

The branch cycle description (σ0, σ1, σ∞) of f can be derived from the dessin
in the following way, see [27, Section 4.1.1]: Label the n edges of the dessin
from 1 to n. When walking a small circle (counter-clockwise) around each black
node, the edge labelled j is followed by the edge σ0(j). Similarly, σ1 can be
obtained by doing the same procedure with the white nodes. In particular, the
cycles of σ0 and σ1 correspond to the black and white vertices, respectively,
and the cycle length is equal to the respective vertex degree, which in turn is
equal to the multiplicity of the corresponding preimage of 0 or 1.

The following example was presented by Gunter Malle at a conference in
1993, see [54, Example 1.2].

4A technical hypothesis that is fulfilled for most triples generating “interesting” monodromy
groups.
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Figure 1. Sketched M12-dessin

Example 3.2. Consider the permutations σ0, σ1, σ∞ ∈ S12 given by

σ0 = (1, 2, 3)(4, 5, 6)(8, 9, 10),

σ1 = (1, 2)(3, 4)(5, 8)(6, 7)(9, 12)(10, 11),

σ∞ = (2, 3, 6, 7, 5, 10, 11, 9, 12, 8, 4).

Then σ0σ1σ∞ = 1 and σ0, σ1, σ∞ generate the sporadic simple Mathieu group
M12 with cycle structures as follows:

σ0 σ1 σ∞

cycle structure 33.13 26 111.11

The Riemann–Hurwitz genus formula shows that (σ0, σ1, σ∞) is of genus 0
which implies that the corresponding Belyi map with branch cycle description
(σ0, σ1, σ∞) is a rational function f : P1C → P1C.

See Figure 1 for the corresponding sketched5 dessin, in the literature some-
times called Monsieur Mathieu.

3.3.2. Computation. Our method for calculating f consists of construct-
ing an approximate dessin of f . We illustrate it with a low degree example,
namely the M12-triple from Example 3.2. The algorithm to compute genus-0
Belyi maps consists of three steps:

5By sketched we mean that the dessin is drawn topologically correct but is not the actual
preimage under a Belyi map as, for example, the angles and proportions are incorrect.
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Step 1: Realize f as an “abstract” 3-point cover of quotient structures

Φ : H/Γ → H/∆

and draw the dessin on H/Γ.6 Here, H := {z ∈ C : Im(z) > 0} denotes
the upper half plane that comes into play as we work with hyperbolic
triples.

Step 2: Use the “welding” technique to construct an explicit isomorphism
between H/Γ and P1C that allows transferring the dessin from H/Γ

to P1C. The genus-0 property of (σ0, σ1, σ∞) asserts that H/Γ is
isomorphic to P1C.

Step 3: Reconstruct the Belyi map from the dessin and use Newton’s method
to obtain sufficiently good complex approximations.

The first step is basically identical to [31] while the second step uses ideas from
[39], [14] and [3]. The third step is standard.

Step 1: Drawing the dessin on H/Γ.
Let a := ord(σ0), b := ord(σ1), c := ord(σ∞), and

∆ :=
〈
δa, δb, δc | δaa = δbb = δcc = δcδbδa = 1

〉
.

We work with the embedding ∆ ↪→ PSL2(R) described in [31, Proposition 2.5],
where δa (resp. δb) is mapped to a hyperbolic rotation around i (resp. µi for
some µ > 1) of angle 2π/a (resp. 2π/b). Thus ∆ acts on the upper half-plane
H via the natural action of PSL2(R) on H, that is

PSL2(R) → Aut(H) :

(
α β

γ δ

)
7→
(
z 7→ αz + β

γz + δ

)
.

A fundamental domain can be chosen to be the shape of a hyperbolic kite with
vertices i, h, µi,−h̄ for some h ∈ H.

Furthermore, let φ denote the homomorphism from ∆ onto G = ⟨σ0, σ1⟩
such that δa 7→ σ0 and δb 7→ σ1. Using Γ := φ−1(StabG(1)) < ∆ we will study

Φ : H/Γ → H/∆, z mod Γ 7→ z mod ∆.

This is a three-point branched cover of degree n with monodromy group
isomorphic to G, see [31] for more details. Because H/∆ is homeomorphic to
P1C, we may assume that the ramification locus of Φ is given by {0, 1,∞} such

6For a topological space X and a group G acting on X let X/G denote the corresponding
orbit space.
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Figure 2. fundamental domain D and dessin of Φ

that the coloured line segments in Figure 2 represent Φ−1([0, 1]) in a suitable
connected fundamental domain D of H/Γ.

Step 2: Welding.
By using for example the Schwarz–Christoffel Toolbox [22] for Matlab we

can conformally map the interior of D onto H. Note that ∂H = R∪{∞} inherits
the structure of D induced by the quotient relation in H/Γ, see Figure 3.

In order to glue adjacent real line segment we will work with slit maps of
type

slitA : H → H, z 7→ (z − A)A(z + 1− A)A−1

where A ∈ (0, 1), see also Figure 4. In Figure 5 we illustrate the first gluing
process for the dessin in H/Γ. Similar applications can be found in [39] and [3].

According to the corresponding quotient structure on ∂H we keep applying
suitable slit maps until we remain with two line segments on ∂H, see Figure 6.

In order to glue the remaining two line segments we apply a conformal
map from H to the unit disc D that maps these lines to the upper and lower
semicircle on ∂D. We will now work with the conformal map

χ : D → P1C, z 7→ z +
1

z
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Figure 3. D conformally mapped onto D (instead of H for the
sake of clarity) with quotient structure on ∂D induced by H/Γ,
i.e., circular line segments labelled with the same number are
considered equivalent modulo Γ

A− 1 0 A

H slitA7−→

slitA(A− 1)= 0= slitA(A)

slitA(0)
H

Figure 4. conformal map slitA and its behaviour on ∂H

having the following obvious properties:

• χ(D) = P1C \ [−2, 2],
• χ(z) = 2 · Real(z) for z ∈ ∂D.

As χ glues both of the above semicircles together we obtain the conformal
image of D onto P1C \ [−2, 2] respecting the quotient structure. In particular,
this gives us the transformed dessin of Φ contained in P1C, see Figure 7.
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Figure 5. gluing process using the slit map slit 1
2

for the adjacent
real line segments with label 1

Additionally, applying a Möbius transformation yields the dessin shown in
Figure 8 that allows a better comparison to the sketched dessin from Figure 1.

Step 3: From the dessin to the Belyi map.
Due to the fact that the cycle structures of σ0, σ1 and σ∞ are given by

(33.13), (26) and (111.11), respectively, we know that the Belyi map f has to
obey the following inseparability behaviours over 0, 1 and ∞:

f =
cp

q
= 1 +

(c− 1)r

q

with p = p31 · p2, q = q111 · q2, r = r21, where p1, p2, q1, q2 and r1 are monic
and pairwise coprime complex polynomials of the following degrees: deg(p1) =
deg(p2) = 3, deg(q1) = deg(q2) = 1 and deg(r1) = 6. Additionally, c denotes a
complex scalar.
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Figure 6. next three welding steps (gluing the real line segments
labelled 2, 3, 4, respectively)

Now, having constructed an approximate dessin, the values for c ∈ C and the
monic complex polynomials p1, p2, q1, q2, r1 can be picked with respect to the
coordinates and multiplicities of the zeroes, ones and poles in the dessin. This
gives a starting point for a successful application of Newton’s method, allowing
us to find an approximation of the Belyi map f of sufficiently high precision
such that, if desired, coefficients can be recognized as algebraic numbers.
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Figure 7. fifth and last welding step using χ and the resulting
approximate dessin in P1C

Figure 8. M12-dessin after a Möbius transformation





CHAPTER 4

Verification techniques

We present some techniques for determining the Galois groups of (the Galois
closure) of rational function fields K(x) | K(t) or equivalently the Galois groups
of polynomials of the form p(X)− tq(X) ∈ K(t)[X] with coprime polynomials
p, q ∈ K[X]. Some of these techniques may also be applied for polynomials
having a stem field of positive genus.

The general approach when computing the Galois group G of a polynomial
is to gather enough permutation group theoretic properties of G to uniquely
determine it. Our goal in this chapter is to list some tools yielding information
about the Galois group. We remark that by far not all groups can be recognized
using these tools and we stay far away from giving a complete algorithmic ap-
proach for computing Galois groups, as e.g. provided by Stauduhar’s algorithm.
However, for the groups encountered in this work, the tools we present are
sufficient.

Due to the topological interpretation of Galois groups over C(t), numerical
verification by a path lifting algorithm would also be possible; for an imple-
mentation of such an algorithm see [33, Section 11.1]. However, it is quite hard
to obtain rigorous results this way without putting lots of work in choosing a
small enough step size. Therefore, we try not to use such numerical algorithms,
but rather put emphasis on the fact that we only use exact algorithms yielding
rigorous results.

4.1. Definitions and basic properties

Let K be a field of characteristic zero, p, q ∈ K[X] coprime polynomials
and n := max(deg(p), deg(q))). Let Ω denote the splitting field of p(X)− tq(X)

over K(t). Then, the Galois group of Ω | K(t) is the arithmetic monodromy
group A of f := p− tq. Of course, A is just the Galois group of f and — since
p and q are coprime — acts transitively on the n roots of f in Ω.

Denote by K̂ the algebraic closure of K in Ω, that is, K̂ = Ω ∩K, then
the geometric monodromy group G of f is the Galois group of Ω | K̂(t). It can
be easily seen that G is normal in A and also acts transitively on the roots of

31
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f . In particular, we have G ⊴ A ≤ NSn(G) ≤ Sn where NSn(G) denotes the
symmetric normalizer of G; that is, its normalizer in the symmetric group Sn.

Recall that the extension Ω | K(t) is called regular if K̂ = K or equivalently
A = G. In this case we say that the Galois group of f is regular — not to
be confused with the term “regular permutation group”. Of course, sufficient
conditions for regularity are that G is self-normalizing in Sn, i.e., G = NSn(G),
or that A is a simple group.

If K is a number field, it can be seen that the groups G, Gal(f | Q(t)),
Gal(f | C(t)) and the (topological) monodromy group of the rational function
p/q are all permutation isomorphic to each other. In particular, G is generated
by the elements σ1, . . . , σr from the branch cycle description of p/q. Note that
the cycle structure of σi corresponds to the inseparability behaviour of f above
the i-th branch point and can thus be easily determined.

Remark. Sometimes we use the notion of arithmetic and geometric mono-
dromy groups also when working in characteristic p. However, we always
exclude cases of wild ramification and only consider tame ramification. This
can be guaranteed, for example, by choosing p larger than the polynomial’s
degree.

4.2. Gathering information about subgroups of a Galois group

It is usually simple to obtain lower bounds for Galois groups, for example,
using the well known Dedekind criterion. But, of course, lower bounds alone
can not exclude the groups An or Sn as possibilities. In order to exclude these
large groups as candidates for the Galois group it is often useful to prove the
existence of subgroups with certain properties in the Galois group.

One way to obtain information about subgroups of the Galois group of
a polynomial f ∈ K(t)[X] is to factor f over some extension L of K(t). In
general, this can be a computationally expensive task, but if L is still a rational
function field, the factorization can be carried out without enlarging the field:

Lemma 4.1. Let f(t,X) ∈ K(t)[X] be a polynomial and p, q ∈ K[X]

coprime. Let s be a root of p(X) − tq(X) ∈ K(t)[X]. Then f(t,X) factors
over the rational function field K(s) in the same pattern as the specialized
polynomial f(p(t)

q(t)
, X) factors over K(t).

Proof. As s is a root of p(X)− tq(X) we have t = p(s)
q(s)

. Thus, by a change
of variables, factoring f(t,X) = f(p(s)

q(s)
, X) over K(s) corresponds to factoring

f(p(t)
q(t)

, X) over K(t). □
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A useful application of Lemma 4.1 lies in computing the subdegrees of Galois
groups of polynomials of the form p(X) − tq(X) ∈ K(t)[X]. Recall that the
subdegrees of a transitive group G are the orbit lengths of any point stabilizer
of G.

Corollary 4.2. Let p, q ∈ K[X] be coprime polynomials such that p(X)−
tq(X) is separable. Then the subdegrees of Gal(p(X)− tq(X) | K(t)) are given
by the degrees of the irreducible factors of p(X)− p(t)

q(t)
q(X) over K(t).

Proof. Let x be a root of p(X)− tq(X) ∈ K(t)[X] in a splitting field and
denote by G the Galois group of p(X) − tq(X) over K(t). Then the point
stabilizer Gx is equal to the Galois group of p(X)− tq(X) over K(x) and, in
particular, the subdegrees of G are given by the degrees of the irreducible
factors of p(X)− tq(X) over K(x). Due to the previous lemma these degrees
can be determined by factoring p(X)− p(t)

q(t)
q(X) over the smaller field K(t). □

A transitive group of degree n is 2-transitive if and only if its subdegrees
are 1 and n − 1. In particular, using Corollary 4.2 we can decide whether a
Galois group is 2-transitive. Notably, when the Galois group turns out to be not
2-transitive often only a few groups remain with the given subdegrees. The case
of 2-transitivity (which is most common in this thesis) is typically more difficult
to deal with as it can be hard to exclude the large and highly transitive groups
An and Sn. For these groups some of the following results come in handy; they
yield information on subgroups other than point stabilizers. An alternative way
to exclude An and Sn is Elkies’ method for bounding the transitivity degree of
Galois groups in the function field setting, see Chapter 8 for more details.

The following lemma gives a sufficient criterion that some field has non-
trivial intersection with a polynomial’s splitting field.

Lemma 4.3. Let f ∈ K[X] be an irreducible polynomial with splitting field Ω

(in some fixed algebraic closure of K). Further assume that f becomes reducible
over some field L (extending K). Then L ∩ Ω ≩ K.

Proof. Without loss of generality, we assume that f is monic and write

f = (X − α1) · · · (X − αn)

with α1, . . . , αn ∈ Ω. Since f is irreducible over K but splits nontrivially over
L, we have f = pq for monic polynomials p, q ∈ L[X] \K[X]. The coefficients
of p and q are polynomials in the roots α1, . . . , αn of f and lie therefore in the
splitting field Ω = K(α1, . . . , αn), implying p, q ∈ Ω[X]. It follows that there
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exists at least one coefficient of p or q lying in (L ∩ Ω) \K which proves the
lemma. □

Lemma 4.3 yields information about the Galois group of f over K by
factoring f over fields L extending K. If L is a rational function field, Lemma 4.1
allows efficient factorization over L, yielding the following proposition. It can
be seen as a generalization of Corollary 4.2 to subgroups other than point
stabilizers.

Proposition 4.4. Let K be an arbitrary field and f(t,X) ∈ K(t)[X] a
separable and irreducible polynomial. Furthermore, let p, q ∈ K[X] be coprime
polynomials such that f(p(t)

q(t)
, X) ∈ K(t)[X] splits nontrivially into irreducible

factors of degree d1, . . . , dr. Then the Galois group Gal(f | K(t)) has a proper
subgroup of index dividing deg(p− tq) with orbit lengths d1, . . . , dr.

Proof. Let Ω be the splitting field of f over K(t) and s a root of the
irreducible polynomial p − tq ∈ K(t)[X]. According to the assumption and
Lemma 4.1, f(t,X) splits over K(s) into irreducible factors of degree d1, . . . , dr.
As shown in the proof of Lemma 4.3 this also holds when factorizing f over
Ω ∩K(s). Therefore, Gal(Ω | Ω ∩K(s)) < Gal(Ω | K(t)) is of index dividing
[K(s) : K(t)] = deg(p− tq) with orbit lengths d1, . . . , dr. □

In the above proposition we used the fact that the splitting field of f

contains a rational function field K(s) over which the factorization process
becomes easy due to Lemma 4.1. The following well known result in basic field
theory helps to factor polynomials of the form p− tq over non-rational subfields
of their splitting fields.

Lemma 4.5. Let K be a field, and a, b algebraic over K with minimal
polynomials µa, µb ∈ K[X]. Then µa is irreducible over K(b) if and only if µb

is irreducible over K(a).

We use Lemma 4.5 to prove a variant of Proposition 4.4:

Proposition 4.6. Let K be an arbitrary field, p, q ∈ K[X] be coprime such
that p(X)−tq(X) ∈ K(t)[X] is separable and let G := Gal(p(X)−tq(X) | K(t)).
Further assume there exists an irreducible polynomial r(t,X) ∈ K(t)[X] of
degree n such that r(p(t)

q(t)
, X) ∈ K(t)[X] becomes reducible. Then there exists a

divisor d ̸= 1 of n such that G possesses an index d subgroup.

Proof. Let Ω denote the splitting field of the irreducible polynomial
p(X)− tq(X) over K(t), y be a root of r(X) in a splitting field over K(t) and
s ∈ Ω a root of p(X)− tq(X):
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d

K(t)

K(t, y)

K(s)

Ω

Ω ∩K(t, y)
r(t,X) of degree n

p(X)− tq(X)

The reducibility of r(p(t)
q(t)

, X) ∈ K(t)[X] together with Lemma 4.1 implies
that r(t,X) splits nontrivially over K(s). Now, Lemma 4.5 yields that the
polynomial p(X) − tq(X) is reducible over K(t, y), thus K(t) ≨ Ω ∩ K(t, y)

according to Lemma 4.3. Via Galois correspondence Gal(Ω | K(t)) must contain
an index d subgroup where d ̸= 1 is a divisor of n. □

Propositions 4.4 and 4.6 are our main tools to obtain information about
subgroups of a Galois group. Similar tricks are, of course, long known in the
literature and have been used, for example, in [37]. We conclude this section
with a short outline on how (and under which conditions) these results yield
information about a polynomial’s Galois group.

4.2.1. Using the previous propositions in the determination of
Galois groups. Let f(t,X) ∈ K(t)[X] be an irreducible polynomial with
splitting field Ω and Galois group G. Using Propositions 4.4 or 4.6 to get
information about the group G usually boils down to compute an auxiliary
polynomial r(t,X) ∈ K(t)[X] defining a subfield of Ω. Then, of course, the
Galois group G acts on the roots of r(t,X), leading to a second permutation
representation of G (apart from the “natural” one acting on the roots of f).

We divide the procedure into two steps: First, how to pick a suitable
permutation representation of G and, second, how to actually obtain the
auxiliary polynomial r.

Step 1: Picking the right permutation representation. The above proposi-
tions can only be applied successfully if f splits over a stem field of r which is
equivalent to the fact that the stabilizer of a root of r acts intransitively on
the roots of f (or vice versa).

Of course, it is possible to compute (e.g., with Magma) whether a given
finite group G possesses suitable permutation representations, i.e., if G possesses
subgroups H1 and H2 such that H1 acts intransitively on the cosets of H2 in G.
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In addition to this computational approach, the question can also be decided
in a character-theoretic way suggested to us by Peter Müller, which will be
outlined in the following: Assume G acts transitively on two finite sets Ω1 and Ω2

with permutation characters denoted by π1 and π2, respectively. Additionally,
let H1 and H2 be stabilizers of elements of Ω1 and Ω2, respectively. Then, it is
an easy exercise to show that G has as many orbits on Ω1 ×Ω2 as the stabilizer
H1 has on Ω2. By symmetry, there are as many H1-orbits on Ω2 as there are
H2-orbits on Ω1. Moreover, by the Cauchy-Frobenius orbit counting formula
and the fact that the permutation character of G on Ω1 × Ω2 is given by π1π2,
this common number of orbits is given by the standard inner product [π1, π2].

Thus, denoting the permutation characters of G on the roots of f and
r by π1 and π2, respectively, a prerequisite for the successful application of
Proposition 4.4 or 4.6 is that [π1, π2] > 1. For almost simple groups this
condition often can be easily checked using, for example, the Atlas of finite
simple groups [17]. A special case where [π1, π2] > 1 occurs is when G has two
non-equivalent actions with the same permutation character. This often occurs
when dealing with linear groups, cf. Section 4.4.1.

Step 2: Obtaining the auxiliary polynomial r. The second and more difficult
step is to actually obtain the polynomial r having the desired properties
described in the previous step. We present two strategies to solve this.

First, one can use the Magma commands GaloisGroup and GaloisSubgroup
to compute r. Often these commands can be carried out only after a suit-
able mod-p reduction. These Magma commands work with approximations of
the roots and thus are not guaranteed to yield proven results. However, this
poses no problem as the factorization algorithms used in the applications of
Propositions 4.4 or 4.6 yield rigorous results.

In some cases one can circumvent the (potentially expensive!) use of the
Magma commands GaloisGroup and GaloisSubgroup, for example, in the
following setting (that occurs often in the case of linear groups):

Assume we have computed a Hurwitz curve C together with a multi-
parameter polynomial f ∈ Q(C)(t)[X] for a group G and we are in the case
π1 = π2 from above, i.e., G has two non-conjugate subgroups H1 and H2

inducing the same permutation character.1 From π1 = π2 we can conclude, see
the proof of [35, Corollary 3.2], that the inertia group generators σ1, . . . , σr

1Such triples (G,H1, H2), also known as Gassmann triples, have connections, for example,
to arithmetically equivalent number fields, Davenport pairs and isospectral Riemannian
manifolds.
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have the same cycle structures in their action on the cosets of the group H2 as
they have in their action on the cosets of H1. So it is reasonable to expect that
the polynomial r lies in the same Hurwitz family as f , and, consequently, may
already be computed (or can be obtained from f relatively easily).

For simplicity, we give a brief outline of this procedure in the special case
C = P1

α. Then, our usual approach is to pick distinct α0, α1 ∈ Q such that
f0 := f(α0, t, X) and f1 := f(α1, t, X) have the same ramification locus (which,
of course, is a necessary condition for f0 and f1 to have the same splitting
field) and factor f0 over a stem field of f1 to see whether it splits. In practice,
one often picks α0 ∈ Q arbitrarily and uses the explicitly computed branch
point reference map Ψ to find α1 ∈ Q \ {α0} with Ψ(α0) = Ψ(α1). In all of
our examples where we use this technique, we have Out(G) = C2 and the
branch point reference map splits because of the imprimitivity caused by the
Aut(G)-blocks on SNiin(C) of size 2. Thus, the picked values α0 and α1 usually
correspond to Aut(G)-conjugate branch cycle descriptions. For such a choice
of α0 and α1, the Hurwitz classification (see the next section) suggests that f0
and f1 have the same splitting field. In the described setting the polynomial f1
then takes the role of the auxiliary polynomial r to provide information about
the Galois group of f0.

4.3. Reduction and specialization in function fields

Dedekind’s well known criterion states that after reducing a separable
polynomial modulo a prime ideal (or alternatively specializing a parameterized
polynomial), the Galois group of the new polynomial is a subgroup of the
original polynomial’s Galois group. In doing so, of course, one only allows such
reductions and specializations that preserve the polynomial’s degree and its
separability. This condition will be assumed in the following without further
notice.

In the setting of function field extensions and their geometric interpretation
as covers (or even families of covers), it is often possible to assert that the
Galois group (or at least the geometric monodromy group) does not change
after reduction or specialization. The main condition here is that we have
to reduce or specialize in such a way that the ramification locus does not
become smaller, meaning that no two branch points coincide after reduction or
specialization. When reducing into positive characteristic, we also require that
the characteristic does not divide the group order. In both cases we are basically
invoking Grothendieck’s good reduction theorem, see [23, Theorem 2.6]. In the
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following we describe these two powerful techniques and how we use them in
the verification process.

4.3.1. Specializing multi-parameter polynomials. Suppose, we want
to obtain information about the Galois group of a multi-parameter polynomial
f(t,X) ∈ Q(C)(t)[X] parameterized by an (absolutely) irreducible curve C, for
example, the corresponding Hurwitz curve.

Let G := Gal(f | Q(C)(t)) be the geometric monodromy group of f . Fur-
thermore, let c0 ∈ C be an unramified point (with respect to the branch point
reference map) — that is, we demand that the specialized polynomial f0 at
the point c0 ∈ C still has the same number of branch points as f . Denote by
G0 := Gal(f0 | Q(t)) the geometric monodromy group of f0. The fields Q(C)
and Q are both algebraically closed of characteristic zero and for such fields K

the Hurwitz classification holds: the Galois G-extensions of K(t) unramified
outside a fixed r-subset of P1K are in bijection to the set Er(G)/Aut(G), see
[38, Theorems III.6.1, I.2.2, I.4.1]. This is basically Riemann’s existence theo-
rem generalized to algebraically closed fields of characteristic zero. Moreover,
[38, Corollary III.6.3] and [38, Theorem III.6.4] state that specialization at an
unramified point is compatible with the Hurwitz classification implying that f
and f0 possess the same ramification type and, in particular, their geometric
monodromy groups G and G0 are isomorphic.

Thus, we have seen that specialization of a (connected) family of covers at an
unramified point does not change the geometric monodromy group. For the case
where C is a rational variety and the splitting field of f is additionally assumed
to be regular, this statement is explicitly formulated in [37, Lemma 3.1].

4.3.2. Reducing covers modulo a prime. An analogous result as in the
previous section holds when reducing a cover modulo p under the additional
condition that p does not divide the group order. Let K be a number field with
ring of integers OK and f ∈ K(t)[X] a polynomial with ramification locus R.
Furthermore, let p be a prime ideal of OK lying over the rational prime p and
denote by f ∈ (OK/p)(t)[X] the image under the canonical projection.2 Denote
by G and Gp the geometric monodromy groups of f and f , i.e., the Galois
groups over Q(t) and Fp(t), respectively. Assume further that the ramification
locus R is p-stable meaning that we have |R| = |R| for the mod-p reduced
ramification locus R.

2We implicitly assume that all coefficients of f lie in the localization of OK at the prime
ideal p.
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Under the additional assumption that the order of G is not divisible by
p, a fact that can even be assumed without exactly knowing |G| by picking p

larger than the polynomial’s degree, again, the Hurwitz classifications of Galois
G-extensions unramified outside of R and R coincide, see [38, Theorem I.10.6].
Moreover, similar as in Section 4.3.1, reduction modulo a prime ideal leaves the
ramification data and the geometric monodromy group invariant, in particular,
G ∼= Gp, see [38, Corollary I.10.7]. Beckmann proved this statement and
variants thereof using different methods, see [13] or [38, Proposition I.10.9].

4.4. Avoiding the classification of finite simple groups

The Galois groups occurring in this work are either 2-transitive groups or
primitive of rank 3. Through the classification of finite simple groups all such
finite groups are classified allowing us to exclude all but one permutation group
after having gathered enough permutation group theoretic information about
the Galois group. The remaining group must necessarily be the polynomial’s
Galois group.

In this last section we present some strategies to avoid the classification
of finite simple groups in the verification process. Our strategies focus on
2-transitive linear groups and rank-3 groups and use the theories of block
designs and strongly regular graphs, respectively.

4.4.1. 2-transitive linear groups: Design theoretic argument.

Definition 4.7. Let v, k, λ be natural numbers with 1 < k < v − 1. A
(v, k, λ)-design is an incidence structure consisting of blocks and points such
that:

(i) v is the number of points,
(ii) each block contains k points,
(iii) for any 2 points there are exactly λ blocks containing both of them.

A design is called symmetric if it has as many points as blocks.

An important family of block designs arises in projective geometry:

Example 4.8. Let q be a prime power and d ≥ 2. Consider the incidence
structure whose points are the 1-dimensional subspaces of Fd+1

q , its blocks are
the d-dimensional subspaces of Fd+1

q , and incidence is given by inclusion. This
defines a symmetric (v, k, λ)-design with parameters as follows:

v =
qd+1 − 1

q − 1
, k =

qd − 1

q − 1
, λ =

qd−1 − 1

q − 1
.
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It is called desarguesian projective space PG(d, q) and has the 2-transitive
automorphism group Aut(PG(d, q)) = PΓLd+1(q).

One can construct symmetric designs from certain 2-transitive permutation
groups in the following way.

Theorem 4.9 ([20], 2.4.5). Let G ≤ Sv be a 2-transitive permutation group
having an intransitive subgroup H of index [G : H] ≤ v which has an orbit B
with 1 < |B| < v − 1. Then there exists a symmetric (v, |B|, λ)-design D such
that G ≤ Aut(D).

Among all designs with 2-transitive automorphism group, desarguesian
projective space is characterized by its parameters.

Theorem 4.10 ([30]). Let D be a symmetric (v, k, λ)-design with parameters

v =
qd+1 − 1

q − 1
, k =

qd − 1

q − 1
, λ =

qd−1 − 1

q − 1

for some prime power q and some integer d ≥ 2. Then D is isomorphic to
PG(d, q) if and only if D has an automorphism group 2-transitive on its points.

Combining the previous theorems yields:

Proposition 4.11. Let G ≤ Sv be a 2-transitive permutation group having
an intransitive subgroup H of index [G : H] ≤ v that has an orbit of length k

where v and k are of the form

v =
qd+1 − 1

q − 1
and k =

qd − 1

q − 1

for some prime power q and some integer d ≥ 2. Then G ≤ PΓLd+1(q).

Proof. Applying Theorem 4.9 yields G ≤ Aut(D) for some symmetric
(v, k, λ)-design D. Since D has the same parameters v and k as PG(d, q) and λ

is determined (in a symmetric design) by the equation

λ(v − 1) = k(k − 1),

we conclude that D also has the same λ-value as the projective space PG(d, q),
thus λ = qd−1−1

q−1
. As D possesses a 2-transitive automorphism group and has the

same parameters as PG(d, q), Theorem 4.10 yields that D is indeed isomorphic
to PG(d, q). It follows G ≤ Aut(D) = Aut(PG(d, q)) = PΓLd+1(q). □

For later use, we note an application of Proposition 4.11 dealing with the
groups PGL4(3) and PSL6(2):
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Corollary 4.12.

(a) Let G be a 2-transitive subgroup of S40 that contains a subgroup of
index dividing 40 with orbit lengths 13 and 27. Then G is isomorphic
to PSL4(3) or PGL4(3).

(b) Let G be a 2-transitive subgroup of S63 that contains a subgroup of
index dividing 63 with orbit lengths 31 and 32. Then G is isomorphic
to PSL6(2).

Proof.

(a) After setting d := 3, q := 3 and observing 40 = qd+1−1
q−1

and 13 = qd−1
q−1

,
Proposition 4.11 (applied with v = 40 with k = 13) yields G ≤
PΓL4(3) = PGL4(3). The assertion now follows from the fact that
PSL4(3) and PGL4(3) are the only 2-transitive subgroups of PGL4(3).

(b) Note that v = 63 = 25+1−1
2−1

and k = 31 = 25−1
2−1

. Thus, Proposition 4.11
with d = 5 and q = 2 yields G ≤ PΓL6(2) = PSL6(2). As PSL6(2)

does not contain proper 2-transitive subgroups, we get G = PSL6(2).

□

Alternatively, the result would also follow from the classification of finite
2-transitive groups which however relies on the classification of finite simple
groups.

Remark. According to [35, Theorem 3.1], the group of automorphisms of
a symmetric design possesses the same permutation character on both points
and blocks. Consequently, these groups, and most prominent linear groups, are
good candidates for the strategies outlined in Section 4.2.1.

4.4.2. Rank-3 groups: Graph theoretic argument. In the case of
rank-3 groups one can sometimes use the theory of strongly regular graphs to
avoid invoking the classification of finite simple groups. We use this later on
for the primitive rank-3 group PSp4(3).C2 of degree 27.

The first half of this subsection is mainly identical to a passage in the
article [11] where the same approach was carried out for the group Aut(HS).

An undirected k-regular graph G with n vertices is called strongly regular
if there exist λ, µ ∈ N0 such that adjacent vertices have exactly λ common
neighbours and non-adjacent vertices have exactly µ common neighbours. We
say that G is of type srg(n, k, λ, µ) if G fulfils the aforementioned conditions.

Some well known properties of strongly regular graphs are collected in the
following lemma, see also [16, Theorem 1.1, Theorem 3.1].
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Lemma 4.13. Let G be of type srg(n, k, λ, µ). Then the following conditions
hold:

(i) k(k − λ− 1) = (n− k − 1)µ,

(ii) 1
2

(
n− 1± (n−1)(µ−λ)−2k√

(µ−λ)2+4(k−µ)

)
are non-negative integers.

Another key observation is the fact that rank-3 groups can be considered
as automorphism groups of strongly regular graphs, see [16, Theorem 6.1].

Lemma 4.14. Let G be a rank-3 subgroup of Sn having subdegrees 1, k, ℓ with
1 < k < ℓ. Then there exists a strongly regular graph G of type srg(n, k, λ, µ)

for some λ, µ ∈ N0 such that G is a subgroup of Aut(G).

Lemma 4.15. Let G be a transitive subgroup of S27 with subdegrees 1, 10,
16. Then G is isomorphic to PSp4(3) or PSp4(3).C2.

Proof. Due to Lemma 4.14 there exists a strongly regular graph G of
type srg(27, 10, λ, µ) for some λ, µ ∈ {0, . . . , 27} such that G is a subgroup
of Aut(G). According to Lemma 4.13(i) the parameters λ and µ have to
satisfy the equation 10(10 − λ − 1) = (27 − 10 − 1)µ. From this we find
(λ, µ) ∈ {(1, 5), (9, 0)}. Among these pairs the condition from Lemma 4.13(ii)
is only fulfilled for (λ, µ) = (1, 5). Therefore, G is of type srg(27, 10, 1, 5).

From [28, Lemma 10.9.4] we find that G must be isomorphic to the com-
plement of the Schläfli graph with Aut(G) = PSp4(3).C2 and, therefore, G is a
subgroup of PSp4(3).C2. As PSp4(3) and PSp4(3).C2 are the only transitive
subgroups of PSp4(3).C2 having subdegrees 1, 10, 16, we find G = PSp4(3) or
G = PSp4(3).C2. □

Alternatively, one can prove Lemma 4.15 using the classification of finite
primitive rank-3 groups (that however depends on the classification of finite
simple groups!): First, note that a group with subdegrees 1, 10, 16 must
necessarily be primitive as no subset of the subdegrees adds up to a proper
non-trivial divisor of 27. Now, according to the classification of finite primitive
rank-3 permutation groups, PSp4(3) and PSp4(3).C2 are the only groups with
these subdegrees.



CHAPTER 5

Computation of polynomials with symplectic Galois

groups

We compute polynomials with certain symplectic groups as Galois groups.
More precisely, we compute two-parameter families of polynomials having the
symplectic groups PSp4(3).C2 ≤ S27, PSp6(2) ≤ S28 and PSp6(2) ≤ S36 as
Galois groups over Q. Additionally, it turns out that the computed degree-28
polynomials with group PSp6(2) allow infinitely many totally real specializa-
tions.

The results presented in this chapter were previously published in the
journal article [4] joint with Joachim König and Andreas Wenz. Some passages
were taken over from the article.

Remark. The examples PSp4(3).C2 ≤ S27 and PSp6(2) ≤ S28 were firstly
computed in cooperation with Joachim König in 2018: Andreas Wenz and
the author computed the Belyi map leading to a single 4-point cover while
Joachim König carried out the interpolation of the Hurwitz space starting from
the previously computed single cover (cf. parts (1) and (2) in Section 3.2).
Later on, in the course of writing up this thesis, the author reproduced König’s
computations using his own implementation.

5.1. Multi-parameter polynomials with Galois groups PSp4(3).C2

and PSp4(3)

As a first application of the algorithm described in Chapter 3, we calculate
degree-27 polynomials f(α, t,X) with Galois groups PSp4(3) and PSp4(3).C2

over Q(α, t). Belyi maps defined over Q with monodromy group PSp4(3).C2
∼=

PSU4(2).C2 were known before, see [38, p. 500]. However, here we present
(to the best of our knowledge) the first families of 4-point covers with groups
PSp4(3).C2 and PSp4(3).

5.1.1. Theoretical properties. The group G := PSp4(3).C2 happens
to possess a rigid genus-0 four-tuple C of rational conjugacy classes. More
precisely, if G is viewed in its transitive permutation action on 27 points, the

43
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tuple C := (C1, C1, C2, C3) is rigid, where C1 denotes the class of involutions
of cycle structure (26.115), C2 the class of cycle structure (46.13), and C3 the
class of length 720 whose elements have cycle structure (64.31).

By Hin(C), we denote the (inner) Hurwitz space corresponding to the
class vector (C1, C1, C2, C3), and by C the curve on Hin(C) corresponding
to the branch point loci (1 +

√
λ, 1 −

√
λ, 0,∞) with λ ∈ C \ {0, 1}. An

oddness condition in the sense of Remark 2.9 is satisfied as elements in the
class C3 have unique cycles of length 3. Thus, the theory of Hurwitz spaces,
see Chapter 2, yields the existence of polynomials p, q ∈ Q(C)[X] such that
f(t,X) := p(X) − tq(X) has regular Galois group PSp4(3).C2 over Q(C)(t).
Furthermore, the Hurwitz curve C comes equipped with the branch point
reference map Ψ : C → P1

λ of degree | SNiin(C)|. As we are in the special case
of rigidity (i.e., | SNiin(C)| = 1), we have C = P1

λ and Q(C) = Q(λ) is a rational
function field.

In the next sections we describe the computation of the polynomials p, q ∈
Q(λ)[X] following the algorithm in Chapter 3.

5.1.2. A complex approximation of a single 4-point cover. Our first
step lies in computing a single 4-point cover F : P1 → P1 with monodromy
group PSp4(3).C2 having the following ramification type:

branch point 1 −1 0 ∞

inertia class C1 C1 C2 C3

cycle structures 26.115 26.115 46.13 64.31

For such a cover F , the squared cover F 2 is a Belyi map with monodromy
group contained in the wreath product PSp4(3).C2 ≀ C2 and has the following
ramification data:

branch point 1 0 ∞

cycle structures 212.130 86.23 124.61

We now search in the wreath product PSp4(3).C2 ≀C2 for triples having the above
cycle structures and generating a transitive group respecting the block structure.
As it turns out there is exactly one such triple (up to simultaneous conjugation)
and it generates the direct product (PSp4(3).C2)× C2 ≤ (PSp4(3).C2) ≀ C2. It
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Figure 1. fundamental domain for PSp4(3).C2 × C2 ≤ S54

is given by

σ0 := (1, 51, 18, 53, 6, 41, 23, 39)(2, 40, 25, 44, 16, 54, 9, 50)

(3, 33, 5, 32, 21, 34, 17, 31)(4, 46, 10, 42, 20, 48, 24, 52)(7, 35)

(8, 30, 13, 38, 12, 29, 11, 37)(14, 49, 22, 47, 27, 43, 19, 45)(15, 36)(26, 28),

σ1 := (8, 10)(9, 11)(14, 15)(16, 17)(20, 21)(26, 27)

(35, 37)(36, 38)(41, 42)(43, 44)(47, 48)(53, 54)

and σ∞ := (σ0σ1)
−1.

Using the method described in Section 3.3 we compute a Belyi map corre-
sponding to this triple. The fundamental domain used for the computation is
given in Figure 1 whereas the resulting dessin is presented in Figure 2.

As the triple is rigid, the Belyi map f54 = p54/q54 of degree 54 turns out to
be defined over Q and its rational coefficients can be recognized using continued



46 5. COMPUTATION OF POLYNOMIALS WITH SYMPLECTIC GALOIS GROUPS

Figure 2. dessin d’enfant for PSp4(3).C2 × C2 ≤ S54

fractions:

p54 = x2

(
x2 − 3

2

)2(
x2 +

3

2

)8(
x4 − 9x2 +

9

4

)8

,

q54 = 23 · 36
(
x4 − 3x2 − 3

4

)12

.

The Belyi map1 is also contained in the file psp43_data.2

Taking the square root of f54 = F 2 yields the desired 4-point cover F of
type C ramified over 1, −1, 0, ∞. This ramification locus is not yet of the form
1±

√
λ, 0, ∞, but after a slight deformation of the branch points followed by

Newton iteration we actually obtain a cover f0 with desired ramification locus
lying on our Hurwitz curve.

1Note that the Belyi map p54/q54 is a rational function in x2. This is no surprise as its
monodromy group PSp4(3).C2 × C2 has blocks of size 2 (apart from those of size 27).
2All accompanying files are plain text files carrying the file extension txt. For better
readability we usually omit the file extension.
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5.1.3. Turning a single cover into a family. The next step is to
compute f(t,X) = p(X)− tq(X) ∈ Q(λ)(t)[X] with Galois group PSp4(3).C2

and class vector C starting from the previously computed cover f0.
The covers in our family have unique poles of multiplicity 3 which we assume

to lie at ∞. Together with the cycle structures occurring in the class vector C,
this implies that f has the following form:

f(t,X) = c · p3(X)p6(X)4 − tq4(X)6 (5.1)

with c ∈ Q(λ) and monic polynomials p3, p6, q4 ∈ Q(λ)[X] with deg(p3) = 3,
deg(p6) = 6 and deg(q4) = 4. Using affine-linear transformations in X we
further assume the following normalization condition:3

p3(X) = X3 + aX + a for some a ∈ Q(λ). (5.2)

Now, starting from the cover f0 computed in the previous section (ramified
over 1±

√
λ0, 0,∞), we first apply the above normalization condition to f0, and

afterwards slightly move λ0 to nearby rational values and use Newton iteration
to adjust the coefficients of f0.

Since every coefficient occurring in equation (5.1) is some rational function
in λ, we can then recognize all coefficients as rational numbers (via continued
fractions). Doing this for many rational values for λ we obtain data that can be
interpolated to express all coefficients of f explicitly as rational functions in λ.

5.1.4. Verification. After slight simplifications using transformations
in X and λ we obtain the following particularly nice parametric family of
polynomials with group PSp4(3).C2, see also psp43_data.

Theorem 5.1. Let

p(α,X) :=
(
2X6 − 10αX4 + 10αX3 − 10α2X2 + 2α2X + 2α3 − α2

)4 ·(
4X3 − 4αX + α

)
and

q(α,X) :=
(
3X4 − 6αX2 + 3αX − α2

)6
.

Then, the polynomial f(α, t,X) := p(α,X)− tq(α,X) ∈ Q(α, t)[X] has regular
Galois group PSp4(3).C2 ≤ S27 over Q(α, t) and branch cycle structure (26.115,
26.115, 46.13, 64.31) with respect to t.

3Our usual approach described in 3.2.2 setting the traces of two polynomials to 0 and 1,
respectively, fails here: After setting any trace to 0 all other traces vanish as well.
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Proof. The branch cycle structure can be easily computed by observing the
inseparability behaviour of p, q and of the specialized polynomials f(α, t0, X),
where t0 ∈ Q(

√
3α) is a non-zero root of the discriminant ∆(α, t) ∈ Q(α)[t] of

f . Next, a computer calculation shows that p(X)q(Y )− q(X)p(Y ) is reducible
in Q(α)[X, Y ], with three factors of X-degree 1, 10 and 16, respectively. Now,
Corollary 4.2 implies that the arithmetic monodromy group A := Gal(f |
Q(α, t)) has subdegrees 1, 10 and 16. As Lemma 4.15 states that PSp4(3) and
PSp4(3).C2 are the only groups with these subdegrees, we get A = PSp4(3) or
A = PSp4(3).C2. Since the geometric monodromy group G of f is a transitive
normal subgroup of A, we also get G = PSp4(3) or G = PSp4(3).C2. The
inseparability behaviour at one of the finite, non-zero branch points shows
that G contains an element of cycle structure (26.115), which PSp4(3) does not.
This shows A = G = PSp4(3).C2 and, in particular, the splitting field of f is
regular. □

It turns out that also the index-2 subgroup PSp4(3) can be explicitly realized
over a rational function field in two variables:

Corollary 5.2. Let f(α, t,X) be as in Theorem 5.1. Then the polynomial
f(3α2, t(s), X) where

t(s) :=
((−8α/3)3 + (−8α/3)2) (3s2 − (α + 3/8)/(α− 3/8))

3s2 + 1

has Galois group PSp4(3) over Q(α, s).

Proof. Note that only the conjugacy class C1 lies outside the index-2
normal subgroup PSp4(3). Furthermore, upon replacing α by 3α2 (which does
not change the Galois group), computation of the discriminant of f shows that
the two branch points with inertia group generator in C1 become Q(α)-rational,
say t 7→ k and t 7→ ℓ with k, ℓ ∈ Q(α).4 Let N denote the splitting field of
f(3α2, t, X) over Q(α, t) and K ≤ N the quadratic extension of Q(α, t) fixed
by PSp4(3).

The previous observations imply that K | Q(α, t) is (with respect to t)
ramified at exactly two points, both rational, yielding that K is a rational
function field, given by an equation cY 2 = (t− k)(t− ℓ) for some c ∈ Q(α).

To determine the missing unknown c we follow an approach similar to
the proof of [41, Satz 8.7]: Denote by K∞ and N∞ the residue fields of K
and N at some place lying over t 7→ ∞. Note that N∞ is the splitting field
of 3X4 − 6(3α2)X2 + 3(3α2)X − (3α2)2 over Q(α), having Galois group S4

4More precisely, k and ℓ are given by 64
27α

2(3± 8α).
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and, consequently, containing a unique degree-2 subfield, which can be easily
computed to be Q(α)(

√
−3). From [K∞ : Q(α)] ≤ 2 we get that K∞ must

be contained in this unique degree-2 subfield of N∞, i.e., Q(α) ≤ K∞ ≤
Q(α)(

√
−3).

On the other hand, using the defining equation for K, the residue field K∞

can easily be seen to be equal to Q(α)(
√
c). The previous facts together now

imply that c = −3 or c = 1 (up to squares). The latter case can be easily
excluded by observing that the Galois group of f(3α2, t, X) is preserved after
specializing t to some value that corresponds to a rational point on the curve
1Y 2 = (t− k)(t− ℓ). Thus c = −3.

Now, a fractional linear transformation easily yields a parameter s for such
a function field, providing the equation t = t(s) as above. □

Remark. We mention briefly that the value for c could also have been
obtained in an alternative way by inspecting the ramification behaviour of the
PSp4(3)-extension N | K and combining Fried’s branch cycle argument with
the fact that C3 is a non-rational conjugacy class of PSp4(3) (with character
values generating the field Q(

√
−3)). For a similar application with a more

detailed description see [11, Section 2.6].

5.2. Totally real polynomials with Galois group PSp6(2)

A classical variant of the inverse Galois problem is the question whether,
for a given finite group G, there exists a Galois extension F | Q with F ⊂ R
such that Gal(F | Q) ∼= G. It is known that if every finite group is a Galois
group over Q, then also every finite group is a Galois group of such a totally
real extension, see [32, Proposition 1].

Computation of multi-branch-point covers is particularly important for the
computation of totally real Galois extensions. This is due to the fact that,
with very few exceptions, a Q-regular Galois extension of Q(t) with totally real
specializations (that is, specializations in t leading to totally real residue fields)
must have at least 4 branch points, see [38, Example I.10.2].

In the current section we compute the first polynomials with Galois group
PSp6(2) that allow infinitely many totally real specializations.5

5A Belyi map over Q with monodromy group PSp6(2) can be found in [38, p. 500].
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5.2.1. Theoretical properties. First, we deduce the existence of totally
real PSp6(2)-realizations theoretically from known criteria. For this, we view
PSp6(2) < S28 in its 2-transitive action on 28 points. We define

(i) C1 to be the (unique) conjugacy class of involutions of cycle structure
(26.116) in G,

(ii) C2 the class of involutions of cycle structure (212.14) and length 3780,
(iii) and C3 the class of elements of order 7 (and cycle structure (74)).

By Hin(C), we denote the Hurwitz space corresponding to the rational class
vector C := (C1, C2, C2, C3), and by C the curve on Hin(C) corresponding to
the branch point loci (0, 1−

√
λ, 1 +

√
λ,∞) with λ ∈ C \ {0, 1}.

Rationality of the Hurwitz curve. The Hurwitz curve C comes equipped with
the branch point reference map Ψ : C → P1

λ with branch cycle description given
by (β̃1, β̃2, β̃3) acting on SNiin(C). Using equation (2.4) a Magma computation
yields that the monodromy group ⟨β̃1, β̃2, β̃3⟩ of Ψ acts transitively on SNiin(C).
Together with the rationality of C we obtain that C is an absolutely irreducible
curve defined over Q.

Closer examination yields that Ψ is of degree 70 and the inertia group
generators β̃1, β̃2, β̃3 act on SNiin(C) with cycle structures (151.122.91.81.72),
(313.214.13) and (235). Since there is a unique cycle of length 15 in the first
permutation, the Riemann–Hurwitz genus formula and Remark 2.9 yield that
C is a rational genus-0 curve over Q; that is, C = P1

α for some parameter α.
Consequently, the universal family TC → C × P1 can be parameterized by a
multi-parameter polynomial f(α, t,X) ∈ Q(α)(t)[X].

Rationality of the stem field. Next, observe that the tuples in our Nielsen
class are of genus 0 and that the normalizer in G of a cyclic subgroup generated
by an element of C3 fixes one of the 7-cycles. This ensures that the degree-28
root field of f(t,X) is a rational genus-0 function field, compare Remark 2.9.
It follows that the polynomial f(t,X) can be assumed to be linear in t, i.e.,
f(t,X) = p(X)− tq(X) for coprime polynomials p, q ∈ Q(α)[X].

Existence of totally real specializations. Furthermore, the above Nielsen class
contains tuples (σ1, σ2,1, σ2,2, σ3) fulfilling σ3 = (σ−1

3 )σ2,2 and σ1 = (σ−1
1 )σ2,1 .

Theorem 10.3 in Chapter I of [38] now implies that there are G-covers X → P1

of ramification type (C1, C2, C2, C3), defined over R, such that all four branch
points are real and the complex conjugation in the segment between the two
branch points of class C2 is induced by the identity element of G. Since
the rational points of (the rational genus-0 curve) C are dense in the set of
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real points, there are also infinitely many G-covers with the above property
that correspond to rational points on C. Each of those yields a Q-regular
Galois extension E | Q(t) of ramification type (C1, C2, C2, C3) such that any
specialization t0 ∈ Q in the segment between the two C2-branch points yields a
totally real extension. Of course, Hilbert’s irreducibility theorem ensures that
many of these specializations preserve the Galois group G.

We now turn these theoretical results into an explicit polynomial, using the
approach outlined in Chapter 3.

5.2.2. A complex approximation of a single 4-point cover. As
explained before, we start by computing an approximate equation for a de-
composable genus zero Belyi map X → P1 such that the following holds: for a
degree-2 subcover Y of X → P1, the (genus zero) cover X → Y has ramification
type (C1, C2, C2, C3). Then X → P1 is of degree 56 with monodromy group
embedding into PSp6(2) ≀ C2, and if (σ0, σ1, σ∞) ∈ S3

56 is a triple describing
the ramification of this Belyi map, the elements σ0, σ1 and σ∞ are of cycle
structure (144), (224, 18) and (46, 216), respectively.

A computer computation shows that there are 35 triples (up to simultaneous
conjugation) in PSp6(2) ≀C2 satisfying property (ii) from Section 3.2.1. Among
these possible triples the permutations σ0, σ1, σ∞ = (σ0σ1)

−1 can be chosen
arbitrarily. We pick

σ0 = (1, 55, 27, 36, 8, 54, 26, 32, 4, 50, 22, 30, 2, 29)

(3, 34, 6, 35, 7, 56, 28, 42, 14, 52, 24, 40, 12, 31)

(5, 47, 19, 45, 17, 37, 9, 43, 15, 49, 21, 44, 16, 33)

(10, 51, 23, 39, 11, 46, 18, 53, 25, 48, 20, 41, 13, 38)

and

σ1 = (1, 20)(3, 6)(4, 21)(5, 15)(8, 25)(9, 19)(10, 18)

(11, 24)(12, 23)(13, 22)(14, 28)(16, 26)(30, 41)

(31, 52)(32, 44)(33, 49)(35, 56)(36, 48)(37, 45)

(38, 53)(39, 40)(43, 47)(46, 51)(50, 54).

Using the method described in Section 3.3 we compute a Belyi map cor-
responding to this triple. The fundamental domain used for the computation
is given in Figure 3 and the resulting dessin is shown in Figure 4. A complex
approximation (after refinement using Newton’s method) for the resulting Belyi
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Figure 3. fundamental domain for PSp6(2) ≀ C2 ≤ S56

Figure 4. dessin for PSp6(2) ≀ C2 ≤ S56

map can be found in the ancillary file psp62_deg28_data.6 As a subcover of
the computed Belyi map, we obtain a 4-point cover f0 with class vector C from
which we will start to interpolate the universal family in the next section.

6We remark that it is not necessary to recognize the Belyi map’s coefficients as algebraic
numbers (presumably lying in a degree-35 number field).



5.2. TOTALLY REAL POLYNOMIALS WITH GALOIS GROUP PSp6(2) 53

5.2.3. Turning a single cover into a family. According to the ramifi-
cation over t 7→ 0 and t 7→ ∞ and the fact that one place over t 7→ ∞ is fixed
by the normalizer of the respective inertia group and can be assumed to lie at
X 7→ ∞, the universal family TC → C × P1 can be parameterized by

f(t,X) = c · f6(X)2f16(X)− tf3(X)7,

with c ∈ Q(α) and monic polynomials f6, f16, f3 ∈ Q(α)[X] satisfying deg(f6) =

6, deg(f16) = 16 and deg(f3) = 3.
Since a generator of the (rational!) root field of f(t,X) is only unique up to

PGL2-action, we may apply linear transformations in X and fix the coefficient
at X2 in f3 to be 0 and the one at X5 in f6 to be 1. It is vital for the method’s
success that we apply the same normalization conditions to the 4-point cover f0
computed in the previous section. In particular, one needs to pick the correct
of the four poles to be sent to infinity.

Starting from the cover f0, we now let the coefficient β at X15 in f16 converge
to a rational value, using Newton approximation. Afterwards, given a sufficient
complex precision, we recognize the coefficient γ at X1 in f3 in a degree-5
number field using the LLL algorithm. Doing this for several rational values of
β, we obtain by interpolation the following algebraic dependency between β

and γ (viewed as transcendentals):

0 = γ5 + (285/448 · β2 − 47/56 · β − 421/126)γ4

+ (34785/351232 · β4 − 20037/87808 · β3 − 61871/65856 · β2

− 95161/98784 · β + 868717/148176)γ3+

(−351/702464 · β6 + 4833/702464 · β5 + 4119/351232 · β4

− 89063/175616 · β3 + 168267/87808 · β2 − 2783/4032 · β − 1331/12348)γ2+

(405/275365888 · β8 − 2403/34420736 · β7 + 13863/9834496 · β6−

38511/2458624 · β5 + 253495/2458624 · β4 − 552365/1382976 · β3+

4582633/5531904 · β2 − 2093663/3226944 · β − 23030293/130691232)γ+

243/53971714048 · β10 − 7209/26985857024 · β9 + 93969/13492928512 · β8−

176187/1686616064 · β7 + 238733/240945152 · β6 − 2221439/361417728 · β5+

13513643/542126592 · β4 − 183437089/2846164608 · β3+

1755616951/17076987648 · β2 − 2669742427/25615481472 · β + 2786665453/38423222208.

It is now easy to find the yet unknown parameter α of Q(β, γ) = Q(α) using
a Riemann–Roch space computation as described in [33, Lemma 3.16].

Finally, we use Newton approximation again to let α converge to several
rational values. Then all the coefficients of f6, f16, f3 must also be rational



54 5. COMPUTATION OF POLYNOMIALS WITH SYMPLECTIC GALOIS GROUPS

values. These can easily be recognized from their complex approximation,
and interpolating between these several values once again yields dependencies
between α and each coefficient, i.e., expressions of each coefficient as a rational
function in α.

5.2.4. Verification. We then obtain a polynomial f = f(α, t,X) ∈
Q[α, t,X] whose Galois group over Q(α, t) is expected to be isomorphic to
PSp6(2). Since the coefficients of f are too large to present it here, we refer to
the file psp62_deg28_data.

Theorem 5.3. The polynomial f(α, t,X) = p(α,X)−tq(α,X), where p and
q are given in the file psp62_deg28_data, has regular Galois group PSp6(2) ≤
S28 over Q(α, t) and possesses infinitely many totally real specializations. The
ramification with respect to t is of type (26.116, 212.14, 212.14, 74).

Proof. Let f2, p2, q2 ∈ Q(t)[X] denote the specializations of f, p, q at
the place α 7→ 2, and f̄2, p̄2, q̄2 their images in F31(t)[X] under the canonical
projection. By computing the discriminant ∆ of f we see that f , f2 and f̄2

have exactly four branch points with respect to t. Furthermore, the branch
cycle structure of f can be derived by inspecting the inseparability behaviour
of f evaluated at the places t 7→ 0, t 7→ ∞, and t 7→ ri for i = 1, 2 where r1

and r2 denote the non-zero roots of ∆ ∈ Q(α)[t].
Since 1

X−t
· f̄2
(

p̄2(t)
q̄2(t)

, X
)
∈ F31(t)[X] is irreducible, the Galois group of f̄2

over F31(t) must be 2-transitive according to Corollary 4.2. As the — even
further specialized — polynomial f̄2(1, X) splits into irreducible polynomials of
degrees 3, 5, 5, 15; Dedekind’s criterion yields that the order of Gal(f̄2 | F31(t))

is divisible by 5. Due to the classification of finite 2-transitive groups the only
2-transitive groups of degree 28 having elements of order 5 are PSp6(2), A28, S28

which implies Gal(f̄2 | F31(t)) ∈ {PSp6(2), A28, S28}. Let r(t,X) ∈ F31(t)[X] be
the irreducible polynomial of degree 63 in the ancillary file psp62_deg28_data,
then r

(
p̄2(t)
q̄2(t)

, X
)

becomes reducible over F31(t). Due to Proposition 4.6 this
guarantees the existence of an index-d subgroup of Gal(f̄1 | F31(t)) where d ≠ 1

is a divisor of 63. Since A28 and S28 do not contain such subgroups, we end
up with Gal(f̄2 | F31(t)) = PSp6(2). As PSp6(2) is simple and the geometric
monodromy group Ḡ of f̄2 is normal in Gal(f̄2 | F31(t)) = PSp6(2), we get
Ḡ = PSp6(2).

By the arguments in Sections 4.3.1 and 4.3.2, the geometric monodromy
groups of f and f̄2 coincide; thus, the geometric monodromy group of f is equal
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to PSp6(2). Since PSp6(2) is self-normalizing in S28, we obtain that f defines
a regular PSp6(2)-extension of Q(α, t).

Finally, we specialize α 7→ 0 (which does not decrease the number of branch
points) and verify that for some specialization of t in the interval [−2.8 · 1012, 0]
(the left bound being approximately the only negative branch point of f(0, t, X)),
the number of real roots of f(0, t, X) is equal to 28. The same then follows
for all specializations t 7→ t0 in that interval; indeed, it is elementary that the
number of real preimages of t ∈ R under a rational function s(X) ∈ R[X] can
only change (as a function in t) at a critical value of s(X), i.e., at a branch
point of the corresponding function field extension. □

Remark. The Magma calculations used in the proof can be found in
the ancillary file psp62_deg28_verify. Furthermore, in the original proof
contained in [4], it was mistakenly assumed that there are no 2-transitive
groups of degree 28 besides PSp6(2), A28 and S28. In the modified proof given
above this minor gap was fixed by showing that the group order is divisible
by 5.

Remark. For the primitive rank-3 group PSp4(3).C2 from Section 5.1 com-
puting the subdegrees was the main part of the verification process. However,
as the group PSp6(2) ≤ S28 is 2-transitive we needed to make use of some of
the more advanced tools as described in Section 4.2.1:

Consulting the ATLAS [17] yields that PSp6(2) possesses a permutation
character π′ of degree 63 decomposing into irreducible characters as follows
π′ = 1G + π27 + π35. Here π27 and π35 are of degree 27 and 35, respectively, and
π := 1G + π27 is the permutation character corresponding to the 2-transitive
permutation action of degree 28. The splitting behaviour of r

(
p̄2(t)
q̄2(t)

, X
)

in
the proof above is explained by [π, π′] = 2. The auxiliary polynomial r was
computed with respect to the degree-63 permutation representation π′ using
the Magma commands GaloisGroup and GaloisSubgroup.

We conclude with an explicit one-parameter polynomial allowing totally-real
specializations: Specializing α 7→ 0 in p and q from Theorem 5.3 and applying
some linear transformations to decrease the coefficients, we obtain the following:

Corollary 5.4. Let f̃(t,X) :=

(X6 − 33/2X5 − 42924X4 − 1525664X3 +477587712X2 + 40478785536X +863547424768)2 ·

(X16 + 271X15 − 430719/4X14 − 35366300X13 + 3314214496X12 + 1797598385556X11

+ 28249865746816X10 − 42517539693978944X9 − 3546884171151604080X8 +

388165289642365195520X7+67637298931930365811712X6+1157375979002203859189760X5
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− 370365044650038661036441600X4 − 30197279842907494819422011392X3 −

814830488568960744917173272576X2 + 162666689511335341711909978112X +

256038325580946715804749139017728)− t
(
X3 − 21952X − 1229312

)7 ∈ Q(t,X).

Then every specialization of t in the interval [−4.9 · 1013, 0] which preserves the
Galois group yields a totally real PSp6(2)-polynomial.

5.3. Multi-parameter degree-36 polynomials with Galois
group PSp6(2)

In this section we present a multi-parameter polynomial of degree 36 having
Galois group PSp6(2) over Q. It was computed by Andreas Wenz and the
author and firstly appeared as a note [9] on the arXiv. Later, the polynomial
was incorporated in the journal article [4]. Additionally, we present a complex
approximation for a 5-point cover with monodromy group PSp6(2) ≤ S36.

5.3.1. Theoretical properties. Let C := (C1, C2, C2, C3) be the class
vector of the 2-transitive group PSp6(2) ≤ S36, where the conjugacy classes
C1, C2, C3 are unique of type (312), (112.212) and (16.21.47), respectively. Denote
by C the associated Hurwitz curve parameterizing all 4-point covers of P1C
ramified over 0, 1 ±

√
λ, ∞ with ramification data C. The corresponding

straight inner Nielsen class is of length 2 and forms a single orbit under the
braid group action. Therefore, the branch point reference map C → P1C is of
degree 2 and is ramified over two rational points. Combining this observation
with the rationality of all classes in C yields that C is a rational genus-0 curve
over Q. This implies that PSp6(2) occurs as a Galois group over Q(α, t) where
the ramification with respect to t is described by C.

5.3.2. A complex approximation of a single 4-point cover. In order
to obtain an explicit polynomial with PSp6(2) as Galois group we follow the
method described in Chapter 3 by firstly computing a single 4-point cover
F corresponding to C. Assume F has the ramification locus consisting of
0, 1,−1,∞; then F 2 turns out to be a Belyi map ramified over 0, 1, ∞, and its
(transitive) monodromy group is contained in the imprimitive wreath product
PSp6(2) ≀ C2 ≤ S72. The corresponding ramification has to be of type (612),
(124.224) and (26.41.87). Now, PSp6(2)≀C2 contains exactly one triple (σ0, σ1, σ∞)

(up to simultaneous conjugation) which satisfies σ0σ1σ∞ = 1 and the above
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Figure 5. fundamental domain for PSp6(2) ≀ C2 ≤ S72

conditions describing the monodromy of F 2. It is given by

σ0 = (1, 37, 16, 70, 23, 59)(2, 51, 13, 43, 7, 49)(3, 39, 32, 71, 28, 46)

(4, 66, 26, 72, 34, 52)(5, 42, 31, 67, 10, 64)(6, 41, 22, 69, 29, 65)

(8, 56, 12, 48, 21, 54)(9, 45, 30, 40, 14, 50)(11, 47, 33, 58, 18, 57)

(15, 38, 19, 60, 24, 55)(17, 53, 20, 44, 35, 68)(25, 61, 27, 63, 36, 62)

and

σ∞ = (1, 71, 35, 40, 4, 52, 16, 37)(2, 46, 10, 67, 31, 65, 29, 38)

(3, 49, 13, 56, 20, 68, 32, 39)(5, 64, 28, 59, 23, 72, 36, 41)(6, 42)

(7, 43)(8, 54, 18, 66, 30, 50, 14, 44)(9, 45)(11, 57, 21, 47)

(12, 51, 15, 55, 19, 69, 33, 48)(17, 53)(22, 63, 27, 61, 25, 62, 26, 58)

(24, 60)(34, 70).

Applying the method explained in Section 3.3 we compute the desired Belyi
map with branch cycle description (σ0, σ1, σ∞):

F 2(X) =
p(X)

q(X)
∈ Q(X)
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Figure 6. dessin for PSp6(2) ≀ C2 ≤ S72

where

p(X) = −
(
X12 + 8X11 − 10X10 − 40X9 − 69X8 − 96X7 − 84X6

−48X5 − 21X4 − 40X3 − 26X2 − 8X + 1
)6

,

q(X) = 24 · 38 ·
(
X3 + 3X + 2

)8(
X4 +

4

3
X3 − 1

3

)8(
X6 +

3

2
X4 +

1

2

)2

.

The fundamental domain used in the computation and the approximate resulting
dessin are shown in Figure 5 and Figure 6, respectively. Taking the square
root gives us F ∈ C(X) ramified over 0, 1, −1 and ∞. Next, we follow the
approach in Section 3.2.2 to find a one-parameter family of polynomials with
Galois group PSp6(2) over Q(t) corresponding to C.

5.3.3. Turning a single cover into a family. The covers parameterized
by C have a unique pole of multiplicity 2 which we assume to lie at ∞. Combined
with the cycle structures occurring in C, this yields the following form for the
polynomial f describing the universal family of covers:

f(t,X) = c · p12(X)3 − tq6(X)q7(X)4

with monic polynomials p12, q6, q7 ∈ Q(C)[X] of respective degree as denoted in
the index and some scalar c ∈ Q(C). Using affine-linear transformations in X

we further assume that the coefficient at X11 in p12 is 1 while the coefficient at
X5 in q6 is assumed to be 0.

Now, we let λ converge to nearby rational numbers and recognize the other
coefficients in degree-2 number fields. Interpolation yields dependencies between
λ and other coefficients (viewed as transcendentals). For example, c and λ obey
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the equation
6561c2 − 2592c− 256λ+ 256 = 0. (5.3)

As Q(λ) has index-2 in the Hurwitz curve’s function field Q(C), we deduce
Q(C) = Q(λ, c). Inspecting the explicit equation (5.3) it turns out that c can
be chosen as parameter of the Hurwitz curve, i.e., Q(λ, c) = Q(c). In particular,
in this example there is no need for computing Riemann–Roch spaces.

Thus, all coefficients of f must lie in the rational function field Q(c). We now
let c (instead of λ) converge to several rational values and recognize the other
coefficients as rational numbers. Interpolating yields explicit representations of
all coefficients of f as rational functions in c. After simplification using Möbius
transformations we obtain the following nice polynomials:

p(α,X) =

(
X12 +X11 +

(
144α +

1

8

)
X10 + 40αX9 +

(
−1728α2 +

21

4
α

)
X8

+

(
−576α2 +

3

8
α

)
X7 − 84α2X6 − 6α2X5 +

(
144α3 − 3

64
α2

)
X4

+ 40α3X3 +
13

4
α3X2 +

1

8
α3X + α4

)3

and

q(α,X) =

(
X6 − 12αX4 +

1

2
α2

)
·
(
X3 − 24αX − 2α

)4
·
(
X4 +

1

6
X3 +

1

24
α

)4

.

5.3.4. Verification. The degree-36 polynomial appearing in the following
theorem as well as the corresponding degree-72 Belyi map are also listed in the
ancillary file psp62_deg36_data.

Theorem 5.5. Let f(α, t,X) = p(α,X) − tq(α,X) ∈ Q(α, t)[X] where p

and q are given as above. Then the (regular) Galois group of f over Q(α, t) is
isomorphic to PSp6(2) ≤ S36 and the branch cycle structure of f with respect
to t is given by (312, 112.212, 112.212, 16.21.47).

Proof. Using Magma the discriminant ∆ of f turns out to be

∆ = 2732 · 3168 ·
(
a− 1

512

)154

· α290 · t24

·
(
t2 +

(
−2592α− 81

16

)
t+ 1679616α2 − 6561α +

6561

1024

)12

.
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With this formula we see that f has exactly four branch points with respect
to t. Furthermore, the branch cycle structure of f can be derived by inspecting
the inseparability behaviour of f evaluated at the places t 7→ 0, t 7→ ∞ and
t 7→ ri for i = 1, 2 where r1 and r2 denote the non-zero roots of ∆ ∈ Q(α)[t].

Let f1, p1, q1 ∈ Q(t)[X] denote the specializations of f, p, q at the place
α 7→ 1, and f̄1, p̄1, q̄1 their images in F37(t)[X] under the canonical projection.
Since 1

X−t
· f̄1
(

p̄1(t)
q̄1(t)

, X
)
∈ F37(t)[X] is irreducible, Corollary 4.2 implies that

the Galois group of f̄1 over F37(t) must be 2-transitive. Now, the classification
of finite 2-transitive groups implies Gal(f̄1 | F37(t)) ∈ {PSp6(2), A36, S36}.

Let r(t,X) ∈ F37(t)[X] be the irreducible polynomial of degree 63 from the
ancillary file psp62_deg36_data, then r

(
p̄1(t)
q̄1(t)

, X
)

becomes reducible over the
field F37(t). Therefore, Proposition 4.6 guarantees the existence of an index-d
subgroup of Gal(f̄1 | F37(t)) where d ̸= 1 is a divisor of 63. Since both A36 and
S36 do not contain such subgroups, we end up with Gal(f̄1 | F37(t)) = PSp6(2).
Since the geometric monodromy group of f̄1 is a transitive normal subgroup of
PSp6(2), we get that the geometric monodromy group of f̄1 is also given by
PSp6(2). Now the arguments from Sections 4.3.1 and 4.3.2 imply that f has
PSp6(2) as its geometric monodromy group. Since PSp6(2) is self-normalizing
in S36, it follows that the Galois extension defined by f is regular. □

The Magma calculations used in the proof can be found in the verification
file psp62_deg36_verify. We used the same degree-63 permutation represen-
tation for PSp6(2) as in the proof of Theorem 5.3.

Addendum: A complex approximation of a 5-point cover for
PSp6(2). The advantage of our approach compared to previous ones increases
as the number of branch points grows. We give just one example of a complex
approximation for a 5-point cover with Galois group PSp6(2). Using the
techniques of Chapter 3, one could again use this to obtain an equation for a
family of covers. This time, we take a genus-0 tuple of type (210.116, 212.112,
212.112, 212.112, 312) in the 2-transitive degree-36 permutation action of PSp6(2).
Using Proposition 3.1, we turn this into a Belyi function of degree 108, with
imprimitive Galois group contained in PSp6(2) ≀ C3, by composing with the
rational function x 7→ x3, see Figures 7 and 8. The third root of this Belyi map
then gives the desired 5-branch point PSp6(2)-cover. We have included it in
the file psp62_deg36_data.

The monodromy of the computed complex cover can be checked numerically
with the path lifting algorithm in [33, Section 11.1].
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Figure 7. fundamental domain for PSp6(2) ≀ C3 of degree 108

Figure 8. approximate dessin for PSp6(2) ≀ C3 of degree 108 in P1





CHAPTER 6

Families of polynomials with Galois groups PSL4(3) and

PGL4(3) over Q(t)

In this chapter we compute the first (to the best of our knowledge) polyno-
mials with Galois groups PSL4(3), PGL4(3), Aut(PGL4(3)) over Q(α, t). Up
to now these polynomials are not available to the public, neither on the arXiv
nor in the literature.

6.1. Theoretical properties

Let G be the group PSL4(3) in its natural 2-transitive action on the
34−1
3−1

= 40 points of the projective space PG(3, 3). Furthermore, let C1 be
the unique conjugacy class of G of cycle structure (312.14) and length 74880,
C2 be the unique class of cycle structure (39.113), C3 the class of cycle struc-
ture (216.18), and C4 the unique class of fixed point free involutions. Then
C := (C1, C2, C3, C4) is a rational genus-0 class vector and it can be seen that
for any g ∈ C2 exactly one length-1-cycle of g is fixed under NPSL4(3)(⟨g⟩); thus
C satisfies an oddness condition as described in Remark 2.9.

Let Cin be the inner Hurwitz curve parameterizing all (regular) 4-point
covers ramified over 0,∞, 1, λ (for some λ ≠ 0, 1,∞) with group PSL4(3) and
branch cycle description as follows:

branch point 0 ∞ 1 λ

inertia class C1 C2 C3 C4

cycle structures 312.14 39.113 216.18 220

Calculation with Magma yields that | SNiin(C)| = 12 and that the braid
group acts transitively on SNiin(C) with (β̃1, β̃2, β̃3) having branch cycle struc-
ture (42.22, 34, 42.14). The Riemann–Hurwitz genus formula now implies that
the absolutely irreducible curve Cin is of genus 0. However, the triple (β̃1, β̃2, β̃3)

does not seem to satisfy an oddness condition, thus the rationality of Cin is
unclear (without explicit computation).

In contrast to the monodromy groups appearing in the previous chapter, the
group PSL4(3) is not self-normalizing in S40 but has index 2 in its symmetric

63



64 6. POLYNOMIALS WITH GALOIS GROUPS PSL4(3) AND PGL4(3)

normalizer A := NS40(PSL4(3)) = PGL4(3). As a consequence, the 12 tuples in
SNiin(C) form 6 blocks, each block consisting of two tuples that are conjugate
in PGL4(3) but not in PSL4(3). In particular, the degree-12 branch point
reference map Ψ : Cin → P1

λ factors through the absolute Hurwitz curve Cab as
follows:

Ψ : Cin Ψ2−→ Cab Ψ6−→ P1
λ (6.1)

The branch cycle description of the degree-6 map Ψ6 is given by the ac-
tion of (β̃1, β̃2, β̃3) on SNiab(C) := SNi(C)/PGL4(3) having cycle structures
(41.21, 32, 22.12). In particular, as the latter satisfies an oddness condition, Cab

turns out to be a rational curve, i.e., Cab = P1
α for some parameter α.

While the inner Hurwitz curve Cin parameterizes regular G-extensions, the
absolute Hurwitz curve Cab can be interpreted as a parametrization of not-
necessarily regular G-extensions. To be more explicit, there are polynomials
p, q ∈ Q(Cab)[X] such that f(t,X) := p(X)− tq(X) has arithmetic monodromy
group PGL4(3) over Q(Cab)(t) and geometric monodromy group PSL4(3) (with
the fixed field of PSL4(3) being given by Q(Cin)(t)). For more information
about absolute Hurwitz spaces see [26], [52, Chapter 10] or [24].

Our goals in the next sections are as follows. First, we compute p, q ∈
Q(α)[X] such that p(X)− tq(X) has Galois group PGL4(3). Next, we confirm
through explicit computation that the genus-0 inner Hurwitz curve Cin is in
fact a rational curve over Q which yields multi-parameter polynomials having
PSL4(3) as Galois group. At last, we also obtain degree-80 polynomials for the
group Aut(PSL4(3)).

6.2. A complex approximation of a single 4-point cover

Assume f0 ∈ C(X) is ramified over 0,∞, 1,−1 with monodromy group
PSL4(3) and inertia classes C1, C2, C3, C4. Squaring f0 yields a genus-0 Belyi
map g = f 2

0 of degree 80 with monodromy group contained in the imprimitive
wreath product PSL4(3)≀C2 and branch cycle structure (612.24, 236.18, 69.213). A
Magma computation shows that PSL4(3)≀C2 contains 12 such triples (σ0, σ1, σ∞),
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Figure 1. fundamental domain for PSL4(3) ≀ C2 ≤ S80

one of them given by

σ0 := (1, 72, 12, 79, 2, 60)(3, 66, 11, 44, 6, 71)(4, 51, 13, 77, 9, 47)

(5, 58, 7, 49, 8, 56)(10, 64)(14, 57, 39, 52, 28, 80)(15, 69, 19, 63, 25, 70)

(16, 48, 23, 59, 31, 46)(17, 54, 38, 61, 21, 78)(18, 45)

(20, 42, 40, 68, 32, 41)(22, 75, 24, 50, 35, 62)(26, 43, 30, 65, 36, 67)

(27, 76, 37, 53, 33, 74)(29, 55)(34, 73),

σ1 := (1, 32)(2, 20)(3, 26)(4, 11)(5, 18)(6, 31)(7, 9)(8, 16)(10, 24)(12, 39)(13, 37)

(14, 17)(15, 29)(19, 23)(21, 38)(22, 35)(25, 30)(27, 36)(28, 40)(33, 34)

(41, 60)(42, 79)(43, 71)(44, 47)(45, 58)(46, 56)(48, 64)(50, 77)(52, 66)

(53, 72)(54, 80)(55, 70)(57, 78)(59, 69)(65, 75)(68, 74)

and σ∞ := (σ0σ1)
−1.

Using the algorithm described in Section 3.3 we compute a complex approx-
imation for the Belyi map g with branch cycle description (σ0, σ1, σ∞). The
fundamental domain used for the computation is shown in Figure 1 and the
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Figure 2. dessin for PSL4(3) ≀ C2 ≤ S80

resulting dessin d’enfant for the Belyi map g is presented in Figure 2. Taking
the square root of g yields a complex approximation for f0.

6.3. Turning a single cover into a family

Starting from f0 we now compute polynomials p, q ∈ Q(Cab)[X] such that
f(t,X) = p(X) − tq(X) possesses (arithmetic) Galois group PGL4(3) and
parametrizes PSL4(3)-covers ramified over 0,∞, 1, λ with class vector C.

Since for any g ∈ C2 there is exactly one length-1-cycle of g that is fixed
under NPGL4(3)(⟨g⟩), there is a rational place lying over t 7→ ∞ (in a stem field
of f) and, without loss of generality, we assume this place to lie at X 7→ ∞.
Combining the previous observation with the inseparability behaviour of p and
q yields the following form for f :

f(t,X) = c · p12(X)3p4(X)− tq9(X)3q12(X)

with c ∈ Q(Cab) and monic polynomials p12, p4, q9, q12 ∈ Q(Cab)[X] of respective
degree denoted in the index. Moreover, using affine-linear transformations we
may assume the coefficient at X11 of q12 to be 0 and the coefficient at X3 of p4
to be equal to 1.

Now, starting from the 4-point cover f0 computed in the previous section,
we first apply the aforementioned normalization conditions, then we move the
fourth branch point λ to several close rational values, and recognize the leading
coefficient c in a degree-6 number field. Interpolation yields the following
degree-6 dependency between λ and c (viewed as transcendentals):
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0 =5283615080448c6 + (660451885056λ− 880602513408)c5

+ (−137594142720λ2 − 125936861184λ+ 36691771392)c4

+ (−13377208320λ3 − 44348276736λ2 + 27011432448λ)c3

+ (1433272320λ4 − 3879705600λ3 − 1062519552λ2 − 293530176λ)c2

+ (71663616λ5 + 192201984λ4 − 181185120λ3 − 228698352λ2 − 30013344λ)c

− 5971968λ6 + 11741868λ5 − 138024λ4 − 8703009λ3 − 5404396λ2 − 1119364λ.

The function field Q(c, λ) is of genus 0. After finding a Q-rational place a
Riemann–Roch space computation as described in [33, Lemma 3.16] yields an
explicit parameter α with Q(α) = Q(c, λ). We expect all coefficients of p and q

to lie in the function field Q(λ, c) = Q(α). Thus, letting α converge to several
rational values allows the interpolation of all coefficients as rational functions
in α.

This way we obtain explicit polynomials p, q ∈ Q(α)[X] such that f(t,X) =

p(X) − tq(X) has Galois group PGL4(3) over Q(α, t). It is ramified over
0,∞, 1, λ where the variable branch point λ turns out (after interpolation) to
be

λ = Ψ6(α) =
p6(α)

q6(α)
=

243(α− 410/5727510537)2(α+ 2460/1909170179)4

2048(α− 205/272738597)3(α+ 1025/3818340358)3
. (6.2)

6.4. Verification

Theorem 6.1. The polynomial f(t,X) := p(X) − tq(X) (with p, q ∈
Q(α)[X] given in the file psl43_data) has Galois group PGL4(3) over Q(α, t)

and is ramified over 0,∞, 1,Ψ6(α) with class vector C. The geometric mono-
dromy group is PSL4(3).

Proof. A simple Magma computation confirms that f is ramified over
0,∞, 1,Ψ6(α) with branch cycle structure (312.14, 39.113, 216.18, 220). The
Riemann–Hurwitz formula allows no other ramification points.

We choose α1 = −1640/13364191253 and α2 = 656/1909170179 with
the property Ψ6(α1) = Ψ6(α2) = −4. Let f1 = p1 − tq1 ∈ Q(t)[X] be the
specialization of f = p−tq ∈ Q(α, t)[X] at the place α 7→ α1 and f2 = p2−tq2 ∈
Q(t)[X] be the specialization of f at α 7→ α2. Then p1(X)q1(t) − p1(t)q1(X)

factors into irreducible polynomials of degrees 1 and 39, while p1(X)q2(t) −
p2(t)q1(X) factors into irreducible polynomials of degrees 13 and 27.
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Thus, by Proposition 4.4 the group A1 := Gal(f1 | Q(t)) is 2-transitive
having a subgroup of index dividing 40 with orbit lengths 13 and 27. Now the
design-theoretic Corollary 4.12 yields that A1 = PSL4(3) or A1 = PGL4(3).

As the geometric monodromy group G1 of f1 is normal in the arithmetic
monodromy group A1, we conclude G1 = PSL4(3) or G1 = PGL4(3). Due to
the topological interpretation of geometric monodromy groups we know that
G1 is generated by elements having cycle structures (312.14, 39.113, 216.18, 220).
The fact that these are only even permutations rules out the odd permutation
group PGL4(3) as a possibility for G1, thus G1 = PSL4(3).

As specialization at the point α1 preserves geometric monodromy groups
(see Section 4.3.1), we have G = G1 = PSL4(3) for the geometric monodromy
group G of f . Since G is normal in the arithmetic monodromy group A :=

Gal(f | Q(α, t)) ≤ S40, we conclude A = PSL4(3) or A = PGL4(3). The
discriminant of f is not a square (which can be easily checked modulo a prime
or after specializations in α and t) ruling out the even group PSL4(3). Thus
A = PGL4(3).

A Magma computation shows that among all class vectors of PSL4(3) having
cycle structures (312.14, 39.113, 216.18, 220) the vector C = (C1, C2, C3, C4)

is the only class vector with non-empty Nielsen class. This implies that f

actually has class vector C and not some other class vector with the same cycle
structures. □

The Magma computations appearing in the above proof are contained in
the file psl43_verify. The proof makes use of the fact that PGL4(3) has
two permutation actions having the same permutation character, compare the
strategy outlined in Section 4.2.1.

As the whole family of 4-point covers is too large to present it here, we
give only one explicit cover of the whole family. Namely, specializing α 7→
656/1909170179 with Ψ6(α) = −4 (as in the previous proof) and performing
some inner Möbius transformations yields the following 4-point cover.

Corollary 6.2. Let

p := − 5/48 · (X − 1/5)X3
(
X2 + 2/5X − 1/5

)3 (
X3 − 39/10X2 + 6/5X − 1/10

)(
X9 + 9/2X8 + 27/2X7 − 309/10X6 − 9/2X5 + 153/10X4

−363/50X3 + 81/50X2 − 9/50X + 1/125
)3
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and

q :=
(
X9 − 339/80X8 − 3/10X7 + 51/20X6 − 21/10X5

+273/200X4 − 27/50X3 + 57/500X2 − 3/250X + 1/2000
)3(

X12 + 63/5X11 + 2771/60X10 + 1237/30X9 − 207/20X8 − 16X7 + 211/50X6

+207/125X5 − 263/250X4 + 33/125X3 − 99/2500X2 + 13/3750X − 1/7500
)
.

Then p(X)− tq(X) has Galois group PGL4(3) over Q(t) and the geometric
monodromy group is PSL4(3).

6.5. From PGL4(3) to the index-2 subgroup PSL4(3)

As established before, the polynomial f = p − tq with p and q from file
psl43_data has Galois group PGL4(3) over Q(Cab)(t) = Q(α, t). This section’s
goal is to descend to the index-2 subgroup PSL4(3).

As the fixed field of PSL4(3) in the splitting field of f is given by Q(Cin)(t),
descending to PSL4(3) boils down to compute the inner Hurwitz curve Cin. For-
tunately, Cin will turn out to be rational yielding multi-parameter polynomials
with (regular) Galois group PSL4(3).

Recall from equation (6.1) that the branch point reference map Ψ splits
through Cab = P1

α as follows

Ψ : Cin Ψ2−→ P1
α

Ψ6−→ P1
λ

with ramification structures (42.22, 34, 42.14) and (41.21, 32, 22.12) of the covers
Ψ = Ψ6 ◦Ψ2 and Ψ6 = p6/q6, respectively. Comparing these cycle structures
implies that Ψ2 is ramified exactly over the degree-2 place

α2 + 336200/3644930772382892041

of Q(α) lying over λ 7→ 1, i.e., the polynomial of multiplicity 2 in the factoriza-
tion of p6(α)− q6(α) with p6, q6 given in (6.2). Translation to function fields1

implies Q(Cin) = Q(α)(y) with

y2 = c · (α2 + 336200/3644930772382892041)

and some square-free integer c, yet to be computed.
Since PSL4(3) = PGL4(3) ∩ A40, the fixed field Q(Cin)(t) of PSL4(3) may

also be obtained by adjoining the square root of the discriminant of p(X)−tq(X)

to the base field Q(α)(t). Thus, y2 is up to squares equal to the discriminant
of p(X)− tq(X).

1Note that all varieties are defined over Q.
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We now specialize α 7→ α0 := 656/1909170179 (with Ψ6(α0) = −4) and
t 7→ t0 := 2 to obtain f0 = p0 − t0q0 ∈ Q[X]. After this double specialization
Magma is able to quickly compute the discriminant of f0, which turns out to
have a square-free part equal to 6. Knowing that

c · (α2
0 + 336200/3644930772382892041)

must have the same square-free part, we conclude c = 19. Therefore, a model
for Cin is given by the conic

Cin : y2 = 19(α2 + 336200/3644930772382892041) (6.3)

and we are finally able to answer the question whether Cin is rational over Q:
A Magma computation yields that the conic (6.3) possesses Q-rational points.
Consequently, the function field Q(Cin) = Q(α, y) is a rational function field
and another Magma computation yields Q(α, y) = Q(γ) with

α = Ψ2(γ) :=
410γ2 + 5740γ + 4510

−5727510537γ2 − 7636680716γ + 9545850895
. (6.4)

Combining the above observations yields an explicit multi-parameter poly-
nomial having Galois group PSL4(3).

Corollary 6.3. The polynomial p(Ψ2(γ), X)− tq(Ψ2(γ), X) with p, q from
file psl43_data and Ψ2 from equation (6.4) has regular Galois group PSL4(3)

over the rational function field Q(γ, t).

6.6. Polynomials with Galois group Aut(PGL4(3))

In the previous sections we obtained polynomials for the groups G = PSL4(3)

and A = NS40(PSL4(3)) = PGL4(3) as Galois groups over the fields Q(Cin)(t)

and Q(Cab)(t), respectively. These extensions were parameterized by the inner
Hurwitz curve Cin and the absolute2 Hurwitz curve Cab, respectively.

Additionally, it is also possible to obtain polynomials with Galois group
Aut(PGL4(3)) = Aut(PSL4(3)). In fact, after denoting the splitting field of
p(X)− tq(X) over Q(α, t) by Q(TC) (as in Chapter 2), the theory of absolute
Hurwitz spaces implies that Aut(PGL4(3)) is the Galois group of the extension
Q(TC) | Q(Cout)(t) where the curve Cout is the intermediate curve in the sequence

Ψ : Cin 2−→ Cab 2−→ Cout 3−→ P1
λ

where the degree-12 mapping Ψ is the branch point reference map Ψ : Cin → P1
λ.

2Here, the notion of absolute was taken with respect to the action of degree 40.



6.6. POLYNOMIALS WITH GALOIS GROUP Aut(PGL4(3)) 71

We already know that Cab = P1
α is rational and the relation λ = Ψ6(α)

between α and λ is given explicitly in equation (6.2). In particular, the
curve Cout is also rational and a parameter β with Cout = P1

β can be easily
computed (as a degree-2 rational function in α) by applying the Magma
command Decomposition to the degree-6 rational function Ψ6. The result is
Q(Cout) = Q(β) with

β =
α2 − 4920/32455893043α

α + 3485/5727510537
.

Thus Q(TC) | Q(β)(t) is a Galois extension with Galois group Aut(PGL4(3)).
If desired, one can compute explicit Aut(PGL4(3))-polynomials as follows: The
conjugate to α with respect to the field extension Q(α) | Q(β) is given by

α′ := −α + β + 4920/32455893043

and, therefore, we obtain the following result.

Corollary 6.4. Let β and α′ be as above. Then, the degree-80 polynomial

f(α, t,X) · f(α′, t, X) ∈ Q(β, t)[X]

with f as given in file psl43_data has Galois group Aut(PGL4(3)) over Q(β, t).





CHAPTER 7

A family of 4-point covers with monodromy group PSL6(2)

In this chapter we compute a family of 4-branch-point rational functions
of degree 63 with monodromy group PSL6(2). This, in particular, negatively
answers a question by Joachim König [33, p. 109] whether there exists such
a function with rational coefficients. The computed family also gives rise to
the first degree-126 realizations of Aut(PSL6(2)) over Q. This chapter’s main
results are also available in the preprint article [10] joint with Andreas Wenz.

Remark. The groups PSL6(2) and PSp6(2) of degree 63 are expected to
be the largest (with respect to the permutation degree) almost simple primitive
groups having a generating genus-0 tuple of length at least 4 with the socle
being a simple group of Lie type. While multi-parameter families of polynomials
with Galois group PSp6(2) of degree 28 and 36 were calculated in Chapter 5,
this chapter deals with the remaining case PSL6(2).

7.1. Computation

Let C := (C1, C2, C3, C3) be the genus-0 class vector of PSL6(2) in its
natural 2-transitive action on the 63 non-zero elements of F6

2, where C1, C2 and
C3 are the unique conjugacy classes of cycle structure (228.17), (216.131) and
(320.13), respectively. Furthermore, let F be the family of all PSL6(2)-covers
f : P1 → P1 of degree 63 such that:

(i) f is ramified over 0,∞, 1 ±
√
λ for some λ ∈ P1 \ {0, 1,∞} with

ramification structure:

branch point 0 ∞ 1 +
√
λ 1−

√
λ

inertia class C1 C2 C3 C3

cycle structure 228.17 216.131 320.13 320.13

(ii) f is normalized in the following sense: The sum of all simple roots of f
is 0 and the sum of all double poles is 1. Furthermore, ∞ is the unique
simple pole of f fixed under the action of the normalizer of the inertia
group at ∞. Note that for any g ∈ C2 exactly one length-1-cycle of g
is fixed under NPSL6(2)(⟨g⟩).

73
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Denote by C the inner Hurwitz curve parameterizing the family F of covers.
The normalization conditions (with respect to inner Möbius transformations)
stated in (ii) guarantee that each point on C corresponds to exactly one cover
in F .

In order to decide whether PSL6(2) occurs regularly as a Galois group over
Q with ramification structure C, one has to check the existence of Q-rational
points on the inner Hurwitz curve C that lead to Galois group preserving
specializations, cf. Theorem 2.12. Joachim König [33, p. 109] mentions that
without explicit computation of C there seems to be no way of finding an answer
to this question.

7.1.1. Properties of C. A computer computation with Magma yields
that the straight inner Nielsen class SNiin(C) is of size 48. Consequently, the
branch point reference map

Ψ :

C → P1
λ

cover with ramification locus
{
0,∞, 1±

√
λ
}
7→ λ

(7.1)

turns out to be a Belyi map of degree 48 with ramification locus (0, 1,∞). The
branch cycle description of Ψ, denoted by (σ0, σ1, σ∞) ∈ Sym(SNiin(C))3, can
be calculated explicitly using the formula (2.4) which arises from the action
of the braid group on SNiin(C). This triple generates a transitive group and
consists of cycle structures (65.44.21, 74.43.32.21, 224). From this we can deduce
that C is connected of genus 3 (by the Riemann–Hurwitz formula). Furthermore,
the curve C can be defined over Q since all classes of C are rational.

In the following the function field of C will be denoted by Q(C). The family
F can be parameterized by a rational function

F =
p

q
∈ Q(C)(X) (7.2)

with p, q ∈ Q(C)[X] such that any element of F is obtained via specializing F

at some point in C.
In the remaining chapter we will occasionally identify the curve C with the

family F and thus consider, for example, the branch point reference Ψ to be
defined on both C and F .

7.1.2. Defining equations for elements in F . Fix fλ0 ∈ F with
Ψ(fλ0) = λ0 for some λ0 ∈ P1 \ {0, 1,∞}. According to (i) and (ii) there
exist a scalar c0 and separable, monic and mutually coprime polynomials
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p7, p28, q16, q30, r3, r20, s3, s20 of respective degree denoted in the index such that

fλ0 =
c0 · p7 · p228
q30 · q216

= 1 +
√

λ0 +
c0 · r3 · r320
q30 · q216

= 1−
√

λ0 +
c0 · s3 · s320
q30 · q216

(7.3)

where the traces of p7 and q16 are 0 and 1, respectively.
By comparing coefficients, (7.3) can be considered as a system of polynomial

equations where c0 and the coefficients of p7, p28, . . . , s20 are considered to be
the unknowns. This system consists of 126 unknowns and 126 equations, hence
it is expected to have at most finitely many solutions with fλ0 being one of
them.

7.1.3. Walking on F . Assume we are given an explicit approximate
equation for fλ0 , then we are able to compute another approximate equation
of a cover fλ0+δ ∈ F with Ψ(fλ0+δ) = λ0 + δ for some sufficiently small δ ∈ C.
This can be achieved via Newton iteration by assembling the corresponding
polynomial equations similar to (7.3) and using fλ0 as the initial value.

Starting from an approximate equation of a cover fstart ∈ F we can find
an approximate equation for another cover fend ∈ F with prescribed λend :=

Ψ(fend) ∈ P1 \ {0, 1,∞} and prescribed ramification σend ∈ SNiin(C):
Let λstart := Ψ(fstart) and γ1 be a path in P1 \ {0, 1,∞} connecting λstart

to λend. Lift γ1 via Ψ to F from a path starting in fstart and ending in some
element denoted by f ∗

end ∈ F , then Ψ(f ∗
end) = λend. The ramification of f ∗

end

will be denoted by σ∗
end. According to the ramification of Ψ we can give a closed

path γ2 in P1 \ {0, 1,∞} starting in λend with the property: The lifted path of
γ2 in F via Ψ connects f ∗

end to another element fend with Ψ(fend) = λend and
ramification σend. Using Newton iteration as explained before we can slightly
deform fstart at its ramification locus along γ2 ◦ γ1 to obtain an approximate
equation for fend having the prescribed ramification data.

7.1.4. Splitting behaviour of Ψ. The monodromy group of Ψ, generated
by σ0, σ1, σ∞, turns out to be imprimitive acting on 24 blocks, each of size
2, caused by the automorphism group Aut(PSL6(2)). The induced action of
(σ0, σ1, σ∞) on the set B of these blocks, denoted by (σ′

0, σ
′
1, σ

′
∞) ∈ Sym(B)3,

consists of cycle structures (42.35.11, 72.41.31.21.11, 212). Since (σ′
0, σ

′
1, σ

′
∞)

describes a genus-0 triple, the cover Ψ splits as follows:

Ψ : C Ψ2−→ P1
µ

Ψ24−→ P1
λ (7.4)

with a degree-2 subcover Ψ2 and a degree-24 subcover Ψ24 with branch cycle
description (σ′

0, σ
′
1, σ

′
∞) over (0, 1,∞). The latter cover can be computed
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explicitly (using for example the method explained in Section 3.3):

λ = Ψ24(µ) =
p24
q24

= 1− r24
q24

(7.5)

where

p24 :=

(
µ− 1

4

)(
µ2 − 11

16
µ+

1

8

)4(
µ5 − 137

4
µ4 +

178

3
µ3 − 34µ2 + 8µ− 2

3

)3

,

r24 := 243

(
µ− 1

2

)3(
µ− 1

3

)4(
µ− 5

16

)2(
µ2 +

1

3
µ− 1

6

)7

,

q24 := p24 + r24.

Recall that the cycle structures of (σ0, σ1, σ∞) and (σ′
0, σ

′
1, σ

′
∞) are given by

(65.44.21, 74.43.32.21, 224) and (42.35.11, 72.41.31.21.11, 212).

It is now easy to see that these cycle structures in combination with p24, q24
and r24 uniquely determine the ramification locus RΨ2 ⊆ P1

µ of the degree-2
subcover Ψ2. We find RΨ2 = R0 ∪R1 ∪R∞ with

R0 := Ψ−1
24 (0) ∩RΨ2

=

{
1

4

}
∪
{

roots of µ5 − 137

4
µ4 +

178

3
µ3 − 34µ2 + 8µ− 2

3

}
,

R1 := Ψ−1
24 (1) ∩RΨ2 =

{
5

16
,∞
}
,

R∞ := Ψ−1
24 (∞) ∩RΨ2 = ∅.

7.1.5. A model for C. Since σ′
0 has a unique fixed point and C is defined

over Q, the function field analogue of (7.4) can be stated as

Q(C)
2

≥ Q(µ)
24

≥ Q(λ) (7.6)

where µ is a root of p24−λq24 ∈ Q(λ)[X] and Q(C) being the degree-2 extension
of Q(µ) corresponding to Ψ2. The computation of RΨ2 guarantees the existence
of a primitive element y ∈ Q(C), i.e., Q(C) = Q(µ, y), with defining equation

y2 = cP (µ) := c

(
µ5 − 137

4
µ4 +

178

3
µ3 − 34µ2 + 8µ− 2

3

)(
µ− 1

4

)(
µ− 5

16

)
for some square-free c ∈ Q which will be determined in 7.1.7. For this reason a
hyperelliptic Q-model for C can be chosen to be{

(µ, y) : y2 = cP (µ)
}
. (7.7)

Using this particular model Ψ2 is then given by Ψ2(µ, y) = µ for all (µ, y) ∈ C.
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7.1.6. Field of definition for elements in F . Recall that elements of F
are obtained via specializing F at points in C. Using the explicit hyperelliptic
model (7.7) for C, the coefficients of a cover f0 ∈ F are then contained in

Q
(
µ0,
√
cP (µ0)

)
where µ0 := Ψ2(f0). (7.8)

The explicit computation of Ψ2(f0) can be done in the following way: Write
λ0 := Ψ(f0). Then the fundamental group π1(P1 \ {0, 1,∞}, λ0) acts on B
and on Ψ−1

24 (λ0) in equivalent ways, yielding an explicitly computable bijection
χ : B → Ψ−1

24 (λ0) respecting these equivalent actions. We obtain

Ψ2(f0) = χ(B) (7.9)

whenever the branch cycle description of f0 is contained in a block B ∈ B.
In particular, if an explicit cover contained in F is already known with

algebraic numbers as coefficients, it is possible to determine the unknown
rational scalar c.

7.1.7. Obtaining elements in F . By Riemann’s existence theorem there
exists a PSL6(2)-cover h : P1 → P1 ramified over (0,∞,−1, 1) with ramification
structure (C3, C3, C1, C2). Then h2 turns out to be a Belyi map with ramification
locus (0,∞, 1) and monodromy group contained in PSL6(2) ≀ C2 ≤ S126. Its
ramification consists of cycle structures (620.23, 620.23, 244.138). Using Magma
one sees that there are 24 such triples (up to simultaneous conjugation), all
generating the full wreath product PSL6(2) ≀ C2. We pick one of these triples
and compute the corresponding Belyi map h2 of degree 126 explicitly using
the method described in Section 3.3. The fundamental domain used for the
computation is shown in Figure 1 and the resulting (approximate) dessin
d’enfant is presented in Figure 2. Taking the square root yields a defining
(approximate) equation for h.

After applying suitable Möbius transformations and slightly moving the
ramification points of h using Newton iteration we obtain a complex approx-
imation of a cover fstart ∈ F with Ψ(fstart) = λ0 := Ψ24(

1
6
). The approach

described in 7.1.3 allows the computation of a complex approximation of a cover
fend ∈ F with Ψ(fend) = λ0 and branch cycle description contained in B ∈ B
such that χ(B) = 1

6
. In combination with (7.9) this implies Ψ2(fend) =

1
6
∈ Q.

Due to (7.8) the coefficients of fend can be recognized in the quadratic number
field Q

(
1
6
,
√

cP (1
6
)
)
= Q

(√
−c · 3 · 7 · 457

)
. With the help of Magma we find

c = 3. Note that C from (7.7) is finally computed.
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Figure 1. fundamental domain for PSL6(2) ≀ C2 ≤ S126

Figure 2. dessin for PSL6(2) ≀ C2 ≤ S126
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7.1.8. Computing the universal cover F . Any coefficient of F ∈
Q(C)(X) = Q(µ, y)(X) from (7.2) can be expressed as

H1(µ) + yH2(µ)

where H1, H2 ∈ Q(µ). By slightly moving the ramification points of fend via
Newton iteration as described in 7.1.3 we obtain many defining equations of
covers f ∈ F such that Ψ2(f) is a rational number close to Ψ2(fend) = 1

6
.

Considering (7.8) the coefficients of f are then contained in Q(
√
3P (Ψ2(f))),

allowing us to read off H1(Ψ2(f)) and H2(Ψ2(f)). Therefore, both H1 and
H2 can be computed by interpolation. The resulting universal cover F = p

q
is

presented in file psl62_family.

Remark. The standard approach of computing a hyperelliptic model for
C consists of finding a polynomial relation between λ and a fixed coefficient
of F which are usually expected to generate the entire function field Q(C)
with [Q(C) : Q(λ)] = 48. This is achieved by interpolation via computing
several elements f ∈ F such that Ψ(f) ∈ Q and recognizing the previously
fixed coefficient as algebraic degree-48 numbers. A Riemann–Roch space
computation then leads to the hyperelliptic model for C.

Our approach takes advantage that the branch point reference map Ψ is
decomposable with an explicitly computable genus-0 subcover Ψ24. As explained
in 7.1.5 and 7.1.7 this yields a defining equation for C after recognizing only a
degree-2 number.

7.2. Verification and Consequences

Theorem 7.1. Let C be the curve computed in 7.1.5 and 7.1.7 with defining
equation

y2 = 3

(
µ5 − 137

4
µ4 +

178

3
µ3 − 34µ2 + 8µ− 2

3

)(
µ− 1

4

)(
µ− 5

16

)
.

Furthermore, let
F :=

p

q
∈ Q(C)(X) = Q(µ, y)(X)

be the rational function computed in 7.1.8, see ancillary file psl62_family, and
Ψ24 = p24/q24 the map from (7.5). Then the following holds:

(a) The polynomial p(X) − tq(X) defines a regular PSL6(2)-extension
of Q(µ, y)(t). The ramification locus with respect to t is given by
R := (0,∞, 1 +

√
Ψ24(µ), 1 −

√
Ψ24(µ)) with ramification structure

(228.17, 216.131, 320.13, 320.13).
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(b) Every cover in F is obtained in a unique way via specialization of F
at some point in C.

Proof. (a) We firstly verify that f := p− tq is ramified over R with rami-
fication structure (228.17, 216.131, 320.13, 320.13). This can be done by studying
the inseparability behaviour of f at the places t 7→ t0 for t0 ∈ R. The corre-
sponding factorizations are given in the file psl62_family. In particular, the
behaviour above 1±

√
Ψ24(µ) was obtained by interpolating the factorizations

of several specialized polynomials. The ramification locus of f cannot be larger
than R, otherwise it would contradict the Riemann–Hurwitz formula.

Let Ω be the splitting field of p− tq over Q(µ, y, t). Then, the geometric
monodromy group G := Gal(Ω | (Ω ∩Q(µ, y))(t)) is normal in the arithmetic
monodromy group A := Gal(Ω | Q(µ, y, t)). We now consider the specialization
of f = p− tq at the point (µ0, y0) := (0, 1

8

√
−10) ∈ C, denoted by

f0 = p0 − tq0 ∈ Q(
√
−10, t)[X]. (7.10)

Note that f0 is still ramified over 4 points. Write Ω0 for the splitting field of
f0 over Q(

√
−10, t). Then, by the arguments in Section 4.3.1, we find G ∼=

G0 := Gal(Ω0 | (Ω0 ∩Q)(t)). A Magma computation (see file psl62_verify1)
shows that f0(

p0(t)
q0(t)

, X) and f0(
p0(t)
q0(t)

, X) split over Q(
√
−10, t) into irreducible

factors of degree 1, 62 and 31, 32, respectively. Hence, Proposition 4.4 implies
that A0 := Gal(Ω0 | Q(

√
−10, t)) must be a 2-transitive group that contains

a subgroup of index dividing 63 with orbit lengths 31 and 32. According to
Corollary 4.12 the group A0 turns out to be PSL6(2). Since A0 is simple and G0

is normal in A0, we find G ∼= G0
∼= PSL6(2). As PSL6(2) is also self-normalizing

in S63, we end up with A ∼= PSL6(2).
(b) We will use the following notation: For a rational function P over a

field of characteristic 0 we denote by QP the field extension of Q generated by
the coefficients of P .

The normalized discriminant ∆ of f(t,X) = p(X)− tq(X) with respect to
X is a polynomial in QF [t]. Since the roots of ∆ are given by the ramification
locus of f its factorization in QF [t] is either of the form

∆ = tk
(
t− (1 +

√
λ)
)ℓ (

t− (1−
√
λ)
)h

or ∆ = tk
(
t2 − 2t+ 1− λ

)ℓ
for some k, ℓ, h ∈ N where λ := Ψ24(µ). Both cases yield λ ∈ QF , there-
fore Q(λ) ⊆ QF ⊆ Q(µ, y) with [Q(µ, y) : Q(λ)] = 48. Fix (µ0, y0) ∈ C
such that Ψ24(µ0) = 1

2
. Then, for the specialization of F at (µ0, y0), de-

noted by F(µ0,y0), we compute [QF(µ0,y0)
: Q] = 48 using Magma. We end
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up with QF = Q(µ, y). From the latter we see that µ and y are rational
functions in the coefficients of F . Recall that for any λ0 ∈ P1 \ {0, 1,∞}
we find distinct points (µ1, y1), . . . , (µ48, y48) ∈ C such that Ψ24(µk) = λ0 for
k = 1, . . . , 48. If we specialize F at these points we obtain 48 distinct PSL6(2)-
covers F(µ1,y1), . . . , F(µ48,y48) with ramification locus (0,∞, 1 ±

√
λ0) and ram-

ification structure C, which are all normalized with respect to inner Möbius
transformations (in the sense of (ii)). Therefore, all covers F(µ1,y1), . . . , F(µ48,y48)

lie in F and correspond to all 48 quadruples in SNiin(C). As a consequence,
each element in F can be obtained uniquely via specialization. □

Remark. By looking at Theorem 7.1(b) and its proof we do not get any
information about the specialization behaviour of F at a point (µ0, y0) ∈ C
with Ψ24(µ0) ∈ {0, 1,∞}. Assume, the specialization of F at (µ0, y0), denoted
by F(µ0,y0), is a degree-63 cover, then one of the following cases occurs:

Ψ24(µ0) ramification locus of F(µ0,y0) ramification structure of F(µ0,y0)

0 {0, 1,∞} contains C1, C2

1 {0, 2,∞} contains C2, C3

∞ {0,∞} only contains C1

In none of these cases PSL6(2) is the monodromy group of F(µ0,y0): Using
Magma we see that PSL6(2) does not contain genus-0 tuples of length at most
3 that correspond to the respective conjugacy classes.

With a little more effort we can deduce from Theorem 7.1 that PSL6(2)

does not occur as the monodromy group of a rational function in Q(X) ramified
over at least 4 points.

In order to achieve this result, we still have to study PSL6(2)-covers with
ramification structure C and ramification locus of type (0,∞,±

√
c). These

covers can be calculated explicitly by deforming the ramification locus of covers
contained in F via Newton iteration by assembling the defining equations
explained in 7.1.2.

Theorem 7.2. Let K be the degree-24 number field, c ∈ K the non-square
and p, q ∈ K[X] the monic polynomials given in the ancillary file psl62_data2.
Then the Galois group Gal(p − tq | K(t)) is isomorphic to PSL6(2) in its
natural 2-transitive action on 63 elements. The ramification structure is given
by (228.17, 216.131, 320.13, 320.13) and the ramification locus with respect to t is
given by (0,∞,

√
c,−

√
c).
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Proof. In the same fashion as in the proof of Theorem 7.1(a) it can
be calculated easily that the ramification locus of p − tq is indeed given by
(0,∞,

√
c,−

√
c) with ramification structure (228.17, 216.131, 320.13, 320.13).

Let Ω be the splitting field of p− tq over K(t). Recall that the geometric
monodromy group G := Gal(Ω | (Ω ∩K)(t)) is normal in A := Gal(Ω | K(t)).
Let p = (67, a+ 7) and q = (67, a+ 42) be the unique prime ideals of norm 67

in the ring of integers OK of K where a denotes the primitive element of K
used in file psl62_data2. Write pp and qp for the reduction of p and q modulo
p. Accordingly, we define Ap := Gal(Ωp | (OK/p)(t)) and Gp := Gal(Ωp |
(Ωp ∩ OK/p)(t)) with Ωp being the splitting field of pp − tqp over (OK/p)(t).
Again, Gp is normal in Ap. Of course, we will use the same notation for the
reduction modulo q.

Note that pp − pp(t)
qp(t)

qp and pp − 16 · pq(t)
qq(t)

qp split into irreducible factors of
1, 62 and 31, 32 over (OK/p)(t) ∼= F67(t). Therefore, by Proposition 4.4 and
Corollary 4.12, the group Ap must be isomorphic to PSL6(2). As Ap is simple,
we see that Ap and Gp coincide. Since p is a prime of good reduction for p− tq,
we have Gp

∼= G by the results in Section 4.3.2. Due to the fact that PSL6(2)

is self-normalizing in S63 we end up with A = PSL6(2). □

All computational steps occurring in the previous proof are reproduced in
the Magma file psl62_verify2.

Corollary 7.3. The group PSL6(2) does not occur as the monodromy
group (neither arithmetic nor geometric) of a rational function in Q(X) ramified
over at least 4 points.

Proof. If f has the simple group PSL6(2) as arithmetic monodromy group,
then the geometric monodromy group is PSL6(2) anyway. Consequently, it
suffices to assume that there exists a rational function f ∈ Q(X) ramified
over at least 4 points having PSL6(2) as its geometric monodromy group. A
Magma computation shows that C is the only genus-0 class vector of length
at least 4 containing generating tuples for PSL6(2); thus, f has degree 63

with ramification structure C = (C1, C2, C3, C3). As PSL6(2) of degree 63 is
self-normalizing in S63, we get that arithmetic and geometric monodromy group
of f are both equal to PSL6(2). The branch cycle lemma, see Corollary 2.11,
asserts that the ramification locus of f is of the form (a1, a2, a3, a4) where
a1, a2 ∈ P1(Q) and a3, a4 fulfil a degree-2 relation over Q. Hence, after applying
a suitable outer Möbius transformation we may assume — without altering
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the field of definition — that f either has ramification locus (0,∞, 1±
√
λ0) or

(0,∞,±
√
λ0) for some λ0 ∈ P1(Q) \ {0, 1,∞}. We will now study both cases:

(1) case (0,∞, 1±
√
λ0):

Using the notation and result from Theorem 7.1(b) there exist 48
specialized covers F(µ1,y1), . . . , F(µ48,y48) ∈ F with Ψ(F(µk,yk)) = λ0 for
k ∈ {1, . . . , 48}. Since | SNiin(C)| = 48, the cover f has to coincide
with some F(µk,yk) up to inner Möbius transformations. Because the
normalization conditions (ii) can be achieved without enlarging the field
of definition, it follows that F(µk,yk) is also defined over Q. In particular,
(µk, yk) must be a Q-rational point on C with λ0 = Ψ24(µk) ̸∈ {0, 1,∞}.

Since C is given by a hyperelliptic genus-3 model and its Jacobian
is of Mordell–Weil rank 1, Chabauty’s algorithm (with the imple-
mentation in Sage [50] presented in [2]) gives us the complete list of
Q-rational points of C. We find µk ∈ {1

2
, 1
3
, 1
4
, 5
16
,∞} and for all these

values we see Ψ24(µk) ∈ {0, 1}, a contradiction.
(2) case (0,∞,±

√
λ0):

After a suitable scaling process Theorem 7.2 gives us 48 different
PSL6(2)-covers f1, . . . , f48 that satisfy condition (ii) with ramification
locus (0,∞,±1). Each cover is defined over a degree-48 number field.

Since f√
λ0

has ramification locus (0,∞,±1), the cover f√
λ0

defined
over a quadratic number field has to coincide with fk for some k ∈
{1, . . . , 48} up to inner Möbius transformations, a contradiction.

This shows that PSL6(2) cannot be the monodromy group of f . □

7.3. Extensions with Galois group Aut(PSL6(2))

Although our approach does not yield PSL6(2)-polynomials over Q we at
least get an explicit realization of Aut(PSL6(2)) over Q(µ, t).

Denoting the splitting field of f(µ, y, t,X) over Q(µ, y, t) by Q(TC), the
theory of (absolute) Hurwitz spaces implies that Q(TC) | Q(µ, t) is a Galois
extension with group Aut(PSL6(2)). In particular, the degree-126 polynomial

f(µ, y, t,X) · f(µ,−y, t,X) ∈ Q(µ, t)[X] (7.11)

possesses the imprimitive Galois group Aut(PSL6(2)) over the two-variable
rational function field Q(µ, t).

This polynomial’s splitting field Q(TC) is Q-regular but not Q(µ)-regular
as it contains the quadratic extension Q(µ, y) of Q(µ). In particular, it is
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impossible to obtain Q-regular Aut(PSL6(2))-extensions of Q(t) by specializing
the parameter µ to rational values (as done in the proof of Theorem 7.1).

However, as suggested to us by Joachim König specializing µ to suitable
polynomials in t, one may obtain (infinitely many) Q-regular extensions over
Q(t) with Galois group Aut(PSL6(2)). In the following we present one particular
example.

Corollary 7.4. Let

H := f(t, y, t,X) · f(t,−y, t,X) ∈ Q(t)[X].1

Then the splitting field of the degree-126 polynomial H over Q(t) is regular and
has Galois group Aut(PSL6(2)).

Proof. We know that the polynomial f(µ, y, t,X) · f(µ,−y, t,X) from
(7.11) has Aut(PSL6(2)) as Galois group over Q(µ, t) with fixed field of PSL6(2)

given by Q(C)(t) = Q(µ,
√

3P (µ), t). Thus, Dedekind’s theorem implies that
A := Gal(H | Q(t)) is a subgroup of Aut(PSL6(2)) and it is easy to see that in
fact equality holds.2

Denote by Ω the splitting field of H over Q(t). Since the geometric mono-
dromy group G := Gal(Ω | (Ω ∩ Q)(t)) of H is normal in A, we conclude
G = Aut(PSL6(2)) or G = PSL6(2). Assume G = PSL6(2). Then the field of
constants of Ω would be of the form K(t) where K is some quadratic number
field. On the other hand, we already know that the fixed field of PSL6(2) in
Ω is equal to Q(t,

√
3P (t)), which can be easily seen not to be of the desired

form K(t) with a quadratic number field K. □

Remark. Analogously, one may derive regular extensions with Galois group
PGL4(3) in Section 6.4.

7.4. Addendum: A Belyi map with monodromy group PSL6(2)

Coincidentally, PSL6(2) also happens to contain a rigid, Q(
√
−7)-rational

genus-0 generating triple leading to another Aut(PSL6(2))-extension of Q(t).
For the explicit realization we again apply the method explained in Section 3.3.

Theorem 7.5. Let p, q ∈ Q(
√
−7)[X] be the polynomials of degree 63 from

the ancillary file psl62_data3.

1In comparison to equation (7.11) we have specialized µ 7→ t.
2E.g., specializing t 7→ 1 and reducing modulo 13 yields an element of cycle structure
302.154.22.12 but no proper transitive subgroup of Aut(PSL6(2)) contains such an element.
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(a) The polynomial p−tq possesses the 2-transitive Galois group PSL6(2) ≤
S63 over Q(

√
−7)(t) with ramification locus (0, 1,∞) and branch cycle

structure (213, 48.212.17, 228.17).
(b) The degree-126 product (p− tq)(p− tq) has non-regular Galois group

Aut(PSL6(2)) over Q(t).

Sketch of proof. A computation with Magma, see file psl62_verify3,
yields that p(X) − p(t)

q(t)
q(X) and p(X) − p(t)

q(t)
q(X) split in Q(

√
−7, t)[X] into

irreducible factors of degree 1, 62 and 31, 32, respectively. Analogously to the
proof of Theorem 7.1 this implies that p(X)− tq(X) and p(X)− tq(X) both
have the same splitting field Ω over Q(

√
−7)(t) with Gal(Ω | Q(

√
−7)(t)) =

PSL6(2). It is now easy to see that Ω | Q(t) is a Galois extension with
group Aut(PSL6(2)). □

However, in contrast to Corollary 7.4, due to the lack of an additional
parameter, it is not possible to obtain regular Aut(PSL6(2))-extensions from
Theorem 7.5.





CHAPTER 8

On Elkies’ method to bound the transitivity degree of

Galois groups

In the previous chapters the most difficult part in the verification process
was to exclude the highly transitive groups An or Sn. In this self-contained
chapter we present a technique by Elkies [25] for bounding the transitivity
degree of Galois groups of function field extensions, thus complementing the
techniques described in Chapter 4. It works by collecting the factorization
patterns of many specialized polynomials and comparing them to an effective
version of Chebotarev’s density theorem which arises from the Hasse–Weil
bound.

We use Elkies’ method to give alternative proofs for the correctness for the
2-transitive Galois groups PSp6(2), PSL4(3), PSL6(2) appearing in the previous
Chapters 5, 6 and 7. Additionally, we rigorously verify that the monodromy
group of the degree-276 cover defined over a degree-12 number field computed
by Monien [44] is isomorphic to the sporadic 2-transitive Conway group Co3.
The verification process for the Conway group is particularly difficult since it
does not seem to be feasible with the techniques presented in Chapter 4.

Remark. The chapter is mainly identical to the journal article [12] by
Andreas Wenz and the author. In comparison to the journal version an
additional example, namely the group PSL4(3), was added.

8.1. Preliminaries

For a fixed number field K let p and q be coprime polynomials in K[X].
Recall that the arithmetic monodromy group of the degree-n cover p/q is
defined as

A := Gal(N | K(t))

where N denotes the splitting field of p(X)− tq(X) over K(t). Furthermore,
the geometric monodromy group of p/q is defined as

G := Gal(N | (K ∩N)(t)).

87
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Since p(X) − tq(X) is absolutely irreducible, the natural (faithful) action of
both G and A on the n roots of p(X)− tq(X) in N is transitive. Furthermore,
it is well known that G is normal in A.

In order to study A and G, we will reduce the above polynomials modulo a
suitable prime: The ring of integers of K will be denoted by OK . For a fixed
prime ideal p in OK we write pp and qp for the reduction of p and q modulo p.
In the same fashion as before we define

Ap := Gal(Np | (OK/p)(t)) and Gp := Gal(Np | (OK/p ∩Np)(t))

where Np denotes the splitting field of pp(X)− tqp(X) over (OK/p)(t). Again,
Gp is a normal subgroup of Ap.

Thanks to a theorem of Beckmann (see Section 4.3.2), among other consid-
erations, if p is chosen to be lying over a sufficiently large rational prime we
may assume the following:

(i) The ramification locus of p(X)− tq(X) with respect to t is p-stable.
(ii) The inseparability behaviour of both p(X) − tq(X) ∈ K(t)[X] and

pp(X) − tqp(X) ∈ (OK/p)(t)[X] specialized at ramified places with
respect to t coincides.

(iii) G ∼= Gp.

8.2. A method by Elkies

The following technique described by Elkies (see [25]) bounds the transitivity
degree of G:

Assume, G and therefore Gp is k-transitive and Ap = Gp. Let C0 and C1 be
the projective t- and x-lines over the finite field Fλ

∼= OK/p. By introducing
the relation pp(x)− tqp(x) = 0 we obtain a cover C1/C0 ramified over exactly
m points with ramification structure (s1, . . . , sm) ∈ (Sn)

m. Its Galois closure
will be denoted by C̃.

Let (Gp)k be the stabilizer of a k-element set in Gp and Ck := C̃/(Gp)k.
The corresponding cover Ck/C0 is of degree

(
n
k

)
with ramification structure

(σ1, . . . , σm) induced by the natural action of (s1, . . . , sm) on k-element subsets.
As Gp acts faithfully on n elements, it can be shown easily that the action on
k-element subsets is also faithful if k ̸∈ {0, n}. In particular, ord(σi) = ord(si)

for i = 1, . . . ,m. Additionally note that Ck is an irreducible curve with full
constant field Fλ due to Ap = Gp.
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The number of Fλ-rational points on Ck, denoted by #Ck(Fλ), has to obey
the Hasse–Weil bound |#Ck(Fλ)− (λ+ 1)| ≤ 2g(Ck)

√
λ, in particular

#Ck(Fλ) ≤ λ+ 1 + 2g(Ck)
√
λ. (8.1)

Here, g(Ck) denotes the genus of Ck. In order to check if Ck is indeed compatible
with the above bound, we need to determine #Ck(Fλ) and g(Ck).

We will use the following notation: For a permutation s ∈ Sn let πk(s) be
the number of invariant k-element subsets of s.

8.2.1. Counting Fλ-rational points on Ck. Fix t0 ∈ P1(Fλ) not con-
tained in the ramification locus S of pp(X) − tqp(X). Note that Fλ-rational
points on Ck lying over t0 correspond to degree-k factors of the specialization
pp(X)− t0qp(X) ∈ Fλ[X].

If Frob(t0) denotes the Frobenius permutation on the n roots of the spe-
cialization pp(X)− t0qp(X), then the number of Fλ-rational points on Ck lying
over t0 is given by πk(Frob(t0)), therefore

#Ck(Fλ) ≥
∑

t0∈P1(Fλ)\S

πk(Frob(t0)). (8.2)

8.2.2. Computing the genus of Ck. Since the degree-
(
n
k

)
cover Ck/C0

has ramification structure (σ1, . . . , σm), the Riemann–Hurwitz formula yields

g(Ck) = 1−
(
n

k

)
+

1

2

m∑
i=1

ind(σi) (8.3)

where ind(σi) :=
(
n
k

)
− number of cycles of σi.

If (σ1, . . . , σm) cannot be computed explicitly, one can deduce the upper
bound

ind(σi) ≤
((

n

k

)
− πk(si)

)(
1− 1

ord(si)

)
. (8.4)

Note that equality holds if the order of si is prime.

8.2.3. Picking a sufficiently large prime. Note that the right hand
side of (8.2) behaves differently if Gp is not k-transitive: Let d be the number
of orbits of Gp acting on k-element subsets; then it is reasonable to expect∑

t0∈P1(Fλ)\S

πk(Frob(t0)) ≈ dλ (8.5)

for large λ due to the orbit-counting theorem in combination with Chebotarev’s
density theorem. By comparing (8.2) and (8.5) with the Hasse–Weil bound
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(8.1) we obtain dλ ≤ λ + 2g(Ck)
√
λ, which leads to λ ≤ 4g(Ck)

2

(d−1)2
in the case

d > 1.
This observation is a crucial ingredient in the verification process: If p is

picked such that its norm λ is sufficiently greater than 4g(Ck)
2

(d−1)2
, we are able to

establish a contradiction to the Hasse-Weil bound. This, in particular, allows
us to disprove the k-transitivity of G.

8.2.4. Elkies’ example: M23. The previously described technique was
key for the proof that the degree-23 polynomial p ∈ Q(α)[X] given in [25]
where α4 + α3 + 9α2 − 10α + 8 = 0 has geometric monodromy group M23.

With respect to t the ramification locus of p(X)− t consists of exactly three
points with ramification type (44.22.13, 28.17, 231). It is standard practice to
show that the geometric monodromy group G of p is either the 4-transitive
group M23 or A23.

Assume G ∼= A23, then for the prime ideal p := (47 000 081, α+25 037 440) of
norm λ := 47 000 081 we have G ∼= Gp and both G and Gp are 5-transitive. Since
the discriminant of pp(X)− t is a square, Ap

∼= A23
∼= Gp. This leads us to work

with the curve C5: By explicitly computing (σ1, σ2, σ3) we find g(C5) = 3285

using the Riemann–Hurwitz formula (8.3). In combination with the Hasse–Weil
bound (8.1) this yields #C5(Fλ) ≤ 92 041 771. Counting Fλ-rational points
on C5 according to (8.2) reveals the contradiction #C5(Fλ) ≥ 93 981 891 with
a total computing time of approximately 12 hours using Magma. We obtain
G ∼= Gp

∼= M23.

8.3. New Applications

8.3.1. The sporadic Conway group Co3. In this section we will refer
to the polynomials p := −k3p̃3 and q := k2p̃2 presented in [44, Proposition 1]
of degree 276 over a degree-12 number field K := Q(α) where α12 − 2α11 +

9α10 − 20α9 +38α8 − 73α7 +101α6 − 86α5 +55α4 − 46α3 +42α2 − 24α+6 = 0.

Theorem 8.1. The polynomial p(X) − tq(X) ∈ K(t)[X] defines a reg-
ular Galois extension of K(t) with Galois group isomorphic to the sporadic
2-transitive Conway group Co3. With respect to t the ramification locus is given
by (0, 1,∞) with corresponding ramification type (392, 739.13, 2132.112).

Proof. An easy computation shows that p(X)− tq(X) is ramified over 0,
1 and ∞ with the given ramification type. The ramification locus cannot be
any larger, otherwise this would contradict the Riemann–Hurwitz formula.
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Pick the prime ideal p := (7 · 109 + 1, α + 2738 443 742) in OK of norm
λ := 7 · 109 + 1. Note that OK/p ∼= Fλ. Because

pp(X)qp(t)− pp(t)qp(X)

X − t
∈ Fλ(t)[X]

is irreducible, Ap must be 2-transitive. Additionally, the discriminant of
pp(X) − tqp(X) ∈ Fλ(t)[X] is a square. Combining both results, we find
Ap ∈ {Co3, A276} by the classification of finite 2-transitive groups. In both
cases we have Gp = Ap because Gp is normal in Ap.

Under the assumption that Gp is 3-transitive we study the curve C3: Com-
bining (8.4) and (8.3) yields g(C3) = 40 782. Now, (8.2) gives us

#C3(Fλ) ≥ 13 999 925 705

whereas
#C3(Fλ) ≤ 13 824 133 842

by the Hasse–Weil bound (8.1). This is a contradiction, thus Gp cannot be
3-transitive and we remain with Gp = Co3.

Since p is a prime of good reduction for p(X)− tq(X) ∈ K(t)[X], a theorem
of Beckmann, see Section 4.3.2, implies G ∼= Gp = Co3. Due to the fact that G
is normal in A and NS276(Co3) = Co3 we end up with A = G ∼= Co3. □

The most delicate part in the previous proof is the computation of the
right hand side of (8.2). In the following we explain in greater detail this time
consuming task (implementation in PARI/GP [49] with a total computing time
of about 8 days using 550 threads simultaneously at the High Performance
Computing Cluster at the University of Würzburg).

For the sake of simplicity we write f := pp−t0qp ∈ Fλ[X] for some t0 ̸∈ S. In
the case k = 3 the following holds: If f has exactly di irreducible Fλ[X]-factors
of degree i for i ∈ {1, 2, 3}, then π3(Frob(t0)) =

(
d1
3

)
+ d1d2 + d3. Note that if

a specialization reduces the degree, we have to add 1 to d1.
In order to find d1 we compute p1 := gcd(Xλ−X, f). Clearly, d1 = deg(p1).

Since λ is too large for an efficient computation, we replace Xλ −X with its
reduction modulo f , which can be determined by the exponentiation by squaring-
method. In the same fashion we find d2 and d3: For p2 := gcd(Xλ2 −X, f

p1
)

and p3 := gcd(Xλ3 −X, f
p1p2

) we have d2 =
1
2
deg(p2) and d3 =

1
3
deg(p3).

Partial results for the computation of the right hand side of (8.2) can be
found in the ancillary Magma-readable file conway_partial_results.
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8.3.2. The symplectic group PSp6(2). In Theorems 5.3 and 5.5 we com-
puted 4-point covers of degrees 28 and 36 with respective geometric monodromy
group G isomorphic to the 2-transitive symplectic group PSp6(2). In order to
verify G = PSp6(2), standard techniques yield that G is either PSp6(2) or an
alternating group. In contrast to the arguments given in Chapter 5 to rule
out the last case we now apply Elkies’ method to give an alternative proof for
G = PSp6(2). Assume, G is 3-transitive, then for the above covers we get a
contradiction regarding the Hasse–Weil bound:

degree 28 36

ramification type (26.116, 212.14, 212.14, 74) (312, 212.112, 212.112, 47.21.16)

g(C3) 396 1275

λ 700 001 7 000 003

Hasse–Weil bound ≤ 1 362 637 ≤ 13 746 671

#C3(Fλ) ≥ 1 405 359 ≥ 14 032 224

computing time ≈ 2 minutes ≈ 35 minutes

8.3.3. The linear groups PSL4(3) and PSL6(2). In Chapters 6 and 7 the
author calculated 4-point covers with geometric monodromy groups isomorphic
to the 2-transitive groups PSL4(3) and PSL6(2). Again, the main task in the
verifying process boils down to exclude the large groups An or Sn as possibilities.
By applying Elkies’ method we are able to give alternative proofs that the
monodromy groups cannot be 3-transitive:

group PSL4(3) of degree 40 PSL6(2) of degree 63

ramification type (312.14, 39.113, 216.18, 220) (228.17, 320.13, 320.13, 216.131)

g(C3) 1498 5300

λ 9 000 049 120 000 007

Hasse–Weil bound ≤ 17 988 074 ≤ 236 117 193

#C3(Fλ) ≥ 17 993 006 ≥ 239 980 524

computing time ≈ 50 minutes ≈ 5 days

Computational remark. In the accompanying file elkies_method we
provide a Magma-program to illustrate the computation of the right hand side of
(8.2) for M23, PSp6(2), PSL4(3) and PSL6(2). The specified computing times
for these examples refer to computers with an AMD Ryzen 7 3700X processor.
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