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Summary 

RNA-seq is an efficient technique for measuring the global abundance of transcripts present 

at a given time and condition for any species. As infection is a dynamic process involving at least 

two agents, capturing their direct relationship requires less disruptive experimental protocols than 

relying on the physical separation of the interacting organisms; dual RNA-seq is such a method. 

Extraction of total RNA of the host-pathogen system and in silico separation of their transcriptomes 

allows the simultaneous profiling of the gene expression of these organisms and the analysis of their 

direct interactions occurring during infection. 

This work presents an application of dual RNA-seq to explore processes occurring during 

the infection of the human endothelial cells with Orientia tsutsugamushi (Ot) — the causative agent 

of scrub typhus. The study aimed to investigate the biology of this obligate intracellular pathogen 

and the host response to this bacterium. Therefore, Human Umbilical Vein Endothelial Cells 

(HUVECs) were infected with two clinical isolates of Ot that differ in virulence, UT176 and Karp, 

followed by isolation and sequencing of the RNA of the system five days post-infection. As a part 

of my doctoral work, I analyzed the obtained RNA-seq data by applying various bioinformatics 

approaches to gain a deeper insight into the bacterial RNA biology and transcriptional profile of 

the Ot-HUVEC system. Combining comparative genomics, transcriptomics, and proteomics, we 

investigated the transcriptional architecture of Ot and identified: (i) several dozen potential small 

RNAs and housekeeping transcripts including transfer-messenger RNA (tmRNA), ribonuclease P 

(RNase P), signal recognition particle (SRP), and 5S rRNA; (ii) conserved operons between two Ot 

strains; (iii) and widespread antisense transcription, that may have a role in regulation of repetitive 

genes that are abundant in the Ot genome. In addition, the comparative analysis of bacterial 

transcriptomes allowed us to investigate factors that drive the difference in virulence between Karp 

and UT176. It indicated that genes encoding virulence-associated surface and effector proteins are 

upregulated in Karp during infection. Meanwhile, besides a proinflammatory antiviral response 

activated upon infection of HUVECs with either strain, the comparison of the host response to 

the infection with Karp and UT176 uncovered unique immune regulatory networks altered by each 

strain. While Karp induced an IL33-NOS3-FAS response, UT176 upregulated the IL6-mediated 

proinflammatory gene network. These results also correlate with differences in disease severity in 

a murine infection model of scrub typhus. 

The Ot dual RNA-seq data analysis illustrated the lack of a robust pipeline for processing 

dual RNA-seq data. Therefore, I developed Dualrnaseq, a workflow for quantifying dual RNA-seq 

data. The pipeline is developed in Nextflow and uses container technology, such that it can easily be 

executed on different computing platforms and facilitates reproducibility of the analysis. Within 

the pipeline, host and pathogen sequencing reads are processed together. After quality control and 
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trimming, they are mapped onto a chimeric reference comprising the bacterial and eukaryotic 

genomes or transcriptomes. I implemented three read quantification strategies. The first is 

an alignment-based mapping of reads onto the chimeric genome with STAR followed by 

quantification with HTSeq — a widely used tool for estimating gene expression from uniquely 

mapped reads. Considering the importance of multi-mapped reads that may originate from different 

gene isoforms in the host and repetitive elements which are highly abundant in some bacterial 

genomes, a fast transcriptome quantification method handling multi-mapped reads (Salmon with 

Selective Alignment) was applied as a second strategy. The third approach (Salmon alignment-based 

mode) uses a STAR-derived alignment combined with Salmon quantification. In addition, 

the Dualrnaseq pipeline has become a part of the nf-core repository: https://nf-co.re/dualrnaseq. 

Initial simulation-based benchmark analysis of host-pathogen systems was performed to investigate 

optimal read quantification strategies for dual RNA-seq data. 

 Overall, the work described in this thesis provides new insight into the biology of 

a genetically intractable bacterium, Orientia tsutsugamushi, serving as an example for other obligate 

pathogens. It also provides evidence for a widespread post-transcriptional regulatory role of antisense 

transcription in Ot, which has not been observed on such a scale before. Finally, the Dualrnaseq 

pipeline presented in the second part of this work is the first publicly available, highly reproducible, 

scalable, and user-friendly workflow developed for processing dual RNA-seq data. 

  

https://nf-co.re/dualrnaseq
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Zusammenfassung 

RNA-seq ist ein effizientes Verfahren zur Messung der globalen Häufigkeit von Transkripten, die zu 

einem bestimmten Zeitpunkt und unter bestimmten Bedingungen bei einer beliebigen Spezies 

vorhanden sind. Da die Infektion ein dynamischer Prozess ist, an dem mindestens zwei Spezies 

beteiligt sind, erfordert die Erfassung ihrer direkten Beziehung weniger störende Versuchsprotokolle 

als die physische Trennung der interagierenden Organismen; duale RNA-seq ist eine solche 

Methode. Die Extraktion der Gesamt-RNA des Wirt-Pathogen-Systems und 

die in-silico-Auftrennung ihrer Transkriptome ermöglicht die gleichzeitige Erstellung 

von Genexpressionsprofilen dieser Organismen und die Analyse ihrer direkten Interaktionen 

während der Infektion. 

In dieser Arbeit wird eine Anwendung der dualen RNA-seq vorgestellt, um Prozesse zu 

untersuchen, die während der Infektion menschlicher Endothelzellen mit Orientia tsutsugamushi 

(Ot) — dem Erreger von Scrub-Typhus — auftreten. Ziel der Studie war es, die Biologie dieses 

obligat intrazellulären Erregers und die Reaktion des Wirts auf dieses Bakterium zu untersuchen. Zu 

diesem Zweck wurden humane Nabelvenenendothelzellen (HUVECs) mit zwei klinischen Isolaten 

von Ot infiziert, die sich in ihrer Virulenz unterscheiden — UT176 und Karp — gefolgt von der 

Isolierung und Sequenzierung der RNA des Systems fünf Tage nach der Infektion. Im Rahmen 

meiner Doktorarbeit analysierte ich die gewonnenen RNA-seq-Daten mit Hilfe verschiedener 

bioinformatischer Ansätze, um einen tieferen Einblick in die bakterielle RNA-Biologie und das 

Transkriptionsprofil des Ot-HUVEC-Systems zu gewinnen. Durch die Kombination von 

vergleichender Genomik, Transkriptomik und Proteomik haben wir die transkriptionelle Architektur 

von Ot untersucht und identifiziert: (i) mehrere Dutzend potenzielle kleine RNAs und Transkripte 

von Haushaltsgenen, darunter Transfer-Messenger-RNA (tmRNA), Ribonuklease P (RNase P), 

Signalerkennungspartikel (SRP) und 5S rRNA; (ii) konservierte Operons zwischen zwei 

Ot-Stämmen; (iii) und eine weit verbreitete Antisense-Transkription, die möglicherweise eine Rolle 

bei der Regulierung von repetitiven Genen spielt, die im Ot-Genom häufig vorkommen. Darüber 

hinaus ermöglichte uns die vergleichende Analyse der bakteriellen Transkriptome die Untersuchung 

der Faktoren, die für die unterschiedliche Virulenz von Karp und UT176 verantwortlich sind. 

Es zeigte sich, dass Gene, die virulenzassoziierte Oberflächen- und Effektorproteine kodieren, bei 

Karp während der Infektion hochreguliert sind. Neben einer proinflammatorischen antiviralen 

Reaktion, die bei der Infektion von HUVECs mit einem der beiden Stämme ausgelöst wird, wurden 

beim Vergleich der Wirtsreaktion auf die Infektion mit Karp und UT176 unterschiedliche 

immunregulatorische Netzwerke aufgedeckt, die durch jeden Stamm verändert werden. Während 

Karp eine IL33-NOS3-FAS-Reaktion auslöste, regte UT176 das IL6-vermittelte 
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proinflammatorische Gennetzwerk an. Diese Ergebnisse korrelieren auch mit Unterschieden in 

der Schwere der Erkrankung in einem Mausinfektionsmodell für Scrub-Typhus. 

Die Analyse der dualen RNA-seq-Daten von Ot machte deutlich, dass es keine robuste 

Pipeline für die Verarbeitung dualer RNA-seq-Daten gibt. Daher habe ich Dualrnaseq entwickelt, 

einen Arbeitsablauf zur Quantifizierung dualer RNA-seq-Daten. Die Pipeline wurde in Nextflow 

implementiert und nutzt die Container-Technologie, sodass sie leicht auf verschiedenen 

Computerplattformen ausgeführt werden kann und die Reproduzierbarkeit der Analyse erleichtert 

wird. Innerhalb der Pipeline werden die Wirts- und Pathogen-Sequenzierungsdaten gemeinsam 

verarbeitet. Nach der Qualitätskontrolle und dem Trimmen werden sie auf eine chimäre Referenz 

abgebildet, die das bakterielle und eukaryotische Genom oder Transkriptom umfasst. Ich habe drei 

Read-Quantifizierungsstrategien eingebaut. Die erste ist eine auf dem Alignment basierende 

Zuordnung von Reads auf das chimäre Genom mit STAR, gefolgt von einer Quantifizierung mit 

HTSeq — einem weit verbreiteten Tool zur Schätzung der Genexpression aus eindeutig 

zugeordneten Reads. In Anbetracht der Bedeutung von mehrfach gemappten Reads, die von 

verschiedenen Isoformen von Genen im Wirt und repetitiven Elementen stammen können, die in 

einigen bakteriellen Genomen sehr häufig vorkommen, wurde als zweite Strategie eine schnelle 

Transkriptom-Quantifizierungsmethode angewandt, die mit mehrfach gemappten Reads arbeitet 

(Salmon mit Selektivem Alignment). Der dritte Ansatz (Salmon alignment-based mode) verwendet 

ein von STAR abgeleitetes Alignment in Kombination mit der Salmon-Quantifizierung. Darüber 

hinaus wurde die Dualrnaseq-Pipeline in das nf-core-Repository aufgenommen: 

https://nf-co.re/dualrnaseq. Erste simulationsbasierte Benchmark-Analysen von 

Wirt-Pathogen-Systemen wurden durchgeführt, um die optimalen Lesequantifizierungsstrategien 

für duale RNA-seq-Daten zu untersuchen. 

 Insgesamt bietet diese Arbeit neue Einblicke in die Biologie des genetisch schwer zu 

erschließenden Bakteriums, Orientia tsutsugamushi, das als Beispiel für andere obligate 

Krankheitserreger dient. Darüber hinaus liefert sie Beweise für eine weit verbreitete 

posttranskriptionelle regulatorische Rolle der Antisense-Transkription in Ot, die in diesem Ausmaß 

bisher noch nicht beobachtet worden ist. Schließlich ist die im zweiten Teil dieser Arbeit vorgestellte 

Dualrnaseq-Pipeline der erste öffentlich verfügbare, hochgradig reproduzierbare, skalierbare und 

benutzerfreundliche Workflow, der für die Verarbeitung dualer RNA-seq-Daten entwickelt wurde. 

 

  

https://nf-co.re/dualrnaseq
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1 Introduction 

1.1 The complexity of host-pathogen interactions 

Infection is a process that involves two interacting agents: a pathogen that invades and replicates 

either intracellularly or extracellularly in the host, which in turn responds to this action. Various 

pathogens ranging from eukaryotic fungi and protozoa to viruses and bacteria have evolved different 

routes to invade diverse hosts and disseminate across various cell types. For instance, Salmonella, 

a bacterial model of pathogenesis, has diverged into several species, subspecies, and serovars that 

exhibit diversity in the host range and manifestation of the infection (Hurley et al., 2014). While 

some serovars are host restricted, others can infect a broad range of hosts leading to acute and chronic 

infections (Gal-Mor et al., 2014). For example, non-typhoidal Salmonella (NTS) serovars cause acute 

self-limiting gastroenteritis in humans, cattle, swine, and poultry. In contrast, typhoid fever occurs 

only in humans infected with host-restricted Salmonella Typhi. These differences in host-adaptation 

and infection outcomes are shaped mainly by a divergent repertoire of genes present in 

the pathogens’ genomes (Tanner & Kingsley, 2018). However, the clinical manifestation also 

depends on the host’s susceptibility. NTS can cause bacteremia and systemic infection in both 

immunocompromised patients and very young or older individuals. Thus, investigating key features 

that drive the differences in the host adaptation of pathogens and the host response requires in-depth 

studies. 

Researchers have investigated the complex host-pathogen interactions using various 

infection models. However, ethical concerns about experiments on humans necessitate the use of 

non-human models. Salmonella Typhimurium (S. Typhimurium) serves here as an example to show 

the challenges in finding universal systems to study infection processes. This gram-negative 

bacterium became a widely used model of pathogenesis as it belongs to the same family 

as Escherichia coli, Enterobacteriaceae, which allowed the use of well-established molecular tools. 

In addition, S. Typhimurium is an example of a serovar that can infect a wide range of species, 

allowing the use of animal models to study the infection processes (Santos et al., 2001). Murine 

infection models have become the gold standard in infection research as they are relatively cheap 

and approximate the human immune response. Also, in the case of Salmonella, mouse models have 

provided great insight into infection processes involving this pathogen (Tsolis et al., 2011). Although 

murine systems are easy to manipulate genetically, they are different from humans, so they cannot 

fully mimic human infections. For example, in well-established mice models, BALB/c and C57BL/6, 

S. Typhimurium causes symptoms similar to human typhoid fever instead of the gastroenteritis 
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manifested in people infected with this serovar. Further development of infection models has been 

motivated by finding cheaper and easier to manipulate animal systems and a desire to explore more 

specific questions (Bender et al., 2013; Raffatellu et al., 2008; Roux et al., 2010; Tenor et al., 2004; 

Van Der Sar et al., 2003). Certainly, animal models significantly impact our understanding of how 

pathogens disseminate throughout the host and what virulence determinants they utilize to enhance 

their spread. However, they also have shortcomings: they are expensive, difficult to maintain, and 

cannot fully mimic infections in humans. 

Thus, in-vitro experiments are exploited to study the molecular details of pathogenesis in 

a particular host cell type using less complex and cheaper models than animals. The development of 

various techniques applicable to cell culture has remarkably impacted our understanding of 

the course of infection processes at the cellular level, including the presence of heterogeneous 

bacterial populations and varied host responses activated in different cell types (Castanheira & 

García-Del Portillo, 2017). Overall, both in-vitro and in-vivo systems have allowed exploration of 

the pathogens’ lifestyle within the host, showing high complexity of interactions between these 

organisms that can occur at many developing stages of the infection. For instance, several routes of 

Salmonella dissemination within the host that involve various cell types have been identified 

(Watson & Holden, 2010). During this journey, the pathogen exploits a number of virulence factors 

that facilitate invasion of the host, replication, and survival within both non-phagocytic epithelial 

cells and phagocytic dendritic cells and macrophages (Haraga et al., 2008; Jennings et al., 2017; 

LaRock et al., 2015). On the other hand, host determinants also play a role in this interaction since 

specialized defense mechanisms against each bacterial subpopulation are activated. In short, 

infection is a dynamic and complex process. Pathogens adapt to the constantly changing environment 

to overcome the immune system and disseminate further in the host, whereas the host employs 

an expanded strategy to stop the intruder and ensure homeostasis. Each transition to a new infection 

stage involves the adaptation of interacting organisms to changing conditions by modulating the gene 

expression. Therefore, exploring the global transcriptional profile of both host and pathogen can help 

uncover new virulence factors and host pathways that play a role in the infection, ultimately leading 

to a deeper understanding of host-pathogen interactions during this process. 

The expression of genes in a given condition can be measured using different techniques. 

Reverse transcriptase quantitative PCR (RT-qPCR) is an example of a method measuring 

the expression of small subsets of transcripts by detecting each of them using a pair of specific 

oligonucleotides (primers). However, an investigation of all factors that play a role in the infection 

process requires higher-throughput techniques. Microarray is an example of such a technology, but 

it is limited to a defined set of transcripts. In contrast, RNA-seq allows measuring the expression of 

the transcriptome as a whole, and dual RNA-seq extends it to simultaneous analysis of both host and 

pathogen transcriptomes (Westermann et al., 2012). The rapid expansion of high-throughput methods 

has allowed the development of approaches that provide a massive amount of data while enabling 
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transcriptome-wide analysis of different systems. In the upcoming section, I describe the techniques 

that have provided insight into the host-pathogen interactions at the transcriptomic level, improving 

our understanding of the infection process. 

1.2 High-throughput methods to study host-pathogen interactions 

Measuring a transcriptome, which represents the set of transcripts present in a cell and their quantity, 

is crucial for understanding the molecular mechanisms of an organism's adaptation to a given 

condition. After isolating RNA from the biological systems, their transcriptome can be explored 

using various high-throughput methods (Lowe et al., 2017). Microarrays were the first technology 

that allowed high-throughput analysis starting the era of transcriptomics in the middle of the 90s. 

Further advances led to RNA sequencing (RNA-seq). Many protocols have been developed to study 

more specific aspects, for example, capturing direct host-pathogen interactions with dual RNA-seq. 

1.2.1 Microarrays 

Microarrays revolutionized molecular biology by allowing transcriptome analyses on a large scale. 

Instead of measuring the expression of a few genes at a time, tens of thousands of genes can be 

profiled in a single experiment. Briefly, RNA isolated from cells of interest is either labeled directly 

or converted into labeled complementary DNA (cDNA) and then hybridized to an array that consists 

of spots of short nucleotide oligomers (probes). After washing, the fluorescent signal is measured at 

each spot. The intensity at each probe location captures the expression level of the gene with 

a complementary sequence to the probe (Jaksik et al., 2015). From different types of arrays 

(Bumgarner, 2013; Miller & Tang, 2009), two gained high popularity: low-density spotted arrays 

and high-density in situ-synthesized arrays, which differ in the fabrication method. The fundamental 

goal of most microarray experiments is to identify factors that differ between two biological groups. 

The comparison of the signal intensities between samples of different groups enables 

the identification of transcripts that are either upregulated, downregulated or unchanged between 

tested conditions. Thus, advances in the development of array-based approaches and bioinformatics 

data analysis methods allowed transcriptome-wide analysis of responses to biological perturbations. 

Gene expression analysis using microarrays was successfully applied in various fields, 

including infection research involving diverse organisms. For example, the gene expression profile 

of a pathogen within the context of an in-vitro infection model was investigated for various bacteria 

such as Mycobacterium tuberculosis (Mangan et al., 1999), S. Typhimurium (Eriksson et al., 2003; 

Hautefort et al., 2008), Chlamydia trachomatis (Belland et al., 2003), Chlamydophila pneumoniae 

(Mäurer et al., 2007), and others (La et al., 2008; Waddell et al., 2007). Furthermore, in some studies, 
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microarrays were applied to explore in-vivo-regulated genes of pathogens during infection. For 

instance, genome-wide analysis of Plasmodium falciparum extracted from blood samples from 

infected patients helped identify factors necessary for the pathogen to survive in the human host 

(Daily et al., 2005). In addition, the whole-genome expression profile of Vibrio cholerae recovered 

from the human stools indicated genes that characterize a hypervirulent state and contribute to 

epidemic spread (Merrell et al., 2002). Microarrays have also enabled large-scale comparative gene 

expression analysis of Borrelia burgdorferi under different conditions, indicating critical factors that 

foster bacterial survival in various environments (Revel et al., 2002). Identification of host responses 

across multiple infection systems was another important aspect investigated using this 

high-throughput method (Hossain et al., 2006; Jenner & Young, 2005). Thus, examples presented 

here show that the application of microarrays has facilitated the initial discovery of a repertoire of 

genes that play a role in the infection processes. 

However, many studies have focused on exploring gene expression of one agent, either host 

or pathogen, such that the complex interactions between these organisms could not be investigated. 

Dual transcriptomics, the simultaneous analysis of host and pathogen gene expression, has allowed 

identification of genome-wide responses of interacting organisms. This approach was established for 

the human fungal pathogen Aspergillus fumigatus co-incubated with human airway epithelial cells 

using human and fungal microarrays (Oosthuizen et al., 2011). Interestingly, a single array that 

captures both host and pathogen responses was constructed for the murine malaria model with 

Plasmodium berghei, which helped profile their gene expression in a time- and cost-effective manner 

(Lovegrove et al., 2006). In another example, Motley et al. (2004) analyzed gene expression 

simultaneously for E. coli and the murine granulomatous pouch infection model and identified 

host-pathogen cross-talk. The authors showed that the host limits iron availability in response to 

the infection while the pathogen adapts to this new condition by reprogramming the transcriptional 

machinery. Overall, the parallel examination of two interacting organisms' gene expression seems 

crucial to explore host-pathogen interactions fully. However, the application of microarrays is limited 

in this context due to some technical aspects. 

One of the biggest drawbacks of microarrays is their restriction to organisms with known 

sequences because the probe design step relies on annotations. Moreover, the design and production 

of custom arrays for novel applications, e.g. non-model organisms, increase experiment costs 

(Westermann et al., 2012). Also, inaccurate annotations for some probes may be sources of errors in 

the data, leading to wrong conclusions (Zhao et al., 2014). Another challenging aspect involves 

cross-hybridization between target molecules and array probes with similar but not identical 

sequences (C. Wu, 2005), which may become more problematic in a mixed host-pathogen RNA 

sample (Westermann et al., 2012). In addition, both background and saturation of the signal limit 

the dynamic detection range, and in consequence, microarrays lack sensitivity to detect differences 
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in very low and high abundance transcripts. Hence new techniques that tackle some of these 

limitations were needed. 

Examples include tiling arrays, another hybridization-based technique built of 

oligonucleotide probes covering the entire genomic sequence instead of selected gene fragments 

(Mockler et al., 2005). Their application uncovered the functional importance of untranslated 

regions, including small RNAs, in bacterial pathogens: Listeria monocytogenes (Toledo-Arana et al., 

2009), Streptococcus (R. Kumar et al., 2010; Perez et al., 2009), and Mycobacterium leprae (Akama 

et al., 2009). In addition, tag-based methods such as Serial Analysis of Gene Expression (SAGE) and 

Cap Analysis of Gene Expression (CAGE) provide quantitative gene expression levels (Harbers & 

Carninci, 2005). In contrast to microarrays, they offer a wider dynamic range of detection without 

the requirement for reference genome availability. Briefly, short cDNA “tag” fragments from 

the 5ʹ end (CAGE) or 3ʹ end (SAGE) are concatemerized and sequenced, followed by evaluation of 

the frequency of each tag, which captures the expression level of the gene which the tag comes from. 

Although such techniques were successfully applied to various pathogens (Kronstad, 2006), their 

usage is limited as they are labor-intensive and expensive. Other limitations of array-based and 

tag-based methods relevant to studying various species are reviewed in (Westermann et al., 2012). 

Due to all these obstacles, the biggest revolution in transcriptome studies began with the appearance 

of RNA sequencing technology. 

1.2.2 RNA-seq 

Sequencing technologies and their constant development have revolutionized many fields, including 

microbiology (Loman et al., 2012; Loman & Pallen, 2015; Saliba et al., 2017). Their application 

helped improve annotations of model organisms like human, mouse, and E. coli and allowed 

the exploration of non-model system genomes in a cost-effective manner (Croucher & Thomson, 

2010; Morozova & Marra, 2008). The RNA-seq technique combines high-throughput sequencing 

methods with computational approaches to determine transcripts present in a sample. 

The RNA-seq protocol consists of several steps (Van den Berge et al., 2019). First, following 

RNA isolation from a sample, enrichment of specific RNAs can be performed to increase 

the sensitivity of an experiment. It can be done by either capturing poly(A) to extract polyadenylated 

RNAs or depleting ribosomal RNA to discard highly abundant transcripts that are not of primary 

interest in many studies. Second, the RNA molecules are fragmented and then reverse-transcribed to 

create stable double-stranded cDNAs. Next, adapter sequences are ligated to one or both ends of 

the double-stranded cDNA, which act as sites for primer binding in the following amplification step 

performed by polymerase chain reaction (PCR). The library is then sequenced on a high-throughput 

platform to obtain short sequences from one end (single-end reads) or both ends (paired-end reads). 

The final stage involves computational analysis of the read count data to quantify the gene 



 22 

expression. As diverse variations of these steps can be introduced in RNA-seq protocols, researchers 

have optimized these strategies. They have evaluated each stage of the sequencing assay to maximize 

performance and examine their impact on the outcome. Optimal read length (Chhangawala et al., 

2015), strand-specificity (Sarantopoulou et al., 2019), sequencing depth (Tarazona et al., 2011), and 

the number of biological replicates (Rapaport et al., 2013; Robles et al., 2012) are examples of aspects 

that need to be considered while designing the experiment. However, the main advantage of this 

technology is a lack of reliance on existing knowledge about the genome sequence in the design of 

the experiment, which was a limiting factor in microarrays. 

RNA-seq offers several other advantages over microarrays (Z. Wang et al., 2009; Zhao et 

al., 2014). First, in the absence of annotations, it can detect all transcripts and reveal sequence 

variation, such as single nucleotide polymorphisms (SNPs) and other alterations in transcribed 

regions. Second, RNA-seq ensures single-nucleotide resolution allowing precise location of 

transcription boundaries, including 5’ and 3’ ends of transcripts, that facilitates detection of novel 

features of gene organization, such as alternative splicing sites in eukaryotes and operon structures 

in prokaryotes. In addition, RNA-seq enables qualitative and quantitative investigation of novel 

coding and non-coding transcripts encoded in both sense and antisense direction. It also has a wide 

dynamic range for detection including features with low and high expression levels and 

the expression estimates are highly reproducible (Marioni et al., 2008; SEQC, 2014). Moreover, 

RNA-seq demands less input RNA, in the range of nanograms instead of micrograms. Finally, in 

contrast to microarrays, which require the design of new chips for different organisms, RNA-seq is 

a species-independent platform facilitating application to both model and non-model organisms 

(Westermann et al., 2012). 

In particular, various adaptations of RNA-seq protocols have allowed exploring 

the transcriptome and its regulatory complexity at different levels in diverse bacterial species. 

For instance, such a global transcriptional map has been generated for S. Typhimurium 

(Kröger et al., 2012, 2013; Srikumar et al., 2015), uncovering factors involved in the regulation of 

gene expression in response to infection-relevant conditions. Overall, RNA-seq has gained popularity 

to define the transcriptome of many pathogens, including intracellular and extracellular bacteria, 

viruses, fungi, and parasites (reviewed in Colgan et al., 2017; Westermann et al., 2012). Although 

many such studies were performed in in-vitro or in-vivo conditions using various infection models, 

they usually focused on the pathogen and neglected the host response. Obtaining the complete picture 

of infection mechanisms requires a simultaneous investigation of processes occurring in both 

organisms. 



 23 

1.2.3 Dual RNA-seq 

Dual RNA-seq allows the parallel analysis of host and pathogen transcripts from the same sample 

without the physical separation of the interacting organisms. In this method, their RNA is extracted 

as a whole and further subjected to characterization at the computational level. For the first time, 

such a global transcriptome profiling of a host-pathogen system was established for the opportunistic 

fungal pathogen Candida albicans co-cultured with mouse bone marrow-derived dendritic cells 

(BMDC) (Tierney et al., 2012). Other examples include examining interactions between parasites 

and their hosts at different developmental stages (Choi et al., 2014; Pittman et al., 2014). Although 

some RNA-Seq protocols can be applied to identify low-abundant pathogen transcripts such as viral 

particles in patient-derived samples (Strong et al., 2013; Wesolowska-Andersen et al., 2017; 

Maulding et al., 2022) enabling global assessment of both host and pathogen transcriptomes, 

the application of polyA-based RNA-protocols is limited as they capture only polyadenylated 

transcripts. As bacterial mRNAs lack polyadenylation, simultaneous analysis of the bacterial and 

eukaryotic transcriptomes requires techniques that overcome such differences (Westermann et al., 

2012, 2017). 

 The problem with the high underrepresentation of intracellular bacterial reads in the total 

RNA of infected cells can be tackled in several ways. For instance, increased sensitivity for 

S. Typhimurium reads was obtained by separating infected host cells (HeLa epithelial cells or 

macrophage-like cell lines) from uninfected using FACS and depleting highly abundant 

uninformative transcripts — rRNAs (Westermann et al., 2016). Other methods that provide a higher 

bacterial to host RNA ratio were applied in the studies of Mycobacterium spp. These include 

enrichment for bacterial transcripts (Rienksma et al., 2015; Zimmermann et al., 2017), FACS sorting 

of infected cells combined with microbial enrichment (Pisu et al., 2020), and employment of 

an infection model that provides a high bacterial load (Montoya et al., 2019). A recently developed 

method, that performs both enrichment for bacterial mRNAs and depletion of structural RNAs 

(rRNAs and tRNAs) simultaneously using bacterial transcriptome-specific probes (Betin et al., 

2019), was successfully applied to a dual RNA-seq library composed of transcriptomes of 

Pseudomonas aeruginosa and human bladder epithelial cells (Penaranda et al., 2021). Although 

different experimental set-ups may not be representative of natural infection and can affect 

the infection progress or RNA composition detected in the study (Hayward et al., 2020), 

the sequencing of total RNA of the host-pathogen system as a whole opens new opportunities. 

 Dual RNA-seq was applied to explore host-pathogen systems involving several obligate 

intracellular pathogens that cannot replicate extracellularly of the host cells. Examples include 

protozoa such as Toxoplasma gondii (Pittman et al., 2014), Leishmania spp. (Aoki et al., 2019; Dillon 

et al., 2015; Fernandes et al., 2016; Orikaza et al., 2020), and Plasmodium spp. (Bradwell et al., 2020; 

LaMonte et al., 2019; H. J. Lee et al., 2018; Yamagishi et al., 2014) as well as bacteria: Chlamydia 
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trachomatis (Hayward et al., 2020; Humphrys et al., 2013), a pathogen that causes common sexually 

transmitted bacterial infections in humans; Mycobacterium leprae (Montoya et al., 2019) causing 

leprosy; and Lawsonia intracellularis which is responsible for porcine proliferative enteropathy 

(Vannucci et al., 2013). In addition, dual RNA-seq experiment for the intracellular model pathogen 

S. Typhimurium during macrophage infection performed by Stapels et al. (2018) indicated that 

persisters are metabolically active, which is contrary to the state of in-vitro generated non-growing 

bacteria. This study shows that persisters translocate SPI-2 T3SS effectors that suppress 

proinflammatory responses and induce anti-inflammatory macrophage polarization, promoting 

pathogen survival under antibiotic treatment. Therefore, extraction of host and pathogen total RNA 

without physical separation of the organisms before sequencing preserves the direct interactions 

captured in conditions closer to the natural environment for the intracellular pathogens. 

To better mimic and explore infection processes, dual RNA-seq has been applied to diverse 

in-vivo models. For instance, infection of Yersinia pseudotuberculosis growing extracellularly in 

Peyer’s patches of mice facilitated the identification of transcripts playing a role in stress response 

and metabolic adaptation to the conditions present in the host (Nuss et al., 2017). Also, dual RNA-seq 

of two macrophage subpopulations isolated directly from lungs of Mycobacterium 

tuberculosis-infected mice helped to investigate the gene expression unique to the in-vivo 

environment, nutrients necessary for pathogen survival within host cells, and the molecular basis of 

phenotypic differences in Mycobacterium tuberculosis growth between macrophage subpopulations 

(Pisu et al., 2020). The simultaneous analysis of transcriptomes isolated from various in-vivo models 

was also performed for Pseudomonas aeruginosa causing lung infections in humans. The first study 

reveals a battle for iron between Pseudomonas aeruginosa and the murine host (Damron et al., 2016). 

Another analysis shows in-vivo-induced changes in bacterial stress responses and metabolism, 

representing an adaptive mechanism to strong conditions in cystic fibrosis lungs (Rossi et al., 2018). 

In the third study, the authors investigated interactions of the pathogen with the innate immunity of 

the zebrafish infection model (S. S. Kumar et al., 2018). The applications of dual RNA-seq to another 

extracellular pathogen — Streptococcus pneumoniae — enabled the identification of genes relevant 

for establishing an infection in different sites (pleura and lungs) in a murine model (Ritchie & Evans, 

2019) and shared and strain/organ-specific responses to infection in the bacteria and mice (D’Mello 

et al., 2020). Furthermore, an SNP in the raffinose pathway transcriptional regulator gene rafR, 

present between blood and ear isolates, was shown to shape different disease outcomes — localized 

and systemic infection (Minhas et al., 2020). Another dual RNA-seq study involved a human-specific 

Streptococcus pyogenes and a nonhuman primates infection model of necrotizing myositis (Kachroo 

et al., 2020), where an integration of the RNA-seq and transposon-directed insertion site sequencing 

(TraDIS) data allowed determining new virulence factor candidates. Furthermore, analysis of 

host-pathogen transcriptomic data from a Staphylococcus aureus infection of mice has shown that 

the level of host resistance impacts the pathogen’s expression profile, and ultimately affects 
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the effectiveness of the anti-virulence strategy to this antibiotic-resistant bacteria (Thänert et al., 

2017). Thänert et al. (2019) also performed dual RNA-seq on biopsies of patients suffering from 

necrotizing soft tissue infections (NSTIs) and investigated differences between monomicrobial 

NSTI, caused predominantly by Streptococcus pyogenes, and polymicrobial NSTI. Their analysis 

indicated factors that mediate each of these infections and distinct host responses, that may facilitate 

faster diagnosis. Although only a few studies have employed dual RNA-seq to analyze 

patient-derived samples that can fully capture the conditions of human infections (Bradwell et al., 

2020; Griesenauer et al., 2019; H. J. Lee et al., 2018; Thänert et al., 2019; Montoya et al., 2019; 

Pérez-Losada et al., 2015; Rossi et al., 2018; Wesolowska-Andersen et al., 2017; Yamagishi et al., 

2014), the application of dual RNA-seq in various systems has shown the complexity of factors that 

shape host-pathogen cross talk. 

Complete understanding of the interactions between host and pathogen requires 

the identification of both coding and non-coding RNAs (ncRNAs). In particular, high-resolution data 

generated with dual RNA-seq enabled identification of PinT small RNA (sRNA) that is an important 

virulence factor in S. Typhimurium, regulating genes involved in both invasion and intracellular 

replication states (Westermann et al., 2016). In the same study, the interspecies correlation revealed 

the PinT-dependent induction of the host immune response necessary to establish the intracellular 

replicative niche of the pathogen. In another research, Westermann et al. (2019) applied 

dual  RNA-seq to investigate the role of ProQ, one of the major bacterial RNA-binding proteins 

involved in post-transcriptional regulation of many infection-relevant mRNAs, often in conjunction 

with sRNAs. The analysis indicated the importance of this particular protein in regulating bacterial 

genes involved in motility, chemotaxis, and virulence. In addition, it revealed the impact of 

ProQ-mediated changes of bacterial gene expression on the host response and discovered a novel 

sRNA repressing the mRNA of one of the magnesium ion transporters in a ProQ-dependent manner. 

The role of other global ncRNA regulators, Hfq and Crp, and novel virulence-relevant ncRNAs were 

identified for Yersinia pseudotuberculosis (Nuss et al., 2017). Dual RNA-seq facilitated 

the discovery of ncRNAs, potentially crucial in pathogenesis or housekeeping functions, also for 

other bacteria, including Streptococcus pneumoniae (Ritchie & Evans, 2019), Mycobacterium leprae 

(Montoya et al., 2019), Pseudomonas aeruginosa (Damron et al., 2016), Haemophilus influenzae 

(Baddal et al., 2015). In addition, several dual RNA-seq studies examined the role of the host 

non-coding transcripts (Kachroo et al., 2020, Hayward et al., 2020, Baddal et al., 2015, Fabozzi et 

al., 2018, Lisnic et al., 2013). Thus, by capturing the expression of various host and pathogen RNA 

species, dual RNA-seq data may provide comprehensive information about the infection process at 

the transcriptomic level. 

A complete picture of infection may be obtained by generating time-resolved dual RNA-seq 

data sets that capture both host and pathogen responses over time. Investigating dynamic alterations 

in gene expression may help to understand the transcriptional adaptation of a pathogen to changing 
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conditions in the host and the host reaction to this action (Aprianto et al., 2016; Baddal et al., 2015; 

Dillon et al., 2015; Fabozzi et al., 2018; Farrer et al., 2018; Fernandes et al., 2016; Juranic Lisnic et 

al., 2013; C. H. Mavromatis et al., 2015; Westermann et al., 2016). In addition, dual RNA-seq data 

enables exploration of host-pathogen interactions using either correlation analysis (Bradwell et al., 

2020; Stapels et al., 2018; Westermann et al., 2016) or more sophisticated network analysis methods. 

Weighted-gene correlation analysis (WGCNA) (Langfelder & Horvath, 2008) is one of the widely 

used approaches (Kachroo et al., 2020; H. J. Lee et al., 2018; Montoya et al., 2019; 

Wesolowska-Andersen et al., 2017) that groups correlated genes into modules and identifies 

the association between bacterial and host responses. A bipartite network, which comprises 

correlated changes in the host and pathogen gene levels upon infection, was applied to create the first 

host-pathogen interaction network from the dual RNA-seq data of human-derived biopsies 

(Griesenauer et al., 2019). Another approach that uses ordinary differential equations to model gene 

expression kinetics and infers inter-species gene regulatory networks from time-series dual RNA-seq 

data (Schulze et al., 2015), predicted interactions for Candida albicans and murine dendritic cells 

(Tierney et al., 2012). In addition, dual RNA-seq data supported with other data sets may provide 

a better explanation of the system behavior. For instance, Zimmermann et al. (2017) integrated 

metabolic and transcriptomic data and generated a genome-wide reaction pair network to identify 

host-pathogen interaction subnetworks of both enzymes with significantly affected transcription and 

metabolites with altered levels. This analysis helped them to identify the complex metabolic 

adaptation of Mycobacterium tuberculosis during the infection. Thus, integrating dual RNA-seq with 

other multi-omics data sets may provide a more in-depth exploration of host-pathogen interactions. 

The continuous development of the sequencing techniques accompanied with reduction in 

costs has expanded the applicability of dual RNA-seq. This method also has gained popularity in 

studying other host-pathogen interactions unrelated to human health. For example, simultaneous 

transcriptome profiling of the honey bee, an ecologically important pollinator, and the Lotmaria 

passim parasite, one of the agents responsible for the drastic decline of bee populations, indicated 

how the parasite adapts to the new environment to establish and maintain infection, and how the host 

modifies its gene expression in response to this (Q. Liu et al., 2020). Dual RNA-seq was also 

employed to study economically significant pathogens that cause diseases in farmed animals 

(Botwright et al., 2021; L. Huang et al., 2019; Park et al., 2015; Valenzuela-Miranda & 

Gallardo-Escárate, 2018) or agriculturally important plants (Balsells-Llauradó et al., 2020; Kawahara 

et al., 2012; Z.-X. Liao et al., 2019; W. Li et al., 2019; Lundén et al., 2015; Musungu et al., 2020; Q. 

Wang et al., 2021; Yazawa et al., 2013). Beside parastatic interactions, several studies investigated 

other types of relationships. Examples include the interplay between symbionts (Mohamed et al., 

2020), human-infecting pathogen and its vector (S. K. Buddenborg et al., 2017), or opportunistic 

pathogens that are frequently isolated from co-infections (Doing et al., 2020). Analysis of more 

complex inter-species interactions involves assessment of the microbiota composition and its 
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functional diversity in the nasal epithelial cell samples of either asthmatic or non-asthmatic patients, 

providing evidence for microbe-host interactions and their role in developing asthma (Pérez-Losada 

et al., 2015). Also, recently developed triple RNA-seq (Seelbinder et al., 2020) allowed simultaneous 

detection of transcriptomes of multiple organisms in co-infection settings, namely monocyte-derived 

dendritic cells infected with two pathogens known to affect the lungs of immunosuppressed patients, 

Aspergillus fumigatus and human cytomegalovirus. Furthermore, single-cell sequencing shifts the 

analysis of host-pathogen interactions to the cellular level allowing investigating heterogeneity in 

gene expression among individual host cells and pathogens (Avital et al., 2017; Patir et al., 2020; 

Steuerman et al., 2018). In sum, the adoption of the main idea behind the dual RNA-seq technique, 

which is the replacement of the physical isolation with in-silico separation of the interacting agents, 

sheds new light on the interactions of various biological systems. 
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1.3 Aims of the study 

Dual RNA-seq opens up new opportunities for studying obligate intracellular pathogens and their 

interactions with the hosts. Orientia tsutsugamushi is an example of a pathogen responsible for severe 

morbidity accounting for a large number of deaths in humans. The work presented in chapter 2 aims 

at exploring the biology of this poorly characterized intracellular pathogen and the host response 

stimulated during the infection with this bacterium. Investigation of these aspects involves analyzing 

a dual RNA-seq data set generated for two clinical isolates of Orientia tsutsugamushi infecting 

human endothelial cells. Additionally, deeper characterization of the transcriptional architecture of 

this pathogen includes a prediction of operon structures, non-coding RNAs, and examination 

of antisense regulatory mechanisms. Overall, the motivation of this study was to take advantage of 

the dual RNA-seq protocol and, for the first time, explore the whole infection system involving this 

genetically intractable pathogen. 

 The host and pathogen transcriptional profiles in each dual RNA-seq study are obtained 

in-silico by applying tools developed for RNA-seq data analysis. Nevertheless, processing total reads 

from the host-pathogen system requires additional steps that simultaneously establish transcriptomes 

from two diverse organisms. However, the lack of a robust pipeline for dual RNA-seq data processing 

was a motivation to create a workflow which I called Dualrnaseq. This Nextflow-based workflow 

provides all essential steps of sequencing read processing for dual RNA-seq data. In chapter 3, 

I present this user-friendly pipeline that supports reproducibility, portability and provides three 

mapping and quantification strategies. The benchmark analysis of the employed methods will give 

recommendations ensuring accurate estimation of host and pathogen transcript expression. 

The Dualrnaseq workflow is publicly available, serving as a tool for processing raw dual RNA-seq 

data of any eukaryotic and bacterial organisms with a reference genome and annotation. 
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2 Dual RNA-seq of Orientia tsutsugamushi informs on 

host-pathogen interactions for this neglected intracellular 

human pathogen 

This chapter is a modified version of the previously published article (Mika-Gospodorz et al., 2020). 

This work is a result of collaboration with Suparat Giengkam (Mahidol University, Bangkok, 

Thailand), who established a dual RNA-seq protocol for Orientia tsutsugamushi using human 

endothelial cells as an infection model. Names of other co-authors and their contribution are 

highlighted in section 2.2. The work was supervised by Jeanne Salje (Mahidol-Oxford Tropical 

Medicine Research Unit, Rutgers University, University of Oxford) and Lars Barquist (Helmholtz 

Institute for RNA-based Infection Research and University of Würzburg). 

2.1 Introduction 

Orientia tsutsugamushi is the causative agent of scrub typhus, a disease endemic to South-East Asia. 

In this chapter, I describe a study applying dual RNA-seq to the infection model involving this 

pathogen. Dual RNA-seq has provided an opportunity to investigate both the differences in gene 

expression between two Orientia strains, Karp and UT176, during the infection of human endothelial 

cells and the joint and strain-specific host response. Furthermore, the transcriptional architecture of 

the pathogen is explored through integrating RNA-seq, comparative genomics, proteomics, and 

machine learning. This includes identification of operon structure, non-coding RNAs, and providing 

evidence for wide-spread post-transcriptional antisense regulation. 

2.1.1 Orientia tsutsugamushi: a neglected obligate intracellular bacterial pathogen 

Orientia tsutsugamushi (Ot) is a Gram-negative bacterium belonging to the family Rickettsiaceae of 

the class Alphaproteobacteria. It is an obligate intracellular pathogen that causes a severe mite-borne 

disease in humans, scrub typhus. The bacterium lives in trombiculid mites called ‘tsutsugamushi’ in 

Japanese, and it is transmitted to the next tick generation by transovarial transmission 

(Wongsantichon et al., 2020). The feeding larvae (chiggers) contain Ot in salivary glands and transfer 

the bacterium to humans and other hosts. Symptoms in patients usually begin 7–14 days after 

the inoculation and include fever, headache, rash, stupor, myalgia, and lymphadenopathy. Ot 

infections can be effectively treated using antibiotics such as doxycycline, azithromycin, 

chloramphenicol, and rifampicin. However, the unspecific nature of scrub typhus symptoms hinders 

diagnosis, and untreated, the disease can progress to cause complications, including multiorgan 
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failure and death. Originally the endemic area was associated with Asia-Pacific regions, but recent 

reports suggest a wider distribution of the disease beyond Asia, including in Africa and South 

America (Bonell et al., 2017). In general, morbidity and mortality from scrub typhus are higher in 

developing countries with limited access to healthcare, diagnostics, and treatment. The etiological 

agent of scrub typhus, Orientia is estimated to infect at least one million people per year (Taylor et 

al., 2015). 

Despite increasing awareness in endemic regions and an expanding global presence, scrub 

typhus remains a neglected tropical disease. Evidence for resistance to common classes of antibiotics 

and lack of a preventative vaccine against Ot indicate an urgent need to investigate the biology of 

this pathogen to develop new therapeutic and preventive strategies. However, the lack of genetic 

tools for such pathogens has restricted research on Ot. Nevertheless, based on the current knowledge, 

we can see how interesting and unusual this bacterium is. Ot is characterized by a complex infection 

cycle that involves several hosts and cell types. Different studies, ranging from in-vivo and in-vitro 

infection models, have identified the main routes of Orientia dissemination that cover a wide range 

of human cells the pathogen may infect (reviewed in Díaz et al., 2018). Briefly, after inoculation into 

the skin, other host cells including dendritic cells, monocytes, macrophages, and endothelial cells 

compose the main targets. Furthermore, Ot can disseminate via the blood and lymphatic system to 

multiple organs, including the liver, spleen, skin, heart, lung, kidney, pancreas, and brain. 

At the cellular level, the life cycle of all Rickettsiaceae starts from entering the host cells 

using a ‘zipper-like’ mechanism of induced endocytosis (Salje, 2021). Shortly after the entry, 

the bacteria escape from the endolysosomal pathway and replicate directly in the host cell cytoplasm. 

Ot replicates as a microcolony adjacent to the host nucleus, whereas Rickettsia spp., bacteria of 

another genus of the Rickettsiaceae family, undergo replication while distributed throughout 

the cytoplasm (Salje, 2017, 2021). Another aspect that distinguishes Ot from closely related bacteria 

of the Rickettsia genus is their movement mechanism. Due to the lack of flagella, both species use 

the host cell cytoskeleton. However, Ot employs microtubule-driven processes instead of 

the actin-based motility common in Rickettsia spp. To exit infected host cells, Ot uses a virus-like 

budding mechanism, whereas Rickettsia spp. move directly into adjacent cells or uses a host cell lysis 

strategy. Ot also has an unusual cell membrane and cell wall structure. In contrast to most 

Gram-negative bacteria, it possesses a minimal peptidoglycan-like cell wall, and its outer membrane 

is not equipped with lipopolysaccharide (LPS). All these extraordinary characteristics of the Ot 

intracellular lifestyle and its cell structure are encoded in the genome which also shows some unusual 

characteristics in this pathogen. 

The Orientia genome is a single circular chromosome with a length of 1.93–2.47 Mbp (Batty 

et al., 2018), which is relatively large compared to other obligate intracellular bacterial genomes, 

including the most closely related rickettsial species (McLeod et al., 2004). Such bacteria usually 

have undergone genome reduction as a consequence of adaptation to the intracellular lifestyle. Also, 
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physical isolation from other bacteria limits the acquisition of new genes. However, Ot likely has 

acquired some sequences by horizontal gene transfer from other bacterial species (K. Nakayama et 

al., 2010). Importantly, the Ot genome expanded due to widespread amplification of repetitive 

elements and gene duplications. As a result, this pathogen possesses one of the most highly repetitive 

bacterial genomes known to date. Almost 50% of its genome consists of repeated DNA elements, 

including short repetitive sequences, transposable elements, and integrative and conjugative elements 

(ICEs) called the rickettsial-amplified genetic elements (RAGEs) (Salje, 2017). RAGEs are present 

in multiple partially degraded copies and encode integrases, transposases, tra genes typical of Type 

IV secretion systems, and some potential effector proteins such as ankyrin repeat-containing proteins, 

histidine kinases, and tetratricopeptide repeat domain-containing proteins. Due to the massive 

amplification of these repetitive elements and chromosomal rearrangements that have taken place in 

the evolutionary course of Orientia, there is limited synteny between the eight Ot genomes. The core 

genome of Orientia is relatively small and contains 657 genes grouped into 51 conserved genomic 

islands separated by repeat regions (Batty et al., 2018). 

These unusual factors that characterize Ot may shape not only its unique obligate 

intracellular lifestyle but also the host immune response. Unfortunately, natural immunity to scrub 

typhus is poor and high levels of antigenic diversity among Orientia strains driven by frequent 

genetic recombination have caused difficulties in finding a universal vaccine. Nevertheless, Ot 

possesses three immunogenic surface proteins: TSA56 (also known as OmpA), TSA22, and TSA47 

(also called HtrA). The first one is the most well-characterized antigen and a strongly immunogenic 

surface protein involved in the binding and entry of the pathogen into the host cells (B.A. Cho et al., 

2010; J.-H. Lee et al., 2008). The sequence of this major outer membrane protein has served as 

the principal target for serological classification of Ot strains into several subgroups (Kelly et al., 

2009). It is also known that another surface protein — TSA47 — is involved in the budding-like host 

cell exit of Ot (M.J. Kim et al., 2013), whereas the function of the TSA22 antigen is unknown. 

Therefore, TSA56 and TSA47 have been investigated as candidates for vaccine development. 

Another type of proteins present in the Ot outer membrane are autotransporters. There are five 

autotransporters (ScaA, ScaB, ScaC, ScaD, and ScaE) associated with the Type V secretion system. 

It has been shown that ScaC and ScaA are used by Ot to adhere to non-phagocytic mammalian cells 

(Ha et al., 2011, 2015), and ScaA has been evaluated as a vaccine candidate (Ha et al., 2016). Overall, 

Ot possesses several known outer membrane proteins that mediate the internalization into the host 

cell and stimulate the immune system. 

Effector proteins are another type of bacterial molecule that play an essential role in 

pathogenesis by manipulating host cell activity. Examples include ankyrin repeat-containing 

proteins, one of the RAGE elements, that are present in Ot in great numbers compared to other 

microbes (Jernigan & Bordenstein, 2014). Those proteins contain 33-residue ankyrin repeats 

(ANKs) — the most common protein-protein interaction motif in nature — and have diverse 
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functions in different organisms (Al-Khodor et al., 2010). During infection of mammalian cells, Ot 

produces various ANK-containing proteins that traffic to distinct subcellular localizations, including 

the Endoplasmic Reticulum (ER), Golgi apparatus, nucleus, or remain in the cytosol (Beyer et al., 

2017; Min et al., 2014; VieBrock et al., 2015). They facilitate survival in the host cells. Ank1 and 

Ank6 reduce the nuclear accumulation of both NF-κB subunit and p65, and inhibit NF-κB-dependent 

gene expression, an important element of the antimicrobial host defense (Evans et al., 2018). Another 

example is Ank4 which is used for acquisition of amino acids necessary for the intracellular growth, 

by activating mechanisms that normally are induced by ER stress caused by accumulation of 

misfolded proteins (Rodino et al., 2018). Finally, Ank9 employs separate eukaryotic-like domains to 

modulate multiple host cell processes. It targets the Golgi apparatus followed by binding to COPB2 

to facilitate retrograde trafficking to the ER, which in turn, disturbs the Golgi apparatus and ER 

structures, induces ER stress, and inhibits protein secretion (Beyer et al., 2017). Moreover, Ank9 can 

also interact with a subunit of the SCF1 ubiquitin ligase complex, which usually catalyzes 

the ubiquitination of proteins destined for proteasomal degradation in eukaryotic cells (Beyer et al., 

2015). Another effector interacting with ubiquitin ligase complex is ANK13 — a nucleomodulin that 

downregulates expression of many host genes including those involved in transcriptional control and 

the inflammatory response (Adcox et al., 2021). In addition to ANK-containing proteins, the RAGE 

also encodes proteins composed of eukaryotic-like protein-protein interaction motifs, that serve as 

virulence factors in bacteria (Cerveny et al., 2013). These are tetratricopeptide repeats (TPRs) that 

function as a scaffold for assembling multiprotein complexes. In Ot, the TPR-containing proteins 

inhibit translation in the host cells through interaction with the DDX3 RNA helicase that is involved 

in multiple RNA metabolic processes (Bang et al., 2016). Other known Ot effector proteins include 

otDUB deubiquitylase, an enzyme that cleaves ubiquitin chains from target proteins (Berk et al., 

2020). The effector proteins are translocated into host cells through secretion systems. Examples 

include the conjugative type IV secretion system (T4SS) that translocates DNA and protein 

molecules through a channel assembly that connects two cells during the horizontal gene transfer or 

an infection process. The high conservation of organization of T4SS genes among Rickettsia and 

Orientia strains suggests an essential role of this secretion system in establishing the intracellular 

niche for these pathogens (K. Nakayama et al., 2008). In addition, RAGE elements contain another 

T4SS composed of tra and trb genes (Gillespie et al., 2015; N.H. Cho et al., 2007). However, it is 

unknown if the RAGE T4SS is functional. Type 1 secretion system (T1SS) is another system utilized 

by Ot to translocate effector proteins, particularly some ANK-containing proteins, directly from the 

cytoplasm to the extracellular environment in a one-step process (VieBrock et al., 2015). In general, 

secretion systems and effector proteins are essential to modulate eukaryotic cell processes to the 

pathogen's advantage. 

In response to the pathogen action, eukaryotes have evolved various defense mechanisms. 

Their effectiveness, however, is dependent on multiple factors. Infection with Ot impacts many 
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aspects of the human immune reaction, but the fate of the host seems to be determined by the early 

inflammatory responses (Jerrells & Osterman, 1981). A repertoire of the proinflammatory molecules 

expressed during Ot infection has been identified in various studies using different cell lines 

(K.A. Cho et al., 2010; N. H. Cho et al., 2000, 2001; Tantibhedhyangkul et al., 2011, 2013), mouse 

infection models (Koh et al., 2004; Yun et al., 2005), and patient-derived samples (Chierakul et al., 

2004; Chung et al., 2008; Tantibhedhyangkul et al., 2011). Production of these inflammatory 

mediators is induced by pattern recognition receptors (PRRs) for example, that detect 

pathogen-associated molecular patterns (PAMPs). Examples of PRRs recognizing Ot cell elements 

include Toll-like receptor 2 (TLR2). Although activation of this membrane receptor mediates 

immediate antimicrobial responses in-vitro, an in-vivo study has shown that it is one of the host 

factors that increase the severity of the Ot infection (Gharaibeh et al., 2016). The Ot 

peptidoglycan-like structure also stimulates an intracellular PRR — the Nucleotide-binding 

oligomerization domain-containing protein 1 (NOD1). K. A. Cho et al. (2010) showed that 

the activation of this receptor in endothelial cells leads to increased production of IL-32 followed by 

both secretion of proinflammatory cytokines IL-1β, IL-6, IL-8, and affected expression of 

intercellular adhesion molecule 1 ICAM-1.  

However, induction of IL-10 in the early stages of macrophage cell infection suppresses 

the expression of proinflammatory cytokines by inhibiting the NF-κB signaling path, which results 

in the proliferation of the intracellular bacteria (M.J. Kim et al., 2006). Tsai et al. (2016) showed that 

while the infection is progressing, reaching a high number of infecting bacteria, a low level of IL-10 

leads to increased production of proinflammatory cytokines through NF-κB activation. Their analysis 

also implies that high expression of microRNA-155, on the other hand, prevents a cytokine storm — 

the main cause of severe complications in scrub typhus patients. Also, upregulation of some 

cytokines may cause pathological changes, e.g., extensive tissue damage was attributed to high levels 

of IL-33 in the mouse model of scrub typhus (Shelite et al., 2016). In addition to genes encoding 

inflammatory cytokines and chemokines, live Ot cells alter the expression of genes involved in 

an antiviral type I interferon (IFN) pathway (Tantibhedhyangkul et al., 2011, 2013). Type I INFs are 

a group of cytokines mainly represented by IFNα and IFNβ, which are activated through interferon 

α/β receptor (IFNAR) and induce a diverse set of interferon-stimulated genes that play a role in 

stimulating host cell death, activating innate immune cells, promoting the development of 

the adaptive immune response, and activating the antiviral inflammatory gene program to interrupt 

the viral life cycle. However, in bacterial infection, activation of Type I INFs modulates different 

outcomes, beneficial either to the host or the pathogen (Boxx & Cheng, 2016). Its role in Ot infection 

is unclear, but it has been reported that sensitivity to IFN-mediated inhibition is dependent on the Ot 

strain and the genetic background of the host cells (Hanson, 1991). 

Although there is still a lot to discover about the Ot infection, the current knowledge already 

shows the complexity of processes involved in host response and the pathogen adaptation. During 
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infection, bacteria express a complex repertoire of genes to establish their own survival and 

replication within the host. Those genes encode for both proteins and various non-coding transcripts 

that together create coordinated transcriptional and regulatory systems. 

2.1.2 Transcriptional architecture and regulatory mechanisms in bacteria 

Bacteria have an ability to adjust to changing conditions, e.g., those within the host, by remodeling 

their gene expression in response to external stimuli. Although bacteria are characterized by complex 

transcriptional architecture, their coordinated regulatory programs precisely tune gene expression 

(Mejía-Almonte et al., 2020). Bacterial genes are organized in clusters known as operons enabling 

their transcription as a single mRNA. These structures can be composed of either a single gene 

(monocistronic operons) or multiple genes (polycistronic operons) arranged under a common 

promoter (a DNA sequence recognized by RNA polymerase initiating transcription) and regulated 

by a common operator (site of binding of a repressor, which prevents transcription by blocking 

the attachment of RNA polymerase to the promoter). Other operon regulators include activators that 

increase the transcription by facilitating RNA polymerase binding to the promoter, corepressors that 

activate repressors, and inducers that repress or activate transcription by interacting with an activator 

or a repressor, respectively. Specific transcription initiation processes can also be controlled by sigma 

factors that enable specific binding of RNA polymerase (RNAP) to gene promoters. The process of 

dissociating RNA polymerase at the end of the transcription unit, called transcript termination, is 

mediated by either physical modification of RNA structure (intrinsic termination) or the Rho factor 

(Rho-dependent termination) (Ray-Soni et al., 2016). Some operons may contain multiple promoters 

and terminators, and each alternative promoter-terminator pair facilitates transcription of 

a transcription unit comprising adjacent genes (Conway et al., 2014). Overall, there has been shown 

higher complexity in the operon structure and transcription regulation, also involving non-coding 

RNAs (Bossi et al., 2012; Sedlyarova et al., 2016; Silva et al., 2019). 

 Non-coding RNAs (ncRNAs) are untranslated transcripts and some of them have various 

functions essential for cellular processes. In addition to rRNAs and tRNAs, there are non-coding 

transcripts that modulate the activity of proteins by mimicking secondary structures of other RNA or 

DNA molecules in bacteria (Gottesman & Storz, 2011). Examples include the 6S RNA that forms 

a double-stranded (ds)RNA hairpin with a single-stranded central bubble that mimics an open DNA 

promoter and interacts with the RNA polymerase regulating transcription. Other important 

well-conserved non-coding transcripts in bacteria include the ribonuclease P (RNase P) RNA that is 

the catalytic component of the ribonucleoprotein catalyzing maturation of the 5′ end of tRNA 

(Kazantsev & Pace, 2006); the 4.5S RNA of the signal recognition particle (SRP), a protein-RNA 

complex that recognizes and delivers specific proteins to their cellular destination — the plasma 

membrane in bacteria (Akopian et al., 2013); transfer-messenger RNA (tmRNA), which has 
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properties of tRNA (binds a stalled ribosome) and mRNA (encodes a short ORF ended with 

a termination codon), and rescues stalled ribosomes releasing the defective mRNA and incomplete 

mRNA polypeptide tagged for degradation (Withey & Friedman, 2003). tmRNA also contributes to 

virulence in some pathogens (Julio et al., 2000; Svetlanov et al., 2012). 

In addition, bacterial genomes are abundant in small RNAs (sRNAs) that play an important 

role in the post-transcriptional regulation of gene expression (Storz et al., 2011; Wagner & Romby, 

2015). The regulatory mechanism of many sRNAs is mediated by base-pairing with the target gene. 

For instance, trans-acting sRNAs are encoded within intergenic regions and act on genes located at 

distant genomic positions. Due to their partial nucleotide complementarity with their targets, 

the interaction between the sRNA and target mRNA is mediated by RNA chaperons, e.g. Hfq and 

ProQ. On the other hand, cis-acting RNAs originate from the antisense strand of protein-coding genes 

and have the potential to base pair with the corresponding sequence with nearly perfect nucleotide 

complementarity. The possible mechanisms of antisense RNA (asRNA) action include 

RNase-dependent degradation of the asRNA-mRNA duplexes and alteration of both transcription 

termination and mRNA translation (Georg & Hess, 2011; Wade & Grainger, 2014). Importantly, 

antisense RNAs are widespread in bacteria, but the regulatory role of only some individual asRNAs 

has been discovered (Georg & Hess, 2018; Thomason & Storz, 2010; Millar & Raghavan, 2021). 

The function of most of them is unknown. Moreover, pervasive antisense transcription has been 

thought to be noise (Lloréns-Rico et al., 2016), as many asRNAs might arise from spurious promoters 

and are likely nonfunctional. This hypothesis has been supported by the weak evolutionary 

conservation of antisense promoters (Raghavan et al., 2012; Shao et al., 2014). Thus, the function of 

many non-coding transcripts remains an open question and, together with other regulatory and 

transcriptional systems, is a broad area of research for different bacteria. 

Technological advancements and the development of experimental methods and 

computational tools have led to the identification and characterization of elements of regulatory 

systems in various bacteria (Hör et al., 2018; Barquist & Vogel, 2015). However, while different 

aspects of the regulation of gene expression were studied in Rickettsia species, including 

transcription termination (Woodard & Wood, 2011) and sRNAs (Schroeder et al., 2015, 2016), such 

investigations have not been carried out for Ot. 

2.2 Methods 

Suparat Giengkam established the cell culture and the dual RNA-seq protocol for two Ot strains 

infecting HUVEC cells described here. After RNA extraction, generation of the cDNA libraries for 

Illumina sequencing was performed by Vertis Biotechnologie AG, Freising-Weihenstephan, 

Germany. Alexander J. Westermann validated the RNA-seq data using the Northern blot approach 
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and confirmed differentially expressed genes by qRT-PCR. Lars Barquist performed an initial 

RNA-seq read processing using the READemption pipeline and preliminary data analysis. Jantana 

Wongsantichon and Loo Chien Wang prepared proteomic samples. Radoslaw Sobota carried out 

the mass spectrometry and, together with Jantana Wongsantichon and Loo Chien Wang, processed 

raw spectra. I performed re-quantification of reads mapped to the Ot genomes using Salmon to 

improve quantification of the repetitive sequences and the downstream analysis of the RNA-seq 

host-pathogen data, including (i) prediction of ncRNAs and operon structures in bacteria; 

(ii) application of a machine learning approach to investigate antisense regulatory mechanisms in 

the Ot Karp strain; (iii) differential gene expression and pathway enrichment analysis for both host 

and pathogen. Jeanne Salje retrieved specific annotations for Ot ankyrin and tetrapeptide repeat 

proteins, and surface proteins using BLAST search. Selvakumar Subbian applied Ingenuity Pathway 

Analysis (IPA) to identify host gene networks activated during the Ot-infection, and Sandy 

Pernitzsch re-drew them. Piyanate Sunyakumthorn performed experiments on mice. Suthida 

Chuenklin did the tissue extraction and qPCR for the mouse experiments. The laboratory experiments 

are described briefly here; a more detailed description is available in (Mika-Gospodorz et al., 2020). 

2.2.1 Growth of Ot and isolation of RNA 

Two clinical isolate strains of Ot, Karp and UT176, were propagated in a confluent monolayer of 

Human Umbilical Vein Endothelial Cells (HUVEC; Gibco C0035C) for 5 days at MOI 100:1. 

Cells were cultured using Media200 (ThermoFisher; M200-500) supplemented with LVES media 

(ThermoFisher) at 35 °C and 5% CO2. For RNA isolation, bacteria from frozen stocks were first 

pregrown in HUVEC cells in a T25 culture flask. After 5 days, they were harvested and inoculated 

onto a fresh lawn of host cells, with each condition filling 2 × 6-well plates for the second round of 

growth. The MOI of infections for RNA isolation was established by measuring the number 

of bacteria in the pregrowth supernatant one day before harvesting the bacteria. Using qPCR of 

the inoculum sample, it was determined that the MOI for infection was 35:1 and 32:1 bacteria:host 

for Karp and UT176, respectively, although it is expected that a smaller number of bacteria entered 

into host cells. The washing step was performed with fresh media 3 h p.i. The host cells (infected 

and uninfected) were harvested by incubation on ice. Subsequently, they were resuspended in 

RNAprotect Bacteria Reagent (Qiagen), followed by storage at −80 °C. RNA was extracted using 

the Qiagen RNeasy Plus kit. 

The bacterial growth curve was prepared for the pregrowth of the bacteria in host cells 

following the above protocol and then grown in 24-well plates. The obtained MIO was 8:1 and 25:1 

for UT176 and Karp, respectively. At each time point, bacterial DNA was isolated using alkaline 

lysis extraction, and qPCR was performed (Giengkam et al., 2015). 
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2.2.2 RNA processing and sequencing 

Assessment of the integrity of the DNase-treated RNA samples was performed in a Bioanalyzer 

(Agilent), with RNA integrity number values ≥ 8.0 for all samples. Ribo-Zero Gold (epidemiology) 

kit (Illumina) was used to remove rRNAs following the manufacturer’s instructions. rRNA-depleted 

RNA was precipitated in ethanol for 3 h at −20 °C. 

For cDNA library preparation, ultrasound sonication shearing of rRNA-free RNA samples 

(four 30-s pulses at 4 °C) was performed to generate on average 200- to 400-nt fragments. After 

removing fragments of 20 nt (Agencourt RNAClean XP kit, Beckman Coulter Genomics), 

the Illumina TruSeq adapter was ligated to the 3′ ends of the remaining fragments, and further served 

as a primer in the first-strand cDNA synthesis step performed using M-MLV reverse transcriptase 

(NEB). Following the purification of the first-strand cDNA, the 5′ Illumina TruSeq sequencing 

adapter was ligated to the 3′ end of the antisense cDNA, and PCR amplification of resulting cDNAs 

was performed to obtain 10-20 ng/µl using a high-fidelity DNA polymerase. The cDNA library was 

purified using the Agencourt AMPure XP kit (Beckman Coulter Genomics) and analyzed by 

capillary electrophoresis (Shimadzu MultiNA microchip). 

For sequencing, cDNA libraries were pooled in approximately equimolar amounts. 

The size-fractionation of the cDNA pool in the 200-600 bp size range was performed using 

a differential cleanup with the Agencourt AMPure kit (Beckman Coulter Genomics). Aliquots of 

the cDNA pools were analyzed by capillary electrophoresis (Shimadzu MultiNA microchip). 75-bp 

long single-end reads were generated on the NextSeq 500 platform (Illumina) at Vertis 

Biotechnologie AG, Freising-Weihenstephan, Germany. The raw sequencing data are available in 

GEO with accession number GSE139498. 

2.2.3 Northern blots 

15 µg of total RNA were loaded per lane and separated on 6% (vol/vol) polyacrylamide–7 M urea 

gels, electro-blotted (1 h, 50 V, 4 °C) onto Hybond XL membranes (Amersham) in a tank blotter 

(Peqlab), cross-linked with UV light, and hybridized with gene-specific 32P-end-labeled DNA 

oligonucleotides (Table S6) in Hybri-Quick buffer (Carl Roth AG) at 42 °C. Typhoon FLA 7000 

phosphorimager (GE Healthcare) was used for the readout. 

2.2.4 qRT-PCR 

qRT-PCR of selected host and pathogen expressed genes was performed with the Power SYBR 

Green RNA-to-CT1-Step kit (Applied Biosystems) following the manufacturer’s instructions and 

a CFX96 Touch real-time PCR detection system (Bio-Rad). Human U6 snRNA served as reference 

transcripts. Fold changes in expression were determined using the 2(−ΔΔCt) method (Livak 
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& Schmittgen, 2001). In addition, the specificity of primer sequences (Table S6) has been confirmed 

using Primer-BLAST (NCBI). 

2.2.5 RNA-seq read processing and quantification 

The raw reads were processed as described in a previous dual RNA-seq study (Westermann et al., 

2016). Removal of adapter sequences and low-quality read ends was performed with Cutadapt using 

a minimum read quality of 20 (M. Martin, 2011). The READemption pipeline (v0.4.363) (Förstner 

et al., 2014) and segemehl (Otto et al., 2014) with the lack remapper (v0.2.064) (Hoffmann et al., 

2014) were used to map reads against the human (GRCh38) and Ot (UT176 accession: LS398547.1; 

Karp accession: LS398548.1) reference genomes, followed by removal of cross-mapped reads. For 

the host, only uniquely mapped reads were quantified. 

 For more accurate quantification of repetitive sequences, reads mapped to the Ot genomes 

were re-mapped and quantified with Salmon (v0.9.1) (Patro et al., 2017) in quasi-mapping mode 

(-type quasi). The Ot transcriptome references were created using an in-house script that extracts 

gene sequences from the genome fasta files based on the gene coordinates from the GenBank 

annotation files. The quantification was performed by setting stranded forward library type (-lSF) 

and removing incompatible mappings (–incompatPrior 0.0). Identical gene repeats detected by 

Salmon were collected in 218 and 127 groups for Karp and UT176, respectively (Appendix 1), and 

a single gene from each group was retained for the quantification. Antisense reads were quantified 

following the above steps using reverse complemented transcript sequences. 

2.2.6 Gene annotation 

The gene names, gene products, and amino acid sequences were obtained from the GenBank 

annotation. In addition, gene names, COG functional categories (Galperin et al., 2015), KEGG 

pathways (Kanehisa et al., 2017) and GO terms were predicted using eggNOG-mapper 

(Huerta-Cepas et al., 2016). Surface antigen encoding proteins were manually identified using 

BLAST. Also, the KEGGREST (v1.18.1) (Tenenbaum, D., 2019) and GO.db (v3.5.0) (Carlson M, 

2019) R packages were used to retrieve KEGG and GO terms, respectively. Additionally, specific 

annotations for ANK- and TPR-containing proteins were obtained through manual comparison using 

BLAST search to annotations in the Ot Ikeda strain [GenBank assembly number 

GCA_000010205.1]. The key Ot surface proteins TSA56, TSA47, TSA22, ScaA, ScaC, ScaD, and 

ScaE were also manually annotated using BLAST. 

2.2.7 Gene expression analysis 

For analysis of Ot gene expression, genes were classified as expressed or highly expressed if the 

mean TPM value from three replicates of each strain was greater than 10 or 50, respectively. 
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A hypergeometric test using the phyper function of the stats R package with 

a Benjamini-Hochberg correction for multiple testing (p.adjust function) was applied to test for 

enrichment of KEGG pathways in either expressed or highly expressed bacterial genes. Only gene 

sets that consist of more than 10 genes were considered in the analysis. 

2.2.8 Non-coding RNA prediction 

Non-coding RNAs were annotated using various tools: Rockhopper (v2.03) (McClure et al., 2013), 

ANNOgesic (v0.7.17) (Yu et al., 2018), and Infernal (v1.1.2) (Nawrocki & Eddy, 2013) which 

searches sequences against the Rfam database (Kalvari et al., 2018). Due to inconsistent predictions 

of intergenic sRNAs, they were further manually curated by visual comparison of the predicted 

coordinates with the read coverage in the Integrative Genomics Viewer (IGV) (v2.5.2) 

(J. T. Robinson et al., 2011). Core housekeeping ncRNAs, including tmRNA, RNase P, SRP, and 5S 

rRNA were predicted with Infernal. The quantification of the bacterial transcriptomes complemented 

with predicted ncRNAs was performed with Salmon. 

2.2.9 Genomic alignment 

The genomic comparisons in Figure 2.5A and C were generated in Easyfig (Sullivan et al., 2011). 

Escherichia coli K-12 MG1655 (accession number U00096) and Salmonella enterica serovar 

Typhimurium SL1344 (accession number FQ312003) were used as comparators for synteny analysis. 

2.2.10 Orthology and conserved operon prediction 

The orthologous genes between the two Orientia strains were predicted using Poff (included in 

ProteinOrtho, v5.16) (Lechner et al., 2014) with default parameters in synteny mode. An in-house 

script was used to identify conserved operons by combining the information on orthologous genes 

with the operon structures predicted in each strain by Rockhopper (Tjaden, 2015). Visual evaluation 

of read coverage in the IGV genome browser (v2.5.2) (J. T. Robinson et al., 2011) allowed manually 

extending some operons by adding genes or merging two operons into one. Operons with missing 

genes in one strain were classified as partially conserved operons. 

2.2.11 Differential gene expression and pathway analysis 

The bacterial differential gene expression analysis was performed between orthologous genes 

identified for Karp and UT176 by Poff (Lechner et al., 2014). Genes predicted as an orthologous 

group (more than two genes) and duplicates (transcripts with perfectly identical sequences identified 

by Salmon in either strain) were removed from the analysis. The differential gene expression 

analysis, for both host and pathogen was performed with the edgeR package (v3.20.9) 
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(M. D. Robinson et al., 2010) using robust quasi-likelihood estimation (Y. Chen et al., 2016), 

including genes with CPM (counts per million) > 10 (for Orientia) or CPM > 1 (for host) in at least 

three replicates. To investigate biological processes that differ between Karp and UT176, the fry test 

from the edgeR package was used to perform gene set enrichment analysis of KEGG and GO terms 

that contain at least four expressed genes. Three additional gene sets were created manually: RAGE 

pathway consisting of genes that encode conjugal transfer proteins, transposases, integrases, 

and hypothetical proteins; surface proteins and adhesins including TSA22, TSA47, TSA56, ScaA, 

and ScaC genes; and secreted effector proteins consisting of both ANK- and TPR-containing 

proteins. 

2.2.12 Proteomic sample preparation 

Bacteria were propagated in the HUVEC cell line at an MOI 70:1 and 159:1 for Karp and UT176, 

respectively. After 5 days p.i., cells were harvested, and Ot was isolated, washed with 0.3 M sucrose, 

and lysed with 1% Triton-X prior to acetone precipitation of protein. Total protein was then alkylated, 

reduced, and subsequently treated with Lys-C/Trypsin. Digested peptides were desalted using 

Oasis® HLB reversed-phase cartridges and vacuum dried. 

2.2.13 Mass spectrometry 

The dried samples were resuspended in 2% (v/v) acetonitrile solution containing 0.06% (v/v) 

trifluoroacetic acid and 0.5% (v/v) acetic acid and loaded onto an autosampler plate. Online 

chromatography was performed using EASY-nLC 1000 (ThermoScientific) in single-column setup 

using 0.1% formic acid in water and 0.1% formic acid in acetonitrile as mobile phases using 

reversed-phase C18 column (EASY-Spray LC Column, 75 µm inner diameter × 50 cm, 2 µm particle 

size) (ThermoScientific). The samples were injected and separated on an analytical column 

maintained at 50 °C using a 2–23% (v/v) acetonitrile gradient over 60 min, then ramped to 50% over 

the next 20 min, and finally to 90% within 5 min. The final mixture was maintained for 5 min to elute 

all remaining peptides. Total run duration for each sample was 90 min at a constant flow rate of 

300 nl/min. 

To obtain the data, an Orbitrap Fusion mass spectrometer in data-dependent mode was used. 

Samples were ionized with 2.5 kV and 300 °C at the nanospray source and positively-charged 

precursor MS1 signals were detected by setting an Orbitrap analyzer to the resolution of 60,000, 

automatic gain control (AGC) target of 400,000 ions, and maximum injection time (IT) of 50 ms. 

Precursors with charges 2–7 and the highest ion counts in each MS1 scan were further fragmented 

using collision-induced dissociation (CID) at 35% normalized collision energy and their MS2 signals 

were analyzed by ion trap at an AGC of 10,000 and maximum IT of 35 ms. To avoid re-sampling of 
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high abundance peptides, precursors used for MS2 scans were excluded for 90 s. The MS1–MS2 

cycles were repeated every 3 s until completion of the run. 

Proteins were identified with MaxQuant (v1.5.5.1). Raw mass spectra were searched against 

Ot primary protein sequences derived from complete genome data for the Karp and UT176 strains. 

Human whole proteome sequences obtained from Uniprot were included as background. 

Carbamidomethylation on Cys was set as the fixed modification and acetylation on protein 

N terminus and oxidation of Met were set as dynamic modifications for the search. Trypsin was used 

as the digestion enzyme and up to three missed cleavage sites were allowed. Precursors and fragments 

were accepted if they had a mass error within 20 ppm. Peptides were matched to spectra at a false 

discovery rate (FDR) of 1% against the decoy database. The proteomics data are available in 

jPOSTrepo with accession number PXD017956. 

2.2.14 Proteomic data analysis 

Each protein was classified as either detected or undetected; if at least two peptides were identified 

in at least two biological replicates, a protein was defined as detected and represented by the mean 

label-free quantification values (LFQs) across the three replicates; otherwise, the protein was 

undetected, and the LFQ value was set to zero. 97 proteins assigned to one of the 23 protein groups 

that could not be resolved were removed from the analysis. 

2.2.15 Transcript classification 

Within the analysis, 318 genes were classified as detected in proteomics, and 1608 genes were 

classified as undetected. Further, each gene was represented by the sense expression defined by 

the mean TPM value across replicates and the antisense/sense ratio, which was calculated as the ratio 

of mean read counts assigned to the antisense and sense strand of coding annotations. Additionally, 

ncRNAs and duplicates identified by Salmon (Appendix 1) were removed from the analysis. 

The Spearman's correlation between TPMs and LFQs for genes with detected proteins indicates 

a weak positive correlation (the coefficient equal to 0.33); however, Pearson's correlation coefficient 

equal to 0.04 indicates a lack of a linear association. Transcripts with sense expression >10 TPMs 

(previously defined as the expression threshold) were selected for further analysis. 

2.2.16 Logistic regression models 

A machine learning approach was employed to test whether antisense-sense ratios are predictive of 

protein expression. Logistic regression was applied to model the probability of a binary response, i.e. 

whether a protein is expressed or not. Three models were generated. The first model makes 

predictions of the protein expression based solely on TPM values of the sense strand: 

𝑃 = (1 + exp(−( 𝛽0 + 𝛽1𝑇𝑃𝑀𝑠𝑒𝑛𝑠𝑒)))
−1; 
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model 2 makes predictions solely on the antisense-sense read count ratio: 

𝑃 = (1 + exp(−( 𝛽0 + 𝛽1
𝑁𝑅𝑎𝑛𝑡𝑖𝑠𝑒𝑛𝑠𝑒

𝑁𝑅𝑠𝑒𝑛𝑠𝑒
)))−1, 

where NR represents the number of reads; model 3 uses both sense transcription and 

the antisense-sense ratio to make predictions: 

𝑃 = (1 + exp(−( 𝛽0 + 𝛽1𝑇𝑃𝑀𝑠𝑒𝑛𝑠𝑒 + 𝛽2
𝑁𝑅𝑎𝑛𝑡𝑖𝑠𝑒𝑛𝑠𝑒

𝑁𝑅𝑠𝑒𝑛𝑠𝑒
)))−1. 

As the data was highly imbalanced, 316 transcripts with detected proteins and 915 with no 

detected peptide products, a balanced data set for the model training step was created by applying 

a downsampling procedure using the downSample() function from the caret R package (Kuhn 

& Others, 2008). Next, the glm() function with a logit link function from the caret package was used 

to fit the regression models. To assess the predictive power of the models, initially they were trained 

on the reduced data set containing 632 genes, and then tested on the complete data set. More rigorous 

evaluation of this result was performed by applying 500-fold cross-validation. For each fold, the data 

was split randomly into training and testing data sets, which included 1171 and 60 genes, 

respectively. Each time the new training data set was reduced to 602 genes with the downsampling 

procedure and then used to estimate the model parameters. The evaluation of model performance 

was performed on the small testing data set and used a variety of measures. This included precision 

which is defined as the ratio of correctly predicted elements from the class of detected proteins to all 

those classified as protein detected. Furthermore, we used the recall, also known as sensitivity, which 

measures the ability of the model to predict the transcripts accurately from the class of detected 

proteins. Since the testing data set contained different numbers of elements from each class in each 

cross-validation fold, metrics robust to the imbalanced data sets were also employed for model 

evaluation, e.g. balanced accuracy that presents an average of the proportion of correct predictions 

of each class individually, ROC curves illustrating the ability of the classifier to distinguish between 

two classes at various discrimination threshold (pROC, v1.14.0) (Robin et al., 2011), and the area 

under the ROC curve (AUC). 

2.2.17 Host networks/pathway analysis 

Host pathways affected by both Karp and/or UT176 were investigated by analyzing genes 

differentially expressed at an adjusted p-value of <0.05 using Ingenuity Pathway Analysis (IPA) 

software (Krämer et al., 2014; Subbian et al., 2013). Interesting pathways were selected based on the 

enrichment p-values and activation z-scores, and served as the basis for Figure 2.9, Figure 2.10, 

Figure S3, Figure S4, Figure S5, Figure S6. 
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2.2.18 Mice and ethics statement 

The research performed on mice was performed under a protocol approved by the Armed Forces 

Research Institute of Medical Sciences (AFRIMS) Animal Care and Use Committee and carried out 

in accordance with Thai law, the Animal Welfare Act, and all applicable U.S. Department of 

Agriculture, Office of Laboratory Animal Welfare and U.S. Department of Defense guidelines. 

The number of the protocol is PN16-05. Female C57BL/6NJcl mice at the age of 6–8 weeks were 

used in the experiments. Two groups of mice (8 mice per group) were intravenously injected in 

the tail vein with 1.25 × 106 genome copies of either Karp or UT176. The Ot inoculum was derived 

from Ot-infected L929 cells. Mice were monitored for disease symptoms for 12 days and euthanized 

with CO2 inhalation 12 days post-inoculation. Blood and tissue samples (lungs, liver, spleen, and 

kidneys) were collected for bacteria quantification (qPCR) and histopathology. Tissues were stained 

by hematoxylin and eosin, followed by histopathological scoring of the extent of tissue damage. 

2.3 Results 

2.3.1 Dual RNA-seq of Orientia tsutsugamushi infecting endothelial cells 

In this study, an in-vitro dual RNA-seq protocol was established for two clinical isolates of Orientia 

tsutsugamushi, Karp (Enatsu et al., 1999) and UT176 (Paris et al., 2009), both infecting Human 

umbilical vein endothelial cells (HUVEC). The HUVEC cells were selected as host cells due to their 

similarity to cell types involved in early and advanced infections. They were infected with bacteria 

at different MOI, 32:1 for UT176 and 35:1 for Karp, and were grown for five days (Figure 2.1A). 

Uninfected HUVEC cells were grown in parallel. After five days, when host cells were heavily 

loaded with bacteria (Figure 2.1B), total RNA was isolated, depleted for rRNA, converted to cDNA,  

 

Figure 2.1 Establishment of the dual RNA-seq protocol for Ot. A) Overview of the dual RNA-seq protocol applied in this 

study; HUVEC - human umbilical vein endothelial cell. B) Growth curve showing replication of Ot in cultured HUVEC 

cells. Mean and SD from three independent replicates are shown. This figure from A to B was created by Jeanne Salje. 
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and sequenced to ~35 million reads per library using Illumina technology. 

The sequenced reads were initially mapped to the complete genomes of Karp, UT176 (Batty 

et al., 2018), and, in parallel, to the human genome, following the bioinformatic protocol established 

in a previous dual RNA-seq study (Westermann et al., 2016). The READemption pipeline 

(Förstner et al., 2014) with segemehl mapper (Otto et al., 2014) and Lack (Hoffmann et al., 2014) 

supporting splice junction site recognition, were used. Reads that mapped equally well to 

the bacterial and host genomes, were defined as cross-mapped and removed. 

  

Figure 2.2 Quality control and overview of mapping and quantification results. A) RNA mapping statistics showing 

the fraction of host and Ot RNA for each individual sample. B) MDS plot of the host data shows a grouping of the samples 

by the condition (uninfected host cells or HUVECs infected with either Karp or UT176), indicating good quality of the data. 

C) Summary of data reproducibility indicating comparability of the transcript abundances between the samples. 

Comparison of the replicate log10(TPM) values. Pearson correlation coefficient was calculated for untransformed TPM 

values. 

In total, 17.1–17.5% Karp reads and 2.8–4.9% UT176 reads were identified in the infected 

HUVEC cells, respectively (Figure 2.2A). The difference in the number of detected bacterial reads 
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may reflect differences in both host cell entry efficiency and growth rate between these two Ot 

strains, which have doubling times of 19 and 27 h in HUVEC, respectively (Figure 2.1B). 

For the host, only uniquely mapped reads were further processed for quantification. The good quality 

of the data and a lack of batch effects were confirmed by a multidimensional scaling (MDS) plot 

(Figure 2.2B), indicating the condition as the greatest source of variation in the normalized host data. 

As the Orientia genome is repeat-rich, reads mapped to the Ot genomes were re-mapped to 

bacterial transcriptomes and quantified using Salmon in quasi-mapping mode (Patro et al., 2017). 

A model-based approach employed in Salmon allows estimation of transcript abundances using both 

uniquely and multi-mapped reads. Alignment-free methods such as the one implemented in Salmon 

are discussed in more detail in Section 3.1.1 and 3.1.6 in the next chapter. Additionally, comparing 

the bacterial transcript abundances between the replicates shows a strong linear correlation (Figure 

2.2C) indicating good data quality. 

The RNA mapping statistics (Figure 2.3; Appendix 1) show that all major bacterial and 

eukaryotic transcript classes were detected in this study. Coding sequences (CDSs) are one of most 

the abundant classes identified in both the HUVEC (54% of all host-mapped reads across all samples) 

and the bacterial data (35% of the Karp- and 38% of the UT176-mapped reads). Using the relative 

abundance of transcripts in TPM (transcripts per million) units and thresholds for expressed 

(TPM > 10) and highly expressed genes (TPM > 50), these two sets of genes were explored for each 

Ot strain. While 1422 expressed and 856 highly expressed genes were identified in Karp, UT176 

harbors 1244 and 766 expressed and highly expressed genes during the infection, respectively 

(Appendix 1). The pathway analysis identified KEGG gene sets involved in gene expression 

regulation, virulence, and metabolism as statistically significant pathways enriched in expressed 

genes in both Karp (Table S1, Table S2) and UT176 (Table S3, Table S4). Further exploration 

of COG functional categories (Galperin et al., 2015) confirmed the above-identified functions of 

strongly activated genes during the infection (Figure S1). The higher number of highly expressed 

genes come from COG categories such as Energy production and conversion (C), Translation (J), 

Replication and repair (L), and Intracellular trafficking and secretion (U). These results indicate 

an active lifestyle of the bacteria within the HUVEC cells. In particular, secretion of effectors and 

host-dependent nutrient acquisition and metabolism are the main characteristics of the obligate 

intracellular pathogens. Genes encoding proteins with such functionalities usually are conserved 

within species. Out of the previously identified core Ot genes (Batty et al., 2018), 599 of them are 

expressed, and 369 are highly expressed in this analysis (Appendix 1). 

Besides coding transcripts, dual RNA-seq also detected various ncRNA classes from both 

the host and the bacteria (Figure 2.3; Appendix 1). The low number of detected human rRNA reads 

indicates efficient depletion of ribosomal transcripts in the host transcriptome. On the other hand, 

reads mapping to rRNA were 32% and 44% of the total in Karp and UT176, respectively. Since most 

of these bacterial ribosomal reads were derived from the 5S rRNA, this indicates the divergence of 
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5S rRNA sequences between Ot and bacterial model organisms used for the optimization 

of the Ribo-Zero approach (https://emea.illumina.com/products/selection-tools/ribo-zero-kit-

species-compatibility.html?langsel=/de/). Analysis of dual RNA-seq data has also enabled 

the identification of other novel bacterial ncRNAs. 

 

 Figure 2.3 Percentage of RNA-seq reads assigned to different RNA classes in Karp, UT176, and HUVEC; First replicates 

are shown; CDS – coding sequence, IGR – intergenic region, antisense – reads that mapped antisense to CDS. 

2.3.2 Ot ncRNAs and evidence for tmRNA processing 

Bacterial genomes encode various non-coding transcripts, and many of them play essential roles for 

bacterial survival in different environments. From the most conserved housekeeping ncRNAs, RNA 

components of RNase P, SRP, and tmRNA were identified for each Ot strain (Figure 2.3; 

see Appendix 1 for genome coordinates). Furthermore, the detected housekeeping ncRNAs in Karp 

were confirmed by Northern blot (Figure 2.4A). The M1 RNA of the RNase P and 4.5S RNA of 

the SRP ran at their expected lengths of ~385 and ~100 nt, respectively. Moreover, there is evidence 

for a precursor-M1, since a second stronger band indicates a length of ~450 nt. Interestingly, 

the identified high level of tmRNA expression, contributing between 4.6-13% of total bacterial reads 

(Figure 2.3; Appendix 1) may suggest an important role in Ot survival in mammalian cells. tmRNA 

has undergone a circular permutation in some clades of bacteria (Mao et al., 2009), including 

the Alphaproteobacteria (Keiler et al., 2000) producing a two-piece form. A tRNA-like (acceptor) 

domain is encoded upstream of a mRNA-like coding domain, and the precursor transcript is 

processed into separate, base-pairing acceptor and coding RNA chains (Gaudin et al., 2002; 

Sharkady, 2004) (Figure 2.4B). Three Ot tmRNA forms were detected here using Northern blot: 

https://emea.illumina.com/products/selection-tools/ribo-zero-kit-species-compatibility.html?langsel=/de/
https://emea.illumina.com/products/selection-tools/ribo-zero-kit-species-compatibility.html?langsel=/de/
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(i) a long precursor tmRNA (372 nt); (ii) a 5′ fragment of ~80 nt, the acceptor domain; 

(iii) and the 3′ coding domain of ~240 nt (Figure 2.4A). Read coverage over the tmRNA locus in 

the Karp genome supported a cleavage event within the loop region that connects the tRNA- and 

mRNA-like domains in the full-length precursor (Figure 2.4C). 

In addition to these highly conserved housekeeping ncRNAs, examination of results from 

three different tools for ncRNA prediction and manual curation led to the identification of 55 and 81 

intergenic (IGR) sRNAs for Karp and UT176, respectively (Figure 2.3; see Appendix 1 for genome 

coordinates). Although intergenic sRNAs are trans-acting, Ot is not known to encode for any 

chaperone molecule, like hfq, that would facilitate the interaction with target genes. However, when 

normalized to the genome size of Ot, the number of identified IGRs is consistent with the number of 

sRNAs identified in model bacterial pathogens (Albrecht et al., 2011; Kröger et al., 2012; Sharma et 

al., 2010; Toledo-Arana et al., 2009; Vogel, 2003). 

 

Figure 2.4 Experimental validation of identified housekeeping non-coding RNAs in Ot. A) Northern blot analysis of 

identified RNAs in Karp. B) Structure of the two-piece tmRNA identified in Ot. C) RNA-seq read coverage over the tmRNA 

gene mirrors cleavage observed by Northern blot. This figure from A to C was generated by Alexander J. Westermann. 

2.3.3 Conserved operons in a dynamic genome 

The two Ot strains studied here contain chromosomes diverse in size: 2 469 803 bp in Karp and 

1 932 116 bp long in UT176 (Batty et al., 2018). The repetitive elements occupy 33% and 

49% of the UT176 and Karp genomes, respectively, representing 38-47% of the genes in these 

genomes. Because of the massive amplification of the repetitive elements, extensive genome 
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shuffling has occurred between the Ot strains. There is a small correspondence between the positions 

of analogous genes in Karp and UT176. Figure 2.5A shows only minimal collinearity between these 

two genomes when compared to the high degree of synteny preserved between two bacteria from 

different genera, E. coli and S. Typhimurium. As bacterial genomes are organized into operons that 

facilitate co-transcription of functionally related genes, the aim of this analysis was to identify them 

and evaluate their conservation in such a dynamic genome. Sets of adjacent genes expressed as 

a continuous transcript were explored using Rockhopper (Tjaden, 2015) and manual curation. 

Combining the information on operon structures in each strain and predicted orthologous genes 

between Karp and UT176, 131 operons were identified as fully conserved with all genes expressed 

in both strains (Figure 2.5B; Appendix 1). In the case of seven operons only a partial set of their 

genes was expressed in both strains (Table S5). Batty et al. (Batty et al., 2018) identified 

51 universally conserved genomic islands for eight Ot strains, that include 35 potential collinear gene 

clusters consisting of two to thirteen genes; operonic transcripts may originate from 24 of these 

(Appendix 1). In addition, 212 and 192 identified operons are present solely in Karp or UT176, 

respectively (Appendix 1). 73% of Karp- and 93% of UT176-specific operons consist of RAGE 

genes, whereas only 14% of conserved operons are expressed from these repetitive elements (Figure 

2.5B). The length of conserved operons ranges from 2 to 30 genes, though 84% of them consist of 

only two or three genes (Figure 2.5D; Appendix 1). Longer co-transcribed gene clusters tend to 

encode for core cellular processes. For instance, two of them located in distinct loci contain 6 and 5 

genes and encode for portions of the NADH–ubiquinone oxidoreductase complex organized  

 

 

Figure 2.5 Comparative genomics and identification of operon structures in two Ot strains. A comparison of genomic 

synteny of two species within the same family (E. coli and S. Typhimurium, top), with synteny between the two Ot strains 

from this study (bottom). B) Representation of relative abundance of RAGE genes in both conserved (top pie chart) and 

strain-specific (bottom pie chart) operons, and the number of conserved operons identified within the conserved Ot genomic 

islands (Batty et al., 2018). This figure was created by Jeanne Salje. C) Visualization of the longest conserved operon 

identified in Karp and UT176 that encodes ribosomal genes; shown with RNA-seq coverage in both strains. D) Lengths of 

conserved operons identified in Karp and UT176.  
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similarly to that observed in Rickettsia prowazekii and eukaryotic mitochondria (Andersson 

et al., 1998). In addition, the 8 gene-long operon is involved in iron-sulfur cluster assembly. Finally, 

the longest operon that contains 30 genes encodes almost half of ribosomal proteins present in the Ot 

genome, which are proximal to co-transcribed ribosomal RNA and 5S rRNA genes (Figure 2.5C). In 

summary, identifying the identification of operons in a genome as highly dynamic as that of Orientia 

indicates a strong selection for co- transcription of those genes due to their involvement in the same 

pathways and likely shared regulation. 

2.3.4 Evidence for Ot RAGE regulation by antisense RNA 

Analysis of the RNA-seq data uncovered that almost half of the most highly expressed genes of Karp 

and UT176 belong to RAGE repetitive elements (defined in the present study as a set of integrases, 

transposases, conjugal transfer genes, and hypothetical proteins). Moreover, these genes were also 

highly expressed in the antisense direction in Ot (Figure 2.6A). This was confirmed by an enrichment 

analysis of antisense transcription in the RAGE elements in both genomes (Figure 2.6B), leading to 

the hypothesis that the repetitive elements may be regulated by antisense gene expression. 

As the general role of antisense transcription is controversial, mass spectrometry was 

performed to explore both the relationship between the transcriptomics and proteomics of Ot and 

the potential regulatory role of the antisense transcripts. Because the higher bacterial load makes 

detection of bacterial proteins more likely, Karp was chosen to represent Ot strains in this 

investigation. Comparison of RNA-seq with the proteomics data set showed that significantly fewer 

RAGE gene products were detected by mass spectrometry (Figure 2.6A). Overall, only 318 proteins 

were detected within the analyzed data set, and their genes had higher transcript expression on 

average than those not detected by proteomics (Figure 2.6C). However, there were also highly 

expressed transcripts that were not observed by proteomics. Thus, considering previous results, 

the question arises whether antisense transcription would affect the protein expression. Interestingly, 

all genes with detected protein products had an antisense-sense read count ratio of <1, whereas 

a higher ratio was observed only for genes without the detected proteins (Figure 2.6D), suggesting 

antisense transcripts may play a role in inhibiting translation. 

This hypothesis was verified using a machine learning approach. Three logistic regression 

models that predict protein detection based on the transcriptomics data were created; the first model 

uses TPM expression values of the sense strand to make the predictions; the second uses only 

the antisense-sense read count ratio as a predictor; the third model combines both features. For a first 

indication of whether any of these models are predictive, the models were trained on the reduced 

balanced data set (see 2.2.16 method section) and then tested on the complete data set. Evaluation of 

the models indicated that antisense transcription is predictive of protein expression (Figure 2.7).  
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Figure 2.6 Antisense transcription in Ot. A) Visualization of the expression levels from the sense and antisense strands and 

protein expression over genes ranked from high to low levels in Karp; RAGE genes are marked in red. This figure was 

generated by Lars Barquist B) Enrichment of the antisense expression in RAGE genes in both Ot strains. Genes are ranked 

by the antisense expression from highest to lowest, and the distribution of one-sided hypergeometric p-values calculated 

for the enrichment of RAGE genes is shown. Inset plots show representative annotations for the top genes of the ranked 

list. C) Visualization of the relationship between protein expression, defined by LFQs, and transcript expression, defined 

by TPMs, indicating two gene clusters separated by the protein expression. The red line indicates the threshold for 

expressed genes (TPM value equal to 10). D) Sense transcription and antisense-sense ratio showing the classification 

based on proteomics detection. The red line indicates the sense-antisense ratio (1.06) above which no protein was detected 

by mass spectrometry; NR - number of reads. E) Comparison of the fraction of core genes and RAGE genes in the set of 

genes with high antisense–sense ratios and all expressed genes. 



 51 

Model 1, which depends only on the sense expression, did little better than chance at predicting 

protein detection. Incorporating the antisense-sense ratio (models 2 and 3) increased the predictive 

power. Also, an application of 500-fold cross-validation (see 2.2.16 method section) confirmed 

the results and indicated that antisense transcription has a widespread regulatory role in Ot. 

In particular, antisense transcripts may control the expression of selfish genetic elements 

at the protein level, as the RAGE genes were significantly enriched among those with high 

antisense-sense ratios (Figure 2.6E). The antisense-sense ratio greater than 1 was also observed for 

thirty-one core genes (Appendix 1). These include genes encoding the chromosomal replication 

initiator protein dnaA, DNA polymerase subunit III, glutamine synthetase, the outer membrane 

autotransporter protein scaD, two transporters, the protein export protein secB, and 13 hypothetical 

proteins. None of the tested models achieved more than 65% balanced accuracy, which may indicate 

other post-transcriptional regulation mechanisms and/or a lack of sensitivity in the proteomics. 

 

Figure 2.7 Evaluation of logistic regression models’ performance. A) ROC (receiver operating characteristic) curves 

evaluating the performance of the models to predict protein expression from RNA-seq read counts. Model 1 strictly uses 

sense expression, model 2 the antisense–sense ratio, and model 3 uses both. Incorporating antisense expression clearly 

improves model performance. B) Performance measures of logistic regression models in 500 fold cross-validation. The box 

plot hinges represent the first and third quartiles of the data distribution, while the central line is the median. Upper and 

bottom whiskers are composed of the points between the maximum and minimum of the data sets within the 1.5x 

interquartile range (IQR) and the upper and bottom hinges, respectively. The individual points show outliers.  

2.3.5 Differential expression of genes in Karp and UT176 

As Ot is genetically intractable, the identification of virulence factors has been limited so far. Here, 

the aim was to apply dual RNA-seq for two different Ot strains and identify variations in gene 

expression that may discriminate between Karp and UT176 transcriptomes during the infection. 

Taking the sequencing data of these strains at 5 days after infection of HUVEC cells, differential 

expression analysis was performed between orthologous protein-coding genes of these two Ot 
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strains. Next, gene set analysis of KEGG pathways, GO terms, and manually created gene sets 

(see 2.2.11 method section) allowed a broader indication of biological processes that differ between 

Karp and UT176. Most of the enriched pathways were upregulated in Karp compared to UT176 

(Figure 2.8; Appendix 1). These include gene sets involved in metabolism and DNA replication, 

which is consistent with Karp’s higher growth rate observed in this study (Figure 2.1B). Others 

consist of the RAGE elements, secreted effector proteins, surface proteins and adhesins. 

At the gene level (Figure 2.8B; Appendix 1), most genes with high differential expression 

belong to RAGE elements. In addition, several surface and effector proteins (ANK-containing 

proteins) were differentially regulated between the two strains. Of the known outer membrane 

proteins, the most differentially expressed genes were scaE, tsa56, and tsa22 showing 1.40, 3.08, 

and 3.96 logFC difference in Karp over UT176, respectively (Appendix 1, confirmed by qRT-PCR 

in Figure S2). In contrast, scaD expression was higher in UT176 but to a lesser degree (0.99 logFC 

in UT176 over Karp). It is likely that different expression levels of these surface proteins will affect 

interactions with host cells (through stronger binding of host cell receptors or activation of innate 

immune receptors) or affect the induced adaptive immune response in animals. 

 

Figure 2.8 Differential gene expression analysis between Karp and UT176 infecting HUVECs. A) Bacterial gene sets 

enriched in differentially expressed genes. All illustrated pathways are induced higher in Karp than UT176. FDR-corrected 

p-values were calculated using the fry gene set enrichment test implemented in the edgeR R package (M. D. Robinson et 

al., 2010). B) Volcano plot representing differentially expressed bacterial genes in Karp and UT176. Bacterial surface 

genes (red) and ankyrin-repeat-containing effector proteins (blue) with log2 fold change ≥1 are highlighted. Gray dots 

indicate RAGE genes. FDR-corrected two-sided p-values were calculated using the quasi-likelihood F-test in the edgeR 

R package. 

Other types of Orientia gene products involved in the infection process are effector proteins 

such as ANK- and TPR-containing proteins. Each of the Ot genomes studied here encodes multiple 

copies of genes encoding those effectors. While the Karp genome contains 33 and 29 copies of Ank 

and TPR genes, respectively, the UT176 genome contains 21 Ank and 22 TPR genes (Batty et al., 

2018). Several of them were identified as differentially expressed (Figure 2.8B; Appendix 1) here. 

The higher expressions in UT176 than Karp were observed for ank2, ank3, ank12, and two copies of 

tpr8 (logFC >1.5 in UT176 vs. Karp), whereas six Anks (ank6, ank20, ank17, and two copies of 

ank16) and three TPR genes (tpr1, tpr3, and tpr5) were upregulated with a logFC greater than 1.5 in 
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Karp. The function of most of these effectors is unknown, except for Ank6 that interferes with NF-κB 

translocation to the nucleus and inhibits NF-κB-dependent transcription (Evans et al., 2018). 

In addition, most of the protein products of these genes were not detected in the Karp proteomics 

data set, suggesting that either their transcripts were not translated or that the proteins were secreted 

and lost during purification. As secreted effectors traffic to various subcellular compartments of 

the host cells and interact directly with its proteins (Bang et al., 2016; Beyer et al., 2017; Min 

et al., 2014; VieBrock et al., 2015), their differential expression may lead to downstream differences 

in the host response. 

2.3.6 Karp and UT176 induce a proinflammatory response 

To understand how Ot  affects the transcriptional program of HUVEC cells, gene expression of host 

cells infected with either Karp or UT176 was compared to that of unstimulated cells. The results 

showed a clear core response to both strains dominated by a type-I interferon proinflammatory 

response (Figure 2.9A, red; Appendix 1). Induction of this signaling has been previously identified 

in both cultured monocytes and human-derived macrophages infected with Ot (Tantibhedhyangkul 

et al., 2011, 2013). Here, genes of the type-I interferon pathway were upregulated in HUVEC cells 

stimulated with both Karp (Figure 2.9B) and UT176 (Figure 2.9C). These include IFNB1 (interferon 

beta), genes involved in regulating the type-I interferon response — IRF9 (interferon-regulatory 

factor 9) and STAT1/2 — as well as various interferon-stimulated genes such as interferon-induced 

proteins with tetratricopeptide repeats (IFIT) genes and 2′-5′-oligoadenylate synthase 1 (OAS1). 

In addition, infection with either strain induces high expression of proinflammatory chemokine 

genes, including CXCL10, CXCL11, and for cytokine receptors IL13RA2, IL7R, IL15RA, and IL3RA 

(Appendix 1). 

The upstream signals leading to activation of these genes are unknown but in addition to 

already identified PRRs stimulated by Ot — NOD1 and TLR2 (K.A. Cho et al., 2010; Gharaibeh 

et al., 2016) — the upregulation of TLR3 in HUVEC cells infected with both Ot strains was identified 

in this study (Appendix 1). As this receptor recognizes viral double-stranded (ds)RNA (Kawai 

& Akira, 2007), it is possible that it detects cytosolic dsRNA of Ot. Induction of the IRF7 

transcription factor, known to respond to stimulation from membrane-bound TLRs, further supports 

the role of TLR2 and TLR3 in the detection of this pathogen. 
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Figure 2.9 Common host response to the infection with Ot strains. Joint and strain-specific host responses. The joint 

response is defined as genes with a logFC > 2 and FDR-corrected p-value < 0.01 for HUVECs infected with both Karp 

and UT176. Strain-specific host responses are composed of genes with a logFC > 2 and FDR-corrected p-value < 0.01 for 

HUVECs infected with either Karp or UT176, excluding genes already specified in the joint response. FDR-corrected 

two-sided p-values were calculated using the quasi-likelihood F-test in the edgeR R package (M. D. Robinson et al., 2010). 

B) Gene network of the canonical interferon signaling pathway activated in Karp-infected HUVEC cells compared with 

uninfected host cells. The network was generated by Selvakumar Subbian and re-drawn by Sandy Pernitzsch. C) Heatmap 

with genes of the interferon signaling pathway induced in the HUVECs infected with two Ot strains compared with 

uninfected host cells. The color scale represents the logFC in gene expression. 

2.3.7 Differential host responses to Karp and UT176 

Although comparing the transcriptional profiles of Ot infected endothelial cells with uninfected cells 

allowed the identification of common responses induced after the infection with both strains (Figure 

2.9A, C), a differential gene expression analysis between Karp and UT176-infected cells has also 

uncovered responses unique to each strain. The results show that UT176 induces higher expression 

of multiple proinflammatory cytokines, chemokines, and cytokine receptors compared to Karp 

(Figure 2.10A; Appendix 1); these include CXCL8, CXCL1, CXCL2, CXCL10, IL6, IL1RL1, and 

IL18R1. In addition, expression of genes encoding cytokine-inducible surface adhesion molecules 

— VCAM1 and ICAM1, upregulated upon endothelial cell activation — was also higher in HUVECs 

infected with UT176 than Karp (Appendix 1). Although HUVEC cells expressed TLR3 in response 

to infection with either strain, higher induction of TLR3 was observed in UT176-infected cells than 

those infected with Karp. The IPA analysis (see 2.2.17 method section) also indicated that UT176 

stimulates higher expression of genes involved in the NF-κB pathway and NOS2 production 

compared to Karp (Figure S4). Also, stronger induction of expression of genes associated with 

leukocyte proliferation and mononuclear leukocyte differentiation was observed in host cells infected 
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with UT176 than with Karp (Figure S5). Thus, UT176 seems to induce a stronger proinflammatory 

response that may lead to more efficient pathogen clearance (Figure 2.1B). 

In contrast to UT176, Karp induced higher expression of the proinflammatory cytokine 

involved in the scrub typhus pathogenicity — IL33 (Shelite et al., 2016) (5 logFC difference between 

Karp- and UT176-infected cells; Appendix 1). Moreover, most genes involved in the IL33-FAS 

network also reached higher mRNA levels in the HUVEC cells stimulated with KARP (Figure 2.10B, 

Figure S3). In contrast to UT176, Karp induced networks of genes involved in (i) organismal growth 

failure, (ii) organismal morbidity and mortality, (iii) and organismal death (Figure S6). 

 

Figure 2.10 Differently induced host gene networks in response to Karp and UT176. A) A network map of proinflammatory 

chemokines and cytokines upregulated in HUVECs infected with UT176 compared to Karp-infected host cells. 

B) IL33-FAS-mediated anoikis network induced in HUVEC cells stimulated with Karp. The networks were generated by 

Selvakumar Subbian and re-drawn by Sandy Pernitzsch. 

2.3.8 Two Ot strains differ in virulence in a mouse model 

The relative virulence of the two strains was also tested in a murine infection model 

(see 2.2.18 method section). The results of the experiment showed that Karp-infected mice exhibit 

lower weight gain (Figure 2.11A) and more severe clinical symptoms (Figure 2.11B) than 

UT176-infected animals. The bacterial load in the blood (Figure 2.11C) and tissues (Figure 2.11D) 

was also higher in mice infected with Karp than with UT176. In addition, the histopathological 

analysis indicated more severe disease manifestation in lung, liver, kidney, and spleen of 

Karp-infected mice (Figure 2.11E-F). The diffuse thickening of alveolar septa and infiltration of 

macrophages and lymphocytes were more evident in mice infected with Karp. 

Overall, the experiment on the murine infection model confirmed that Karp is more virulent 

than UT176. Although these results are consistent with the observations in HUVECs, the outcome 
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observed here may not translate to humans. Using only a single time point (12 days) is another 

limitation of this study. As the disease dynamics might differ between the two strains, different 

results could be observed at different times after infection. Thus, the differential host response 

between mice infected with Karp and UT176, including the roles of the adaptive immune response 

and dissemination kinetics within the host, requires further investigation. 

 

Figure 2.11 Assessment of severity of infection with two Ot strains in mice. Weight change of Ot-infected mice over 12 days 

of infection. B) Clinical observation score of mice determined based on their appetite, activity, and hair coat 12 days p.i.; 

higher numbers represent low appetite, low activity, and ruffled fur. Details on the scoring system are provided in Figure 

S7. C) Bacterial genome copy number detected in 100 µl blood of euthanized mice 12 days p.i. D) The ratio of bacterial 

genome copy number to mouse genome copy number in organs of euthanized mice 12 days p.i. E) Lesion scores of stained 

organs of euthanized mice 12 days p.i. Lesion score ranges from 0 (normal tissue) to 5 (severe lesion damage). More details 

are provided in Figure S7. Mean and standard deviation is shown in all graphs. Statistical significance was calculated 

using unpaired t-test (**p ≤ 0.01 ***p ≤ 0.001 ****p ≤ 0.0001). F) Images of stained lung tissue of mice infected with 

either buffer, UT176, or Karp. Scale bars = 50 µm. * indicates airway and ** indicates blood vessels. Arrows indicate 

diffuse thickening and infiltration of alveolar septa with a mixed population of macrophages and lymphocytes in 

UT176-infected lungs; open arrow - mild perivascular lymphohistiocytic inflammation. Diffuse moderate thickening and 

infiltration of alveolar septa with a mixed population of macrophages and lymphocytes occurs in Karp-infected lungs. 

The airway (*) is unaffected and normal. This figure from A to F was generated by Jeanne Salje and Piyanate 

Sunyakumthorn. 

2.4 Discussion 

Both the obligate intracellular lifestyle and the complexity of the genome architecture make Ot 

difficult to study. In particular, the genome instability makes investigation of its transcriptional 
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architecture challenging. In this study, dual RNA-seq has allowed us to profile gene expression of 

two Ot strains and identify housekeeping ncRNAs, putative intergenic sRNAs, and operonic 

transcripts. Interestingly, among the conserved operons between Karp and UT176, few contain more 

than two or three genes, and these encode for proteins involved in core cellular processes, e.g. 

respiration and translation. Another aspect investigated in this study was antisense transcription of 

Ot and its role in the control of protein expression. 

The Karp genome contains only 12 known transcription factors and 3 sigma factors, which 

is a relatively small number compared to E. coli which possesses 300 transcription and 7 sigma 

factors. This may indicate that transcription is not strictly controlled, and an alternative mechanism 

of protein expression regulation may play a dominant role in Ot. This study has shown that antisense 

expression is partially predictive of protein expression in the Karp strain (Figure 2.7). In addition, 

enrichment of the antisense expression of RAGE genes in Karp and UT176 (Figure 2.6B) suggests 

that such regulation occurs also in other Ot strains, especially for this particular type of repetitive 

elements (conjugal transfer proteins, transposases, integrases, and hypothetical proteins). Although 

antisense regulation of transposons was already identified in several bacterial species (Ellis & 

Haniford, 2016), it has never been observed at the scale implied by this study. Such antisense 

regulation could arise spontaneously through capture of transcriptional noise, providing 

a parsimonious alternative to transcriptional control (Jose et al., 2019). The functionality of these 

untranslated transcripts in Ot is unclear. They might also be selfish elements that the pathogen is 

unable to eliminate because of its small population size. However, this regulatory mechanism would 

provide dsRNAs upon intracellular bacterial lysis, which may explain the observed induction of 

TLR3 and an antiviral immune response. 

 As genetic manipulation of this obligate intracellular pathogen is currently not possible, 

the identification of factors that drive virulence differences between two strains is challenging. In this 

study, dual RNA-seq captured gene expression of Ot Karp and UT176 at a similar infection 

condition, which allowed us to perform differential gene expression analysis, leading to 

the identification of upregulated genes encoding virulence-associated surface proteins in Karp. 

Comparison of the host response to the infection with either strain indicated differential activation of 

the immune reaction, which correlated with differential outcomes in a murine infection model 

of scrub typhus. Beside an antiviral proinflammatory response activated upon the infection of 

endothelial cells with either strain, our analysis indicated induction of an IL6-mediated 

proinflammatory response after infection with UT176, and an IL33-NOS3-FAS response in 

Karp-infected cells. These differences may partly explain the differences in virulence of these strains. 

As IL-33 has already been linked with severe outcome of Karp infection in mice, decreased levels of 

IL-33 upon infection with the less virulent UT176 strain supports its role in pathogenesis of scrub 

typhus. 
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However, the present study has several limitations. First, it is impossible to distinguish 

between differential host responses due to actively replicating bacteria versus non-replicating 

bacteria, nor between Ot specific versus non-specific uptake outcomes. Secondly, a higher growth 

rate (Figure 2.1B) leading to higher read counts of Karp compared to UT176 (Figure 2.2A) limits 

the interpretability of our data. Although the bacterial differential gene expression analysis is 

unlikely to be affected by the differences in bacterial growth rate as normalization between samples 

was applied, it is difficult to assess how these differences in bacterial growth affect the differences 

in bacterial virulence on the host response. Finally, in order to obtain enough reads, a relatively high 

MOI (~30:1) was applied in the RNA-seq experiments, which does not reflect the physiological 

infection conditions where the bacterial cell number is likely lower; this may affect the immune 

response of host cells. In addition, it would also be interesting to further investigate these findings 

at other time points and in different cell types. 

In summary, dual RNA-seq combined with proteomics and bioinformatics has allowed us to 

investigate the transcriptome structure and gene regulation mechanism in the genetically intractable 

obligate intracellular human pathogen. We identified conserved operons between Karp and UT176, 

ncRNAs that might serve a regulatory role in either strain, and widespread post-transcriptional 

antisense regulation, particularly for the RAGE genes. In addition, differential expression analysis 

of bacterial genes has indicated factors that may drive virulence in host cells. Finally, comparative 

analysis of host transcriptomic data provided evidence for a connection between disease severity and 

the relative induction of IL33- and IL6-based gene networks. This study forms the foundation for 

further investigations of gene expression regulation in Ot and provides new perspectives on 

the mechanisms of pathogenesis. Importantly, it may also serve as an example for further 

characterization of other obligate intracellular bacterial pathogens. 
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3 Dualrnaseq: a Nextflow-based workflow for host-pathogen 

dual RNA-seq analysis 

The work presented here was performed in collaboration with Regan Hayward (Helmholtz Institute 

for RNA-based Infection Research, Würzburg, Germany) and Lars Barquist (Helmholtz Institute for 

RNA-based Infection Research, University of Würzburg, Germany) 

3.1 Introduction 

Dual RNA-seq captures both host and pathogen transcriptomes at the site of infection, facilitating 

an exploration of processes that play an essential role in pathogenesis and the host defense. RNA-seq 

generates a pool of reads whose origin must be established in-silico, and their assessment allows for 

quantitative description of transcripts expressed in a given condition. This chapter describes 

a workflow, Dualrnaseq, for dual RNA-seq data analysis. As this experimental technique extends 

the standard RNA-seq protocol, the computational methods in this workflow applied for RNA 

abundance estimation of two interacting organisms are inherited from RNA-seq-based approaches. 

Thus, this chapter briefly describes the common steps of RNA-seq data processing and widely used 

methods. Next, I review computational techniques applied to various dual RNA-seq studies to 

illustrate the challenges that simultaneous analysis of two different organisms brings to the field. 

This review also uncovers another problem: poor descriptions of the technical aspects in many 

publications, hindering reproducibility in science. I give an overview of solutions supporting 

the reproducibility of projects widely used in the computational field. Next, the introduction to 

different pipeline frameworks that facilitate the creation of user-friendly workflows highlights 

the advantages of Nextflow, a platform for Dualrnaseq. Description of approaches applied in 

the pipeline and the presentation of adopted data processing steps gives a comprehensive picture of 

the Dualrnaseq workflow. Finally, a simulation-based benchmark analysis compares the employed 

methods in the context of various host-pathogen systems and provides advice regarding their 

application. 

3.1.1 RNA-seq data processing methods 

RNA-seq data analysis consists of several major steps performed sequentially, leading to 

the quantification of the transcriptome of a studied biological system (Conesa et al., 2016; Van den 

Berge et al., 2019). A sequencing platform generates pieces of nucleotide sequences, known as reads, 

and the information about their sequences and quality is stored in FASTQ files (Cock et al., 2010). 

The quality of each base in a read is represented by a PHRED score describing a probability of being 
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called incorrectly. In the first phase of the bioinformatics analysis, the raw sequencing data are 

subjected to quality control (QC) which aims to generate: (i) overview statistics of a total number of 

sequenced reads, their length and %GC content, enabling to check if these values are as expected; 

(ii) a read quality assessment necessary to identify problems occurring during sequencing; 

(iii) and a report of overrepresented sequences helping to identify contamination in the data like 

adapters. All these aspects can be evaluated using FastQC (Andrews S., 2010), one of the most 

popular Illumina read quality control packages. In addition, several tools such as NGS QC Toolkit 

(Patel & Jain, 2012), FastqPuri (Pérez-Rubio et al., 2019), fastp (S. Chen et al., 2018), HTQC (Yang 

et al., 2013), and AfterQC (S. Chen et al., 2017), also offer QC of raw reads. Applying such 

approaches is crucial to identify potential problems in sequencing data that may affect 

the downstream analysis. For instance, low-quality read bases, i.e., bases with high error probability, 

may hinder the identification of the read position on the genome, decreasing fragment mappability 

(Del Fabbro et al., 2013). Also, underrepresentation of fragments with low or high GC-content, 

mainly attributed to inefficient PCR amplification of such sequences during library preparation, 

results in underestimated abundances of transcripts from which these fragments originate (Love et 

al., 2016). Therefore, assessing sequencing data and identifying technical biases is essential as it 

allows for further adaptation of strategies improving the RNA-seq data quality.  

The first step to improve raw sequencing data quality is trimming of both adapter sequences 

and low-quality read ends. The low-quality bases can be removed using, e.g., a sliding window-based 

algorithm implemented in one of the popular trimming tools — Trimmomatic (Bolger et al., 2014). 

This tool scans read beginning at the 5’ end and removes bases from the 3’ end if the average quality 

within the window is lower than a user-defined threshold. Another method is a running sum used by 

Cutadapt (M. Martin, 2011), where a user-defined cut-off is subtracted from all base quality scores 

to create a sequence of values, for which the partial sum is calculated in the next step. The minimum 

partial sum value indicates the position at which the read sequence is clipped. After the trimming of 

low-quality read ends, Cutadapt finds user-specified adapter sequences, using a semi-global 

alignment, and removes them from the reads. However, this step in Cutadapt requires knowledge 

about adapters used in the library preparation step. If the adapter sequences are unknown, tools that 

use an adapter database can be employed. For instance, Trimmomatic removes Illumina-specific 

sequences, and BBDuk (B. Bushnell, 2020) cuts adapters from various library preparation protocols. 

Moreover, BBDuk is faster than Cutadapt and Trimmomatic, as it matches adapter k-mers to 

the reads instead of performing alignment (Guzman & D’Orso, 2017). Some tools integrate QC and 

trimming steps. Examples include FastqPuri (Pérez-Rubio et al., 2019), fastp (S. Chen et al., 2018), 

AfterQC (S. Chen et al., 2017), and QC-Chain (Zhou et al., 2013). Although the goal of applying 

such tools is to improve the quality of the data, this process needs to be approached with caution. 

Aggressive quality-based trimming may influence the identification of short or lowly expressed 



 61 

transcripts, affecting the estimation of transcript expression levels and the downstream analysis, 

e.g., identification of differentially expressed genes (Macmanes, 2014; Williams et al., 2016). 

When the adapter sequences are removed, and the subsequent QC confirms that the trimming 

step improved the overall data quality, the origin of the reads needs to be established. If an organism 

of interest is well characterized, reads can be mapped to its available references, i.e., genome, which 

is a representative DNA sequence of an organism, or a transcriptome containing a set of transcript 

sequences — the products of the transcription and, in eukaryotes, splicing process. However, 

mapping reads only to the transcriptome prevents the detection of novel transcripts and allows 

quantification of only already identified gene isoforms. In contrast, mapping to the genome sequence 

involves aligning reads onto the whole DNA sequence independently from the gene annotations 

providing coordinates for known genes and transcripts. However, sequencing data obtained from 

eukaryotic organisms can contain reads that span exon boundaries. Therefore, mapping to a reference 

genome, which includes both introns and exons, requires tools that allocate pieces of reads across 

splice junctions. Spliced alignment, which is an alignment of reads against an unspliced genomic 

sequence can be performed with the most popular mappers: TopHat (D. Kim et al., 2013) and STAR 

(Dobin et al., 2013). However, such tools are usually computationally expensive as they perform 

additional steps to handle the alignment of reads to exons separated by introns. In contrast, 

transcriptome mapping does not require any sophisticated read mappers because gene isoforms are 

present in the reference and reads can be aligned directly to them. Although the number of 

computationally demanding steps is reduced in this approach, a problem with allocating reads that 

originate from exons present in different isoforms arises. In this case, a read may be mapped equally 

well to multiple gene isoforms that share an exon with a sequence equivalent to the read. Such a read 

would have been mapped to a unique locus on the genome. Each strategy has advantages and 

disadvantages, but the choice between transcriptome or genome is mainly driven by the availability 

of references and the study goal. Genome mapping facilitates the identification of novel transcripts 

from RNA-seq data, which is impossible for transcriptome mapping. 

The reference-based mapping methods can be divided further into alignment-based and 

alignment-free strategies. Although these approaches first pre-process (index) a reference sequence 

to reduce its size and make queries fast, the major difference between these strategies occurs in 

further steps. The alignment-based method, implemented in, e.g., TopHat (D. Kim et al. 2013) and 

STAR (Dobin et al. 2013), performs alignment of reads to the best matching piece of the reference 

sequence. Next, a quantification tool assigns a read to either genes or transcripts and estimates their 

abundance. In contrast, alignment-free tools perform both mapping and quantification 

computationally efficiently. Instead of mapping entire reads, alignment-free tools split reads into 

k-mers (k-long nucleotide subsequences) and match to the pre-indexed transcriptome, allowing 

the assignment of reads directly to transcripts. The key concept behind this approach, pioneered in 

Sailfish (Patro et al., 2014), is the observation that counts of k-mers occurring in reads are sufficient 
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to accurately estimate transcript coverage, that is the average number of reads mapped to a given 

position in the reference sequence. Other alignment-free methods include pseudo-alignment present 

in Kallisto (Bray et al. 2016) and quasi-mapping implemented in both Sailfish from version 0.7 

(Srivastava et al., 2016) and Salmon (Patro et al., 2017). Salmon with the quasi-mapping algorithm 

assigns a read to a transcript by looking for a chain of exact unique matches between the read and 

the transcript that cannot be extended in either direction. As these matches cover a unique sequence 

fragment that distinguishes them from other matches, reads that would have been aligned to multiple 

loci are assigned to a single transcript. However, if sequenced reads vary from the reference, their 

actual origin may be missed leading to misquantification. The solution is a Selective-Alignment (SA) 

algorithm that performs alignment-free mapping and selects the best transcript candidate for a read 

by computing an edit distance quality score for each pair of ambiguous matches (Sarkar et al., 2018). 

Nevertheless, alignment-free techniques utilize the transcriptome solely, which increases the risk of 

mapping reads to annotated regions when they originate from unannotated genomic loci. To avoid 

assigning the reads to the wrong transcripts when the relevant genomic region is unavailable, Salmon 

with SA provides a possibility to define decoy sequences (Srivastava et al., 2020) that represent either 

a set of sequences extracted from the genome that are similar to sequences present in 

the transcriptome reference; or a whole-genome sequence. Thus, Salmon with Selective-Alignment 

and decoy sequences has become an ultra-fast method to accurately determine transcript abundance. 

However, the biggest drawback of both the alignment-free methods and the SA algorithm is using 

the transcriptome as a reference, which prevents the identification of novel transcripts. For this 

purpose, alignment-based tools using the genome as a reference may be a better choice. 

Novel transcripts can also be identified with transcriptome assembly methods. Depending 

on the availability of the reference genome sequence, there are two main strategies: a reference-based 

approach and de novo transcript assembly (J. A. Martin & Wang, 2011). In the first procedure, 

a splice-aware aligner is employed to generate read-to-genome alignments, then used to create 

a graph of all base connections in the transcriptome and identify possible alternative splicing events. 

In the final phase, the graph is parsed into individual transcripts. Such a strategy can be performed 

using Cufflinks for example (Trapnell et al., 2010). However, reference-based transcriptome 

identification methods are limited when a high-quality reference genome is unavailable. In that 

scenario, the de novo transcriptome assembly technique implemented for example, in Trinity 

(Grabherr et al., 2011) may be a solution. In this method, transcripts are reconstructed directly from 

sequencing reads using a De Bruijn graph-based approach without prior-defined genome annotations. 

In this way, assembly methods have significantly impacted the investigation of transcriptomes of 

non-model organisms and improved their annotations (Mahmood et al., 2020; Rana et al., 2016).  

The reference-based assembly methods have several advantages over de novo techniques. 

They are more computationally efficient and sensitive enough to assemble low abundant transcripts. 

They are also less sensitive to contamination and sequencing artifacts because of the slight chance 
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of aligning the contaminating reads to the reference genome. However, the accuracy of their 

assemblies depends on the genetic divergence between the reads and the reference, which is not 

the case for de novo methods. Therefore, to exploit the benefits of each of the transcriptome assembly 

methods, one can use a reference-based approach, bringing high sensitivity, followed by de novo 

assembly of unaligned reads to detect novel transcripts. This method is called align-then-assemble 

and can be also applied to filter out reads from an irrelevant organism before assembling the reads 

of the target organism. Another technique, assemble-then-align, can be applied if the quality of 

the reference genome is low. In this case, de novo assembled reads are scaffolded and then extended 

based on the reference genome allowing full-length transcript reconstruction. Regardless of which 

approach is employed to identify transcripts, either reference-based, de novo transcriptome assembly, 

or sequential application of these two, the next step involves quantification. 

Once reads are mapped onto the genome or transcriptome, or the transcriptome is assembled, 

a quantification approach is applied to determine transcript or gene-level abundances. Unfortunately, 

assigning reads or read pairs to annotated locations brings about some challenges. In particular, reads 

generated from repetitive sequences, shared domains of paralogous genes, or different gene isoforms 

create ambiguity regarding the true locus of origin. Such reads are referred to as multi-mapped. 

Although each quantifier allocates multi-mapped reads among transcripts or genes using different 

strategies (Deschamps-Francoeur et al., 2020), the standard approach relies on counting reads 

assigned to only one position in the reference, called uniquely mapped reads, and discarding those 

mapped to multiple regions. HTSeq (Anders et al., 2015) and featureCounts (Y. Liao et al., 2014) 

are the most popular tools that employ this strategy by default. Nevertheless, quantification of 

multi-mapped reads requires more sophisticated methods than simple counting, such as model-based 

approaches. For instance, RSEM (B. Li & Dewey, 2011; B. Li et al., 2010) utilizes a generative 

model and the Expectation-Maximization (EM) algorithm to handle read mapping uncertainty and 

estimate relative transcript abundances. Model-based quantification is still an open area of research, 

and alignment-free methods also offer several variations of the statistical models (Bray et al., 2016; 

Patro et al., 2017; Srivastava et al., 2016). 

Regardless of the chosen scenario of the read quantification, the standard output is a matrix 

containing either read counts that represent the number of reads that have been assigned to each gene 

or the estimated relative abundance levels of transcripts. Those values serve as a basis for 

downstream analyses, including differential gene expression analysis, pathway analysis, or network 

analysis to explore differences between studied conditions or identify gene-level interactions. With 

the remarkable evolution of high-throughput technologies, bioinformatics tools have been developed 

continuously to create accurate computational approaches that exploit the potential of each 

innovation in the sequencing field. Each year, the number of computational methods is constantly 

increasing (Deshpande et al., 2020), expanding their application to explore novel biological 
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questions. Since dual RNA-seq extends the RNA-seq protocol, existing RNA-seq methods need to 

be adapted to simultaneously identify transcriptomes of two interacting organisms. 

3.1.2 Review of dual RNA-seq analysis workflows 

The number of dual RNA-seq applications has increased over the last few years. In this section, 

I review methods applied to analyze various dual transcriptomes, mainly focusing on research 

performed on bacteria (see Table 3.1). In the text, I also mention studies of other biological systems 

if they use an approach of interest. Overall, some studies aimed to perform complex downstream 

analysis to capture direct host-pathogen interactions, but others focused on identifying factors that 

differ between conditions in either organism. Nonetheless, some common steps are applied in these 

analyses, including processing raw sequencing reads to estimate the gene expression of interacting 

organisms. 

 In each RNA-seq sequencing study, the processing of raw reads should start from their 

quality evaluation and removal of both adapters and low-quality nucleotide bases. However, many 

reviewed publications did not provide information about applied QC and trimming steps at all 

(see Table 3.1). If applied, FastQC (Andrews S., 2010) and Trimmomatic (Bolger et al., 2014) were 

the most widely used approaches for QC and trimming, respectively. As discussed above, QC is 

an essential step that guarantees the identification of potential artifacts in the data and helps to take 

appropriate steps to eliminate them, e.g., in the trimming step. Next, either trimmed or raw reads are 

used to identify expressed transcripts. 

 The choice of the method for transcriptome investigation in the selected publications was 

motivated mainly by the type of the explored host-pathogen system. Analyses involving organisms 

with comprehensive references and annotations, e.g., human, mouse, E. coli, and S. Typhimurium 

used popular reference-based tools — STAR (Dobin et al., 2013), TopHat (D. Kim et al., 2013; 

Trapnell et al., 2009), and Bowtie (Langmead et al., 2009; Langmead & Salzberg, 2012) — followed 

by the quantification of uniquely-mapped reads. HTSeq (Anders et al., 2015) was the preferred tool 

for counting such reads. Only a few studies included multi-mapped reads using a model-based 

approach implemented in RSEM (B. Li & Dewey, 2011; S. K. Buddenborg et al., 2017; Farrer et al., 

2018; Mohamed et al., 2020). On top of that, quantification with alignment-free methods is unpopular 

among the dual RNA-seq analyses. Only a single study used Kallisto to map and quantify host 

transcripts solely (Bray et al. 2016; Thänert et al., 2019). In general, many dual RNA-seq analyses 

investigated the expression of known transcripts by applying methods that rely on annotations. 

 Several studies identified transcripts by adopting an align-then-assemble method (Aoki et al., 

2019; Griesenauer et al., 2019; S. S. Kumar et al., 2018; Q. Liu et al., 2020; W. Li et al., 2019; 

C. Mavromatis et al., 2015; Pérez-Losada et al., 2015; Yazawa et al., 2013) following the Cufflinks 

protocol (Trapnell et al., 2012). Others used rnaSPAdes (Bushmanova et al., 2019; 
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Ritchie & Evans, 2019), Velvet (Zerbino & Birney, 2008; Wesolowska-Andersen et al., 2017), 

or SOAPdenovo2 (Luo et al., 2012; Fabozzi et al., 2018) to reconstruct pathogen transcripts from 

unmapped reads combined with read selection supported by pathogen-related databases. On the other 

hand, the absence of host references in studies on snail-parasite interactions (S. K. Buddenborg et al., 

2017) and bacterial infection of fish (L. Huang et al., 2019) resulted in employing the Trinity de novo 

assembly tool (Haas et al., 2013; Grabherr et al., 2011) to identify host transcripts from the pool of 

unmapped reads to the pathogen reference. A complete set of sequencing reads was used to de novo 

assemble both host and pathogen transcripts of the Norway spruce tree and its pathogenic fungi that 

lack comprehensive references (Lundén et al., 2015). Overall, assembly methods allow studying 

non-model organisms, thus expanding the application of the dual RNA-seq technique — at least from 

the computational point of view. 

 Unfortunately, none of the reviewed studies used a customized computational workflow that 

integrates third-party tools into a single piece of software to analyze dual RNA-seq data. Although 

several studies employed programs that support the processing of sequencing reads, neither of these 

tools was developed explicitly for dual RNA-seq data, using a workflow management system that 

facilitates designing and executing multiple processes (in section 3.1.5 I elaborate more on this topic). 

For instance, READemption (Förstner et al., 2014), employed in two analyses (Westermann et al., 

2016, 2019) is a tool with a command-line interface integrating several steps of RNA-seq data 

processing. Some studies used commercial software with a graphical interface — CLC Genomics 

Workbench — which also supports sequencing data analysis but works under an expensive license 

(Damron et al., 2016; Zimmermann et al., 2017; Ritchie & Evans, 2019; Doing et al., 2020; Schulte 

et al., 2020; Camilios-Neto et al., 2014; Musungu et al., 2020; Valenzuela-Miranda 

& Gallardo-Escárate, 2018). Likely, other analyses have been performed directly from the command 

line or using not published in-house scripts. Thus, it may be challenging to reproduce their results. 

Finally, this review has also indicated new challenges researchers face while analyzing 

dual RNA-seq data. 
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3.1.3 Challenges of dual RNA-seq data analysis 

The adaptation of existing RNA-seq methods to simultaneous identification of transcriptomes from 

two interacting organisms has brought new challenges to the field (Westermann et al., 2017). Several 

aspects need to be considered while processing sequencing reads obtained from a dual RNA-seq 

experiment. First of all, the choice of strategy mostly depends on the organisms of interest. As 

presented in a previous section, studies on biological systems with known annotations give more 

flexibility; there is a possibility to take advantage of alignment-free methods. Their computational 

efficiency (Sahraeian et al., 2017) might be significant while working on more than one organism. 

On the other hand, visualization of alignment data provided by genome alignment-based methods 

enables the evaluation of the mapping results and investigation of unannotated regions. In particular, 

this strategy can be helpful in studies on non-model organisms with poor annotations. Exploring 

unannotated areas with high read coverage, one can identify novel transcripts or genomic regions 

expressed under the studied condition. Likewise, an application of one of the transcriptome assembly 

methods can improve the annotations. Since dual RNA-seq is often performed on organisms with 

different genomes, e.g. smaller bacterial and larger eukaryotic genomes, their key features need to 

be considered. For instance, for data that contains eukaryotic reads spanning exon-exon junctions, 

an accurate genomic alignment can only be performed with a mapper that allows for splice junction 

recognition. Thus, it is crucial to select a mapping method appropriate to the studied organisms. 

When both host and pathogen references are available, the reads can be mapped against them. 

Marsh et al. (2018) suggested aligning reads separately — first to the host and then re-mapping 

unmapped fragments against the bacterial genome. This strategy was implemented in several 

host-pathogen analyses (Baddal et al., 2015; Farrer et al., 2018; LaMonte et al., 2019; Z.-X. Liao 

et al., 2019; Montoya et al., 2019; Orikaza et al., 2020). Only a few mapping procedures were 

performed onto genomes in the opposite order (Humphrys et al., 2013; Rienksma et al., 2015). 

Another approach involves parallel mapping of reads to both references, which allows 

the identification of cross-mapped reads aligned equally well to both organisms (Westermann et al., 

2016, 2019; Aprianto et al., 2016; Choi et al., 2014; H. J. Lee et al., 2018; Minhas et al., 2020; 

Mohamed et al., 2020; Maulding et al., 2022). The last strategy seems to be the most accurate 

as mapping to the genomes separately may bias the read assignment in favor of the first reference 

(Espindula et al., 2019; Z. Liu et al., 2019). It means that reads originating from the second organism 

can map to the first one if the sequence similarities satisfy the alignment conditions. Therefore, more 

reliable gene expression estimates may be obtained using concatenated reference files into a chimeric 

genome or transcriptome as each read has access to the host and pathogen references at the same 

time during the mapping procedure. 

The choice of quantification tool is another critical aspect. Eukaryotic and bacterial genomes 

and transcriptomes harbor repeat sequences that complicate the quantification step. For example, 



 71 

eukaryotic mRNA isoforms produced from the same locus through alternative splicing may share 

some exons being a source of ambiguous reads. In addition, many genomic repeats are a consequence 

of recombination or transposition. Bacterial genomes also contain repetitive sequences, some to 

a very high extent as the genome of Orientia tsutsugamushi presented in the previous chapter. 

The expression of genes/transcripts that share high sequence similarity can be incorrectly estimated 

due to the removal of multi-mapped reads (Robert & Watson, 2015). Thus, applying a quantification 

tool that handles multi-mapped reads, we can investigate the importance of different gene isoforms 

in the eukaryotic host and repetitive elements in pathogen genomes. Therefore, selecting a tool that 

quantifies multi-mapped reads may be essential for accurate analysis in many dual RNA-seq 

applications. 

Besides the challenges mentioned above, another aspect that should be considered is 

a detailed report of steps taken during the dual RNA-seq data analysis. Most of the published studies 

do not provide comprehensive information about applied strategies (see Table 3.1). Therefore, 

reproduction of their results would be difficult or even impossible, and poor reporting has become 

one of the sources of the reproducibility crisis in science. 

3.1.4 Reproducibility in computational research 

Reproducibility of a project is achieved if one can obtain the same outcome as in the original research 

using the same data and protocol. Unfortunately, recreating someone's results is challenging 

in the case of many studies, especially for novices with minimal expertise (Baker, 2016; Garijo et al., 

2013). Today many computer-based projects are getting more complex, so it is essential to provide 

detailed descriptions of applied methods to be able to repeat them later. Sometimes, every tiny detail 

is crucial. For instance, variations solely in software versions or operating systems may lead to 

different outcomes in independently performed analyses (Y.M. Kim et al., 2018). Thus, in 

NGS-based projects, each piece of information on the technical aspect, e.g., parameter settings or the 

version of used references, may be crucial to evaluate publications' outcomes and draw conclusions 

from those that show conflicting results (Nekrutenko & Taylor, 2012). If employed techniques and 

procedures are incompletely described, the verification of findings from such studies may be 

complicated, cost a lot of effort, or even be impossible. Therefore, transparent reporting of applied 

methods and making both protocols and raw data publicly available is very important. However, 

it may still be insufficient to fully reproduce a study. Thus, the application of some tools that facilitate 

the reproducibility of bioinformatics analysis may be helpful. 

Several approaches support both software development and transparency of the study. 

For instance, Version Control Systems (VCS) have gained high popularity to manage projects 

(repositories) and their accessibility. Such systems store files of the project and record changes made 

in them, allowing comparison of different versions and reverting to a specific state. Moreover, 
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Distributed Version Control Systems (DVCSs), e.g., Git, facilitate collaboration with other 

developers. Everyone involved in a project works independently on a copy of the repository and can 

merge provided changes with the central archive at any time (Chacon & Straub, 2014). Furthermore, 

web-based applications, such as GitHub (https://github.com/), provide open access to the whole 

repository enhancing the project transparency. Overall, Git has a great potential to support 

the reproducibility of research projects (Ram, 2013), but other technical aspects need to be also 

considered for full reproducibility. 

Although it is easier to reproduce a study if details on used tools are provided, installing and 

maintaining both software and their dependencies on different platforms sometimes becomes 

problematic and consumes valuable time. Some technologies can facilitate software installation and 

usage. These are: virtual machines which create a virtual version of a computer system; and 

containers that provide an abstract operating system leveraging features of the user's operating system 

to isolate processes from the rest of the system. They encapsulate tools and their dependencies in 

an image package, which can be shared with others and executed on different computational 

environments, such as local computers, clouds, and clusters. While virtual machines also include 

the whole operating system, containers are dependent on the user’s system, ultimately reducing 

the weight of their packages (Piccolo & Frampton, 2016). Widely used containers include Docker 

(Boettiger, 2015) and Singularity (Kurtzer et al., 2017), and effortless installation and high portability 

are the most significant advantages of these technologies. 

All aspects mentioned above should become a standard in the age of complex research 

projects. A reliable code with a clean structure and accessible detailed documentation, e.g., through 

GitHub, helps to easily repeat someone’s analysis. Together with the availability of data and an image 

package encapsulating tools, they may foster reproducibility. However, it may still be insufficient 

for performing bioinformatics analyses in an efficient and user-friendly manner. 

3.1.5 Bioinformatics pipeline frameworks 

The complexity of many studies involving data analysis emerges from a series of computationally 

intensive steps executed one after another. Thus, scalable pipelines have been gaining increased 

attention. They allow combining third-party tools and in-house scripts to process hundreds of 

millions of short RNA-seq reads and provide human-readable outputs. Since high-throughput 

technologies have become a standard method in many areas, user-friendly tools and data processing 

workflows are needed to handle large datasets. 

A common approach to combine tools in a workflow involves a command-line environment 

and bash scripting. However, a primary limitation is the lack of structure that facilitates parallel 

computing or resume mechanisms. Fortunately, various frameworks have been developed to create 

pipelines for high-performance automated analysis, including Galaxy (Goecks et al., 2010), 

https://github.com/
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Snakemake (Köster & Rahmann, 2012), Nextflow (Di Tommaso et al., 2017), Toil (Vivian et al., 

2017) and many others (reviewed in Leipzig, 2017). The main difference between them is their 

design philosophy (Wratten et al., 2021; Ahmed et al., 2021), which mostly affects the workflow 

development step (Jackson et al., 2021). For instance, some workflow frameworks limit the further 

evolution of the pipelines, including an integration of new tools in intermediate steps; others support 

the execution of serial and parallel steps also in distributed architectures like clusters, offer the ability 

to integrate containers, and provide a resume mechanism for failed tasks. 

Nextflow is one such workflow management system. Nextflow language simplifies 

the development of data-intensive computational pipelines. Scripts created in any language can be 

integrated and efficiently executed in a parallel manner on different platforms, including 

High-Performance Computing (HPC) clusters and clouds (Di Tommaso et al., 2017). Moreover, by 

supporting container technologies such as Singularity (Kurtzer et al., 2017) and Docker (Boettiger, 

2015), Nextflow ensures reproducibility of results and platform independence. Additional integration 

with SingularityHub (https://singularity-hub.org/) or Docker Hub (https://hub.docker.com/) that 

automatically build image packages based on a recipe file containing software adopted in 

the pipeline, makes the containers easily accessible from different platforms. Also, hosting 

the pipeline on GitHub makes it widely available. In addition, the nf-core community project 

(P. A. Ewels et al., 2020) collects reviewed high-quality nextflow-based pipelines that fulfill 

development good-practice guidelines. The community provides appropriate tools and requirements 

that exploit Nextflow capabilities to build user-friendly standardized workflows. Thus, I have 

decided to develop the Dualrnaseq pipeline in Nextflow and integrate it into the nf-core project. 

3.1.6 Choice of tools employed in the Dualrnaseq pipeline 

The selection of an appropriate framework for workflow development is an important step as it 

should support developers and potential pipeline users. However, the major concern is the choice of 

data processing tools, because they influence the analysis results and define a range of possible 

workflow applications. In the Dualrnaseq pipeline, the quality of the sequencing reads is evaluated 

using one of the widely used QC tools - FastQC (Andrews S., 2010) followed by adapter and quality 

trimming performed by either Cutadapt (M. Martin, 2011) or BBDuk (B. Bushnell, 2020). While 

Cutadapt enables trimming of a single provided sequence, BBDuk uses a database of adapter 

sequences. For the next step of RNA-seq data analysis — mapping — both alignment-based and 

Selective-Alignment methods were incorporated to exploit their unique advantages in dual RNA-seq 

studies. 

The alignment-based method is employed with STAR (Dobin et al., 2013), one of 

the splice-aware alignment tools characterized by high mapping accuracy coupled with 

computational efficiency (Baruzzo et al., 2017; Teng et al., 2016). These features are a result of 

https://singularity-hub.org/
https://hub.docker.com/
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the STAR algorithm, which consists of two steps. First, the seed searching phase looks for the longest 

sequences of the reads, called Maximal Mappable Prefixes (MMPs), that exactly match one or more 

genomic regions of the reference. If a read cannot be contiguously mapped, after finding MMPs for 

the first part of the read, STAR searches for MMPs for the unmapped fragment. If exact matching 

sequences cannot be found because of mismatches or indels, the MMPs are extended. The different 

parts of a non-contiguously mapped read are called seeds, which are stitched together in the next 

phase. A read's final alignment is chosen based on an alignment score that considers penalties for 

mismatches, indels, and splice junction gaps. The sequential application of MMP search for different 

seeds allows for detecting splice junction regions and performing read mapping in a computationally 

efficient manner. Such efficient alignment is one of the features that may be relevant for analyzing 

complex data sets. 

The alignment SAM/BAM file generated by STAR and containing information on the likely 

origin of reads is used to assign the reads and estimate gene abundance by another software. The most 

popular count-based tool for gene quantification, also applied in the workflow, is HTSeq (Anders 

et al., 2015; Deshpande et al., 2020). It counts the number of aligned reads overlapping exons or 

other user-specified features for each gene. It also gives several choices on how to handle reads that 

cover more than one feature. However, to avoid false positives for genes that share similar sequences, 

it is recommended to count only uniquely mapped reads, which may underestimate expression of 

many genes. 

The second option for mapping implemented in the pipeline involves a very fast and accurate 

quantification method — Salmon with Selective-Alignment and a genome sequence defined 

as a decoy (Srivastava et al., 2020). The speed of mapping in this tool is ensured by indexing that 

involves data structures (suffix arrays and hash tables) allowing efficient item retrieval (Patro et al., 

2017). The accuracy is an effect of the SA algorithm, consisting of several steps. First, the maximal 

exact matches (uni-MEMs) between the sequenced reads and index are collected. Next, for each read, 

a set of potential transcripts from which they might have originated is extracted. Only mappings 

compatible with a defined library type are selected. Finally, to resolve the position of a read along 

each transcript, the chaining score of Minimap2 (H. Li, 2018) is calculated for all possible mappings. 

The next phase involves the evaluation of the potential transcript candidates based on the optimal 

alignment score, which is also calculated for decoy sequences. If the best alignment score is higher 

for a decoy sequence than the annotated transcripts, the fragment’s mappings are discarded. 

All mappings that pass the filtration steps are subjected to quantification in the next phase. 

As a transcriptome can be defined as a set of expressed transcripts and their frequencies at 

a given time, RNA-seq data enables one to estimate the relative expression level of transcripts 

in a sample. In Salmon, the relative transcript abundances are estimated using a probabilistic model. 

Given a nucleotide fraction (η) that represents all nucleotides in a sample originating from 

a transcript, the relative expression value of this transcript can be computed by normalizing η by 
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the transcript length (B. Li et al., 2010). Salmon seeks to infer η quantities from the sequencing data 

for a given set of transcripts using a two-phase inference procedure. Initial expression levels and 

parameters of sample-specific bias models are estimated in the online phase, then the expression 

values are refined in an offline step. In order to optimize memory and speed up the inference 

procedure, Salmon creates equivalence classes for fragments that map to the same set of transcripts. 

Salmon SA is a relatively new approach. However, its fast mapping step combined with 

an improved algorithm for identifying read locations and model-based quantification is a promising 

alternative for alignment-free techniques. However, the main drawback of this approach is a lack of 

alignment file generation, limiting the evaluation of the mapping process. Fortunately, Salmon offers 

an alternative — alignment-based mode — which is also available through the Dualrnaseq workflow. 

In this method, Salmon performs quantification using alignments generated by other tools. 

It calculates conditional probabilities for alignments, which help estimate the probability of 

fragments originating from transcripts. In the Dualrnaseq pipeline, a transcriptome BAM file 

produced by STAR is used. In this way, Salmon alignment-based mode completes the set of mapping 

strategies that can be desirable in many applications of dual RNA-seq. 

3.2 Materials and Methods 

The Dualrnaseq pipeline was developed by me at the beginning. Regan Hayward (Helmholtz Institute 

for RNA-based Infection Research, Würzburg, Germany) helped me establish the final version of 

the workflow that fulfills the requirements of the nf-core community, and now the pipeline is 

accessible from their repository https://nf-co.re/dualrnaseq. Regan Hayward is involved in further 

development of the pipeline and benchmark analysis, though his work is not presented here. 

The work was performed under the supervision of Lars Barquirst (Helmholtz Institute for 

RNA-based Infection Research and University of Würzburg, Germany). 

 This section describes: (i) data sets used for developing and testing the pipeline (3.2.1); 

(ii) information about the Dualrnaseq structure, applied third-party tools and their parameter 

settings (3.2.2); and the tools used to benchmark the methods implemented in the workflow (3.2.3). 

3.2.1 Data sets 

3.2.1.1 Dual RNA-seq reads 

The pipeline was developed and tested using the following dual RNA-seq data sets: S. Typhimurium 

infecting HeLa cells (Westermann et al., 2016), Streptococcus pneumoniae infecting Human lung 

epithelial cells (Aprianto et al., 2016), Mycobacterium leprae isolated with patient leprosy skin 

https://nf-co.re/dualrnaseq
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biopsies (Montoya et al., 2019), and two Ot strains infecting human endothelial cells 

(Mika-Gospodorz et al., 2020). Further evaluation of the implemented methods in the workflow was 

performed using S. Typhimurium - HeLa  and Ot - HUVEC data sets.   

3.2.1.2 References and annotation files 

The testing data comes from studies which were either performed on patient-acquired samples or 

human-derived cell lines. Therefore, the host reference (human genome fasta file) and annotations 

(comprehensive gene annotation covering all regions and tRNA gff file) were obtained from 

the GENCODE project (Frankish et al., 2019) from GRCh38.p13 reference assembly. 

The S. Typhimurium fasta and annotation gff files were acquired from NCBI using 

the following accession numbers: FQ312003 for the genome, and HE654724, HE654725, HE654726 

for the plasmids. The genome and plasmid gff files were combined into a single file. Further 

modifications of the bacterial gff file included replacing the original ncRNA annotations with a list 

of in-house ncRNA annotations, removal of annotations containing “gbkey=tRNA” and 

“gbkey=rRNA,” and the addition of tRNA and rRNA annotations generated from the GenBank file 

downloaded under the FQ312003.1 accession number. 

References of the two Ot strains were obtained from the NCBI under the LS398547.1 and 

LS398548.1 accession numbers for UT176 and Karp, respectively. Additionally, the gff files were 

supplemented with ncRNAs annotations identified by us (Mika-Gospodorz et al., 2020). 

Other bacterial genome fasta and annotation gff files were obtained following 

the authors’ description (Aprianto et al., 2016; Montoya et al., 2019). 

3.2.2 Implementation and content of the Dualrnaseq pipeline 

The Dualrnaseq pipeline was implemented in Nextflow (v20.10.0.5430) and integrated into 

the nf-core community. Therefore, the workflow was built using the nf-core standardized pipeline 

template, which provides the initial nextflow script, configuration files, documentation, and 

environment files. The project is also integrated with Git and hosted on the nf-core GitHub repository 

(https://github.com/nf-core/dualrnaseq). 

The pipeline consists of the main.nf nextflow script describing processes and data workflow, 

scripts supporting the main workflow stored in the bin folder, configuration files specifying 

parameters and an environment file promoting container integration. All files and settings described 

here come from the first release of the nf-core/dualrnaseq pipeline (1.0.0) called Dualrnaseq here. 

https://github.com/nf-core/dualrnaseq
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3.2.2.1 Test data set 

Nf-core pipelines contain a pre-defined test profile for automated testing of the workflows using 

parameters specified in a test.config file (Figure S9B) and a test data set stored on 

the nf-core/test-datasets Github project. The Dualrnaseq test data set consists of Human 

(GRCh38.p13) and S. Typhimurium (FQ312003) genome fasta and gff annotation subsets and 

simulated paired-end reads. 

The test sequencing reads for the Dualrnaseq pipeline were generated in R using 

the simulate_experiment() function provided by the Polyester package (v1.24.0) (Frazee et al, 2021). 

As an input, the function accepted a chimeric transcriptome generated from Human and Salmonella 

subsets of the genomes and annotation files using an in-house script. Following the read simulation, 

fasta files with read sequences were converted into FASTQ files using reformat.sh script from 

the BBTools package (v38.79) (Bushnell, B., 2014). 

The test paired-end reads, the reference files, and the code used to simulate the reads are 

stored on the nf-core/test-datasets repository under the dualrnaseq branch 

https://github.com/nf-core/test-datasets/tree/dualrnaseq . This data set can be utilized under the test 

profile (-profile test) of the Dualrnaseq pipeline, which may be helpful for both developers to 

evaluate the performance of the pipeline and users to establish the workflow and environment before 

running the analysis on an actual data set. There is also a possibility to run the pipeline with the full 

test data set (-profile test_full) that contains RNA-seq data of HUVEC cells infected with the Ot 

strain Karp (Mika-Gospodorz et al., 2020). 

3.2.2.2 Configuration Files 

The default parameters of the pipeline were established using different host-pathogen systems 

(see 3.2.1), and those that can be customized are defined in configuration files. Options available for 

all environments are specified in the nextflow.config file (Figure S8). Base.config (Figure S9A) 

provides additional parameters for high-performance computing environments, whereas settings for 

testing are stored in the test.config (Figure S9B) and test_full.config. The last configuration file, 

genomes.config (Figure S9C), provides directories for references and annotations of different 

organisms. All these parameters can be overwritten through the command line or direct modification 

of the configuration files. 

3.2.2.3 Environment and containerization 

The pipeline uses fixed versions of third-party tools and packages obtained from software 

distributions like conda-forge (https://conda-forge.org/) and Bioconda (https://bioconda.github.io/). 

All tools employed within the pipeline are listed in the environment.yml file (Figure 3.1A). These 

https://github.com/nf-core/test-datasets
https://github.com/nf-core/test-datasets/tree/dualrnaseq
https://conda-forge.org/
https://bioconda.github.io/
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packages and their dependencies are installed through the Conda package management system 

(https://docs.conda.io/en/latest/), which builds an environment within a Docker image following 

the instructions described in the recipe file (Figure 3.1B). Moreover, the Dualrnaseq pipeline is 

connected to Docker Hub, a cloud-based repository that builds a container using the recipe file 

(Figure 3.1B) stored on the nf-core/dualrnaseq Github project 

(https://hub.docker.com/r/nfcore/dualrnaseq). Nextflow also supports Singularity container 

technology; the pipeline converts the Docker image into the Singularity image. Conda is the third 

option that can be used to create an environment for tools from the environment.yml file, however, 

it is not recommended due to poor reproducibility compared to container technologies. 

Only one of the aforementioned technologies can be specified using the -profile option 

(-profile <docker,singularity,conda>) while running the pipeline. Although all of them 

automatically install tools used by the pipeline, the workflow was developed using Singularity. 

In contrast to Docker, Singularity can be executed as a non-root user, which is useful in HPC 

environments. 

 

Figure 3.1 Tools and environment setup of the Dualrnaseq pipeline. A) Environment file B) Docker recipe file. 

3.2.2.4 Quality control and trimming 

Within the pipeline, the quality control of reads is performed by FastQC (v0.11.9) (Andrews 

S., 2010) allowing for parallel computing through --threads parameter, suppressing progress 

messages on stdout with the --quiet option and preventing uncompression of output files by 

the --noextract flag. 

Adapter sequences from the reads can be removed using Cutadapt (v3.2) (M. Martin, 2011). 

By default, the Dualrnaseq pipeline trims TruSeq Illumina adapter sequences with the -a option for 

the regular 3’ adapter set to “AGATCGGAAGAGCACACGTCTGAACTCCAGTCA”, and the -A flag, 

for paired-reads, defined as “AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT”. It also 

performs quality trimming through the -q option, set to 10 in the pipeline (the --quality_cutoff 

https://docs.conda.io/en/latest/
https://hub.docker.com/r/nfcore/dualrnaseq
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parameter of the Dualrnaseq workflow). The -j option ensures parallel computing and the -m flag set 

to 1 prevents writing empty reads to the output. 

In addition, the Dualrnaseq pipeline provides the BBDuk trimming tool, which is a part of 

the BBtools package (v38.87) (B. Bushnell, 2020). The list of adapter sequences provided with 

the package is enclosed with the pipeline in the assets/adapters.fa file (--adapters flag is by default 

set to “projectDir/assets/adapters.fa”). For BBDuk, the memory usage is restricted to 1 GB with 

the -Xmx1g option defined within the pipeline. Additional parameters specified by the Dualrnaseq 

workflow include minlen set to 18, which removes reads shorter than this value after trimming and 

qtrim defined as r to trim the right ends of reads with quality below 10 according to the trimq option. 

In addition, the following parameters concern adapter trimming: ktrim is set to r, k to 17, mink to 11, 

and hdist is defined as 1. 

3.2.2.5 Mapping and quantification 

The Dualrnaseq pipeline can be used with the STAR alignment tool (v2.7.3a) (Dobin et al., 2013) in 

two modes, quantifying uniquely mapped reads with HTSeq (Anders et al., 2015) or also estimating 

multi-mapped reads with Salmon (Patro et al., 2017). 

Both approaches use a chimeric genome created by concatenating host and pathogen fasta 

files for indexing. Since only the human genome gff annotation file is passed to the STAR index step 

in the pipeline, the --sjdbGTFfeatureExon option is set to exon, 

and --sjdbGTFtagExonParentTranscript to Parent by default. Another common parameter for 

indexing is --sjdbOverhang, which defines the sequence length on each side of the annotated 

junctions used in constructing the splice junctions database, and it is set to 100. 

The alignment procedure is performed with the recommended ENCODE options (See STAR 

documentation for release 2.7.3a stored with the source code on the GitHub 

https://github.com/alexdobin/STAR/releases/tag/2.7.3a). In contrast to the ENCODE options, 

the Dualrnaseq pipeline does not restrict multi-mappings by switching off filters for a maximum 

number of both multiple alignments and loci anchors (--outFilterMultimapNmax 

and --winAnchorMultimapNmax are set to 999). Tests on the Mycobacterium leprae data set showed 

a higher mapping rate for this non-laboratory bacteria strain when filtering the number of mismatches 

relative to read length (--outFilterMismatchNoverReadLmax) was specified to 1. While 

the ENCODE project (Djebali et al., 2012) was performed on the cell lines whose RNA sequences 

may not vary significantly from the references, discarding this particular filter may be relevant for 

clinical samples rich in sequence variants. Moreover, in Dualrnaseq, STAR generates a SAM file 

that provides standard attributes (--outSAMattributes Standard) and contains unmapped reads 

(--outSAMunmapped Within). Also, the workflow does not limit RAM for sorting through 

the --limitBAMsortRAM option defined as 0, and if applicable, it runs STAR in parallel. 

https://github.com/alexdobin/STAR/releases/tag/2.7.3a
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The following default parameters specified in the Dualrnaseq pipeline differ between 

the STAR-HTSeq and STAR-Salmon modes. In the strategy with quantification of uniquely mapped 

reads, the Dualrnaseq pipeline provides additional options for alignment with STAR, 

including --outWigType set to None and --outWigStrand defined as Stranded, by default. In addition, 

in the mode with HTSeq, an alignment file is sorted by coordinates (--outSAMtype BAM 

SortedByCoordinate). In the Salmon mode, STAR generates an unsorted BAM file (--outSAMtype 

BAM Unsorted) and converts it into transcript coordinates (--quantMode TranscriptomeSAM), 

allowing for insertions, deletions and soft-clips (--quantTranscriptomeBan Singleend). 

In the alignment phase, STAR also utilizes gff files. Thus, in the STAR-HTSeq strategy, Dualrnaseq 

transfers the same gff used in the indexing step to the alignment process and defines the following 

options: --sjdbGTFfeatureExon as exon and --sjdbGTFtagExonParentTranscript as Parent. 

For Salmon, STAR translates alignments into transcriptome coordinates, based on a chimeric 

reference file which contains both quant in place of gene features to be processed by the pipeline 

(--sjdbGTFfeatureExon quant) and parent as a gene attribute (--sjdbGTFtagExonParentTranscript 

parent). 

Quantification of uniquely mapped reads is performed with HTSeq (v0.12.4) (Anders et al., 

2015), which processes BAM files (-f bam) sorted by alignment position (-r pos). The quantification 

results are estimated for transcripts defined in the chimeric gff file with the quant gene feature 

(-t quant). By default, these are exons and tRNAs for host (--gene_feature_gff_to_quantify_host 

“[exon, tRNA]”) as well as genes, sRNAs, tRNAs and rRNAs for the pathogen 

(--gene_feature_gff_to_quantify_pathogen “[gene, sRNA, tRNA, rRNA]”), in the workflow. 

The counts are further aggregated into gene-level estimates using an attribute defined 

through --host_gff_attribute set to gene_id. In the Dualrnaseq pipeline, the pathogen attribute 

(--pathogen_gff_attribute locus_tag) is replaced by the host attribute for the chimeric gff file for 

consistency. In addition, HTSeq expects stranded library type (-s, --stranded yes), removes reads 

with alignment quality lower than 10 (-a, --minaqual 10), and limits the number of maximum reads 

staying in memory until the mates are found to be 30000000 (--max-reads-in-buffer option in 

HTSeq, --max_reads_in_buffer 30000000). Also, the quantification of uniquely mapped reads within 

Dualrnaseq can be performed in parallel (-n). 

Another tool employed for mapping and quantification in the Dualrnaseq pipeline is Salmon 

(v1.3.0) (Patro et al., 2017), which uses the decoy-aware transcriptome index in Selective-Alignment 

(SA) mode (--validateMappings) or the alignment file obtained from STAR. In each of the modes, 

Salmon considers mappings or alignments that are compatible with the library type 

(--incompatPrior 0.0) specified by a user through the --libtype parameter of the Dualrnaseq pipeline 

(-l option in Salmon). In addition, Salmon creates an index of the decoy-aware transcriptome in SA 

mode, consisting of the chimeric transcriptome and host genome provided as a decoy. The pipeline 

passes the k-mer size set to 21 (--kmer_length) to the salmon index parameters, as the application of 
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k-mers of length 21 has shown a better accuracy in quantifying total RNA, including sRNA 

transcripts (D. C. Wu et al., 2018). Finally, the host transcript-level estimates obtained from Salmon 

in both modes are aggregated into gene-level estimates using Tximport (v1.16.0) 

(Soneson et al., 2016). 

3.2.2.6 Data processing 

The pipeline also consists of scripts written in R (v4.0.2), Python (v3.7.6), and Bash for processing 

different files and data sets. While the Pandas (1.1.5) (McKinney, 2010) python package is used to 

collect and manipulate different data sets, the Biopython (v1.78) (Cock et al., 2009) package is 

applied to handle fasta files. Furthermore, cross-mapped reads from BAM files are extracted using 

the Pysam (v0.15.3) python package and Samtools (v1.9) (Danecek et al., 2021). Applied R packages 

include Rtracklayer (v1.48.0) (Lawrence et al., 2009) that handles gff annotation files and extracts 

gene lengths for calculating TPM values from HTSeq counts. In addition, Gffread (v0.12.1) is 

employed to generate a transcriptome from a host genome gff file. 

3.2.2.7 Summary statistics and reports  

The workflow generates statistics and visualizes the results using third-party software or scripts 

written in Python. For example, summary reports of all processes are produced by MultiQC (v.1.8) 

(P. Ewels et al., 2016), and html reports are generated using the Markdown (v3.1.1) package. 

The other Python packages, including Pandas (1.1.5) (McKinney, 2010), NumPy (v1.19.5) (Harris 

et al., 2020), and SciPy (v1.5.3) (Virtanen et al, 2020), are employed to collect data, transform them 

and calculate statistics of mapping, RNA classes, and Pearson correlation coefficients, whereas 

Matplotlib (3.1.1) (Hunter, 2007) and Seaborn (0.10.0) (Waskom, 2021) are used for plotting 

the statistics. 

3.2.3 Benchmark analysis 

3.2.3.1 Read simulation  

The evaluation of the performance of each mapping and quantification strategy implemented in 

the pipeline was performed using a simulation-based approach. For the dual RNA-seq data sets, 

including Salmonella - HeLa dual RNA-seq data (Westermann et al., 2016) and HUVEC cells 

infected with either Ot strain (Mika-Gospodorz et al., 2020), the quantification tables were generated 

in Salmon alignment-based mode. Next, utilizing count tables for each sample, and a chimeric 

host-pathogen transcriptome created by the Dualrnaseq pipeline, the reads that serve as a ground 

truth were simulated using the simulate_experiment_countmat() function of the Polyester package 
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(v1.24.0) (Frazee et al, 2021). The conversion of the obtained fasta files into FASTQ files was 

performed using the reformat.sh script from the BBTools package (v38.79) (Bushnell, B., 2014). 

3.2.3.2 Benchmark analysis 

The quantification statistics plot shown in Figure 3.4 was generated in python (v3.8.8) using 

the following packages: Pandas (v1.2.4) (McKinney, 2010), NumPy (v1.20.1) (Harris et al., 2020), 

and altair (v4.1.0) (VanderPlas et al., 2018). The correlation analysis between the number of 

reads’ estimates and the ground truth was computed with stats.spearmanr() function of the SciPy 

(v1.6.2) (Virtanen et al, 2020) python package and visualized (Figure 3.5) using Pandas (v1.2.4), 

NumPy (v1.20.1), Matplotlib (v3.3.4) (Hunter, 2007), and Seaborn (v0.11.1) (Waskom, 2021) 

packages. 

3.3 Results 

3.3.1 Dualrnaseq: a Nextflow-based pipeline 

Dualrnaseq is a robust, user-friendly pipeline created in Nextflow and comprises an assembly of 

different tools and scripts to process dual RNA-seq data. It performs basic steps of RNA-seq data 

analysis for both host and pathogen simultaneously (Figure 3.2A). After the QC and trimming, 

the sequencing reads are mapped onto two different references, the bacterial and eukaryotic genomes 

or transcriptomes, followed by quantifying either uniquely mapped reads alone or together with 

multi-mapped reads. Regardless of the chosen strategy, simultaneous processing of data from two 

different organisms requires adaptation of the annotation and reference files. 
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Figure 3.2 Steps of the Dualrnaseq pipeline. A) Scheme of the dual RNA-seq data analysis (Westermann et al., 2017). 

B) Host and pathogen reference and annotation files used in the pipeline to create chimeric files utilized further by various 

mapping and quantification strategies implemented in the Dualrnaseq pipeline. C) QC and trimming step of the workflow. 

D) Illustration of the STAR-HTSeq mode implemented in Dualrnaseq. E) Mapping and quantification performed with 

Salmon in SA mode. F) Salmon alignment-based strategy utilizing transcriptome BAM file created by STAR. In figures C-F, 

blue boxes represent third-party tools employed in the pipeline; dark yellow boxes illustrate outputs of the tools; blue 

command-line flags represent options that must be specified to run a tool; green command switches off a tool that is 

executed within the pipeline by default. 

3.3.1.1 Reference and annotation files 

In the Dualrnaseq pipeline, host and pathogen RNA-seq reads are processed together. Therefore, 

the workflow creates chimeric references and annotations by concatenating fasta and gff files of two 

organisms (Figure 3.2B). Thus, both genome fasta and annotation gff files must be provided as input 

using the following parameters: --fasta_host, --fasta_pathogen, --gff_host, --gff_pathogen, and 

optionally --gff_host_tRNA. However, instead of defining the paths for each file on the command 

line separately, they can also be provided in the genomes.config (Figure S9C). In addition, 

the pipeline standardizes the annotation files coming from two different organisms. Gene features 

specified through --gene_feature_gff_to_quantify_host (default: exon, tRNA) 

and --gene_feature_gff_to_quantify_pathogen (default: gene, sRNA, tRNA, rRNA) are replaced 

with a quant feature in the gff files and only those elements are further quantified. In addition, 

the pathogen gene attribute (--pathogen_gff_attribute, default: locus_tag) is replaced by the host 

attribute defined by --host_gff_attribute (default: gene_id) to keep the chimeric gff file consistent. 
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The annotation file is also necessary for the Salmon mode to generate transcriptome fasta 

files. The sequences are extracted from the genome fasta file based on gff coordinates of entries 

defined by --gene_feature_gff_to_create_transcriptome_pathogen (default: gene, sRNA, tRNA, 

rRNA) and --gene_feature_gff_to_create_transcriptome_host (default: exon, tRNA). The name of 

each transcript, on the other hand, is extracted from the gff attributes specified 

with --gene_attribute_gff_to_create_transcriptome_pathogen (default: locus_tag), 

and --gene_attribute_gff_to_create_transcriptome_host (default: transcript_id). However, 

Dualrnaseq also provides the possibility to read custom transcriptome files by setting 

--read_transcriptome_fasta_host_from_file, and --read_transcriptome_fasta_pathogen_from_file 

options, and giving paths to the files through  --transcriptome_host and --transcriptome_pathogen 

flags or genomes.config. Such prepared chimeric references and annotations are employed in further 

steps of the dual RNA-seq data analysis. 

3.3.1.2 Quality control and trimming  

The Dualrnaseq pipeline can process both compressed and uncompressed FASTQ files containing 

raw sequencing reads. In the first step, the QC of those files with FastQC is performed by default 

(Figure 3.2C) (Andrews S., 2010). For each sample, FastQC produces a Quality Control report 

containing statistics summarizing the analyzed files, evaluation of read quality, GC content, and 

presence of overrepresented sequences. Additional FastQC-related parameters (3.2.2.4) can be 

specified by the --fastqc_params option. If desired, the whole process can be omitted through 

the --skipFastqc flag. 

Simultaneously with the QC, adapter trimming and quality read trimming can be performed 

using either Cutadapt (M. Martin, 2011) or BBDuk (B. Bushnell, 2020) (Figure 3.2C). In addition to 

default parameters defined in the Dualrnaseq pipeline (3.2.2.4), tool-specific options can be specified 

by the --cutadapt_params or --BBDuk_params flags, respectively. After read trimming, the QC 

reports are generated for new FASTQ files unless the --skipFastqc flag is defined, and reads are 

submitted for mapping and quantification. 

3.3.1.3 Mapping and quantification 

Dualrnaseq provides three strategies to map and quantify dual RNA-seq data. The first option is 

alignment-based mapping of reads onto the chimeric genome with STAR (Dobin et al., 2013), 

followed by counting of uniquely mapped reads with HTSeq (Anders et al., 2015) (Figure 3.2D). For 

the second fast transcriptome quantification method that handles multi-mapped reads — Salmon with 

Selective-Alignment is employed (Figure 3.2E). In the third strategy, a transcriptome alignment is 

created with STAR and used by Salmon to estimate transcript abundance (Figure 3.2F). 
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 To perform mapping and quantification in STAR-HTSeq mode, the --run_star 

and --run_htseq_uniquely_mapped options need to be specified (Figure 3.2D). In this strategy, except 

from the chimeric genome references and annotation files that serve as inputs for each of the tool, 

human genome gff annotations are passed to STAR to be used to identify and correctly map spliced 

alignments across annotated splice junctions (Dobin & Gingeras, 2015). Also, beside default options 

set in the workflow (3.2.2.5), other options can be defined for the STAR indexing process and its 

alignment step using --star_index_params and --star_alignment_params flags, respectively. 

Additional HTSeq parameters can be specified with --htseq_params. Following the quantification 

performed by HTSeq, each resulting count table is split into two matrices based on organism-specific 

genes. Next, the pipeline provides TPM (transcripts per million) values obtained by normalizing 

the gene counts for gene length (the length of the gene exon union by default) and sequencing depth, 

to allow for a between-sample comparison of the gene abundances. 

Another mapping and quantification strategy implemented in the pipeline involves 

the Salmon with Selective-Alignment algorithm (--run_salmon_selective_alignment), which maps 

reads to an index consisting of the chimeric transcriptome and the host genome (Figure 3.2E). 

The  latter sequence is marked as a decoy, so it is handled differently during alignment scoring 

(for more details see 3.1.6) (Srivastava et al., 2020). The pathogen genome is not defined as a decoy, 

because the lack of precise coordinates of bacterial transcripts in the transcriptome leads to mapping 

of reads to the decoy and filtering them out from the analysis (investigation performed by Regan 

Hayward; data not shown here). Next, the Salmon quantification provides transcript-level abundance 

estimates in both TPM and Number of reads units. After splitting the resulting table into the host and 

pathogen quantification files, gene-level estimates for the host are computed with tximport (Soneson 

et al., 2016). This tool takes advantage of the transcript-level estimates to compute gene-level 

abundances and provides average transcript length correction terms (offsets). The offsets can be used 

in the subsequent analysis to account for differences in isoform usage between the samples. 

Salmon-specific parameters for indexing and mapping can be defined 

using --salmon_sa_params_index, and --salmon_sa_params_mapping, respectively. 

Salmon can also perform quantification utilizing alignments in either BAM or SAM format 

generated with any preferable transcript alignment tool. In the Dualrnaseq pipeline, STAR alignment 

files are translated into transcript coordinates and used as an input for Salmon (Figure 3.2F). This 

option can be activated by setting both --run_salmon_alignment_based_mode and --run_star. 

Additional tool-specific parameters can be specified through --STAR_salmon_index_params 

(for the STAR index process), --STAR_salmon_alignment_params (for STAR alignment), 

and --salmon_alignment_based_params (for Salmon). As STAR returns both genome and 

transcriptome BAM files, evaluation of unannotated genome regions is possible in this mode. 

In addition, the assessment of performed processes can also be performed by analyzing summary 

statistics generated by the pipeline for each of the three mapping and quantification strategies. 
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3.3.1.4 Mapping and quantification statistics 

After running all processes, a comprehensive summary report is generated with MultiQC (P. Ewels 

et al., 2016). In addition, the Dualrnaseq pipeline also generates statistics and plots for host-pathogen 

data in both tabular and graphical form. The set of graphics may help evaluate the data quality and 

the results. For instance, the reproducibility among replicates can be assessed based on scatter plots 

generated for TPM estimates between replicates (Figure 3.3A). Importantly, the number of reads 

processed in the trimming, mapping and quantification steps can be also evaluated visually (Figure 

3.3B). In addition, the pipeline provides a summary of RNA class composition in both host and 

pathogen (Figure 3.3C). Evaluation of the biotype composition may be investigated as a quality 

control of the RNA-seq experiment, especially the RNA purification step. Although such outputs are 

necessary for basic evaluation of the data quality, these results might also be helpful for investigating 

differences between outcomes from various mapping and quantification methods. 
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Figure 3.3 Mapping and quantification statistics generated by the Dualrnaseq workflow. A) Example of scatter plots of 

gene expression values (TPM) derived from RNA-seq of the host and pathogen. The Pearson correlation coefficient is 

calculated for untransformed TPM values B) Summary statistics of the following: mapping to the genome with STAR; both 

mapping performed with STAR and counting with HTSeq; quantification results of Salmon in SA mode; results of both 

transcriptome mapping performed with STAR and quantification with Salmon. C) RNA class statistics plots generated for 

the host and pathogen. 
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3.3.2 Benchmark analysis of the mapping and quantification methods 

The evaluation of the methods employed in the pipeline was performed on the data sets generated 

from human cells infected with either S. Typhimurium or two Ot strains (for details see 3.2.1 section). 

The initial analysis of the number of reads assigned to either host or pathogen indicated differences 

in the performance of the three mapping-quantification strategies (Figure 3.4). Overall, 

a significantly lower number of reads was assigned onto the host references in the STAR-HTSeq 

strategy. The results also indicate a slightly higher number of reads quantified with 

the alignment-based mode of Salmon than Selective-Alignment, except for Karp and UT176 

samples. Although the number of reads assigned to S. Typhimurium is increasing over time reflecting 

the intracellular replication of the pathogen, their abundance varies between the three strategies with 

the highest number of reads assigned to Salmonella transcripts in STAR-Salmon mode; opposite to 

Ot samples. However, investigating the accuracy of obtained outcomes requires the ground truth that 

represents a real quantity of known sequences among the sequenced transcripts. 

 

Figure 3.4 Quantification statistics for dual RNA-seq data involving various host-pathogen systems. Plots represent 

a summary of reads assigned to either the host or pathogen for A) the S. Typhimurium-Hela dual RNA-seq data set. B) two 

Ot strains infecting HUVEC cells, using three mapping-quantification strategies implemented in the Dualrnaseq workflow. 

The upper plots show both host and pathogen results; the bottom represent reads assigned to pathogens solely. 
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The benchmark analysis of the mapping and quantification methods was performed using 

the original dual RNA-seq data sets (see 3.2.3.1 for details). The new sets of sequencing reads were 

simulated from the HeLa-Salmonella and HUVEC-Orientia chimeric transcriptomes, and the salmon 

quantification tables functioned as ground truth. For the simulated time course dual RNA-seq data 

of Salmonella, high dispersion of the correlation coefficients between the pathogen gene expression 

estimates and the ground truth was observed in the STAR-HTSeq strategy (Figure 3.5A; Table S7). 

This behavior depends on the time point: the later the time point, the more bacterial reads in the pool, 

and the worse the HTSeq estimates of the pathogen gene expression. Salmon quantifies both host 

and pathogen genes with high accuracy for all Hela-Salmonella samples. Considering the RNA 

species, tRNAs and rRNAs are the most challenging to quantify with any of the three strategies 

(Figure 3.5A, Appendix 2), which might be driven by high sequence fragment similarity among 

tRNAs and rRNA transcripts. However, Salmon estimates showed a higher correlation with ground 

truth than HTSeq. For another host-pathogen system — Ot infecting human endothelial cells — 

Salmon also outperformed HTSeq (Figure 3.5A; Table S7). Interestingly, results for Ot RNA species 

have indicated a lower correlation between ground truth and estimates of Karp and UT176 ncRNAs 

and protein-coding sequences compared to tRNAs and rRNAs (Figure 3.5A, Appendix 2). This might 

be caused by a relatively small number of annotated tRNAs and rRNAs used in this analysis, and 

a high proportion of repetitive elements in the Ot genome annotated as CDS. Therefore, 

the evaluation of the mapping-quantification methods was also performed for RAGE elements in Ot 

str. Karp, defined in the previous chapter as a set of integrases, transposases, conjugal transfer genes, 

and hypothetical proteins. The comparison of the ground truth and the number of read estimates for 

RAGE genes indicates a higher accuracy of Salmon which handles multi-mapped reads unlike 

HTSeq which only counts uniquely-mapped reads (Figure 3.5B; Table S8). Overall, Salmon showed 

a good performance with both strategies, Selective-Alignment and alignment-based quantification. 

Thus, the mapping strategy does not play as important a role as the method of quantification. 
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Figure 3.5 Benchmark analysis of various host-pathogen systems. Each dot represents a Spearman’s rank correlation 

coefficient between the Number of reads (NR) and the ground truth for a sample obtained from S. Typhimurium-Hela dual 

RNA-seq and Orientia tsutsugamushi str. Karp/UT176–HUVEC RNA-seq. From left, the plots represent correlation 

coefficients obtained for each sample considering host and pathogen genes separately; the middle plots show correlation 

coefficients for pathogen in respect to various RNA species, and the right plots represent correlations obtained for the host 

RNA classes. B) Comparison of log10 NR estimates obtained for Karp RAGE elements (hypothetical proteins, integrases, 

transposases and conjugal transfer proteins) with the ground truth. Spearman’s rank correlation coefficient was calculated 

for untransformed NR values; first replicates are shown.  
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3.4  Discussion 

Dual RNA-seq data analysis involves various tools to handle diverse genomes and transcriptomes, 

making the sequencing data processing more complex than in standard RNA-seq. Furthermore, 

the lack of any user-friendly workflow that would facilitate efficient analysis of such data and 

reproducibility makes it more challenging. To my knowledge, the pipeline presented in this study is 

the first publicly available workflow created explicitly for processing dual RNA-seq data. Dualrnaseq 

includes various strategies of mapping and quantification, allowing extensive exploration of different 

host-pathogen systems. Notably, the workflow can quantify the whole range of RNA species, 

enabling the identification of both coding and non-coding transcripts expressed during the infection. 

Although the tools employed in the pipeline are widely used across the bioinformatics community 

and show good performance in various benchmark analyses, their default parameters were optimized 

for a particular type of genome, e.g., STAR for mammalian genome (Dobin et al., 2013). Thus, their 

application to various references should be performed with caution, especially when using bacterial 

or viral genomes which drastically differ from the eukaryotic. Although the testing of the Dualrnaseq 

pipeline on various transcriptomic data has enabled exploration of some parameter values, further 

improvement of the pipeline performance and the evaluation of the accuracy of the three 

mapping-quantification strategies require in-depth benchmark analysis for this particular type of 

data. 

The initial simulation-based analysis implied higher importance of the quantification method 

compared to the mapping technique for obtaining accurate expression estimates, which is consistent 

with previous reports (Fonseca et al., 2014; Teng et al., 2016). Overall, analyses benefit from 

quantifying multi-mapped reads using a model-based approach (Soneson et al., 2016), providing 

high-quality expression estimates that allow accurate identification of differentially expressed genes 

(Sahraeian et al., 2017). Thus, the STAR-Salmon strategy is recommended instead of STAR-HTSeq 

if an alignment-based method is desired within the Dualrnaseq pipeline. The relatively high number 

of assigned reads to the host with Salmon (Figure 3.4) raises the question of what genes are identified 

as expressed in this approach but would have been missed quantifying uniquely-mapped reads only. 

Likely, most of these genes are rRNAs, pseudogenes, snRNAs, miscRNAs, and snoRNAs, as these 

biotypes were shown to display high sequence similarity to other genes in the human genome 

(Deschamps-Francoeur et al., 2020). Although Salmon quantifies most RNA species very well in 

both Selective-Alignment and alignment-based modes (Figure 3.5A), assessment of 

the mapping-quantification methods on various RNA classes requires additional inspection. It has 

already been shown that alignment-free methods outperform HTSeq in quantifying some non-coding 

transcripts (Zheng et al., 2019), but they are limited in quantifying very short or lowly-expressed 

RNAs (D. C. Wu et al., 2018; Everaert et al., 2017). Many benchmark analyses of RNA-seq tools 
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have neglected the non-coding transcripts, but their significance in many biological processes 

indicates the importance of such investigations.  

A further simulation-based analysis would evaluate various sequencing library types to test 

the hypothesis if the long paired-end reads show more accurate results than short single-end reads 

providing information on the minimum read length that gives satisfactory results. For instance, 50 bp 

single-end reads have been shown to be sufficient for accurate differential expression analysis unless 

splice-junction detection is necessary (Chhangawala et al., 2015). Such an analysis would identify 

the impact of strandedness and read length for dual transcriptomic data, particularly on the number 

of multi-mapped reads, expression of ncRNAs, and overall performance of the approaches 

implemented in the Dualrnaseq pipeline. Evaluation of execution time and memory usage of 

the workflow would help investigate the resource limitations for each of the Dualrnaseq modes. Such 

a comprehensive benchmark study will provide concrete recommendations for dual RNA-seq data 

analysis. 

As Dualrnaseq is built on the Nextflow framework, it is easily extensible to integrate 

additional tools and scripts, expanding its applicability. The current version of the pipeline is 

developed and tested explicitly for eukaryotic-bacterial systems. However, as the application of dual 

RNA-seq ranges from viruses to parasites, the pipeline should be further adapted to analyze other 

types of interspecies interactions, including non-pathogenic relationships such as commensalism, and 

mutualism (Wolf et al., 2018). Depending on the system and their reference accessibility, the user 

should also have a possibility to decide if, in Salmon Selective-Alignment mode, the decoy sequence 

will consist of two, one, or neither genomes. The current version of this strategy in the pipeline limits 

the analysis of an organism with an incomplete genome sequence as the workflow requires this 

reference. On the other hand, the lack of the decoy for a pathogen would reduce the accuracy of 

the analysis if the precise transcript annotations for this organism are available. Moreover, integration 

of assembly methods, e.g. the align-then-assemble technique by combining STAR and Cufflinks 

(Dobin & Gingeras, 2015), would allow generating a transcriptome assembly for two interacting 

organisms in each condition, facilitating transcript discovery. Such a transcriptome reconstruction 

may help to complete transcript annotations, improving the specificity of RNA quantification (Zheng 

et al., 2019). In addition, the de novo assembly of unmapped reads would help to identify sequence 

variations in the studied organisms different from the reference sequences, contamination, or 

co-infections relevant to tissue-derived samples. Investigation of the presence of other species in 

the samples may also be possible by integrating tools such as FastQ Screen (Wingett & Andrews, 

2018), which screens the sequencing data against a set of databases of viral, bacterial, or other 

sequences. 

Dualrnaseq has gained many benefits by being written in Nextflow. It is straightforward to 

run: after cloning it from the nf-core Github repository https://github.com/nf-core/dualrnaseq to any 

location and installing Nextflow and one of the container technologies (Docker or Singularity), 

https://github.com/nf-core/dualrnaseq
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Dualrnaseq can be run with a single command. Different user-customized profiles and configuration 

files allow the reliable execution of the workflow for transcriptomic data of various host-pathogen 

systems. As analysis of the dual RNA-seq data involves several computationally demanding steps, 

handy features of Nextflow include (i) ability to execute the workflow on multicore systems; 

(ii) reentrancy feature using caching, which enables the pipeline to recover from the nearest 

checkpoint if the execution was interrupted, avoiding overwriting already generated files. 

Also, supporting containerization and providing reports of file paths, pipeline parameters, and 

software versions with each run, Dualrnaseq is fully reproducible. As the workflow is a part of 

nf-core, a continuously growing community that constantly improves the pipeline template bringing 

new functionalities that allow building highly standardized, reproducible, scalable, and robust 

pipelines, I believe the Dualrnaseq workflow can improve the reproducibility of dual RNA-seq 

studies. 
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4 Future perspectives 

Dual RNA-seq opens new possibilities for investigating complex host-pathogen interactions that 

would have been difficult to explore with traditional experimental methods. Examples include 

the study on the obligate intracellular pathogen Orientia tsutsugamushi described in the second 

chapter of this work. Although high-quality sequencing data and continued development of 

the computational methods provide opportunities to investigate both model and non-model 

organisms, the study of many infectious agents is still limited at the experimental stage. Therefore, 

the development of new infection models, protocols that capture the total RNA of the interacting 

partners, and methods that improve the detection of all important transcripts present in the sample is 

a further direction (reviewed in Westermann & Vogel, 2021). For instance, novel in-vitro systems, 

e.g., organoids (Yin & Zhou 2018) or more complex 3D tissue infection systems (Schulte et al., 

2020) will enable studying the host-pathogen interactions in conditions that better mimic 

the physiological infection process in humans compared to standard cell cultures or animal models. 

Application of dual RNA-seq to such systems will allow examining the interaction of pathogens with 

different host cell types providing a better understanding of the molecular strategies employed by 

the pathogen and the response activated by various host cell types (Schulte et al., 2020) or genetically 

diverse host cells (Saxena et al., 2017). Simultaneous profiling of three interacting partners is a step 

toward studying more complex inter-species interplays, i.e. triple RNA-seq which identified 

synergies between viral and fungal co-infection of immune cells (Seelbinder et al., 2020). Further 

examination of other inter-species relationships may involve commensal bacteria as they play a key 

role in pathogenesis through competition with pathogens in the host. 

Recent studies have implied the importance of the microbiome for human health and disease 

(Fan & Pedersen, 2021; Nejman et al., 2020; Wirbel et al, 2019), or correlated pathogens with 

non-infectious diseases (Hatta et al., 2021). Therefore, such a simultaneous identification of host 

sequencing reads and unknown a priori microbes or viruses (Simon et al., 2018; Xu et al., 2014; 

Zapatka et al., 2020) may generate new hypotheses regarding their role in human diseases. In-silico 

investigation of the host transcriptome and microbial metatranscriptome may help to identify 

microbial composition and metabolic functions as well as the host immune signaling pathways 

associated with a disease (Ren et al., 2018; Pérez-Losada et al., 2015). As RNA-seq does not rely on 

annotations, it has a great potential to be successfully applied in the clinics for detecting pathogens 

in human-derived samples and identifying their interaction with the host, without requirement to 

know a priori a composition of samples (Wesolowska-Andersen et al., 2017). Although the triggered 

transcriptional program of the infected host can be predictive of the viral and bacterial infection (He 

et al., 2021; Mayhew et al., 2020), considering the impact of the host genetic background on the host 

susceptibility and microbiome and/or pathogen transcriptomes together with their interactions will 
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help to identify the risk factors of developing more severe symptoms and guide potential therapeutic 

interventions or predict responsiveness to therapy.  

Dual RNA-seq can help to uncover host factors with biomarker potential by profiling 

expression of RNA extracted from, e.g. human tissues (Thänert et al., 2019). However, the bulk 

RNA-seq of tissues or organs represents the sum of the measurements collected from different host 

cell types. Thus, the detection of pathogens at the beginning of the infection and examination of 

cell-type specific host-pathogen interactions and bystander effects requires more sensitive methods. 

Dual RNA-seq with cell type-specific antibody staining (Frönicke et al. 2018; Pisu et al. 2020) or 

single-cell transcriptomics (Avraham et al. 2015; Saliba et al. 2016; Blattman et al. 2020; Imdahl 

et al. 2020; Kuchina et al. 2021) enables profiling of gene expression considering cellular 

heterogeneity. In addition, a comprehensive view on the dynamics of the system can be obtained by 

performing time course dual RNA-seq experiments. Such simultaneous profiling of temporal 

changes in gene expression of multiple interacting organisms will uncover complex interactions, and 

novel virulence factors and host pathways activated during infection. Further development and 

broader application of methods to analyze temporal RNA-seq data (Spies et al. 2019; Liang 

& Kelemen 2018; Kaur et al., 2020; Pierrelée et al., 2021) will provide new discoveries in gene 

regulatory interactions in the host-pathogen systems. Additionally, as non-coding transcripts play 

a number of key regulatory roles, capturing their expression profile will complete the picture of 

the infection processes at the transcriptomic level uncovering some ncRNAs that may serve as novel 

biomarkers of the ongoing infection or therapeutic targets used to modify the pathogen’s activity 

within the host. 

With the advent of the development of high throughput methods (Stark et al., 2019), 

dual RNA-seq will help to design more efficient diagnostic and therapeutic strategies. Further 

integration of dual RNA-seq data with other types of omics, e.g., TraDIS data (Cainet al., 2020) or 

CRISPR-pooled screen data (Yeung et al., 2019; Lai et al., 2021) will support an efficient finding of 

novel virulence determinants and potential therapeutic targets. Also, as high transcript expression 

does not necessarily imply protein production, the integration of proteomics or further validation 

should be performed to determine the functionality of expressed transcripts identified by RNA-seq. 

Therefore, investigation of complex interactions, such as the interplay between two or more diverse 

organisms requires employment of various methods. For instance, complementing traditional 

laboratory experiments with mathematical modeling allows investigating such spatially 

heterogeneous and dynamic processes in a time and cost-effective manner (Schulze et al., 2016; 

Ewald et al. 2020; Dühring et al. 2015; Seal et al. 2011; Peer & An 2014), and dual RNA-seq will be 

a great source of hypotheses and valuable information necessary for modeling. Thus, the synergy of 

experimental work with various computational analyses creates a powerful tool for understanding 

the biology of many infectious agents and the processes associated with the infection, which may 

lead to novel or improved treatment strategies. 
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Appendix 1 Supplementary data for chapter 2 

Supplementary data associated with this study can be found on the CD attached to this thesis or in 

the online version of the article (Mika-Gospodorz et al., 2020) with 

doi:10.1038/s41467-020-17094-8. The excel-formatted “Supplementary Data 1-22” file 

(41467_2020_17094_MOESM4_ESM.xlsx) can be found at: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335160/bin/41467_2020_17094_MOESM4_ES

M.xlsx.  

The following tables are a part of this thesis and can be found as sheets in 

the 41467_2020_17094_MOESM4_ESM.xlsx file: 

• Mapping statistics: percentage of RNA-seq reads assigned to different RNA classes in Karp, 

UT176 and HUVEC in three replicates; 

• Karp duplicates: groups of the Karp genes identified as duplicates by Salmon (Patro et al., 

2017); 

• UT176 duplicates: groups of the UT176 genes identified as duplicates by Salmon (Patro et 

al., 2017); 

• Karp expressed: list of all genes expressed in Karp strain grown in HUVEC cells; 

• Karp highly exp: list of all genes highly expressed in Karp strain grown in HUVEC cell; 

• Karp all summary: list of all quantified genes in Karp strain grown in HUVEC cells; 

• UT176 all summary: list of all quantified genes in UT176 strain grown in HUVEC cells; 

• Proteomics: proteomics data of both human and Karp; 

• Core genes: list of core genes identified in (Batty et al., 2018), their transcript expression 

and presence or absence in the proteomics dataset; 

• Pred ncRNA Karp: genome coordinates of predicted ncRNAs in Karp; 

• Pred ncRNA UT176: genome coordinates of predicted ncRNAs in UT176; 

• Conserved operons: list of conserved operons identified in both Karp and UT176; 

• Karp operons: list of operons identified only in Karp; 

• UT176 operons: list of operons identified only in UT176; 

• Conserved islands: list of conserved islands identified in (Batty et al., 2018); 

• Bac diff exp long: results of the differential expression of bacterial genes in HUVEC cells; 

• Bac diff exp short: results of the differential expression analysis for non-repetitive bacterial 

genes with abs(logFC) ≥1.0; 

• Diff exp ank tpr: results of the differential expression of ankyrin-repeat and TPR-repeat 

bacterial genes of Karp and UT176 in HUVEC cells; 

• Enrichment anal: results of the bacterial gene set enrichment analysis; 

https://dx.doi.org/10.1038%2Fs41467-020-17094-8
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335160/bin/41467_2020_17094_MOESM4_ESM.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335160/bin/41467_2020_17094_MOESM4_ESM.xlsx
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• Joint response: genes upregulated in Karp- and UT176-infected HUVEC cells compared 

with uninfected HUVEC cells; 

• Host diff exp long: full list of host genes differentially expressed in response to Karp or 

UT176; 

• Host diff exp short: selected host genes differentially expressed by HUVEC in response to 

UT176 or Karp and uninfected HUVEC cells. 
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Figure S1 Expressed and highly expressed genes of Ot strains classified into COG categories: Energy production and 

conversion (C), Cell cycle control and mitosis (D), Amino Acid metabolism and transport (E), Nucleotide metabolism and 

transport (F), Carbohydrate metabolism and transport (G), Coenzyme metabolism (H), Lipid metabolism (I), Translation 

(J), Transcription (K), Replication and repair (L), Cell wall/membrane/envelop biogenesis (M), Cell motility (N), 

Post-translational modification, protein turnover, chaperone functions (O), Inorganic ion transport and metabolism (P), 

Secondary Structure (Q), Function Unknown (S), Signal Transduction (T), Intracellular trafficking and secretion (U), 

Intracellular trafficking and secretion (V). 
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Figure S2 Differential analysis of bacterial and host genes. qRT-PCR of selected bacterial genes in HUVECs infected with 

Karp or UT176. The expression level was normalized using 7S mRNA. B) qRT-PCR of host genes in HUVEC cells infected 

with Karp or UT176. The individual values and mean of three biologically independent replicates are shown. This figure 

from A to B was generated by Alexander J. Westermann. 
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Figure S3 Karp and UT176 infection lead to up-regulation of distinct networks in HUVEC cells. Network map of 

proinflammatory chemokines and cytokines and IL33-FAS-mediated anoikis network induced in HUVECs infected by 

A) Karp or B) UT176, in comparison to uninfected cells. The networks were generated by Selvakumar Subbian and 

re-drawn by Sandy Pernitzsch. 
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Figure S4 Differential regulation of inflammatory pathways by UT176 and Karp. A) expression of NFκB pathway genes in 

UT176- and Karp-infected host cells. B) expression of host genes associated with NOS2 production. Red indicates 

increased expression relative to uninfected cells, blue indicates decreased expression. This figure was created by 

Selvakumar Subbian. 
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Figure S5 Differential activation of inflammatory pathways by UT176 and Karp A) Expression of host genes associated 

with differentiation of mononuclear leukocytes B) Expression of host genes associated with leukocyte proliferation. 

The predicted effect on leukocyte differentiation/proliferation is shown based on the gene expression in response to UT176 

infection. Red indicates increased expression relative to uninfected cells; blue indicates decreased expression. This figure 

from A to B was created by Selvakumar Subbian. 
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Figure S6 Host networks upregulated after the infection with Karp. They are associated with (A) organismal growth failure, 

(B) morbidity and mortality and (C) death. Connections colored in red are up-regulated whilst connections in blue are 

down-regulated. This figure from A to C was generated by Selvakumar Subbian. 
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Figure S7 Scoring system used in mice experiments for evaluation of (A) clinical observations and (B) Lesions in 

hematoxylin and eosin-stained tissue sections. The experiments were performed by Piyanate Sunyakumthorn.   
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Table S1 KEGG gene sets enriched in expressed genes in Karp. Results of the hypergeometric test. No.- number; expr – 

expressed. 

KEGG ID Name of a KEGG pathway 
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map01100 Metabolic pathways 144 156 2095 1422 4,73E-18 6,53E-16 

map03010 Ribosome 50 50 2201 1422 7,69E-11 5,30E-09 

map00190 Oxidative phosphorylation 38 38 2213 1422 2,19E-08 1,01E-06 

map01110 Biosynthesis of secondary metabolites 56 61 2190 1422 2,37E-07 8,18E-06 

map00970 Aminoacyl-tRNA biosynthesis 27 27 2224 1422 3,75E-06 1,04E-04 

map00240 Pyrimidine metabolism 24 25 2226 1422 0,0001508 0,0034682 

map00020 Citrate cycle (TCA cycle) 17 17 2234 1422 0,0003922 0,0067656 

map00910 Nitrogen metabolism 22 23 2228 1422 0,0003534 0,0067656 

map03070 Bacterial secretion system 29 32 2219 1422 0,0004505 0,0069070 

map00230 Purine metabolism 23 25 2226 1422 0,0011541 0,0159261 

map01120 Microbial metabolism in diverse environments 38 46 2205 1422 0,0032002 0,0401483 

map01230 Biosynthesis of amino acids 18 20 2231 1422 0,0077041 0,0885969 

map03018 RNA degradation 9 9 2242 1422 0,0158728 0,1684963 

map00260 Glycine, serine and threonine metabolism 8 8 2243 1422 0,0251788 0,1930372 

map02010 ABC transporters 12 13 2238 1422 0,0216110 0,1930372 

map01210 2-Oxocarboxylic acid metabolism 8 8 2243 1422 0,0251788 0,1930372 

map00564 Glycerophospholipid metabolism 8 8 2243 1422 0,0251788 0,1930372 

map00195 Photosynthesis 8 8 2243 1422 0,0251788 0,1930372 

map00780 Biotin metabolism 7 7 2244 1422 0,0399301 0,2623980 

map05010 Alzheimer disease 7 7 2244 1422 0,0399301 0,2623980 

map05016 Huntington disease 7 7 2244 1422 0,0399301 0,2623980 

map03430 Mismatch repair 13 15 2236 1422 0,0457365 0,2820591 

map00860 Porphyrin and chlorophyll metabolism 10 11 2240 1422 0,0470098 0,2820591 

map05012 Parkinson disease 6 6 2245 1422 0,0633073 0,3640171 

map03410 Base excision repair 9 10 2241 1422 0,0686950 0,3791962 

map00720 Carbon fixation pathways in prokaryotes 14 17 2234 1422 0,0771857 0,4096778 

map02020 Two-component system 13 16 2235 1422 0,1034267 0,4757629 

map00300 Lysine biosynthesis 8 9 2242 1422 0,0996262 0,4757629 

map00670 One carbon pool by folate 5 5 2246 1422 0,1003446 0,4757629 

map00650 Butanoate metabolism 5 5 2246 1422 0,1003446 0,4757629 

map05152 Tuberculosis 4 4 2247 1422 0,1590086 0,5774523 

map00900 Terpenoid backbone biosynthesis 4 4 2247 1422 0,1590086 0,5774523 

map05134 Legionellosis 4 4 2247 1422 0,1590086 0,5774523 

map05200 Pathways in cancer 4 4 2247 1422 0,1590086 0,5774523 

map00130 
Ubiquinone and other terpenoid-quinone 

biosynthesis 
7 8 2243 1422 0,1431898 0,5774523 

map03420 Nucleotide excision repair 4 4 2247 1422 0,1590086 0,5774523 

map04626 Plant-pathogen interaction 4 4 2247 1422 0,1590086 0,5774523 



 137 

Table S1 continued 

map00623 Toluene degradation 4 4 2247 1422 0,1590086 0,5774523 

map03060 Protein export 13 17 2234 1422 0,1887101 0,6677433 

map05120 
Epithelial cell signaling in Helicobacter pylori 

infection 
3 3 2248 1422 0,2519037 0,6705943 

map00450 Selenocompound metabolism 3 3 2248 1422 0,2519037 0,6705943 

map00010 Glycolysis / Gluconeogenesis 6 7 2244 1422 0,2035704 0,6705943 

map00280 Valine, leucine and isoleucine degradation 4 6 2245 1422 0,6099330 0,6705943 

map00620 Pyruvate metabolism 6 8 2243 1422 0,3847123 0,6705943 

map00550 Peptidoglycan biosynthesis 8 12 2239 1422 0,5298805 0,6705943 

map00061 Fatty acid biosynthesis 6 7 2244 1422 0,2035704 0,6705943 

map04141 Protein processing in endoplasmic reticulum 2 2 2249 1422 0,3989658 0,6705943 

map00270 Cysteine and methionine metabolism 3 3 2248 1422 0,2519037 0,6705943 

map00330 Arginine and proline metabolism 5 6 2245 1422 0,2855307 0,6705943 

map00360 Phenylalanine metabolism 2 2 2249 1422 0,3989658 0,6705943 

map00400 
Phenylalanine, tyrosine and tryptophan 

biosynthesis 
1 1 2250 1422 0,6317192 0,6705943 

map00401 Novobiocin biosynthesis 1 1 2250 1422 0,6317192 0,6705943 

map00950 Isoquinoline alkaloid biosynthesis 1 1 2250 1422 0,6317192 0,6705943 

map00960 
Tropane, piperidine and pyridine alkaloid 

biosynthesis 
1 1 2250 1422 0,6317192 0,6705943 

map04115 p53 signaling pathway 1 1 2250 1422 0,6317192 0,6705943 

map04210 Apoptosis 1 1 2250 1422 0,6317192 0,6705943 

map05014 Amyotrophic lateral sclerosis (ALS) 1 1 2250 1422 0,6317192 0,6705943 

map05145 Toxoplasmosis 1 1 2250 1422 0,6317192 0,6705943 

map05161 Hepatitis B 1 1 2250 1422 0,6317192 0,6705943 

map05164 Influenza A 1 1 2250 1422 0,6317192 0,6705943 

map05168 Herpes simplex virus 1 infection 1 1 2250 1422 0,6317192 0,6705943 

map05210 Colorectal cancer 1 1 2250 1422 0,6317192 0,6705943 

map05222 Small cell lung cancer 1 1 2250 1422 0,6317192 0,6705943 

map05416 Viral myocarditis 1 1 2250 1422 0,6317192 0,6705943 

map00630 Glyoxylate and dicarboxylate metabolism 6 9 2242 1422 0,5628122 0,6705943 

map00680 Methane metabolism 3 4 2247 1422 0,5305890 0,6705943 

map00710 Carbon fixation in photosynthetic organisms 4 6 2245 1422 0,6099330 0,6705943 

map00051 Fructose and mannose metabolism 3 4 2247 1422 0,5305890 0,6705943 

map00640 Propanoate metabolism 4 6 2245 1422 0,6099330 0,6705943 

map00660 C5-Branched dibasic acid metabolism 2 2 2249 1422 0,3989658 0,6705943 

map00460 Cyanoamino acid metabolism 1 1 2250 1422 0,6317192 0,6705943 

map04260 Cardiac muscle contraction 3 3 2248 1422 0,2519037 0,6705943 

map04070 Phosphatidylinositol signaling system 2 2 2249 1422 0,3989658 0,6705943 

map00440 Phosphonate and phosphinate metabolism 1 1 2250 1422 0,6317192 0,6705943 

map00311 Penicillin and cephalosporin biosynthesis 1 1 2250 1422 0,6317192 0,6705943 

map00312 beta-Lactam resistance 1 1 2250 1422 0,6317192 0,6705943 

map03020 RNA polymerase 3 3 2248 1422 0,2519037 0,6705943 

map00561 Glycerolipid metabolism 1 1 2250 1422 0,6317192 0,6705943 
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Table S1 continued 

map00480 Glutathione metabolism 3 3 2248 1422 0,2519037 0,6705943 

map00980 Metabolism of xenobiotics by cytochrome P450 1 1 2250 1422 0,6317192 0,6705943 

map00982 Drug metabolism - cytochrome P450 1 1 2250 1422 0,6317192 0,6705943 

map05204 Chemical carcinogenesis 1 1 2250 1422 0,6317192 0,6705943 

map00030 Pentose phosphate pathway 1 1 2250 1422 0,6317192 0,6705943 

map00290 Valine, leucine and isoleucine biosynthesis 3 3 2248 1422 0,2519037 0,6705943 

map04146 Peroxisome 2 2 2249 1422 0,3989658 0,6705943 

map03008 Ribosome biogenesis in eukaryotes 1 1 2250 1422 0,6317192 0,6705943 

map05205 Proteoglycans in cancer 1 1 2250 1422 0,6317192 0,6705943 

map00071 Fatty acid degradation 1 1 2250 1422 0,6317192 0,6705943 

map00791 Atrazine degradation 1 1 2250 1422 0,6317192 0,6705943 

map00983 Drug metabolism - other enzymes 3 3 2248 1422 0,2519037 0,6705943 

map05133 Pertussis 2 2 2249 1422 0,3989658 0,6705943 

map00365 Furfural degradation 1 1 2250 1422 0,6317192 0,6705943 

map05142 Chagas disease (American trypanosomiasis) 1 1 2250 1422 0,6317192 0,6705943 

map05143 African trypanosomiasis 1 1 2250 1422 0,6317192 0,6705943 

map01040 Biosynthesis of unsaturated fatty acids 1 1 2250 1422 0,6317192 0,6705943 

map04151 PI3K-Akt signaling pathway 1 1 2250 1422 0,6317192 0,6705943 

map04612 Antigen processing and presentation 1 1 2250 1422 0,6317192 0,6705943 

map04621 NOD-like receptor signaling pathway 1 1 2250 1422 0,6317192 0,6705943 

map04914 Progesterone-mediated oocyte maturation 1 1 2250 1422 0,6317192 0,6705943 

map04915 Estrogen signaling pathway 1 1 2250 1422 0,6317192 0,6705943 

map05215 Prostate cancer 1 1 2250 1422 0,6317192 0,6705943 

map04122 Sulfur relay system 3 3 2248 1422 0,2519037 0,6705943 

map00500 Starch and sucrose metabolism 1 1 2250 1422 0,6317192 0,6705943 

map00730 Thiamine metabolism 2 2 2249 1422 0,3989658 0,6705943 

map05211 Renal cell carcinoma 2 2 2249 1422 0,3989658 0,6705943 

map00770 Pantothenate and CoA biosynthesis 2 2 2249 1422 0,3989658 0,6705943 

map04940 Type I diabetes mellitus 1 1 2250 1422 0,6317192 0,6705943 

map00760 Nicotinate and nicotinamide metabolism 1 1 2250 1422 0,6317192 0,6705943 

map00380 Tryptophan metabolism 2 2 2249 1422 0,3989658 0,6705943 

map00627 Aminobenzoate degradation 1 1 2250 1422 0,6317192 0,6705943 

map00643 Styrene degradation 1 1 2250 1422 0,6317192 0,6705943 

map04723 Retrograde endocannabinoid signaling 1 1 2250 1422 0,6317192 0,6705943 

map00785 Lipoic acid metabolism 2 2 2249 1422 0,3989658 0,6705943 

map00363 Bisphenol degradation 1 1 2250 1422 0,6317192 0,6705943 

map00591 Linoleic acid metabolism 1 1 2250 1422 0,6317192 0,6705943 

map00625 Chloroalkane and chloroalkene degradation 1 1 2250 1422 0,6317192 0,6705943 

map00473 D-Alanine metabolism 2 2 2249 1422 0,3989658 0,6705943 

map00520 Amino sugar and nucleotide sugar metabolism 3 3 2248 1422 0,2519037 0,6705943 

map00790 Folate biosynthesis 1 1 2250 1422 0,6317192 0,6705943 
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map05111 Biofilm formation - Vibrio cholerae 1 1 2250 1422 0,6317192 0,6705943 

map00310 Lysine degradation 2 2 2249 1422 0,3989658 0,6705943 

map00362 Benzoate degradation 1 1 2250 1422 0,6317192 0,6705943 

map00281 Geraniol degradation 1 1 2250 1422 0,6317192 0,6705943 

map00626 Naphthalene degradation 1 1 2250 1422 0,6317192 0,6705943 

map00750 Vitamin B6 metabolism 1 1 2250 1422 0,6317192 0,6705943 

map00903 Limonene and pinene degradation 1 1 2250 1422 0,6317192 0,6705943 

map04066 HIF-1 signaling pathway 1 1 2250 1422 0,6317192 0,6705943 

map00521 Streptomycin biosynthesis 1 1 2250 1422 0,6317192 0,6705943 

map03013 RNA transport 1 1 2250 1422 0,6317192 0,6705943 

map00430 Taurine and hypotaurine metabolism 1 1 2250 1422 0,6317192 0,6705943 

map00250 Alanine, aspartate and glutamate metabolism 2 3 2248 1422 0,6930900 0,7245941 

map00562 Inositol phosphate metabolism 2 3 2248 1422 0,6930900 0,7245941 

map00471 D-Glutamine and D-glutamate metabolism 1 2 2249 1422 0,8644727 0,8969717 

map04112 Cell cycle - Caulobacter 19 55 2196 1422 0,9999966 0,9999997 

map03030 DNA replication 19 55 2196 1422 0,9999966 0,9999997 

map03440 Homologous recombination 30 81 2170 1422 0,9999997 0,9999997 

map00350 Tyrosine metabolism 1 4 2247 1422 0,9816884 0,9999997 

map00624 Polycyclic aromatic hydrocarbon degradation 1 4 2247 1422 0,9816884 0,9999997 
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Table S2 KEGG gene sets enriched in highly expressed genes in Karp. Results of the hypergeometric test. No.- number; 

h. expr – highly expressed. 
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map03010 Ribosome 50 50 2201 856 4,07E-22 4,35E-20 

map00190 Oxidative phosphorylation 28 38 2213 856 7,32E-06 0,000392 

map01100 Metabolic pathways 83 156 2095 856 4,71E-05 0,001680 

map00020 Citrate cycle (TCA cycle) 13 17 2234 856 0,001409 0,037689 

map00230 Purine metabolism 16 25 2226 856 0,007287 0,111385 

map00910 Nitrogen metabolism 15 23 2228 856 0,007264 0,111385 

map00195 Photosynthesis 7 8 2243 856 0,006061 0,111385 

map00240 Pyrimidine metabolism 15 25 2226 856 0,020724 0,246873 

map00720 Carbon fixation pathways in prokaryotes 11 17 2234 856 0,023072 0,246873 

map00623 Toluene degradation 4 4 2247 856 0,020821 0,246873 

map03070 Bacterial secretion system 18 32 2219 856 0,026787 0,260567 

map03020 RNA polymerase 3 3 2248 856 0,054872 0,451638 

map00520 Amino sugar and nucleotide sugar metabolism 3 3 2248 856 0,054872 0,451638 

map01120 Microbial metabolism in diverse environments 23 46 2205 856 0,063650 0,486466 

map05016 Huntington disease 5 7 2244 856 0,078083 0,494398 

map00630 Glyoxylate and dicarboxylate metabolism 6 9 2242 856 0,078549 0,494398 

map00650 Butanoate metabolism 4 5 2246 856 0,072526 0,494398 

map05120 

Epithelial cell signaling in Helicobacter pylori 

infection 
2 3 2248 856 0,323770 0,565132 

map03018 RNA degradation 5 9 2242 856 0,226344 0,565132 

map05152 Tuberculosis 3 4 2247 856 0,157025 0,565132 

map03060 Protein export 9 17 2234 856 0,153738 0,565132 

map00250 Alanine, aspartate and glutamate metabolism 2 3 2248 856 0,323770 0,565132 

map00360 Phenylalanine metabolism 2 2 2249 856 0,144505 0,565132 

map00400 
Phenylalanine, tyrosine and tryptophan 
biosynthesis 

1 1 2250 856 0,380275 0,565132 

map00401 Novobiocin biosynthesis 1 1 2250 856 0,380275 0,565132 

map00950 Isoquinoline alkaloid biosynthesis 1 1 2250 856 0,380275 0,565132 

map00960 

Tropane, piperidine and pyridine alkaloid 

biosynthesis 
1 1 2250 856 0,380275 0,565132 

map01110 Biosynthesis of secondary metabolites 28 61 2190 856 0,125466 0,565132 

map03410 Base excision repair 5 10 2241 856 0,318040 0,565132 

map04115 p53 signaling pathway 1 1 2250 856 0,380275 0,565132 

map04210 Apoptosis 1 1 2250 856 0,380275 0,565132 

map05010 Alzheimer disease 4 7 2244 856 0,252316 0,565132 

map05012 Parkinson disease 4 6 2245 856 0,152754 0,565132 

map05014 Amyotrophic lateral sclerosis (ALS) 1 1 2250 856 0,380275 0,565132 

map05134 Legionellosis 3 4 2247 856 0,157025 0,565132 

map05145 Toxoplasmosis 1 1 2250 856 0,380275 0,565132 

map05161 Hepatitis B 1 1 2250 856 0,380275 0,565132 
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map05164 Influenza A 1 1 2250 856 0,380275 0,565132 

map05168 Herpes simplex virus 1 infection 1 1 2250 856 0,380275 0,565132 

map05210 Colorectal cancer 1 1 2250 856 0,380275 0,565132 

map05222 Small cell lung cancer 1 1 2250 856 0,380275 0,565132 

map05416 Viral myocarditis 1 1 2250 856 0,380275 0,565132 

map00620 Pyruvate metabolism 4 8 2243 856 0,360396 0,565132 

map00670 One carbon pool by folate 3 5 2246 856 0,283772 0,565132 

map00564 Glycerophospholipid metabolism 5 8 2243 856 0,144236 0,565132 

map00640 Propanoate metabolism 4 6 2245 856 0,152754 0,565132 

map00660 C5-Branched dibasic acid metabolism 2 2 2249 856 0,144505 0,565132 

map00460 Cyanoamino acid metabolism 1 1 2250 856 0,380275 0,565132 

map00311 Penicillin and cephalosporin biosynthesis 1 1 2250 856 0,380275 0,565132 

map00312 beta-Lactam resistance 1 1 2250 856 0,380275 0,565132 

map04626 Plant-pathogen interaction 3 4 2247 856 0,157025 0,565132 

map00561 Glycerolipid metabolism 1 1 2250 856 0,380275 0,565132 

map00480 Glutathione metabolism 2 3 2248 856 0,323770 0,565132 

map00980 Metabolism of xenobiotics by cytochrome P450 1 1 2250 856 0,380275 0,565132 

map00982 Drug metabolism - cytochrome P450 1 1 2250 856 0,380275 0,565132 

map05204 Chemical carcinogenesis 1 1 2250 856 0,380275 0,565132 

map00030 Pentose phosphate pathway 1 1 2250 856 0,380275 0,565132 

map03008 Ribosome biogenesis in eukaryotes 1 1 2250 856 0,380275 0,565132 

map05205 Proteoglycans in cancer 1 1 2250 856 0,380275 0,565132 

map00983 Drug metabolism - other enzymes 2 3 2248 856 0,323770 0,565132 

map05142 Chagas disease (American trypanosomiasis) 1 1 2250 856 0,380275 0,565132 

map05143 African trypanosomiasis 1 1 2250 856 0,380275 0,565132 

map00730 Thiamine metabolism 2 2 2249 856 0,144505 0,565132 

map04122 Sulfur relay system 2 3 2248 856 0,323770 0,565132 

map04940 Type I diabetes mellitus 1 1 2250 856 0,380275 0,565132 

map00627 Aminobenzoate degradation 1 1 2250 856 0,380275 0,565132 

map00643 Styrene degradation 1 1 2250 856 0,380275 0,565132 

map04723 Retrograde endocannabinoid signaling 1 1 2250 856 0,380275 0,565132 

map00473 D-Alanine metabolism 2 2 2249 856 0,144505 0,565132 

map05111 Biofilm formation - Vibrio cholerae 1 1 2250 856 0,380275 0,565132 

map00362 Benzoate degradation 1 1 2250 856 0,380275 0,565132 

map00430 Taurine and hypotaurine metabolism 1 1 2250 856 0,380275 0,565132 

map00330 Arginine and proline metabolism 3 6 2245 856 0,414789 0,607979 

map00900 Terpenoid backbone biosynthesis 2 4 2247 856 0,490516 0,690594 

map05200 Pathways in cancer 2 4 2247 856 0,490516 0,690594 

map00680 Methane metabolism 2 4 2247 856 0,490516 0,690594 

map00010 Glycolysis / Gluconeogenesis 3 7 2244 856 0,536644 0,745727 

map02020 Two-component system 6 16 2235 856 0,610741 0,757666 
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map04141 Protein processing in endoplasmic reticulum 1 2 2249 856 0,616046 0,757666 

map00970 Aminoacyl-tRNA biosynthesis 10 27 2224 856 0,614381 0,757666 

map05211 Renal cell carcinoma 1 2 2249 856 0,616046 0,757666 

map00380 Tryptophan metabolism 1 2 2249 856 0,616046 0,757666 

map00471 D-Glutamine and D-glutamate metabolism 1 2 2249 856 0,616046 0,757666 

map00785 Lipoic acid metabolism 1 2 2249 856 0,616046 0,757666 

map05133 Pertussis 1 2 2249 856 0,616046 0,757666 

map04146 Peroxisome 1 2 2249 856 0,616046 0,757666 

map00310 Lysine degradation 1 2 2249 856 0,616046 0,757666 

map01210 2-Oxocarboxylic acid metabolism 3 8 2243 856 0,642393 0,781092 

map01230 Biosynthesis of amino acids 7 20 2231 856 0,689990 0,829538 

map00710 Carbon fixation in photosynthetic organisms 2 6 2245 856 0,735123 0,845786 

map00300 Lysine biosynthesis 3 9 2242 856 0,729771 0,845786 

map00280 Valine, leucine and isoleucine degradation 2 6 2245 856 0,735123 0,845786 

map00550 Peptidoglycan biosynthesis 4 12 2239 856 0,730916 0,845786 

map00270 Cysteine and methionine metabolism 1 3 2248 856 0,762184 0,858460 

map04260 Cardiac muscle contraction 1 3 2248 856 0,762184 0,858460 

map00061 Fatty acid biosynthesis 2 7 2244 856 0,814514 0,898484 

map00780 Biotin metabolism 2 7 2244 856 0,814514 0,898484 

map00350 Tyrosine metabolism 1 4 2247 856 0,852740 0,921649 

map00624 Polycyclic aromatic hydrocarbon degradation 1 4 2247 856 0,852740 0,921649 

map00130 

Ubiquinone and other terpenoid-quinone 

biosynthesis 
2 8 2243 856 0,871887 0,923683 

map00260 Glycine, serine and threonine metabolism 2 8 2243 856 0,871887 0,923683 

map03430 Mismatch repair 4 15 2236 856 0,882517 0,925778 

map04112 Cell cycle - Caulobacter 7 55 2196 856 0,999994 0,999997 

map03030 DNA replication 7 55 2196 856 0,999994 0,999997 

map03440 Homologous recombination 13 81 2170 856 0,999997 0,999997 

map00860 Porphyrin and chlorophyll metabolism 1 11 2240 856 0,994899 0,999997 

map02010 ABC transporters 1 13 2238 856 0,998053 0,999997 
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Table S3 KEGG gene sets enriched in expressed genes in UT176. Results of the hypergeometric test. No.- number; expr – 

expressed. 
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map01100 Metabolic pathways 148 154 1760 1244 4,03E-22 5,65E-20 

map03010 Ribosome 50 50 1864 1244 3,10E-10 2,17E-08 

map01110 Biosynthesis of secondary metabolites 58 60 1854 1244 2,13E-09 9,94E-08 

map00190 Oxidative phosphorylation 38 38 1876 1244 6,34E-08 2,22E-06 

map00970 Aminoacyl-tRNA biosynthesis 26 26 1888 1244 1,24E-05 0,000348 

map03070 Bacterial secretion system 29 30 1884 1244 3,77E-05 0,000880 

map01120 Microbial metabolism in diverse environments 40 45 1869 1244 0,000234 0,004678 

map00240 Pyrimidine metabolism 24 25 1889 1244 0,000284 0,004967 

map00910 Nitrogen metabolism 22 23 1891 1244 0,000629 0,009789 

map00230 Purine metabolism 23 25 1889 1244 0,002023 0,028328 

map00020 Citrate cycle (TCA cycle) 16 17 1897 1244 0,006516 0,082931 

map01230 Biosynthesis of amino acids 18 20 1894 1244 0,011769 0,137310 

map03430 Mismatch repair 14 15 1899 1244 0,013889 0,149572 

map00720 Carbon fixation pathways in prokaryotes 13 14 1900 1244 0,020165 0,191217 

map03018 RNA degradation 9 9 1905 1244 0,020488 0,191217 

map00260 Glycine, serine and threonine metabolism 8 8 1906 1244 0,031593 0,221153 

map00130 

Ubiquinone and other terpenoid-quinone 

biosynthesis 8 8 1906 1244 0,031593 0,221153 

map00564 Glycerophospholipid metabolism 8 8 1906 1244 0,031593 0,221153 

map02010 ABC transporters 12 13 1901 1244 0,029154 0,221153 

map00195 Photosynthesis 8 8 1906 1244 0,031593 0,221153 

map02020 Two-component system 14 16 1898 1244 0,044404 0,252546 

map05010 Alzheimer disease 7 7 1907 1244 0,048705 0,252546 

map05016 Huntington disease 7 7 1907 1244 0,048705 0,252546 

map00620 Pyruvate metabolism 7 7 1907 1244 0,048705 0,252546 

map00010 Glycolysis / Gluconeogenesis 7 7 1907 1244 0,048705 0,252546 

map00780 Biotin metabolism 7 7 1907 1244 0,048705 0,252546 

map00550 Peptidoglycan biosynthesis 11 12 1902 1244 0,041946 0,252546 

map04112 Cell cycle - Caulobacter 24 30 1884 1244 0,057089 0,284497 

map00860 Porphyrin and chlorophyll metabolism 10 11 1903 1244 0,060020 0,284497 

map03060 Protein export 13 15 1899 1244 0,060964 0,284497 

map05012 Parkinson disease 6 6 1908 1244 0,075064 0,318454 

map00710 Carbon fixation in photosynthetic organisms 6 6 1908 1244 0,075064 0,318454 

map00061 Fatty acid biosynthesis 6 6 1908 1244 0,075064 0,318454 

map03030 DNA replication 23 30 1884 1244 0,121739 0,460634 

map00300 Lysine biosynthesis 8 9 1905 1244 0,120439 0,460634 

map00670 One carbon pool by folate 5 5 1909 1244 0,115656 0,460634 

map00650 Butanoate metabolism 5 5 1909 1244 0,115656 0,460634 
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map01210 2-Oxocarboxylic acid metabolism 7 8 1906 1244 0,168489 0,519596 

map00900 Terpenoid backbone biosynthesis 4 4 1910 1244 0,178147 0,519596 

map03410 Base excision repair 7 8 1906 1244 0,168489 0,519596 

map05134 Legionellosis 4 4 1910 1244 0,178147 0,519596 

map05152 Tuberculosis 4 4 1910 1244 0,178147 0,519596 

map05200 Pathways in cancer 4 4 1910 1244 0,178147 0,519596 

map00680 Methane metabolism 4 4 1910 1244 0,178147 0,519596 

map03420 Nucleotide excision repair 4 4 1910 1244 0,178147 0,519596 

map00051 Fructose and mannose metabolism 4 4 1910 1244 0,178147 0,519596 

map04626 Plant-pathogen interaction 4 4 1910 1244 0,178147 0,519596 

map00623 Toluene degradation 4 4 1910 1244 0,178147 0,519596 

map05120 

Epithelial cell signaling in Helicobacter pylori 

infection 3 3 1911 1244 0,274327 0,662168 

map00270 Cysteine and methionine metabolism 3 3 1911 1244 0,274327 0,662168 

map04260 Cardiac muscle contraction 3 3 1911 1244 0,274327 0,662168 

map00640 Propanoate metabolism 3 3 1911 1244 0,274327 0,662168 

map00562 Inositol phosphate metabolism 3 3 1911 1244 0,274327 0,662168 

map00280 Valine, leucine and isoleucine degradation 3 3 1911 1244 0,274327 0,662168 

map03020 RNA polymerase 3 3 1911 1244 0,274327 0,662168 

map00983 Drug metabolism - other enzymes 3 3 1911 1244 0,274327 0,662168 

map00290 Valine, leucine and isoleucine biosynthesis 3 3 1911 1244 0,274327 0,662168 

map00520 Amino sugar and nucleotide sugar metabolism 3 3 1911 1244 0,274327 0,662168 

map00330 Arginine and proline metabolism 5 6 1908 1244 0,318614 0,710880 

map00360 Phenylalanine metabolism 2 2 1912 1244 0,422313 0,710880 

map00400 

Phenylalanine, tyrosine and tryptophan 

biosynthesis 1 1 1913 1244 0,649948 0,710880 

map00401 Novobiocin biosynthesis 1 1 1913 1244 0,649948 0,710880 

map00950 Isoquinoline alkaloid biosynthesis 1 1 1913 1244 0,649948 0,710880 

map00960 

Tropane, piperidine and pyridine alkaloid 

biosynthesis 1 1 1913 1244 0,649948 0,710880 

map04115 p53 signaling pathway 1 1 1913 1244 0,649948 0,710880 

map04210 Apoptosis 1 1 1913 1244 0,649948 0,710880 

map05014 Amyotrophic lateral sclerosis (ALS) 1 1 1913 1244 0,649948 0,710880 

map05145 Toxoplasmosis 1 1 1913 1244 0,649948 0,710880 

map05161 Hepatitis B 1 1 1913 1244 0,649948 0,710880 

map05164 Influenza A 1 1 1913 1244 0,649948 0,710880 

map05168 Herpes simplex virus 1 infection 1 1 1913 1244 0,649948 0,710880 

map05210 Colorectal cancer 1 1 1913 1244 0,649948 0,710880 

map05222 Small cell lung cancer 1 1 1913 1244 0,649948 0,710880 

map05416 Viral myocarditis 1 1 1913 1244 0,649948 0,710880 

map04066 HIF-1 signaling pathway 1 1 1913 1244 0,649948 0,710880 

map00624 Polycyclic aromatic hydrocarbon degradation 3 4 1910 1244 0,562865 0,710880 

map05133 Pertussis 2 2 1912 1244 0,422313 0,710880 

map00791 Atrazine degradation 1 1 1913 1244 0,649948 0,710880 
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map00071 Fatty acid degradation 1 1 1913 1244 0,649948 0,710880 

map03008 Ribosome biogenesis in eukaryotes 1 1 1913 1244 0,649948 0,710880 

map05205 Proteoglycans in cancer 1 1 1913 1244 0,649948 0,710880 

map00770 Pantothenate and CoA biosynthesis 2 2 1912 1244 0,422313 0,710880 

map00785 Lipoic acid metabolism 2 2 1912 1244 0,422313 0,710880 

map05211 Renal cell carcinoma 2 2 1912 1244 0,422313 0,710880 

map00790 Folate biosynthesis 1 1 1913 1244 0,649948 0,710880 

map00473 D-Alanine metabolism 2 2 1912 1244 0,422313 0,710880 

map04940 Type I diabetes mellitus 1 1 1913 1244 0,649948 0,710880 

map05111 Biofilm formation - Vibrio cholerae 1 1 1913 1244 0,649948 0,710880 

map00310 Lysine degradation 2 2 1912 1244 0,422313 0,710880 

map00380 Tryptophan metabolism 2 2 1912 1244 0,422313 0,710880 

map04146 Peroxisome 2 2 1912 1244 0,422313 0,710880 

map04141 Protein processing in endoplasmic reticulum 1 1 1913 1244 0,649948 0,710880 

map04151 PI3K-Akt signaling pathway 1 1 1913 1244 0,649948 0,710880 

map04612 Antigen processing and presentation 1 1 1913 1244 0,649948 0,710880 

map04621 NOD-like receptor signaling pathway 1 1 1913 1244 0,649948 0,710880 

map04914 Progesterone-mediated oocyte maturation 1 1 1913 1244 0,649948 0,710880 

map04915 Estrogen signaling pathway 1 1 1913 1244 0,649948 0,710880 

map05215 Prostate cancer 1 1 1913 1244 0,649948 0,710880 

map04122 Sulfur relay system 3 4 1910 1244 0,562865 0,710880 

map00480 Glutathione metabolism 3 4 1910 1244 0,562865 0,710880 

map00760 Nicotinate and nicotinamide metabolism 1 1 1913 1244 0,649948 0,710880 

map00363 Bisphenol degradation 1 1 1913 1244 0,649948 0,710880 

map00591 Linoleic acid metabolism 1 1 1913 1244 0,649948 0,710880 

map00625 Chloroalkane and chloroalkene degradation 1 1 1913 1244 0,649948 0,710880 

map00500 Starch and sucrose metabolism 1 1 1913 1244 0,649948 0,710880 

map00643 Styrene degradation 1 1 1913 1244 0,649948 0,710880 

map04723 Retrograde endocannabinoid signaling 1 1 1913 1244 0,649948 0,710880 

map01040 Biosynthesis of unsaturated fatty acids 1 1 1913 1244 0,649948 0,710880 

map05142 Chagas disease (American trypanosomiasis) 1 1 1913 1244 0,649948 0,710880 

map05143 African trypanosomiasis 1 1 1913 1244 0,649948 0,710880 

map00365 Furfural degradation 1 1 1913 1244 0,649948 0,710880 

map00908 Zeatin biosynthesis 1 1 1913 1244 0,649948 0,710880 

map00250 Alanine, aspartate and glutamate metabolism 2 3 1911 1244 0,718286 0,767634 

map00340 Histidine metabolism 2 3 1911 1244 0,718286 0,767634 

map00730 Thiamine metabolism 2 3 1911 1244 0,718286 0,767634 

map03440 Homologous recombination 27 46 1868 1244 0,855835 0,902208 

map00350 Tyrosine metabolism 3 6 1908 1244 0,882875 0,902208 

map00471 D-Glutamine and D-glutamate metabolism 1 2 1912 1244 0,877582 0,902208 

map00980 Metabolism of xenobiotics by cytochrome P450 1 2 1912 1244 0,877582 0,902208 
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Table S3 continued 

map00982 Drug metabolism - cytochrome P450 1 2 1912 1244 0,877582 0,902208 

map05204 Chemical carcinogenesis 1 2 1912 1244 0,877582 0,902208 

map00903 Limonene and pinene degradation 1 3 1911 1244 0,957231 0,957231 

map00627 Aminobenzoate degradation 1 3 1911 1244 0,957231 0,957231 

map00362 Benzoate degradation 1 3 1911 1244 0,957231 0,957231 
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Table S4 KEGG gene sets enriched in highly expressed genes in UT176. Results of the hypergeometric test. No.- number; 

h. expr – highly expressed. 
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map03010 Ribosome 50 50 1864 766 4,84E-21 5,71E-19 

map00190 Oxidative phosphorylation 32 38 1876 766 2,02E-08 1,19E-06 

map01100 Metabolic pathways 87 154 1760 766 0,000012 0,000485 

map00910 Nitrogen metabolism 18 23 1891 766 0,000201 0,005921 

map03070 Bacterial secretion system 21 30 1884 766 0,000792 0,018686 

map00195 Photosynthesis 7 8 1906 766 0,008433 0,165858 

map00230 Purine metabolism 16 25 1889 766 0,012745 0,167105 

map00240 Pyrimidine metabolism 16 25 1889 766 0,012745 0,167105 

map00020 Citrate cycle (TCA cycle) 12 17 1897 766 0,010354 0,167105 

map05016 Huntington disease 6 7 1907 766 0,018720 0,215207 

map05152 Tuberculosis 4 4 1910 766 0,025533 0,215207 

map03018 RNA degradation 7 9 1905 766 0,024840 0,215207 

map04626 Plant-pathogen interaction 4 4 1910 766 0,025533 0,215207 

map00623 Toluene degradation 4 4 1910 766 0,025533 0,215207 

map05012 Parkinson disease 5 6 1908 766 0,040815 0,321080 

map02020 Two-component system 10 16 1898 766 0,057754 0,377303 

map05120 

Epithelial cell signaling in Helicobacter pylori 

infection 3 3 1911 766 0,063950 0,377303 

map00720 Carbon fixation pathways in prokaryotes 9 14 1900 766 0,057838 0,377303 

map03020 RNA polymerase 3 3 1911 766 0,063950 0,377303 

map00520 Amino sugar and nucleotide sugar metabolism 3 3 1911 766 0,063950 0,377303 

map00650 Butanoate metabolism 4 5 1909 766 0,086919 0,488404 

map05010 Alzheimer disease 5 7 1907 766 0,096053 0,515194 

map01110 Biosynthesis of secondary metabolites 29 60 1854 766 0,115345 0,591771 

map00250 Alanine, aspartate and glutamate metabolism 2 3 1911 766 0,352226 0,599260 

map00330 Arginine and proline metabolism 4 6 1908 766 0,179127 0,599260 

map00360 Phenylalanine metabolism 2 2 1912 766 0,160042 0,599260 

map00400 

Phenylalanine, tyrosine and tryptophan 

biosynthesis 1 1 1913 766 0,400209 0,599260 

map00401 Novobiocin biosynthesis 1 1 1913 766 0,400209 0,599260 

map00950 Isoquinoline alkaloid biosynthesis 1 1 1913 766 0,400209 0,599260 

map00960 

Tropane, piperidine and pyridine alkaloid 

biosynthesis 1 1 1913 766 0,400209 0,599260 

map01120 Microbial metabolism in diverse environments 20 45 1869 766 0,320578 0,599260 

map01210 2-Oxocarboxylic acid metabolism 4 8 1906 766 0,406278 0,599260 

map04115 p53 signaling pathway 1 1 1913 766 0,400209 0,599260 

map04210 Apoptosis 1 1 1913 766 0,400209 0,599260 

map05014 Amyotrophic lateral sclerosis (ALS) 1 1 1913 766 0,400209 0,599260 

map05134 Legionellosis 3 4 1910 766 0,179200 0,599260 

map05145 Toxoplasmosis 1 1 1913 766 0,400209 0,599260 
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map05161 Hepatitis B 1 1 1913 766 0,400209 0,599260 

map05164 Influenza A 1 1 1913 766 0,400209 0,599260 

map05168 Herpes simplex virus 1 infection 1 1 1913 766 0,400209 0,599260 

map05200 Pathways in cancer 3 4 1910 766 0,179200 0,599260 

map05210 Colorectal cancer 1 1 1913 766 0,400209 0,599260 

map05222 Small cell lung cancer 1 1 1913 766 0,400209 0,599260 

map05416 Viral myocarditis 1 1 1913 766 0,400209 0,599260 

map00670 One carbon pool by folate 3 5 1909 766 0,317621 0,599260 

map00970 Aminoacyl-tRNA biosynthesis 12 26 1888 766 0,326116 0,599260 

map04260 Cardiac muscle contraction 2 3 1911 766 0,352226 0,599260 

map00460 Cyanoamino acid metabolism 1 1 1913 766 0,400209 0,599260 

map00130 

Ubiquinone and other terpenoid-quinone 

biosynthesis 4 8 1906 766 0,406278 0,599260 

map00640 Propanoate metabolism 2 3 1911 766 0,352226 0,599260 

map00660 C5-Branched dibasic acid metabolism 2 2 1912 766 0,160042 0,599260 

map00564 Glycerophospholipid metabolism 4 8 1906 766 0,406278 0,599260 

map03060 Protein export 8 15 1899 766 0,212730 0,599260 

map00311 Penicillin and cephalosporin biosynthesis 1 1 1913 766 0,400209 0,599260 

map00312 beta-Lactam resistance 1 1 1913 766 0,400209 0,599260 

map00561 Glycerolipid metabolism 1 1 1913 766 0,400209 0,599260 

map00030 Pentose phosphate pathway 1 1 1913 766 0,400209 0,599260 

map00430 Taurine and hypotaurine metabolism 1 1 1913 766 0,400209 0,599260 

map03008 Ribosome biogenesis in eukaryotes 1 1 1913 766 0,400209 0,599260 

map05205 Proteoglycans in cancer 1 1 1913 766 0,400209 0,599260 

map00473 D-Alanine metabolism 2 2 1912 766 0,160042 0,599260 

map04940 Type I diabetes mellitus 1 1 1913 766 0,400209 0,599260 

map05111 Biofilm formation - Vibrio cholerae 1 1 1913 766 0,400209 0,599260 

map04146 Peroxisome 2 2 1912 766 0,160042 0,599260 

map04141 Protein processing in endoplasmic reticulum 1 1 1913 766 0,400209 0,599260 

map04151 PI3K-Akt signaling pathway 1 1 1913 766 0,400209 0,599260 

map04612 Antigen processing and presentation 1 1 1913 766 0,400209 0,599260 

map04621 NOD-like receptor signaling pathway 1 1 1913 766 0,400209 0,599260 

map04914 Progesterone-mediated oocyte maturation 1 1 1913 766 0,400209 0,599260 

map04915 Estrogen signaling pathway 1 1 1913 766 0,400209 0,599260 

map05215 Prostate cancer 1 1 1913 766 0,400209 0,599260 

map00480 Glutathione metabolism 3 4 1910 766 0,179200 0,599260 

map00760 Nicotinate and nicotinamide metabolism 1 1 1913 766 0,400209 0,599260 

map00730 Thiamine metabolism 2 3 1911 766 0,352226 0,599260 

map00643 Styrene degradation 1 1 1913 766 0,400209 0,599260 

map04723 Retrograde endocannabinoid signaling 1 1 1913 766 0,400209 0,599260 

map05142 Chagas disease (American trypanosomiasis) 1 1 1913 766 0,400209 0,599260 

map05143 African trypanosomiasis 1 1 1913 766 0,400209 0,599260 
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Table S4 continued 

 

map00365 Furfural degradation 1 1 1913 766 0,400209 0,599260 

map00983 Drug metabolism - other enzymes 2 3 1911 766 0,352226 0,599260 

map00630 Glyoxylate and dicarboxylate metabolism 3 6 1908 766 0,456114 0,648451 

map00710 Carbon fixation in photosynthetic organisms 3 6 1908 766 0,456114 0,648451 

map00061 Fatty acid biosynthesis 3 6 1908 766 0,456114 0,648451 

map00900 Terpenoid backbone biosynthesis 2 4 1910 766 0,525252 0,720694 

map00680 Methane metabolism 2 4 1910 766 0,525252 0,720694 

map04122 Sulfur relay system 2 4 1910 766 0,525252 0,720694 

map04112 Cell cycle - Caulobacter 12 30 1884 766 0,570540 0,748162 

map01230 Biosynthesis of amino acids 8 20 1894 766 0,585429 0,748162 

map00620 Pyruvate metabolism 3 7 1907 766 0,580780 0,748162 

map00010 Glycolysis / Gluconeogenesis 3 7 1907 766 0,580780 0,748162 

map00780 Biotin metabolism 3 7 1907 766 0,580780 0,748162 

map05133 Pertussis 1 2 1912 766 0,640376 0,748162 

map00785 Lipoic acid metabolism 1 2 1912 766 0,640376 0,748162 

map00471 D-Glutamine and D-glutamate metabolism 1 2 1912 766 0,640376 0,748162 

map00770 Pantothenate and CoA biosynthesis 1 2 1912 766 0,640376 0,748162 

map00310 Lysine degradation 1 2 1912 766 0,640376 0,748162 

map05211 Renal cell carcinoma 1 2 1912 766 0,640376 0,748162 

map00380 Tryptophan metabolism 1 2 1912 766 0,640376 0,748162 

map00980 

Metabolism of xenobiotics by cytochrome 

P450 1 2 1912 766 0,640376 0,748162 

map00982 Drug metabolism - cytochrome P450 1 2 1912 766 0,640376 0,748162 

map05204 Chemical carcinogenesis 1 2 1912 766 0,640376 0,748162 

map03410 Base excision repair 3 8 1906 766 0,685481 0,793007 

map00270 Cysteine and methionine metabolism 1 3 1911 766 0,784451 0,857086 

map00562 Inositol phosphate metabolism 1 3 1911 766 0,784451 0,857086 

map00550 Peptidoglycan biosynthesis 4 12 1902 766 0,775889 0,857086 

map00627 Aminobenzoate degradation 1 3 1911 766 0,784451 0,857086 

map00362 Benzoate degradation 1 3 1911 766 0,784451 0,857086 

map00290 Valine, leucine and isoleucine biosynthesis 1 3 1911 766 0,784451 0,857086 

map00051 Fructose and mannose metabolism 1 4 1910 766 0,870851 0,934186 

map00624 Polycyclic aromatic hydrocarbon degradation 1 4 1910 766 0,870851 0,934186 

map00260 Glycine, serine and threonine metabolism 2 8 1906 766 0,894334 0,950734 

map03030 DNA replication 9 30 1884 766 0,908121 0,950918 

map03430 Mismatch repair 4 15 1899 766 0,910624 0,950918 

map00350 Tyrosine metabolism 1 6 1908 766 0,953685 0,987147 

map03440 Homologous recombination 8 46 1868 766 0,999777 0,999777 

map00860 Porphyrin and chlorophyll metabolism 1 11 1903 766 0,996455 0,999777 

map02010 ABC transporters 1 13 1901 766 0,998735 0,999777 

map00300 Lysine biosynthesis 1 9 1905 766 0,990080 0,999777 



 150 

  
T

a
b
le

 S
5

 P
a
rt

ly
-c

o
n
se

rv
ed

 o
p
er

o
n
s 

id
en

ti
fi

ed
 i

n
 b

o
th

 K
a
rp

 a
n
d
 U

T
1
7

6
. 

'g
en

e_
n
a
m

e’
 r

ep
re

se
n
ts

 a
 g

en
e 

n
a
m

e 
d
er

iv
ed

 f
ro

m
 t

h
e 

G
en

B
a
n
k 

a
n
n
o
ta

ti
o
n
; 

'p
re

d
ic

te
d
_
g
en

e’
 i

s 
a
 g

en
e 

n
a
m

e
 

p
re

d
ic

te
d
 b

y 
E

g
g
N

O
G

-m
a

p
p

er
; 

'g
en

e_
fu

n
ct

io
n

’ 
d

es
cr

ib
es

 a
 g

en
e 

p
ro

d
u

ct
 r

et
ri

ev
ed

 f
ro

m
 G

en
B

a
n
k 

a
n
n
o
ta

ti
o
n
; 

If
 a

n
 i

d
en

ti
fi

ed
 o

p
er

o
n
 w

a
s 

a
ls

o
 i

d
en

ti
fi

ed
 i

n
 t

h
e 

co
m

p
a
ra

ti
ve

 g
en

o
m

ic
s 

a
n
a
ly

se
s 

(B
a
tt

y 
et

 a
l.

, 
2
0
1
8
),

 t
h
e 

co
lu

m
n
 ‘

Is
la

n
d
s’

 d
ef

in
es

 a
 n

u
m

b
er

 o
f 

th
e 

is
la

n
d

 d
es

cr
ib

ed
 i

n
 t

h
e 

co
n

se
rv

ed
 i

sl
a

n
d

s 
ta

b
le

 p
re

se
n

t 
in

 t
h
e 

“
S
u
p
p
le

m
en

ta
ry

 D
a
ta

 1
-2

2
”

 e
xc

el
 f

il
e.

 

Orthologs 

Locus tag 

UT176 

Gene 

name 

UT176 

Predicted 
gene 

UT176 

Gene 

function 
UT176 

Locus tag 

Karp 

Gene 

name 

Karp 

Predicted 

gene Karp 

Gene 

function 

Karp 

Islands 

U
T

1
7
6
_
0
0
5
2
4
 -

 

K
ar

p
_
0
0
7
9
4

 
U

T
1
7
6
_
0
0
5
2
4

 
 

 
in

te
g
ra

se
 

K
ar

p
_
0
0
7
9
4

 
 

 
in

te
g
ra

se
 

 

U
T

1
7
6
_
0
0
5
2
5
 -

 

K
ar

p
_
0
0
7
9
5

 
U

T
1
7
6
_
0
0
5
2
5

 
 

 
in

te
g
ra

se
 

K
ar

p
_
0
0
7
9
5

 
 

 
in

te
g
ra

se
 

 

U
T

1
7
6

_
0

0
5

2
7

 -
 

K
ar

p
_
0
0
7
9
6

 
U

T
1

7
6

_
0

0
5

2
6

 
 

 
h

y
p

o
th

et
ic

al
 p

ro
te

in
 

 
 

 
 

 

 
U

T
1
7
6
_
0
0
5
2
7

 
 

 
in

te
g
ra

se
 

 
 

 
 

 

Orthologs 

Locus tag 

UT176 

Gene name 

UT176 

Predicted 
gene 

UT176 

Gene 

function 
UT176 

Locus tag 

Karp 

Gene name 
Karp 

Predicted 

gene Karp 

Gene 

function 

Karp 

Islands 

U
T

1
7
6
_
0
0
8
9
4
 -

 

K
ar

p
_
0
2
1
3
5

 
U

T
1
7
6
_
0
0
8
9
4

 
 

IL
V

E
 

b
ra

n
ch

ed
 c

h
ai

n
 a

m
in

o
 

ac
id

 a
m

in
o
tr

an
sf

er
as

e
 

K
ar

p
_
0
2
1
3
5

 
 

IL
V

E
 

b
ra

n
ch

ed
 c

h
ai

n
 a

m
in

o
 a

ci
d
 a

m
in

o
tr

an
sf

er
as

e
 

 

U
T

1
7
6
_
0
0
8
9
5
 -

 

K
ar

p
_
0
2
1
3
4

 
U

T
1
7
6
_
0
0
8
9
5

 
 

D
A

P
A

 
4
-h

y
d
ro

x
y

-
te

tr
ah

y
d
ro

d
ip

ic
o
li

n
at

e 

sy
n
th

as
e
 

K
ar

p
_
0
2
1
3
4

 
 

D
A

P
A

 
4
-h

y
d

ro
x

y
-t

et
ra

h
y
d
ro

d
ip

ic
o
li

n
at

e 
sy

n
th

as
e
 

 

U
T

1
7
6
_
0
0
8
9
6
 -

 

K
ar

p
_
0
2
1
3
3

 
U

T
1
7
6
_
0
0
8
9
6

 
 

S
M

P
B

 
S

sr
A

-b
in

d
in

g
 p

ro
te

in
 

K
ar

p
_
0
2
1
3
3

 
 

S
M

P
B

 
S

sr
A

-b
in

d
in

g
 p

ro
te

in
 

 

U
T

1
7
6
_
0
0
8
9
7
 -

 
K

ar
p
_
0
2
1
3
2

 
U

T
1
7
6
_
0
0
8
9
7

 
 

S
P

P
A

 
si

g
n
al

 p
ep

ti
d
e 

p
ep

ti
d
as

e 
S

p
p
A

 
K

ar
p
_
0
2
1
3
2

 
 

S
P

P
A

 
si

g
n
al

 p
ep

ti
d
e 

p
ep

ti
d
as

e 
S

p
p
A

 
 

U
T

1
7
6
_
0
0
8
9
8
 -

 

K
ar

p
_
0
2
1
3
1

 
U

T
1
7
6
_
0
0
8
9
8

 
 

L
IP

A
 

li
p
o
y
l 

sy
n
th

as
e
 

K
ar

p
_
0
2
1
3
1

 
 

L
IP

A
 

li
p
o
y
l 

sy
n
th

as
e
 

 

U
T

1
7
6

_
0

0
8

9
9

 -
 

K
ar

p
_
0
2
1
3
0

 
U

T
1
7
6
_
0
0
8
9
9

 
 

Y
F

JG
 

u
b
iq

u
in

o
n
e-

b
in

d
in

g
 

p
ro

te
in

 
K

ar
p
_
0
2
1
3
0

 
 

Y
F

JG
 

u
b
iq

u
in

o
n
e-

b
in

d
in

g
 p

ro
te

in
 

 

 
 

 
 

 
K

ar
p
_
0
2
1
2
9

 
 

P
U

R
C

 
p
h
o
sp

h
o
ri

b
o
sy

la
m

in
o
im

id
az

o
le

su
cc

in
o
c
ar

b
o
x
am

id
e 

sy
n
th

as
e
 

 

Orthologs 

Locus tag 

UT176 

Gene name 

UT176 

Predicted 
gene 

UT176 

Gene 

function 
UT176 

Locus tag 

Karp 

Gene name 
Karp 

Predicted 

gene Karp 

Gene 

function 

Karp 

Islands 

U
T

1
7
6
_
0
1
5
5
5
 -

 

K
ar

p
_
0
1
5
1
5

 
U

T
1
7
6
_
0
1
5
5
5

 
 

A
T

P
D

 
A

T
P

 s
y
n
th

as
e 

su
b
u
n
it

 

b
et

a 
K

ar
p
_
0
1
5
1
5

 
 

A
T

P
D

 
A

T
P

 s
y
n
th

as
e 

su
b
u
n
it

 b
et

a
 

 

U
T

1
7
6
_
0
1
5
5
6
 -

 

K
ar

p
_
0
1
5
1
4

 
U

T
1
7
6
_
0
1
5
5
6

 
 

A
T

P
C

 
A

T
P

 s
y
n
th

as
e 

su
b
u
n
it

 

ep
si

lo
n

 
K

ar
p
_
0
1
5
1
4

 
 

A
T

P
C

 
A

T
P

 s
y
n
th

as
e 

su
b
u
n
it

 e
p

si
lo

n
 

 

U
T

1
7
6

_
0

1
5

5
7

 -
 

K
ar

p
_
0
1
1
4
7

 
U

T
1
7
6
_
0
1
5
5
7

 
 

 
IS

1
1
0

 f
am

il
y

 

tr
an

sp
o
sa

se
 

 
 

 
 

 

 



 151 

 

 

 

  

 T
a
b
le

 S
5

. 
co

n
ti

n
u
ed

 

Orthologs 

Locus tag 

UT176 

Gene 

name 

UT176 

Predicted 
gene 

UT176 

Gene 
function 

UT176 

Locus tag 
Karp 

Gene 
name 

Karp 

Predicted 

gene Karp 

Gene 

function 
Karp 

Islands 

U
T

1
7
6
_
0
1
1

5
1
 -

 

K
ar

p
_
0
1
7
7
3

 
U

T
1
7
6
_
0
1
1
5
1

 
 

 
in

te
g
ra

se
 

K
ar

p
_
0
0
7
8
9

 
 

 
in

te
g
ra

se
 

 

U
T

1
7
6
_
0
1
1

5
2
 -

 

K
ar

p
_
0
0
7
8
9

 
U

T
1
7
6
_
0
1
1
5
2

 
 

 
in

te
g
ra

se
 

K
ar

p
_
0
0
7
9
0

 
 

 
in

te
g
ra

se
 

 

U
T

1
7
6

_
0

1
1

5
3

 -
 

K
ar

p
_
0
0
7
9
0

 
U

T
1
7
6
_
0
1
1
5
3

 
 

 
in

te
g
ra

se
 

 
 

 
 

 

Orthologs 

Locus tag 

UT176 

Gene name 
UT176 

Predicted 

gene UT176 

Gene 
function 

UT176 

Locus tag 
Karp 

Gene name 

Karp 

Predicted 

gene Karp 

Gene 

function Karp 

Islands 

U
T

1
7
6
_
0
1
0

1
5
 -

 

K
ar

p
_
0
2
3
4
8

 
U

T
1
7
6
_
0
1
0
1
5

 
 

T
R

A
D

 
co

n
ju

g
al

 t
ra

n
sf

er
 

p
ro

te
in

 
K

ar
p
_
0
2
3
4
3

 
 

 
co

n
ju

g
al

 t
ra

n
sf

er
 p

ro
te

in
 

 

U
T

1
7
6
_
0
1
0

1
6
 -

 

K
ar

p
_
0
2
3
4
9

 
U

T
1
7
6
_
0
1
0
1
6

 
 

T
R

A
D

 
co

n
ju

g
al

 t
ra

n
sf

er
 

p
ro

te
in

 
K

ar
p
_
0
2
3
4
4

 
 

T
R

A
H

 
co

n
ju

g
al

 t
ra

n
sf

er
 p

ro
te

in
 T

ra
H

 
 

 
 

 
 

 
K

ar
p

_
0

2
3

4
5
 

 
T

R
A

H
 

co
n
ju

g
al

 t
ra

n
sf

er
 p

ro
te

in
 T

ra
H

 
 

 
 

 
 

 
K

ar
p
_
0
2
3
4
6

 
 

T
R

A
G

 
co

n
ju

g
al

 t
ra

n
sf

er
 p

ro
te

in
 T

ra
G

 
 

 
 

 
 

 
K

ar
p
_
0
2
3
4
7

 
 

 
h
y
p
o
th

et
ic

al
 p

ro
te

in
 

 

 
 

 
 

 
K

ar
p
_
0
2
3
4
8

 
 

T
R

A
D

 
co

n
ju

g
al

 t
ra

n
sf

er
 p

ro
te

in
 

 

 
 

 
 

 
K

ar
p

_
0

2
3

4
9
 

 
T

R
A

D
 

co
n
ju

g
al

 t
ra

n
sf

er
 p

ro
te

in
 

 

Orthologs 

Locus tag 

UT176 

Gene name 
UT176 

Predicted 

gene UT176 

Gene 
function 

UT176 

Locus tag 
Karp 

Gene name 

Karp 

Predicted 

gene Karp 

Gene 

function 
Karp 

Islands 

U
T

1
7
6

_
0

1
3

1
9

 -
 

K
ar

p
_
0
2
2
7
8

 
U

T
1
7
6
_
0
1
3
1
9

 
 

 
h
y
p
o
th

et
ic

al
 p

ro
te

in
 

K
ar

p
_
0
2
2
7
8

 
 

 
h
y
p
o
th

et
ic

al
 p

ro
te

in
 

 

U
T

1
7
6
_
0
1
3

2
0
 -

 

K
ar

p
_
0
2
2
7
9

 
U

T
1
7
6
_
0
1
3
2
0

 
 

 
co

n
ju

g
at

iv
e 

tr
an

sf
er

 

p
ro

te
in

 
K

ar
p
_
0
2
2
7
9

 
 

 
co

n
ju

g
al

 t
ra

n
sf

er
 p

ro
te

in
 T

ra
E

 
 

 
 

 
 

 
K

ar
p
_
0
2
2
8
0

 
 

 
co

n
ju

g
at

iv
e 

tr
an

sf
er

 p
ro

te
in

 
 

 
 

 
 

 
K

ar
p
_
0
2
2
8
1

 
 

 
h
y
p
o
th

et
ic

al
 p

ro
te

in
 

 

 



 152 

 

  
  T

a
b
le

 S
5

. 
co

n
ti

n
u
ed

 

Orthologs 

Locus tag 
UT176 

Gene name 

UT176 

Predicted 

gene 

UT176 

Gene 

function 
UT176 

Locus tag 
Karp 

Gene name 
Karp 

Predicted 
gene Karp 

Gene 

function 

Karp 

Islands 

  
 

 
 

 
K

ar
p
_
0
1
3
5
3

 
 

 
h

y
p

o
th

et
ic

al
 p

ro
te

in
 

 

U
T

1
7
6
_
0
1
7
2
1
 -

 

K
ar

p
_
0

1
3

5
2

 
U

T
1
7
6
_
0
1
7
2
1

 
 

E
R

U
M

6
8
8
0

 
h
y
p
o
th

et
ic

al
 p

ro
te

in
 

K
ar

p
_
0
1
3
5
2

 
 

E
R

U
M

6
8
8
0

 
h

y
p

o
th

et
ic

al
 p

ro
te

in
 

1
3
 

U
T

1
7
6
_
0
1
7
2
2
 -

 

K
ar

p
_
0
1
3
5
1

 
U

T
1
7
6
_
0
1
7
2
2

 
 

Y
G

F
A

 
5
-

fo
rm

y
lt

et
ra

h
y
d
ro

fo
la

te
 

cy
cl

o
-l

ig
as

e
 

K
ar

p
_
0
1
3
5
1

 
 

Y
G

F
A

 
5
-

fo
rm

y
lt

et
ra

h
y

d
ro

fo
la

te
 

cy
cl

o
-l

ig
as

e
 

1
3
 

  



 153 

Table S6 Summary of primers and probes used in this study. The experiments were performed by Alexander J. Westermann 

and Suparat Giengkam. 
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Appendix 2 Supplementary data for chapter 3 

Supplementary data associated with this study can be found on the CD attached to this thesis.  

 

The Benchmark_analysis_RNA_classes.csv file contains results of the benchmark analysis of various 

strategies implemented in the Dualrnaseq pipeline in quantifying RNA classes of different 

host-pathogen systems. 
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Figure S8 Fragment of the nextflow.config file containing all default parameters of the Dualrnaseq pipeline.  
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Figure S9 Configuration files of the Dualrnaseq pipeline. A) base.config file, B) test.config file, C) genome.config file. 
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Table S7 Benchmark analysis of various mapping-quantification strategies using different host-pathogen systems. 

Spearman’s rank correlation coefficients and associated p-value computed between the Number of reads estimated with 

one of the mapping-quantification strategies and the ground truth for either host or pathogen from various dual RNA-seq 

samples. 

Sample name 

rs 

STAR 

- 

HTSeq 

p-

value 

STAR 

-

HTSeq 

rs  

STAR -

Salmon  

p-value 

STAR - 

Salmon 

rs 

Salmon 

SA 

p-value  

Salmon 

SA 

Host- pathogen 

system 
organism 

HeLa_S3_WT_02_h_R1 0.917 0.0 0.959 0.0 0.961 0.0 Hela - Salmonella host 

HeLa_S3_WT_02_h_R2 0.915 0.0 0.959 0.0 0.962 0.0 Hela - Salmonella host 

HeLa_S3_WT_02_h_R3 0.915 0.0 0.960 0.0 0.963 0.0 Hela - Salmonella host 

HeLa_S3_WT_04_h_R1 0.916 0.0 0.959 0.0 0.9601 0.0 Hela - Salmonella host 

HeLa_S3_WT_04_h_R2 0.914 0.0 0.96 0.0 0.961 0.0 Hela - Salmonella host 

HeLa_S3_WT_04_h_R3 0.910 0.0 0.957 0.0 0.961 0.0 Hela - Salmonella host 

HeLa_S3_WT_08_h_R1 0.906 0.0 0.953 0.0 0.958 0.0 Hela - Salmonella host 

HeLa_S3_WT_08_h_R2 0.907 0.0 0.957 0.0 0.96 0.0 Hela - Salmonella host 

HeLa_S3_WT_08_h_R3 0.91 0.0 0.958 0.0 0.960 0.0 Hela - Salmonella host 

HeLa_S3_WT_16_h_R1 0.907 0.0 0.956 0.0 0.958 0.0 Hela - Salmonella host 

HeLa_S3_WT_16_h_R2 0.905 0.0 0.955 0.0 0.958 0.0 Hela - Salmonella host 

HeLa_S3_WT_16_h_R3 0.911 0.0 0.955 0.0 0.959 0.0 Hela - Salmonella host 

HeLa_S3_WT_24_h_R1 0.906 0.0 0.957 0.0 0.959 0.0 Hela - Salmonella host 

HeLa_S3_WT_24_h_R2 0.907 0.0 0.959 0.0 0.96 0.0 Hela - Salmonella host 

HeLa_S3_WT_24_h_R3 0.907 0.0 0.957 0.0 0.959 0.0 Hela - Salmonella host 

HeLa_S3_WT_02_h_R1 0.96 0.0 0.971 0.0 0.965 0.0 Hela - Salmonella pathogen 

HeLa_S3_WT_02_h_R2 0.955 0.0 0.972 0.0 0.967 0.0 Hela - Salmonella pathogen 

HeLa_S3_WT_02_h_R3 0.964 0.0 0.974 0.0 0.965 0.0 Hela - Salmonella pathogen 

HeLa_S3_WT_04_h_R1 0.954 0.0 0.965 0.0 0.963 0.0 Hela - Salmonella pathogen 

HeLa_S3_WT_04_h_R2 0.951 0.0 0.964 0.0 0.963 0.0 Hela - Salmonella pathogen 

HeLa_S3_WT_04_h_R3 0.949 0.0 0.967 0.0 0.962 0.0 Hela - Salmonella pathogen 

HeLa_S3_WT_08_h_R1 0.93 0.0 0.96 0.0 0.968 0.0 Hela - Salmonella pathogen 

HeLa_S3_WT_08_h_R2 0.929 0.0 0.954 0.0 0.967 0.0 Hela - Salmonella pathogen 

HeLa_S3_WT_08_h_R3 0.944 0.0 0.965 0.0 0.962 0.0 Hela - Salmonella pathogen 

HeLa_S3_WT_16_h_R1 0.92 0.0 0.959 0.0 0.966 0.0 Hela - Salmonella pathogen 

HeLa_S3_WT_16_h_R2 0.9157 0.0 0.955 0.0 0.969 0.0 Hela - Salmonella pathogen 

HeLa_S3_WT_16_h_R3 0.919 0.0 0.959 0.0 0.964 0.0 Hela - Salmonella pathogen 

HeLa_S3_WT_24_h_R1 0.903 0.0 0.965 0.0 0.979 0.0 Hela - Salmonella pathogen 

HeLa_S3_WT_24_h_R2 0.902 0.0 0.965 0.0 0.975 0.0 Hela - Salmonella pathogen 

HeLa_S3_WT_24_h_R3 0.908 0.0 0.947 0.0 0.972 0.0 Hela - Salmonella pathogen 

HUVEC_Karp_R1 0.907 0.0 0.960 0.0 0.962 0.0 Karp - HUVEC host 

HUVEC_Karp_R2 0.907 0.0 0.959 0.0 0.961 0.0 Karp - HUVEC host 

HUVEC_Karp_R3 0.909 0.0 0.96 0.0 0.962 0.0 Karp - HUVEC host 

HUVEC_Karp_R1 0.811 0.0 0.876 0.0 0.884 0.0 Karp - HUVEC pathogen 

HUVEC_Karp_R2 0.806 0.0 0.868 0.0 0.888 0.0 Karp - HUVEC pathogen 

HUVEC_Karp_R3 0.811 0.0 0.876 0.0 0.883 0.0 Karp - HUVEC pathogen 

HUVEC_UT176_R1 0.909 0.0 0.961 0.0 0.963 0.0 UT176 - HUVEC host 

HUVEC_UT176_R2 0.909 0.0 0.961 0.0 0.965 0.0 UT176 - HUVEC host 

HUVEC_UT176_R3 0.907 0.0 0.961 0.0 0.963 0.0 UT176 -HUVEC host 

HUVEC_UT176_R1 0.91 0.0 0.939 0.0 0.949 0.0 UT176 - HUVEC pathogen 

HUVEC_UT176_R2 0.910 0.0 0.953 0.0 0.956 0.0 UT176 -HUVEC pathogen 

HUVEC_UT176_R3 0.913 0.0 0.939 0.0 0.946 0.0 UT176- HUVEC pathogen 

Table S8 Benchmark analysis of RAGE genes of Ot str. Karp. Spearman’s rank correlation coefficients and associated 

p-value computed between the Number of reads estimated with one of the mapping-quantification strategy and the ground 

truth for the RAGE genes of Karp. 
Sample 

name 

rs STAR - 

HTSeq 

p-value STAR -

HTSeq 

rs STAR -

Salmon  

p-value STAR - 

Salmon 

rs Salmon 

SA 

p-value Salmon 

SA 

Karp_R1 0.671 1.299e-182 0.808 1.17e-320 0.814 0.0 

Karp_R2 0.665 2.531e-178 0.796 1.952e-304 0.819 0.0 

Karp_R3 0.676 1.436e-186 0.812 0.0 0.808 1.204e-320 
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