
Cloudless Resource Monitoring in a Fog Computing
System Enabled by an SDN/NFV Infrastructure

Duy Thanh Le, Marcel Großmann, Udo R. Krieger
Faculty WIAI, University of Bamberg

An der Weberei 5, D-96047 Bamberg, Germany

{duy-thanh.le, marcel.grossmann}@uni-bamberg.de, udo.krieger@ieee.org

Abstract—Today’s advanced Internet-of-Things applications
raise technical challenges on cloud, edge, and fog computing. The
design of an efficient, virtualized, context-aware, self-configuring
orchestration system of a fog computing system constitutes a
major development effort within this very innovative area of
research. In this paper we describe the architecture and relevant
implementation aspects of a cloudless resource monitoring sys-
tem interworking with an SDN/NFV infrastructure. It realizes
the basic monitoring component of the fundamental MAPE-K
principles employed in autonomic computing. Here we present
the hierarchical layering and functionality within the underlying
fog nodes to generate a working prototype of an intelligent,
self-managed orchestrator for advanced IoT applications and
services. The latter system has the capability to monitor auto-
matically various performance aspects of the resource allocation
among multiple hosts of a fog computing system interconnected
by SDN.

Index Terms—Fog Computing, SDN/NVF, Container Virtual-
ization, Autonomic Orchestration, Docker

I. INTRODUCTION

Over the last decades, we have witnessed the rapid develop-

ment of different computing and networking paradigms. They

have been evolving from a local computing paradigm and

its parallelization towards cloud-based distributed computing

and from the US DARPA project towards today’s advanced

Internet-of-Things (IoT), [1], [2], [6]. It is a phenomenon that

now affects every aspect of our daily activities like how we

live, work, and socialize among each other.

Cloud computing [1] offers several advantages, e.g., scalabil-

ity, a reduction of management efforts, an on-demand resource

allocation, or a pay-as-you-go model. It is realized by the

three primary models IaaS, PaaS, and SaaS. Although this

computing paradigm is highly attractive for data-intensive

processes, it is also facing a certain number of challenges,

such as challenges w.r.t. bandwidth, latency, resource con-

straints, mobility, and security. The latter have stimulated the

development of edge and fog computing as new distributed

computing paradigms to support the vision of an IoT without

severe restrictions [2], [9]. This concept focusses on pushing

the processing and storage of data closer to the edge of

a modern network infrastructure based on software-defined

networks with network functions virtualization (SDN/NFV),

thus, reducing the latency and improving the availability of

advanced services [9], [12].

Furthermore, the adoption of lightweight virtualization tech-

niques is drastically growing in all cloud, fog, and edge

computing models due to their advantages like the reduction of

costs and energy, and an immediate provisioning of services.

In particular, container based virtualization is considered as

a practical solution for fog computing and its SDN in a

modern IoT environment as it demands less system resources

compared to other virtualization technologies [4]. As tradi-

tional network architectures cannot meet the growing needs

on variability, complexity, and high volume of the traffic load

combined with the diverse QoS and Quality-of-Experience

(QoE) requirements, flexible network architectures based on

SDN and NFV technology are needed to support the fog

computing paradigm for IoT environments and their services,

[9], [10], [11], [12]. In particular, the concept of network

functions virtualization (NFV) substantially transforms the de-

livery of sophisticated network services by providing network

functions, recently deployed in specific hardware appliances,

into commodity hardware such as industry-standard high-

volume servers, switches, and storage [13].

At present, the rapidly evolving Internet-of-Things and its

related services and applications are demanding an increas-

ing effectiveness of the deployed SDN/NFV infrastructures

interconnecting this vast number of heterogeneous objects and

smart things [2], [6]. Considering the limited computing and

data storage capabilities of the underlying IoT devices, the tra-

ditional solution is to offload services to centralized locations

offering cloud services. However, some severe disadvantages

arise, [14], such as

• a high latency due to the distance between the edge

devices and their services running in the cloud nodes,

• a vast computational load onto the cloud systems due to

the propensity of task offloading and, therefore, additional

processing and queuing delays as well as bandwidth

exhaustion,

• severe availability, scalability, speed, and resource man-

agement issues by the enormous number of IoT devices

coalesced with the potential instability of the transmission

medium (especially in wireless communication) since the

computational nodes operating in the data centers may

not promptly provide demanded services due to network

congestion and/or connection failures.

These severe resource management and performability issues

have stimulated a radical change from the cloud-centric ap-

proach towards the novel, innovative fog computing systems

This document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
http://creativecommons.org/licenses/by-sa/4.0 This CC license does not apply to third party material (attributed to another source) in this publication.

that can provide lower latency and facilitate a locality aware-

ness of services, etc. According to NIST, it supports to ”de-

centralize applications, management, and data analytics into

the network itself using a distributed and federated compute

model” [15]. Its core concept is to bring more resources and

computational power closer to the edge layer where data are

generated and acted upon. Thus, fog computing is associated

with a continuous, virtualized middleware layer between the

cloud and the IoT devices [2].

This sketched development illustrates that there is a strong

need to develop an effective container orchestration tool for

fog computing. In our approach its design is governed by

an autonomic computing framework of self-management, self-

configuration, and self-optimization, [3]. Regarding such a fog

computing system in an advanced IoT scenario and following

a container based virtualization approach, it can promptly

and functionally manage containers running in multiple, large-

scale geographically distributed fog nodes. It can also collab-

orate with an SDN/NFV infrastructure to control in a real-

time fashion the network behavior based on the knowledge

provided by the monitored system and service data as well as

the realized application demands.

Regarding the integration of effective, self-managed resource

management and autonomic orchestration schemes into fog

computing systems, it is the primary goal of our research

to generate a first fundamental component of the underlying

MAPE-K model in terms of a fully container-virtualized

prototype interworking with an SDN/NFV infrastructure, see

also [7], [8].

In this paper we present a working prototype of such a

Cloudless Resource Monitoring System (CRMS) consisting of

various software components:

• Two multi-processes systems, called Collector and

Worker, can automatically manage, monitor, and report

the resource consumption of all virtualized hosts within

an SDN/NFV infrastructure. The employed monitoring

framework used in CRMS is based on Docker [5]

and uses the multi-architecture monitoring framework of

Großmann and Schenk [8] as a starting point.

• A custom-built ONOS plugin, called CRMA, aggregates

the resource usage data generated by the underlying

Collector system into a time-series database realized by

the real-time database Influxdb.

• Finally, multi-panel dashboards provide bird-eye views of

the current resource consumption within the underlying

fog computing system.

The paper is organized as follows. In the next section we

describe the architecture of the proposed Cloudless Resource

Monitoring System for advanced fog computing in an IoT

scenario that is enabled by an underlying SDN/NFV infras-

tructure. In particular, we discuss the three basic layers and

functions of the CRMS architecture that is governed by the

MAPE-K concept of an employed autonomic orchestration ap-

proach. Finally, we present some conclusions and a perspective

on further software development of CRMS.

II. AN ARCHITECTURE OF CLOUDLESS RESOURCE

MONITORING FOR FOG COMPUTING SYSTEMS

In this section we present the general software architec-

ture of the proposed Cloudless Resource Monitoring System

(CRMS) for a fog computing environment and its interworking

with a software-defined network incorporating virtualized net-

work functions. The CRMS applies a container virtualization

technique based on Docker [4], [5] and follows the MAPE-K

approach of autonomic computing to realize the monitoring

step of an underlying autonomic orchestration model, [3], [7].

The proposed CRMS consists of three separate logical layers

as shown in Figure 1, namely, a generation, accumulation, and

presentation layer. Subsequently, we explain the incorporated

functionalities and the interworking of the realized software

components in a bottom-to-top fashion following the direction

of the information flows in our proposed system.

A. The Generation Layer

The lowest Generation layer incorporates an arbitrary num-

ber of SDN switches, e.g., OpenFlow compliant switches or

P4 switches. They are connected to multiple heterogeneous

computing nodes, e.g., SBCs, desktops, workstations, etc.

These logical Worker nodes of the fog layer comprise the

virtualized network and computing functionalities. They are

supplemented by a Collector node. Residing in the lowest

logical layer of the fog computing model, these Collector
and Worker nodes constitute the main computational power of

the CRMS. Their main functions as well as internal software

components are working as follows:

• It is the primary task of the Collector node to identify

potential Worker nodes, to manage them and to report

their resource usage to the next higher layer. It can

achieve these tasks by utilizing four daemons, namely,

a coordinatord, architectured, collectord,

and queryd daemon. Each background process has cer-

tain responsibilities. The coordinatord manages the

communication between the Collector and multiple Work-
ers with the help of specialized messages. It also syn-

chronizes the workflows of the Collector using multiple

intra- and inter-processes communication channels (i.e.,

queues). The architectured remotely “terraforms”

the registered Workers by invoking their customized

API endpoints. The collectord and queryd daemon

measure together various machine resources and their

metrics, e.g., CPU, disk, memory utilization, generate

corresponding reports and transfer the latter to specialized

upstream applications for further usage. To bootstrap

those complicated daemons, the Collector makes use of a

Docker [5] specification file config.yml to define required

configurations, e.g., opening port numbers, API endpoint,

Docker options, etc.

• A Worker node is the basic computational entity of

the fog computing system. As the name implies, this

type of computing node does the heavy lifting. It has

two daemons, the workerd and builderd. Similar

Fig. 1. Software architecture of the realized Cloudless Resource Monitoring System

to the Collector, each daemon has separated tasks. The

workerd communicates with the coordinatord, and

registers itself to the monitoring system, whereas the

builderd handles the HTTP requests made by the

architectured daemon of the Collector. Then it

executes various operations to alter the local Docker

environment, [5]. The Worker also employs a config.yml
file to store the configurations required by its two main

daemons.

B. The Accumulation Layer

The Accumulation layer contains two other important com-

ponents of the proposed CRMS, the CRM application CRMA
and an NoSQL database (DB) such as a time series DB (TSDB)

like Influxdb. The CRM application is an SDN networking

application designed with explicit objectives, namely, to inter-

cept certain kinds of packets emitted by the Collector node in

the lower layer, to perform modifications, if required, to those

captured data payloads, and then finally to stockpile them into

a NoSQL database system, particularly a time-series DB, for

further usages such as data analytics and visualization. The

rationale behind favoring a time-series database system in this

scenario is conspicuous. A relational database is useful when

presenting the current state of data, but the CRMS is required

to exhibit the history of the resource consumptions in the fog

computing system over time, rather than at a fixed moment.

In this respect these two services of this Accumulation layer

materialize the Monitoring function. The latter is one of

the four pillars of an MAPE-K architecture which is the

foundation of our research proposal. Here the Java application

CRMA is the main virtualized engine of our approach. It is

specifically developed to integrate itself into an ONOS control

subsystem. Due to the nature of this proposed system in which

data are mostly utilized to track changes of multiple types

of the resource usage in all computing nodes over a period

of time the other service is given by the TSDB. It is more

pertinent than a relational database in this situation. Several

TSDB candidates, such as Influxdb, TimescaleDB1, or

QuestDB2 present a lot of potential. After multiple exhaustive

evaluations, Influxdb, the de-facto leader of such a TSDB,

has been chosen as our solution since it can handle high

data velocity. It also provides a unique query language called

InfluxQL, that allows users to query, extract, and aggregate

useful information quickly and precisely.

C. The Presentation Layer

Lastly, the Presentation layer resides on top of the two

mentioned layers and materializes a data visualization tool for

the graphical representation of the resource usage information

as final component of our CRMS. Using visual elements

such as charts or graphs, system administrators can quickly

observe and discover the latest trends or patterns of the

resource usage occurring among multiple fog nodes in the

underlying infrastructure. They can also identify outliers which

are realized in the underlying fog computing system. There

are several available open-source data visualization tools, e.g.,

Kibana3, Grafana, or Graphite4. After carefully considering

all the pros and cons of those tools, Grafana serves on the

first place of our implementation approach. Generally, it allows

users to generate comprehensive dashboards utilizing multiple

visual elements, e.g., line graph, table, singlestat, combined

with many customized options, being completely versatile.

Furthermore, Grafana can collaborate with multiple types of

a database system supported by built-in data-source plugins,

such as Influxdb, PostgreSQL, Elasticsearch, Prometheus,

and so forth.

1https://www.timescale.com/
2https://questdb.io/
3https://www.elastic.co/kibana
4https://graphiteapp.org/

III. CONCLUSIONS

In this paper we have discussed the design and development

of a virtualized, context-aware, self-configuring orchestration

system interworking with an SDN/NFV environment of a

fog computing system. In particular, we have described the

hierarchical layering and functionality within the underlying

fog nodes to generate the working prototype of an intelligent,

lightweight self-managed orchestrator for advanced IoT appli-

cations and services. The latter Cloudless Resource Monitoring

System (CRMS) has the capability of automatically monitor-

ing various performance aspects with respect to the resource

allocation among multiple hosts of a fog computing system

that are interconnected by SDN. As intended, it is realizing

the basic element “M” of the MAPE-K principles employed

in autonomic computing, see also [3], [7].

Some computational aspects of the proposed CRMS will be

enhanced in the near future to improve the performance of the

invoked communication patterns among the involved software

components of the interconnected fog nodes.

Regarding the planning and performance management of fog

computing systems such as the optimal placement of vir-

tualized network functions or an intelligent, state-dependent

scheduling of virtualized functions in smart IoT applications,

it is possible to easily integrate the collected performance data

which are stored in the time series data base into those more

advanced planning procedures due to the layered structure of

the Cloudless Resource Monitoring System. In this respect,

CRMS offers a high potential for additional, more complex

analysis and planing phases based on machine learning and

advanced data analytics techniques such as an incremental

tensor decomposition scheme. Related investigations employ-

ing federated learning schemes for geographically distributed,

automatically monitored fog computing nodes are a subject of

our current research. They can reveal the full potential of the

adopted MAPE-K model.

Finally, we want to stress that a virtualized demonstrator of

CRMS is available under Containernet5 on demand.

REFERENCES

[1] S. Patidar, D. Rane, and P. Jain, “A survey paper on cloud computing.”
In: 2012 Second International Conference on Advanced Computing
Communication Technologies, pp. 394–398, 2012.

[2] F. Bonomi and R. Milito, “Fog computing and its role in the internet
of things.” In: Proceedings of the MCC Workshop on Mobile Cloud
Computing, pp. 13–16, Aug. 2012.

[3] IBM, “An architectural blueprint for autonomic computing.” Autonomic
Computing, White Paper, Third Edition, June 2005. URL: https://
www-03.ibm.com/autonomic/pdfs/ACBlueprintWhitePaperV7.pdf

[4] M. Eder, “Hypervisor- vs. container-based virtualization.” Technical
University of Munich, 2016.

[5] Docker: “Reference documentation.” URL: https://docs.docker.com/
reference/, https://docs.docker.com/

[6] R. Buyya, S. Narayana Srirama, “Internet of Things (IoT) and New
Computing Paradigms.” In: R. Buyya, S. Narayana Srirama (eds.), Fog
and Edge Computing: Principles and Paradigms. John Wiley & Sons,
Ltd, Chap. 1, pp. 1–23, 2019.

5https://github.com/containernet/containernet

[7] E. Casalicchio, “Container Orchestration: A Survey.” In: A. Puli-
afito, K. Trivedi (eds.), Systems Modeling: Methodologies and Tools.
EAI/Springer Innovations in Communication and Computing. Springer,
Cham, 2019.

[8] M. Großmann and C. Schenk, “A Comparison of Monitoring Approaches
for Virtualized Services at the Network Edge.” In: 2018 International
Conference on Internet of Things, Embedded Systems and Communi-
cations (IINTEC), pp. 85–90, 2018.

[9] W. Stallings, “Foundations of Modern Networking: SDN, NFV, QoE,
IoT, and Cloud.” Addison-Wesley Professional, 2016.

[10] A. Feldmann, “Internet clean-slate design: what and why?” ACM
SIGCOMM Computer Communication Review, vol. 37, no. 3, pp. 59–
64, July 2007.

[11] J. Rexford, C. Dovrolis, “Future internet architecture: clean-slate versus
evolutionary research.” Commun. ACM, vol. 53(9), pp. 36–40, Sep.
2010.

[12] D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-Defined Networking: A Comprehensive
Survey.” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[13] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations.” IEEE
Communications Magazine, vol. 53, no. 2, pp. 90–97, Feb. 2015.

[14] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos, “Fog
Orchestration for Internet of Things Services.” IEEE Internet Computing,
vol. 21, no. 2, pp. 16–24, Mar.–Apr. 2017.

[15] M. Iorga, L. Feldman, R. Barton, M.J. Martin, N.S. Goren, and C. Mah-
moudi, “Fog Computing Conceptual Model.” NIST, Special Publication
(NIST SP) - 500–325, March 2018.

