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Abstract. We model Milky Way like isolated disk galaxies in high resolution three-dimensional hydrodynamical
simulations with the adaptive mesh refinement code Enzo. The model galaxies include a dark matter halo and
a disk of gas and stars. We use a simple implementation of sink particles to measure and follow collapsing
gas, and simulate star formation as well as stellar feedback in some cases. We investigate two largely different
realizations of star formation. Firstly, we follow the classical approach to transform cold, dense gas into stars
with an fixed efficiency. These kind of simulations are known to suffer from an overestimation of star formation
and we observe this behavior as well. Secondly, we use our newly developed FEARLESS approach to combine
hydrodynamical simulations with a semi-analytic modeling of unresolved turbulence and use this technique to
dynamically determine the star formation rate. The subgrid-scale turbulence regulated star formation simulations
point towards largely smaller star formation efficiencies and henceforth more realistic overall star formation rates.
More work is necessary to extend this method to account for the observed highly supersonic turbulence in molecular
clouds and ultimately use the turbulence regulated algorithm to simulate observed star formation relations.

Key words. astrophysics - hydrodynamics - turbulence - star formation - simulation:subgrid-scale model -
ISM:turbulence - galaxies:formation:evolution:general

Abriss. In dieser Arbeit beschäftigen wir uns mit der Modellierung und Durchführung von hoch aufgelösten drei-
dimensionalen Simulationen von isolierten Scheibengalaxien, vergleichbar unserer Milchstraße. Wir verwenden
dazu den Simulations-Code Enzo, der die Methode der adaptiven Gitterverfeinerung benutzt um die örtliche und
zeitliche Auflösung der Simulationen anzupassen. Unsere Galaxienmodelle beinhalten einen Dunkle Materie Halo
sowie eine galaktische Scheibe aus Gas und Sternen. Regionen besonders hoher Gasdichte werden durch Teilchen
ersetzt, die fortan die Eigenschaften des Gases beziehungsweise der darin entstehenden Sterne beschreiben. Wir
untersuchen zwei grundlegend verschiedene Darstellungen von Sternentstehung. Die erste Methode beschreibt die
Umwandlung dichten Gases einer Molekülwolke in Sterne mit konstanter Effektivität und führt wie in früheren
Simulationen zu einer Überschätzung der Sternentstehungsrate. Die zweite Methode nutzt das von unserer Gruppe
neu entwickelte FEARLESS Konzept, um hydrodynamische Simulationen mit analytischen-empirischen Modellen
zu verbinden und bessere Aussagen über die in einer Simulation nicht explizit aufgelösten Bereiche treffen zu kön-
nen. Besonderes Augenmerk gilt in dieser Arbeit dabei der in Molekülwolken beobachteten Turbulenz. Durch die
Einbeziehung dieser nicht aufgelösten Effekte sind wir in der Lage eine realistischere Aussage über die Sternentste-
hungsrate zu treffen. Eine zukünftige Weiterentwicklung dieser von uns entwickelten und umgesetzten Technik
kann in Zukunft dafür verwendet werden, die Qualität des durch Turbulenz regulierten Sternentstehungsmodells
noch weiter zu steigern.

Schlagwörter. Astrophysik - Hydrodynamik - Turbulenz - Sternentstehung - Simulation:Subgrid-Skalen Modell -
ISM:Turbulenz - Galaxien:Entstehung:Entwicklung:Allgemein
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Notation

This thesis makes use of the common astrophysical labeling of quantities and several of our own
definitions of parameters and variables. Below is a complete list of all used quantities, their
meaning and their standard values.

General Notation:
pc Parsec 3.0856 · 1018 cm
kpc Kiloparsec 3.0856 · 1021 cm
Mpc Megaparsec 3.0856 · 1024 cm
yr Year 3.1536 · 107 s
Myr Megayear 3.1536 · 1013 s
Gyr Gigayear 3.1536 · 1016 s
M� Solar Mass 1.989 · 1033 g
mh Proton Mass 1.67 · 10−24 g
kb Boltzmann Constant 1.38 · 10−16 g cm2

/s2 K

G Gravitational Constant 6.67 · 10−8 cm3
/g s2

µ Mean Molecular Weight 1.2
γ Heat Capacity Ratio 1.6667
π Pi 3.14159

Scaling Parameters:
R scaling factor Density 1.0 · 10−25 g/cm3

L scaling factor Length 1.0 Mpc
G0 scaling factor Gravitational Constant 6.67 · 10−8 cm3

/g s2

G scaling factor Acceleration
T scaling factor Time
M scaling factor Mass
E scaling factor Energy
V scaling factor Velocity
C scaling factor Cooling
H scaling factor Heating

Standard values are used whenever not indicated otherwise.
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Abbreviations:
AMR Adaptive Mesh Refinement
CDM Cold Dark Matter
GMC Giant Molecular Cloud
IMF Initial Mass Function
ISM Interstellar Medium
KS Kennicutt-Schmidt
MC Molecular Cloud
MHD Magnetohydrodynamical
NFW Navarro-Frenk-White
KM05 Krumholz and McKee [2005]
PDE Partial Differential Equations
PDF Probability Distribution Function
PPM Piecewise Parabolic Method
SF Star Formation
SFR Star Formation Rate
SGS Subgrid-Scale
SPH Smoothed Particle Hydrodynamics
TB06 Tasker and Bryan [2006]
ULIRG Ultraluminous Infrared Galaxy
YSO Young Stellar Objects
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Preface

How we conceive the world around us is mostly determined by our current situation. On a bright
sunny day at the beach we listen to the wind and waves, in the woods we hear the leaves rustling
and during a clear night we watch the stars. Luckily, most often we can just enjoy the beauty
within, although pondering about who put the stars on the canopy intrigues the mind.
In public talks, television reports, books and via literally all media we are frequently made aware
of how little we know about the very things around us.
Starting at the smallest scales, there is the question of how the mass of the most elemental
building blocks of matter is generated, as the common sense of summing up pieces to get an
entity fails. How do neurons in the human brain work and what makes up the conscious mind?
How about sociological interactions and what are the prospectives of human evolution? What
do we know about our planet? Are there more or even less hidden resources than mankind has
assumed during the last decades of industrial evolution and how about the deep sea? What
species are waiting for us in the depths hidden by darkness and pressure or the remoteness of
their habitats? What is the inner structure of our planet and how about its core, which seems to
be so important for the blue planet’s magnetic field, shielding all its life from solar and cosmic
radiation? Are there other planets like the one we claim to know at least to some extent and is
the moon a scattered fraction of our own home? How did the solar system come to existence and
how can we conceive the extent of the Milky Way? What does it mean that space-time expands
and how did the Big Bang create time? After all, what is the Universe made of?
To most of these questions science has given at least vague ideas, more often conceptual frame-
works accompanied by diverse theories, and sometimes even formal concepts. Some questions
are rather attributed to metaphysics, others are currently under heavy attack by scientists and
experiments all over the world.

Figure (0.1) summarizes what has emerged as answer to the last question about the com-
position of the Universe. This picture is part of what astronomers call the standard model of
cosmology and again reflects how little we really know about the Universe we live in.
Roughly 70% of the Universe is made of some kind of mysterious dark energy that permeates all
of space. One of the few conceptual ideas we can attribute seems to be the fact that this form
of energy does not show any tendency to clump together. Of course, theoretically, dark energy
can explain recent observations that the Universe appears to be expanding at an accelerating
rate and that is only one reason for its triumphal success in the standard model. Theorists have
already proposed different forms for dark energy, for example, a realization of Einstein’s famous
cosmological constant or dynamic scalar field quantities. Nevertheless, its existence has yet to
be prooven and its effects need further investigation.
Dark energy aside, approximately another 25% of the Universe seems to consits of what is called
dark matter. The terminology of dark matter stems from the fact that this matter only interacts
via gravity and not via electromagnetic interactions. The vast majority of mass in the observable
universe is made of dark matter and it plays the most important role during the formation of
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6 PREFACE

Figure 0.1. This NASA chart displays what most astronomers believe is the
energy distribution in the Universe.

structure in the Universe. Again, theory gives candidates of exotic particles which can be the
constituents of dark matter and experiments scanning for cosmic radiation as well as collider
experiments are searching for them – yet waiting.
Leaving the dark side of the Universe behind, we are left with approximately 5% of what we call
baryonic matter – that is essentially what we are familiar with as tangible material. Following
the standard model of high energy physics, we talk about fermions such as leptons (electrons,
muons, taus, neutrinos) and quarks (up, down, charm, strange, top, bottom) as well as bosons
(gluon, photon, vectorbosons) and mesons. These fundamental building blocks make up the
atoms which themselves can build molecules and more complex chemical compounds.
Free hydrogen and helium gas are the most important constituents of baryonic matter in the
astrophysical context and make up roughly 4% of the mass-energy in the Universe. This free
elementary gas is the natal material out of which stars form, which contribute approximately
0.5% to the energy content of the Universe, themselves. After all, stars generate neutrinos and
fuse simple chemical species to heavy elements which are the chemical basis of life.

So much about what we believe to know or not to know about the content of our universe.
While there is tremendous knowledge to gain and yet inconceivable conceptions to make about
95% of the Universe, the following thesis will try to shed some more light on the remaining 5%
and look into the details of how stars are coming to existence out of free gas consisting of the
simplest chemical elements.



Non est ad astra mollis e terris via

Seneca, Hercules furens
(Der wildgewordene Herkules)





Part I

Nursery of Stars





CHAPTER 1

Motivation

1.1. Introduction

Free hydrogen and helium gas and the stars that form therein are the basis of our observational
knowledge of the Universe. Essentially, stars are the fundamental building blocks of the Universe
and by transforming gas into stars the star formation process shapes the structure of galaxies
and governs their global evolution. The most simplified picture of star formation is that free
hydrogen gas falls into a dark matter potential, which grew itself from inhomogeneities produced
during inflation, and starts to accumulate there. Eventually, the gas becomes dense enough to
start cooling efficiently and fragmentation begins. At the end of this fragmentation process there
are patches of gas which are highly unstable and finally become dense enough to ignite the fusion
process – a star is formed.

McKee and Ostriker [2007] review star formation theory and divide the extensive problem into
two categories separated by the scales of the processes. All the physics that influence the forma-
tion and evolution of single stars or binary systemsa are termed microphysics of star formation.
Research in this category investigates how stellar mass distributions arise as a result of gravita-
tional collapse. What imprints of the host medium out of which stars form can be found in the
stellar populations? How do magnetic fields influence the accumulation process of gas and how is
angular momentum transferred when protostellar disks are formed? Once stars are formed they
strongly influence their surroundings. What are the properties of young stellar objects (YSO)
and how do their outflows, jets and radiation pressure interact with the interstellar medium
(ISM).
The physics of star formation on larger scales is termed macrophysics of star formation and
deals with whole systems and associations of stars. They are typically formed in giant molecular
clouds (GMCs) which are believed to be the birthplace of most stars. Here, star formation theory
tackles the questions of how GMCs are formed from the diffuse intergalactic gas and what their
properties are. Are they gravitationally bound long-lived entities or do they have rather short
life cycles and get dispersed shortly after they have formed the first stars? How much gas of
such clouds is transformed into stars and at what rate does it happen? Moreover, how do the
properties of the natal material influence the star formation process and what are the effects
from the interstellar medium? How do the overall properties of the available gas in a galaxy
determine the distribution of stars in that galaxy and how do stars influence the evolution of the
host galaxy?
In this thesis we will mostly be concerned with the explicit treatment of macrophysics of star
formation while the microphysics will be parameterized by a subgrid model approach. However,
it is already obvious from the above overview that all the physics involved in the formation
of stars cannot always be clearly and independently separated into two regimes. A supernova
explosion of a single massive star would be attributed to the category of evolution of a single
star and therefore be considered microphysics. However, the influence of such an event on the

aIt is assumed that roughly 50% of all stars form as binary systems.
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12 1. MOTIVATION

ISM might be quite dramatic and may have effects on scales much larger than GMCs, therefore
it would belong to the macrophysics category. Nevertheless, it is very intuitive to use the ter-
minology introduced by McKee and Ostriker to distinguish between different scales involved in
star formation theory as well as to emphasize the focus of our work on the large scale properties
of star formation.

To investigate the macrophysics of star formation it is intuitive to consider a framework like
our own galaxy, and the Galaxy is also a good example to outline some of the basic problems in
star formation theory. The Galaxy contains roughly 109 M� of molecular gas. Most of this gas is
located in GMCs which have typical masses of 106 M� and number densities of nH ≈ 100 cm−3.
If this gas could simply gravitationally collapse without any opposing force, its free–fall time
τff =

√
3π/(32Gρ) would approximately be 5 Myr. Using ρ = nHmhµ we get τff = 4.7 Myr. It

follows that the Galaxy should turn gas into stars at a rate of 200 M� yr−1. However, McKee and
Williams [1997] state an observed star formation rate in the Galaxy of ∼ 3 M� yr−1. Obviously,
the picture of pure gravitational collapse is wrong by almost two orders of magnitude.
This discrepancy is not only apparent in the Galaxy but also in other more extreme envi-
ronments. Considering the closest Ultraluminous Infrared Galaxy (ULIRG), namely Arp 220,
Downes and Solomon [1998] state a molecular mass of 2 · 109 M� and typical number densities
of nH ≈ 104 cm−3. In this case we calculate a free–fall time of roughly 0.5 Myr and subsequently
a star formation rate (SFR) of 4000 M� yr−1 while the authors state an observed SFR of only
50 M� yr−1. Again, the simple free-fall calculation and observations are off by almost two orders
of magnitude.
Furthermore, Krumholz and Tan [2007] also analyze high density star formation traced by HCN.
They find an observed correlation of SFR ∼ MHCN/30 Myr which again contradicts the calcu-
lated free-fall time of τff ≈ 0.2 Myr by a factor of almost 100.
Although it is not really surprising that the assumption of pure gravitational free-fall collapse
does not sufficiently describe the physics of star formation, it is very interesting to see that the
differences appear in a systematic fashion and hold for vastly different star formation scenarios.
It is very tempting to draw the conclusion that some general process available in all star forming
environments plays the crucial role of synchronizing theory and observations. We will come back
to this hypothesis in the next paragraph where we touch upon the physics opposing gravity.

In a typical star formation scenario gravity certainly plays a key role but there are also other
physical processes which have to be taken into consideration. The literature has extensively
discussed the physics of thermodynamics in the ISM, large scale galactic dynamics such as rota-
tional shear, magnetic fields and turbulence, and we will investigate these processes in Chapter
(3) in detail. We will show that a realistic evaluation and incorporation of turbulence effects
can indeed have a significant influence on controlling star formation processes and alleviate the
contradictions, mentioned earlier, to a certain extend. Turbulence is in fact important in essen-
tially all branches of astrophysics that involve gas dynamics and this universality has also been
one of the first hints which led theorists to the idea that it might be a excellent candidate to
counteract gravity in various star formation scenarios. Today, we conceive turbulence in star
formation theory to play a dual role. Turbulence counteracts gravity in overdense regions while
at the same time generating seeds for gravitational contraction and collapse by gas compression.
Various sources have been identified as the origin and driving mechanisms of the observed tur-
bulent motions, among them gravity [Wada et al., 2002], stellar winds, supernovae [Mac Low
and Klessen, 2004], magneto-rotational instabilities [Sellwood and Balbus, 1999], and radiative
heating [Kritsuk and Norman, 2002]. Most likely some combination of these processes generates
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the turbulence that globally opposes gravitational collapse while locally producing density en-
hancements [Mac Low and Klessen, 2004] which can become gravitationally unstable and exceed
the density threshold for star formation.
These density enhancements are initially generated by shocks in the supersonic flow of a turbu-
lent gas cloud. The density of the postshock gas increases by ∼ M 2 in an isothermal gas, where
M is the Mach number. Therefore, the Jeans length, the length scale of a collapsing cloud of
self-gravitating gas, drops by a factor proportional to M and may render the shocked gas able
to collapse while the surrounding flow is still supported by turbulence.
Star formation is essential for the evolution of galaxies and molecular clouds. Stars heat and
stir up their surrounding material. In the case of massive OB stars, this may have important
consequences on a large fraction of the molecular cloud’s gas. Feedback from stars can interrupt
the accretion process or even destroy the molecular cloud itself and end the overall star forma-
tion. Additionally, star formation and the eventual death of stars leads to metallicity enrichment
of the gas which influences the further development of the system by enhancing the metal-line
cooling efficiency.

Another problem in star formation theory is to explain the observed correlations of the star
formation rate and gas surface density. The surface density is a projection of a 3-dimensional
quantity on a 2-dimensional face. In imitation of the 2-dimensional information an observer en-
visions when looking at a distant stellar object, the surface density is generated mathematically
by integrating the 3-dimensional quantity along the line of projection (sight).
Surveys of vastly different star formation locations in numerous galaxies covering a large range
of star formation rates and gas surface densities show clear correlations of the latter quantities
[Schmidt, 1959, 1963, Kennicutt, 1989, 1998a,b]. While Schmidt proposed a power law correla-
tion of gas density and star formation rate, Kennicutt investigated the normalization and power
law index. The Kennicutt-Schmidt law can be stated

(1.1) ΣSFR = (2.5± 0.7) · 10−4

(
Σgas

1 M� pc−2

)1.4±0.15

M� yr−1 kpc−2

as done by the latter author. Here ΣSFR is the star formation rate (the mass of stars formed per
unit area and unit time) and Σgas is the gas surface density. Remarkably, this correlation holds
over more than four orders of magnitude in gas surface density and more than six orders in star
formation rate.

1.2. Goals of this Thesis

A good theory of star formation has to be able to give convincing answers to the two major
problems outlined above. Moreover, the arguments have to be valid for the whole margin from
low star formation rates in disk galaxies to orders of magnitude larger rates in ULIRGs. To
date, no such theory exists. The essential goal of this work is therefore to contribute along the
way towards a better understanding of the physics of star formation and to investigate the ideas
which might eventually lead to a general theory of star formation.

Along this path, we have decided to focus on three major tasks:

• Construction of a toy model galaxy simulation

Neither can stars and star formation be studied in isolation from their galactical environment,
nor can galaxies and the star formation therein be studied without understanding how stars and
their life cycles influence the host galaxy. It was therefore our first goal to set up a toy model
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galaxy as a numerical simulation.

• Investigation of simulation parameters and implementation of a turbulence regulated
star formation formulation

With the numerical setup at hand the plan was to reinvestigate what is commonly referred to as
density threshold star formation in the literature. Although there is plenty of literature on nu-
merical simulations of star formation, only recently full scale galaxy simulations of star formation
in three dimensions have become available. We wanted to test our setup through comparisons
and in a further step evolve the simulation framework in some details.
In particular, we wanted to take advantage of the FEARLESSb code which has recently been
developed in our group. It enables us to implement the theory of turbulence regulated star for-
mation proposed by Krumholz and McKee [2005] as a subgrid-scale (SGS) model in our galaxy
simulations.

• Extensive numerical experimentation with galaxy simulations and different star forma-
tion (SF) algorithms some of which including stellar feedback

In order to model star formation in disk galaxies from first principles, one needs a good under-
standing of the evolution and lifetime of molecular clouds, the influence of turbulence, rotation
and magnetic fields on gravitational instability, as well as feedback from supernovae, ionizing
radiation, stellar outflows and galactic winds. Obviously, this challenging program is beyond
our current abilities. Instead, we invoke Occam’s razor and propose to ignore all effects but
supersonic turbulence, as formulated by Krumholz and McKee. In some cases we also include a
simple realization of star formation feedback to close the star formation cycle.

This thesis is organized as follows:
In Part (I) we give a brief review of the most relevant theoretical aspects of contemporary star
formation theory. In Chapter (2) we draw the global picture of a star forming disk galaxy,
followed by a detailed discussion of the most relevant physical processes in Chapter (3). Subse-
quently, in Chapter (4) we discuss important aspects of turbulence theory and its implications
on star formation.
Part (II) deals with the numerical aspects of this dissertation. In Chapter (5) we give a detailed
description of our simulation framework and disscuss in Chapter (6) how we set up isolated
galactic disks. Chapter (7) is devoted to the description of the numerical implementation of
the subgrid model and a discussion of its functionality and parameters. As an amendment, we
discuss in Chapter (8) the particular aspect of probability gas density distributions in molecular
clouds as this is an important ingredient in the turbulence regulated star formation algorithm.
The last part, Part (III) of this thesis is devoted to our numerical results. In Chapter (9) we
present simulations with a classical star formation algorithm and study the global evolution of
galaxies as well as the influence of certain important parameter choices. Eventually, we investi-
gate the expected effects as a result of including unresolved turbulence effects in Chapter (10)
and present our full subgrid-scale simulations with turbulence regulated star formation. Finally,
in Chapter (11) we sum up our conclusions and discuss improvements and limitations, and point
out some future prospects.

bFluid mEchanics with Adaptively Refined Large Eddy SimulationS



CHAPTER 2

Star Formation in Disk Galaxies

Galactic disk systems are rather complex entities. Here we introduce the basic concepts of disk
galaxies and their properties. We will begin this section with an introduction of the hydrody-
namical framework which we use to describe the gas dynamics of galactic disk systems. We
continue with a general description of the formation process of galaxies via hierarchical collapse,
followed by a description of the galactic scales in more detail. Subsequently, we look into the
interstellar medium and end with a discussion of molecular clouds.

2.1. Hydrodynamical Framework

Astrophysical applications usually deal with plasma of gas typically composed of dilute mixtures
of atoms, molecules and electrons. The direct numerical simulation at the microscopic level,
which is completely described by the distribution functions of the involved particle species, and
the calculation of the time evolution of the system using the Boltzmann equation, is unman-
ageable in most astrophysical applications. Luckily, whenever particle collisions are frequent
enough, or equivalently, the mean free path of a particle is short compared to the dimension of
the system itself, we can resort to much simpler statistical methods involving only the conserved,
macroscopic quantities of the plasma.

The Basic Hydrodynamical Equations. Here, we introduce the most general equations
used to describe a compressible, viscous, self-gravitating fluid exposed to an external force:

∂

∂t
ρ + ∇ · (ρv) = 0(2.1)

∂

∂t
(ρv) + ρ(v ·∇)v = −∇p− ρ∇Φ + ∇ · S′ + F(2.2)

∂

∂t
(ρe) + ∇ · vρe = −∇ · vp− ρv ·∇Φ + ∇ · v S′ + v · F(2.3)

Here we have the continuity Equation (2.1) which expresses the conservation of mass, the Equa-
tions (2.2) of motion expressing the conservation of momentum and the Equation (2.3) for the
gas’ internal energy. The dependent variables ρ,v and e are the mass density, the velocity and
the specific energy, respectively.
The second term on the right hand side of both Equations (2.2) and (2.3) accounts for the influ-
ence of gravitational effects, while the third term includes the viscous stress tensor S′, describing
viscous forces. The last terms in each of the latter equations, F , encodes the external or body
forces (per unit volume) acting on the fluid.
Gravitational forces are described by the Poisson equation

(2.4) ∆Φ = 4πGρ.

15
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Equation of state. Additionally, the fluid equations are closed by an equation of state,
correlating gas pressure p with gas density and internal energy. From the ideal gas law pV = nRT
we get

(2.5)
p

ρ
=

N

m
kbT.

Furthermore, the ratio of specific heats is

(2.6) γ =
cp

cV
= 1 +

2
f

,

where f describes the number of degrees of freedom in the gas. Using Equation (2.5) and (2.6)
in the equation of the specific energy of an ideal gas

(2.7) eint =
f

2
N

m
kbT,

finally yields the desired equation of state:

(2.8) p = (γ − 1)ρeint,

where eint = e− 1
2v2 is the internal energy.

For the work presented in this thesis, we use a general value of γ = 5/3 for our calculations
and simulations. However, as we discuss in Section (5.3), in dense and cold gas, the cooling time
becomes much smaller than the dynamical time and energy from adiabatic heating processes is
radiated away immediately. Therefore, our simulations mimic isothermal behavior of cold clouds
while explicitly using an adiabatic equation of state.

The Navier-Stokes Equation. We make use of different forms of the hydrodynamical
equations throughout this work. For example, in Chapter (4) we will introduce the general
concepts of incompressible turbulence. For this discussion we use Equation (2.2) but neglect
explicit gravitational terms. Furthermore, the stress tensor, encoding the force per unit volume
of the fluid is obtained by considering the stresses acting upon an infinitesimal cube of the fluid,
and calculating the net forces on the cube by taking the differences in the stress acting on different
faces. We can have internal stresses as a result of fluid pressure p as well as stress owed to viscous
forces. The results are derivatives of the stress tensor σij = −pδij + σ′ij which we write:

(2.9)
3∑

j=1

∂

∂xj
σij = − ∂p

∂xi
+

3∑
j=1

∂

∂xj
σ′ij

Evaluating the last sum, we get
3∑

j=1

∂

∂xj
σ′ij = η∇2vi + η

∂

∂xi
∇ · v︸ ︷︷ ︸

∇·v=0

(2.10)

= η∇2v = ρν∇2v

Consequently, we can deduce the Navier-Stokes equation for an incompressible fluid from Equa-
tion (2.2):

(2.11) ρ

(
∂v

∂t
+ (v ·∇)v

)
= −∇p + ρν∇2v + F
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Basic Scales. From the momentum equation, we can infer the equation of hydrostatic
equilibrium. We use Equation (2.2) and neglect the time derivative as well as the velocity terms.
Hence, we get

(2.12) − 1
ρ
∇p−∇Φ = 0.

With the gravitational potential Φ = −GM/R we gain the equation of hydrostatic equilibrium

(2.13)
dp

dR
+

GMρ

R2
= 0,

which we can use to evaluate the balance of pressure and gravitational forces of a spherical cloud
of radius R and mass M. If forces are out of equilibrium a net acceleration r̈ will result on the
right hand side of Equation (2.13). We can express this acceleration as fraction of the overall
gravitational force r̈ = fg(r). For molecular clouds we can assume the gravitational acceleration
to change only marginally with location and approximate g(r) ≡ g = const. Integrating over a
time interval τ yields the translation of a gas element as ∆r = fg 1

2τ2. As we now use g = GM
R2

with M = 4
3πR3ρ and assume the same fraction of radial translation as of gravitational force

∆r = fR, we get

(2.14) τ = τff ≈
√

1
Gρ

,

within an order of unity. This is the dynamical or free-fall time scale of a molecular cloud.

For the sound-crossing time, we simply write

(2.15) τs =
R

cs
.

Considering a slightly compressed spherical gas cloud, this is the time it takes for sound waves to
cross the region R, in an attempt to push back and re-establish the system in pressure balance.
Directly comparing both latter time scales we can estimate the stability of the gas cloud. When
the sound-crossing time is less than the free-fall time, pressure forces are dominant, and the
system evolves back to a stable equilibrium. In case of a shorter free-fall time, gravitational
collapse occurs. From these considerations we get the condition for gravitational collapse:

RJ =

√
kbT

Gρmhµ
(2.16)

MJ =
(

kbT

Gmhµ

)3/2

ρ−1/2(2.17)

All scales of a system larger than the Jeans length RJ are unstable to gravitational collapse. The
Jeans mass MJ gives the mass of such a spherical system of diameter RJ .

These are the basic equations and concepts we use throughout this work and on which we
base the theoretical as well as numerical modeling in the following chapters. However, before we
get into the details of our model approach, we discuss more of the theoretical aspects of galactic
evolution.

2.2. The Formation of Galaxies

Modern ideas and models describe galaxy formation as a process in a universe in which cosmic
structures build up hierarchically through gravitational instability. Baugh [2006] gives a recent
review on the details of galaxy formation. Here, we will only include a brief outline and introduce
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the general concepts.
We use the cosmological standard model of a cold dark matter universe with cosmological con-
stant (ΛCDM) as the starting point of our description. The initial density fluctuations, assumed
to follow a Gaussian random distribution, are the seeds of structure formation in the universe.
The driving force behind the amplification of fluctuations in the dark matter is gravitational
instability which leads to a continuous growth of perturbations until dark matter collapses into
dark halos. These dark halos are believed to continue growing their mass by subsequently merg-
ing with other halos.
The baryonic gas component follows the gravitational potential of the dominating dark matter
and starts to accumulate in the potential wells created by dark halos. During infall, the gas is
heated by shocks until it eventually reaches the virial temperature of the halo. The inner parts
of the hot halo gas start to cool and form a rotationally supported disk as angular momentum
is transferred away in axial direction during contraction. Furthermore, the radius within which
the gas has had time to cool becomes larger and advances towards the virial radius of the halo.
Meanwhile, the cooling gas settles down on the disk which correspondingly grows in size.
At this time, the galaxy formation process becomes more and more complicated, and a more
detailed description is rather difficult owing to the lack of understanding of all the included
processes such as gas dynamics, star formation and feedback. However, following the model of
hierarchical structure formation, galaxies continue to evolve and grow via merging events with
other galaxies. In this picture, early galaxies emerged as small entities which evolved via mergers
and violent acquisitions of smaller galactic objects to become today’s galaxies like our Milky Way
or even larger systems.
Disk galaxies are hereby assumed to result from rotating collapsing clouds of gas during the
above described evolution. Their main source of growth are much smaller, nearby galaxies which
are accreted into the disk and dissolve therein. Elliptical galaxies on the other hand are believed
to result from subsequent collisions of massive, evolved disk galaxies.

While it has become possible during the last decade to study the dynamical evolution of dark
matter, which only interacts gravitationally, in tremendous detail (see e. g. the Virgo Consor-
tium’s Millennium Simulation [Springel et al., 2005]), the study of the dynamical evolution of
galaxies is still in its infancy. The reason is that the involved plethora of processes in galaxies is
much more difficult to deal with than gravitational instability which creates dark matter halos.
Additionally, gas physics of galaxies is mostly dissipative and highly nonlinear. Nevertheless, a
better understanding and more detailed knowledge of the properties and evolution of disk galax-
ies resides at the basis of a more complete understanding of hierarchical structure formation.
Therefore, in this work, we try to combine hydrodynamical simulations of galactic gas disks with
semi-analytic modeling of the involved processes to contribute a better model for galaxy scale
systems in cosmological structure formation simulations.

2.3. Disk Galaxies

The most efficient cooling process in the young universe was thermal Bremsstrahlung where
an electron is decelerated in the Coulomb potential of a proton and therefore loses energy via
electromagnetic radiation. The time scale of this cooling process is tcool ∼ ε/ε̇, where ε ∝ nkT
and ε̇ ∝ n2(kbT )1/2. The timescale of gravitational collapse of a gas cloud is estimated as
tgrav ∼ (GM/R3)−1/2, where R and M are the radius and mass, respectively. Comparing these
timescales it is possible to deduct the length scale of a system able to collapse without the
buildup of thermal pressure (cooling is efficient) to oppose its contraction. More details on the
calculation can be found in Appendix (A). The typical length scale of such a system is roughly
75 kpc. Using an additional lower limit of temperature owing to a limiting ionizing potential it
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is also possible to calculate a corresponding mass scale of approximately 1011 M�. These are
the gross numbers of systems that are able to cool efficiently and at the same time they are
typical values for early galaxies. As the gas continues to cool slowly, the system contracts and
the galactic disk approaches a typical radius of the order of 10-20 kpc.

Our own galaxy is a very good example. Classified as barred spiral galaxy of type SBbc,

Figure 2.1. Edwin Hubble’s classification scheme of galaxies, developed in
1926. The material was created for NASA by STScI under Contract NAS5-
26555 and for ESA by the Hubble European Space Agency Information Centre.

according to the Galaxy Morphological Classification by Edwin Hubble. ’S’ and ’B’ describe the
galactic shape as of Spiral structure with a significant Bar feature and it has slightly loose defined
spiral arms ’bc’, not so tightly wound arms as an ’a’ and ’b’ types but also not so loose arms as
’c’ and ’d’ types. We believe it to be approximately 13.2 Gyr of age. Actually, it is very hard to
measure the age of the Galaxy. However, the oldest object found within the Galaxy is a Pop II
red giant star (at HE 1523-0901) of the cited age. Today, the galaxy has a very thin stellar disk
with radius of ∼ 15 kpc. The gas disk is much thicker and has a scale radius of roughly 3.5 kpc
and scale height of a couple of hundred of parsecs. The total mass of the disk is determined to
range of the order of approximately 4 · 1010 M� (see i. e. [Klypin et al., 2002]) and we believe the
Galaxy to reside in a dark halo - an almost spherical envelope of dark matter with mass up to
two orders of magnitude larger than baryonic gas and star components.
As we turn towards other galaxies, their wide variety and morphological differences are enormous
as are their broad dispersion in the pattern of star formation (see i. e. Stahler and Palla [2005]).
Although the connections are not always obvious and a complete theory of star formation has to
account for all types of galaxies, here we will focus mostly on disk galaxies as this is the scenario
which we will later present in our numerical simulations.
Henceforth, we are back to the cooling system which settles into a disk like structure while angular
momentum is transferred away in direction of a designated axis of rotation during the process of
contraction. While gravity tries to fragment the disk and form dense clouds it is counteracted
by thermal pressure, rotational shear, magnetic fields, heating from UV background radiation,
and turbulence. In his work, Toomre [1964], developed the classical condition for the stability of
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disk systems. The Toomre Q parameter is defined as

(2.18) Qg =
κcs

πGΣg
.

Here we follow Rafikov [2001] and name Qg to indicate that this parameter is valid for the
gas disk. κ is the epicyclic frequency of the disk, where κ ≈

√
2Ω with Ω = vrot/r is the

angular velocity and r is the distance to the center of the disk. cs is the sound speed, G is the
gravitational/Newton’s constant and Σg is the gas surface density. Most generally, disk instability
arises for values Qg < 1. The Q parameter encodes that a thin rotating gaseous disk can become
gravitationally unstable to local axisymmetric perturbations as first shown by Safronov [1960].
More directly interpreted, the Q parameter encodes shear effects from large scale rotation and
pressure effects determining the effective speed of sound to estimate the suppression of large and
small scale perturbations, respectively. While we are not so much interested in the large scale
rotation it is the encoded pressure that we want to focus on. It is not clear which combination
and to what magnitude the above mentioned mechanisms counteracting gravity contribute to this
pressure. However, during the last years the conception has emerged that supersonic turbulence
is the leading candidate [Mac Low and Klessen, 2004, McKee and Ostriker, 2007] to supply this
pressure. The speed of sound in Equation (2.18) can be replaced by the effective sound speed
c2
s,eff ∼ c2

s + 1/3 v2 which includes the effects of turbulent motions v. Originally, Chandrasekhar
[1951a,b] proposed the effective sound speed to include the rms velocity dispersion of turbulent
motions 〈v2〉, while later work by Bonazzola et al. [1987], Vazquez-Semadeni and Gazol [1995]
suggested a wave-length dependent effective sound speed v2(k). See Mac Low and Klessen [2004,
Chap. (III)] for a more detailed discussion. Governing the stability condition, turbulence has
a channel to directly regulate the stability of the gas disk. Therefore, as instability leads to
fragmentation and fragmentation possibly to the formation of star forming molecular clouds,
this is a channel for turbulence to control the star formation efficiency.
In Chapter (3) we will discuss the strength and influence of turbulence as well as of the other
candidates on a quantitative basis. But first we proceed to the interstellar material inside the
galactic disk.

2.4. The Interstellar Medium

The ISM consists almost entirely of hydrogen gas in its different chemical states. We can sort
the hydrogen gas into the three forms - molecular, atomic, ionized - and loosely associate these
forms with their temperature regimes - cold, warm and hot. Of course, things are more com-
plicated and atomic hydrogen, for example, exists as warm medium, as well as in bound cold
structures. Similarly, there are also ionized regions in the proximity of massive stars which have
temperatures still considered warm. Table (2.1) gives the details of our current understanding
of the interstellar medium and its components and phases.

The essential ingredient to understand the physics of the ISM is gas pressure. We start with the
atomic component of the Cold Neutral Medium (CNM). The typical values of such HI clouds
are n = 30 cm−3 and T = 80K which results in an average gas pressure of approximately
P/kb = nT = 2400 K cm−3. Interestingly, this pressure is matched within a factor of two by the
Warm Neutral Medium (WNM) n = 0.5 cm−3 and T = 8 · 103 K giving P/kb = 4000 K cm−3.
Field et al. [1969] first drew the conclusion that there are two coexisting phases in the ISM, cold
neutral HI clouds and warm neutral diffuse HI gas. Indeed, this conclusion follows as well from
theoretical considerations.
Stahler and Palla [2005] lay out the following idea: The gas pressure directly correlates with

the thermal energy of the gas. This energy content is the result of the combined effects of all
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Component Temperature Density fV Chemical Common
[K] [cm−3] State Name

Cold
Molecular Clouds 10− 20 102 − 106 < 0.01 H2

Cold Neutral Medium 50− 100 20− 50 0.01− 0.05 HI
(CNM)

Warm

Warm Neutral Medium 6 · 103 − 104 0.2− 0.5 0.1− 0.2 HI
(WNM)

Warm Ionized Medium 8000 0.2− 0.5 0.2− 0.5 HII
(WIM)

HII regions 8000 102 − 104 < 0.01 HII

HotHot Ionized Medium 106 − 107 10−4 − 10−2 0.3− 0.7 HII
(HIM)

Table 2.1. Phases of the interstellar medium. fV is the volume fraction taken
by the different components of gas. The values are taken from Ferrière [2001].

involved cooling and heating processes. Although we do not want to get into the details of heat-
ing and cooling yet (see Section (5.3)) we assume some equilibrium between the processes and
calculate the corresponding pressure values P/kb for each density and temperature as shown by
the solid curve in Figure (2.2). This curve effectively sets apart the two regimes where either
one, cooling or heating, is more efficient than the other. Consequently, a parcel of gas with some
pressure value above the solid curve cools until it reaches equilibrium and the opposite is true
for gas below the curve. We have also indicated the assumed equilibrium pressure of the ISM
by a horizontal dashed line at P/kb = 4000 K cm−3. Figure (2.2) shows three intersections of
the pressure curve with this line. If we consider gas at point B and slightly compress it, while it
maintains pressure equilibrium with the surrounding material, the gas enters the regime where
cooling is more efficient than heating and cools until it reaches point C. Contrarily, if the gas is
slightly expanded, it will heat up until reaching the stable point A. Hence, we see that there are
two naturally stable points and these points match the observed CNM and WNM specifications
quite well.
Aside the neutral medium there is the molecular component. From the values in Table (2.1) it

is obvious that this gas can have much higher gas pressure. This component exists in confined
molecular clouds which are sufficiently dense that their own mass weight can play a significant
role. These clouds are held in mechanical equilibrium mostly through the addition of self-gravity.
Deep inside the clouds high density regions are hold together by gravity while the less dense outer
layers are mostly in pressure equilibrium with their surroundings.
Next, there is ionized hydrogen gas. This extremely hot gas, blistering up from supernova ex-
plosions or more precisely from interacting bubbles of hot gas, each the result of a supernova
explosion, has very low number densities n = 0.003 cm−3 accompanying the high temperatures
T = 106 K. Thus, their thermal pressure P/kb = 3000 K cm−3 again corresponds to the pressure
of CNM and WNM. For this reason it is legitimate to speak of a third phase of the ISM - the hot
ionized or hot intercloud medium is in pressure equilibrium with both other phases. The latter
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Figure 2.2. Equilibrium pressure nT as a function of number density. The
horizontal dashed line indicates our empirical nT -value for the ISM.

label stresses the fact that we are talking about loosely stirred low density gas.
Finally, HII regions, clouds of hot gas and plasma with densities as high as a million particles per
cm−3 are hosts of active star formation. Young, hot, recently formed blue OB stars illuminate
their surrounding gas envelopes with large amounts of UV light. These regions can give birth
to an enormous amount of stars until supernovae of recently formed massive stars disperse the
clouds, probably leaving a cluster of stars behind.

While we have only touched upon the description of the ISM and left out all about the physics
of interstellar dust as well as the detailed heating and cooling mechanisms, we have provided
some background on the physics of interstellar gas out of which stars form. However, these basic
principles will be sufficient in the subsequent discussion of star formation in disk galaxies. A
more detailed treatment of the multiphase ISM can be found in Lequeux [2005], Stahler and
Palla [2005], Tielens [2005] but is not part of this thesis.
We rather sum up the above discussion and head on towards star formation. We have outlined
the existence of three vastly different gas phases, with elementary differences in their physical
conditions, yet, in pressure equilibrium. Most of the volume in the ISM is occupied by the hot
and some warm gas. Contrarily, most of the mass is located in the cool and dense regions of
molecular clouds. This molecular component has mass of the same order of magnitude as the
much more volume filling neutral component and will be in focus in the next Section (2.5).

2.5. Giant Molecular Clouds and Star Formation

Giant molecular clouds or cloud complexes are numerous in the Galaxy. A well known example
of these GMCs is the Orion Nebula. Typically, these dense, self-gravitating gas clouds have
extensions of roughly 50 pc and number densities of order n = 100 cm−3. Assuming a spherical
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configuration this results in an approximate mass of MGMC ≈ 105 M�.
Within the Galaxy over 80 % of the molecular gas resides in GMCs and most of the actual star
formation is happening within these clouds. Typical lifetimes are of the order of 30 Myr, too
short for a significant "bottom-up" formation scenario in which the massive cloud complexes
form through subsequent collisions and mergers of smaller cold HI clouds. McKee and Ostriker
[2007] calculate the details of the collision processes and draw the conclusion that destructive
feedback from star formation would also prohibit GMC masses to reach the observed values.
It seems more favorable to focus on a "top-down" formation scenario, where GMCs form from
large scale instabilities in the diffuse interstellar medium and fragment subsequently to develop
their observed complex internal structures. This hierarchical structure then stretches from the
scale of the cloud down to clumps out of which clusters of stars can form, and ends at the smallest
scale locations of the formation of individual stars, termed cores. The detailed structure as well
as the properties of lower density gas permeating the space between individual clumps and cores
is not yet known in detail.

However, the relatively short lifetimes indicated above and the overall structural alterability
are strong hints towards the dynamical nature of giant molecular clouds. Furthermore, there is
strong observational evidence for supersonically turbulent gas motions through the broadening
of molecular emission lines attributed to the turbulent velocity dispersion inside the clouds. This
emission line broadening is directly correlated with the size of the molecular cloud itself, as first
noted by Larson [1981]. As stated earlier and conceptually derived in Section (2.1), the free-fall
time of a GMC is conventionally defined as

(2.19) τff =
√

3π

32 Gρ
.

Here, we make the approximation of a spherical geometry and a constant density or, likewise,
take a volume averaged density for the whole cloud. Equation (2.19) gives a result of several
Myr for standard GMC values. Although roughly in the same order of magnitude as the typical
GMC lifetimes, the free-fall time appears to be only a fraction of the total lifetime. This lead
historically to the early conclusion that GMCs are indeed gravitationally bound and collaps-
ing entities. However, today it is still controversial whether GMCs are gravitationally bound
or rather transient objects [Mac Low and Klessen, 2004, McKee and Ostriker, 2007]. Theories
supporting the latter case argue that the timescale for interacting shock fronts, which can pile up
enough gas to form clouds which reach densities high enough to build up a significant molecular
fraction and form stars, is in concordance with the typical cloud lifetime. Additionally, whether
the clouds are destroyed by supernova explosions or gas exhaustion from within or by subsequent
shocks in the interstellar medium is also an open controversy.
Again, most likely some combination of the above scenarios is best matching the real nature of
giant molecular clouds. Henceforth, we will now investigate the different physical forces impor-
tant in GMCs to get a better understanding of their importance and influence on the evolution
of the cloud and the star formation therein.





CHAPTER 3

Major Physical Processes in Star Formation

As we have seen from the discussion of the ISM in the earlier Section (2.4), molecular clouds
are self-gravitating, bound objects which can contain strong pressure gradients. The detailed
structure of molecular clouds as well as the chemistry and physics of these objects, from scales
of tenth of a parsec down to single protostars, is a highly nontrivial and very active field of
research. Before we start the discussion of the most relevant processes involved, we briefly
outline the standard textbook star formation scenario for completeness.

3.1. From Molecular Clouds towards the Initial Mass Function

Star formation starts in dense nebulae, where gas densities become high enough to shield their
interiors against photo-dissociation as a result of ultraviolet background radiation. In these loca-
tions, large amounts of molecular gas can form and accumulate, called molecular clouds. If such
a cloud is massive enough that its gas pressure is insufficient to support it, gravitational collapse
will start to contract the cloud. The critical mass above which a cloud becomes gravitationally
unstable and consequently undergoes collapse is called the Jeans Mass. The Jeans instability
thereby causes the collapse of interstellar gas clouds once the hydrostatic equilibrium is perturbed
and the disturbance is not damped away but amplified. The Jeans mass determines the limit
at which the cloud in question becomes gravitationally unstable. We have already discussed the
Jeans mass and its derivation in Section (2.1). Typical masses range from thousands to tenth of
thousands of solar masses. At high masses, there is a sharp cutoff of cloud masses at ∼ 6 ·106 M�
indicating a general, limiting physical process such as disrupting feedback effects form massive
stars [Williams et al., 2000].
Star formation can be triggered in previously stable clouds by several events which might occur
in the ISM and result in a compression of molecular clouds and subsequent gravitational collapse.
Molecular clouds can collide with each other, supernova shock waves can produce compressions
or introduce shocked material at high speeds into clouds and galactic interactions, such as fly
bys, collisions and mergers, can impose strong forces on interstellar clouds as a result of tidal
interactions.
Once a cloud has become unstable it collapses and breaks into several smaller pieces. This
process of fragmentation and subfragmentation is accompanied by the release of gravitational
potential energy into thermal energy and a corresponding increase of gas pressure. Furthermore,
fragments start to settle into rotating spheres of gas. Once the pressure is again large enough to
support the fragment against further collapse it is commonly called a protostar.
During the further evolution of a protostar surrounding gas settles into a circumstellar disk from
which it is transferred via accretion onto the central object. Once density and temperature
are high enough, first fusion processes begin and slow the gravitational collapse via radiation
pressure effects. The protostar follows the Hayashi track on the Hertzsprung-Russell diagram
until the Hayashi limit is reached. Further contraction and evolution depends on the mass of
the protostar, but finally, hydrogen fusion begins, ending the protostellar phase and starting the
main sequence evolution of the star.

25
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The Initial Mass Function (IMF) describes the relative fraction of stars of different mass at
their birth [Lequeux, 2005]. The IMF can be considered for all kind of stellar populations, rang-
ing from star clusters and associations over field stars and large galactic regions to whole galaxies.
While it is rather difficult to observationally determine the exact distribution of stellar masses
owing to observational difficulties, the IMF is on average approximated by a power law of the
form (cf. latter reference)

(3.1) Ψ(M) =
dn(M)
d lnM

=
Mdn(M)

dM
∝ M−x, Mmin < M < Mmax,

where n(M) describes the number of stars with masses in the interval M + dM . For masses in
the range of Mmin ≈ 1 M� to Mmax ≈ 100 M� first studies [Salpeter, 1955] as well as recent
observations state a power law index of x ≈ 1.35. For masses smaller than one solar mass, the
distribution is observed to become approximately flat. Aside the uncertainties of the exact form
of the IMF, which is very actively discussed by several authors (see e. g. Miller and Scalo [1979],
Kroupa [2001], Chabrier [2003]), its origin is also rather controversial. However, the IMF ap-
pears to be relatively invariant from one group of stars to another which, after all, renders it an
important and powerful tool to model stellar populations and their influence, without detailed
information about the particular stellar distribution at hand.

3.2. The Virial Theorem

We now return to the processes on larger scales of entire clouds. For our subsequent work, we are
solely interested in the overall properties of molecular clouds in a statistical sense. For example,
we assume that most star formation takes place in molecular clouds and calculate a star forma-
tion rate as some fraction of mass of an average cloud that is turned into stars during a certain
amount of time. One can deduct such an efficiency parameter from observational statistics and
apply it as a general property to all objects identified as molecular clouds in a simulation. This
procedure will give rise to a globally averaged star formation rate, which might in the statistical
sense, correspond to observations.
Indeed, the global Kennicutt-Schmidt law in Equation (1.1) describes such a statistical relation.
The analytic equation follows from a fit to data where each galaxy is represented by a single
data point, giving the star formation rate and the average gas surface density of that galaxy.

Although the Kennicutt-Schmidt relation in particular and other global averages, depending
on the underlying statistics, illustrate the gross properties of the corresponding systems quite
well, we are nevertheless interested in a more detailed understanding of the processes which give
rise to the observed statistical behavior.
Therefore, we break the problem of molecular clouds into several parts choosing only the most
important for understanding their dynamical evolution.

Here and beyond we follow Krumholz and McKee [2005] and only assume that star formation
occurs mostly in molecular clouds that are in virial equilibrium. To equate their energy content
and, henceforth, determine the agents governing the evolution of clouds we introduce the virial
theorem and discuss the importance of gravity, thermal pressure, magnetic forces and kinetic
energy from turbulent motions.

The virial theorem provides a general equation to relate the globally averaged energies of a
system. The derivation of the theorem for long term stability of a self-gravitating gas cloud has
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been rolled out to Appendix (B). The simplified result of that calculation is the balance Equation
(B.34).

(3.2)
1
2

∂2I

∂t2
= 2T + 2U + W + M

If the cloud is in virial equilibrium, the net moment of inertia vanishes and the gravitational
potential energy W has to be balanced by the sum of kinetic energy T, thermal energy U and
magnetic energy M.
From this simplified picture we deduce some qualitative information about the magnitude of the
available energy components inside molecular clouds. Henceforth, we can start our discussion
about how to implement the dominant components in our treatment of star formation in galaxies
and comment on shortcomings and possible errors of our realization.

3.3. Gravitational Potential

To see the importance of each component, we follow Stahler and Palla [2005] and relate each
term to the potential gravitational self-energy

(3.3) W ≡ 1
2

∫
ρΦgd

3x,

where ρ is an averaged cloud density and Φg is the potential.
Note that this evaluation is only valid if gravitational acceleration as a result of mass outside
the system in consideration is negligible. Fortunately, this is generally the case for dense clouds
embedded in a diffuse turbulent interstellar background medium.
Integrating Equation (3.3) we get within a factor of unity a simplistic term, roughly describing
the gravitational energy of the cloud

(3.4) W ≈ −GM2

R
.

Here, the radius of the cloud R is just L/2, G is the gravitational constant and M is the total
mass of the cloud.

Evaluating the potential energy with standard values for typical molecular clouds gives

(3.5) |W| ≈ 3.5 · 1049 erg
(

M

105 M�

)2(
R

25 pc

)−1

.

Aside the following discussion about different energy terms, this number is also interesting with
respect to the discussion about the destruction mechanism of molecular clouds. If stars form
inside MCs, evolve and eventually end up as core collapse supernova, typical energies of such
type II events would be in the same range of magnitude. Without discussing the details of such
an explosion and how efficient kinetic and thermal energy can affect the parent MC, we note the
fact that already from our very simple analysis, it appears reasonable that forming stars might
significantly impact on the life-cycle of their natal clouds. We will come back to the discussion
of feedback in Section (5.5).

3.4. Thermal Pressure

To equate the thermal pressure inside a molecular cloud as a result of the random thermal motion
in the gas we integrate

(3.6) U ≡ 3
2

∫
nkbTd3x.
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Here, n is the number density, kb is Boltzmann’s constant and T is the assumed average tem-
perature of the cloud. Again, we use ρ = nmhµ and derive a simplified equation for thermal
energy

(3.7) U ≈ kb

mhµ
MT.

The last equation gives us the energy contained in random thermal motion and has again to be
considered a qualitative approximation.
Forming the ratio of thermal to potential energy and inserting typical numbers, we get

U

|W|
≈ kb

mhµ
MT

R

GM2
(3.8)

=
kb

mhµG
RTM−1

≈ 6.0× 10−3

(
R

25 pc

)(
T

15 K

)(
M

105 M�

)−1

.

Hence, it is quite obvious that, using the above approximations, the energy constituting thermal
pressure is almost three orders of magnitude smaller than the gravitational energy trying to col-
lapse the cloud. Molecular clouds, which roughly allow for the simplifications we have introduced
in their description are certainly not held up against collapse by thermal energy.
We have already made the same physical argument earlier, when we stated the discrepency of
expected to observed star formation rate in Section (1.1) and the life-time of molecular clouds
in Section (2.5). The sole consideration of gravitational forces in comparison to thermal gas
properties can not explain the observed stability of molecular clouds.

At this point, it is worth taking a little detour, quickly discussing HII regions. These regions,
also known as emission nebula, have typical densities which roughly coincide with those of molec-
ular clouds. This stems from the fact that the progenitor systems are giant molecular clouds.
However, HII regions are physically very different as the inherent temperatures are larger by a
factor of several hundred, owing to the continuous heating of young, hot, blue stars that have
formed within the region. Considerable star formation is known to take place there. However,
note that typical HII regions at temperatures of 8000 K contain enough thermal energy to fully
dominate gravitational energy on global scales. For a more detailed analysis, one has to include
the substructure in a more realistic way and account for steep density gradients resulting in
highly complex shapes. This is certainly beyond our current scope. We therefore leave the de-
tailed explicit treatment as possible future improvement to our model. Yet, we are only able to
include a uniform UV background in our simulations. Nevertheless, the feeback algorithm itself
can introduce large amounts of thermal energy into dense patches of gas, heating them to rather
high temperatures, probably mimicking gas with some properties of real HII clouds.

3.5. Magnetic Fields

The influence of magnetic fields has long been discussed in star formation theory. The method
at hand to measure magnetic field strengths in molecular clouds relies on measuring the Zeeman
splitting of molecular lines. The typical lines are either the 21 cm line of HI or a cluster of lines
near the 18 cm from OH, which is observationally very challenging (see [Crutcher et al., 1993]).
Mac Low and Klessen [2004] summarize recent work on such magnetic field measurements and
point out that significant measurements above the 3σ confidence level are very rare. A larger
compilation of field values by Crutcher [1999] and Bourke et al. [2001] shows typical values in



3.6. KINETIC ENERGY AND TURBULENCE 29

the regime of Blos ≈ 1 ∼ 1000 µG for column densities of N(H2) ≈ 1021 ∼ 1024 cm−2. Here the
magnetic field is measured along the line of sight and can be deprojected to gain an absolute
B field value. However, the latter authors also stress the fact that almost all of their observed
cloud cores have mass-to-flux ratios (Φ/M)n < 1. This corresponds to the magnetically super-
critical regime where the magnetic field is not strong enough to support the cores against collapse.

Lacking a clear analytical understanding of the influence of magnetic fields Stahler and Palla
[2005] resort to a representative B-value which is deduced from measurements in nearby dark
clouds. The value of |B| ≈ 20 µG is assumed to match the observed field strength in the warm
HI gas surrounding giant complexes.
In the frame of our approximations we can evaluate the magnetic term in Equation (3.2) by
integration of

(3.9) M ≡ 1
8π

∫
|B|2d3x.

Thus, we can simplify the magnetic energy to

(3.10) M ≈ |B|2R3

6π
.

Again, relating the approximate magnetic energy to potentail energy gives
M

|W|
≈ |B|2R3

6π

R

GM2
(3.11)

=
1

6πG
|B|2R4M−2

≈ 0.3×
(

B

20 µG

)2(
R

25 pc

)4(
M

105 M�

)−2

.

This result seems to contradict the above discussion as a ratio of almost 1/3 clearly points
to the conclusion that magnetic terms indeed can contribute to the clouds stability. However,
the problem of magnetic support is very complex. In the derivation of the virial theorem we
describe the magnetic term as force acting on a fluid element orthogonal to the magnetic field B.
Therefore, self-gravity could freely contract the cloud along the direction of the field lines until
an almost planar configuration is realized. As observations do not indicate that the majority of
clouds has settled into such oblate configurations the assumption of a smooth uniform internal
magnetic field has to be rejected. However, in case of a highly complex B–field configuration
it is not possible to use any simple statistical description to approach the problem. Obviously
unable to come up with a direct solution or general answer to the problem we summarize our
understanding that magnetic fields might have an important influence on the dynamics and
evolution of molecular clouds, although it appears that magnetic fields cannot stabilize clouds
against gravitational collapse on their own in a general fashion.

3.6. Kinetic Energy and Turbulence

The final term of Equation (3.2) we need to analyze describes the kinetic energy of the system.
The total kinetic energy in the cloud can be described as thermal plus bulk energy. Likewise,
the velocity v can be split into thermal and nonthermal or turbulent part. From observations
of nonthermal linewidths we know that the velocity dispersion in molecular clouds is dominated
through the turbulent part. We term the mean value of these random velocity fluctuations ∆v
and use this in

(3.12) T ≡ 1
2

∫
ρ|v|2d3x
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to express the kinetic energy term by

(3.13) T ≈ 1
2
M(∆v)2.

A representative example of such an molecular cloud complex can be inferred from the Rosette
giant molecular cloud. Taking the one dimensional line-of-sight velocity dispersion of 2.3 km s−1

[Stahler and Palla, 2005] and multiplying by a dimensional factor of
√

3 to convert as appropriate
for a random three dimensional velocity field, we get ∆v ≈ 4 km s−1.
We use the typical temperature from Section (3.4) to calculate the speed of sound in the gas
cs ≈ 0.4 km s−1 and use it to get the turbulent Mach number M ≈ 10. This shows that highly
supersonic Mach numbers are realized in molecular clouds.
Again, we can use our typical numbers and express the final ratio of turbulent to gravitational
energy. Hence we write

T

|W|
≈ 1

2
M(∆v)2

R

GM2
(3.14)

=
1

2G
M−1(∆v)2R

≈ 0.5×
(

M

105 M�

)−1( ∆v

4 km s−1

)2(
R

25 pc

)
.

We see that this result features the most simple formulation of the virial theorem 2T = |W|,
which can be interpreted to justify the assumption of virial equilibrium of molecular clouds in
the first place. More practically, this result shows that the observed velocity dispersion of MCs
contains enough kinetic energy to significantly stabilize clouds against gravitational collapse. If
there were no perturbations such as shocks passing through the cloud and a mechanism were
present to supply turbulence inside the cloud, we would not see any fragmentation after all.
However, this static picture is of course far from reality and the dynamical evolution quickly
alters the substructure of clouds leading away from equipartition of energy.
Nevertheless, we deduce from this simplified analysis once more that turbulence is the leading
candidate to shape the overall evolution of molecular clouds. We see that turbulent motions carry
sufficient energy to oppose gravitational forces. We also know that at the same time turbulent
shock fronts can induce the seeds for local perturbations in the molecular gas. This is the idea
and theoretical basis on which we build the turbulent subgrid-scale star formation algorithm.

3.7. Uncertainties and Errors

From the above discussion we can also deduce some qualitative statements about uncertainties
and errors we introduce in our realization of turbulence regulated star formation in galaxy sim-
ulations.

First, we investigate how the amount of thermal energy might change as we consider values
other than our standard numbers of mass, size and temperature. The largest margin of un-
certainty in this respect stems certainly from the density value. In Table (2.1) we have noted
possible values in the range n = 102 ∼ 106 cm−3. Despite the fact that the assumption of uni-
form density is certainly not true, we see that the assumed mass of 105 M� is at the lower end of
possible values. Higher masses, however, would increase gravitational forces and render thermal
energy even less important.
Next, the temperature range appears to be rather tight varying only by a factor of order unity.
Henceforth, variation in the appropriate temperature limit cannot significantly tip the ratio of
energies. Even assuming an unrealistically high temperature of several hundred Kelvin, which
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is the lower temperature limit in our simulations, does not alleviate thermal energy to a level
significantly impeding gravitational collapse.
The same line of argumentation goes for the range of possible cloud sizes and geometrical con-
figurations. The extremely low ratio obtained with the standard values is just too small for any
reasonable change in the latter numbers to really yield some dominant thermal energy contribu-
tion.

Second, for the magnetic field we have already discussed the lack of observational as well as the-
oretical understanding of the involved processes. For now, we can really just comfort ourselves
with ignorance as we are yet technically incapable of simulating any magnetohydrodynamical
properties. This might indeed pose one of the largest sources of error in the current work.

Third and last at this point, we consider variations in the nonthermal part of the velocity fluc-
tuations. Lequeux [2005] gives a form of the linewidth-size relation in the form

(3.15) σv,nt ∝ L0.5(±0.1),

where σv,nt is the velocity dispersion we named ∆v, and L is the size of the structure. Solomon
et al. [1987] determine the proportionality constant for GMCs in the first Galactic quadrant as
0.72± 0.07 when L = (R/1 pc). In the spirit of our approximations we take our standard values
and assume

(3.16) ∆v ≡ 0.8 km s−1 ·R0.5
pc ≈ 4 km s−1,

where Rpc is the radius of the cloud in parsec. The squareroot in this relation reduces the
quadratic dependence of Equation (3.15) on ∆v to a linear one on R. Again, reasonable variations
in radius and mass only alter the ratio of energies within plausible values, rendering none of both,
neither gravitational nor turbulent energy, a solely dominating component.





CHAPTER 4

Nature and Effects of Turbulence

At this point, we briefly discuss the concepts of turbulence, its role in the interstellar medium
and its duality in star formation theory. Owing to the obvious importance of turbulence for this
work we give a short theoretical introduction.
We will start with a short summary introducing the general concepts of incompressible turbu-
lence. Subsequently, we will extend this approach to the more general and also more difficult case
of turbulence in the interstellar medium. At this point we will focus our discussion on aspects
directly related to star formation rather than the ambitious field of general turbulence theory
and conclude with our description of a turbulence regulated star formation process.

The Encyclopædia Britannica defines turbulence as
"type of fluid (gas or liquid) flow in which the fluid undergoes irregular fluc-
tuations, or mixing, in contrast to laminar flow, in which the fluid moves in
smooth paths or layers. In turbulent flow the speed of the fluid at a point is
continuously undergoing changes in both magnitude and direction [...]".

4.1. A Brief Summary of Incompressible Turbulence

The most elementary and universal features of turbulence are random velocity fluctuations at
many scales. These fluctuations result in an overall gas flow. This basic idea is common in all
theories of turbulence.
Most studies of turbulence treat incompressible flows, where velocities are subsonic and density
changes scale as δρ

ρ ∼ M 2, with small Mach numbers (M � 1). In this classical picture of
turbulence, energy is supplied to the system on the largest scales and subsequently cascades
from the largest scales of the system to smaller ones. This transfer of energy ends where the
dynamical scale is much shorter than a viscous scale (the length scale on which viscosity acts)
and energy is dissipated in the smallest scale structures of the system. Kolmogorov [1941] first
introduced an analytic treatment of turbulence in his celebrated theory of incompressible fluid
flows.

We can tackle this by starting off with the Navier-Stokes equation (Equation (2.11)). We repeat
it here for convenience:

(4.1) ρ

(
∂v

∂t
+ v ·∇v

)
= −∇p + F + ρν∇2v

Here, we write F as general external force term, i. e. gravity. Note that the term including the
viscosity describes the force per unit volume from stresses owing to viscous forces. Relating the
two terms in this equation which account for the transport of momentum, namely the nonlinear
advection term ρv ·∇v and the linear diffusion term ρν∇2v, we gain a ratio which determines
whether a flow becomes chaotic or not. More precisely, laboratory experiments have shown that
large scale velocity fluctuations occur whenever the ratio of advection to diffusion becomes larger
than about 100. This either happens when the velocity of the flow becomes very large or when

33
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the viscosity becomes very small. When this ratio approaches the critical regime of chaotic
behavior, a transition towards turbulence sets in and vortices, also called eddies, appear in the
flow. This transition regime can be identified by a Reynolds number Re which is larger than the
above mentioned value.
Aside from experimental observations, the Reynolds number can also be deduced from theoretical
considerations. The typical approach is to perform a dimensional analysis on the advection and
diffusion terms. Both terms contain the gradient of the characteristic fluid velocity ∇v. We
can estimate this gradient within an order of magnitude by relating the absolute value of the
characteristic velocity vl at scale l to that scale. In other words, an eddy of size l inherits an
approximate velocity gradient equal to the ratio of its size to the velocity on its largest scale
∇v ∼ vl/l.
From here we can estimate the advection term at the scale l as ρv2

l /l. Equivalently, the diffusion
term can be stated as ρνvl/l2. Hence we get

(4.2) Re =
(

ρv2
l

l

)(ρνvl

l2

)−1

=
vll

ν
.

For large Reynolds numbers, the advection term dominates over the diffusion term, which stems
from the viscous forces. As viscosity damps instabilities, large Reynolds numbers are a prereq-
uisite for the production of turbulence.

In his theory, Kolmogorov [1941] describes turbulence as a cascade of energy from large scales to
subsequently smaller ones. Instability of the larger eddies leads to continuous buildup of more
numerous but smaller eddies. Energy is transferred from scale to scale until the size of eddies
reaches the domain where diffusion becomes more dominant than the other transport terms.
The largest scale, where the cascade starts and energy is injected, is called the integral scale L.
The scale where advection and diffusion terms become comparable and, therefore, the Reynolds
number becomes approximately Re ∼ 1, is termed dissipative or Kolmogorov scale ld. At this
scale, viscous dissipation starts to transform kinetic energy into heat. The intermediate regime,
where energy can freely cascade is known as inertial scale. Here, advection is dominant and
dissipation as a result of the diffusion term can be neglected.
Kolmogorov drew two major conclusions from this picture. First, in the inertial domain, statis-
tical properties of the flow are independent of the scale. This is also known as scale invariance
or self-similarity of turbulence. Second, the dynamics of a certain scale are dominated by those
of adjacent scales.
From the first hypothesis, one can infer the rate of transfer of specific energy, which is energy
per unit mass, ε. Assuming v2

l as kinetic energy per units mass and dividing by some time τl for
the transfer of that energy we get an order of magnitude estimate of

(4.3) ε ∼ v2
l

τl
.

Deducing the actual transfer time from the time for the inversion of the direction of the char-
acteristic velocity in an eddy of scale l, we can write τl ∼ l/vl, and get vl ∼ (εl)1/3. Using this
together with the definition of Re ∼ 1 at the dissipation scale and therefore, vd ∼ ν/ld, we can
calculate an expression for the dissipation scale.

(4.4) ld ∼
(

ν3

ε

)1/4

.

Switching to Fourier space and using k = 2π/l we finally look at the power spectrum E(k)
of kinetic energy of turbulence. By definition we set the average kinetic energy per unit mass
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between wavenumber k and k + dk to be E(k)dk. Integration over all wavenumbers larger than
k (equivalently over all scales smaller than l) gives the total specific energy at scale l.

(4.5) 〈v2
l 〉 =

∫ ∞

k

E(k′)dk′

From above we see that this is of order of (εl)2/3 or equivalently (ε/k)2/3. Differentiating this
with respect to k while ε is assumed to be constant for the inertial range, we arrive at the
Kolmogorov law

(4.6) E(k) ∼ ε2/3k−5/3,

from which it is obvious that most of the energy is contained in the largest scales.

Another form to express this statistical relation is to correlate the increments of the velocity
field with the separation of the corresponding sample points. Taking the nth moment Mn of the
absolute value of the difference of two representative velocities v(x) and v(x + r) separated by
the distance |r| is

(4.7) Mn = 〈|v(x + r)− v(x)|n〉 ∝ (εr)n/3.

In order to compute these functions one has to average over all positions x and directions r.
Obviously, Kolmogorov’s theory predicts M2 ∝ r2/3 for the second order moment. This is also
known as the structure function of incompressible turbulence.

4.2. Turbulence in the Interstellar Medium

In most astrophysical applications, we are dealing with situations significantly different from the
idealized picture summarized above. The three major caveats are incompressibility, the validity
of the fluid approximation, and the diversity of vastly different energy sources.

Certainly, the ISM is a highly compressible medium containing vastly different Mach numbers.
These range from subsonic to transsonic in the hot phase and particularly in the warm phase of
the diffuse ISM (∼ 104 K). Moreover, Mach numbers reach the highly supersonic regime with
values up to 10 in the cold cloud phase (∼ 10 K), and possibly even higher deep inside molecular
clouds (up to 50, cf. [Mac Low, 1999]). This means that gas motions are much faster than the
sound velocity in the gas. Therefore, the structural appearance of the interstellar gas is highly
different from what the incompressible theory can describe. Density spans over almost ten orders
of magnitude (see Table (2.1)) with structure on all spatial scales. Moreover, shocks temporarily
compress gas to densities high enough for the gas to become self-gravitating and probably trigger
its gravitational collapse.

Additionally, it should not go unmentioned that there are potential difficulties considering the
fluid approximation. The approximation that the scale of viscus dissipation is always much larger
than the mean free path of the atoms and molecules, is basic to all our work. However, for the
diffuse cold neutral medium (T ≈ 100 K, n ≈ 30 cm−3) the approximation appears to be at least
questionable. Lequeux [2005] gives an order of magnitude estimate for the viscous dissipation
scale in the cold medium of ld ≈ 3 AU. The mean free path λ = 1/(nσ), where σ ≈ 10−15 cm2

is the elastic collision cross-section for hydrogen atoms, evaluates to λ ≈ 3.3 · 1013 cm or roughly
λ ≈ 2.2 AUa. The actual cross-section is temperature dependent, however, this is neglected here
for simplicity. Hence, both scales are getting rather close and the approximation may break

a1AU = 1.49598 · 1013 cm
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down in this regime.

Yet, another source of difficulties is manifest through the different sources of energy input in
the ISM. In the classical turbulence theory, energy is always supplied at the largest scales and
subsequently cascades to smaller scales. The ISM, however, is essentially driven on all scales.
Considering the Galaxy as example, the largest scale energy input is from galactic rotation which
shears the gas on kpc scales, injecting large amounts of energy. Supernova explosions are respon-
sible for the input of energy on scales of order up to 100 pc. At roughly 10 pc, we can identify
gas motions driven by expanding HII regions as energy sources. Finally, the direct consequences
of star formation, namely, outflows and jets deposit energy in the ISM on scales down to tenth
of a pc.
Although it is quite difficult to attribute some hierarchy of importance to these mechanisms
owing to the fact that their individual couplings to the ISM are rather complex and depending
on various parameters, it is obvious that the simple large to small scale propagation of energy is
intermittet with additional energy supply on all scales. Additionally, the injection events might
be distributed very inhomogeneously in space and time.

We also have seen earlier that magnetic fields seem to influence molecular clouds, and although
it is more difficult to obtain reliable values for the magnetic field strength in diffuse gas, where
Zeeman splitting measurements are again the best agents for this task, several authors have
investigated magnetic fields in the ISM [Ferriere, 1992, Goldreich and Sridhar, 1997, 1995, She
and Leveque, 1994]. Especially in recent years, accompanied by the growing feasibility of nu-
merical studies in this field, more attention has been devoted to this interesting task. However,
the treatment and effects of magnetic fields is beyond our current scope and we refer interested
readers to the literature.

4.3. Driving and Effect of Supersonic Turbulence

Keeping the big picture in mind, we now concentrate towards smaller scales of individual molec-
ular clouds to see how they in return influence the ISM. Since the observation of supersonic
motions in these clouds, it has been clear that the inherent turbulence would decay quickly
without some effective mechanism preventing the draining of energy. Moreover, supersonic tur-
bulence was believed to decay more quickly than subsonic turbulence as a result of the extreme
dissipative nature of shocks, naturally occurring in supersonic turbulence. Theoretical modeling
and numerical experiments, however, show this to be incorrect. Mac Low et al. [1998] show
indeed that supersonic turbulence decays somewhat more slowly than subsonic one, even though
the difference is only marginal and after all, both decay much faster than the a typical free-
fall time of a molecular cloud. Mac Low [1999] calculates the cloud’s formal dissipation time
τdecay = Ekin/Ėkin and examines its ratio to the free-fall time to quantitatively evaluate whether
turbulence can delay gravitational collapse of molecular clouds. The authors derive

(4.8)
τdecay

τff
=

1
4πηv

(
32
3

)1/2
κ

Mrms
' 3.9

κ

Mrms
,

where Mrms = vrms/cs is the rms Mach number of the turbulence, the energy-dissipation co-
efficient is determined as ηv = 0.21/π and κ is the ratio of driving wavelength to the Jeans
wavelength. While typical values for the rms Mach number are observed to be of order 10 and
larger in molecular clouds, it is less clear what the ratio of wavelengths κ is. Especially, the
driving wavelength remains uncertain owing to the lack of knowledge concerning the exact large
scale driving mechanism. Additionally, it is unclear to what we shall determine the Jeans length
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in a strongly inhomogeneous medium. Mac Low states a value of κ ≤ 1, not yet confirmed
observationally.
However, we know from observations that molecular clouds appear to be several free-fall times
of age. If we assume larger values up to κ . 4 then turbulence would still vanish within one
free-fall time without significant driving. Hence, continuous energy input appears to hold up
molecular clouds against gravitational free-fall collapse and prolongs the cloud’s lifetime by a
factor of several. As discussed in the last section, several different sources of energy are avail-
able to produce and maintain or at least delay the decay of the observed turbulent motions.
Energy input can stem from the external sources as well as from inside during the lifetime of
molecular clouds. Internal sources appear as soon as the cloud has started the formation of stars.

It is this internal feedback which illustrates the dual role of turbulence in molecular clouds.
While continuously driven turbulence can support molecular clouds against gravitational col-
lapse, numerical simulations have also shown that local collapse occurs even though turbulent
motions carry enough energy to counterbalance gravity in global scales [Klessen et al., 2000].
The idea of a two-faced effect of turbulence on different scales is quite old and was first sug-
gested by Hunter [1979], based on calculations of the virial theorem. The reason for this duality,
however, is simple. Any gas flow which is dominated by turbulence, in the sense that turbulent
support is much stronger than thermal pressure support, the turbulent support itself stems from
supersonic flows. While these high Mach number motions stabilize the flow on their inherent
large scales they compress gas in spatially constrained shock regions at the same time. The den-
sity of the postshock gas increases by ∼ M 2 in an isothermal gas. Therefore, the Jeans length
drops by a factor proportional to M and may render the shocked gas able to collapse while the
surrounding flow is still supported by the overall supersonic motions.
In order for turbulence to prohibit collapse completely, it would be necessary to not only counter-
act gravitational collapse of gas at average molecular cloud density, but especially, at high density
of shock compressed gas. Elmegreen [1993], Vazquez-Semadent et al. [1995] pointed out that this
is only the case when the rms velocity is sufficiently high, and at the same time, the driving
wavelength is sufficiently small. Otherwise, local collapse of overdense regions is inevitable.

Turbulent Fragmentation and the Mass Distribution of Dense Cores. Moreover,
supersonic turbulence is believed to be responsible to shape the substructure of molecular clouds.
It fragments the clouds in dense sheets, filaments, cores and large low-density voids. Padoan
and Nordlund [2002] refer to this process as turbulent fragmentation of molecular clouds. The
fragmentation will eventually lead to the formation of protostars and is therefore particularly
important for generating the initial distribution of stellar masses. In the latter reference and
subsequent work [Padoan et al., 2007a], the authors develop and numerically test the model
of turbulent fragmentation and derive the mass distribution of gravitationally unstable cores
in turbulent clouds based on the probability density function of gas density and the scaling of
velocity differences (cf. Equation (4.7)). The Padoan and Nordlund model of turbulent frag-
mentation is able to produce the power-law distribution of mass for cores larger than 1 M� in
concordance with the slope of the stellar initial mass function x = 1.4 (cf. Equation (3.1)) for the
case of magnetohydrodynamical considerations. For the hydrodynamical case without magnetic
fields, as most probable for primordial star formation where magnetic fields are known to play
subordinate role, a slope of x = 2.5 is predicted. The slope of these high mass dependencies
are directly dependent on the velocity differences in the turbulent medium. The distribution of
masses smaller than 1 M� is determined by the probability distribution of gas density.
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In recent work [Schmidt et al., 2008a] we have studied the effects of different numerical real-
izations of energy input in supersonically turbulent gas and found that physically motivated,
compression dominated driving of turbulence produces significant differences in the structure of
velocity fluctuations compared to driving by rotational modes. Moreover, compressive driving
also influences the distribution of gas densities and causes deviations from lognormal statistics
fundamental to the turbulent fragmentation calculations by Padoan et al..
Additionally, we will see in the next Section (4.4) how the turbulence regulated star formation
model also includes the assumption of a lognormal distribution of gas densities in molecular
clouds. Because of the obvious importance of this issue we come back to the topic in detail in
Chapter (8). However, we again stress that studying the detailed physics as well as the distribu-
tion of stellar masses is not part of this work.

4.4. Turbulence Regulated Star Formation

Star formation is assumed to take place in the densest clumps of molecular gas. Considering
such a core, Krumholz and McKee [2005] (hereafter KM05) use the model of a Bonnor-Ebert
sphere [Ebert, 1955, Bonnor, 1956] to describe the star forming clump and calculate gravitational
potential energy, thermal energy and the average turbulence kinetic energy of the object which
mimics the birthplace of stars. The potential, thermal and kinetic energies are comparable when
the Jeans length at the mean density, λJ , and the sonic length scale, λs, defined as the transition
scale from supersonic to subsonic turbulence, are equal. If the Jeans length is smaller than
the sonic length, λJ ≤ λs, collapse will occur. Since the Jeans length is density dependent
(λJ ∼ ρ−1/2) this translates into a density threshold xcrit for gravitational collapse and defines
the gas overdensity x:

(4.9) x ≥ xcrit ≡
(

φx
λJ0

λs

)2

.

Here, the definition of the Jeans length at overdensity x, λJ(x) = λJ0/
√

x is used.
Starting from a lognormal density probability distribution function (PDF) of supersonically
turbulent gas [e. g., Vazquez-Semadeni, 1994, Ostriker et al., 1999, Padoan and Nordlund, 2002],

dp(x) =
1√
2πσ2

ρ

exp

[
−
(
lnx− lnx

)2
2σ2

ρ

]
dx

x
(4.10)

lnx = −
σ2

ρ

2
(4.11)

σρ ≈
[
ln
(

1 +
3M 2

4

)]1/2

,(4.12)

where x = ρ/ρ0 is the normalized density, lnx is the mean of the log of density, and σρ describes
the dispersion of the PDF [Krumholz and McKee, 2005], one can calculate the amount of gas
with densities higher than xcrit. φx is a model parameter that needs to be determined by fitting
to numerical simulations (see below).
Assuming that the collapsed structures become decoupled from the surrounding turbulence, the
remaining gas loses pressure support and new gas begins to collapse. The time scale for this
process is approximately the gas’ free-fall time, τff, multiplied by a second model parameter, φt.
The star formation rate per free-fall time, SFRff, which is the fraction of an object’s gaseous
mass that is transformed into stars in one free-fall time at the objects mean density, can then be
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computed from

SFRff =
εcore

φt

∫ ∞

xcrit

xp(x)dx(4.13)

=
εcore

2φt

[
1 + erf

(
−2 ln xcrit + σ2

ρ

23/2σρ

)]
.

The factor εcore is introduced to account for the outflows from star-forming cores and is defined
as the fraction of mass that undergoes collapse. It is set to a fiducial value of εcore = 0.5 for all
numerical calculations by KM05.
The authors determine the two model parameters, φx and φt, from a set of 12 smoothed par-
ticle hydrodynamics (SPH) simulations of non-magnetic turbulent flows using 205,379 parti-
cles. The simulations performed and reported by Vázquez-Semadeni et al. [2003] include self-
gravity, random forcing at wavenumbers around k = 2, 4, 8 and four different Mach numbers
M = 2, 3.2, 6, 10.
In order to derive an equation for SFRff depending only on the physical properties of a star-
forming cloud, KM05 use the definition of the virial parameter,

(4.14) αvir =
5σ2

totR

GM

[Bertoldi and McKee, 1992], where σtot is the (one-dimensional) thermal plus turbulent velocity
dispersion of the cloud, R is its radius, and M is its mass. As described by KM05, this parameter
has to be interpreted as ratio of turbulent kinetic to gravitational energy and is used to describe
the stability criterion.
Assuming that at large scales σtot � cs and, therefore, that the velocity dispersion at the largest
scale, σ2R, is approximately equal to the turbulent velocity, xcrit and hence SFRff can be computed
in terms of the two dimensionless numbers αvir and M = σ2R/cs. In turn, σ2R = (2et)1/2, where
et is the turbulence kinetic energy. Considering a star-forming region following the linewidth-size
relation

(4.15) σl = σ2R

(
l

2R

)p

,

with p ≈ 0.5 [Larson, 1981, Solomon et al., 1987, Heyer and Brunt, 2004], the sonic scale is
defined as

(4.16) λs = 2R

(
cs

σ2R

)1/p

.

The Jeans length at the mean density ρ0 is

(4.17) λJ0 =

√
πc2

s

Gρ0
= 2πcs

√
R3

3GM
,

and, therefore, the critical overdensity translates into:

(4.18) xcrit =
(

φx
λJ0

λs

)2

=
π2φ2

x

15
αvirM

2
p−2.
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(a) Contour lines depicting the star formation rate
per free-fall time in dependence of the virial param-
eter and the Mach number. The straight lines rep-
resent the power-law fit to the contours computed
with the actual model.

(b) Contour lines showing the error in the power-law
fit, defined as error = (fit - SFRff)/SFRff .

Figure 4.1. Comparison of the star formation model and its best fit as pre-
sented by Krumholz and McKee [2005].

Now, SFRff can be derived from Equation (4.13) with the help of Equation (4.12) and (4.18):

SFRff =
εcore

2φt

1 + erf

−2 ln
(

π2φ2
x

15 αvirM
2
p−2
)

+ σ2
ρ

23/2σρ

(4.19)

=
εcore

2φt

1 + erf

−2 ln
(

π2φ2
x

15 αvirM
2
p−2
)

+ ln
(
1 + 3M2

4

)
23/2

[
ln
(
1 + 3M2

4

)]1/2


The total star formation rate per free-fall time within a cloud with molecular gas mass Mmol is

(4.20) Ṁ∗ = SFRff
Mmol

tff
.

Note that although Equation (4.19) appears massive, it only has αvir and M as dependend
parameters. KM05 give that εcore = 0.5 is set on physical grounds and φx = 1.12 as well as
φt = 1.91 are determined by fitting to numerical simulations.
The latter authors also give a power-law fit to the predictions of the model equation. Using the
above stated values KM05 calculate

(4.21) SFRff = 0.014
(αvir

1.3

)−0.68
(

M

100

)−0.32

In Figure (4.1) we show the dependence of SFRff on the model parameters for both, the analytical
equation and the presented power-law fit. Additionally, we follow the original authors and also
show the error in the power-law fit approximation. We have marked the region of αvir = 0.5− 3
and M = 10 − 1000 in these plots to highlight the domain where most of star formation is
claimed to be happening. Indeed, the error in this regime is rather small, of the order of a few
percent.

More technically, with respect to simulations, the information needed to compute the local value
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of the total star formation rate, Ṁ∗, (cf. Equation (4.20)) in a grid cell of a simulation consists of
the local free-fall time τff, the molecular mass Mmol, and the star formation rate SFRff . The first
two quantities can be directly computed from suitably averaged local state variables. Moreover,
SFRff can be parameterized in terms of M and αvir.
Note that, by virtue of the subgrid-scale nature of the proposed model, M here stands for the
amplitude of velocity fluctuations on scales below the grid cutoff ∆ (as opposed to the grid scale
fluid velocity provided by the hydro code) which has to be calculated from the SGS turbulent
kinetic energy, et(l ≤ ∆) ≡ esgs, provided by fearless. Similarly, αvir follows from the ratio of
the local turbulent kinetic energy on subgrid-scales and potential energy, αvir ∝ esgs/Epot. The
ability of fearless to predict esgs enables us to directly calculate the star formation rate per
free-fall time, implementing the KM05 model as a subgrid-scale model for star formation.

To summarize, the star formation rate proposed by KM05 depends sensitively on the ampli-
tude of turbulent velocity fluctuations on the scale of the collapsing cloud region. If this region
is numerically unresolved, as is the case in simulations on galaxy scales or larger, a subgrid-scale
model for unresolved turbulence is required in order to determine et and, hence, SFRff . The
implementation of the semi-localized turbulence SGS model described in Schmidt et al. [2006a]
into the cosmological hydrocode Enzo as part of the fearless project in our group, provides
us with the unique ability to model turbulence regulated star formation on subgrid-scales as
proposed by KM05.





Summary of Theory

In this first Part (I) we have presented the most important physical concepts relevant for our
work. With our eventual goal in mind to study turbulence regulated star formation in simulations
of galactic systems we have described the gross properties of such systems. Furthermore, we have
discussed the structure of galaxies in a hierarchical manner starting at the overall shape, subse-
quently broaching the issues of interstellar material and the substructures that form therein. We
have illustrated the picture of a multiple, three-phase interstellar medium and reasoned for its
theoretical as well as observed existence. Additionally, we have discussed how cold dense clouds,
the hosts of most of star formation, emerge and how they evolve.
Next, we have given a quantitative evaluation of the most often discussed physical processes in
star formation theory. We wanted this to serve two objectives. Firstly, we motivated our focus
on turbulence in the star formation process as one of, or probably, the most important agent
opposing gravitational contraction. Secondly, acquiring a general basis of comparison enabled us
to estimate the error margin contained in our work as we necessarily omit several aspects of the
full star formation problem in order to retain a manageable problem. The exclusion of magnetic
fields appeared to be likely the most severe shortcoming we have to cope with and bear in mind
when drawing our conclusions.
We completed the theoretical part with an introduction to the earlier singled out star formation
regulation mechanism, turbulence. Here, we constructed the most elementary concepts which
we will use in the following parts as fundament for the implementation and understanding of
the model we use to capture turbulence effects in our simulations. Concluding this first part, we
gave a description of the turbulence regulated star formation algorithm we will employ in these
simulations.

Now, we will proceed to Part (II) and describe the numerical endeavors we have gone for along
the plan of this work.
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Part II

Toy Models and the Playground





CHAPTER 5

The Simulation Framework

In order to model star formation in disk galaxies from first principles, one needs a good under-
standing of the evolution and lifetime of molecular clouds, the influence of turbulence, rotation
and magnetic fields on gravitational instability, as well as feedback from supernovae, ionizing
radiation, stellar outflows, and galactic winds. Obviously, this challenging program is beyond
our current abilities and would certainly exceed the scale of this thesis.
Instead, we invoke Occam’s razor and ignore in our explicit treatment all effects but one, super-
sonic turbulence, as formulated in the KM05 model assumptions. We refer to Section (4.4) for a
description of the approach.
Most galaxy simulations include a dark matter halo (either static or dynamical), a disk of stars,
and a gas component. One of the basic tests for simulations of star formation in galaxies is
their reproduction of the Kennicutt-Schmidt (KS) law, Equation (1.1), with the eventual goal to
understand the mechanisms which lead to the observed behavior.
In this Part (II) we will therefore develop and describe the numerical techniques and methods
used for the simulation of star formation in isolated disk galaxies.

5.1. The Hydrodynamics Code Enzo

The simulation framework we use for our numerical simulations is the adaptive mesh refine-
ment (AMR), grid-based hybrid code (hydrodynamics + N-Body) Enzo which was originally
designed to do simulations of cosmological structure formation. Enzo’s home is the Laboratory
for Computational Astrophysics, LCA, University of California, San Diego. The code is publi-
cally available in its original version (1.0.1) released March 1st, 2004 from
http://lca.ucsd.edu/portal/software/enzo.
O’Shea et al. [2004] published a general description of the simulation code. Enzo was designed to
perform 3-dimensional cosmological simulations of structure formation. As a result of its general
ability to solve the equations of Eulerian hydrodynamics it can readily be applied to a variety of
different astrophysical problems.
In order to operate on massively parallel computational infrastructures, Enzo is parallelized
using the application programming interface MPI (Message Passing Interface). The adaptive
mesh refinement works in a block-structured fashion and is controlled via several parameterized
refinement criteria such as threshold values, differences and gradients of calculated simulation
quantities.
Furthermore, Enzo includes a full scale N-body solver to simulate particle evolution, such as a
dynamical dark matter distribution, using the particle-mesh technique. The Poisson equation
is solved using a combination of fast Fourier transform and multigrid techniques for a periodic
basis/root grid and non-periodic refinement grids, respectively.
The equations of hydrodynamics are solved either with an implementation of the piecewise par-
abolic method (PPM) or a much more stable implementation of the Zeus algorithm. The latter
is significantly more dissipative during the treatment of strong shocks and discontinuities while
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the former has severe numerical problems when combined with additional physics in some sim-
ulations.
Enzo comes with a whole set of such physics packages like implementations for radiative cooling
or global ultraviolet background radiation. In some non-official pre and post release versions
there are also additional packages for cosmological star formation and even feedback. However,
all the additional packages were initially conceptualized for cosmological structure formation
simulations. Although it has turned out that some of the general infrastructure of Enzo can
conveniently be adopted to include additional physics, the packages themselves have to be care-
fully reconsidered and strongly adopted to the simulation problem, without loosing track of the
original intension of the package, in order not to introduce severe numerical and physical errors.

Additional references to the code are, Norman et al. [2007] who again describe the technical
side of Enzo in details, Wang et al. [2008], Regan et al. [2007], Hallman et al. [2007] which are
just a selection of most recent applications and Collins and Norman [2004], Xu et al. [2008] who
report the ongoing development and implementation of a magnetohydrodynamics module.

5.2. The Zeus Algorithm and its Implementation

Originally built into Enzo for testing and verification of the PPM implementation, the Zeus
hydrodynamics algorithm [Stone and Norman, 1992a] is a complete alternative to the former.
The Enzo documentation states that the staggered grid, finite difference method uses artificial
viscosity as a shock-capturing technique and is formally first-order-accurate when using variable
timesteps.
Although we would have preferred to use the PPM algorithm for our simulations we had to
resort to the Zeus solver owing to the infeasibility of operating PPM in combination with our
cooling physics for interstellar gas. For PPM a more complex high-order Godunov method is
implemented [Woodward and Colella, 1984]. As stated earlier, PPM appears to be less diffusive
and can follow strong gradients in more detail than the implementation of the Zeus algorithm
in Enzo is capable of. However, Zeus employs artificial viscosity to ensure that the differ-
ence equations will give correct Rankine-Hugoniot relations across shocks and the correct shock
velocity. The Rankine-Hugoniot equations govern the behavior of shock waves normal to the
oncoming flow. The idea is to consider one-dimensional, steady flow of a fluid subject to the
Euler equations and require that mass, momentum, and energy are conserved. A shortcoming
is that shocks will be spread unphysically across several computational zones. Hence, one loses
the details of the flow structure as a result of shocks and cannot study the details of the shock
themselves unless adaptive mesh techniques are used to increase the shock resolution. Therefore,
we employed AMR to resolve down to the overall scale of roughly a molecular cloud. We argue
that for the physical regime we aim to explicitly simulate, the accuracy of the Zeus solver is
sufficient to yield reliable and physically meaningful results. The detailed structure and physics
within molecular cloud scale is approximated via implicit subgrid models. More importantly, we
are capable to combine the Zeus hydrodynamics with the additional cooling, star formation and
feedback physics we consider essential for our simulation of galactic scale star formation. Al-
though we invested some serious effort, it was not possible to operate cooling and star formation
with the PPM implementation in Enzo.

The algorithm encoded in Enzo to solve the hydrodynamical equations is a 3-dimensional ver-
sion of the code described in a series of publications by Stone and Norman [1992a,b], Stone et al.
[1992], Clarke et al. [1990].
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Details of the Zeus Algorithm. At the most fundamental level, the Zeus hydrocode is
an implementation of certain specific numerical algorithms to solve the equations of hydrody-
namics (Equation (2.1), (2.2) and (2.3)). The implementation in Enzo is based on the method
of finite-differences and takes advantage of the high degree of simplicity as well as the robustness
and speed of this method. These are also the reasons which make it feasible to add the additional
physics described in the next sections.
Note that while the PPM implementation in Enzo uses the conservation law of total energy,
Zeus uses the internal energy equation in order to achieve high accuracy in supersonic flows.
When using PPM it is necessary for Enzo to use a so called dual-energy formalism, which com-
putes the internal energy explicitly in an additional step and synchronizes internal and total
values to be consistent, to reach comparable accuracy and therefore numerical stability in this
regime. The Enzo user guide states that the use of the dual-energy implementation is needed
to make total energy scheme PPM stable and accurate when the ratio of thermal energy to total
energy is significantly smaller than one. Zeus does not have these problems.

For a more detailed description on the Zeus algorithm and the equations which are actually
solved, we closely follow the description in Stone and Norman [1992a]. For simplicity and better
comprehensibility we stick to the two-dimensional formulation of the latter authors, although an
extension to three dimensions is straightforward.
The method of finite-differences for solving hyperbolic PDEs is based on the discretization of the
dependent variables over the entire spatial computational domain. The algebraic finite-difference
approximations to the evolution equations can then be computed as solutions on the discrete
mesh. In order to identify boundaries, cells and coordinates on the mesh, Stone and Norman
define two computational grids, using coordinate vectors. Zone boundaries are described by the
’a-grid’ while zone or cell centers are specified by the ’b-grid’. Following the original authors’
formalism, we introduce the discrete notation of any quantity x, i. e. position, and write x1 for
the left boundary and x2 for the lower boundary of any cell. We use i and j as coordinates in a
two-dimensional mesh to identify the (i, j)-zone. Consequently, x1ai is the left boundary of any
ith cell and (x1bi, x2bj) is the unique coordinate position of the center of cell (i, j). Figure (5.1)
illustrates the usage of the coordinate and grid definitions.
Using the coordinate description, Zeus works with cell centered scalar quantities and bound-

ary or face-centered vector quantities. Therefore, the authors use this formalism to write the
hydrodynamical variables as

ρ(x1, x2) → d(x1bi, x2bj) = dij ,

e(x1, x2) → e(x1bi, x2bj) = eij ,

v1(x1, x2) → v1(x1ai, x2bj) = v1ij ,

v2(x1, x2) → v2(x1bi, x2aj) = v2ij ,

v3(x1, x2) → v3(x1bi, x2bj) = v3ij ,

Φ1(x1, x2) → Φ(x1bi, x2bj) = Φij .

We use this notation to formulate the equations solved by the numerical algorithm. The indi-
vidual parts of the solution procedure of the Zeus solver are grouped into two major steps. The
first is called source step and solves for the finite-difference approximations to

∂

∂t
(ρv) = −∇p− ρ∇Φ−∇ ·Q,(5.1)

∂

∂t
(ρe) = −∇ · vp−Q×∇v.(5.2)
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Figure 5.1. Illustration of the vector coordinates in a two-dimensional mesh.
Zone edges are described by the a-mesh, while the b-mesh locales the cell centers.

The additional terms appearing here are introduced into the equations to account for viscous
stresses and dissipation as a result of artificial viscosity Q. As mentioned earlier, this artificial
viscosity acts to smooth possibly occurring discontinuities in the flow, where otherwise the finite-
difference equations break down. In order to minimize these effects in smooth parts of the flow,
the artificial viscosity is chosen nonlinearly to be large in shocks, but small or better negligible
otherwise.
The second step, named transport step, solves the finite-difference approximations to the integral
equations to account for the fluid advection.

d

dt

∫
V

ρdV = −
∫

dV

ρv · dS(5.3)

d

dt

∫
V

ρvdV = −
∫

dV

ρvv · dS(5.4)

d

dt

∫
V

edV = −
∫

dV

ev · dS(5.5)

These integral equations can be derived from the continuity equation and the divergence theo-
rem. Note that while the original algorithm includes terms to account for a moving coordinate
grid, we have omitted these additional complications here. The authors state to have chosen to
solve the integral form of the equations in order to use a conservative differencing scheme. The
major advantage of such a scheme is that the total quantity of the advected variable on the grid
is preserved to high accuracy.

To compute the solution, the source step is subdivided into three substeps using the opera-
tor split method.

The Source Step. In the first substep I the code updates the velocities owing to pressure
gradients and gravitational forces (again we omit terms for moving coordinates). In the following,
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Stone and Norman use the superscript n to denote quantities at hand after the completion of a full
calculation cycle, therefore also initial quantities at the beginning of the next cycle. n + a, n + b
and n + c denote partially updated quantities after each of the following substeps, respectively.
In substep I velocities are updated:

v1n+a
i,j − v1n

i,j

∆t
= −

pn
i,j − pn

i−1,j

dx1bi(dn
i,j + dn

i−1,j)/2
−

Φn
i,j − Φn

i−1,j

dx1bi
(5.6)

v2n+a
i,j − v2n

i,j

∆t
= −

pn
i,j − pn

i,j−1

dx2bj(dn
i,j + dn

i,j−1)/2
−

Φn
i,j − Φn

i,j−1

dx2bj
(5.7)

At the beginning of this step, the pressure pn
i,j is computed from the equation of state and the

gravitational potential Φn
i,j is derived as solution to the Poisson equation. For details, please

refer to the cited reference of the original authors, here we only present major steps of the hy-
drodynamical algorithm.

In the second substep II the code adds the terms of artificial viscous stress and gas heating.

v1n+b
i,j − v1n+a

i,j

∆t
= − q1i,j − q1i−1,j

dx1bi(dn
i,j + dn

i−1,j)/2
(5.8)

v2n+b
i,j − v2n+a

i,j

∆t
= − q2i,j − q2i,j−1

dx2bj(dn
i,j + dn

i,j−1)/2
(5.9)

en+b
i,j − en

i,j

∆t
= −q1i,j

(
v1i+1,j − v1i,j

dx1ai

)
− q2i,j

(
v2i,j+1 − v2i,j

dx2aj

)
(5.10)

For the multidimensional realization, these equations use the zone-centered viscous pressure q to
separately update each dimension. Therefore, the pressure is defined as

q1i,j =
{

C2di,j(v1i+1,j − v1i,j)2 if (v1i+1,j − v1i,j) < 0
0 otherwise ,(5.11)

q2i,j =
{

C2di,j(v2i,j+1 − v2i,j)2 if(v2i,j+1 − v2i,j) < 0
0 otherwise ,(5.12)

where the dimensionless constant C2 = l/∆x measures the number of cells over which the artifi-
cial viscosity will spread shocks when l is a dimensionless length determining the strength of the
viscosity.

To complete the source step, the code adds the term for compressional heating in substep III.
As we are using an equation of state for an ideal gas an implicit update technique can be used,
involving the time-centered pressure pn+1/2. This additionally improves energy conservation. We
get

(5.13) (en+1 − en)/(∆t) = −pn+1/2∇ · v,

where the time-centered pressure is defined as pn+1/2 = (pn + pn+1)/2. Together with the
equation of state p = (γ − 1)e this gives an explicit expression for en+1 to be differenced as

(5.14) en+c
i,j =

[
1− (∆t/2)(γ − 1)(∇ · v)i,j

1 + (∆t/2)(γ − 1)(∇ · v)i,j

]
en+b
i,j .

Hereby, the source step is completed. Next, the code proceeds with the transport step and to
solve the finite-difference approximations to Equations (5.3-5.5).
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The Transport Step. The latter equations state that the rate of change of any variable q
within the volume of a zone centered on q, named control volume, is equal to the divergence of
the flux of q through the faces of the control volume. A space and time second-order-accurate
approximation of time evolution of finite-differences can be written as

(5.15) [(qn+1
i,j − qn

i,j)τi,j ]/(∆t) = −(F1
i+1,j − F1

i,j + F2
i,j+1 − F2

i,j)
n+1/2,

where τ is the constant control volume and Fk is the flux in the kth direction. Using directional
splitting, the advection problem can be simplified for multidimensional problems. For the above
two-dimensional problem two one-dimensional updates can be used. The first step is a sweep in
1-direction

(5.16)
(qn+a

i,j − qn
i,j)τi,j

∆t
= −[〈v1i+1,jq

∗
1,i+1,jA1,i+1,j〉 − 〈v1i,jq

∗
1,i,jA1,i,j〉],

completed by a second sweep in 2-direction

(5.17)
(qn+1

i,j − qn
i,j)τi,j

∆t
= −[〈v2i,j+1q

∗
2,i,j+1A2,i,j+1〉 − 〈v2i,jq

∗
2,i,jA2,i,j〉].

Here, q∗k,i,j is the value of q interpolated to the surface of the control volume Ak,i,j and describes
the area of the control volume interface, both in kth direction. All quantities on the right hand
side of the latter equations are time centered, denoted by the angle brackets.
One of the most difficult aspects of the calculation is now to compute the time-averaged, inter-
polated value of the variable q at the faces of the control volume. For a detailed discussion of
different methods, i. e. donor cell method (first-order), van Leer method (second-order) and piece-
wise parabolic advection method (third-order), we again refer to the original paper [Stone and
Norman, 1992a]. Note, piecewise parabolic advection in Zeus is not equivalent to the alternative
piecewise parabolic method solver in Enzo. Here we complete the discussion by presenting the
van Leer method used in Enzo. This method is popular owing to its high accuracy while still
being a fast algorithm.
The method uses a piecewise linear function to represent the distribution of q within a zone.
Thus, we get

(5.18) q∗i =
{

qi−1 + (∆xi−1 − vi∆t)(dqi−1/2) if vi > 0
qi + (∆xi − vi∆t)(dqi/2) if vi < 0 .

The monotonized van Leer slopes dqi are computed from harmonic averages

(5.19) dqi =

{
2(∆qi−1/2∆qi+1/2)

∆qi−1/2+∆qi+1/2
if ∆qi+1/2∆qi−1/2 > 0

0 otherwise
.

Here, ∆qi+1/2 = (qi+1 − qi)/∆xi.

Summing up, the hydrodynamic variables are computed via two major steps. Beginning with
the source step and its three substeps, followed by the transport step, the code updates all vari-
able values. The full algorithm has several additional amendments which we have not presented
here. Among them, the algorithm solving for the Poisson equation, symmetry considerations
during the computation of fluxes and the problem of numerical diffusion minimized through the
application of consistant transport which accounts for better local conservation of the variables.
Finally, although the original algorithms are formulated including variable coordinates such as
moving grids, we have deliberately re-written all presented equations without the respective
terms. Firstly, we do not use any variable coordinates throughout this work, and secondly, this
renders the equations somewhat more readable.
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Differences and Problems with PPM. Most generally, PPM is an implementation of
the high-order Godunov method developed by Woodward and Colella [1984]. It combines a
third-order interpolation, which can be conceptualized as an improved version of the second-
order algorithm presented above, with a Riemann solver to evolve the hydrodynamic equations.
Although there are several methodical differences, the problem of evolving the hydrodynamical
variables in PPM can be reduced to the problem of finding the variable values at the left and
right edges of a zone [Bryan et al., 1995]. The authors state this to be simple in principle, al-
though accuracy requirements as well as the need for monotonicity complicate issues. Although
complicated, the desired values are still straight forward to calculate and the complete equations
are given in Woodward and Colella [1984, Eq. (1.7) and (1.10)]. Using these interpolated values
one can compute the characteristic domain of any zone edge. The characteristic domain of a
zone edge is the farthest a sound wave can travel in order to reach the interface by the end
of a timestep [Bryan et al., 1995]. Therefore, this domain holds all the information possibly
available in that zone during the timestep. By averaging all characteristic domains, two constant
states are created, separated by a discontinuity. This is called a Riemann problem, its solution
is well-known, self-similar and relatively easy to compute. The application of a Riemann solver
enforces the Rankine-Hugoniot conditions across shocks and therefore avoids the necessity of
artificial viscosity. In the limit of a smooth flow, the characteristic equations yield time-centered
quantities.

Generally, PPM would be the method of choice for most astrophysical applications owing to
the higher order accuracy and its ability to capture shocks and strong gradients without the
need of artificial smoothing by viscosity terms. However, these advantages come at the cost of
computational resources and the acceptance of a more complicated numerical realization of the
algorithm. Usually, one would present a comparison of both methods for the problem at hand
and then argue for a particular choice based on physical feasibility, resources or other practical
issues. In our case such a comparison was only possible without the additional complication of
a radiative cooling realization. However, as cooling is essential for our work and this additional
manipulation of the energy equations resulted in severe problems and perpetual errors in the nu-
merical algorithms, we could not perform any simulation with PPM including radiative cooling.
Most likely, large, hypersonic bulk flows with high ratio of kinetic energy to internal gas energy
are the source of errors here. Although Enzo has the possibility to treat energies in the so called
dual-energy formalism to account for this problem, the algorithms have never been intended for
our extended cooling mechanism which realizes cooling close to the temperature of the cold ISM
phase.

As it was not the goal of this thesis to study the effects and differences of different numeri-
cal methods, we decided, after some unsuccessful effort to resolve the problem, to follow recent
work [Tasker and Bryan, 2006] and use the Zeus algorithm which uses internal energy rather
than the conservation of total energy, to improve the accuracy of internal energy and tempera-
ture computations for highly supersonic flows, in the first place.
Henceforth, all discussion of simulations refers to work using Zeus. Next, we detail the above
mentioned radiative cooling routine.

5.3. Thermodynamical Processes and their Realization

The public Enzo 1.0.1 webrelease includes the general possibility to explicitly treat heating and
cooling. This is realized by simply adding new terms to the energy Equation (2.3) or more tech-
nically by modifying the particular energy content of simulation cells.
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Enzo features two different techniques to calculate heating and cooling rates. The first method
is a multi-species calculation where the code directly computes the abundance of up to twelve
species (H, H+, He, He+, He++, e-, H2, H2+, H-, D, D+ and HD) based on a backward differ-
enced multi-step algorithm, tailored for cosmological simulations.
The second possibility is to use tabulated equilibrium cooling data which consist of pairs of
temperature values and corresponding cooling rates. Again, these data and their algorithmic im-
plementation were originally intended for cosmological simulations. The tabulated temperature
ranges from 104 − 109 K in the table that comes with Enzo’s web-release and the calculation of
the energy update uses an implicit (hard coded) mean molecular weight of µ = 0.6.
For this work, we choose to use and adopt the second method of tabulated cooling data, as de-
scribed hereafter, while for other simulations our group has also developed dynamical procedures
to calculate the cooling rate in the fashion presented by Audit and Hennebelle [2005].

Cooling laws and Cooling Rates. Gas cooling in the ISM is a very broad topic. De-
pending on the specific problem one wants to investigate it might be necessary to develop a very
detailed treatment of the various physical mechanisms involved. Contrarily, it might also be
possible to use major simplifications when parameter space can be physically constrained.
For our galaxy scale simulations, where the resolution is limited to the largest scale of molecu-
lar clouds, it is possible to find and motivate some simplifications and introduce a general and
rudimentary solution.

Fine-structure line cooling dominates almost everywhere in the ISM. Exceptions to this are
only very hot gas and the insides of molecular clouds. To be complete, other mechanisms may
be of importance within strong shocks and in HII regions [Lequeux, 2005].
However, here we first focus on line cooling and discuss different temperature regimes, starting
at the low temperatures of the order of ∼ 100 K. The cooling efficiency of atomic and molecular
line transitions obviously depends on the abundance of trace elements, and the fact that these
have fine-structure levels that are easy to excite. At low temperatures, typical candidates exis-
tent in sufficient numbers and having energy levels close to their fundamental level are CII and
OI. Depending on the degree of ionization, some heavier elements like Si+ and Fe+ might also
contribute significantly. At temperatures above several hundreds of Kelvin, the cooling ability
starts to rise slowly and above roughly 6000 K the excitation of low-lying Oxygen and Nitrogen
starts.
Increasing the temperature further above 104 K cooling by collisional excitation of neutral Hy-
drogen becomes more efficient. We observe the famous Lyman-α emission. The extraordinary
steep increase of the cooling rate at this temperature is not only a result of the fact that Lyman-α
cooling becomes dominant, but, moreover, it is owed to a sharp increase in collisional ionization
that occurs, rendering the excitation process much more efficient [Tielens, 2005].
Additionally, highly ionized trace elements of C, O and Fe can again contribute importantly to
the cooling for even higher temperatures.
Above roughly 105 K ionization is almost completely realized and most species retain very little
bound electrons. Therefore, the cooling rate starts to decline. Additionally, Bremsstrahlung
becomes the dominant cooling agent and dielectric recombination of He and heavier elements
can contribute in high temperature plasma.

This picture of an interstellar cooling curve for the different temperature regimes can be re-
sampled with the previously mentioned simplified model. To reach this goal, we have omitted
the influence of interstellar dust and molecular hydrogen H2. Furthermore, we assume some
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Figure 5.2. Cooling curve as function of temperature assumed in our simulations.

constant ionization state above 104 K for all elements (usually the approximation of a fully ion-
ized medium is considered). And we ignore the depletions of some of the cooling species (most
importantly carbon and oxygen). With these assumptions we are left with a static cooling curve
as depicted in Figure (5.2).

The first simplification is indeed the most cruel one, since especially low temperature H2 cooling
and dust chemistry shape the physics at the level below several hundred Kelvin. The inclusion
of these processes is, however, highly nontrivial. It would require not only to simulate the full
multi-species gas content, but at least to some extent also the microphysics of interstellar gas.
Again, we can state that our resolution limit prevents the study of these effects, however, they
are still important for the physics we want to describe. We argue to indirectly account for the
neglected direct treatment by including the gross effects of low temperature cooling in the sub-
grid treatment of molecular clouds. In other words, as we are not going to resolve inside MCs,
we model their inherent properties by global averages.
The second simplification of a fully ionized ISM above 104 K is less critical since we can assume
the abundance of the relevant trace elements to be relatively low at this point.
With respect to the previous two simplifications and the errors we have to accept in order to
arrive at our simplified solution, the third simplification, namely neglecting elemental depletions,
is a minor caveat. The relative elemental abundances and the rates of their evolution are highly
speculative and differ vastly for different galaxies and within the ISM of individual galaxies. By
neglecting the depletion completely, we only add a very small error to our cooling model, with
respect to the best we could do otherwise, but finally achieve a general solution.

Figure (5.2) shows the tabulated cooling data we employ for our simulations. The black dashed
line depicts to original data supplied with the Enzo web release. Again, these data are intended
for cosmological simulations and therefore do not include any cooling mechanisms below 104 K.
The reason is that in high redshift cosmological simulations there are essentially no elements for
fine-structure cooling processes below 104 K. We can apply these high temperature cooling rates
to our simulations for galactic and intergalactic gas. Additionally, we have to extend the data to
somewhat lower temperatures. The red, continuous line depicts our full, extended cooling rates
which range from ∼ 300 to 109 K.
We have extensively experimented with different numerical and analytic derivations of cooling
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data. We tested data calculated by a numerical implementation of Audit and Hennebelle who
followed closely the analytic work of Wolfire et al. [1995, 2003]. Vázquez-Semadeni et al. [2007]
give an analytic expression based on the work of Koyama and Inutsuka [2002, 2000]. The au-
thors Kritsuk and Norman [2002] where so kind to provide us with their tabulated cooling data
and we also followed Tasker and Bryan [2006] and extended the Enzo cooling table with values
computed with the analytic expressions in Rosen and Bregman [1995]. The last option actually
goes back to the early work of Dalgarno and McCray [1972] and Raymond et al. [1976].
Without presenting detailed analysis and results here, we only summarize that the resulting dif-
ferences of these approaches, however, showed to imply only marginal effects. The temperature
and gas phase distributions in galaxy test simulations developed differences of the order of a few
percent, much less than the systematic errors introduced by the gross basic simplifications.
Additionally, we note that the cooling time is much less than the dynamical time for high density,
rapidly cooling gas. Therefore most gas in this phase will quickly reach the minimum tempera-
ture. The details of the cooling process can be completely neglected as a result of the speed of
the process. We can estimate the cooling timescale when we ratio thermal energy and its rate of
change

(5.20) τcool ≈
kbT

nΛ(T )
.

Using our temperature cutoff value of 300 K, a number density n = 100 cm−3 of cold dense gas
and the relatively small cooling rate Λ(300 K) ≈ 10−27 erg cm3 s−1 we get a value of several thou-
sand years, three orders of magnitude less than the dynamical time of several Myr (cf. Section
(1.1)). Hence, variations of the cooling data do literally have tiny effects.
Consequently, we decided to resort back to the original Enzo data and chose the Rosen and
Bregman extension, also because already the high temperature cooling rate data in the Enzo
table have been computed based on the work of Raymond et al.. This is essentially the red
continuous line in Figure (5.2).

These cooling data are cut at a lower temperature value of 300 K. Tasker and Bryan [2006]
cite the original authors [Rosen and Bregman, 1995] to argue that this artificially high tempera-
ture cutoff may compensate for neglected physical processes like cosmic-ray pressure or magnetic
fields, which can possibly have some limiting influence on the cooling ability of gas.
We neither support nor deny this argument, we state that with the simplifications discussed
above it seems very questionable whether cooling below a certain temperature limit can yield
any physically meaningful results. Taking all this into consideration, we decided to follow Rosen
and Bregman [1995] and extenda the cooling rates only down to ∼ 300 K. Aside physical reason-
ing, this also enables us to preserve comparability to the work of Tasker and Bryan.

5.4. Sink Particle Implementation

When simulating interstellar gas and its gravitational collapse, one inescapably faces the prob-
lem that some gas eventually reaches extreme densities. Almost singular densities pose a strong
problem for numerical schemes and most codes crash without precautions to deal with extremely
dense gas. This is also true for our galaxy simulations with Enzo.
Aside the issue of numerical stability, we can also attribute some physical particularities to ex-
traordinarily dense gas. Most simply, a significantly dense parcel of gas in the ISM can, for
example, be interpreted as molecular cloud. Although density alone is certainly not sufficient to

aAs a technical remark, it is important to realize that Enzo interpolates between two subsequent tabulated
temperature values to get a cooling rate for some specific temperature value not tabulated itself. This interpolation
routine is designed to deal with temperature values which are equally spaced in log space.
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characterize molecular clouds, we use the idea here to clarify our interpretation. Once identified,
the gas of the molecular cloud can be removed from the simulation, and replaced by a lagrangian
particle which carries the attributes of the removed gas, i. e. mass, temperature. Additionally,
the particle somehow has to represent the important dynamics of the modeled cloud. Examples
are outflows or the formation of stars inside the cloud.
Therefore, we avoid numerical problems and use the possibility of physical interpretation to con-
struct a model for high density gas.

The authors of the Enzo code have implemented such a replacement of gas by particles but
not included the routines in the public release. Nevertheless, the authors have been so kind to
share their work with us so we could start off from there.
The Enzo documentation and also the code itself refer to the algorithms as star formation al-
gorithms and to the particles as star particles. However, the original design was for particles
to represent galaxies in cosmological structure formation simulations. We use the algorithms to
mimic gas clouds and clusters of stars. Therefore, we refer to the particles in our simulations as
sink particles.
The original sink particle algorithm in Enzo is based on the work by Cen and Ostriker [1992].
To distinguish from other algorithms and changes we have made, we call this original version
SF1 algorithm.

Before a sink particle is generated, SF1 requires six conditions to be fulfilled.

(a) The first condition is that all sink forming cells are not refined further at higher levels.
This is a numerical criterion which ensures that the best information (most refined) is taken to
determine the properties of a possibly created sink particle.

(b) The second condition is a density threshold which requires the cell to have at least some
critical density.

This is a standard requirement which is employed in most structure formation simulations and
simply compares the density of the cell at hand to some predefined fixed value.

(c) The third condition requires negative divergence of the velocity field in the cell at
question.

(5.21) ∇ · v < 0

This requirement is supposed to encode whether the flow is converging or not. In particular it is
supposed to exclude cells which have high densities as a result of the compression by shocks, but
are not gravitationally bound. Such regions would quickly disperse again and are not supposed
to be considered for particle creation.

(d) The fourth condition compares the dynamical time and the cooling time of the gas
in the cell and only allows sink formation when the cooling time is shorter than the
free-fall time.

(5.22) τcool < τff ≡
√

3π

32Gρtot

This encodes the requirement that gas can cool rapidly and gravitational contraction is not
significantly opposed by a buildup of thermal pressure. For technical reasons, the check for
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this criterion is switched of for cells which have already reached the minimal gas temperature.
Moreover, it is important to note that ρtot is the sum of densities of baryonic and dark matter
(cf. Section (6.1)).

(e) The fifth condition checks whether the mass in a cell is equal to or larger than the Jeans
mass.

(5.23) mb > mJ ≡
1
6

π5/2c3
s

ρ1/2G3/2

This checks whether gas pressure is sufficient to prevent gravitational collapse. Note that in
Enzo, the Jeans mass is computed for a sphere while it is compared to the mass of a cubic cell.

(f) The sixth condition finally requests that the sink particle which is created has at least
a certain minimal mass M sink

min .

Again, this is a purely numerical criterion to ensure the code does not produce a large number
of tiny/light particles. This had appeared to be a problem in earlier simulations as the computa-
tional demands for high number N-body part of the simulation were too expensive. However, one
has to be very careful with this criterion, as it introduces an artificial density threshold which
might dramatically dominate over the intended density threshold parameter.
Example: In our simulations the highest refined cells, which host most particle formation, have
a length of lcell ≈ 30 pc. A typical lower mass limit for this criterion was 105 M� [Tasker and
Bryan, 2006] which translates into a density of ρcell ≈ 2.5 · 10−22 g/cm3 or a number density of
n ≈ 125 cm−3. This is exactly in the critical regime in galaxy scale star formation simulations
where one wants to use typical density limits of this magnitude.
This last criterion is somewhat softened by an additional option to switch on a bypass called
stochastic star formation. When this option is turned on, sink particles with mass less then the
mass threshold can be formed. The probability for such an event is calculated from the ratio of
potential star mass to minimum threshold particle mass. The created particle would have the
threshold mass or half the mass of the gas in the cell, whichever is smaller.
Again, we stress that in our opinion, this softening does not alleviate but masks the problem
of an additional density threshold. With this probabilistic addition, it is basically impossible
to distinguish the effects of the different criteria, which is a nontrivial task even without the
stochastic process. The authors of the code comment themselves, not to be convinced of the
proper implications of the subroutine. For all of our simulations, we do not use this option of
stochastic star formation.

Once all the above criteria are validated, the code generates a sink particle. The particle mass
is calculated as

(5.24) msink = ε
∆t

τff
ρgas∆x3.

ε is the efficiency parameter and set by hand for the SF1 algorithm. However, it is limited so
that at most 90 % of the gas in a cell is transformed into a single particle in one timestep. The
other parameters describe the timestep ∆t and the cell length ∆x. The corresponding amount
of gas is removed from the grid. Particles are placed at the center of the creating cell and get the
same velocity components as the natal gas. Additionally, particles also carry several attributes,
such as the time of their creation and the dynamical time at creation.
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5.5. Star Formation Rate and Feedback

The original particle routine discussed above comes together with a star formation and feedback
part. While for the creation, sink particles are created instantaneously, the star formation feed-
back algorithm calculates the forming mass and generates back reactions over an extended period
of time. Particles are modeled to lose mass in an exponentially decaying fashion as described by
Cen and Ostriker [1992] and the code only keeps track of the actual mass of each particle.
One can conceptualize a sink particle as a molecular cloud. The initial particle mass is the mass
of all gas available in the cloud. The star formation feedback algorithm converts gas into stars
while at the same time generating feedback from the formed stars.
In order to calculate this process, the algorithm first recomputes the initial mass of a particle in
question. With the information about the elapsed time since the particle creation, the mass that
would have formed during the timestep is calculated. From this mass, the algorithm determines
the mass loss owing to feedback such as winds or supernovae.

The massb evolution of sink particles is modeled as

m(t) = m0

∫ t

t0

t′ − t0
τ2
ff

exp
(
− t′ − t0

τff

)
dt′(5.25)

= m0

[
1−

(
1 +

t− t0
τff

)
exp

(
− t− t0

τff

)]
.

The particle mass exponentially increases as it evolves. m(t) is the particle mass at some arbi-
trary time t. m0 is the final mass of the particle and t0 is the creation time of the particle.

Mass feedback is coupled to the evolved mass m(t). Hence, the feedback mass mfb is

(5.26) mfb = fej ·m(t),

where fej is the fraction of stellar mass ejected back into interstellar gas.
Vice versa, these equations can be used to calculate m0 during a simulation,

(5.27) m0 = m(t)
[
1− fej

(
1− (1 +

t− t0
τff

) exp
(
− t− t0

τff

))]−1

,

and deduct the actual amount of mass formed during the timestep:

(5.28) mdt = m0

[(
1 +

t− t0
τff

)
exp

(
− t− t0

τff

)
−
(

1 +
t + dt− t0

τff

)
exp

(
− t + dt− t0

τff

)]
.

Now it is straightforward to update the particle mass

(5.29) m(t + dt) = m(t)−mdt ∗ fej,

and gas mass correspondingly. The important quantity, however, is the mass formed during the
current calculation mdt, which is used to analyze the star formation rate.

Additionally to the mass feedback of gas, the code also allows the possibility to include energy
feedback. This is modeled as feedback from explosions of massive stars and can be associated
with type II supernova.

bNote, however, that the Enzo code always employs density instead of mass. This is a implication of the
particle-in-mesh algorithm and makes it much easier to compute the potential on the grid. A consequence of
this is that particles migrating between different resolution levels change their density values correspondingly.
Although several parameters and variables are labeled mass in the code, real masses always have to be calculated
by multiplication with the local cell volume.
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The explosive energy released at the death of stars is encoded as efficiency parameter and defined
as

(5.30) fSN =
ESN

MSNc2
,

where ESN is the assumed feedback energy for a cumulative MSN mass of stars formed. Tasker
and Bryan [2006] use an energy of ESN = 1051erg for MSN = 55M� of stars formed to calculate
a feedback efficiency of fSN = 10−5.
In order to compute a specific energy per unit density eSN, the effective supernovae feedback
energy fSNmdtc

2 is divided by the overall available gaseous mass to which it supplies the thermal
energy:

(5.31) eSN(dt) =
fSNmdtc

2

mgas + mdtfej

All the thermal energy from the simulated supernova feedback goes into the cell where the particle
resides. To update the energy content of that cell, the original energy value is rescaled to the
new mass in the cell owing to mass feedback and summed with the actual feedback energy:

(5.32) ecell(t + dt) =
ecell(dt)mgas

mgas + mdtfej
+ eSN(dt)

In the last steps, the code updates the gas mass,

(5.33) mgas(t + dt) = mgas(t) + mdtfej,

and computes the momentum feedback on the gas:

(5.34) vgas(t + dt) =
vmgas(t) + mdtfejvsink(t)

mgas(t + dt)
.

The sink particle and feedback algorithm SF1 is completed with these computations for each
timestep. Sink particles are handled by the N-body solver and the code proceeds with the hydro
calculations.

With this description of particle generation and feedback we end the discussion of parts that
have already been implemented into Enzo. Although we already included some of our addi-
tional work, especially on the cooling implementation, we will now discuss our setup and new
routines.
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Setting up an Isolated Disk Galaxy

In this chapter, we describe our numerical setup. We used the recent work by Tasker and Bryan
[2006] as a guideline and tried to follow their description closely enough to have a reasonable basis
for comparison. We tried to rebuild their simulations for these comparisons but, furthermore,
developed our own extensions, star formation algorithms, as well as several other modifications.
We will explain our full setup in detail, show similarities to Tasker and Bryan [2006] (hereafter
TB06) and stress differences to our realization and reason for them.
We will follow an intuitive order for the construction of our simulations. Therefore, we start
with the largest scales and proceed from dark matter halo to gas disk to star formation. We will
physically motivate our model and provide extensive technical details on the realization.

We design our simulations to mimic the gross properties of the Milky Way in several aspects.
However, we are not simulating the formation of galaxies but build a model with several basic
properties which include unrealistic conditions. We therefore stress that our toy model galaxies
neither claim nor realize the behavior of the Galaxy. Nontheless, our simulations are built to
research galatic scale star formation in an isolated disk galaxy. Consequently, we employ data
of the Galaxy as outlined and try to model the interstellar medium as realistically as possible.
Although it is unquestionable that magnetic fields have various implications for the problem
at hand we do not include them in our simulations. Currently, our version of Enzo lacks the
technical capability of magnetohydrodynamical (MHD) simulations. Nevertheless, Collins and
Norman [2004], Xu et al. [2008] report on recent developments in this direction and it might be
possible to augment our simulations with magnetic fields in the future.

6.1. Cosmological Framework and Dark Matter Halo

All of our simulations are based on a three-dimensional periodic box with a linear scale of 1 Mpc.
We employ a root-grid resolution of 1283 grid cells and allow for an additional adaptive refinement
with up to eight levels based on a density resolution criterion. Hence, the finest resolved grid cells
have an extension of approximately 1 · 106 pc/128/28 ≈ 30 pc in each dimension. The extremely
large simulation volume with respect to the comparably small galaxy scale ∼ 60 kpc, is chosen in
order to avoid potential perturbations from the technical realization of periodic boundaries. We
chose the separation of periodic repeated potential sources so large that their influence becomes
negligible. Fortunately, as a result of the employment of AMR which only resolves the huge
empty boundary regions on the root grid level, the computation of these regions uses a negligible
amount computational recources.
We simulate our disk galaxies to rest in a dark matter halo. This galactic halo is assumed to
be completely virialized and the galaxy within is unaffected by cosmological expansion. In other
words, there is neither motivation nor reason to simulate cosmological expansion. Moreover, the
inclusion of the expansion, although it might cause only small effects owing to the relatively
short galactic timescales compared to cosmological ones, complicates simulations and especially
analysis considerably.

61
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Moreover, a typical galactic timescale like the turnover time of the galactic disk – approximately
250 Myr at the position of the Sun – is significantly larger than the light crossing time of the
simulation domain 3.26 Myr for 1 Mpc. Consequently, contributions of general relativity and the
finite speed of gravity can be ignored.

Simulations in a Static Coordinate System. We deactivated the calculation of comov-
ing coordinates for all of our simulations. This can be achieved by switching off the cosmological
expansion parts in the code with a parameter flag set to zero. However, Enzo has no routines to
account for the scaling of physical units when run without its cosmology module. Nevertheless,
correct scaling relations of physical units are crucial when simulating gravity or thermodynamical
processes with Enzo. Hence, we had to rebuild the ability for treating units in essentially all
modules of Enzo not working exclusively in code units.
Fortunately, it was possible to use the technical framework kindly provided by Tasker and Bryan
to rebuild the treatment of units in close correlation to the cosmological routines. Whenever the
code needs to scale some quantity from or to physical units these newly implemented routines
provide the correct scaling factors. Only, the conversion of thermodynamical properties needed
some extra attention. We will discuss this in Section (6.2).

Simulating our galaxies without comoving expansion is certainly the largest technical differ-
ence to the work of TB06. The reader should keep in mind to scale numbers correctly when
comparing data. For example, the latter authors use a simulation box of size 1h−1 Mpc in a
ΛCDM universe with H = 67 km s−1 Mpc. This denotes a scaled length of almost ∼ 1.5 Mpc
which would be the quantity one wants to compare to our simulations. However, most of the
numbers stated in TB06 appear to be comoving data, although comoving units are omitted in
the description.

Static Gravitational Potential. For the implementation of the dark matter potential,
we follow TB06 and set up a fixed gravitational potential with the classical profile described
by Navarro et al. [1996, 1997]. These authors used N-body simulations to study cosmological
structure formation and the evolution of dark matter halos. Klypin et al. [2002] deduce that the
dark matter distribution in the Galaxy may be compatible with such a NFW profile.
For our implementation we start with the analytic equation for the density distribution of dark
matter in a galactic halo given by Navarro et al. [1996]

(6.1)
ρDM(r)

ρcrit
=

δc

r
rs

(
1 + r

rs

)2 .

Here, ρDM(r) is the dark matter density at a certain radius r. rs = r200/c is the characteristic
radius of the halo profile, where r200 is the virial radius and c the concentration parameter.
ρcrit = 3H2/8πG is the critical density (H is the current value of Hubble’s constant) and δc is a
dimensionless parameter which is linked to the concentration factor by the requirement that the
mean density within the virial radius r200 is 200 times the critical density ρcrit.

(6.2) δc =
200
3

c3

ln(1 + c)− c
1+c
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To calculate the dark matter mass from which we deduce the radially dependent gravitational
potential we integrate spherically over the radial dependencies of the density distribution∫ R

0

1

r
rs

(
1 + r

rs

)2 4πr2dr = −4πr3
s

[
R

R + rs
+ ln(rs)− ln(R + rs)

]
(6.3)

= 4πr3
s

[
ln
(

R + rs

rs

)
− R

R + rs

]
= 4πr3

s

[
ln (1 + x)− x

1 + x

]
.

Here, we have set x = R/rs.
We can use this to rewrite density distribution as a mass profile

MDM(R) =
∫ R

0

ρDM(r)4πr2dr · δc · ρcrit(6.4)

= 4πr3
s

[
ln (1 + x)− x

1 + x

]
· 200

3
c3

f(c)
· ρcrit

=
M200

f(c)

[
ln (1 + x)− x

1 + x

]
.

Again, we have made new substitutions and used

(6.5) f(c) = ln(1 + c)− c

1 + c
.

as well as

(6.6) M200 =
4π

3
200ρcritr

3
200

to simplify the equations. Note that r200 = rsc.

For the numerical implementation we use the same numbers as described by TB06 which ap-
pear to match the results of Klypin et al. [2002] for the Galaxy quite well. We set a virial
mass M200 = 1012 M� and adopt a concentration parameter c = 12. Furthermore, we assume
H = 67 km s−1 Mpc−1 and calculate a virial radius of r200 ' 212 kpc as well as a characteristic
scale radius for the gravitational potential of rs ' 17.7 kpc.
As this calculation involves no dynamical quantities, we use the above equations in the initial-
ization of the simulation and calculate the virial mass from the input parameters. In a second
step we normalize the acceleration force of the gravitational potential to get the magnitude of
gravitational acceleration of a unit mass object at a distance of one length unit. Based on this
quantity, the code calculates the acceleration of gas or particles during runtime.

6.2. The Baryonic Gas Disk

Here we describe how we set up the initial gas disk for our galaxy simulations. We will describe
the baryonic gas density profile and its technical realization as well as the scaling of units to
initialize the proper thermodynamical energy content of the gas.
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The Density Profile of Baryonic Gas. We set up the profile of the baryonic gas of our
disks, again following the work of TB06. The analytic profile

(6.7) ρ(r, z) = ρ0 exp
(
− r

r0

)
sech2

(
1
2

z

z0

)
is based on a fixed central density ρ0 and has an exponential radial as well as a hyperbolic secant
dependence on the height z above the disk midplane. The scale radius r0 and scale height z0 as
well as the central density are chosen to give a gas mass in correspondance with the baryonic
mass we assume in the Galaxy.

Note that for all simulations reported here, we start with an entirely gaseous disk and no stellar
component. However, we have experimented with an initial stellar component as described by Li
et al. [2005, 2006]a but decided to run our simulations without the additional complication of an
initiall stellar disk. The reasons are that, first, comparability to TB06 is preserved and, second,
star formation can be studied in a larger parameter regime as galactic properties significantly
change during the temporal evolution. This allows us to study the formation of stars on much
wider regime of gas densities as in the case where already 50% or more of mass is present only
as stellar component.

We set r0 = 3.5 kpc, z0 = 325 pc and choose a total gas mass of Mgas = 4 · 1010 M� as re-
ported by Klypin et al. [2002] for the Galaxy. To calculate the central gas density in the disk we
integrate the density distribution

Mgas =
∫ 2π

0

∫ ∞

−∞

∫ R

0

ρ(r, z) r drdzdϕ(6.8)

= 8πr0z0ρ0

(
r0 − exp(−R

r0
)(R + r0)

)
R→∞= 8πr2

0z0ρ0.

which yields a central gas density ρ0 ' 2.7 · 10−23 g cm−3.

Figure (6.1) shows the gas density profile and how it depends on the distance to the galactic
center for both the radial direction and height above the midplane of the disk.

Technically it is important to note that a cell centered value, computed based on the radial
distance of the cell center to the galactic center and the distance of the cell center to the galac-
tic midplane, cannot properly represent the average gas density in that cell, as a result of the
nonlinear dependencies of the density profile on radius as well as on height above the midplane.
This becomes most important in the outer region of the gas disk where refinement changes and
the resolution decreases.
To account for this effect, we calculate the density value of a grid cell by averaging 100 randomly
sampled analytic density values with coordinates within the cell. Therefore, nonlinearities in
radial as well as azimuthal dependence of the density profile are properly included in the setup
of the numerical disk density profile. Note that without this procedure, proper coding of the
analytic profile does not yield the desired profile itself. Moreover, without calculating proper
averages, the density profile inherits unphysical breaks as well as kinks at crossovers of different
refinement levels.

aThe authors have been so kind to provide their initial condition generator which enabled us to produce a
realistic initial stellar component inside the gaseous disk.
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(a) Exponential radial gas density profile. (b) Hyperbolic secant gas density profile above the
disk midplane.

Figure 6.1. Illustration of the radial and height dependence of gas density in
the disk. The red curve depicts the gas density in the disk midplane or along
the axis of rotation, while the additional plots in each figure show the density
at one, two, three and four radial or vertical scale heights. The dashed lines
indicate a decline of 1/e in the density.

Finally, we add the components of baryonic gas mass and presumed dark matter mass, ac-
cording to the corresponding density profiles, to calculate the total mass within a certain radius
prescribed within the galactic plane. From this total mass we deduce the circular velocity of gas
in the disk and initialize the differential rotation of the galaxy.

(6.9) vcir =
(

GMtot(r)
r

)1/2

Temperature and Thermal Energy. We set the initial temperature in the whole simula-
tion domain, including the gas disk, to a value of T = 104 K. As Enzo usually does not explicitly
calculate the gas temperature during runtime, it is more convenient to focus on thermal energy
than temperature. Thermal energy is usually defined as

(6.10) εint = Tρ
kb

mhµ(γ − 1)

For Enzo, first, we use the specific energy per units mass e = ε/ρ. Second, we split the calculation
into two parts for technical reasons, one step including all fixed natural constants and a second
one including variable parameters which might be different for different simulations. Finally, we
rescale units as described in Appendix (C), see Equation (C.5). As this has led to confusion in
the past, we summarize the calculation here:

T̂enzo = T
kb

mh
/(GL)(6.11)

eint,enzo = T̂enzo
1

µ(γ − 1)
(6.12)

eint,enzo = T
kb

mhµ(γ − 1)
/(GL).(6.13)

Here, G and L are scaling factors and all other quantities have their usual meaning. T̂enzo is
only used to encode the temperature but is not itself used for any computation.
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In the same spirit, we describe the implementation of cooling and heating (cf. Section 5.3).
Most generally, we can write the cooling function as

(6.14) L = n2Λ(T )− nΓ(T0),

where n is the number density, Λ is the temperature dependent cooling rate and Γ is the heating
rate. Here we have written Γ(T0) to indicate that, we only use a constant heating term for
simplicity. Considering Enzo and its use of specific energy, we can express the change of internal
energy owing to cooling and heating as

(6.15) e′int = eint −
L

ρ
· dt,

where e′ is the energy content after the temporal evolution dt of the simulation cell. We now
separate cooling and heating and write L = n2Λ − nΓ with Lc = n2Λ and Lh = −nΓ for
simplicity.
To calculate the energy contribution from cooling we write

Lc

ρ
= n2 Λ

ρ
(6.16)

= Λ
1

µ2m2
h

ρ.

Therefore, we can write the cooling term in the numerical implementation as

(6.17) e′enzo = eenzo − Λenzo
1
µ2

ρenzo · dtenzo,

where we have used the subscript to stress that the apparent quantities are now in code units. µ
is dimensionless and the square of the constant mh as well as its units have been absorbed into
the scaling of Λenzo = Λ/C. Consequently, we have[

g cm2

s2
cm3

s
1
g2

]
: C =

ML5

T3M2
m2

h(6.18)

=
L2

T3R
m2

h.

Please refer again to Appendix (C) for details on the scaling parameters. For completeness,
we state that Λ in units of erg cm3 s−1 is the quantity tabulated in the input table file for the
radiative cooling routine.

Equivalently, we treat the heating term and get

Lh

ρ
= −n

Γ
ρ

(6.19)

= − Γ
µmh

.

For the implementation of this heating term we write

(6.20) e′enzo = eenzo + Γenzo
1
µ
· dtenzo,

where we have again absorbed mh and its units into the scaling factor Γenzo = Γ/H. We get

(6.21)
[
g cm2

s2
1
s

1
g

]
: H =

L2

T3
mh.



6.3. AMENDMENTS TO STAR FORMATION AND FEEDBACK ALGORITHMS 67

The constant heating term Γ can be defined for a simulation in units of erg s−1.

6.3. Amendments to Star Formation and Feedback Algorithms

Once the gas disk is in place and the dynamical evolution starts, gas quickly starts to cool and be-
comes gravitationally unstable – fragmentation starts. In Section (5.4) we have already described
the sink particle creation framework we are using for our simulations. Here, we present the de-
tails of our changes to SF1 as well as different algorithmic realizations of how gas is converted
into sink particles, representing dense clouds of gas and stellar objects. We will also anticipate
the detailed introduction of our turbulence subgrid model in Chapter (7) and present how star
formation can be parameterized based on the input of the SGS model. Finally, we will discuss
our changes and amendments to the standard star formation and feedback algorithm presented
in Section (5.5).

Changes to the Original Algorithm SF1. The first important amendment to SF1 ap-
pears in the calculation of the dynamical time, τff, in a cell forming a sink particle. This cal-
culation affects the sink formation criterion (d), comparing cooling and dynamical time scales.
Equation (5.22) contains the total density of matter in the cell. This includes not only the gas
mass, but also dark matter and the mass of clouds and stars already encoded in other sink par-
ticles.
The gas density is readily available during the calculation and needs no additional attention.
The opposite is true for dark matter: as a result of our realization of a static dark matter poten-
tial, we have unintentionally circumvented the inclusion of dark matter in the calculation as we
simply have no dark matter field component. In other words, originally, dark matter was meant
to be treated as particles and a particle-in-cell algorithm was used to compute the dark matter
density on the grid. This density went into the calculation of the total density in a cell. Now,
while this treatment ensures we readily include all mass already transformed into particles (stars
and clouds) we have to additionally account for the dark matter mass.
In order to calculate the dark matter density in any cell, we first determine the radial distance
of the center of the cell to the galactic center, which corresponds to the epicenter of the fixed
gravitational potential. As the potential is spherically symmetric, the radius is the only variable
information we need to calculate the dark matter density using the equations presented in Sec-
tion (6.1) (Equation (6.1)).
Subsequently, we sum up gas density, dark matter density and the mass density from particles
provided by the particle-in-cell algorithm and use this for the computation of the dynamical time.
However, we also note that the dark matter density is usually several orders of magnitude smaller
than both other density contributions. Nevertheless, it is physically correct and computationally
simple to include the effect.

Secondly, sink formation criterion (e) concerning the limiting factor whether a cell exceeds the
local Jeans mass or not is altered. Equation (5.23) contains the squared isothermal speed of
sound of the gas in the cell in question. The originally used calculation of this sound speed
squared was realized by multiplying a recalculated constant with the temperature value of the
cell. Using the definition c2

s = Rs · T with Rs = kb

mhµ this essentially encodes a fixed mean
molecular weight µ. Originally, µ = 0.6 was used. Consequently, we replaced the precalculated
constant Rs by the latter relation.
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Deducing a Simplified Algorithm SF2. In order to be able to sort out the significance
of the star formation density threshold, sink formation criterion (b), we deduced a new version
of the original SF1 where we omit all criteria but this density threshold and the requirement that
particles are only generated on the most refined levels (a). Hence, this is only a stripped version
of the original algorithm. Nevertheless, in the spirit of simplifying things in order to tackle the
key issues, this approach proved useful as we will see when we discuss the results in Part (III).

Turbulence Regulated Algorithm SF3. Starting from SF1 as well as the simplified ver-
sion SF2, using only density as the criterion to decide whether a cell forms a sink particle or not,
the next step was to replace the unknown efficiency parameter ε in Equation (5.24). While we
have extensively experimented with different values for this parameter, one of the major goals of
this work was to implement the theory proposed by KM05 to determine this parameter dynam-
ically from simulation quantities.
Comparing Equations (4.20) and (5.24) we find that the desired efficiency parameter appears in
the work of KM05 as star formation rate per free-fall time SFRff . We have already summarized
the concepts of this theory in Section (4.4). Most important for the numerical implementation
is the fact that Krumholz and McKee are able to compute the star formation rate solely based
on two dimensionless parameters, the virial parameter αvir and the turbulent Mach number Mt.

In order to compute these parameters we recall their physical meaning. Beginning with the
virial parameter, one can conceptualize it to represent a balance condition of thermal plus ki-
netic energy versus the gravitational energy. We assume sink formation to be representative of
molecular cloud physics. Therefore, we focus the analysis on the properties of molecular clouds.
Consequently, we deal with situations were the thermal energy is totally dominated by the kinetic
turbulent energy of the random velocity motions inherent to molecular clouds. This justifies to
interpret the total velocity dispersion σtot to be completely determined by the turbulent velocity
fluctuations of the gas. Consequently, the kinetic turbulent energy can be used for the calculation
of the virial parameter. Put in numerical terms, we obtain

(6.22) αvir =
5 2et

∆x
2

Gρ(∆x)3
.

By virtue of our subgrid-model (cf. Chapter (7)) and references therein for a detailed presentation
of the subgrid model), we are in the unique situation to have the turbulent energy et available
for the computation in each grid cell. All other quantities are commonly available in numerical
simulations.

Furthermore, the Mach number appearing in the equation of SFRff can also be expressed in
terms of the turbulent energy. Krumholz and McKee state it as the ratio of turbulent veloc-
ity on the largest scale of the region under consideration and the sound speed of this region,
Mt = σ2R/cs. Again, the turbulent velocity on the grid scale is exactly what we can calculate
from the turbulence energy. Therefore, we get the turbulent Mach number as

(6.23) Mt =
√

2et√
kb

mhµT
.

Henceforth, we are able to use the fit presented by Krumholz and McKee [2005] to calculate
the star formation rate per free-fall time or, correspondingly, the sink particle creation efficiency
using Equation (4.21). We call this algorithm SF3.
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Computing the Amount of Star Formation. We have made one significant, although
purely technical amendment to the original feedback formulation. The original algorithm used
to subsequently sum up all masses of sink particles generated in every cell during each timestep.
This resulted in a recorded amount of star formation depicting only an integrated star formation
rate. To compute the amount of star formation including all the information available at the
maximum resolution level of the simulation, we incorporated a new field to capture the amount of
gas turned into particles within each cell. The additional field allows us to gain synchronized in-
formation about the amount of star formation with the maximum temporal and spatial precision.

Summarizing, we have described how we set up our models of an isolated disk galaxy from
the largest cosmological scales down to our resolution limit where we turn gas into sink particles.
Additionally, we have discussed the formulation of feedback and how we approach the calculation
of the actual rate of the formation of stars numerically. Nevertheless, before we can begin with
the discussion of simulation results we have to describe the subgrid model and the aspect of gas
distribution properties in galaxies. Therefore, we use the next Chapter (7) to present the details
of the previously mentioned subgrid-scale model of turbulence.





CHAPTER 7

Turbulence and Subgrid-Scale Physics

Owing to the infeasibility to solve the hydrodynamical equations on all problem relevant dy-
namical scales it is a common approach in astrophysical applications to introduce a separation
of scales. Resolved scales are simulated explicitly while unresolved ones are either neglected or
treated implicitly via models trying to mimic the behavior of a flow below grid resolution.
Using the experience and numerical techniques developed by our group we follow this approach of
subgrid-scale treatment of turbulence to account for the unresolved effects of turbulent velocity
fluctuations in simulations of galaxy scale star formation. The numerical methods and tests are
described in Schmidt et al. [2006a] while a first application to type Ia supernovae is discussed in
Schmidt et al. [2006b]. Furthermore, Maier et al. [2008] applies our subgrid-scale modeling to
a galaxy cluster. Here, we will briefly introduce the formalism, including only those derivations
necessary to arrive at the governing equations. We will show how to close these equations with
appropriate subgrid-scale closures and discuss how we use our model on an adaptive grid. Fi-
nally, we will comment on differences to our earlier work and describe some limitations we still
have in the SGS implementation.

7.1. The Subgrid-Scale Model

To separate resolved from unresolved scales, we decompose the hydrodynamical equations into
a large-scale and a fluctuating part. To start with this decomposition, we want to rewrite the
governing equations and present a new notation. Moreover, we introduce the formal concepts of
filtering using the Favre-Germano formalism.

The idea of filtering is to split any quantity a into its mean value 〈a〉 and fluctuations a′ around
this mean. This filtering process can be realized by a low-pass filter. Mathematically, we apply
a convolution opterator:

(7.1) 〈a(x)〉 =
∫ ∞

−∞
G(x− x′) a(x′) dx′.

To separate the resolved mean flow from unresolved fluctuations in the flow, we follow Germano
[1992] and decompose the hydrodynamical equations into a large-scale and a fluctuating part.
Henceforth, we use the same notation as Maier et al. [2008] and write

ideal/exact a
∞
a

filtered/smoothed 〈a〉 〈∞a 〉G = a
fluctuating a’,

where we have also quoted the∞ overline notation of Schmidt et al. [2006a] for better comparison.
Henceforth, we write plain symbols for theoretical ideal quantities. Filtered quantities, on the
other hand, with fluctuations smoothed out, are computed as the numerical solution and written
in brackets 〈〉. In addition to the filter formalism by Germano we define density weighted filtered

71
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quantities as

(7.2) â =
〈ρa〉
〈a〉

.

With this definition of density weighted quantities similar to Favre [1969], Schmidt et al. [2006a]
are able to define the moments appearing in the filtered equations of compressible fluid dynamics.

τ̂(a, b) = 〈ρab〉 − 〈ρ〉âb̂(7.3)

τ̂(a, b, c) = 〈ρabc〉 − 〈ρ〉âb̂ĉ− âτ̂(b, c)− b̂τ̂(a, c)− ĉτ̂(a, b)(7.4)
...

For these quantities τ̂() the same rules apply as for the generalized central moments first intro-
duced by Germano. For details, please refer to Schmidt et al. [2006a], Maier et al. [2008] and
the references therein. Here, we use this formalism in the context of the fluid equations.

The equations, describing a compressible, viscous, self-gravitating fluid flow are the hydrody-
namical equations (Equation (2.1), (2.2) and (2.3)). We rewrite them here in component form,
without the additional term for external forces F . We have the equation of continuity of mass

(7.5)
∂

∂t
ρ +

∂

∂rj
(vjρ) = 0,

the equation of momentum conservation

(7.6)
∂

∂t
(ρvi) +

∂

∂rj
(vjρvi) = − ∂

∂ri
p +

∂

∂rj
σ′ij + ρgi

and the equation of energy conservation

(7.7)
∂

∂t
(ρe) +

∂

∂rj
(vjρe) = − ∂

∂rj
(vjp) +

∂

∂rj
(viσ

′
ij) + viρgi,

where symbols have their usual meaning, p is pressure, gi is the gravitational acceleration and
σ′ij is the viscous stress tensor.

These are the equations describing ideal quantities, including fluctuations. The next step is
to filter them and separate mean and fluctuating parts.
Assuming that the implicit filter is homogeneous and independent of time, i. e. the kernel is a
function of |x = x′| only, the operation of filtering commutes with time derivatives and spatial
gradients. Therefore, we can express the conservation of mass density of the smoothed field by
an equation for 〈ρ〉, equal to the classical continuity equation. This yields the filtered equation
of mass conservation:

(7.8)
∂

∂t
〈ρ〉+

∂

∂rj
v̂j〈ρ〉 = 0.

Next, we filter the momentum Equation (7.6). Again, we apply our formalism and get

∂

∂t
〈ρ〉v̂i +

∂

∂rj
〈vjρvi〉 = − ∂

∂ri
〈p〉+

∂

∂rj
〈σ′ij〉+ 〈ρgi〉(7.9)

∂

∂t
〈ρ〉v̂i +

∂

∂rj
v̂j〈ρ〉v̂i = − ∂

∂ri
〈p〉+

∂

∂rj
〈σ′ij〉+ 〈ρ〉gi −

∂

∂rj
τ̂(vi, vj)(7.10)

Here we have used Equation (7.3) of generalized moments to replace

(7.11) 〈vjρvi〉 = v̂j〈ρ〉v̂i + τ̂(vi, vj).
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Note that the arguments inside the operator commute, τ̂(vj , vi) = τ̂(vi, vj).

Last, we apply our filtering to the energy Equation (7.7) and write

∂

∂t
〈ρ〉ê +

∂

∂rj
〈vjρe〉 = − ∂

∂rj
〈vjp〉+

∂

∂rj
〈viσ

′
ij〉+ 〈viρgi〉(7.12)

∂

∂t
〈ρ〉ê +

∂

∂rj
〈ρ〉v̂j ê = − ∂

∂rj
〈vjp〉+

∂

∂rj
〈viσ

′
ij〉+ 〈ρ〉v̂iĝi(7.13)

− ∂

∂rj
τ̂(vj , e) + τ̂(vi, gi),

where we have again used the equations of generalized moments to expand the equation.

Consequently, we have arrived at the equations for the filtered density, the filtered momen-
tum and the filtered total energy. Next, we split the total energy equation into two equations,
one for kinetic and one for internal/thermal energy, and filter those. Filtering the kinetic energy,
we get

∂

∂t
〈ρ〉êkin +

∂

∂rj
〈ρ〉v̂j êkin = −〈vi

∂

∂ri
p〉+ 〈vi

∂

∂rj
σ′ij〉+ 〈ρ〉v̂iĝi(7.14)

− ∂

∂rj
τ̂(vj , ekin) + τ̂(vi, gi).

The filtered equation for the internal energy reads very similar

(7.15)
∂

∂t
〈ρ〉êint +

∂

∂rj
〈ρ〉v̂j êint = −〈p ∂

∂rj
vj〉+ 〈σ′ij

∂

∂rj
vi〉 −

∂

∂rj
τ̂(vj , eint).

Now, we have derived the equations for the filtered kinetic and internal energies. Before we can
write the total resolved energy we need the equation for the resolved kinetic energy. To get it
we contract the filtered Equation (7.10) of momentum with the filtered velocity v̂i. We get

(7.16)
∂

∂t
〈ρ〉1

2
v̂iv̂i +

∂

∂rj
v̂j〈ρ〉

1
2
v̂iv̂i = −v̂i

∂

∂ri
〈p〉+ v̂i

∂

∂rj
〈σ′ij〉+ 〈ρ〉v̂iĝi − v̂i

∂

∂rj
τ̂(vi, vj),

where we have used v̂i
∂
∂t v̂i = ∂

∂t
1
2 v̂iv̂i to write the above equation.

Subsequently, we can now add Equation (7.16) of the resolved kinetic energy to the Equation
(7.15) of the filtered internal energy to get the desired equation for the total resolved energy as
eres = êint + 1

2 v̂iv̂i:

∂

∂t
〈ρ〉eres +

∂

∂rj
〈ρ〉v̂jeres = −v̂i

∂

∂ri
〈p〉+ v̂i

∂

∂rj
〈σ′ij〉+ 〈ρ〉v̂iĝi − v̂i

∂

∂rj
τ̂(vi, vj)(7.17)

−〈p ∂

∂ri
vi〉+ 〈σ′ij

∂

∂rj
vi〉 −

∂

∂rj
τ̂(vj , eint)

This last equation contains the coupling of unresolved fluctuations on the filtered resolved flow.
Particularly, the four terms 〈p ∂

∂ri
vi〉, 〈σ′ij ∂

∂rj
vi〉, τ̂(vi, vj) and τ̂(vj , eint) represent this coupling.

Instead of trying to calculate each of those terms from quantities known from the resolved flow
Schmidt et al. [2006a] showed that the first three of these terms are directly connected to what
we call turbulent energy εt. We will get those terms by modeling the balance equation for the
turbulent energy and only the last term τ̂(vj , eint) has to be modelled independently.
Taking εt = 〈ρ〉et = 1

2 τ̂(vi, vi) we use Equations (7.14) and (7.16) to calculate et = êkin − 1
2 v̂iv̂i.
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To do this, we subsequently subtract the left and right hand sides of Equation (7.14) and Equation
(7.16) from each other:

∂

∂t
〈ρ〉et +

∂

∂rj
〈ρ〉v̂jet = −

[
〈vi

∂

∂ri
p〉 − v̂i

∂

∂ri
〈p〉
]

(7.18)

+
[
〈vi

∂

∂rj
σ′ij〉 − v̂i

∂

∂rj
〈σ′ij〉

]
+〈ρ〉v̂iĝi −

∂

∂rj
τ̂(vj , ekin) + τ̂(vi, gi)

−〈ρ〉v̂iĝi + v̂i
∂

∂rj
τ̂(vi, vj).

We expand the second order generalized moment τ̂(vj , ekin) in the third line of the last equation
as follows:

− ∂

∂rj
τ̂(vj , ekin) = − ∂

∂rj

1
2
τ̂(vj , vivi)(7.19)

= −1
2

∂

∂rj
τ̂(vj , vi, vi)−

∂

∂rj
v̂iτ̂(vj , vi)

= −1
2

∂

∂rj
τ̂(vj , vi, vi)− τ̂(vj , vi)

∂

∂rj
v̂i − v̂i

∂

∂rj
τ̂(vj , vi)

where we have used the rule τ̂(a, bc) = τ̂(a, b, c) + 〈b〉τ̂(a, c) + 〈c〉τ̂(a, b) to expand the kinetic
term in the second step, and the chain rule in the last step.

Inserting Equation (7.19) into Equation (7.18) we get

∂

∂t
〈ρ〉et +

∂

∂rj
〈ρ〉v̂jet = −

[
〈vi

∂

∂ri
p〉 − v̂i

∂

∂ri
〈p〉
]

(7.20)

+
[
〈vi

∂

∂rj
σ′ij〉 − v̂i

∂

∂rj
〈σ′ij〉

]
+τ̂(vi, gi)

−1
2

∂

∂rj
τ̂(vj , vi, vi)− τ̂(vj , vi)

∂

∂rj
vj .

It is convenient to use the following chain-rule expansions to rewrite the above equation [Schmidt
et al., 2006a].

〈vi
∂

∂ri
p〉 =

∂

∂ri
〈vip〉 − 〈p

∂

∂ri
vi〉(7.21)

v̂i
∂

∂ri
〈p〉 =

∂

∂ri
v̂i〈p〉 − 〈p〉

∂

∂ri
v̂i(7.22)

〈vi
∂

∂rj
σ′ij〉 =

∂

∂rj
〈viσ

′
ij〉 − 〈σ′ij

∂

∂rj
vi〉(7.23)

v̂i
∂

∂rj
〈σ′ij〉 =

∂

∂rj
v̂i〈σ′ij〉 − 〈σ′ij〉

∂

∂rj
v̂i(7.24)
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With these expressions we finally arrive at the equation of conservation of turbulent energy. We
get

∂

∂t
〈ρ〉et +

∂

∂rj
〈ρ〉v̂jet =

D︷ ︸︸ ︷
− ∂

∂rj

1
2
τ̂(vj , vi, vi) +

−µ︷ ︸︸ ︷
〈vip〉 − v̂i〈p〉−

−κ︷ ︸︸ ︷
〈viσ

′
ij〉+ v̂i〈σ′ij〉

(7.25)

−

〈ρ〉λ︷ ︸︸ ︷[
〈p〉 ∂

∂ri
v̂i − 〈p

∂

∂ri
vi〉
]

+

−〈ρ〉ε︷ ︸︸ ︷[
〈σ′ij〉

∂

∂rj
v̂i − 〈σ′ij

∂

∂rj
vi〉
]

+

Γ︷ ︸︸ ︷
τ̂(vi, gi)−τ̂(vj , vi)

∂

∂rj
τ̂i,

where we have used the overbraces to introduce a new series of substitutions. Accordingly, we
can write the balance equation of turbulent energy as

(7.26)
∂

∂t
〈ρ〉et +

∂

∂rj
〈ρ〉v̂jet = D + Γ− 〈ρ〉λ− 〈ρ〉ε− τ̂(vj , vi)

∂

∂rj
v̂i.

Moreover, using the two expansions from Equations (7.22) and (7.24) and the substitutions from
Equation (7.25) we can also rewrite Equation (7.17) of the total resolved energy:

∂

∂t
〈ρ〉eres +

∂

∂rj
〈ρ〉v̂jeres = − ∂

∂ri
v̂i〈p〉+

∂

∂rj
v̂i〈σ′ij〉+ 〈ρ〉v̂iĝi(7.27)

+〈ρ〉(λ + ε)− v̂i
∂

∂rj
τ̂(vi, vj)−

∂

∂rj
τ̂(vj , eint)

Therefore, we have succeeded in deriving a complete set of equations to describe the dynamics
of a fluid flow split into a smoothed and a fluctuating part.

Summarizing, we again state this set of partial differential equations:
∂

∂t
〈ρ〉+

∂

∂rj
v̂j〈ρ〉 = 0(7.28)

∂

∂t
〈ρ〉v̂i +

∂

∂rj
v̂j〈ρ〉v̂i = − ∂

∂ri
〈p〉+

∂

∂rj
〈σ′ij〉+ 〈ρ〉ĝi −

∂

∂rj
τ̂(vi, vj)(7.29)

∂

∂t
〈ρ〉eres +

∂

∂rj
〈ρ〉v̂jeres = − ∂

∂ri
v̂i〈p〉+

∂

∂rj
v̂i〈σ′ij〉+ 〈ρ〉v̂iĝi(7.30)

+〈ρ〉(λ + ε)− v̂i
∂

∂rj
τ̂(vi, vj)−

∂

∂rj
τ̂(vj , eint)

∂

∂t
〈ρ〉et +

∂

∂rj
〈ρ〉v̂jet = D + Γ− 〈ρ〉λ− 〈ρ〉ε− τ̂(vj , vi)

∂

∂rj
v̂i.(7.31)

Together with the equation of state (Equation (2.8)) as well as the Poisson equation (Equation
(2.4)) to solve for the gravitational potential these are essentially the equations which we use in
our version of Enzo to simulate turbulent astrophysical systems.
The terms of viscous dissipation σij in Equations (7.29) and (7.30) can be neglected for sufficiently



76 7. TURBULENCE AND SUBGRID-SCALE PHYSICS

large Reynolds numbers, this is equivalent to the transition form Navier-Stokes equation to
Euler’s equation for the resolved flow. Consequently, dissipation is completely accounted for by
the ε-term in Equation (7.31) of turbulent energy.
Note that we can split Equation (7.30) into two separate equations for resolved kinetic and
resolved thermal energy, respectively. This features the use of the SGS model in combination
with the Zeus solver.

∂

∂t
〈ρ〉êkin +

∂

∂rj
〈ρ〉v̂j êkin = −v̂i

∂

∂ri
〈p〉+ v̂i

∂

∂rj
〈σ′ij〉+ 〈ρ〉v̂iĝi(7.32)

−v̂i
∂

∂rj
τ̂(vi, vj)

∂

∂t
〈ρ〉êint +

∂

∂rj
〈ρ〉v̂j êint = −〈p〉 ∂

∂rj
v̂j + 〈σ′ij〉

∂

∂rj
v̂i(7.33)

+〈ρ〉(λ + ε)− ∂

∂rj
τ̂(vj , eint)

The major missing piece is to model the explicitly unknown quantities D, Γ, λ, ε, and τ̂(vi, vj)
in terms of the turbulence energy et and to find a model for τ̂(vj , eint) which is independent of
this energy. In the following section we will discuss the relevant closures for our star formation
simulations. For a complete account of the SGS model, see Schmidt et al. [2006a,b]. For more
details on the formalism of filtering, operator rules and the decomposition of equations, please
also refer to the Ph. D. thesis of Maier 2008. This thesis describes this abridgment of our model
in a more extended fashion.

7.2. Closures for the Production of Turbulence Energy

To close the Equations (7.28) to (7.31) and allow for their numerical use, we now need to find
appropriate assumptions to handle the five unknown terms within. The most simple assumption
would just be to completely neglect a term. Fortunately, we are able to do this for two of our
terms. Therefore, we will start the following discussion of subgrid closures with those simplest
model assumptions.

We begin with the only term independent of turbulent energy τ̂(vj , eint). The divergence of
this generalized moment of velocity and internal energy appearing in Equation (7.30) describes
the turbulent transport of heat. This is the first effect we omit in our subgrid model. This is a
rather imperfect approximation since we are not able to resolve all relevant thermal properties
of the flow. However, we consider this turbulent diffusion of internal energy as a secondary effect
and postpone a more realisitic treatment to future work.
Furthermore, the second term we ignore is Γ, which describes small-scale gravitational effects.
Again, this is not close to a desired final solution since we are not able to resolve down to a Jeans
length in our simulations and therefore should not neglect all unresolved gravitational effects.
However, this effect also appears to be rather insignificant for our modeling of molecular cloud
subgrid-scales in the current framework.

To account for the remaining terms D, λ, ε and τ̂(vi, vj) we introduce the interpretation of
the density weighted trace of τ̂(vi, vj) as squared velocity fluctuations q2. Therefore, we write

(7.34) et =
1
2

τ̂(vi, vi)
〈ρ〉

:=
1
2
q2.

These velocity fluctuations q are henceforth used to describe the characteristic velocity of turbu-
lent motions below the grid cutoff. Moreover, the grid cutoff itself constitutes the characteristic
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length scale of the subgrid model. In our simulations, this characteristic length l∆ is the size of
the grid cell.

With these definitions, we turn to the subgrid-scale transport of turbulent energy described
by D. This transport of energy is modeled by a gradient-diffusion hypothesis where it is as-
sumed that the nonlinear term is proportional to the turbulent velocity gradient (see Sagaut
[2006] for more details). Consequently, we realize the computation of D as

(7.35) D =
∂

∂ri
CD〈ρ〉l∆q2 ∂

∂ri
q.

The global constant diffusion coefficient CD has to be determined from numerical experiments.
Schmidt et al. [2006a] find a fiducial value of CD = 0.4.

Next, we turn to the effects of unresolved pressure fluctuations in compressible turbulence which
are encoded in term λ. A simple closure for this term is

(7.36) λ = Cλq2 ∂

∂ri
v̂i,

where the global coefficient Cλ = −0.2 is used.

ε is the term which accounts for the turbulent dissipation as a result of viscosity on subgrid-
scales. Although viscosity can be completely neglected for high enough Reynolds numbers on
large scales, subgrid viscosity converts turbulent energy to internal energy on subgrid scales.
The most simple term which corresponds to a diffusion term one can build from characteristic
quantities, namely turbulent velocity and length scale, is

(7.37) ε = Cε
q3

l∆
.

Here, we will use Cε = 0.5 for all our work.

Finally, we are left with the turbulence production tensor τ̂(vi, vj). The production of tur-
bulence energy, or more precisely, the flux of kinetic energy from resolved to subgrid-scales is
most easily expressed using the symmetry of the latter tensor. Splitting into symmetric tracefree
and diagonal part we write

(7.38) τ̂(vi, vj) = τ̂ij = τ̂∗ij +
1
3
δij〈ρ〉q2.

For later simplicity, we also note that the here separated trace is commonly identified as turbulent
pressure pt. Hence, τ̂ij = τ̂∗ij + pt. Moreover, we follow the old idea of Boussinesq [1877] and
assume that τ̂∗ij has the same form as the stress tensor of a Newtonian fluid σ′ij , also known
as turbulent viscosity hypothesis. Strictly speaking, the turbulent viscosity hypothesis is well
defined for fully developed, homogeneous turbulence. For its validity, the production of turbulent
energy and its dissipation have to equal out when temporally averaged. In that sense Schmidt
et al. [2006a] use the hypothesis for the SGS model we follow along that route for the work at
hand. Hence, we write

(7.39) τ̂∗ij = −2ηtS
∗
ij

where ηt is the turbulent dynamic viscosity ηt = 〈ρ〉νt = 〈ρ〉Cν l∆q and a trace free part of the
turbulent stress tensor is

(7.40) S∗ij =
1
2

(
∂

∂rj
v̂i +

∂

∂ri
v̂j

)
− 1

3
δij

∂

∂rk
v̂.
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Henceforth, we can express the turbulence production tensor as

(7.41) τ̂(vi, vj) = −2〈ρ〉Cν l∆qS∗ij +
1
3
δij〈ρ〉q2,

where the last global parameter is calibrated to Cν = 0.05 by Schmidt et al. [2006a].

Note that at this point we have ultimately succeeded to express all terms in the filtered fluid
Equations (7.28) to (7.31) in form of computable quantities. Combining these equations with the
four closure Equations (7.35) to (7.41) and the corresponding values for the global parameters
CD, Cλ, Cε and Cν we have arrived at a fully determined set of equations, readily usable for
numerical experiments.

7.3. Subgrid-Scale Physics on an Adaptive Mesh

As described in the last section, we can use the filtered equations to solve for the dynamical
evolution of a flow in our simulations. However, it is important to account for the fact that our
subgrid-scale model of turbulent energy as well as the derived closures conceptualize the idea of an
almost isotropic occurrence of velocity fluctuations. Henceforth, it is important to augment the
concept of large-eddy simulations with adaptive mesh refinement in order to ensure isotropy in the
resolved scales. In other words, whenever LES are insufficient to capture anisotropies stemming
from large-scale flow features, the massive usage of AMR has to resolve these anisotropies of
energy-containing scales in order to render the results of our subgrid-scale model to stay within
reasonable bounds.
Technically, this implies that the additionally generated numerical quantity, the turbulent energy
field, has to be evolved not only in space and time but also with respect to the grid resolution.
As for all other quantities (i. e. density) Enzo interpolates values for a new fine grid from the
coarser parent grid whenever the resolution is increased by AMR. Moreover, once a region is
more resolved than with the root grid, the code averages values on the fine grid to replace the
underlying coarse grid values. However, turbulent energy is essentially scale-dependend and we
imperatively need to account for this dependence when refining or derefining the turbulent energy
field.
From the Kolmogorov [1941] theory we know the scaling relation for incompressible turbulence
and use this relation to adjust the turbulent energy on two differently refined levels

(7.42)
et,1

et,2
=

q2
1

q2
2

∼
(

l∆,1

l∆,2

)2/3

.

However, for compressible turbulence when velocity fluctuations become comparable or larger
than the speed of sound, modifications to the above relation are expedient. Unfortunately, it is
yet unclear how exactly these modifications have to look like.
It is important to stress that this scaling relation is only applied to adjust the presumingly
subsonic resolved scales while the subgrid-scales containing trans- and supersonic velocity fluc-
tuations remain untouched.
Using the above scaling relation, the subgrid-scale model implementation adjusts the values of
the turbulent energy field on the resolved levels according to a simple scheme whenever the
resolution of a certain simulation area changes.
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Refinement Derefinement

Values from the parent grid are interpolated
using the standard Enzo interpolation method.

Values on the fine grid are averaged and used
to replace the underlying coarse grid values.

The values of velocity v̂i and turbulent energy
et on the new fine grid are corrected according
to

The values of the remaining coarse grid zones
which had been covered by a finer grid are cor-
rected according to

v̂i,fine = v̂i

√
1 + et

ekin
(1− r−2/3), et,coarse = etr

2/3,

et,fine = etr
−2/3. v̂i,coarse = v̂i

√
1− et

ekin
(r2/3 − 1).

The resolved energy is adjusted to ensure en-
ergy conservation.

Energy conservation is ensured as well as posi-
tivity of energy values.

The factor r in the above equations is the label for the grid refinement level, where r = 0 identi-
fies the rood grid. With these two simple algorithmic procedures we keep the turbulent energy
field in sync with the adaptive mesh refinement.

7.4. SGS Model Specialties for Galaxy Simulations

Additionally to the above described SGS model and its realization, there are two more aspects
we particularly use for simulating star formation in disk galaxies. An artificial limitation of the
turbulent Mach number and the treatment of turbulent energy production in strong shocks.
First, a certain upper limit for the turbulent Mach number is present in all our simulations
including the subgrid model. This accounts for the fact that low density gas can effectively be
accelerated in the potential of a gravitational field. Yielding extreme velocity gradients, this
would result in unphysically high production of turbulence energy owing to our implementation
of the turbulent viscosity hypothesis. However, as indicated earlier, the turbulent viscosity hy-
pothesis breaks down in such a scenario and it is advisable to, therefore, alter the production
mechanism of turbulent energy in order to remain within reasonable bounds. We achieve this by
limiting the turbulent Mach number to an upper value. We set Mt,max = 5 in all our subgrid
simulations. This has severe influence on the subgrid-scale turbulence star formation algorithm
which directly depends on the turbulent Mach number. As this dependence follows a negative
power law relation (cf. Equation (4.21)) an upper limit in the Mach number denotes a lower
limit for the star formation rate per free-fall time.
This is indeed an undesired effect, however, necessary for numerical stability of the current ver-
sion of the SGS model. There are two reasons why we still claim to yield auspicious results
from our simulations. Firstly, simulating turbulent Mach numbers up to M ≈ 5, we are well at
the lower limit of the parameter space where most of star formation is assumed to take place.
Therefore, while not yet able to fully cover the important parameter range, we are neverthe-
less in the interesting range. Secondly, note the low absolute value of the power law index of
SFRff ∝ M−0.32. Krumholz and McKee themselves single out this weak dependence and explain
its reason. Holding αvir fixed while increasing M increases the model inherent density limit xcrit

and therefore renders less gas able to collapse as it must reach higher gas density to collapse.
Contrarily, the increase in M also broadens the probability distribution function rendering more
gas at higher densities able to collapse. The mutual cancellation of both effects results in the
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weak Mach number dependence of the model. Hence, the limited turbulent Mach number cer-
tainly is a shortcoming of the model we need to keep in mind for the analysis, however, we are
able to do reasonable physics at the lower end of the parameter space.

Second, it is necessary to additionally account for the most localized and anisotropic features
that appear in our simulations. Even with AMR it might happen that the numerical scheme is
not able to resolve all of these shocks to sufficient degrees of refinement in order to stretch out the
anisotropies. Aside shocks, this is also true for strongly self-gravitating regions with sharp local
gradients in the gravitational potential. For these cases it is advisable to reduce the influence of
the subgrid model in order not to artificially influence the occurring shocks. Therefore, we use a
simple shock detector,

(7.43) − ∂v̂i

∂ri
l∆ > cs,

which identifies all cells with velocity increments larger than the local sound speed cs. For all
these cells we alter the production term of turbulent energy by updating the now local production
parameter Cν to be determined as

(7.44) Cν = 0.05
c2
s

(l∆d)2
,

where we have used d = ∂v̂i

∂ri
to write the expression in an appealing way.

For strong shocks which automatically become highly resolved, hence are covered by cells having
small lengths l∆, and at the same time having high values for the speed of sound, as well as large
negative divergence of the velocity field, this effectively reduces the effects of the SGS algorithm
as desired for non-isotropic local events.

This last Chapter (7) is a complete presentation of all relevant aspects of our subgrid model,
with respect to our galaxy scale star formation simulations, and its implementation in the Enzo
code. For more details on the conceptual work, we again refer readers to the work originally
introducing and testing the model [Schmidt et al., 2006a,b]. Moreover, Maier et al. [2008] has
served as a guideline for the presentation in this work and the paper by the latter authors already
shows our endeavors to improve the model. In particular, several augmentations concerning the
treatment of transsonic and supersonic velocity fluctuations have been developed and discussed
above. Moreover, one of the major ongoing efforts in our group is the continuous improvement
of the model towards an even better account of the effects of compressibility and high Mach
number turbulent flows.



CHAPTER 8

Density Distribution of Gas in Star Forming Regions

For the development of their analytic star formation algorithm Krumholz and McKee [2005]
assume that star formation takes place in molecular clouds that have lognormal density distribu-
tions. This basic assumption becomes important when estimating the amount of mass capable
of gravitational collapse and star formation. It therefore has significant influence on the star for-
mation rate. The latter authors give straight arguments for their assumptions and compare and
fit their equations to numerical simulations yielding a calibrated parameterization ready for the
implementation in numerical simulations. However, recent numerical experiments of our group
[Schmidt et al., 2008b] question the assumption of a lognormal density distribution in supersonic,
turbulent, isothermal gas. Therefore, we discuss the lognormal distribution in the following sec-
tions, report on the results of our experiments and draw conclusions for the implementation of
the KM05 star formation theory.

8.1. The Lognormal distribution

In probability and statistics, the lognormal distribution is a distribution of any random variable
whose logarithm is normally distributed. The positive definite continuous random variable X is
lognormally distributed with the dependent parameters µL and σ2

L when the random variable
Y has a normal distribution with the same parameters µL and σ2

L, where µL and σ2
L are expec-

tation value and standard deviation of the transformed random variable Y while µ and σ2 are
expectation value and standard deviation of X.

(8.1) Y = log X

Although the base of the logarithm does not matter in the sense that if loga X is normally
distributed, then so is logb X for any two positive numbers a, b 6= 1, we will use the natural
logarithm throughout this work if not stated otherwise.
The probability density and cumulative distribution functions for the lognormal distributions are

(8.2) p(ρ)dρ =
1

ρ
√

2πσδ

exp
(
− (ln ρ− ln ρ)2

2σ2
δ

)
dρ

(8.3) d(ρ) =
1
2

[
1 + erf

(
ln ρ− ln ρ

σδ

√
2

)]
,

where the density ρ is the quantity which is lognormally distributed (X) and δ = ln ρ (Y ) its
normal substitution.
Using this substitution, we can rewrite equation (8.2) as

(8.4) p(δ)dδ =
1√

2πσδ

exp
(
− (δ − µδ)2

2σ2
δ

)
dδ

where we have also used dρ
ρ = d ln ρ and p(ρ)dρ = p(ln ρ)d ln ρ and the substitution therein. We

have labeled µ and σ with subscripts δ to stress that they are mean and standard deviation of
the variables logarithm δ = ln ρ.

81
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Equation (8.4) is commonly given in the literature as definition for a lognormal distribution
(see e. g. Padoan and Nordlund [2002]).
Note that we have used the normalized volume density ρ = ρ′/ρ0. The mean of the logarithm of
density ln ρ is determined by the standard deviation of the logarithm of density σδ.

(8.5) µδ = ln ρ = −σ2
δ

2

Furthermore, the latter authors declare that the standard deviation is found to be a function of
the rms Mach number M of the flow under consideration and report a correlation factor φ = 1

4 .

(8.6) σ2
δ = ln

(
1 + φM 2

rms

)
We note that in this definition the rms Mach number is defined as three dimensional quantity
M = |~v| /cs and is related to rms Mach number in one dimensional simulations via M1D =
1/
√

3 M3D.

The build up of density fluctuations in simulations of astrophysical flows can be described as a
random multiplicative process. Once the density ρ is logarithmically parameterized as δ̃ = ln ρ
or including a normalization as δ = ln(ρ/ρ0), the random process becomes additive at the level of
the variable δ. Hence, δ is the sum of random density fluctuations. The sum of identical random
processes is known to have a Gaussian distribution as a result of the Central Limit Theorem
and the probability density function is thus expected to show normal distribution. Furthermore,
Equation (8.5) is a result of the constraint of mass conservation or simply 〈ρ/ρ0〉 = 1 requires
the relation of µδ and σδ.

For completeness, we state the interdependence of expectation value and standard deviation
of the normal and lognormal distributiona.

(8.7) µρ = exp
(

µδ +
σ2

δ

2

)

(8.8) σ2
ρ =

[
exp (σ2

δ )− 1
]
exp

(
2µδ + σ2

δ

)
One can use this to derive the linear correlation of the empirically found logarithmic correlation
of standard deviation and three dimensional rms Mach number. Passot and Vázquez-Semadeni
[1998] use the correlation σ2 = βM 2 and report a value for the correlation factor β = 1 for their
isothermal simulations. However, these are one dimensional simulations and so is their Mach
number. Hence, we have to add a factor of 1/3 or φ

.= β/3 to reach accordance. Numerical
evaluation then contrasts φ = 0.25 and φ ' 0.33 for Padoan and Nordlund [2002] and Passot
and Vázquez-Semadeni [1998], respectively. Substitution of Equation (8.6) and Equation (8.5)
in Equation (8.8) yields

(8.9) σ2
ρ = φM 2.

aThis is only valid if the natural logarithm is used for the distribution function.
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Clinging a little closer to probability theory and statistics we find the coefficient of variation η,
which is a normalized measure of dispersion of a probability distribution.

µρ = exp
(

µδ +
σ2

δ

2

)
→ µ2

ρ = exp
(
2µδ + σ2

δ

)
(8.10)

σ2
ρ =

[
exp (σ2

δ )− 1
]
µ2

ρ(8.11)

η2 =
σ2

ρ

µ2
ρ

=
[
exp (σ2

δ )− 1
]

(8.12)

Again, substituting σ2
δ from Equation (8.6) gives

(8.13) η2 = φM 2.

There is good reason for the correlation at hand. The coefficient of variation is most useful
because the standard deviation of data is only meaningful in context of the mean of data. There-
fore, when comparing largely different simulations the standard deviation strongly depends on
units and scalings while the coefficient of correlation is a universal dimensionless number which
can be compared across simulations, and more importantly, points towards a common source
of the described variations. Obviously, the rms Mach number, yet another dimensionless num-
ber, seems the logical choice to characterize the magnitude of perturbations in the probability
distribution of density in supersonic flows. Henceforth, the appearance of the universal scaling
relation of the dispersion of density probability density function with the rms Mach number of
the simulated flow in the literature is not surprising and can be interpreted as consequence of a
correlation of two universally normalized quantities.

8.2. Compressively Driven Interstellar Turbulence

We have performed extensive three dimensional simulations of forced isothermal interstellar
turbulence with Enzo. For this case we used the implementation of the piecewise-parabolic
method (PPM) and performed static grid as well as adaptive mesh refinement simulations with
an effective resolution of N = 7683. The large-scale forcing is realized by an external stochastic
field dominated by rotation-free modes. The forcing term is coupled to the momentum Equation
(2.2) in the form

(8.14) ρ
Dv

Dt
= −∇p + ρf ,

where we have used

(8.15)
D

Dt
=

∂

∂t
+ v ·∇

to rewrite the Lagrangian derivative. Note that ρf is the external force density. Moreover, the
turbulence simulations reported in this section do not include gravitational or viscous terms.
The simulations are described in Schmidt et al. [2008b], here we only summarize the results
concerning the density statistics and compare to other work in this field.

Previous theoretical and numerical studies favor lognormal statistics for the mass density of
supersonic turbulence in isothermal gas [Vazquez-Semadeni, 1994, Padoan et al., 1997, Passot
and Vázquez-Semadeni, 1998, Padoan and Nordlund, 2002]. This means that the distribution of
δ = ln(ρ/ρ0) is Gaussian. Consistency with 〈ρ/ρ0〉 = 1 requires the variance of δ being related
to the mean via σ2

δ = −2〈δ〉. However, as one can see in Figure (8.1), a normal distribution
subject to this constraint does not properly fit the time-averaged δ-PDF from our simulation.
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Figure 8.1. Temporally averaged probability density function of the logarith-
mic mass density fluctuations, ln(ρ/ρ0), and lognormal fit functions (thin dashed
lines).

The standard deviation of the closest possible fit is σδ ≈ 1.76. Padoan and Nordlund [2002]
proposed that σδ can be parameterized in terms of the rms Mach number:

(8.16) σ2
δ = ln

(
1 + 0.25M 2

rms

)
.

We have Mrms ≈ 2.3 in the interval of time over which the PDF of δ is averaged. For this
Mach number, the above formula yields σδ ≈ 0.92. The corresponding PDF is also plotted for
comparison in Figure (8.1). Clearly, compressively driven turbulence produces a substantially
broader range of density fluctuations than predicted by Padoan and Nordlund. Kritsuk et al.
[2007], on the other hand, found a narrower range in relation to the rms Mach number.

Since we have sampled the δ-PDFs over many integral time scales, the shape of our time-
averaged PDF is very likely genuine. In test simulations, we have also excluded the possibilities
that it is purely a resolution effect or a consequence of the nearly isothermal approximation. A
skewed distribution of density fluctuations has important consequences. In Figure (8.2) the total
mass of gas with density higher than a given threshold density

(8.17) M(ρ) = (2L)3
∫ ∞

ρ

ρ′pdf(ρ′) dρ′ = ρ0(2L)3
∫ ∞

δ

exp(δ) pdf(δ) dδ′,

is plotted for the time-averaged probability density function PDF(δ) from our simulation, closest
lognormal PDF and the lognormal PDF with σδ ≈ 0.92, respectively. It is palpable that calculat-
ing M(ρ) on the basis of the lognormal fit with σδ ≈ 1.76 in place of the numerical PDF implies
enormously wrong mass fractions in the high-density peaks. On the other hand, the prediction of
M(ρ) based on the Padoan-Nordlund relation stated in Equation (8.16) underestimates the total
mass of highly compressed gas by about one order of magnitude. For ρ & 100 a numerical cutoff
can be discerned, as the mass function corresponding to the numerical PDF plunges towards zero
in the logarithmically scaled plot (b). The reason is that density fluctuations cannot become
arbitrarily high as a result of the spatial discretization and, because of the discretization in time,
the most intermittent events are too rare to show up in the statistics. The mass range affected
by the numerical cutoff is M(ρ) . 10−3. We found that this range largely overlaps with the mass
range for the computation of clump mass spectra following the prescription by Padoan et al.
[2007b]. The high sensitivity of mass spectra on numerical resolution has already been noted
by Hennebelle and Audit [2007]. Consequently, it is mandatory to go to substantially higher
resolutions which, in turn, necessitates the application of adaptive mesh refinement. Unlike the
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Figure 8.2. Integrated mass M(ρ) in gas of density higher than ρ in linear
scaling (a) and logarithmic scaling (b). The thick solid line results from the time-
averaged PDF obtained from our simulation. The closest lognormal distribution
and the lognormal distribution implied by the Padoan-Nordlund Relation (8.16)
yield the dashed cures. While the former greatly overestimates the mass in the
density peaks, the latter underestimates the fraction of over-dense gas.

AMR simulation at hand, extreme density peaks have to be followed to very high resolution
and, at the same time, turbulent flow has to be treated self-consistently in less resolved regions
of lower gas density. This becomes problematic in case of galactic scale simulations where the
resolution limit is orders of magnitude above these density values.

8.3. Deviations from the Lognormal Distribution of Gas Densities

A justification for lognormal PDFs of the mass density based on analytical arguments was given
by Passot and Vázquez-Semadeni [1998] for one-dimensional isothermal gas dynamics without
external forces. To what extent do these arguments apply to three-dimensional turbulence with
stochastic forcing? Setting the pressure p = c2

sρ, where cs is the isothermal speed of sound, the
pressure gradient divided by the mass density is given by

(8.18)
1
ρ
∇p = c2

s∇δ.

Thus, we can write the first two Euler equations in the form
Dδ

Dt
= −d,(8.19)

Dv

Dt
= −c2

s∇δ + f .(8.20)

The first equation means that infinitesimal Lagrangian changes of the density are given by −d dt.
It is argued that density fluctuations are built up in a hierarchical process, meaning that δ evolves
as a random process, where infinitesimal increments δ+dt (density enhancements) and decrements
δ−dt (density reductions) are added with equal probability independent of the value of δ. The
central limit theorem then implies a Gaussian distribution of δ. This is the Wiener process.
The Wiener process is a continuous-time stochastic process that generates Gaussian random
vector deviates in the stochastic differential equation of the forcing algorithm (see Schmidt et al.
[2008b]). These arguments also apply to the three-dimensional case.
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However, the action of an external force can cause deviations from the lognormal statistics.
In supersonic turbulence, the steepening of density gradients is associated with rising gas com-
pression. This is indicated by a positive rate of compression, i. e., the negative time derivative of
the divergence d = ∇v. Applying the operator ∇· on Equation (8.14), it can be shown that the
rate of compression is given by

(8.21) − D

Dt
d =

1
2
(
|S|2 − ω2

)
+ ∇ ·

(
1
ρ
∇p− f

)
,

where ω = ∇ × v is the vorticity. Let us consider the equation for the rate of compression in
the isothermal case:

(8.22) − D

Dt
d =

1
2
(
|S|2 − ω2

)
+ c2

0∇δ −∇ · f .

In regions, in which ∇ · f < 0, the force tends to increase the rate of compression. The equa-
tion for the density fluctuations (cf. Equation (8.19)) implies that the corresponding fractional
change of −d dt results in a stronger increment δ+dt or a smaller decrement δ−dt, i. e., a force
with positive convergence locally supports compression and weakens rarefaction, as one would
expect. In the case ∇ · f > 0, the force has the opposite effect. If the force field is stochastic,
both effects will occur with equal probability at any time at any position (by the very construc-
tion of the force field). Hence, the net effect depends on the periods of time a particular fluid
parcel is contracting (−d > 0) or expanding (−d < 0). Apart from that, the effect will weaken
toward smaller scales and higher densities (because of scaling considerations). For a detailed
analysis, Lagrangian density statistics would be required. From the existing simulation, we have
only Eulerian statistics. Nevertheless, our considerations show that, in general, forces with a
strong dilatational component may cause deviations form a lognormal distribution of the density
fluctuations in isothermal gas. This is what we observe in our simulation.

8.4. The Density Distribution in the Star Formation Algorithm

As stated earlier, lognormality is one of the basic assumptions in the KM05 star formation pre-
scription. However, the model still allows to introduce qualitative changes to the assumed density
distribution function without corrupting the entire algorithm. In particular, the original model
by KM05 also has two numerical factors which are determined by fitting the analytical equation
to numerical simulations.
It was our original plan to repeat this calibration on the basis of the above described simulation
of isothermal interstellar turbulence. However, as we discovered the importance of the employed
forcing mode it became quickly obvious that the dilatationally forced simulations with significant
deviations from lognormal density distributions would not be adequate to perform the desired
calibration procedure. More work is underway to further investigate the issue at hand.

There are good arguments that compressive modes dominate the driving of interstellar tur-
bulence on large scales. As described earlier, it is believed that especially supernova shock waves
and the interaction of supernova bubbles are prime candidates for this driving. The influence of
these mechanisms on the ISM would mostly be a result of compression effects, and consequently
produce compressive modes. This reasoning for a more realistic driving was among the reasons
for simulating compressive forcing in the first place.
As a consequence of this approach, it appears to be possible to improve the prescription of the
probability distribution function of density in a supersonically turbulent isothermal gas consid-
erably. Furthermore, this might strongly impact on the results of the star formation algorithm
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proposed by KM05. However, we have not yet been able to find a similarly applicable analytic
expression, as the lognormal distribution, which matches the PDF of our analysis more accu-
rately. Additionally, more work is necessary to include self-gravity and thermal effects in these
simulations to analyze gravitational contraction and perform improved calibrations of the nu-
merical parameters in the algorithm.

Owing to these reasons and the primary focus on the implementation and application of the
original KM05 model we resorted back to the original idea and calibration of Krumholz and
McKee and will use the formulation and parameterization of the star formation algorithm given
by the latter authors.





Summary of Numerics

The Part (II) of this thesis is concerned with the numerical aspects of our endeavor to simulate
turbulence and star formation in disk galaxies. Therefore, we have started this part with a de-
scription of the general technical framework we are using. We have introduced the Enzo code
and discussed the employed solver algorithms to evolve the hydrodynamical equations. Further-
more, we have described the important aspects of thermodynamical processes and their technical
realization as well as the originally available particle creation and star formation routines.
Following this description of the public release version of Enzo, we presented our numerical
setup of an isolated disk galaxy. Again, we have been following the natural order of scales and
started the description by integrating our galaxies into the cosmological context. Proceeding
from the details of the dark matter profile to the baryonic gas density profile we continued to
explain our setup, and discussed the details of the numerical realization of cooling and heating
processes. We closed the description of the galaxy setup by presenting our changes to the original
star formation routines and the introduction of our new turbulence regulated algorithm.
Consequently, we continued with a detailed presentation of the turbulence subgrid-scale model
which supplies the information necessary for the use of the latter star formation algorithm.
Therefore, we have shown how to derive the governing equations yielding the turbulent subgrid-
scale energy. Furthermore, we also added a detailed description of how we close these equations
with appropriate subgrid-scale closures. We continued this explanation of the numerical details
of the subgrid model by describing how we combine SGS and AMR, and concluded with the
description of some specialties concerning our galaxy simulations.
With the complete technical description of the galaxy simulations at hand, we added a supple-
mentary discussion on the assumption of a lognormal density distribution of gas in star formation
regions. We started with the theoretical description of the assumed distribution which appears
as basic element in the turbulence regulated star formation scenario. Subsequently, we described
our numerical work which lead us to the conclusion to have serious doubt about the assumed
lognormal distribution function. Finally, we concluded with a discussion why we nevertheless
continue our present work with the originally proposed model.

Thus, we have finished the presentation of our numerical work and given all relevant concep-
tual and technical details. Next, we will proceed to Part (III) and show what we have been able
to achieve using everything presented up to now.
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Part III

Learning from Simulations





CHAPTER 9

Results of Numerical Simulations

Simulating star formation and especially turbulence regulated star formation in models of iso-
lated disk galaxies is a quite challenging endeavor. In the preceding parts of this thesis we have
described the theory and numerics we use to approach the problem. Now, we systematically ana-
lyze and present our simulation runs. We performed the common standard analyses (i. e. density
and temperature distributions) and discuss them here. Moreover, we will give extensive details
on how we analyze the particular star formation and turbulence content in our simulations. Fi-
nally, we draw conclusions and discuss shortcomings as well as prospective achievements of work
using our subgrid-scale approach to model turbulence and star formation.

9.1. Redefining Initial Conditions

It is well known that setting up a full three-dimensional model of some dynamically stable astro-
physical disk configuration is rather difficult. Rotational forces, gravity, the temperature profile
and distribution of gas density have to have balanced forces in order for the disk not to disperse
immediately. With our approach to set up a gas disk as described in Section (6.2) we do not
attempt to construct such a system from scratch. We rather define the system’s gross properties
and let it self–consistently evolve towards the desired initial conditions. From the description
of our setup in the latter section as well as in the work of Tasker and Bryan [2006] it is easy
to see that using a constant initial temperature of 104 K the pressure profile directly depends
on the gas density distribution. However, the rotational velocity in the gas disk is initialized
only with respect to the gravitational potential. This leads to a dynamically unstable initial
configuration. In Figure (9.1) we show three projections of the gas disk along the axis of rotation
(face-on projections) of the original initial setup. The three projections are snapshots of the very

(a) 0Myr (b) 50 Myr (c) 100Myr

Figure 9.1. Face-on projections of the initial gas disk configuration. The
pictures are 60 kpc across and show color coded gas density where the most
dense gas 1015 M� Mpc−2 is depicted white, while the lowest gas density
1010 M� Mpc−2 is colored black.
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(a) 0Myr (b) 50 Myr (c) 100Myr

Figure 9.2. Side-on projections of the initial gas disk configuration. The pic-
tures are again 60 kpc across and use the same color table as Figure (9.1)

early evolution of the disk and show the first 100 Myr of a simulation. As this is just a test of
the initial conditions, this simulation does not use radiative cooling and the formation of sink
particles is switched off. At first glance we see that the gas distribution dramatically changes
its appearance in the early phase of the simulation. Qualitatively, we observe a contraction of
the outer gas disk, while a strong circular shock wave appears in the center of the disk. This
circular compression of gas travels radially outwards and is itself followed by other subsequent
compression waves emerging from the disk center.

The appearance of this violent relaxation of initial conditions is even more eminent in the
side-on projections of the disk. In Figure (9.2) we see the shock front sweeping up gas as it
moves outwards. In simulations where the generation of sink particles was allowed in this early
phase of the simulation, we saw a strong burst of particle generation following the circular ring of
compressed gas radially travelling outwards through the disk. In fact, Tasker and Bryan [2008]
also report to observe a strong initial star burst in their simulations and account for it by fo-
cussing the main part of their analysis on later times. Although the initial conditions are rather
artificial in the first place and setting up a Milky Way style galaxy with the correct mass, but
all in gas and none in stars, will certainly result in a rapid production of a stellar component
as soon as allowed to dynamically evolve, we nevertheless decided not to have the latter process
to be influenced by the relaxation waves occurring as a result of the initial conditions. Contrar-
ily, we decided to evolve the initial setup, still without cooling and particle formation, until it
reaches a dynamically stable configuration where it does not change its gross properties anymore.

For this reason, we evolve our simulations for a full standard simulation time, namely 1.4 Gyr
before we switch to the dynamical phase of the simulation. Note that while neither radiative
cooling is active nor does the code have to simulate the formation and evolution of particles, we
only need a couple of hundred CPU hours to simulate towards stable initial conditions.
Consequently, we define new initial conditions with t = 0 Myr after 1.4 Gyr of the earlier simu-
lation. Figure (9.3) shows again face-on and side-on projections of this state of the simulation.
This is the configuration from which we restart our simulations. The most eminent difference
between the old and the new initial conditions is the vertical thickness of the gas disk. Gas
density now appears to decline much more slowly with distance to the galactic midplane, as
moderately changing profiles are much less sensitive to small perturbations.
Moreover, from Figure (9.4) we also see significant differences in the temperature profile. While

the original setup used a fixed temperature, we now see a narrow distribution of temperatures,
approximately at a value one order of magnitude hotter than before. Note that the analysis of



9.1. REDEFINING INITIAL CONDITIONS 95

(a) 1.4 Gyr
.
= 0Myr (b) 1.4Gyr

.
= 0Myr

Figure 9.3. New initial conditions of our simulations after 1.4 Gyr when the
setup has reach a dynamically stable configuration.

(a) Volume (blue) and mass (red) frac-
tions of baryonic gas in the extraction
volume.

(b) Pressure contours. The straight lines depict constant pres-
sure.

Figure 9.4. Initial conditions of our simulations. Plot (a) shows the tempera-
ture of the gas while (b) shows how the temperature is related to the gas density.

this picture evaluates a volume centered on the galactic center comprising of three radial scale
lengths (= 10.5 kpc) in radius and one vertical scale height (325 pc) as distance to the galactic
midplane to focus on the main disk. Additionally, the right plot (b) in the last figure, depicts
countours of pressure in the disk. We include this picture to clarify that we do not re-initialize
our simulations with a disk in pressure equilibrium, but in order to avoid the effects of an artifi-
cial initial compression shock wave.
Unfortunately, it is hard to judge which consequences the excluded effects stemming from the

original initial conditions can have on a simulation. In simulations not presented here, we have
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seen that a significant amount of gas is transformed into particles by the outwards propagating
shock. Firstly, this gas is not available for later star formation. Secondly, by acquiring properties
of the generating cells, especially velocity and momentum, a major fraction of particles carries
the imprint of the initial conditions far into the simulations. Thirdly, in cases with feedback the
latter effect might be even more serious as particles now determine location and strength (owing
to the coupling of feedback and particle creation time) of the feedback. Certainly, the artificial
construction of initial conditions, the original way or our relaxed version, is a shortcoming of
the simulations at hand. More importantly, we discuss this topic at length here, because it also
certainly influences the comparability to the earlier work of Tasker and Bryan [2006] and Tasker
and Bryan [2008]. However, we consider it an important improvement of the latter work.

9.2. Summary of Performed Simulations

In the remaining part of this and the following chapter we will disscuss several simulations, all
using the new initial conditions. Generally, we develop two different branches of simulations. The
first branch are simulations similar to those presented by Tasker and Bryan [2006] and Tasker
and Bryan [2008] but with our new initial conditions and some differently motivated parameter
choices. The second branch is devoted to our subgrid-scale approach to model turbulence effects
below the resolution limit to regulate star formation.
All simulations have the same dark matter potential (cf. Section (6.1)) as well as initial gas and
temperature distribution (cf. Section (9.1)). The common parameters of all simulations are a box
size of 1 Mpc on a side, resolved by a root grid resolution of 1283 including 8 levels of refinement.
Refinement is based an a density difference criterion. We use an adiabatic equation of state and
employ a ratio of specific heats of γ = 5/3. We do not simulate any chemistry but use a global
mean molecular weight of µ = 1.2 to mimic a mixture of atomic and molecular hydrogen. All
our simulations use a standard number density of n = 103 cm−3 particles per cubic centimeter
as particle creation threshold.
On this common basis, we perform several different realizations of simulations. We start with
a simulation using SF1 star formation algorithm with star formation efficiency ε = 0.5 (cf.
Equation(5.24)). Furthermore, a minimum sink particle mass of M sink

min = 104 M� is used as de-
scribed in Section (5.4). This parameter set is simulated once without feedback, hereafter termed
standard case (SF1F0e50), and once including feedback from type II supernovae (SF1F1e50) as
described in Section (5.5). Here we set the code to return a total fraction of fej = 0.25 (cf.
Equation (5.26)) of gas converted into particles, back into the simulation volume as gas during
the evolution of particles. The feedback energy is set as fSN = 10−5 as described in the latter
section. Additionally, we study different simulations, one using a larger sink particle mass limit
and one using relaxed particle creation criteria.

To develop the second branch of turbulence regulated star formation, we also perform simu-
lations with varying star formation efficiency as well as with and without feedback. Finally, we
perform the full turbulence regulated calculation and variations. We summarize the different
realizations in Table (9.1).

9.3. Evolution of the Gas Disk

In this section, we discuss the evolution of the interstellar gas in the galactic disk. The particular
properties of this evolution strongly depend on the particular type of simulation (including feed-
back or not, type of SF algorithm, SF efficiency,...). However, before we get into all the details,
we introduce the general properties of our simulations and detail the employed analyses.
Therefore, we begin the discussion with the standard simulation with no feedback, no subgrid-
scale model, the SF1 star formation algorithm and standard values for all other quantities.



9.3. EVOLUTION OF THE GAS DISK 97

Name Star Formation Algorithm Feedback Min Particle Mass Efficiency

SF1F0e50 SF1 No 104 M� 0.5

SF1F1e50 SF1 Yes 104 M� 0.5

SF1F0e50mpm SF1 No 105 M� 0.5

SF2F0e50 SF2 No 104 M� 0.5

SF1F0e3 SF1 No 104 M� 0.03
SF1F1e3 SF1 Yes 104 M� 0.03
SF1F1e03 SF1 Yes 104 M� 0.003
SF1F0e50sgsMa5 SF1 No 104 M� 0.5, Mt,max = 5

SF3F0sgsMa10err SF3 (incorrect particle gravity) No 104 M� KM05, Mt,max = 10
SF3F0sgsMa5 SF3 No 104 M� KM05, Mt,max = 5
SF3F1sgsMa1 SF3 Yes 104 M� KM05, Mt,max = 1

Table 9.1. Overview of performed simulations.

To discuss the structure and evolution of the baryonic gas in the galactic disk, we start with a
visual inspection of the temporal evolution of face-on (cf. Figure (9.5)) and side-on (cf. Figure
(9.6)) projections. In the very early phase of the evolution, during the first 50 Myr, we see how
the central, most dense part of the disk becomes unstable and starts to fragment. After 20 Myr
we already see how gas accumulates in fine filamentary sheets building a highly irregular web. In
the immediate center of the disk, where the gas density was originally most pronounced, patches
with significantly depleted gas density begin to show up.
Subsequently, the two-dimensional filaments start to break up into point or cloud like structures.
The process of fragmentation again starts in the inner part of the disk and proceeds outwards.
At 50 Myr we see small round accumulations of dense gas in the center of the disk, while the
intermediate disk still shows filaments of dense gas. The outer part of the disk is yet completely
untouched by the processes occurring in the disk center.
Moreover, during the further temporal evolution more and more of the filaments disappear and
transform into clouds. In the frame depicting 100 Myr of simulation time, only an outer ring
of gas filaments remains. Gas from the intermediate disk range has begun to be swept up and
accumulates into these filaments. Additionally, larger eddy like structures appear in the inner
part of the disk, stemming from merging smaller clouds.
This evolution continuous and the fragmentation proceeds further outward through the gas disk.
During the following 100 Myr, large amounts of gas are transformed into stars (not depicted
here). The number of clouds and larger accumulations of gas as well as their size is reduced
significantly. Moreover, large voids of very low density gas start to appear at intermediate disk
scale.
Subsequently, the depletion of gas in the inner and intermediate disk results in a continuous
inflow of gas from the outer part. At 500 Myr we see a clear reduction of the overall gas density
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(a) 20 Myr (b) 50 Myr (c) 100Myr

(d) 200Myr (e) 500 Myr (f) 1000Myr

Figure 9.5. SF1F0e50: Temporal evolution of the gas disk structure in projec-
tion along the axis of rotation. All pictures are 60 kpc across and the color table
ranges from 1010 M� Mpc−2 to 1015 M� Mpc−2 as in Figure (9.1).

in the outer disk, while the number of dense clouds in the inner disk is also declining further.
Note that all our disks are rotating counter-clockwise. We see both accretion from dense clouds
into larger more massive objects as well as the stripping of gas from dense objects. This ram
pressure stripping seems to be responsible for a significant part of the diffuse filaments appearing
during this intermediate phase of disk evolution.
During the late time of evolution, up to 1 Gyr and until the simulation end at 1.4 Gyr, we mostly
observe further gas depletion on all scales of the disk. The remaining gas seems to accumulate
in only a couple of dense clouds, some still stripping gas of each other.

Although we cannot see much of the detailed structure of the galactic disk in the side-on
projections of Figure (9.6) we nevertheless consider them to be very interesting. Most generally,
it is obvious that the vertical disk scale changes significantly during the first 100 Myr. Vertically
stratified gas, necessary for the stable initial conditions, settles down quickly. The gas available
above and below the galactic midplane is most sensitive to the loss of pressure support as a result
of the imminent cooling of the gas disk. This happens because vertical gas motions as a result of
gravitational attraction are not stabilized by rotational forces. Hence, the disk quickly reaches
an almost planar configuration.
Additionally, we can state that most of the structure emerging, evolving and dissolving during
the simulation remain in or at least close to the galactic midplane. However, several clouds of
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(a) 20 Myr (b) 50 Myr (c) 100Myr

(d) 200Myr (e) 500 Myr (f) 1000Myr

Figure 9.6. SF1F0e50: Temporal evolution of the gas disk projected through
the galactic plane. All frames have the same spacial extension and color table
as figures above.

dense gas appear slightly off the midplane. This is most easily observable in the displayed frames
at 200 Myr as well as 500 Myr. For this reason, several objects including stars that form therein
have orbits around the galactic center which noticeably stretch into space off the disk. This
effect appears to become more pronounced during the late phase of the simulation. At 1 Gyr we
observe a distinct gas filament, at the left hand edge of the gas disk, which emerges as gas is
stripped off a dense cloud on a strongly tilted orbit.

Aside this qualitative description of structure of instellar gas in the galactic disk, we also
performed a quantitative analysis of the distribution of gas densities and their temporal evolu-
tion. Figure (9.7) shows nine subsequent plots of the PDF of the normalized logarithm of gas
density δ. To perform this analysis, we define a standard extraction volume of the galactic disk.
Namely, we extract a maximum resolution dataset of size 21 kpc width and 650 pc height, cen-
tered on the galactic midpoint. Note that these dimensions correspond to six radial scale lengths
in width and two vertical scale length in height. The reason for this choice is twofold. First, we
make a restriction in order to gain a technically feasible dataset for postprocessing, and second,
choosing the extraction volume in terms of the used multiples of scale length and height ensures
we focus our analysis on the inner gas disk.
For the analysis of the extracted volume, we then compute the volume-averaged natural logarithm
of gas density as described in detail in Section (8). Furthermore, we analyze the distribution of
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(a) 10 Myr (b) 50 Myr (c) 100Myr

(d) 150Myr (e) 200Myr (f) 500 Myr

(g) 800Myr (h) 1100Myr (i) 1400Myr

Figure 9.7. SF1F0e50: PDF of gas density. The plots depict the normalized
logarithm of gas density. Therefore, the density scale of δ =] − 5, 10[ readily
translates to ρ =]6.74 · 10−28 g cm−3, 2.20 · 10−21 g cm−3[ or
ρ =]10.0 · 10−6 M� pc−3, 32.5 M� pc−3[.

this quantity δ to arrive at the density PDF.
The first plot in Figure (9.7) (a) depicts the initial gas configuration after 10 Myr. We observe a
rather smooth distribution function which continuously falls off towards the high mass regime in
a lognormal fashion. At intermediate gas density, the initial distribution shows a clear maximum
with significant extent. Additionally, the amount of gas at lower densities again drops off as we
go to smaller gas densities until we hit a certain minimum cutoff density. This cutoff stems from
the choice of our extraction volume. As the initial gas density distribution falls off continuously
with radius and height above the disk midplane, we define the cutoff density by choosing the
extraction volume. Moreover, owing to the form of the distribution in this initial state, we see
our choice of size of the extraction volume to be reasonable. We include not only dense and
intermediate density gas but the analyzed volume also contains a certain fraction of low density
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material.
Considering the temporal evolution of the distribution, several characteristics of the previous dis-
cussion show up. Firstly, highest gas densities appear in the very early phase of the simulation
when the galactic center, the most dense part of the disk, fragments. Secondly, the distribution
significantly broadens during its evolution building up a second maximum of extremely low den-
sity gas. Thirdly, as time proceeds the whole distribution shifts towards smaller densities.
In conclusion, qualitative visual inspection and quantitative statistical analysis show well defined
evolution of the interstellar gas disk in agreement with other work. Li et al. [2005] use SPH sim-
ulations to simulate galaxy evolution. Although the details of their setup are different in several
aspectsa, all simulations show the same general evolution of structure in the disk. Comparison
to the early work of Tasker and Bryan [2006], who use a four times less massive gas disk but the
originally unstable initial conditions also show generally the same pattern of fragmentation. A
more detailed comparison is not applicable owing to the large differences in disk mass, size and
initial conditions. More recent work of Tasker and Bryan [2008], this time using a much more
massive gas disk (6 · 104 M� compared to 1 · 104 M� in the early work) does not show the early
evolution, but only corresponding gas disk visualizations at later simulation times. These figures
show the same gross properties as our results. Moreover, we can also compare density PDFs to
the latter work. Tasker and Bryan show these statistics in their Fig. (8). Comparing simulation
run ’D’, which best matches our standard case, to our corresponding Figure (9.7) shows both
similarities and differences. The early bimodal profile and the late deterioration of the lognormal
profile are similar in both simulations. The first feature is a consequence of thermal instability
while the second follows as particle creation subsequently reduces the amount of high density
gas in the disk. Both effects are certainly realized in both simulations. The early high density
distribution and the late low density peak are different in both simulations. Here, we lack the
information of our reference paper on the detailed early evolution of the gas disk. Therefore, it is
useless to speculate about the lognormal nature of the high density tale at 377 Myr. The differ-
ences in the observed low density peaks at late time can be a result of the different logarithmic
scaling of the analysis as well as different analysis resolutions.

We conclude this comparison by noting two major issues: Firstly, our simulations reproduce
earlier work in an appropriate fashion on a level of qualitative comparison. All major aspects are
reproduced in our simulations. Secondly, quantitative comparison is rather difficult as a result of
the changes we have included in our work in order to circumvent problems we have identified in
our realization of the originally described problem setup. Additionally, differences in the analysis
in order to provide most useful information are an additional source of discrepancy. Neverthe-
less, we will continue to search for similarities and differences but stress that owing to the highly
nonlinear nature of the problem we expect our simulations to show different results. Improving
earlier work is one of the goals of this study.

9.4. Dynamics of Thermal Properties

Next we study the thermal properties of the interstellar medium of the galactic gas disk. We have
described in Section (2.4) how we expect the buildup of a three-phase medium with cold, warm
and hot gas. In this section we now investigate how our simulations reproduce the properties of
the observed ISM and how well simulation and theory correspond.

To begin our study of the simulated ISM we again start with the same extraction volume as

aSimulation labelled G220-4 is closest to our own parameter setup.
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Figure 9.8. SF1F0e50: Top: Volume fraction of gas sampled into the expected
three phases of the ISM. Bottom: Mass fraction of gas in the same temperature
phases. Note the different scale of the ’hot’ mass fraction plot.

used in the last section. We sample the volume fraction as well as the mass fraction contained in
the extraction volume into three temperature categories. We chose these categories to correspond
to the phases of the ISM. Figure (9.8) shows how the different phases evolve over time. Note
that we depict absolute fractions in the way that adding up three values, one of every phase at
the same instant in time, always yields a total of 100 % or a fraction of 1. Furthermore, it is
important to realize that gas transformed into sink particles is not included in this analysis.
As we have seen during our discussion of initial conditions, all gas and therefore the complete

extraction volume have temperatures typical for the hot phase at the beginning. This is an
implication of our choice of setup and as soon as the dynamical evolution is started and cooling
becomes active the gas immediately cools. We start the discussion at the point where the vol-
ume is occupied to equal parts by cold and warm gas, and when almost all mass is in the cold
phase. As cold gas is rapidly transformed into sink particles we see a steady decline of the cold
fraction while the warm fraction increases correspondingly. This is a result of the fact that the
star formation process depletes large parts of the inner gas disk leaving behind low density gas
as mentioned in the discussion of the density projections. This low density gas is easily heated
up as a result of the adiabatic equation of state. After roughly 800 Myr we see a steady decline
of the warm volume fraction while the hot fraction begins to rise correspondingly. At this point,
the star formation process has not only depleted the inner disk substantially, but subsequent
penetration of gas from the outer disk has lowered the overall gas density in a way that warm
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(a) 100 Myr (b) 700 Myr (c) 1000Myr

Figure 9.9. SF1F0e50: Face-on projections of the gas temperature (K) in the
galactic disk. Again the frames are 60 kpc across. We use a special color table
to visualize the three components of the ISM.

and hot intergalactic gas begins to enter the extraction volume. This leads to the observed in-
crease of the hot fraction and is clearly visible in Figure (9.9).
The mass fractions show a very similar behavior. Initially almost the complete mass is in the

cold phase. As time proceeds and the volume occupied by dense gas declines, the mass of cold
gas declines as well. However, as small blobs of cold dense gas can still carry enormous amounts
of mass, the mass fraction in the cold phase does not fall below a value of 75 %. The attributes
cold and dense are identical for gas at constant pressure, therefore most mass is concentrated
in cold dense clumps. Towards the end of the simulation only small amounts of mass remain in
gaseous form and the mass fraction in the hot phase starts to increase. However, note the hot
mass distribution plot uses a different scale. The two spikes appearing in the mass fractions at
late time correspond to two instants during the simulation when the remaining dense clumps of
gas temporarily leave the extraction volume as a result of a tilted orbit at that late time (see the
discussion of side-on density projection earlier). When this happens there is almost no cold gas
left in the disk and fractions spike significantly.

Our sampling of gas temperature into three different regimes and the discussion above do not
demonstrate the existence of a three-phase medium in our simulations. The discussion above is
rather a description of how to interpret temperature distribution in the ISM assuming a three-
phase configuration. In oder to solve this problem we show the same data in a continuous form
in Figure (9.10).
The volume distribution shows a clear separation of two distinct phases at all times. We observe

a broad peak in the warm regime which also extends into the cold regime and therefore contains
a significant fraction of cold gas. At intermediate times it is confirmed that almost the whole
extracted volume of the disk is occupied by the warm phase. This is what we expect when gas
can cool efficiently in the disk and no feedback mechanisms to heat the gas are switched on.
During the late evolution we observe again how hot material from outside the disk begins to
penetrate the extraction volume and shows up in the analysis.

In conclusion, considering this first simulation without feedback, the observed bimodal tem-
perature distribution shows a good first order realization of the real ISM in our model. Note
that although the cold gas phase does not appear in these plots, it is nevertheless present. Cold
gas has been transformed into sink particles which represent molecular clouds and the stars that
form therein. We will discuss sink particles in the next section.
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Figure 9.10. SF1F0e50: Temperature distribution in the simulated ISM. We
depict again volume and mass fractions, this time in continuous plots covering
the whole temperature regime. The dashed line depicts the employed cooling
function, and vertical lines indicate our definition of phases in the ISM.

Moreover, we also see how the employed cooling curve (cf. Section (5.3) [page 54f]) directly
shapes the structure of the ISM. The underlying dashed curve shows how the maximum of the
cooling rate separates warm and hot gas phases. At this point, gas can cool most efficiently
and the buildup of the warm component starts. Moreover, at 104 K the slope of the cooling
curve flattens. Consequently, this leads to a significant accumulation of gas that cannot cool
down to lower temperatures with the same efficiency as before. Cold gas below several hundred
K contracts rapidly by gravitational effects and the volume fraction goes towards zero at our
minimum temperature of 300 K.
Gas that is heated above the temperature where cooling is most efficient is easily heated to even
higher temperatures owing to its low density. Here, we have a sensitive balance of radiative
cooling and adiabatic heating. Henceforth, most of the high temperature gas accumulates at the
point where cooling has the smallest effect. In other words, heating and cooling continuously
change the gas temperature. We assume the heating to be uniform, but cooling is least efficient
at 106 K. Therefore, we observe most hot gas around this temperature.
Considering the mass weighted distribution of temperatures, it is not surprising that all mass is
concentrated in the cold and warm regime. The tiny fractions in the hot phase are off scale. Note
that while the total amount of mass declines, the relative fractions are distributed in an almost
constant fashion. The most eminent fact is that large amounts of mass (more than 20 % at all
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(a) 10 Myr (b) 50 Myr (c) 100Myr

(d) 150Myr (e) 200 Myr (f) 500Myr

(g) 800Myr (h) 1100Myr (i) 1400Myr

Figure 9.11. SF1F0e50: Contour diagrams of gas density versus temperature
in the standard extraction volume of the galactic disk. Contour levels are 103,
104, 5 · 104, 105, 1.5 · 105 and refer to cell counts. The total number of cells in
the extraction volume is ∼ 1 · 107. Straight lines depict isobars.

time) reside in the cold phase having the minimum temperature during the entire simulation.

Next, we investigate the gas pressure in the disk. Figure (9.11) shows pressure contours at
various instants of time during the simulation. We see again that the initial conditions are out of
equilibrium. Nevertheless, when cooling is activated and the full evolution of the disk starts, the
gas quickly settles into a configuration where pressure is roughly constant for all temperatures.
Additionally, the fine structure of these plots exhibits three features worth mentioning. Firstly,
there is a certain fraction of overdense gas at the minimum temperature. If allowed, this gas
would cool further, flattening the apparent spike in the distribution. Secondly, at the tempera-
ture of ∼ 105 K where the cooling curve has its maximum (cf. Figure(5.2)), there appears to be
a small break in the distribution, separating hot and lower temperature phases. Obviously, the
hot phase in our simulations has slightly higher gas pressure than the warm phase. Thirdly, the
warm phase shows a much broader occurrence of pressure values than the hot phase. This can
certainly be attributed to the much larger amount of volume filled by the warm phase.

Comparing the thermal structure of the ISM in our simulation to Tasker and Bryan [2008]
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again shows general agreement. Particularly, comparing the mapping of mass and volume frac-
tions into different temperature regimes (cf. Fig. (11) of the latter work) even yields very close
correspondence. This is not surprising, as we basically use the same numerical realization of
cooling as these authors. Our small changes and corrections to the implementation, affecting
specifically the low temperature regime where cooling is fast and efficient anyway, do not gener-
ate any noticeable differences in the analysis at hand. Additionally, the comparison of pressure
contours also shows general concordance [Tasker and Bryan, 2008, Fig. 13].

Putting all this together, we have seen that already this first simulation reproduces the ob-
served multi-phase structure of the ISM quite well. We have seen both the hot and warm gas
in all analyses and were able to confirm the existence of these phases in approximate pressure
equilibrium. Next, we turn towards the formation of sink particles and discuss the inherent cold
phase as well as the formation of stars therein.

9.5. The Formation of Stars

If gas cools efficiently it quickly settles into cold and dense clumps. With the star formation
algorithm active in the simulation, the code checks whether the conditions to convert gas into
particles are fulfilled. If this is the case, the simulation generates particles and follows their
evolution, including the formation of stars, through the subsequent calculation. Figure (9.12)
shows the projected density of sink particles, representing the cold gas phase as well as the stellar
component.
We observe how the initial collapse starts in the center of the disk where densities are highest
and gas is cooling most efficiently. Subsequently, we see the buildup of a significant particle com-
ponent growing continuously in radius over time. As there is no feedback in this simulation, the
mass initially attributed to the particles at creation does not change over time. In other words,
the gas component is continuously transformed into particles, resulting in the observed reduction
of gas density and subsequent replacement of the gas disk by a disk of particles. Additionally,
we observe how most of the larger associations of particles merge together building up only a
couple of very massive clusters of particles. Already at 500 Myr we see only two of these clusters
remaining. Although these two exist until the very end of the simulation, they continuously
attract and disperse other particles while passing through the galactic disk. The stripping of
particles by tidal effects is responsible for the spacial growth of the particle component as well
as for its increasing diffusivity.

Next, we investigate the rate at which stars are formed inside sink particles. Therefore we
analyze the cumulative mass that all sink particles transform into stars. We average this mass
over timesteps of 10 Myr each and normalize to units of M� per yr. The corresponding plot is
presented in Figure (9.13) (a).
We see that the star formation activity is strongest shortly after the start of the simulation. As
we have seen earlier, the gas disk has cooled significantly at this point and more importantly, all
material of the galaxy is yet in gaseous form available for sink/star formation. For the following
evolution of the star formation rate, we consider two different effects. Firstly, the creation of
new sink particles and therefore, of new sources of star formation. Secondly, the formation of
stellar mass itself as described in Section (5.5). Both effects are tightly coupled and lead to the
observed star formation rate.
To gain more information on the star formation mechanism and the physical nature of the lo-
cations of these events we analyze the formation of stars dependent on the local gas surface
density. Therefore, we use the projected datasets visualized above and impose 40 concentric
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(a) 20 Myr (b) 50 Myr (c) 100Myr

(d) 200Myr (e) 500 Myr (f) 1000Myr

Figure 9.12. SF1F0e50: Projected particle density. Note that we have
stretched the scale of depicted values by one order of magnitude compared to
earlier plots for better visualization. The maximum and minimum densities
shown here are 1016 M� Mpc−2 and 1010 M� Mpc−2, respectively.

radial bins. Each of these bins is 350 pc in radius so we cover a total radius of 14 kpc, essen-
tially the whole domain were any star formation happens. We record the average star formation
rate as well as gas surface density for each of these radial bins at 140 instants of time, sep-
arated again by 10 Myr each. We plot this information, also known as local Schmidt-law, in
Figure (9.13) (b). Although the data show a large scatter, it is nevertheless interesting to see the
apparent correlation between local star formation rate and the corresponding gas surface density.

We have deliberately omitted a fit to the data points, although it is easy to fit a power law to
the presented data. Even the slope of ∼ 1.4 appears probably as good fit. Nevertheless, the large
scatter, the double logarithmic scale of the plot and the obvious accumulation of data points
towards small values renders such a fit rather meaningless in our opinion. However, Kennicutt
[1998b, Fig. (3)] reports the same overall behavior from a large sample of 21 observed spiral
galaxies. The author describes to observe the Schmidt-law with power law index ∼ 1.4 at high
densities. Moreover, an abrupt steepening below some density level, a critical threshold density
for star formation, is reported. Li et al. [2006, Fig. (11)] show the same observations for five
different simulation models of star formation in disk galaxies. These authors characterize the
general features of their analysis in the same way. They report a tight correlation of ΣSFR and
Σgas as well as a dramatic drop at some gas surface density, interpreted as threshold for star
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(a) Temporal evolution of the star formation rate. (b) The local Schmidt-law.

Figure 9.13. SF1F0e50: Analysis of the star formation rate. The left frame
depicts how the star formation rate changes over the course of a simulation, while
the right frame shows the locally averaged dependence of the star formation rate
on the gas surface density for all recorded data outputs.

formation.
As we do not have several different galaxies to analyze, we interpret our results in the fashion
that different times during the evolution of our simulation are roughly representative of different
galaxies in their different evolutional phases. Therefore, we interpret our results in the same
fashion as the cited authors. As a result of the large scatter we will not claim to gain any dis-
tinct results, but state that our data agree reasonably with the conclusions presented above. We
observe the ΣSFR-Σgas correlation and attribute the trend towards low star formation rates at
low gas surface densities as indication of a significant reduction of star formation accompanying
the decline in density.

Finally, we analyze the simulated galaxy with respect to the global Schmidt-law. We perform the
postprocessing in the same way as described by Li et al. [2006] and define a star formation region
by using an analysis radius chosen to encircle 80 % of the mass present in sink particles. Again,
we used the projected data of density and star formation rate. We identify all cells within the
analysis radius and average their gas density as well as star formation rate values for each of our
datasets over the entire galaxy. Therefore, we gain 140 datapoints (again, temporal separation
is 10 Myr) representing the disk averaged gas surface density and star formation rate inside the
80 % particle mass limit. This relation, known as the global Schmidt-law, is shown in Figure
(9.14) together with the analytic relation found by Kennicutt [1998b].
We augmented our analysis with color code to depict the time during the simulation when a
specific data point is sampled. From this it becomes easily observable how star formation rate
and gas density correlate during the course of the simulation. We also supply information on a
power law fit of the presented data. However, we stress that this information is mostly included
to visualize the general trends of different simulations. Even though the dataset in Figure (9.14)
does not show any strong deviations from power law distribution, other datasets presented later
do. We caution the reader not to overrate the stated numbers.
After all, from the analysis we see that simulation SF1F0e50 clearly overproduces stars during
the entire simulation. The star formation rate is systematically larger than predicted by the KS
relation. Moreover, at early times when gas surface density is most pronounced, the deviations
are much stronger than at later times when the gas reservoir in the disk has been significantly
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Figure 9.14. SF1F0e50: Comparison of simulation data to the analytic form
of the KS relation. Datapoints are color coded to indicate the timestep they
represent. The red solid line depicts a linear fit to the data, while the blue
dashed line shows the analytic function as given by Kennicutt [1998b].

depleted. Obviously, the employed star formation routine does not represent the nature of star
formation in a sufficiently realistic way in order to reproduce the fit to observational data.

9.6. Effects from Stellar Feedback

As we have seen in the previous section, our general simulation setup is capable of describing the
gross properties of a Milky Way like disk galaxy. Moreover, we have already successfully realized
the simulation of the general properties of the interstellar medium. However, particularly the
parameterization of the dense cold gas phase and the inherent star formation in sink particles
without any feedback has proven to be a rather inappropriate realization of the actual physics.
Therefore, we will now investigate the influence of stellar feedback on the evolution of the ISM
and subsequently the evolution of the whole galaxy. Particularly, we are interested whether the
inclusion of feedback from type II supernovae is capable of significantly altering the properties
of the previously analyzed star formation relations or not.

We base the investigation of feedback on the comparison of the simulation without feedback
(SF1F0e50) to an identical simulation including the full thermal as well as kinetic feedback
(SF1F1e50) as described in Section (5.5). At first glance, we expect two obvious effects of the
feedback on the interstellar gas. Firstly, the input of hot gas from modelled stellar feedback
should lead to an observable increase of low density gas. Secondly, additional shocks created by
evolving bubbles of hot gas should cause an increase of significantly overdense gas. Putting both
effects together, we expect to observe a broader density PDF in the feedback case than without
feedback.
Figure (9.15) shows the results of our analysis. In fact, we observe a much broader distribution,
especially in the low density regime of hot gas. Moreover, we also see a noticeable increase of
high density material, however, only during the first 200 Myr. After that time, the high density
fraction of gas falls significantly below the fraction in the simulation without feedback. This
can be readily understood. We have seen earlier that star formation activity is strongest during
the early phase of the simulations. Consequently, also feedback has its most severe influence
during the early evolution of the simulation. As the activity declines so does the strength of the
feedback, rendering it unable to produce density enhancements by shocks. Correspondingly, the
strong early feedback generates an increased amount of hot, low density gas, while this effect gets
largely overwhelmed by the later mixing of hot material from outside of the extraction volume.



110 9. RESULTS OF NUMERICAL SIMULATIONS

(a) 10 Myr (b) 50 Myr (c) 100Myr

(d) 150Myr (e) 200Myr (f) 500 Myr

(g) 800Myr (h) 1100Myr (i) 1400Myr

Figure 9.15. Comparison of density PDF of two identical simulations, one
without feedback (SF1F0e50) (grey, dashed-dotted line) and the other including
feedback from type II supernovae (SF1F1e50) (red, continuous line). Scales are
again ρ =]10.0 · 10−6 M� pc−3, 32.5 M� pc−3[.

The strong reduction of high density material at late time is yet another consequence of the
energy input owing to feedback. Feedback predominantly occurs at the locations where dense
gas accumulates and forms stars. Now the feedback continuously disperses these associations of
dense gas and stars. Most importantly, this effect becomes stronger as more and more material
is transformed into stars while at the same time the overall gas disk becomes more and more de-
pleted. Note that also feedback recycles gas from particles back into the ISM, this only happens
to a certain fixed fraction of the initial particle mass. The remainder eventually ends up in stars.

We observe more of the details looking at the thermal properties of the gas (cf. Figure (9.16)).
Particularly, the mass fractions of the different phases of the extracted inner disk region confirm
the observations drawn from the PDFs, although the small increase of high density material
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during the first half of the simulation is not clearly visible in the phase plots. However, the more
eminent features, like the recycling of cold high density material during the second half of the
simulation, is quite obvious. We see that most of this material ends up as warm gas, while the
mass in the hot phase is also significantly increased. Note that the scale of the hot phase mass
plot is still one order of magnitude less than the other plots. It appears that cooling is able to
effectively reduce the temperature in the gas as long as gas densities are still large enough.
The volume fraction plots do not reveal such clear implications of feedback. Most generally, the
volume changes are much less pronounced than the changes of the mass fractions. Nevertheless,
with the exception of a small period of time around 700 Myr, the feedback simulations show
more volume filled by warm gas than in case without feedback. The cold volume is continuously
smaller than before, and also the hot volume is generally reduced. This is somewhat surprising
as we would have expected the feedback to produce more bubbles of hot gas in the ISM. It is
tempting to speculate that the increase of hot volume at 700 Myr displays the cumulative effects
of such supernovae events. However, at this relatively late time of the evolution, we begin to see
the effects of gas depletion and the mixing of hot gas from outside the disk into the extraction
volume. Again, this effect appears to be somewhat reduced and delayed in the feedback case.
We see two possible problems with the feedback implementation and its interpretation from this
analysis. Firstly, as our feedback is still very rudimentary. Therefore, hot ejected gas possibly
suffers from overcooling and cannot realisticly evolve during the simulation. Secondly, we define
some analysis volume, which is unfortunately a rectangular box applied to analyze a circular disk
structure. The choice of the extent of this volume, in radial direction as well as in height above
the disk midplane, has strong influence on the depicted gas fractions.

We try to gain a better picture of the distribution of gas temperatures by investigating the
thermal properties in the familiar face-on projections. Figure (9.17) reveals several distinct dif-
ferences between the feedback and non-feedback (cf. Figure (9.9)) simulation. The first plot at
100 Myr has a much smaller ring of cold gas. We did not see this reduction of cold volume
in the phase plots because most of the cold ring lies outside the extraction volume. However,
considering solely the cold phase, this is still the warmest contribution while the even colder gas
clumps are well within the analysis volume. Hence, we observe the reduction of cold gas mass.
More interestingly, we see an almost complete extinction of cold dense gas in the later evolution
at 700 Myr and 1000 Myr. Here, feedback clearly acts to dissolve cold regions of high density
gas. Again, it is questionable whether we can identify the large region of hot gas at 700 Myr as
the supernovae bubbles discussed earlier. They appear to form from the inside out, as we would
expect as most initial star formation takes place in the inner disk and therefore places the sources
of feedback there. However, we also see similar hot gas regions in the case without feedback (cf.
Figure (9.9)). Further investigations on the detailed processes and structuring effects of feedback
are necessary, but beyond the current scope of this thesis.
We therefore conclude the general discussion of thermal properties of our feedback implemen-

tation stating two main issues. On the one hand, feedback certainly needs more attention and a
better understanding of its implications, especially on the evolution of hot and warm gas. On the
other hand, we see that our feedback is capable of dispersing cold dense associations of gas after
stars have formed therein. This might actually be the most important effect of feedback at the
current state of our simulations. Future simulations, however, can possibly pay more attention
to the interesting details of star formation feedback.

Nevertheless, the feedback as discussed above has important consequences on the overall star
formation properties of the galaxy as it reshapes the temperature and gas density profiles. Fig-
ure (9.18) shows the corresponding effects. As expected, feedback enhances the star formation
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Figure 9.16. Comparison of volume (top) and mass (bottom) fractions of the
ISM. The faded dashed plots represent the earlier discussed case without feed-
back (SF1F0e50), while the continuous lines are the case including feedback
(SF1F1e50).

(a) 100Myr (b) 700 Myr (c) 1000Myr

Figure 9.17. SF1F1e50: Face-on projections of the gas temperature (K) in the
galactic disk of the feedback simulation.
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(a) Temporal evolution of the star formation
rate.

(b) The global Schmidt-law in the feedback simulation.

Figure 9.18. (a) Comparison of the star formation rate in the simulation with-
out feedback (SF1F0e50) (grey, dashed line) and the simulation including feed-
back from type II supernovae (SF1F1e50) (red, continuous line). (b) Analysis of
feedback simulation data with respect to the KS relation.

rate compared to the non-feedback case for the first half of the simulations, as a result of in-
creased gas densities. Conversely, during the second half, the star formation rate is reduced.
This feature of feedback is apparent in both plots of the latter figure. The star formation history
(9.18) (a) most clearly depicts this dual influence. Although the overall shape of the star forma-
tion evolution remains unchanged by feedback, particular differences are well defined. Moreover,
at late times during the simulation when feedback has depleted most gas that has not yet been
transformed into stars inside the particles, the star formation rate is dramatically declining. In
the non-feedback case on the other hand, particles continue almost constantly to hold up the
star formation rate.
The described behavior also leads to the changed dependence of the star formation rate on gas
surface density. Figure (9.18) (b) shows that the simulated galaxy again has a very strong cor-
relation as described by the KS relation. Several interesting features are apparent in this plot.
Firstly, the slope N = 1.92 of the fitted power law is significantly smaller than in the case
without feedback N = 2.06. Furthermore, star formation is shifted to much lower densities and
rates for later times during the simulation. Here, obviously, the feedback reshapes the immediate
surroundings of star formation locations through winds and outflows.
Putting all this together, it appears that initial effects from feedback lead to additional increase
of density in the early gas rich galactic disk, increasing the global star formation rate. Conse-
quently, the gas reservoir in the disk becomes depleted faster when feedback is active and the
star formation rate falls off faster with feedback during the course of the simulation. However,
feedback also returns some of the gas back to the ISM, otherwise locked up in dense clumps.
This not only leads to expansion of star formation activity to lower gas density but also to a
further reduction of star formation owing to continuous depletion of material in dense clumps.

Essentially, feedback is very important for the realization of some kind of gas recycling mecha-
nism in our simulations. Additionally, feedback depletes dense regions, significantly lowering the
star formation rate in evolved simulations.
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9.7. Modifications to the Standard Case

Additionally to the simulations discussed above we also performed some test simulations to check
how key parameters might change the results of our simulations. Here, we will present two of
these additional simulations. For better comparison and to save computational resources, we
decided to run these simulations without the inclusion of feedback. We investigate two major
issues. Firstly, the influence of a certain mass threshold of particles, and secondly, the most
radical simplification of the star formation algorithm, dismissing all criteria but overdensity for
the creation of sink particles.

Influence of a Minimum Particle Mass. For our standard simulations we use the typical
number density of n = 103 cm−3 as density threshold for particle creation. In Section (5.4), we
have already discussed how setting a lower mass limit for particles translates into an additional
density threshold. Using a minimum particle mass of either 104 M� or 105 M� as for our simu-
lations translates to a density limit of n ≈ 12 cm−3 and n ≈ 120 cm−3, respectively, at the finest
level and subsequently smaller numbers are calculated as particles are possibly created at lower
resolution (n ≈ 1.5 cm−3 and n ≈ 14.9 cm−3, at the second highest refinement level). Hence,
the lower particle mass limit does not impose an additional dominating density threshold in our
simulations at any time.
Nevertheless, setting the particle limit has other implications on the simulations. Note our moti-
vation for setting a limiting particle mass in general: Firstly, this was for computational reasons,
avoiding a computationally infeasible large number of particles. Secondly, and more importantly,
we interpret our sink particles as molecular clouds. These clouds are known to have a certain
amount of mass. Performing the most basic calculation, employing the smallest fiducial values
for molecular clouds, namely, n = 102 cm−3 (cf. Table (2.1)) and R = 25pc as in Chapter (3) we
calculate a cloud mass of ∼ 105 M�. Note that the quoted number density is not to be confused
with the density limit for particle creation. The number density is rather to be interpreted as
density of gas represented by a particle which has been created once the density limit has been
exceeded and is very likely to be much smaller than the limiting value itself. Molecular clouds are
known to be much more complex than this trivial analysis suggests. Neither the assumption of
a spherical configuration nor of a constant density value hold for real clouds. Clouds are known
to have a vast spectrum of substructure, yet unfortunately little known in detail. Putting all
this together, we are left with the question which numerically realized minimum mass is the best
choice to model the real situation best. Fortunately, it appears we already know the right order
of magnitude. For our standard case we use 104 M�, in order to better account for high density
substructure in dense associations of gas.
Moreover, one can also argue that representing clouds by two or more particles is better than
using just one. Assuming we have a gravitationally bound, dense parcel of gas we can either use
one massive or several smaller particles. As we are not using a sophisticated particle algorithm
such as one including merging of particles and accretion, the massive particle is a rather static
entity in our simulations (except for feedback effects). However, several smaller particles would
still closely stick together gravitationally as long as forces are strong enough. Contrarily, once
gravitational pull from other objects, or similar violent forces, impact on the association of light
particles a more dynamical evolution, which are likely to mimic a more realistic situation, can
be simulated. These are the main reasons why we chose our small standard minimum particle
mass. Nevertheless, we want to see how a simulation behaves which has a one order of magnitude
larger mass limit.

In Figure (9.19) we compare our standard simulation to the latter case with higher mass limit
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on the particles. The globally averaged star formation history (a) shows two distinct features.
Firstly, the new simulation shows much stronger variations in magnitude than the standard sim-
ulation. Secondly, the overall temporal evolution is influenced in the sense that we observe an
intermediate phase of higher star formation activity while towards the end of the simulation this
trend is reversed. Both observations are readily understandable.
The variations in magnitude appear most pronounced in the second half of the simulation run.
Here a large amount of the available gas has already been converted into stars. Hence, the
buildup of large density enhancements, capable of forming a high mass sink, needs much longer
than in the standard case and the star formation rate drops during that time. Once a new
particle is created, the massive cloud quickly begins to form stars and the star formation rate
rises again.
The same line of argument applies to the explanation of the temporal evolution. Initially, the
disk has enough gas to produce the same global average of stars as in the standard case. After
several hundred Myr when the disk still has a rather large amount of gaseous mass, massive
particles form stars more effectively than a larger number of small particles. This effect quickly
diminishes during the simulation and tips over at the end of the simulation when the gas disk
becomes too depleted to produce new sink partiles and star formation in previously created par-
ticles has largely ceased.

Figure (9.19) (b) again shows the dependence of star formation rate on gas surface density,
this time for the simulation with larger particle masses. Although the difference in the high
surface density regime is rather inconspicuous, the latter simulation nevertheless shows slightly
smaller star formation rates as a result of the additional mass limit. More interestingly, we see
significant differences in the data points at later times, at lower surface density values, compared
to the standard case. Firstly, data points are distributed over a much broader range of values.
Secondly, we observe some kind of limit in gas surface density at roughly Σgas = 2M� pc−2

where we have different star formation rates varying over almost two orders of magnitude for the
same density value.
The spread appears to result from the fact that the creation of massive particles significantly
changes the density of the corresponding cells while spawning lighter particles has a less dramatic
effect on the overall density of the surrounding medium. Moreover, massive particles can move
further away from their natal gas and still contribute significantly to the formation of stars. They
also produce stars for more extended periods of time resulting in ongoing star formation at very
low rates (and low gas densities) while the formation of particles has already largely ceased.
The observed variation of star formation rate at one specific gas surface density indicates that
a large number of star forming particles is surrounded by a static envelope of gas. From the
color coding we see that this star formation happens at the end of the simulation. In fact, we
observe in the particle density projection (not shown here) that a large number of particles has
built a very massive particle accumulation. Furthermore, the corresponding gas density plots
also show how relatively large amounts of gas follow the gravitational attraction of the particle
association and build a clump at the same position. Nevertheless, the relatively low gas surface
density shows that the gas density is still too low to create new particles. Therefore, the gas
density is just influenced owing to gravity of particles while the cumulative gas mass is to small
for gas self-gravity to significantly fragment the gas to higher densities. Consequently, the gas
density remains rather static, following the gravitational potential, while sink particles continue
to form stars at the same location.
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(a) Temporal evolution of the star formation
rate.

(b) The global Schmidt-law for star formation with enlaged min-
imum particle mass.

Figure 9.19. (a) Comparison of the star formation rate in the simulation with-
out feedback (SF1F0e50) (grey, dashed line) and the simulation including a larger
minimum star particle mass (SF1F0e50mpm) (red, continuous line). (b) Analy-
sis of enlarged minimum sink particle mass simulation data with respect to the
KS relation.

Simplified Particle Creation. Finally, we investigate how the parameterization of par-
ticle and hence star formation influences the simulations. Section (5.4) [page 57f] gives all the
details on the different criteria we require to be fulfilled before particles are created in the stan-
dard case. Here, we discuss a simulation disregarding all criteria but (a) and (b), namely, the
numerical criterion that particle creating cells are not refined further, and a simple threshold
density criterion, respectively.
We use the familiar plots to discuss similarities and differences. In Figure (9.20) (a) we observe
that the star formation history of the first 300 Myr is almost completely identical to the standard
case. This leads to the conclusion that the additional particle creation criteria do not significantly
influence the simulation during this early evolution. More directly, it appears that whenever cells
are dense enough to exceed the density threshold criterion, they also fulfill the other criteria,
during this time. This is not surprising, considering the nature of the other criteria. Criterion
(c) encodes converging flux, which is a very likely precondition to overdensity. (d) the timing
condition is also likely to be fulfilled in rapidly cooling dense gas. Moreover, the Jeans criterion
(e) as well as the minimum particle mass requirement (f) do not cause an abandonment of par-
ticle creation at the apparent high gas densities during the early simulation.
The situation changes, however, during the further evolution of the galaxy. After the identical
initial evolution we observe a period of slightly higher star formation rate until approximately
600 Myr of simulation time. After that, the star formation rate is continuously below the rate
in the standard case. This is a somewhat surprising evolution since we would generally expect
a larger star formation rate without the confining effects of additional particle creation criteria.
The period with slightly increased rate does not appear to be important enough to deplete the
galaxy of enough gas to cause the later decline of star formation rate. Interestingly, we observe
again a kink in the plot showing the correlation of star formation rate on gas surface density
(Figure (9.20) (b)) beginning with data points taken at roughly the same time. Both the low
star formation rate at late time and the fact that no star formation takes place below gas surface
density of Σgas ≤ 2 M� pc−2 appear to go back to the same reason. All simulations without
feedback show the trend of building large associations of particles and congruent patches of gas
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(a) Temporal evolution of the star formation
rate.

(b) The global Schmidt-law for star formation with simplified cri-
teria.

Figure 9.20. (a) Comparison of the star formation rate in the standard case
simulation (SF1F0e50) (grey, dashed line) and the simulation with stripped star
formation criteria (SF2F0e50) (red, continuous line). (b) Analysis of the simu-
lation with simplified star formation criteria with respect to the KS relation.

during the second half of simulation time. With less restrictive creation criteria most particle
and therefore star formation takes place in these locations, while otherwise the more strict cri-
teria spread the creation through the disk and therefore lead to different star formation rates
occurring at different gas surface densities. The overall small star formation rate can possibly
be attributed to the relatively long timescales on which new gas becomes available as a result
of accretion and infall. Hence, purely turning dense gas into sink particles is not a convincing
mode to model star formation in molecular clouds.

We conclude this chapter with a general assessment of simulation routines and parameter
choices. We have seen that simulations without feedback already develop a reasonable overall
gas structure in the galactic disk. Nevertheless, feedback is essential to simulate the circulation
of matter in the star formation process as well as to gain a more realistic interstellar medium.
Our feedback serves both demands in an appropriate way. However, lots of interesting details
have not yet been studied in detail in the above analysis. Moreover, the simulation parameters
as well as the employed particle creation criteria, established as our standard case, have prooven
to be the adequate choice for our goal to simulate star formation in isolated disk galaxies. The
parameter studies in the last Section (9.7) have shown that simulations follow the temporal and
structural evolution in most detail when the standard value for minimum particle mass is applied.
Additionally, we have seen that in the spirit of our interpretation of sink particles, the complete
set of particle creation criteria as in SF1 is best capable to yield a good representation of star
forming gas clouds. With these findings, we now proceed and study the influence of turbulence
regulation of the star formation process in subsequent simulations.





CHAPTER 10

Turbulence Regulated Star Formation

In the previous Chapter (9) we have described our standard simulations and how we perform
analyses on the simulation data. We have described and interpreted the results and given an
extended discussion of the nonlinear dependencies of algorithmic and parametric changes of dif-
ferent simulations. In conclusion, we have argued for our choice of standard parameter values
and established the basis for the now pending inclusion of turbulence effects to regulate the star
formation process.
In this Chapter (10) we show how we expect the turbulence regulated star formation algorithm
to work and why. For this case we discuss several simulations motivated by the KM05 model
and analyze their results. Finally, we present simulations of turbulence regulated star formation
using the full model as proposed by Krumholz and McKee [2005].

10.1. The Efficiency Parameter

In all previous simulations we have always used a star formation efficiency parameter ε = 0.5 as
originally proposed by Tasker and Bryan [2006] for some of their Enzo simulations. In the algo-
rithmic realization of star formation this efficiency parameter encodes, among other quantities
(cf. Equation (5.24)), the fraction of gas that is transformed into sink particles and is eventually
available for the formation of stars. Therefore, the efficiency parameter can be interpreted to
determine the fraction of gas in a molecular cloud which gets transformed into stars.
The value of the efficiency parameter is rather controversial owing to the difficulties to deter-
mine the substructure, particularly, mass and time scales of molecular clouds by observations.
Simulations such as our own do not have sufficient spatial and temporal resolution to resolve
the physics. Hence, our solution to model these missing physics is the subgrid-scale approach to
determine how efficiently gas is transformed into stars.
There is vast literature investigating this problem. Lada and Lada [2003] give an efficiency be-
tween 10 − 30 % for nearby embedded clusters gained from observations. Duerr et al. [1982]
state that field stars form with much lower efficiency 1 − 5 % in giant molecular clouds, while
Elmegreen and Efremov [1997] give a local efficiency of 20 − 50 % for the formation of bound
stellar clusters. Matzner and McKee [2000] propose an analytical model including outflows and
determine an efficiency for cluster formation of 30− 50 %. Finally, to mention just a few, recent
work by Krumholz and Tan [2007] shows again that much lower values of the order of only several
percent (2 %) are possible.

As we have seen in the last chapter, the value of 50 % efficiency usually employed in our standard
case leads to star formation rates which are more than one order of magnitude to large. This
result, together with the literature cited above, indicating much smaller efficiency values, raises
the question which efficiency to expect from the KM05 model.
In order to answer this question and to get an order of magnitude estimate for SFRff (cf. Equa-
tion (4.21)) we estimate the virial parameter αvir and the turbulent Mach number Mt. Both
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Figure 10.1. Order of magnitude estimate of possible star formation effi-
ciency values depending on turbulent energy content of star forming simula-
tion cells. The vertical lines indicate approximate turbulent Mach number of
Mt = 1, 10, 100 (from left to right), while the horizontal lines intersect the func-
tional graph at these Mach number values and depicts the corresponding star
formation efficiencies.

parameters can in turn be calculated on the basis of turbulent energy as described in Section
(6.3), see Equations (6.22) and (6.23). Hence, we only need to estimate the turbulent energy in
a star forming region to get SFRff .
Vice versa, we can also start from the Mach number and get the turbulent energy. As we are only
interested in an qualitative estimate at this time, we can then use the energy to calculate the
virial parameter and eventually the star formation efficiency. Hence, we pick a turbulent Mach
number apparent in molecular clouds, and still computable in our simulation, namely Mt = 5
and calculate a corresponding turbulent energy of et ≈ 2.6 ·1011 cm2

/s2. Here, we use all standard
values and set a temperature of 300 K as this is the minimum temperature realized during the
simulation. For this energy, we furthermore calculate αvir ≈ 1.1 and finally get a star formation
efficiency SFRff ≈ 0.041 or 4.1 % from Equation (4.21).
Figure (10.1) shows the results of the procedure for turbulent Mach numbers Mt ranging from
1 to 100. The corresponding estimates of SFRff range from 61.5 % to 0.03 %, respectively. Note
that these numbers are not to be considered results from our simulations. They are only a rough
estimate of what results we possibly expect from the KM05 model in the context of our simula-
tions. Moreover, we particularly do not realize the extremely low values at high Mach numbers,
as our simulations are restricted to turbulent Mach numbers smaller than 5 (cf. Section (7.4)).
We draw the conclusion that turbulence regulated star formation will have a much smaller effi-

ciency than used in the previously presented simulations. In order to investigate this important
issue, we decided to first study the effects of reduced efficiency without the full complication of
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the dynamical computation of the star formation efficiency performed via subgrid model calcula-
tions. Instead we chose a fixed efficiency value of 3 %, as we would expect it to be realized during
SGS simulation. This value is slightly lower than the previously calculated 4.1 % at Mt = 5.
The reasons are that we expect star formation to generally occur at larger Mach numbers and
henceforth, with lower efficiency, but more physically, the efficiency of 0.03 is what we see to lie
at the center of the parametric analysis given by Krumholz and McKee [2005] (see Figure (4.1)
(a) and the frame indicating most probable star formation parameters therein.)

10.2. Simulations with Reduced Efficiency

We have performed two simulations with the low fixed efficiency of ε = 0.03. The first simulation
(SF1F0e3) is an exact recapitulation of the standard simulation, but with this different efficiency.
The second simulation (SF1F1e3:) additionally includes feedback as discussed in Section (9.6).

Here, we start the analysis of simulation data by investigating the thermal properties of the
simulated interstellar medium. In Figure (10.2) we overlay the gas phase distribution functions
of the low efficiency simulations and the standard case. For the volume fractions, we only see
marginal differences. The reader should keep in mind that all plots are normalized to the total
gas mass at the specific instant in time. Gas already transformed into particles is not included.
More interestingly, we also see general concordance of the mass distributions, although two dis-
tinct differences show up. Firstly, the low efficiency simulation without feedback produces much
less cold gas and correspondingly more warm material during the second half of the simulation
runs. The inclusion of feedback in the low efficiency case appears to alleviate this change. The
strong fluctuations in the distribution functions show how the slow, low efficiency star formation
only depletes certain regions inside the inner gas disk. These voids of hot, low density material
exist for several Myr until the overall dynamics mix the gas phases again. Contrarily, in the
feedback case, the stars that form do not only deplete gas but also supply it back into the low
density regions. More importantly, feedback is a much stronger source of gas mixing and there-
fore quickly transfers surrounding gas into depleted areas.
Secondly, the feedback case shows a small but definitely larger amount of mass in the hot phase
than both other simulations during the whole simulation. Again, note the different scale of this
plot. This is the mass injected back into the ISM from evolving sink particles.
Next, we turn to investigate the star formation history in our simulations with reduced efficiency.

Again, we compare both low efficiency simulations and the standard case (see Figure (10.3)).
Several interesting differences have to be discussed. Firstly, both low efficiency simulations do
not show the same strong initial star formation burst as the standard case. The maximum star
formation rate only reaches approximately half the value of the standard case. Contrarily, after
this initial spike, both low efficiency runs have continuously higher global star formation rates
than the simulation with standard efficiency. These observations are not surprising. After all,
low efficiency star formation produces a smaller star formation rate, even with a huge amount of
overcritical gas, as present during the initial phase of the simulations. While the standard case
produces stars with relatively high efficiency and thereby processes large amounts of gas, the low
efficiency runs extend the entire process much longer over time and therefore generate stars at
moderate rates for much longer.
After approximately 500 Myr both standard and slow star formation realizations have reached
equal rates of star formation. However, while the rate still declines for the standard case, the low
efficiency runs roughly maintain a constant rate for another 500 Myr. However, the feedback run
shows significant fluctuations which even show a temporary increase of star formation activity.
Again, continuous infall of unprocessed gas and the overall much smaller depletion of gas in
the low efficiency simulations feed the continuous star formation process. The increase in the
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Figure 10.2. Top: Volume fractions of gas in the ISM in three different simu-
lations. Bottom: Mass fraction of gas in the ISM. Grey dashed lines depict the
standard (ε = 0.5) simulation without feedback (SF1F0e50). Blue (SF1F0e3) and
light blue (SF1F1e3) (including feedback) as well as red (SF1F0e3) and magenta
(SF1F1e3) (including feedback) depict low efficiency simulations (ε = 0.03)

feedback case is owed to a significant accumulation of remaining mass in a high density object
with significant star formation. This region of high gas density is also able to collect additional
gas from the surrounding ISM. As star formation proceeds, gas is transformed into stars and
feedback starts to disperse the gas association again.
Towards the end of the simulations the star formation rate of the non-feedback run is generally
reduced and fluctuates around a rather low value. In contrast, the simulations including feedback
show a relatively constant star formation rate with only a small reduction of star formation ac-
tivity. We readily attribute these observations to the fact that only small fractions of overdense
gas are available during the final evolution of our simulations. However, this effect is reduced
and delayed in the feedback simulation where gas is recycled back to the ISM.
The previously discussed differences also appear in the analysis of the global dependence of spa-
tially averaged star formation rate and gas surface density, as shown in Figure (10.4). Both plots
show the reduced star formation rate in the high density regime. Here. a general flattening and
therefore collective reduction of star formation in highly overdense gas is apparent as expected
for simulations turning overcritical material into stars much slower as a result of the reduced
efficiency.
Additionally, the star formation rate in the non-feedback case stretches down to lower values as
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Figure 10.3. Temporal evolution of the globally averaged star formation rate
of the standard simulation without feedback (SF1F0e50) (grey dashed), low effi-
ciency simulation without feedback (SF1F0e3) (red) and low efficiency including
feedback (SF1F1e3) (green)

(a) Low efficiency simulation without feedback
(SF1F0e3).

(b) Low efficiency simulation including feedback
(SF1F1e3).

Figure 10.4. Comparison of simulation data to the analytic prediction of the
KS relation. The time evolution of galaxies is color coded in the data points.
The blue dashed line depicts the KS relation, while the red continuous line is a
linear fit to the depicted simulation data.

well as corresponding gas surface densities. Contrarily, in the feedback case gas densities and
star formation activity show both still larger values owing to the yet less pronounced effects of
gas depletion.
Finally, the low efficiency simulation including feedback significantly raises the late time star
formation rate at intermediate gas densities and we see how the simulation comes close to re-
producing the power law correlation predicted by KS. Nevertheless, the star formation rate is
generally still one order of magnitude too large.
We take this as an indication that the star formation algorithm proposed by KM05 in combi-
nation with feedback can be used in our simulations to yield results in better agreement with
observed galactic properties than previous simulations with fixed efficiency.
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Figure 10.5. Comparison of simulation data to the analytic prediction of the
KS relation. The simulation uses an artificially low star formation efficiency
0.3 % and includes feedback (SF1F1e03).

A Parameter Test. Above we have studied the influence of reduced star formation effi-
ciency on our simulations. We have seen that although the reduced efficiency brings us closer to
the desired reproduction of the global KS relation, particularly in the feedback case. However,
data and observations still differ by roughly one order of magnitude. Although we have phys-
ically motivated the choice of our employed efficiency value above, we also had to account for
the given algorithmic limitations in order to apply our subgrid-scale model, namely, a maximum
value for Mt = 5. Generally, high turbulent Mach numbers, possibly reaching values up to 50
in molecular clouds, can theoretically produce even smaller efficiencies of turning gas into stars.
Although this cannot be interpreted as a single global efficiency for one molecular cloud object
we consider it interesting to test whether an even lower efficiency parameter produces better
agreement of simulation data and KS relation.
Therefore, we performed an additional study, repeating the low efficiency simulation including
feedback presented above, but with efficiency parameter again reduced by one order of magni-
tude. We use ε = 0.003 or 0.3 %.
Figure (10.5) shows the data analysis of this simulation. The simulation reproduces the normal-
ization of the KS relation much better while using the artificially low star formation efficiency.
The slope of our linear fit does not give any conclusive information, however, while the simula-
tion still slightly overestimates the star formation rate at high gas surface density, it produces a
better fit for the intermediate density range. Unfortunately, the simulation has not transformed
enough gas into stars at the time it was stopped (1.4 Gyr) to show any low surface density star
formation.

10.3. Galaxy Simulation with Subgrid Physics but No Coupling to Star Formation

We begin the discussion of simulations including the treatment of subgrid-scale turbulence by
presenting an initial study of a disk galaxy simulation including the full SGS turbulence calcula-
tions, but the standard star formation algorithm as well as no feedback from star formation. In
that sense the setup of this simulation is identical to our standard case simulation (cf. Section
(9.2)) with the sole difference that we now include the complete subgrid model (cf. Chapter (7))
in the numerical calculation.
The reason for this study is to identify the primary effects of the SGS model on the overall
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Figure 10.6. Comparison of mean temperature of our standard case simulation
(SF1F0e50) (red continuous function) and a standard simulation including the
full SGS turbulence model (SF1F0e50sgsMa5) (blue dashed function).

evolution of the galactic disk with as little secondary effects as possible. Although these sec-
ondary effects, e. g. the influence of the primarily different energy content in the ISM on the
star formation process, is what we are ultimately interested in, we first focus on the primary
effects. Consequently, we compare the SGS simulation to its standard case counterpart and look
for differences and similarities.

Thermal Properties of the Inner Gas Disk. Figure (10.6) shows the averaged gas
temperature of the inner gas disk for the standard simulation without subgrid model and the
case with subgrid model but no direct coupling to the star formation algorithm.
Initially, both simulations are identical, but shortly after the beginning of their evolution, the
mean temperature of both realizations begins to deviate. In the subgrid case, a certain fraction
of turbulent energy starts to build up and therefore reduces the mean thermal energy content
of the simulation. With this major difference, the mean temperature values evolve without
significant events until approximately 500 Myr. At this point, the standard simulation shows a
slight decrease in its mean temperature while the subgrid run develops a significant increase of
temperature at the same time. Consequently, there is a period of several hundred Myr when
the subgrid simulation has higher mean temperature in the inner disk than the run without
SGS model. After roughly 1 Gyr the situation is reversed again. Moreover, we see a general
increase of the mean temperature in the standard run, particularly during the second half of
the simulation. We do not observe this trend in the subgrid simulation where the general trend
is roughly constant. We have already seen this increase of temperature towards the end of
simulation runs in the earlier discussion. The reason was that as gas depletion proceeds, more
and more hot gas from the outer disk region falls into the extraction volume. While this is
obviously the case for the standard run, the subgrid run depletes its gas reservoir much more
slowly delaying the infall of hot material. In gas density projection plots (not shown here) this
is also the most evident effect.
More detailed information is available from a comparison of Figure (10.7) and the corresponding

Figure (9.10) of the standard case, showing the temperature distribution in both simulated disks.
In correspondence with the discussion above, the most obvious difference is the reduction of high
temperature material for the subgrid case. Particularly during the early and late evolution
significantly less volume is occupied with high temperature material. At intermediate times,
the distribution functions differ much less. Nevertheless, it is important to keep in mind that
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Figure 10.7. Temperature distribution in the simulated ISM for the simulation
with full SGS model (SF1F0e50sgsMa5) but no coupling to star formation.

especially for the late evolution we can not compare absolute values as the fractions also depend
on the amount of mass already transformed into particles.
Nevertheless, from these observations we identify two prime subgrid model effects. Firstly, the
reduction of thermal gas energy during the buildup of a significant turbulent energy component,
and secondly, increased mixing and stirring effects with more gas at intermediate temperatures.

Density Distribution in the Inner Gas Disk. The behavior discussed above is also ev-
ident from the comparison of gas density PDF as shown in Figure (10.8). We have picked three
representative instants of time at 200 Myr, 800 Myr and 1.4 Gyr which clearly show how the
distribution of gas densities is changed in the simulation run including the effects of unresolved
turbulence. Especially the high density tail of both distribution functions are largely different,
with significantly more material at high density in the standard case. Additionally, the standard
case does not only show more gas at high density but also on the low density side of the distri-
bution. Contrarily, the subgrid run shows much higher values at intermediate gas densities.
In this picture, the incorporation of the subgrid model results in an increase of gas at moder-
ate densities. However, high density material capable of collapse is also present throughout the
simulation. It appears that the subgrid model enhances the evolution of gas at intermediate
density towards either lower or higher densities. Clearly, the density domain starting roughly at
n ∼ 1 cm−3 up to the threshold density where gas is transformed into particles is significantly
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(a) 200Myr (b) 800Myr (c) 1400Myr

Figure 10.8. Comparison of density PDF for the subgrid run without cou-
pling to SF (SF1F0e50sgsMa5) (red, continuous line) and the standard run
((SF1F0e50)) (grey, dash-dotted line).

less occupied during the entire simulation.
Consequently, the star formation process is supplied less fast with new overdense material. This
results in a shortened high star formation activity during the initial evolution and a reduction to
moderate values. Subsequently however, there is enough dense material to maintain this moder-
ate activity throughout the simulation.

Concluding this section, we have seen how already the passive inclusion of subgrid-scale tur-
bulence has significant influence on the overall dynamics of a simulation. Summing up these
latter aspects, the SGS model accounts for a significant amount of turbulent energy resulting in
reduced thermal energy content. Furthermore, the SGS model leads to a concentration of gas at
intermediate densities.
An order of magnitude estimate of the effect on the thermal energy content can be deduced
from Figure (10.6). We focus on the first couple of hundred Myr because at later times non-
linear effects and different algorithms cause diverging evolution of the simulations. We observe
that the difference in thermal energy is approximately of the same order as the thermal energy
itself. From the definition of the turbulent Mach number Mt =

√
2et/cs and the correlation

of thermal energy and sound speed eint ∼ c2
s we see that turbulent energy reaches the same

order of magnitude as the thermal energy et ∼ M 2
t · eint for supersonic turbulent Mach num-

bers. Figure (10.10) shows the turbulent Mach number for a simulation comparable during the
early evolution. We see that the turbulent Mach number is supersonic on average in the inner
part of the disk, corresponding to the analyzed temperature data. Hence, a turbulent energy
content in the same order of magnitude as the thermal energy and the corresponding reduction
of the thermal energy as observed in Figure (10.6) is what we expect for the discussed simulation.

10.4. Turbulence Regulated Star Formation with Limited Turbulent Mach
Number

Next we start the discussion of simulations actively making use of the subgrid-scale information
to determine the details of the star formation process. We begin the discussion of simulations
with turbulence regulated star formation by presenting an initial study of a disk galaxy simula-
tion including the full SGS turbulence calculation, the KM05 star formation algorithm but no
feedback from star formation. As discussed earlier, we limit the turbulent Mach number to a
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value of Mt,max = 5 in this and the subsequent simulations until stated otherwise. Therefore,
the presented simulations differ in two major aspects to all previously discussed realizations.
Firstly, the calculation of the star formation efficiency has a real functional dependence on the
subgrid-scale turbulence energy. Considering the discussion of fixed efficiency simulations in
Chapter (9) and furthermore the analysis of theoretically determined lower, but still fixed effi-
ciency in Section (10.1) of this chapter, this difference is twofold. On the one hand, the efficiency
is uniquely determined for each particle formation process rendering the transformation of in-
terstellar gas into a sink particle directly dependent on the unresolved physics of turbulence
captured via the subgrid-scale model. On the other hand, the global average of star formation
efficiency is expected to be quite different from the efficiency in the standard runs. However,
compared to the fixed low efficiency runs, this difference might disappear or at least be much
less pronounced as the discussion will show.
Secondly, the turbulence subgrid-scale model itself will have an direct influence on the simulation
runs as discussed in the previous section.

To investigate the first issue of turbulence regulated efficiency we start with an analysis of the
numerically computed efficiency values, based on the KM05 model. The simulation logs almost
two million sink particle creation events during its full runtime of 1.4 Gyr. We average these
events for time periods of 10 Myr and depict the resulting values in Figure (10.9).
The most apparent feature of this analysis is the fact that the dynamically computed efficiency
is indeed one order of magnitude smaller than the previously used values of ε = 0.5. We also
see that the discussion of reduced fixed efficiency (cf. Section (10.1)), where we decided to run a
simulation with fixed efficiency of ε = 0.03 was a reasonable choice.
Considering the details of the presented graph, two aspects need to be mentioned. Firstly, the
rather smooth characteristics are owed to the fact that almost two million original data points
are accumulated and averaged in only 140 bins. Secondly, the temporal evolution of the efficiency
values show clearly that the initial values are larger than later ones. We see a drop off during
the first 300 Myr until a value of approximately ε ≈ 0.05 is reached. This behavior is not to be
attributed to be an effect from the subgrid model. It reflects the large initial gas overdensity as a
result of our initial conditions. The KM05 star formation efficiency is indirectly proportional to
αvir and the virial parameter itself is indirectly proportional to the gas mass in the correspond-
ing cell. Therefore, the large initial overdensities produce small αvir values, yielding increased
efficiency values ε.

To analyze the evolution and influence of the subgrid model on the simulations, we depict the
turbulent Mach number in slices through the disk midplane in Figure (10.10). The color coding
clearly separates subsonic (blue) and supersonic (red) parts of the disk, while the transsonic
regime is colored white. Initially, the turbulent Mach number is largest in the center of the
disk where gas is rapidly cooling and gravitational fragmentation is forming cold dense clumps.
During the subsequent evolution we observe a torus of supersonically supported gas around a
more dynamically changing central disk part which contains patches of turbulent gas with the
highest turbulent Mach numbers but at the same time also extended regions with no supersonic
gas at all.

Problems with Subgrid-Scale Model and Feedback. After introducing the simulation
including turbulence regulated star formation, the next step is to include feedback from formed
stars as discussed previously (cf. Section (9.6)). However, the combination of our implementa-
tion of feedback together with the full subgrid model algorithm has encountered strong numerical
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Figure 10.9. Efficiency parameter for the transformation of gas into parti-
cles. The red, constant line depicts the standard case fixed efficiency of 50 %
((SF1F0e50)) while the blue function shows temporally averaged values com-
puted using the KM05 star formation algorithm (SF3F0sgsMa5).

(a) 200 Myr (b) 800Myr (c) 1400Myr

Figure 10.10. SF3F0sgsMa5: Slices through the disk midplane depicting the
turbulent Mach number. The artifacts in the middle frame are produced by the
slicing algorithm of the visualization tool.

problems. The feedback algorithm effectively alters the energy content of particles and gas ther-
mally as well as kinetically. This in combination with the subgrid model algorithm can have
severe numerical effects, even with our amendments to the subgrid model to prevent unphysical
production of turbulent energy described in Section (7.4). The general problem is caused by
highly non-isotropic local feedback events happening at the locations of the parent particles but
are not necessarily correlated to the original particle creation locations anymore. This results in
the fact that feedback events can occur in marginally resolved regions. Therefore, the combina-
tion of feedback and subgrid model can result in an overproduction of turbulent energy which
causes the numerical scheme to break down if not accounted for.
In order to perform a general problem assessment and check whether and in which way energy
feedback worsens this situation, we experimented with a gross simplification of the feedback al-
gorithm. Usually, the feedback is twofold, including mass and momentum feedback on the one
hand, as well as thermal energy feedback on the other hand. In one particular simulation run
(not presented here) we changed the feedback to only realize mass and momentum feedback but
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omit changes to the thermal energy content. As expected, owing to the increased simplicity, the
situation was improved slightly but the general problem is likely located closer to the production
of turbulent energy than the explicit changes of the thermal energy content. It turned out that a
reduction of the maximum turbulent Mach number, effectively setting a limit to the production
of turbulent energy itself, is capable of resolving the problem. However, the realization and
simulation of supersonic and highly supersonic Mach numbers is ultimately necessary to first
account for the physics of real star formation environments and second to make use of the full
potential of the KM05 star formation algorithm. More work and the continuous improvement of
the subgrid model will yield advances into that direction.

The Correct Treatment of Particle Gravity. Additionally to the discussion presented
so far we also want to draw attention to a particular problem of the Enzo code with respect to
the simulation of particles produced and inserted dynamically into a simulation during runtime.
Owing to some algorithmic shortcomings in the particle treatment, particularly, when individ-
ual particles move out of their parent grid, it is possible that these particles are not correctly
attributed to the new grid that becomes responsible to provide information to compute the dy-
namical particle properties at the next timestep. When this happens, one direct effect is that
gravitational forces are not applied to the corresponding particles until the algorithm reattributes
particle and grid affiliations during the next global iteration of the grid structure. Henceforth,
most of these particles leave the inner part of the galactic disk where they have been created
and possibly even the entire computational domain. The total mass of particles usually lost in
a galaxy simulation, as presented in this work, is only around 5 %. More important is the fact
that particles that are not treated correctly by gravitational forces result in a largely falsified
distribution and dynamical evolution of particles themselves. Consequently, the gravitational
potential caused by the particle component is also incorrect. This directly effects the gas phase
and is most severe in the inner part of the galactic disk.
One simple possibility to circumvent the entire problem is to shorten the root grid time-step of
the simulation. Numerical experimentation has shown that using a root grid time-step reduced
by a factor of 1/10 is needed to realize a corrected simulation of particle dynamics. The factor of
1/10 was determined via a convergence study of identical simulations with the only difference of
the temporal extend in the root-grid timestep.

For all simulations presented in this work we have used this additional reduction of the root
grid time-step.

We emphasize and present this problem here because we want to draw attention to two dif-
ferent but very instructive details. Firstly, the inadequate treatment of particle dynamics copes
with a larger turbulent Mach number limit, owing to the weakend particle potential. Secondly,
simulating incorrect particle dynamics yields much lower star formation efficiencies. Both effects
are seemingly of little physical importance as the basic presumptions, or better, the underlying
numerical simulations, are known to bear significant error. In this sense, we do not draw any
quantitative conclusions. However, there are still some aspects worth mentioning.
We compare two simulations, the first using the original timing for the evolution of the grid

hierarchy and the second using a ten times more frequent iteration of the grid structure. Addi-
tionally, these two simulations have different turbulent Mach numbers. While the simulation run
depicted in Figure (10.11) (a) has a turbulent Mach number limit of Mt = 10, the comparison
run (b) has our standard value of Mt = 5. This difference aside, both simulations are initialized
equally, using the SF3 algorithm for star formation, no feedback and all other parameters in
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(a) incorrect particle treatment (b) decreased root grid time-step

Figure 10.11. Comparison of two simulations, left (a) uses an inadequate treat-
ment of particles ((SF3F0sgsMa10err)), while right (b) uses a root grid time-step
which has been shortened by 1/10 to capture the correct particle dynamics
((SF3F0sgsMa5)).

standard configuration.
The flawed simulation is one of our early runs where it appeared that our scheme would be able
to allow turbulent Mach numbers up to 10, later we had to accept that only smaller values can
be realized in the current form of the subgrid model and we reduced the values correspondingly.
However, the presented Figure (10.11) gives a strong hint towards the reason of difficulties.
We observe that the particle distribution is much more centrally concentrated when particle
dynamics are treated in the correct way. Moreover, the major peaks of particle density or corre-
spondingly gravitational potential are significantly increased in the latter case. Both effects tilt
the simulation towards a more extreme situation and add events and physical circumstances that
are potentially more critical to the numerical scheme than in the simulation evolving a largely
dispersed particle component.

Furthermore, we already stated that the flawed simulation determines relatively low star for-
mation rates. Note that we have used the KM05 algorithm for the presented simulation. Figure
(10.12) shows the dependence of star formation rate on gas surface density in our usual analysis.
While it is certainly questionable to discuss the details of the plot it is nevertheless interesting
to note that the general order of magnitude of the star formation rate is significantly lower in
this flawed simulation.
Obviously, the gas component in the simulation is much less accumulated as a result of particle
gravity, than is the case for the simulation with correct particle treatment. The dispersed parti-
cle component directly results in a correspondingly dispersed gas component. The reduced gas
density, in consequence, yields a lower star formation rate. This points towards the possibility
that dynamical effects of the gas and stellar components of a galactic disk may in fact have more
significant influence on the overall evolution than expected before.
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Figure 10.12. Order of magnitude estimate of star formation rate in a simu-
lation ((SF3F0sgsMa10err)) with flawed treatment of particle dynamics.

Although it is dangerous to speculate based on certainly wrong data, it appears worth reinves-
tigating whether the assumption of an isolated galaxy with no dispersing effects from beyond
the galaxy itself or the initial setup of a purely gaseous disk with no stellar component are best
parameter choices.
Somewhere along the course of this thesis, we experimented with initial conditions including a

significant stellar component. The generation of the initial conditions has been realized accord-
ing to recent work of Li et al. [2005, 2006]. The latter authors have been so kind to supply us
with the numerical realization of the analytical work of Mo et al. [1998] implemented by Springel
and White [1999], Springel [2000]. This initial condition generator has been adopted to be used
with Enzo, however, the possibility of such simulations was omitted in this thesis as we decided
to focus our efforts towards the incorporation and applicability of the subgrid-scale treatment
of turbulence. Future work might very well follow along the earlier approach and use largely
different initial conditions prepared with the initial condition generator tool.

10.5. Low Turbulence Mach Number Regulated Galaxy Simulation with Feedback

Finally, we present a complete realization of all previously introduced and discussed aspects of
turbulence regulated star formation in a full scale simulation of an isolated disk galaxy. In order
to realize this goal, namely the joint simulation of the galactic gross properties together with
the detailed interstellar medium including subgrid-scale turbulence to regulate star formation
and furthermore including the buildup of a stellar component and a simplified representation
of supernova type II feedback from these stars, we use the framework presented in the previous
chapters. We use all standard parameter values as discussed and reasoned for earlier. The star
formation is again realized via our implementation of the KM05 algorithm SF3 and the simulation
includes feedback. The subgrid model is, however, configured in a more strict way, allowing only
turbulence Mach numbers up to a value of M = 1. Although we stress that this is not generally
the largest possible value but at least an operational one. In the remainder of this Chapter (10)
we now analyze and discuss this full scale turbulence regulated simulation (SF3F1sgsMa1).

The Galactic Disk. We begin with an investigation of the morphological structure of the
galactic disk. Figure (10.13) shows the projection of gas surface density in the same fashion
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(a) 20 Myr (b) 50 Myr (c) 100Myr

(d) 200Myr (e) 500 Myr (f) 1000Myr

Figure 10.13. SF3F1sgsMa1: Temporal evolution of the gas disk structure in
projection along the axis of rotation. All pictures are 60 kpc across and the color
table ranges from 1010 M� Mpc−2 to 1015 M� Mpc−2.

as introduced earlier (cf. Figure (9.1)). The general structural evolution with the early central
fragmentation and the buildup of irregular web of filamentary density enhancements, as well
as the subsequent fragmentation into small clumps of cold dense gas, follows the same pattern
as in all other simulations. However, the filamentary structure is already disrupted by early
feedback events. Furthermore, this significant influence from star formation feedback results in
a much more irregular appearance of the interstellar medium. At approximately 50 Myr, shortly
after the initial star formation burst, we observe several irregular rings of gas which result from
feedback events originating in the central part of the disk where early formation of stars was
most pronounced. During the next 100 Myr most of these shock density enhanced regions frag-
ment and collapse towards the inner part of the disk. Consequently, the galactic disk is much
more centrally concentrated although this is certainly also influenced by the slower, because less
efficient, star formation process. At later times during the simulation, the disk settles into a less
dynamical state where it only marginally changes in size and structural appearance.
Additionally, we also observe the effects of feedback in the side-on projections of the galactic

disk shown in Figure (10.14). Large outflows and ejections of gas are visible throughout the
entire disk. This is most pronounced during the early, most active star formation phase. As
the simulation proceeds and the disk becomes more quiescent, the strength of outflows is largely
reduced, too. The snapshots at 200 Myr and particularly at 500 Myr again show how the disk
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(a) 100Myr (b) 200Myr (c) 500Myr

Figure 10.14. SF3F1sgsMa1: Temporal evolution of the gas disk projected
through the galactic plane. All frames have the same spacial extension and
color table as figures before.

is reshaped and gas is more centrally concentrated. After all, comparing this turbulence regu-
lated simulation including feedback to the standard simulation case (fixed efficiency, no feedback,
cf. Figure (9.5) and Figure (9.6)) shows a galactic disk with smaller extent in radial direction,
but increased disk thickness.

Again, to gain a more quantitative evaluation we turn towards the analysis of gas density dis-
tribution in the central galactic disk. Figure (10.15) depicts the same analysis as presented for
the standard case in Figure (9.7). Once more, feedback is the dominating factor which strongly
broadens the density range in both directions, rendering significant fractions of gas to be exis-
tant at previously unoccupied ends of the distribution function. More dense gas is created via
compression and subsequently repeated compression from feedback shocks. Low density gas is
created via gas heating from feedback but more importantly, rarefaction as counterpart of shock
compression. This behavior dominates for approximately 500 Myr. After that period of time we
observe a shift in the distribution function describing rather continuous fractions of gas at low
and intermediate gas densities while the high density wing of the distribution function is largely
reduced. Towards the end of the simulation the galactic disk contains no high density material
at all.
This is rather surprising from the point of view that feedback, including the circulation of gas

from the ISM into stars and back into the ISM via mass ejection, is a channel to supply already
processed material back into the galactic gas reservoir. This gas could then fragment and gravi-
tationally collapse again to form new stars. To resolve this discrepancy, it is important to note
that Figure (10.15) (i) is only partially representative for that late evolution of the gas disk.
During the last hundred Myr we can indeed identify two distinct data outputs, at 1320 Myr and
1380 Myr, when the distribution shows gas at significant overdensity. Furthermore, the feedback
deposits various, but rather small amounts of material continuously back into the ISM. Note that
feedback was primarily modelled to mimic type II supernovae but also spread over time to ac-
count for the continuous outflows and winds. Therefore, feedback works to smooth the remaining
galactic gas disk as the most violent events, namely the massive interaction of coincident events,
become very rare.
Moreover, the presented simulation uses our turbulence regulated star formation realization.
One implication is a reduced star formation efficiency which leads to slower transformation from
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(a) 10 Myr (b) 50 Myr (c) 100Myr

(d) 150Myr (e) 200Myr (f) 500 Myr

(g) 800Myr (h) 1100Myr (i) 1400Myr

Figure 10.15. SF3F1sgsMa1: PDF of gas density. The plots depict the nor-
malized logarithm of gas density. Therefore, the density scale of δ =] − 5, 10[
readily translates to ρ =]6.74 · 10−28 g cm−3, 2.20 · 10−21 g cm−3[ or
ρ =]10.0 · 10−6 M� pc−3, 32.5 M� pc−3[.

gaseous phase into particles. Consequently, gas that is not immediately converted into particles
once it reaches overdensity can easily be dispersed and redistributed by feedback, contributing
to the previously described broadening of gas density distribution function.

Thermal Properties. The influence of star formation and feedback is not only evident in
the density structure of the galaxy but also shows up in the thermal properties of the ISM. We
analyze the evolution of thermal properties of the galactic gas in Figure (10.16) and compare
to the standard case (cf. Figure (9.10)). In particular, the distribution of mass (red) shows a
noticeable spread across the cold and warm phase during the first half of the simulation, in corre-
spondence with the earlier discussion. An interesting additional peculiarity is the fact that several
subsequent frames during the late evolution, particularly at 960 Myr, 1.08 Gyr and 1.20 Gyr, do
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not show the pronounced low temperature peak in the mass distribution plot. This essentially
demonstrates that no significant fraction of gas resides at or close to the minimum temperature
without being transformed into particles or heated to higher temperatures. This is in accordance
with the fact of the strongly reduced high density wing in the gas density distribution function
at late times. A consequence of this is that we expect very low star formation activity for this
time. Again, in accordance with the previous discussion, we observe a spike at 1.32 Gyr where
we have also seen gas temporarily at high density in the distribution function.

The volume fractions depicted in the latter figure show the usual, expected picture of two distinct
peaks, representing the corresponding warm and hot phase of the ISM. A noticeable difference
to the standard case simulation is the fact that the hot fraction is significantly more pronounced
during the entire simulation. This is again a consequence of continuous energy input from feed-
back which acts to particularly enhance to temperature in low density regions where cooling is
less efficient.
However, it is important to note that there are still significant differences when comparing the lat-
ter simulation to the feedback augmented standard simulation presented in Section (9.6). These
differences provide evidence for the fact that changes of particular aspects of a certain realization,
like the inclusion of feedback or the utilization of a different star formation realization do by no
means only implay straight forward linear changes to their dependencies. Oppositely, the entire
simulation might be dramatically changed. The nonlinear interplay of all involved physics makes
it very hard to identify the sources of change or their consequences.
Note, for example, the differences in the temperature phases of the standard simulation (Figure

(9.9)), the standard simulation including feedback (Figure (9.17)) and the turbulence regulated
simulation including feedback (Figure (10.17)). We have discussed the apparent differences be-
tween the first two in Section (9.6) and attributed the changes to the inclusion of feedback as
this was essentially the only conceptual difference between both simulations. Now we observe the
combined effects of a largely different star formation realization in combination with the feedback
which is itself very different owing to the changes in the underlying stellar component. We will
discuss this population in more detail shortly. Coming back to the thermal properties of the
ISM, note that the turbulence regulated simulation completely lacks the very high temperature
gas surrounding the central warm and hot accumulations of gas. In other words, although we
still observe a well defined phase structure, the entire outer area of extraction volume presented
in Figure (10.17) has approximately the same high temperature. The corresponding standard
simulations show a clear trend towards higher temperature with distance to the galactic center.
The combined effects of low efficiency star formation and the resulting feedback are the reasons
for this behavior. Firstly, the slower transformation of gas also slows the infall of gas from the
outer disk and therefore has a stabilizing effect as this simultaneously denotes a less efficient
cooling. Less efficient cooling denotes less fragmentation and less infall of material towards the
potential center.

More information is available from the study of the phase diagrams of the latter simulation pre-
sented in Figure (10.18). The first frame shows an identical start of the simulation in comparison
to the standard case (cf. Figure (9.11)). In the subsequent evolution, we observe the broadening
of gas density distribution function and reduction of high density material during the second
half of the simulation. Furthermore, the disappearance of overpressured low temperature, large
density peaks is in concordance with the above mentioned transformation of all overdense gas
into particles.
Additionally, the plots reveal the fact that the simulated ISM has developed a fraction of gas
that strongly deviates from the pressure balance of the stable phases. Interestingly, the phase
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Figure 10.16. SF3F1sgsMa1: Temperature distribution in the simulated ISM.
We depict again volume and mass fractions, this time in continuous plots cover-
ing the whole temperature regime. The dashed line depicts the employed cooling
function, and vertical lines indicate our definition of phases in the ISM.

(a) 100 Myr (b) 700 Myr (c) 1000Myr

Figure 10.17. SF3F1sgsMa1: Face-on projections of the gas temperature (K)
in the galactic disk. Again the frames are 60 kpc across. We use a special color
table to visualize the three components of the ISM.
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(a) 10 Myr (b) 50 Myr (c) 100Myr

(d) 150Myr (e) 200 Myr (f) 500Myr

(g) 800Myr (h) 1100Myr (i) 1400Myr

Figure 10.18. SF3F1sgsMa1: Contour diagrams of gas density versus temper-
ature in the standard extraction volume of the galactic disk. Contour levels are
103, 104, 5 · 104, 105, 1.5 · 105 and refer to cell counts. The total number of cells
in the extraction volume is ∼ 1 · 107. Straight lines depict isobars.

diagrams are not only broadened in density and towards higher temperatures, but likewise to-
wards lower temperatures. Obviously the strong compression of gas and the correspondingly
very efficient cooling leads to the fact that feedback indirectly also generates significant fractions
of cold, star forming gas. This is particularly the case after a significant stellar component is
formed during the first several tenth of Myr and up to approximately 500 Myr into the simulation
when the star formation activity forming new massive stars has largely ceased.

Particle Distribution. The evolution of the particle distribution appears surprisingly sim-
ilar to the standard case at first glance. However, we have to look carefully into the details of
the projected particle density (Figure (10.19)) and keep in mind that particles represent dense
cold gas as well as stars that form therein. The corresponding figure of the standard simulation
is Figure (9.12).
The evolution again starts at the center of the galactic disk. Here, the first particles and con-
sequently also the first stars form. Moreover, we observe that the initial particle distribution is
spatially very confined and no particles are ejected or expelled from the galactic center at this
time. This aspect confirms the earlier assumption that all early feedback originates from the
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central region of the galaxy and can well generate the observed concentric density enhancements
discussed in the beginning of this section.
A second conspicuous fact is that we can also observe a reduced amount of particles or likewise
a particle distribution which is less extended as in the standard case simulation. This is partic-
ularly the case for the first three frames (a) to (c). On the one hand, the turbulence regulated
star formation algorithm is known to have reduced efficiency, while on the other hand feedback
acts to enhance density as well as to disperse dense star forming regions. A combination of both
effects, most likely with temporal shift of the dominating part during the evolution affects the
global evolution of the galaxy.

Another aspect of the particle component which needs to be discussed is its temporal evolu-
tion during the second part of the simulation. Here, the formation of new particles and stars is
relatively low and we focus on the overall dynamics of the particle component. In the standard
case with no feedback, we have seen how particles build up subsequently growing associations.
Towards the end of the run the disk consisted of a small number of massive associations and a
disk component. For the feedback case we expect this to be generally different and in fact observe
more transient structures. Associations do not grow indefinitely but get dispersed after a certain
time of evolution. Additionally, we observe the formation of a larger number of smaller associ-
ations most likely as a result of reduced star formation in combination with feedback spreads
particle formation spatially as well as temporally.
As final remark, note the large cloud of particles appearing to the lower left of the particle dis-
tribution in Figure (10.19) (f). This is the dispersed remainder of a relatively large association
of particles very similar to one of the outstanding white, high density occurrences apparent in
all frames.

Star Formation. To gain a more quantitative picture we now study the star formation
history of the turbulence regulated simulation. Figure (10.20) (a) shows the corresponding data.
We observe the usual initial star formation burst followed by a prolonged period of high star
formation activity. Around 500 Myr the star formation rate shows a short period of constant
activity before the overall rate drops again. At the end of the simulation, star formation appears
to stabilize at a relatively low rate. Although at 1.2 Gyr there is a significant break in this slow
star formation evolution.
We have discussed how star formation algorithm and feedback influence the distribution of gas
densities producing more gas at overdensities which becomes transformed into particles. After
all, it seems surprising that the obviously increased star formation activity compared to the
standard case (cf. Figure (9.13) (a)) does not produce a noticeably larger particle density in the
previously presented projections. In fact, we saw the opposite, a smaller population of particles.
However, at 500 Myr both simulations have similar particle components aside the different evo-
lutionary histories. Moreover, during the further evolution, the turbulence regulated simulation
including feedback significantly increases its particle component compared to the standard run.
The explanation for these observations is the mass feedback which eventually recycles a total
of 25 % of the particle mass back into the interstellar medium. Therefore, as long as the star
formation rate is not larger than 25 % at any time, the overall particle density will be smaller
than in the case without feedback. Moreover, the returned gas is available for the creation of
new particles and this promotes the increased generation of particles and consequently stars at
intermediate times. The turnover occurs roughly 200 Myr later as we have also seen in the pre-
vious discussion. Both density distribution functions temperature distribution as well as phase
diagrams showed that the simulation does not have a noticeable amount of overdense cold gas
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(a) 20 Myr (b) 50 Myr (c) 100Myr

(d) 200Myr (e) 500 Myr (f) 1000Myr

Figure 10.19. SF3F1sgsMa1: Projected particle density. Note that we have
stretched the scale of depicted values by one order of magnitude compared to
earlier plots for better visualization. The maximum and minimum densities
shown here are 1016 M� Mpc−2 and 1010 M� Mpc−2, respectively.

at this time. Most material has been transformed, while the remaining gas is rather smoothly
distributed owing to the overall dynamics.

This behavior is reflected in the analysis of the dependence of star formation rate and gas surface
density. Figure (10.20) (b) shows the analysis, although this time we have changed the data range
to which we apply the fit to the first 750 Myr of the simulation. We again see that the simulation
largely overrates the star formation rate by more than one order of magnitude. However, the
combination of dynamical efficiency and feedback gives the correct slope for the first half of the
simulation.
Contrarily, for the second half of the simulation the correlation is broken and depicts a much
steeper slope. The data points show the behavior expected from the discussion of the star forma-
tion history. We observe a continuous decline of star formation rate until a minimum is reached
at approximately 1.2 Gyr. Several hundred Myr before and after that instant of time the star
formation efficiency corresponds to what is observed and described by the KS relation.
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(a) Temporal evolution of the star formation
rate.

(b) Global Schmidt-law.

Figure 10.20. SF3F1sgsMa1: Analysis of the star formation rate. The left
frame depicts how the star formation rate changes over the course of a simulation,
while the right frame shows the dependence of star formation rate on gas surface
density. Note that we have cut the range to which we apply the fit to only include
data of the first 750 Myr.

10.6. Thermal and Turbulent Pressure in the Galactic Disk

As we have seen in the previous discussion, our simulations are not yet able to reproduce the
KS relation correctly. Nevertheless, we have seen how the implementation of the SGS model to
realize the influence of turbulence has important consequences for the overall dynamics of the
simulated disks. In our final analysis we investigate how the SGS model accounts for the effects
of turbulent pressure and what the magnitude of this pressure component is compared to the
thermal pressure.

Again, we focus on the inner, most actively star forming part of the galactic disk and perform
the following analysis with the same extracted dataset as all previous studies. Figure (10.21)
shows the comparison of thermal and turbulent pressure for two simulations with different star
formation realizations, but the same limit on the turbulent Mach number. More precisely, we
present the standard simulation (fixed efficiency) including the full SGS calculation but no cou-
pling to the star formation algorithm (SF1F0e50sgsMa5) (cf. Section (10.3)) on the one hand
and the turbulence regulated simulation with limited Mach number (SF3F0sgsMa5) (cf. Section
(10.4)) on the other hand. Both simulations have Mt,crit = 5 and no feedback.
Figure (10.21) depicts a broad concordance of the pressure data of both simulations. Moreover,

in the simulations with a relatively high limiting Mach number the turbulent pressure is signifi-
cantly larger than the thermal pressure. This difference is approximately one order of magnitude
throughout the entire simulation time.
The fact that we observe high initial values for both pressure components is once more owed
to the initial conditions. Note that thermal pressure pth = (γ − 1) · ρ · egas as well as turbu-
lent pressure pturb = 2/3 · ρ · et depend linearly on gas density which is most pronounced at the
beginning of each simulation. Furthermore, the subsequent drop of pressure in the turbulence
regulated case is a consequence of the rapid decline of gas density during this early simulation
phase as a result of the much larger star formation activity of the simulation with respect to the
displayed counterpart. As the simulations proceed, gas is continuously transformed into stars
and this yields a corresponding decline in the pressure components. Towards the end of the runs,
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Figure 10.21. Comparison of thermal (lower graph) and turbulent (upper
graph) pressure in two simulations. The labeling identifies the particular plots.
All pressures are given in code units but can be scaled to cgs units via multipli-
cation with R2L2G0 ≈ 6.35 · 10−9g/s2cm.

the thermal pressure becomes influenced more strongly by the increase of gas temperature which
can lead to slightly increased values. This is particularly the case for the turbulence regulated
simulation, where an increasing mean temperature slightly raises the thermal pressure. The be-
havior of turbulent pressure remains rather constant. This is firstly a consequence of the only
marginally changing disk gas density and secondly displays that also the global turbulent energy
content of the inner disk remains rather constant.

In Figure (10.22) we compare the ’SGS-SF’ turbulence regulated simulation described in the
last paragraph to the previously presented simulation with Mt,crit = 1 (cf. Section (10.5)). We
caution the reader to keep in mind the fact that the latter simulation includes feedback. How-
ever, the most important aspect of this comparison is the fact that the simulation with much
lower limit on the turbulent Mach number has a strongly decreased turbulent pressure content.
Not only is the turbulent pressure in this case smaller by more than one order of magnitude
compared to the Mt,crit = 5 simulation but, moreover, the turbulent pressure is also almost one
order of magnitude smaller than the thermal pressure. We see that the artificial reduction of the
turbulent Mach number from Mt,crit = 5 to Mt,crit = 1 not only reduces the overall turbulent
energy content of the galactic disk, but more importantly renders the turbulent contingent less
significant than the thermal one. Henceforth, we can not expect turbulence to supply a signifi-
cant pressure support to influence the gas dynamics of the galactic disk and eventually lead to a
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Figure 10.22. Comparison of mean thermal and turbulent pressure in two
turbulence regulated simulations with different limits on the turbulent Mach
number as displayed in the figure’s labeling.

more realistic star formation rate in case of this too small Mach number limit.

As concluding remark we note that feedback results in fluctuations of the average gas tem-
perature as discussed before and therefore leads to fluctuations in the thermal pressure function
depicted in the figure above.

With Figure (10.22) as last visualization of simulation data we close the presentation of our
numerical results. We will reflect the above disscussion, compare again to work by other authors
and draw conclusion in the next Chapter (11).





CHAPTER 11

Conclusions and Prospects

In the previous Chapters (9) and (10), we have described our simulations and extensively dis-
cussed the particular results. Here we sum up and reflect the most important aspects, discuss
achievements and shortcomings and finally point towards future applications of our work.

11.1. Simulation of Galactic Disk Systems

We have performed state of the art three-dimensional high-resolution simulations of an entire,
although isolated, galactic disk system and studied the details of the overall evolution for 1.4 Gyr.
Our simulations self-consistently include the fixed properties of a galactic dark matter halo. We
start the full dynamical evolution of our simulations from relaxed stable initial conditions of the
galactic gas disk configuration. Thermal properties of the interstellar medium are modelled via
a classical approach to define a particular cooling function, and all simulations develop a good
realization of a three-phase medium in approximate pressure equilibrium.
Furthermore, besides the global galactic properties and the realization of a realistic interstellar
medium our simulations also include several of the most important physical processes to simulate
galactic evolution on extended timescales. Namely, we not only include dark matter potential
and cooling, but self-gravity and consequently the fragmentation of gas as well as subsequent
star formation and feedback from type II supernovae.
Additionally, our work introduces and uses our new FEARLESS concept to combine semi-analytic
modeling of physical processes with hydrodynamical simulations. We use a subgrid-scale model
to capture turbulence effects below the numerical grid cutoff scale which not only directly in-
fluence the evolution of resolved hydrodynamical quantities but, moreover, allows us to directly
implement the turbulence regulated star formation algorithm proposed by KM05.
To realize this approach we use adaptive mesh refinement to simulate the substructure of galac-
tic disk systems down to the scale of molecular clouds (∼ 30 pc) and augment the simulation
routines with a code to model the turbulent energy content on smaller, unresolved scales.
Moreover, we use the capabilities of Enzo to combine the grid based hydrodynamical simulation
with an additional particle component to account for highly overdense material which becomes
converted into dense, bound objects which eventually transform into stars. Finally, we model the
coupling of this particle component to the interstellar medium via feedback mechanisms which
not only recycle gas but also energy and momentum back into the surrounding galactic medium.

11.2. Shortcomings, Achievements and Future Projects

Our simulations present a continuous development of previous work but still leave several aspects
open to significant advancement.
To begin with, we comment on the fact that several authors claim to observe spiral structure in
their simulations. However, most often only snapshots of the overall evolution are presented and
also these snapshots sometimes suggest some kind of spiral structure (cf. e. g. our Figure (9.5)(e))
a real spiral pattern as defined in the Hubble classification is neither investigated nor present.
The reasons are that both kinds of global spiral structure, namely flocculent and grand design
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spirals, are dependent on various global properties not realized in the corresponding simulations.
Grand design spirals result from galactic interactions but most simulations, as our own, are deal-
ing with isolated galactic systems. Moreover, spiral structure as described in density wave theory
requires a dynamical interaction of dark matter halo, galactic gas and stellar component. Again,
using a fixed dark matter potential as in our work excludes the simulation of such interactions
and the corresponding structural influences on the galactic disk. Summarizing, we neither ex-
pect nor claim that our simulations show any real spiral structure. However, the realization of
a dynamical dark matter halo or the realization of a dynamical galactic interaction, either via
direct simulation or via semi-analytic modeling of the corresponding gravitational effects, has
no general objections and are certainly interesting questions with respect to large scale galactic
simulations.

However, our focus has been towards the smaller scale or internal properties of a galactic disk
system. We have already discussed the problem of defining initial conditions in Section (9.1). We
have seen that starting off with an completely gaseous disk is not only difficult to handle owing to
the fact that such a system is by definition highly unstable, but also difficult to interpret as the
initial star formation burst has significant influence on the overall evolution of the galactic disk.
Although we have improved the generic situation significantly in our work as we circumvented the
initial, radial compression shock wave which largely generated stars in earlier work (e. g. Tasker
and Bryan [2006, 2008]), the overall initial conditions remain very artificial. Oppositely, it also
appears unsuitable to simulate the complete formation and buildup process of a galactic object
owing to its immense complexity. A reasonable approach would be to start from a set of more
realistic initial conditions as realized by Li et al. [2005]. The latter authors are able to generate
Milky Way like initial conditions with a dark matter halo very similar to our analytic profile and
a galactic disk with variable fractions of baryonic mass in the gas disk and, correspondingly, the
stellar component. As mentioned earlier, the tool to generate the latter initial conditions has
already been adapted and tested for simulations with Enzo. Therefore, work along this path
can start directly and investigate the benefits of our turbulence subgrid-scale model and star
formation realizations.

Another aspect which has been slightly improved in our work but still bears large conceptual po-
tential for advancements is the realization of heating and cooling in the interstellar medium. We
have given extended details on our implementation of cooling in Section (5.3) and argued for our
assumptions and choices. Furthermore, we have seen how this realization yields ISM properties
in good concordance with observations. Nevertheless, a detailed treatment of chemical processes,
the inclusion of additional radiation sources such as quasars and the implications of interstellar
dust are important aspects all in their own right.
Gnedin et al. [2008] describe a phenomenological model for the formation of molecular hydrogen,
applicable to simulations which are able to resolve molecular cloud scales such as our own. Their
model includes the formation of H2 on dust grains and accounts for shielding from photodissocia-
tion effects caused by the interstellar radiation field. The authors describe several recipes for star
formation based on the calculated density of molecular hydrogen. In our simulations we follow
Krumholz and McKee [2005] and assume that gas that is dense enough to exceed the threshold
for star formation is entirely molecular. Here, a more detailed treatment in the spirit of Gnedin
et al. can certainly improve our simulations. Particularly, the dependence of the molecular
fraction on the metallicity of the ISM is an important issue. Especially, when the metallicity
changes during the galactic evolution. However, an additional variable amount of molecular gas
can also be interpreted as additional fraction of the overall gas content that is transformed into
stars. Hence, including the treatment of molecular hydrogen can also be realized in a first order
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approximation, as an additional efficiency parameter. A more physical treatment on the other
hand requires again model assumptions as well as tuning of parameters to reach the reproduction
of observational results.
The question one has to ask is concerning necessary effort and potential improvement. Heating
and energy input from quasars are relatively simple to introduce in our framework and partly
already existent in Enzo. However, the quality of this first order implementation is likely to
yield only marginal effects, while a more complete realization poses significant difficulties owing
to the additional level of complexity.
ISM chemistry itself is a completely different topic. Simple models can be used to add additional
details to simulations. A holistic approach systematically analyzing and implementing the entire,
highly complex problem will ultimately yield better contributions to galaxy scale simulations.

The transformation of dense parcels of gas into particles is our method of choice to account
for highly overdense regions in the galactic disk. Other authors chose to employ higher minimum
temperatures or, as in recent work by Agertz et al. [2008], use a polytropic equation of state.
The latter authors succeed to maintain global stability of the numerical scheme and also prevent
artificial fragmentation in a general way, as they tune their parameters to prevent gas from cool-
ing below a certain temperature limit at certain maximum resolution. However, this also denies
them to study the plethora of structure of the ISM, in particular the cold neutral medium as well
as the molecular gas therein. Consequently, a phenomenological star formation parameterization
is used, based on the KS relation. Oppositely, our realization of cooling and particle creation
can possibly lead to some artificial fragmentation while capturing the structure of the ISM in
much more detail. A possible solution to this problem would be increased numerical resolution
as computing power reaches the next level. Prior to this, also a more sophisticated control of the
adaptive mesh refinement can yield higher resolution in overdense regions while only increasing
the computational demands to a still feasible level.
Another aspect of the stellar component certainly worth a close reinvestigation is the imple-
mented feedback, modeled to mimic type II supernovae explosions. We did neither study the
details of variations in the feedback governing parameters nor did we study particular feedback
events and their influence on the overall galaxy scale simulation. However, feedback has shown
to be a very important ingredient to a complete galactic simulation and particularly essential for
the life-cycle of matter as well as the thermal properties of the ISM. Therefore, feedback appears
as promising candidate for further interesting and beneficial studies, with respect to a better
understanding of galactic disk systems.

After all, the turbulence regulated star formation algorithm which ultimately determines the
star formation rate as a result of the turbulent subgrid-scale properties has proven a powerful
alternative to previously employed star formation recipes which seem to largely overestimate the
star formation efficiency in simulations of galactic scale.
However, the conceptual and numerical realization of the subgrid-scale model suffers from strong
limitations as we had to artificially reduce the generation of turbulent energy by only allowing
for certain maximum values of turbulent Mach number. The eventual reduction of this turbu-
lent Mach number limit to the transsonic regime and the corresponding exclusion of supersonic
subgrid-scale turbulence effects in the feedback case greatly impacted on the influence and qual-
ity of the SGS calculations. Unfortunately, the artificial limit draws off the predictive power as
well as impact on the simulations of the otherwise quite promising subgrid model approach.
Consequently, a next development step of the SGS model including the realization of even slightly
higher turbulent Mach numbers of the order of one magnitude will enable the FEARLESS ap-
proach to turbulence regulated star formation to regain its conceptual power. The possible
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simulation of even higher turbulent Mach numbers will ultimately be a highly interesting task
and potentially very important towards a deeper understanding of star formation, turbulence,
the ISM and eventually the global evolution of entire galactic systems.

Finally, we conclude this reflection of the presented work with noting that also generally ne-
glected pieces like radiative transfer and magnetic fields are important parts to the complete
picture of galaxy scale simulations.
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11.3. Conclusions and Essence

We summarize our main conclusions here:

• Initial conditions with all galactic baryonic mass in the gas disk represent a rather artifi-
cial setup. Imprints of this choice of initial conditions can be manifest throughout the simulations.
Therefore, a more realistic initial configuration is generally preferable.

• Gravitational contraction and turbulent fragmentation initialize rapid densification of
galactic gas, starting at the disk center. While the exact fragmentation processes in a galactic
disk system are largely dependent on the particular simulation properties (e. g. star formation,
feedback, . . . ), the global evolution leads to a central concentration of the remaining gas disk.

• The realization of gas cooling as parameterized with our cooling function naturally pro-
duces an interstellar medium with three distinct gas phases which are in approximate pressure
equilibrium. The influence of star formation and feedback lead to significant deviations from this
behavior and generate gas off equilibrium conditions.

• The particle and stellar component in our simulations follow the gravitational fragmenta-
tion and grow from the inner galactic disk outwards. Feedback acts to disperse large associations
of particles and leads to spatially enhanced stellar component.

• We observe a well defined functional dependence of gas surface density and star for-
mation rate in all our simulations which can well be described as power law dependence. The
corresponding power law indices as well as the normalization generally deviate from the observed
KS relation in our simulations. A systematic trend could not be identified, however, feedback
in combination with the turbulence regulated star formation algorithm show the best agreement
with observations. Nevertheless, the normalization of the star formation rate is still an order of
magnitude too large. However, this overproduction of stars is not surprising as we could not ac-
count for supersonic subgrid-scale turbulence in the corresponding simulation. Additionally, we
observe a break in the simulated KS relation, indicating largely reduced star formation activity
during late simulation times when gas surface densities are globally reduced.

• Recent work indicates that star formation efficiencies are as low as only a few percent
considering the gas of molecular clouds eventually turned into stars. Our implementation of the
KM05 star formation algorithm as turbulence regulated alternative to previous fixed efficiency
realizations confirms the results of low star formation efficiencies in turbulent molecular clouds.

• The control of the subgrid-scale model and the yet necessary artificial limitation of the
production of turbulent energy in simulations of full galaxy scale complexity also limits the SGS
model capabilities during the calculation of the correct star formation rates. New SGS algorithm
development steps are likely to quickly overcome this problem.

• The combination of semi-analytic modeling of turbulence effects below the resolved grid-
scale with hydrodynamical simulations, as realized in our FEARLESS approach, is a powerful
technique to study highly complex entities with important physics on all scales.





Summary of Results

Part (III) of this thesis is devoted to the results of our numerical studies. The first set of presented
simulations represents the state of the art large scale galactic simulations with a parametric recipe
for star formation. We started the evaluation of simulations with a detailed description of how
and why we define our particular initial conditions. From this starting point, we systematically
discussed the physical properties of the simulated galactic disk systems. We have begun with the
description of the gas disk and its thermodynamical evolution, followed by a detailed discussion
of the star formation process. We have ended the description of this kind of simulations with an
investigation of feedback effects from the evolved stellar component as well as a discussion of the
importance and choice of different simulation parameters.
Furthermore, we have presented a second set of simulations motivated by and finally including
the star formation recipe developed by KM05. Here, the presentation started with a general
assessment of the possible simulation results of a star formation realization using the KM05
algorithm and a discussion of corresponding simulations. Following these proof of principle
simulations we finally presented our simulations of galactic disks with turbulence regulated star
formation in several variations. Beginning with a study of the implications of the subgrid-
scale model to capture unresolved turbulence we subsequently presented simulations with full
turbulent regulated star formation and eventually the inclusion of feedback and discussed the
various implications and results of these highly complex simulations.
Concluding this work, we have summarized our findings and reflected the performed simulations
as well as the discussed results. Additionally, we have pointed towards some future applications
and identified most promising projects continuing the work presented in this thesis. Finally, we
have condensed our most significant findings into several bullet points.
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APPENDIX A

Cooling via Bremsstrahlung

To estimate the length scale of an early galactic system which can cool efficiently via thermal
Bremsstrahlung, we use the integrated power density of thermal Bremsstrahlung

PBrems ∝ (ner
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)1/2
mec

3
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where ne is the number density of electrons, re is the classical radius of electron, me is its mass
and c is the speed of light. We have used re = e2/mec

2 and α = e2/~c. This yields the cooling
time as
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Equating for tcool ≈ tgrav we get
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This can be rewritten as

(A.9) R ≈ α3

αG

(
mp

me

)1/2(
λe

2π

)
,

where we have used the constant for gravitational coupling αG = Gm2
p/~c and the Compton

wavelength λe = h/mec.

Equating this, including all coefficients, yields the typical length scale of an efficiently cooling
system, roughly 75 kpc.
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APPENDIX B

Derivation of the Virial Theorem

Stahler and Palla [2005] show a short but comprehensive derivation of the virial theorem in their
Appendix D. For completeness, we copy from the latter authors and show their derivation here.
At some points we have made amendments or additional comments.

The derivation starts with the equation of motion for an inviscid fluid including terms of gravi-
tational acceleration and magnetic effects.

(B.1) ρ
Dv

Dt
= −∇P − ρ∇Φg +

1
c
j ×B

Equation (B.1) is written using the convective or Euler time derivative of the fluid velocity v.

(B.2)
Dv

Dt
=
(

∂v

∂t

)
x

+ (v∇)v

To tackle the last term in Equation (B.1), the magnetic force term, Ampère’s law is used.
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4π

c
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1
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(
∂E
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)
x︸ ︷︷ ︸

ignored

Here, the displacement current of the electric field E will be ignored for the further derivation
as changes in the electric field are expected to be relatively slow.
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= ∇(−B
1
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B

= − 1
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∇|B|2 +
1
4π

(B∇)B

A short transformation of vector identities yields Equation (B.6) which can be used to recast the
equation of motion.

(B.7) ρ
Dv

Dt︸ ︷︷ ︸
¶

= −∇P︸ ︷︷ ︸
·

− ρ∇Φg︸ ︷︷ ︸
¸

+
1
4π

(B∇)B︸ ︷︷ ︸
¹

− 1
8π

∇|B|2︸ ︷︷ ︸
º

For the following calculation the scalar product of Equation (B.7) and r is taken and integrated
over volume. Furthermore, the authors use carthesian coordinates and adopt the short form of
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writing partial derivatives. They also use the convention for summation of repeated indices by
Einstein. The identities ∂ixi = 3 and ∂iXj = δij are employed.

Subsequently, we will work our way through the labeled terms of Equation (B.7).
First, Equation (B.2) is used to rewrite the first term ¶ as

(B.8)
∫

ρxi

(
∂vi
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)
x

d3x +
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ρxivj∂jvid
3x.

The first integrand is rewritten
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and the second term yields

ρxivj∂jvi = ρvj∂j(xivi)− ρvjvi∂jxi(B.10)
= ∂j(ρvjxivi)− (xivi)∂j(ρvj)− ρvjviδij

= ∂j(ρvjxivi) +
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)
x
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where the equation of mass continuity was used to replace ∂j(ρvj) ≡ ∇ · (ρv).
The first term in Equation (B.10) is the divergence of a vector and will vanish after volume
integration if no external mass flux is present. Hence, reuniting Equations (B.9) and (B.10) gives∫
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where the kinetic energy

(B.12) T ≡ 1
2

∫
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has been replaced.
The remaining integrand is
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Invoking again the absence of external mass flux, this yields

(B.14)
∫

ρxivid
3x =

1
2

∂I

∂t
,

where the scalar I was introduced to represent the moment of inertia

(B.15) I ≡
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ρxjxjd
3x.

Finally, using Equation (B.14) in (B.11) gives
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Next are the terms on the right hand side of Equation (B.7).
Term · can be rewritten

−
∫

xi∂iPd3x = −
∫

∂i(xiP )d3x +
∫

(∂ixi)Pd3x(B.17)

= −
∫

Pr · nd2x + 3
∫

Pd3x,

where n is the normal vector of the surface of integration, pointing outwards.
For nonrelativistic fluid, the internal pressure is two-thirds the energy density in thermal motion,
hence it follows

(B.18) −
∫

xi∂iPd3x = −
∫

Pr · nd2x + 2U,

where the thermal energy was defined as

(B.19) U ≡ 3
2

∫
nkbTd3x =

3
2

∫
Pd3x.

To tackle the gravity Term ¸, first, the potential is rewritten as integral over all mass elements
in the volume:

(B.20) Φg(r) = −G

∫
ρ(r′)
|r − r′|

d3x

This yields
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ρxi∂iΦgd
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ρ(r)ρ(r′)
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where the following identity was used

(B.22) ∂i
1

|r − r′|
= − (xi − x′i)

|r − r′|3
.

Equation (B.22) has the dummy variables r and r′ inside the double integral. After changing
the order of integration, the resulting expression can be added to the original integral, doubling
its value. It follows that

−
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ρxi∂iΦgd
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where W is the gravitational potential energy
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Yet, there are only the magnetic terms left. Integration of term ¹ leads to
1
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where M is the magnetic energy

(B.26) M ≡ 1
8π

∫
|B|2d3x.

Maxwell’s equation ∂jBj ≡ ∇ ·B = 0 was used to eliminate one integral in Equation (B.25).
Finally, the last term º can be integrated and gives
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In conclusion, we are left with the following results from Equations (B.16), (B.18), (B.23), (B.25)
and (B.27). ∫
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Evaluating these lines we easily see the overall result:
1
2

∂2I

∂t2
= 2T + 2U + W + M(B.33)

−
∫ (

P +
B2

8π

)
r · nd2x +

1
4π

∫
(r ·B)B · nd2x.

The first line of Equation (B.33) is the simplified version of the virial theorem most often quoted
in astrophysical applications. The reason for this is, as mentioned by Stahler and Palla that it
is possible to ignore the surface integrals for the sake of simplicity. This approximation is only
valid for strongly self-gravitating entities such as giant molecular cloud complexes. Therefore,
throughout this work, we will only be engaged with the short form of the virial theorem:

(B.34)
1
2

∂2I

∂t2
= 2T + 2U + W + M



APPENDIX C

Scaling Relations

Here some important technical details on the scaling from real to simulated quantities will be
described.

The Enzo code was historically developed as a cosmological simulation framework and later
adopted to simulate scale free problems like pure hydrodynamical turbulence. The code is writ-
ten in a fashion which assumes that all computational quantities are numbers of the order of
unity. In other words, rather than using cgs units and a density value of e. g. 1.0 · 10−23 g/cm3 the
code is most stable when computations are performed with numbers close to one.
For the cosmological case, the code adheres a set of routines to convert the user set parameters
into values of the order of magnitude of one, while for the pure hydro case units are generally
meaningless and usually all quantities are scaled during the postprocessing and therefore the
computational scale can just be set arbitrarily.
However, as soon as additional physics like self-gravity or cooling enter the hydrodynamical
computation the freedom of scales is lost and quantities interdepend on basis of their physical
units. To realize meaningful computations with Enzo we follow Robinson et al. [2004] and use
scaling relations below to scale physical problem parameters to numbers expedient for Enzo
calculations.

ρenzo = ρcgs / R(C.1)

lenzo = lcgs / L(C.2)

tenzo = tcgs /

√
L
G

(C.3)

Genzo = Gcgs / G0(C.4)

eenzo = ecgs / (L ∗G)(C.5)

venzo = vcgs /
√

L ∗G(C.6)
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genzo = gcgs / G(C.7)

menzo = mcgs / (R ∗ L3)(C.8)

Equations (C.1) to (C.8) are not independent and from dimensional analysis it follows that
G = G0 ∗ L ∗ R. Therefore, equations (C.1), (C.2) and (C.4) completely define the scaling
relations as all other scalings can be computed as compositions of them, however, we list the
complete scaling relations for convenience. Usually, we omit the subscript cgs but use it here
for unambiguousness. Dimensional analysis immediately shows that

√
L/G = T,

√
LG = V,

LG = E and RL3 = M.

To be complete, we also repeat the scaling factors for transforming cooling and heating rates as
described and calculated in Section (6.2).

C =
L2

T3R
m2

h(C.9)

H =
L2

T3
mh(C.10)
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