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CIP2A regulates MYC translation (via its 5′UTR) in colorectal cancer
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Abstract
Background Deregulated expression of MYC is a driver of colorectal carcinogenesis, suggesting that decreasing MYC expression
may have significant therapeutic value. CIP2A is an oncogenic factor that regulates MYC expression. CIP2A is overexpressed in
colorectal cancer (CRC), and its expression levels are an independent marker for long-term outcome of CRC. Previous studies
suggested that CIP2A controls MYC protein expression on a post-transcriptional level.
Methods To determine the mechanism by which CIP2A regulates MYC in CRC, we dissected MYC translation and stability
dependent on CIP2A in CRC cell lines.
Results Knockdown of CIP2A reduced MYC protein levels without influencing MYC stability in CRC cell lines. Interfering with
proteasomal degradation of MYC by usage of FBXW7-deficient cells or treatment with the proteasome inhibitor MG132 did not
rescue the effect of CIP2A depletion on MYC protein levels. Whereas CIP2A knockdown had marginal influence on global protein
synthesis, we could demonstrate that, by using different reporter constructs and cells expressing MYC mRNA with or without
flanking UTR, CIP2A regulates MYC translation. This interaction is mainly conducted by the MYC 5′UTR.
Conclusions Thus, instead of targeting MYC protein stability as reported for other tissue types before, CIP2A specifically
regulates MYC mRNA translation in CRC but has only slight effects on global mRNA translation. In conclusion, we propose
as novel mechanism that CIP2A regulates MYC on a translational level rather than affecting MYC protein stability in CRC.
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Introduction

With more than 1.2 million newly diagnosed cases per year,
colorectal cancer (CRC) is the most common gastrointestinal
malignancy [1]. Sequence analysis shows that each tumor ge-
nome carries multiple mutations deregulating major signaling
pathways that control growth and survival of colon epithelial

cells [2]. Despite the genomic heterogeneity, enhanced MYC
expression is universally observed in colon cancers. Gene ex-
pression analyses show that a signature of activated and re-
pressed MYC target genes is present in a vast majority of
CRC [2]. Deletion of the MYC gene ablates tumorigenesis in
mouse models that faithfully mimic the human disease [3].
Collectively, these data argue that targetingMYCmight achieve
significant therapeutic efficacy in CRC.

Besides its transcriptional overexpression, MYC mRNA
translation and stability are enhanced in cancer [4]. One major
post-transcriptional regulator of MYC protein is the cancerous
inhibitor of protein phosphatase 2A (CIP2A), which was identi-
fied as a human oncoprotein [5]. CIP2A is overexpressed in
human tumor entities including CRC, gastric cancer, head and
neck squamous cell carcinoma, breast cancer, prostate cancer,
and lymphoma [6–8]. Enhanced expression of CIP2A correlates
with reduced survival and serves as an independent negative
predictive marker for overall and disease-free survival [9–14].
Several exogenous cancer-inducing factors, like Helicobacter
pylori and papilloma virus 16 E7, upregulate the expression of
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CIP2A in host tissue which may be critical for their oncogenic
activity [15, 16].

Consistent with CIP2A’s role as an inhibitor of the ubiqui-
tous serine/threonine phosphatase PP2A which regulates the
activity of numerous cellular signaling pathways [17], CIP2A
has been shown to regulate the phosphorylation and activity of
AKT, DapK, E2F1, MYC, and mTORC [13, 18, 19]. We and
others have shown that on a molecular level, CIP2A regulates
MYC post-transcriptionally due to several mechanisms. First,
PP2A has a critical role in the turnover of MYC, since PP2A
dephosphorylates MYC at serine 62 (S62). Dephosphorylation
at S62 is required for ubiquitination of MYC by the ubiquitin
ligase FBXW7 and therefore initiates degradation of MYC [6,
7]. Overexpression of CIP2A inhibits PP2A activity and there-
by leads to MYC stabilization. Second, it has been shown that
CIP2A specifically stabilizes pS62-MYC by interaction with
the Lamin A/C complex in the nucleus [20]. Consequently,
overexpression of CIP2A induces immortalization and malig-
nant transformation of human cells.

Here, we show that CIP2A regulates MYC protein expres-
sion post-transcriptionally in CRC and that this regulation
occurs viaMYCmRNA translation rather thanMYC stability.

Results

To analyze the impact of CIP2A on MYC protein expression
and to recapitulate already published data in the setting of
CRC, CIP2A expression was downregulated via siRNA in
three CRC cell lines (HCT116, SW480, and LS174t).
CIP2A knockdown led to substantial reductions in MYC pro-
tein levels in all three cell lines (Fig. 1a). This was due to post-
transcriptional regulation ofMYC protein levels, as no chang-
es inMYCmRNA expression were detected (Fig. 1b). To rule
out off-target effects of the used siRNA pool, HCT116 cells
were transfected with three independent siRNAs side-by-side.
Two of the three tested siRNAs led to a strong downregulation
of CIP2A on mRNA and protein level as well as a reduced
expression of MYC on protein, but not on mRNA level
(Supplementary Fig. 1A, B). In contrast, one siRNA (#2) only
leads to a slight knockdown of CIP2A and does not reduce
MYC protein expression. In conclusion, this data argues that
knockdown of CIP2A regulates MYC on protein level.

To determine long-term effects of CIP2A depletion on cell
proliferation, HCT116 cells were stably infected with an shRNA
targeting CIP2A. shRNA-mediated knockdown of CIP2A led to
a growth defect in these cells, furthermore validating the results
of siRNA-mediated depletion of CIP2A (Fig. 1c, d). Flow cy-
tometry analysis (FACS) of propidium-iodide stained cells upon
CIP2A knockdown revealed an accumulation of cells in G1
phase of the cell cycle, but the subG1 phase remained unaltered
(Fig. 1e, f). This is comparable to a cell cycle arrest observed after
reduction of MYC levels in other settings [21–23]. To validate

the overexpression of CIP2A in CRC, we analyzed expression
data in 275 CRC and 41 mucosa samples from ciBioPortal
(https://www.cbioportal.org). This clearly demonstrated a
strong upregulation of CIP2A in cancer tissue (Fig. 1g).

In many cell lines, MYC proteins turn over with a half-life
of approximately 20 min [24]. To determine the stability of
MYC in CRC cell lines dependent on CIP2A, we treated cells
with cycloheximide to inhibit new protein synthesis and mea-
sured the amount of remaining MYC protein by immunoblot-
ting at several time points after treatment (Fig. 2a–c). MYC
turned over with a half-life of approximately 30 min in all
three CRC cell lines. Surprisingly, knockdown of CIP2A by
siRNA did not affect MYC protein stability in any of the cell
lines (Fig. 2a–c).

MYC stability and phosphorylation is regulated by growth
factor-dependent ERK and PI3K signaling pathways.
Phosphorylation of MYC at serine 62 by ERK is necessary
for recognition and subsequent phosphorylation at threo-
nine 58 by GSK3β. Phosphorylated T58 is recognized by
PIN1, as prerequisite for PP2A-dependent dephosphoryla-
tion of MYC proteins at S62 [4, 25, 26]. MYC protein,
exclusively phosphorylated at T58, is recognized and
ubiquitinated by SCF-FBXW7 and thereby primed for
proteasomal degradation [4]. If CIP2A does not influence
MYC protein stability, as suggested by the results of the
cycloheximide assay, knockdown of CIP2A should still re-
duce MYC protein levels even if protein degradation is
blocked. To evaluate the impact of CIP2A-dependent
MYC expression and FBXW7-dependent MYC degrada-
tion, CIP2A expression was downregulated via siRNA
transfection in both HCT116 FBXW7+/+ and HCT116
FBXW7−/− cells (Fig. 3a). As expected, FBXW7-deficient
cells showed per se higher MYC protein levels compared to
FBXW7-proficient cells. Knockdown of CIP2A led to a
comparable reduction of MYC protein in both conditions.
To rule out the possibility that CIP2A primes MYC for
another ubiquitin E3 ligase, overall protein degradation
was inhibited by treating cells with the proteasome inhibi-
tor MG132. MG132 treatment led to an expected accumu-
lation of MYC and, to a lower extent, of CIP2A (Fig. 3b). In
both MG132-treated and untreated cells, knockdown of
CIP2A led to a comparable downregulation of MYC pro-
tein levels (Fig. 3b). In conclusion, our data suggest that
CIP2A does affect neither MYC transcription nor MYC
protein stability in CRC, but that CIP2A rather influences
translation of MYC.

To test whether CIP2A has an impact on global protein
synthesis, HCT116 cells were starved for 20 min in
methionine-free media. After that, incorporation of S35-la-
beled methionine within 1 h was measured (Fig. 3c).
Knockdown of CIP2A did not show any effect on global
protein synthesis. To clarify whether CIP2A directly influ-
ences MYC translation, a reporter plasmid, carrying the
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MYC 5′UTR ahead of the coding sequence of a firefly lu-
ciferase (pmF), was used. Knockdown of CIP2A led to a
60% decrease in relative luciferase activity, pointing to-
wards a direct influence of CIP2A on MYC translation
(Fig. 3d). To test whether CIP2A knockdown affects the
translation from other structured 5′UTRs, we used
bicistronic vectors containing the IRES element of the
EMCV or HCV virus. In both conditions, knockdown of
CIP2A does not alter luciferase activity (Fig. 3e). In sum-
mary, we concluded that CIP2A regulates MYC on a trans-
lational level in CRC.

mRNA translation can be regulated by several upstream
pathways, e.g., mTOR signaling, or via direct regulation of
translation initiation or elongation factors [27]. We have pre-
viously shown that CIP2A does not regulate mTOR signaling
in CRC [7]. To evaluate whether CIP2A affects MYC

translation initiation or elongation, we used HCT116 cells
with doxycycline-inducible MYC constructs expressing the
MYC coding sequence (CDS) with or without 5′/3′UTRs with
an HA-tag to distinguish between endogenous and exogenous
MYC [22, 28] (Fig. 4a). Whereas endogenous MYC protein
was reduced by CIP2A knockdown,MYC constructs express-
ing the MYC CDS or MYC CDS + 3′UTR remained mainly
unaffected by CIP2A knockdown (Fig. 4b). However, the
construct expressing the MYC CDS + 5′UTR was robustly
downregulated to a ratio of 0.66 after CIP2A knockdown. The
most prominent effect onMYC protein reduction after CIP2A
knockdown was observed with the construct expressing the
MYC 5′UTR + CDS + 3′UTR (ratio of 0.39, Fig. 4b). In
conclusion, these data show that CIP2A regulates MYC trans-
lation initiation rather than elongation, as the expression of the
MYC CDS is unaffected.
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Fig. 1 Depletion of CIP2A regulates MYC protein and cell proliferation
in CRC cell lines. a Western blot analysis of CIP2A and MYC protein
expression in HCT116, SW480, and LS174t cells transfected with CIP2A
or CTR siRNA for 72 h. Data are representative of three independent
experiments. b RT-QPCR analysis of CIP2A and MYC mRNA expres-
sion in HCT116 72 h after transfection with siRNA targeting CIP2A
(mean of three independent biological experiments, error bars represent
+/− SD). c Crystal violet staining of HCT116 cells stably infected with
CIP2A or CTR shRNA after 7 days in culture. d Cell number of HCT116

cells stably infected with CIP2A or CTR shRNA during 7 days in culture
(mean of three independent biological experiments, error bars represent
+/− SD). e Time per cell cycle phase of HCT116 cells after CIP2A
knockdown (* p < 0.001) (mean of three independent biological experi-
ments, error bars represent +/− SD). f Fraction of cells in subG1 phase
after knockdown of CIP2A (mean of three independent biological exper-
iments, error bars represent +/− SD). g Expression of CIP2A in CRC (T)
or corresponding mucosa (M) (* p < 0.01)
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Discussion

Deregulated and enhanced expression of MYC is a driver of
colorectal tumorigenesis, necessitating strategies to inhibit
MYC function or expression for tumor therapy.We and others
have shown that CIP2A regulates MYC, is essential for tumor
growth, tissue regeneration, and thus may open a therapeutic
window for targeting tumors [6, 7, 10, 18, 20, 29].

It has been clearly demonstrated that CIP2A reduces MYC
expression post-transcriptionally. For example, mouse embry-
onic fibroblasts (MEF) isolated from CIP2A-deficient
(CIP2AHOZ) mice show the same amount of MYC mRNA as
wild-type mice, but harbor lower MYC protein levels after
serum stimulation [20]. In line with this are our own published
results that CIP2A does not influenceMYCmRNA expression
arguing that MYC is regulated post-transcriptionally by
CIP2A [7]. So far, on a molecular level, it was shown that
CIP2A regulates the stability of MYC, mainly by stabilizing
pS62-MYC. Here, we describe a novel mechanism of regula-
tion of MYC translation by the oncoprotein CIP2A via the 5′
UTR of the MYC mRNA. It remains elusive which factor
drives MYC translation in tumors and is regulated by
CIP2A. Still, our experiments showing that MG132 treatment
does not rescue downregulation of MYC protein upon CIP2A

knockdown clearly argue against a regulation of MYC stabil-
ity by CIP2A in CRC.

There are several possibilities howMYC translation can be
regulated via CIP2A. First, PP2A can mediate regulation of
upstream pathways like mTOR signaling which has been pro-
posed previously [30]. This is unlikely for CRC, as we have
already demonstrated that PI3K/AKT/mTOR signaling is not
affected by CIP2A [7]. Second, CIP2A could directly regulate
the function or activity of translation factors. The process of
mRNA translation is divided in three regulatory parts, initia-
tion, elongation, and termination [27]. Regarding elongation,
our experiments do not show an effect on MYC CDS expres-
sion after CIP2A depletion, arguing that CIP2A does not act
via the regulation of elongation of the MYC mRNA. In con-
trast, CIP2A influences the 5′UTR of MYC as demonstrated
in our experiments by regulation of firefly luciferase expres-
sion as well as exogenous constructs carrying MYC CDS + 5′
UTR. Whereas global protein synthesis is unaltered or only
slightly reduced, which could be explained by the reduced
MYC protein levels and cell proliferation, the firefly luciferase
activity and MYC protein levels are decreased to a much
greater extent. These results strongly support the notion that
CIP2A regulates MYC translation initiation. Several onco-
genes, likeMYC, SRC, and VEGF, harbor complex structures
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Fig. 2 Depletion of CIP2A does not alter MYC protein stability in CRC
cells. Immunoblots documenting MYC protein stability. Cells were
incubated with cycloheximide (50 μg/ml) for the indicated time. a
HCT116 left panel, immunoblot; right panel, quantification of MYC to
vinculin ratio. b SW480 left panel, immunoblot; right panel,
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Immunoblots are representative of three independent experiments.
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experiments; error bars represent +/− SD
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in their 5′UTR, such as G-quadruplexes structures or IRES
elements, enhancing their translation in specific situations like
tumor development [31]. The possibility that CIP2A regulates
MYC translation via such a structure is promoted by our re-
sults showing a difference in translation efficacy dependent on
the 5′UTR of MYC. The exact translation initiation factor
which regulates CIP2A-dependent MYC translation in CRC
is not known so far.

It has been shown that CIP2A regulates the phosphoryla-
tion of target proteins via inhibition of PP2A-mediated de-
phosphorylation [32]. So far, several studies have demonstrat-
ed that PP2A, besides the regulation of MYC via its dephos-
phorylation, is also able to function in mRNA translation. In
lung fibroblasts, PP2A regulates 4E-BP1, the eIF4E inhibitor,
by preventing its degradation and by this reducing CAP-
dependent translation [33]. In addition to 4E-BP1, PP2A di-
rectly influences the activity of eIF4E by dephosphorylating
MNK1 and eIF4E at their activating phosphorylation sites,
thereby reducing MYC and MCL-1 expression [34]. It is
therefore possible that CIP2A regulates MYC mRNA transla-
tion indirectly via regulating the activity of the CAP-binding
complex (Fig. 4c). Consistent with this hypothesis, it has been
shown that the majority of CIP2A is localized in the cyto-
plasm rather than in the nucleus where it regulates the

association of MYC with the Lamin A/C complex and
pS62-MYC stability [20].

Mounting evidence indicates that protein synthesis is
deregulated in tumors in a way that in total, more and different
mRNAs are translated compared to normal tissue [28, 35, 36].
In line with this, we show here that depletion of CIP2A spe-
cifically decreases translation of MYC.

In conclusion, we demonstrate a possible novel way of
action of CIP2A controlling MYC expression specifically
via regulation of MYC translation in CRC.

Methods

Cell lines and cell culture

HCT116, LS174t, and SW480 cells were purchased from
American Type Culture Collection. All cell lines were authen-
ticated via Short Tandem Repeat (STR) DNA analysis.
HCT116 cells were cultured in DMEM, LS174t, and
SW480 cells in RPMI-1640 medium supplemented with
10% heat-inactivated fetal calf serum (FCS) and 1% penicil-
lin-streptomycin. Cells were cultured in an incubator at 37 °C,
95% humidity, and 5% CO2.
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Fig. 3 Inhibition of proteasomal degradation does not rescue MYC
protein expression after CIP2A knockdown. a Western blot analysis of
CIP2A and MYC protein expression in FBXW7-proficient (FBXW7+/+)
and -deficient (FBXW7−/−) HCT116 cells. Data are representative of
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labeled methionine in HCT116 cells after knockdown of CIP2A (mean

of three independent biological experiments, error bars represent +/− SD).
d HCT116 cells were transfected with MYC 5′UTR bearing pmF lucif-
erase reporter and transfected with siCIP2A or siCTR (mean of three
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with siCIP2A or siCTR (mean of three independent biological experi-
ments, error bars represent +/− SD)
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Real-time quantitative reverse transcription-PCR
analysis

mRNA expression was analyzed using real-time quantitative
reverse transcription-PCR (RT-QPCR). Total cellular RNA
was extracted from cells with RNeasy Minikit (Qiagen) ac-
cording to the manufacturer’s instructions. Relative quantifi-
cation, based on the fold difference, was calculated with the
threshold cycle (Ct) method, expressed as 2−ΔΔCt.

Immunoblot analysis

Cultured cells were rinsed three times with ice-cold PBS, har-
vested, and lysed directly in RIPA sample buffer for western
blot analysis. Cell debris were removed by centrifugation at
12,000g for 10 min at 4 °C, and the supernatant was used as
total protein lysate. For each sample, 10 μg of total protein
lysate was subjected to a 10% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-Page), followed by
western blot analysis. Western blots were probed with anti-
bodies against CIP2A (A301-454A; Bethyl Laboratories),
MYC (C33, #42; Santa Cruz; or Y69 # ab32072 Abcam), β-
actin (AC-15/A5441; Sigma), vinculin (V9131; Sigma), and
HA-tag (HA-Tag; C29F4 #3724S cell signaling). All

antibodies were used according to the manufacturer’s instruc-
tions. The blots were visualized with secondary antibodies
(GE Healthcare) against mouse (NA9310) or rabbit
(NA9340) primary antibodies.

siRNA transfection

On-target plus SMART pool (Horizon Discovery) siRNA to
target CIP2A (L-014135-01-005) and a control siRNA
(D-001810-10-05) were used for silencing gene expression.
Cells were transfected with siRNA pools (final concentration
100 nM) using RNAiMax kit (Invitrogen) according to the
manufacturer’s protocol. Cells were harvested 72 h after
transfection.

shRNA and lentivirus

shRNA sequences targeting CIP2A were cloned into a
lentiviral pGIPZ vector according to the manufacturer’s pro-
tocol. HEK293t cells were transfected together with packag-
ing plasmids. After 48 h and 72 h, supernatants containing the
virus were collected and filtered. Colon cancer cell lines were
infected with the shCIP2A-expressing lentivirus or non-
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Fig. 4 CIP2A regulates MYC mRNA translation initiation. a Schematic
illustration describing the MYC constructs used in B. b Western blot
analysis of CIP2A, MYC, and HA-tag expression in HCT116 after

knockdown of CIP2A. Data are representative of three independent ex-
periments. Every construct was evaluated on separate gels. c Summary of
suggested molecular mechanism.
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specific shCTR, and 24 h post-transduction infected cells were
selected with puromycin.

Colony formation assay

2.5 × 103 cells infected with shCIP2A-expressing lentivirus or
shCTR were plated on 6-well plates. Colonies were stained
with 0.5 % cystal violet in 20% ethanol after 7 days in culture.

Luciferase assay

Plasmids and protocol for luciferase assay have previously
been described in [37].

S35-Methionine incorporation assay

Global translation was measured by S35-methionine incorpo-
ration assay. Cells were seeded in 6-well plates and treated as
indicated. To deplete the intracellular pool of methionine, cells
were washed with PBS and incubated in RPMI medium lack-
ing methionine for 20 min. Cells treated with 50 μg/ml cyclo-
heximide were used as a control for translation inhibition.
Cells were pulsed with 1 μCi/ml S35-methionine for 1 h at
37 °C. To remove unincorporated S35-methionine, cells were
washed 5 times with ice-cold PBS prior to precipitation with
10% TCA for 20 min. Cells were lysed with 300 μl 0.2 M
NaOH and collected in a 1.5-ml tube. Fifty-microliter cell
lysate was added to 3-ml scintillation solution in a scintillation
tube and vortexed for 20 s. Radioactive counts were measured
by scintillation counting. Protein content in cell lysates was
quantified using BCA reagent and used to normalize the ra-
dioactive counts.
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