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Abstract—In time-sensitive networks (TSN) based on
802.1Qbv, i.e., the time-aware Shaper (TAS) protocol, precise
transmission schedules and, paths are used to ensure end-to-end
deterministic communication. Such resource reservations for data
flows are usually established at the startup time of an application
and remain untouched until the flow ends. There is no way to
migrate existing flows easily to alternative paths without inducing
additional delay or wasting resources. Therefore, some of the
new flows cannot be embedded due to capacity limitations on
certain links which leads to sub-optimal flow assignment. As
future networks will need to support a large number of low-
latency flows, accommodating new flows at runtime and adapting
existing flows accordingly becomes a challenging problem. In
this extended abstract we summarize a previously published
paper of us [1]. We combine software-defined networking (SDN),
which provides better control of network flows, with TSN to
be able to seamlessly migrate time-sensitive flows. For that,
we formulate an optimization problem and propose different
dynamic path configuration strategies under deterministic com-
munication requirements. Our simulation results indicate that
regularly reconfiguring the flow assignments can improve the
latency of time-sensitive flows and can increase the number of
flows embedded in the network around ≈ 4% in worst-case
scenarios while still satisfying individual flow deadlines.

Index Terms—SDN, dynamic flow migration, reconfiguration,
TSN, path computation

I. INTRODUCTION

The real-time Internet of things (IoT) driven by 5G networks

and autonomous vehicular networks relies on low-latency

and deterministic networking. Many safety-critical applica-

tions served by such networks, e.g., robots in automation

environments, require a bounded latency and reliable data

delivery. A violation of latency constraints can, in the worst

case, result in physical damage. To address the real-time and

deterministic communication requirements of time-sensitive

and safety-critical systems, several TSN standards have been

proposed by the IEEE 802.1 working group.

In TSN and on the basis of the IEEE 802.1Qcc Stream

Reservation Protocol, end-hosts declare their traffic require-

ments before the actual communication [2]. Then, the time-

critical transmissions are scheduled to prevent undesired queu-

ing delays, and all networking elements on the routing path

enforce these schedules. As the number of flows increases,

it might be necessary to migrate flows to alternative paths

to obtain better resource utilization. However, in TSN flow

paths are configured initially and then remain fixed until the

end of the flow. Reconfiguring flow paths thus would require

taking down a flow and making a new reservation for it, which

introduces an additional delay and signaling effort.

There is rich related work in other fields that can be

adapted to this flow migration problem. For example, there is

related work that formalizes the virtualized network function

(VNF) mapping and scheduling problem as a mixed-integer

optimization problem (MIP) by considering VNF requirements

like delay and priority [3], [4] and the maximum resource

consumption [5], e.g., memory and CPU. Since these opti-

mization problems are NP-hard, several models have been

proposed to decide between either migration of VNFs or their

re-instantiation. Alternatively, some authors solved this prob-

lem via an approximation, which achieves close-to-optimal

performance in terms of acceptance ratio and maximum link

load ratio [6]. In multi-tenant cloud networks, authors solve

the dynamic flow embedding problem via a simple greedy al-

gorithm to reallocate resources at the edge while still providing

predictable latencies [7].

However, there is limited literature focusing on the incre-

mental addition of flows in TSN. Most related papers either

only consider routing path changes; omit schedule changes

or do not evaluate the migration cost [8], [9]. Since TSN

is designed to isolate flows either spatially through different

routes or temporally through different schedules, separating

routes from schedules may limit the QoS.

In this extended abstract, we address the problem of dy-

namic path (re)configuration for TSN networks based on SDN

to enable the migration of network flows under strict latency

constraints. For that, we formulate a time-sensitive optimal

routing problem (TSOR) with mixed-integer linear program-

ming and present different path (re)configuration strategies

by adding varying degrees of routing constraints to TSOR in

[1]. This is an extended abstract based of this former work.

Unlike the time-division multiple access-based schedules in

which multiple frames are transmitted one after the other [10],

we embed the gate opening frequency into our path com-

putation formalization as a TSN-specific aspect. To evaluate

our approach we have built a realistic simulation model of

a TSN network in OMNeT++ and compared our simulation

results with the optimal solution obtained by solving TSOR.

With that, we can quantify the number of flows embedded

into the network, and the reconfiguration cost for a TSN

network. The simulation results indicate that our alternative

path configuration strategies can embed more flows up to 4%

without any additional delay to the time-sensitive traffic with
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Fig. 1. Overall system block diagram

a moderate (re)configuration overhead.

The remainder of this abstract is structured as follows:

Section II summarizes our overall system and introduces the

TSOR. Section III describes our evaluation results. Section IV

concludes the paper and summarizes future work.

II. SYSTEM DESIGN

This section introduces our dynamic path (re)configuration

framework for TSNs by making use of SDN as shown in

Fig. 1. The global view of the centralized SDN controller

enables the deployment of centralized routing algorithms and

eases the configuration. Thus, routing paths can be recon-

figured dynamically at runtime considering the requirements

of time-sensitive environments. To communicate in such a

network, the end-host, a talker in TSN, needs to inform the

network to allocate required resources before the actual com-

munication takes place by sending a talker-advertise message

that includes the traffic requirements of the flow. This message

will be forwarded to the SDN controller that can compute

an assignment, which efficiently uses network resources, and

that can respond to varying network conditions. The received

request is recorded and then, path computation element (PCE)

computes a new path considering flow traffic requirements,

current resource utilization, and the topology. The resulting

forwarding rules are then distributed via the data plane.

In some cases, the computed path might be blocked already,

so that existing flows need to be migrated. Here, flows are

migrated sequentially, ensuring consistency, and then the new

flow is accommodated. After all forwarding rules are success-

fully updated at the respective switches, the controller sends a

listener-ready message to the talker. Then, since the required

resources for the transmission have already been provided, the

talker starts to send data via the allocated path.

A. Time Sensitive Optimal Routing

In this section, we formulate the time-sensitive optimal

routing (TSOR) problem to migrate high-priority flows to suit-

able paths. Using the model, we find (i) E2E paths for given

demands under different quality of service (QoS) requirements

and (ii) a simple gate configuration per port minimizing the

overall E2E communication latency.

The gate configuration is the primary mechanism of the core

TSN protocol, 802.1Qbv Time-aware Shaper (TAS) that en-

sures end-to-end deterministic communication for the streams

of different QoS classes via strict time-division schedul-

ing [11], [12]. In TAS, on each (egress) port of a switch,

there are eight priority queues that store frames of streams

with different priorities, including best-effort, before they are

forwarded to the destination. Each queue is controlled by a

gate to forward a frame. When a gate is open, the next frame

in the respective queue is sent at a given time. Eight gates

corresponding to the eight priority classes are configured by

a gate driver via a gate control list (GCL) that decides which

gate(s) should be open at which time. This mechanism overall

constitutes a frame-forwarding schedule with respect to the

priority classes to satisfy strict timing requirements.

Accordingly, we utilize two optimization variables for our

problem. xdp is a binary variable to decide if demand d is

assigned to path p. ges, is a continuous variable representing

the frequency of an open gate on the egress port of link e

for the service class s among eight possible classes. While

ges = 1 infers that the gate for s should be open all the time

and the entire resource of link e is assigned for that type of

demand, ges ≈ 0 means that any demand of service type s is

not active at all on the respective port and thus, the gate is

closed.

TSOR formulation is given in Equations 1-7. Constraint

(2) ensures that each demand d ∈ D is assigned to exactly

one path p ∈ P . Constraint (3) is the link capacity constraint

and guarantees that each link e has sufficient capacity ce to

handle the total load hd of all demands d ∈ D assigned to

any path p including e, s.t. αep = 1. Constraint (4) represents

the configuration of the GCL of e for each class of service

s. Here, a gate for class s is decided to be open on link

e proportional to value of ges. Constraint (5) is the latency

constraint to ensure that the E2E latency on path p is always

below the latency requirement of demand d, which is ld. Since

the smaller values of ges cause an increased latency due to

queueing delay in the respective gate, a queueing delay factor

lqe is added proportional to the 1−ges, when the gate is closed.

Besides, a base delay loe including delays such as processing

and propagation delay, is considered for each link. We use

lqe = 0.5 and loe = 1.0 in our simulations. Constraint (6) forces

ges to be proportional to the total traffic load of service type

s forwarded through the link e. Otherwise, it would lead to

congestion and unexpected packet drops. Lastly, constraint (7)

fixes the demands that are already assigned to a certain path

p, i.e., adp = 1 from an existing configuration. Our objective

function (1) minimizes the overall latency of the selected paths



which is calculated similar to the latency constraint (5).

min
∑

d∈D

∑

p∈P

∑

e∈E

xdpαep

[

loe + lqe(1− ges)
]

(1)

∑

p∈P

xdp = 1 ∀d ∈ D (2)

∑

d∈D

∑

p∈P

xdpαephd ≤ ce ∀e ∈ E (3)

∑

s∈S

ges = 1 ∀e ∈ E (4)

∑

p∈P

∑

e∈E

xdpαep

[

loe + lqe(1− ges)
]

≤ ld ∀d ∈ D (5)

ges −
∑

d∈D

∑

p∈P

xdpαep

hd

ce
≥ 0 ∀e ∈ E, ∀s ∈ S (6)

xdp ≥ adp ∀d ∈ D, ∀p ∈ P (7)

Lastly, we take TSOR as a linear problem that makes it more

convenient to be solved by state-of-the-art linear optimization

tools. For further information on complexity and linearization,

readers can follow our previous study [13].

B. Path Configuration Strategies

The strict time constraints of such environments lead

to the accommodation of flows on certain paths and leave

these paths untouched as long as the path meets the delay

requirements of TSOR. However, incremental flow scheduling

in TSN will change the link and switch utilization over time

and affect the end-to-end latency of chosen paths. Thus, we

present different path configuration strategies with varying

degrees of routing constraints. Removing such constraints

from the model improves the solution quality, i.e., more flows

can be embedded, but adds computational complexity. If all

constraints can be satisfied, PCE returns a solution that may

require changes in the previous flow assignments. Otherwise,

it rejects the flow.

a) Reconfiguration at every path request: To maximize

the number of embedded flows, replanning all path

configurations from scratch, e.g., by removing the pre-

assignment constraint from TSOR, is an unrestricted strategy

that we call TSOR-U. TSOR-U allows all flows to be

reconfigured, e.g., migrated to different paths, to find the

optimal allocation, including newly arriving flows. Even

though its flexibility, it introduces additional configuration

overhead, e.g., control packets exchanged between the

controller and switches, that might violate the deterministic

communication requirements.

b) Reconfiguration at every k-th path request: Since

TSOR will lead to an inefficient use of resources, especially

for a larger number of flows, a periodic reconfiguration

is an alternative approach. For that, we propose TSOR-P

that reconfigures the network after having received k flow

requests. Therefore, it can adapt the reconfiguration period

dynamically in dependence on the arrival rate of flows. This

strategy can also be improved by monitoring the system and

extracting a pattern for the latency violations to schedule or

derive optimal reconfiguration times.

c) Threshold-triggered reconfiguration: The most

straightforward strategy TSOR-T a network operator can

apply is to use TSOR to embed a new flow and to compute

TSOR-U to measure how close the resulting solution is to

TSOR-U. Then, we only reconfigure if the computed objective

exceeds a pre-defined threshold.

III. EVALUATION

In this section, we evaluate the performance of time-

sensitive packet delivery of the different path (re)configuration

strategies from Section II that we implemented in CPLEX

12.7.0. Furthermore, we simulated a TSN network in OM-

NeT++ v5.5.1 using the inet framework and SDN4CoRE

framework [14]. For our experiments, we used the Integra

topology from the Topology Zoo dataset [15]. Since there is

no publicly available data set for TSN traffic, we generate

both time-triggered (TT) and best-effort (BE) traffic with the

parameters described in [12], [16].

Table I shows the simulation results for TSOR. Since

TSOR-U can fully utilize all data plane resources, it has a

higher acceptance ratio. However, TSOR leaves less room to

accommodate new flows, as the previously installed flows are

not touched. So this limits the acceptance ratio of TSOR.

Since TSOR-P and TSOR-T allow partial reconfiguration, their

acceptance ratio differs from others.

We also measured the delayed frame ratio (DFR) which is

the ratio of delayed frames whose delay exceeds the delay re-

quirement of the received frames. Since TSOR cannot flexibly

change the assigned paths based on the current network status,

some low-bandwidth links may be overloaded. Thus, it has the

highest DFR. Here the first expectation is that TSOR-U has the

lowest DFR since it can flexibly use the resources. However,

the network utilization directly influences the delay, but the

impact gets more significant the more utilized a network

is. Since TSOR-U can embed more flows, the network load

and therefore the average TT latency increases, which also

increases the DFR.

TABLE I
OMNET SIMULATION RESULTS

TSOR TSOR-P TSOR-T TSOR-U

Acceptance

Ratio [%]
49.2 51.18 51.93 52.81

Delayed Frame

Ratio [%]
5.83 4.94 4.47 5.41

Configuration

Time [us]
17 63.7 137.4 189
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Fig. 2. Delayed frame ratio respect to number of accepted flows

To highlight this, we also plotted the cumulative density

function of the DFR in dependence on the number of accepted

flows in Fig. 2. Here, for the same number of accepted flows,

TSOR-U has the lowest DFR which supports our claim. Since

TSOR-P is triggered for every kth received request, it can adapt

resources depending on the received traffic rate. In TSOR-

T, reconfiguration is only triggered if the solution quality in

terms of latency exceeds a certain threshold, e.g., 1%. Thus,

both TSOR-P and TSOR-T perform better than TSOR and are

close to TSOR-U. However, after a certain point, which is ≈
110 flows in this experiment, the number of delays increases

significantly in TSOR-U. Thus, even though it has the lowest

DFR until there, it will not performs better than the TSOR-P

and TSOR-T after that point.

Lastly, we measure the configuration time which includes

the potential migration latency and time for data plane configu-

ration and is thus directly affected by the number of reconfigu-

rations in the data plane. Frequent reconfigurations in TSOR-U

increase configuration time, while limited reconfigurations in

TSOR result in lower configuration time. The results of TSOR-

P and TSOR-T are located in between the results of TSOR and

TSOR-U.

For our simulations we excluded the time to solve the MILP

optimization models, i.e., they were solved in zero time, to

fairly compare the different embedding methods. However, the

actual time required to solve the MILP is still in a reasonable

range, e.g., around 7.3s for 100 flows. This is a significant

overhead for TSN, but only in TSOR-U the MIP needs to be

solved for every new flow. TSOR builds upon the previous

solution. Thus, sorting in a new flow for TSOR requires only

around 4 ms in our settings. The other strategies (TSOR-

T/P) require solving the optimization model for all flows from

time to time. They will then migrate embedded flows from

their potentially sub-optimal paths to their optimal ones. Even

though their performance is highly related to the configuration

parameters such as k in TSOR-T and the triggering threshold

in TSOR-P, this migration can be done seamlessly without

packet loss and increased latencies.

It should be noted that the performance of the presented

heuristics is highly dependent on the selected parameters. For

instance, in a uniformly distributed flow scenario, e.g., a new

flow appears every second, reconfiguring at every kth request

approach reconfigures the network periodically while in other

distributions reconfiguration may be delayed due to varying

flow arrival times. Also, increasing the k value will result in

lower overhead (e.g., configuration time) but probably also

a low acceptance ratio. Similarly, for the threshold triggered

configuration, decreasing the threshold would result in more

frequent reconfigurations and increased overhead. For further

evaluation results, readers can follow our previous study [1].

IV. CONCLUSION

This extended abstract that summarizes previous work [1]

presents and evaluates dynamic path configuration strategies

for SDN-enabled time-sensitive networks. We defined a re-

stricted optimal flow placement model that adapts path assign-

ments based on the current resource utilization and presents

three heuristics to maximize the number of accepted flows

while meeting the QoS requirements of TT applications. In a

highly dynamic small/medium scale environment where flows

are added and removed over time, reconfiguring at every path

request would be more appropriate for utilizing all resources

more efficiently. However, it may not be desired for large

networks as frequent flow migrations and thus additional delay

might be the result. In such scenarios, other heuristics that we

present, e.g., reconfiguration at every k-th request or threshold

triggered reconfiguration, appear as promising reconfiguration

solutions.

Our experiments provide insights on (i) when reconfigura-

tion is needed and (ii) which flows need to be reconfigured,

i.e., migrated. In the future, we would like to include different

aspects, e.g., minimizing the required flow migrations and

splitting flows into multiple paths, e.g., enabling bifurcated

flows. Such aspects result in more balanced flow placement

with better resource utilization. Moreover, we plan to consider

the trade-off between reconfiguration and performance gains.

To do so, we will convert our optimization problem as a multi-

objective reconfiguration scheme by adding a dual objective

to minimize the reconfiguration cost by computing the trade-

off. With that, we will be able to estimate the reconfiguration

cost and related benefits (reduced E2E latency) before taking

a decision.
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