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Abstract
We establish the local input-to-state stability of a large class of disturbed nonlinear
reaction–diffusion equations w.r.t. the global attractor of the respective undisturbed
system.

Keywords Local input-to-state stability · Global attractor · Nonlinear
reaction–diffusion equations

1 Introduction

In this paper, we are concerned with disturbed nonlinear reaction–diffusion equations
of the form

∂t y(t, ζ ) = �y(t, ζ ) + g(y(t, ζ )) + h(ζ )u(t) (ζ ∈ �)

y(t, ζ ) = 0 (ζ ∈ ∂�)
(1.1)

on a bounded domain � ⊂ R
d with smooth boundary ∂�, where g ∈ C1(R, R) and

h ∈ L2(�, R) and the disturbance u belongs toU := L∞([0,∞), R). It is well known
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[24] that the corresponding undisturbed equation

∂t y(t, ζ ) = �y(t, ζ ) + g(y(t, ζ )) (ζ ∈ �)

y(t, ζ ) = 0 (ζ ∈ ∂�)
(1.2)

has a unique global attractor � ⊂ X := L2(�, R) under suitable growth and upper-
boundedness conditions on the nonlinearity g and its derivative g′, respectively. As
usual, a global attractor for (1.2) is defined to be a compact subset of X that is invariant
and uniformly attractive for (1.2). Also, it can be shown [13] that the global attractor
� of (1.2) is a stable set for (1.2).

What we show in this paper is that the disturbed reaction–diffusion equations (1.1)
are locally input-to-state stable w.r.t. the global attractor � of the undisturbed equa-
tion (1.2). So, we show that there exist comparison functions β ∈ KL and γ ∈ K and
radii r0x , r0u > 0 such that for every initial value y0 ∈ X with ‖y0‖� ≤ r0x and every
disturbance u ∈ U with ‖u‖∞ ≤ r0u the global weak solution

[0,∞) � t 	→ y(t, ·) = y(t, y0, u) ∈ X

of the boundary value problem (1.1) with initial condition y(0, ·) = y0 ∈ X satisfies
the following estimate:

‖y(t, y0, u)‖� ≤ β(‖y0‖� , t) + γ (‖u‖∞) (t ∈ [0,∞)). (1.3)

See [18] for the analogous definition in the special case� = {0}. In the above relations,
we use the standard notation

‖x‖� := dist(x,�) := inf
θ∈�

‖x − θ‖ (x ∈ X) (1.4)

and the standard definitions for the comparison function classesKL andK, which are
recalled in (1.5). In words, the local input-to-state stability estimate (1.3) means that

(i) the invariant set � for (1.2) is locally stable and attractive for the undisturbed
system (1.2) and

(ii) these local stability and attractivity properties are affected only slightly in the
presence of disturbances of small magnitude ‖u‖∞.

In order to achieve the estimate (1.3), we will construct a suitable local input-to-state
Lyapunov function V .

In the finite-dimensional case, input-to-state stability properties w.r.t. attractors
have been studied by many authors, see for example [9,28]. As far as we know,
however, our result is the first (local) input-to-state stability result w.r.t. attractors
� of an infinite-dimensional system given by concrete partial differential equations.
All previous concrete pde results we are aware of—like those from [4,11,12,15–17],
[22,25,29,32,33], for instance—establish input-to-state stability only w.r.t. an equilib-
rium point θ , which without loss of generality is assumed to be θ = 0. In particular,
all these previous results require their nonlinearity g to be such that g(θ) = g(0) = 0
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and such that the undisturbed system has the singleton � := {θ} = {0} as an attrac-
tor. With our result, by contrast, we can treat much more general nonlinearities: we
can treat nonlinearities g with g(0) �= 0 and, more importantly, nonlinearities g for
which the undisturbed system (1.2) has only a non-singleton attractor � � {0}. A
simple example of such a nonlinearity is given by g(r) := −r3 + br , b > 0 which
leads to the Chafee–Infante equation. It possesses a global attractor �, which is the
set consisting of all equilibrium points and all trajectories connecting these points, see
[24] (Section 11.5). Also, the lower bound of the fractional dimension (capacity) of
� depends on the parameter b [30] (Section VII.5). We point out that there is no way
to conclude anything about an input-to-state stability-like property of � by studying
stability properties of the single equilibrium points only. Also note that some of these
equilibrium points can be unstable, but an input-to-state stability-like property may
still be true with respect to �. We refer to [5,7,8,14] for other interesting results about
non-trivial global attractors of nonlinear, impulsive, or even multi-valued semigroups.

In the entire paper, we will use the following conventions and notations. As above,
X := L2(�, R) and U := L∞(R+

0 , R) with R
+
0 := [0,∞) and with the standard

norm of X being denoted simply by ‖·‖ := ‖·‖L2(�). As usual,

Br (x0) = BX
r (x0), Br (x0) = B

X
r (x0) and Br (u0) = BU

r (u0), Br (u0) = B
U
r (u0)

denote the open and closed balls in X or U of radius r around x0 ∈ X or u0 ∈ U ,
respectively. We will often use the notation (1.4) and

Br (�) := {x ∈ X : ‖x‖� < r} and Br (�) := {x ∈ X : ‖x‖� ≤ r},

as well as the notation dist(M,�) := supx∈M ‖x‖� for subsets M,� ⊂ X . Also, K,
K∞ and KL will denote the following standard classes of comparison functions:

K := {γ ∈ C(R+
0 , R

+
0 ) : γ strictly increasing with γ (0) = 0}

K∞ := {γ ∈ K : γ unbounded}
KL := {β ∈ C(R+

0 × R
+
0 , R

+
0 ) : β(·, t) ∈ K for t ≥ 0

and β(s, ·) ∈ L for s > 0}, (1.5)

where L := {γ ∈ C(R+
0 , R

+
0 ) : γ strictly decreasing with limt→∞ γ (t) = 0}. And

finally, upper right-hand Dini derivatives will be denoted by

∂
+
t v(t) := lim

τ→0+
v(t + τ) − v(t)

τ
.

2 Some preliminaries

In this section, we provide the necessary preliminaries for our local input-to-state sta-
bility result. We begin by recalling the definition of weak solutions of initial boundary
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value problems of the form

∂t y(t, ζ ) = �y(t, ζ ) + g(y(t, ζ )) + h(ζ )u(t) ((t, ζ ) ∈ [s,∞) × �)

y(t, ·)|∂� = 0 and y(s, ·) = ys (t ∈ [s,∞)).
(2.1)

In fact, we will have to consider initial boundary value problems with more general
inhomogeneities of the form

∂t y(t, ζ ) = �y(t, ζ ) + g(y(t, ζ )) + h(t, ζ ) ((t, ζ ) ∈ [s,∞) × �)

y(t, ·)|∂� = 0 and y(s, ·) = ys (t ∈ [s,∞)),
(2.2)

where g, h satisfy the following conditions.

Condition 2.1 (i) � is a bounded domain inR
d for some d ∈ Nwith smooth boundary

∂� and, moreover, p ∈ [2,∞), q ∈ (1, 2] are dual exponents: 1/p + 1/q = 1
(ii) g ∈ C1(R, R) and there exist constants α1, α2, κ, λ ∈ (0,∞) such that

−κ − α1|r |p ≤ g(r)r ≤ κ − α2|r |p and g′(r) ≤ λ (r ∈ R) (2.3)

and, moreover, h ∈ Lq
loc(R

+
0 , Lq(�)).

Abitmore explicitly, the first two inequalities in (2.3)mean that g|(0,∞) lies between
r 	→ −κ/|r | − α1|r |p−1 and r 	→ κ/|r | − α2|r |p−1 and that g|(−∞,0) lies between
r 	→ −κ/|r | + α2|r |p−1 and r 	→ κ/|r | + α1|r |p−1. A simple class of functions g
satisfying the three inequalities from (2.3) is given by the polynomials of odd degree
with negative leading coefficient:

g(r) =
2m−1∑

i=0

cir
i (r ∈ R)

with c2m−1 < 0, where m ∈ N. (Choose p := 2m in order to see that Condition 2.1
is satisfied here). In particular, the nonlinearity of the Chafee–Infante equation given
by g(r) := −r3 + br , b > 0 falls into that class (Section 11.5 of [24]).

Suppose that Condition 2.1 is satisfied and let s ∈ R
+
0 and ys ∈ X . A function

y ∈ C([s,∞), X) is called a global weak solution of (2.2) iff y(s) = ys and for every
T ∈ (s,∞) one has

y|[s,T ] ∈ L2([s, T ], H1
0 (�)) ∩ L p([s, T ], L p(�)) (2.4)
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and there exists a (then unique) z ∈ L2([s, T ], H1
0 (�)∗) + Lq([s, T ], Lq(�)) such

that

∫ T

s

(
z(t), ϕ(t)

)
dt = −

∫ T

s

∫

�

∇ y(t)(ζ ) · ∇ϕ(t)(ζ ) dζ dt

+
∫ T

s

∫

�

g
(
y(t)(ζ )

)
ϕ(t)(ζ ) dζ dt

+
∫ T

s

∫

�

h(t)(ζ ) ϕ(t)(ζ ) dζ dt (2.5)

for every ϕ ∈ L2([s, T ], H1
0 (�))∩ L p([s, T ], L p(�)). See [31] or [13] and, for more

background information, [2] or [3]. In this equation, (·, ··) stands for the dual pairing
of H1

0 (�)∗ + Lq(�) and H1
0 (�) ∩ L p(�), that is,

(z, ϕ) = (z1, ϕ)H1
0 (�)∗,H1

0 (�) + (z2, ϕ)Lq (�),L p(�) (2.6)

for every z = z1 + z2 ∈ H1
0 (�)∗ + Lq(�) and ϕ ∈ H1

0 (�) ∩ L p(�), where
(·, ··)H1

0 (�)∗,H1
0 (�) and (·, ··)Lq (�),L p(�) denote the respective dual pairings. See [1]

(Theorem 2.7.1) and [6] (Theorem IV.1.1 and Corollary III.2.13), for instance, to get
that H1

0 (�)∗ + Lq(�), H1
0 (�) ∩ L p(�) and

L2([s, T ], H1
0 (�)∗) + Lq([s, T ], Lq(�)), L2([s, T ], H1

0 (�)) ∩ L p([s, T ], L p(�))

are dual to each other. We point out that if y is a global weak solution to (2.2), then
for every T ∈ (s,∞) there is only one z ∈ L2([s, T ], H1

0 (�)∗) + Lq([s, T ], Lq(�))

satisfying (2.5). And this z is called the weak or generalized derivative of y|[s,T ]. It is
denoted by ∂t y|[s,T ] or simply by ∂t y in the following.

Lemma 2.2 Suppose that Condition 2.1 is satisfied and let s ∈ R
+
0 and ys ∈ X.

Then, the initial boundary value problem (2.2) has a unique global weak solution y
and, moreover, t 	→ ‖y(t)‖2 is absolutely continuous (hence differentiable almost
everywhere) with

d

dt
‖y(t)‖2 = 2

(
∂t y(t), y(t)

)
(2.7)

for almost every t ∈ [s,∞), where (·, ··) is the dual pairing from (2.6).

Proof It is clear from the first two inequalities in (2.3) that

|g(r)r | ≤ κ + α1|r |p (r ∈ R). (2.8)

Since sup|r |≤1 |g(r)| < ∞ by the continuity of g, it follows from (2.8) that for some
constant C1 ∈ (0,∞)

|g(r)| ≤ C1(1 + |r |p−1) (r ∈ R), (2.9)
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and therefore, condition (2) from [31] is satisfied. Also, in view of the second and
third inequalities in (2.3), condition (3) and condition (4) from [31] with M = 0 are
satisfied. Consequently, the assertions of the lemma follow from the remarks made in
Section 2 (up to Remark 1) of [31]. ��

With this lemmaat hand, it is easy to see that the initial boundary value problem (2.1)
generates a semiprocess family (Su)u∈U on X (Lemma 2.4). A semiprocess family on
X is a family of maps Su : � × X → X for every u ∈ U such that

Su(s, s, x) = x and Su
(
t, s, Su(s, r , x)

) = S(t, r , x) (2.10)

Su(t + τ, s + τ, x) = Su(·+τ)(t, s, x) (2.11)

for all (t, s), (s, r) ∈ �, τ ∈ R
+
0 , x ∈ X and u ∈ U , where we used the abbreviation

� := {(s, t) ∈ R
+
0 × R

+
0 : t ≥ s}. See [3], for instance, for more information on

semiprocess families.

Condition 2.3 (i) � is a bounded domain inR
d for some d ∈ Nwith smooth boundary

∂� and, moreover, p ∈ [2,∞)

(ii) g ∈ C1(R, R) and there exist constants α1, α2, κ, λ ∈ (0,∞) such that

−κ − α1|r |p ≤ g(r)r ≤ κ − α2|r |p and g′(r) ≤ λ (r ∈ R) (2.12)

and, moreover, h ∈ X\{0}.
Lemma 2.4 Suppose that Condition 2.3 is satisfied. Then, for every s ∈ R

+
0 and every

(ys, u) ∈ X × U the initial boundary value problem (2.1) has a unique global weak
solution y(·, s, ys, u). Additionally, (Su)u∈U defined by

Su(t, s, ys) := y(t, s, ys, u) (2.13)

is a semiprocess family on X.

Proof In order to see the unique global weak solvability, simply apply Lemma 2.2 with
g := g and with h ∈ L2

loc(R
+
0 , L2(�)) ⊂ Lq

loc(R
+
0 , Lq(�)) defined by h(t)(ζ ) :=

h(ζ )u(t). In order to see the semiprocess property, use the definition of weak solutions
and the uniqueness statement from Lemma 2.2. ��

In the following, (Su)u∈U will always denote the semiprocess family from the
previous lemma. Also, we will often refer to (Su)u∈U and S0 as the disturbed and the
undisturbed system, respectively. In proving our local input-to-state stability result,
the following estimates will play an important role.

Lemma 2.5 Suppose that Condition 2.3 is satisfied. Then,

‖S0(t, 0, y01) − S0(t, 0, y02)‖ ≤ eλt ‖y01 − y02‖ (t ∈ R
+
0 ) (2.14)

‖Su(t, 0, y0) − S0(t, 0, y0)‖ ≤ 2e2λ ‖h‖ ‖u‖∞ t (t ∈ [0, 1]) (2.15)

for all y0, y01, y02 ∈ X and all u ∈ U .
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Proof As a first step, we show that for every y01, y02 ∈ X and u ∈ U the function

yu12 := yu1 − y02 with yu1 := Su(·, 0, y01) and y02 := S0(·, 0, y02) (2.16)

is a global weak solution of the initial boundary value problem

∂t y(t, ζ ) = �y(t, ζ ) + g(y(t, ζ )) + h(t, ζ ) ((t, ζ ) ∈ [0,∞) × �)

y(t, ·)|∂� = 0 and y(0, ·) = y01 − y02 (t ∈ [0,∞)),
(2.17)

where g := g and h(t)(ζ ) := g(yu1 (t)(ζ )) − g(y02 (t)(ζ )) − g(yu12(t)(ζ )) + h(ζ )u(t).
So, let y01, y02 ∈ X and u ∈ U and adopt the abbreviations from (2.16). It is not
difficult—using (2.9) and q(p − 1) = p—to see from Condition 2.3 that with g, h as
defined above, Condition 2.1 is satisfied. Since yu1 , y

0
2 are global weak solutions, we

have yu12 ∈ C(R+
0 , X) and for every T ∈ (0,∞) we have

yu12|[0,T ] ∈ L2([0, T ], H1
0 (�)) ∩ L p([0, T ], L p(�))

and ∂t yu1 |[0,T ] − ∂t y02 |[0,T ] ∈ L2([0, T ], H1
0 (�)∗) + Lq([0, T ], Lq(�)) as well as

∫ T

0

(
∂t y

u
1 (t) − ∂t y

0
2 (t), ϕ(t)

)
dt = −

∫ T

0

∫

�

∇ yu12(t)(ζ ) · ∇ϕ(t)(ζ ) dζ dt

+
∫ T

0

∫

�

g
(
yu12(t)(ζ )

)
ϕ(t)(ζ ) dζ dt

+
∫ T

0

∫

�

h(t)(ζ ) ϕ(t)(ζ ) dζ dt (2.18)

for every ϕ ∈ L2([0, T ], H1
0 (�)) ∩ L p([0, T ], L p(�)). And therefore, yu12 is a weak

solution of (2.17), as desired.
As a second step, we show that for every y01, y02 ∈ X and u ∈ U the function yu12

from (2.16) satisfies the estimate

sup
T∈[0,t]

∥∥yu12(T )
∥∥2 ≤ e2λt

(
‖y01 − y02‖2

+2 ‖h‖ ‖u‖∞ · t · sup
T∈[0,t]

∥∥yu12(T )
∥∥

)
(2.19)

for every t ∈ R
+
0 . Indeed, by the first step and Lemma 2.2, the function t 	→ ∥∥yu12(t)

∥∥2

is absolutely continuous with

d

dt

∥∥yu12(t)
∥∥2

2
= (

∂t y
u
12(t), y

u
12(t)

) = (
∂t y

u
1 (t) − ∂t y

0
2 (t), y

u
12(t)

)

123



Mathematics of Control, Signals, and Systems

for almost every t ∈ R
+
0 . And therefore, by virtue of (2.18) with ϕ := yu12, we get

∥∥yu12(T )
∥∥2

2
−

∥∥yu12(0)
∥∥2

2
=

∫ T

0

(
∂t y

u
1 (t) − ∂t y

0
2 (t), y

u
12(t)

)
dt

≤
∫ T

0

∫

�

(
g(yu1 (t)(ζ )) − g(y02 (t)(ζ ))

)
yu12(t)(ζ ) dζ dt

+
∫ T

0

∫

�

h(ζ )u(t)yu12(t)(ζ ) dζ dt

≤ λ

∫ T

0

∥∥yu12(t)
∥∥2 dt + ‖h‖ ‖u‖∞

∫ T

0

∥∥yu12(t)
∥∥ dt (2.20)

for every T ∈ (0,∞). In the last inequality, we used that (g(r) − g(s))(r − s) ≤
λ|r − s|2 for all r , s ∈ R due to (2.12). So, for every t0 ∈ (0,∞), we obtain

∥∥yu12(T )
∥∥2 ≤ ‖y01 − y02‖2 + 2 ‖h‖ ‖u‖∞ · t0 · sup

t∈[0,t0]
∥∥yu12(t)

∥∥ + 2λ
∫ T

0

∥∥yu12(t)
∥∥2 dt

for every T ∈ [0, t0]. And from this, in turn, the claimed estimate (2.19) immediately
follows by Grönwall’s lemma.

As a third step, it is now easy to conclude the desired estimates (2.14) and (2.15)
from the second step. Indeed, (2.14) immediately follows from (2.19) with the special
choice u := 0 ∈ U and (2.15) follows from (2.19) with the special choice y01 =
y02 := y0 ∈ X . ��

We remark for later reference that our semiprocess family (Su)u∈U , like any other
semiprocess family [27], satisfies the following so-called cocycle property:

Su(t + τ, 0, x) = Su(·+τ)

(
t, 0, Su(τ, 0, x)

)
(2.21)

for all t, τ ∈ R
+
0 , x ∈ X and u ∈ U . (Just combine (2.10) and (2.11) to see this). In

particular, S0 satisfies the following (nonlinear) semigroup property [23]:

S0(t + τ, 0, x) = S0
(
t, 0, S0(τ, 0, x)

)
(t, τ ∈ R

+
0 and x ∈ X). (2.22)

We conclude this section with some remarks on the asymptotic behavior of this
semigroup S0 in terms of attractors [24,30]. A global attractor of S0 is a compact
subset � of X such that

(i) � is invariant under S0, that is, S0(t, 0,�) = � for every t ∈ R
+
0

(ii) � is uniformly attractive for S0, that is, for every bounded subset B ⊂ X one has

dist
(
S0(t, 0, B),�

) = sup
x∈B

‖S0(t, 0, x)‖� −→ 0 (t → ∞). (2.23)
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It directly follows from this definition that a global attractor of S0 is minimal among
all closed uniformly attractive sets of S0 and maximal among all bounded invariant
sets of S0. And from this, in turn, it immediately follows that if S0 has any global
attractor then it is already unique.

Lemma 2.6 Suppose that Condition 2.3 is satisfied. Then, the undisturbed system S0
has a unique global attractor� and, moreover,� is uniformly globally asymptotically
stable for S0, that is, there exists a comparison function β0 ∈ KL such that

‖S0(t, 0, x)‖� ≤ β0(‖x‖� , t) (t ∈ R
+
0 andx ∈ X). (2.24)

Proof It is well known that S0 has a global attractor � (by Theorem 11.4 of [24], for
instance) and that global attractors when existent are already unique (by the remarks
preceding the lemma). So, we have only to show that � is uniformly globally asymp-
totically stable for S0. And in order to do so, we will proceed in three steps, applying
results from [20] to the system S0 = (Su)u∈U0 with trivial disturbance spaceU0 := {0}.
(In this context, it should be noticed that by (2.22) and the continuity of weak solutions,
(Su)u∈U0 is a forward-complete system in the sense of [20,21,26]).

As a first step, we show that � is uniformly globally stable for (Su)u∈U0 = S0, that
is, there exists a comparison function σ0 ∈ K such that

‖S0(t, 0, x)‖� ≤ σ0(‖x‖�) (t ∈ R
+
0 ) (2.25)

for every x ∈ X (Definition 2.8 of [20]). Indeed, it immediately follows from the
invariance of � under S0 and from the estimate (2.14) that for every ε > 0 and every
T ∈ (0,∞) there exists a δ ∈ (0, 1] such that

‖S0(t, 0, x)‖� ≤ inf
θ∈�

‖S0(t, 0, x) − S0(t, 0, θ)‖ < ε (t ∈ [0, T ] and x ∈ Bδ(�)).

And from this and the uniform attractivity (2.23) of � for S0 (with B := B1(�)), in
turn, it follows that for every ε > 0 there exists a δ > 0 such that

‖S0(t, 0, x)‖� < ε (t ∈ R
+
0 ) (2.26)

for every x ∈ Bδ(�). Also, it is well known that

‖S0(t, 0, x)‖2 ≤ e−2ωt ‖x‖2 + λ|�|
ω

(t ∈ R
+
0 ) (2.27)

for all x ∈ X , where ω ∈ (0,∞) is the smallest eigenvalue of −�, the negative
Dirichlet Laplacian on �. (See the very last equation on p. 286 of [24], for instance).
Since ‖S0(t, 0, x)‖� ≤ ‖S0(t, 0, x)‖ + ‖�‖ and ‖x‖ ≤ ‖x‖� + ‖�‖ with ‖�‖ :=
supθ∈� ‖θ‖, it follows from (2.27) that there exists a comparison function σ ∈ K and
a constant c ∈ (0,∞) such that

‖S0(t, 0, x)‖� ≤ σ(‖x‖�) + c (t ∈ R
+
0 ) (2.28)
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for every x ∈ X . In the terminology of [20], the relations (2.26) and (2.28) mean
that� is uniformly locally stable and Lagrange-stable for (Su)u∈U0 , respectively. And
therefore, � is uniformly globally stable for (Su)u∈U0 = S0 by virtue of Remark 2.9
of [20], as desired.

As a second step,we show that� is uniformly globally attractive for (Su)u∈U0 = S0,
that is, for every ε > 0 and r > 0 there exists a time τ(ε, r) ∈ R

+
0 such that

‖S0(t, 0, x)‖� < ε (t ≥ τ(ε, r)) (2.29)

for every x ∈ Br (�) (Definition 2.8 of [20]). Indeed, this immediately follows from
the uniform attractivity (2.23) of � for S0 with B := Br (�).

As a third step, we can now conclude the desired uniform global asymptotic stability
of � for (Su)u∈U0 = S0 from Theorem 4.2 of [20] and the first two steps. ��

3 A local input-to-state stability result

In this section, we establish our local input-to-state stability result for the disturbed
reaction–diffusion system (1.1).Webegin by showing that the undisturbed system (1.2)
has a local Lyapunov function and, for that purpose, we will argue in a similar way as
[10] (Theorem 4.2.1).

Lemma 3.1 Suppose that Condition 2.3 is satisfied and let� be the global attractor of
the undisturbed system S0. Then, for every r0 > 0 there exists a Lipschitz continuous
function V : Br0(�) → R

+
0 with Lipschitz constant 1 and comparison functions

ψ,ψ, α ∈ K∞ such that

ψ(‖x‖�) ≤ V (x) ≤ ψ(‖x‖�) (x ∈ Br0(�)) (3.1)

V̇0(x) ≤ −α(‖x‖�) (x ∈ Br0(�)),

(3.2)

where V̇0(x) := limt→0+ 1
t

(
V (S0(t, 0, x)) − V (x)

)
.

Proof Choose an arbitrary r0 ∈ (0,∞) and fix it for the rest of the proof. Also, choose
β0 ∈ KL as in Lemma 2.6 and, for every ε > 0, let T (ε) = Tr0(ε) be a time such that

β0(r0, t) ≤ ε (t ∈ [T (ε),∞)). (3.3)

Set now, for every given ε > 0,

V ε(x) := e−(λ+c0)T (ε) sup
t∈[0,∞)

(
ec0t ηε

( ‖S0(t, 0, x)‖�

))
(x ∈ Br0(�)), (3.4)

where c0 ∈ (0,∞) is an arbitrary constant (which is fixed throughout the proof) and
ηε(r) := max{0, r − ε} for every r ∈ R

+
0 . In view of (2.24) and (3.3), the supremum
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in (3.4) for x ∈ Br0(�) actually extends only over a compact interval, namely

V ε(x) = e−(λ+c0)T (ε) sup
t∈[0,T (ε)]

(
ec0t ηε

( ‖S0(t, 0, x)‖�

))
(x ∈ Br0(�)). (3.5)

In particular, V ε : Br0(�) → R
+
0 is a well-defined map (with finite values) and

V ε(x) ≤ e−λT (ε) sup
t∈[0,T (ε)]

(
ηε

( ‖S0(t, 0, x)‖�

))

≤ β0(‖x‖� , 0) (x ∈ Br0(�)) (3.6)

because ηε(r) ≤ r for all r ∈ R
+
0 . Since, moreover, |ηε(r) − ηε(s)| ≤ |r − s| for all

r , s ∈ R
+
0 , we see from (3.5) and (2.14) that

|V ε(x) − V ε(y)| ≤ e−(λ+c0)T (ε) sup
t∈[0,T (ε)]

∣∣∣ec0t ηε

( ‖S0(t, 0, x)‖�

)

− ec0t ηε

( ‖S0(t, 0, y)‖�

)∣∣∣

≤ e−λT (ε) sup
t∈[0,T (ε)]

∣∣∣ ‖S0(t, 0, x)‖� − ‖S0(t, 0, y)‖�

∣∣∣

≤ e−λT (ε) sup
t∈[0,T (ε)]

‖S0(t, 0, x) − S0(t, 0, y)‖

≤ ‖x − y‖ (x, y ∈ Br0(�)). (3.7)

(In the first inequality above, we used the elementary fact that | supt∈I at−supt∈I bt | ≤
supt∈I |at −bt | for arbitrary bounded functions t 	→ at , bt on an arbitrary set I , and in
the third inequality above, we used the elementary fact that | ‖ξ‖�−‖η‖� | ≤ ‖ξ − η‖
for arbitrary ξ, η ∈ X ). Additionally, for every x ∈ Br0(�), we have S0(τ, 0, x) ∈
Br0(�) for τ small enough and thus, by (3.4) and the semigroup property (2.22),

V ε(S0(τ, 0, x)) = e−(λ+c0)T (ε) sup
t∈[0,∞)

(
ec0t ηε

( ‖S0(t + τ, 0, x)‖�

)) ≤ e−c0τV ε(x)

for every x ∈ Br0(�) and all sufficiently small times τ . Consequently,

V̇ ε
0 (x) = lim

τ→0+
1

τ

(
V ε(S0(τ, 0, x)) − V ε(x)

) ≤ −c0V
ε(x) (x ∈ Br0(�)). (3.8)

With the help of the auxiliary functions V ε, we can now construct a function V :
Br0(�) → R

+
0 with the desired properties. Indeed, let

V (x) :=
∞∑

k=1

2−kV 1/k(x) (x ∈ Br0(�)). (3.9)

123



Mathematics of Control, Signals, and Systems

We then conclude from (3.6), (3.7), (3.8) that

V (x) ≤ β0(‖x‖� , 0) (x ∈ Br0(�)), (3.10)

|V (x) − V (y)| ≤
∞∑

k=1

2−k |V 1/k(x) − V 1/k(y)| ≤ ‖x − y‖ (x, y ∈ Br0(�)),

(3.11)

V̇0(x) ≤
∞∑

k=1

2−k V̇ 1/k
0 (x) ≤ −c0V (x) (x ∈ Br0(�)). (3.12)

Since supt∈[0,∞)(e
c0tη1/k(‖S0(t, 0, x)‖�)) ≥ η1/k(‖x‖�) for all x ∈ X , we also

conclude from (3.4) and (3.9) that

V (x) ≥
∞∑

k=1

2−ke−(λ+c0)T (1/k)η1/k(‖x‖�) (x ∈ Br0(�). (3.13)

In view of these estimates, we now define the comparison functions ψ , ψ and α in the
following way:

ψ(r) := β0(r , 0) + r and ψ(r) :=
∞∑

k=1

2−ke−(λ+c0)T (1/k)η1/k(r)

andα(r) := c0ψ(r) for r ∈ R
+
0 . It is easy toverify thatψ ,ψ andhenceα belong toK∞.

And, moreover, by virtue of (3.10), (3.11), (3.12), (3.13), the desired estimates (3.1)
and (3.2) follow. ��

It should be noticed that the functions V , ψ, α constructed in the proof above all
depend on the chosen radius r0 ∈ (0,∞) because these functions are defined in
terms of the times T (ε) = Tr0(ε) from (3.3). With the next lemma, we show that the
local Lyapunov function V for the undisturbed system is also a local input-to-state
Lyapunov function for the disturbed systemw.r.t.�. (See [4] for the definition of local
input-to-state Lyapunov functions w.r.t. an equilibrium point).

Lemma 3.2 Suppose that Condition 2.3 is satisfied and let � be the global attractor
of the undisturbed system S0. Also, let r0 > 0 and let V : Br0(�) → R

+
0 be chosen

as in the previous lemma. Then, there exist comparison functions α, σ ∈ K such that
for every u ∈ U

V̇u(x) := lim
t→0+

1

t

(
V (Su(t, 0, x)) − V (x)

) ≤ −α(‖x‖�) + σ(‖u‖∞) (x ∈ Br0(�)).

Proof Choose α = αr0 ∈ K∞ as in Lemma 3.1 and define σ ∈ K∞ by σ(r) :=
2e2λ ‖h‖ r for all r ∈ R

+
0 . We then see from Lemma 3.1 and from (2.15) that for every

x ∈ Br0(�) and every u ∈ U
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V̇u(x) ≤ lim
t→0+

1

t

(
V (S0(t, 0, x)) − V (x)

) + lim
t→0+

1

t

(
V (Su(t, 0, x)) − V (S0(t, 0, x))

)

≤ −α(‖x‖�) + lim
t→0+

1

t
‖Su(t, 0, x) − S0(t, 0, x)‖

≤ −α(‖x‖�) + σ(‖u‖∞), (3.14)

as desired. ��
With these lemmas at hand, we can now establish the local input-to-state stabil-

ity of the disturbed reaction–diffusion system (1.1) w.r.t. the global attractor of the
undisturbed system (1.2). It is an open question—left to future research—whether this
result can actually be extended to a semi-global input-to-state stability result. See the
remarks after the proof for a discussion of the obstacles to such an extension.

Theorem 3.3 Suppose that Condition 2.3 is satisfied and let � be the global attractor
of the undisturbed system S0. Then, the disturbed system (Su)u∈U is locally input-to-
state stable w.r.t. �, that is, there exist comparison functions β ∈ KL and γ ∈ K and
radii r0x , r0u > 0 such that

‖Su(t, 0, x0)‖� ≤ β(‖x0‖� , t) + γ (‖u‖∞) (t ∈ R
+
0 ) (3.15)

for all (x0, u) ∈ X × U with ‖x0‖� ≤ r0x and ‖u‖∞ ≤ r0u.

Proof Choose an arbitrary r0 ∈ (0,∞) and fix it for the entire proof. Also, take
V = Vr0 and ψ = ψ

r0
, ψ as in Lemma 3.1. It then immediately follows from

Lemma 3.2 that there exist comparison functions α = αr0 ∈ K and χ = χr0 ∈ K such
that for all (x0, u) ∈ X × U with r0 ≥ ‖x0‖� ≥ χ(‖u‖∞) one has

V̇u(x0) ≤ −α(‖x0‖�). (3.16)

(Simply choose χ(r) := α−1
0 (2σ0(r)) and α(r) := α0(r)/2, where α0, σ0 ∈ K∞

are as in Lemma 3.2). According to the comparison lemma from [19] (Corollary 1),
we can then choose a comparison function β = β

α◦ψ
−1 in such a way that for every

T ∈ (0,∞] and every function v ∈ C([0, T ), R
+
0 ) with

∂
+
t v(t) ≤ −(α ◦ ψ

−1
)(v(t)) (t ∈ [0, T ))

one has v(t) ≤ β(v(0), t) for all t ∈ [0, T ). We now define

β(r , t) := ψ−1(β(ψ(r), t)
)

and γ (r) := ψ−1(ψ(χ(r))
)

(3.17)

for r , t ∈ R
+
0 and choose r0x , r0u ∈ (0,∞) so small that

r0x < r0 and β(r0x , 0) < r0 and γ (r0u) < r0. (3.18)
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Also, we will write

Mu := {
x ∈ Br0(�) : V (x) ≤ ψ(χ(‖u‖∞))

}
(3.19)

for u ∈ U . Clearly, β ∈ KL, γ ∈ K and Mu is closed for every u ∈ U . Additionally,
for every u ∈ Br0u (0) we have by (3.18) that

Mu ⊂ {
x ∈ Br0(�) : ‖x‖� ≤ γ (‖u‖∞)

} ⊂ Br0(�). (3.20)

After these preliminary considerations, we now prove that

‖Su(t, 0, x0)‖� ≤ β(‖x0‖� , t) + γ (‖u‖∞) (t ∈ R
+
0 ) (3.21)

for all (x0, u) ∈ Br0x (�) × Br0u (0) and thus obtain the desired local input-to-state
stability. So, let (x0, u) ∈ Br0x (�)× Br0u (0) be fixed for the rest of the proof. We will
distinguish two cases in the following, namely the case where x0 ∈ Mu treated in part
(i) of the proof and the case where x0 /∈ Mu treated in part (ii) of the proof.

(i) Suppose we are in the case x0 ∈ Mu . In order to establish (3.21) in that case, we
will show—in two steps—that for every t0 ∈ [0,∞) one has

Su(t, t0, Mu) ∈ Mu (t ∈ [t0,∞)). (3.22)

So, let t0 ∈ [0,∞) and xt0 ∈ Mu and

T := sup
{
T ′ ∈ (t0,∞) : ‖x(t)‖� < r0 for all t ∈ [t0, T ′)

}
, (3.23)

where we use the abbreviation x(t) := Su(t, t0, xt0). Since x(t0) = xt0 ∈ Mu and
thus ‖x(t0)‖� < r0 by (3.20), we observe that T ∈ (t0,∞] and that

‖x(t)‖� < r0 (t ∈ [t0, T )). (3.24)

As a first step, we show that x(t) ∈ Mu at least for all [t0, T ). Assuming the
contrary, we find a t ∈ [t0, T ) and an ε > 0 such that V (x(t)) > ψ(χ(‖u‖∞))+ε.
Since x(t0) = xt0 ∈ Mu and thus V (x(t0)) ≤ ψ(χ(‖u‖∞)) + ε, we observe that

t1 := inf
{
t ∈ [t0, T ) : V (x(t)) > ψ(χ(‖u‖∞)) + ε

}
(3.25)

belongs to the interval (t0, T ) and, moreover, V (x(t1)) = ψ(χ(‖u‖∞)) + ε. So,

ψ(‖x(t1)‖�) ≥ V (x(t1)) > ψ(χ(‖u‖∞)) ≥ ψ
(
χ(‖u(· + t1)‖∞)

)
,

and therefore, we get by virtue of (3.16) that

lim
t→0+

1

t

(
V (x(t1 + t)) − V (x(t1))

)
= lim

t→0+
1

t

(
V

(
Su(·+t1)(t, 0, x(t1))

) − V (x(t1))
)

= V̇u(·+t1)(x(t1)) ≤ −α(‖x(t1)‖�)

< 0. (3.26)
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Consequently, there exists a δ > 0 such that V (x(t1 + t)) ≤ V (x(t1)) =
ψ(χ(‖u‖∞)) + ε for all t ∈ [0, δ). Contradiction to the definition of t1!
As a second step,we show that T = ∞. Indeed, assuming T < ∞, wewould get by
the first step and continuity that even x(T ) ∈ Mu and thus ‖x(T )‖� < r0 by (3.20).
And from this, in turn, it would follow again by continuity that ‖x(t)‖� < r0 for
all t ∈ [T , T + δ) with some δ > 0. In conjunction with (3.24), this would yield
a contradiction to the definition (3.23) of T !
Combining now the first and the second step, we finally obtain the desired invari-
ance (3.22), which clearly implies (3.21) in the case x0 ∈ Mu .

(ii) Suppose we are in the case x0 /∈ Mu . In order to establish (3.21) in that case, we
will show—in three steps—that for some t0 ∈ (0,∞] one has

‖Su(t, 0, x0)‖� ≤ β(‖x0‖� , t) (t ∈ [0, t0)) (3.27)

‖Su(t, 0, x0)‖� ≤ γ (‖u‖∞) (t ∈ (t0,∞)). (3.28)

Indeed, let t0 := inf{t ∈ R
+
0 : x(t) ∈ Mu} and

T := sup
{
T ′ ∈ (0, t0) : ‖x(t)‖� < r0 for all t ∈ [0, T ′)

}
, (3.29)

where we use the abbreviation x(t) := Su(t, 0, x0). (In view of the standard
convention inf ∅ := ∞, we have t0 = ∞ in case x(t) /∈ Mu for all t ∈ R

+
0 ). Since

x(0) = x0 ∈ (X\Mu) ∩ Br0x (�) and thus ‖x(0)‖� < r0 by (3.18), we observe
that t0 ∈ (0,∞] and T ∈ (0, t0] and that

x(t) /∈ Mu (t ∈ [0, t0)) and ‖x(t)‖� < r0 (t ∈ [0, T )). (3.30)

As a first step, we show that ‖x(t)‖� ≤ β(‖x0‖� , t) at least for all t ∈ [0, T ).
Indeed, in view of (3.30.a) and (3.30.b) we have

ψ(‖x(t)‖�) ≥ V (x(t)) > ψ(χ(‖u‖∞)) ≥ ψ
(
χ(‖u(· + t)‖∞)

)
(t ∈ [0, T ))

and therefore we get by virtue of (3.16) that

∂
+
t V (x(t)) = lim

τ→0+
1

τ

(
V (x(t + τ)) − V (x(t))

)

= lim
τ→0+

1

τ

(
V

(
Su(·+t)(τ, 0, x(t))

) − V (x(t))
)

= V̇u(·+t)(x(t))

≤ −α(‖x(t)‖�) ≤ −(
α ◦ ψ

−1)(
V (x(t))

)
(t ∈ [0, T )). (3.31)

Consequently, by our choice of β we see that

V (x(t)) ≤ β(V (x(0)), t) (t ∈ [0, T )).

In view of (3.30.b) and our definition (3.17) of β, the assertion of the first step is
then clear.
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As a second step, we show that T = t0. Indeed, assuming T < t0, we would get
by the first step and continuity that even ‖x(T )‖� ≤ β(‖x0‖� , T ) ≤ β(r0x , 0)
and thus ‖x(T )‖� < r0 by (3.18). And from this, in turn, it would follow that
‖x(t)‖� < r0 for all t ∈ [T , T +δ)with some δ > 0. In conjunction with (3.30.b),
this would yield a contradiction to the definition (3.29) of T !
As a third step, we show that ‖x(t)‖� ≤ γ (‖u‖∞) for all t ∈ [t0,∞). We can
assume t0 < ∞ because in the case t0 = ∞ the assertion is empty. So, by the
definition of t0 it then follows that x(t0) ∈ Mu and therefore by virtue of (3.22)

x(t) = Su(t, 0, x0) = Su(t, t0, x(t0)) ∈ Mu (t ∈ [t0,∞)).

In view of (3.20), the assertion of the third step is then clear.
Combining now the first, second and third step, we finally obtain the desired
estimates (3.27) and (3.28), which clearly imply (3.21) in the case x0 /∈ Mu . ��

An inspection of the above proof shows that we actually proved a bit more than
local input-to-state stability, namely we have: for every r0 > 0 there exist β ∈ KL
and γ ∈ K and r0x , r0u > 0 such that the estimate (3.21) holds true for all ‖x‖� ≤ r0x
and ‖u‖∞ ≤ r0u . So, if by choosing r0 large enough we could also ensure that r0x and
r0u with (3.18) can be chosen arbitrarily large, we would even have semi-global input-
to-state stability. Yet, this is not so clear because the functions β = βr0 and γ = γr0
from (3.18) which determine our choice of r0x and r0u depend on r0 themselves
(basically because V = Vr0 and ψ = ψ

r0
depend on r0 as was pointed out after

Lemma 3.1). We, therefore, leave the question of semi-global input-to-state stability
to future research.

We would finally like to remark that a similar parabolic system in one space dimen-
sion was considered in [4] (Example 4.1). In that example, the nonlinear function was
chosen such that the origin is the only attracting point of the unperturbed system, and
the input-to-state stability was established by means of a rather standard Lyapunov
function that cannot be used here for two reasons: first, we have a wider state space
and second, we need a Lyapunov function that vanishes not only in the origin but on
the entire attractor, which is in our case larger than just one point. This requires a more
sophisticated construction and rather different estimations.
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