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1. Introduction

In 1923 Schur [43] requested a description of all polynomials f ∈ Z[X] that induce a bijection
on Z/pZ for infinitely many primes p. He proved that if f is of prime degree, then it is – up to
linear changes over the algebraic closure of Q – either a cyclic polynomial Xq or a Chebychev
polynomial Tq(X) (defined implicitly by Tq(X + 1/X) = Xq + 1

Xq ). He conjectured that in
the general case f is a composition of such polynomials. This was proved by Fried [13] in
1970.

Schur’s original question has been generalized in several ways: Turnwald [48] discusses
the problem over integral domains, Guralnick, Müller, and Saxl [19] characterize rational
functions r over number fields K so that r induces a bijection on the residue field Kp for
infinitely many places p ∈ P(K).

There is a different generalization of interest to us: we assume the base field to be of positive
characteristic and search for exceptional polynomials, i.e. polynomials that fulfill the following

Definition (Exceptionality) Assume k is a finite field. Let f ∈ k[X] be a polynomial with
coefficients in k. If K is an extension field of k, then f is called a permutation polynomial
over K if f induces a bijection on K.
f ∈ k[X] is called exceptional over k if it is a permutation polynomial over infinitely many

finite extensions of k.

The classification of permutation polynomials has a long tradition and goes back to Her-
mite [24] who noticed that any function k → k with k a finite field can be represented
by a polynomial. A broad survey of permutation polynomials can be found in Lidl and
Niederreiter [35].

An important step forward concerning the theory of exceptional polynomials was the refor-
mulation of the original definition in terms of Galois theory and covering theory in positive
characteristic. A first consequence was the proof of the following

Exceptionality Lemma (cf. [14]) Let k be a finite field of characteristic p and t a tran-
scendental over k. Let f ∈ k[X] be a polynomial. Denote the set of zeros of f(X)− t by Z.
Fix a zero x ∈ Z. Then:

(1) Suppose f is not a p-th power in k[X]. Then f is exceptional over k if and only if the
x-stabilizer of the arithmetic monodromy group of f fixes no orbit of the x-stabilizer of
the geometric monodromy group of f on Z \ {x}. (A definition of monodromy groups
is given on page 7.)

(2) Suppose f is a composition f = f1 ◦ f2 with f1, f2 ∈ k[X]. Then f is exceptional over
k if and only if both f1 and f2 are exceptional over k.

In 1993 Fried, Guralnick, and Saxl [14] realized that this result reduces the classification
of exceptional polynomials essentially to a question about primitive groups. They used the
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1. Introduction

Theorem of O’Nan-Scott and the classification of finite simple groups to obtain

Theorem Let k be a finite field of characteristic p. Assume f ∈ k[X] is an indecomposable
and exceptional polynomial of degree n. Denote the geometric monodromy group of f by G.
Then one of the following holds:

(1) n is an odd prime different from the characteristic p. The group G is cyclic or dihedral
of degree n.

(2) n = pr and G = Fr
p oH is an affine group with H ≤ GL(r, p) acting naturally on Fr

p.

(3) p ∈ {2, 3}, there exists an odd integer a ≥ 3 with PSL(2, pa) ≤ G ≤ PΓL(2, pa), and
n = 1

2p
a(pa − 1).

This classification solved in particular Carlitz’s conjecture (1966): if p is an odd prime, then
the degree of f is odd.

The three cases of the above theorem are understood with different degrees of completeness:
Case (1) is classical; up to linear changes only cyclic or Chebychev polynomials of degree

n arise here, cf. [38, Appendix]. This is the equivalent to Schur’s original conjecture.
The first examples in case (3) were given by Müller [39] for p = 2 and a = 3. Cohen

and Matthews [10] generalized these to an infinite series in even characteristic. Lenstra and
Zieve [34] found a similar series for p = 3. Recently, Guralnick, Zieve, and Rosenberg [22, 20]
gave a complete discussion of case (3). The polynomials occurring fulfill eitherG = PSL(2, pa)
or G = PGL(2, pa).

Case (2) is still open. The main problem is the difficulty to find restrictions for the group
H; even the smallest possible case deg f = p requires some work, cf. [14, §5]. For some time
the only examples of this case were additive polynomials and certain twists of them. In 1997
Guralnick and Müller [17] found a completely new series. Guralnick and Zieve [22] conjecture
that there are no more polynomials belonging to this case. Up to the present every example
fulfills the following

Observation. The fixed field E of the affine kernel of the geometric monodromy group of
f is rational.

This observation motivates a classification of exceptional polynomials with primitive affine
arithmetic monodromy group in terms of the genus g of E. This is done in chapter 4 up to
g = 2. As a result, E is rational if and only if f belongs to a family of known polynomials.
Moreover there are no exceptional polynomials with primitive affine arithmetic monodromy
group for g ∈ {1, 2}. However, Theorem 4.25 shows that in case g = 2 the affine group
AGL(2, 3) can be realized as the geometric monodromy group of a polynomial.

Chapter 5 generalizes this AGL(2, 3)-polynomial; Theorem 5.7 eventually shows that every
affine group AGL(r, pe) can be realized as the geometric monodromy group of a polynomial
of degree pre. Unfortunately, these groups are 2-transitive on the r-dimensional Fpe-vector
space; hence, this chapter does not offer exceptional polynomials at all.

The last three chapters continue the classification of [14, §5]. In chapter 6 polynomials of
degree p2 with primitive and affine arithmetic monodromy group are discussed. Theorem 6.1
shows that such a polynomial either belongs to a class of known affine polynomials or has
a “big” geometric monodromy group. Chapter 7 classifies exceptional polynomials of degree
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p3 with primitive arithmetic monodromy group. Again only known exceptional polynomials
are obtained. In chapter 8 we study exceptional polynomials of degree pr where r is an odd
prime. We assume additionally that the arithmetic monodromy group of f is 2-transitive.
Theorem 8.1 shows that this chapter does not offer new classes of exceptional polynomials.

Notation and terminology
Mostly we use standard notation. In the following we give terminology about which an
explanation may be needed.

For an integer m ∈ N we denote by Cm resp. Dm a cyclic group of order m resp. a dihedral
group of order 2m.

Assume that E is a function field. Then g(E) is the genus of E. The set of places of E is
denoted by P(E).

Page 23 gives a survey of frequently used definitions.
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General Results
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2. Monodromy groups and affine polynomials

In this chapter we give the basic ideas how Galois theory and ramification theory can be
used to translate properties of polynomials into properties of certain field extensions. Most
of the following results are classical.

2.1. Polynomials and monodromy groups

Monodromy groups
Let k denote a finite field of characteristic p, and let f ∈ k[X] \ k[Xp] be a polynomial of
degree n which is not a p-th power in k[X]. Suppose t is transcendental over k. Denote by
K an algebraic closure of k.

Set ` the splitting field of f(X)− t|k(t). As f(X)− t ∈ k(t)[X] is separable, the extension
`|k(t) is Galois. Its Galois group A := Gal

(
`|k(t)

)
is called the arithmetic monodromy group

of f .
Let k′ ⊆ K denote an algebraic extension of k; obviously t is also transcendental over

k′. The splitting field of f(X) − t|k′(t) coincides with the compositum k′`. Set M :=
Gal

(
k′`|k′(t)

)
.

The restriction of any Galois automorphism σ ∈ M to ` yields a Galois automorphism
σ|` ∈ A. Since the mapping M → A, σ 7→ σ|` is injective, we obtain an embedding of M into
A; hence, we can consider M to be a subgroup of A.

Denote the exact field of constants of ` by k̃. As k(t) ⊆ ` ∩ k′(t) ⊆ k′(t), Lüroth shows
that ` ∩ k′(t) = (k̃ ∩ k′)(t). Since the extension (k̃ ∩ k′)(t)|k(t) is Galois with Galois group
Gal

(
(k̃ ∩ k′)(t)|k(t)

) ∼= Gal(k̃ ∩ k′|k), it follows in particular that M is a normal subgroup of
A with A/M being cyclic of order [(k̃ ∩ k′) : k].

All in all, we have proved the following fact: For every choice of k′ the group M contains
the group G := Gal

(
`|k̃(t)

)
as a normal subgroup with M/G being cyclic. G is called the

geometric monodromy group of f .
Note that M is isomorphic to G in particular if k′ = K. As we work later on mostly

with function fields whose fields of constants are algebraically closed, this easy consequence
becomes important.

Since f(X)− t is absolutely irreducible, the groups G, M , and A act transitively on the zeros
of f(X)− t.

Functional decomposability
Definition 2.1 With the above notation we call f functionally decomposable over k′ if there
exist nonlinear polynomials g, h ∈ k′[X] with f = g ◦ h.

If f is not functionally decomposable over k′, we call f functionally indecomposable over
k′.

7



2. Monodromy groups and affine polynomials

Let x ∈ ` be a zero of f(X)− t. We state some consequences of the functional indecompos-
ability of f over k′.

Lemma 2.2 The following statements are equivalent:

(1) f is functionally indecomposable over k′.

(2) The monodromy group M acts primitively on the zeros of f(X)− t.

(3) There is no proper intermediate field between k′(t) and k′(x).

Proof. We show first that (2) and (3) are equivalent: By Galois duality the field k′(x) is
the fixed field of the stabilizer Mx of x. Both the primitivity of M and the non-existence of
proper intermediate fields between k′(t) and k′(x) translate into the maximality of Mx in M .

Now, suppose f = g ◦ h to be decomposed over k′. Let Z := xM denote the set of zeros of
f(X) − t. Set Y := h(Z) and define ∆y := h−1(y) ⊆ Z for y ∈ Y . It is easy to verify that
{∆y | y ∈ Y } is a system of imprimitivity for M .

Next, assume there is a proper intermediate field between k′(t) and k′(x). As this field
is rational by Lüroth, there exists y ∈ k′(x) with k′(t) ⊂ k′(y) ⊂ k′(x). Since x resp. y
is algebraic over k′(y) resp. k′(t), we can find nonlinear polynomials g, h ∈ k′[X] such that
h(x) = y and g(y) = t. Thus, x is a zero of (g◦h)(X)−t. Consider f(X)−t and (g◦h)(X)−t
as polynomials in t. Then both are irreducible and have the same leading coefficient. This
gives the equality f = g ◦ h.

2.2. Affine groups and affine polynomials

Definition 2.3 Let G be a permutation group on a finite nonempty set Ω. We call G an
affine group if G contains a normal subgroup N that fulfills the following two conditions:

• N is elementary abelian.

• N is regular on Ω, i.e. for every (ωi, ωj) ∈ Ω2 there exists exactly one n ∈ N with
ωn

i = ωj.

Remark 2.4 The elementary abelian regular normal subgroup in the above definition
is not unique in general. For instance, in the affine group AGL(2, 3) there exists an affine
subgroup of order 27 containing three regular elementary abelian normal subgroups. ?

We state some basic facts about affine groups:

Lemma 2.5 Let G be an affine group with N E G being elementary abelian and regular.
Then:

(1) A point stabilizer H of G is a complement of N , G = N oH.

(2) There exist a prime p and an integer r such that N is isomorphic to the r-dimensional
Fp-vector space Fr

p.

8



2.2. Affine groups and affine polynomials

(3) For g ∈ G write g = nghg with ng ∈ N and hg ∈ H. Then the action of G on Ω and of
G on N defined by

ng := h−1
g nnghg

are equivalent. In particular, G can be embedded into AGL(r, p), the group of all affine
transformations of Fr

p. H acts on N as a subgroup of GL(r, p).

Proof. (1) is a direct consequence of the transitivity of N , cf. [32, 3.1.4]. (2) is merely
another formulation of N being elementary abelian. (3) follows from Huppert [25, II 2.2].

The next definition connects affine groups with polynomials. It is central for our further
considerations:

Definition 2.6 With the above notation we call f ∈ k[X] \ k[Xp] an affine polynomial if its
geometric monodromy group is an affine group.

A consequence of Dixon and Mortimer [12, Sec. 4.7] and Huppert [25, II 3.2] is

Definition/Lemma 2.7 With the above notation G is primitive if and only if H acts irre-
ducibly on N . If G is primitive, then N is the unique minimal normal subgroup of G. In
this case we call N the affine kernel of G.

Huppert [25, II 3.2] also gives the important

Proposition 2.8 (Galois) Suppose G is a primitive affine group whose affine kernel has
order pr. Then a point stabilizer H of G does not contain a nontrivial normal p-subgroup.

As a first application we classify all affine polynomials having a regular geometric monodromy
group.

Proposition 2.9 Let K be an algebraic closure of the field Fp. Denote by t a transcendental
element over K.

(1) Assume f is a semi-additive polynomial of degree n = pr, i.e.

f(X) = a+
r∑

i=0

aiX
pi

with a, ai ∈ K and a0ar 6= 0. (2.1)

Then the geometric monodromy group G of f is elementary abelian and regular. In
particular, f is affine.

(2) Suppose f is affine and the geometric monodromy group G of f is a p-group. Then f
is semi-additive of the form (2.1).

Proof.

(1) Set g := f−a the linearization of f . Denote the set of zeros of g by Z := {z1, . . . , zn} ⊆
K and fix a zero x of f(X)− t. Since g(zi + zj) = g(zi) + g(zj) = 0, Z is an Fp-vector
space.

The set of zeros of f(X)− t is given by x+Z; in particular, K(x) is the splitting field
of f(X)− t and |G| = [K(x) : K(t)] = deg f = |Z|.
It follows together with the transitivity of G that for every z ∈ Z there exists a unique
gz ∈ G with xgz = x + z. The map gz 7→ z gives an isomorphism between G and Z.
This is the claim.

9



2. Monodromy groups and affine polynomials

(2) Let x denote a zero of f(X) − t and set H := Gx the stabilizer of x. As G is a p-
group, there exist subgroups Gi with H = G0 EG1 E · · ·EGr = G and Gi+1/Gi

∼= Cp.
By Lemma 2.2 f is a composition of degree-p polynomials fi with monodromy group
Gfi

∼= Cp.

As Gfi
is abelian of order p, it is regular. Turnwald [49, Theorem 2.10] proves that

there exist elements a, b, c ∈ K such that fi = aXp + bX + c.

A simple induction shows that f being a composition of semi-additive polynomials is
semi-additive, too.

Remark 2.10 Part (2) of the above proposition can also be proved by using Corollary 3.16.
We see that only the infinite place of K(t) ramifies in the extension K(x)|K(t); its ram-

ification index equals [K(x) : K(t)]. The fixed field of Gi is rational by Lüroth; thus,
Fix(Gi) = K(yi) where yi can be chosen such that the infinite place of K(yi) lies over the
infinite place of K(t).

Hence, the extensions K(yi)|K(yi+1) are of degree p and without finite ramification. This
shows that yi fulfills an equation of the form ayp

i + byi + c = yi+1 with a, b, c ∈ K. Therefore
the polynomials fi are semi-additive of degree p. ?

2.3. Generic polynomials

In this section we give an alternative approach to affine polynomials. Our main idea is to
find a primitive element z for the extension k(x)|k(t) that has a simple minimal polynomial.
Our main tool will be the following result of Kemper and Mattig [31]:

Proposition 2.11 Let k be an algebraic extension of Fp. Suppose t1, . . . , tr+1 are alge-
braically independent transcendentals over k. Then

g(t1, . . . , tr+1;X) := Xpr
+

r∑
i=1

tiX
pr−i

+ tr+1 ∈ k(t1, . . . , tr+1)[X] (2.2)

is generic for AGL(r, p) over k, i.e. g fulfills the following two conditions:

(1) The Galois group of g (as a polynomial in X) is AGL(r, p).

(2) If K is an infinite field containing k and L|K is a Galois field extension with Galois
group H ≤ AGL(r, p), then there exist λ1, . . . , λr+1 ∈ K such that L is the splitting
field of g(λ1, . . . , λr+1;X) over K.

The next lemma describes how the Galois group of g acts on the zeros of g.

Lemma 2.12 Let g be defined as in (2.2). Denote by L the splitting field and by G ∼=
AGL(r, p) the Galois group of g. Fix a zero z of g. Then the set Z of zeros of g is given by
Z = z + V where V ⊂ L is an Fp-vector space. Elements of the stabilizer Gz of z act on V
as automorphisms of V . Elements of the affine kernel N of G stabilize V pointwise and act
on Z by translation.

10



2.3. Generic polynomials

Proof. V is given as the set of zeros of the linearization of g, i.e. as the set of zeros of
g(t1, . . . , tr, 0;X). As this polynomial is additive, it follows at once that V is an Fp-vector
space.

We prove that G acts on V . Let σ ∈ G. As zσ ∈ Z, there exists v′ ∈ V with zσ = z + v′.
This gives for any v ∈ V

(z + v)σ = z + v′ + vσ ∈ Z ⇐⇒ v′ + vσ ∈ V ⇐⇒ vσ ∈ V.

Since we have

(λv1)σ = λvσ
1 and (v1 + v2)σ = vσ

1 + vσ
2 for all λ ∈ Fp and v1, v2 ∈ V,

G acts on V as a subgroup of GL(V ) ∼= GL(r, p).
Set ϕ : G → GL(V ) the homomorphism that maps σ to the V -automorphism induced

by σ. Then kerϕ ∩ Gz = 1. Since Gz
∼= GL(r, p), the mapping ϕ is an epimorphism with

| kerϕ| = pr. As AGL(r, p) is primitive and, hence, N is the unique normal subgroup of order
pr, N = G(V ) is the pointwise stabilizer of V . The remaining assertions follow.

Remark 2.13 Let t be a transcendental over k. Consider the polynomial

h(X) := g(a1, . . . , ar+1;X) ∈ k(t)[X]. (2.3)

h results from g by specializing elements ai ∈ k(t) for the transcendentals ti. Suppose h is
separable. Then the Galois group of h is a subgroup of the Galois group of g, cf. [33, VII
§2]. Hence, our results from the above lemma can be transferred to describe the action of
the Galois group of h. ?

Remark 2.14 Note that the Galois group of a polynomial of the form (2.3) is merely a
subgroup of AGL(r, p); it need not be an affine group.

For instance, consider the polynomial

f(X) := X8 + tX2 + tX + t2 ∈ F2(t)[X].

Huppert [25, p. 161] proves that AGL(3, 2) contains a transitive complement C of its affine
kernel. We show that the Galois group G := Gal

(
f |F2(t)

)
of f is conjugate to C.

The action of G on the zeros x1, . . . , x8 of f gives a natural embedding of G into S8, the
symmetric group on the set Ω := {1, . . . , 8}. Specialization of elements of F8 for the parameter
t and factorization of the resulting polynomial over F8 show that G contains permutations
of type [1, 1, 3, 3], [1, 7], and [4, 4]. A survey of the subgroups of AGL(3, 2) proves that this
condition enforces either G = AGL(3, 2) or G = Cg for some g ∈ AGL(3, 2).

Define Ω4 := {M ⊆ Ω | |M | = 4} to be the set of all subsets of Ω of cardinality 4. The
definition Mg := {mg | m ∈ M} for g ∈ G and m ∈ M gives an action of G on Ω4. If
G = AGL(3, 2), then Ω4 splits into two G-orbits; in the other case Ω4 splits into three
G-orbits.

The MAPLE-function ‘galois/rsetpol‘ allows us to compute the polynomial

f4(X) :=
∏

M∈Ω4

(
X −

∏
i∈M

xi

)
∈ F2(t)[X]

whose zeros are the products of four pairwise different zeros of f . As f4 has three irreducible
factors over F2(t), the claim follows. ?
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2. Monodromy groups and affine polynomials

Lemma 2.15 Let p be a prime and r ∈ N be an integer. Let E1, E2 ≤ Spr be elementary
abelian regular subgroups of Spr . Then there exists an element g ∈ Spr such that Eg

1 = E2.
In particular, all subgroups of Spr that are isomorphic to AGL(r, p) are conjugate.

Proof. The action of E1 resp. E2 is equivalent to the natural action of E1 on the coset
space E1/1 resp. of E2 on the coset space E2/1. As E1/1 ∼= E2/1, these actions are equivalent,
too. Hence, E1 acts equivalently to E2. This shows that E1 and E2 are conjugate.

Let A,A′ ≤ Spr with A ∼= A′ ∼= AGL(r, p). Denote the affine kernel of A with N and
the affine kernel of A′ with N ′. Then A = NSpr (N) and A′ = NSpr (N ′). As N and N ′ are
conjugate, the same holds for A and A′.

Now we prove the main result of this section.

Proposition 2.16 Let k be an algebraic extension of Fp, denote by t a transcendental over
k, and let g be defined as in (2.2). Suppose f ∈ k[X] \ k[Xp] is an affine polynomial of
degree n = pr. Fix a zero x of f(X) − t. Then there exists an element z ∈ k(x) such that
k(t, z) = k(x) and the minimal polynomial µ of z over k(t) is separable with

µ(X) = g
(
a1, . . . , ar+1;X

)
and ai ∈ k[t]. (2.4)

Proof. Identify the zeros of f(X)−t with integers 1, . . . , n and set G ≤ Sn the permutation
representation of Gal

(
f(X)−t|k(t)

)
on the zeros of f(X)−t. LetN ≤ G denote an elementary

abelian regular normal subgroup of G. Then A := NSn(N) ∼= AGL(r, p), the affine kernel of
A coincides with N , and for every integer i ∈ {1, . . . , n} the stabilizer Gi of i fulfills

Gi = Ai ∩G.

The previous lemma shows that there exists an identification of the zeros of g with the
integers 1, . . . , n such that the action of the Galois group of g on the zeros of g is given by
A. Due to Proposition 2.11 and the proof of Kemper [30, Theorem 1] we can find elements
ai ∈ k(t) such that the polynomial h(X) := g(a1, . . . , ar+1;X) is separable, the splitting field
of h over k(t) coincides with the splitting field of f(X) − t over k(t), and the action of the
Galois group of h on the zeros of h is equivalent to the action of G. Hence, we can find a
zero z′ ∈ k(x) of h with k(x) = k(t, z′).

Set d the least common multiple of the denominators of the ai. Define z := dz′. Then
k(t, z′) = k(t, z) and a simple calculation shows that the minimal polynomial of dz over k(t)
is of the form (2.4).

Example 2.17 Use the notation from the above proof.
Suppose f is a sublinearized polynomial of the form (4.2), cf. page 28. Then we can write

f(X) = X · gm(X) with g(X) =
∑

m|pi−1
pi|n

g pi−1
m

X
pi−1

m ∈ k[X].

Some calculation shows that we can set z′ :=
(
g(x)

)−1.
Suppose f fulfills the conclusion of Guralnick/Müller [17, Theorem 1.4]. Then we can set

z′ := 1
f ′(x) . This follows from [17, §3]. ?
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3. Calculation of differents and the genus-0
condition

In this chapter we present several techniques to calculate the different exponent of an exten-
sion of a place. For the convenience of the reader we first state some classical results that
will help us with the following computations.

3.1. The general case

The first theorem describes how the different exponent d(P|p) of an extension P|p is related
to its ramification groups. Since these groups are only defined in Galois extensions, we have
to assume the field extension E|F to be Galois. A proof of the theorem can be found in
Stichtenoth [47, III.8.8].

Theorem 3.1 (Hilbert’s Different Formula) Let L|E be a finite Galois extension of func-
tion fields, p ∈ P(E), and P ∈ P(L) lying over p. Let Ip(i) denote the i-th ramification group
of P|p. Then the different exponent d(P|p) is given by

d(P|p) =
∞∑
i=0

(
|Ip(i)| − 1

)
.

Next, we state a “transitivity formula” for different exponents, cf. [47, III.4.11].

Lemma 3.2 Let E ⊆ F ⊆ L be a tower of separable extensions of function fields. Suppose
p′′ resp. p′ resp. p is a place of L resp. F resp. E with p′′|p′ and p′|p. If e(p′′|p′) denotes the
ramification index of p′′|p′, then

d(p′′|p) = e(p′′|p′) · d(p′|p) + d(p′′|p′).

The following theorem gives a lower bound for the different exponent; moreover, tame ex-
tensions are characterized. Again, a proof can be found in Stichtenoth [47].

Theorem 3.3 (Dedekind’s Different Theorem) Let L|E be a separable extension of func-
tion fields, p ∈ P(E), and P ∈ P(L) lying over p. Let e(P|p) denote the ramification index
of P|p. Then d(P|p) ≥ e(P|p)− 1 and

d(P|p) = e(P|p)− 1 ⇐⇒ P|p is tame.

We are still missing a comfortable tool to compute the degree of the different in non-Galois
extensions. It seems that the following proposition is widely known and often used, but the
author does not know any reference for it. Hence, we will prove

13



3. Calculation of differents and the genus-0 condition

Proposition 3.4 Let L|E be a Galois extension of function fields with Galois group G. Let
H ≤ G be a subgroup of G and set F := Fix(H) the fixed field of H. Define n := [G : H].
Consider G as a permutation group on n points via the natural action of G on the left-coset
space G/H. Denote by o(S) the number of orbits of a subgroup S ≤ G.

Let p ∈ P(E) be a place of E. Fix an arbitrary place π ∈ P(L) lying over p, denote by I(i)
the i-th ramification group of the extension π|p, and define

ind(p) := deg(p)
∞∑
i=0

n− o
(
I(i)

)
[I : I(i)]

.

Then
ind(p) =

∑
q|p, q∈P(F )

d(q|p) deg(q) ∈ N0

equals the degree of the different in the extension F |E coming from the ramification of p. In
particular,

∑
p∈P(E) ind(p) equals the degree of the different of the extension F |E.

Proof. For a place q ∈ P(F ) denote by nq the number of places of L lying over q. If
P ∈ P(L) is a place of L, denote by PF := P∩ F the well-defined restriction of P to F and
by IP|PF

(i) the i-th ramification group of the extension P|PF .
If q resp. P appears as an index of summation, then the sum extends over all places of F

resp. L.

We use the notation from Stichtenoth [47]. We get∑
q|p

d(q|p) deg(q)
(a)
=

∑
P|p

1
nPF

d(PF |p) deg(PF )

(b)
=

∑
P|p

e(P|PF )f(P|PF )
|H|

d(PF |p) deg(PF )

=
deg(π)
|H|

∑
P|p

e(P|PF )d(PF |p)

(c)
=

deg(π)
|H|

∑
P|p

(
d(P|p)− d(P|PF )

)
(d)
=

deg(π)
|H|

∑
P|p

∑
i≥0

(
|I(i)| − |IP|PF

(i)|
)

(e)
=

deg(π)
|H|

∑
i≥0

∑
P|p

(
|I(i)| − |IP|PF

(i)|
)

(f)
=

deg(π)
|H|

∑
i≥0

(
|I(i)| |G|

|I(−1)|
−

∑
P|p

|IP|PF
(i)|

)
.

Here are some hints for the above equations:

(a): Exactly nPF
places of L induce the same summand d(PF |p) deg(PF ).

(b): Since L|F is Galois, we have |H| = nPF
e(P|PF )f(P|PF ).

(c): cf. Lemma 3.2

14



3.1. The general case

(d): cf. Hilbert’s Different Formula

(e): Both sums are finite.

(f): The number of places of L above p is |G|
|I(−1)| , cf. Stichtenoth [47, III.8.2].

Next we transform the expression
∑

P|p |IP|PF
(i)|. Let T be a left-transversal for H in G.

We have ∑
P|p

|IP|PF
(i)| (A)

=
1

|I(−1)|
∑
g∈G

∣∣Iπg |(πg)F
(i)

∣∣
(B)
=

|H|
|I(−1)|

∑
t∈T

∣∣Iπt|(πt)F
(i)

∣∣
(C)
=

|H|
|I(−1)|

∑
t∈T

∣∣I(i) ∩ tHt−1
∣∣

(D)
=

|H|
|I(−1)|

|I(i)| · o
(
I(i)

)
.

Here again some hints, that explain the transformations in detail:
(A): G acts transitively on the set of places of L lying above p. By definition the decomposition

group I(−1) equals the stabilizer of π. Thus, there exist exactly |I(−1)| elements in G that
map π to a fixed place P lying over p.

(B): Let h ∈ H be an element of H. As h fixes F pointwise, the definitions immediately give
(πth)F =

(
(πt)F

)h = (πt)F . Since L|F is Galois, the equality
∣∣Iπth|(πth)F

(i)
∣∣ =

∣∣Iπt|(πt)F
(i)

∣∣
holds.

(C): Because of Iπt|p(i) = Iπ|p(i)t = I(i)t and Iπt|(πt)F
(i) = Iπt|p(i) ∩H it follows∣∣Iπt|(πt)F

(i)
∣∣ =

∣∣Iπt|p(i) ∩H
∣∣ =

∣∣I(i)t ∩H
∣∣ =

∣∣I(i) ∩ tHt−1
∣∣.

(D): Let g ∈ I(i). g fixes the coset tH if and only if

(tH)g = g−1tH = tH ⇐⇒ t−1g−1t ∈ H ⇐⇒ g−1 ∈ tHt−1 ⇐⇒ g ∈ tHt−1.

Thus, the stabilizer of tH in I(i) coincides with I(i)∩ tHt−1 and
∑

t∈T

∣∣I(i)∩ tHt−1
∣∣ equals the

sum of the number of fixed points of all elements of I(i). Therefore the orbit-counting theorem
yields ∑

t∈T

∣∣I(i) ∩ tHt−1
∣∣ = |I(i)| · o

(
I(i)

)
.

Putting all together we obtain∑
q|p

d(q|p) deg(p) =
deg(π)
|H|

∑
i≥0

(
|I(i)| |G|

|I(−1)|
−

∑
P|p

|IP|PF
(i)|

)

=
deg(π)
|H|

∑
i≥0

(
|I(i)| |G|

|I(−1)|
− |H|
|I(−1)|

|I(i)| · o
(
I(i)

))
=

deg(π)
|I(−1)|

∑
i≥0

|I(i)|
(
n− o

(
I(i)

))
= deg(p)

∑
i≥0

n− o
(
I(i)

)
[I : I(i)]

= ind(p)
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3. Calculation of differents and the genus-0 condition

The remaining assertions follow from the general definitions, cf. [47, III.4.3].

The next lemma gives a lower bound for the function “ind”. An obvious idea is to discard
all summands with i > 0; this method yields ind(p) ≥ n − o(I). However, the following
estimation is stronger.

Lemma 3.5 With the notation from Proposition 3.4 set p the characteristic of E and define
o′(I) the number of orbits of the inertia group I := I(0) with length not divisible by p. Then

ind(p) ≥ n− o′(I).

Proof. Denote by `(t) := |(tH)I | the length of the I-orbit through tH. [47, III.1.6] and
the identity Fix(t−1Ht) = F t show

`(t) =
|I|

|I ∩ tHt−1|
=

e(π|p)
e(π|π

F t−1 )
= e(π

F t−1 |p).

Dedekind’s Different Theorem yields

`(t) = d(π
F t−1 |p) + δt

where δt is an integer with δt ≤ 1 and δt = 1 if and only if p - e(π
F t−1 |p). Set

δ′(t) :=

{
0 if p | e(π

F t−1 |p),
1 otherwise.

Then

ind(p) =
deg(π)
|H|

∑
P|p

e(P|PF )d(PF |p)

=
deg(π) · |I|

|H|
∑
P|p

d(PF |p)
e(PF |p)

(α)
=

deg(π) · |I|
|H| · |I(−1)|

∑
g∈G

d
(
(πg)F |p

)
e
(
(πg)F |p

)
(β)
=

deg(π) · |I|
|I(−1)|

∑
t∈T

d
(
(πt)F |p

)
e
(
(πt)F |p

)
(γ)
= deg(p)

∑
t∈T

d
(
π

F t−1 |p
)

e
(
π

F t−1 |p
)

≥ deg(p)
∑
t∈T

`(t)− δ′t
`(t)

≥ deg(p)
(
n−

∑
t∈T

δ′t

)
(δ)
= deg(p)

(
n− o′(I)

)
Again some hints for the above equations:
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3.1. The general case

(α): cf. hint (A)

(β): cf. hint (B)

(γ): Hint (C) shows that e
(
πt|(πt)F

)
= |I ∩ tHt−1| = e

(
π|π ∩ Fix(tHt−1)

)
= e

(
π|πF t−1

)
; thus,

e
(
(πt)F |p

)
=

e
(
πt|p

)
e
(
πt|(πt)F

) =
e(π|p)

e
(
π|πF t−1

) = e
(
πF t−1 |p

)
.

The equality d
(
(πt)F |p

)
= d

(
πF t−1 |p

)
is due to Lemma 3.2 and Hilbert’s Different Formula.

(δ): δ′t vanishes if and only if p divides the length of the I-orbit through tH. Therefore
∑

t∈T δ
′
t and

o′(I) are equal by definition.

Now we state two important theorems that allow us to give severe restrictions for the decrease
in the orders of the higher ramification groups.

We continue to assume L|E to be Galois and suppose the constant field of E to be alge-
braically closed. p ∈ P(E) is a place of E and P ∈ P(L) lies over p. For an integer i set I(i)
the i-th ramification group of P|p. For a real number u ∈ R define

Iu :=

{
I(−1) if u < −1,
I(due) if u ≥ −1.

Let ϕP|p : R+
0 → R be the function defined by

ϕP|p(u) :=
∫ u

0

dt

[I0 : It]
.

Since its derivative is always positive, ϕP|p is injective.
The Theorem of Hasse-Arf [44, IV §3] now reads as follows

Theorem 3.6 (Hasse-Arf) If I(0) is an abelian group and i ∈ N0 is an integer with I(i) >
I(i+ 1), then ϕP|p(i) ∈ Z.

Suppose N is a normal subgroup of Gal(L|E). Set F := Fix(N) and p′ := P ∩ F . Denote
the ramification groups of P|p′ with J(i) resp. Ju and the ramification groups of p′|p with
F (i) resp. Fu.

It is easy to express Ju in terms of Iu; the definitions directly give

Ju = Iu ∩N.

The computation of Fu is more difficult; however, [44, IV §3] shows

Theorem 3.7 (Herbrand) With the above notation it follows

FϕP|p′ (u)
∼= IuN/N ∼= Iu/Ju.

Remark 3.8 Although Serre [44] proves the above results only in case of local function
fields, they are correct in the global case, too. This is seen as follows: Completion at the
place P gives an Galois extension L′|E′ with Galois group I(0). The normal subgroup N
of Gal(L|E) corresponds to the group J(0) = I(0) ∩ N . In particular, the function ϕ is
invariant under completion as it only depends on subgroups of I(0) resp. J(0). Since,
moreover, completion at P does not change the ramification behavior of P|p, the assertions
of the Theorems of Hasse-Arf and Herbrand can be transferred unmodified to the case of
global function fields. ?
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3. Calculation of differents and the genus-0 condition

3.2. Applications to the case of affine Galois groups

In this section p ∈ P is a prime, k an algebraic extension of Fp, t a transcendental over k,
and f ∈ k[X] an affine polynomial of degree n = pr that is functionally indecomposable over
k. Set ` the splitting field of f(X) − t|k(t). Denote by K an algebraic closure of k and set
L := K`. Then L|K(t) is a Galois extension with affine Galois group G = N o H; here N
denotes the affine kernel of Gal

(
`|k(t)

)
and H is the stabilizer of a root x of f(X)− t.

As the fixed field Fix(H) of H coincides with K(t, x) = K(x) and the action of G on the
roots of f(X) − t is equivalent to the natural action of G on the left-coset space G/H,
Proposition 3.4 and the Riemann-Hurwitz genus formula imply the important

Corollary 3.9 (Genus-0 Condition) With the notation from Proposition 3.4 the equality∑
p ind(p) = 2n− 2 holds.

For a place p ∈ P
(
K(t)

)
of K(t) the integer ind(p) only depends on the series of higher

ramification groups of p and the way how these groups act on the set of zeros of f(X)− t.
In the following sections we present methods that give estimations for these information.

3.2.1. Consequences of Hasse-Arf and Herbrand

Set E := Fix(N), fix a place P ∈ P(L), and define p′ := P ∩ E.
Let Iu resp. Ju resp. Fu denote the ramification groups of P|p resp. P|p′ resp. p′|p. Define

I := I0, J := J0, and F := F0. For an integer i ∈ N0 set

ui := ϕ−1
P|p′(i).

Important facts concerning the elements ui are given by the following

Lemma 3.10 ui is an integer. For a real number x ∈ R with ui < x ≤ ui+1 the equalities

Jx = J(ui+1) and Ix = I(ui+1)

hold. Furthermore
ui+1 − ui =

|J |
|J(ui+1)|

.

Proof. Let m ∈ N0 be an integer and u ∈ R a real number with m < u ≤ m + 1. Since
ϕP|p′ is continuous and piecewise linear by definition, it follows

ϕP|p′(u) =
|J(m+ 1)|

|J |
(u−m) +

m∑
k=1

|J(k)|
|J |

.

Thus, assuming m < ui ≤ m+ 1 yields

ϕP|p′(ui) = i =
|J(m+ 1)|

|J |
(ui −m) +

m∑
k=1

|J(k)|
|J |

which is equivalent to

i|J | = |J(m+ 1)|(ui −m) +
m∑

k=1

|J(k)|.
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3.2. Applications to the case of affine Galois groups

Since |J(m+ 1)| divides |J(k)| for all k ∈ {0, 1, . . . ,m+ 1}, ui −m is an integer and, hence,
ui ∈ N0.

The ramification groups of P|p′ are subgroups of J ≤ N and, thus, abelian. As i <
ϕP|p′(x) ≤ i+ 1 and ϕP|p′(x) = i+ 1 if and only if x = ui+1, Hasse-Arf gives

Jx = J(ui+1).

The definition of ui gives FϕP|p′ (x) = F (dϕP|p′(x)e) = F (i+ 1). Herbrand states

Ix/Jx = Ix/J(ui+1) ∼= FϕP|p′ (x) = F (i+ 1);

this shows |Ix| = |I(ui+1)| for all possible x. Hence, Ix = I(ui+1).
As ϕ′P|p′(x) = |J(ui+1)|

|J | , the definitions of ui and x give

ϕP|p′(x) = i+
|J(ui+1)|

|J |
(x− ui).

The remaining assertions follow easily.

Corollary 3.11 The equality

ind(p) =
∞∑
i=0

|F (i)|
|F |

(
n− o

(
I(ui)

))
holds.

Proof. By Lemma 3.10 the ui+1 − ui = |J |
|J(ui+1)| groups

I(ui + 1), I(ui + 2), . . . , I(ui+1)

are equal. J being a p-group gives J = J(0) = J(1), u0 = 0, and u1 = 1. Therefore

ind(p) =
∞∑
i=0

n− o
(
I(i)

)
[I : I(i)]

=
n−

(
I(u0)

)
[I : I(u0)]

+
∞∑
i=1

n− o
(
I(ui)

)
[I : I(ui)]

(ui − ui−1)

=
n−

(
I(u0)

)
[I : I(u0)]

+
∞∑
i=1

(
n− o

(
I(ui)

)) |I(ui)| · |J |
|I| · |J(ui)|

.

Herbrand shows that I/J ∼= F and I(ui)/J(ui) ∼= F (i). Thus,

ind(p) =
n−

(
I(u0)

)
[I : I(u0)]

+
∞∑
i=1

(
n− o

(
I(ui)

)) |F (i)|
|F |

=
∞∑
i=0

|F (i)|
|F |

(
n− o

(
I(ui)

))
.

This is the claim.
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3. Calculation of differents and the genus-0 condition

3.2.2. Bounds for the number of fixed points for elements of G

We have seen in the previous paragraphs that we need information about the number of
orbits o

(
I(i)

)
of a series of ramification groups I(i) in order to calculate degrees of differents

in the extension K(x)|K(t). As the orbit-counting theorem relates the number of orbits of
a group with the number of fixed points of each group element, we have to develop good
bounds for this latter number. For an arbitrarily given permutation group this is a difficult
problem.

In our case G is an affine group; we have geometric interpretations of the action of G. This
allows us to give severe restrictions for the number of fixed points of an element of G.

Every element g ∈ G can uniquely expressed in the form g = nh with n ∈ N and h ∈ H.
Define the H-projection mapping L : G→ H (the letter “L” stands for “linearization”) via

(nh)L := h.

L is an epimorphism with kernel N . We state an important observation.

Lemma 3.12 Let g ∈ G be an element of G. Then either g fixes no element or g and gL

have the same number of fixed points.

Proof. Suppose f ∈ N is fixed by g. As N is a transitive subgroup of G, every element
fixed by g can be written in the form fm with m ∈ N . Thus, let m ∈ N be an arbitrary
element of N and write g = nh with n ∈ N and h ∈ H. Then fm is fixed by nh if and only
if

fm = (fm)nh = (fm · n︸ ︷︷ ︸
∈N

)h = (fn ·m)h = fnh ·mh = f ·mh ⇐⇒ m = mh.

It follows that g has as many fixed points as gL = h.

Since an element h ∈ H acts as an automorphism Ah ∈ GL(N) of the vector space N , the
set of fixed points of h equals the eigenspace of Ah for the eigenvalue 1. As eigenspaces are
vector spaces, we get

Corollary 3.13 Suppose g ∈ G has at least one fixed point. Then the number of fixed points
of g is a power of p; in particular, 1 6= g implies |Fix(g)| | n

p .

Next we state a criterion that guarantees the existence of fixed points.

Corollary 3.14 Let g ∈ G be a p-regular element. Then g has a fixed point.

Proof. The group U := 〈N, g〉 can be written as U = N o C with a cyclic group C ≤ H
of order |g|. As N is solvable, Schur-Zassenhaus shows that g is conjugate to a generator of
C. This element, however, fixes 0 ∈ N .

3.2.3. Bounds for ind(∞)

Let ∞ ∈ P
(
K(t)

)
be the infinite place of K(t) and denote with P ∈ P(L) a place of L lying

over ∞. Set I∞(i) the i-th ramification group of P|∞ and define I∞ := I∞(0).
The next lemma is the basis for all estimations of ind(∞).
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3.2. Applications to the case of affine Galois groups

Lemma 3.15 Both I∞ and I∞(1) are transitive.

Proof. As ∞ ramifies totally in the extension K(x)|K(t), van der Waerden [51] gives the
transitivity of I∞.
I∞(1) equals the normal p-Sylow subgroup of I∞. Denote by Ω1, . . . ,Ωr the orbits of I∞(1).

As I∞(1) is normal in I∞, all orbits Ωi have the same cardinality ω. Since |N | =
∑r

i=1 |Ωi|
is a power of p, both ω and r are powers of p. I∞ acts transitively on the set of orbits Ωi.
Hence, r divides [I∞ : I∞(1)]; as this index is prime to p, we obtain r = 1 and, thus, the
transitivity of I∞(1).

Easy consequences are

Corollary 3.16 Suppose |I∞| = prs with p - s. Then ind(∞) ≥ (n − 1)(1 + s−1); equality
holds if and only if I∞(2) = 1.

In particular, ind(∞) ≥ n and, provided that I∞ > 1 is a p-group, ∞ is the unique place
ramifying in L|K(t).

Corollary 3.17 If I∞(i) > 1, then o
(
I∞(i)

)
| n

p . Use the notation from Corollary 3.11 and
suppose I∞(ua) > I∞(ua+1) = 1. Then

ind(∞) ≥ (n− 1)
(
1 +

|F∞(1)|
|F∞|

)
+

(
n− n

p

) a∑
i=2

|F∞(i)|
|F∞|

.

Proof. Every ramification group I∞(i) is a normal subgroup of I∞, cf. Maus [37]. Thus,
the orbits of I∞(i) all have the same length. The claim is due to n being a prime power.

The previous results and our definition E := Fix(N) give

Lemma 3.18 ∞ ramifies in E|K(t) if and only if [E : K(t)] > 1.

Proof. Suppose ∞ does not ramify in the extension E|K(t). Then I∞ ≤ N . Since ∞
ramifies totally in the extensionK(x)|K(t), the group I∞ coincides withN . By Corollary 3.16
there is no finite ramification in L|K(t). Therefore E|K(t) is unramified. Stichtenoth [47,
III.5.8] shows E = K(t).

3.2.4. Bounds for ind(p) with p a finite place

Let p ∈ P
(
K(t)

)
be a finite place of K(t) and P ∈ P(L) lying over p. The symbols p′, Ip,

Jp, and Fp are defined as in section 3.2.1.
Lemma 3.5 allows us to prove an important

Corollary 3.19 Jp = 1. Ip(i) ∼= Fp(i) and o
(
Ip(i)

)
≤ o

(
Ip(i)L

)
for all i.

Proof. Suppose Jp is nontrivial. Then p | |Jp| and every Jp-orbit has length a multiple of
p. As Jp is a subgroup of Ip, every Ip-orbit is the disjoint unit of some of the Jp-orbits. In
particular, every Ip-orbit has length divisible by p. Lemma 3.5 shows

ind(p) ≥ n.

This contradicts the genus-0 condition as also ind(∞) ≥ n.
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3. Calculation of differents and the genus-0 condition

Thus, Jp = 1 and ϕP|p′ is the identity. Herbrand gives

Fp(i) ∼= Ip(i)/Jp(i) = Ip(i).

The remaining assertion follows from the orbit-counting theorem.

We see that the knowledge of the ramification of p in the extension E|K(t) determines the
ramification of p in L|K(t) completely. Furthermore the estimation

ind(p) ≥
∑
i≥0

n− o
(
Ip(i)L

)
[Ip : Ip(i)]

holds.

A consequence of the orbit-counting theorem is

Lemma 3.20 Set f := max{|Fix(g)| | g ∈ Ip(i)} and suppose 1 ≤ r < |Ip(i)|. Then

o
(
Ip(i)

)
≤ 1
|Ip(i)|

(
n+ (|Ip(i)| − 1)f

)
≤ 1
|Ip(i)|

(
n+ (|Ip(i)| − 1)

n

p

)
≤ 1
r

(
n+ (r − 1)

n

p

)
.

A simple but useful consequence of the previous estimations is the following lemma that
gives a limit for the number of finite branch points for affine polynomials. This result is also
proved in Guralnick/Müller [17, Lem. 2.1].

Lemma 3.21 Suppose f is an affine polynomial of degree pr. If f has ≥ 2 finite branch
points, then f has exactly 2 finite branch points, p is odd, and the finite branch points are
tamely ramified with corresponding inertia groups of order 2.
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Part II.

Application to specific problems

Notation used in this part

We continue the notation from the previous sections: k is a finite field of characteristic p.
f ∈ k[X] denotes an affine polynomial of degree n = pr that is functionally indecomposable
over k. K is a fixed algebraic closure of k. t is a transcendental over K, x denotes a fixed
zero of f(X) − t. The splitting field of f(X) − t over k(t) resp. K(t) is denoted by ` resp.
L = K`. The arithmetic monodromy group Gal

(
`|k(t)

)
of f is denoted by A, the geometric

monodromy group Gal
(
L|K(t)

)
by G. N is the affine kernel of A. Set U := Ax and H := Gx.

The fixed field of N in the extension L|K(t) is denoted by E.
∞ always stands for the infinite place of K(t); the symbols p and q denote different finite
places of K(t).
Unless redefined, I∞(i) is the i-th ramification group of a fixed place of L over ∞, J∞(i) :=
I∞(i) ∩N , and F∞(i) denotes the i-th ramification group of the induced extension of ∞ in
E|K(t). Set I∞ := I∞(0), J∞ := J∞(0), and F∞ := F∞(0).
The groups Ip, Iq, etc. are defined analogously.
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4. Affine polynomials with g ≤ 2

In this chapter we restrict the genus g := g(E) of E to certain values and classify all affine
polynomials in question.

A first observation is

Lemma 4.1 Suppose the extension E|K(t) is tame. Then g = 0 and the possibilities for f
are given in Theorem 4.2.

Proof. The assertion is clear for E = K(t).

Otherwise ∞ ramifies in E|K(t) with index e∞ := |F∞| > 1 by Lemma 3.18. Additionally
at most two finite places p and q ramify; set ep := |Fp| and eq := |Fq|.

Suppose eq = 1. Then by Riemann-Hurwitz

2g − 2 = −2[E : K(t)] +
e∞ − 1
e∞

· [E : K(t)] +
ep − 1
ep

· [E : K(t)]︸ ︷︷ ︸
<2[E:K(t)]

< 0;

hence g = 0.
Suppose ep, eq > 1. Then ep = eq = 2 by Lemma 3.21 and Riemann-Hurwitz shows

2g − 2 = −2[E : K(t)] +
e∞ − 1
e∞

· [E : K(t)] + 2 · 1
2
· [E : K(t)] < 0.

Thus, the claim follows in in this case, too.

4.1. g = 0

In this section we assume the field E to be of genus 0. Our main result will be

Theorem 4.2 With the notation from page 23 suppose g = 0. Then there exist linear
polynomials g1, g2 ∈ K[X] such that F := g1 ◦ f ◦ g2 ∈ k[X] belongs to one of the following
classes:

(1) H = 1 and F is an additive polynomial, i.e. F =
∑r

i=0 aiX
pi

. F is exceptional if and
only if F has no nonzero root in k.

(2) Case (A) of Theorem 4.3 holds and F is sublinearized of the form (4.2), cf. page 28.

F is exceptional if and only if the polynomial m

√
1
XF (X) has no zero in k.

(3) Case (D) of Theorem 4.3 holds. In [18] F will be studied in detail.

(4) Case (E) of Theorem 4.3 holds. F fulfills the conclusion of [17, Theorem 1.4].
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4. Affine polynomials with g ≤ 2

We start by describing the Galois theoretic structure of the extension E|K(t). This is not
difficult since the possible Galois groups and the corresponding ramification data of E|K(t)
are well known.

Theorem 4.3 E is a rational function field. The following table gives all possible isomor-
phisms types for H with E|K(t) having the associated ramification behavior.

Case H ∼= Ramification data Conditions
(A) Cm (m,m) (p,m) = 1
(B) Cp × · · · × Cp (|H|)
(C) (Cp × · · · × Cp) o Cm (m, qm) |H| = qm, m | q − 1, q 6= 1
(D) Dm (2,m) p = 2, (2,m) = 1
(E) Dm (2, 2,m) p 6= 2, (p,m) = 1
(F) A5 (5, 6) p = 3
(G) PSL(2, q)

( q(q−1)
2 , q+1

2

)
p 6= 2, q = pm

(H) PGL(2, q)
(
q(q − 1), q + 1

)
p 6= 2, q = pm

(I) PGL(2, q)
(
q(q − 1), q + 1

)
p = 2, q = pm

Proof. As K is algebraically closed, the rationality of E is a direct consequence of
Stichtenoth [47, I.6.3]. Thus, E|K(t) is a Galois extension of rational function fields.

The ramification behavior and the Galois groups of such extensions were classified by
Valentini and Madan in [50].

Some cases of the original classification cannot occur: on the one hand, K(t) does not
contain any place of degree > 1, on the other hand, an affine polynomial fulfills the conclusion
of Lemma 3.21. This leads to the above cases.

The case H = 1 is completely discussed by Proposition 2.9. The criterion for an additive
polynomial to be exceptional is given for instance in Lidl/Niederreiter [35, Theorem 7.9].
Therefore we will assume H > 1 from now on.

4.1.1. Case (A): H ∼= Cm is cyclic

As ∞ ramifies totally in the extension K(x)|K(t), mn is a divisor of |I∞|. Since G has order
mn, the equality I∞ = G holds.

We show that no nontrivial element of H fixes an element of N ]. Assume the contrary.
Then there exist an element a ∈ N ] and a nontrivial subgroup S ≤ H such that a is fixed
by every element of S. As H is cyclic, S is characteristic in H and, thus, normal in U . Set
M := 〈a〉 the irreducible S-submodule of N generated by a. Then every element of M is
fixed by S. Clifford allows us to decompose the S-module N in the form

N =
s⊕

i=1

Mui

where ui ∈ U are appropriate elements of U . It follows that S stabilizes every element of
Mui . Hence, S is a subgroup of the kernel of the operation of H on N in contradiction to
the faithfulness of this operation.

Corollary 3.14 shows

ind(p) = n− 1
m

(
n+ (m− 1) · 1

)
= (n− 1)

(
1− 1

m

)
.
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4.1. g = 0

The above shows that a conjugate of Ip either is a subgroup of H or intersects H trivially.
Thus, places of K(x) lying over p either ramify with index m or index 1. Suppose there are
a resp. b places of K(x) lying over p with index m resp. index 1. By solving the equations
am+ b = n and a(m− 1) = ind(p) we obtain that p decomposes in K(x) in the form

p = P ·Pm
1 · · ·Pm

n−1
m

with pairwise different places P,Pi ∈ P
(
K(x)

)
. (4.1)

The genus-0 condition enforces

ind(∞) = 2n− 2− ind(p) = (n− 1)
(
1 +

1
m

)
= n− o(I∞) +

n− o
(
I∞(1)

)
[I∞ : I∞(1)]

;

this gives I∞(2) = 1.

Now we are able to compute the genus g(L) of L. Our previous considerations prove that
the ramification in the extension L|K(x) comes from the infinite place of K(x) and P; both
places ramify totally. Hence, by Riemann-Hurwitz g(L) = 0 and L is a rational function
field.

Construction of f
By a linear substitution of both t and x we may assume p resp. P to be the zero place of
K(t) resp. K(x). The decomposition (4.1) of p gives

f(X) = X · gm(X)

with a separable polynomial g ∈ K[X] of degree n−1
m and g(0) 6= 0. The derivative of f reads

as
f ′(X) = gm(X) +mXgm−1(X) · g′(X) = gm−1(X) ·

(
g(X) +mX · g′(X)

)
.

Since p is the only finite place ramifying in K(x)|K(t), every zero ξ of f ′ is also a zero of g.
Assume g(ξ) + mξg′(ξ) = 0. Then mξg′(ξ) = 0. Since mξ 6= 0, we get g′(ξ) = 0. But this
is impossible as g does not have multiple roots. Hence, g(X) +mXg′(X) ∈ K] is a nonzero
element of K.

Write g(X) =
∑n−1

m
i=0 giX

i with gi ∈ K and g0 · gn−1
m

6= 0. We obtain the equivalence

g(X) +mX · g′(X) =

n−1
m∑

i=0

gi(1 +mi)Xi ∈ K] ⇐⇒ gi(1 +mi) = 0 for i ≥ 1.

This shows that for i ≥ 1 a nonzero coefficient gi 6= 0 is possible only if 1 + mi = 0, i.e.
1 +mi = αp with some α ∈ N. Hence,

f(X) = X
(
g0 +

∑
m|αp−1

1≤αp−1
m

≤n−1
m

gαp−1
m
X

αp−1
m

)m
.

As L is a rational function field, it is possible to choose z ∈ L such that L = K(z) and the
infinite resp. zero place of K(z) lies over the infinite resp. zero place of K(x). Hence, we
may assume zm = x. Then z is annihilated by

f ◦Xm − t =
( :=F (X)︷ ︸︸ ︷
g0X +

∑
m|αp−1

1≤αp−1
m

≤n−1
m

gαp−1
m
Xαp

)m
− t = Xm ◦ F (X)− t.
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4. Affine polynomials with g ≤ 2

Set τ := F (z). As τm = t, the field K(τ) contains K(t). Since degF = n, the extension
K(z)|K(τ) has degree [K(z) : K(τ)] = n. N is the unique subgroup of G of order n; thus,
the equality Fix(N) = K(τ) holds.

As the infinite place of K(τ) ramifies totally in the extension K(z)|K(τ) with the infinite
place of K(z) lying above, Proposition 2.9 shows that F is an additive polynomial. Thus,
the indices α are powers of p. We obtain

f(X) = X
(
g0 +

∑
m|αp−1

1≤αp−1
m

≤n−1
m

gαp−1
m
X

αp−1
m

)m
= X

( ∑
m|pi−1

pi|n

g pi−1
m

X
pi−1

m

)m
. (4.2)

This are exactly Cohen’s sublinearized polynomials, cf. [9]. We state Cohen’s criteria for f
to be exceptional in Theorem 4.2.

4.1.2. Case (B): H is an elementary abelian p-group

H is a normal p-subgroup of U . Proposition 2.8 gives H = 1 which was previously excluded.

4.1.3. Case (C): H ∼= (Cp × · · · × Cp) o Cm is a semidirect product

H contains a unique p-Sylow subgroup. Thus, the p-Sylow subgroup of H is normal in U .
Hence, H is a p′-group in contradiction to Theorem 4.3

4.1.4. Case (D): H is dihedral in even characteristic

This case will be extensively studied in [18]. It will be proved that there exist exceptional
polynomials realizing this case.

4.1.5. Case (E): H is dihedral in odd characteristic

As G/N is a p′-group and f has two finite branch points, Guralnick/Müller [17, Theorem 2.2]
completely discusses the ramification of L|K(t). It will be shown in [18] that this case leads
to the class of polynomials described in [17, Theorem 1.4].

4.1.6. Case (F): H ∼= A5 in characteristic 3

We show that this case does not occur.

Suppose first that p ramifies tamely. Then by Corollary 3.16 ind(∞) ≥ 3
2(n− 1) and

ind(p) ≥ n− 1
5
(
n+ 4 · n

3
)
.

This violates the genus-0 condition.

Now suppose that p ramifies wildly. Then I∞ ∼= N o C5 and Ip ∼= S3; the higher ramifi-
cation groups of ∞ are subgroups of N and, thus, act semiregularly on N . It follows from
section 3.2.1

ind(∞) =
∞∑
i=0

|F (i)|
|F (0)|

(
n− o

(
I∞(ui)

))
=

6
5
(n− 1) +

n

5

∞∑
i=2

(
1− 1

|I∞(ui)|

)
.
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4.1. g = 0

Therefore
ind(∞) =

6
5
(n− 1) or ind(∞) ≥ 4

3
n− 6

5
depending on whether I∞(2) = 1 or I∞(2) ≥ C3 > 1.

Since elements of the same order are conjugate in Ip, ind(p) is given by

ind(p) = n− 1
6
(n+ 3f2 + 2f3) + s ·

n− 1
3(n+ 2f3)

2

where f2 resp. f3 denotes the number of fixed points of an element of Ip of order 2 resp. 3
and s is the well-defined integer with Ip(s) > Ip(s+ 1) = 1. As both f2 and f3 are ≤ n

3 , the
genus-0 condition immediately gives ind(∞) = 6

5(n− 1), s = 1, and f2 = f3 = n
3 . It follows

ind(∞) + ind(p)− 2n+ 2 =
36− n

45
;

hence, the genus-0 condition cannot be fulfilled.

4.1.7. Case (G): H ∼= PSL(2, q) with p 6= 2

We prove that this case does not occur.

H is irreducible on N
We show first that we can construct a new affine polynomial g ∈ K[X] from our given
polynomial f such that g is indecomposable over K and the geometric point stabilizer of g
is isomorphic to PSL(2, q).

Lemma 4.4 Suppose H is a non-abelian group such that every normal subgroup of H is
characteristic in H.

Then there exists an affine polynomial g ∈ K[X] that is indecomposable over K and whose
geometric point stabilizer is isomorphic to a factor group of H. Moreover, the fixed field of
the affine kernel of the geometric monodromy group of g is a rational function field.

Proof. If f is functionally indecomposable over K, then we can set f = g.
Otherwise H is reducible on N and we can find a proper H-submodule M < N . Since H

is normal in U , N is a semisimple H-module and can be written in the form

N =
s⊕

i=1

Mui with u1 = 1 and ui ∈ U ].

H is faithful on M because the kernel of the action of H on M is characteristic in H and,
thus, a subgroup of the kernel of the action of H on N . As H is non-abelian, this shows in
particular that M cannot be one-dimensional.

Set N ′ :=
⊕

i6=1M
ui ; N ′ is an H-module with H < N ′ oH < N oH. By Galois duality

Fix(N ′oH) = K(y) is a proper intermediate field between K(x) and K(t). This field induces
a decomposition f = g ◦ h over K with h(x) = y and g(y) = t, cf. Lemma 2.2.

Set Z the Galois hull of K(y)|K(t) and J := Gal(L|Z); by definition J =
⋂

σ∈G(N ′ oH)σ.
N ′ is invariant under the action of H; hence, N ′ ≤ J ≤ N ′oH. This shows that J = N ′oQ
with Q a normal and, thus, characteristic subgroup of H.

The extension Z|K(t) is Galois by construction; the Galois group of Z|K(t) is given by

Gal
(
Z|K(t)

) ∼= G/J =
N oH

N ′ oQ
∼= N/N ′ oH/Q ∼= M oH/Q.
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4. Affine polynomials with g ≤ 2

The isomorphism NoH
N ′oQ

∼= N/N ′ o H/Q comes from the fact that every element nhN ′Q ∈
NoH
N ′oQ can be written in the form nN ′ · hQ since hN ′ = N ′h.

Since there are no proper intermediate fields between K(y) and K(t), g is indecomposable
over K and H/Q acts irreducibly on M .

Gal
(
Z|K(t)

)
is an affine group: the regularity of N on the set of zeros of f(X)− t gives the

regularity of N/N ′ on the set of zeros of g(X) − t. The fixed field of the geometric point
stabilizer of g equals the fixed field of N oQ and, thus, is a subfield of the rational function
field E. Lüroth [47, III.5.9] shows that this field is rational, too.

The following diagram visualizes the above situation

L

oooooooo

OOOOOOOOOO

K(x)

//
//

//
//

/ Z

��
��
��
��
�� ??

??
E

��
��

Fix(N oQ)

��
��
��
��
�

K(y)
??

??

K(t)

1

oooooooooo

OOOOOOOOOO

H

//
//

//
//

//
N ′ oQ

��
��
��
��
�� ??

??
N

��
��

N oQ

��
��
��
��
��

N ′ oH

??
??

N oH

For q > 3 the group PSL(2, q) is simple. Thus, the geometric monodromy group of g is
MoH/Q withH/Q ∈ {1,PSL(2, q)}. The caseH/Q = 1 is impossible because the irreducible
H/Q-module M would be one-dimensional in contradiction to Lemma 4.4.

Suppose q = p = 3. Then H ∼= PSL(2, 3) ∼= A4 and every normal subgroup of H is also
characteristic in H. We obtain H/Q ∈ {1, C3,H}; this again yields H/Q = H.

Hence, in all cases we can construct a functionally indecomposable polynomial g from f that
also belongs to case (G). Therefore we will assume from now on that the given polynomial
f itself is functionally indecomposable. By showing that such an f does not exist we prove
the impossibility of case (G).

Bounds for the number of fixed points for elements of H
The following concept allows us to obtain approximate upper bounds for the number of fixed
points of elements of H.

Definition 4.5 Let H be a group and h ∈ H. We say that h is k-generating in H if H can
be generated by k conjugates of h, i.e. if there exist elements g1, . . . , gk ∈ H such that

H = 〈hg1 , . . . , hgk〉.

This definition yields in case of the group PSL(2, q)

Lemma 4.6 Let 1 6= x ∈ PSL(2, q) with q any prime power (in particular, the case q = 2m

is allowed). Then x is

• 2-generating if q > 2, |x| > 2, and (|x|, q) 6= (3, 9),
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4.1. g = 0

• 3-generating if (|x|, q) = (3, 9),

• 3-generating if |x| = 2 and q 6= 3.

Proof. The case (|x|, q) = (3, 9) follows directly from Guralnick/Saxl [21, Lem. 3.1].
Now suppose |x| = 2 and q 6= 3. [21] gives the assertion for q ≥ 4. For q = 2 the claim

follows by direct computation.

At last suppose q > 2, |x| > 2, and (|x|, q) 6= (3, 9).
If |x| is not a power of 2, then the assertion follows for q ≥ 4 again from [21] and for q = 3

by direct computation.
Thus, assume |x| = 2i with i ≥ 2. It is sufficient to show that an element f ∈ PSL(2, q) of

order 4 is 2-generating.
An inspection of the list [25, II 8.27] of all subgroups of PSL(2, q) shows that for q 6∈

{7, 9} the group PSL(2, q) contains a maximal subgroup D isomorphic to a dihedral group
of order 2 · q+1

(2,q−1) . The well-known fact that PSL(2, q) contains exactly one conjugacy class
of involutions allows to find elements g, h ∈ PSL(2, q) such that D = 〈(f2)g, (f2)h〉. Suppose
〈fg, fh〉 6= PSL(2, q). Then 〈fg, fh〉 ≤ D, and both fg and fh are elements of the normal
cyclic subgroup of D of order 1

2 |D|. This implies (fg)2 = (fh)2 in contradiction to D being
dihedral.

For q ∈ {7, 9} the assertion follows by direct calculation.

The next lemma gives an upper bound for the number of fixed points of a k-generating
element.

Lemma 4.7 Let h ∈ H be an element of H. If h is k-generating in H, then

dim Fix(h) ≤ k − 1
k

dimN and |Fix(h)| ≤ k
√
nk−1.

Proof. Let h ∈ H be k-generating in H. Then there exist conjugates h1, . . . , hk of h
that generate H. Set Fi := Fix(hi), f := dimF1, and d := dimN ; obviously the equality
f = dimFi holds for all i ∈ {1, . . . , k}. Consider the homomorphism

ϕ : N → N/F1 ⊕ · · · ⊕N/Fk, n 7→ (nF1, . . . , nFk)

with kernel kerϕ =
⋂k

i=1 Fi. As H is irreducible on N , the intersection
⋂k

i=1 Fi = {0} is
trivial and ϕ is injective. Since dimN/Fi = d− f , we obtain

d ≤ k · (d− f) ⇐⇒ f ≤ k − 1
k

d.

The remaining assertions follow easily.

N is a “big” module: n ≥ q4

For this section we assume n ≥ q4.
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4. Affine polynomials with g ≤ 2

Suppose q 6= 9 and h ∈ H. Lemmas 4.6 and 4.7 give the estimations

|Fix(h)| ≤


n for h = 1,
3
√
n2 = n

3√n
≤ n

q for |h| = 2 and q 6= 3,
√
n = n√

n
≤ n

q2 for |h| > 2.

First we discuss the case where p ramifies tamely with index q+1
2 . Then I∞ = P oC q−1

2
with

a transitive p-group P . Corollary 3.16 shows

ind(∞) ≥ (n− 1)
(
1 +

2
q − 1

)
;

this contradicts the genus-0 condition if q = 3. Ip is cyclic and, thus, contains at most one
involution. Hence,

ind(p) ≥ n− 2
q + 1

(
n+

n

q
+

(q + 1
2

− 2
) n
q2

)
.

It follows

ind(∞) + ind(p)− 2n+ 2 ≥
q2(q + 1)(q − 3) + n

(
−3 + q(6 + q)

)
q4 − q2

> 0;

so the genus-0 condition is violated for all q in question.

Next we consider the case where p ramifies wildly with index q(q−1)
2 . Here, I∞ ∼= N o C q+1

2

and, thus, ind(∞) ≥ (n− 1)
(
1 + 2

q+1

)
.

The following lemma allows us to estimate the number of involutions in Ip.

Lemma 4.8 Suppose G ∼= AoB with 2 - |A| and B cyclic. Let i be the number of involutions
and f the number of elements of order 4 in B. Then the number of involutions resp. elements
of order 4 in G is less or equal than i · |A| resp. f · |A|.

Proof. Let a ∈ A and b ∈ B. As A is a normal 2′-subgroup of G, it follows by some
standard arguments that ab ∈ G having order 2 resp. 4 implies b to be an involution resp.
to be of order 4. The claim follows as a direct consequence of this fact.

As Ip is isomorphic to a product P o C q−1
2

with a p-group P of order q, the above lemma
shows that Ip contains at most q involutions. Since Ip is a 2′-group for q = 3, we obtain in
all cases

ind(p) ≥ n− 2
q(q − 1)

(
n+ q

n

q
+

(q(q − 1)
2

− 1− q
) n
q2

)
+

2
q − 1

(
n− 1

q

(
n+ (q − 1)

n

q2
))
.

These estimations succeed in disproving the genus-0 condition.

Now suppose q = 9.
If p ramifies tamely, the same bounds as above hold and, hence, the same contradiction

follows.
Otherwise Ip contains exactly 9 involutions and 8 elements of order 3; this shows

o(Ip) ≤
1
36

(
n+ 17

n

9
+ 18

n

81
)

and o
(
Ip(1)

)
≤ 1

9
(
n+ 8

n

9
)
.

Again a contradiction to the genus-0 condition results.
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4.1. g = 0

N is a “small” module: n < q4

Unfortunately, in this case the bounds from Lemma 4.7 are too weak to induce contradic-
tions to the genus-0 condition. By classifying all irreducible representations of H on N we get
much sharper estimations for the number of fixed points of elements of H, cf. Lemma 3.12.
This method will eventually lead to the impossibility of this case.

The following presentation of p-modular representation theory of the groups PSL(2, q) and
PGL(2, q) is based on Brauer and Nesbitt [5, §30].

Let κ be any field of characteristic p and u, v algebraically independent transcendentals over
κ. Denote by Vn the vector space of homogeneous polynomials in u and v of degree n over
κ. Obviously Bn := (un, un−1v, . . . , vn) is a basis for Vn.

For an element A =
(

a b
c d

)
∈ GL(2, κ) define

uA := au+ bv and vA := cu+ dv.

Some calculation shows that for a second element A′ ∈ GL(2, κ) the relations (uA)A′
= uAA′

and (vA)A′
= vAA′

hold.
This action of GL(2, κ) can be extended to an endomorphism ϕA of Vn by defining

(uivn−i)ϕA := (uA)i(vA)n−i and, thus,
( n∑

i=0

κiu
ivn−i

)ϕA

=
n∑

i=0

κi(uA)i(vA)n−i.

The mapping A 7→ ϕA is a homomorphism GL(2, κ) → Aut(Vn). Set Sn(A) the representa-
tion matrix of ϕA with respect to the basis B; we consider Sn(A) always acting on the row
vector space κn+1. Then

GL(2, κ) → GL(n+ 1, κ), A 7→ Sn(A)

is a group homomorphism. The next lemma allows us to explicitly calculate Sn(A).

Lemma 4.9 Let A =
(

a b
c d

)
∈ GL(2, κ). Denote the entries of Sn(A) by sij with 1 ≤ i, j ≤

n+ 1. Then

sij =
min(n+1−i,n+1−j)∑
λ=max(0,n+2−i−j)

(
n+ 1− i

λ

)(
i− 1

n+ 1− j − λ

)
aλbn+1−i−λcn+1−j−λdλ+i+j−n−2.

Proof. For the sake of shortness set n′ := n + 1. The image of the i-th basis vector
un+1−ivi−1 of B under the mapping ϕA is

(un′−ivi−1)ϕA = (au+ bv)n′−i(cu+ dv)i−1

=
n′−i∑
r=0

i−1∑
s=0

(
n′ − i

r

)(
i− 1
s

)
arbn

′−i−rcsdi−1−sur+svn−r−s

(?)
=

n∑
µ=0

( min(µ,n′−i)∑
λ=max(0,µ+1−i)

(
n′ − i

λ

)(
i− 1
µ− λ

)
aλbn

′−i−λcµ−λdi−1+λ−µ

)
uµvn−µ

In (?) we set µ = r+s and λ = r. The conditions for λ come from the fact that 0 ≤ r ≤ n+1−i
and 0 ≤ s ≤ i− 1. This shows the assertion.

33



4. Affine polynomials with g ≤ 2

Definition 4.10 (Kronecker Product) Let A = (aij) ∈ κr×s, B ∈ κt×u. The Kronecker
product A⊗B of A with B is the matrix

A⊗B :=

a11B · · · a1sB
. . . . . . . . . . . . . . . . .
ar1B · · · arsB

 ∈ κrt×su.

Now we are able to specify all irreducible p-modular representations of PSL(2, q) and PGL(2, q)
over Fq:

Theorem 4.11 (Brauer-Nesbitt) Let p ∈ P be a prime and q := pm a power of p. Let ϕi

denote the i-th power of the Frobenius-automorphism of Fq, i.e.

ϕi : Fq → Fq, x 7→ xpi
.

For a matrix A = (aij) with aij ∈ Fq set Aϕi :=
(
(aij)ϕi

)
.

(1) Assume p ≥ 3. For A ∈ SL(2, q) denote by A the image of A in PSL(2, q). Then, up to
conjugation, the irreducible p-modular representations of PSL(2, q) over Fq correspond
to mappings θ with

θ : PSL(2, q) → GL
(m−1∏

i=0

(ri + 1), q
)
, A 7→

m−1⊗
i=0

Sri(A
ϕi);

here 0 ≤ ri < p for all i and 2 |
∑m−1

i=0 ri. θ is faithful if and only if there exists at least
one index i with ri 6= 0.

(2) For A ∈ GL(2, q) denote by A the image of A in PGL(2, q). Then, up to conjugation,
the irreducible p-modular representations of PGL(2, q) over Fq correspond to mappings
θ with

θ : PGL(2, q) → GL
(m−1∏

i=0

(ri + 1), q
)
, A 7→ det(A)s

m−1⊗
i=0

Sri(A
ϕi);

here 0 ≤ ri < p for all i, 0 ≤ s < q − 1, and q − 1 | (2s+
∑m−1

i=0 rip
i).

Fq is a splitting field for both PSL(2, q) and PGL(2, q).

We proceed with our classification of irreducible H-modules N with n < q4:

We interpret N as a Fp-vector space; then H acts as a subgroup of GL(r, p). Isaacs [29, 9.21]
and Theorem 4.11 show that NFq := N ⊗ Fq is completely reducible, i.e.

NFq = V1 ⊕ · · · ⊕ Vf

with absolutely irreducible and pairwise non-similarH-modules Vi over Fq. We further obtain
from [11, 70.15] that the Vi form an orbit under the operation of the Galois group

X := Gal(Fq|Fp) = 〈ξ : Fq → Fq, z 7→ zp〉.

Set X1 the stabilizer of V1. Since f = |V X
1 | = |X|

|X1| , we see that X1 = 〈ξf 〉.
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4.1. g = 0

Theorem 4.11 shows that V1 is similar to a representation uniquely parametrized by an
m-tuple of integers ri with 0 ≤ ri < p; by abuse of notation set

V1 = (r0, . . . , rm−1).

It follows from the definitions that

V ξ
1 = (rm−1, r0, . . . , rm−2);

thus, the operation of ξ on V1 induces a cyclic right shift in the parametrization of V1. If
we consider the indices of the parameters ri modulo m, the property of ξf stabilizing V1

translates into ri = ri+f for all i; setting g := gcd(f,m) this condition is equivalent to

ri = rj if i ≡ j mod g.

So there exist elements R0, . . . , Rg−1 with 0 ≤ Ri < p such that

dimFq V1 =
m−1∏
i=0

(ri + 1) =
g−1∏
i=0

(Ri + 1)
m
g =

(g−1∏
i=0

(Ri + 1)︸ ︷︷ ︸
=:J

)m
g

and
m−1∑
i=0

ri =
m

g

g−1∑
i=0

Ri.

Since dimFp N = dimFq N
Fq = fJ

m
g , the condition n < q4 gives

n = pfJ
m
g
< p4m ⇐⇒ fJ

m
g < 4m ⇐⇒ f

g
J

m
g < 4

m

g
.

Set a := f
g and b := m

g ; then we have to solve aJb < 4b. In particular J > 1 for otherwise
V1 would be trivial and H would not be faithful on N . Since a ≥ 1, we get b < 4. Therefore
only the following cases need to be discussed:

b = 3: We have to solve aJ3 < 12; this is only possible for (a, J) = (1, 2). But then

2 -
∑

ri = b
∑

Ri = b · 1 = 3.

This shows that the case does not occur.

b = 2: We have to solve aJ2 < 8; this is only possible for (a, J) = (1, 2). It follows f = g and

n = pfJb
= pgJb

= p4·m
2 = p2m = q2.

Since J = 2, there exists an index i, 0 ≤ i < m
2 = g, with ri = ri+g = 1 and rj = 0 for

all other indices j. Thus, V1 is similar to the irreducible 4-dimensional representation

ψ : PSL(2, q) → GL(4,Fq), A 7→ S1(Aϕi)⊗S1(Aϕi+g).

Lemma 4.9 shows that for any A ∈ PSL(2, q) the equality S1(A) = A holds; therefore
ψ(A) = Aϕi ⊗Aϕi+g .
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4. Affine polynomials with g ≤ 2

In the following we calculate for a given element A the dimension of the space of fixed
points of ψ(A). Huppert [25, II 8.1] shows that the centralizer CPSL(2,q)(x) of any
element A of order p is elementary abelian of order q. Hence, if A 6= 1, then either A
has order p or is p-regular.

First let |A| = p. We may assume |A| = p. Then A is conjugate to ( 1 1
0 1 ) in GL(2, q).

Thus, the dimension of the fixed point space of ψ(A) equals the dimension of the fixed
point space of ( 1 1

0 1 )⊗ ( 1 1
0 1 ) which is 2.

Now let A be p-regular. Then A ∈ SL(2, q) is also p-regular and can be diagonalized
over a suitable extension field of Fq. Denote by λ, λ−1 the eigenvalues of A. Due to
Ortega [41, 6.3.1] eigenvalues of ψ(A) are exactly given by the product of eigenvalues
of Aϕi with eigenvalues of Aϕi+g ; thus,(

λϕiλϕi+g
)±1 and

(
(λ−1)ϕiλϕi+g

)±1

are the eigenvalues of ψ(A). We get

(λϕiλϕi+g) = 1 ⇐⇒ (λpg+1)pi
= 1 ⇐⇒ λpg+1 = 1 ⇐⇒ |A| | pg + 1

and

(λ−1)ϕiλϕi+g = 1 ⇐⇒ (λpg−1)pi
= 1 ⇐⇒ λpg−1 = 1 ⇐⇒ |A| | pg − 1.

Since g = m
2 , we obtain

dimFq Fix
(
ψ(A)

)
=


4 |A| = 1,
2 |A| = p,

2 A 6= 1, A
√

q−1 = 1, or A
√

q+1 = 1,
0 otherwise.

As Vi and V1 are Galois conjugate, in both modules the dimension of the space of fixed
points of A is identical. Because NFq is the direct sum of all Vi, h ∈ H fixes exactly
one element of N unless

h = 1; then h fixes q2 = n points,
|h| = p; then h fixes q =

√
n points,

h 6= 1 and |h| |
√

q−1
2 or |h| |

√
q+1
2 ; then h fixes q =

√
n points.

These improved estimations succeed in disproving the genus-0 condition:

Suppose p ramifies tamely. As gcd( q+1
2 ,

√
q+1
2 ) = gcd( q+1

2 ,
√

q−1
2 ) = 1,

ind(p) ≥ q2 − 2
q + 1

(
q2 +

(q + 1
2

− 1
)
· 1

)
.

Together with the estimation for ind(∞) from Corollary 3.16 a violation of the genus-0
condition follows.

If p ramifies wildly, then the equation

ind(p) ≥ q2 − 2
q(q − 1)

(
q2 +

(q(q − 1)
2

− 1
)
q
)

+
2

q − 1

(
q2 − 1

q

(
q2 + (q − 1)q

))
holds. We obtain again a contradiction to the genus-0 condition.
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4.1. g = 0

b = 1: We have to solve aJ < 4; this is only possible for (a, J) ∈ {(1, 2), (1, 3)}.

The case (a, J) = (1, 2) cannot occur because 2 -
∑m−1

i=0 ri = b
∑g−1

i=0 Ri = 1.

In the other case ri = 2 for exactly one index i; all other rj vanish. We get m = g = f
and

n = pfJb
= p3m = q3.

V1 is similar to the irreducible 3-dimensional representation

ψ : PSL(2, q) 7→ GL(3, q), A =
[
a b
c d

]
7→ S2(Aϕi) =

a2 2ab b2

ac ad+ bc bd
c2 2cd d2

ϕi

.

The dimension of the space of fixed points of ψ(A) can be determined as shown in the
case b = 2. We get

dimFq Fix
(
ψ(A)

)
=

{
3 A = 1,
1 otherwise.

(4.3)

Thus, any h ∈ H] fixes exactly 3
√
n = q points.

These estimations are sufficient in disproving the genus-0 condition.

4.1.8. Case (H): H ∼= PGL(2, q) with p 6= 2

This case does not occur, either. We use the same methods as in the previous case.

H is irreducible on N

We use the notation of the corresponding section of case (G).

If q > 3, then H contains a unique proper and nontrivial normal subgroup. This group has
index 2 in H, is characteristic and isomorphic to PSL(2, q). We obtain

Gal
(
Z|K(t)

) ∼= M o F

with F ∈ {1, C2,PGL(2, q)}. The cases F ∼= C2 and F = 1 are impossible; thus, F ∼= H.
If q = 3, then H is isomorphic to S4. Every normal subgroup of H is also characteristic

in H. Quotient groups of H are isomorphic to 1, S4, C2, or S3. Except for S4, all of these
groups enforce M to be of dimension one. Thus, Gal

(
Z|K(t)

) ∼= M o PGL(2, 3).

Bounds for the number of fixed points for elements of H
An analogue to Lemma 4.7 is

Lemma 4.12 Suppose 1 6= h ∈ H. Then

(1) dim Fix(h) ≤ 1
2 dimN if q > 2, |h| 6= {2, 4}, and (|h|, q) 6= (3, 9),

(2) dim Fix(h) ≤ 2
3 dimN if (|h|, q) = (3, 9),

(3) dim Fix(h) ≤ 2
3 dimN if |h| = 4,

(4) dim Fix(h) ≤ 2
3 dimN if |h| = 2 and q 6∈ {3, 5}.
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4. Affine polynomials with g ≤ 2

Proof. The commutator subgroup H ′ of H is a characteristic subgroup of H with H/H ′ ∼=
C2 and H ′ ∼= PSL(2, q). Thus, N considered as a H ′-module is semisimple. Let M denote
an irreducible H ′-submodule of N . Then either

N = M or N = M ⊕Mu with an appropriate u ∈ H.

H ′ acts faithfully on M because the kernel of this operation is normal and, hence, character-
istic in H ′ and would be a subgroup of the kernel of the action of H on N .

Lemma 4.7 shows that the bounds for fixed point spaces of H ′ are linear in the dimension
of the module M ; thus, these bounds also hold for the module N . Since h ∈ H fixes less
elements of N than h2 ∈ H ′, we can use the bounds for h2 as bounds for h.

The assumption in case (1) gives |h2| > 2. Therefore Lemma 4.6 yields dim Fix(h) ≤ 1
2 dimN .

Case (2) can be proved analogously.
Case (4) is a direct consequence from [21]. Case (3) follows from case (4) and some explicit

calculations for q ∈ {3, 5}.

N is a “big” H-module: n ≥ q4

Suppose q 6∈ {3, 5, 9}. Then we get from Lemma 4.12

|Fix(h)| ≤


n h = 1,
n

q
4
3
≤ n

q |h| ∈ {2, 4},
n
q2 otherwise.

First we discuss the case where p ramifies tamely with index q + 1. Then

ind(∞) ≥ (n− 1)
(
1 +

1
q − 1

)
.

Ip is a cyclic group and contains therefore a unique involution and at most two elements of
order 4. We get

ind(p) ≥ n− 1
q + 1

(
n+ 3

n

q
4
3

+ (q − 3)
n

q2
)
.

This gives

ind(∞) + ind(p)− 2n+ 2 ≥ q2(q + 1)(q − 2) + n(q2 − 3q
5
3 + 4q + 3q

2
3 − 3)

q2(q2 − 1)
;

as q2 − 3q
5
3 + 4q + 3q

2
3 − 3 is positive for all possible q, the genus-0 condition is violated.

Now suppose p ramifies wildly. Then I∞ ∼= N o Cq+1. By Lemma 4.8 Ip contains at most q
involutions and 2q elements of order four. Using the same techniques as above gives again a
contradiction.

The cases q ∈ {3, 5} can be disproved analogously; the number of fixed points of elements
that is not dealt with in Lemma 4.12 can be estimated with n

p = n
q .

For q = 9 the same methods induce a contradiction to the genus-0 condition.
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4.1. g = 0

N is a “small” module: n < q4

We use Theorem 4.11 to classify all possible H-modules N with n < q4. In this section the
same notation is used as in the corresponding section of case (G).

V1 can be parametrized by
V1 = (s; r0, . . . , rm−1).

The action of ξ on V1 gives

V ξ
1 = (sp; rm−1, r0, . . . , rm−2).

As ξf stabilizes V1, the parameters must fulfill

spf ≡ s mod (q − 1) and ri = rj if i ≡ j mod g.

Thus, there exist elements R0, . . . , Rg−1 with 0 ≤ Ri < p such that

dimFq V1 = J
m
g and

m−1∑
i=0

ri =
m

g

g−1∑
i=0

Ri.

V1 being a faithful H-module gives J > 1; the equation

pdimFp N = pdimFq NFq
= pfJ

m
g
< q4 ⇐⇒ aJb < 4b

enforces again b < 4. So, we have to discuss the following cases:

b = 3: We obtain the unique solution (a, J) = (1, 2). This gives an index 0 ≤ i < g with
ri = ri+g = ri+2g = 1; all other rj vanish. As p is odd, the sum

∑m−1
i=0 rip

i is also
odd. But the even number q − 1 cannot divide 2s+

∑m−1
i=0 rip

i. This contradiction to
Theorem 4.11 shows that this case is impossible.

b = 2: We obtain the unique solution (a, J) = (1, 2). We further get f = g and 2g = m. The
condition for s translates to

p2g − 1 | spg − s = s(pg − 1) ⇐⇒ pg + 1 | s;

so, s = ` ·(pg +1). We further get the existence of an index 0 ≤ i < g with ri = ri+g = 1
and rj = 0 for all other indices. The restriction from Theorem 4.11 shows

p2g − 1 | 2`(pg + 1) + pi + pi+g = (pg + 1)(2`+ pi) ⇐⇒ pg − 1 | 2`+ pi.

This is impossible since pg − 1 is even while 2`+ pi is not.

b = 1: In this case we have a = 1, m = f = g, and J ∈ {2, 3}.
J = 2 is impossible for

∑
rip

i is odd.

So the remaining case is J = 3. We obtain n = q3; the action of PGL(2, q) on V1 is
given by

ψ : PGL(2, q) → GL(3, q), A 7→ (detA)sS2(Aϕi). (4.4)

s has to fulfill

q − 1 | 2s+ 2pi ⇐⇒ q − 1
2

| s+ pi ⇐⇒ s ≡ −pi mod
q − 1

2
;
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4. Affine polynomials with g ≤ 2

as 0 ≤ s < q − 1, this congruence gives two different solutions for s.

Note that the restriction of ψ to PSL(2, q) E PGL(2, q) coincides with the irreducible
representation of the corresponding section of case (G). We use this fact to transfer
results from equation (4.3) on page 37 to this case.

An element of order p has a one-dimensional fixed point space because its image is
similar to ψ

([
1 1
0 1

])
.

Let A ∈ PGL(2, q) be a p-regular element of order 6= 2. Then 1 6= A
2 ∈ PSL(2, q);

equation (4.3) shows that the fixed point space of ψ(A) is at most one-dimensional.

At last suppose A ∈ PGL(2, q) is an involution. As ψ is faithful, ψ(A) is at most
two-dimensional.

These bounds again induce contradictions to the genus-0 condition in all cases.

4.1.9. Case (I): H ∼= PGL(2, 2m)

Suppose q = 2. Then H ∼= D3 and the ramification data is (2, 3). This situation has already
been described in case (D).

Hence, we will assume q 6= 2 from now on. Then H is simple with H ∼= SL(2, 2m). By
Lemma 4.4 N is an irreducible H-module.

The “big” cases can be disproved essentially the same way as in case (G) and (H). The
“small” cases are more complicated. V1 is an irreducible PGL(2, 2m)-module induced by

ψ1 : PGL(2, 2m) → GL(2, 2m), A 7→ (detA)s ·Aϕi ,

here n = q2; or

ψ2 : PGL(2, 2m) → GL(4, 2m), A 7→ (detA)s ·
(
Aϕi ⊗A

ϕi+ m
2

)
,

here n = q2 and m is even with 0 ≤ i < m
2 ; or

ψ3 : PGL(2, 2m) → GL(8, 2m), A 7→ (detA)s ·
(
Aϕi ⊗A

ϕi+ m
3 ⊗A

ϕi+2·m3
)

here n = q
8
3 and 3 | m with 0 ≤ i < m

3 . In all cases s is uniquely determined; we have
det

(
ψi(A)

)
= 1 for all A ∈ PGL(2, 2m).

With the same methods as before it is possible to determine the dimension of the space of
fixed points of the image of A ∈ PGL(2, 2m) under ψi. We obtain

dim Fix
(
ψ1(A)

)
=


2 ψ1(A) = 1,
1 ψ1(A) is an involution,
0 otherwise;

dim Fix
(
ψ2(A)

)
=


4 ψ2(A) = 1,
2 |ψ2(A)| = 2 or |ψ2(A)| | √q + 1 or |ψ2(A)| | √q − 1
0 otherwise;

dim Fix
(
ψ3(A)

)
≤


8 ψ3(A) = 1,
4 ψ3(A) is an involution,
2 otherwise.

These bounds imply a contradiction to the genus-0 condition in all cases.
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4.2. g = 1

4.2. g = 1

In this section we suppose E to be a genus-one function field. As the field of constants of E
is algebraically closed, it is the function field of an elliptic curve. We will prove

Theorem 4.13 With the notation from page 23 there is no affine polynomial f such that
g(E) = 1.

4.2.1. Ramification in E|K(t)

Before we describe the structure of AutK(E) we remind the reader that the set of places P(E)
of E can be canonically interpreted as an abelian group; we will denote its zero element by
o. Hasse [23] shows that every K-automorphism of E acts on P(E) and, conversely, if
any operation on P(E) induces an automorphism of E, then this automorphism is uniquely
determined. In particular, the translation mappings

τa : P(E) → P(E), p 7→ p + a

induce translation automorphisms in AutK(E). We denote the set of translation automor-
phisms by T; this set is closed under composition and forms a normal subgroup in AutK(E).

Denote by I the stabilizer of o in AutK(E). Then I is a finite group of homomorphisms
P(E) → P(E) and the set of K-automorphisms of E can be written as

AutK(E) = T o I. (4.5)

A first consequence is

Lemma 4.14 Suppose σ = τa · ξ with τa ∈ T and ξ ∈ I fixes a place P ∈ P(E). Then:

(1) σ ∈
(
AutK(E) \ T

)
∪ 1.

(2) For any Q ∈ P(E) and r ∈ N we have Qσr
= Qξr

+
∑r

i=1 aξi
. In particular, σ has

order |ξ|.

Proof. σ fixes P. No nontrivial translation automorphism has this property. This is (1).

The equation for Qσr
follows by induction and the fact that elements of I are homomorphisms

of the group P(E).
σ|ξ| maps P to P +

∑|ξ|
i=1 aξi

. As every power of σ stabilizes P, it follows
∑|ξ|

i=1 aξi
= o.

Thus, σ|ξ| = 1 and |ξ| is the smallest positive integer with this property.

The isomorphism types for I are determined in Husemöller [27, Chapter 3]; the following
cases occur:

I ∼= Conditions
C2

C4 p 6∈ {2, 3}
C6 p 6∈ {2, 3}
C3 o C4 p = 3, I non-abelian
SL(2, 3) p = 2
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4. Affine polynomials with g ≤ 2

This allows us to work out how places can ramify in the extension E|K(t).

Lemma 4.15 Let p ∈ P
(
K(t)

)
be any place of K(t). Suppose P ∈ P(E) lies over p. Denote

the inertia group of the extension P|p with Fp and the degree of the different coming from
the ramification of p with δp. Set s resp. sk the number of groups in the series

(
Fp(i)

)
i≥1

of

order 6= 1 resp. order |Fp(1)|
pk−1 . Suppose |Fp| > 1. Then:

I ∼= Fp
∼= δp = Conditions

C2
1
2 |H| p 6= 2

C2 C2
1
2 |H| · (1 + s) p = 2

C2
1
2 |H|C4 C4
3
4 |H|

C2
1
2 |H|

C6 C3
2
3 |H|

C6
5
6 |H|

C2
1
2 |H|

C4
3
4 |H|

C3 o C4 C3
1
3 |H| · (2 + 2s)

C6
1
6 |H| · (5 + 2s)

C3 o C4
1
12 |H| · (11 + 2s)

C2
1
2 |H| · (1 + s)

C3
2
3 |H|

C4
1
4 |H| · (3 + 3s1 + s2) s1 ≥ 1, s2 ≥ 1

SL(2, 3)
C6

1
6 |H| · (5 + s)

Q8
1
8 |H| · (7 + 7s1 + 3s2 + s3) s1 ≥ 1, s2 + s3 ≥ 1

SL(2, 3) 1
24 |H| · (23 + 7s1 + 3s2 + s3) s1 ≥ 1, s2 + s3 ≥ 1

Proof. The decomposition (4.5) of AutK(E) proves the existence of a group F ≤ I such
that TFp = TF . By Lemma 4.14 Fp ∩ T = 1; thus,

Fp
∼= TFp/T = TF/T ∼= F.

Hence, Fp embeds into I.

We obtain an analogue to Theorem 4.3:

Theorem 4.16 The following table gives the possible ramification behavior in the extension
E|K(t):

Case I ∼= Ramification Data Conditions
(A1) (2,6) s = 2
(A2) C3 o C4 (4,12) s = 2
(B1) (2,6) s = 1 for both places
(B2) (3,6) s = 3
(B3) (3,24) s1 = 1, s2 = 0, s3 = 2
(B4) SL(2, 3) (6,6) s = 1 for both places
(B5) (6) s = 7
(B6) (24) 25 = 7s1 + 3s2 + s3
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4.2. g = 1

Proof. The proof is rather combinatorial; we use the genus formula of Riemann-Hurwitz
together with the ramification data from Lemma 4.15 to ensure the correct genus of E.

Some combinations, however, cannot occur although they formally satisfy the different-
condition. This is the case if too many places ramify (Lemma 3.21), or more than one place
ramifies and all ramification groups are p-groups (Corollary 3.16), or only ∞ ramifies, I∞ is
a p-group, and the second ramification group of ∞ in the extension E|K(t) does not vanish
(Corollary 3.11). These criteria exclude in particular all cases where I is a cyclic group.

As an example we discuss the case I ∼= C2. If p 6= 2 is odd, then the extension E|K(t)
is tame and the degree of the different of each branch point equals 1

2 |H|. Riemann-Hurwitz
states

2g − 2 = 0 = −2|H|+ a · 1
2
|H|

with a being the number of branch points of E|K(t). Hence, a = 4; but this contradicts
Lemma 3.21.

Suppose p = 2. Lemma 3.18 shows that ∞ ramifies in the extension E|K(t); Corollary 3.16
gives F∞(0) = F∞(1) = C2 > F∞(2) = 1 and the nonexistence of any finite branch point.
By Riemann-Hurwitz

2g − 2 = 0 = −2|H|+ 1
2
|H| · (1 + 1) = −|H| ⇐⇒ |H| = 0;

but this is impossible.

4.2.2. Cases in odd characteristic p > 2

We only disprove case (A2); the same methods also work for case (A1).

Suppose p ramifies with index 12. Then ind(∞) ≥ 5
4(n− 1) and

ind(p) ≥ n− 1
12

(
n+ 11

n

3
)

+ 2 · 1
4

(
n− 1

3
(
n+ 2 · n

3
))

=
5
6
n.

But now ind(∞) + ind(p) > 2n− 2.

Thus, Ip ∼= C4. Section 3.2.1 gives

ind(∞) ≥ 5
4
(n− 1) +

1
4
(
n− n

3
)
.

Furthermore
ind(p) = n− 1

4
(n+ f2 + 2f4)

where fi denotes the number of fixed points of an element of order i in Ip. As ind(p) ∈ N,
the impossibility of f2 = n

3 follows. Hence, f2 ≤ n
9 and, thus, f4 ≤ f2 ≤ n

9 .
These bounds induce a contradiction to the genus-0 condition.

4.2.3. Cases in even characteristic p = 2

Supersingularity
As Aut

(
P(E)

) ∼= SL(2, 3), by Silverman [46, V §3] E is the function field of a supersingular
elliptic curve. [46, V 3.1] gives some properties of such curves; for us most important is

43



4. Affine polynomials with g ≤ 2

Lemma 4.17 There does not exist p ∈ P(E) with p 6= o and 2 · p = o.

For the following we identify H with the Galois group of E|K(t). Then, a first consequence
of the above lemma is

Lemma 4.18 Suppose h ∈ H is an involution. Then h fixes either no place or exactly one
place of E.

Proof. h can be written as a product h = τξ with τ ∈ T and ξ ∈ I.
If ξ = 1, then the assertion follows immediately.
Thus, by Lemma 4.14 ξ 6= 1 is the unique involution in I ∼= SL(2, 3). ξ acts on P(E) by

inversion, i.e. every place p of E is mapped to −p. Suppose h fixes the places p, q ∈ P(E).
Then

ph − p = o = qh − q ⇐⇒ pξ − p = qξ − q ⇐⇒ 2 · (p− q) = o

and we get p = q by Lemma 4.17.

Now we are able to state the main observation of this section

Proposition 4.19 Let i ∈ H be an involution that fixes the place P ∈ P(E). Then there
exists a bijection between the set iH of H-conjugates of i and the set PH of places over
p := P ∩K(t).

In particular, the normalizer NH(〈i〉) of 〈i〉 in H equals the inertia group Fp of P|p.

Proof. As Fp embeds into I ∼= SL(2, 3), i is the unique involution in Fp. Therefore 〈i〉 is
normal in Fp; hence, Fp ≤ NH(〈i〉).

Let Q ∈ PH be another place lying over p. Then the inertia group of Q|p is conjugate to
Fp and, thus, contains exactly one involution from the set iH . Since every involution in iH

fixes exactly one place of E, the equality |iH | = |PH | holds.
The equation

|iH | = |H|
|NH(〈i〉)|

=
|H|
|Fp|

= |PH |

shows |NH(〈i〉)| = |Fp|.

Corollary 4.20 In cases (B3) and (B6) a 2-Sylow subgroup of H is isomorphic to a quater-
nion group of order 8. In the remaining cases a 2-Sylow subgroup of H is isomorphic to
C2.

Proof. We start with cases (B3) and (B6). Let F ≤ H be an inertia group of order 24, S ≤
F the unique 2-Sylow subgroup of F , and Z := Z(F ) ≤ S the center of F . Proposition 4.19
shows

F ≤ NH(S) ≤ NH(Z) = F ;

as 2 - [NH(S) : S], S is a 2-Sylow subgroup of H. Since F is isomorphic to SL(2, 3), the
isomorphism type of S follows for instance from [32, 8.6.10].

The remaining cases can be proved similarly.
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4.2. g = 1

Cases (B1) and (B4)

In both cases a 2-Sylow subgroup of H has order 2; thus, the set of involutions of H forms a
conjugacy class of H. By Theorem 4.16 two different places of K(t) ramify with even index;
therefore an involution of H fixes more than one place of E. This contradicts Lemma 4.18.

Case (B2)

This case can be disproved by using the estimations for ind(∞) and ind(p).

Case (B3)

This case does not occur.

The estimations for ind(∞) and ind(p) show the impossibility of Ip ∼= SL(2, 3). Hence,

ind(∞) ≥ 4
3
(n− 1) + 2 · 2

24

(
n− n

2

)
and ind(p) = n − 1

3(n + 2f3) with f3 being the number of fixed points of a generator of the
cyclic group Ip. The genus-0 condition and ind(p) being an integer give f3 = n

4 .

A more detailed description of H is given by

Lemma 4.21 H contains a characteristic and abelian subgroup J such that H = JoF∞ and
J ∩ Fp = 1. Let Q ≤ F∞ denote a 2-Sylow subgroup of H. Then F := 〈Qh | h ∈ H〉 = J oQ
is a Frobenius group with Frobenius kernel J and complement Q; [H : F ] = 3. F is also
characteristic in H.

Proof. Let J denote a maximal normal subgroup of H of odd order. As Q is isomorphic
to a quaternion group of order 8, a theorem of Brauer/Suzuki ([25, V 22.9] or [4]) states that
the center of H/J is cyclic of order two. Therefore H contains another normal subgroup J̃
with [J̃ : J ] = 2.

Remember our identification of H with the Galois group of E|K(t) and set Y := Fix(J),
Z := Fix(J̃).

Suppose the extension E|Y is ramified. Then g(Y ) = 0 and Y is a rational function field.
Since J has odd order, the inertia group of a place of Y lying over ∞ contains a quaternion
group of order 8 in contradiction to the classification [50] of AutK

(
Y |K(t)

)
.

Hence, E|Y is unramified with g(Y ) = 1; this shows in particular that J ∩ Fp = 1. Fur-
thermore by [46, III §4] we may assume J to be the set of automorphisms of E coming from
the kernel of an isogeny E → Y ; thus, J is abelian. As 8 - [H : J̃ ], the extension Y |Z is
ramified; every branch point of Z ramifies totally with index 2 and adds 4 to the degree of
the different of Y |Z. Hence, exactly one place ramifies in Y |Z. As this place lies over ∞, the
classification [50] of AutK

(
Z|K(t)

)
yields Gal

(
Z|K(t)

) ∼= A4. We obtain that ∞ ramifies
totally in the extension Y |K(t) with Gal

(
Y |K(t)

) ∼= SL(2, 3) ∼= F∞. By Herbrand F∞ is a
complement of J in H.

Proposition 4.19 shows that J is regular on the set of H-conjugates of Q (by conjugation);
hence, F ≤ J o Q. Since F is transitive on its 2-Sylow subgroups, the equality F = J o Q
holds. As J > 1 by Proposition 2.8, the remaining assertions follow as Q is selfnormalizing
in F .
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4. Affine polynomials with g ≤ 2

Next we classify all absolutely irreducible F2-modules of F . Our main tool for this is the
representation theory of Frobenius groups. The following proposition states the results for
the convenience of the reader. A short and elegant proof can be found in Guralnick [16].

Proposition 4.22 Let F = J o Q be a Frobenius group with Frobenius kernel J and com-
plement Q. Suppose K to be an algebraically closed field.

(1) Q acts semiregularly on the set of isomorphism classes of nontrivial irreducible K[J ]-
modules.

(2) If V is an irreducible K[F ]-module, then either CV (J) = V or there exists an absolutely
irreducible nontrivial K[J ]-module W such that V ∼= WF is isomorphic to the induced
K[F ]-module WF .

We use this proposition to get

Proposition 4.23 Let V be an irreducible H-submodule of NK := N ⊗ K. Then V is
8-dimensional. If t ∈ Fp has order 3, then the space of fixed points of t on V is at most
4-dimensional.

Proof. Let Q, F , and J be defined as in Lemma 4.21.
Since FEH, the F -module V is semisimple and can be written as a direct sum V =

⊕s
i=1 Vi

of irreducible F -modules 1 6= Vi ≤ V . We use Proposition 4.22 to clarify the structure of
V1: As J is normal in U , the case CV1(J) = V1 is impossible. Hence, V1 is isomorphic to an
absolutely irreducible and nontrivial J-module W induced to F . The commutativity of J
gives dimK W = 1; since [F : J ] = 8, it follows dimK V1 = 8.

Because 〈F, t〉 = H, the group Fp is transitive on the Vi; therefore either V = V1 is an
irreducible F -module or V = V1 ⊕ V t

1 ⊕ V t2
1 . We show that the second case is impossible. V1

intersects the space Fix(t) of fixed points of t trivially for otherwise V1 ∩ V t
1 6= 0. But then

the dimension formula for vector spaces gives

dimK Fix(t)︸ ︷︷ ︸
=r−2

+dimK V1 = dimK

(
Fix(t) + V1

)︸ ︷︷ ︸
≤r

+dimK

(
Fix(t) ∩ V1

)︸ ︷︷ ︸
=0

;

hence, the contradiction dimK V1 ≤ 2 follows. This gives dimK V = 8.

By Lemma 4.21 t can be written as a product t = jw with j ∈ J and w ∈ F∞ being of
order 3. As the abelian group J is normal in H, the J-module V is a direct sum of eight
one-dimensional J-submodules M1, . . . ,M8 that are permuted transitively by F∞. Hence,
QE F∞ acts regularly on the modules Mi.

Suppose n ∈ N ] generates M1. By proper identification of the integers 1, . . . , 8 with
the modules Mi the action of w on the set {M1, . . . ,M8} is described by the permutation
ω := (1)(2)(3, 4, 5)(6, 7, 8). Set qi the well-defined element of Q that maps M1 to the module
belonging to the integer i. Then

V =
8⊕

i=1

〈nqi〉 and 〈nqi〉w = 〈nqiω 〉.

It follows that there exist elements ci ∈ K] with (nqi)jw = ci·nqiω . Suppose v :=
∑8

i=1 λin
qi ∈

V . Then

vt = vjw =
8∑

i=1

λicin
qiω =

8∑
i=1

λ
iω−1 ciω−1nqi .
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4.3. g = 2

Hence, v is fixed by t if and only if λi = λ
iω−1 ciω−1 for all 1 ≤ i ≤ 8. Solving these equations

shows that Fix(t) is at most 4-dimensional.

The above proposition gives r = 8s with s ∈ N and dim Fix(t) ≤ r
2 ; thus, dim Fix(t) = r − 2

is impossible.

Case (B5)

By Corollary 4.20 the order of H is 2u with 2 - u. Therefore H contains a normal subgroup
J of index 2. In the extension E|Fix(J) exactly one place ramifies tamely with index 3. But
this gives a contradiction to the Riemann-Hurwitz genus formula.

Case (B6)

This case is impossible, too.

The idea of Lemma 4.21 can be used to obtain a contradiction in this case. With the notation
of this lemma we get eventually that Z|K(t) is an Galois extension of rational function fields
with the unique branch point ∞. The classification of Valentini and Madan [50] shows that
the ramification index of ∞ in Z|K(t) has to be a power of 2. This, however, is impossible
as E|Y is unramified.

Remark 4.24 This case can also be disproved without using the theorem of Brauer-Suzuki:
A discussion of the ramification behavior of E|Fix(F∞) shows that in this extension exactly
one place ramifies. Hence, the intersection of F∞ with any different conjugate is trivial. Since
F∞ is selfnormalizing in H, the group H is a Frobenius group with Frobenius complement
F∞. Now, the same considerations as above lead to a contradiction. ?

4.3. g = 2

In this section we assume E to be a function field of genus two. Schmid [42] shows that
AutK(E) is a finite group. Let F denote the fixed field of all K-automorphisms of E. Then
E|F is Galois with Gal(E|F ) = AutK(E).

Stichtenoth [47, VI.2] shows that E is the function field of a hyperelliptic curve. Thus, E|F
contains a unique intermediate rational field R with [E : R] = 2. The uniqueness of R shows
that the extension R|F is Galois. The central involution ı ∈ AutK(E) that corresponds to R
by Galois duality is called the hyperelliptic involution of E.

We will prove

Theorem 4.25 With the notation from page 23 suppose g = 2. Then p = 3 and A =
G = AGL(2, 3). f is not exceptional. Examples of f are given by the AGL-polynomials of
chapter 5.

4.3.1. Cases in odd characteristic p > 2

The K-automorphisms for genus-two hyperelliptic function fields are well-known. Due to
Geyer [15], Igusa [28], or Shaska/Völklein [45] only the following isomorphism types can
occur:
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4. Affine polynomials with g ≤ 2

AutK(E) ∼= Conditions
C2

C10 p 6= 5
D2

D4

D6

C3 oD4 p 6∈ {3, 5}, AutK(E) non-abelian
GL(2, 3) p 6= 5
Σ5 p = 5

Here Σ5
1 denotes a non-split extension of C2 by S5 where the transpositions of S5 lift to

involutions, cf. [45]. Σ5 is unique up to isomorphism.
Lemma 4.1 and our main assumption p 6= 2 show that AutK(E) cannot be isomorphic to

C2, C10, D2, D4, or C3 oD4.
As a subgroup of D6 either is a 3′-group or contains a characteristic subgroup isomorphic

to C3, Proposition 2.8 gives the impossibility of AutK(E) ∼= D6.

Case AutK(E) ∼= GL(2, 3)

Assume AutK(E) ∼= GL(2, 3); then p = 3.
Lemma 4.1, Proposition 2.9, and Proposition 2.8 force H to be isomorphic to SL(2, 3) or

GL(2, 3). A survey of the subgroups of these groups gives

Lemma 4.26 Let p ∈ P
(
K(t)

)
be any place of K(t). Suppose P ∈ P(E) lies over p. Denote

the inertia group of the extension P|p with Fp and the degree of the different coming from the
ramification of p with δp. Denote by s the well-defined integer with Fp(s) > Fp(s + 1) = 1.
Suppose |Fp| > 1. Then:

H ∼= Fp
∼= δp

C2
1
2 |H|

C4
3
4 |H|SL(2, 3)

C3
1
3 |H| · (2 + 2s)

C6
1
6 |H| · (5 + 2s)

C2
1
2 |H|

C4
3
4 |H|

GL(2, 3) C8
7
8 |H|

C3
1
3 |H| · (2 + 2s)

C6 or D3
1
6 |H| · (5 + 2s)

We use this lemma to solve the Riemann-Hurwitz equation

2 = −2|H|+
∑

p

δp

where p runs through all places of K(t) ramifying in E|K(t). We obtain the following

Theorem 4.27 The following table gives the possible ramification behavior in the extension
E|K(t):

1MAGMA [3] knows this group as “SmallGroup(240,90)”
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4.3. g = 2

Case H ∼= Ramification Data Conditions
(A) SL(2, 3) (4,3) s = 1
(B) GL(2, 3) (8,6) s = 1

Case (A) can be easily disproved in the same manner as in the previous chapters. Case (B),
however, is more interesting:

First it is easy to see that p must ramify with index 6.
An inspection of the subgroups of H of order 8 shows that F∞ contains the hyperelliptic

involution ı. Thus, ı 6∈ Fp because otherwise 48
8 + 48

6 = 6 + 8 = 14 places would ramify with
index 2 in the extension E|Fix(〈ı〉), contrary to our assumption g = 2.

As all subgroups of H of order 6 not containing ı are isomorphic to S3, we get Ip ∼= S3.
Theorem 4.27 shows that Ip(2) = 1; thus,

ind(p) = n− 1
6
(n+ 3f2 + 2f3) +

1
2
(
n− 1

3
(n+ 2f3)

)
=

7n− 4f3 − 3f2

6
where f2 resp. f3 is the number of fixed points of an element of order 2 resp. 3 of Ip.

Since ind(∞) ≥ 9
8(n− 1), a simple calculation shows that the genus-0 condition is violated

if f2 6= n
3 6= f3. It follows f2 = f3 = n

3 and ind(p) = 7
9n.

Since I∞(1) ≤ N , section 3.2.1 gives

ind(∞) =
9
8
(n− 1) +

∞∑
i=2

1
8
(
n− n

|I∞(ui)|
)

=
9
8
(n− 1) +

1
8
n

∞∑
i=2

(
1− 1

|I∞(ui)|
)
.

The genus-0 condition forces I∞(u3) = 1. Therefore

7
9
n+

9
8
(n− 1) +

1
8
n
(
1− 1

|I∞(u2)|
)

= 2n− 2 ⇐⇒ n =
63 |I∞(u2)|

9− 2 |I∞(u2)|
.

Thus, I∞(u2) = 1, n = 9, and ind(p) = 32 − 2 = 7.

The above situation is realized for instance by f(X) = X9 +X8 +X6 ∈ F3[X], cf. chapter 5.
As G = AGL(2, 3) is 2-transitive on N , this case never gives an exceptional polynomial.

Case AutK(E) ∼= Σ5

An inspection of the subgroups and the conjugacy classes of Σ5 shows that in case of tame
ramification inertia groups are isomorphic to

C2, C3, C4, C6, or C8,

in case of wild ramification to

C5, C10, C5 o C4, or C5 o C8.

Since H may not contain a characteristic 5-Sylow subgroup by Proposition 2.8, it follows
that H is isomorphic to either SL(2, 5) or Σ5.

As Σ5 contains only one central involution, this involution coincides with the hyperelliptic
involution ı. Note that ı is the only involution in case H ∼= SL(2, 5).

It follows
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4. Affine polynomials with g ≤ 2

Lemma 4.28 Let p ∈ P
(
K(t)

)
be any place of K(t). Suppose P ∈ P(E) lies over p. Denote

the inertia group of the extension P|p with Fp and the degree of the different coming from the
ramification of p with δp. Denote by s the well-defined integer with Fp(s) > Fp(s + 1) = 1.
Suppose |Fp| > 1. Then:

Fp
∼= can occur for H ∼= δp =

C2 all cases 1
2 |H|

C3 all cases 2
3 |H|

C4 all cases 3
4 |H|

C6 all cases 5
6 |H|

C8 Σ5
7
8 |H|

C5 all cases 1
5 |H| · (4 + 4s)

C10 all cases 1
10 |H| · (9 + 4s)

C5 o C4 all cases 1
20 |H| · (19 + 4s)

C5 o C8 Σ5
1
40 |H| · (39 + 4s)

We use this lemma to solve the Riemann-Hurwitz equation

2 = −2|H|+
∑

p

δp

where p runs through all places of K(t) ramifying in E|K(t). We obtain

Theorem 4.29 The following table gives the possible ramification behavior in the extension
E|K(t):

Case H ∼= Ramification Data Conditions
(A) SL(2, 5) (3,20) s = 2
(B) Σ5 (6,40) s = 2

In case (A) p cannot ramify with index 20; thus, we have Ip ∼= C3 and

ind(p) = n− 1
3
(n+ 2f)

with f the number of fixed points of an element of order 3 in Ip. ind(p) being an integer
enforces f ≤ n

25 . Therefore ind(p) ≥ 16
25n. As

ind(∞) ≥ 5
4
(n− 1) +

5
20

(
n− n

5
)
,

the genus-0 condition is violated.

In case (B) p cannot ramify with index 40. Thus, we have Ip ∼= C6 and

ind(∞) ≥ 9
8
(n− 1) +

5
40

(
n− n

5
)
.

Let σ ∈ Ip be a generator for Ip and denote by A ∈ GL(r, 5) the automorphism of N that is
induced by the action of σ ∈ H on the F5-vector space N ; both σ and A have order 6. As
F25 is a splitting field for the separable polynomial X6 − 1 ∈ F5[X], A is diagonalizable as
an automorphism of N ′ := N ⊗ F25.
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4.3. g = 2

First suppose that a primitive sixth root of unity is an eigenvalue of A. Then every Galois
conjugate of this root of unity is also an eigenvalue of A; hence, A has two sixth roots of
unity in its spectrum. Thus, every power As of A with As 6= 1 fixes at most n

25 points. We
obtain

ind(p) ≥ n− 1
6
(
n+ 5

n

25
)

=
4
5
n.

This violates the genus-0 condition with the above estimation for ind(∞).
Next suppose that no primitive sixth root of unity is an eigenvalue of A. Then A has both

a primitive third root of unity and −1 ∈ F5 in its spectrum. Again the inverse of the third
root of unity is also an eigenvalue of A. This shows that A and A5 have at most n

125 , A2

and A4 at most n
25 , and A3 at most n

5 fixed points. We get

ind(p) ≥ n− 1
6
(
n+ 2

n

125
+ 2

n

25
+
n

5
)

=
98
125

· n.

This is impossible, too.

4.3.2. Cases in even characteristic p = 2

Geyer [15] classifies all possible K-automorphism groups of genus-2 function fields; a nice list
is also given in [8]. We obtain that AutK(E) is isomorphic to

C2, C2 × C2, D6, G32, or G160

where Gi is some group of order i. We will describe the groups Gi later when we need infor-
mation about their internal structure.

Proposition 2.9 (2) reduces considerably the work in this section: only the cases AutK(E) ∼=
D6 or AutK(E) ∼= G160 may occur.

Case AutK(E) ∼= D6

By Lemma 4.1 and Proposition 2.8 it follows H ∼= D3 as Z(D6) ∼= C2. Riemann-Hurwitz
and Corollary 3.16 imply the impossibility of this case.

Case AutK(E) ∼= G160

First we have to get some information about the group G160. Due to [8, Sections 2.1, 3.1]
G160 sits in the middle of the non-split exact sequence

1 −→ 〈ı〉 −→ G160 −→ C4
2 o C5 −→ 1

where C5 acts non-trivially on C4
2 .

Up to isomorphism G160
2 is uniquely determined by this sequence; we get

G160
∼= E−

32 o C5

where E−
32 denotes the extraspecial group of order 32 being a central product of a quaternion

group of order 8 and two copies of the dihedral group of order 8 (cf. [25, III 13.8]) and C5

2MAGMA [3] knows this group as “SmallGroup(160,199)”
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4. Affine polynomials with g ≤ 2

acts nontrivially on E−
32.

An inspection of the subgroups of G160 and Proposition 2.9 prove that either H ∼= C10 or
H ∼= G160. Hence, in every case H contains a characteristic nontrivial 2-subgroup. This
contradicts Proposition 2.8.
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5. AGL as a monodromy group

In this chapter f denotes a polynomial of the form

f(X) := Xpr
+

s∑
i=0

aiX
pr−pi

with s < r and a0as 6= 0. (5.1)

We are interested in the calculation of the geometric monodromy group of f . Abhyankar [1]
already dealt with the case s = 0; he proved that f is affine with G = AGL(1, pr). Thus, for
the rest of this chapter we will always assume s 6= 0; this implies in particular r ≥ 2. We use
the notation from page 23.

Lemma 5.1 (1) f(X)− t is separable.

(2) f is functionally indecomposable over K.

(3) G ≤ AGL(r, p). (We do not prove here that G is an affine group.)

Proof.

(1) The derivative of f is given by f ′(X) = −a0X
pr−2 6= 0. Therefore f(X) − t does not

have multiple roots.

(2) Suppose there exist nonlinear polynomials g, h ∈ K[X] such that f = g ◦ h. We may
assume h(0) = 0. Since f(0) = 0, this yields g(0) = 0, too. It follows from (1) that
f ′(X) = g′

(
h(X)

)
· h′(X) = −a0X

pr−2.

Suppose g′(0) 6= 0. Then X - g′ ◦ h and we get Xpr−2|h′. Hence, deg h ≥ pr − 1. But
then pr = deg f = deg g · deg h ≥ 2(pr − 1) which is impossible.

Thus, g′(0) = 0. As 0 ∈ K is the only zero of f ′, h(ξ) 6= 0 for all ξ ∈ K]. We obtain
h(X) = h0X

α. But then every summand of f has degree divisible by α. Since pr and
pr − 1 are relatively prime, this enforces α = 1 contrary to our assumption.

(3) Let x1, . . . , xn ∈ L be the roots of f(X)− t. Set Z := X−1 and zi := x−1
i ; this is well-

defined as all xi are different from zero. An easy calculation shows that the equation
f(X)− t = 0 can be rewritten in the form

Zpr −
s∑

i=0

1
t
aiZ

pi
=

1
t
. (5.2)

Since the zeros of this equation are precisely the elements zi ∈ L, the splitting field
of (5.2) is L. Section 2.3 gives the claim.

The following concept severely restricts the possibilities for G; we will prove for instance that
G is 2-transitive.
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5. AGL as a monodromy group

Definition 5.2 (Jordan group) Let G be a group acting transitively on the finite set Ω.
A subset Γ ⊆ Ω is said to be a Jordan set if |Γ| > 1 and the pointwise stabilizer G(Ω\Γ) is
transitive on Γ. The set ∆ := Ω \ Γ is called a Jordan complement.

If G is k-transitive on Ω, every subset ∆ of size < k is a Jordan complement; in such a
case we call Γ and ∆ improper, otherwise we call them proper. If Γ = Ω, we call Γ and ∆
trivial.
G is called a Jordan group if it has at least one proper Jordan complement.

In our situation this definition yields

Proposition 5.3 G is a 2-transitive group and contains a nontrivial Jordan complement ∆
of size |∆| = ps.

If p 6= 2 or p = 2 and s > 1, then ∆ is proper and G is a Jordan group.

Proof. We consider the ramification of the place 0 : t 7→ 0 in the extension K(x)|K(t).
Since

t = f(X) = Xpr−ps ·
(
Xps

+
s∑

i=0

aiX
ps−pi

)
with Xps

+
∑s

i=0 aiX
ps−pi

being a separable polynomial, 0 decomposes over K(x) in the
following way:

0 = P
pr−ps

0 ·P1 · · ·Pps with pairwise different places Pi ∈ P
(
K(x)

)
. (5.3)

Hence, by van der Waerden [51] Ip fixes a set ∆ of ps elements pointwise and permutes the
remaining pr−ps elements transitively. Denote this orbit by Γ. Then the pointwise stabilizer
G(∆) of ∆ in G contains Ip; thus, G(∆) is a fortiori transitive on Γ.

Γ is a nontrivial Jordan subset of G. The indecomposability of f implies the primitivity
of G; hence, Neumann [40, Theorem J1] gives the 2-transitivity of G.

Suppose p > 2. Lemma 5.1 and the classification in [32, 4.2.5] show that G is 2-transitive
but not 3-transitive. Hence, ∆ being proper comes down to |∆| ≥ 2; but this condition is
always fulfilled.

Suppose p = 2. [32, 4.2.5] shows that G is at most 4-transitive. The claim follows now
easily.

Remark 5.4 The 2-transitivity ofG can be obtained in a different way, too. Unfortunately,
the following proof does not show the important fact that G is a Jordan group in almost all
cases.

Let X and Y be algebraically independent transcendentals over K. Set φ(X,Y ) := f(X)−
f(Y ) ∈ K[X,Y ]. We prove that φ(X,Y )

X−Y is absolutely irreducible.
Suppose

φ(X,Y ) =
(
Ak(X,Y ) +Ak−1(X,Y ) + . . .

)(
Bm(X,Y ) +Bm−1(X,Y ) + . . .

)
with Ai, Bi ∈ K[X,Y ] being homogeneous polynomials of degree i. Then

AkBm = Xpr − Y pr
= (X − Y )pr

;

this gives Ak = (X − Y )k and Bm = (X − Y )m. Hence,

a0

(
Xpr−1 − Y pr−1

)
= AkBm−1 +Ak−1Bm = (X − Y )kBm−1 + (X − Y )mAk−1.
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As the left hand side of this equation is separable, it follows k = 1 or m = 1.
The 2-transitivity of G follows for instance from [14, Exceptionality Lemma]. ?

For the following we need some information about the p-structure of GL(r, p).

Lemma 5.5 GL(r, p) does not contain an element of order pr. GL(r, p) contains an element
of order pr−1 if and only if r ∈ {1, 2} or (p, r) = (2, 3).

Proof. Let P ≤ GL(r, p) be a p-Sylow subgroup of GL(r, p). Denote by Js a Jordan block
of dimension s for the eigenvalue 1. The minimal polynomial of Js is given by µs(X) :=
(X−1)s. Every A ∈ P is similar to a direct sum of Jordan blocks Jsi , i.e. we find an element
T ∈ GL(r, p) with

AT =
a⊕

i=1

Jsi and
a∑

i=1

si = r.

Let s := max{si | 1 ≤ i ≤ a} denote the maximum of the si. Then the minimal polynomial
of A is given by µs. The order A is given by pi where i is the smallest integer such that
µs | (X − 1)pi

.
This proves that Jr has the highest possible p-order in GL(r, p). We have

|Jr| = pi with pi−1 < r ≤ pi.

As the equation pr−1 < r is not solvable, GL(r, p) never contains an element of order pr.
It follows by induction that the equation pr−2 < r holds exactly for r ∈ {1, 2} or (p, r) =

(2, 3).

Corollary 5.6 G is an affine group. Moreover, there exists a divisor e of r such that either

ASL(e, p
r
e ) ≤ G ≤ AΓL(e, p

r
e ) or N oA7

∼= G ≤ AGL(4, 2).

In the latter case A7 ↪→ GL(4, 2) acts 2-transitively on the nonzero elements of F4
2.

Proof. Let S := soc(G) be the socle of G. As G is 2-transitive, S is either elementary
abelian and regular or isomorphic to a non-abelian simple group.

We start with the latter case. Suppose S is non-abelian and simple.

We show first that S can only be isomorphic to a projective special linear group.
Assume G is a Jordan group. The primitivity of G and Neumann [40, Classification

Theorem] immediately show that S ∼= PSL(d, q) acts 2-transitively on the projective plane
PG(d− 1, q) with |PG(d− 1, q)| = qd−1

q−1 = pr.
If G is not a Jordan group, then by Proposition 5.3 (p, s) = (2, 1) and – with the no-

tation from this proposition – the two-point stabilizer G(∆) is transitive on Γ. Hence G is
even 3-transitive. The classification of 2-transitive groups (a nice list is given in Cameron [6])
shows that soc(G) is isomorphic to PSL(2, q) acting on PG(1, q) with |PG(1, q)| = q+1 = 2r.

Suppose S ∼= PSL(d, q). We prove that this implies (pr, d, q) = (8, 2, 7).
S is a subgroup of the affine group AGL(r, p). Denote the affine kernel of AGL(r, p) with

N . The simplicity of S gives S ∩ N = 1. Hence, a point stabilizer of the group N o S is
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5. AGL as a monodromy group

isomorphic to S. Thus, S can be considered a subgroup of GL(r, p). The integers pr, d, and
q fulfill the equation

pr =
qd − 1
q − 1

. (5.4)

First assume that qd − 1 has a primitive prime factor. In our case as a consequence of
Zsigmondy [52] this is true if d > 2, or d = 2 and q is even. By (5.4) this prime factor
is uniquely given by p; in particular, qd−1

q−1 and (q − 1) are relatively prime. Let x be a

Singer-element of PGL(d, q). Then x has order qd−1
q−1 , cf. Huppert [25, II 7.3]. As PSL(d, q)E

PGL(d, q) with PGL(d, q)/PSL(d, q) ≤ Cq−1 cyclic, xq−1 is an element of PSL(d, q) with
|x| = |xq−1| = pr. We obtain that GL(r, p) contains an element of order pr. This contradicts
Lemma 5.5.

Now assume d = 2 with odd q. Then p = 2 is even. The same idea as above shows x2 ∈
PSL(2, q). Hence, GL(r, 2) contains an element of order 2r−1. Lemma 5.5 and Huppert [25,
II 6.14] show that this is only possible for r = 3. Thus, we obtain (pr, d, q) = (8, 2, 7).

But this is impossible: As S is selfnormalizing in AGL(3, 2), we obtain S = G. An explicit
calculation shows that the Jordan complements of S have order 1 or 7 contrary to Proposi-
tion 5.3.

Thus, we end up in the affine case. IfG is a Jordan group, Neumann [40] gives the assumption.
Otherwise G is a 3-transitive affine group in even characteristic. Our claim follows directly
from Cameron/Kantor [7, Sec. 8].

Now we are able to state our main theorem:

Theorem 5.7 Define e the greatest common divisor of r and all 0 ≤ i ≤ s with ai 6= 0,
e := gcd(r, i | ai 6= 0). Then G = AGL( r

e , p
e).

Proof. We use the notation from Lemma 5.1 and Lemma 2.12.

Let v ∈ V ] be a nonzero element of V . Then the equation

vpr−1 −
s∑

i=0

1
t
aiv

pi−1 = 0

holds; in fact, the set of zeros of this equation coincides with V ]. Using the identity Z = X−1

we obtain

Zpr−1 −
s∑

i=0

1
t
aiZ

pi−1 = 0 ⇐⇒
s∑

i=0

aiX
pr−pi − t = 0.

Since the latter polynomial is irreducible, we see that the elements 1, v, v2, . . . , vpr−2 are
linearly independent over K. Thus, any representation of vpr−1 by smaller powers of v is
uniquely given by

∑s
i=0

1
t aiv

pi−1.
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Let c be an element of K×. Then the following holds:

cv ∈ V ] ⇐⇒ cp
r−1vpr−1 =

s∑
i=0

1
t
aic

pi−1vpi−1 = cp
r−1

s∑
i=0

1
t
aiv

pi−1

⇐⇒ aic
pr

= aic
pi

for all 0 ≤ i ≤ s

⇐⇒ cp
r

= cp
i

for all 0 ≤ i ≤ s with ai 6= 0
a0 6=0⇐⇒ cp

r
= c ∧ cpi

= c for all 1 ≤ i ≤ s with ai 6= 0

⇐⇒ c ∈ Fpr ∩
⋂

ai 6=0,i6=0

Fpi = Fpe ≤ K.

Thus, we can consider V to be an Fpe-vector space and H ≤ ΓL( r
e , p

e) is a subgroup of
ΓL( r

e , p
e). But H acts as a proper linear group since (cv)h = cvh for all h ∈ H and

c ∈ Fpe ≤ K. Hence, H ≤ GL( r
e , p

e).

In the following we prove that the equality H = GL( r
e , p

e) holds.
By Lemma 2.12 N equals the kernel of the operation of G on V . Therefore we have

E = K(V ); but we can also think of E as the splitting field of the irreducible polynomial
F (X) :=

∑s
i=0 aiX

pr−pi − t.
Let v ∈ E be any root of F . Denote by F∞ the inertia group of a fixed place of E lying over

∞. The structure of F shows that ∞ ramifies totally in the extension K(v)|K(t). Hence, by
van der Waerden [51] F∞ is transitive on V ].

Let P be the normal p-Sylow subgroup of F∞. As the p-group P fixes at least one element
of V ], P fixes every element of V ] because all P -orbits on V ] have the same length. We
obtain P = 1; F∞ is a cyclic and transitive p′-group of linear transformations of V of order
a multiple of degF = pr − 1. It follows from Huppert [25, II 3.10 and 7.3] that F∞ is a full
Singer cycle in GL( r

e , p
e).

Using the classification from Corollary 5.6 we see that N o A7
∼= G ≤ AGL(4, 2) is im-

possible as this group does not contain a cyclic subgroup of order 15. Hence, SL( r
e , p

e) is a
subgroup of H. By Huppert [25, II 7.3 (b)]

H/SL
(r
e
, pe

)
≥ SL

(r
e
, pe

)
F∞/SL(

r

e
, pe) ∼= Cpe−1

∼= GL(
r

e
, pe)/SL(

r

e
, pe);

as H ≤ GL( r
e , p

e), it follows H = GL( r
e , p

e).

Higher ramification in L|K(t)
Proposition 5.8 The normal p-Sylow subgroup of I∞ equals N . Moreover

ind(∞) = n and I∞(2) = 1.

I0 is isomorphic to P o Cpr−s−1 with |P | = ps. Moreover

ind(0) = n− 2 and I0(2) = 1.

Proof. Theorem 5.7 gives I∞ ∼= N o Cn−1; therefore we have

ind(∞) ≥ (n− 1)
(
1 +

1
n− 1

)
= n and ind(∞) = n ⇐⇒ I∞(2) = 1.
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5. AGL as a monodromy group

We use the notation from the proof of Proposition 5.3. Let P be a place of L lying over
P0. Denote by I the inertia group of the extension P|0. We know that I is isomorphic to a
semidirect product P o C with a p-group P and a cyclic p′-group C.

By van der Waerden [51] we obtain o(I) = s + 1. Denote by Γ the I-orbit consisting of
pr−ps elements. As I(1) is normal in I, Γ splits into a different I(1)-orbits γi, each of length
b. Since C acts transitively on the γi, it follows

a | |C| and b | |P |. (5.5)

Because ab = |Γ| = ps(pr−s − 1), we get at once a = pr−s − 1, b = ps, and o
(
I(1)

)
=

ps + pr−s − 1.
Next we show that |I| = pr − ps. Suppose |I| > pr − ps. Then there exists an element

1 6= h ∈ I ∩ H. Since the inertia group of any place of L over 0 is G-conjugate to I, the
decomposition (5.3) of 0 in K(x) shows hG ⊆ H. But then the contradiction h ∈

⋂
g∈GH

g =
1 follows.

Hence, |P | = ps, |C| = pr−s − 1, and

ind(0) ≥ n− o(I) +
1
|C|

(
n− o

(
I(1)

))
= n− 2.

The remaining assertions follow directly from the genus-0 condition.

Now we show that an affine polynomial of degree p2 is an AGL-polynomial of the form (5.1)
if it fulfills the conclusion of Proposition 5.8.

Proposition 5.9 Let f ∈ K[X] be a monic affine polynomial of degree p2. Let x be a zero of
f(X)− t and denote by 0 resp. P0 the zero place of K(t) resp. K(x). Suppose 0 decomposes
in K(x) in the form

0 = P
p2−p
0 ·P1 · · ·Pp with pairwise different places Pi ∈ P

(
K(x)

)
.

Moreover assume that ind(0) = p2−2 holds. Then f = Xp2
+aXp2−1+cXp2−p with a, c ∈ K]

and both arithmetic and geometric monodromy group of f are equal to AGL(2, p).

Proof. Corollary 3.16 gives ind(∞) ≥ p2. The genus-0 condition shows immediately that
no other finite place of K(t) ramifies. We obtain

f(X) = Xp2−p · g(X) with a polynomial g ∈ K[X] of degree p, g(0) 6= 0.

Since 0 is the unique finite place ramifying inK(x)|K(t), the polynomial f(X)−c is separable
for all c ∈ K×. This shows that 0 ∈ K is the only root of f ′.

The derivative of f is given by f ′(X) = Xp2−pg′(X). Thus, g′ is a monomial. We obtain

g(X) = Xp + aXb + c with 0 < b < p and ac 6= 0.

As Pi|0 is unramified for i ∈ {1, . . . , p}, the degree of the different d(Pi|0) vanishes; by our
assumption d(P0|0) = p2 − 2. Stichtenoth [47, III.5.10(a)] gives

p2 − 2 = d(P0|0) ≤ vP0

(
f ′(x)

)
= vP0

(
abxp2−p+b−1

)
= p2 − p+ b− 1;

hence, b = p− 1. The claim follows.
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The results of this chapter allow us to give some properties of the fixed field E:

Remark 5.10 The genus g(E) is not bounded.
Denote by Kp an algebraic closure of Fp and set fp(X) := Xp2

+Xp2−1 +Xp2−p− t. Then
Gal

(
fp|Kp(t)

)
= AGL(2, p); Riemann-Hurwitz shows g(E) = 1

2

(
p3 − 3p2 + 4

)
. This proves

g(E) →∞ for p→∞.
Let r ≥ 2 be an integer and set gp(X) := Xpr

+ Xpr−1 + Xpr−p. Then Gal
(
gp|Kp(t)

)
=

AGL(r, p). Again, by Riemann-Hurwitz g(E) →∞ for r →∞. ?

Remark 5.11 Even if G is solvable, E need not be a rational function field.
Let K denote an algebraic closure of F3 and define f(X) := X9 + X8 + X6 − t. Then

Gal
(
f |K(t)

) ∼= AGL(2, 3) is solvable with g(E) = 2. ?
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6. Affine polynomials of degree p2

In this chapter we classify all affine polynomials of degree p2 with primitive arithmetic mon-
odromy group. Our result will be

Theorem 6.1 With the notation from page 23 suppose deg f = p2. Then either E|K(t) is
tame and f fulfills the conclusion of Theorem 4.2 or one of the following cases holds:

• H = GL(2, p), I∞ ∼= N o Cn−1 with I∞(2) = 1 and ind(∞) = n, Ip ∼= Cp o Cp−1 with
Ip(2) = 1, ind(p) = n − 2, and o(Ip) = p + 1. This case is realized for example by the
AGL-polynomial Xp2

+ aXp2−1 + bXp2−p, cf. chapter 5.

• SL(2, p) ≤ H and Fp is a cyclic p′-group.

If E|K(t) is wild, then f is not exceptional.

We know from Lemma 4.1 that E|K(t) being a tame extension implies g = 0. Hence, this case
only gives polynomials satisfying the conclusion of Theorem 4.2. Therefore we will suppose
E|K(t) to be wild from now on.

We state a first observation

Lemma 6.2 Suppose f has degree pr with r being a prime. Assume further that f is func-
tionally indecomposable over k but decomposable over K. Then p - [E : K(t)]. In particular,
the extension E|K(t) is tame.

Proof. As U is irreducible on N , the H-module N is semisimple by Clifford. As H acts
reducibly, we can write N =

⊕r
i=1Ni where the Ni are irreducible H-submodules of N of

order p. Since the automorphism group of Ni is abelian, the commutator subgroup H ′ of H
lies in the kernel of the action of H on Ni. Thus, H ′ is a subgroup of the kernel of H on N ;
hence, H ′ = 1 and H is abelian.

Let P be a p-Sylow subgroup of H. Then P is characteristic in H and, thus, normal in U .
Proposition 2.8 gives P = 1; hence, p - [E : K(t)].

The above lemma allows us to reduce our classification to polynomials that are indecom-
posable over K, or, equivalently, groups H ≤ GL(2, p) acting irreducibly. These groups
fulfill

Proposition 6.3 Suppose H is an irreducible subgroup of GL(2, p). If p divides |H|, then
SL(2, p) ≤ H.

Proof. Let P ∼= Cp denote a p-Sylow subgroup of GL(2, p). As p | |H|, we may assume
P ≤ H. Proposition 2.8 shows that P is not normal in H. Hence, there exists h ∈ H with
P 6= P h. [32, 8.6.7] gives 〈P, P h〉 = SL(2, p) ≤ H.

The next lemma states some well-known properties of GL(2, p):
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6. Affine polynomials of degree p2

Lemma 6.4 (1) Let P denote a p-Sylow subgroup of GL(2, p). Then the order of a p-
regular element in NGL(2,p)(P ) divides p− 1.

(2) Let g ∈ SL(2, p) ≤ H be p-regular. Then g fixes only 0 ∈ N .

6.1. Cases in odd characteristic p 6= 2

By Proposition 6.3 we may assume H = SL(2, p) o C where C is a cyclic group of order
r|p − 1. Set Z := Fix

(
N o SL(2, p)

)
. Then Z|K(t) is a tame Galois extension of degree r.

For the following s and t denote integers relatively prime to p.

Two finite places ramify
Suppose p and q ramify. By Lemma 3.21 we get Fp

∼= Fq
∼= C2. Since an involution in

GL(2, p) fixes either exactly one point or exactly p points, ind(p) and ind(q) can only have
the values

p2 − 1
2
(p2 + 1) =

p2 − 1
2

or p2 − 1
2
(p2 + p) =

p(p− 1)
2

.

As E|K(t) is wild, ∞ ramifies in this extension with index ps. Lemma 6.4 shows s | p − 1;
thus,

ind(∞) ≥ (p2 − 1)
(
1 +

1
p− 1

)
= p(p+ 1).

We obtain a violation of the genus-0 condition.

Only one finite place ramifies
By Riemann-Hurwitz Z is a rational function field. The classification of Valentini and
Madan [50] shows that Z|K(t) has exactly two branch points, both ramifying totally. Thus,
r divides |F∞| and |Fp|.

Suppose p ramifies wildly. We have Fp
∼= Cp o Crt with rt | p − 1. Set S := Fp ∩ SL(2, p).

Then S has order pt and by Lemma 6.4 Ip contains (pt − p) elements that fix at most one
point. Thus,

ind(p) ≥ p2 − 1
prt

(
p2 + (p− 1)p+ pt− p︸ ︷︷ ︸

induced by S

+(prt− pt)p
)

+
1
rt

(
p2 − 1

p

(
p2 + (p− 1)p

))
.

If ∞ ramifies wildly in the extension E|K(t), then ind(∞) ≥ p(p + 1). This induces a
contradiction to the genus-0 condition.

Hence, F∞ ∼= Crs with ind(∞) ≥ (p2 − 1)
(
1 + 1

rs

)
. We obtain

ind(∞) + ind(p)− 2p2 + 2 ≥
(p− 1)

(
t+ pt+ s(p+ t− 3− rt)

)
rst

.

Since rt | p−1, the genus-0 condition is violated for t 6= 1. Thus, suppose t = 1. The genus-0
condition forces r = p − 1 and s = p + 1. This gives H ∼= GL(2, p), Ip(2) = I∞(2) = 1, and
|Fix(g)| = p for all g ∈ I]

p. It follows ind(∞) = p2, ind(p) = p2 − 2, and o(Ip) = p+ 1.
There exist polynomials f that realize this case, cf. chapter 5. As H is transitive on N ],

such an f cannot be exceptional.
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6.2. Cases in even characteristic p = 2

If p ramifies tamely, then our estimations for the degree of the different of K(x)|K(t) are too
weak to induce contradictions to the genus-0 condition. Hence, we only obtain SL(2, p) ≤ H
with Fp being a cyclic p′-group.

No finite ramification
A discussion of the extension Z|K(t) shows r = 1. Hence, H ∼= SL(2, p) and ∞ ramifies with
F∞ ∼= CpoCs where s | p−1. Set a ∈ N the well-defined integer with F∞(a) > F∞(a+1) = 1.
Riemann-Hurwitz states

2g(E)− 2 = −2|H|+ |H|
ps

(
ps− 1 + a · (p− 1)

)
.

As g(E) ≥ 0, we obtain a ≥ p2−1+s(p3−p−2)
(1+p)(p−1)2

. Section 3.2.1 shows

ind(∞) ≥ (p2 − 1)
(
1 +

1
s

)
+

1
s
(a− 1)(p2 − p);

this gives a contradiction to the genus-0 condition.

6.2. Cases in even characteristic p = 2

Proposition 6.3 gives H = GL(2, 2) = SL(2, 2) ∼= S3. Denote by C the normal cyclic subgroup
of H of order 3. Set Z := Fix(N o C). Then E|Z resp. Z|K(t) is Galois of degree 3 resp.
2. As all subgroups of H of order 2 are selfnormalizing, ramification groups in the extension
E|K(t) are either isomorphic to C3 or to C2.

Only one finite place ramifies
By Corollary 3.16 F∞ ∼= C3 and Ip ∼= C2. Van der Waerden [51] shows that p decomposes in
K(x) in the form

p = P2 ·P1 ·P2 with pairwise different places of K(x).

Proposition 5.9 proves that the extension L|K(t) comes from a polynomial belonging to the
class of AGL-polynomials described in chapter 5.

No finite ramification
As E|K(t) is wild, we get F∞ ∼= C2. By Section 3.2.1 F∞(2) = 1; but this gives a contradiction
to the Riemann-Hurwitz genus formula.
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7. Exceptional polynomials of degree p3

In this chapter we classify all exceptional polynomials of degree p3 with primitive arithmetic
monodromy group. Our result will be

Theorem 7.1 With the notation from page 23 suppose deg f = p3. If f is exceptional, then
the extension E|K(t) is tame.

In particular, g = 0 and Theorem 4.2 lists all possibilities for f .

We will suppose the extension E|K(t) to be wild from now on. Lemma 6.2 gives the irre-
ducibility of H on N . We start with the discussion of the case p > 3.

7.1. The cases in characteristic p > 3

Suppose p > 3. We first classify all irreducible subgroups H ≤ GL(3, p) in question.

Lemma 7.2 Suppose H ≤ GL(3, p) with p | |H|. Define S := H ∩ SL(3, p) and Z :=
Z

(
SL(3, p)

)
. Set S := SZ/Z ≤ PSL(3, p) the image of S in PSL(3, p). Then:

(1) H acts irreducibly on N ⇐⇒ S acts irreducibly on N .

(2) If S is irreducible on N , then S ∼= PSL(3, p), S ∼= PSL(2, p), or S ∼= PGL(2, p).

(3) If H is irreducible on N but not transitive on N ], then

H ′
0 ≤ H ≤ H0 × Z

(
GL(3, p)

)
where H0 is isomorphic to PGL(2, p) and acts irreducibly on N . H0 is conjugate to the
image of PGL(2, p) under the mapping (4.4) on page 39.

Proof.

(1) S is a subgroup of H; if S is irreducible, then H is a fortiori irreducible.

Suppose H is irreducible and S acts reducibly. Let 1 6= P ≤ H be a p-Sylow subgroup
of H. As H/S ≤ Cp−1, the group P ≤ S is also a p-Sylow subgroup of S. Thus, we
obtain the same contradiction as in the proof of Lemma 6.2.

(2) We use Bloom’s [2] classification of the subgroups of PSL(3, p).

First assume that S does not have any nontrivial elementary abelian normal subgroup.
Then [2, Thm. 1.1] and the condition p | |S| give S ∼= PSL(3, p), S ∼= PSL(2, p), or
S ∼= PGL(3, p). We show in part (3) of this proof that these cases really induce an
irreducible group S.

Now assume S has a nontrivial normal elementary abelian subgroup; this case is dealt
with in [2, Theorem 7.1]. The cases (1), (2), (4), and (5) of this theorem cannot occur
for S would be a p′-group. In the remaining case (3) the group S contains a normal
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7. Exceptional polynomials of degree p3

elementary abelian p-subgroup P . By Proposition 2.8 P = 1. Bloom [2] shows that S –
up to conjugacy and/or the inverse-transpose isomorphism – embeds into the subgroup
of GL(3, p) consisting of elements of the form

(
∗ 0 0
∗ ∗ ∗
∗ ∗ ∗

)
. This shows that S does not act

irreducibly.

(3) S ∼= PSL(3, p) enforces S = SL(3, p). But then S would be 2-transitive, a contradiction
to our assumption.

In the remaining cases S contains a normal subgroup isomorphic to PSL(2, p). Bloom [2,
Lemma 6.3] shows that the commutator subgroup S′ of S is conjugate to the image of
PSL(2, p) under the mapping ψ on page 37. In particular we obtain the irreducibility
of S.

As S′ is characteristic in H, we see that H is a subgroup of NGL(3,p)(S′). Bloom proves
that NSL(3,p)(S′) = H0 × Z where H0

∼= PGL(2, p) is irreducible with H ′
0 = S′. This

shows that H0 is conjugate to the image of PGL(2, p) under the mapping (4.4) on
page 39. Certainly H0 × Z

(
GL(3, p)

)
≤ NGL(3,p)(H ′

0). Some calculation shows that
CGL(3,p)(H ′

0) = Z
(
GL(3, p)

)
. As Aut(H ′

0) ∼= Aut
(
PSL(2, p)

) ∼= PGL(2, p), the N/C
theorem gives

H0 × Z
(
GL(3, p)

)
= NGL(3,p)(H

′
0).

Remark 7.3 The assumption p | |H| in statement (1) of the previous lemma is necessary.
Consider for instance the group

H :=
〈(

0 1 0
3 5 3
1 0 2

)〉
≤ GL(3, 7).

H is isomorphic to C9 and acts irreducibly. But S := H ∩ SL(3, 7) = Z(SL(3, 7)) ∼= C3 is
reducible. ?

As we are interested in exceptional polynomials f , H is primitive on N but may not be
transitive on N ]. Hence, all possibilities for H are given by Lemma 7.2 (3). As a consequence
we get

Lemma 7.4 (1) The fixed field Z := Fix(NoH ′) is rational. Either H/H ′ is isomorphic to
the Klein four-group; then exactly three places of K(t) ramify in the extension Z|K(t),
each one with index r = 2. Or H/H ′ is cyclic of order r | p−1; then exactly two places
of K(t) ramify in the extension Z|K(t), each one with index r.

(2) Let h ∈ H be of order > 2. Then h has at most p fixed points.

(3) Let I be a subgroup of H being isomorphic to Cp o Cs. If gcd(s, p) = 1, then s | p− 1.

Proof.

(1) Lemma 7.2 shows that H/H ′ is a p′-group. Thus, the extension Z|K(t) is tame with
g(Z) = 0. As K is algebraically closed, it follows that Z is a rational function field.

The ramification data and the group structure of H/H ′ can be obtained directly from
the classification of Valentini and Madan [50].

H/H ′ embeds into C2 × Cp−1; thus, every cyclic subgroup of C2 × Cp−1 has order a
divisor of p− 1. This shows r | p− 1.
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(2) With the notation from Lemma 7.2 write h = gz with g ∈ H0 and z ∈ Z
(
GL(3, p)

)
.

Then h2 = g2z2 6= 1 and g2 ∈ H ′
0. If g2 = 1, then h2 and, hence, h do not have

any nontrivial fixed point. Thus, suppose g2 6= 1. Then either g2 has order p; here
the assertion follows from equation 4.3 on page 37. Or g2 is p-regular; but then the
representation ψ on page 37 shows that g2 has three pairwise different eigenvalues.
Hence, the assertion is valid in this case, too.

(3) We use the notation from Lemma 7.2. Suppose H ∼= H0 × Z
(
GL(3, p)

)
. Let P be a p-

Sylow subgroup ofH. Then P ≤ H0 andNH(P ) = NH0(P )×Z
(
GL(3, p)

)
. Huppert [25,

II 7.1] showsNH0(P ) ∼= CpoCp−1. As also Z
(
GL(3, p)

) ∼= Cp−1, every p-regular element
of NH(P ) has order a divisor of p− 1. This is the claim.

For the following s and t denote integers relatively prime to p.

Two finite places ramify
Both p and q ramify tamely with index 2. Therefore we obtain

ind(p) + ind(q) ≥ 2 ·
(
p3 − 1

2
(p3 + p2)

)
= p3 − p2.

Lemma 7.4 gives ind(∞) ≥ (p3−1)
(
1+ 1

p−1

)
. These estimations violate the genus-0 condition.

No finite ramification
Lemma 7.4 yields H = H ′ ∼= PSL(2, p). Suppose |F∞| = ps. Let a ∈ N be the well-defined
integer with F∞(a) > F∞(a+ 1) = 1. Riemann-Hurwitz states

2g(E)− 2 = −2|H|+ |H|
ps

(
ps− 1 + a(p− 1)

)
.

As g(E) ≥ 0, we obtain

a ≥ p2 − 1 + s(p3 − p− 4)
(p+ 1)(p− 1)2

.

Section 3.2.1 shows

ind(∞) ≥ (p3 − 1)
(
1 +

1
s

)
+

1
s
(a− 1)(p3 − p);

this gives a contradiction to the genus-0 condition.

Exactly one finite place ramifies
As at most two places ramify in Z|K(t), Lemma 7.4 shows that Gal(Z|K(t)) is cyclic of order
r | p− 1 and both ∞ and p ramify totally in this extension.

Suppose first that p ramifies wildly. Then Fp
∼= Cp o Crt with rt | p − 1. Lemma 4.8 shows

that Ip contains at most p involutions. Thus,

ind(p) ≥ p3 − 1
prt

(
p3 + p · p2 + (prt− p− 1)p

)
+

1
rt

(
p3 − 1

p

(
p3 + (p− 1)p

))
.

The p′-part of the ramification index of ∞ is given by rs. We have ind(∞) ≥ (p3−1)
(
1+ 1

rs

)
.

This yields

ind(∞) + ind(p)− 2p3 + 2 ≥
t(p3 − 1) + s(p− 1)

(
p(p− 2)− rt− 2

)
rst

.
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7. Exceptional polynomials of degree p3

As p(p− 2)− rt− 2 ≥ p(p− 3)− 1 > 0, this case is impossible.

Now suppose that p ramifies tamely. Then Fp
∼= Crt and F∞ ∼= Cp o Crs with rs | p − 1.

Let a denote the well-defined integer with F∞(a) > F∞(a+ 1) = 1. For the following we use
additionally the notation from section 3.2.1.

We show first that I∞(ua) ∼= Cp is impossible. Suppose I∞(ua) ∼= Cp. Maus [37] gives
I∞(ua) E I∞(1); thus,

NI∞(1)

(
I∞(ua)

)
/CI∞(1)

(
I∞(ua)

)
↪→ Aut

(
I∞(ua)

) ∼= Cp−1.

As Aut(I∞(ua)) is a p′-group, it follows

I∞(1) = NI∞(1)

(
I∞(ua)

)
= CI∞(1)

(
I∞(ua)

)
.

The total ramification of ∞ in K(x)|K(t) shows p3 | |I∞|. As a p-Sylow subgroup of H is
cyclic of order p, it follows p2 | |J∞(1)|. As I∞(ua) 6≤ N , there exist n ∈ N and h ∈ H] such
that I∞(ua) = 〈nh〉. Moreover h cannot be an involution; hence, h fixes at most p points.
But for all m ∈ J∞(1)

nh ·m = m · nh ⇐⇒ nhm = mnh = nmh ⇐⇒ hm = mh ⇐⇒ m = mh.

But this is impossible.
Hence, |I∞(ua)| ≥ p2 and o

(
I∞(ua)

)
≤ 1

p2

(
p3 + (p2 − 1)p

)
= 2p − 1

p . Since 2p − 1
p < p2,

Corollary 3.17 gives o(I∞(ua)) ≤ p.
Due to our classification in chapter 4 we may assume the genus of E to be ≥ 3. The

above estimations together with the estimation for a coming from the Riemann-Hurwitz
genus formula succeed in disproving the genus-0 condition.

7.2. The cases in characteristic p ∈ {2, 3}
In this section we use the computational algebra system MAGMA [3] to classify all pairs (A,G)
being exceptional with A a primitive group of degree 8 or 27.

We obtain only one pair in characteristic 3 with H being elementary abelian of order 4.
Hence, even in this case the extension E|K(t) is tame.
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8. Exceptional polynomials of degree pr, r an
odd prime, with 2-transitive group A

In this chapter we classify all exceptional polynomials of degree pr, r an odd prime, such
that the arithmetic monodromy group of f is 2-transitive. Our result will be

Theorem 8.1 With the notation from page 23 suppose deg f = pr. Assume the arithmetic
monodromy group of f is 2-transitive. If f is exceptional, then the extension E|K(t) is tame.

In particular, g = 0 and Theorem 4.2 lists all possibilities for f .

The 2-transitivity of A on N gives the transitivity of U on N ]. The following lemma is based
on Hering’s classification of transitive subgroups of GL(r, p). A complete treatment of these
groups can be found in Liebeck [36, Appendix 1].

Lemma 8.2 N can be considered a one-dimensional Fpr vector space. U acts on N as a
subgroup of ΓL(1, pr).

Proof. r being an odd prime enforces either U ≤ ΓL(1, pr) or SL(r, p) ≤ U . Suppose
the latter case holds. Huppert [25, II 6.10] shows the perfectness of SL(r, p); thus, we
have SL(r, p) ≤ H. However, the transitivity of SL(r, p) on N ] is a contradiction to the
exceptionality of f .

We assume the extension E|K(t) to be wild from now on. As the order of ΓL(1, pr) is
|ΓL(1, pr)| = (pr−1)·r, this immediately yields p = r. The next lemma gives some estimations
for the number of fixed points of elements of A.

Lemma 8.3 (1) Let 1 6= g ∈ A ≤ AΓL(1, pp). Then g fixes at most p elements. If g is
p-regular, then it fixes exactly one point.

(2) Let P be a p-Sylow subgroup of ΓL(1, pp). Then the normalizer NΓL(1,pp)(P ) is cyclic
of order p(p− 1).

Proof.

(1) As we are interested in the maximal number of fixed points of an element 1 6= g ∈ A,
Lemma 3.12 allows us to assume g ∈ U . Lemma 8.2 gives the identification N ∼= Fpp .
Thus, the action of g on N is given by a tuple (a, b) with 0 ≤ a < p and b ∈ F×pp such
that

ng = npa · b for all n ∈ N.

Suppose n ∈ N ] is fixed by g. Then n fulfills npa−1 = b−1. If m ∈ N ] is also fixed by g,
then we have m = d · n with d ∈ N ] and dpa−1 = 1. Thus, d ∈ F×p and Fix(g) = n · Fp.

Suppose g is p-regular. A simple induction shows that the action of gp is given by
(1, β) with β 6= 1. It follows that the unique fixed point of gp and, thus, of g is the zero
element of N . The assertion is due to Corollary 3.14.
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8. Exceptional polynomials of degree pr, r an odd prime, with 2-transitive group A

(2) Since P is cyclic of order p, we may assume P to be generated by an element g ∈
ΓL(1, pp) whose action is given by (1, 1). A simple calculation shows that NΓL(1,pp)(P )
is generated by g and the (0, β)-element h where β denotes a primitive element of F×p .
As g and h commute, we get

NΓL(1,pp)(P ) = 〈g, h〉 ∼= Cp × Cp−1
∼= Cp(p−1).

Now we discuss the ramification behavior of the extension E|K(t) in detail. As in the previous
two chapters s and t denote integers relatively prime to p.

Two finite places ramify
Lemma 3.21 shows that both p and q ramify tamely with index 2. By Lemma 8.3 we have

ind(p) + ind(q) ≥ 2
(
n− 1

2
(
n+ 1

))
= n− 1.

Since ind(∞) ≥ n, this is a contradiction to the genus-0 condition.

One finite place ramifies
Suppose p ramifies wildly. Then Ip embeds into the normalizer of a p-Sylow subgroup of
ΓL(1, pp); hence, Ip ∼= Cp × Ct with t | p − 1. If g ∈ Ip does not have order 1 or p, the p-th
power of g is p-regular. Thus, by Lemma 8.3 only elements of order 1 or p can have more
than one fixed point. This shows

ind(p) ≥ n− 1
pt

(
n+ (p− 1)p+ (pt− p)

)
+

1
t

(
n− 1

p

(
n+ (p− 1)p

))
.

Together with ind(∞) ≥ n we get

ind(∞) + ind(p)− 2n+ 2 ≥ n(p− 2) + p(t+ 3− 2p)
pt

;

as p > 2 and n = pp > 2p2, this case cannot occur.

Suppose p ramifies tamely with index t. Then ind(p) ≥ (n− 1) t−1
t . The group F∞ is cyclic

of order ps. Let a ∈ N denote the well-defined integer with F∞(a) > F∞(a + 1) = 1. Then
Riemann-Hurwitz gives

2g(E)− 2 = −2|H|+ |H|
t

(t− 1) +
|H|
ps

(
ps− 1 + a(p− 1)

)
.

Due to the classification in chapter 4 we may assume g ≥ 3. This gives

a ≥ 4pst+ |H|(ps+ t)
|H|t(p− 1)

.

Together with the estimation of section 3.2.1 for ind(∞) a a violation of the genus-0 condition
results.

Only ∞ ramifies
We use the same idea as above. We obtain

a ≥ ps(|H|+ 4) + |H|
|H|(p− 1)

.

This again induces a contradiction to the genus-0 condition.
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