
Reproducible by Design:
Network Experiments with pos

Sebastian Gallenmüller, Dominik Scholz, Henning Stubbe, Eric Hauser, Georg Carle
Department of Informatics, Technical University of Munich

Garching near Munich, Germany
{gallenmu, scholz, stubbe, hauser, carle}@net.in.tum.de

Abstract—In scientific research, the independent reproduction
of experiments is the source of trust. Detailed documentation
is required to enable experiment reproduction. Reproducibility
awards were created to honor the increased documentation
effort. In this work, we propose a novel approach toward
reproducible research—a structured experimental workflow that
allows the creation of reproducible experiments without requiring
additional efforts of the researcher. Moreover, we present our
own testbed and toolchain, namely, plain orchestrating service
(pos), which enables the creation of such experimental work-
flows. The experiment is documented by our proposed, fully
scripted experiment structure. In addition, pos provides scripts
enabling the automation of the bundling and release of all
experimental artifacts. We provide an interactive environment
where pos experiments can be executed and reproduced, available
at https://gallenmu.github.io/single-server-experiment.

Index Terms—Reproducibility, Testbed, Network Experiments,
plain orchestrating service, pos

This paper is based on previous work [1], [2].

I. INTRODUCTION

Recreating the experimental results of others is a time-
consuming endeavor, often lacking novelty and promising
low rewards for scientists. Though, reproduction is necessary
to verify the original experiment and increase the trust in
measured results. Therefore, many scientists agree with the
benefits of reproducibility and its incentivization owing to the
increased effort in the preparation and release of artifacts for
reproduction [3]–[5]. To foster the recreation of experimental
results, the ACM [6] introduced badges—awards for papers
that invest the additional time and effort to make their results
reproducible. We aim to approach the problem from a different
perspective: reduce the amount of work researchers have to put
into making their experiments reproducible.

We present a methodology for network experiments that
relies on an automated experimental workflow. We implement
this methodology in our testbed and software toolchain, called
the plain orchestrating service (pos). Our testbed depends on
scripted experiments to document and automate the experi-
mental workflow to enable the experiments to be repeatable.
Our methodology further introduces an experimental structure
that divides the experiments into setup, measurement, and eval-
uation phases, in addition to the division between experiment
scripts and experiment parameters. This structure facilitates the
documentation of experiments that can be easily shared with
others to achieve reproducibility, which requires little addi-
tional effort. Using the structured experimental approach and

our toolchain, the experiment can be prepared for publication
to enable others to replicate the experiments.

We present a methodology that creates inherently repro-
ducible experiments and establish experimental designs that
support the researcher to create publishable artifacts with little
additional effort. We further provide example pos experiments,
including the experimental results, the scripts that enable their
creation, and the evaluation. We further provide pos as a
platform for others to perform experiments. Therefore, we
created a virtual instance of our testbed, demonstrating that
the provided artifacts can be easily reused by others and easily
created and published by experiment creators.

The remainder of this paper is structured as follows. Sec. II
investigates the state of the art for reproducible network
experiments. We present our requirements and experimental
methodology in Sec. III. In Sec. IV we provide instructions
for researchers to use pos. Sec. V concludes the paper.

II. RELATED WORK

Here, we discuss recent developments focusing on tools and
testbeds allowing the creation of reproducible experiments.

Reproducibility. In 2015, Collberg and Proebsting [5] stud-
ied the replicability of computer science publications. They
concluded that the lack of replicability is considered to be a
sociological problem, as little reward can be gained from repli-
cation. However, more recent developments have suggested
that reproducibility is gaining considerable attention through
dedicated workshops [7]–[9]. A case study by Zilberman [10]
demonstrates that achieving reproducibility is hard, i.e., small
variation from the original input, such as the investigated
packet size, could lead to a significantly different performance.

Testbeds. Currently, there are numerous initiatives for main-
taining and providing testbeds for distributed computing and
networking research, e.g., [11]–[16]. The included testbeds
specialize in different areas, such as wired networks, 5G,
Internet of Things, or Internet-scale measurements. Here, we
consider testbeds that target a domain similar to pos, i.e., wired
networks and hosts that scale across multiple racks and sites.
Nussbaum [17] investigated testbeds [18]–[20] that are similar
to pos. He attests to them the ability to execute reproducible
network experiments. However, the testbeds neither guarantee
nor enforce the creation of reproducible experiments.

Methodologies. In contrast to testbeds, methodologies
introduce concepts to structure and execute experiments.

This document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
http://creativecommons.org/licenses/by-sa/4.0 This CC license does not apply to third party material (attributed to another source) in this publication.

https://gallenmu.github.io/single-server-experiment

OMF [21] is a testbed controller with its own domain-specific
language (DSL) to program network experiments. Similar to
pos, OMF enables the creation of reproducible experiments
relying on automation. Peuster et al. [22] propose SNDZoo,
a repository for reproducible network experiments and a
toolchain to reproduce them. Their tools and experiments are
focused on containers and VMs. Thanks to the tight integration
of methodology and testbed, pos additionally supports low-
level hardware experiments. In 2011, Quereilhac et al. [23]
presented NEPI, a network experimentation framework that
supports various backends such as PlanetLab, netns, or ns-3.
pos’ methodology goes a step further in experiment design
than NEPI, considering subsequent experiment steps such as
the evaluation and later publication of data.

pos consists of two entities—its methodology and a testbed
implementing this methodology, both conjointly designed
with reproducibility in mind. While other testbeds only offer
the possibility of creating repeatable experiments, the pos
methodology enforces repeatability. Given the access to a pos-
capable testbed and experiment files, others can reproduce the
experiments, a property that we call reproducibility by design.
By following the experimental workflow of pos, reproducible
experiments can be created with the requirement of little
additional effort. pos cannot ensure replicability; however, the
created experimental artifacts document the experiments to
enable other researchers to replicate such experiments easily.
The complete automation of the experimental workflow further
attempts to address the issue of low robustness.

III. EXPERIMENT METHODOLOGY

The following analysis introduces the requirements for re-
producible network experiments: Heterogeneity (R1) supports
a wide range of different devices such as resource-constrained
computers or high-performance servers; Isolation (R2) pro-
vides means to isolate the experimental network from non-
investigated devices; Recoverability (R3) reverts the devices
into a working, well-defined state in case of misconfiguration
or errors; Automation (R4) avoids errors or misconfigurations
typical for manual setups; Publishability (R5) documents the
entire experiment automatically to provide others with the
necessary information to replicate experimental results. We are
not aware of a testbed that adheres to a methodology meeting
all identified requirements of pos.

A. Testbed Architecture

We define the network experiment as the entire process
that configures, performs, evaluates, and optionally publishes
measurements. Our network experiments are parameterized
with variables or vars. We call the execution of one concrete
instance measurement run or short run and its outcome result.

The high-level architecture of our testbed consists of three
communicating roles: one testbed controller managing the
experimental workflow and two experiment hosts running the
experiment. One of the experiment hosts is the Device under
Test (DuT), the object of the investigation for experiments and
the other host is the load generator (LoadGen), generating the

traffic sent to the DuT. The number of experiment hosts can
be scaled. Here, we focus on a minimal topology.

B. Testbed Implementation

To support the different experiment devices (R1), pos imple-
ments two APIs: an initialization and a configuration interface.
Devices can be initialized using standardized APIs to reset
and boot servers such as IPMI, Intel’s vPro or AMD’s Pro
features, or a remotely switchable power plug. The mentioned
APIs allow out of band management (R3), i.e., the devices
can be reinitialized in the case of configuration errors. After
initialization, the configuration interface is used to configure
the device and execute the experiment. For a typical Linux
server, we use SSH as the configuration interface. Both APIs
are extensible to simplify the integration of new devices into
pos. The entire initialization process and configuration of a
network device is automated via user-defined scripts (R4).

To avoid any shared state between the different executions
of the experiment, pos relies on live-boot images. Such images
enforce repeatability, as the OS repeatedly starts from a well-
defined state, and the researcher must automate and document
the device configuration (R3 and R4).

C. pos Experimental Structure

To achieve replicability, other researchers must understand
the experimental artifacts. Therefore, we enforce a specific
structure to program pos experiments. The user-programmable
experiment scripts distinguish two different file types: script
and parameter files. In the pos experiment structure, the scripts
define the individual steps of the experiment, and the vars
define the concrete instance of a run. For instance, a script
file defines the initialization of a network port with the name
$PORT; the variable file assigns $PORT the value eno1. This
separation allows experiment execution in a different setup by
adapting the vars without changing the script files.

To further elucidate the experimental structure, we used
different scripts for the different participating experiment hosts
and the different phases of an experiment. Each experiment
host requires two exclusive script files: setup, which defines
the experiment host configuration, and measurement, which
defines the active phase of a run that generates results.
Thereby, a script can be any executable, e.g., python or bash,
executed on the target device.

To parameterize the experiment scripts, pos provides three
different kinds of vars, depending on which experiment host
has access and where the vars are utilized in the experimental
workflow: global vars, accessible from all experiment hosts;
local vars, defined for each experiment host; and loop vars,
shared across all experiment hosts, but continuously changed
between different runs.

D. pos Experimental Workflow

In Fig. 1, the script, variable, and result files that describe
the high-level workflow of an experiment are presented. Code
examples for each file are available [24]. From top to bottom,
the workflow is separated into the three subsequent phases:

Run N
Loop
Vars N measurement

Results N

Run II
Loop
Vars II measurement

Results II

Run I

DuT Controller LoadGen
Experiment

Global
Vars

Setup Setup
Local
Vars

Local
Vars

Loop
Vars IMeasurement Measurement

Results I

Evaluation

Publication

Se
tu
p
Ph

as
e

M
ea
su
re
m
en
tP

ha
se

Ev
al
ua
tio

n
Ph

as
e Script

Parameters
Result Data

1

Fig. 1: Experimental workflow

Setup Phase. The testbed controller host executes the
main experiment script that interacts with the pos API to
execute multiple actions. First, it allocates the desired devices,
e.g., the DuT and LoadGen. The testbed uses a calendar-
based reservation system for the experiment hosts. Devices
are configured by loading the global, local, and loop vars.
Moreover, a live image and boot parameters can be set for
every device. The experiment script instructs pos to start the
devices, whereby the boot is executed using the initialization
interface. Once the experiment hosts have finished booting,
pos deploys a set of utility tools before the setup scripts can
be loaded and executed to complete the setup phase. These
tools can be used in the setup or measurement scripts; read or
set vars and synchronize the different experiment hosts. For
the configuration of the experiment nodes, pos allows a high
degree of flexibility. Users can either script the configuration
themselves or use configuration management systems such as
Ansible [25], Chef [26], or Puppet [27].

Measurement Phase. During the runs, pos executes the
measurement script for every host. The number of executions
depends on the number of individual parameters in the loop
vars file. pos experiments perform measurements for each
possible combination of loop parameters. If lists are used
as parameters, pos automatically generates the cross product
over all parameter values. For every set of values contained
in the calculated cross product, it executes the measurement
script once. The complete output of the experiment script is
captured and stored in the result folder of the experiment.
This enforced central collection of artifacts, including the
utility tools output, executed scripts, vars, device hardware,
and topology information, guarantees publishability (R5).

Evaluation Phase. The evaluation script typically processes
the result files after all runs have been completed. For each
run, pos creates separate result files and metadata, containing

the loop parameters. Based on this metadata, the evaluation
script can filter or aggregate specific parameters and val-
ues. Our plotting scripts can create throughput figures and
latency distributions out-of-the-box using a set of different
representations, e.g., line plots or histograms. Our structured
experimental workflow allows all artifacts linked to an ex-
periment to be connected, i.e., executed scripts, generated
results, and created plots. The publication script bundles these
artifacts into a release format, e.g., archive or repository. In
addition, it generates a website and inserts all the collected
artifacts documenting the experimental structure in a format
that researchers can easily read.

IV. TESTBED-S-A-SERVICE

We provide a repository [28] containing the artifacts of a
pos experiment (results, plots, experiment and plotting scripts).
The well-defined measurement allows us to generate a website
describing the experiment automatically. The website of the
previously introduced experiment is available on GitHub [24].

In addition to experimental files, we provide a platform
for researchers to develop, execute, and reproduce pos ex-
periments. Our Testbed-as-a-Service (TaaS) platform is avail-
able as an interactive shell via web browser [29]. The TaaS
platform [2] relies on virtualized experiment hosts instead of
real hardware. The experiment network between the VMs is
based on single-root IO virtualization (SR-IOV). SR-IOV is a
hardware acceleration feature of NICs, that provides hardware-
native network behavior and performance for virtualized net-
works. Therefore, the TaaS platform behaves similarly to a
real hardware-based pos testbed.

V. CONCLUSION

Numerous researchers have proposed ways to embed and
foster the spirit of reproducibility in our scientific commu-
nity through different measures, such as badging, awarding
of replicability prizes, or merely allowing appendices that
explain experiment replication. We propose a fundamentally
different approach: we reduce the effort they have to invest in
making their experiments reproducible. Despite the different
approaches, our methodology does not replace the incentives
for replicable research but complements them.

We operate a virtual Testbed-as-a-Service to enable other
researchers to try out pos in their browsers. We do not require
researchers to set up their own instance of pos. Instead,
we provide them browser access to a virtual instance. A
significant advantage of our experimental workflow is that
the virtualized experiments can be executed on any pos-driven
testbed. Scientists can register their experiments to be executed
on pos based on real hardware [29].

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
(project SLICES-SC, 101008468), the Bavarian Ministry of
Economic Affairs, Regional Development and Energy (project
6G Future Lab Bavaria), and the German Federal Ministry of
Education and Research (16KISK001K).

REFERENCES

[1] S. Gallenmüller, D. Scholz, H. Stubbe, and G. Carle, “The pos
Framework: A Methodology and Toolchain for Reproducible Network
Experiments,” in CoNEXT ’21: The 17th International Conference on
emerging Networking EXperiments and Technologies, Virtual Event,
Munich, Germany, December 7 - 10, 2021. ACM, 2021, pp. 259–266.
[Online]. Available: https://doi.org/10.1145/3485983.3494841

[2] S. Gallenmüller, E. Hauser, and G. Carle, “Prototyping Prototyping
Facilities: Developing and Bootstrapping Testbeds,” in 2022 IFIP Net-
working WKSHPS: SLICES Scientific Instruments to support digital in-
frastructure science (IFIP Networking 2022 WKSHPS SLICES), Catania,
Italy, Jun. 2022.

[3] D. Saucez, L. Iannone, and O. Bonaventure, “Evaluating the artifacts of
SIGCOMM papers,” CCR, vol. 49, no. 2, pp. 44–47, 2019.

[4] N. Zilberman and A. W. Moore, “Thoughts about artifact badging,”
Comput. Commun. Rev., vol. 50, no. 2, pp. 60–63, 2020.

[5] C. S. Collberg and T. A. Proebsting, “Repeatability in Computer Systems
Research,” Commun. ACM, vol. 59, no. 3, pp. 62–69, 2016.

[6] ACM, “Artifact Review and Badging Version 1.1,” 2020, last accessed:
2022-05-06. [Online]. Available: https://www.acm.org/publications/
policies/artifact-review-and-badging-current

[7] “ACM SIGCOMM Workshop on Models, Methods and Tools for
Reproducible Network Research,” 2003.

[8] “Reproducibility ’17: Reproducibility Workshop,” 2017.
[9] V. Bajpai, A. Brunström, A. Feldmann, W. Kellerer, A. Pras,

H. Schulzrinne, G. Smaragdakis, M. Wählisch, and K. Wehrle, “The
Dagstuhl Beginners Guide to Reproducibility for Experimental Network-
ing Research,” CCR, vol. 49, no. 1, pp. 24–30, 2019.

[10] N. Zilberman, “An Artifact Evaluation of NDP,” Comput. Commun. Rev.,
vol. 50, no. 2, pp. 32–36, 2020.

[11] “Slices-RI,” last accessed: 2022-05-31. [Online]. Available: https:
//slices-ri.eu/

[12] “Fed4Fire,” last accessed: 2022-05-31. [Online]. Available: https:
//www.fed4fire.eu

[13] “OneLab,” last accessed: 2022-05-31. [Online]. Available: https:
//onelab.eu/

[14] “Grid’5000,” last accessed: 2022-05-31. [Online]. Available: https:
//www.grid5000.fr

[15] “Planetlab,” last accessed: 2022-05-31. [Online]. Available: https:
//www.planet-lab.org/

[16] “Geni,” last accessed: 2022-05-31. [Online]. Available: https://www.
geni.net/

[17] L. Nussbaum, “Testbeds Support for Reproducible Research,” in Repro-
ducibility Workshop, Reproducibility@SIGCOMM 2017, Los Angeles,
CA, USA, Aug. 25, 2017. ACM, 2017, pp. 24–26.

[18] J. Mambretti, J. H. Chen, and F. Yeh, “Next Generation Clouds, the
Chameleon Cloud Testbed, and Software Defined Networking (SDN),”
in 2015 International Conference on Cloud Computing Research and
Innovation, ICCCRI 2015, Singapore, Singapore, Oct. 26-27, 2015.
IEEE Computer Society, 2015, pp. 73–79.

[19] R. Ricci, E. Eide, and C. Team, “Introducing cloudlab: Scientific
infrastructure for advancing cloud architectures and applications,” login
Usenix Mag., vol. 39, no. 6, 2014.

[20] D. Balouek, A. Carpen-Amarie, G. Charrier, F. Desprez, E. Jeannot,
E. Jeanvoine, A. Lèbre, D. Margery, N. Niclausse, L. Nussbaum,
O. Richard, C. Pérez, F. Quesnel, C. Rohr, and L. Sarzyniec, “Adding
Virtualization Capabilities to the Grid’5000 Testbed,” in Cloud Comput-
ing and Services Science - Second International Conference, CLOSER
2012, Porto, Portugal, Apr. 18-21, 2012, ser. Communications in Com-
puter and Information Science, vol. 367. Springer, 2012, pp. 3–20.

[21] T. Rakotoarivelo, G. Jourjon, and M. Ott, “Designing and orchestrating
reproducible experiments on federated networking testbeds,” Comput.
Networks, vol. 63, pp. 173–187, 2014.

[22] M. Peuster, S. Schneider, and H. Karl, “The Softwarised Network
Data Zoo,” in 15th International Conference on Network and Service
Management, CNSM 2019, Halifax, NS, Canada, Oct. 21-25, 2019.
IEEE, 2019, pp. 1–5.

[23] A. Quereilhac, M. Lacage, C. D. Freire, T. Turletti, and W. Dabbous,
“NEPI: An integration framework for Network Experimentation,” in
19th International Conference on Software, Telecommunications and
Computer Networks, SoftCOM 2011, Split, Croatia, Sept. 15-17, 2011.
IEEE, 2011, pp. 1–5.

[24] S. Gallenmüller, D. Scholz, H. Stubbe, E. Hauser, and G. Carle,
“pos Experiment Results and Reproduction (Website),” 2022, last
accessed: 2022-05-31. [Online]. Available: https://gallenmu.github.io/
single-server-experiment/

[25] R. Hat, “Ansible,” 2022, last accessed: 2022-05-31. [Online]. Available:
http://ansible.com

[26] Progress, “Progress Chef,” 2022, last accessed: 2022-05-31. [Online].
Available: http://chef.io

[27] Perforce, “puppet,” 2022, last accessed: 2022-05-31. [Online]. Available:
http://puppet.com

[28] S. Gallenmüller, D. Scholz, H. Stubbe, E. Hauser, and G. Carle,
“pos Experiment Results and Reproduction (Repository),” 2022, last
accessed: 2022-05-31. [Online]. Available: https://github.com/gallenmu/
single-server-experiment/

[29] ——, “Virtual Testbed Manager,” 2022, last accessed: 2022-05-31.
[Online]. Available: https://testtestbed.net.in.tum.de

https://doi.org/10.1145/3485983.3494841
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://slices-ri.eu/
https://slices-ri.eu/
https://www.fed4fire.eu
https://www.fed4fire.eu
https://onelab.eu/
https://onelab.eu/
https://www.grid5000.fr
https://www.grid5000.fr
https://www.planet-lab.org/
https://www.planet-lab.org/
https://www.geni.net/
https://www.geni.net/
https://gallenmu.github.io/single-server-experiment/
https://gallenmu.github.io/single-server-experiment/
http://ansible.com
http://chef.io
http://puppet.com
https://github.com/gallenmu/single-server-experiment/
https://github.com/gallenmu/single-server-experiment/
https://testtestbed.net.in.tum.de

	Introduction
	Related Work
	Experiment Methodology
	Testbed Architecture
	Testbed Implementation
	pos Experimental Structure
	pos Experimental Workflow

	Testbed-s-a-Service
	Conclusion
	References

