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Abstract

Liquid crystals and polymeric fluids are found in many technical applications with liquid
crystal displays probably being the most prominent one. Ferromagnetic materials are well
established in industrial and everyday use, e.g. as magnets in generators, transformers
and hard drive disks. Among ferromagnetic materials, we find a subclass which undergoes
deformations if an external magnetic field is applied. This effect is exploited in actuators,
magnetoelastic sensors, and new fluid materials have been produced which retain their
induced magnetization during the flow.

A central issue consists of a proper modelling for those materials. Several models
exist regarding liquid crystals and liquid crystal flows, but up to now, none of them has
provided a full insight into all observed effects. On materials encompassing magnetic,
elastic and perhaps even fluid dynamic effects, the mathematical literature seems sparse
in terms of models. To some extent, one can unify the modeling of nematic liquid crystals
and magnetoviscoelastic materials employing a so-called energetic variational approach.
Using the least action principle from theoretical physics, the actual task reduces to finding
appropriate energies describing the observed behavior. The procedure leads to systems
of evolutionary partial differential equations, which are analyzed in this work.

From the mathematical point of view, fundamental questions on existence, unique-
ness and stability of solutions remain unsolved. Concerning the Ericksen-Leslie system
modelling nematic liquid crystal flows, an approximation to this model is given by the
so-called Ginzburg-Landau approximation. Solutions to the latter are intended to ap-
proximately represent solutions to the Ericksen-Leslie system. Indeed, we verify this
presumption in two spatial dimensions. More precisely, it is shown that weak solutions of
the Ginzburg-Landau approximation converge to solutions of the Ericksen-Leslie system
in the energy space for all positive times of evolution. In order to do so, theory for the
Euler equations invented by DiPerna and Majda on weak compactness and concentration
measures is used.

The second part of the work deals with a system of partial differential equations
modelling magnetoviscoelastic fluids. We provide a well-posedness result in two spatial
dimensions for large energies and large times. Along the verification of that conclusion,
existing theory on the Ericksen-Leslie system and the harmonic map flow is deployed and
suitably extended.
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Zusammenfassung

Flüssigkristalle und polymere Flüssigkeiten finden sich in vielen technischen Anwendun-
gen, wobei die Liquid Crystal Displays (kurz LCDs) wahrscheinlich die bekanntesten
sind. Ebenso haben viele ferromagnetische Materialien Gebrauch in der Technologie
gefunden, zum Beispiel als Generatoren, Transformatoren und Hard Drive Disks. Bei
einigen ferromagnetischen Materialien führt die äußere Anwendung eines Magnetfeldes
zu Verformungen. Dieser Effekt wird z. B. in Aktoren ausgenutzt und es wurden neue
Flüssigkeiten gefunden, welche ihre eingangs induzierte Magnetisierung beibehalten.

Bis heute besteht ein Problem darin, derartige Materialien korrekt zu modellieren. Für
Flüssigkristalle und Flüssigkristallströmungen existieren mehrere Modelle, aber bisher
hat keines von ihnen einen vollständigen Einblick in alle beobachteten Effekte liefern
können. Zu Materialien, welche magnetischen, elastischen und vielleicht sogar fluiddy-
namischen Effekten unterliegen, ist die Literatur bezüglich der Modellierung auf math-
ematischer Seite eher spärlich. Bis zu einem gewissen Grad kann man die Modellierung
von Flüssigkristallen und magnetoviskoelastischen Materialien durch einen Variation-
sansatz für das Wirkungsfunktional vereinheitlichen. Verwendet man das Prinzip der
kleinsten Wirkung aus der theoretischen Physik, reduziert sich die eigentliche Aufgabe
darauf, geeignete Energien zu finden, um das beobachtete Verhalten zu beschreiben. Das
Verfahren führt zu Systemen zeitabhängiger partieller Differentialgleichungen, welche in
dieser Arbeit betrachtet werden.

Aus mathematischer Sicht bleiben grundsätzliche Fragen zu Existenz, Eindeutigkeit
und Stabilität von Lösungen offen. Bezüglich des Ericksen-Leslie-Modells für nematische
Flüssigkristalle ist eine Approximation dieses Modells durch die sogenannte Ginzburg-
Landau-Näherung gegeben. In dieser Arbeit wird bewiesen, dass Lösungen des letzteren
Modells gegen Lösungen des erstgenannten in zwei Raumdimensionen konvergieren. Präzi-
se ausgedrückt wird gezeigt, dass schwache Lösungen des Ginzburg-Landau-Systems auf
beliebig großen Zeitintervallen gegen Lösungen des Ericksen-Leslie-Systems konvergieren
unter der Annahme, dass die Energie des physikalischen Systems beschränkt ist. Dazu
wird die von DiPerna und Majda entwickelte Theorie für die Euler-Gleichungen zu Konzen-
trationen unter schwacher Konvergenz verwendet.

Der zweite Teil der Arbeit beschäftigt sich mit einem System partieller Differential-
gleichungen zur Modellierung magnetoviskoelastischer Flüssigkeiten. Wir zeigen, dass in
zwei Raumdimensionen in gewissem Sinne ein wohlgestelltes Problem für beliebig große
Energien und Zeiten vorliegt. Für den Beweis dieses Resultats verwenden und erweitern
wir die bestehende Theorie zum Ericksen-Leslie-System und zum Wärmefluss harmonis-
cher Abbildungen.
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Chapter 1

Introduction

Complex fluids appear numerously in nature and technology. They are characterized
in particular by their non-Newtonian laws of evolution which let their behaviour differ
drastically from Newtonian fluids. Among these complex fluids, we find blood, ketchup,
lava, polymer, liquid crystals, ferrofluids etc. In a Newtonian fluid, the overall forces
acting on the constitutive molecules are homogeneous and linear. The microstructure of
a complex fluid behaves non-linearly, i.e. in an anisotropic manner. Complex fluids can
almost be thought of as being in between a fluid and a solid state. Such intermediate
states are also called mesophases. The modeling and analysis of complex media requires
specific adaption to the phenomena observed during their investigation.

In this work, we focus on two materials of this big assemblage. First, we consider ne-
matic liquid crystals, probably best known for their application in liquid crystal displays
(LCDs). The second one are magnetoviscoelastic fluids, which exhibit several features:
Due to their ferromagnetic properties, they react to changes of applied magnetic fields.
In particular, these variations affect the motion of the fluid and compete with the de-
formation of the material (hence the term “viscoelastic” in the name). The coupling of
magnetic and elastic effects is used in actuators and recently, new fluids, constructed with
droplets, were found in [67] which retain the magnetization after the applied magnetic
field is deactivated.

We are interested in the mathematical side and investigate existing models for the
latter materials. This task consists of the fundamental questions of existence, uniqueness
and, to some extent, stability issues of the underlying laws of motions. Therefore, the
work comes within the subject area of partial differential equations and, more precisely,
the branch of parabolic evolution equations.

In order to do so, we take a brief look at the modeling of liquid crystals and mag-
netoviscoelastic fluids in Sections 1.1 and 1.2. Section 1.3 provides an overview on the
mathematical literature of both materials and introduces the definite systems of equa-
tions, which are treated in this work. Finally, Section 1.4 outlines the structure of the
arguments elaborated in the thesis.
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2 CHAPTER 1. INTRODUCTION

1.1 A glimpse on the modeling of nematic liquid crys-

tals

When heated, liquid crystals may pass several temperature-dependent intermediate states
[77]. Depending on the specific material, one might observe a smectic phase, a cholesteric
phase and a nematic phase before entering the isotropic fluid phase. Since the temperature
represents the degree of movement which molecules on average occupy, the lower the
temperature is, the more structure in liquid crystal phases will occur.
The nematic liquid crystal mesophase is
mainly characterized by molecules which ex-
hibit a local alignment along a privileged
direction (see Figure 1.1). But different
to other phases, the molecules’ distribu-
tion does not show long-range order. Com-
monly, this preferred direction is called the
anisotropic axis. For the majority of nematic
liquid crystals, one such axis is observed,
hence they are termed uniaxial. However,
biaxial nematic liquid crystals with a second
priviledged direction are found as well.
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Figure 1.1: Local alignment
(nematic phase)

Besides the local alignment along an axis, smectic liquid crystals undergo long-range
orders. The molecules orient themselves in layers or planes because of the average lower
energy assigned to the constitutive particles. The smectic mesophase is further catego-
rized into smectic A, smectic C and smectic C*, reflecting the different positioning of the
layers.

In the cholesteric mesophase, alignment similar to the nematic one is observed as
well. The difference lies in the long-range helical structure. The constitutive molecules
distribute themselves into two-dimensional nematic-like layers where the orientation in
each layer changes gradually in the third space dimension. The orientation thus forms a
spiral along the third component, resulting in the helical structure.

In the following, the modeling regarding liquid crystals is outlined. Several well-
established systems of evolutionary equations exist: The Ericksen-Leslie model, the
Landau-de-Gennes model along with the time-dependent counterpart, the Beris-Edwards
system, and the Doi-Onsager model. In the following, the Ericksen-Leslie model is con-
sidered, introduced by Ericksen and Leslie in [26] and [53].

The Ericksen-Leslie model has its foundations especially in the works of Oseen [70]
and Frank [32]. Before considering the evolution in time, liquid crystals at rest should
satisfy some energy minimization principle. Like in elasticity theory or micromagnetics,
the stationary state should in principle be described by a minimizing configuration of an
energy functional.

As explained above, nematic liquid crystal particles prefer to align (locally) in a certain
direction. This behavior is attributed to the rod-like structure of the particles. It stands
to reason to assign a vector d, called director, to each particle. In the continuum limit,
every point in space or some subdomain U is occupied by the nematic liquid crystal.
Hence, a vector field d : U → R3 is introduced which reflects the orientation d(x) of
a particle placed in position x ∈ U . Such a vector field is also called director field.
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Figure 1.2: Depiction of splay, twist and bend strains

The majority of the fluids considered in this work consist of molecules which cannot
be compressed or elongated. This relation translates into a unitary condition on d, i.e.
|d(x)| = 1 for all x ∈ U .

Every configuration, represented by a director field, is assigned an energy value. The
tendency of alignment of the orientations indicates that large gradients of the director
field d must lead to configurations with large energies. Therefore, gradients of d must be
penalized by the energy terms. In this regard, Oseen [70] and Frank [32] proposed their
well-known Oseen-Frank energy density

WOF(d,∇d) =
k1
2
(div d)2 +

k2
2
|d× (∇× d)|2 + k3

2
|d · (∇× d)|2

+
1

2
(k2 + k4)

[
tr (∇d)2 − (div d)2

]
,

(1.1.1)

where ground states of d 7→
∫
U
WOF(d,∇d) are intended to replicate nematic liquid

crystal configurations observed in reality. The parameters ki, i = 1, 2, 3, 4 weigh different
phenomena which are observed in distinct configurations: The first three terms represent
splay, twist and bend curvature strains (see Figure 1.2), respectively, while the fourth
term describes the saddle-splay term.

Proceeding to an evolutionary model, a time variable t ∈ [0,∞) is taken into account
as well. The nematic liquid crystal state corresponds to higher temperatures and thus
is closer to states of isotropic fluid. A second quantity is introduced, the velocity field
v : U × [0,∞) → R3. The velocity field v(x, t) at a space point x ∈ U and time
t ∈ [0,∞) reflects the value and direction of velocity the particle at this position moves
with. In general, the fluid’s mass is distributed inhomogeneously among space leading to
the density function ρ : U × [0,+∞) → R+

0 . At position x and time t, the density of the
fluid, the mass per volume element, is described by the quantity ρ. In total, the three
constitutive variables ρ, u and d are taken into account.

The aim is the derivation of equations relating those quantities and quantifying their
evolution. As a first approach, one may rely on standard principles known from clas-
sical mechanics: The conservation of mass, of momentum and of angular momentum.
Moreover, it is observed that the nematic liquid crystal flow tends to dissipate to a final
state at rest as the evolution proceeds. Therefore, internal friction needs to be taken into
account as well. In sum, the works of Ericksen and Leslie (see [26] and [53]) established
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the Ericksen-Leslie system which in its full generality reads

∂tρ+ v · ∇ρ = 0, (conservation of mass) (1.1.2)

div v = 0, (incompressibility condition) (1.1.3)

ρv̇ = ρG1 + div σ̂, (conservation of momentum) (1.1.4)

ρ1ω̇ = ρ1G2 + ĝ + div π. (conservation of angular momentum) (1.1.5)

In this work, we refer to the above system as the general Ericksen-Leslie system. An
alternative derivation of the Ericksen-Leslie model should be mentionend. Assigning a
kinetic energy and an internal energy (here the Oseen-Frank energy) to the fluid as well
as a dissipation rate modeling internal friction, one can employ a so-called energetic
variational approach and the maximum dissipation principle. This is carried out in [83],
which yields the general Ericksen-Leslie system (1.1.2)–(1.1.5) as well.

In the general Ericksen-Leslie system above, we use the following notation for i, j =
1, 2, 3 where we sum over repeated indices:

� The superposed dot ˙ depicts the material derivative ḟ = ∂tf + v · ∇f ,

� A is the rate of strain tensor A = 1
2
(∇v +∇v⊤),

� Ω = 1
2
(∇v −∇v⊤), the skew-symmetric part of the strain rate,

� ω is the material derivative of d, i.e. ω = ḋ,

� N is the corotational time flux of the director motion N = ω − Ωd,

� ĝ is the intrinsic force associated to d given by

ĝi = γdi − βj∂jdi − ρ
∂WOF

∂di
+ gi

with β = (βi)i and γ being functions serving as Lagrangian multipliers to |d| = 1,

� g is the kinematic transport of d given by gi = λ1Ni + λ2djAji

� WOF is the Oseen-Frank energy (density)

� G1 and G2 are external forces,

� π is the director stress with

πij = βidj + ρ
∂WOF

∂(∂idj)
,

� σ̂ is the stress tensor with

σ̂ij = −pδij − ρ
∂WOF

∂(∂idk)
∂jdk + σij,

� σ is the viscous stress tensor with

σij = µ1dkAkpdpdidj + µ2Nidj + µ3diNj + µ4Aij + µ5Aikdkdj + µ6diAjkdk

� λi, i = 1, 2 are material constants which reflect the shape of the molecules,

� µi, i = 1, ..., 6 are the Leslie coefficients.
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1.2 The modeling of magnetoviscoelastic fluids

The second type of complex fluids we address in this work are magnetoviscoelastic fluids.
The model here considered has recent origins (see [7, 31]) and we briefly present the
governing equations in this paragraph. The term “magnetoviscoelastic fluid” comprises
three notions: Fluid motion, (ferro-)magnetism and viscoelasticity. The combination of
fluid motion and ferromagnetism shares mathematical similarities with the Ericksen-Leslie
model. Therefore we comment on the third feature, elasticity and viscoelasticity.

The description of elasticity mainly falls into the mathematical area of Calculus of
Variations (see, e.g., [17]). Therein, the utilization of Lagrangian coordinates repre-
sents a difference to fluid mechanics and micromagnetics. An elastic material, for ex-
ample rubber, beams or strings, occupies a domain U0 ⊂ R3. By application of stress
to the body, the material undergoes a deformation which is represented by a mapping
y : U0 → y(U0) = U in Lagragian coordinates. Elasticity means that removal of the stress
results in reversion of the process, i.e., the material attains its original configuration U0.
The observed deformation (or deformed configuration) is intended to be a minimizing
state of an energy functional. The material properties which determine the deformed
state are encoded in an elastic energy density W . First and foremost, the density W
usually depends on the deformation gradient F̃ = ∇y.

Taking into consideration fluid motion as well, a subset of complex fluids are so-called
viscoelastic fluids. Examples are ketchup, polymers and tooth paste. Viscoelastic fluids
show two different behaviors at once: Elasticity, i.e., reattainment of original shape if
exterior stresses are removed, and a constant motion reacting to stresses with dissipa-
tion to a state at rest. Seeming contradictory, the (visible) elastic behavior happens on
comparatively short time scale and the dissipation on long time scales.

Since fluid mechanics is usually phrased in Eulerian coordinates on a domain U , the
formulation of elasticity is as well transformed to Eulerian coordinates (see, e.g., [66])
in order to manage the description effectively. Representing the spatial coordinates in
Lagrangian coordinates by X ∈ U0, the spatial coordinates in Eulerian coordinates by
x ∈ U and the time by t, the transformation formula reads

F (x(X, t), t) := F̃ (X, t)

where F is the deformation gradient in Eulerian coordinates. If t = 0, no motion of the
fluid has taken place so far, therefore x(X, 0) = X must hold. Since x describes the
position of a volume element of the material at position X and time t, the evolution is
completely determined by the time derivative of x(X, t), the velocity. The velocity is

X

x

x(X, t)

U0

U = x(U0, t)

Figure 1.3: Flow map x
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denoted by u : U × [0,+∞) → R3 and hence, the coordinate change (or pullback of u) is
given by

∂tx(X, t) = u(x(X, t), t).

Usually, the mapping x : U0 × [0,+∞) → R3 is called the flow map (see Figure 1.3).
Eventually, calling into play the magnetic component, ferromagnetic effects originate

from the quantum mechanic spins of atoms in the materials. The spins are considered
to have a fixed magnitude with variable degree of orientation. On the macroscopic level,
a vector field M : U → R3 is assigned to the domain U occupied by the ferromagnetic
material. Because of the fixed magnitude, one sets |M(x)| = 1 for every x ∈ U . Without
the application of a magnetic field to a magnetic specimen, the spins do not possess a
specific orientation. If the magnetic field is activated, the spins react which results in the
attempt to align parallel (or anti-parallel) to the magnetic field. Ferromagnetic materials
are then characterized by the fact that they retain this magnetization after the magnetic
field is deactivated again.

Once more, the distribution of M is intended to be modeled by a minimum configu-
ration for a given energy functional. Here, we enter the regime of micromagnetics (see,
e.g., [12] or [49] for an overview). The free energy of a magnetic material should mirror
several phenomena. Similar to nematic liquid crystals, variations of the magnetization
field M are penalized. Further effects must be taken into consideration: Due to possible
crystalline structures in the material, there may exist preferred directions for the mag-
netization. This is reflected by an anisotropy energy term ψ = ψ(M). What qualitively
distincts the description of ferromagnets from nematic liquid crystals is the appearance of
long-range interactions. For ferromagnetic materials (for example NiFe, see [45]), the for-
mation of domains with uniform magnetization is observed. This circumstance is mainly
explained by the stray field energy. Determined by Maxwell’s equation

div (M +H(M)) = 0,

it resembles the tendency to resolve the magnetic field induced by the magnetization M
outside of the domain. Eventually, it is necessary to also take into account the application
of external magnetic fields Hext, resulting in the so-called Zeeman energy. In sum, the
micromagnetic energy reads

E(M) =

∫
U

⟨∇M,A∇M⟩+ ψ(M)− µ0

2
H(M) ·M − µ0Hext ·M dx.

Here, A depicts a positive definite fourth-order tensor and µ0 the permeability constant.
The term“magnetoviscoelastic” indicates that non-trivial interactions between the

different described regimes can take place. For example, magnetostriction describes the
relatively large deformation specific ferromagnetic materials undergo when an external
magnetic field is applied. Looking for an evolutionary model of such materials, in [31, p.
35] the author employed an energetic variational approach (with maximum dissipation
principle). Taking into account the information above, the resulting system reads

u̇ = div T + µ0∇⊤(H(M) +Hext)M,

div u = 0,

Ḟ = ∇uF,
Ṁ = −M ×Heff −M × (M ×Heff)

(1.2.1)
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with the following notations:

� T is the stress tensor with

Tij = −pδij − ν (∂jui + ∂iuj)−
∂W (F )

∂Fik
Fjk − ∂iMk∂jMk,

� ν > 0 the kinematic viscosity,

� W : R3×3 → R is the elastic energy density,

� Heff is the effective magnetic field given by

(Heff)i = ∂j(Aijkl∂kMl) + µ0(H(M) +Hext)i −
∂ψ(M)

∂Mi

.

We like to point out that (1.2.1)4 represents a variant of the Landau-Lifshitz-Gilbert (in
the following LLG) equation. The LLG equation was first derived by Landau and Lifshitz
in [51] without dissipation. A unique feature of the LLG equation is the first term on the
right-hand side. It describes some form of convection resulting from spin-spin interactions
on the micromagnetic scale. Therefore, the LLG equation does not represent a gradient
flow.

Both systems, the general Ericksen-Leslie system and (1.2.1), are (in principle) achie-
ved by setting an energy functional and applying the principle of least action. Hence,
solutions to the respective equations will be stationary points of the action functional
subject to the imposed laws of dissipaton. Moreover, regardless of the assumption that
our fluid is occupying a two or three-dimensional domain, the director field d and the
magnetization M always attain values in R3. If one wants to state both systems in
dimension two, one needs to extend all quantities arising to three dimensions and interpret
them as functions being constant in the third spatial variable.

1.3 Well-posedness theory for liquid crystal flows and

magnetoviscoelastic flows

In the following, the mathematical background of the Ericksen-Leslie model and the sys-
tem for magnetoviscoelastic fluids is outlined. Ericksen and Leslie established the general
Ericksen-Leslie model in [26] and [53]. The respective equations are obtained by appli-
cation of the least action and maximal dissipation principle which is, e.g., elaborated
in [83]. As the Ericksen-Leslie system is very difficult to analyze, let alone set up a
mathematical well-posedness theory, Lin suggested in [57] a simplified system of equa-
tions: Setting G1 = 0, G2 = 0, ρ = 1 with parameters k1 = k2 = k3 = 1, k4 = 0 and
µ1 = µ2 = µ3 = µ5 = µ6 = 0, µ4 = 1, furthermore ignoring the motion due to the coro-
tational part Ω and the second order material derivatives (i.e. ω̇ → ω) in (1.1.2)–(1.1.5),
the Ericksen-Leslie system of PDEs reduces to

∂tv + (v · ∇)v −∆v +∇p+ div(∇d⊙∇d) = 0,

div v = 0,

∂td+ (v · ∇)d = ∆d+ |∇d|2d
(1.3.1)
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with (∇d⊙∇d)ij = ∂idk∂jdk for i, j = 1, 2, 3. The relation |d| = 1 still holds true and the
term |∇d|2d on the right-hand side of the third equation in (1.3.1) serves as a Lagrangian
multiplier subject to the unitary constraint. In this case, the Oseen-Frank energy (1.1.1)
reduces to the Dirichlet energy

EOF =

∫
U

|∇d|2

2
dx.

Despite this reduction, this model preserves all essential nonlinear terms (stress tensor
in the momentum equation, nonlinear Lagrangian multiplier in the director equation)
associated with the full Ericksen-Leslie system, while neglecting other terms of compa-
rable or lower order. Without further explanations, equation (1.3.1) can be considered
in any spatial dimension n ∈ N. Being a parabolic system of differential equations, one
imposes initial conditions v0(x) = v(0, x), d0(x) = d(x, 0) for x ∈ U and boundary con-
ditions u(x, t) = 0, d(x, t) = d0(x) for (x, t) ∈ ∂U × (0,+∞) to have a chance of unique
solvability in some function space.

Even for the simplified version of the Ericksen-Leslie sytem, an existence theory for
(weak) solutions is mainly available in two dimensions only. The first existence results
for global-in-time existence, i.e., for all times t > 0, and initial data with arbitrarily
large energy stem from [58] and [41]. The uniqueness of solutions has been proven in [63]
under additional regularity assumptions also in higher dimensions. Extensions of these
works are, for instance, made in [42] and [43] which allow to include further terms of the
original Ericksen-Leslie system (1.1.2)–(1.1.5). The method used in the aforementioned
works relies on the similarity of (1.3.1) to the harmonic map heat flow into spheres

∂td = ∆d+ |∇d|2d, |d| = 1, (1.3.2)

a system that is extensively analysed in the literature. In two spatial dimensions, Struwe
proves in [78] the global-in-time existence of weak solutions to (1.3.2), which are regular
besides a finite number of space-time points. The sharpness of this achievement is high-
lighted by the existence of blowing-up solutions in finite time to (1.3.2), first found in
[14]. Similarly, singular solutions to the simplified Ericksen-Leslie system are constructed
in [44, 50].

In higher dimensions, an analogue of Struwe’s method does not exist and results for
existence and uniqueness to (1.3.1) are only known to hold true for small initial data1 [40]
or for short times [30]. Because of the difficulties handling the analysis for (1.3.1), which
is due to the combination of the Navier-Stokes equations and the geometric constraint
d ∈ S2, a penalization approach for the unitary constraint is considered. Substituting the
requirement |d| = 1 by an additional term, the energy of the system reads∫

U

|v|2

2
+

|∇d|2

2
+

(1− |d|2)2

4ε2
dx

for ε > 0. Hence, one obtains the so-called Ginzburg-Landau penalization

∂tvε + (vε · ∇)vε −∆vε +∇pε + div(∇dε ⊙∇dε) = 0,

div vε = 0,

∂tdε + (vε · ∇)dε = ∆dε +
(1− |dε|2)dε

ε2
.

(1.3.3)

1in the critical space L3
uloc
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If ε > 0 is chosen close to zero, then, it heuristically holds |dε| ≈ 1 due to the penalizing
term and the energy. Well-posedness of (1.3.3) is first covered in [59] by proving global
existence and uniqueness of weak and classical solutions in two dimensions. Results in
three dimensions are obtained in [59], too. Therein, existence and uniqueness of classical
solutions is shown under a smallness condition as well as existence of weak solutions.
Extensions have been made, e.g., in [30, 60] by including further terms of the general
Ericksen-Leslie system (1.1.2)–(1.1.5). The idea of using a penalization again originates
from results on the harmonic map heat flow (1.3.2). In [15] and [16], Chen and Struwe
showed the existence of weak and partially regular solutions in any spatial dimension
to (1.3.2) by using an analogous penalized system as approximation and carrying out
the limit ε → 0+. Hence, one might be tempted to perform the similar arguments for
the Ginzburg-Landau approximation to obtain global solutions to (1.3.1). However, the
latter issue turned out to be very difficult to implement and little is known in this case.
In dimensions two and three, the convergence as ε→ 0 is shown on a short time interval
in [30, 41] and the probably biggest achievement for global (necessarily weak) solutions
consists of [64], where the additional assumption on d attaining values just in the upper
half-sphere S2

+ is needed.
The first result of this thesis aims at completing the aforementioned limit passage,

when the fluid is in two spatial dimensions and as long as the initial energy of the system
is finite (see the author’s article [48]). A more detailed version of the proof is presented
in Chapter 3, Theorem 3.1.2. The idea of the proof to Theorem (3.1.2) originates from
the works of DiPerna and Majda [23] on the existence of vortex-sheet solutions to the
Euler equations. Although of different type, the Euler equations and the Ericksen-Leslie
system share similarities in terms of compactness in two dimensions. This is outlined in
Section 3.2. The result of [48], Theorem 3.1.2 in this thesis, is generalized to arbitrary
target manifolds by Du, Huang and Wang in [24].

The system (1.2.1) has more recent origins. In full generality, it is derived in [31]
by the least action principle and maximum dissipation principle. To some extent, the
magnetoviscoelastic system shares many similarities with the simplified Ericksen-Leslie
system. In particular, the quanities v and d in (1.3.1) correspond to u and M in (1.2.1).
The additional equation (1.2.1)3 models the evolution of the deformation tensor and
is of hyperbolic type and therefore does not contain any dissipational terms. This fact
complicates the mathematical existence theory heavily and one may introduce an artificial
dissipation leading to a system variant of (1.2.1),

∂tu+ (u · ∇)u− ν∆u+∇p = div(W ′(F )F⊤ −∇M ⊙∇M) + µ0∇⊤(H(M) +Hext)M,

div u = 0,

∂tF + (u · ∇)F −∇uF = κ∆F,

∂tM + (u · ∇)M = −M ×Heff −M × (M ×Heff)

(1.3.4)

for some κ > 0. The global existence of solutions to (1.3.4) with small initial data is ver-
ified in [31] omitting the external magnetic field, the stray field term and the anisotropic
energy. This result is extended in [7] by inclusion of the external field Hext to the sys-
tem. Both results are obtained in two dimensions and assume W to be a strongly convex
function. Hence, we point out several issues accompanied with the system:
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� The problem of an existence theory without artificial dissipation, i.e., κ = 0, even

for simple elastic energy densities like W (F ) = |F |2
2
.

� The question whether weaker than strong convexity assumptions onW are sufficient
to prove an existence theory.

� The inclusion of all relevant energy terms, especially the anisotropic energy ψ and
the stray field energy H(M).

� The existence theory in three spatial dimensions. Considering the relation with
(1.3.1), one cannot hope for better results than those for the Ericksen-Leslie system.

The last point also suggests introduction of a penalized variant of (4) again similar to the
Ginzburg-Landau approximation with a parameter ε > 0. Here, uniqueness and weak-
strong uniquenss results are established in [74]. With respect to the first point, Zhao
obtains results on local-in-time existence (in two and three dimensions), weak-strong

uniqueness and blow-up criterions of classical solutions in [84, 85] for W (F ) = |F |2
2
, ε > 0

and including Hext.
With respect to the second point, an extension to convex energiesW and the inclusion

of the stray field in two dimensions is perfomed in joint work of the author with M.
Kalousek and A. Schlömerkemper in [46] for strong solutions local-in-time and small weak
solutions global-in-time without the penalization. Furthermore, Struwe-like solutions (cf.
Section 4.1), i.e., global weak solutions for arbitrary large initial data are obtained in
joint work of the author with F. De Anna and A. Schlömerkemper in [18]. Stated in two
dimensions, the latter results correspond to the thin-film regime in micromagnetics. A
mathematical overview of the different regimes of micromagnetics is provided by [21]. In
the two-dimensional thin-film limit, the non-local stray field energy reduces to a local
term comparable to the anisotropic energy (see [35]).

Finally, it should be mentioned that in order to let κ = 0, one might define another
type of weak solutions, the so-called dissipative solutions. Here, a measure compatible
with the energy law is introduced such that (1.2.1) is balanced with the measure and the
balanced version holds true in the sense of distributions. The existence of such a solution
is proven in [47] in two and three dimensions including the magnetic external field.

Chapter 4 extends the results of [18], and the existence and uniqueness of a global
weak solution to (1.3.4) is established with the following features: All energetic relevant
terms, the external magnetic field, the stray and anisotropic energy, are included. The
elastic energy density W is allowed to be non-convex. The weak solutions constructed
exist for any given positive time, any initial data in the energy space, and are regular
with the exception of finitely many points in time.

1.4 Outline of the thesis

The subsequent chapters deal with the proof of the convergence of Ginzburg-Landau
approximations and the well-posedness of the system for magnetoviscoelastic fluids. To
begin with, Chapter 2 states basic facts on Sobolev spaces and measures. The first part of
Chapter 3 contains the proof of Theorem 3.1.2: The convergence of solutions of (1.3.3) to
solutions of (1.3.1). Since ideas from the analysis of the two-dimensional Euler equations
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are used, Section 3.2 contains a sketch of the results obtained by DiPerna and Majda in
[23] and a comparison between Euler and Ericksen-Leslie equations.

Chapter 4 establishes Theorem 4.4.1. In order to motivate this result, the method
of Struwe in [78] is reviewed in Section 4.1. During the proof of Theorem 4.4.1, some
subresults are encountered as well: The uniqueness of solutions in Section 4.2 and the
existence of a local-in-time strong solution in Section 4.3 to (1.3.4). Chapter 5 is devoted
to a conclusion of this thesis.





Chapter 2

Notation, Sobolev spaces on T2 and
measures

We briefly introduce and recall notions and results used throughout the upcoming argu-
ments.

To begin with, we denote by C > 0 generic constants throughout the work where the
value of C might change from one inequality to the next. Unless stated otherwise, the
constant only depends on external parameters. Sometimes we also use the short notation
A ≲ B to denote A ≤ CB. Further, we employ the summation convention, i.e., we sum
over repeated indices.

Partial derivatives (classical or weak) with respect to spatial variables xi are denoted
by ∂i or ∂xi and ∇f denotes the gradient of a function f . A derivative of f with respect
to time is indicated by either ∂tf,

d
dt
f or ft.

Most of the analysis in Chapters 3 and 4 takes place on the two-dimensional torus T2

in spatial variables. Hence we refer to [72], in particular Chapter 1 and the appendix, for
the notions of weak differentiability, measurability and Bochner measurability and the
well-definedness of the sets in this chapter unless stated otherwise.

The torus T2 = (R/2πZ)2 is a closed manifold where one identifies left-hand with
right-hand side boundary as well as lower with upper boundary. Equivalently, we can say
that we consider functions f : R2 → Rm which are 2π-periodic in every of the two spatial
directions. Most of the time, we use functions defined on a space time domain T2× [0, T ]
for some T > 0 which lie in some combination of Lebesgue and Sobolev spaces. Letting
U be a bounded domain in Rn or T2, we set for a number k ∈ N0, p ∈ [1,∞]

W k,p(U) :=

{
f : U → Rm : f k − times weakly differentiable

and ∥f∥p
Wk,p =

∑
|α|≤k

∫
U

|∂αf | <∞

}

For a Banach space X, we define the time-dependent counterpart of spatial Sobolev

13
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spaces by

W k,p(0, T ;X) :=

{
f : (0, T ) → X : f k − times weakly differentiable, ∂jt f

is Bochner-measurable for all 0 ≤ j ≤ k

and ∥f∥p
Wk,p

t X
=
∑

0≤j≤k

∫ T

0

∥∥∂jt f(t)∥∥pX dt <∞

}

for k ∈ N0, p ∈ [1,∞]. If k = 0, then we deal with the usual Lebesgue spaces and write
Lp(U) := W 0,p(U) as well as Lp(0, T ;X) := W 0,p(0, T ;X). If p = 2, we often write
Hk(U) := W k,2(U). Note that we surpress the target space Rm in the notation. If we
additionally assume

∫
T2 f = 0 for f ∈ W k,p(T2), we write f ∈ Ẇ k,p(T2).

Continuous functions f : D → X on a domain D are denoted by C(D;X) or C(D)
if X = Rm with corresponding norm ∥f∥C = supx∈D ∥f(x)∥X . In the case of D = (0, T )
and X being a Sobolev space we write ∥f∥C = ∥f∥CtXx

. If X is a general Banach space,
then the dual space of X is written as X∗ with the dual pairing denoted by ⟨·, ·⟩X∗×X .
For Sobolev spaces, we sometimes write W−k,p′(U) := (W k,p

0 (U))∗ where p′ = p/(p − 1)
for 1 ≤ p ≤ ∞ and the subscript 0 denotes the closure of C∞

0 (U) in the strong topology.
The subscript loc, e.g., Xloc(U), for a function space X, the respective property, in-

tegrability, continuity or differentiability holds true locally, i.e., for every compact set
K ⊂ U . Moreover, the subscript div, e.g., Xdiv, denotes that div f = 0 holds true classi-
cally or in the sense of distributions for all functions f ∈ Xdiv.

If p = 2, the notion of Sobolev spaces can be consistently to above extended to
k = s ∈ R by Fourier expansion

f(x) =
∑
k∈Z2

f̂ke
ik·x, x ∈ T2

with coefficients ûk = (2π)2
∫
T2 e

−ik·xu(x).
The probably most important applied theorems are different Sobolev embedding the-

orems and interpolation inequalities. More specific ones are stated when needed in Chap-
ters 3 and 4, but the most common ones in two dimensions are given here:

Theorem 2.0.1 ([72], Theorem 1.7). Let f : T2 → Rm:

� If 1 ≤ p < 2, then W 1,p(T2) ⊂ Lq(T2) continuously with q = 2p/(2 − p). Further-
more, if

∫
T2 f = 0 we have

∥f∥Lq ≤ C ∥∇f∥Lp

for some constant C > 0.

� If p = 2, then W 1,2(T2) ⊂ Lq(T2) continuously for all q < ∞. Furthermore, if∫
T2 f = 0 we have

∥f∥Lq ≤ C ∥∇f∥Lp

for some constant C > 0, which depends on q.

� If p > 2 then W 1,p(T2) ⊂ Cα(T2) continuously where α = 1− 2/p.
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The by far most used interpolation inequality in two dimensions is

Theorem 2.0.2 ([11], p.313, Ladyzhenskaya’s inequality). There exists a constant C > 0
such that

∥f∥4L4 ≤ C
(
∥f∥2L2 ∥∇f∥2L2 + ∥f∥4L2

)
for all f ∈ W 1,2(T2). If

∫
T2 f = 0, it is

∥f∥4L4 ≤ C ∥f∥2L2 ∥∇f∥2L2 .

Furthermore, standard results on elliptic systems are needed.

Theorem 2.0.3. Let 1 < p < ∞ and f ∈ L̇p(T2). Furthermore, let u ∈ Ẇ 2,p(T2) be a
weak solution to

−∆u = f.

Then there exists a constant C = C(T2) > 0 such that

∥∂i∂ju∥Lp ≤ C ∥f∥Lp , i, j = 1, 2

for all f ∈ L̇p(T2).

Proof. Since W 1,2 ↪→ Lq for all q <∞ in two dimensions, we have ∥∇u∥L2 ≤ C ∥f∥Lp by
Riesz’ Representation Theorem. Let {Vk} be a finite open covering with 1 ≤ k ≤ L ∈ N
of T2 and {ηk} be a partition of unity subordinated to {Vk}, i.e., ηk ∈ C∞

0 (Vi) for each
k, 0 ≤ ηk ≤ 1 and

∑
k ηk ≡ 1. Then it holds

−∆(ηku) = ηkf − 2∇ηk · ∇u−∆ηku

for each 1 ≤ k ≤ L. If 1 < p ≤ 2 then the estimate below is trivial. Otherwise, we use the
interpolation inequality ∥∇u∥Lp ≤ C ∥∇2u∥αLp ∥∇u∥1−αL2 for α = p−2

2(p−1)
(see [11, p. 314]).

Applying Theorem 2.0.4 gives∥∥∇2u
∥∥
Lp ≤

∑
k

∥∥∇2(ηku)
∥∥
Lp ≤

∑
k

Ck (∥f∥Lp + ∥∇u∥Lp + ∥u∥Lp)

≤
∑
k

Ck
(
∥f∥Lp +

∥∥∇2u
∥∥α
Lp ∥∇u∥

1−α
L2

)
≤ δ

∑
k

Ck
∥∥∇2u

∥∥
Lp +

∑
k

Ck,δ (∥f∥Lp + ∥∇u∥L2)

by Young’s inequality. Realizing that the sum is finite, we choose δ suffiently small which
yields the assertion.

Theorem 2.0.4 ([34], Corollary 9.10). Let U ⊂ Rn be a domain, 1 < p < ∞ and
f ∈ Lp(U). Furthermore, let u ∈ W 2,p

0 (U) be a solution to

−∆u = f on U.

Then there exists a constant C > 0 such that

∥∂i∂ju∥Lp ≤ C ∥f∥Lp , i, j = 1, ..., n

for all f ∈ Lp(U).
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We remark that the constant C in the theorem above does not depend on the size of
U by scaling observations.

Regarding time-dependent spaces, a frequently used result below is Gronwall’s in-
equality:

Theorem 2.0.5 ([72], Lemma A.25). Let η : [0, T ] → [0,∞) be a continuous function
satisfying

η(t) ≤ a(t) +

∫ t

0

ϕ(s)η(s) ds,

where a, ϕ : [0, T ] → [0,∞) are integrable functions and a is increasing. Then

η(t) ≤ a(t) exp

(∫ t

0

ϕ(s) ds

)
for all t ∈ [0, T ].

In particular, the result implies an explicit bound on the size of η on the time interval
[0, T ]. Often, continuity-in-time with respect to a strong topology of X is not satisfied.
Therefore we say that a function f : [0, T ] → X is weakly continuous if

t 7→ ⟨g, f(t)⟩X∗×X

is continuous for every g ∈ X∗ and write f ∈ Cw([0, T ];X).

Theorem 2.0.6 ([33]). Let 1 < q < ∞, U ⊂ Rn be a domain and T > 0. Furthermore,
let f ∈ L∞(0, T ;Lq(U)) with ⟨∂tf, η⟩(Wk,p)∗×Wk,p ∈ L1(0, T ) for some k ∈ N0, 1 ≤ p ≤ ∞
and any η ∈ C∞

0 (U). Then there exists g ∈ Cw([0, T ];L
q(U)) such that for a.a. t ∈ [0, T ]

the equality f(·, t) = g(·, t) holds true.
At last, we recall results on weak compactness of measures (see [4]). A signed Borel

measure µ defined on a set Ω ⊂ Rn is called (inner) regular if

inf
{
|µ|(U \K) : K ⊂ E ⊂ U, K closed in Ω and U open in Ω

}
= 0

holds true for all Borel measurable sets E ⊂ Ω. Such a measure is often called a Radon
measure and we also call vector-valued set functions for which the above conditions hold
true in any component a Radon measure and denote the set by M(Ω). The norm on
M(Ω) is given by the total variation

∥µ∥M = sup
{ k∑

i=1

|µ(Ei)| : k ∈ N, Ei Borel set in Ω
}

and equipped with this norm, the space M(Ω) is a Banach space. It holds Riesz’ Repre-
sentation Theorem:

Theorem 2.0.7. If Ω ⊂ Rn is compact, it is

M(Ω) ∼= (C(Ω))∗

valid, i.e., every bounded functional f on the space of continuous functions on Ω can be
represented by a Radon measure µf such that

f(ϕ) =

∫
Ω

ϕ dµf

and the map f 7→ µf is an isomorphism.
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Since C(Ω) is separable by Weierstrass’ Theorem, we have the following consequence:

Theorem 2.0.8. For every sequence (µn)n∈N ⊂ M(Ω) with ∥µn∥M ≤ C for some C > 0
for all n ∈ N, there exists a subsequence of (µn)n∈N and a limit point µ ∈ M(Ω) such
that

µni
⇀∗ µ as measures.

In other words,

lim
i→∞

∫
Ω

ϕ dµni
=

∫
Ω

ϕ dµ

for every ϕ ∈ C(Ω).

As L1(Ω) ⊂ M(Ω), every bounded sequence in L1(Ω) possesses a weak limit point in
M(Ω) as measures.





Chapter 3

Weak convergence of the
Ginzburg-Landau approximation to
liquid crystal flows on T2

In this chapter, we treat the singular limit problem of the Ginzburg-Landau approxima-
tion on the two-dimensional torus T2. More precisely, we prove that weak solutions of the
Ginzburg-Landau system (1.3.3) converge to weak solutions of the simplified Ericksen-
Leslie system (1.3.1) as the penalization parameter ε tends to 0+. This result is stated
in Theorem 3.1.2. The closing remarks of Section 3.1 provide the idea of a second proof
to Theorem 3.1.2, which is closely related to the behavior of (approximated) harmonic
maps on surfaces.
Furthermore, we compare this result to the existence problem of vortex sheet solutions
for the two-dimensional Euler equations initiated by DiPerna and Majda in [23], where
the inspiration for the proof of Theorem 3.1.2 originates from (see Section 3.2). The
method, sometimes called concentration-cancellation, does not work in the framework of
time-dependent inviscid fluid flows (see the discussion in Section 3.2.3), but surprisingly
does work for liquid crystal flows.

3.1 Convergence of the Ginzburg-Landau approxi-

mation

Throughout this section, we mainly follow the author’s article [48]. At first, we settle no-
tions to the corresponding problem. As spatial domain, we consider the two-dimensional
torus T2 while commenting on a general bounded smooth domain Ω ⊂ R2 later (see
Remark 3.1.9). Let T > 0 be a fixed, but possibly large, time. Given a parameter ε > 0,
the system of the Ginzburg-Landau approximation reads

∂tvε + (vε · ∇)vε +∇pε −∆vε = −div(∇dε ⊙∇dε), (3.1.1)

div vε = 0, (3.1.2)

∂tdε + (vε · ∇)dε = ∆dε +
1

ε2
(1− |dε|2)dε (3.1.3)

19
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for a velocity field vε : T2 × (0, T ) → R2, a pressure function pε : T2 × (0, T ) → R and a
director field dε : T2 × (0, T ) → R3. Being of evolutionary type, System (3.1.1)–(3.1.3) is
accompanied by initial conditions

vε(·, 0) = v0, dε(·, 0) = d0, (3.1.4)

for which the constraints div v0 = 0 and |d0| ≡ 1 hold true. Note that v0 and d0 do
not depend on ε (but see Remark 3.1.5). Altogether, (3.1.1)–(3.1.4) forms a (parabolic)
initial value problem for which we define the following notion of weak solutions:

Definition 3.1.1. Let ε > 0. A pair of functions

vε ∈ L∞
(
0, T ; L̇2

div(T2)
)

∩ L2
(
0, T ; Ẇ 1,2

div (T
2)
)

∩ W 1,2
(
0, T ; (Ẇ 1,2

div (T
2))∗
)
,

dε ∈ L∞
(
0, T ;W 1,2(T2)

)
∩ L2

(
0, T ;W 2,2(T2)

)
∩ W 1,2

(
0, T ;L2(T2)

)
is called a weak solution to the initial value problem (3.1.1)–(3.1.4) if∫ s

0

∫
T2

−vε · ∂tϕ− vε ⊗ vε : ∇ϕ+∇vε : ∇ϕ−∇dε ⊙∇dε : ∇ϕ dx dt,

=

∫
T2

v0 · ϕ(0) dx−
∫
T2

v(s) · ϕ(s) dx,

∂tdε + (vε · ∇)dε −∆dε −
(1− |dε|2)dε

ε2
= 0

holds true for all ϕ ∈ C∞
div(T2 × [0, T ]) and almost every s ∈ [0, T ] as well as pointwise

a.e. on T2 × (0, T ), respectively. Furthermore, (vε, dε) attains the initial data (v0, d0) ∈
L2
div(T2)×W 1,2(T2) in the weak sense, i.e.∫

T2

vε(t) · ψ dx→
∫
T2

v0 · ψ dx,

∫
T2

∇dε(t) : ζ dx→
∫
T2

∇d0 : ζ dx

for all ψ ∈ C∞
div(T2) and ζ ∈ C∞(T2) as t→ 0+.

In Definition 3.1.1, the pressure pε is omitted. This limns a standard procedure when
dealing with weak formulations of incompressible fluid dynamic problems since∫

T2

∇pε · ϕ = 0

for test functions ϕ with div ϕ = 0. As mentioned in the introduction, the Ginzburg-
Landau approximation is derived by a variational approach (see [83]) and therefore comes
with an energy law. In two dimensions, the associated energy is scale-invariant suggesting
that the initial data lying in the energy space give rise to a solution. We have the following
theorem that immediately follows from [59]:

Theorem 3.1.1. Let ε > 0, v0 ∈ L̇2
div(T2) and d0 ∈ W 1,2(T2) with |d0| = 1 a.e. Then

there exists a unique weak solution to the initial value problem (3.1.1)–(3.1.4).
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The above theorem is proven in [59] for a bounded smooth domain Ω, accompanied by
boundary conditions, via a multilevel Galerkin approximation. However, it carries over
to Ω = T2 since the absence of boundaries simplifies the technicalities.
The regularity properties of these weak solutions originate from the underlying energy
conservation law. Formally, we have∫

T2

|vε(t)|2+|∇dε(t)|2 +
1

2ε2
(1− |dε(t)|2)2 + 2

∫ t

0

∫
T2

|∇vε|2 +
∣∣∣∣∆dε + 1

ε2
(1− |dε|2)dε

∣∣∣∣2
= 2E0

for a weak solution to (3.1.1)–(3.1.4) for any 0 ≤ t ≤ T , where E0 =
1
2

∫
T2 |v0|2 + |∇d0|2

holds, the initial energy. Since all quantities on the left-hand side are non-negative,
they are bounded as is the right-hand side. This justifies the regularity assumptions in
Definition 3.1.1.
We turn our attention to the limiting problem ε → 0+. The energy law above provides,
in particular, a bound on the quantity

sup
t∈[0,T ]

∫
T2

(1− |dε(t)|2)2

4ε2

independently of ε. Letting ε tend to 0, the absolute value |dε| is then forced to converge
to the constant value 1. The heuristical conclusion is that the limiting problem consists
of the Euler-Lagrange equations for the energy

1

2

∫
T2

|v|2 + |∇d|2, (3.1.5)

where d takes values in the sphere S2 = {y ∈ R3 : |y| = 1}. In other words, we consider
the simplified Ericksen-Leslie system (1.3.1),

∂tv + (v · ∇)v +∇p−∆v = −div(∇d⊙∇d), (3.1.6)

div v = 0, (3.1.7)

∂td+ (v · ∇)d = ∆d+ |∇d|2d, |d| ≡ 1, (3.1.8)

again with velocity field v : T2 × (0, T ) → R2, pressure function p : T2 × (0, T ) → R
and director field d : T2 × (0, T ) → S2. More precisely, redoing the energetic variational
approach with the energy (3.1.5), the stationary points of the least action functional are
solutions to (3.1.6)–(3.1.8) (see [83]). Comparing (3.1.1)–(3.1.3) and (3.1.6)–(3.1.8), the
only difference is the Lagrange multiplier |∇d|2d in the d-equation subject to the unitary
constraint in the Ericksen-Leslie system whereas the Ginzburg-Landau system contains

the penalization term (1−|dε|2)dε
ε2

. Still the expected regularity of weak solutions to both
systems differs.

Definition 3.1.2. A pair (v, d) with

v ∈L∞
(
0, T ; L̇2

div(T2)

)
∩ L2

(
0, T ; Ẇ 1,2

div (T
2)

)
,

d ∈L∞
(
0, T ;W 1,2(T2)

)
∩ W 1,2

(
0, T ;L4/3(T2)

)
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is a weak solution to (3.1.6)–(3.1.8) subject to the initial conditions

v(x, 0) = v0(x), div v0 = 0 on T2 × {0}, (3.1.9)

d(x, 0) = d0(x), |d0| ≡ 1 on T2 × {0}, (3.1.10)

if it satisfies ∫ s

0

∫
T2

−v · ∂tϕ− v ⊗ v : ∇ϕ+∇v : ∇ϕ−∇d⊙∇d : ∇ϕ dx dt

=

∫
T2

v0 · ϕ dx−
∫
T2

v(s) · ϕ dx,∫ s

0

∫
T2

∂td · ψ + (v · ∇)d · ψ +∇d : ∇ψ − |∇d|2d · ψ dx dt = 0

for all ϕ ∈ C∞
div(T2 × [0, T ]), all ψ ∈ C∞(T2 × [0, T ]) and for almost every s ∈ [0, T ].

Furthermore, (v, d) attains the initial data (v0, d0) ∈ L2
div(T2) × W 1,2(T2) in the weak

sense, i.e.∫
T2

v(t) · ξ dx→
∫
T2

v0 · ξ dx,

∫
T2

∇d(t) : ζ dx→
∫
T2

∇d0 : ζ dx

for all ξ ∈ C∞
div(T2) and ζ ∈ C∞(T2) as t→ 0+.

Note that the main difference between weak solutions (vε, dε) to (3.1.1)–(3.1.3) and
(v, d) of (3.1.6)–(3.1.8) is the loss of L2(0, T ;W 2,2)-regularity of d. As a consequence, the
equation for the director field (3.1.8) is also phrased in a distributional form rather than
pointwise in T2 × [0, T ]. This loss of regularity poses the main obstacle when considering
the limit of solutions (vε, dε) for ε → 0+. Nevertheless, the following main result holds
true:

Theorem 3.1.2 ([48], Theorem 2.1 and 2.2). Let (v0, d0) ∈ L̇2
div(T2) × W 1,2(T2) with

|d0| = 1 a.e. and (vε, dε)0<ε≤1 be the family of unique weak solutions to the initial value
problem (3.1.1)–(3.1.4) with initial data (vε(0), dε(0)) = (v0, d0). Then there exists a
subsequence (εj)j with limj→∞ εj = 0+ such that

(vεj , dεj)⇀
∗ (v, d) in L∞(0, T ;L2

div(T2))× L∞(0, T ;W 1,2(T2))

as well as pointwise a.e. on T2× [0, T ] with (v, d) being a weak solution to the initial value
problem in the sense of Definition 3.1.2. Moreover, the weak solution (v, d) satisfies the
energy inequality∫
T2

|v|2(t) + |∇d|2(t) dx+ 2

∫ t

0

∫
T2

|∇v|2 +
∣∣∆d+ |∇d|2d

∣∣2 dx dt ≤
∫
T2

|v0|2 + |∇d0|2 dx

for almost all t ∈ [0, T ].

The striking fact is that although we only have weak convergence in L∞(0, T ;L2)
available for the gradient ∇d, we can still circumvent the problems with nonlinearities
in the Ericksen-Leslie system. The main issue is represented by the limiting behavior of
the stress tensor

div(∇dε ⊙∇dε)
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in the momentum equation of (3.1.1). In general, we only have

∇dε ⊙∇dε ⇀∗ ∇d⊙∇d+M as measures

with a Radon measure M ∈ L∞(0, T ;M(T2)). The strategy is not to show M = 0 but
that the weak formulation of (3.1.6)–(3.1.8) is satisfied by (v, d). In turn, this implies
consequences on the structure ofM which we consider in Remark 3.1.7 and Remark 3.1.8.
Some further remarks on Theorem 3.1.2 are in order:

Remark 3.1.3 (Failure of strong convergence). The convergence statement dε ⇀
∗ d in

L∞(0, T ;W 1,2(T2)) cannot be improved to strong convergence in C([0, T ];W 1,2(T2)) in
general. Indeed, if this was the case, the Dirichlet energy density 1

2
|∇d|2 would be equi-

integrable in time. In particular, for every δ > 0, we could find a radius R > 0 small
enough such that

sup
x0∈T2,0≤t≤T

1

2

∫
BR(x0)

|∇d|2 ≤ δ.

The theory of Struwe-like solutions for system (3.1.6)–(3.1.8) (see [41, 58]) then implies
the smoothness of solutions as long as this condition is satisfied for a specific δ = δ0 > 0.
But in general, there exist solutions which become singular in finite time (see [44, 50]).

Remark 3.1.4 ([48], Uniqueness). As for the harmonic map heat flow, we do not know
whether the solution (v, d) constructed in Theorem 3.1.2 is a solution in the sense of
Struwe in [78]. In particular, the energy is not known to be nonincreasing so far. For
the harmonic map heat flow, Bertsch et al. [8] and Topping [80] proved the existence of
infinitely many weak solutions with conserved but increasing energy at certain time steps.
The same behavior may be possible for weak solutions (v, d) here.

Remark 3.1.5 ([48], Stability with respect to initial data). Theorem 3.1.2 remains true
for a sequence of initial data

(vε0, d
ε
0)ε → (v0, d0)

strongly in L̇2
div(T2)×W 1,2(T2). However, if only weak convergence is given, a result like

Theorem 3.1.2 may not be available in general since various oscillation and concentration
effects may occur.

We briefly sketch the proof of Theorem 3.1.2 and the ingredients entering in Sections
3.1.1–3.1.4. First, we establish the energy law and derive a-priori bounds for solutions
(vε, dε). Despite standard arguments, we observe that the gradient flow structure of the
dε-equation (3.1.3) interacts with the solenoidality condition of the test functions in the
momentum equation (see Lemma 3.1.3). This is a bit subtle but necessary in the overall
argument. More involved, we recover arguments from the theory of (time-independent)
approximated harmonic maps which guarantee strong convergence of ∇dε at least on a
large set of T2. The final crucial point is to benefit from this fact in the time-dependent
problem: We fix a time t and obtain that

∇dε(t)⊙∇dε(t) ⇀∗ ∇d(t)⊙∇d(t) +M(t) as measures

up to a subsequence where the support ofM is finite. The idea is to cut out the small part
whereM does not vanish and then recover the weak formulation in the momentum equa-
tion. Termed “concentration-cancellation”, this technique was used in [23] with respect to
the stationary Euler equations. The crucial point consists of respecting the solenoidality
of the test functions for the momentum equations during the cut-off procedure.
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3.1.1 Energy law and a-priori estimates

In order to prove Theorem 3.1.2, we begin by establishing (mostly standard) a-priori
estimates for weak solutions (vε, dε) to (3.1.1)–(3.1.4). As for most systems arising from
physics, this is done by employing the energy law associated to the system and, secondly,
using the structure of the equations to derive duality estimates for time derivatives. We
have the following

Proposition 3.1.1. Let (vε, dε) be a weak solution to (3.1.1)–(3.1.4) for ε > 0 with initial
data (v0, d0) ∈ L̇2

div(T2)×W 1,2(T2) and |d0| = 1 a.e. Then the following energy law holds
true:∫

T2

|vε(t)|2+|∇dε(t)|2 +
1

2ε2
(1− |dε(t)|2)2 + 2

∫ t

0

∫
T2

|∇vε|2 +
∣∣∣∣∆dε + 1

ε2
(1− |dε|2)dε

∣∣∣∣2
=

∫
T2

|v0|2 + |∇d0|2 =: 2E0,

(3.1.11)

for almost all t ∈ [0, T ].

Proof. Recalling the given regularity for weak solutions by Definition 3.1.1, we see by
Ladyzhenskaya’s inequality that vε,∇dε ∈ L4(0, T ;L4(T2)) holds true. In view of the
momentum equation (3.1.1), this implies that ∂tvε ∈ L2(0, T ; (Ẇ 1,2(T2))∗) holds true.
By a density argument, i.e., approximating the function (x, s) 7→ u(x, s)χ[0,t], we can
therefore test the momentum equation (3.1.1) by uχ(0,t) and obtain∫

T2

|vε(t)|2

2
+

∫ t

0

∫
T2

|∇vε|2 =
∫
T2

|v0|2

2
+

∫ t

0

∫
T2

∇dε ⊙∇dε : ∇vε.

Here we used that∫
T2

vε ⊗ vε : ∇vε =
∫
T2

viεv
j
ε∂jv

i
ε =

∫
T2

vjε
∂j
2
|vε|2

div vε=0
= 0.

For the director equation (3.1.3), we use test functions approximating
(
−∆dε − (1−|dε|2)dε

ε2

)
χ(0,t)

such that ∫
T2

|∇dε(t)|2

2
+

(1− |dε(t)|2)2

4ε2
+

∫ t

0

∫
T2

∣∣∣∣∆dε + (1− |dε|2)dε
ε2

∣∣∣∣2
=

∫
T2

|∇d0|2

2
+

∫ t

0

∫
T2

(vε · ∇)dε ·∆dε.

Again, we have
∫
T2(vε · ∇)dε · (1−|dε|2)dε

ε2
= 0 since div vε = 0. Finally, we use integration

by parts to see∫
T2

(vε · ∇)dε ·∆dε =
∫
T2

vjε∂jd
i
ε∂

2
kd

i
ε =

∫
T2

vjε
[
∂k(∂jd

i
ε∂kd

i
ε)− ∂j∂kd

i
ε∂kd

i
ε

]
= −

∫
T2

∂kv
j
ε∂jd

i
ε∂kd

i
ε −

∫
T2

vε ·
∇
2
|∇dε|2 = −

∫
T2

∇vε : ∇dε ⊙∇dε.

The sum of both equalities yields the energy law.
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Note that we benifited from the fact that |d0| ≡ 1 almost everywhere on the right-
hand side of (3.1.11). As ε→ 0+, it can already be seen that |dε| → 1 in some Lp-space.
However, the gradient structure of (3.1.3) gives more information about dε, namely the
boundedness by 1 via a maximum principle (similar calculations can be found in [3, 64]):

Lemma 3.1.1 ([48], Lemma 1). Let (vε, dε) be a weak solution to (3.1.1)–(3.1.4). Then
dε satisfies

|dε(x, t)| ≤ 1

for almost every (x, t) ∈ T2 × [0, T ].

Proof. For k ∈ N we define the auxiliary function hkε : T2 × [0, T ] → R by

hkε(x, t) =


k2 − 1 for k < |dε(x, t)|,
|dε(x, t)|2 − 1 for 1 < |dε(x, t)| ≤ k,

0 for |dε(x, t)| ≤ 1.

Notice that hkε is weakly differentiable by the chain rule for Lipschitz and Sobolev func-
tions. Then, by (3.1.3), we have

∂th
k
ε + vε · ∇hkε = ∆hkε − 2χ{1<|dε|≤k}

(
|∇dε|2 +

1

ε2
(|dε|2 − 1)|dε|2)

)
≤ ∆hkε

in the weak sense. Next, we multiply the differential inequality by hkε , and an integration
by parts yields (due to the periodicity of T2 and |d0| ≡ 1)

1

2

∫
T2

|hkε(t)|2 +
∫ t

0

∫
T2

|∇hkε |2 ≤ −
∫ t

0

∫
T2

vε ·
∇
2
|hkε |2︸ ︷︷ ︸

=0

= 0.

This can only be true if hkε = 0 a.e. on T2× [0, T ] and therefore the assertion follows.

Collecting the information of the energy law and Lemma 3.1.1, we deduce the following
a-priori bounds where C > 0 is independent of ε > 0:

∥vε∥L∞
t L̇2

x
≤ C, (3.1.12)

∥vε∥L2
t Ẇ

1,2
x

≤ C, (3.1.13)∥∥1− |dε|2
∥∥
L∞
t L2

x
≤ Cε, (3.1.14)

∥dε∥L∞
t,x

≤ 1, (3.1.15)

∥∇dε∥L∞
t L2

x
≤ C, (3.1.16)

∥∂tdε + (vε · ∇)dε∥L2
tL

2
x
=

∥∥∥∥∆dε + 1

ε2
(1− |dε|2)dε

∥∥∥∥
L2
tL

2
x

≤ C. (3.1.17)

Ladyzhenskaya’s inequality (Lemma 2.0.2) also implies

∥vε∥L4
tL

4
x
≤ C. (3.1.18)

In order to obtain the later needed strong convergence results, we make use of the gen-
eralized Aubin-Lions Lemma.
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Lemma 3.1.2 ([73], Lemma 7.7). Let V1, V2, V3 be Banach spaces, where V1 is separable,
reflexive and compactly embedded into V2 as well as V2 ⊂ V3 continuously. Then the
embedding

Lp(0, T ;V1) ∩W 1,q(0, T ;V3) ⊂ Lp(0, T ;V2)

is compact for 1 < p < +∞ and 1 ≤ q ≤ ∞.

We thus look for estimates on the time-derivatives (∂tvε, ∂tdε). A comparison of the
above list of estimates and (3.1.3) shows that

∥∂tdε∥
L2
tL

4
3
x

≤ C

holds true uniformly in ε > 0. For the time-derivative of the velocity field ∂tvε, we could
deduce in similar fashion a bound in L2(0, T ; (C1

div(T2))∗). However, it is not sufficient
for our purposes.

Lemma 3.1.3. For a weak solution (vε, dε) of (3.1.1)–(3.1.4), it holds

∥∂tvε∥L2
tX

∗
s
≤ C (3.1.19)

for Xs := W 1,s
div(T2) for any s > 2 independently of 0 < ε ≤ 1.

Proof. First, note that for ϕ ∈ C∞
div(T2) one has

1

ε2

∫
T2

(∇dε)⊤(1− |dε|2)dε · ϕ = − 1

4ε2

∫
T2

∇(1− |dε|2)2 · ϕ = 0.

Secondly, we employ the identity div(∇dε ⊙ ∇dε) = ∇ |∇dε|2
2

+ (∇dε)⊤∆dε. Definition

3.1.1 implies that there exists ∂tvε ∈ L2(0, T ; (Ẇ 1,2
div (T2))∗) such that∫ s

0

⟨∂tvε, ϕ⟩(Ẇ 1,2)∗×Ẇ 1,2 +

∫ s

0

∫
T2

−vε ⊗ vε : ∇ϕ+∇vε : ∇ϕ−∇dε ⊙∇dε : ∇ϕ = 0

for every ϕ ∈ C∞
div(T2 × [0, T ]) and a.e. s ∈ [0, T ]. Therefore we estimate∣∣∣∣∫

T2×[0,T ]

⟨∂tvε, ϕ⟩
∣∣∣∣

≤
∣∣∣∣∫

T2×[0,T ]

vε ⊗ vε : ∇ϕ
∣∣∣∣+ ∣∣∣∣∫

T2×[0,T ]

∇vε : ∇ϕ
∣∣∣∣

+

∣∣∣∣∫
T2×[0,T ]

(∇dε)⊤
(
∆dε +

1

ε2
(1− |dε|2)dε

)
· ϕ
∣∣∣∣

≤

(
∥vε∥2L4

tL
4
x
+ ∥vε∥L2

t Ẇ
1,2
x

+ ∥∇dε∥L∞
t L2

x
·
∥∥∥∥∆dε + 1

ε2
(1− |dε|2)dε

∥∥∥∥
L2
tL

2
x

)
×

×
(
∥ϕ∥L2

tW
1,2
div

+ ∥ϕ∥L2
tCdiv

)
≤ C

(
∥ϕ∥L2

tW
1,2
div

+ ∥ϕ∥L2
tCdiv

)
by the a-priori estimates (3.1.13), (3.1.16), (3.1.17) and (3.1.18). The assertion follows
since Xs = W 1,s

div(T2) ⊂ W 1,2
div (T2) ∩ Cdiv(T2) is true for any s > 2.
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We point out that we benefited from the interaction of solenoidal test functions and
the gradient flow structure of the system. As a consequence of the above estimates, we
can choose a subsequence (εi)i∈N ⊂ (0, 1] with limi→∞ εi = 0+ such that

vεi → v in L2(T2 × [0, T ]) and a.e., (3.1.20)

∇vεi ⇀ ∇v in L2(T2 × [0, T ]), (3.1.21)

∂tvεi ⇀ ∂tv in L2(0, T ;X∗
s ) for s > 2, (3.1.22)

dεi → d in Lp(T2 × [0, T ]) (3.1.23)

for any p ∈ (1,∞) and a.e.,

|dεi |2 → 1 in L∞(0, T ;L1(T2)) and a.e., (3.1.24)

∇dεi ⇀∗ ∇d in L∞(0, T ;L2(T2)), (3.1.25)

∂tdεi + (vεi · ∇)dεi ⇀ ∂td+ (v · ∇)d in L2(T2 × [0, T ]). (3.1.26)

Additionally, we can choose the subsequence such that

vεi(·, t) → v(·, t) in L2(T2) for a.a. t ∈ [0, T ], (3.1.27)

dεi(·, t) → d(·, t) in L2(T2) for a.a. t ∈ [0, T ]. (3.1.28)

3.1.2 Regularity estimates for fixed times t

For the time being, we follow the idea of fixing a time t ∈ [0, T ] and investigating
limiting and regularity questions of solutions to (3.1.1)–(3.1.4). Formally, with dε(t) = uε,
Equation (3.1.3) becomes

∆uε +
1

ε2
(1− |uε|2)uε = τε (3.1.29)

on T2 for some τε ⇀ τ in L2(T2) and uε ∈ W 2,2(T2) being a strong solution for ε > 0.
The integrability of (τε)ε stems from the energy equality (3.1.11). As ε→ 0+, we have a
singular limit problem and we presume that (uε)ε converges to a so-called approximated
harmonic map u : T2 → S2, i.e.

∆u+ |∇u|2u = τ − (τ · u)u

in some sense. In general, strong convergence of (uε)ε inW
1,2 cannot be expected because

of a (geometrical) phenomenom called bubbling (see [71, 82]). For our next purposes, we
need to keep in mind that the appearence of Dirac measures in the energy (density)

eε(uε) :=
|∇uε|
2

+
(1− |uε|2)2

4ε2
(3.1.30)

may occur as ε→ 0+.
However, the size of support of such defect measures in the energy density can actually
be bounded. For this we use the fundamental idea of partial regularity for PDEs: If a
certain scale-invariant intrinsic quantity (often times a rescaled form of the energy) is
small on a subset of the domain, then solutions to the PDE must be smooth on this
subset.
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Actually, for (3.1.29), the energy itself is invariant under scaling. Equation (3.1.11)
then motivates the assumption

sup
0<ε≤1

∫
T2

eε(uε) ≤ E0. (3.1.31)

Inspired by [61, 64], we show the following

Theorem 3.1.3 ([48], Theorem 3). Suppose that (uε)ε is a sequence of strong solutions
to (3.1.29) with 0 < ε ≤ 1 satisfying (3.1.31). Further, let τε ⇀ τ in L2(T2) for ε → 0+

and |uε| ≤ 1 for ε > 0. Then there exists an ε0 > 0 such that if for x0 ∈ T2 the condition

sup
0<ε≤1

∫
Br1 (x0)

eε(uε) ≤ ε20 (3.1.32)

holds true for some diamT2 ≥ r1 > 0, there exists a subsequence with

uε → u strongly in W 1,2(Br1/4(x0))

for ε→ 0+.

Proof. The proof follows [48] and is divided into four steps. Let x0 = 0 without loss of
generality.
Step 1: We show that

|uε(x)− uε(y)| ≤ C
|x− y|
ε

+

(
C
|x− y|
ε

)1/2

on T2.

To do so, we use a splitting ansatz uε = (uε − vε) + vε, where vε solves

∆vε = τε

on T2 with
∫
T2 vε = 0. Theorem 2.0.3 gives ∥vε∥Ẇ 2,2 ≤ C ∥τε∥L2 and Morrey’s embedding

in two dimensions, W 2,2 ↪→ C1/2, implies

|vε(x)− vε(y)| ≤ C1/2|x− y|1/2,

since (τε)ε is bounded in L2. Moreover, we have ∥vε∥L∞ ≤ C. Secondly, it is

∆(uε − vε) =
1

ε2
(1− |uε|2)uε.

Using a regularity result for the Poisson equation, [9, Lemma A.2.], we have

∥∇(uε − vε)∥2L∞ ≤ C ∥uε − vε∥L∞
∥(1− |uε|2)uε∥L∞

ε2
≤ C

ε2
(∥uε∥L∞ + ∥vε∥L∞)

≤ C

ε2
(1 + ∥τε∥L2)

because |uε| ≤ 1 holds true. Hence, we have

|uε(x)− vε(x)− (uε(y)− vε(y))| ≤
C

ε
|x− y|
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Since ε ≤ 1, this shows the assertion.
Step 2: We use the Hölder continuity to show that |uε(x)| ≥ 1

2
on Br1 . On the contrary,

assume there existed some x1 ∈ Br1 with |uε(x1)| < 1/2. Due to the Hölder estimate
from Step 1, we have, for x ∈ Bεθ0(x1), that

|uε(x)| ≤
3

4

provided 0 < θ0 < min
{

1
64C

, r1
}
. Therefore it follows∫

Bθ0ε
(x1)

(1− |uε|2)2

4ε2
≥
(

7

16

)2
θ20ε

2π

4ε2
=

(
7

32

)2

θ20π

which contradicts the assumption that∫
Bθ0ε

(x1)

(1− |uε|2)2

4ε2
≤
∫
Br1 (0)

1

2
|∇uε|2 +

1

4ε2
(1− |uε|2)2 ≤ ε20

for a chosen sufficiently small ε0 > 0.
Step 3: We use |uε| ≥ 1

2
on Br1 to engage the polar decomposition

uε = |uε|
uε
|uε|

=: ρεψε.

Notice that |ψε| ≡ 1 as well as

|∇ψε|+ |∇ρε| ≲ |∇uε| ≲ |∇ψε|+ |∇ρε|.

Multiplying (3.1.29) by ψε and applying the multiplication operator 1
ρε
((·)− (ψε · (·))ψε)

to (3.1.29), we obtain the system of equations

∆ρε +
1

ε2
ρε(1− ρ2ε)− ρε|∇ψε|2 = τεψε =: gε (3.1.33)

∆ψε = −|∇ψε|2ψε −
2

ρε
∇ψε∇ρε +

1

ρε
(τε − (τεψε)ψε) =: fε (3.1.34)

on Br1 , respectively. Considering the second equation, we take a cut-off function η ∈
C∞

0 (Br1) such that η ≡ 1 on Br1/2 with ∥∇η∥L∞ ≲ 1/r1 and ∥∇2η∥L∞ ≲ 1/r21. Then the
function ηψε satisfies

∆(ηψε) = ηfε + 2∇η · ∇ψε +∆ηψε =: f̃ε.

Hence, we again employ estimates from the theory of elliptic equations [34, Corollary
9.10] by

∥∥∇2(ηψε)
∥∥
L

4
3
≤ C

∥∥∥f̃ε∥∥∥
L

4
3
≤ C

(
∥ηfε∥L 4

3
+

∥∇ψε∥L2

r
1/3
1

+
∥ψε∥L∞

r
1/2
1

)
≤ C(∥∇ψε∥L2 + ∥∇ρε∥L2) ∥η∇ψε∥L4 + C ∥τε∥L2 +

C

r
1/2
1

.
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We point out that the value of the constant C > 0 in the previous inequality is indepen-
dent of r1. Observe that η∇ψε = ∇(ηψε)−∇η⊗ψε is valid. The Sobolev imbedding (for

this version in W
1,4/3
0 , see [28, Chapter 5, Theorem 3]) on Br1 gives

∥∇(ηψε)∥L4(Br1 )
≲
∥∥∇2(ηψε)

∥∥
L

4
3 (Br1 )

.

Again, the constant is independent of r1, which can be seen by a scaling argument.
Combining both above inequalities, we use the assumption ∥∇uε∥L2 ≤

√
2ε0 for small

enough ε0 > 0 to absorb the first term on the right-hand side of the elliptic inequality
and get

∥∇(ηψε)∥L4 ≲ ∥τε∥L2 + r
−1/2
1 .

Thus (∇ψε)ε is uniformly bounded in L4(Br1/2) ∩ W 1, 4
3 (Br1/2) and admits a strongly

convergent subsequence in W 1,2(Br1/2).
Multiplying (3.1.33) by 1− ρε and integrating by parts over some Br2 with 0 < r2 ≤

r1/2, we obtain∫
Br2

|∇ρε|2 +
∫
Br2

1

ε2
(1− ρ2ε)ρε(1− ρε)

=

∫
∂Br2

(1− ρε)
∂(1− ρε)

∂r
+

∫
Br2

τεψε(1− ρε) +

∫
Br2

ρε(1− ρε)|∇ψε|2

≲
∫
∂Br2

(1− ρε)

∣∣∣∣∂ρε∂r
∣∣∣∣+ (∥τε∥L2(Br2 )

+ ∥τε∥2L2(Br2 )
+ 1
)
∥1− ρε∥L2(Br2 )

.

(3.1.35)

By Cavalieri’s principle and the mean value theorem we see for some r2 ∈ [r1/4, r1/2]
that ∫

∂Br2

(1− ρε)

∣∣∣∣∂ρε∂r
∣∣∣∣ ≤ C

r1

∫
Br2

(1− ρε)

∣∣∣∣∂ρε∂r
∣∣∣∣

holds true. Returning to inequality (3.1.35) we have∫
Br2

|∇ρε|2 ≲ (∥∇ρε∥L2(Br2 )
+ 1) ∥1− ρε∥L2(Br2 )

≲ ε,

which implies ρε → 1 strongly in W 1,2(Br1/4).
Step 4: Summarizing the information above, we have in particular

ψε → ψ in W 1,2(Br1/4,R3),

ρε → ρ ≡ 1 in W 1,2(Br1/4)

as well as pointwise a.e. This eventually yields

uε = ρεψε → ρψ = u

in L2(Br1/4) and since ρε = |uε| ≤ 1, we have

∇uε = ψε ⊗∇ρε + ρε∇ψε → ψ ⊗∇ρ+ ρ∇ψ = ∇u

in L2(Br1/4) due to the generalized dominated convergence theorem.
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3.1.3 The concentration set Σ

Theorem 3.1.3 required a smallness assumption (3.1.32) on the local energy of the se-
quence (uε)ε. Of course in general, such an assumption is not satisfied. Take for example
a sequence of Dirac measures (δn)n∈N on [0, 1] where δn is supported on the point nrmod 1
for an irrational number r. Clearly, the sequence does not satisfy a condition like (3.1.32),
i.e. ∫

I

dδn ≤ ε

for ε < 1 for an open interval I in [0, 1] since there are infinitely many δn supported in
any open interval of [0, 1] due to the irrationality of r. Hence, there is also no weak limit.
On the other hand, it is easy to select a subsequence such that δnk

converges weakly to
some δx0 for some x0 ∈ [0, 1]. Even more, the subsequence strongly converges to 0 outside
of any open interval containing x0 and trivially satisfies a smallness condition such as the
one stated above.
Our task is therefore to determine the properties of the set where strong convergence of
(uεk)k = (dεk(t))k is available at least for a subsequence. We see that strong convergence
fails in finitely many (isolated) points. In order to do so we define, for a sequence (uε)ε
solving (3.1.29), the set of singular points by

Σ :=
⋂
0<r

{
x0 ∈ T2 : lim inf

k→∞

∫
Br(x0)

eε(uε) > ε20

}
where ε0 is given by Theorem 3.1.3. Reading the above definition we realize that the
set Σ contains exactly the points in T2 which will never allow assumption (3.1.32) being
verified even for a subsequence, how small r > 0 might be chosen. But due to (3.1.31),
Σ must be small.

Lemma 3.1.4 ([48], Lemma 2). There exists a constant K = K(E0) > 0, where E0 is
taken from (3.1.31), such that

#Σ ≤ K

holds true.

Proof. Choose a finite subset AN := {xl}1≤l≤N ⊂ Σ for N ∈ N with mutually disjoint
balls {Brl(xl)}l. Since AN is finite, there is a k0 ∈ N such that

ε20 <

∫
Brl

(xl)

eε(uε)

for all k ≥ k0 by construction of Σ. Thus we have

#AN = N <
1

ε20

N∑
l=1

∫
Brl

(xl)

eε(uε) ≤
E0

ε20
.

due to the energy estimate (3.1.11). By the arbitrariness of AN , the set Σ consists of at

most K :=
⌈
E0

ε20

⌉
points.
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As a consequence of the previous lemma, we find a subsequence of (uε)ε strongly
converging on T2\Σ.

Lemma 3.1.5 ([48], Lemma 3). Let (uε)ε be as in Theorem 3.1.3. Then there exists a
subsequence such that

∇uε → ∇uε
in L2

loc(T2\Σ).

Proof. Let {zj}j∈N be the set of rational points in T2\Σ and define

rj := sup

{
r > 0 : lim inf

k→∞

∫
Br(zj)

eε(uε) ≤ ε20

}
. (3.1.36)

In general the radii rj might be too large to satisfy∫
Brj (zj)

eε(uε) ≤ ε20,

which is why we consider 4
5
rj. In view of Theorem 3.1.3 we want to prove

⋃
j∈NBrj/5(zj) =

T2\Σ.
Let z ∈ T2\Σ with rz > 0 be such that

lim inf
k→∞

∫
Brz (z)

eε(uε) ≤ ε20.

By density, we choose a zj0 such that |zj0 −z| < rz
6
. Thus we have rj0 ≥ 5

6
rz from (3.1.36)

and therefore |zj0 − z| < rj0
5
.

Since the covering is countable we use a diagonal argument, Theorem 3.1.3 and Lemma
3.1.4 to extract a subsequence which fulfills the assertion.

All in all, we improved the convergence of (uε)ε (up to a subsequence) from weakly
in W 1,2(T2) to

|∇uε|2 ⇀∗ |∇u|2 +
K∑
i=1

aiδxi

in measures. The defect measure of the energy density (without the penalization term)
is therefore only caused by concentration. Oscillations are ruled out in total. The cause
for this behavior is the information that the sequence (uε)ε stems from the solution of a
critical elliptic problem, namely (3.1.29).

3.1.4 Limit passage as ε→ 0+ and proof of Theorem 3.1.2

Using the previous results we now prove Theorem 3.1.2, i.e., we show that weak solutions
of (3.1.1)–(3.1.3) converge to weak solutions of (3.1.6)–(3.1.8). In comparison to [48],
we split the argument into different parts and first focus on the easier of the two main
equations, the one for the director field dε (3.1.3).

Lemma 3.1.6. Let (vε, dε)ε be a sequence of weak solutions to (3.1.1)–(3.1.4) satisfying
(3.1.20)–(3.1.28). Then (v, d) satisfies (3.1.8) weakly and d(t)⇀ d0 in W 1,2(T2).
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Proof. The proof imitates the idea of [3, 15]. For a, b, c : T2 → R3 being weakly differen-
tiable, we set (a ∧∇b) : ∇c =

∑
j(a ∧ ∂xjb) · ∂xjc where ∧ denotes the vector product on

R3. Let ξ ∈ L∞(0, T ;W 1,2(T2))∩L∞(T2× [0, T ]). Using a density argument, we can test
(3.1.3) by dε ∧ ξ. The identity dε ∧∆dε = div(dε ∧∇dε) yields∫ s

0

∫
T2

(
dε ∧ (∂tdε + (vε · ∇)dε)

)
· ξ +

∫ s

0

∫
T2

(dε ∧∇dε) : ∇ξ = 0

for almost all s ∈ [0, T ]. From the convergence statements (3.1.20), (3.1.23)– (3.1.26)
and the bound of the maximum principle, |dε| ≤ 1 a.e. for all ε > 0, we conclude that
the limit of the weak formulation is∫ s

0

∫
T2

(
d ∧ (∂td+ (v · ∇)d)

)
· ξ +

∫ s

0

∫
T2

(d ∧∇d) : ∇ξ = 0.

Here we have |d| ≡ 1 a.e. Therefore all derivatives (in particular the first term involving
∂td and ∂xjd for j = 1, 2) are perpendicular to d a.e. Using this fact, setting ξ = d ∧ Φ
with Φ ∈ C∞(T2 × [0, T ]) and employing another density argument to test the above
equation by ξ, we obtain∫ s

0

∫
T2

(∂td+ (v · ∇)d) · Φ +

∫ s

0

∫
T2

∇d : ∇Φ−
∫ T

0

∫
T2

|∇d|2d · Φ = 0.

Here we exploited the Lagrange identity (a∧ b) · (c∧d) = (a · c)(b ·d)− (b · c)(a ·d) for the
wedge-product. This shows that the limit (v, d) satisfies the director equation (3.1.8).

The whole trick of the above proof consists of canceling the penalizing term (1−|dε|2)dε
ε2

by using the properties of the vector product. In the end, the symmetry of S2 plays the
key role here to get rid of the question if

(1− |dε|2)dε
ε2

→ |∇d|2d

holds true in some sense.
Such a method is not applicable in the momentum equation (3.1.6) and the stress tensor
div(∇dε ⊙ ∇dε) for two simple reasons: It is an equation governing the evolution of vε,
and the test functions we are using in the weak formulation are solenoidal. The latter
fact complicates other arguments, like cut-offs of test functions, as well. This is where
we use the main idea of the proof: the concentration-cancellation technique from [23].
In order to do so we state following

Lemma 3.1.7. For every f ∈ L̇2
div(T2) there exists g ∈ Ẇ 1,2(T2) with

f = ∇⊥g, ∇⊥ = (−∂2, ∂1)⊤.

Proof. We write f as Fourier expansion f =
∑

k∈Z2 f̂ke
ik·(·) with f̂0 = 0 since

∫
T2 f = 0.

The solenoidality of f implies k · f̂k = 0 for all k ∈ Z2 \ {0}, which in turn implies
f̂k = (−k2, k1)⊤λk for some λk ∈ C and all k ∈ Z2 \ {0}. Then g =

∑
k∈Z2\{0} λke

ik(·) is
the desired g since

∥∇g∥2L2 =
∑

k∈Z2\{0}

|k|2|λk|2 =
∑

k∈Z2\{0}

|f̂k|2 <∞

holds true.
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Remark 3.1.6. Such a statement holds true for higher-order Sobolev spaces Wm,2(T2)
by an analogous proof.

We briefly sketch our strategy for the remainder of the proof of Theorem 3.1.2: The
goal is to verify an alternative weak version of (3.1.6) for a.e. time t ∈ [0, T ]. We do so by
looking at a “good” set of full measure of times t ∈ [0, T ] for which the quantities of the
energy law (3.1.11) are bounded independently of ε. This allows us to view the sequence
as solutions to (3.1.29) and to apply Theorem 3.1.3 and Lemma 3.1.5. Finally, we use the
aforementioned concentration-cancellation procedure to cut out possible defect measures
and verify in the end the weak formulation of (3.1.6) for general solenoidal test functions.

Proof of Theorem 3.1.2. We proceed similarly to [48]. Regarding Lemma 3.1.6, the re-
maining part is to show that (v, d) fulfills the momentum equation (3.1.6) in a weak sense.
We set τε := ∂tdε + (vε · ∇)dε and τ := ∂td+ (v · ∇)d. Due to (3.1.20)–(3.1.28), the set

A :=

{
t ∈ [0, T ] : lim inf

ε→0+

(
∥∂tvε(t)∥X∗

r
+ ∥∇vε(t)∥L2 + ∥∇dε(t)∥L2 + ∥τε(t)∥L2

)
<∞

}
has full measure by Fatou’s lemma, i.e., |A| = T (recall Xr = W 1,r

div(T2) for r > 2).
Without loss of generality, let A be such that (vε, dε)(t) → (v, d)(t) as in (3.1.27) and
(3.1.28) for every t ∈ A. Fix t ∈ A. Now there exists a subsequence for which(

∂tvεj ,∇vεj ,∇dεj , τεj
)
(t) ⇀ (∂tv,∇v,∇d, τ) (t),

where we identified the limit in t by the strong convergence of (vεj(t), dεj(t))j∈N in L2.
Since this is true for any subsequence, the full sequence ((∂tvε,∇vε,∇dε, τε)(t))ε converges
weakly.

Next, we take a test function ϕ ∈ C∞
div(T2). Since ϕ is solenoidal, it is

ϕ = ∇⊥η = (−∂2, ∂1)⊤η

for some η ∈ C∞(T2) (see Remark 3.1.6) if
∫
T2 ϕ = 0. Similar to the argument in

Lemma 3.1.3, we use the weak formulation of Definition 3.1.1 to deduce the existence of
∂tvε ∈ L2(0, T ; (Ẇ 1,2

div (T2))∗) such that∫
T2

⟨∂tvε(t), ϕ⟩(Ẇ 1,2
div )

∗×Ẇ 1,2
div

+

∫
T2

vε(t)⊗ vε(t) : ∇ϕ+

∫
T2

∇vε(t) : ∇ϕ

−
∫
T2

∇dε(t)⊙∇dε(t) :
(
−∂1∂2η −∂22η
∂21η ∂1∂2η

)
= 0

(3.1.37)

is fulfilled w.l.o.g. at time t ∈ A\{0} by ϕ. Also, we have

τε(t) = ∆dε(t) +
(1− |dε(t)|2)dε(t)

ε2

which is, taking into account the bound on τε above, (3.1.29) for dε(t) = uε. Thus, by
Lemma 3.1.5, there exists a subsequence (vε, dε)ε, which in general depends on t, such
that

∇dε(t) → ∇d(t)
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in L2
loc(T2\Σt), where Σt is finite according to Lemma 3.1.4.
By density, it suffices to show the weak formulation (3.1.37) in the limit for all func-

tions η(x) = eik·x with k ∈ Z2 where the case k = (0, 0) is trivial. First note that the
only problematic terms are the ones related to ∂tv and ∇d ⊙ ∇d. However, choosing a
smooth cut–off function ψ which vanishes in a neighborhood of Σt, we may pass to the
limit with the test function ∇⊥η(x) = ∇⊥ (eik·xψ(x)), i.e.〈

∂tv(t),∇⊥η
〉
X∗

r ,Xr
+

∫
T2

v(t)⊗ v(t) : ∇∇⊥η +

∫
T2

∇v(t) : ∇∇⊥η

−
∫
T2

∇d(t)⊙∇d(t) : ∇∇⊥η = 0.

(3.1.38)

It remains to “fill the holes” and we do so by considering every point in Σt separately.
To this end, observe that the equations (3.1.6) and (3.1.1) are covariant under rotations.
To be more specific, let 0 = x0 ∈ Σt, without loss of generality, be the invariant point
of the rotation. Taking a test function ∇⊥β with supp β ⊂ Br, r > 0 small enough, the
rotation of coordinates Qy = x for Q⊤ = Q−1 yields∫

Br

(∇dε ⊙∇dε)(x, t) : ∇∇⊥β(x, t) dx =

∫
Br

(∇ydε ⊙∇ydε)(Qy, t) : ∇y∇⊥
y β(Qy, t) dy

(3.1.39)
by a change of variables. Similar identities hold for all other terms and we have∫

fn(x)ϕ(x) dx→
∫
f(x)ϕ(x) dx iff

∫
fn(Qy)ϕ(Qy) dy →

∫
f(Qy)ϕ(Qy) dy.

For r > 0 sufficiently small we know by Lemma 3.1.5 that (∇dε⊙∇dε)(·, t) only concen-
trates in x0 = 0 ∈ Br and so does (∇ydε ⊙∇ydε)(Q(·), t) by the same token. Thanks to
the rotational covariance, it is enough to consider test functions h(x) = h(x1) in a neigh-
borhood of the concentration point x0 = 0. We can do so by choosing h(x) = h(x · v) for
some v ∈ R2 \ {(0, 0)} and Q such that Q⊤v is a multiple of e1 in (3.1.39). To cut off the
concentration point, define hn for n ∈ N large enough by the elliptic ODE

h′′n = (1− 1(−1/n,1/n))h
′′, hn(−r) = h(−r), hn(r) = h(r).

We properly localize the function hn by considering ηn(x1, x2) = hn(x1)χ(x1, x2) with χ
being smooth, χ ≡ 1 on Br/2 and zero outside of Br (the whole construction is illustrated
in Figure 3.1) . We set η = hχ respectively and note that

∇2ηn = ∇2(hn · χ) → ∇2(h · χ) = ∇2η almost everywhere on T2

and by dominated convergence in any Lp(T2), 1 ≤ p < ∞; therefore ηn → η in W 2,p(T2)
(in particular ∇⊥ηn → ∇⊥η in Xs = W 1,s

div(T2,R2) for 2 < s <∞).
Choosing ϕ = ∇⊥ηn in (3.1.37), we are able to pass to the limit in ε since ∇∇⊥ηn

vanishes around the concentration point. The limit then reads〈
∂tv(t),∇⊥ηn

〉
X∗

r ,Xr
+

∫
Br

v(t)⊗ v(t) : ∇∇⊥ηn +

∫
Br

∇v(t) : ∇∇⊥ηn

−
∫
Br\Br/2

∇d(t)⊙∇d(t) : ∇∇⊥ηn −
∫
Br/2

[∇d⊙∇d]2,1h′′n = 0.
(3.1.40)
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defect δ0defect δ0

v Qv = λe1

Rotation

x = Qy

width 2
n

x2

x1

Figure 3.1: Cut-off of plane waves

with [A]ij = aij for A = (aij)ij ∈ RM×N . Notice that we need the regularity of ∂tv ∈
L2(0, T ;X∗

r ) here. As n → ∞ we are able to replace ηn by η in the second, third and
fourth term due to v ⊗ v ∈ L2(T2,R2),∇v ∈ L2(T2,R2×2),∇d⊙∇d ∈ L1(T2\Br/2,R2×2)
from (3.1.20)–(3.1.25). For the first term we have〈

∂tv(t),∇⊥ηn
〉
X∗

s ,Xs
→

〈
∂tv(t),∇⊥η

〉
X∗

s ,Xs
(3.1.41)

since ∂tv(t) ∈ X∗
s and ∇⊥ηn → ∇⊥η in Xs. In order to use Lebesgue’s dominated

convergence theorem for the last term of (3.1.40), we observe that

[∇d⊙∇d]2,1h′′n → [∇d⊙∇d]2,1h′′ a.e.∣∣[∇d⊙∇d]2,1h′′n
∣∣ ≤

∣∣[∇d⊙∇d]2,1h′′
∣∣ ∈ L1(Br/2)

is valid. This and [∇∇⊥η]2,1 = h′′ on Br/2 yield (3.1.38) for η = hχ.
By (3.1.39), we deduce that the weak formulation is also satisfied for test functions of

the form ∇⊥η(x) = ∇⊥ (eik·xχ(x)), k ∈ Ż2, where χ is a proper chosen cut-off function
around a concentration point. Combining this with (3.1.38) and using the density (for
example in the W 3,2(T2)-topology, see also Remark 3.1.6) of {eik·(·) : k ∈ Z2} in the space
of test functions, we eventually obtain that (v, d) satisfies the weak formulation

⟨∂tv(t), ϕ⟩X∗
r ,Xr

+

∫
T2

v(t)⊗ v(t) : ∇ϕ+

∫
T2

∇v(t) : ∇ϕ

−
∫
T2

∇d(t)⊙∇d(t) : ∇ϕ = 0

(3.1.42)

for every ϕ ∈ C∞
div(T2) and t ∈ A. As t was arbitrary and A has full measure, (3.1.42)

holds for a.a. t ∈ (0, T ].
In order to deal with the time dependence we multiply (3.1.42) by ζ(t) with ζ ∈ C∞([0, T ])
and integrate over [0, s] with 0 < s ≤ T . The density of C∞

div(T2) ⊗ C∞([0, T ]) in
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C∞
div(T2 × [0, T ]) yields∫ s

0

⟨∂tv, ϕ⟩X∗
r ,Xr

+

∫ s

0

∫
T2

v ⊗ v : ∇ϕ+

∫ s

0

∫
T2

∇v : ∇ϕ

−
∫ s

0

∫
T2

∇d⊙∇d : ∇ϕ = 0

for all ϕ ∈ C∞
div(T2 × [0, T ]) and ϕ(T ) = 0. Furthermore, we know from∫ s

0

⟨∂tvε, ϕ⟩(Ẇ 1,2)∗×Ẇ 1,2 =

∫
T2

vε(s) · ϕ(s)−
∫
T2

v0 · ϕ(0)−
∫ s

0

∫
T2

vε · ∂tϕ

for every ε > 0 that we have∫ s

0

⟨∂tv, ϕ⟩X∗
r ,Xr

=

∫
T2

v(s) · ϕ(s)−
∫
T2

v0 · ϕ(0)−
∫ s

0

∫
T2

v · ∂tϕ.

according to (3.1.20), (3.1.22), (3.1.27) and (3.1.28) for a.e. s ∈ [0, T ]. From (3.1.20)–
(3.1.26) we gain an improvement of regularity, i.e. (v,∇d) lie in Cw([0, T ];L

2(T2)). In
particular, the solution (v, d) attains the initial data (v0, d0). Hence (3.1.6)–(3.1.10)
possesses a weak solution in the sense of Definition 3.1.2. The energy inequality follows
from (3.1.11) and (3.1.20)–(3.1.28) as well as the lower semicontinuity of the norms with
respect to weak convergence.

In addition to the arguments in [48], we give some remarks on the proof above:

Remark 3.1.7. As mentioned after the statement of Theorem 3.1.2, we did not achieve
the weak formulation through an improved convergence result on approximative solutions
(vε, dε). The defect measure M ∈ L∞(0, T ;M(T2)) defined by

∇dε ⊙∇dε ⇀∗ ∇d⊙∇d+M

in the sense of Radon measures does not appear in the weak formulation of (3.1.6). On
the other hand, we have∫ s

0

∫
T2

−v · ∂tϕ− v ⊗ v : ∇ϕ+∇v : ∇ϕ− (∇d⊙∇d+M) : ∇ϕ = 0

by standard limit passage in (3.1.1) for any divergence-free test function ϕ and a.e. s ∈
[0, T ]. Subtracting the above equation from the achieved weak formulation in Theorem
3.1.2, we obtain ∫ s

0

∫
T2

M : ∇∇⊥η = 0

for all ϕ = ∇⊥η and η ∈ C∞(T2). For a fixed time t ∈ [0, T ] (a.e. in [0, T ]), there exists
a subsequence of (∇dε ⊙∇dε)ε such that

M(t) =
K∑
i=1

(
ai bi
bi ci

)
δxi
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for points xi ∈ T2, i = 1, ..., K by Lemma 3.1.5 and if we localize η, we have up to
translation M(t) = A(t)δ0, A ∈ R2×2 with A being symmetric. Using test function
η(x1, x2) = x2jχ(x1, x2), j = 1, 2, χ ∈ C∞

0 (Br), r > 0 small and χ = 1 on Br/2, the
identity ∫

T2

M(t) : ∇∇⊥η =

∫
T2

(
a b
b c

)
:

(
−∂1∂2η −∂2∂2η
∂1∂1η ∂1∂2η

)
dδ0

implies
b = 0.

In other words, we have

∂1dε(t) · ∂2dε(t) → ∂1d(t) · ∂2d(t)
in the sense of distributions. By a local rotation by 45 degrees, the statement |∂1dε(t)|2 −
|∂2dε(t)|2 → |∂1d(t)|2 − |∂2d(t)|2 follows as well with the conclusion a = c.

Remark 3.1.8. The above remark acually shows that the defect measure M(t) must be
a gradient up to a time-dependent subsequence, i.e.

divM(t) =
K∑
i=1

ai(t)∇δxi(t)

in the sense of distributions for bounded measurable functions ai : [0, T ] → R and i =
1, ..., K with K > 0 being the constant in Lemma 3.1.4. However, the dependence of
ai, xi : [0, T ] → R × T2 is not quantifiable so far. We expect that the mapping t 7→ xi(t)
defines rectifiable-in-time curves.

Remark 3.1.9 (Boundary conditions). Theorem 3.1.2 is phrased in the periodic domain
T2. However, if we impose boundary conditions on a smooth bounded domain Ω, the
observations on the defect measure and the local structure of the cut-off argument actually
allow us to verify an analogous version of Theorem 3.1.2 on Ω. Indeed, the restriction to
plane waves as test functions on T2 is not necessary. Similarly to Remark 3.1.7, we first
verify the weak formulation for test function η = x2iχ, i = 1, 2. The conclusion is that the
defect consists of a gradient which is not seen by general divergence-free test functions
in C∞

0,div(Ω). The energy density |∇dε|2 might concentrate on the boundary, but since
functions in C∞

0 (Ω) vanish close to the boundary, no contribution is seen in the weak
formulation.

Remark 3.1.10. In Remark 3.1.7 we note that

∂1dε(t) · ∂2dε(t) → ∂1d(t) · ∂2d(t), |∂1dε(t)|2 − |∂2dε(t)|2 → |∂1d(t)|2 − |∂2d(t)|2

in the sense of distributions by usage of the momentum equation (3.1.6). But one cannot
expect that the coupling to an additional equation should increase the behavior of solutions
to the harmonic map heat flow. Actually, the above statements hold true for sequences
of (approximate) harmonic maps themselves, which is related to the (coefficients of the)
Hopf differential

H = |∂1d|2 − |∂2d|2 − 2i∂1d · ∂2d.
For the theory of harmonic maps on two-dimensional surfaces, see e.g. [38]. In particular,
in [38, p. 134], the connection of the Hopf differential to Euler equations and the result
of [29] is noted. Moreover, [24], an analogue of Theorem 3.1.2 is shown via observations
on the Hopf differential for ε > 0.
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3.2 A comparison to the two-dimensional incompress-

ible Euler equations

In this section, we sketch a selected part of the mathematical theory of the two-dimensional
Euler equations from fluid mechanics. We do so since we use an idea of the work of
DiPerna and Majda [23], the concentration-cancellation method, as central ingredient to
prove Theorem 3.1.2. The situation of inviscid fluid dynamics is compared to the above
result on nematic liquid crystal flows. The intention is to outline the theory of so-called
vortex sheet solutions to Euler equations without treating many of the technicalities which
appear in there. Rather, an intuition is given on what is happening in the argument. The
first and main results in this direction were settled in the late 1980’s to early 1990’s with
the introduction of generalized Young measures (DiPerna-Majda measures) in [22], the
investigation of concentration in measures in [23] and the existence result of vortex-sheet
solutions with non-negative vorticity in [20]. In this presentation, we mainly follow [69].

The Euler equations are the standard model to describe incompressible fluid flows in
the large Reynolds number limit. They read

∂tv + div(v ⊗ v) +∇p = 0,

div v = 0
(3.2.1)

for a velocity field v : R2 × [0,∞) → R2 and p : R2 × [0,∞) → R being the pressure.
The system originates from Newton’s second law and the conservation of mass and does
not include internal friction of the fluid. Therefore, the system is not of parabolic type
but rather hyperbolic (in some situations). Solutions to (3.2.1) will at best propagate
the regularity fed into the system by v0 but not smooth out over time. Although highly
important in the topic of fluid mechanics, we ignore the effects resulting from boundaries
and consider the whole space R2.

Given an initial state v(x, 0) = v0(x) with v0 : R2 → R2 and div v0 = 0, the solution
of the initial value problem will formally preserve the kinetic energy∫

R2

|v(t)|2

2
=

∫
R2

|v0|2

2
(3.2.2)

for all times t ≥ 0. Some other quantities such as the barycenter of mass are conserved
as well (see [69, Chapter 1]). One of the difficult questions regarding Euler and Navier-
Stokes equations is whether, or how, turbulence is modeled by them or how turbulent
motion can be deduced from them. We will not enter in the discussion of turbulence
itself as it has no fully consistent definition. But clearly, one speaks of the fluid being in
the turbulent regime if the fluid can be observed swirling on various length scales with a
seemingly random pattern.

From the mathematical point of view, this behavior leads to a fundamental quantity
in (Newtonian) fluid mechanics: the vorticity. It describes the local spinning of the fluid
and is given by the curl of the velocity,

ω := curl v =

(
−∂2
∂1

)
·
(
v1
v2

)
.

Hence, ω : R2 × [0,∞) → R is a scalar quantity in two dimensions. Of course, it is then
important to describe the evolution of vorticity along time and we derive the vorticity
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ω = ω0

ω = 0

A

Figure 3.2: Vortex patch ω = ω0χA

equation by applying the curl to (3.2.1),

∂tω + (v · ∇)ω = 0. (3.2.3)

The velocity v is not independent of the vorticity and can be recovered by the Biot-Savart
law

v = K ∗ ω, K(x) =
1

2π

x⊥

|x|2
(3.2.4)

for x ∈ R2 \{0} (see [69, Chapter 2]). Equation (3.2.3) is essentially a transport equation
which depicts a seemingly simpler structure than the Euler equations itself. The difficulty
of the subject becomes apparent with the non-local and nonlinear coupling of ω with itself
through the Biot-Savart law. Nevertheless, with v being solenoidal, transport equations
in general and (3.2.3) in particular preserve any Lp-norm over time. Given an initial
vorticity function ω(x, 0) = ω0 with ω0 : R2 → R, we formally have∫

R2

|ω(t)|p =
∫
R2

|ω0|p (3.2.5)

for a solution to (3.2.3) for any 1 ≤ p ≤ ∞. Choosing different values of p, one wants to
model different situations. For example, for p = ∞, the interest lies in so-called vortex
patch solutions where ω0 is given by (a multiple of) an indicator function of a smooth
domain, see Figure 3.2. One important point then consists of the description of time-
evolution of the boundary of the domain A. However, we focus on the other endpoint
case p = 1. Actually, we look for even more singular data, namely measures. We require

ω0 ∈ M(R2) ∩W−1,2
loc (R2).

Such an initial datum is called a vortex sheet data (see [69, Chapter 9]).
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ω = 0

ω = ρH1⌞B

B

Figure 3.3: Vortex sheet

The actual motivation is the following: For very singular flows of inviscid fluids (jets,
wakes), the vorticity is thought to concentrate on a one-dimensional curve, namely a
weighted one-dimensional Hausdorff measure supported on a curve in R2 (see Figure
3.3). This regularity1 is propagated by (3.2.2) and (3.2.5) and therefore bounded in time.

In view of the constraint div v = 0, the velocity can be represented by a stream
function ψ : R2 → R through v = ∇⊥ψ (this is the Helmholtz decomposition). Together
with the definition of the velocity, we have

−∆ψ = ω. (3.2.6)

For vortex sheet initial data, we have a Poisson equation with right-hand side in L1 or
the space of Radon measures respectively. Notice the similarity of ψ to d in the director
equation of the Ericksen-Leslie system (3.1.8) and (3.1.29) where the most singular term
|∇d|2d is also bounded just in L1. Therefore, one might be interested in transferring
arguments known for vortex-sheet solutions to the Ericksen-Leslie system. Since the
proof of Theorem 3.1.2 is at the core more concerned with the (quasi-)stationary system
(3.1.29), we are led to investigate time-independent solutions to (3.2.1).

3.2.1 Stationary solutions and concentration effects

In constrast to the Ericksen-Leslie system (3.1.6)–(3.1.8), it is easier to find non-trivial
solutions to the Euler equations. If we ignore the dependence on time in (3.2.1) and add
an external force f : R2 → R2, we arrive at the stationary Euler equations

div(v ⊗ v) +∇p = f, div v = 0 (3.2.7)

and the corresponding stationary vorticity equation

div(vω) = curl f. (3.2.8)

Since we are interested in singular effects, as concentration of measures depicts one, we
introduce weak solutions:

Definition 3.2.1. Let f ∈ L1
loc(R2). A velocity field v ∈ L2

loc(R2) with div v = 0 is called
a weak solution to (3.2.7) if

−
∫
R2

v ⊗ v : ∇ϕ =

∫
R2

f · ϕ

holds true for every ϕ ∈ C∞
0,div(R2).

1The velocity v lies in L2 if and only if
∫
R2 ω = 0 because of the Biot-Savart law. Otherwise v is at

least locally in L2 which still is bounded in time by a Gronwall inequality, see [69, Chapter 3].
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ω = 2
π

ω = − 2
3π

ω = 0

Figure 3.4: Phantom vortex

Once again, we get rid of the pressure function p by choosing a special class of
solenoidal test functions for (3.2.7). For some forces f , there might not exist solutions
to the above equations. On the other hand, letting f = 0, every smooth radial vorticity
function ω(x) = ω(r), r = |x| is a solution to (3.2.8). In order to see this, note that the
Biot-Savart law for a radial vorticity reads ([69, Chapter 2])

v(x) =
x⊥

r2

∫ r

0

sω(s) ds. (3.2.9)

Then we have

div(vω)(x) =

(
1

r2

∫ r

0

sω(s) ds

)
x⊥ · ω′(x)

x

r
= 0

for every x ∈ R2. As a model solution and first example, we consider such radial eddies
and in particular phantom vorticies. The name “phantom” stems from vanishing total
vorticity condition, i.e.,

∫
R2 ω = 0. Let us take (see Figure 3.4)

ω1(x) =


2
π
, for |x| ≤ 1

2
,

− 2
3π
, for 1

2
< |x| ≤ 1,

0, otherwise.

(3.2.10)

Then ω1 is supported on B = {x ∈ R2| |x| ≤ 1}, has vanishing mean value and the
total variation is ∥ω1∥L1 =

∫
B
|ω1| = 1. Because of the radial symmetry, it is a (weak)

solution to (3.2.8) and furthermore, the associated velocity field v1 via Biot-Savart law
also vanishes outside B by construction.
Our focus now lies on concentration phenomena. In order to do so, we rescale the vortex
solution ω1 by introducing

ωε(x) =
1

ε2
ω1

(x
ε

)
for ε > 0. The L1-norm is invariant under this scaling law, i.e.,

∫
R2 |ωε| = 1 for ε > 0.

Further, the L2-norm of the associated velocity vε = K ∗ ωε = 1
ε
v1(

·
ε
) since2

∫
R2 ωε = 0.

2This is not true if
∫
R2 ω1 ̸= 0.
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By the computations below, the set {ωε}ε>0 is also bounded in W−1,2(R2) and therefore
in the vortex sheet space M∩W−1,2

loc from above. We have (compare to [69, p. 412])

ωε ⇀
∗ 0 as Radon measures,

vε ⇀ 0 in L2(R2),

but no strong convergence in either cases and we notice that the limit ω, v = 0 is a
solution to (3.2.7). The nonlinear terms of the convection in (3.2.7) are (vε)i(vε)j for
i, j = 1, 2 which are bounded in L1 as ε → 0+. Taking a test function ϕ ∈ C0(R2) we
compute

lim
ε→0

∫
R2

ϕ(x)(vε)i(x)(vε)j(x) = lim
ε→0

∫
R2

ϕ(x)
1

ε2
(v1)i

(x
ε

)
(v1)j

(x
ε

)
= lim

ε→0

∫
R2

ϕ(εx)(v1)i(x)(v1)j(x) = ϕ(0)

∫
R2

(v1)i(x)(v1)j(x).

Using (3.2.9), we have∫
R2

(v1)i(x)(v1)j(x) =

∫
R2

(x⊥)i(x
⊥)j

r4

(∫ r

0

sω1(s) ds

)2

dx

=

∫ ∞

0

∫ 2π

0

(eθ)i(eθ)j
r

(∫ r

0

sω1(s) ds

)2

dθ dr = Cδij

for some C > 0 with eθ representing the angular unit vector and δij being the Kronecker-
delta. In total, it is

vε ⊗ vε ⇀
∗ C

(
δ0 0
0 δ0

)
,

so the convection term converges in measures to a multiple of the Dirac measure supported
in the origin. In particular, it is |vε|2 ⇀∗ 2Cδ0. Remarkably, the solutions vε converge to a
solution, although the nonlinear convection term fails to converge to its limit expression.
This fact is due to the structure of the defect measure and the weak formulation. Taking
a test function ϕ ∈ C∞

0,div(R2), we have

lim
ε→0+

∫
R2

∇ϕ : dvε ⊗ vε = C

∫
R2

∇ϕ : d

(
δ0 0
0 δ0

)
= C(∂1ϕ1(0) + ∂2ϕ2(0)) = 0.

The concentration of measure is not seen by the equation and we speak of concentration-
cancellation. This prototypical example illustrates what actually also happens in the
proof of Theorem 3.1.2 for liquid crystal flows.

We turn our attention to a more elaborate example of solutions which is due to Green-
gard and Thomann in [36]. It shows that the construction of a sequence of stationary
solutions to (3.2.7) is possible such that the associated kinetic energy density concentrates
on the unit square Q of R2 with the Lebesgue measure itself supported on Q as defect
measure. The sequence of solutions again converges weakly to zero, hence to a solution
of (3.2.7). In fact, it shows that every Radon measure can be constructed by the defect
measure of solutions sequence to (3.2.7).
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Theorem 3.2.1 ([36]). There exists a sequence (vn)n of weak solutions to (3.2.7) such
that

vn ⇀ 0 in L2(R2),

ωn ⇀
∗ 0 as Radon measures,∫

R2

|∇vn| → ∞,

|vn|2 ⇀∗ aL2⌞Q as Radon measures

with L2 being the two-dimensional Lebesgue measure, a > 0 and Q = [0, 1]2.

Proof. We sketch the proof following [69, Chapter 11]. Suppose we have two phantom
vorticies, i.e., radial vorticity functions ω1, ω2 with vanishing mean, and both with com-
pact but disjoint supports B1 and B2. Then the corresponding velocities , v1 and v2, also
vanish outside of B1 and B2 respectively by (3.2.9). The consequence is that although
the Euler equation is nonlinear, the sum v1 + v2 is still a solution of (3.2.7).

Next we consider a dyadic lattice Λn on Q. Then the sum∑
k,l

1

4n
δk,l,

with δk,l being a Dirac mass supported on the (k, l)-th node of Λn, converges as Radon
measures to the Lebegue measure on the square Q. But we have seen above that a
sequence of phantom vortices leads to a Dirac measure as defect, therefore the idea is
to place a small enough phantom vortex ωk,l on every node of Λn. The sum

∑
k,l ωk,l is

again a solution if the supports do not intersect by our above observation. In order to
satisfy these constraints one needs to introduce two scales. The vortices ωk,l we look for
are translated copies of (see [69, p. 419])

ωn(x) =


ω+
n , for |x| ≤ δn,

0, for δn < |x| ≤ δ
1/2
n or |x| > Rn,

ω−
n , for δ

1/2
n < |x| ≤ Rn

for the choices (see Figure 3.5)

δn = exp

(
−4m+1

2π

)
, Rn =

(
5

4
δn

)1/2

, ω+
n =

1

4nδ2n

and ω−
n such that

∫
R2 ωn = 0. The crucial point is the appearance of two different scales.

The inner, positive part of ω concentrates with quadratical speed compared to the outer,
negative part supported on an annulus. With the specific parameters chosen, it ensures
the summability of ωn =

∑
k,l ωk,l as well as the corresponding bounds for the velocity vn

which is proven in [69, p. 419]

Recall the meaning of the stream function ∇⊥ψ = v. Then the essentials of Theo-
rem 3.2.1 consist of the fact that solutions of

∆ψn = ωn, ∇⊥ψn ⊗∇⊥ψn +∇pn = 0
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Figure 3.5: Greengard-Thomann example

can develop the worst possible defect measures in the energy density |∇ψn|2
2

but still, in
the limit, satisfy the limit equation. None of these examples are accidental as we will see
in the following section.

In comparison to approximated harmonic maps (3.1.29), the Ericksen-Leslie equations
or the solutions to

−∆un = |∇un|2un + τn

with bounded energy and tension field
∫
|∇un|2+|τn|2 ≤ C, we observe a similar behavior

in the proof of Theorem 3.1.2. However, the defect measure concentrates on a smaller (at
most finite) set since a form of elliptic ε-regularity is available. Example (3.2.10) shows
(by multiplication with a small constant) on the other hand that concentration effects
can always occur in (3.2.7), no matter how small the local energy is chosen.

3.2.2 The reduced defect measure and weak stability of station-
ary Euler equations

We turn our attention to a sequence of solutions of (3.2.7). In the previous section, we
have seen convergence results to a limit solution for special cases despite the failure of
the convergence of the nonlinear terms in (3.2.7). Such a behavior is true in general and
first proven in [23]:

Theorem 3.2.2 ([69], Theorem 12.2). Let fn ⇀ f in L1(R2), the velocity fields vn ∈
L2
loc(R2) satisfy

div(vn ⊗ vn) +∇pn = fn, div vn = 0

in the weak sense with
∫
K
|vn|2,

∫
K
|ωn| =

∫
K
| curl vn| being bounded for every K ⊂⊂ R2.

Then the sequence (vn)n possesses a limit point v ∈ L2
loc(R2) which satisfies (3.2.7) in the

weak sense.

The proof (we follow a more streamlined version from [27, 69]) involves technical
arguments from capacity theory at some stages which we will only sketch.
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First, we introduce another notion of defect measure, the so-called reduced defect
measure

θ(E) := lim sup
n→∞

∫
E

|vn − v|2

for any Borel set E ⊂ R2. To be precise, the set function θ only depicts a premeasure since
it is not countably subadditive but finitely subadditive (a counterexample is provided by
the sequence from the Greengard-Thomann example from the previous section, see [69,
p. 421]). The defect measure we consider so far is the weak*-defect measure σ defined
by

|vn|2 dx− |v|2 dx ⇀∗ σ

as Radon measures. As we see below the reduced defect measure can behave much better
than σ.

We also recall the notion of Hausdorff measure. For a given Borel set E ⊂ R2, the
Hausdorff premeasure of order γ for a given r > 0 is defined by

Hγ
r (E) := inf

{∑
ri≤r

rγi

∣∣∣∣E ⊂
∞⋃
i=1

Bri(xi), xi ∈ R2 for every i ∈ N

}
.

Taking the (well-defined) limit r → 0+ leads us to the Hausdorff measure of order γ,

Hγ(E) := lim
r→0

Hγ
r (E),

and we say that E has Hausdorff dimension d ≥ 0 if d = inf{γ|Hγ(E) = 0}. Morevoer,
we settle the meaning of concentration in terms of the reduced defect measure (see [69,
p. 410]):

Definition 3.2.2. We say that θ concentrates inside a set with Hausdorff dimension p,
if, given δ, r > 0 there exists a family of sets {Fr} such that

• θ(Fr) = 0,

• Hp+δ
r (F c

r ) ≤ C with a constant C > 0 independent of r and δ.

Remark 3.2.3. The assertion θ(E) = 0 is equivalent to the strong convergence vn → v in
L2(E). In general, this is not the case for σ restricted to E (a counterexample is provided
by nχ(0,1/n) on E = (0, 1)). If E is closed , then we have σ(E) ≥ θ(E) (see [69, p. 411]).

For a given sequence of solutions to (3.2.7), the weak*-defect measure may concentrate
on a set of Hausdorff-dimension two as illustrated in the Greengard-Thomann example.
However, in terms of the reduced defect measure, concentration happens on a set of
dimension zero in the sense of Definition 3.2.2. This fact is not accidental.

Theorem 3.2.3 ([69], Theorem 12.1). Let (vn)n be sequence such that

� div vn = 0,

� curl vn = ωn,



3.2. TWO-DIMENSIONAL EULER EQUATIONS 47

�

∫
K
|vn|2 +

∫
K
|ωn| ≤ C(K) for every compact set K ⊂ R2.

Then θ(·) = lim supn→∞
∫
(·) |vn − v|2 concentrates inside a set of Hausdorff dimension

zero in the sense of Definition 3.2.2.

Proof. A detailed proof can be found in [27, 69]. We roughly sketch the idea:
By our assumptions, we introduce a stream function to the problem as in (3.2.6),

−∆ψn = ωn,

where the right-hand side is bounded in L1 and ∇⊥ψn = vn in L2 locally. As n tends to
infinity, the sequence (ωn)n might concentrate only in a countable number of points to a
Dirac measure which as a set has Hausdorff dimension 0. Aside from this set, the limit
measure µ = |ωn| must be continuous. To be more precise, for a given 0 < p < 2, we
consider the set

Ep =

{
x ∈ K : sup

n∈N
sup
0<r

1

rp

∫
Br(x)

|ωn| <∞
}

for a compact set K ⊂ R2. A covering argument shows that Hp((Ep)
c) is finite for every

0 < p < 2 because of the bound on the total variation of (ωn)n. On the other hand, the
embeddings for Riesz potentials Iα (as the Biot-Savart kernel is one of order α = 1) from
[1] show

∥I1f∥Lq
loc

≤ C∥f∥L1,p

for n = 2, q < 2 + p
1−p . Here, the space L1,p, the Morrey space, contains all functions

satisfying

sup
x0∈R2,r>0

r−p
∫
Br(x0)

|f | ≤ C.

Consequently, we have strong convergence vn → v in L2(Ep) since the sequence converges
pointwise and is bounded in some Lq-norm with q > 2. Since the complementary set
(Ep)

c satisfies the bound H((Ep)
c) ≤ cp, the concentration set C ≈

⋂
0<p<2(Ep)

c must
satisfy Hγ(C) = 0 for every γ > 0.

The technicalities of the argument are substantially more complicated. For example,
the notion of p-capacity enters in arguments related to the size and properties of Ep and
strong convergence of (vn)n. Note that it is not necessary that vn solves the stationary
Euler equations.

The final argument in the proof of Theorem 3.2.2 consists of the aforementioned
concentration-cancellation arguments. Let us note a technicality: Since Theorem 3.2.2 is
phrased in terms of local Lebesgue spaces, we need to restrict ourselves to approximating
sequences (vn)n with supp vn ⊂ BR for some R > 0 for almost all n ∈ N. It does not pose
any restriction on our situation which is proven in the appendix of [23].

For the weak formulation of (3.2.7), take a test function ϕ ∈ C∞
0,div(R2) which can be

written as ∇⊥η for η ∈ C∞
0 (R2) by Helmholtz decomposition (compare to Remark 3.1.6).

Then (3.2.7) reads ∫
R2

vn ⊗ vn : ∇∇⊥η = −
∫
R2

fn · ∇⊥η. (3.2.11)
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Similarly to (3.1.39), one has∫
R2

∇y∇⊥
y η(Qy) : (Q

⊤vn ⊗Q⊤vn)(Qy) dy =

∫
R2

∇x∇⊥
x η(x) : (v ⊗ v)(x) dx (3.2.12)

for anyQ ∈ SO(2), see [69, p. 457]. Next, by Fourier expansion η(x) = 1
2π

∫
R2 e

ik·xη̂(k) dk,

it is enough to consider a smooth plane wave function x 7→ h̃(k · x) as test function (note
that the integral expressions in the weak formulation make sense). Regarding (3.2.12),
we can choose Q such that h̃(k · x) = h(x1) and (3.2.11) reads

−
∫
R2

h′′(vn)1(vn)2 =

∫
R2

(fn)2h
′.

By Theorem 3.2.3 we know that the reduced defect measure of (vn)n is concentrated
inside of a set of Hausdorff dimension zero. The same holds true for the rotated versions
Q⊤vn(Q·) (see [69, Lemma 12.3] ).

Finally, we implement a proper cutoff procedure for the test functions. By the defini-
tion of the reduced defect measure, there exists a family {Fr} ⊂ 2R

2
of closed sets such

that

lim
n→∞

∫
Fr

|vn − v|2 = 0

with a constant C > 0 (independent of r) such that for any r > 0 it holds

Hp
r (F

c
r ) ≤ C(p)

for any p > 0. In particular, take p = 1
2
. Then, for r > 0, there exists a covering

{Bri(xi)}i∈N, ri ≤ r with F c
r ⊂

⋃
i∈NBri(xi) and

∑∞
i=1 r

1
2
i ≤ 2C by the definition of

Hausdorff measure. Let P1 : R2 → R denote the projection onto the x1-axis. Then we
have

L1(P1F
c
r ) ≤

∞∑
i=1

L1(P1Bri(xi)) = 2
∞∑
i=1

ri ≤ 2r
1
2

∞∑
i=1

r
1
2
i ≤ 4C · r

1
2 ,

i.e., the one-dimensional Lebesgue measure of P1F
c
r tends to zero as r → 0. Thus we

define hr : R → R by
h′′r(x1) = (1− χP1F c

r
(x))h′′(x)

(with boundary conditions leaving h′r bounded as r → 0). It holds hr → h in W 2,p
loc (R)

and (h′′r , h
′
r)r remain bounded by a uniform constant as r → 0. Inserting hr into the weak

formulation above we have

−
∫
R2

h′′r(vn)1(vn)2 =

∫
R2

(fn)2h
′
r → −

∫
R2

h′′rv1v2 =

∫
R2

f2h
′
r

as n → ∞ by the assumptions of Theorem 3.2.2 and the fact that vn → v in L2 on
the support of the functions h′′r . The convergence h′′r → h′′ holds true a.e. on R and by
dominated convergence (it is |h′′rv1v2| ≤ |h′′v1v2|), we finally conclude

−
∫
R2

h′′v1v2 =

∫
R2

f2h
′
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for any plane wave h. Regarding the above arguments, we deduce that the weak formu-
lation of (3.2.7) is satisfied for every test function proving Theorem 3.2.2.

We recognize that the concentration-cancellation method becomes more technical in
the regime of Euler equations than in Section 3.1. Clearly, this is related to the more
elaborate notion of reduced defect measure. However, the method above does work for
all concentration sets of Hausdorff dimension less than one (in the sense of Definition
3.2.2). The (perhaps critical) case of the concentration set being of reduced Hausdorff
dimension in space-time (!) is dealt with in [2, 86].

3.2.3 Comparison of Euler equations and the Ericksen-Leslie
system

We give a final comparison of the Ericksen-Leslie system (3.1.6)–(3.1.8) and the Euler
equations (3.2.1) in two dimensions. The conclusions drawn below are summarized in
Table 3.1. First, both are systems of evolutionary equations with the Ericksen-Leslie
system of parabolic type and the Euler equations of (partially) hyperbolic type. There-
fore, solutions (v, d) of (3.1.6)–(3.1.8) smooth out after initial time modulo singularities
whereas (3.2.1) (at best) preserves initial regularity, e.g., the Lp-norm of the vorticity.

We specifically turn our attention to the behavior of the velocity field vE (the subscript

E stands for Euler) in (3.2.1) and ∇d in (3.1.6)–(3.1.8). Along (approximate) solution
sequences of their respective equations, both quantities might concentrate some part of
their energy in some measure. By Theorems 3.1.2 and 3.2.2 we know that solutions are
attained in the limit of the sequences for the Ericksen-Leslie system and the stationary
Euler equations. This fact is mainly due to concentration-cancellation, i.e., the potential
concentration of the limit measure |vE|2 and |∇d|2 is not seen in the weak formulation
of the equations. While the support of the concentrated measure (in the sense of Radon
measures) is only (locally) finite in space (Lemma 3.1.5) for liquid crystal flows, we need to
introduce another notion, the reduced defect measure, in order to quantify the sufficient
smallness of concentration support with respect to inviscid fluid flows (see Theorem 3.2.3).

Considering the space-time defect, one would expect rectifiable lines as defect measure
in the liquid crystal case. More precisely, the defect should be supported on a set of finite
two-dimensional parabolic Hausdorff measure. At least, this is the case for the harmonic
map heat flow (see [62, Chapters 7 and 8]). For the Euler equations, not too much is
known about the reduced defect measure. Seemingly, the best known result [68] states
that the space-time reduced Hausdorff measure concentrates inside a set of dimension 2+ε
for any ε > 0. Therefore one might wonder if the method of the proof of Theorem 3.1.2
is useful to show the analogous result for the time-dependent Euler equations. In order
to do so, one would fix times t > 0, use a similar concentration-cancellation argument
as in Theorem 3.2.3 and verify a weak formulation for almost every t ∈ (0, T ). However,
this scheme depends on the regularity of the time-derivative ∂tv which is proven to lie in
(W 1,r

div)
∗ for any r > 2 in the liquid crystal case (see Lemma 3.1.3). We use the gradient

flow structure of the Ericksen-Leslie system to obtain (3.1.19), but the Euler equations
do not provide such an internal structure (at least it is not observed up to now). So
far, the best known estimate for general solutions of (3.2.1) is ∂tvE ∈ (C1

div)
∗ which

directly follows from the energy estimate. Under such bad regularity assumptions, the
limit procedure in (3.1.41) would not be possible. Indeed, in [75], it is shown that the
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Table 3.1: Comparison of Euler and Ericksen-Leslie system

n = 2 Euler equations vE
Ericksen-Leslie system
∇d

weak compactness of
stationary solutions

√
(
√
)

weak compactness of
time-dependent solu-
tions

not so far
√

concentration sets Σ
(time t fixed)

H(Σ) = 2 (weak* defect),
H(Σ) ≈ 0 (reduced defect)

Σ (locally) finite

regularity of ∂tv (C1
div)

∗ (W 1,r
div)

∗, r > 2

method works if the measure of an external force f ∈ (C1
div)

∗ acting on first derivatives of
a test function is continuous which is in general not the case for distributions in (C1

div)
∗.



Chapter 4

Well-posedness theory of global
solutions to magnetoviscoelastic
flows

In the following, we address the well-posedness of a system of equations modeling the flow
of magnetoviscoelastic fluids. In detail, we review the uniqueness, short-time existence
of strong solutions and global-in-time of weak solutions to system (1.3.4). All results are
proven in two spatial dimensions which, from the modeling point of view, is thought to
represent the thin film regime in micromagnetics.

We recall the definition and meaning of the quantities arising in (1.3.4). The fluid
mechanics point of view prompts to consider Eulerian coordinates and therefore the
first state quantity consists of a velocity field u : T2 × [0, T ] → R2. Since nontrivial
deformations are intended to be pictured as well, a deformation gradient (in Eulerian
coordinates) is introduced as matrix-valued field F : T2 × [0, T ] → R2×2. Further, we
restrict ourselves to incompressible materials. As third ingredient, the fluid is built by
(ferro-)magnetic particles which requires the introduction of a magnetization field M :
T2 × [0, T ] → S2 undergoing the laws of micromagnetics.

Setting up the corresponding energy functional and applying a variational approach,
we are given the following system of magnetoviscoelastic fluids:

∂tu+ (u · ∇)u− ν∆u+∇p = − div(∇M ⊙∇M −W ′(F )F⊤) + µ0∇⊤HextM, (4.0.1)

div u = 0, (4.0.2)

∂tF + u · ∇F −∇uF = κ∆F, (4.0.3)

divF⊤ = 0, |M |2 = 1, (4.0.4)

∂tM + (u · ∇)M = −M ∧Heff −M ∧M ∧Heff, (4.0.5)

on T2 × (0, T ) with the effective magnetic field

Heff = ∆M + µ0Hext − ψ′(M),

and initial conditions

(u(·, 0), F (·, 0),M(·, 0)) = (u0, F0,M0), on T2, (4.0.6)

div u0 = 0, divF⊤
0 = 0, |M0| = 1, on T2. (4.0.7)

51
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The derivatives ofW : R2×2 → R and ψ : R3 → R are denoted byW ′(F ) and ψ′(M) with

(W ′(F ))ij =
∂W (F )
∂Fij

, i, j = 1, 2 and (ψ′(M)) = ∂ψ(M)
∂Mi

, i = 1, 2, 3. To explain the occuring

quantities, Hext : T2 × [0, T ] → R3 represents the application of an external magnetic
field to the magnetic fluid. The elastic energy density W : R2×2 → R depicts the internal
elastic reaction of the fluid to deformation and ψ : R3 → R is a combined expression for
the anisotropic energy as well as the stray field energy in micromagnetics. We mention
here that in the two-dimensional thin film regime, the use of a local energy term for the
stray field energy is feasible, see [35].

For the remainder of the chapter, we make the following assumptions:

� The external magnetic field Hext is a function in W 1,∞(T2 × [0, T ]), i.e.,

sup
(x,t)∈T2×[0,T ]

(
|Hext(x, t)|+ |∂tHext(x, t)|+ |∇Hext(x, t)|

)
<∞. (4.0.8)

� The elastic energy density W is a twice differentiable function on R2×2 and there
exist constants χ,C1, C2 > 0 such that

|W ′(A)− χA| ≤ C1 for all A ∈ R2×2 (4.0.9)

and

|W ′′(A)| ≤ C2 for all A ∈ R2×2. (4.0.10)

� The combined magnetic anisotropic and stray field energy density ψ is a non-
negative, even polynomial of degree at most eight in M , i.e.

ψ(M) =
∑
|α|≤8

aαM
α, ψ(M) = ψ(−M), ψ(M) ≥ 0 (4.0.11)

for all M ∈ R3.

The requirement (4.0.8) depicts the worst expectable regularity when inducing an external
magnetic field. For example, an Hext with saw-tooth profile in time is covered by these
assumptions. Regarding the elastic energy density, we point out that W is not assumed
to be convex in any way in contrast to previous works [7, 18, 46]. From the physical
point of view, energy densities like the double-well potentials (see Figure 4.1), where the
minimizers include the set SO(2), are covered by (4.0.9) and (4.0.10). The assumption
on ψ to be a polynomial of eighth degree is of physical nature as well. In [45], different
types of anisotropy energies are described with maximal degree of order eight. Moreover,
the stray field energy consists of a non-negative, even quadratic polynomial as well if we
consider two spatial dimensions, see [35]. The non-negativity of ψ makes sense, since ψ
is intended to model an energy term which, by labeling, is non-negative.

Before we enter mathematical arguments, we summarize the content of the follow-
ing sections: Section 4.1 will introduce a special notion of weak solutions which we call
Struwe-like solutions. Proving the existence of Struwe-like solutions is the main moti-
vation for investigating uniqueness of (4.0.1)–(4.0.5) in Section 4.2 and the existence of
strong solutions locally in time in Section 4.3. The final part of investigation of Struwe-
like solutions forms Section 4.4 where the unique existence of such a solution is proven
for any initial data in the energy space. Section 4.5 contains a localized energy law of
(4.0.1)–(4.0.5).



4.1. STRUWE’S SOLUTIONS 53
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Figure 4.1: Double-well potential

4.1 Struwe’s solutions

Let us introduce and motivate the notion of a Struwe-like solution of (4.0.1)–(4.0.5). We
already mentioned in the introduction that system (4.0.1)–(4.0.5) shares similarities with
the Ericksen-Leslie system (3.1.6)–(3.1.8) regarding the analysis. Here we specifically
address the main analogy, the unitary constraint |d(x, t)| = |M(x, t)| = 1 for any space-
time point (x, t) in the domain of the respective functions. Therefore, we need to handle
this geometric constraint and may equivalently say the image of d and M lies in S2. The
modeling of magnetic and liquid crystal materials advices to us the Dirichlet energies∫

|∇d|2

2
and

∫
|∇M |2

2

in the variational approach. Ignoring the velocity, deformation gradient and convective
forces in the LLG equation (4.0.5), we are left with the harmonic map heat flow

∂tv −∆v = |∇v|2v, v(0) = v0 (4.1.1)

for d =M = v and v : D × [0, T ] → S2 on a domain D ⊂ R2.
The origin of (4.1.1) is connected to a different problem in geometry. Instead of R2

(or open subsets) and S2, let us consider general closed Riemannian manifolds (M, g) as
spatial domain and (N, h) as target space of v. The analogy of (4.1.1) reads

vt −∆gv = A(v)(∇v,∇v), v(0) = v0 (4.1.2)

for v :M× [0, T ] → N and with A being the second fundamental form of N in the normal
direction ν of N . Equation (4.1.2) was first considered in [25] with the intention to solve
the following problem: Given a map v0 in some homotopy class, is there a harmonic
map in the same class? In order to answer this task positively, one needs, e.g., to give a
homotopy from v0 to such a harmonic map and the idea was roughly the following: Using
v0 as initial condition, the heat flow (4.1.2) evolves in time with a limit as t→ +∞. This
limit is characterized by ∂tv = 0, hence

−∆gv = A(v)(∇v,∇v)
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and therefore is a critical point to the functional∫
M

|dv|2 dM

among all v ∈ W 1,2(M,N). Hence, if the solution to (4.1.2) is smooth, such a homotopy
is found. In this regard, it was obtained in [25] that solutions (4.1.2) remain smooth if
the sectional curvature of N is non-positive (see also [62, Theorem 5.3.1]).

On the other hand, the sphere S2 is a surface of positive curvature everywhere.
Still, one might hope for global regularity in (4.1.2) for any target manifold N on two-
dimensional surfaces M since the Dirichlet energy is critical. This was disproven in [14]
by obtainment of a local smooth solution to (4.1.1) which blows up in finite time. It
shows that a previous result of Struwe from 1985 is sharp:

Theorem 4.1.1. [78, Theorem 4.2] Let (M, g) and (N, h) be closed Riemannian man-
ifolds with dim M = 2. Then for any v0 ∈ W 1,2(M ;N) there exists a unique solu-
tion v : M × [0,∞) → N of (4.1.2) which is smooth except of finitely many points
(xl, tl) ∈M × (0,∞), 1 ≤ l ≤ L for some integer L ∈ N.

The problem of singularity formation represents a geometric issue. Considering such
an (xl, tl), a phenomenom called bubbling happens. Some amount of energy concentrates
in this point as t approaches tl. Rescaling of the flows shows that the amount of energy
concentrated in the singular point corresponds to the energy of finitely many harmonic
maps ωi : S2 → N , called bubbles. In some sense, those bubbles separate and flow can
smoothly be continued after time tl. These facts are proven, e.g., in [62, 71, 78, 82]. Here,
the analytic side of the proof of Theorem 4.1.1 is reviewed.

Roughly speaking, a solution to a (nonlinear) parabolic PDE is smooth if a certain
coercive critical quantity is small. The reason is that the typically superlinear terms
become even smaller than the linear ones in this case. It pushes the PDE almost back
to the linear regime where smoothness of solutions is valid. Hence, a proof of (partial)
regularity usually possesses the following basic ingredients:

� A smallness assumption on such a critical quantity,

� an interpolation/embedding inequality which compares a quantity to its derivatives
and

� a local inequality inherent to the PDE considered which makes the application of
the smallness assumption possible.

For (4.1.2), a global energy law holds true,∫
M

|∇v(t)|2 + 2

∫ t

0

∫
M

|∂tv|2 ≤
∫
M

|∇v0|2 = 2E0 (4.1.3)

for all t ∈ (0,∞) and since dimM = 2, the energy is critical. Luckily, there also exists a
sensible local energy inequality as well,∫

BR(x0)

|∇v(t2)|2 ≤
∫
B2R(x0)

|∇v(t1)|2 + c
t2 − t1
R

E0 (4.1.4)
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for all 0 ≤ t1 < t2, diamM/2 > R > 0 and x0 ∈ M . As interpolation inequality in [78],
a (localized) version of Ladyzhenskaya’s inequality is used,∫ t2

t1

∫
M

|∇v|4 ≤ C sup
(x0,t)∈M×(t1,t2)

∫
BR(x0)

|∇v|2 ×
(∫ t2

t1

∫
M

|∇2v|2 + 1

R2

∫ t2

t1

∫
M

|∇v|2
)

(4.1.5)

for R > 0. The last inequality is very similar to the energy inquality and states∫ t2

t1

∫
M

|∇2v|2 ≤
∫ t2

t1

∫
M

|∇v|4. (4.1.6)

The argument then goes as follows: Suppose the critical quantity is small, i.e.

sup
(x0,t)∈M×(t1,t2)

∫
BR(x0)

|∇v|2 ≤ ε << 1.

Then the combination of (4.1.5), (4.1.6) and (4.1.3) yields∫ t2

t1

∫
M

|∇2v|2 ≤ Cε

(∫ t2

t1

∫
M

|∇2v|2 + t2 − t1
R2

E0

)
and therefore we have ∫ t2

t1

∫
M

|∇2v|2 ≤ C
t2 − t1
R2

E0.

If the W 2,2-norm of v is finite, a bootstrap argument shows that v is actually smooth (see
[78]. The question is if the smallness assumption can be justified since t 7→

∫
BR(x0)

|∇v(t)|2

might oscillate heavily. Indeed, this is doable by (4.1.4), at least for some small time
[t1, t2]. The local energy of v(t2) is controlled by the local energy of v(t1) and some
contribution dependent on the difference t2 − t1. However, one might need to choose a
very small R to conclude the smallness which in turn limits the length of [t1, t2]. But on
a small time interval to the right of any given time t∗ ∈ [0,∞), the condition is always
guaranteed.

In contrast, the converse statement must be the following: If v becomes non-smooth
in t∗, then

sup
(x0,t)∈M×(t1,t∗)

∫
BR(x0)

|∇v(t)|2 ≥ ε

must hold true. How often is it possible to satisfy this property? Since there is an L2-
bound on ∂tv, the mapping t 7→ ∇v(t) is at least weakly continuous on [0,∞). With
respect to the lower semicontinuity of the norm under weak convergence, we have

lim inf
t↗t∗

∫
M

|∇v(t)|2 −
∫
M

|∇v(t∗)|2 = a > 0.

The strict inequality holds because the convergence is strictly weak (otherwise, by equi-
integrability, the smallness condition can be satisfied). Further, the number a needs to
have at least the size of ε, since otherwise, again the smallness assumption is satisfied.
Consequently, ∫

M

|∇v(t∗)|2 ≤ 2E0 − ε.
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E
(t
)

E(t)

ε

0

E0

t

Figure 4.2: Singularities and loss of energy

With v(t∗) being the initial data, one can restart the flow (4.1.2) and obtain another
local solution. If it becomes singular, another decrease of energy of at least size ε occurs.
However, only finitely many drops may occur since otherwise, the energy becomes nega-
tive which is a contradiction. Therefore also only finitely many singularities may occur
during the flow, see Figure 4.2.

Despite considerable subtleties, we mimic these argument in the following to derive
the existence of a Struwe-like solution, which is the most regular solution available, to
(4.0.1)–(4.0.5). To begin with, we state the definition of a Struwe-like solution.

Definition 4.1.1 (Struwe-like solutions). A triple (u, F, M) is called a Struwe-like so-
lution to system (4.0.1)–(4.0.6) in T2 × (0, T ) with initial data (u0, F0, M0) ∈ L2(T2) ×
L2(T2)×H1(T2) satisfying div u0 = 0, divF⊤

0 = 0 and |M0| = 1 if it fulfills

u ∈ L∞(0, T, L2(T2)) ∩ L2(0, T ; H1(T2)) with ∂tu ∈ L2(Ti, T̃ ; H
−1(T2)),

F ∈ L∞(0, T, L2(T2)) ∩ L2(0, T ; H1(T2)) with ∂tF ∈ L2(0, T ; H−1(T2)),

M ∈ L∞(0, T, H1(T2)) ∩ L2(Ti, T̃ ; H
2(T2)) with ∂tM ∈ L2(Ti, T̃ ; L

2(T2)),
(4.1.7)

for any T̃ ∈ [Ti, Ti+1) and for a suitable ordered finite family of times {T1, . . . , TN}, with
T0 = 0 and TN ≤ T . Furthermore, the following identities are satisfied:∫

T2

u(t, x) · ∇ϕ(x) dx = 0 for a.e. t ∈ (0, T ),∫
T2

F (t, x)⊤ · ∇Ξ(x) dx = 0 for a.e. t ∈ (0, T ),

|M(t, x)| = 1 for a.e. (t, x) ∈ (0, T )× T2

for any functions ϕ,Ξ in Ḣ1(T2), as well as∫ T

0

∫
T2

− u · ∂tφ− u⊗ u : ∇φ+ ν∇u : ∇φ

=

∫
T2

u0(x) · φ(0, x)

+

∫ T

0

∫
T2

∇M ⊙∇M : ∇φ−W ′(F )F⊤ : ∇φ+ µ0∇HextM · φ
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for any smooth vector function φ ∈ C∞(T2 × [0, T ]), with divφ = 0. Similarly, for any
matrix function Ξ ∈ C∞(T2 × [0, T ]),∫ T

0

∫
T2

−F · ∂tΞ− u⊗ F : ∇Ξ−
2∑

i,j,k=1

uiFjk∂jΞik + κ∇F : ∇Ξ = −
∫
T2

F0 · ∂tΞ.

Finally, the following identity must be satisfied pointwise almost everywhere in T2×(0, T ),

∂tM + (u · ∇)M = −M ∧Heff −M ∧ (M ∧Heff),

together with the initial condition (u(t, ·), F (t, ·),∇M(t, ·)) ⇀ (u0, F0,M0) as t → 0+ in
L2(T2).
If {T1, . . . , TN} is the minimum set for which the above relations holds true, then we say
that {T1, . . . , TN} is the set of singular times of the Struwe-like solution.

The goal of the remaining sections is the confirmation of existence and uniqueness of
such a solution in Theorem 4.4.1. We follow here to some extend [18] which is inspired by
[41, 58] which, in turn, is based on the original paper of Struwe [78] sketched above. The
final arguments leading to the unique existence of a Struwe-like solution are carried out
in Section 4.4. Along the way, we investigate the uniqueness properties and existence of
strong solutions to (4.0.1)–(4.0.5) for two reasons. First, these results are of independent
interest. In particular, the proof of uniqueness of solutions, cf. Theorem 4.2.1, is relatively
short compared to [18] and also differs from the predecessor version for the Ericksen-Leslie
system in [41] and [63]. Secondly, both results form an integral part of the verification of
Theorem 4.4.1.

4.2 Uniqueness of magnetoviscoelastic flows

We carry out the uniqueness of weak solutions for (4.0.1)–(4.0.6) as long as the solution
belongs to the energy space and∇2M is bounded in L2(T2×(0, T )). Regarding the scaling
properties, the situation is very similar to the two-dimensional Navier-Stokes equations
(see [72, p. 85]). On the other hand, the technicalities are considerably more complicated
if one tries to show uniqueness through the energy estimate in L2, see [18, Section 5]
and [41, 63]. Therefore, we consider a sort of energy approach for anti-derivatives of
(u, F,∇M) which is easily accessible on the torus. A similar argument is carried out in
[54] for the general Ericksen-Leslie system.

Theorem 4.2.1. Let T > 0 and let (ui, F i,M i), i = 1, 2 be weak solutions to (4.0.1)–
(4.0.5) with initial conditions

u10 = u20 ∈ L2(T2), F 1
0 = F 2

0 ∈ L2(R2), M1
0 =M2

0 ∈ W 1,2(T2)

for t = 0 and div ui0 = 0, divF i
0
⊤
= 0, |M i

0| = 1 for i = 1, 2. Furthermore, the solutions
and Hext satisfy the regularity properties

(ui, F i,∇M i) ∈ L∞(0, T ;L2(T2)) ∩ L2(0, T ;W 1,2(T2)), for i = 1, 2,

Hext ∈ L2(0, T ;W 1,2(T2)).

Then (u1, F 1,M1) = (u2, F 2,M2) on T2 × [0, T ].
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Proof. For a quantity a = u, F,M we note the difference by a := a1 − a2. Further, let
(ui) = 1

|T2|

∫
T2 u

i and (M i) = 1
|T2|

∫
T2 M

i, the mean-values of ui andM i, and F i = (F i
1, F

i
2)

with F i
1, F

i
2 : T2 × [0, T ] → R2 being the first and the second column vectors of F i for

i = 1, 2. Then divF i⊤ implies divF i
j for i, j = 1, 2. Because of the solenoidality, we have

ui − (ui) = ∇⊥ηi and F i = (F i
1, F

i
2) = (∇⊥χi1,∇⊥χi2) for i = 1, 2 by Lemma 3.1.7 with

(ηi, χi1, χ
i
2) ∈ Ẇ 1,2(T2) and the standard Poincaré inequality yields∥∥(ηi, χi1, χi2)∥∥L2(T2)

≤ C
∥∥(ui, F i)

∥∥
L2(T2)

.

By taking the average of (4.0.1), the evolution of (ui) follows the equation

∂t(u
i) =

µ0

|T2|

∫
T2

∇⊤HextM
i (4.2.1)

(all remaining terms vanish due to Gauß’ Theorem). Therefore we conclude by the
assumptions made on the regularity that we have

(ui, F i,∇M i) ∈ L4(0, T ;L4(T2))

due to Ladyzhenskaya’s inequality and the assumptions on Hext. Now for the solutions
(ui, F i,M i) of (4.0.1)–(4.0.6), we take the difference and arrive at the weak formulations
of

∂tu+ (u1 · ∇)u+ (u · ∇)u2 − ν∆u+∇p

= − div

(
∇M1 ⊙∇M +∇M ⊙∇M2 −W ′(F 1)F⊤ − (W ′(F 1)−W ′(F 2))F 2⊤

)
+ µ0∇⊤HextM, (4.2.2)

div u = div u1 = div u2 = 0, (4.2.3)

∂tF + (u1 · ∇)F + (u · ∇)F 2 −∇u1F −∇uF 2 = κ∆F, (4.2.4)

divF⊤ = divF 1⊤ = divF 2⊤ = 0, |M1|2 = |M2|2 = 1, (4.2.5)

∂tM + (u1 · ∇)M + (u · ∇)M2

= −M1 ∧H1
eff +M2 ∧H2

eff −M1 ∧M1 ∧H1
eff +M2 ∧M2 ∧H2

eff, (4.2.6)

on T2 × (0, T ) with the effective magnetic field

H i
eff = ∆M i + µ0Hext − ψ′(M i), i = 1, 2

and initial conditions

(u(0), F (0),M(0)) = (0, 0, 0) on T2, (4.2.7)

div u0 = 0, divF⊤
0 = 0, on T2. (4.2.8)

The idea is to test the equations with(
∇⊥(−∆)−1η,∇⊥(−∆)−1χ1,∇⊥(−∆)−1χ2,M

)
.

We mention the following point: The operator (−∆)−1 means the solution operator of
the Poisson equation, see Theorem 2.0.3. Further we assumed that (ui, F i,M i) are weak
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solutions as in Definition 4.1.1 with no singular time appearing. As test functions, we
initially allow for smooth functions but by a density argument and the integrability
properties assumed, we are able to make the above choice for the test functions.
Calculations to (4.2.2):
We test (4.2.2) by ∇⊥(−∆)−1η and execute first only the spatial estimates which hold
true at a.e. time t ∈ (0, T ). It is

−
∫
T2

u · ∇⊥(−∆)−1ηt = −
∫
T2

∇⊥η · ∇⊥(−∆)−1ηt =

∫
η(−∆)(−∆)−1ηt

=
d

dt

∫
T2

η2

2
.

Since ∇(u) = 0, we have for the convective term∫
T2

(u1 · ∇)u · ∇⊥(−∆)−1η =

∫
T2

(u1 · ∇)(u− (u)) · ∇⊥(−∆)−1η

=

∫
T2

div

(
u1 ⊗ (u− (u))

)
· ∇⊥(−∆)−1η = −

∫
T2

u1 ⊗ (u− (u)) : ∇∇⊥(−∆)−1η

≤
∥∥u1∥∥

L4 ∥u− (u)∥L2

∥∥∇∇⊥(−∆)−1η
∥∥
L4 ≤ C

∥∥u1∥∥
L4

∥∥∇⊥η
∥∥
L2 ∥η∥L4

≤ δ ∥∇η∥2L2 + Cδ
∥∥u1∥∥2

L4 ∥η∥
2
L4 ≤ δ ∥∇η∥2L2 + Cδ

∥∥u1∥∥2
L4 ∥η∥L2 ∥∇η∥L2

≤ 2δ ∥∇η∥2L2 + Cδ
∥∥u1∥∥4

L4 ∥η∥
2
L2 .

Here we used that ∥u− (u)∥L2 =
∥∥∇⊥η

∥∥
L2 = ∥∇η∥L2 , Ladyzhenskaya’s inequality (The-

orem 2.0.2) and the estimate on the operator (−∆)−1 on Lp, 1 < p <∞ in Theorem 2.0.3.
Furthermore, it is∫

T2

(u · ∇)u2 · ∇⊥(−∆)−1η =

∫
T2

(
(u− (u)) · ∇

)
u2 · ∇⊥(−∆)−1η

+

∫
T2

((u) · ∇)u2 · ∇⊥(−∆)−1η

and similarly to above, we conclude the estimate∫
T2

(
(u− (u)) · ∇

)
u2 · ∇⊥(−∆)−1η ≤ 2δ ∥∇η∥2L2 +

∥∥u2∥∥4
L4 ∥η∥

2
L2 .

Using (4.2.1), we realize that∫
T2

((u) · ∇)u2 · ∇⊥(−∆)−1η = −
∫
T2

u2 ⊗ (u) : ∇∇⊥(−∆)η

≤ |u|
∥∥u2∥∥

L2

∥∥∇∇⊥(−∆)−1η
∥∥
L2 ≤ C

∥∥u2∥∥
L2 ∥η∥L2

∫
T2

|∇Hext||M |

≤ C
∥∥u2∥∥

L2 ∥η∥L2 ∥∇Hext∥L2 ∥M∥L2 ≤ C
∥∥u2∥∥

L2 ∥∇Hext∥L2

(
∥η∥2L2 + ∥M∥2L2

)
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holds true. For the dissipational part, we have

ν

∫
T2

∇u : ∇∇⊥(−∆)−1η = ν

∫
T2

∇∇⊥η : ∇∇⊥(−∆)−1η

= ν

∫
T2

∇⊥η · (−∆)∇⊥(−∆)−1η = ν

∫
T2

|∇⊥η|2 (4.2.9)

= ν

∫
T2

|∇η|2. (4.2.10)

The estimates involving ∇M read∫
T2

div(∇M1 ⊙∇M) · ∇⊥(−∆)−1η ≤
∥∥∇M1

∥∥
L4 ∥∇M∥L2

∥∥∇∇⊥(−∆)−1η
∥∥
L4

≤ C
∥∥∇M1

∥∥
L4 ∥∇M∥L2 ∥η∥L4 ≤ δ ∥∇M∥2L2 + Cδ

∥∥∇M1
∥∥2
L4 ∥η∥

2
L4

≤ δ ∥∇M∥2L2 + Cδ
∥∥∇M1

∥∥2
L4 ∥η∥L2 ∥∇η∥L2

≤ δ

(
∥∇M∥2L2 + ∥∇η∥2L2

)
+ Cδ

∥∥∇M1
∥∥4
L4 ∥η∥

2
L2

and analogously∫
T2

div(∇M ⊙∇M2) · ∇⊥(−∆)−1η ≤ δ

(
∥∇M∥2L2 + ∥∇η∥2L2

)
+ Cδ

∥∥∇M2
∥∥4
L4 ∥η∥

2
L2 .

Concerning the terms resulting from the elastic energy density, we estimate∫
T2

W ′(F 1)F⊤ : ∇∇⊤(−∆)−1η ≤ C

∫
T2

(1 + |F 1|)|F ||∇∇⊤(−∆)−1η|

where we used assumption (4.0.9). Recalling the definition F = (∇⊥χ1,∇⊥χ2), we pro-
ceed with

≤ C(1 +
∥∥F 1

∥∥
L4)
∥∥∇⊥(χ1, χ2)

∥∥
L2

∥∥∇∇⊤(−∆)−1η
∥∥
L4

≤ C(1 +
∥∥F 1

∥∥
L4) ∥∇(χ1, χ2)∥L2 ∥η∥L4 ≤ δ ∥∇(χ1, χ2)∥2L2 + Cδ

∥∥F 1
∥∥2
L4 ∥η∥

2
L4

≤ δ ∥∇(χ1, χ2)∥2L2 + Cδ
∥∥F 1

∥∥2
L4 ∥η∥L2 ∥∇η∥L2

≤ δ

(
∥∇(χ1, χ2)∥2L2 + ∥∇η∥2L2

)
+ Cδ

∥∥F 1
∥∥4
L4 ∥η∥

2
L2 .

In the second term, we use the Lipschitz continuity of W ′ implied by (4.0.10) and obtain∫
T2

(
W ′(F 1)−W ′(F 2)

)
(F 2)⊤ : ∇∇⊥(−∆)−1η

≤ C

∫
T2

|F ||F 2||∇∇⊥(−∆)−1η|.

Similar to the above estimate, we get∫
T2

(
W ′(F 1)−W ′(F 2)

)
(F 2)⊤ : ∇∇⊥(−∆)−1η

≤ δ(∥∇(χ1, χ2)∥2L2 + ∥∇η∥2L2) + Cδ
∥∥F 2

∥∥4
L4 ∥η∥

2
L2 .
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Regarding the term involving Hext, it is∫
T2

∇⊤HextM · ∇⊥(−∆)−1η = −
∫
T2

(Hext · ∇)M · ∇⊥(−∆)−1η

≤ ∥∇M∥L2 ∥Hext∥L4

∥∥∇⊥(−∆)−1η
∥∥
L4 .

Now, we apply the Sobolev embedding to ∇⊥(−∆)−1η, i.e.∥∥∇⊥(−∆)−1η
∥∥
L4 ≤ C ∥η∥L2

and proceed with∫
T2

∇⊤HextM · ∇⊥(−∆)−1η ≤ C ∥∇M∥L2 ∥Hext∥L4 ∥η∥L2

≤ δ ∥∇M∥2L2 + Cδ ∥Hext∥2L4 ∥η∥2L2 .

Calculations to (4.2.4):
Recall that F i = (F i

1, F
i
2) = (∇⊥χi1,∇⊥χi2) holds true where the upper indices stand for

different solutions to (4.2.2)–(4.2.6), while the lower indices denote the different columns
of the matrix F i. As for F i, the equation (4.2.4) can be read componentwise in columns,
i.e.

∂tFj + (u1 · ∇)Fj + (u · ∇)F 2
j −∇u1Fj −∇uF 2

j = κ∆Fj, (4.2.11)

for j = 1, 2. Because of the div− curl-structure in (4.2.4) and the solenoidality of ui and
F i, we have (componentwise)

(u1 · ∇)Fj −∇u1Fj = div(u1 ⊗ Fj − Fj ⊗ u1),

(u · ∇)F 2
j −∇uF 2

j = div(u⊗ F 2
j − F 2

j ⊗ u)

for j = 1, 2. We test (4.2.11) by ∇⊥(−∆)−1χj, j = 1, 2 and perform the spatial estimates
for a.e. t ∈ [0, T ]. This yields the following estimates:

−
∫
T2

Fj · ∇⊥(−∆)−1(χj)t = −
∫
T2

∇⊥χj · ∇⊥(−∆)−1(χj)t =

∫
T2

χj(−∆)(−∆)−1(χj)t

=
d

dt

∫
T2

|χj|2

2

and

κ

∫
T2

∇Fj · ∇∇⊥(−∆)−1χj = κ

∫
T2

|∇χj|2

similar to the calculations in (4.2.9). Analogously to the momentum equation, the con-
vective terms are mainly dealt with usage of Ladyzhenskaya’s inequality, i.e.∫

T2

div(u1 ⊗∇⊥χj −∇⊥χj ⊗ u1) · ∇⊥(−∆)−1χj ≤ ∥∇χj∥L2

∥∥u1∥∥
L4

∥∥∇∇⊥(−∆)−1χj
∥∥
L4

≤ δ ∥∇χj∥2L2 + Cδ
∥∥u1∥∥2

L4 ∥∇χj∥L2 ∥χj∥L2 ≤ 2δ ∥∇χj∥2L2 + Cδ
∥∥u1∥∥4

L4 ∥χj∥
2
L2 .
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Terms including u must again be handled by the decomposition u = u− (u) + (u). Since
divF 2

j = 0, we have∫
T2

div(u⊗ F 2
j − F 2

j ⊗ u) · ∇⊥(−∆)−1χj

=

∫
T2

div((u− (u))⊗ F 2
j − F 2

j ⊗ (u− (u))) · ∇⊥(−∆)−1χj

−
∫
T2

div(F 2
j ⊗ (u)) · ∇⊥(−∆)−1χj

and in the same manner as above, we obtain∫
T2

div((u− (u))⊗ F 2
j − F 2

j ⊗ (u− (u))) · ∇⊥(−∆)−1χj

≤ δ(∥∇η∥2L2 + ∥∇χj∥2L2) + Cδ
∥∥F 2

j

∥∥4
L4 ∥χj∥

2
L2 .

The second term above is estimated with the help of (4.2.1):∫
T2

div(F 2
j ⊗ (u)) · ∇⊥(−∆)−1χj = −

∫
F 2
j ⊗ (u) : ∇∇⊥(−∆)−1χj

≤ |(u)|
∥∥F 2

j

∥∥
L2

∥∥∇∇⊥(−∆)−1χj
∥∥
L2 ≤ C ∥∇Hext∥L2 ∥M∥L2

∥∥F 2
j

∥∥
L2 ∥χj∥L2

≤ C ∥∇Hext∥L2

∥∥F 2
j

∥∥
L2

(
∥M∥2L2 + ∥χj∥2L2

)
.

Calculations to (4.2.6):
Equation (4.2.6) is tested by M and for a.e. t ∈ [0, T ] we obtain∫

T2

∂tM ·M =
d

dt

∫
T2

|M |2

2
.

The first term of the convective part vanishes due to div u1 = 0, i.e.∫
T2

(u1 · ∇)M ·M = 0

and since (M)
∫
T2(u · ∇)M2 = 0 holds true, we have for the second one∫

T2

(u · ∇)M2 ·M =

∫
T2

(u · ∇)M2 · (M − (M)) ≤ ∥u∥L2

∥∥∇M2
∥∥
L4 ∥M − (M)∥L4

≤ C

(
∥u− (u)∥L2 + C|(u)|

)∥∥∇M2
∥∥
L4 ∥M − (M)∥1/2L2 ∥∇M∥1/2L2

≤ δ ∥∇η∥2L2 + Cδ|(u)|2 + Cδ
∥∥∇M2

∥∥2
L4 ∥∇M∥L2 ∥M − (M)∥L2

≤ δ(∥∇η∥2L2 + ∥∇M∥2L2) + Cδ(1 + ∥∇Hext∥2L2 +
∥∥∇M2

∥∥4
L4)(∥M∥2L2 + |(M)|2).

In the next terms, some cancellations appear as well due to the wedge product. It is∫
T2

M ∧Hext ·M = 0
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and using (4.0.11), in particular the Lipschitz continuity of ψ′ on S2, we have∫
T2

(
M ∧ ψ′(M1) +M2 ∧ (ψ(M1)− ψ(M2)

)
·M ≤ C

∫
T2

|M2||M1 −M2||M |

≤ C ∥M∥2L2 .

Let div(a ∧∇b) :=
∑

j ∂j(a ∧ ∂jb). Then it follows∫
T2

(−M1 ∧∆M1 +M2 ∧∆M2) ·M =

∫
T2

−div(M ∧∇M1 +M2 ∧∇M) ·M

=

∫
T2

M ∧∇M1 : ∇M

≤ C
∥∥∇M1

∥∥
L4 ∥∇M∥L2

(
∥M − (M)∥L4 + |(M)|

)
≤ C

∥∥∇M1
∥∥
L4 ∥∇M∥L2

(
∥M − (M)∥1/2L2 ∥∇M∥1/2L2 + |(M)|

)
≤ δ ∥∇M∥2L2 + Cδ

∥∥∇M1
∥∥2
L4 |(M)|2 + Cδ

∥∥∇M1
∥∥2
L4 ∥∇M∥L2 ∥M − (M)∥L2

≤ 2δ ∥∇M∥2L2 + Cδ

(∥∥∇M1
∥∥2
L4 +

∥∥∇M1
∥∥4
L4

)
|(M)|2 + Cδ

∥∥∇M1
∥∥4
L4 ∥M∥2L2 .

Of course, we have a dissipational part∫
T2

−∆M ·M =

∫
T2

|∇M |2.

When treating the highest-order term

|∇M1|2M1 − |∇M2|2M2 = (∇M : ∇M1)M1 + (∇M2 : ∇M)M1 + |∇M2|2M,

the first two terms can be estimated as follows:∫
T2

(∇M : ∇M1)M1 ·M ≤ ∥∇M∥L2

∥∥∇M1
∥∥
L4

∥∥M1
∥∥
L∞ ∥M∥L4

≤ 2δ ∥∇M∥2L2 + Cδ

(∥∥∇M1
∥∥2
L4 +

∥∥∇M1
∥∥4
L4

)
(∥M∥2L2 + |(M)|2),∫

T2

(∇M2 : ∇M)M1 ·M

≤ 2δ ∥∇M∥2L2 + Cδ

(∥∥∇M2
∥∥2
L4 +

∥∥∇M2
∥∥4
L4

)
(∥M∥2L2 + |(M)|2)

as above where we used |M1| = 1. For the last term, we have (we denote the square of
M by [M ]2, not to be mistaken with M2)∫

T2

|∇M2|2[M ]2 ≤
∥∥∇M2

∥∥2
L4 ∥M∥2L4 ≤ C

∥∥∇M2
∥∥2
L4

(
∥M − (M)∥2L4 + |(M)|2

)
≤ δ ∥∇M∥2L2 + C

∥∥∇M2
∥∥4
L4 (∥M∥2L2 + |(M)|2)
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The remaining terms are mostly standard:∫
T2

(M1 ·Hext)M
1 − (M2 ·Hext)M

2 ≤ 2 ∥Hext∥L2 ∥M∥2L4

≤ δ ∥∇M∥2L2 + C ∥Hext∥2L2 (∥M∥2L2 + |(M)|2),∫
T2

(M1 ∧M1 ∧ ψ′(M1)−M2 ∧M2 ∧ ψ′(M2)) ·M ≤ C ∥M∥2L2 .

We summarize all inequalities and for sufficiently small δ > 0, we absorb all involved
terms on the right-hand side to the left-hand side dissipational terms. This yields

d

dt

{∫
T2

[
|η|2 + |(χ1, χ2)|2 + |M |2

]
+ |(M)|2

}
+

∫
T2

[
ν|∇η|2 + κ|∇(χ1, χ2)|2 + |∇M |2

]
≤ C

(
1 +

∥∥(u1, u2, F 1, F 2,∇M1,∇M2)
∥∥4
L4 + ∥Hext∥2W 1,2

)
×
(∫

T2

[
|η|2 + |(χ1, χ2)|2 + |M |2

]
+ |(M)|2

)
on [0, T ] and since the prefactor on the right-hand side is in L1(0, T ) by assumption,
Gronwall’s inequality gives the desired assertion.

Remark 4.2.1. Despite the lengthy calculations, the principles of the above proof are
quite simple. It actually corresponds to using the W−1,2-norm for the energy quantities
(u, F,∇M) instead of the L2-norm. If one attempts to show uniqueness to the harmonic
map heat flow (4.1.1), testing by M suffices rather than using ∆M as test function (see
[62, p. 137]). But u and F do not undergo the same scaling law as M whereas η and χ
do. In this regard, it seems more natural to consider the above proof for uniqueness.

4.3 Local existence of strong solutions to magneto-

viscoelastic flows

In this section, we investigate the local existence theory of strong solutions to (4.0.1)–
(4.0.6). In [46], a local well-posedness result for strong solutions subject to boundary
conditions on a bounded domain is given. We consider solutions on the torus under more
general assumptions on ψ and W and therefore extend the result obtained in [46].

Lemma 4.3.1 ([46], Theorem 2.4). Let W , ψ and Hext satisfy the assumptions (4.0.8)–
(4.0.11). Then for given initial data v0 ∈ W 1,2

div (T2), F0 ∈ W 1,2(T2) and M ∈ W 2,2(T2)
with divF⊤

0 = 0 and |M0| ≡ 1 there exists a T > 0 and a unique strong solution
(v, p, F,M) : T2 × [0, T ] → R2 × R× R2×2 × S2 of (4.0.1)–(4.0.6) such that

(v, F,M) ∈ C
(
[0, T ];W 1,2(T2)×W 1,2(T2)×W 2,2(T2)

)
∩

L2
(
0, T ;W 2,2(T2)×W 2,2(T2)×W 3,2(T2)

)
,

p ∈ L2(0, T ;W 1,2(T2)).
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The proof is based on the Galerkin method, or more precisely, on a two-level approxi-
mation of the system (4.0.1)–(4.0.5). We mainly rely on the arguments and (sub-)results
of [7] and [46] and highlight the different arguments needed for our extension.

The first of the two approximation steps consists of solving (4.0.3)–(4.0.5) for a given,
smooth enough velocity u = v. To begin with, we introduce the basis of the function
spaces involved. By {ξi}∞i=1 we denote an orthogonal basis ofW 1,2

div (T2) that is orthonormal
in L2

div(T2) consisting of eigenfunctions of the Stokes operator on T2. The details can be
found in [72, Chapter 2]. For n ∈ N0, we set

Hn = span{ξ0, ξ1, ξ2, . . . , ξn}

and denote the projection of L2 onto Hn by PHn . Following [7], we introduce, for t0 ∈
(0, T ] and L = ∥v0∥L2 + 1,

Vn(t0) =
{
v(t, x) =

n∑
i=1

gin(t)ξi(x) : T2 × [0, t0) → R2
∣∣

sup
t∈[0,t0)

n∑
i=1

|gin(t)|2 ≤ L2, gin(0) =

∫
T2

v0(x)ξi(x) dx
}
,

where the gin are Lipschitz solutions of the corresponding ordinary differential equations,
the projection of (4.0.1) on Hn (see [7, Definition 4.1] for the details). For any given
v ∈ V n(t0), we find solutions of (4.0.3)–(4.0.5) with u = v. Therefore, the result on the
first approximation level is given as follows:

Lemma 4.3.2 ([46]). Let the assumptions of Theorem 4.3.1 be satisfied and let v ∈ Vn(t0).
Then there is t∗ ∈ (0, t0) depending on n, L, t0, F0,M0 and Hext such that we can find a
unique pair (F,M) possessing the regularity

F ∈ L∞
(
0, t∗;W 1,2(T2)

)
∩ L2

(
0, t∗;W 2,2(T2)

)
, ∂tF ∈ L2

(
0, t∗;L2(T2)

)
,

M ∈ W 1,∞
(
0, t∗;L2(T2)

)
∩W 1,2

(
0, t∗;W 1,2(T2)

)
∩ L2

(
0, t∗;W 3,2(T2)

) (4.3.1)

satisfying (4.0.3) and (4.0.5) a.e. in (0, t∗)× T2, i.e.

∂tF + (v · ∇)F = ∇vF + κ∆F,

∂tM + (v · ∇)M = |∇M |2M +∆M −M ∧Heff −M ∧ (M ∧ (Heff −∆M))
(4.3.2)

together with the initial conditions from (4.0.6). Moreover, divF⊤ = 0 and |M | = 1 a.e.
in (0, t∗)× T2.

Remark 4.3.1. Lemma 4.3.2 is mainly proven in [7, Section 5] with the extension, es-
sentially the regularity statement (4.3.1)1, in [46, Lemma 3.1]. It relies on a combination
of a Galerkin approximation, standard energy estimates for higher order derivatives of
(F,M) and Schauder’s fixed point Theorem. Since many of these estimates reoccur here-
after, we will not prove the previous lemma but mention the minor technical differences
of Lemma 4.3.2 with respect to the version of [46].

At first, since the spatial domain is T2, no boundary conditions occur, which simplifies
the situation. Furthermore, we consider a non-convex elastic energy density W . This
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poses no obstacle because the (strong) convexity is not used in [7] to conclude the first
approximation step (cf. [7, equation (87)]). At last, the anisotropic and stray field term
ψ is not considered in [7] and as special quadratic polynomial in [46]. We consider ψ
to be an even polynomial of eighth order here. However, in view of the regularity proven
for M in (4.3.1), a (non-negative) function ψ = ψ(M) depicts a lower-order term. The
non-negativity assures the compatibility with the energy law, see (4.4.3).

With the existence of a Galerkin approximation vn ∈ Vn(t
∗) and a corresponding pair

(Fn,Mn) at hand, we proceed with the second step. More precisely, we know of the
existence of a Galerkin approximation vn ∈ Vn(t

∗) for some t∗ ∈ (0, T ) and fixed n ∈ N
satisfying∫

T2

∂tvn · ξ + (vn · ∇)vn · ξ −
(
∇M⊤

n ∇Mn −W ′(Fn)(Fn)
⊤ −∇vn

)
· ∇ξ

−(∇H⊤
extMn) · ξ = 0 in (0, t∗) for all ξ ∈ Hn (4.3.3)

and a corresponding pair (Fn,Mn) enjoying the regularity (4.3.1) and satisfying

⟨∂tFn,Ξ⟩+
∫
T2

(vn · ∇)Fn · Ξ−
∫
T2

∇vnFn · Ξ + κ

∫
T2

∇Fn · ∇Ξ = 0

for all Ξ ∈ W 1,2(T2) a.e. in (0, t∗), (4.3.4)

∂tMn + (vn · ∇)Mn −∆Mn +Mn ∧Heff − |∇Mn|2Mn

+ (Mn ·Hres)Mn −Hres = 0 a.e. in (0, t∗)× T2 (4.3.5)

with Hres = Hext − ψ′(Mn). Additionally, the pair (Fn,Mn) fulfills the constraint

divF⊤ = 0, |Mn| = 1 a.e. in (0, t∗)× T2 (4.3.6)

and

vn(0) = PHnv0, F (0) = F0, M(0) =M0.

Note that all weak formulations stated above actually hold pointwise a.e. on T2 × (0, t∗)
due to the regularity given by Lemma 4.3.2, in particular

∂tFn + (vn · ∇)Fn −∇vnFn − κ∆Fn = 0 a.e. in (0, t∗)× T2. (4.3.7)

Next, we look for a-priori estimates on (vn, Fn,Mn). In order to circumvent the
non-convexity of W , we define a substitute energy denoted by

E(t) =
1

2

(
∥vn(t)∥2L2 + χ ∥Fn(t)∥2L2 + ∥∇Mn(t)∥2L2 + 2 ∥ψ(Mn(t))∥L1

)
and the corresponding dissipation

D(t) =

∫ t

0

ν ∥∇vn∥2L2 + κχ ∥∇Fn∥2L2 + ∥Mn ∧Mn ∧Heff∥2L2

with χ being the constant in (4.0.9). Hence, referring to Lemma 4.4.2, we have

E(t) +D(t) ≤ K(E(0), Hext, t
∗) (4.3.8)

for all t ∈ [0, t∗) which represents one global energy estimate. We need to remark that
the constant on the right-hand side remains finite as long as t∗ is finite. However, since
we are interested in strong solutions, we look for additional estimates on the derivatives
of (vn, Fn,Mn). At this point we deviate from [46] and verify the following Lemma:
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Lemma 4.3.3. Let (vn, Fn,Mn) satisfy (4.3.3)–(4.3.7) in the interval [0, t∗). Then the
following inequality holds true:

d

dt

(
∥∇vn∥2L2 + ∥∇Fn∥2L2 + ∥∆Mn∥2L2

)
+
(
ν ∥∆vn∥2L2 + κ ∥∆Fn∥2L2 + ∥∇∆Mn∥2L2

)
≤ C

(
1 + ∥vn∥2L2 + ∥Fn∥2L2 + ∥∇Mn∥2L2

) (
1 + ∥∇vn∥2L2 + ∥∇Fn∥2L2 + ∥∆Mn∥2L2

)2
,

(4.3.9)

for a suitable constant C > 0 which only depends on T2, Hext,W and ψ.

Proof. For notational convenience, we forgo the subscripts (·)n in the following argument.
We first test the momentum equation (4.3.3) by −∆v. Hence recalling that div v = 0, we
obtain

1

2

d

dt
∥∇v∥2L2+ν ∥∆v∥2L2 =

∫
T2

(v · ∇)v ·∆v − µ0∇⊤HextM ·∆v − div(W ′(F )F⊤) ·∆v︸ ︷︷ ︸∑3
i=1 Ii

+

∫
T2

(∆v · ∇)M ·∆M.

Next, we multiply the deformation tensor equation of (4.3.7) by −∆F and we integrate
both in time and space, to gather

1

2

d

dt
∥∇F∥2L2 + κ ∥∆F∥2L2 =

∫
T2

(v · ∇)F : ∆F −∇vF : ∆F =
5∑
i=4

Ii.

Additionally, we apply the gradient to (4.3.5), multiply by ∇∆M and integrate the result
in T2,

1

2

d

dt
∥∆M∥2L2 + ∥∇∆M∥2L2 = −

∫
T2

(∆v · ∇)M ·∆M +
15∑
i=6

Ii,

where

I6 = −2
2∑

k=1

∫
T2

(∂kv · ∇)∂kM ·∆M,

I7 = −
∫
T2

(v · ∇)∆M ·∆M,

I8 = −
∫
T2

2
(
(∇2M∇M)⊗M

)
· ∇∆M,

I9 = −
∫
T2

|∇M |2∇M · ∇∆M,

I10 =

∫
T2

(∇M ∧ (∆M +Hext)) · ∇∆M,

I11 =

∫
T2

(M ∧∇Hext) · ∇∆M,
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I12 =

∫
T2

(M ·Hext) · (∇M · ∇∆M),

I13 =

∫
T2

(
(∇∆M)⊤M

)
·
(
(∇M)⊤Hext + (∇Hext)

⊤M
)
,

I14 =

∫
T2

∇Hext · ∇∆M,

I15 = −
∫
T2

∇(M ∧ ψ′(M) +M ∧M ∧ ψ′(M)) · ∇∆M.

We proceed estimating the terms Ii by Hölder’s, Ladyzhenskaya’s, Young’s and interpo-
lation inequalities. Recall (v) = 1

|T2|

∫
T2 v. We obtain that

I1 =

∫
T2

((v − (v)) · ∇)v ·∆v ≤ ∥v − (v)∥L4 ∥∇v∥L4 ∥∆v∥L2

≲ δ ∥∆v∥2L2 + ∥v − (v)∥L2 ∥∇v∥2L2 ∥∆v∥L2 ≲ δ ∥∆v∥2L2 + ∥v∥2L2 ∥∇v∥4L2

I2 ≲ δ ∥∆v∥2L2 + ∥∇Hext∥2L2

I3 ≲ ∥F∥L4 ∥∇F∥L4 ∥∆v∥L2 ≲ δ ∥∆v∥2L2 + ∥F∥L2 ∥∇F∥2L2 ∥∆F∥L2

≲ δ
(
∥∆v∥2L2 + ∥∆F∥2L2

)
+ ∥F∥2L2 ∥∇F∥4L2 ,

where, in the last inequality, we have used that |W ′′(F )| ≤ C2 and |W ′(F )| ≤ C1(1+χ|F |)
as assumed in (4.0.9)–(4.0.10). Furthermore, we get by Ladyzhenskaya’s and Young’s
inequality

I4 =

∫
T2

((v − (v)) · ∇)F ·∆F ≲ δ ∥∆F∥2L2 + ∥v∥2L2

(
∥∇v∥4L2 + ∥∇F∥4L2

)
I5 ≤

∫
T2

|∇v||F ||∆F | ≲ δ ∥∆F∥2L2 + ∥∇v∥2L4 ∥F∥2L4

≲ δ ∥∆F∥2L2 + ∥∇v∥L2 ∥∆v∥L2 ∥F∥L2 ∥∇F∥L2

≲ δ
(
∥∆v∥2L2 + ∥∆F∥2L2

)
+ ∥F∥2L2 ∥∇v∥2L2 ∥∇F∥2L2

I6 ≤ 2

∫
T2

|∇v||∇2M ||∆M | ≲ ∥∇v∥L2 ∥∆M∥2L4 ≲ δ ∥∇∆M∥2L2 +
(
∥∇v∥4L2 + ∥∆M∥4L2

)
.

An integration by parts and div v = 0 yields that I7 = 0. Similarly as before we obtain
that

I8 ≤
∫
T2

|∇M ||∇2M ||∇∆M |2 ≲ δ ∥∇∆M∥2L2 + ∥∇M∥2L2 ∥∆M∥4L2

I9 ≤
∫
T2

|∇M |3|∇∆M | ≤ ∥∇M∥3L6 ∥∇∆M∥L2 ≲ δ ∥∇∆M∥2L2 + ∥∇M∥2L2 ∥∆M∥4L2 ,

where we employed an interpolation of L6 between H1 and L2, namely the inequality
∥f∥L6 ≲ ∥∇f∥2/3L2 ∥f∥1/3L2 for average-free functions f (see [11, p. 313]). Recalling the
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assumptions on Hext and ψ, (4.0.8) and (4.0.11), we derive similarly to above that

I10 ≤ δ ∥∇∆M∥2L2 + (∥Hext∥2L4 + ∥∆M∥2L4) ∥∇M∥2L4

≲ δ ∥∇∆M∥2L2 + (∥Hext∥2W 1,2 + ∥∇∆M∥L2 ∥∆M∥L2) ∥∇M∥L2 ∥∆M∥L2

≲ δ ∥∇∆M∥2L2 + (1 + ∥∇M∥2L2) ∥∆M∥4L2 + 1

I11 ≲ δ ∥∇∆M∥2L2 + 1

I12 ≲ δ ∥∇∆M∥2L2 + ∥∇M∥2L2

(
∥∆M∥4L2 + 1

)
I13 ≲ δ ∥∇∆M∥2L2 + ∥∇M∥2L2 ∥∆M∥4L2 + 1

I14 ≲ δ ∥∇∆M∥2L2 + 1

I15 ≲ δ ∥∇∆M∥2L2 + ∥∇M∥2L2 .

After summarizing all inequalities, we use the energy estimate (4.3.8) and choosing δ
sufficiently small, we absorb all terms involving δ to the right-hand side. Eventually, we
deduce that (4.3.9) holds true.

Inequality (4.3.8) yields a bound on the energy E(t) of (vn, Fn,Mn). Regarding (4.3.9),
a comparison to the initial value problem (see Lemma 4.5.2)

z′n(t) = c
(
1 + z2n(t)

)
,

zn(0) = ∥v0∥2W 1,2 + ∥F0∥2W 1,2 + ∥∇M0∥2W 1,2

shows that there exists a T ∗ > 0 (w.l.o.g. T ∗ ≤ t∗) such that

sup
t∈[0,T ∗]

(
∥∇vn(t)∥2L2 + ∥∇Fn(t)∥2L2 + ∥∆Mn(t)∥2L2

+

∫ t

0

∥∆vn(s)∥2L2 + ∥∆Fn(s)∥2L2 + ∥∇∆Mn(s)∥2L2 ds

)
≤ C

for a constant C > 0 for all n ∈ N with c depending on the bounds of the W 1,2-norms
of (u0, F0,∇M0), the norm of Hext and the constants in the assumptions on W and ψ.
Therefore we conclude

∥vn∥L∞(0,T ∗;W 1,2(T2)) ≤ C,

∥vn∥L2(0,T ∗;W 2,2(T2)) ≤ C,

∥Fn∥L∞(0,T ∗;W 1,2(T2)) ≤ C,

∥Fn∥L2(0,T ∗;W 2,2(T2)) ≤ C,

∥Mn∥L∞(0,T ∗;W 2,2(T2)) ≤ C,

∥Mn∥L2(0,T ∗;W 3,2(T2)) ≤ C.

Hence, there exists a (not explicitly relabeled) subsequence {(vn, Fn,Mn)}∞n=1 such that

vn ⇀
∗ v in L∞(0, T ∗;W 1,2(T2)), vn ⇀ v in L2(0, T ∗;W 2,2(T2)),

Fn ⇀
∗ F in L∞(0, T ∗;W 1,2(T2)), Fn ⇀ F in L2(0, T ∗;W 2,2(T2)),

Mn ⇀
∗ M in L∞(0, T ∗;W 2,2(T2)), Mn ⇀M in L2(0, T ∗;W 3,2(T2)).
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We note that the above estimates and the estimates on the time derivatives of vn, Fn,
Mn and ∇Mn provide strong convergences that are necessary to verify that (v, F,M)
satisfies the weak formulation of (4.0.1)–(4.0.5). This is done by deducing estimates on
(∂tvn, ∂tFn, ∂tMn) by duality and the use of the Aubin-Lions lemma 3.1.2, see Steps 3
and 5 of the proof of [7, Theorem 3.2]. Thanks to the regularity of the limit functions v,
F , M , we can integrate by parts in space and time to get∫ T ∗

0

∫
T2

(∂tv + (v · ∇)v + div
(
∇M⊤∇M −W ′(F )F⊤ −∇v

)
− (∇H⊤

extM)) · ϕ dx dt = 0,∫ T ∗

0

∫
T2

(∂tF + (v · ∇)F − (∇vF )− κ∆F ) · ξ dx dt = 0,∫ T ∗

0

∫
T2

(∂tM + (v · ∇M) +M ×Heff − |∇M |2M

−∆M +M × (M ×Hres)) · θ dx dt = 0

(4.3.10)

for all ϕ ∈ L2(0, T ;W 1,2
div (T2)), ξ ∈ L2(0, T ;W 1,2(T2)) and θ ∈ L2(0, T ;L2(T2)). Obvi-

ously, from (4.3.10)2,3 it follows that equations (4.0.3) and (4.0.5) are satisfied a.e. in
T2 × (0, T ∗).

The existence of an associated pressure follows similar to [46] from (4.3.10). Obviously,
the regularity of v, F,M and Hext implies that

G(s) :=∂tv(s) + (v(s) · ∇)v(s)

+ div
(
∇M(s)⊙∇M(s)−W ′(F (s))(F (s))⊤ −∇v(s)

)
− (∇H⊤

ext(s)M(s)) ∈ L2(T2)

(4.3.11)

for a.a. s ∈ [0, T ∗]. Moreover, (4.3.10)1 and the Helmholtz-Weyl decomposition (see
[72, Section 2.1]) imply that G(s) = ∇p̃(s) for some p̃(s) ∈ W 1,2(T2) a.e. in [0, T ∗].
Consequently, we have ∥∇p̃∥L2(0,T ∗;L2(T2)) = ∥G∥L2(0,T ∗;L2(T2)). Defining p = p̃− 1

|T2|

∫
T2 p̃,

we obtain
∥p∥L2(0,T ∗;L2(T2)) ≤ C∥∇p∥L2(0,T ∗;L2(T2))

by the Poincaré inequality. Therefore we have shown the existence of an associated
pressure and from (4.3.11) we conclude that (4.0.1) is fulfilled a.e. in T2 × (0, T ∗). 2

Since it is of interest for the following chapter, we restate Lemma 4.3.3 for strong
solutions of (4.0.1)–(4.0.5).

Lemma 4.3.4. Let (u, F,M) satisfy (4.0.1)–(4.0.5) in the interval [0, T ). Then the fol-
lowing inequality holds true:

d

dt

(
∥∇u∥2L2 + ∥∇F∥2L2 + ∥∆M∥2L2

)
+
(
ν ∥∆u∥2L2 + κ ∥∆F∥2L2 + ∥∇∆M∥2L2

)
≤ C

(
1 + ∥u∥2L2 + ∥F∥2L2 + ∥∇M∥2L2

) (
1 + ∥∇u∥2L2 + ∥∇F∥2L2 + ∥∆M∥2L2

)2
,

(4.3.12)

for a suitable constant C. In particular, the loss of regularity of the solution at the time
T is characterized by

lim
t↗T

∫ t

0

∥∆M∥2L2 (s) ds = +∞.
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Proof. The calculations leading to (4.3.12) are exactly those for the proof of Lemma 4.3.3.
Now, as long as the quantity ∫ t

0

∥∆M(s)∥2L2 ds

remains finite, the quantity

∫ t

0

∥∇v(s)∥2L2 + ∥∇F (s)∥2L2 + ∥∆M(s)∥2L2 ds

remains finite as well by (4.3.8). Hence we can use Gronwall’s inequality in (4.3.12) and
conclude the boundedness of the right-hand side on (4.3.12) on (0, t) which shows that
the solution remains strong on (0, t).

4.4 Existence of global weak solutions to magneto-

viscoelastic flows

This section is devoted to the proof of existence and uniqueness of Struwe-like solutions.
This means, we give an extension to [18, Theorem 2.1] with the difference being the
assumptions on W and ψ, cf. (4.0.9)–(4.0.11). We use the previous results in order to
show

Theorem 4.4.1 ([18]). Let T > 0 and (u0, F0, M0) ∈ L2(T2)×L2(T2)×H1(T2) be given
initial data satisfying div u0 = 0 and divF⊤

0 = 0 in the sense of distributions. Assume that
|M0| ≡ 1 almost everywhere in T2 and Hext,W and ψ satisfy (4.0.8)–(4.0.11). Then there
exists a unique global Struwe-like solution to (4.0.1)–(4.0.6) as defined in Definition 4.1.1.
Furthermore, there are two constants ε0 > 0 and R0 > 0 such that for any singular time
Ti, there is at least one singular point yi ∈ T2, characterized by the condition

lim sup
t↗Ti

∫
BR(yi)

|∇M(t, x)|2 dx ≥ ε0,

for any R > 0 with R ≤ R0.

Remark 4.4.1. The above statement requires a minor adjustment we avoided for the
sake of presentation: If T itself is a time in which a singularity of M occurs, then we
slightly increase its value to ensure that M is smooth in T .

Regarding the proof of 4.4.1, we roughly follow the argument of [18]. However, the
part of uniqueness is completely different from [18] and elementary, see Section 4.2. We
introduce the following simplified notation of the function spaces in which our solutions
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belong to

H(a, b) :=

{
v : [a, b] × T2 → R2 : v measurable and

ess supa≤t≤b

∫
T2

|v|2(t) +
∫ b

a

∫
T2

|∇v|2 <∞
}
,

K(a, b) :=

{
G : [a, b] × T2 → R2×2 : G measurable and

ess supa≤t≤b

∫
T2

|G|2(t) +
∫ b

a

∫
T2

|∇G|2 <∞
}

and

V (a, b) :=

{
M : [a, b] × T2 → S2 :M measurable and

ess supa≤t≤b

∫
T2

|∇M |2(t) +
∫ b

a

∫
T2

|∇2M |2 + |∂tM |2 <∞
}
.

We start by presenting a brief overview of the strategy we perform throughout this section.
This strategy is very similar to the one for solutions of the harmonic map heat flow (4.1.1)
of [78] outlined in Section 4.1 and the simplified Ericksen-Leslie system in [41, 58].

1. As a first step, we use the existence of strong solutions (cf. Section 4.3) that are
defined locally-in-time. More precisely we prove the existence of a suitable time
T ∗ ∈ (0, T ), for which a weak solution of (4.0.1)–(4.0.6) exists within the following
functional framework:

u, F ∈ C

(
[0, T ∗];L2(T2)

)
∩ L2

(
0, T ∗;H1(T2)

)
,

M ∈ C

(
[0, T ∗];H1(T2)

)
∩ L2

(
0, T ∗;H2(T2)

)
.

In particular, no singularity occurs within the time interval (0, T ∗).

2. We secondly extend the aforementioned solution until a first singularity occurs at
a time T1 > 0 in [T ∗, T ). In addition, we show that at time T1 the system “loses”
a fixed amount of energy.

3. We finally extend our solution on the right-hand side of the singularity and we
recursively perform the previous steps in [T ∗, T ]. We conclude the recursive proce-
dure showing that no accumulation point is reached by the set of singular times.
Hence our solution can be smoothly extended to the entire interval [0, T ], with the
exception of a finite amount of times in which a singularity can occur.

Figure 4.3 illustrates the difference with respect to a closed physical system. Energy is
“produced” due to the appearance of an external magnetic field Hext.

The first part of the above strategy is developed in a rather standard manner: We
begin by regularizing the initial data leading to a sequence (um0 , F

m
0 , M

m
0 )m∈N inH1(T2)×

H1(T2)×H2(T2) such that

um0 → u0 in L2(T2), Fm
0 → F0 in L2(T2), Mm

0 →M0 in H1(T2)
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t

E
(t
)

E(t)

ε0

0

E0

T

Figure 4.3: Finite number of singularities and energy “creation”

with div um0 = 0, divFm
0

⊤ = 0. Here, the important point is that Mm
0 is chosen such that

|Mm
0 | = 1 holds true a.e. on T2. This (differential geometric) fact is proven in [76, p.

267]. Hence, we apply Theorem 4.3.1 which implies that there exists a time Tm > 0 and
a unique local-in-time strong solution (um, Fm, Mm) of (4.0.1)–(4.0.6) with

(um, Fm) ∈ C([0, Tm], H1(T2)) ∩ L2(0, Tm;H2(T2)),

Mm ∈ C([0, Tm], H2(T2)) ∩ L2(0, Tm;H3(T2)).

We proceed to prove that there exists a time T ∗ ∈ (0, T ) that provides a lower bound for
the family of the lifespans Tm > 0 of the approximate solutions, i.e., T ∗ < Tm, for any
m ∈ N, up to a subsequence. To this end, we perform suitable a-priori estimates below,
whose calculations are justified since (um, Fm,Mm)m∈N is a strong solution.
Particularly in this part, we follow the strategy used in [41, 58] when treating the well-
posedness of the Ericksen-Leslie system for liquid crystals. To do so, we first consider
the energy law of (4.0.1)–(4.0.6). Actually, we employ several variants and substitutes
of energy inequalities since the appearance of Hext, the non-convexity of W and the
dissipational term concerning F destroy any chance of energy conservation in the system.
The following energy identity holds true.

Lemma 4.4.1. Suppose (u, F,M) ∈ H(0, T̃ ) ×K(0, T̃ ) × V (0, T̃ ) is a weak solution to
(4.0.1)–(4.0.7). Then we have

∫
T2

|u(t)|2 + χ|F (t)|2 + |∇M(t)|2 + 2ψ(M(t))− 2µ0M(t)Hext(t)

+ 2

∫ t

0

∫
T2

ν|∇u|+ χκ|∇F |2 + |Heff |2 − |M ·Heff |2

=

∫
T2

|u0|2 + χ|F0|2 + |∇M0|2 + 2ψ(M0)− 2µ0M0 ·Hext(0)

+ 2

∫ t

0

∫
T2

(W ′(F )− χF ) : ∇uF − 2µ0M · ∂tHext

(4.4.1)

for almost all t ∈ [0, T̃ ].

Proof. By a density argument, we multiply (4.0.1) by u, (4.0.3) by χF , where χ is given
by (4.0.9), and (4.0.5) by Heff = ∆M+Hext−ψ′(M) and integrate over T2× (0, t). Using
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integration by parts and div u = 0, we derive from the first equation∫
T2

|u(t)|2

2
− |u0|2

2

+

∫ t

0

∫
T2

ν|∇u|2 −∇M ⊙∇M : ∇u+W ′(F )F T : ∇u− µ0∇⊤HextM · u = 0.

The second equation yields∫
T2

χ
|F (t)|2

2
− χ

|F0|2

2
+

∫ t

0

∫
T2

χκ|∇F |2 − χ∇uF : F = 0.

For the third equation, we have∫ t

0

∫
T2

(∂tM + (u · ∇)M) · (∆M + µ0Hext − ψ′(M)) =

∫ t

0

∫
T2

|Heff |2 − |M ·Heff |2

where we used M ∧ Hext · Hext = 0 and −M ∧ (M ∧ Heff) = Heff − (Heff ·M)M since
|M | = 1 a.e. On the left-hand side, note that∫ t

0

∫
T2

∂tM ·∆M =

∫
T2

|∇M0|2

2
− |∇M(t)|2

2
,∫ t

0

∫
T2

(u · ∇)M ·Hext = −
∫ t

0

∫
T2

∇⊤HextM · u

by div u = 0. We also have

−
∫ t

0

∫
T2

∂tM · ψ′(M) =

∫
T2

ψ(M0)− ψ(M(t)),∫ t

0

∫
T2

(u · ∇)M ·∆M = −
∫ t

0

∫
T2

∇M · ∇M : ∇u

again by div u = 0 and div(∇M ⊙∇M) = (∇M)⊤∆M + ∇
2
|∇M |2. The solenoidality of

u is also used in ∫ t

0

∫
T2

(u · ∇)M · ψ′(M) = 0.

Finally, note that∫ t

0

∫
T2

∂tM · 2µ0Hext = 2µ0

∫
T2

(M(t) ·Hext −M0 ·Hext)−
∫ t

0

∫
T2

2µ0M · ∂tHext

holds true, which, by summation over the three identities, yields (4.4.1).

The “real” energy of (4.0.1)–(4.0.5) rather involvesW (F (t)) instead of χ|F (t)|2. How-
ever, the above form is more useful since it circumvents coercivity problems arising from
the term

κ∇F : W ′′(F )∇F
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which, due to non-convexity of W , might attain negative values. Let us define some ex-
pressions depending on the initial data and the external magnetic field describing suitable
behaviors of the energy of the system,

2E0 :=

∫
T2

|u0|2 + χ|F0|2 + |∇M0|2 + 2ψ(M0),

2E(t) =

∫
T2

|u(t)|2 + χ|F (t)|2 + |∇M(t)|2 + 2ψ(M(t)),

D(t) =

∫ t

0

∫
T2

ν|∇u|2 + χκ|∇F |2 − |Heff |2 + |M ·Heff |2

for t ≥ 0.

Lemma 4.4.2. Suppose (u, F,M) ∈ H(0, T̃ ) ×K(0, T̃ ) × V (0, T̃ ) is a weak solution to
(4.0.1)–(4.0.7). Then we have

2E(t) +D(t) ≤ 2E(0) + 4µ0 ∥Hext∥L∞ + t · 2µ0 ∥∂tHext∥L∞ + C

∫ t

0

E(s) ds (4.4.2)

for a.e. t ∈ [0, T̃ ]. In particular, we have

E(t) +D(t) ≤ K(E0, Hext, T̃ ) (4.4.3)

for a.e. t ∈ [0, T̃ ] where the constant K(E0, Hext, T̃ ) > 0 depends on E0, the L
∞-norm

of Hext and ∂tHext and T̃ > 0. Moreover, the following inequality holds true for all
0 ≤ t1 ≤ t2 ≤ T̃ :

2E(t2) +D(t2)−D(t1) ≤ 2E(t1) + C(Hext, T̃ )K(E0, Hext, T̃ )
√
t2 − t1. (4.4.4)

For the remainder of this chapter, we denote by

K(E0, Hext, T̃ )

the constant derived in the arguments leading to (4.4.3).

Proof. We use the growth condition (4.0.9) in (4.4.1) in order to estimate∫ t

0

∫
T2

(W ′(F )− χF ) : ∇uF ≤
∫ t

0

∫
T2

ν

2
|∇u|2 + C

∫ t

0

∫
T2

|F |2

and standard estimates regarding Hext with |M | = 1 yield (4.4.2). By a Gronwall ar-
gument, we obtain (4.4.3) from (4.4.2). With this information at hand, we proceed
analogously to the proof of (4.4.1), integrate over T2 × (t1, t2) but quit to integrate by
parts in the term

∫ t
0

∫
T2 ∂tM ·Hext. The result is

2E(t2) + 2(D(t2)−D(t1))

= 2E(t1) + 2µ0

∫ t2

t1

∫
T2

∂tM ·Hext +

∫ t2

t1

(W ′(F )− χF ) : ∇uF
(4.4.5)
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Next, we derive the following estimate from (4.0.5) and (4.4.3):

∥∂tM∥
L2(0,T̃ ;L

4
3 )

≲ ∥(u · ∇)M∥
L4(0,T̃ ;L

4
3 )
+ ∥−M ∧ (M ∧Heff)∥L2(0,T̃ ;L2) ≲ K(E0, Hext, T̃ ),

Once again, we absorb the L2-norm of ∇u on the right-hand side of (4.4.5) into the
dissipation. Eventually, we use this information in

2µ0

∫ t2

t1

∫
T2

∂tM ·Hext + C

∫ t2

t1

∫
T2

|F |2 ≤ C ∥Hext∥L∞

√
t2 − t1 +K(E0, Hext, T̃ )(t2 − t1)

≤ C(Hext, T̃ )K(E0, Hext, T̃ )
√
t2 − t1.

In contrast to Struwe-like solutions for harmonic map flow, we need to deal with the
exterior force in terms of the external magnetic field Hext. In particular, additional
energy is fed into the system and the energy functional might increase in time. This
implies that estimate (4.4.3) is too weak to rule out the possibility of infinitely many
singularities appearing in time. Hence estimate (4.4.4) plays a major role in showing
that only finitely many singularities of the solution appear at most. To this end, the
dependence of K(E0, Hext, T ) just on the data and T will become crucial.

We recall that (um, Fm, Mm)m∈N stands for a sequence of approximate solutions, whose
existence is given by Lemma 4.3.1. Without loss of generality, we can assume that Tm is
the lifespan of each approximate solution. Regarding (4.0.1)–(4.0.5), the limit passage of
some of the nonlinear terms involving M is made possible by the control of the second
gradient of M . To this end, the following lemma shows that the loss of smoothness of
our approximate solutions is characterized by the blow-up of the L2-norm of ∇2M .

Lemma 4.4.3 (Blow-up criterion). Suppose that (um, Fm,Mm) is a strong solution to
(4.0.1)–(4.0.6). Then the following inequality holds true:

d

dt

(
∥∇um∥2L2 + ∥∇Fm∥2L2 + ∥∆Mm∥2L2

)
(t) +

(
ν ∥∆um∥2L2 + κ ∥∆Fm∥2L2 + ∥∇∆Mm∥2L2

)
≤ C

(
1 + ∥um∥2L2 + ∥Fm∥2L2 + ∥∇Mm∥2L2

) (
1 + ∥∇um∥2L2 + ∥∇Fm∥2L2 + ∥∆Mm∥2L2

)2
,

(4.4.6)

for a suitable constant C that does not depend on the index m. In particular, the loss of
regularity of the solution at the lifespan Tm is characterized by

lim
t↗Tm

∫ t

0

∥∆Mm∥2L2 (s) ds = +∞.

Proof. This follows from Lemma 4.3.4 in Section 4.3.

Because of Lemma 4.4.3, the overall goal is to gain a bound on the critical L2-norm
of ∆Mm. The following semi-localized version of Ladyzhenskaya’s inequality forms the
corner stone in this argument:
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Lemma 4.4.4 ([78], Lemma 3.2). There exists a constant C1 such that for any T > 0,
f ∈ H(0, T ) and any R > 0,∫

[0,T ]×T2

|f |4ϕ ≤ C1

(
ess sup

0≤t≤T,x∈T2

∫
BR(x)

|f(t)|2
)(∫

[0,T ]×T2

|∇f |2ϕ+R−2

∫
[0,T ]×T2

|f |2ϕ
)

holds true for every ϕ ∈ C∞
0 (BR(x)) with ϕ(y) = ϕ̃(|y − x|) and ϕ̃ nonincreasing.

A partition of unity argument (see [78]) hence entails the following corollary.

Corollary 4.4.2 ([78], Lemma 3.1). There exists a constant C1 such that for any f ∈
H(0, T ) and any R > 0,∫

[0,T ]×T2

|f |4 ≤ C1

(
ess sup

0≤t≤T,x∈T2

∫
BR(x)

|f(t)|2
)(∫

[0,T ]×T2

|∇f |2 +R−2

∫
[0,T ]×T2

|f |2
)

holds true.

Corollary 4.4.2 unlocks a criterion for a bound on ∥∆M∥L2 in terms of a local smallness
condition of ∇M , as expressed in the following lemma.

Lemma 4.4.5. Let T̃ > 0 be a general positive time and (u, F,M) ∈ H(0, T̃ )×K(0, T̃ )×
V (0, T̃ ) be a weak solution of (4.0.1)–(4.0.7). Then there exists a constant ε1 > 0 such
that if

ess sup
0≤t≤T̃ ,x∈T2

∫
BR(x)

|∇M(t)|2 < ε1

for a suitable R > 0, then the following estimate holds true:∫
[0,T̃ ]×T2

|∇u|2 + |∇F |2 + |∆M |2 ≤ C
[
(1 + T̃R−2)K(E0, Hext, T̃ ) + ∥Hext∥2L2L2 + T̃

]
.

Proof. We first remark that the following identity concerning the dissipation of the mag-
netization field holds true:

H2
eff − (M ·Heff)

2 = |∆M |2 − |∇M |4 + µ2
0H

2
ext − µ0(M ·Hext)

2

+ 2µ0[∆M ·Hext − (M ·∆M)(M ·Hext)]

+ ψ′(M)2 − (ψ′(M) ·M)2 − 2∆M · ψ′(M)− 2µ0Hext · ψ′(M)

+ 2(∆M ·M) · (M · ψ′(M)) + 2µ0(Hext ·M)(ψ′(M) ·M)

≥ 1

2
|∆M |2 − C|∇M |4 − Cµ2

0|Hext|2 − Cσ2

with σ := supM∈S2 |ψ′(M)|. Thus, we combine the above inequality with (4.4.3) to gather∫
[0,T̃ ]×T2

ν|∇u|2 + χκ|∇F |2 + |∇2M |2

≤ 2

∫
[0,T̃ ]×T2

ν|∇u|2 + χκ|∇F |2 + 2
(
H2

eff − (M ·Heff)
2
)

+ 2|∇M |4 + C
(
|Hext|2 + σ2

)
≤ 2K(E0, Hext, T̃ ) +

∫
[0,T̃ ]×T2

C
(
|Hext|2 + σ2

)
+ 2|∇M |4.
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Now we use Corollary 4.4.2 for f = ∇M , set ε1 =
1

4C1
and employ (4.4.3) to arrive at the

assertion.

Lemma 4.4.5 becomes useful if one is able to uniformly control the exchange energy
|∇M(t)|2 on any suitable ball BR(x) of fixed radius R, i.e., if {∇M(t)}t≥0 is equi-
integrable. In general, this is not the case since the best control we can achieve from
weak solutions is the following energy estimate,

ess supt∈[0,T̃ ]

∫
T2

|∇M(t)|2 ≤ C,

which only yields a bound in the entire domain T2. Nevertheless, to better understand
the main feature presented by this criterion, we first analyze how the local energy term
evolves in time.

Lemma 4.4.6. Let T̃ > 0 be a general positive time and (u, F,M) ∈ H(0, T̃ )×K(0, T̃ )×
V (0, T̃ ) be a solution to (4.0.1)–(4.0.6) with initial condition (u0, F0,M0) ∈ L2(T2) ×
L2(T2)×H1(T2). Then there exist constants ε1 > 0 and R > 0 such that if

ess sup
0≤t≤T̃ ,x∈T2

∫
B2R(x)

|∇M(t)|2 < ε1

then for any t ∈ (0, T̃ ), for any x0 ∈ T2 and for any R > 0,∫
BR(x0)

(
|u|2(t) + χ|F |2(t) + |∇M |2(t)

)
≤
[∫

B2R(x0)

(
|u0|2 + χ|F0|2 + |∇M0|2

)]
+ C1(1 + t)R2 + C2t

(
1 +

1

R2

)
+ C3

t
1
3

R
2
3

(
1 + t

(
1 +

1

R2

)) 2
3

,

where C1, C2 and C3 are three positive constants, that depend only on ∥Hext∥W 1,∞, E0

and K(E0, Hext, T̃ ).

Proof. Let ϕ ∈ C∞
0 (B2R(x0)) be a cut-off function with ϕ ≡ 1 on BR(x0) and |∇ϕ| ≲

1
R
, |∇2ϕ| ≲ 1

R2 for all R ≤ R0. Using the local energy inequality provided by Lemma 4.5.1
of the next section, i.e.∫
T2

(
|u(t)|2 + χ|F (t)|2 + |∇M(t)|2

)
ϕ2

+

∫ t

0

∫
T2

(
ν|∇u|2 + κχ|∇F |2 + |∆M + |∇M |2M |2

)
ϕ2

≤
∫
T2

(
|u0|2 + χ|F0|2 + |∇M0|2

)
ϕ2 + C

{∫ t

0

∫
T2

(
|u|2 + |F |2 + |∇M |2 + |p|

)
|u||ϕ||∇ϕ|

+

∫ t

0

∫
T2

(
|u|2 + |F |2 + |∇M |2

)(
|∇ϕ|2 + |ϕ||∇2ϕ|

)
+

∫ t

0

∫
T2

|∇u||F ||χF −W ′(F )|ϕ2

+

∫ t

0

∫
T2

|u|2ϕ2 +

∫ t

0

∫
T2

(
|Hext|2 + |∇Hext|2 + |ψ′(M)|2

)
ϕ2

}
,
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for 0 ≤ t ≤ T̃ , we have that∫
BR(x0)

(
|u(t)|2 + χ|F (t)|2 + |∇M(t)|2

)
+

∫ t

0

∫
T2

(
ν|∇u|2 + κχ|∇F |2 + |∆M + |∇M |2M |2

)
ϕ2

≤
∫
B2R(x0)

(
|u0|2 + χ|F0|2 + |∇M0|2

)
+ C

∫ t

0

∫
T2

(
|u|2 + |F |2 + |∇M |2 + |p|

)
|u||ϕ||∇ϕ|

+ C
t

R2
K(E0, Hext, T̃ ) + C

∫ t

0

∫
T2

|∇u||F ||χF −W ′(F )|ϕ2 + C1(1 + t)R2,

(4.4.7)

for a constant C1 depending on Hext and ψ′ and some positive constant C. We used
(4.4.3) in the third term on the right-hand side. Hence, we proceed estimating any terms
on the right-hand side.
We now introduce a small parameter δ > 0 that will be determined at the end of the
proof. First we recall that |W ′(A)− χA| ≤ C2 for any A ∈ R2×2 and a positive constant
C2 by (4.0.9). Hence we remark that∫ t

0

∫
T2

|∇u||F ||χF −W ′(F )|ϕ2

≤ C2

∫ t

0

∫
T2

|∇u||F |ϕ2 ≤ δ

∫ t

0

∫
T2

|∇u|2ϕ2 +
C

δ

∫ t

0

∫
T2

χ|F |2ϕ2.

Next, thanks to Lemma 4.4.4, we obtain that∫ t

0

∫
T2

(
|u|2 + |F |2 + |∇M |2

)
|u||ϕ||∇ϕ|

≤δ
∫ t

0

∫
T2

(
|u|4 + |F |4 + |∇M |4

)
ϕ2 +

C

δ

∫ t

0

∫
T2

|u|2|∇ϕ|2

≤Cδ ess sup
0≤s≤T̃ ,x∈T2

(∫
BR(x)

|u(s)|2 + χ|F (s)|2 + |∇M(s)|2
)
×

×
{∫ t

0

∫
T2

(
|∇u|2 + χ|∇F |2 + |∇2M |2

)
ϕ2

+
1

R2

∫ t

0

∫
T2

(
|u|2 + χ|F |2 + |∇M |2

)
ϕ2

}
+
C

δ

t

R2
K(E0, Hext, T̃ )

≤CδK(E0, Hext, T̃ )

[∫ t

0

∫
T2

(
|∇u|2 + χ|∇F |2

)
ϕ2

]
+ C

δ

R2
tK(E0, Hext, T̃ )

2

+ CδK(E0, Hext, T̃ )

[∫ t

0

∫
T2

|∇2M |2ϕ2

]
+
C

δ

t

R2
K(E0, Hext, T̃ ),

(4.4.8)

where we have applied (4.4.3) as well as the assumption (4.0.9) on W . For the pressure
p we first note that

p = (−∆)−1divdiv(W ′(F )F⊤ −∇M ⊙∇M − u⊗ u) + (−∆)−1div
(
∇⊤HextM

)
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holds true weakly and recall Theorem 2.0.3. Hence, thanks to Lemma 4.4.5 for t = T̃ ,

∫ t

0

∫
T2

|p|2 ≤ C

∫ t

0

∫
T2

(
|u|4 + |F |4 + |∇M |4 + |∇Hext|2

)
≤ C ess sup

0≤s≤T̃ ,x∈T2

(∫
B2R(x)

|u(s)|2 + |F (s)|2 + |∇M(s)|2
)
×

×
(∫ t

0

∫
T2

|∇u|2 + |∇F |2 + |∇2M |2 + 1

R2

∫ t

0

∫
T2

|u|2 + |F |2 + |∇M |2
)

+

∫ t

0

∫
T2

|∇Hext|2

≤ CK(E0, Hext, T̃ )
((

1 +
t

R2

)
K(E0, Hext, T̃ )+

+ ∥Hext∥2L2
tL

2
x
+ (1 + ∥∇Hext∥2L∞

t L2
x
)t+

t

R2
K(E0, Hext, T̃ )

)
≤ C

(
K(E0, Hext, T̃ ) + 1

)2(
1 + t

(
1 +

1

R2

))
.

Thus, we deduce that

∫ t

0

∫
T2

|p||u||ϕ||∇ϕ| ≤ δ

∫ t

0

∫
T2

|u|4ϕ2 +
C

δ

∫ t

0

∫
B2R(x0)

|p|
4
3 |ϕ|

2
3 |∇ϕ|

4
3

≤ Cδ ess sup
0≤s≤T̃ ,x∈T2

(∫
B2R(x)

|u|2
)(∫ t

0

∫
T2

|∇u|2ϕ2 +
1

R2

∫ t

0

∫
T2

|u|2ϕ2
)

+
C

δ

∫ t

0

∫
B2R(x0)

|p|
4
3 |ϕ|

2
3 |∇ϕ|

4
3

≤ CK(E0, Hext, T̃ )δ

∫ t

0

∫
T2

(
|∇u|2|ϕ|2 + |u|2

R2

)
+
Ct

1
3

δR
2
3

(∫ t

0

∫
B2R(x0)

|p|2
) 2

3

≤ Cδ

∫ t

0

∫
T2

(
|∇u|2|ϕ|2 + |u|2

R2

)
+ C

t
1
3

R
2
3

(
1 + t

(
1 +

1

R2

)) 2
3 (
K(E0, Hext, T̃ ) + 1

) 4
3
.

A control on ∇2M in terms of ∆M is given by

∫
T2

|∇2M |ϕ2 ≤
∫
T2

|∆M |2ϕ2 + 4

∫
T2

|∇2M ||∇M ||ϕ||∇ϕ|

and an application of Young’s inequality shows

∫
T2

|∇2M |ϕ2 ≤ C

(∫
T2

|∆M |2ϕ2 +

∫
T2

|∇M |2|∇ϕ|2
)
.
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From Lemma 4.4.4 it follows that∫ t

0

∫
T2

|∇2M |2ϕ2 ≤ C

∫ t

0

∫
T2

((
|∆M + |∇M |2M |2 + |∇M |4

)
ϕ2 + |∇M |2|∇ϕ|2

)
≤ C

(
ε1

∫ t

0

∫
T2

|∇2M |ϕ2 +
1

R2

∫ t

0

∫
T2

|∇M |2(1 + ϕ2)

+

∫ t

0

∫
T2

|∆M + |∇M |2M |2ϕ2

)
,

i.e., ∫ t

0

∫
T2

|∇2M |2ϕ2 ≤ C

∫ t

0

∫
T2

|∆M + |∇M |2M |2 + Ct

R2
K(E0, Hext, T̃ ). (4.4.9)

Finally, for small enough δ, we combine the previous inequalities to deduce that∫
BR(x0)

|u|2(t) + χ|F |2(t) + |∇M |2(t) ≤
∫
B2R(x0)

(
|u0|2 + χ|F0|2 + |∇M0|2

)
+

+ CK(E0, Hext, T̃ )
2t
(
1 +

1

R2

)
+ C

t
1
3

R
2
3

(
1 + t

(
1 +

1

R2

)) 2
3 (
K(E0, Hext, T̃ ) + 1

) 4
3
+ C1(1 + t)R2.

Defining the constants

C2 = CK(E0, Hext, T̃ )
2, C3 = C(K(E0, Hext, T̃ ) + 1)

4
3 ,

we conclude the proof of the lemma.

Remark 4.4.3. We assert that Lemma 4.4.6 can be extended to the case of an external
magnetic field Hext in H

1((0, T ) × T2). The choice of a more regular external field Hext

in W 1,∞ has been made for the sake of clear presentation, since in this framework we can
explicitly control the local energy of the system within the ball B2R(x0) with respect to the
radius R > 0 the time t ∈ (0, T ) and the initial data (u0, F0,M0).

Under the previous considerations, we are finally in the position to address the proof of
Theorem 4.4.1.

Proof of Theorem 4.4.1. Let (u0, F0,M0) ∈ L2(T2) × L2(T2) × H1(T2) be an initial da-
tum satisfying |M0| = 1, div u0 = 0 and div0 F

⊤ = 0. As depicted at the beginning
of this section, we consider a sequence (um0 , F

m
0 ,M

m
0 )m ⊂ H1(T2) × H1(T2) × H2(T2)

satisfying the constraints div um0 , divF
m
0

⊤ = 0 and |Mm
0 | = 1 and converging strongly in

L2(T2)×L2(T2)×H1(T2) to (u0, F0,M0). Every triple (um0 , F
m
0 ,M

m
0 ) generates a strong

solution (um, Fm,Mm) to (4.0.1)–(4.0.5) on a maximal time interval [0, Tm) according to
Theorem 4.3.1.

By Lemma 4.4.3, the solution (um, Fm,Mm) satisfies limt↗Tm

∫ t
0
∥∆Mm∥2L2 (s) ds =

+∞. In turn, Lemma 4.4.5 provides a bound on
∫ t
0
∥∆Mm∥2L2 (s) ds if

ess sup
0≤s≤t,x∈T2

∫
BR(x)

|∇Mm(s)|2 < ε1
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for some ε1 > 0 and R > 0. Lemma 4.4.6 yields for any t ∈ (0, Tm) the estimate∫
BR(x0)

|um(t)|2 + |Fm(t)|2 + |∇Mm(t)|2

≤
∫
B2R(x0)

|um0 |2 + |Fm
0 |2 + |∇Mm

0 |2

+ C1(1 + t)R2 + C2t
(
1 +

1

R2

)
+ C3

t
1
3

R
2
3

(
1 + t

(
1 +

1

R2

)) 2
3

.

(4.4.10)

We can choose an R > 0 such that∫
B2R(x0)

|um0 |2 + |Fm
0 |2 + |∇Mm

0 |2 < ε1
4
, C1(1 + t)R2 <

ε1
4

for all t ∈ (0, Tm), x0 ∈ T2 and m ∈ N. Hence, we define

T ∗ := min

 ε1R
2

4C2(1 +R2)
,

ε31R
2

43C3
3

(
1 + T

(
1 + 1

R2

))2
 .

Combining the above relations with (4.4.10), we obtain that

ess sup
0≤s≤min{T ∗,Tm}

∫
BR(x0)

|∇Mm(s)|2 < ε1

for all x0 ∈ T2 and m ∈ N. Hence Lemma 4.4.5 yields that∫ min{T ∗,Tm}

0

∥∆Mm(s)∥2L2 ds < +∞,

which can only be the case if T ∗ < Tm for every m ∈ N. Therefore, the strong solution
(um, Fm,Mm) exists on [0, T ∗], where we highlight that T ∗ does not depend onm. Finally,
we pass to the limit with the a-priori bounds given in energy inequality (4.4.3) and
Lemma 4.4.5 which yields local existence of a solution with

(u, F,M) ∈C
(
[0, T ∗];L2(T2)× L2(T2)×H1(T2)

)
∩

L2

(
0, T ∗;H1(T2)×H1(T2)×H2(T2)

)
for given initial data (u0, F0,M0) ∈ L2(T2)× L2(T2)×H1(T2).
Because of uniqueness of these solutions (cf. Theorem 4.2.1), we can extend our solution
up to a singular time T1 ∈ (0, T ), characterized by the following relation

ess sup
0≤t≤T1,x∈T2

∫
BR(x)

|∇M(t)|2 ≥ ε1

for any R > 0. Even more, for every 0 < δ < T1 and R > 0, we have

ess sup
T1−δ≤t≤T1,x∈T2

∫
BR(x)

|∇M(t)|2 ≥ ε1
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because the solution is regular on T2 × [0, T1). This assertion in turn implies

sup
x∈T2

lim sup
t↗T1

∫
BR(x)

|∇M(t)|2 ≥ ε1 (4.4.11)

for any R > 0. Since (u, F,M) ∈ Cw([0, T1];L
2(T2) × L2(T2) × H1(T2)), the solution

(u, F, M) is well-defined at the time T1, in particular (u, F,M)(T1) ∈ L2(T2)×L2(T2)×
H1(T2) with div u(T1) = 0, divF⊤(T1) = 0, |M(T1)| = 1. Therefore we claim that the
following loss of energy occurs at this first time singularity (see (4.4.4)):

2E(T1) ≤ 2E0 + CK(E0, Hext, T̃ )
√
T1 − ε1. (4.4.12)

In other words, the external field Hext and the non-convexity ofW (mathematically) feeds

energy into the system through CK(E0, Hext, T̃ )
√
T1 while the singularity decreases the

total energy of the fixed amount given by ε1 > 0. To prove this statement we proceed by
contradiction. We assume that (4.4.12) is false, then it follows by (4.4.4) that

0 ≤ lim sup
t↗T1

(2E(t)− 2E(T1))︸ ︷︷ ︸
=:a

< lim sup
t↗T1

(
2E0 + CK(E0, Hext, T̃ )

√
t− 2E0 − CK(E0, Hext, T̃ )

√
T1 + ε1

)
= ε1.

Defining the local energy 2ER,x(t) :=
∫
BR(x)

|u(t)|2 + χ|F (t)|2 + |∇M(t)|2 + 2ψ(M(t)) for

t ∈ [0, T ], we have for any x ∈ T2

lim sup
t↗T1

∫
BR(x)

|∇M(t)|2 ≤ lim sup
t↗T1

2ER,x(t) = lim sup
t↗T1

{
ER,x(t)− ER,x(T1) + ER,x(T1)

}
≤ a+ ER,x(T1) < ε1

for a sufficiently small radius R > 0 which is a contradiction to (4.4.11).
Since (u(T1), F (T1), M(T1)) is defined in L2(T2) × L2(T2) × H1(T2), we can start our
entire procedure once again with this new set of initial data, extending our solution to a
new time interval [T1, T2], where a new singularity appears at time T2:

2E(T2) ≤ 2E(T1) + CK(E0, Hext, T̃ )
√
T2 − T1 − ε1

≤ 2E0 + CK(E0, Hext, T̃ )(
√
T1 +

√
T2 − T1)− 2ε1.

Then, we continue this procedure by recursion, leading to a unique solution on the inter-
vals [T1, T2], [T2, T3] and so on. Next we show that, at most, a finite amount of singularities
occurs before reaching the final time T of system (4.0.1)–(4.0.6). This is satisfied if we
prove that there is no accumulation point for the set of any singular time Ti. To this
end, we proceed by contradiction: We assume that there exists a sequence of singular
times (Ti)i∈N such that Ti < Ti+1 < T (with an abuse of notation we set T0 = 0). By
(4.4.12), every finite maximal time of existence comes with the loss of ε1 for the energy,
more precisely

0 ≤ 2E(Tn) ≤ 2E0 +
n∑
i=1

(
CK(E0, Hext, T̃ )

√
Ti − Ti−1 − ε1

)
≤ 2E0 − nε1 + CK(E0, Hext, T̃ )

n∑
i=1

√
Ti − Ti−1.

(4.4.13)
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Since Ti − Ti−1 converges towards 0, eventually ε1 > KE

√
Ti − Ti−1 and thus the right-

hand side of the above inequality converges towards −∞ as n goes to +∞, which is a
contradiction. Thus we deduce that only a finite amount of time singularities occurs
before the solution becomes smooth until the final time T > 0. The uniqueness follows
as well by a recursive application of Theorem 4.2.1 and the uniqueness of the weak limit
for (u(t), F (t),∇M(t)) in the singular times Ti, i = 1, ..., n. This concludes the proof of
Theorem 4.4.1.

4.5 Auxiliary results

In this section, we provide the proof of some technical results used in the previous sections.
First, we have a localized form of the energy law for (4.0.1)–(4.0.5).

Lemma 4.5.1. Let T̃ > 0 be a general positive time and let (u, F,M) ∈ H(0, T̃ ) ×
K(0, T̃ )×V (0, T̃ ) be a weak solution of (4.0.1)–(4.0.7) with initial condition (u0, F0, M0).
Further, let ϕ be a smooth function on T2. Then the following identity holds true

∫
T2

(
|u(t)|2 + χ|F (t)|2 + |∇M(t)|2

)
ϕ2

+

∫ t

0

∫
T2

(
ν|∇u|2 + κχ|∇F |2 + |∆M + |∇M |2M |2

)
ϕ2

≤
∫
T2

(
|u0|2 + χ|F0|2 + |∇M0|2

)
ϕ2 + C

{∫ t

0

∫
T2

(
|u|2 + |F |2 + |∇M |2 + |p|

)
|u||ϕ||∇ϕ|

+

∫ t

0

∫
T2

(
|u|2 + |F |2 + |∇M |2

)(
|∇ϕ|2 + |ϕ||∇2ϕ|

)
+

∫ t

0

∫
T2

|∇u||F ||χF −W ′(F )|ϕ2

+

∫ t

0

∫
T2

|u|2ϕ2 +

∫ t

0

∫
T2

(
|Hext|2 + |∇Hext|2 + |ψ′(M)|2

)
ϕ2

}

for all 0 ≤ t ≤ T̃ .

Proof. By a density argument, we multiply (4.0.1) by uϕ2 and integration over T2, we
have that∫

T2

ut · uϕ2 + (u · ∇)u · uϕ2 − ν∆u · uϕ2 +∇p · uϕ2

=

∫
T2

(
− div(∇M ⊙∇M) · u+ div(W ′(F )F⊤) + µ0∇⊤HextM

)
· uϕ2.

We first proceed analyzing any term on the left-hand side, since the ones on the right-
hand side will eventually be simplified under suitable combination with terms of the other
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equations. Thus∫
T2

ut · uϕ2 =
1

2

d

dt

∫
T2

|u|2ϕ2,∫
T2

(u · ∇)u · uϕ2 =

∫
T2

uj∂jui · uiϕ2 = −
∫
T2

|u|2

2
uj2ϕ∂jϕ ≤ C

∫
T2

|u|3|ϕ||∇ϕ|,

−ν
∫
T2

∆u · uϕ2 = ν

∫
T2

∂jui∂juiϕ
2 + ∂jui · ui2ϕ∂jϕ

= ν

∫
T2

|∇u|2ϕ2 − ν

∫
T2

|u|2(∂jϕ∂jϕ+ ϕ∂2jϕ)

= ν

∫
T2

|∇u|2ϕ2 − |u|2(|∇ϕ|2 + ϕ∆ϕ)

≥ ν

∫
T2

|∇u|2ϕ2 − |u|2(|∇ϕ|2 + |ϕ||∇2ϕ|),∫
T2

∇p · uϕ2 = −
∫
T2

2pu · ϕ∇ϕ ≤
∫
T2

2|p||u||ϕ||∇ϕ|.

Furthermore, the contribution of the external magnetic field to the momentum equation
is dealt with by

µ0

∫
T2

∇⊥HextM · uϕ2 ≤ C
(∫

T2

|∇Hext|2ϕ2 +

∫
T2

|u|2ϕ2
)
.

Next, we multiply the equation for F in (4.0.3) by χFϕ2, where we recall that the positive
constant χ > 0 is such that |W ′(A)− χA| ≤ C2, for any A ∈ R2. Integrating over T2, we
gather

χ

∫
T2

(
Ft : Fϕ

2 + (u · ∇)F : Fϕ2 −∇uF : Fϕ2 − κ∆F : Fϕ2
)
= 0,

where ∫
T2

Ft : Fϕ
2 =

1

2

d

dt

∫
T2

|F |2ϕ2,∫
T2

(u · ∇)F : Fϕ2 = −
∫
T2

|F |2ujϕ∂jϕ ≤
∫
T2

|F |2|u||ϕ||∇ϕ|,

−κ
∫
T2

∆F : Fϕ2 = κ

∫
T2

(
∇F : ∇Fϕ2 + ∂jFikFik2ϕ∂jϕ

)
= κ

∫
T2

(
|∇F |2ϕ2 − |F |2

(
|∇ϕ|2 + ϕ∆ϕ

))
≥ κ

∫
T2

(
|∇F |2ϕ2 − |F |2

(
|∇ϕ|2 + |ϕ||∇2ϕ|

))
.

Additionally, we have that

−
∫
T2

χ∇uF : Fϕ2 + div(W ′(F )F⊤) · uϕ2 = −
∫
T2

∂jui · FjkχFikϕ2 + ∂j(W
′(F )ikFjk)uiϕ

2

=

∫
T2

uiW
′(F )ikFjk2ϕ∂jϕ−

∫
T2

∇uF : (χF −W ′(F ))ϕ2

≤ C

{∫
T2

|u||F |2|ϕ||∇ϕ|+
∫
T2

|u|2ϕ2 +

∫
T2

|F |2|∇ϕ|2
}
+

∫
T2

|∇u||F ||χF −W ′(F )|ϕ2.
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Moreover, multiplying the LLG equation (4.0.5) by −(∆M+ |∇M |2M)ϕ2 and integrating
over T2, we deduce that

−
∫
T2

(
Mt + (u · ∇)M

)
·
(
∆M + |∇M |2M

)
ϕ2

=

∫
T2

M ∧Heff ·
(
∆M + |∇M |2M

)
ϕ2 +

∫
T2

M ∧ (M ∧Heff) ·
(
∆M + |∇M |2M

)
ϕ2.

Developing the first term on the right-hand side, we infer

∫
T2

M ∧Heff ·
(
∆M + |∇M |2M

)
ϕ2 =

∫
T2

M ∧
(
µ0Hext − ψ′(M)

)
·
(
∆M + |∇M |2M

)
ϕ2

≤ C

∫
T2

(
|Hext|2 + |ψ′(M)|2

)
ϕ2

+
1

4

∫
T2

|∆M + |∇M |2M |2ϕ2,

while the second term yields

∫
T2

M ∧ (M ∧Heff) ·
(
∆M + |∇M |2M

)
ϕ2

=

∫
T2

M ∧
(
M ∧ (µ0Hext − ψ′(M))

)
· (∆M + |∇M |2M)ϕ2 −

∫
T2

|∆M + |∇M |2M |2ϕ2

≤ C

∫
T2

(|Hext|2 + |ψ′(M)|2)ϕ2 − 3

4
|∆M + |∇M |2M |2ϕ2.

We hence remark that the following estimates holds true (recall (∇M)⊤M = since |M | =
1 a.e.)

∫
T2

(u · ∇)M ·
(
∆M + |∇M |2M

)
ϕ2 − div(∇M ⊙∇M) · uϕ2

=

∫
T2

ui∂iMk · ∂2jMkϕ
2 − ∂j(∂iMk∂jMk)uiϕ

2 =

∫
T2

1

2
|∇M |2u · 2ϕ∇ϕ

≤ C

∫
T2

|∇M |2|u||ϕ||∇ϕ|.

Next, we have Mt · |∇M |2M = |∇M |2∂t(|M |2/2) = 0 and

∫
T2

Mt · (−∆M)ϕ2 =
1

2

d

dt

∫
T2

|∇M |2ϕ2 +

∫
T2

∂tMj∂kMj2ϕ∂kϕ.
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Thanks to the LLG equation,∫
T2

∂tMj∂kMj2ϕ∂kϕ = −
∫
T2

(u · ∇Mj)∂kMj2ϕ∂kϕ

−
∫
T2

(
M ∧ (∆M + µ0Hext − ψ′(M)

)
j
∂kMj2ϕ∂kϕ

−
∫
T2

(
M ∧M ∧

(
∆M + µ0Hext − ψ′(M)

))
j
∂kMj2ϕ∂kϕ

=−
∫
T2

(u · ∇Mj)∂kMj2ϕ∂kϕ

−
∫
T2

(M ∧ (∆M + |∇M |2M + µ0Hext − ψ′(M))j∂kMj2ϕ∂kϕ

−
∫
T2

(
M ∧M ∧

(
∆M + |∇M |2M + µ0Hext − ψ′(M)

))
j
∂kMj2ϕ∂kϕ

≤C

∫
T2

|u||∇M |2|ϕ||∇ϕ|+ 1

4

∫
T2

|∆M + |∇M |2M |2ϕ2

+ C

∫
T2

|∇M |2|∇ϕ|2 + C

∫
T2

(|Hext|2 + |ψ′(M)|2)ϕ2.

Finally, integration over [0, t] yields the assertion.

The second result provides a local-in-time substitute of Gronwall’s inequality.

Lemma 4.5.2. Let z : [0, t+) → R+
0 solve

z′ = c(1 + z2), z(0) ≥ 0 (4.5.1)

for some c > 0. Then if y ≥ 0 solves

y′ ≤ c(1 + y2), z(0) ≥ y(0) ≥ 0 (4.5.2)

on [0, t∗), it is y ≤ z on [0, t∗).

Proof. Taking the difference of (4.5.1) and (4.5.2) gives

z′ − y′ ≥ c(z2 − y2) = c(z − y)(z + y) ≥ c(z − y).

If z(t0) − y(t0) ≥ 0 for some t0 ∈ [0, t∗), the function t 7→ z(t) − y(t) is therefore
non-negative on some interval to the right of t0 by Taylor’s formula. Hence the set
A = {t ∈ [0, t∗) : z(t)− y(t) ≥ 0} is right-open, non-empty and closed by continuity of z
and y. So A = [0, t∗).





Chapter 5

Conclusion and open problems

Finally, we relate the results of this thesis to some open problems. Starting with Theorem
3.1.2 and the Ericksen-Leslie model for liquid crystals, we positively answer the conver-
gence of the Ginzburg-Landau approximations in two spatial dimensions. We already
mentioned in Remark 3.1.10 that the deeper reason behind the validity of Theorem 3.1.2
consists of the Hopf differential. Yet, the proof suggests that the set of singularities of a
solution to (3.1.6)–(3.1.8) might be finite at any time t ≥ 0. A more elaborate formulation
is the following conjecture: As ε → 0+ in the Ginzburg-Landau approximation (3.1.1)–
(3.1.3), the limit point (v, d) is a regular solution to the Ericksen-Leslie system away from
a set of two-dimensional parabolic Hausdorff measure. Such a behavior roughly corre-
sponds to an evolution of spatial concentration points of the energy on a rectifiable curve
and is known for the harmonic map heat flow (see [16, 62]). If true however, the obstacles
to a verification of this statement are the non-localizibilty of energy in (3.1.6)–(3.1.8) up
to now. Neither Struwe’s monotonicity formula [79] nor a sensible form1 of local energy
inequality (as, e.g., for the Navier-Stokes equations) is available (so far).

The following speculation is closely connected: For every initial data of finite energy,
we find a unique solution to the Ericksen-Leslie model, which is smooth away from finitely
many space-time points. In [41] and [58], the authors show the finiteness of singular
times and conjecture the former statement. Again, the lack of localizibility complicates
the situation in contrast to the harmonic map heat flow where this is known (see [78]).

Likely more important are the issues in the three-dimensional theory for liquid crys-
tals. Global existence results are known only for special cases such as the director field
attaining values restricted to the upper half-sphere (see [64]) or under smallness con-
ditions on the initial data (see [40]). If one again considers the limit of the Ginzburg-
Landau approximation ε → 0+, the spatial defect measure is, in general, a rectifiable
one-dimensional set for fixed time. This defect measure might evolve as motion by mean
curvature and could actually appear in the momentum equation (3.1.6) or, alternatively,
induce boundary conditions on the velocity at the support of defect measure. Once more,
the barrier to a proof seems to be the absence of an opportunity to localize the energy.

Turning our attention to the system for magnetoviscoelastic fluids (4.0.1)–(4.0.5), we
face issues in several directions: On the one hand, we have to deal with the same questions

1Referring to the local energy inequality in Section 4.1 or Lemma 4.5.1, the quantity
ess sup(t0−R2,t0)

∫
BR

e(t) dx is no good candidate to be required small. Instead, a suitable quantity

poses R−2
∫ t0
t0−R2

∫
BR

e(t) dx dt, cf. [79].
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as above because of the similarity to the Ericksen-Leslie system in the magnetization vari-
able. On the other hand, the mathematical theory regarding the viscoelastic subsystem
involving only the velocity field and the deformation gradient is even less developed. At
this point, there are two directions to proceed in. The first one is to develop a more
expanded existence theory. Global existence for weak solutions is only known in special
cases [65] or under restrictive (smallness) assumptions on initial data [52]. Again, the
issue is the stress tensor W ′(F )F⊤ in the momentum equation which could also undergo
oscillations due to the lack of dissipation for κ = 0 in (4.0.3).

The second way to pursue is the search for more appropiate dissipation laws regarding
the deformation gradient. The Laplacian operator in (4.0.3) does not harmonize with the
incompressibility constraint detF = 1. Other terms are proposed, e.g., in [6]. How-
ever, regarding usual questions in the calculus of variations like the different notions of
convexity for elastic energies W , it is not clear how they interfere with such arguments
originating in fluid mechanics.

Eventually, we mention two other possible extensions to Theorem 4.4.1: The system
(4.0.1)–(4.0.5) does not encompass a coupling of F and M in the anisotropy energy
for example. Such a coupling in term is, however, plausible, since F deforms the domain
occupied by the magnetic fluid and therefore also the easy axis, i.e., the preferred direction
for the magnetization. At last, all of the previous work featured the spatial domain T2,
i.e., no boundary conditions are considered for a smooth bounded domain in R2. Remark
3.1.9 mentions how to verify Theorem 3.1.2 on a smooth bounded domain. However,
it does not give insight into the phenomena of harmonic maps defined on surfaces with
boundary. Here, we mention [13] for a result on bubbling near the boundary. With
respect to Theorem 4.4.1, we conjecture that an analogous result can be proven on a
smooth bounded domain subject to standard boundary conditions. The discussion in
this case consists more of the question which boundary conditions are appropiate for the
deformation gradient to hold.
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[47] Kalousek, M., Schlömerkemper, A.: Dissipative solutions to a system for the flow of
magnetoviscoelastic materials, J. Differential Equations, 271 (2021), 1023–1057

[48] Kortum, J.: Concentration-cancellation in the Ericksen-Leslie model, Calc. Var. Par-
tial Differential Equations, 59(6) (2020), no. 189
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