
Numerical schemes for  
multi-species BGK equations based  
on a variational procedure

applied to multi-species BGK equations  
with velocity-dependent collision frequency and  
to quantum multi-species BGK equations

Sandra Warnecke

S
. W

ar
ne

ck
e

N
um

er
ic

al
 s

ch
em

es
 fo

r 
m

ul
ti

-s
pe

ci
es

 B
G

K 
eq

ua
ti

on
s 

ba
se

d 
on

 a
 v

ar
ia

ti
on

al
 p

ro
ce

du
re



Sandra Warnecke

Numerical schemes for multi-species BGK equations based on a varia-
tional procedure





Sandra Warnecke

Numerical schemes for multi-species BGK
equations based on a variational procedure
applied to multi-species BGK equations with velocity-dependent collision
frequency and to quantum multi-species BGK equations



Dissertation, Julius-Maximilians-Universität Würzburg

Fakultät für Mathematik und Informatik, 2022

Gutachter: Prof. Dr. Christian Klingenberg, Prof. Dr. Cory Hauck

Impressum

Julius-Maximilians-Universität Würzburg
Würzburg University Press
Universitätsbibliothek Würzburg
Am Hubland
D-97074 Würzburg
www.wup.uni-wuerzburg.de

© 2022 Würzburg University Press
Print on Demand

Coverdesign: Jürgen Schwarz

ISBN 978-3-95826-192-1 (print)
ISBN 978-3-95826-193-8 (online)
DOI 10.25972/WUP-978-3-95826-193-8
URN urn:nbn:de:bvb:20-opus-282378

This document—excluding the cover—is licensed under the
Creative Commons License Attribution-ShareAlike 4.0 International (CC BY-SA 4.0):
https://creativecommons.org/licenses/by-sa/4.0/
This CC license does not apply to third party material (attributed to another source) in this
publication.

The cover page is licensed under the Creative Commons License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0):
https://creativecommons.org/licenses/by-nc-nd/4.0/



Acknowledgments
This PhD project was made possible by financial support of the University of Würzburg
giving me a position of a teaching assistant.

I have experienced a lot of help and encouragement from many persons during
my dissertation project. Particularly, I would like to thank my supervisor Christian
Klingenberg for the constant and friendly support throughout all years of my studies.

I enjoyed and have profited from many discussions with Cory Hauck and Jeffrey
Haack. A trip to visit them in the United States was enabled by the financial support
of the Bayerische Forschungsallianz (grant no. BaylntAn UWUE 2019-29).

The numerous visitors of our group enriched the daily life and gave insights in
many interesting research topics. Among these I especially want to thank Bruno
Després for fruitful discussions.

Besides, I am happy to be part of such a lively work group. I particularly thank
Marlies Pirner who always answered my many questions and introduced me to the
exciting topic of kinetic theory. Personally, I enjoyed the friendly atmosphere in the
group with coffee breaks, cake meetings and our joint working trip to Oberwolfach.
Thanks to Marlies, Wasilij, Simon, Jonas, Andrea, Marc, Farah, Jayesh, Claudius, Eva,
Kathrin, Lena.

I also thank Marlies Pirner and Claudius Birke for carefully reading the thesis
draft.

Furthermore, I would like to thank my fellow students and friends. They con-
tributed in various ways to the pleasure and success of my studies.

I am very grateful for my family who supports me in all parts of my life. My final
thanks go to my wonderful husband for enriching my life and giving me unconditional
support.

Sandra Warnecke

v





Preface
This PhD thesis arose from a research collaboration between the University of
Würzburg and two National Laboratories (Los Alamos National Laboratory and
Oak Ridge National Laboratory) in the USA.

The American National Ignition Facility (NIF), which collaborates with the above
two national labs, has been working on setting off fusion by inertial confinement
fusion. Here one attempts to generate an imploding spherical shock wave that will
generate sufficient energy at its center to initiate fusion. Success of this initiative
would solve the world’s energy needs.

This NIF project has been hampered by technical difficulties. The spherical blast
wave has so far not stayed stable when imploding, thus not generating enough energy
at its center to start off fusion. One way to make progress are numerical simulations
of this process. Part of these simulations are based on models of so-called kinetic
partial differential equations. As a prerequisite for this thesis, such a model had been
developed in C. Klingenberg, M. Pirner, G. Puppo: ‘A consistent kinetic model for a
two component mixture with an application to plasma’, Kinetic and Related Models
Vol. 10, No. 2, pp. 445–465 (2017). This model needed to be extended, which was
done in J. Haack, C. Hauck, C. Klingenberg, M. Pirner, S. Warnecke: ‘A consistent
BGK model with velocity-dependent collision frequency for gas mixtures’, Journal of
Statistical Physics, Vol. 84, No. 31 (2021). The challenge now was the numerical
simulation of this latter model, which is a main contribution of this PhD thesis.

Kinetic models tend to be numerically very costly. The above mentioned models
introduce a simplification (BGK kinetic model) that significantly reduces the compu-
tational time. Still one had to take care of the fact that not too many of the important
physical processes are lost in this simplification.

The success of the new numerical method presented in this thesis can be gauged
for example by the successful numerical simulation in Section 5.3.6, something never
before achieved with such a simplified BGK kinetic model.

Thus this PhD thesis contributed in a significant way towards the goal of this
German-American collaboration.

Würzburg, September 21, 2022
Christian Klingenberg
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Abstract
We consider a multi-species gas mixture described by a kinetic model. More precisely,
we are interested in models with Bhatnagar–Gross–Krook (BGK) interaction operators.
Several extensions to the standard BGK model are studied.

Firstly, we allow the collision frequency to vary not only in time and space but
also with the microscopic velocity. In the standard BGK model, the dependence on
the microscopic velocity is neglected for reasons of simplicity. We allow for a more
physical description by reintroducing this dependence. But even though the structure
of the equations remains the same, the so-called target functions in the relaxation
term become more sophisticated being defined by a variational procedure.

Secondly, we include quantum effects (for constant collision frequencies). This
approach influences again the resulting target functions in the relaxation term de-
pending on the respective type of quantum particles.

In this thesis, we present a numerical method for simulating such models. We
use implicit-explicit (IMEX) time discretizations in order to take care of the stiff
relaxation part due to possibly large collision frequencies. The key new ingredient
is an implicit solver which minimizes a certain potential function. This procedure
mimics the theoretical derivation in the models. We prove that theoretical properties
of the model are preserved at the discrete level such as conservation of mass, total
momentum and total energy, positivity of distribution functions and a proper entropy
behavior. We provide an array of numerical tests illustrating the numerical scheme as
well as its usefulness and effectiveness.

Zusammenfassung

Wir betrachten ein Gasgemisch, das aus mehreren Spezies zusammengesetzt ist und
durch kinetische Modelle beschrieben werden kann. Dabei interessieren wir uns vor
allem für Modelle mit BGK-Wechselwirkungsoperatoren. Verschiedene Erweiterungen
des Standard-BGK-Modells werden untersucht.

Im ersten Modell nehmen wir eine Abhängigkeit der Stoßfrequenzen von der
mikroskopischen Geschwindigkeit hinzu. Im Standard-BGK-Modell wird diese Ab-
hängigkeit aus Gründen der Komplexität vernachlässigt. Wir nähern uns der physi-
kalischen Realität weiter an, indem wir die Abhängigkeit von der mikroskopischen
Geschwindigkeit beachten. Die Struktur der Gleichungen bleibt erhalten, allerdings
hat dies Auswirkungen auf die sogenannten Zielfunktionen im Relaxationsterm,
welche sodann durch einen Variationsansatz definiert werden.

ix



Das zweite Modell berücksichtigt Quanteneffekte (für konstante Stoßfrequenzen),
was wiederum die Zielfunktionen im Relaxationsterm beeinflusst. Diese unterschei-
den sich abhängig von den jeweils betrachteten, quantenmechanischen Teilchentypen.

In dieser Doktorarbeit stellen wir numerische Verfahren vor, die auf oben beschriebene
Modelle angewandt werden können. Wir legen eine implizite-explizite Zeitdis-
kretisierung zu Grunde, da die Relaxationsterme für große Stoßfrequenzen steif
werden können. Das Kernstück ist ein impliziter Löser, der eine gewisse Potenzial-
funktion minimiert. Dieses Vorgehen imitiert die theoretische Herleitung in den
Modellen. Wir zeigen, dass die Eigenschaften des Modells auch auf der diskreten
Ebene vorliegen. Dies beinhaltet die Massen-, Gesamtimpuls- und Gesamtenergieer-
haltung, die Positivität von Verteilungsfunktionen sowie das gewünschte Verhalten
der Entropie. Wir führen mehrere numerische Tests durch, die die Eigenschaften, die
Nützlichkeit und die Zweckmäßigkeit des numerischen Verfahrens aufzeigen.
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Chapter 1

Introduction

Mathematical fluid mechanics is a broad field describing the behavior of fluids based
on partial differential equations (PDEs). ‘Fluid’ refers to any state of matter but solids,
i.e. liquids, gases and plasmas. This includes the atmosphere, oceans, inner parts
of stars and the sun. The solutions of PDEs express the behavior of such static and
dynamical systems depending on provided initial and boundary conditions. This is
not limited to physical phenomena, but corresponding models can also be developed
for economics, finance or engineering problems. Hence, theory of PDEs is a modern
field and strongly inspired by applications.

Once a model is established, we are interested in solutions of the problem. How-
ever, in general the equations cannot be solved analytically, and numerical schemes
come into play. Therefore, we approximate the solutions numerically and explore
properties and phenomena of the equations by numerical tests. Nevertheless, it is a
difficult task to find numerical schemes which preserve the properties of the model at
the discrete level. Again, this is an active field in research with relevance for science
and industry.

The governing equations depend on the underlying scales of the system. Famous
representatives for macroscopic scales are the Euler and Navier-Stokes equations.
Whereas for rarefied gases or plasmas, which interact at mesoscopic scales, it is better
to use kinetic models. Kinetic theory describes phenomena in statistical physics and
was initialized 1872 by the physicist Ludwig Boltzmann. He developed a PDE which
models the time evolution of a rarefied monatomic, single-species gas [Bol09]. The
theory has been further developed among others by James Clerk Maxwell, Sydney
Chapman, Thomas George Cowling, Carlo Cercignani and Cédric Villani. Last year’s
Nobel prize in physics (2021) was awarded to Syukuro Manabe, Klaus Hasselmann
and Giorgio Parisi who have contributed to the understanding of complex systems in
statistical physics [Deu20]. This illustrates the ongoing interest in this field.

In 1954, the three mathematicians Bathnagar, Gross and Krook presented a simpli-
fied model maintaining the same fundamental properties as the Boltzmann equation
[BGK54]. Moreover, the model allows for efficient numerical simulations such that
these equations and their extensions are of real interest for practical use.

There are several applications for kinetic theory. We mention here models for traffic
flows which nowadays also explore the effect of autonomous cars [HPV22, PT21,
HPRV20].

Another important application is the physical regime of plasma, and especially
controlled thermonuclear fusion. The energy output from the sun originates from

1



1 Introduction

fusion reactions. If we succeded to rebuild a controlled ‘small sun’ on earth, it could
support future electricity supply. One branch in fusion energy research corresponds
to inertial confinement fusion (ICF). Nuclear fusion is achieved by compressing and
heating targets filled with thermonuclear fuel with the help of laser beams. Only
recently, a new milestone in experiments (a burning plasma) was achieved [ZHCe22].
Another branch is given by so-called Tokamak reactors in which the fusion plasma is
confined by superposed magnetic fields. The energy gain and resulting power could
recently be more than doubled compared to former records in the Joint European
Torus (JET) experiment [Son22]. A further exciting and fascinating project in this
branch is the International Thermonuclear Experimental Reactor (ITER) [Cla20].
From an economic point of view, an even larger machine than ITER will be needed.
But firstly, open questions shall be answered by this project. Since fusion experiments
are very challenging, numerical tests play an important role for both approaches
towards controlled thermonuclear fusion.

The thesis is structured as follows. In Chapter 2, we introduce fluid models. Starting
with an overview over models in several regimes in Section 2.1, we explain estab-
lished kinetic models in more detail in the following sections, such as the transport
equation, the Boltzmann equation and BGK equations. In Section 2.2, we consider a
consistent multi-species BGK model with velocity-dependent collision frequency. We
provide a motivation and a short overview over cross sections and collision frequen-
cies. Including quantum effects opens a new field in kinetic theory. We deal with this
in Section 2.3.

Chapter 3 presents numerical schemes. After a short introduction into existing
schemes in Section 3.1, we give the basic idea of our scheme in Section 3.2. We carry
out the details for the discretization in time in Section 3.3, for the discretization in
space in Section 3.4 and for the discretization of the velocity space in Section 3.5.
Our scheme is formulated in such a way that it can be applied to both the multi-
species BGK model with velocity-dependent collision frequency and the quantum
multi-species BGK model. Our method’s core is a general implicit solver for the target
functions.

In Chapter 4, we perform analytical calculations regarding properties of our
numerical scheme. We show positivity of distribution functions (Section 4.2), con-
servation of mass, total momentum and total energy (Section 4.4) and an adequate
behavior of the entropy (Section 4.5).

We present numerical results in Chapter 5. We illustrate the properties of our
scheme for multi-species BGK equations with both constant and velocity-dependent
collision frequencies, as well as for the quantum model. Further, we consider more
physical set-ups exploring gas mixtures being relavant in plasma physics.

In Chapter 6, we provide conclusions and an outlook.
We attach several appendices. In Appendix A, we provide a short excursion

which considers the coupling to a self-consistent field when charged particles are
encountered. In Appendix B, we present the general implicit solver from Section
3.3.5 for 3 species. In Appendix C, we provide pseudo codes of our numerical scheme.

2



1 Introduction

In Appendix D, we consider units and the unit system cm- g- s (CGS). We give a list of
symbols in Appendix E and conclude with a glossary of abbreviations in Appendix F.
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Chapter 2

Theory of kinetic models
Fluids are surrounding us and we make use of them in most parts of our lives.
Accordingly, research in this area is of real interest. Mathematics enters in this field
by establishing models as physical as possible (and by developing numerical schemes
for these models which is addressed in Chapter 3). One distinguishes between
microscopic, mesoscopic/kinetic and macroscopic models describing the evolution
of fluids at the corresponding scales. We are interested in kinetic models where our
focus lies on BGK-type models.

In Section 2.1, we give an introduction into the description of fluid models. In
particular, we explain the transport equation, the Boltzmann equation and the BGK
model. We present a consistent multi-species BGK model with velocity-dependent
collision frequency in Section 2.2. And we conclude with a multi-species BGK model
which takes quantum effects into account in Section 2.3.

2.1 Fundamentals

Starting with a short overview over existing models in different regimes in Section
2.1.1, we present selected kinetic models in more detail in Sections 2.1.2–2.1.4.

2.1.1 Models in different regimes

There exist many models for fluids. Even though these models always aim to describe
the same class of matter — fluids — and are often given by (a system of) partial
differential equations, they can look very different. This is not surprising because we
also expect a very distinct behavior, e.g. if we think of liquids or gases. What makes
the difference between those?

A basic classification comes by the mean free path and Knudsen number, respec-
tively.

Definition 2.1.1 (Mean free path and Knudsen number). The mean free path is an
average distance which a particle travels until it collides with another particle.

The Knudsen number Kn is the dimensionless ratio of the mean free path and a
characteristic length of the system.

Let us consider a fluid. For a large Knudsen number (Kn ≳ 0.05 [Str05]), we are
able to follow each single particle and describe its microscopic behavior by Newton’s
mechanics, see Figure 2.1a.

5



2 Theory of kinetic models

(a) microscopic description by
Newton law’s

v

M

f

(b) mesoscopic/kinetic
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(c) macroscopic description by
macroscopic quantities

Figure 2.1: For the microscopic description of a fluid (a), each particle’s position and velocity are followed. Whereas
distribution functions in phase space (see Definition 2.1.12) are the basic quantity in the kinetic description (b). This
plot is also explained in Section 2.1.4. In the macroscopic context (c), the number density is one quantity of interest
(see Section 5.3.3 for more information about the plot).

Whereas for a very small Knudsen number (Kn ≪ 1 [Str05]), we are practically
not able to follow each single particle anymore. Instead we are looking for macroscopic
quantities which we can follow and describe. These can be measurable quantities like
density, mean velocity, pressure, temperature and so on, which are statistic averages
over the microscopic properties of all the particles, see Figure 2.1c. In a hydrodynamic
regime, this is a valid approach in order to find a suitable and manageable description.
Nevertheless, we lose information about the detailed behavior at the particle level.

What if it is not convenient to follow each particle individually, but the loss of
information by the hydrodynamic approach is too severe, too? Then we are in a meso-
scopic or kinetic regime. Here, we are interested in distribution functions which can
be interpreted as probability distributions where the particles are located, see Figure
2.1b. So, we neither follow each single particle nor look at the statistic averages.
Rather we take a description in between.

A nice summary of the description at different levels and their connection can
be found in [Gra49]. In the following, we give a brief introduction to the different
regimes.

Microscopic regime

In [New87], Isaac Newton formulated three axioms (in Latin language) which form
the basis for the entire classical physics:

Axiom 2.1.2 (Newton’s first law, principle of inertia). ‘Corpus omne perseverare in
statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus illud a viribus
impressis cogitur statum suum mutare.’
An object remains in motion at constant speed and in a straight line unless acted on by
an unbalanced force.

Axiom 2.1.3 (Newton’s second law). ‘Mutationem motus proportionalem esse vi
motrici impressae, et fieri secundum lineam rectam qua vis illa imprimitur.’

6



2.1 Fundamentals

The time change of momentum of a body is proportional to and occurs in the same
direction as the applied force.

Axiom 2.1.4 (Newton’s third law, action-reaction law). ‘Actioni contrariam semper
et aequalem esse reactionem: sive corporum duorum actiones in se mutuo semper esse
aequales et in partes contrarias dirigi.’
If an object exerts a force on another object, the second object exerts also a force on the
first object which is equal in magnitude and opposite in direction.

Only in quantum mechanics and for relativistic scales, limitations of their validity
are reached such that extended formulations are needed. In this project, we do not
treat relativistic set-ups, but quantum theory is addressed in Section 2.3.1. For now,
let us consider a fluid consisting of N (numbered) particles which obey Newton’s
laws. We are not interested in the description of the fluid viewed as a whole, but
we aim to express the detailed happening for each particle. We follow the nice
introduction in [Pir18] and examine the position qi ∈ R3 and the velocity vi ∈ R3

at any time t ∈ R+
0 for the particle with number i ∈ {1, . . . , N} and constant mass

mi (excluding chemical reactions). Then, the trajectories of each particle can be
described as solutions of the following system of ordinary differential equations,
formulating Axioms 2.1.2 and 2.1.3 in mathematical language.

Axiom 2.1.5 (Newton’s equations). Let q0
i and v0

i be the position and velocity of a
particle i ∈ {1, . . . , N} at time t = t0 ∈ R+

0 . For t ≥ t0, the evolution of the position
qi(t) and the velocity vi(t) of this particle are given by the solution of

d

dt
qi(t) = vi(t),

qi(t0) = q0
i ,

mi
d

dt
vi(t) =

∑
j ̸=i

Fi,j,int(qi(t),vi(t),qj(t),vj(t), t) + Fext(qi(t),vi(t), t),

vi(t0) = v0
i .

(2.1)

The equations (2.1) describe that the change of position is prescribed by the
velocity, and the change of velocity is dictated by the forces acting on the particle.
The forces can be split into an internal force

∑
j ̸=i Fi,j,int, describing the interactions

between particles, and an external force Fext.

Newton’s laws of motion also establish fundamental properties whenever parti-
cles interact via elastic interactions, namely the conservation of momentum and
energy during interactions. In the following, we consider binary interactions. But it
is straight forward to generalize the statements to an arbitrary number of involved
particles.

Theorem 2.1.6 (Conservation of momentum). Let Fext = 0. Then it holds

m1v1(t) +m2v2(t) = const (2.2)

7
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for all t ∈ I, where I ⊆ [t0,∞) is the interval in which particle 1 and particle 2 do not
interact with any other of the N − 2 particles.

Proof. Newton’s equations 2.1 read

m1
d

dt
v1(t) = F1,2,int(q1(t),v1(t),q2(t),v2(t), t),

m2
d

dt
v2(t) = F2,1,int(q2(t),v2(t),q1(t),v1(t), t)

Ax 2.1.4
= −F1,2,int(q1(t),v1(t),q2(t),v2(t), t)

for t ∈ I provided that Fext = 0. Adding both equations and integrating with respect
to t yields the statement.

For so-called conservative forces F, there exists a scalar potential Φ such that F =
−∇xΦ, x being the space variable. This means that the work

∫
γ
Fds is independent of

the path γ, and especially that the work vanishes for closed paths. So it is impossible
to gain (or lose) energy by passing a closed path several times. Actually, the existence
of such a scalar potential and the independence of the path are equivalent. The
proof can be found in [DR11, Theorem 13.50]; and this results in the following
conservation of energy.

Theorem 2.1.7 (Conservation of energy). Let Fext = 0. Assume that F1,2,int only
depends on q1(t) − q2(t) and that there exists a potential Φ(x) such that F1,2,int =
−∇xΦ. Then it holds

m1

2
|v1(t)|2 +

m2

2
|v2(t)|2 +Φ = const (2.3)

for all t ∈ I, where I ⊆ [t0,∞) is the interval in which particle 1 and particle 2 do not
interact with any other of the N − 2 particles.

Proof. Under the given assumptions, Newton’s equations (2.1) read

m1
d

dt
v1(t) = F1,2,int(q1(t)− q2(t)),

m2
d

dt
v2(t) = F2,1,int(q2(t),v2(t),q1(t),v1(t), t)

Ax 2.1.4
= −F1,2,int(q1(t)− q2(t))

for all t ∈ I. We multiply the first equation with v1(t), the second one with v2(t) and
add both of them:

d

dt

(m1

2
|v1(t)|2 +

m2

2
|v2(t)|2

)
= F1,2,int(q1(t)− q2(t)) · (v1(t)− v2(t))

= −∇xΦ(q1(t)− q2(t)) · (v1(t)− v2(t))

= − d

dt
Φ(q1(t)− q2(t)).

In the last step, we used the chain rule and Newton’s equations (2.1). The statement
follows by integration with respect to t.

8
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Newton’s equations result in an additional conservation law given in the following
theorem.

Theorem 2.1.8 (Conservation of angular momentum). Let Fext = 0 and b ∈ R3 be a
fixed point in space. Assume that F1,2,int is parallel to q1(t)− b and F2,1,int is parallel
to q2(t)− b. Then it holds

mi(qi(t)− b)× vi(t) = c = const ∈ R3

for i = 1, 2 and for all t ∈ I, where I ⊆ [t0,∞) is the interval in which particle 1 and
particle 2 do not interact with any other of the N − 2 particles. Additionally, the map
b 7→ c(b) is continuous in b.

Proof. Under the given assumptions, the product rule and Newton’s equations (2.1)
yield

d

dt
[mi(qi(t)− b)× vi(t)]v1(t) = mi(qi(t)− b)× d

dt
vi(t)

= (qi(t)− b)× Fi,j,int(qi(t),vi(t),qj(t),vj(t), t)

= 0

for i, j = 1, 2, i ̸= j and for all t ∈ I. The first statement follows by integration with
respect to t. For the continuity, let b1,b2 ∈ R2 be arbitrary. It follows

|c(b1)− c(b2)| = |mi(qi(t)− b1)× vi(t)−mi(qi(t)− b2)× vi(t)|
= |mi(b2 − b1)× vi(t)| ≤ mi|vi(t)||b2 − b1|.

Hence, c(b) is Lipschitz continuous in b, in particular continuous.

The physical consequence is that particles stay in the same plane while colliding.
This becomes more obvious in the following corollary.

Corollary 2.1.9 (Post-collisional velocities). Let Fext = 0. Assume that F1,2,int is
parallel to q1(t) − q2(t), F2,1,int is parallel to q2(t) − q1(t), and let there exist a
compactly supported potential Φ(x) such that F1,2,int = −∇xΦ. During the interaction,
we assume that only particle 1 and particle 2 are involved. Furthermore, we assume that
the interaction occurs instantaneously at time t = t∗ when the particles reached their
minimal distance. We call ξ the unit vector along the line with minimal distance of the
two particles during the interaction in direction of particle 2, see Figure 2.2. Then ξ can
be written as

ξ =
q2(t∗)− q1(t∗)

|q2(t∗)− q1(t∗)|

and the conservation laws during the collision read

m1v1 +m2v2 = m1v
′
1 +m2v

′
2,

m1|v1|2 +m2|v2|2 = m1|v′
1|2 +m2|v′

2|2

9



2 Theory of kinetic models

with the velocities v′
1 and v′

2 after the interaction

v′
1 = v1 −

2m2

m1 +m2
[(v2 − v1) · ξ]ξ,

v′
2 = v2 +

2m1

m1 +m2
[(v2 − v1) · ξ]ξ.

Proof. The proof can be found e.g. in [Pir18] and follows from the previous theorems.

particle 1

q1(t∗)
v1

particle 2

q2(t∗)
v2

ω

Figure 2.2: At time t = t∗, particle 1 and particle 2 reach their minimal distance such that they collide. The vector ω
connects the particles’ positions q1(t∗) and q2(t∗), and ξ = ω

|ω| .

At the microscopic level, elastic collisions are time reversible in the following
sense. Consider two particles with velocities v1 and v2. Due to a collision, they
exchange momentum and energy, and their velocities convert into v′

1 and v′
2, re-

spectively. If we now move backward in time, change vi 7→ −v′
i and v′

i 7→ −vi, all
theorems still hold true. So there is no preferred direction for collisions to happen.
This is in contrast to the descriptions at mesoscopic and macroscopic levels. We will
emphasize this in Section 2.1.3.

Knowing the initial positions and velocities of all particles in a gas, we can cal-
culate the evolution of a classic gas for all times by Newton’s laws. When this is
solved numerically, it is often called molecular dynamics. However, this is a very
rich description. Only 1 g hydrogen already contains about 6 · 1023 particles. This
illustrates that the detailed description of Newton’s mechanics might be useful under
specific circumstances, but in many applications it is not practicable. This leads us to
the kinetic regime.

Mesoscopic/kinetic regime

The description at the microscopic level is very rich and also discrete. In order to
approach a continuum, we consider an ensemble of conceptual copies of a given phys-
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ical system. Then we look at the probability W that the system is in the corresponding
state at a given time. [Gra49]

Let N be fixed and let us assume N particles of mass m whose position is denoted
by qi and whose momentum is given by pi for i = 1, . . . , N , as it is conventionally
done in theoretical mechanics. The probability that the system is located in the
volume dq1 . . . dqN dp1 . . . dpN is represented by the quantity

W =W (q1, . . . ,qN ,p1, . . . ,pN ).

The following statements can be found e.g. in [Sch06, Cer88, LL69].

Theorem 2.1.10 (Liouville’s theorem). The function W is constant along the tra-
jectories of the system. In other words, the volume and orientation of a flow in the
(q,p)-space stays constant in time.

From Liouville’s theorem, it follows Liouville’s equation

∂tW +

N∑
i=1

pi

m
· ∇qi

W +

N∑
i=1

Fi

m
· ∇pi

W = 0,

Fi = −
N∑
j ̸=i

∇qi
(ϕij + ϕext) ,

(2.4)

where the force Fi on particle i is determined by the gradient of a potential which
is the sum of an external potential ϕext and an internal potential ϕij coming from
interactions between the particles i and j.

We integrate Liouville’s equation (2.4) over parts of the variables and build a chain
of equations. This is called the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY)
hierarchy [Bog46, BG46, Kir46, Kir47, Yvo35]. We consider the functions [CIP94]

fs(q1, . . . ,qs,p1, . . . ,ps)

=

∫
W (q1, . . . ,qN ,p1, . . . ,pN ) dqs+1 . . . dqN dps+1 . . . dpN

for s = 1, . . . , N . The probable number of particles in e.g. the volume dq1 dp1 is
given by

Nf1dq1 dp1.

We obtain N equations where the time evolution of fs is given by

∂tfs +

s∑
i=1

pi

m
· ∇qi

fs +

s∑
i=1

Fi

m
· ∇pi

fs

= (N − s)

s∑
i=1

∫
(∇qiϕi,s+1) · (∇pifs+1) dqs+1 dps+1

Fi = −
s∑

j ̸=i

∇qi (ϕij + ϕext)

11



2 Theory of kinetic models

with a correction term on the right-hand side (RHS) representing the influence of the
N − s suppressed particles. In this chain, the s-th equation connects fs and fs+1. So,
in order to determine only f1 one has to solve the equation for f2, which requires
the solution of f3, and so on, and eventually one needs to solve the full Liouville
equation.

However, we can break the chain at some point and solve the equation for fs if we
found a sufficient approximation for fs+1. For instance, after appropriate assumptions
the marginal f1 becomes a kinetic distribution function (see Definition 2.1.12), and
an adequate estimate of f2(q1,q2,p1,p2) turns into the collision operator of the
Boltzmann equation (2.25) [Gra49, CIP94]. Here, the Boltzmann-Grad limit enforces

N → ∞ and r → 0 while Nr2 → const ∈ R+.

We do not discuss the limiting process in this thesis. But in Section 2.1.3, we give a
motivation where the famous Boltzmann equation comes from.

Remark 2.1.11 (Irreversibility). While the microscopic description is time reversible,
the mesodynamics (and macrodynamics) behave irreversible. The irreversibility enters
the description when the BBGKY chain gets broken and interpreted stochastically [Cer88].
This issue led to discussions, especially concerning the Boltzmann equation, see Section
2.1.3.

The previously given equations are supposed to motivate the description at the
mesoscopic level. It is based on a function which combines all particles. Since
we do not want to track each particle, we look for a dependence only on space x,
microscopic velocity v and time t (not on each particle’s position and velocity). In the
following, be aware that motivations and discussions using individual particles only
serve for illustration purposes. Kinetic theory does not consider particles themselves,
but the so-called distribution function.

Definition 2.1.12 (Distribution function and phase space). A function f : R3 × R3 ×
R+

0 → R+
0 is called a distribution function if and only if f(x,v, t) dx dv is the number

of particles with velocities in (v,v + dv) located at (x,x+ dx) at time t.
We call (x,v) the phase space.

The value of the distribution function f(x,v, t) can also be interpreted as the
probability with which a particle with velocity v can be found at position x and time
t.

Definition 2.1.13 (General kinetic equation). A general kinetic equation can be written
as

∂tf + v · ∇xf +
F(x, t)

m
· ∇vf = Q[f ]. (2.5)

The left-hand side (LHS) of (2.5) describes that particles move uniformly along
straight lines, but they might be deflected by a force F. We consider this part of
the equation in Section 2.1.2. The RHS of (2.5) takes care of possible interactions

12
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between the particles. This general formulation captures many different models. In
the following, we list possible variations for this equation.

For stationary problems, it holds ∂tf = 0. The second term on the LHS vanishes
in space homogeneous settings. And often it is F = 0, otherwise the force F is either
given or needs to be determined separately.

Moreover, the RHS takes many different forms focusing on diverse aspects of
possible interactions between particles. We will give a short overview over kinetic
models in the following and illustrate it in Figure 2.3.

If direct interactions are neglected (being valid for short time scales), we have
Q[f ] = 0 which is the case e.g. for the Vlasov equation. This is often used for plasmas
which means that charged particles are encountered and the force term due to a
self-consistent field becomes crucial. For special geometries and applications as the
Tokamak, the gyrokinetic coordinates have been developed [GIVW10].

The specific treatment of interactions becomes necessary for long periods [Vil02]
and leads to different collision operators on the RHS of (2.5) and to different models,
respectively. From the BBGKY hierarchy, the Boltzmann equation can be derived by a
binary scattering approximation. This model is discussed in Section 2.1.3.

Another approach is a correlation expansion [Len60, Bal60]. This yields the
Lenard-Balescu equation with the interaction operator

Q[f ] = ∇v ·
∫
K(v, |v − v∗|,∇vf) [f(v∗)∇vf(v)− (∇v∗f(v∗))f(v)] dv∗

and a strong nonlocal and nonlinear kernel K(v, |v− v∗|,∇vf). The Lenard-Balescu
equation intrinsically includes screening given by a dynamical dielectric response
[PB52]. This is why, in plasma physics, it is often considered to be more suitable than
the Boltzmann equation (where modifications need to be done in order to handle
charged particles, see Remark 2.2.9). However, the nonlinear kernel makes the model
very complicated. For more details, see [Str06] and references therein.

Both the Boltzmann and the Lenard-Balescu approach can be continued to the
Landau equation when grazing collisions dominate [Lan37, RMJ57, Len60]. It
incorporates the interaction operator

Q[f ] = ∇v ·
∫
K(|v − v∗|) [f(v∗)∇vf(v)− (∇v∗f(v∗))f(v)] dv∗.

Compared to the Lenard-Balescu equation, the kernel K(|v − v∗|) is much simpler
and better handable. It contains the so-called Coulomb logarithm which indicates
the preponderance of many weak interactions, cf. Remark 2.2.10. The asymptotic
limit for the derivation of the Landau equation has been justified among others in
[DLD92, Des92]. In special cases and coordinate systems, the nonlinear Landau
equation reduces to the linear Fokker-Planck equation [Vil02], and the names are
often coupled to Fokker-Planck/Landau equation. In plasma physics, the Fokker-
Planck/Landau equation is often used [LM05].
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many
particles
system

molecular dynamics
(Newton’s laws)

BBGKY

Boltzmann
(cross sections)

Lenard-Balescu
(dielectric response)

Fokker-Planck/Landau
(Coulomb logarithm)

BGK
(collision frequency)

hydrodynamics

direct solution

phase-space and
ensemble averaging

binary collisions weak scattering

correlation expansion no screening

moments in v

Figure 2.3: An overview over the structure in kinetic theory is given, inspired by [SM16]. Instead of solving Newton’s
equations (2.1) directly, the system of equations can be approximated by the BBGKY hierarchy. If the number of
particles goes to infinity while conserving mass, kinetic models can formally be derived. A correlation expansion
yields the Lenard-Balescu model representing many-body physics in the weak-scattering limit established by a
dielectric response. Alternatively, a binary-collision assumption leads to the Boltzmann equation where the detailed
physics is hidden in the cross sections. Both branches can be continued to the Fokker-Planck/Landau equation for
weak- and binary-scattering collisions where the Coulomb logarithm appears as important quantity. We are especially
interested in BGK models which can be derived from the Boltzmann equation where the cross sections convert to
collision frequencies. A hydrodynamic description can be obtained by taking moments in v of the kinetic equations.

The kinetic formulation is useful for the mesoscopic regime. However, the dis-
tribution function f is a mathematical construction and not physically measurable.
The distribution function is yet linked to measurable quantities given by moments of
f .

Definition 2.1.14 (Macroscopic quantities). Let S be a set of indices, each index
corresponding to a species. Let fi : R3 ×R3 ×R+

0 → R+
0 with (1 + |v|2)fi ∈ L1( dv) be

the distribution function of species i ∈ S.

1. The functions

ni : R3 × R+
0 → R+

0 , (x, t) 7→
∫
R3

fi(x,v, t) dv and

ρi : R3 × R+
0 → R+

0 , (x, t) 7→ mi

∫
R3

fi(x,v, t) dv

are called number density and mass density of species i, respectively.

2. We define

niui : R3 × R+
0 → R, (x, t) 7→

∫
R3

fi(x,v, t)v dv.

For ni > 0, the function ui =
niui

ni
is called the mean velocity of species i.
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3. The function

Ei : R3 × R+
0 → R+

0 , (x, t) 7→ mi

2

∫
R3

fi(x,v, t)|v|2 dv

is said to be the energy density of species i.

4. The internal energy of species i is given by

ei : R3 × R+
0 → R+

0 ,

(x, t) 7→ Ei(x, t)−
mi

2
ni|ui|2 =

mi

2

∫
R3

fi(x,v, t)|v − ui|2 dv.

5. For an ideal gas and ni > 0, the (kinetic) temperature1 of species i is defined by

Ti : R3 × R+
0 → R+

0 , (x, t) 7→ 2ei
dni

=
mi

dni

∫
R3

fi(x,v, t)|v − ui|2 dv (2.6)

where d denotes the dimensions in velocity space. In this thesis, it is d = 3.

6. The energy flux of species i is defined to be

Qi : R3 × R+
0 → R3, (x, t) 7→ mi

2

∫
R3

fi(x,v, t)|v|2v dv.

7. We call

Pi : R3 × R+
0 → R3×3, (x, t) 7→ mi

∫
R3

fi(x,v, t)(v − ui)⊗ (v − ui) dv

the pressure tensor of species i. The pressure of species i is given by

pi =
1

3
trPi.

Remark 2.1.15 (Degrees of freedom). The formula for the temperature (2.6) depends
on the translational degrees of freedom which comes by the dimensionality of the v-space.
We consider three independent v-variables corresponding to three translational degrees
of freedom, d = 3. Since we assume a monatomic gas, there are no rotational degrees of
freedom. In more general cases, the notion of temperature needs to be extended.

If more than one species is involved, macroscopic quantities of the gas mixture
need to be defined. Let S be the set of indices for the species. For N species, it is
S = {1, . . . , N}. Be aware that N is not the number of particles but the number of
different species.

1 We suppress the Boltzmann constant kB for ease of presentation. If the Boltzmann constant is
required, the replacement T 7→ kBT works in most cases which can be verified by a check of units.
In Section 2.2.3, we emphasize the use of kB for clearness.
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Definition 2.1.16 (Mixture quantities). The total number density and total mass
density are given by

nmix =
∑
i∈S

ni and ρmix =
∑
i∈S

ρi. (2.7)

For nonvanishing ρmix, we denote the mixture mean velocity

umix(x, t) =

∑
i∈S ρiui

ρmix
(2.8)

and the total energy

Emix =
3

2
nmixTmix +

1

2
ρmix|umix|2

where the mixture temperature reads

Tmix(x, t) =
2

3nmix

∑
i∈S

∫
mi

2
|v − umix|2fi dv

=
1

nmix

(∑
i∈S

niTi +
1

3

∑
i∈S

ρi(|ui|2 − |umix|2)
)

=
1

nmix

∑
i∈S

niTi +
1

3ρmix

∑
i,j∈S
i<j

ρiρj(|ui − uj |2)

 .

(2.9)

Moreover, the reduced mass is defined by

µij =
mimj

mi +mj
. (2.10)

Taking moments of f means that we average over the velocities. This leads to a
loss of the detailed information in f . Nevertheless, in many occasions the description
by these averaged values is sufficient.

Macroscopic regime

The macroscopic regime seems to be the most natural one because we can feel and
see the corresponding quantities defined in Definition 2.1.14. That is why we are also
familiar with (physical) measurements at this scale in our daily life. Nevertheless, as
we have seen in the previous sections, this is only one possible description.

We can formally derive hydrodynamic equations from the kinetic description
even though rigorous proofs have only been found for specific limits [SR09]. One
possibility for the formal derivation are moment methods, another approach is
the Chapman-Enskog expansion [Str05] developped independently by Chapman
[Cha16, Cha18] and Enskog [Ens17, Ens21]. Starting e.g. from the Boltzmann
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equation, setting the distribution function to be Maxwellian (in equilibrium) and
taking moments, we get the well-known Euler equations. For more details, we refer
to [Str05, SR09].

Definition 2.1.17 (Euler equations). Let ρ,u, e be a fluid’s mass density, mean velocity
and internal energy and sufficiently smooth. Let the pressure p be a function of the
internal energy. Then the Euler equations read

∂tρ+∇x · (ρu) = 0,

∂t(ρu) +∇x · (ρu⊗ u+ p1) = 0,

∂t

(ρ
2
|u|2 + e

)
+∇x ·

(ρ
2
|u|2 + e+ p

)
u = 0.

(2.11)

We do not specify the required smoothness of the solutions here because there
exist several frameworks such as strong solutions, weak solutions and measure-valued
solutions. Every notion lowers the required regularity, see [Mar21] and references
therein.

The Euler equations are one of the oldest systems of partial differential equations
describing the motion of fluids, formulated by Euler in the 18th century [Eul57]. They
also correspond to the zeroth order in the Chapman-Enskog expansion. Considering
first-order corrections, we obtain the famous Navier-Stokes equations. These include
viscosity and heat conductivity, so they capture more phenomena in fluids.

Definition 2.1.18 (Navier-Stokes equations). Let ρ,u, p be a fluid’s mass density,
mean velocity and pressure and sufficiently smooth. Let the pressure p be a function of
the internal energy. We denote the viscosity by µ and heat conductivity by κ. Then the
Navier-Stokes equations read

∂tρ+∇x · (ρu) = 0

∂t(ρu) +∇x · (ρu⊗ u+ p1) = ∇x · σ
∂t

(ρ
2
|u|2 + e

)
+∇x ·

(ρ
2
|u|2 + e+ p

)
u = κ∆xT +∇x · (σ · u)

(2.12)

with the trace-free stress tensor

σ = 2µ

(
∇xu+ (∇xu)

⊤ − 1

3
(∇x · u)1

)
.

The viscosity and thermal conductivity belong to the so-called transport coefficients
for macroscopic laws which can be measured by experiments. The Chapman-Enskog
expansion allows to compute them from microscopic details of the gas [Str05]. A
constant, which will be important in the context of the BGK equations, is the Prandtl
number.

Definition 2.1.19 (Prandtl number). The Prandtl number Pr is the dimensionless ratio
of viscosity and heat conductivity

Pr =
5kB
2m

µ

κ
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where kB denotes the Boltzmann constant and m the mass of the gas. The measured
value for a monatomic gas is Pr ≈ 2

3 .

The systems of equations (2.11) and (2.12) represent conservation laws at the
macroscopic level.

Theorem 2.1.20. The Euler equations (2.11) and Navier-Stokes equations (2.12)
conserve mass, momentum and energy.

Proof. For the Euler equations, this gets evident when integrating with respect to
x and applying Gauß’s law. Then the mass

∫
ρdx, the momentum

∫
ρudx and

the energy
∫ (

ρ
2 |u|2 + e

)
dx are conserved unless there is a flux over the boundary.

For the Navier-Stokes equations, more computations are required. We refer to
[TM05, LL91].

One requirement of the systems (2.11) and (2.12), respectively, is the so-called
equation of state which closes the systems and relates the pressure p to the internal
energy e, respective density ρ and temperature T . Thermodynamic theory enters the
fluid dynamics among other things by these laws. For ideal gases, it holds

p = (γ − 1) e

with the ratio γ = f+2
f and the degrees of freedom f. We consider three translational

degrees of freedom but no rotations nor vibrations; that is f = d = 3 and p = nT .
Here, we slightly abused notation because this ideal gas law directly follows from
kinetic gas theory [Bol09]; we wanted to give the equations in a bigger context where
also more general equations of state can be applied even if we do not go into further
details.

In order to obtain as physical solutions as possible, additional properties and admissi-
bility conditions may be required. One notion, which will also be important for our
kinetic models, is entropy. In the hydrodynamic set-up, it is linked to an additional
inequality to be fulfilled by the system. This specifies a preferred direction in time
and excludes solutions with unphysical properties. For further information, we refer
to [Eva10, Mar21].

There exist many variations for the systems (2.11) and (2.12). We already men-
tioned the possibility of different equations of state, but also source terms can be
taken into account, e.g. gravitation in stars. One also distinguishes between com-
pressible and incompressible equations, where for incompressible conservation laws
it is ∇x · u = 0.

The given systems consider fluids consisting only of one species. If more species
are involved, this refers to global quantities corresponding to the assumption that
every species behaves similarly. However, this approach is not valid when the species
behave differently, and multi-species equations need to be considered. In this case,
each species follows its equations for mass, momentum and energy. The mass of
each species, total momentum and total energy are conserved. The exchange of
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momentum and energy between the species introduces a coupling of equations of
different species. [RS07]

The Euler and Navier-Stokes equations are a field of active research. Very famous is
the open question on the existence and uniqueness of solutions for the Navier-Stokes
equations. This is stated to be a Millenium Prize Problem [Ins] which is why this
issue is known even outside the field. However, already the Euler equations let us
tumble regarding the existence and uniqueness of solutions. Recent results prove that
there exist initial data for which the Euler equations (in multiple space dimensions)
admit infinitely many solutions which do fulfil an entropy inequality. [Mar21]

Another topic is the development of adequate numerical schemes. For example,
there are situations where it is necessary to maintain a stationary solution exactly.
For this purpose, well-balanced schemes are developed [BCK21]. Another feature of
interest is that a discretization stays accurate and efficient throughout several regimes.
By this comment, we close the circle and observe that the macroscopic equations,
representing the hydrodynamic limit, are also of interest for the kinetic regime. As
a scaling parameter (e.g. the Knudsen number) approaches zero, we formally pass
over from the kinetic to the macroscopic description. Numerical formulations shall
be uneffected by this transition which is called asymptotic-preserving (AP). We will
elaborate this in Chapter 3.

We end this short overview with a brief section on thermodynamics.

Thermodynamics and statistical mechanics

Thermodynamics is a branch of physics mainly dealing with the macroscopic quanti-
ties heat, work and temperature. Introduced by physical experiments and observa-
tions at macroscopic scales, it is being consolidated by statistical mechanics which
describes physical properties of many-body systems on the basis of microscopic princi-
ples. This surely reminds us of the kinetic description of fluids, and it is not surprising
to detect links between these theories.

Comparable to Newton’s laws in microdynamics, the fundamental laws of ther-
modynamics form the basis of this subject. The first one concerns the conservation of
energy [Sch06]. We here give the second one.

Axiom 2.1.21 (Second law of thermodynamics). ‘Wärme kann nie von selbst von
einem kälteren in ein wärmeres Reservoir übergehen.’ (Rudolf Clausius, 1850) [Sch06]
Heat can only pass from a colder to a warmer reservoir with another change connected
to it.

There exist different but equivalent formulations of the second law of thermo-
dynamics, e.g. by Lord Kelvin in 1851. In the end, they all result in the existence
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2 Theory of kinetic models

of reversible and irreversible processes connected to a basic quantity in statistical
physics, called entropy S. A mathematical formulation reads

ϑ
dS

dt
≥ dE

dt
+ p

dV

dt
(2.13)

where ϑ denotes the absolute temperature, E the energy of the system, p the pressure
and V the volume occupied by the gas.

One of the entropy’s main features is that it either stays constant or increases in
time. If the entropy increases, we consider an irreversible process being in contrast
to the overall reversible microdynamics.

For more details, we refer to the textbook [Sch06].

We will later see that entropy plays an essential role in kinetic theory. The sec-
ond law of thermodynamics 2.1.21, being introduced as axiom, can be derived and
formulated as theorem which is known as H-Theorem. This was firstly done for the
famous Boltzmann equation by Boltzmann himself, see Theorem 2.1.31.

Before we go into detail, we study another kinetic equation which partly appears
in the Boltzmann equation as well.

2.1.2 Transport equation

The general kinetic equation (2.5) consists of two parts. The LHS describes the
transport in phase space, whereas the RHS specifies the interactions of the particles.
In this section, we focus on the LHS with vanishing RHS, the so-called transport
equation. Many introductory books explain such kind of equation, e.g. [Joh71,
Chapters 1.3 and 1.4] and [Eva10, Chapter 1.2]. We only consider the following
special form of the transport equation which, in particular, is hyperbolic.

Definition 2.1.22 (Transport equation). The homogeneous transport equation reads

∂tf + v · ∇xf +
F(x, t)

m
· ∇vf = 0,

f(x,v, 0) = f0(x,v).

(2.14)

By the method of characteristics, the partial differential equation (2.14) can be
reduced to a system of ordinary differential equations.

Definition 2.1.23 (Characteristic curve). A curve along which the solution of (2.14) is
constant is called characteristic curve. The corresponding system of ordinary differential
equations is called the characteristic equations.

In the following, we perform this approach for (2.14). Let

γ : [0, 1] → R3 × R3 × R+
0 , s 7→ γ(s) = (x(s),v(s), t(s))

be a smooth parametrization of a curve in R3 × R3 × R+
0 . For q(s) = f(γ(s)) =

f(x(s),v(s), t(s)) it is

d

ds
q(s) =

dt(s)

ds
∂tf +

dx(s)

ds
· ∇xf +

dv(s)

ds
· ∇vf.
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If γ is a solution to

dt(s)

ds
= 1,

dx(s)

ds
= v(s),

dv(s)

ds
=

F(x(s), t(s))

m
,

(2.15)

it holds d
dsq(s) = 0, which means that q(s) = f(γ(s)) is constant along the curve.

Therefore, (2.14) can be solved by tracing back the characteristic curve and evaluat-
ing the corresponding initial data.

Often, the force term is neglected, i.e. F = 0, which encounters the assumption that
the acceleration is due only to external fields. Then the solution to the characteristic
equations (2.15) reads

t(s) = s+ t0,

x(s) = vs+ x0,

v(s) = v0

(2.16)

for given initial t0 ≥ 0, x0,v0 ∈ R3. For ease, let t0 = 0. The choice s = t yields
f(x(t),v(t), t) = q(t) and especially f(x0,v0, 0) = q(0). Since q is constant along
solutions of (2.15), we obtain

f(x,v, t) = q(t) = q(0) = f(x0,v0, 0) = f0(x0,v0) = f0(x− vt,v),

where we used (2.16). This solves the initial value problem (2.14) for F = 0 uniquely
according to the theorem of Picard-Lindelöf. And we conclude that the initial values
f0(x) are transported along straight lines in direction of v, see Figure 2.4.

t

xx0

(x1, t1)

x− vt = x0

Figure 2.4: We illustrate the characteristic curve for the transport equation (2.14) with F = 0. The solution at point
(x1, t1) is given by the corresponding initial datum evaluated at x0 = x1 − vt1 because solutions stay constant
along characteristic curves.

In the framework of kinetic theory, the transport part (LHS of (2.5)) describes
that particles move uniformly along straight lines in direction of v. This observation
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2 Theory of kinetic models

matches Newton’s first law 2.1.2. According to a possible nonvanishing force F, the
velocities of the particles can be deflected. Such forces often come by electric (and
magnetic) fields for charged particles.

Coupling to electric field

Let us consider a charged particle within an electric field E and magnetic field B.
The so-called Lorentz force acts on this particle which is given by

FL = Ze (E+ v ×B)

with the charge state Z of the particle and the elementary charge e. The fields are
externally given or provided by the solutions of Maxwell’s equations [Max65]. These
are the fundamental equations in electro-magneto dynamics, comparable to the role
of Newton’s laws in classical physics.

Axiom 2.1.24 (Maxwell’s equations). Maxwell’s equations are the system of the
following four PDEs.

Gauß’s law: ∇x ·E =
q

ε0
Gauß’s law for magnetism: ∇x ·B = 0

Faraday’s law of induction: ∇x ×E = −∂tB
Ampère’s law with Maxwell’s addition: ∇x ×B = µ0 j+ µ0ε0 ∂tE

Here, E(x, t) denotes the electric field, B(x, t) the magnetic field, q(x, t) the electric
charge density, j(x, t) the electric current density, ε0 the electric permittivity of vacuum
and µ0 the magnetic permeability of vacuum.

In the context of kinetic theory, the electric charge and current density can be
calculated via moments of the distribution functions.

Definition 2.1.25 (Electric charge and current density). The electric charge and
current density are given by

q(x, t) =
∑
i

Zie

∫
fi(x,v, t) dv =

∑
i

Zieni

and j(x, t) =
∑
i

Zie

∫
vfi(x,v, t) dv =

∑
i

Zieniui

for i ∈ S.

We simplify Maxwell’s equations in the following way [Son19]. We assume that
the electric field represents the dominating term such that we neglect the magnetic
field. Moreover, we suppose the fields to be quasi-static, and time derivatives will be
neglected. We end up with the Lorentz force

FL = ZeE (2.17)
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where the electric field is determined by

∇x ×E = 0 (2.18)

and ∇x ·E =
q

ε0
. (2.19)

We impose appropriate boundary conditions, e.g. periodic boundaries or the perfectly
conducting boundary condition E× n = 0 with the outer normal vector n.

As the electric field is curl-free (2.18), there exists a scalar potential ϕ such that

E = −∇xϕ. (2.20)

Together with (2.19), this results in the Poisson equation for the potential:

−∆xϕ =
q

ε0
. (2.21)

We further assume that no external fields apply and that the electric field is self-
consistent; that is the electric field represents a mean field acting on particles due to
inhomogenities in the distribution functions.

In summary, the force F in (2.14) being responsible for the transport in velocity
space is given by the simplified form of the Lorentz force (2.17). It originates from the
self-consistent electric field which is determined by (2.20) and the Poisson equation
(2.21).

The above set of equations describes interesting physical phenomena. In the following,
we mention the Landau damping.

Landau damping We consider the interaction of particles via the self-consistent
electric field. Any further type of collisions of the particles is excluded such that
there will be no relaxation towards a thermal equilibrium. (This will be explained in
the following sections.) We obtain a situation being described by the Vlasov-Poisson
system. The distribution function is determined by

∂tf + v · ∇xf +
Ze

m
E · ∇vf = 0 (2.22)

which is coupled to

E = −∇xϕ and −∆xϕ =
q

ε0
. (2.23)

In one space dimension, (2.23) reduces to

∂xE =
q

ε0
. (2.24)

The Vlasov-Poisson system encounters a damping phenomenon of the electric field
due to an initial disturbance from the equilibrium distribution. The so-called Landau
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damping is an irreversible process representing an uniformization in configuration
space [Bal60]. It was mathematically predicted by Landau in 1946 [Lan46] for
the linearized Vlasov-Poisson system and confirmed later by experiments. The
mathematical result was made rigorous by Mouhot and Villani in 2010 [MV10,
MV11].

For this phenomenon, we are interested in the distribution function of electrons
fe following (2.22). Ions are assumed to be immobile, and they are only considered
as a neutralizing background density n0 obeying the quasi-neutrality condition

0 =

∫
(n0 − ne) dx =

∫ (
n0 −

∫
fe dv

)
dx.

The resulting PDE for the electric field is

∂xE =
1

ε0
(n0 − ne) =

1

ε0

(
n0 −

∫
fe dv

)
.

If collisions between particles are allowed and given e.g. by a BGK operator, the
electric field is damped by two distinct effects [Bau21]: the Landau damping and
the relaxation process according to the H-Theorem which will be explained in the
following section(s).

2.1.3 Boltzmann equation(s)

In 1872, Ludwig Boltzmann published a pioneering equation [Bol09]. It realisti-
cally describes phenomena in dilute atmosphere, e.g. aeronautics in high altitude
or interactions in dilute plasmas, proven by experiments [Cer00, Vil02]. However,
the equation was doubted by many physicists at that time because of the supposed
contradiction between reversible microdynamics and the irreversibility related to the
so-called H-Theorem. Only after 100 years and many discussions, this concern could
be resolved rigorously [Lan75]. Nowadays, the Boltzmann equation is fundamental
in kinetic theory and celebrated in many articles. A lot of (introductory) articles and
textbooks can be found in the literature [CC70, Cer88, Bab98, Cer00, Vil02, EP05,
Gol06].

We make the following assumptions on a monatomic gas [Cer88, Vil02, GMM09].
Firstly, we assume a dilute gas such that only binary interactions take place. For N
hard spheres with radius r in a three dimensional space, this translates to

Nr3 << 1, Nr2 ≈ 1.

Secondly, the description is based on classical mechanics without (chemical)
reactions. Neither quantum nor relativistic effects are taken into account. This is
sensible for a mean distance between particles which is larger than their thermal
deBroglie wavelength and if the ratio of thermal speeds to the speed of light is small.
References for extensions regarding the other cases are given in [Vil02, p. 17].
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Thirdly, the collisions are localized in space and time. The duration time of an
interaction is small compared to the typical time scales of the description.

Fourthly, we consider elastic collisions, so the microscopic conservation of mo-
mentum (2.2) and energy (2.3) are fulfilled.

Fifthly, the collisions are micro-reversible. This means that they are time reversible
at the microscopic level. Speaking of statistics, the probability that v and v∗ change
into v′ and v′

∗ due to a collision is as high as the probability that v′ and v′
∗ change

into v and v∗.
Sixthly, we make Boltzmann’s chaos assumption: Particles which are going to

collide are uncorrelated. However, this assumption causes an asymmetry because
particles are correlated after a collision. Actually, this asymmetry is crucial in or-
der to explain the discrepancy between reversible microdynamics and irreversible
mesodynamics which we discuss later.

With these assumptions, the Boltzmann equation can be formulated.

Definition 2.1.26 (Boltzmann equation). The Boltzmann equation for a distribution
function f reads

∂tf + v · ∇xf = Q[f ] (2.25)

with the collision operator

Q[f ](x,v, t) (2.26)

=

∫
R3

∫
S2

(f(x,v′, t)f(x,v′
∗, t)− f(x,v, t)f(x,v∗, t))K(|v − v∗|, ξ) dξ dv∗,

(2.27)

where K(|v − v∗|, ξ) is the collision kernel, explained later, and ξ represents the unit
vector in scattering direction.

This equation is often called Boltzmann transport equation, too.

In the following, we shortly motivate the collision operator. Let us have a look at
two particles with velocities v and v∗, respectively. The probability that these collide
is given by

f(x,v, t)f(x,v∗, t),

where we use that particles are not correlated before and during the interactions.
Because of the collision, the particles exchange momentum and energy such that
the velocities convert into v′ and v′

∗, respectively, see Figure 2.2. The relations of
the velocities are predicted by the conservation of momentum and energy at the
microscopic level (Theorems 2.1.6 and 2.1.7):

v + v∗ = v′ + v′
∗

v2 + v2
∗ = v′2 + v′2

∗ .
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This means that by such a collision the particles with velocities v and v∗ get ‘lost’,
whereas the particles with velocities v′ and v′

∗ are ‘gained’. The Boltzmann collision
operator combines and sums up the effects of all possible interactions.

The details of these interactions are hidden in the collision kernel K(|v − v∗|, ξ) =
|v − v∗|σ with the differential cross section σ = σ(|v − v∗|, θ) and the deflection
angle θ and cos(θ) = v−v∗

|v−v∗| · ξ. A cross section can be seen as a probability that a
collision occurs. Depending on the underlying model of the particles, several cross
sections can be derived. The most common cross sections correspond to variable soft
spheres, Maxwell molecules, pseudo-Maxwell molecules, hard spheres or Coulomb
collisions (in plasmas). We give these examples in Section 2.2.3. The cross sections
also have impacts on the needed regularity of f and its behavior at the tails [Vil02, p.
50].

The Boltzmann equation satisfies many physical properties such as conservation
of mass, momentum and energy, a reasonable entropy behavior, and an H-theorem
can be proven.

We will specify these statements for the generalization to multi-species. Such an
extension for gas mixtures can be found in [CC70, Cer88, Cer00].

Definition 2.1.27 (Multi-species Boltzmann equations). The multi-species Boltzmann
equations are a system of equations:

∂tfi + v · ∇xfi = Qi[{fi}] (2.28)

for i ∈ S with the collision operator

Qi[{fi}](x,v, t) =
∑
j∈S

Qij [fi, fj ] (2.29)

where the interactions between particles of species i and species j are described by

Qij [fi, fj ] (2.30)

=

∫
R3

∫
S2

(fi(x,v
′, t)fj(x,v

′
∗, t)− fi(x,v, t)fj(x,v∗, t))Kij(|v − v∗|, ξ) dξ dv∗

(2.31)

with Kij(|v − v∗|, ξ) = |v − v∗|σij and the differential cross section σij for the species
pair (i, j).

The pre- and post-collisional velocities follow again the microscopic conservation
of momentum and energy (Theorems 2.1.6 and 2.1.7). But in the multi-species case,
the masses need to be taken into account which results in

miv +mjv∗ = miv
′ +mjv

′
∗

miv
2 +mjv

2
∗ = miv

′2 +mjv
′2
∗ .

The collision operator satisfies the following invariance properties which reflect
important physical laws.
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Theorem 2.1.28 (Conservation properties for multi-species Boltzmann equations).
The multi-species Boltzmann equations conserve mass, total momentum and total energy.
This means for intra-species interactions, it holds∫

Qii[fi, fi] dv = 0, (2.32)∫
Qii[fi, fi]miv dv = 0, (2.33)∫

Qii[fi, fi]mi|v|2 dv = 0, (2.34)

and for inter-species collisions, it holds ∫
Qij [fi, fj ] dv = 0, (2.35)∫

Qij [fi, fj ]miv dv +

∫
Qji[fj , fi]mjv dv = 0, (2.36)∫

Qij [fi, fj ]mi|v|2 dv +

∫
Qji[fj , fi]mj |v|2 dv = 0, (2.37)

for i, j ∈ S and i ̸= j.

Proof. The proof can be found e.g. in [Gol06, Vil02, Pir18].

As already mentioned in the above theorem, these properties represent the
conservation of mass, total momentum and total energy at the kinetic level. Since
the kinetic regime is hard to imagine (f is not physically measurable), we illustrate
this nomenclature in the following theorem.

Theorem 2.1.29 (Macroscopic equations for multi-species Boltzmann equations).
Let f1, f2 ∈ L∞( dv) decay fast enough to zero in v. If f1 and f2 are solutions to (2.28)
in the sense of distributions, the following local macroscopic equations are satisfied:

∂tni +∇x · (niui) = 0,

∂t(ρiui) +∇x · Pi +∇x · (ρiui ⊗ ui) =
∑
j∈S
j ̸=i

∫
miQij [fi, fj ]v dv,

∂t

(
ρi
2
|ui|2 +

3

2
niTi

)
+∇x ·Qi =

∑
j∈S
j ̸=i

∫
mi

2
Qij [fi, fj ]|v|2 dv.

Proof. We give the proof exemplary for the conservation of mass. The other equations
are proven e.g. in [Pir18]. Under some integrability assumptions it holds

0
(2.32),(2.35)

=

∫
Qi[{fi}] dv (2.28)

=

∫
[∂tfi + v · ∇xfi] dv

= ∂t

∫
fi dv +∇x ·

(∫
vfi dv

)
= ∂tni +∇x · (niui).
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Accordingly, the number density, respective mass density are transported through
the space. A further integration with respect to x and Gauß’s law yield that the total
mass

∫
ρi dx of species i ∈ S can only change due to a flux over the boundary of the

spatial domain. For proper boundary conditions, the flux vanishes and the total mass
is conserved.

Similar statements can be formulated for the conservation of total momentum and
the conservation of total energy. But in these cases, the species can exchange momen-
tum and energy, which can be seen by the exchange terms on the RHS. Nevertheless,
the sum over all species vanishes (due to Theorem 2.1.28), and total momentum and
total energy are conserved for proper boundary conditions.

Moreover, the (multi-species) Boltzmann equation fulfils an H-Theorem. This is
a very fundamental property. In the beginning, it caused many doubts because of
the resulting irreversibility at the mescoscopic level. But when the sceptics has been
overcome, the relevance is tremendous. Before we discuss this in more detail, we
define the entropy and corresponding quantities which the H-Theorem is about.

Definition 2.1.30 (Entropy). The entropy density functional of a gas is given by

H[{fi}] =
∑
i∈S

Hi[fi]

with Hi[fi] =

∫
fi log fi dv

(2.38)

and the entropy is ∫
H[{fi}] dx. (2.39)

The entropy dissipation functional reads

D =
∑
i∈S

Di[{fi}]

with Di[{fi}] =
∫

Qi[{fi}] log fi dv,
(2.40)

and we denote the relative entropy of f and g by

H[f |g] =
∫
f log

f

g
dv. (2.41)

‘Entropy’ is also known in statistical mechanics, see (2.13); the Shannon entropy
is a quantity of information [CT05]. The entropy (2.39) coincides with the Shannon
entropy up to a sign. More comments on the physical content of (2.38) can be found
in [Gra61, Vil02].

Often, the entropy density (2.38) is referred to entropy. Even more confusion
comes up when in kinetic theory (and for hyperbolic systems of conservation laws)
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the notion of entropy is generally used to be a functional of specific use (see the
H-Theorem 2.1.31 below). So one better uses and thinks of ‘entropy’ deliberately.

We give the H-Theorem here for the multi-species case. But the real work has
been done by Boltzmann for the one-species model. The H-Theorem was one of the
most important contributions to statistical physics by Boltzmann [Vil02].

Theorem 2.1.31 (H-Theorem for the Boltzmann equation). The entropy is dissipated
in the space homogeneous gas

D ≤ 0 ⇔ ∂tH ≤ 0

with equality if and only if

fi = M[ni,ueq, Teq,mi]

for i ∈ S and an equilibrium velocity ueq and equilibrium temperature Teq which is
common to all species and specified in Proposition 2.1.33. The Maxwellian M is given
in Definition 2.1.32.

In the space inhomogeneous case, it holds true

∂tH+∇x ·
∑
i∈S

∫
vfi log fi dv ≤ 0.

Proof. The proof can be found e.g. in [Cer00, paragraph 6.4]. It uses the basic
inequality

(z − y) log
(y
z

)
≤ 0

for y, z ∈ R+ with equality if and only if y = z. Additionally, the proof relies on the
so-called collision invariants and on the fact that from

φ(v) + φ(v∗) = φ(v′) + φ(v′
∗)

it follows that φ is a linear combination of 1, v and |v|2.

Definition 2.1.32 (Maxwellian). A Maxwellian M(x,v, t) ≥ 0 is a distribution
function of the specific form

M(x,v, t) = M[f ](x,v, t) = M[n,u, T,m](x,v, t) =
n√
2π T

m

d
exp

(
−|v − u|2

2 T
m

)
(2.42)

which shares the same macroscopic quantities with a corresponding distribution function
f ; that is  n

nu
3nT

 =

∫
f

 1
v

m|v − u|2

 dv.
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v

M[n, u, T,m]

u

n

u +
√

T
m

u −
√

T
m

Figure 2.5: A Maxwellian M[n, u, T,m] is illustrated. This special Gaussian is centered around the mean

velocity u, has integral n and standard deviation
√

T
m

. Assuming a Maxwellian distribution, a particle has velocity

v ∈
[
u−

√
T/m, u+

√
T/m

]
with around 68 %.

The exponent d corresponds to the dimensions in v. In this thesis, it is d = 3.
An illustration is given in Figure 2.5.

In the following, we discuss the meaning and consequences of the H-Theorem
and refer to [Vil02, Vil08].

The H-Theorem states that the entropy H is nonincreasing. This is an exemplifi-
cation of the second law of thermodynamics, given in Axiom 2.1.21. But, the second
one being a postulate, the first one is even a theorem. Both describe the irreversibil-
ity of the macrodynamics. However, even though Clausius’ law was accepted, the
H-Theorem gave rise to doubts since it was seen as a contradiction to the reversible
mechanics the Boltzmann equation is derived from [CIP94, Leb95].

The irreversible macrodynamics do not contradict the reversible microdynamics
provided that the macroscopic model is interpreted with the right amount of prob-
ability [EE07, Kac59] (a translated version of [EE07] can be found in [EEML60]).
Referring to the Boltzmann equation, the probabilistic content sticks in the initial data:
Among all microscopic configurations, which are compatible with the distribution
function, we choose one to be the initial configuration. Hereby, the chaos assumption
is relevant, and it is important to handle correctly that particles are uncorrelated
before a collision, but they are correlated after the collision. Otherwise, contradictive
statements can be constructed such as Loschmidt’s paradox [Vil02]. Only in 1975,
Lanford [Lan75] derived the Boltzmann equation rigorously from classical mechanics
— at least for a perturbative framework and for hard-spheres collisions.

We now want to emphasize the importance of the H-Theorem. From a physical
point of view, we recognize the irreversibility of macrodynamics and the exemplifica-
tion of the second law of thermodynamics. From a mathematical point of view, we
make the following comments. To start with, we admit that the proof is not rigorous
in a satisfactory generality because we do not know in general whether the solutions
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of Boltzmann’s equation are smooth enough. However, the theorem’s consequences
and interpretations are pleasing.

There is a statistical (microscopic) meaning. The more exceptional an observed
configuration is, the higher is the entropy. This fits the Shannon entropy which
indicates how much information a signal contains.

Moreover, the H-Theorem gives us powerful a priori estimates for the Boltzmann
equation. It specifies that the entropy and also the entropy dissipation are finite,
determined by the initial entropy.

The qualitative behavior for long times is also given by the H-Theorem, and we
can study the relaxation to equilibrium (when the collision term is zero). The entropy
density decreases strictly and vanishes if and only if the distribution function has
the specific form of a local Maxwellian. Local means that the corresponding number
density, mean velocity and temperature may vary in x. Maxwellian means yet that
the distribution function behaves hydrodynamically. Together with the transport,
the distribution function converges to a global Maxwellian; there is no spatial de-
pendence anymore. To motivate this hydrodynamic limit mathematically, we bring
some statements together: If the mean free path is short (the Knudsen number
becomes small), the collisions play a very significant role. And then the finiteness
of the entropy dissipation pushes the distribution function to be close to the local
Maxwellian.

Both the H-Theorem and the conservation properties are fundamental for the Boltz-
mann equation. They are also the elementary properties in order to call an approxi-
mative model consistent. Once, these properties are proven, several features follow
automatically. In this sense, the conservation properties in Theorem 2.1.28 inherit
that e.g. the mixture quantities in equilibrium can be precomputed from initial data
in the space homogeneous case. The following statement is also proven for a more
special case in [HHK+22].

Proposition 2.1.33. In the spatially homogeneous case of a consistent kinetic equation,
the mixture mean velocity umix and mixture temperature Tmix, defined in Definition
2.1.16, stay constant in time.

Proof. In the homogeneous setting, the number densities ni, the mass densities ρi
and the total momentum

∑
i∈S ρiui are all constant in time due to Theorem 2.1.28.

Hence the ratio ∑
i∈S ρiui∑
i∈S ρi

which defines umix is constant in time. To show that Tmix is constant in time, we use
Definition 2.1.16 to write

3

2
nmixTmix = I− II, (2.43)

where

I =
∑
i∈S

1

2
ρi|ui|2 +

3

2
niTi (2.44)
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is the total energy and

II =
1

2
ρmix|umix|2. (2.45)

In the homogeneous case, both I and II are constant in time. And we conclude that
Tmix is also constant in time because of formula (2.43).

Corollary 2.1.34. In the homogeneous case of a consistent kinetic equation, the mean
velocity ueq and temperature Teq in equilibrium can be computed from the initial data
by

ueq = umix(t = 0) and (2.46)

Teq = Tmix(t = 0) (2.47)

where umix and Tmix are the mixture quantities given in Definition 2.1.16.

Proof. This follows from Proposition 2.1.33 and the H-Theorem 2.1.31 where it says
that all species share the same mean velocity ueq and the same temperature Teq in
equilibrium.

The formulae (2.46) and (2.47) apply to any kinetic model satisfying the conser-
vation properties and the H-Theorem. The latter one implies |ui − uj |(t) → 0 for
t→ ∞ such that, in equilibrium, the equation for the temperature simplifies to

Teq = Tmix(t→ ∞)
(2.9)
=

∑
i niTi(t→ ∞)∑

i ni
.

For some models, even more can be said. E.g. for the multi-species BGK model in
[KPP17, CKP20] it is known that the decay is exponentially fast, see Section 2.1.4.

The Boltzmann equation is fundamental in kinetic theory. But especially in nu-
merics, this model suffers from some drawbacks. It is computationally costly to
evaluate the complicated collision operator which makes implicit time discretizations
extremely demanding. These are essential for strong interactions when approaching
the hydrodynamic regime. So simplifications of the collision operator become nec-
essary. One approach is the linearization, another approach is the modelling of the
interaction part. The latter one may lead to the BGK equation.

2.1.4 BGK equation(s) and their extensions

In 1954, the so-called BGK model was published by Bathnagar, Gross and Krook
[BGK54]. It is an approximation to the Boltzmann equation where (2.26) is replaced
by a simpler operator. Basic properties like the conservation of mass, momentum and
energy and an H-theorem are verified. However, some properties are lost due to the
approximation, e.g. the correct Prandtl number [Str97, ALPP00]. Nevertheless, in
many occasions the benefits predominate, and the field of BGK equations is an active
topic of research.
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In the following, we motivate the BGK equation and refer to [BGK54, Str05]. The
fundamental assumption for BGK models is that the distribution function is near equi-
librium. Therefore, the distribution functions corresponding to the post-collisional
velocities can be written as Maxwellians∫

R3

∫
S2

(f(v′)f(v′
∗)− f(v)f(v∗))K(|v − v∗|, ξ) dξ dv∗

≈
∫
R3

∫
S2

(M(v′)M(v′
∗)− f(v)f(v∗))K(|v − v∗|, ξ) dξ dv∗

=

∫
R3

∫
S2

(M(v)M(v∗)− f(v)f(v∗))K(|v − v∗|, ξ) dξ dv∗

= M(v)

∫
R3

∫
S2

M(v∗)K(|v − v∗|, ξ) dξ dv∗

− f(v)

∫
R3

∫
S2

f(v∗)K(|v − v∗|, ξ) dξ dv∗.

The second but last equality holds because of

M(v′)M(v′
∗) = M(v)M(v∗)

which comes by the microscopic conservation laws (2.2) and (2.3). Since we assume
that we are close to equilibrium, we can state∫

R3

∫
S2

f(v∗)K(|v − v∗|, ξ) dξ dv∗ ≈
∫
R3

∫
S2

M(v∗)K(|v − v∗|, ξ) dξ dv∗,

and it follows∫
R3

∫
S2

(f(v′)f(v′
∗)− f(v)f(v∗))K(|v − v∗|, ξ) dξ dv∗ ≈ ν(v)(M(v)− f(v))

with the collision frequency

ν(x,v, t) =

∫
R3

∫
S2

M(x,v∗, t)K(|v − v∗|, ξ) dξ dv∗. (2.48)

This integral (2.48) can be very complicated as discussed in Section 2.2.3. Only for
very special cross sections (such as for Maxwellian molecules (2.90)), the integral
is evaluable explicitely and independently of the microscopic velocity. Actually, a
velocity-independent collision frequency simplifies the following calculations a lot.
That is why usually the velocity dependence is avoided by very special cross sections,
or an average value ν̄ = 1

n

∫
νf dv is taken. However, this assumption includes

physical drawbacks. In [Str97, HHK+21], the velocity challenge is faced.
In this section, we assume that the collision frequency is independent of the

microscopic velocity; that is ν(x,v, t) = ν(x, t). Then, we can introduce the following
BGK equation.
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v

M

f

Figure 2.6: Illustration for the space homogeneous BGK equation: The distribution function f relaxes to the
corresponding Maxwellian M. When equilibrium is reached, it holds f = M.

Definition 2.1.35 (BGK equation). The BGK equation takes the form

∂tf + v · ∇xf = Q[f ] (2.49)

with the BGK collision operator

Q[f ] = ν(M[f ]− f) (2.50)

and the collision frequency ν = ν(x, t).

In this context, the collision or interaction operator Q[f ] is also called relaxation
operator. This is motivated in the following and illustrated in Figure 2.6. In the space
homogeneous case, the BGK equation reads

∂tf = ν(M− f).

If M > f , then the RHS is positive. This results in a positive time derivative of f
which means that f increases in time. However, if M < f , then the negative RHS
leads to a negative time derivative of f , and f decreases in time. In summary, f
relaxes to M.

Another way to motivate the BGK equation is a minimization procedure [ALPP00].
In a more general set-up, this is executed in Section 2.2, and the motivation for the
standard BGK model is captured as special case for simplified collision frequencies.

The BGK equation is an approximation to the Boltzmann model. Yet, they share the
same main properties.

Theorem 2.1.36 (Properties of the BGK model). Let ν, f > 0 and f ∈ L∞( dv) be a
solution of the BGK equation decaying fast enough to zero for |v| → ∞. Then the BGK
collision operator (2.50) shares the same main properties as the Boltzmann collision
operator (2.26), that is conservation of mass, momentum and energy, H-Theorem and
the structure of the equilibrium.
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Proof. The proof can be found in [Str05, Section 3.6]. The fact that the collision
frequency is independent of the microscopic velocity is used in a fundamental way.
We show this for the conservation of mass. It is∫

Q[f ] dv =

∫
ν(M[f ]− f) dv

(∗)
= ν

∫
(M[f ]− f) dv = 0.

The integral vanishes because the Maxwellian M[f ] shares the same number density
with f . However, we emphasize that (∗) only holds true for velocity-independent
collision frequencies.

Theorem 2.1.36 makes the BGK model to a consistent approximation of the Boltz-
mann equation. However, the simplification of the collision operator goes with some
(physical) drawbacks. By extending the BGK model while maintaining a simplified
RHS, one overcomes these physical discrepancies. In the following, we list some
extensions which also can be combined. We do not claim completeness.

The Boltzmann equation reproduces the correct Prandtl number (Definition 2.1.19),
whereas the standard BGK model gives Pr = 1 which is unphysical. One way to fix this
issue is to use ellipsoidal statistical BGK (ES-BGK) models [Hol66, ALPP00, KPP18,
ZS05]. There, the Maxwellian in the relaxation term is replaced by a function of the
same form but the scalar temperature is turned to a tensorial analogue. Alternatively,
one may use a Shakhov model [Sha68, BY21] where the Maxwellian is multiplied
with an extra term that adjusts the heat flux, but that does not affect the collision
invariants.

For the one-species BGK model, the correct Prandtl number can also be regained
by using velocity-dependent collision frequencies [Str97, MS04, ZS05]. For an ex-
tension to multi-species [HHK+21] one has not proven this additional feature, yet.
Anyway, the velocity-dependent collision frequency is a way to come closer to the
Boltzmann equation again because the constant collision frequency in the BGK model
is an additional assumption.

We already presented the multi-species Boltzmann equations. This is a natural exten-
sion since, in nature, there are usually gas mixtures instead of pure one-species gases.
For the same reasons, there exist several extensions of the BGK equation to multi
species which can be devided into two different classes. The first class of multi-species
BGK models uses one relaxation operator on the RHS [AAP02, BPS12, GMS11]. The
second class of multi-species BGK models employs the same structure as the multi-
species Boltzmann equations (2.28) which results in the sum of N relaxation opera-
tors for N species. We will present a general model of those in the following section.
This model [KPP17] captures a lot of proposed models in the literature as special cases,
such as [GK56, Ham65, Asi08, GSB89, SS01, Cer88, Gre73, HHM17a, BBG+18].

Another simplification used in the standard Boltzmann and BGK models is that
only monatomic particles are considered. In order to deal with molecules, polyatomic
models have been developed. The number of degrees of freedoms increases as
rotations and vibrations become possible. We refer to the nice review in [Pir21].
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In this thesis, we only consider physical phenomena. If chemical reactions should
be taken into account, the model needs to be changed which especially influences
the conservation of mass. References concerning with chemical reactive gases can be
found in [BKPY21].

Currently, we only considered classical physics. But there are also extensions
for relativistic and quantum regimes, respectively. BGK models including relativistic
effects can be found in [PR18, BCNS12]. For quantum models, we refer to [BKPY21]
and references therein. This is also concerned with in Section 2.3.

We are especially interested in gas mixtures, so we focus on models for multi species.
In the following, we shortly recall the general consistent multi-species BGK model
[KPP17]. It was developed by Klingenberg, Pirner and Puppo in 2017 which is why
we use Klingenberg-Pirner-Puppo (KPP) in the following to refer to this model. Its
special feature are free parameters which — appropriately chosen — generate many
other multi-species models in the literature or which can be used to match additional
physical properties.

KPP: a consistent multi-species BGK model

This model is nicely presented and many properties are summarized in [Pir18]. In
the following, we give a short overview and also include more recent results.

For simplicity in notation and statements, we present the multi-species BGK model
[KPP17] for two species, but the model can be extended to an arbitrary number of
species because we only consider binary interactions. The structure of the RHS of
the multi-species Boltzmann equations (2.28) is preserved, but every single collision
operator is replaced by a BGK approximation consisting of a collision frequency νkjnj
multiplied by the deviation of the distributions from a local Maxwell distribution.

Definition 2.1.37 (Multi-species BGK equations). The multi-species BGK equations in
[KPP17] read

∂tf1 + v · ∇xf1 = Q1[{f1, f2}],
∂tf2 + v · ∇xf2 = Q2[{f1, f2}]

(2.51)

with the collision operators

Q1[{f1, f2}] = Q11[f1, f1] +Q12[f1, f2] = ν11n1(M11 − f1) + ν12n2(M12 − f1),
(2.52)

Q2[{f1, f2}] = Q22[f2, f2] +Q21[f2, f1] = ν22n2(M22 − f2) + ν21n1(M21 − f2)
(2.53)

and the collision frequencies per density (i, j = 1, 2)

νij = νij(x, t).
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The Maxwellians M11 = M[f1] and M22 = M[f2] are already known from the
one-species case. On top of that, the mixture Maxwellians M12 and M21 are given
by

M12(x,v, t) = M[n12,u12, T12,m1] =
n12√
2π T12

m1

3 exp

(
−|v − u12|2

2T12

m1

)
,

M21(x,v, t) = M[n21,u21, T21,m2] =
n21√
2π T21

m2

3 exp

(
−|v − u21|2

2T21

m2

)
,

(2.54)

where nij , uij and Tij still need to be defined. Actually, the collision frequencies νijnj
and the macroscopic mixture quantities nij , uij and Tij represent degrees of freedom
which can be used in order to obtain desired properties. The main task is to satisfy
the fundamental properties of the Boltzmann equation: conservation of mass, total
momentum and total energy as well as the correct entropy behavior.

The collision frequencies ν11n1 and ν22n2 are related to intra-species collisions,
whereas ν12n2 and ν21n1 correspond to inter-species collisions. Usually, the latter
ones are linked by a constant, e.g. the mass ratio in the case of a plasma [Pir18,
Section 5.2.1]. So we assume

ν12 = εν21, 0 < ε ≤ 1. (2.55)

The requirement on ε is not restrictive. If ε > 1, the exchange of the notation 1 and 2
yields 1

ε ≤ 1. In addition, all collision frequencies are assumed to be positive.

Remark 2.1.38. In this section, the collision frequency is denoted by νn where ν is the
collision frequency per density. This notation simplifies later statements and theorems.
However, in the rest of this thesis the collision frequency itself is denoted by ν.

The choices M11 = M[f1] and M22 = M[f2] guarantee the conservation of mass,
momentum and energy during interactions of particles of one species with itself
(2.32)–(2.34). Accordingly, the parameters n12, n21,u12,u21, T12 and T21 for M12

and M21 are supposed to guarantee the conservation of the number of particles, total
momentum and total energy (2.35)–(2.37) during inter-species interactions. We
impose that u12 is a linear combination of u1 and u2, and T12 is a linear combination
of T1 and T2 plus a velocity term. Then corresponding expression for u21 and T21 can
be found while satisfying the conservation properties.

Theorem 2.1.39 (Conservation properties for the KPP model). Let M11 = M[f1]
and M22 = M[f2]. For the mixture Maxwellians M12(x,v, t) = M[n12,u12, T12,m1]
and M21(x,v, t) = M[n21,u21, T21,m2] define

n12 = n1 and n21 = n2, (2.56)
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and

u12 = δu1 + (1− δ)u2,

u21 = u2 −
m1

m2
ε(1− δ)(u2 − u1),

(2.57)

as well as

T12 = αT1 + (1− α)T2 + γ|u1 − u2|2,

T21 =

[
1

3
εm1(1− δ)

(
m1

m2
ε(δ − 1) + δ + 1

)
− εγ

]
|u1 − u2|2

+ ε(1− α)T1 + (1− ε(1− α))T2,

(2.58)

with

0 ≤ α ≤ 1, δ ∈ R, γ ≥ 0. (2.59)

Then the BGK equations (2.51) satisfy conservation of mass (2.32)/(2.35), total mo-
mentum (2.33)/(2.36) and total energy (2.34)/(2.37).

Proof. The proofs can be found in [KPP17, Theorems 2.1–2.3].

The newly introduced parameters α, δ and γ play an essential role in this model.
On the one hand, they can be physically interpreted. On the other hand, they
equip the model with more degrees of freedom which can be used to match specific
properties. Both features are discussed later. But first of all, we need to restrict δ and
γ in order to ensure the positivity of temperatures.

Theorem 2.1.40 (Positivity of temperatures for the KPP model). All temperatures in
(2.51) are positive if

0 ≤ γ ≤ m1

3
(1− δ)

[
(1 +

m1

m2
ε)δ + 1− m1

m2
ε

]
, (2.60)

and
m1

m2
ε− 1

1 + m1

m2
ε
≤ δ ≤ 1. (2.61)

Proof. The proof is given in [KPP17, Theorem 2.5].

Another fundamental property corresponds to the entropy.

Theorem 2.1.41 (H-Theorem for the KPP model). Let f1, f2 > 0. Assume the
relationships (2.55)–(2.61) for α, δ ̸= 1. Then it holds

D =

∫
ν11(M11 − f1) log f1 dv +

∫
ν12(M12 − f1) log f1 dv

+

∫
ν21(M21 − f2) log f2 dv +

∫
ν22(M22 − f2) log f2 dv ≤ 0

with equality if and only if f1 and f2 are Maxwellians with equal mean velocity and
temperature.
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Proof. The proof is given in [KPP17, Theorem 2.7].

As for the Boltzmann equation, the H-Theorem gives us the qualitative behavior
in equilibrium. There, the relaxation term vanishes which implies a specific form of
the kernel — a Maxwellian.

Theoretical results of this model We give a short overview over recent theoretical
results concerning existence of solutions and large-time behavior which is also given
in [PWed].

In the periodic setting and under certain conditions on the initial data and the
collision frequencies, there exist unique mild solutions to (2.51), proven in [KP17].
Mild solutions are a class of solutions with lower regularity than in the classical sense,
comparable to the notion of weak solutions [Pir18].

In [BKYP22], there is another existence result concerning the existence of a
unique global-in-time classical solution when the initial data are perturbed slightly
from a global equilibrium.

Moreover, one can prove the following results on the large-time behavior.

Theorem 2.1.42 (Estimates for the distribution functions for the KPP model). Let
ν12 be constant in time and consider the space homogeneous case. Then, we have the
following decay rate of the distribution functions f1 and f2

||fi −Mi||L1(dv) ≤ 4e−
1
2Ct[H(f01 |M0

1) +H(f02 |M0
2)]

1
2 , i = 1, 2,

where C is the constant given by

C = min{ν11n1 + ν12n2, ν22n2 + ν21n1}

and the superscript 0 denotes the value at time t = 0. Here, we use the relative entropy
defined in (2.41).

Proof. The proof is given in [CKP20, Theorem 4.1].

Theorem 2.1.43 (Estimates for the mean velocities for the KPP model). Let ν12
be constant in time and consider the space homogeneous case. It holds the following
relaxation rate

∂t(u1 − u2) = ν12(1− δ)

(
n2 + ε

m1

m2
n1

)
(u2 − u1) (2.62)

and the following decay rate for the mean velocities

|u1(t)− u2(t)|2 = e
−2ν12(1−δ)

(
n2+ε

m1
m2

n1

)
t|u1(0)− u2(0)|2. (2.63)

Proof. The proof can be found in [CKP20, Theorem 4.2].
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Theorem 2.1.44 (Estimates for the temperatures for the KPP model). Let ν12 be
constant in time and consider the space homogeneous case. It holds the following
relaxation rate

∂t(T1 − T2) = −C1(T1 − T2) + C2|u1 − u2|2 (2.64)

and the following decay rate for the temperatures

T1(t)− T2(t) = e−C1t

[
T1(0)− T2(0) +

C2

C1 − C3
(e(C1−C3)t − 1)|u1(0)− u2(0)|2

]
,

(2.65)

where the constants are defined by

C1 = (1− α)ν12 (n2 + εn1) ,

C2 = ν12

(
n2

(
(1− δ)2 +

γ

m1

)
− εn1

(
1− δ2 − γ

m1

))
,

C3 = 2ν12(1− δ)

(
n2 + ε

m1

m2
n1

)
.

Proof. The proof can be found in [CKP20, Theorem 4.3].

More results for the linearized collision operator in the space homogeneous case
can be found in [LP19] where hypocoercivity in continuous phase space is studied.
The authors prove exponential relaxation to global equilibrium with explicit rates.
Their strategy is based on the entropy and spectral methods adapting Lyapunov’s
direct method as presented in [AAC16] for the one-species linearized BGK model.

In the hydrodynamic limit, we obtain the following result.

Theorem 2.1.45 (Macroscopic equations for the KPP model). The macroscopic equa-
tions of the multi-species BGK model (2.51) read

∂tni +∇x · (niui) = 0,

∂t(ρiui) +∇x · Pi +∇x · (ρiui ⊗ ui) = fmi,j
,

∂t

(
ρi
2
|ui|2 +

3

2
niTi

)
+∇x ·Qi = FEi,j ,

with the exchange terms fmi,j
and FEi,j

given by

fm1,2
= −fm2,1

= m1ν12n1n2(1− δ)(u2 − u1),

FE1,2
= −FE2,1

=

[
ν12

1

2
n1n2m1(δ − 1)(u1 + u2 + δ(u1 − u2)) +

1

2
ν12n1n2γ(u1 − u2)

]
· (u1 − u2) +

3

2
εν21n1n2(1− α)(T2 − T1).
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Proof. The LHS is the same as the one of the macroscopic equations for the Boltzmann
equations in Theorem 2.1.29, but the RHS differs. For the Boltzmann operator, the
integrals are only computable in special cases (e.g. for Maxwellian molecules, see
(2.90)). Whereas for the BGK operators (2.52), it is possible to evaluate these
integrals explicitly by using Theorem 2.1.39 and its proof.

Meaning and possible choices of the free parameters In this section, we deal
with the meaning and possible choices of the free parameters. In Theorems 2.1.43–
2.1.45, we observe a physical meaning of α and δ. We see that α and δ show up in
the exchange terms of momentum and energy as parameters in front of the relaxation
of u1 towards u2 and T1 towards T2. So they determine, together with the collision
frequencies, the speed of relaxation of the mean velocities and the temperatures to a
common value.

These parameters can be tuned to make the model more physical. One possibil-
ity is to choose the parameters in such a way that the macroscopic exchange terms
of momentum and energy match the ones for the Boltzmann equation. Since the
Boltzmann equation is considered to be physical, the same applies in this case for the
relaxation rates of the multi-species BGK equations.

The following calculations are performed by myself and published in [PWed].
We follow [HHM17a, Chapter 4.1] and compare the relaxation rates in the space
homogeneous case to the relaxation rates for the space homogeneous Boltzmann
equations. In [HHM17a], they find formulas for νij such that either their relaxation
rate for the mean velocities or their relaxation rate for the temperatures coincides
with the corresponding rate of the Boltzmann equation. But using the free parameters
α, δ and γ, we are able to match both of the relaxation rates at the same time.

The relaxation rates for the multi-species Boltzmann equations are given in
[HHM17a] and read

∂t(u2 − u1)

∣∣∣∣
Boltz

= −α12

(
ρ1 + ρ2
ρ1ρ2

· m1 +m2

2

)
(u2 − u1) (2.66)

∂t(T2 − T1)

∣∣∣∣
Boltz

= −α12

[
n1 + n2
n1n2

(T2 − T1) +
ρ2 − ρ1
3n1n2

|u2 − u1|2
]
, (2.67)

where α12 is a coefficient for energy transfer coming from the Boltzmann equation,
see [HHM17a] and references therein. We compare the coefficients of the terms
u2 − u1, T2 − T1 and |u2 − u1|2 in these Boltzmann relaxation rates (2.66)–(2.67)
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with the coefficients for the BGK relaxation rates (2.62) and (2.64). This results in
the specific parameters:

(u2 − u1)-term: δ = 1− α12

ν12

m1 +m2

2

m1n1 +m2n2
m1n1m2n2

(
n1
m1

m2
+ n2

)−1

,

(T2 − T1)-term: α = 1− α12

ν12n2n1
,

|u2 − u1|2-term:

γ =
1

3
(n1 + n2)

−1

[
α12

ν12

m2n2 −m1n1
n2n1

−m1n2(1− δ)2 +m1n1(1− δ2)

]
.

Additionally, the constraints (2.59)–(2.61) need to be satisfied. This can be verified
by a corresponding choice of νij . One possibility is

νij =
1

2

αij

ninj

(mi +mj)
2

mimj
(2.68)

and for 1 ≥ ε = mi

mj
(cf. in a plasma). Then, ν11 and ν22 are still free and can be set

in a desired way.
Alternatively but in an analogous way, the free parameters can be used to match

the entropy decay rate or transport coefficients.

Another use for the parameters is the following one. They can be set such that
we generate special cases of multi-species BGK models in the literature [GK56,
Ham65, Asi08, GSB89, SS01, Cer88, Gre73, BBG+18, HHM17a].

All models, which can be considered as special cases of the class described here,
enjoy the theoretical properties derived for the more general KPP model: an H-
theorem, conservation properties, positivity of the inter-species temperatures and the
quantitative decay rates to equilibrium.

If we exemplary choose

ε = 1, δ =
m1

m1 +m2
, α =

m2
1 +m2

2

(m1 +m2)2
, γ =

m1m2

(m1 +m2)2
m2

3
,

we obtain the model by Hamel in [Ham65]. This is done in more details in
[KP17, Pir18].

In [HHM17a], Haack, Hauck and Murillo introduce their multi-species BGK model.
They assume a symmetry of the mixed mean velocities uij and temperatures Tij
which coincides with the choice

δ =
m1ν12

m1ν12 +m2ν21
, α =

ν12
ν12 + ν21

, γ =
m1m2ν12ν21

3(ν12 + ν21)(m1ν12 + ν21m2)
,

respective

δ =
m1ε

m2 +m1ε
, α =

ε

1 + ε
, γ =

εm1m2

3(1 + ε)(m1ε+m2)
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provided that ν12 = εν21. Be aware of the slightly different definition of νij according
to Remark 2.1.38. We used the notation of the KPP model here.

In their article [HHM17a], the authors additionally derive a fluid transport model
by using a Chapman-Enskog expansion. On top of that, they illustrate the relaxation
process in a spatially homogeneous plasma by numerical tests matching either the
mean velocity or temperature relaxation rate to the Boltzmann one.

In [BBG+18], the authors derive a multi-species BGK model explicitely for an ar-
bitrary number of species where they specify the free parameters for Maxwellian
molecules. This notion refers to specific cross sections, see Section 2.2.3. It is

δ =
m1

m1 +m2
, α =

2δm2

m1 +m2
, γ =

δm2

3

(
2m1

m1 +m2
− δ

)
,

and the model [BBG+18] can be seen as a special case of the KPP model. This justifies
in retrospect the linear combinations in KPP for the mixed quantities to be sensible
and natural.

Having multi-species BGK models at hand, we aim to extend such a model by
velocity-dependent collision frequencies.

2.2 Multi-species BGK models with velocity-dependent col-
lision frequency

2.2.1 Motivation

Deriving the BGK equation (2.49) from the Boltzmann equation (2.25), the collision
frequency ν appears as an integral over the differential cross section σ, see (2.48).
The latter one defines the underlying physics during the collisions which is then
inherited to the collision frequencies. In (2.48), we see that the collision frequency
naturally depends on the microscopic velocity v. However, in the standard BGK
models and many extensions, this dependence is neglected for reasons of simplicity
which we have comprehended in the proof of Theorem 2.1.36. Transport coefficients
derived via the Chapman-Enskog expansion are very sensitive to the dynamics of
the tails of the distribution function [CC70] so that this simplification may have
profound effects on e.g. the resulting hydrodynamic behavior associated with this
model. Now, equipped with around 50 years of further math experience, it makes
sense to reintroduce the dependence on the microscopic velocity in order to come
closer to the behavior of the Boltzmann equation again.

But also from physical considerations, we expect a velocity dependence. We can
think of different motivations for respective types of interactions why the velocity
dependence becomes important.
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2 Theory of kinetic models

Firstly, we consider billiard balls. If all balls had exactly the same velocity, no
collisions would occur at all. But the larger the relative velocity, the more collisions
are expected, see Figure 2.7.

mean velocity

no collisions

mean velocity

collisions possible

Figure 2.7: In both illustrations, the fluid’s mean velocity is the same. In the left illustration, each particle’s velocity
coincides with the mean velocity so that the relative velocities vanish. Collisions between particles are not possible.
However, in the right illustration, all particles have different velocities (in direction and absolute value) which results in
very distinct relative velocities. This can lead to collisions.

We illustrate the second motivation in Figure 2.8. Especially for plasmas where a
Coulomb force is encountered, it is better to think of interactions between particles
than of collisions. Let us consider two particles in the frame of reference where
particle 2 is at rest. The (effective) cross section in which the two particles interact
is given by the dashed circle. Actually, the Coulomb potential ranges to infinity, but
it is often replaced by an effective potential with finite range, see Section 2.2.3. If
particle 1 moves fast (red line, for a large relative velocity), it spends little time in
the cross section and just passes particle 2. The effect of an attractive interaction is
small. Whereas, if particle 1 moves slowly (blue line, for a small relative velocity), it
stays quite a while in the cross section such that the interaction has a large effect. We
conclude that the microscopic velocity and more precise the relative velocity plays an
important role for the interactions between particles.

particle 1

particle 2

Figure 2.8: An attractive interaction between particle 1 and particle 2 is illustrated. We assume the frame of reference
where particle 2 is at rest and give the effective cross section (the area in which an interaction is possible) by a
dashed circle. For a large velocity of particle 1 (red line), the effect of the interaction is small. But for a small velocity
of particle 1 (blue line), particle 1 is deflected more due to a strong interaction.
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2.2 Multi-species BGK models with v-dependent collision frequency

Be aware that this is only an illustration. We still assume that collisions, respective
interactions take place instantaneously. In our model, this means that these interac-
tions à la Coulomb are condensed in time to a single moment. Alternatively speaking,
the time scales for the interactions are much smaller than the system’s time scale.

These two considerations show that there is a range of relative velocities where
we really expect an impact on collisions. Since the temperature scales like T ∝∫
|v− u|2f dv, which also involves the relative velocity, our observations translate to

the temperature. One characteristic of a plasma is its usual high temperature. This
explains why a velocity-dependent collision frequency might be more important in a
plasma than in cold water.

2.2.2 A consistent BGK model with velocity-dependent collision fre-
quency for gas mixtures

In the derivation of the standard BGK model, the collision frequency is assumed
to be constant in velocity. This holds true only for very specific cross sections, but
it simplifies the model a lot. The generalization to velocity-dependent collision
frequencies poses many challenges in the structure and for the proofs.

Single-species BGK models with velocity-dependent collision frequency were
introduced in [Cer66, BP93, Str97]. Since we are especially interested in gas mixtures,
we recall the multi-species model presented in [HHK+21] which includes [Str97] as
a by-product.

For reasons of readability and simplicity in notation, we stick to two species. The
extension to multi species can be found in [HHK+21].

We consider two distribution functions f1 = f1(x,v, t) ≥ 0 and f2 = f2(x,v, t) ≥
0 for the species with masses m1 and m2, respectively, and for x ∈ R3 and v ∈ R3

being the phase space variables and t ≥ 0 the time.

Definition 2.2.1 (Multi-species BGK equations with velocity-dependent collision
frequency). The multi-species BGK equations in [HHK+21] read

∂tf1 + v · ∇xf1 = Q1[{f1, f2}],
∂tf2 + v · ∇xf2 = Q2[{f1, f2}]

(2.69)

with the collision operators

Q1[{f1, f2}] = Q11[f1, f1] +Q12[f1, f2] = ν11(G11 − f1) + ν12(G12 − f1), (2.70)

Q2[{f1, f2}] = Q22[f2, f2] +Q21[f2, f1] = ν22(G22 − f2) + ν21(G21 − f2) (2.71)

and the collision frequencies (i, j = 1, 2)

νij = νij(x,v, t) ≥ 0.

In the following, we use the notation

ai(v) = mi

 1
v

|v|2

 (2.72)
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for i = 1, 2. Before we specify the target functions Gij , we assume some integrability
properties regarding the effect of the velocity-dependent collision frequencies.

Assumption 2.2.2. Each collision frequency νij is strictly positive with the additional
property that

{λ ∈ R5 | exp(λ · ai) ∈ L1(R3)} = {λ = (λ(0),λ(1), λ(2)) ∈ R× R3 × R |λ(2) < 0}

is independent of i and j.

This assumption ensures integrability properties being satisfied for velocity-
independent collision frequencies which holds true for many realistic frequency
models.

The BGK system (2.69) maintains the structure from the multi-species Boltzmann
(2.28) and BGK (2.51) equations. However, the velocity-dependent collision fre-
quency introduces many challenges regarding the target functions Gij which still
need to be defined. They are chosen in such a way that they guarantee the consis-
tency of the model by construction. This construction includes the constant collision
frequency case in which the multi-species BGK model in [HHM17a] is regained.

We first give the form of the target functions Gij followed by the interpretation
and derivation.

Definition 2.2.3 (Target functions for the multi-species BGK model with ν(v)). The
target functions for the multi-species BGK equations (2.69) are given by

Gii[fi] = eλii·ai(v), (2.73)

Gij [fi, fj ] = eλij ·ai(v) (2.74)

for i, j = 1, 2, i ̸= j. The parameters λii =
(
λ
(0)
ii ,λ

(1)
ii , λ

(2)
ii

)⊤
∈ R × R3 × R− and

λij =
(
λ
(0)
ij ,λ

(1), λ(2)
)⊤

∈ R × R3 × R− depend on the corresponding distribution
functions f1 and f2.

We can think of several names for Gij: target functions, attractors or generalized
Maxwellians. This comes by different possibilities how these are interpreted. On the
one hand, target function, respective attractor comes by the fact that the relaxation
structure of (2.69) pushes fi to Gii. On the other hand, since Gii are Gaussian
functions, for a given mass m there exist a number density ñ, a mean velocity ũ, a
temperature T̃ such that we can write

Gii = M[ñ, ũ, T̃ ,m].

However, this is missleading because in general this Maxwellian cannot be associated
with the distribution function fi, i.e. Gii ̸= M[fi]. This is why we prefer the other
names. In addition, we want to emphasize that, in general, we cannot express the
macroscopic quantities ni, ui and Ti as analytic functions of λi and λij . For constant
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2.2 Multi-species BGK models with v-dependent collision frequency

collision frequencies, this is possible (see Remark 3.2.3), but for velocity-dependent
collision frequencies we do not know any explicit relationship. In the following
section, we will see how Gii and fi yet are connected.

The form of these target functions actually comes by physical requirements. Let
us first consider the intra-species target functions Gii.

Intra-species target functions

We seek a distribution function which minimizes the entropy while conserving mass,
momentum and energy for intra-species interactions. Here we refer to ‘entropy’ to be
a special functional. We weight the usual objective by the collision frequencies which
in the end will yield the form of Gii. We define the strictly convex function

h(z) = z log z − z, z > 0,

and the constrained minimization problem reads

min
g∈χii

∫
νiih(g) dv, i ∈ {1, 2}, (2.75)

where

χii =

{
g
∣∣∣ g > 0, νii(1 + |v|2)g ∈ L1(R3),

∫
νiiai(v)(g − fi) dv = 0

}
.

Via the constraints in the set χii, the conservation properties (2.32)–(2.34) are
ensured. The problem (2.75) can be reformulated by using the Lagrange functional

Lii(g,α) =

∫
νiih(g) dv −α ·

∫
νiiai(v)(g − fi) dv. (2.76)

Any critical point satisfies the first-order optimality condition

δLii

δg
(Gii,λii) = νii(lnGii − λii · ai(v)) = 0,

which results in

Gii = exp (λii · ai(v)) = exp
(
miλ

(0)
ii +miλ

(1)
ii · v +miλ

(2)
ii |v|2

)
.

For Λ := {α = (α(0),α(1), α(2))⊤ ∈ R× R3 × R−}, the multipliers λii ∈ Λ solve the
dual of (2.76):

λii = argmin
α∈Λ

zii(α,µii) (2.77)

with

zii(α,µii) = −
∫
νiie

α·ai dv +α · µii
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and

µii =

∫
νiiaifi dv.

Having motivated the intra-species target functions, we prove that they are well-
posed. For this, we define the set

Iij := {g ≥ 0 | νij(1 + |v|2)g ∈ L1(R3), g ̸≡ 0}

clarifying integrability conditions.

Theorem 2.2.4 (Well-posedness of intra-species target functions for the multi-species
BGK model with ν(v)). There exists a unique function of the form (2.73) which
minimizes (2.75) for any fi ∈ Iii.

Proof. The entire proof is given in [HHK+21, Theorems 1 and 3]. We shortly
summarize the basic ideas. Firstly, suppose that there exists a λii ∈ Λ such that
Gii = eλii·a ∈ χii. Then the convexity of h and h′(Gii) = λii · ai lead to

h(g) ≥ h(Gii) + λii · ai(g − Gii).

Because of νii ≥ 0, it holds for all g ∈ χii∫
νiih(g) dv ≥

∫
νiih(Gii) dv + λii ·

∫
νiiai(g − Gii) dv =

∫
νiih(Gii) dv.

So Gii is a minimizer of (2.75), and due to the strict convexity of h, Gii is unique.
The second step is to show that there always exists such a unique λii ∈ Λ for any

fi ∈ Iii. This was rigorously proven in [HHK+21]. Basically, the authors show that
the dual function zii(α,µ) is differentiable and that it attains its unique minimum
at λii on Λ with exp(λii · ai) ∈ Iii for any µ of the form

∫
νiiaig(v) dv and g ∈ Iii.

A main ingredient, following [Jun00], is to prove that zii attains a minimum along
the line α + sξ in any direction ξ ∈ S5, and these minima are not located at the
boundary. Using the implicit function theorem, this statement can be tied up for the
entire function zii(α,µ) which results in one minimum of zii. Then, for the thus
found minimum, the necessary condition yields

0 = ∇αzii(λii,µ)

giving µ =
∫
νiiaie

λii·ai dv. The result follows from the first part of the proof.

We continue with inter-species interactions.

Inter-species target functions

For the inter-species interactions, we seek a solution to

min
g1,g2∈χ12

∫
ν12h(g1) dv +

∫
ν21h(g2) dv, (2.78)
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where

χ12 =

{
(g1, g2)

∣∣∣ g1, g2 > 0, ν12(1 + |v|2)g1, ν21(1 + |v|2)g2 ∈ L1(R3),∫
m1ν12(g1 − f1) dv = 0,

∫
m2ν21(g2 − f2) dv = 0,∫

m1ν12

(
v

|v|2
)
(g1 − f1) dv +

∫
m2ν21

(
v

|v|2
)
(g2 − f2) dv = 0

}
.

(2.79)

The set χ12 ensures that the mass for each species, the total momentum and the total
energy for inter-species collisions are conserved (2.35)–(2.37). The corresponding
Lagrange functional reads

L12 : χ12 × R× R× R3 × R → R,

L12(g1, g2, α
(0)
12 ,α

(0)
21 ,α

(1), α(2)) =

∫
ν12(g1 ln g1 − g1) dv +

∫
ν21(g2 ln g2 − g2) dv

−α(0)
12

∫
m1ν12(g1 − f1) dv − α

(0)
21

∫
m2ν21(g2 − f2) dv

−α(1) ·
(∫

m1ν12v(g1 − f1) dv +

∫
m2ν21v(g2 − f2) dv

)
−α(2)

(∫
m1ν12|v|2(g1 − f1) dv +

∫
m2ν21|v|2(g2 − f2) dv

)
.

(2.80)

The first-order optimality conditions

δL12

δg1
(G12,G21, λ

(0)
12 , λ

(0)
21 ,λ

(1), λ(2)) = ν12(lnG12 − λ12 · a1) = 0,

δL12

δg2
(G12,G21, λ

(0)
12 , λ

(0)
21 ,λ

(1), λ(2)) = ν21(lnG21 − λ21 · a2) = 0

need to be satisfied by any critical point (G12,G21, λ
(0)
12 , λ

(0)
21 ,λ

(1), λ(2)). We end up
with

G12 = exp(λ12 · a1) = exp
(
m1λ

(0)
12 +m1λ

(1) · v +m1λ
(2)|v|2

)
,

G21 = exp(λ21 · a2) = exp
(
m2λ

(0)
21 +m2λ

(1) · v +m2λ
(2)|v|2

)
.

We only require conservation of the combined momentum and energy. This leads
to only one Lagrange multiplier for the momentum constraint and one Lagrange
multiplier for the energy constraint. Therefore, λ(1) and λ(2) are the same for both
G12 and G21. When the collision frequency is constant, this restriction is the same as
the one used in [HHM17a], but more restrictive than in model [KPP17].
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If Λ12 = {(α12,α21) : αij = (α
(0)
ij ,α

(1), α(2))⊤ ∈ R × R3 × R−}, then the
multipliers (λ12,λ21) solve the dual problem of (2.80):

(λ12,λ21) = argmin
(α12,α21)∈Λ12

{
−
∫
(ν12e

α12·a1 + ν21e
α21·a2) dv

+ α
(0)
12

∫
m1ν12f1 dv + α

(0)
21

∫
m2ν21f2 dv

+α(1) ·
∫

v(m1ν12f1 +m2ν21f2) dv

+ α(2)

∫
|v|2(m1ν12f1 +m2ν21f2) dv

}
.

(2.81)

We now consider the well-posedness of G12 and G21.

Theorem 2.2.5 (Well-posedness of inter-species target functions for the multi-species
BGK model with ν(v)). There exists a unique solution of the form (2.74) which
minimizes (2.78) for any fi ∈ Iij .

Proof. The proof is given in [HHK+21, Theorems 2 and 4]. The ideas of Theorem
2.2.4 are essentially extended to the mixture case.

After having established the model, we can discuss its properties.

Consistency of the model

The consistency of the presented model is given in the following theorems.

Theorem 2.2.6 (Conservation properties for the multi-species BGK model with ν(v)).
The model (2.69) conserves mass, total momentum and total energy; that is

∫
νii(Gii − fi)ai dv = 0 for i = 1, 2 and (2.82)∫

ν12(G12 − f1)a1 dv +

∫
ν21(G21 − f2)a2 dv = 0. (2.83)

Proof. This is an immediate consequence of the construction of the target functions.
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2.2 Multi-species BGK models with v-dependent collision frequency

In a kinetic context, the conservation of mass, momentum and energy are associ-
ated with the equations (2.82) and (2.83). However, it is useful to keep in mind that
these correspond to

∂tρ1 +∇x ·
∫
m1vf1 dv = 0, (2.84a)

∂tρ2 +∇x ·
∫
m2vf2 dv = 0, (2.84b)

∂t(ρ1u1 + ρ2u2) +∇x ·
(∫

v ⊗ v(m1f1 +m2f2) dv

)
= 0, (2.84c)

∂t

(
ρ1|u1|2

2
+

3ρ1T1
2m1

+
ρ2|u2|2

2
+

3ρ2T2
2m2

)
+∇x ·

(∫
v
|v|2
2

(m1f1 +m2f2) dv

)
= 0.

(2.84d)

The equations (2.84) illustrate the conservation properties and are also common in
the hydrodynamic context.

We continue with the entropy behavior of the model.

Theorem 2.2.7 (H-Theorem for the multi-species BGK model with ν(v)). Assume
f1, f2 > 0 and the validity of (2.82) and (2.83). Let us denote the function h(z) =
z ln(z)−z and the total entropy H[{f1, f2}] =

∫
(h(f1)+h(f2)) dv. Then, the following

entropy inequality holds true

∂tH[{f1, f2}] +∇x ·
[∫

v(h(f1) + h(f2)) dv

]
≤ 0 (2.85)

with equality if and only if f1 and f2 are two Maxwell distributions with equal mean
velocity and temperature.

Proof. The proof can be found in [HHK+21, Theorem 6 and Corollary 3] which uses
standard techniques regarding entropy. For convenience, we recall it here. A direct
calculation gives

∂tH[{f1, f2}] +∇x ·
[∫

v(h(f1) + h(f2)) dv

]
=

2∑
i=1

∫
Qi[{fi}] log fi dv

= D11 +D12 +D21 +D22

with the dissipation terms

Dij =

∫
νij(Gij − fi) log fi dv.

We show that Dii ≤ 0 and D12 +D21 ≤ 0 which proves (2.85).
Due to the conservation during intra-species interactions (2.82), it is∫

νii(Gii − fi) log Gii dv = λii ·
∫
νii(Gii − fi)ai dv = 0.
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It follows

Dii =

∫
νii(Gii − fi) log fi dv −

∫
νii(Gii − fi) log Gii dv

=

∫
νii(Gii − fi) log

fi
Gii

dv ≤ 0 (2.86)

where the last inequality holds because

(z − y) log
(y
z

)
≤ 0 (2.87)

for y, z ∈ R+. Additionally, (2.87) is an equality if and only if y = z. Applied to
(2.86), Dii = 0 if and only if Gii = fi. In that case, fi is a Gaussian function, and
since Gii and fi obviously share the same moments, fi = M[fi] is even a Maxwellian.

For the mixed dissipation terms, we use the conservation during inter-species
interactions (2.83) and observe

I :=

∫
ν12(G12 − f1) log G12 dv +

∫
ν21(G21 − f2) log G21 dv

= λ
(0)
12

∫
ν12(G12 − f1)m1 dv + λ

(0)
21

∫
ν21(G21 − f2)m2 dv

+λ(1) ·
∫
[ν12(G12 − f1)m1 + ν21(G21 − f2)m2]v dv

+λ(2) ·
∫
[ν12(G12 − f1)m1 + ν21(G21 − f2)m2]|v|2 dv = 0.

Adding this vanishing term to the dissipation terms yields

D12 +D21 = D12 +D21 − I

=

∫
ν12(G12 − f1) log

f1
G12

dv +

∫
ν21(G21 − f2) log

f2
G21

dv
(2.87)
≤ 0

with equality if and only if f1 = G12 = M[f1] and f2 = G21 = M[f2] using the same
arguments as above. Moreover, a direct calculation determines the corresponding
mean velocities and temperatures to be

u1 = u2 = −λ(1)

λ(2)
and T1 = T2 = − 1

2λ(2)
.

So in this special set-up (equilibrium), the macroscopic quantities ui and Ti can be
expressed as functions of λij even if, in general, this is not possible.

Remark 2.2.8. The entropy in Definition 2.1.30 is given by an auxiliary funcion
h̃(z) = z log z instead of h(z) = z log z − z. But the difference between those only
contributes to an additional, constant term (the mass) when integrating with respect to
v. In the end, the statement of the H-Theorem remains the same.

In order to end the introduction of this model, we specify the velocity-dependent
collision frequencies of our interest.
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2.2 Multi-species BGK models with v-dependent collision frequency

2.2.3 Cross sections and collision frequencies

We give a short introduction into cross sections and collision frequencies in this
section. For ease, we start with kernels for one species, but in the end we give the
formulas which are used in our numerical simulations for two species.

Cross sections

Cross sections represent the fundamental object regarding the underlying physics
in the Boltzmann model, see Definitions 2.1.26, 2.1.27. By a careful handling, the
validity of the Boltzmann equation can even be extended, e.g. to dense plasmas
[HHM17b, SM16].

Cross sections basically depend on the interaction potential which describes how
particles behave near each other. For instance, hard spheres correspond to a collision
behavior like billiard balls leading to a constant cross section (2.92). Whereas the
Coulomb potential ϕ(r) = 1

r applies for charged particles, r being the distance of two
particles. Then the cross section is given by Rutherford’s formula (2.93).

In [Max67], Maxwell derived implicit formulas for the collision kernel in terms of
the interaction potential. Only in the two mentioned cases above, they can be made
explicit. However, other important interaction potentials are the inverse-power laws

ϕ(r) =
1

rs−1
, s > 2.

These are often used in physics and modelling and lead to so-called variable-sphere
collision kernels. Van der Waals interactions for example typically correspond to
s = 7 and ion-neutral interactions to s = 5 [Vil02]. The problem with this kind of
interaction potential is the infinite range which results in a nonintegrable singularity.
One can control the collisions with such very large impact parameters (‘grazing
collisions’) by cutting off the integral such that it gets integrable. Regardless of the
difficulties, one can show that these collision kernels factor up into a kinetic and an
angular part like

K(|v − v∗|, ξ) = |v − v∗| · σ(|v − v∗|, θ) = Kk(|v − v∗|) ·Ka(cos θ)

with

Kk = |v − v∗|γ and Ka(cos θ) sin
N−2 θ ∼ const · θ−(1+ν)

γ =
s− 5

s− 1
, N = 3, ν =

2

s− 1
.

Often, s > 5 (γ > 0) is referred to hard potentials and s < 5 (γ < 0) is referred to
soft potentials. The special case s = 5 (γ = 0) leads to a pure dependence of the
collision kernel on the angle θ. The latter theoretical model corresponds to so-called
Maxwellian molecules.

It is not clear which range of values for s should be considered. The range can
amount to s ∈ (2,∞), where s = 2 is the limit for Coulomb interaction which at first
glance does not really fit to Boltzmann, see Remark 2.2.9.
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Just by this short introduction, it is evident that much effort in modelling can be spent.
Especially for the comparison with physics, a careful determination of constants is
needed. In the following, we list the most common cross sections used in the
literature. More information can be found in [Bir94, KM91, Bir80, Vil02].

In the field of aerospace engineering, the variable-soft-spheres cross section is
often used. It takes the form

σ(|v − v∗|, θ) =
α

2

cos2α−1(θ/2) sin(θ/2)

sin(θ)

d2ref
Γ( 52 − ω)

(
2kBTref
µ|v − v∗|2

)ω− 1
2

, (2.88)

where µ is the reduced mass and α, Tref , dref and ω = γ
2 are reference parameter for

the material in question. However, in other fields, this formula is used less.
Taking α = 1 in (2.88) leads to the variable-hard-spheres cross section

σ(|v − v∗|) =
d2ref

4Γ( 52 − ω)

(
2kBTref
µ|v − v∗|2

)ω− 1
2

. (2.89)

A very interesting cross section for Boltzmann and BGK models is when the
collision kernel K = σ · |v − v∗| has no velocity dependence. This is the case for
Maxwellian molecules, setting ω = 1 in (2.88):

σ(|v − v∗|, θ) =
α

2

cos2α−1(θ/2) sin(θ/2)

sin(θ)

2d2ref
π

1
2 |v − v∗|

(
2kBTref

µ

) 1
2

. (2.90)

More frequently, the pseudo-Maxwell molecules are incorporated. Here, the angular
dependence in (2.90) is overcome by additionally having α = 1:

σ(|v − v∗|) =
d2ref

2π
1
2 |v − v∗|

(
2kBTref

µ

) 1
2

, (2.91)

which also results in a constant in v collision rate for BGK models.
Eventually, for α = 1 and ω = 1

2 we obtain the constant hard-spheres cross section

σ =
d2ref
4
. (2.92)

For plasmas, a distinct kind of cross sections is used. In this state of matter, we
expect a velocity dependence which scales like |v − v∗|4. However, corresponding
choices for α and ω in (2.88) led to problems, e.g. a 1

Γ(0) term. Nevertheless, in
plasmas Coulomb collisions are typically assumed. For these, we can apply the
Rutherford cross section

σ(|v − v∗|, θ) =
(

Z2e2

2m|v − v∗|2 sin2(θ/2)

)2

. (2.93)

A derivation of (2.93) can be found e.g. in [LL69].

54



2.2 Multi-species BGK models with v-dependent collision frequency

Remark 2.2.9 (Boltzmann operator and charged particles). Plugging in the Rutherford
cross section (2.93) into the Boltzmann collision operator (2.26) leads to a diverging
integral [Vil02, HHM17a]. This is because of the slow decay of the Coulomb potential
ϕ(r) = 1

r and the corresponding singularity in the cross section for small-angle collisions.
A standard remedy is to establish a screening leading to the Debye potential

ϕ(r) =
e−r/λD

r

or to introduce a cut-off [SM16]. Another work-around is to approximate the Boltzmann
operator. A small-angle approximation yields the Landau or Fokker-Planck collision
operator. But also a BGK collision operator can be used with a corresponding handling
of the collision frequency what is discussed next.

Collision frequencies

Cross sections are part of the Boltzmann model, and these are inherited to the BGK
models because the collision frequencies can be seen as averaged cross sections.
Now, even more modelling comes into play since issues of complexity force us to
establish simplifications. Especially integrability issues occur: In the Boltzmann
model, an ‘infinite cancellation’ between gain and loss terms takes place. The BGK
derivation naturally splits these gain and loss terms such that we have to deal with
singularities. Often, these non-trivial calculations are done for specific cross sections.
For example in [HHM17a], they perform detailed computations in order to achieve
their (velocity-independent) collision frequencies.

In Section 2.2.1, we already motivated why we insist on a collision frequency which
does depend on the relative velocity. Before we come to a derivation of closed formu-
las for collision frequencies in a plasma, we want to clarify our expectations. On the
one hand, for small relative velocities we expect a considerable impact of interactions.
On the other hand, for large relative velocities we expect that the influence of the
interactions decreases, see Figure 2.8. In Figure 2.9, we show that our final formula
matches these expectations.

Derivation The most obvious way to derive a collision frequency is to use its
definition (2.48)

ν(x,v, t) =

∫
R3

∫
S2

M(x,v∗, t)|v − v∗|σ(|v − v∗|, ξ) dξ dv∗

which comes intrinsically by the derivation of the BGK model [Str97, HHM17a]. This
is used for Maxwell molecules due to their special cross section (2.90). But in a
plasma, the Rutherford cross section scales like

σ ∼ 1

|v − v∗|4 sin4(θ/2)
.
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2 Theory of kinetic models

Unfortunately, this has a singularity to be dealt with. Often, this is handled by an
angular cut-off. However, the integral still blows up near the cut-off angle for charged
particles. This is related to the grazing collisions limit in the Boltzmann operator
[GH14] which does not seem to be conducive for BGK terms.

In order to reduce the complexity, one often considers the momentum transfer cross
section

σMT(|v − v∗|) = 2π

∫ π

0

σ(|v − v∗|, θ) sin2(θ/2) sin θ dθ.

This is one of the fundamental quantities in the theory of binary collisions from a
physical point of view [Vil02, SJB66, DB94]. Inserting the Rutherford cross section
(2.93), we obtain

σMT(|v − v∗|) = 4π
(Z2e2)2

(2m|v − v∗|2)2
∫ π

0

1

sin4(θ/2)
sin2(θ/2) sin θ dθ

= 8π
(Z2e2)2

(2m|v − v∗|2)2
∫ π

0

cos(θ/2)

sin(θ/2)
dθ

= 16π
(Z2e2)2

(2m|v − v∗|2)2
log(sin(θ/2))

∣∣∣∣π
0

by using trigonometric identities. Again, we run into a problem concerning a singu-
larity. Therefore, we perform an angular cut-off using an argument related to Debye
screening [SM16]:

σMT(|v − v∗|) ≈ 16π
(Z2e2)2

(2m|v − v∗|2)2
log(sin(θ/2))

∣∣∣∣π
θmin

= −16π
(Z2e2)2

(2m|v − v∗|2)2
log

(
sin

θmin

2

)
:= 16π

(Z2e2)2

(2m|v − v∗|)2)2
log Λ.

(2.94)

The so-called Coulomb logarithm log Λ plays another important role in modelling
and is discussed in Remark 2.2.10. We plug in the momentum transfer cross section
(2.94) into (2.48)

ν(v) =

∫
R3

∫
S2

M(v∗)σMT(|v − v∗|)|v − v∗|dξ dv∗.

This gives us another singularity for |v − v∗| = 0 which cannot be overcome easily.
Therefore, we follow another approach.

The mean free time between collisions scales like 1
n|v|σ [LM84, Sch06]. As the

collision frequency represents the number of collisions per time unit, we follow the
approach of the ad-hoc collision rate

ν(v) = n|v|σ(v).
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2.2 Multi-species BGK models with v-dependent collision frequency

Several choices need to be made. We conveniently take [LM84]

ν(v) = n|v − u|σMT(|v − u|)

≈ 4πn
(Z2e2)2

m2
log Λ · 1

δ + |v − u|3

where we use the relative velocity |v − u| at the kinetic level. In order to avoid a
singularity at |v − u| = 0, we have added some δ > 0 in the denominator. This is
specified for our numerical simulations in Section 5.3, depending on the velocity
grid.

In the following remark, we discuss the Coulomb logarithm.

Remark 2.2.10 (Coulomb logarithm). The Boltzmann equation is not capable to model
charged particles for which a Coulomb potential applies, see Remark 2.2.9. In 1937,
Landau [Lan37] approximated the Boltzmann operator by a small angle scattering
which works for the Coulomb interactions and led to the Fokker-Planck-Landau equation
[Lan37, RMJ57]. It holds

QBoltz ≈ log Λ · QFPL +O(1)

where log Λ is the Coulomb logarithm and FPL stands for Fokker-Planck-Landau.
The Coulomb logarithm encounters minimal and maximal impact parameters arising

through truncating corresponding limits in an integral [SM16]. A simple Coulomb
logarithm, appropriate for classical plasmas reads

log Λ = log

(
λD
b90

)
, (2.95)

where λD is the Debye length and b90 is the classical distance of closest approach (and
the 90◦ deflection radius, respectively). These depend on the moments of the system
(density and temperature). The argument of the logarithm gets small for little collisions.
To stay positive, we use

log Λ =
1

2
log

(
1 +

λ2D
b290

)
. (2.96)

More sophisticated approaches can be followed. Instead of the momentum
transfer cross section (2.94), one might use more elaborated ones as can be found
in [SM16]. But as we already mentioned earlier, much effort in modelling can be
spent here. For our numerical simulations we are happy with the following collision
frequencies.

Velocity-dependent collision frequency formulas To conclude, we summarize
and specify the formulas we use in our numerical simulations. All formulae are given
in CGS units, see Appendix D. This also requires the consistent use of Boltzmann’s
constant kB . In all other parts of this thesis, we suppress kB for ease of presentation.

We make the following assumption on the collision frequencies νij(x,v, t).
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2 Theory of kinetic models

Assumption 2.2.11. The space and time dependence of the collision frequencies νij arise
via a dependence on the mass densities ρi(x, t), the mixture mean velocity umix(x, t)
and the mixture temperature Tmix(x, t). Furthermore, because the collisional process
conserves these quantities, the collision frequencies νij are independent of time in the
space homogeneous setting.

This relationship between collision frequencies and moments is typical for stan-
dard collision rates in the literature and follows from cross section definitions; see
for example [KT73, HHM17a].

We use the following velocity-dependent collision frequencies

νij(v) = nj4π

(
ZiZje

2

2µij

)2
1

δij + |v − umix|3
log Λij (2.97)

where µij =
mimj

mi+mj
is the reduced mass; Zie, Zje are the charges of the two particles;

and log Λij is the Coulomb logarithm given by

log Λij =
1

2
log

(
1 +

λ2D
b290,ij

)
. (2.98)

The regularization parameter δij will depend on the corresponding velocity grid in
order to involve an adequate scaling. We set the classical distance of closest approach
to be

b90,ij =
ZiZje

2

Tmix
. (2.99)

For the Debye length λD we use the following formulae

λD =

(
1

λ2e
+

1

λ2I

)−1/2

with

λe =

(
Tmix

4πnee2

)1/2

and λI =

(∑
i∈S

1

λ2i

)−1/2

,

where

λi =

(
Tmix

4πniZ2
i e

2

)1/2

and ne =
∑
i∈S

Zini,

with the Boltzmann constant kB. The mixture quantities umix and Tmix defined in
(2.8) and (2.9) are inserted into these formulas to determine the collision frequencies
used in the model. There are modifications that can be made to ensure that these
formulas (e.g. screening length) apply to a wider range of plasma regimes, but this
should be a reasonable start.

The shape of (2.97) is shown in Figure 2.9.
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2.2 Multi-species BGK models with v-dependent collision frequency

v

1
1+|v−u|3

u

Figure 2.9: The shape of the velocity-dependent collision frequency (2.97) is illustrated.

Velocity-independent collision frequency formulas For a comparison, we use
several velocity-independent collision frequencies of comparable size where we
guarantee that ν12

ν21
= n2

n1
. A convenient choice in plasma physics [SM16] is to take

ν̃ij = ρj4π

(
ZiZje

2

2µij

)2
1

δij + v3T
log Λij , (2.100)

where the deviation from the mean velocity |v−umix| is approximated by the thermal
velocity vT =

√
kBTmix/(2µij). However, this choice seems arbitrary. When replacing

|v − umix| by vT , the observation∫
|v − u|2f dv = 3n

T

m
= 3nv2T (2.101)

allows also for replacing |v − umix| by
√
3vT . That is why we need to normalize a

corresponding constant collision frequency in some way. In order to calibrate possible
constants we average the velocities by

v̂3 =

∫
|v − umix|3Mij(v) dv∫

Mij(v) dv
(2.102)

where
Mij(v) = M[ni,umix, Tmix, 2µij ]. (2.103)

Replacing v3T in (2.100) by (2.102), gives us a second option for a corresponding
velocity-independent collision frequencies ν̂ij resulting in

ν̂ij = ρj4π

(
ZiZje

2

2µij

)2
1

δij + v̂3
log Λij . (2.104)

Another natural way to obtain velocity-independent collision frequencies is to average
νij(v) given by (2.97) themselves leading to

ν̄ij =

∫
νij(v)Mij(v) dv∫

Mij(v) dv
(2.105)

with the Maxwellians Mij(v) = M[ni,umix, Tmix, 2µij ].
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2 Theory of kinetic models

For later reference, we also give the velocity-independent collision frequencies derived
in [HHM17a]. We start with collision frequencies describing ion-ion interactions in
dense plasma. The collision frequencies νMij in (2.106) and (2.109) ensure that the
relaxation rates of the momenta for the model in [HHM17a] coincide with the one of
the multi-species Boltzmann equations. And the collision frequencies νTij in (2.107)
and (2.110) ensure the corresponding relaxation rates for the temperatures. It is

νMij =
128

3

π2

(2π)3/2
nj
mi

(ZjZie
2)2

√
mimj(mi +mj)

(miTj +mjTi)3/2
Ψ(γij) (2.106)

νTij =
256

3

π2

(2π)3/2
nj(ZjZie

2)2
√
mimj

(miTj +mjTi)3/2
Ψ(γij) (2.107)

with the charges Z1e, Z2e, the elementary charge e, the function

Ψ(x) =

{
− 1

4 log
(∑5

n=1 anx
n
)

for x < 1,

b0+b1 log x+b2 log2 x
1+b3x+b4x2 for x > 1,

where the coefficients an, bn are defined in [SM16]

n 0 1 2 3 4 5
an 1.4660 −1.7836 1.4313 −0.55833 0.061162
bn 0.081033 −0.091336 0.051760 −0.50026 0.17044

with the short form

γij =
ZjZie

2

λ

mi +mj

miTj +mjTi

and the screening length

λ =

 4πe2ne√
T 2
mix +

(
ℏ2

3me

)2
(3π2ne)4/3

+

2∑
i=1

4π(Zie)
2ρi

Tmix + 3Z2
i e

2
(

4π
3

σ
Zi

)−1/3


− 1

2

. (2.108)

Here, we use the electron mass me, its density ne = Z1n1 + Z2n2 and the mixture
temperature Tmix, the total charge density (devided by e) σ =

∑
Ziρi and the

reduced Planck constant ℏ.
Collision frequencies describing screened Coulomb interactions with a Coulomb

logarithm are given by

νMij =
8

3

√
2π nj

√
mj

mi

mi +mj

(miTj +mjTi)3/2
(ZiZje

2)2 log ΛGMS6, (2.109)

νTij =
16

3

√
2π nj

√
mimj

(miTj +mjTi)3/2
(ZiZje

2)2 log ΛGMS6. (2.110)
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The Coulomb logarithm log ΛGMS6 takes the following form

log ΛGMS6 =
1

2
log

(
1 +

λ2 + a2i
λ2dB,i + b2ij

)
(2.111)

considering the screening length (2.108), the ion sphere radius ai =
(

3
4π

|Zi|
σ

)1/3
,

the deBroglie wave length λdB,i = 2πℏ√
miTi

and the distance of closest approach
bij = max (0, b90,ij) using b90,ij from (2.99).

Now, we are equipped with an array of different collision frequencies and we make
use of them in Section 5.3. For a moment, we can put them aside. In the following
section, we handle collision frequencies with simplicity, but we include quantum
effects instead.

2.3 Quantum multi-species BGK models

Classical physics is based on Newton’s laws (Axioms 2.1.2–2.1.4). However, at the
end of the 19th century, physicists experienced phenomena which could not be
explained by those, more severe, which even contradicted them. A new theory was
developed at the beginning of the 20th century concerning such effects at very small
scales, i.e. atomic scales: quantum mechanics.

Although many phenomena in our daily life can only be understood with the
help of quantum physics, it is very challenging to deal with this theory. Even the
Nobel laureate Richard Feynman stated: ‘I think I can safely say that nobody really
understands quantum mechanics.’

2.3.1 Fundamentals

In the following section, we do not go into details of quantum theory and restrict
ourselves to some selected concepts needed for the quantum description of kinetic
models. For more information, we refer to [Sch07].

Introduction to quantum mechanics

In classical mechanics, a system of particles with masses mi is fully determined by
their positions xi and velocities vi =

pi

mi
, where pi is the corresponding momentum.

For quantum particles, we run into several problems.
Firstly, we should track the particles’ momenta instead of the velocities. This is

due to the fact that e.g. the mass of a photon is zero, but a photon’s momentum
needs not to vanish. Hence, the notion ‘velocity’ needs to be treated with care. In this
thesis, we only consider nonrelativistic particles with nonvanishing mass such that we
do have the relationship vi =

pi

mi
. Nevertheless, in quantum theory the momentum

variable is requested being the canonic conjugate quantity to the space variable. So
the phase space is now given by (x,p).
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2 Theory of kinetic models

A second issue is the Heisenberg uncertainty principle. We do not go into details
here, but we want to mention that it is possible to exactly measure either position
or momentum of a particle, but not both. This means that a system cannot be fully
determined, instead a quantum system is always described with uncertainties and
probabilities, respectively.

These uncertainties lead to another concern, namely the fact that quantum
particles can be identical. This means that they cannot be distinguished, not even in
principle. To see this, imagine two electrons. Their intrinsic physical properties are all
the same, such as mass, charge and spin. Hence, distinguishing these electrons would
only be possible by tracking the trajectory of each particle. Due to the Heisenberg
uncertainty principle, the trajectory cannot be determined with infinite precision
which makes an exact tracking impossible. The electrons are indistinguishable.

Actually, the further behavior of identical particles leads to a classification. A
subset of quantum particles follows Pauli’s exclusion principle which states that any
quantum state within a quantum system can only be occupied by at most one particle.

Definition 2.3.1 (Fermions and bosons). A fermion is a quantum particle obeying
Pauli’s exclusion principle. It is also classified by possessing a half-integer spin.

A quantum particle whose spin quantum number has an integer value is called boson.
Additionally, it does not follow Pauli’s exclusion principle.

Electrons and protons are fermions. So in the case of electrons in a poly-electron
atom, the Pauli exclusion principle has the following consequence. If two electrons
are located in the same orbital, three out of the four quantum numbers are the same.
Thus, these electrons must have a different spin quantum number (± 1

2). So this
orbital is full, and additional electrons must reside in different orbitals.

Bosons, such as the Higgs boson or photons, behave differently. One quantum
state can be occupied by any number of identical bosons which is the case e.g. for
lasers or Bose-Einstein-condensates. For formal reasons, we exclude photons in this
thesis.

We end this short introduction into quantum mechanics and continue by carrying
quantum effects into kinetic theory.

Quantum Boltzmann equation

Around 1930, the physicists Nordheim, Ueling and Uhlenbeck developed a kinetic
model for a quantum gas [FN28, KN30, UU33, Ueh34]. They use a kinetic description
as for classical gases, but they take quantum effects of the particles into account.

To be precise, we introduce the quantum distribution function.

Definition 2.3.2 (Quantum distribution function). A function f : R3×R3×R+
0 → R+

0

is called a distribution function if and only if f(x,dp, t) dx dp is the number of particles
with momenta in (p,p+ dp) located at (x,x+ dx) at time t.

For fermions, we additionally require

f(x,p, t) < 1. (2.112)
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2.3 Quantum multi-species BGK models

The upper bound for fermions is physically motivated as described in the following
remark.

Remark 2.3.3 (Bounds for fermions). The additional upper bound for distribution
functions of fermions comes by integrability conditions. In general, we require that all
‘physical’ quantities are bounded, i.e.∫

f(1 + |p|2) dp <∞ and H[f ] <∞,

where H denotes the entropy, see Definition 2.3.7. These requirements represent integra-
bility conditions and for fermions additionally lead to (2.112). [EMV03]

Now, we can formulate the quantum Boltzmann equation.

Definition 2.3.4 (Quantum Boltzmann equation). The quantum Boltzmann equation
for a distribution function f = f(x,p, t) reads

∂tf + v · ∇xf = Q[f ] (2.113)

with the collision operator

Q[f ](x,p, t) =∫
R3

∫
S2

(f ′f ′∗(1− τf)(1− τf∗)− ff∗(1− τf ′)(1− τf ′∗))K(|p− p∗|, ξ) dξ dp∗,

(2.114)

where f = f(p), f ′ = f(p′), f∗ = f(p∗), f ′∗ = f(p′
∗); K(|p − p∗|, ξ) is the collision

kernel, ξ represents the unit vector in scattering direction and v = p
m .

This equation is often called Ueling-Uhlenbeck equation or Nordheim equation in the
literature.

The collision operator Q describes the effect of interactions between particles. The
pre-collisional and post-collisional momenta follow the conservation of momentum
and energy at the particle level as in the classical case, see Theorems 2.1.6 and 2.1.7;
that is

p+ p∗ = p′ + p′
∗

|p|2 + |p∗|2 = |p′|2 + |p′
∗|2.

In contrast to the classical Boltzmann operator (2.26), the operator includes ad-
ditional terms in the quantum case (2.114) taking into accout the degeneracy of
quantum particles. For fermions τ = +1, these guarantee that Pauli’s principle is
satisfied, and for bosons τ = −1, the possibility to cluster is given.2

The notions mass, momentum and energy can be carried over from the classical
theory. For clearness regarding variables, we provide the following definition. For
clearness regarding units, we refer to Appendix D.2.
2 In the literature, the sign of τ is not used consistently. When τ is plugged in, the final equations

matter.
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Definition 2.3.5 (Macroscopic quantities in the quantum case). Let f be the distri-
bution function of a quantum gas with particle mass m. We denote the species’ mass
density by

N =

∫
R3

f dp,

the species’ momentum by

P =

∫
R3

fp dp

and the species’ energy density by

E =

∫
R3

f
|p|2
2m

dp.

We define the kinetic temperature by

T =
2

3N
E − 1

3m

|P|2
N2

=
1

3mN

∫
R3

f
∣∣∣p− P

N

∣∣∣2 dp. (2.115)

The notion of temperature seems intuitively clear. However, it is a concept for
equilibrium states only. We postpone a further discussion of this issue to Remark
2.3.10.

The quantum Boltzmann equation fulfils the following invariance property.

Theorem 2.3.6 (Conservation properties for the quantum Boltzmann equation). The
quantum Boltzmann equation conserves mass, momentum and energy.

Proof. A proof for a more general multi-species quantum Boltzmann equation is
provided e.g. in [BKPY21].

The trend to equilibrium is of central interest. Therefore, the entropy needs to be
investigated.

Definition 2.3.7 (Quantum entropy). The entropy density functional of a quantum
gas is defined by

H[f ] =

∫
[f log f + τ(1− τf) log(1− τf)] dp. (2.116)

Entropy minimizers are the equilibrium states we are looking for. We already know
that the distribution function of a classic gas converges to a Maxwellian distribution
for t→ ∞. The analogues of quantum particles are called Fermi-Dirac distribution
functions for fermions and Bose-Einstein distribution functions for bosons. We
introduce these distribution functions in the following definition and give the formal
statement below.

64



2.3 Quantum multi-species BGK models

Definition 2.3.8 (Specific quantum distribution functions). A Maxwellian
M(x,p, t) ≥ 0 is a distribution function of the specific form

M(x,p, t) = M[a,b, c,m](x,p, t) =
1

ema
∣∣ p
m−b

∣∣2+c
(2.117)

with a > 0. A Fermi-Dirac distribution function F(x,p, t) ≥ 0 is defined by

F(x,p, t) = F [a,b, c,m](x,p, t) =
1

ema
∣∣ p
m−b

∣∣2+c + 1

. (2.118)

In contrast to a Bose-Einstein distribution function B(x,p, t) being given by

B(x,p, t) = B[a,b, c,m](x,p, t) =
1

ema
∣∣ p
m−b

∣∣2+c − 1

(2.119)

with

ma
∣∣ p
m

− b
∣∣2 + c < 0.

These three distribution functions can be summarized in the general formulation

Eτ (x,p, t) = Eτ [a,b, c,m](x,p, t) =
1

ema
∣∣ p
m−b

∣∣2+c + τ

=


M for τ = 0,

F for τ = +1,

B for τ = −1.

(2.120)

Theorem 2.3.9 (H-Theorem for the quantum Boltzmann equation). The entropy is
dissipated in the space homogeneous quantum gas

∂tH ≤ 0

with equality if and only if

f = Eτ .

Proof. A proof can be found e.g. in [EMV03].

For classic particles, the parameters a,b, c in the local equilibrium (Maxwellian)
are related explicitly to the macroscopic quantities N,P, T . (This is an easy calcu-
lation.) But for general quantum particles, it is more complicated. We only have
a relationship between b and P (see the proof of Theorem 2.3.13), and a can be
related to the concept of physical temperature (see Remark 2.3.10).

Remark 2.3.10 (The concept of temperature). The physical temperature ϑ is uniquely
defined for equilibrium states by the second law of thermodynamics, see Axiom 2.1.21
and (2.13). It can be seen as the price at which a system offers energy in return for
entropy [Hin20].
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In kinetic theory, this concept is extended for nonequilibrium states, and we formally
introduce the (kinetic) temperature T in (2.6)/(2.115). For monatomic ideal and
classic gases, it holds T = ϑ. Hence, the temperature (physical and kinetic) can be
seen as a measure for the internal energy. But in more general settings (e.g. discrete-
velocity or quantum models), T does not equal the physical temperature ϑ even though
the macroscopic quantities like density, pressure and energy still coincide with the
corresponding moments of the distribution function. [Cer97]

In other words: The kinetic temperature is closely related to the total energy minus
the kinetic energy. However, the physical temperature prices the internal energy. Only in
special cases, this ‘price’ can be reduced to a relationship between the total energy and
the translational motion only. In general, the contribution of heat, pressure, volume,. . .
to the total energy cannot be expressed by the kinetic temperature.

We yet ‘find’ the physical temperature in our quantum formulation by the following
observation. In thermodynamic theory, the physical temperature appears in the equi-
librium canonical distribution. The latter one is proportional to exp(−βE) where E
is the total energy of the gas and β is the inverse temperature: β−1 = kBϑ with the
Boltzmann constant kB. With this fact in mind, we look at the local equilibria Eτ and
relate the physical temperature to the equilibrium coefficient a.

Additionally, we can formally relate the notions of temperatures using Bose-Einstein
and Fermi-Dirac functions, respectively. [HJ11]

The quantum Boltzmann operator (2.114) is very complex making practical
applications challenging, and there are many interesting questions [Vil02, EMV03].
In order to reduce complexity, quantum BGK models are widely used. In the following
section, we present a consistent multi-species quantum BGK model.

2.3.2 A consistent multi-species quantum BGK model

Recently, a consistent multi-species quantum BGK model was published in [BKPY21].
We recall this model for two species, but everything can also be extended to more
species because only binary interactions are taken into account. We consider two
distribution functions f1 = f1(x,p, t) ≥ 0 and f2 = f2(x,p, t) ≥ 0 for species with
masses m1 and m2, respectively, with the phase space variables position x ∈ R3 and
momentum p ∈ R3 and time t ≥ 0.

Definition 2.3.11 (Quantum multi-species BGK equations). The quantum multi-
species BGK equations in [BKPY21] read

∂tf1 +
p

m1
· ∇xf1 = Q1[{f1, f2}],

∂tf2 +
p

m2
· ∇xf2 = Q2[{f1, f2}]

(2.121)

with the collision operators

Q1[{f1, f2}] = Q11[f1, f1] +Q12[f1, f2] = E11,τ1 − f1 + E12,τ1 − f1, (2.122)

Q2[{f1, f2}] = Q22[f2, f2] +Q21[f2, f1] = E22,τ2 − f2 + E21,τ2 − f2 (2.123)

where τi ∈ {−1, 0,+1}.
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The local equilibrium Eij,τi takes distinct forms depending on the type of the
species, specified by τi. We distinguish between

τi =


0 for species i being classic particles,
+1 for species i being fermions,
−1 for species i being bosons.

A general formulation of the local equilibria is given in the following definition.

Definition 2.3.12 (Local equilibria for the quantum multi-species BGK model). The
target functions for the quantum multi-species BGK equations (2.121) are given by

Eii,τi [fi] =
1

e
miai

∣∣ p
mi

−bi

∣∣2+ci + τi

, (2.124a)

Eij,τi [fi, fj ] =
1

e
mia
∣∣ p
mi

−b
∣∣2+cij + τi

(2.124b)

for i, j = 1, 2, i ̸= j. The parameters ai,bi, ci and a,b, cij depend on the corresponding
distribution functions f1 and f2.

Using the above description, we obtain a universal formulation for a model
describing the interactions of each of the following combinations:

1. fermion-fermion interactions: Eij,1 = Fij . (i, j = 1, 2)

2. boson-boson interactions: Eij,−1 = Bij . (i, j = 1, 2)

3. classical-classical interactions: Eij,0 = Mij . (i, j = 1, 2)

4. fermion (f1)-classical (f2) interactions: E1j,1 = F1j , E2j,0 = M2j . (j = 1, 2)

5. classical (f1)-boson (f2) interactions: E1j,0 = M1j , E2j,−1 = B2j . (j = 1, 2)

6. fermion (f1)-boson (f2) interactions: E1j,1 = F1j , E2j,−1 = B2j . (j = 1, 2)

The target functions Eij,τi depend on the distribution functions fi. Under appro-
priate assumptions on Ni,Pi, Ei, they are uniquely defined which will be derived in
the following sections.

Intra-species target functions

We seek a distribution function which conserves mass, momentum and energy for
intra-species interactions. These conservation properties read in the quantum de-
scription∫

R3

Eii,τi dp = Ni,

∫
R3

Eii,τip dp = Pi,

∫
R3

Eii,τi
|p|2
2mi

dp = Ei, (i = 1, 2).

(2.125)
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In order to simplify the notation, we introduce the function

jτi(x) =

∫
1

e|p|2+x+τi
dp(∫ |p|2

e|p|2+x+τi
dp
)3/5 , (2.126)

and we define

l : {+1,−1} → [−∞,∞], l(x) =

{
l(+1) = −∞,
l(−1) = 0.

The limit j+1(−∞) is understood in the following sense:

j+1(−∞) = lim
x→−∞

j+1(x).

Now, we can show that the intra-species target functions are well-posed, and
moreover, give the corresponding parameters ai,bi, ci at least implicitly.

Theorem 2.3.13 (Well-posedness of intra-species target functions for the quantum
multi-species BGK model). For τi = 0, we do not have any further requirements. For
τi = ±1, we assume

Ni

(2miEi −P2
i /Ni)

3
5

≤ jτi(l(τi)).

Then there exist unique parameters ai,bi, ci for the target functions Eii,τi in (2.124a)
such that the model (2.121) satisfies the conservation constraints (2.125) during intra-
species interactions.

Proof. The statement for τi = 0 is well-known and follows e.g. from Theorem 2.2.4
for νii = 1. The proof for τi = ±1 can be found in [BY20]. The main challenge is to
show that the equation (i = 1, 2)

jτi(ci) =
Ni

(2miEi − |Pi|2/Ni)
3
5

,

has a unique solution ci. With this implicitly defined value, we obtain ai by

ai = mi

(∫
R3

1

e|p|2+ci + τi
dp

) 2
3

N
− 2

3
i ,

and a direct computation gives

bi =
Pi

miNi
.

The ideas for the intra-species interactions can be extended to the inter-species
case.
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2.3 Quantum multi-species BGK models

Inter-species target functions

For the inter-species interactions, we require the conservation properties∫
R3

E12,τ1 dp = N1,

∫
R3

E21,τ2 dp = N2,∫
R3

E12,τ1pdp+

∫
R3

E21,τ2pdp = P1 +P2,∫
R3

E12,τ1
|p|2
2m1

dp+

∫
R3

E21,τ2
|p|2
2m2

dp = E1 + E2.

(2.127)

As in the intra-species case, we make use of auxiliary functions

h̃τi(x) =

∫
R3

1

e|p|2+x + τi
dp, (2.128)

and

kτi,τj (x, y) =
m

3
2
1

∫
R3

1
e|p|2+x+τi

dp(
m

3
2
1

∫
R3

|p|2
e|p|2+x+τi

dp+m
3
2
2

∫
R3

|p|2
e|p|2+y+τj

dp
) 3

5

. (2.129)

Additionally, we define gτi,τj as a composite function of kτi,τj and h̃−1
τi by

gτi,τj (x) = kτi,τj
(
x, y(x)

)
=

m
3
2
1

∫
R3

1
e|p|2+x+τi

dp(
m

3
2
1

∫
R3

|p|2
e|p|2+x+τi

dp+m
3
2
2

∫
R3

|p|2
e|p|2+y(x)+τj

dp
) 3

5

,

(2.130)

where y(x) denotes

y(x) = h̃−1
τj

(
m

3
2
1N2

m
3
2
2N1

h̃τi(x)

)
.

Be aware that h̃−1
τj always exists because h̃τi is strictly decreasing.

Theorem 2.3.14 (Well-posedness of inter-species target functions for the quantum
multi-species BGK model). For τi = 0, we do not have any further requirements. For
τi = ±1, we assume

N1(
2E1 + 2E2 − |P1+P2|2

m1N1+m2N2

) 3
5

≤ gτi,τj

(
max

{
l(τi), h̃

−1
τi

(
m

3
2
2N1

m
3
2
1N2

h̃τj (l(τj))

)})
.

Then there exist unique parameters a,b, c12, c21 for the target functions E12,τ1 and E21,τ2
in (2.124b) such that the model (2.121) satisfies the conservation constraints (2.127)
during inter-species interactions.
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Proof. The proof can be found in [BKPY21, BPW22]. We only give the relations
which uniquely determine the equilibrium coefficients. An explicit calculation gives

P1 +P2 = b(m1N1 +m2N2),

hence

b =
P1 +P2

m1N1 +m2N2
. (2.131)

Using

Ni = m
3
2
i a

− 3
2

∫
R3

1

e|p|
2+cij + τi

dp (2.132)

and

E1 + E2

=
m

3
2
1

2
a−

5
2

∫
R3

|p|2

em1a| p|
m1

−b|2+c12 + τ1

dp+
m

3
2
2

2
a−

5
2

∫
R3

|p|2

em2a| p|
m2

−b|2+c21 + τ2

dp

+
1

2
(m1N1 +m2N2)b

2

yields

a =

m 3
2
1

∫
R3

|p|2

e|p|2+c12+τ1
dp+m

3
2
2

∫
R3

|p|2

e|p|2+c21+τ2
dp

2E1 + 2E2 − |P1+P2|2
m1N1+m2N2


2
5

. (2.133)

For a closed formula of a in (2.133), we need to define c12 and c21. With the above
equations and (2.129), we obtain

N1(
2E1 + 2E2 − |P1+P2|2

m1N1+m2N2

) 3
5

= kτi,τj (c12, c21). (2.134)

On top of that, it follows from (2.132) and (2.128) that

N1

N2
=
m

3
2
1 h̃τ1(c12)

m
3
2
2 h̃τ2(c21)

.

It can be shown that gτi,τj is strictly monotonically decreasing [BKPY21]. It follows
that c12, c21 can be defined as unique solutions of the above relations, and

c21 = h̃−1
τ2

(
m

3
2
1N2

m
3
2
2N1

h̃τ1(c12)

)
.

We study the properties of the model in the following.
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2.3 Quantum multi-species BGK models

Consistency of the model

In this section, we present properties of the quantum multi-species BGK model
(2.121). First of all, the model satisfies the conservation properties and an H-
Theorem. This is stated in the following theorems and proven in [BKPY21].

Theorem 2.3.15 (Conservation properties for the quantum multi-species BGK model).
Let the equilibrium coefficients be chosen as given in the proofs of Theorems 2.3.13 and
2.3.14. Then the model (2.121) conserves mass, total momentum and total energy if
the assumptions in Theorems 2.3.13 and 2.3.14 are fulfilled.

Proof. This is an immediate consequence of Theorems 2.3.13 and 2.3.14.

Theorem 2.3.16 (H-Theorem for the quantum multi-species BGK model). Let us
denote the function hτ (z) = z log(z)− z + τ(1− τz) log(1− τz)− τ(1− τz) and the
total entropy H[{f1, f2}] =

∫
(hτ1(f1) + hτ2(f2)) dp. With the choice of equilibrium

coefficients given in the proofs of Theorems 2.3.13 and 2.3.14, the quantum BGK model
for gas mixtures (2.121) satisfies the following entropy inequality

∂tH[{f1, f2}] +∇x ·
[∫

v(hτ1(f1) + hτ2(f2)) dp

]
≤ 0. (2.135)

The equality in (2.135) is characterized by fi being Fermi-Dirac distribution functions for
fermions, Bose-Einstein distributions functions for bosons and Maxwellian distribution
functions for classical particles. In all cases, the equilibrium distributions share the same
a and b.

Proof. We recall the proof from [BKPY21]. A direct calculation gives

∂tH[{f1, f2}] +∇x ·
[∫

v(hτ1(f1) + hτ2(f2)) dp

]
=

2∑
i=1

∫
Qi[{fi}]h′τi(fi) dv

= D11 +D12 +D21 +D22

with the dissipation terms

Dij =

∫
(Eij,τi − fi)h

′
τi(fi) dp

and the derivative

h′τ (z) = log
z

1− τz
.

We show that Dii ≤ 0 and D12 +D21 ≤ 0 which proves (2.135).
Due to the conservation during intra-species interactions (2.125), it is∫

(Eii,τi − fi)h
′
τi(Eii,τi) dp = 0.
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It follows

Dii =

∫
(Eii,τi − fi)h

′
τi(fi) dv −

∫
(Eii,τi − fi)h

′
τi(Eii,τi) dp

=

∫
(Eii,τi − fi)(h

′
τi(fi)− h′τi(Eii,τi)) dp ≤ 0. (2.136)

The last inequality holds because h−1(z), h0(z) are increasing functions for z ∈ [0,∞),
and h1(z) increases for 0 < z < 1, resulting in

(z − y)(hτ (y)− hτ (z)) ≤ 0 (2.137)

for y, z ∈ R+
0 (τ = 0,−1) and for 0 < y, z < 1 (τ = +1), respectively. Additionally,

(2.137) is an equality if and only if y = z. Applied to (2.136), Dii = 0 if and only if
fi = Eii,τi .

For the mixed dissipation terms, we use the conservation during inter-species
interactions (2.127) and observe

I :=

∫
(E12,τ1 − f1)h

′
τ1(E12,τ1) dp+

∫
(E21,τ2 − f2)h

′
τ2(E21,τ2) dp = 0.

Adding this vanishing term to the dissipation terms yields

D12 +D21 = D12 +D21 − I

=

∫
(E12,τ1 − f1)(h

′
τ1(f1)− h′τ1(E12,τ1)) dp

+

∫
(E21,τ2 − f2)(h

′
τ2(f2)− h′τ2(E21,τ2)) dp

(2.137)
≤ 0

with equality if and only if f1 = E12,τ1 and f2 = E21,τ2 using the same arguments as
above. It follows that the equilibrium distributions share the same a and b.

Moreover, one can prove that the distribution function in the fermion case remains
bounded by 1 for all times t ≥ 0.

Lemma 2.3.17. Let fi be a distribution function for fermions and fi(x,p, 0) < 1. Then
we have fi(x,p, t) < 1 for t ≥ 0.

Proof. We paraphrase the proof presented in [BKPY21]. We integrate the evolution
equation (2.121) along the characteristic and obtain

fi(x,p, t) = e−2tfi

(
x− p

mi
t,p, 0

)
+

∫ t

0

e2(s−t)[Fii + Fij ](x+ (s− t)p,p, s) ds.
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By definition, it is 0 < Fii,Fij < 1 for all (x,p, t), and hence

fi(x,p, t) ≤ e−2tfi

(
x− p

mi
t,p, 0

)
+

∫ t

0

2e2(s−t) ds

= e−2tfi

(
x− p

mi
t,p, 0

)
+ (1− e−2t)

< e−2t + 1− e−2t = 1.

We are now interested in the hydrodynamic behavior of the presented equations.

Macroscopic equations

From the quantum multi-species BGK model (2.121), one can derive the following
macroscopic equations.

Theorem 2.3.18 (Macroscopic equations for the quantum multi-species BGK model).
Let {f1, f2} be a solution to (2.121), then we obtain the following formal conservation
laws

∂tN1 +∇x · P1

m1
= 0,

∂tN2 +∇x · P2

m2
= 0,

∂tP1 +∇x ·
∫

p⊗ p

m1
f1(p) dp = P12 −P1,

∂tP2 +∇x ·
∫

p⊗ p

m2
f2(p) dp = P21 −P2,

∂tE1 +∇x ·
∫ |p|2

2m1

p

m1
dp = E12 − E1,

∂tE2 +∇x ·
∫ |p|2

2m2

p

m2
dp = E21 − E2,

(2.138)

where the exchange terms of momentum are given by

P12 −P1 = −(P21 −P2) =
m1N1m2N2

m1N1 +m2N2

(
P2

m2N2
− P1

m1N1

)
.

We define the function

Hτi(c) =

∫ |p|2
e|p|2+c + τi

dp

and obtain for the exchange of energy

E12 − E1 =
1

2

m1N1|P1 +P2|2
(m1N1 +m2N2)2

+
(E1 + E2)− 1

2
|P1+P2|2

m1N1+m2N2

m
3/2
1 Hτ1(c12) +m

3/2
2 Hτ2(c21)

m
3/2
1 Hτ1(c12)− E1

= −(E21 − E2).

(2.139)
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Proof. We multiply the first equation of (2.121) with (1,p, |p|2
2m1

), and the second

one with (1,p, |p|2
2m2

). Integration with respect to the momentum p yields the LHS of
(2.138) in a straight-forward way.

The exchange of momentum can be computed by multiplying (2.121) with p and
integrating with respect to p. That is

P12 −P1 =

∫
R3

p

em1a
∣∣ p
m1

−b
∣∣2+c12 + τ1

dp−P1 =

∫
R3

p+m1b

ea|p|2+c12 + τ1
dp−P1

= m1bN1 −P1
(2.131)
= m1N1

P1 +P2

m1N1 +m2N2
−P1

=
m1N1m2N2

m1N1 +m2N2

(
P2

m2N2
− P1

m1N1

)
= −(P21 −P2).

(2.140)

For the exchange of energy, we start with a change of variables (similar as in [BY20,
Section 2]) leading to

E12 −
1

2

|P12|2
m1N1

=
1

m1

∫
R3

|p|2

em1a
∣∣ p
m1

−b
∣∣2+c12 + τ1

dp− 1

2

|P12|2
m1N1

=
1

2
a−5/2m

3/2
1 Hτ1(c12).

(2.141)

Inserting the expression for a from Theorem 2.3.14 in (2.133) yields

E12 −
1

2

|P12|2
m1N1

=
(E1 + E2)− 1

2
|P1+P2|2

m1N1+m2N2

m
3/2
1 Hτ1(c12) +m

3/2
2 Hτ2(c21)

m
3/2
1 Hτ1(c12).

Replacing P12 with Theorem 2.3.14 concludes to

E12 − E1 =
1

2

m1N1|P1 +P2|2
(m1N1 +m2N2)2

+
(E1 + E2)− 1

2
|P1+P2|2

m1N1+m2N2

m
3/2
1 Hτ1(c12) +m

3/2
2 Hτ2(c21)

m
3/2
1 Hτ1(c12)− E1

= −(E21 − E2).

The proof was done by Pirner in [BPW22].

In general, the exchange of energy in the macroscopic equations (2.138) cannot
be expressed explicitly because Hτi might not be computable analytically. However,
considering only classical interactions, the exchange terms can be expressed by closed
formulae.

Remark 2.3.19. In the classical-classical case τ1 = τ2 = 0, the relationship (2.134) in
Theorem 2.3.14 simplifies to

N1

N2
=
m

3
2
1 h̃0(c12)

m
3
2
2 h̃0(c21)

=
m

3
2
1

∫
R3

1

e|p|2+c12+0
dp

m
3
2
2

∫
R3

1

e|p|2+c21+0
dp

=
m

3/2
1

m
3/2
2

e−c12

e−c21
.
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Further, computing the integrals

m
3/2
1 H0(c12)

m
3/2
1 H0(c12) +m

3/2
2 H0(c21)

=
m

3/2
1 e−c12

m
3/2
1 e−c12 +m

3/2
2 e−c21

=
m

3/2
1

m
3/2
1 e−c12 +m

3/2
1

N2

N1
e−c12

=
N1

N1 +N2
,

we obtain

E12 − E1 =
N1N2

N1 +N2

(
E2

N2
− E1

N1
+

m1 −m2

(m1N1 +m2N2)2
1

2
|P1 +P2|2

)
=

N1N2

N1 +N2

(
E2

N2
− 1

2

|P2|2
m2N2

2

− E1

N1
+

|P1|2
m1N2

1

+m1m2
m1N

2
1 +m2N

2
2

(m1N1 +m2N2)2
1

2

( |P2|2
m2

2N
2
2

− |P1|2
m2

2N
2
1

)
+

m1m2N1N2

(m1N1 +m2N2)2

(
P2

m2N2
− P1

m1N1

)
·
(
P1

N1
+

P2

N2

))
.

We can also specify decay rates for macroscopic quantities.

Decay rates for the mean velocities and temperatures in the space homogeneous case

The H-Theorem states that both species share the same mean velocity in equilibrium.
More precisely, we can compute an explicit rate with which the mean velocities
converge.

Theorem 2.3.20 (Estimates for the mean velocities for the quantum multi-species
BGK model). In the space homogeneous case of (2.121), we have the following conver-
gence rate for the momenta:

P1

m1N1
− P2

m2N2
= e−t

(
P1(0)

m1N1
− P2(0)

m2N2

)
. (2.142)

Proof. Since Ni is constant in the space homogeneous case (2.138), we have

∂t

(
P1

m1N1

)
=

1

m1N1
∂tP1 =

1

m1N1
(P12 −P1)

(2.140)
=

m2N2

m1N1 +m2N2

(
P2

m2N2
− P1

m1N1

)
.

(2.143)

In a similar way, we compute

∂t

(
P2

m2N2

)
=

m1N1

m1N1 +m2N2

(
P1

m1N1
− P2

m2N2

)
. (2.144)
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If we subtract the two equations (2.143)–(2.144), we obtain

∂t

(
P1

m1N1
− P2

m2N2

)
= −

(
P1

m1N1
− P2

m2N2

)
and conclude

P1

m1N1
− P2

m2N2
= e−t

(
P1(0)

m1N1
− P2(0)

m2N2

)
.

The proof was done by Pirner in [BPW22].

Remark 2.3.21. Equivalently to (2.142), one can also write

b1 − b2 = e−t(b1(0)− b2(0))

using the relationship Pi = miNibi.

We continue with the convergence rates of the kinetic temperatures 3
2Ti =

Ei

Ni
−

1
2

|Pi|2
miN2

i
.

Theorem 2.3.22 (Estimates for the kinetic temperatures for the quantum multi-
species BGK model). In the space homogeneous case of (2.121), it is(

E1

N1
− 1

2

|P1|2
m1N2

1

)
−
(
E2

N2
− 1

2

|P2|2
m2N2

2

)
= e−t

((
E1(0)

N1
− 1

2

|P1(0)|2
m1N2

1

)
−
(
E2(0)

N2
− 1

2

|P2(0)|2
m2N2

2

))

+
1

2
m1m2

m2N
2
2 −m1N

2
1

(m1N1 +m2N2)2
e−t(1− e−t)

∣∣∣∣∣P2(0)

m2N2
− P1(0)

m1N1

∣∣∣∣∣
2

+

(
E1(0) + E2(0)−

1

2

|P1(0) +P2(0)|2
m1N1 +m2N2

)
e−t

·
∫ t

0

es

 m
3/2
1

N1
Hτ1(c12(s))−

m
3/2
2

N2
Hτ2(c21(s))

m
3/2
1 Hτ1(c12(s)) +m

3/2
2 Hτ2(c21(s))

 ds.

(2.145)

Proof. Using (2.138) and inserting (2.143), we compute

∂t

(
E1

N1
− 1

2

|P1|2
m1N2

1

)
= ∂t

(
E1

N1

)
− P1

N1
∂t

(
P1

m1N1

)
=
E12

N1
− E1

N1
− P1

N1

m2N2

m1N1 +m2N2

(
P2

m2N2
− P1

m1N1

)
.

(2.146)
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We plug (2.139) in and obtain

∂t

(
E1

N1
− 1

2

|P1|2
m1N2

1

)

=
1

2

m1|P1 +P2|2
(m1N1 +m2N2)2

+
(E1 + E2)− 1

2
|P1+P2|2

m1N1+m2N2

m
3/2
1 Hτ1(c12) +m

3/2
2 Hτ2(c21)

m
3/2
1 Hτ1(c12)

N1

−E1

N1
− P1

N1

m2N2

m1N1 +m2N2

(
P2

m2N2
− P1

m1N1

)
.

(2.147)

An analogous expression can be derived for species 2. Subtracting both leads to

∂t

((
E1

N1
− 1

2

|P1|2
m1N2

1

)
−
(
E2

N2
− |P2|2
m2N2

2

))

=
E2

N2
− E1

N1
+ϖ +

(E1 + E2)− 1
2

|P1+P2|2
m1N1+m2N2

m
3/2
1 Hτ1(c12) +m

3/2
2 Hτ2(c21)

[
m

3/2
1 Hτ1(c12)

N1
− m

3/2
2 Hτ2(c21)

N2

]

with

ϖ =
1
2 (m1 −m2)m1N

2
1 +m2N2(m1N1 +m2N2)

(m1N1 +m2N2)2
|P1|2
m1N2

1

+
(m1N

2
1 −m2N

2
2 )

(m1N1 +m2N2)2N1N2
P1 ·P2

+
1
2 (m1 −m2)m2N

2
2 −m1N1(m1N1 +m2N2)

(m1N1 +m2N2)2
|P2|2
m2N2

2

=
1

2
m1m2

m2N
2
2 −m1N

2
1

(m1N1 +m2N2)2

∣∣∣∣∣ P1

m1N1
− P2

m2N2

∣∣∣∣∣
2

+
1

2

|P1|2
m1N2

1

− 1

2

|P2|2
m2N2

2

.

This can be rewritten to

∂t

((
E1

N1
− 1

2

|P1|2
m1N2

1

)
−
(
E2

N2
− 1

2

|P2|2
m2N2

2

))
= TE + TP + TH

where

TE(t) = −
((

E1

N1
− |P1|2
m1N2

1

)
−
(
E2

N2
− |P2|2
m2N2

2

))
,

TP (t) =
1

2
m1m2

m2N
2
2 −m1N

2
1

(m1N1 +m2N2)2

∣∣∣∣∣ P1

m1N1
− P2

m2N2

∣∣∣∣∣
2

,

TH(t) =
(E1 + E2)− 1

2
|P1+P2|2

m1N1+m2N2

m
3/2
1 Hτ1(c12) +m

3/2
2 Hτ2(c21)

[
m

3/2
1 Hτ1(c12)

N1
− m

3/2
2 Hτ2(c21)

N2

]
.
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Now, Duhamels formula gives(
E1

N1
− 1

2

|P1|2
m1N2

1

)
−
(
E2

N2
− 1

2

|P2|2
m2N2

2

)
= T ∗

E + T ∗
P + T ∗

H

with

T ∗
E = e−tTE(0) = e−t

((
E1(0)

N1
− 1

2

|P1(0)|2
m1N2

1

)
−
(
E2(0)

N2
− 1

2

|P2(0)|2
m2N2

2

))
and

T ∗
H =

(
E1(0) + E2(0)−

1

2

|P1(0) +P2(0)|2
m1N1 +m2N2

)
e−t

·
∫ t

0
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 m
3/2
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N1
Hτ1(c12(s))−

m
3/2
2

N2
Hτ2(c21(s))

m
3/2
1 Hτ1(c12(s)) +m

3/2
2 Hτ2(c21(s))

 ds.

Using Theorem 2.3.20 yields

T ∗
P =

1

2
m1m2

m2N
2
2 −m1N

2
1

(m1N1 +m2N2)2
e−t

∫ t

0
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m2N2
− P1(s)

m1N1
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=
1

2
m1m2

m2N
2
2 −m1N

2
1

(m1N1 +m2N2)2
e−t

∫ t

0

ese−2s

∣∣∣∣∣P2(0)

m2N2
− P1(0)

m1N1

∣∣∣∣∣
2

ds

=
1

2
m1m2

m2N
2
2 −m1N

2
1

(m1N1 +m2N2)2
e−t(1− e−t)

∣∣∣∣∣P2(0)

m2N2
− P1(0)

m1N1

∣∣∣∣∣
2

,

which finishes the proof. The proof was done by Pirner in [BPW22].

The complicated formula (2.145) can be simplified in the case of classical-classical
interactions.

Remark 2.3.23. We continue Remark 2.3.19. In the classical-classical case τ1 = τ2 = 0,
we get

N1

N2
=
m

3/2
1

m
3/2
2

e−c12

e−c21
,

and we are able to explicitly compute the bracket term of T ∗
H : m

3/2
1

N1
Hτ1(c12(s))−

m
3/2
2
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Hτ2(c21(s))

m
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3
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3
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1 e−c12 +m

3/2
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m
3/2
1 e−c12 +m
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N2
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This means that in the classical-classical case, the decay rate for the kinetic temperatures
(2.145) simplifies to(

E1

N1
− 1

2

|P1|2
m1N2

1

)
−
(
E2

N2
− 1

2

|P2|2
m2N2

2

)
= T ∗

E + T ∗
P

which equals the temperature rate for the KPP model in Theorem 2.1.44.

This section sets collision frequencies νij = 1. Actually, it is not clear how collision
kernels in the quantum Boltzmann model look like [Vil02] which led to collision
frequencies in the BGK model.

The following observation concludes this section and illustrates that the mean
velocities and temperature converge the faster the larger the possible collision fre-
quencies are.

Remark 2.3.24. If we include constant collision frequencies νij into the model with the
condition

ν12 = ν21,

i.e.

∂tf1 = ν11(E11 − f1) + ν12(E12 − f1),

∂tf2 = ν22(E22 − f2) + ν12(E21 − f2),

then we can repeat all computations for the decay rates in Theorems 2.3.20 and 2.3.22
in the same way resulting in
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2
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m2N2
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+ ν12
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·
∫ t
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Chapter 3

Numerical schemes
The field of numerical mathematics was eventually born when computers have been
invented and the computational power was further developed. New issues arise
when a mathematical model is translated to computer language because analytical
properties shall be reflected at the numerical level. Clever schemes are developed in
order to avoid compromises between small numerical errors and efficient simulations.

We give a short introduction into numerical schemes regarding kinetic equations in
Section 3.1. In Section 3.2, we present the basic idea of our scheme for a general multi-
species BGK-type equation. Subsequently, we explain the discretization techniques
for the corresponding time, space and velocity variables in Sections 3.3–3.5.

3.1 Fundamentals

Kinetic equations depend on three independent variables: time, space and (micro-
scopic) velocity. Each of them needs to be discretized. In this section, we give an
overview over existing discretization methods. We start with the discretization in
time in Section 3.1.1 because this is the main focus in this thesis. Then we give
a short introduction into space discretization techniques in Section 3.1.2. As we
will only consider one-dimensional test cases for reasons of computational costs, we
also stick to one dimension in the introduction. In Section 3.1.3, we consider the
discretization of the three-dimensional velocity space.

3.1.1 Time discretization

We first present methods how to numerically solve an initial value problem for the
general autonomous ordinary differential equation (ODE)

f ′(t) = G(t, f(t)),

f(0) = f0
(3.1)

with given G : R× R → R and f0 ∈ R. The exact solution of (3.1) is approximated
by f ℓ ≈ f(tℓ) where tℓ = ℓ ·∆t with ℓ ∈ N0 and a problem dependent ∆t > 0.

We focus on Runge-Kutta (RK) methods and refer to [HV03].

Runge-Kutta methods

We consider the ODE in (3.1). Generally speaking, we want to calculate f ℓ+1 from
a given f ℓ. Using RK schemes, intermediate values f [i] are computed, and the next
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3 Numerical schemes

time step f ℓ+1 is then given by a linear combination of these values. The auxiliary
approximations f [i] are called stages where i = 1, . . . , s. A general form of a RK
scheme is given in the following definition.

Definition 3.1.1 (Runge-Kutta method). Given A = (aij) ∈ Rs×s, b, c ∈ Rs and f ℓ.
The update f ℓ+1 for (3.1) is given by

f ℓ+1 = f ℓ +∆t

s∑
i=1

biG(tℓ + ci∆t, f
[i])

with the stage values

f [i] = f ℓ +∆t

s∑
j=1

aijG(tℓ + cj∆t, f
[j]), i = 1, . . . , s.

This is often written in a compact way according to [But87] via the Butcher tableau

c A

b
.

The properties of any RK scheme are determined by A, b and c. An obvious
classification is given by the following definition.

Definition 3.1.2 (Explicit and implicit). A RK method is called explicit if aij = 0 for
j ≥ i because all stage values can be computed one after another by explicit relations.

Otherwise, the method is called implicit. In these cases, the stage values are only
given by a system of algebraic relations. If aij = 0 for j > i, the scheme is called a
diagonally implicit Runge-Kutta (DIRK) scheme.

Let fe be the exact solution to (3.1). Substituting fe(tℓ) into the scheme leads to a
value f ℓ+1

e which should be approximately fe(tℓ+1) because the method approximates
the differential equation. If the local error satisfies

fe(tℓ+1)− f ℓ+1
e = O(∆tp+1),

the method is called consistent of order p (provided thatG is sufficiently differentiable).
Concerning such order of accuracy, so-called order conditions can be derived. For
first-order schemes, it is required that

∑
i bi = 1. Second-order schemes can be

achieved provided that the equality b⊤c = 1
2 is fulfilled. The higher the order, the

more conditions on A, b and c need to be satisfied. This also results in more and
more necessary stages. The minimal number of required stages for a method of order
p is determined by order barriers [But16]. For schemes of order higher than 5, the
number of required stages increases faster than the order of the scheme.

We assume that the method is stable (which is addressed subsequently). Using
above notation and starting at the given initial value fe(0) = f0, the local errors are
added up such that the global error at time t = tL is

fe(tL)− fL = O(∆tp).
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This means that the numerical solution converges to the exact solution for ∆t→ 0. In
other words, the method will be convergent with order p when applied to a smooth
ODE. However, the order may be reduced for stiff ODEs. Further details on these
topics can be found e.g. in [HV03].

A numerical method is called stable if small local errors lead to only small global
errors. In order to examine the stability of a scheme, the method is applied to the
scalar, complex test equation

f ′(t) = λf(t).

One is interested in the stability function R which is determined by the recursion

f ℓ+1 = R(z)f ℓ

with z = λ∆t. More precisely, one seeks the stability regions

S = {z ∈ C : |R(z)| ≤ 1}.

We state the following notions of stability for ODE methods.

Definition 3.1.3 (Stability notions). An ODE method is called A-stable1 if S ⊇ {z ∈
C : ℜ(z) ≤ 0}. It is said to be strongly A-stable if additionally limz→∞ |R(z)| < 1. An
ODE method is called L-stable if it is A-stable and in addition limz→∞ |R(z)| = 0.

Accordingly, A-stable and L-stable schemes are unconditionally stable which
means that they are stable without any condition on the step size.

Remark 3.1.4 (Methods for PDEs). Consistency, stability and convergence are fun-
damental requirements for any numerical scheme and become even more challenging
if more variables are encountered. Regarding stability, we only mention the notion
of total-variation-stability, i.e. the total variation of the numerical solution remains
bounded. See e.g. [LeV02].

We are especially interested in conservation laws. The following is given in
[HV03].

Lemma 3.1.5 (Conservation laws for RK schemes). Let w be a given weight function,
w ̸≡ 0. Assume

w(G(t, f)) = 0

for all t ≥ 0 and f ∈ R. This corresponds to the conservation law that for any solution
f(t) the quantity w(f(t)) is constant in time. Then any RK method in Definition 3.1.1
preserves this conservation property; that is

w(f ℓ+1) = w(f ℓ)

for all ℓ.
1 This notion was introduced in [Dah63].
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For later reference, we list several RK schemes.

Definition 3.1.6 (List of RK schemes). Explicit RK schemes are

1. the first-order Forward Euler method

f ℓ+1 = f ℓ +∆tG(tℓ, f
ℓ), (3.2)

respective

0 0

1
. (3.3)

2. the second-order Heun’s method

f ℓ+1 = f ℓ +
∆t

2
G(tℓ, f

ℓ) +
∆t

2
G(tℓ +∆t, f ℓ +∆tG(tℓ, f

ℓ)), (3.4)

respective

0

1 1
1
2

1
2

. (3.5)

3. the second-order method ARS-ex [ARS97]

f [1] = f ℓ + γ∆tG(tℓ + γ∆t, f ℓ),

f [2] = f ℓ + δ∆tG(tℓ +∆t, f ℓ) + (1− δ)∆tG(tℓ +∆t, f [1]),

f ℓ+1 = f [2],

(3.6)

respective

0

γ γ

1 δ 1− δ 0

δ 1− δ 0

(3.7)

with δ = 1− 1
2γ and γ = 1−

√
2
2 .

Implicit RK schemes are

1. the first-order, L-stable Backward Euler method

f ℓ+1 = f ℓ +∆tG(tℓ+1, f
ℓ+1), (3.8)

respective

1 1

1
. (3.9)
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2. the second-order (implicit) and A-stable trapezoidal method

f ℓ+1 = f ℓ +
∆t

2
G(tℓ, f

ℓ) +
∆t

2
G(tℓ+1, f

ℓ+1), (3.10)

respective

0

1 1
2

1
2

1
2

1
2

. (3.11)

3. the second-order method ARS-im [ARS97]

f [1] = f ℓ + γ∆tG(tℓ + γ∆t, f [1]),

f [2] = f ℓ + (1− γ)∆tG(tℓ +∆t, f [1]) + γ∆tG(tℓ +∆t, f [2]),

f ℓ+1 = f [2],

(3.12)

respective

0

γ 0 γ

1 0 1− γ γ

0 1− γ γ

(3.13)

with γ = 1−
√
2
2 .

More methods We want to mention two additional classes of schemes because they
are also frequently used for kinetic equations.

For an update according to RK schemes, only the previous approximation is needed.
This is in contrast to multi-step methods where k ≥ 1 preceding approximations are
used for the update. Such methods are defined by

k∑
j=0

αjf
ℓ+j =

k∑
j=0

βjG(tℓ+j , f
ℓ+j)

where the coefficients αj and βj depend on the step size ∆t and determine the
method. The main advantage of these methods is that any update requires only
one new evaluation. For RK schemes, every stage corresponds to a new evaluation.
Hence, multi-step methods are often used for reasons of efficiency. However, there
are two main drawbacks for multi-step methods. Firstly, a change in the step size
leads to a change in the coefficients αj and βj . Secondly, there is only one value
given at initial time. The method yet needs k starting values f0, . . . , fk−1 which
therefore need to be calculated by different approaches. [HV03]
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An example for multi-step schemes in the context of kinetic equations is provided
in [DP17].

Another approach is to use exponential time integrators. Linear or constant parts
of the initial value problem can be integrated exactly in time which may help for
stiff equations. In the context of BGK equations, we refer to [DP11, DP14] and
[Xu01, XCX21, SY08].

Having introduced discretization methods for (3.1), we come to more elaborated
equations and schemes.

Implicit-explicit schemes

We consider the generic ODE

∂tf + T (f) = R(f) (3.14)

for a distribution function f . In the context of kinetic equations, T denotes the
transport operator, and R refers to the interaction/relaxation operator. In order
to discretize (3.14) in time, both operators and the time derivative need to be
discretized. The solution is approximated by f ℓ ≈ f(tℓ).

The structure of the operators indicates a particular treatment. In our case,
the transport operator T is usually discretized explicitly introducing a Courant-
Friedrichs-Lewy (CFL) condition which is discussed later in Sections 3.1.2 and 3.4.
The relaxation operator R can also be discretized explicitly. However, for large
collision frequencies this results in severe restrictions on the time step size. So often it
is preferred to use a more difficult implicit time discretization. Thanks to the special
structure of the BGK operators, the implication is comparably easy manageable and
the equation stays explicitly solvable [PP07, FJ10]. In Section 3.3.5, we present our
general implicit solver for the relaxation operator.

Definition 3.1.7 (IMEX schemes). If one equation is discretized by a suitable mixture
of implicit and explicit methods, one refers to IMEX schemes.

In the following, we present how IMEX schemes can be constructed and refer to
[DP14].

Splitting schemes Operator splitting is a classic and widely used approach, in the
kinetic context e.g. in [CP91, HHM17b]. For these methods, the ODE (3.14) is solved
in [tℓ, tℓ+1] as a sequence of steps where only one operator is taken into account
during one step. To first order, we first solve the space homogeneous relaxation
problem

∂tf
∗ = R(f∗),

f∗(tℓ) = f ℓ
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in [tℓ, tℓ+1], and for convenience, we write f∗(tℓ+1) = R∆t(f
ℓ). Afterwards, we

consider the transport step

∂tf + T (f) = 0

f(tℓ) = f∗(tℓ+1)

in [tℓ, tℓ+1], and in short f(tℓ+1) = T∆t(f
∗(tℓ+1)). We summarize this in the following

definition.

Definition 3.1.8 (First-order splitting). Given f ℓ. The update f ℓ+1 is achieved by the
first-order splitting method

f∗ = R∆t(f
ℓ),

f ℓ+1 = T∆t(f
∗) = T∆t(R∆t(f

ℓ)).

In practice, the splitting is stable provided that every step is stable [HV03]. But
additional errors may be introduced by the splitting approach. Only in the case
that the operators commute, the splitting is exact [HV03]. Hence, the order of the
discretization techniques for the operators is important, as well. It is sensible to
perform the operation which acts on shorter time scales at first.

A symmetry in the splitting may yield a better accuracy. Actually, a second-order
splitting scheme is given by the well-known Strang splitting [Str68].

Definition 3.1.9 (Strang splitting). Given f ℓ. The update f ℓ+1 is achieved by the
second-order splitting method

f∗ = T∆t/2(f
ℓ),

f∗∗ = R∆t(f
∗) = R∆t(T∆t/2(f

ℓ)),

f ℓ+1 = T∆t/2(f
∗∗) = T∆t/2(R∆t(T∆t/2(f

ℓ))).

There exist also higher-order splitting schemes [HV03, Chapter IV]. However, we
focus on schemes up to second order in this thesis.

The advantage of splitting schemes is obvious: Already existing methods for the
individual operators can be glued together. In the special case of kinetic equations,
even more benefits exist. The relaxation operator only acts on v, whereas the trans-
port operator acts on x. So the splitting simplifies to design schemes with appropriate
properties because the methods for each operator can focus on a reduced number of
variables.

Unfortunately, one fundamental drawback is that splitting schemes may suffer
from order reduction in the fluid limit [Jin95]. This issue can be overcome by
different approaches.

IMEX Runge-Kutta schemes IMEX RK schemes were originally developed in
[ARS97] for parabolic PDE. In [Jin95, PR05], they have been extended to hyperbolic
systems with relaxation terms. Examples concerning our purposes can be found in
[PR05, PP07], and we use such techniques in [HHK+22, BPW22].
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Definition 3.1.10 (IMEX RK schemes). We consider an explicit RK scheme with
Â = (âij) ∈ Rŝ×ŝ, b̂, ĉ ∈ Rŝ and an implicit RK scheme with A = (aij) ∈ Rs×s,
b, c ∈ Rs. Given f ℓ. A standard implicit-explicit Runge-Kutta scheme applied to (3.14)
can be written as

f [i] = f ℓ −∆t

i−1∑
j=1

âijT (f [j]) + ∆t

s∑
j=1

aijR(f [j])

f ℓ+1 = f ℓ −∆t

i−1∑
j=1

b̂iT (f [j]) + ∆t

s∑
j=1

biR(f [j])

with the stage values f [i] and the numerical solution f ℓ+1.

Additional to suitable order conditions, the coefficients of both the implicit and
the explicit RK scheme need to satisfy coupling conditions [ARS97, KC03, PR05]. A
first-order method is given by the coupling of the schemes (3.8) and (3.2), whereas
the coupling of (3.12) and (3.6) yields a second-order, L-stable and globally stiffly
accurate (GSA) IMEX RK scheme [ARS97]. The notion of GSA schemes is introduced
in Definition 3.1.11 below.

In [BPR13, DP14], IMEX RK schemes are characterized and corresponding prop-
erties are proven. We only give the following notion.

Definition 3.1.11 (GSA). An IMEX RK scheme is called globally stiffly accurate if the
corresponding DIRK method is stiffly accurate; that is

asi = bi, i = 1, . . . , s;

and if, in addition, the explicit method satisfies

âŝi = b̂i, i = 1, . . . , ŝ.

According to the previous definition, the numerical solution coincides with the
last stage value for GSA schemes. This property is important for the accuracy of the
method in the limit where the collision frequencies become infinite.

Structure-preserving properties

In this section, we take a deeper look at two structure-preserving properties, namely
AP and strong-stability-preserving (SSP) schemes.

Asymptotic-preserving schemes AP schemes play an essential role in the transition
of different regimes, e.g. when passing from kinetic to fluid descriptions. In this case,
a great number of collisions occur making the interaction part stiff, but the collisional
forces are not strong enough to drive the kinetic system to a fluid description yet.
In order to deal with such multi-scale problems, unconditionally stable numerical
methods have been developed which succeed in capturing the correct asymptotic
behavior while avoiding severe restriction on the time step. These schemes are called
AP [DP14]. To be more precise, we give the following definition.
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P ε
∆t P 0

∆t

P ε P 0

∆t → 0 ∆t → 0

ε → 0

ε → 0

Figure 3.1: A kinetic problem P ε and its fluid limit P 0 are discretized by P ε
∆t and P 0

∆t. If the diagram commutes,
that is if P ε

∆t is a consistent and stable approximation of P 0 as ε → 0 for a fixed ∆t, the method is called AP.

Definition 3.1.12 (AP). Let P ε be a kinetic problem with fluid limit P 0 for ε → 0.
A consistent and stable time discretization P ε

∆t of step size ∆t is called asymptotic
preserving if it becomes a consistent and stable time discretization P 0

∆t for the reduced
fluid equation in the limit ε→ 0 and for fixed ∆t, see Figure 3.1.

The scaling parameter can be associated with the Knudsen number which appears
e.g. in the nondimensional Boltzmann equation [Str05]. For BGK equations, ε→ 0
corresponds to enormous collision frequencies ν → ∞.

Using AP schemes, the correct equilibrium solutions are preserved while remain-
ing an efficient scheme [Pup19, HJL17, BIP15, DP14, FJ10, BLM08, PP07]. In this
context, splitting methods should be treated with care because, in the hydrody-
namic limit, the (second-order) Strang splitting reduces actually to a first-order
approximation of the equilibrium equation as shown in [Jin95].

Strong-stability-preserving schemes For this kind of schemes, we need to antici-
pate parts of the space discretization. Considering a PDE, it is a common practice
to first discretize the space variables which results in a system of ODEs in the time
variable. ODE solvers can be applied provided that an adequate stability criterion
is satisfied. For hyperbolic equations, a corresponding class of (high-order) time
discretization methods is called total-variation-diminishing (TVD), introduced in
[Shu88, SO88]. However, in [GST01] the authors explain that the notion strong-
stability-preserving (SSP) is more suitable for this class because the essential part of
these methods is not restricted to the total variation norm. The construction of such
schemes often relies on convexity arguments which hold for any norm. The property
is given in the following definition.

Definition 3.1.13 (SSP). A scheme is called strong-stability-preserving if

||f ℓ+1|| ≤ ||f ℓ||

for any norm || · ||.
If an equation possesses an entropy decay structure, this one is preserved at the

discrete level as a consequence of the SSP property. Moreover, the positivity of an
IMEX RK scheme follows from the above property. More generally speaking, an
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SSP scheme preserves any convex property which makes SSP schemes attractive.
However, in [GST01] it was shown that unconditionally SSP implicit schemes are
at most first-order accurate. As the positivity of the distribution functions indeed is
required, further developments are needed for kinetic equations.

For the standard BGK equation, such an extension is given in [HSZ18] where an
additional correction step to a preceded IMEX RK method guarantees the positivity of
the scheme. In [GGHS22], the SSP property for high-order schemes can be achieved
by using multi-derivative IMEX RK methods. The schemes in [HSZ18, GGHS22]
ask for several requirements concerning the individual positivity preservation of the
transport and the interaction operator, respectively, and some dissipative behavior of
the collision operator. To the best of our knowledge, one of those cannot be proven
for velocity-dependent collision frequencies such that we cannot apply these schemes
to our equations (2.69). This also means that we need to take care of the positivity
preservation by additional considerations, see Section 4.2.

In the following section, we concern ourselves with existing methods for the dis-
cretization of the space variable.

3.1.2 Space discretization

There can be found many different approaches for the space discretization in the
literature as the same transport term is incorporated by many different kinetic
equations. The most common techniques for the space discretization are finite
difference (FD), finite element (FEM) and finite volume (FV) schemes. For FD
methods, the derivatives are approximated by finite differences, and discrete point
values are evolved in time. This results in a system of linear equations. For FEM
schemes, the considered matter is divided into a finite number of elements. The
evolution of these elements is described in time based on the forces acting on and
between them. Whereas the space is discretized into control volumes for FV schemes,
and occuring fluxes between such volumes are approximated.

The transport term being hyperbolic, a FV discretization is often used, preserving
the conservation properties by construction. That is why we will use this approach as
well. In the following, we give a short introduction into FV schemes. For reasons of
computational costs, we will only consider one-dimensional settings in space (but we
will stick to three dimensions in velocity, see Remark 3.2.1). Therefore, we restrict
the following introduction to one dimension. For extensions to higher dimension and
for more information, we refer to [LeV02, Tor09, Ber21].

Finite Volume schemes

A convenient approach for conservation laws is a FV method. Let us consider the
following one-dimensional balance law in the spatial domain I ⊂ R

∂tf(x, t) + ∂xF (f(x, t)) = R(f) for x ∈ I, t > 0 (3.15)

f(x, 0) = f0(x) for x ∈ I, (3.16)

where F denotes the flux function. In kinetic equations, it is F (f) = vf .
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Figure 3.2: The initial data f0 is given and averaged in each cell Ik . The resulting function is piecewise constant
with values (f̄0)k for x ∈ Ik .

We divide the domain in cells Ik = [xk − ∆x
2 , xk + ∆x

2 ] for k ∈ {0, . . . ,K} and an
appropriately chosen ∆x > 0. For simplicity, we use equidistant cells. In every cell,
the initial data is averaged

(f̄0)k :=
1

∆x

∫
Ik

f0(x) dx

resulting in a piecewise constant function

f̄(x, 0) = (f̄0)k for x ∈ Ik,

illustrated in Figure 3.2. We now look at the modified initial value problem

∂tf̄ + ∂xF (f̄) = R(f̄) for x ∈ I, t > 0 (3.17)

f̄(x, 0) = (f̄0)k for x ∈ Ik. (3.18)

These equations describe a series of Riemann problems; that is, a Cauchy problem
where the initial condition consists of two constant states seperated by a discontinuity.
We integrate (3.17) in space and obtain an ODE which can be solved according to
Section 3.1.1. The equation in conservative form reads

∂tf̄k = f̄k − 1

∆x

(
Fk+ 1

2
− Fk− 1

2

)
+Rk (3.19)

where

f̄k =
1

∆x

∫
Ik

f(x, t) dx

are cell averages. Using the set of cell averages {f̄k}, f can be reconstructed inside
a cell Ik resulting in a polynomial pk(x) ≈ f(x) for x ∈ Ik [Tor09]. Often, the
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polynomials pk and pk+1 are used to determine the flux across the interace x = xk+ 1
2
.

In general, we approximate the flux at the interface x = xk+ 1
2

as a function of
adjacent cell averages

Fk+ 1
2
= F (f̄k−l, . . . , f̄k+r) (3.20)

with l and r two nonnegative integers. Moreover, we define the space integral average

Rk =
1

∆x

∫
Ik

R(f(x, t)) dx. (3.21)

The formulae (3.20) and (3.21) need to be approximated appropriately leading to
numerical fluxes and numerical sources, respectively. The construction of numerical
fluxes is a central task for the numerical method. There exist approaches where the
Riemann problems are solved exactly such as Godunov’s method applied to the Euler
equations. Alternatively, approximations are used which result in different numerical
fluxes. In any case, the numerical fluxes are supposed to satisfy some properties.

Definition 3.1.14 (Consistent numerical flux). The numerical flux F is called consis-
tent with the physical flux F if F (g, . . . , g) = F (g).

A sufficient criterion for consistency is to have a Lipschitz continuous function F
in each variable. A consistent numerical flux ensures consistency of the semi-discrete
scheme (3.19) with the hyperbolic conservation law (3.15). If the numerical method
is additionally stable, the scheme converges under grid refinement. This is often
summarized in the fundamental theorem of numerical methods for PDEs. For further
information, including different notions of stability, we refer to [LeV02].

In this context, we want to mention the Lax-Wendroff theorem [LW60] which
guarantees that the approximate solution of a consistent and conservative scheme for
a hyperbolic conservation law with convergence under grid refinement converges in
this case towards a weak solution of the conservation law.

A further issue are the boundaries, either physically given by the spatial domain or
artificially set for computational reasons. For periodic boundaries, the cells IK and I0
are thought of to be connected. But also open and fixed boundaries can be used. Any
boundary behavior results in a special treatment of the numerical fluxes FK+ 1

2
and

F− 1
2
.

High-resolutions can be obtained by elaborated methods, e.g. by weighted essentially
non-oscillatory (WENO) schemes. And discontinuous Galerkin (DG) schemes can
also be applied which is a combination of the FEM and FV framework. For orders
higher than two, one has to be especially careful with the corresponding formulation
of the numerical source Rk. [Mie00, PP07, HJL17, BCS11, CGP12]
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More approaches

Especially for the transport term, semi-Lagrangian (SL)2 methods have been devel-
oped which acknowledge its special and quite easy structure. The full equation is
then often solved by splitting methods [DP14]. For the SL approach, the character-
istics, being straight lines (see Section 2.1.2), are followed exactly. This requires
an interpolation for the evaluation of the corresponding foot point, illustrated in
Figure 3.3. A benefit of these schemes is that no stability conditions are needed.
Unfortunately, SL methods are not conservative in general. Nevertheless, they can be
kept conservative also for higher orders by conservative reconstructions or corrections
[SRBG99, CMS10, DP14, CBRY21, QS11].

t

xtℓ

tℓ+1

xk − v∆t xk

f ℓ+1
i,k

v > 0 v < 0

Figure 3.3: We illustrate the SL approach for the transport term. To determine fℓ+1
i,k , the characteristic curve is

followed for v > 0. Since the foot point xk − v∆t does not hit a node of the grid, an interpolation is needed.

Based on discrete-velocity models (see Section 3.1.3) and SL methods, efficient
schemes can be developed [DL13]. Here, the distribution function needs not to be
reconstructed at each time step (in contrast to standard SL schemes) which then
accelerates numerical computations.

We also want to mention Particle in Cell (PIC) methods. These are the most used
methods for the Vlasov equation which approximate the plasma by a finite number
of macro-particles [FSB01]. In [FSB01], the authors shortly discuss different meth-
ods for the Vlasov equation and then introduce their positive and flux conservative
method (PFC).

We have given an overview over existing techniques for discretizing the space and
time variable. In order to obtain a fully-discrete scheme, the velocity variable needs
to be discretized as well.

2 The notion reminds of the description in Lagrangian coordinates in contrast to Eulerian coordinates.
For these, see [TM05].
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3.1.3 Velocity discretization

Considering the microscopic velocities as independent variables, poses several chal-
lenges. In the same time, it introduces more degrees of freedom which makes it
possible to capture more phenomena at smaller scales.

Historically, discrete-velocity methods aimed to study a rarefied gas qualitatively
[DP14]. A relatively new approach are the Lattice-Boltzmann methods which can be
seen as schemes for a discrete-velocity Boltzmann equation. This has been successfull
in simulating hydrodynamic systems up to the Navier-Stokes level with possible
complex boundaries. Accordingly, discrete-velocity BGK models have been developed.
See [Bue96, Mie00, Mie01, YH09], as well as [DP14, Chapter 4] and references
therein.

Regarding computational costs, kinetic equations suffer from the high dimensionality.
So it is recommendable to use coarse grids [Pup19] whenever possible. However,
a coarse velocity grid amplifies the challenges regarding errors in the macroscopic
quantities which makes it necessary that given conservation laws are fulfilled at the
discrete level as well.

In [GT09], the authors propose a constrained L2-projection in order to preserve
the moment conservation properties. A profound study of discrete moments, a
discrete entropy and the corresponding discrete Maxwellians in a BGK model is
provided in [Mie00]. There, basic estimates on and effects to the mean velocities and
temperatures can be found when microscopic velocities are discretized and truncated.
We shortly summarize some of the statements in the following. For reference, see
[Mie00, DP14].

A discrete-velocity model for the BGK equation

Let us consider one space and one velocity dimension for sake of simplicity in notation.
The BGK equation for one species with mass m (and constant in v collision frequency)
reads

∂tf + v ∂xf = ν(M[f ]− f).

We introduce a discrete velocity grid

{vq ∈ R, q ∈ V }

with V ⊂ Z being a finite subset and ∆v > 0 such that a node of the mesh can be
written as

vq = q∆v.

We are interested in the evolution of the vector f = (fq(x, t))q ≈ (f(x, vq, t))q which
is described by a system of |V | partial differential equations3

∂tfq + vq ∂xfq = νV (Mq[f ]− fq),

3 For a fully-discrete scheme, an additional discretization in space and time is needed.
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where the discrete Maxwellian Mq[f ] is not defined yet. The discrete collision
frequency νV = ν(nV , TV ) is determined by the discrete fluid quantities4 which can
be calculated by discrete sums. We use the midpoint rule; that is

nV =
∑
q∈V

fq ∆v,

nV uV =
∑
q∈V

vqfq ∆v,

nV TV =
∑
q∈V

m(vq − uV )fq ∆v.

(3.22)

We define the discrete entropy

HV [f ] =
∑
q∈V

fq log(fq)∆v.

We want to find Mq[f ] such that the discrete conservation laws∑
q∈V

(Mq − fq)∆v = 0,

∑
q∈V

vq(Mq − fq)∆v = 0,

∑
q∈V

m|vq − uV |2(Mq − fq)∆v = 0

(3.23)

are satisfied, as well as a corresponding discrete formulation of the H-Theorem.

Discrete Maxwellians A natural choice seems to be

Mq[f ] = M[nV , uV , TV ,m] =
nV

(2πTV /m)
1
2

exp

(
−m|uV − vq|2

2TV

)
. (3.24)

However, this formula, in general, does not satisfy neither the conservation properties
(3.23) nor the entropy behavior. Instead, the discrete equilibrium Mq[f ] is defined in
the following way.

Definition 3.1.15 (Discrete Maxwellian). We call

Mq[f ] = Ma,b,c
q = exp(a+ bvq + c|vq|2), a, b, c ∈ R (3.25)

a discrete Maxwellian if and only if there exists f > 0 resulting in the discrete moments
nV , uV and TV .

4 Since we consider only one velocity dimension in this section, the factor in the temperature differs
from the factor in the rest of the thesis (where we consider three velocity dimensions).

95



3 Numerical schemes

−6 −4 −2 0 2 4 6

v

0.00

0.01

0.02

0.03

0.04

0.05

0.06 Mq[1, 0, 1, 1]

Ma,b,c
q

Ma,b,c
q

Ma,b,c
q

Figure 3.4: The Maxwellian Mq [1, 0, 1, 1] according to (3.24) is illustrated by the gray line. In comparison, discrete

Maxwellians Ma,b,c
q are plotted, all of which share the same discrete moments nV = 1, uV = 0, TV = 1.

However, the corresponding parameters a, b, c for these discrete Maxwellians (3.25) are calculated with respect to
different velocity grids (in width) resulting in distinct functions.

The necessary and sufficient condition comes from the particular choice of the
grid as not all sets of moments may be realizable by the given discrete velocities.
Additionally, the velocity grid needs to be large enough. But this last statement is no
actual restriction; it is sufficent to take a Cartesian grid with at least two nodes in
each direction and at least three nodes in a given direction.

The crucial difference between (3.24) and (3.25) is that the parameters a, b, c ∈ R
cannot be computed explicitly from the given moments nV , uV and TV . These
parameter need to be determined by solving (3.23) via a Newton iteration method,
for instance.

More information (including existence, uniqueness and convergence results) and
the proofs of the given statements can be found in [Mie00].

We illustrate discrete Maxwellians in Figure 3.4. The Maxwellian Mq[1, 0, 1, 1]
according to (3.24) is provided by the gray line. If we instead force the discrete
Maxwellian (3.25) to have the discrete moments nV = 1, uV = 0 and TV = 1,
the resulting functions highly depend on the underlying velocity grid. The velocity
domain used for the discrete Maxwellian Ma,b,c

q given by the green crosses is large
enough such that Mab,c

q is comparable to Mq[1, 0, 1, 1]. However, for smaller velocity
grids, the corresponding Mab,c

q differ significantly from Mq[1, 0, 1, 1], e.g. for the
blue stars and the red crosses, respectively.

Temperature and mean velocity bounds We already mentioned that the set of
moments being realizable by the discrete velocity grid is restricted. This means that,
once a velocity grid is chosen, the corresponding discrete-velocity model cannot
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describe any gas flow. Conversely, for a given flow, the velocity space must be
discretized properly in order to obtain a good description.

Proposition 3.1.16 (Bounds for discrete macroscopic quantities). Let f be a distri-
bution function and the velocity grid given. Then the discrete mean velocity uV and
temperature TV associated with f , defined in (3.22), satisfy

min
V

vq ≤ uV ≤ max
V

vq, (3.26)

min
V

|vq − u|2 ≤ TV ≤ max
V

|vq − uV |2. (3.27)

The previous proposition illustrates that the velocity grid must be large enough
for a possible resolution of high velocities and high temperatures. Moreover, the
temperature is also bounded from below. This means that ∆v must be chosen small
enough in order to resolve possibly small temperatures as pointed out in [Mie00].

Quadrature

We are interested in macroscopic quantities being represented by integrals over the
distribution function with respect to the microscopic velocity. By discretizing the
velocity space, the question arises how to discretize integrals. Usually, function
values at specific points are weighted and summed up, specified by the corresponding
quadrature rule: ∫ b

a

ω(v)f(v) dv ≈
n∑

i=1

ωif(vi) (3.28)

where f(v) is a given function, ω(v) is a weight function, ωi are discrete weights and
vi are the corresponding (possibly unequally spaced) nodes for i = 1, . . . , n.

Gaussian quadrature rules are popular being constructed such that polynomials
of degree 2n− 1 or less are maintained exactly. However, the location of the nodes
vi poses difficulties for kinetic equations. We illustrate this for the Gauss-Hermite
quadrature which is designed to integrate functions on unbounded intervals of the
following form: ∫

R
vsf(v)e−v2

dv ≈
n∑

i=1

ωiv
s
i f(vi).

The weight function ω(v) is a Maxwellian, and polynomials of degree 2n − 1 are
maintained exactly if 2s− 1 = n. As we are especially interested in s = 0, 1, 2, a small
velocity grid with n = 3 sufficed. This method is very suitable for functions being
close to Maxwellians. However, the parameters of the Maxwellian (mean velocity,
temperature) are unknown and may change in space and time. This makes it hard to
define a suitable velocity grid and the corresponding nodes vi. Accordingly, different
quadrature rules are often employed. [Pup19]
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Figure 3.5: Illustration of the composite trapezoidal rule for 4 subintervals. The integral of f is approximated by the
area of a trapezoid in each subinterval. The corresponding weights are ω̃0 = ω̃4 = 1

2
and ω̃1 = ω̃2 = ω̃3 = 1.

A simpler approach is to use an equally spaced velocity grid leading to the Newton-
Cotes formulas. For reference see e.g. [SB02, QSS07]. The weight function ω(v) = 1
in (3.28) is constant, and the discrete weights ωi can be computed as the integral of
Lagrange basis polynomials li:∫ b

a

f(v) dv ≈
∫ b

a

n∑
i=0

f(vi)li(v) dv =

n∑
i=0

f(vi)

∫ b

a

li(v) dv.︸ ︷︷ ︸
=:ωi

Instead of using high order polynomials for large n, we apply a composite rule; that is,
the interval [a, b] is split into smaller subintervals, and the quadrature rule is executed
on each subinterval.

For n = 1, we obtain the trapezoidal rule having spectral accuracy for smooth and
periodic functions on a uniform grid. [BIP14] The method’s name comes by the fact
that the area under the graph of f(v) is approximated by a trapezoid. Hence, the
discrete weights are ωi =

b−a
2 . For the composite rule, we assume N subintervals

and the nodes v0, . . . , vN . We obtain∫ vN

v0

f(v) dv ≈
N∑
i=0

f(vi)ω̃i∆v

with the weights

ω̃i =

{
1 for i = 1, . . . , N − 1,
1
2 else

and ∆v = b−a
N . We illustrate the composite trapezoidal rule in Figure 3.5.

Further remarks on velocity grids

For multi-species equations, the mass ratio between species strongly influences the
performance of schemes. For instance, multi-species Boltzmann equations with sig-
nificant differences in species mass require expensive grid resolutions [MTH+14]
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because of the direct integration of distribution functions in the Boltzmann opera-
tor (2.29). Here comes another advantage of multi-species BGK equations. Since
particles of different species only interact with each other through moments, each
equation in the BGK model can be discretized on a seperate grid [HHM17b].

Grid adaption might be an important tool when the mean velocities u(x, t) cover a
wide range and small temperatures are encountered. Accordingly, grid adaption is
tackled more and more in the last decade, e.g. in [BM14, BIP14, BCR22, HB13].

Another approach for a considerable reduction of the computational costs is the
Chu reduction [Chu65] if there are more degrees of freedom in velocity than in
space. Being interested in macroscopic quantities only, the system’s dimensionality
is reduced by looking at the evolution of appropriate integrals of the distribution
functions, but these integrals are no macroscopic quantities yet.

We have presented discretization techniques for the velocity variable. Many concepts
can be carried over for quantum models by replacing the velocity with momentum.

We conclude this section by highlighting existing literature on schemes for BGK
equations.

3.1.4 Existing schemes for BGK equations

In the literature, numerous approaches for discretizing kinetic equations can be found.
We already mentioned in the previous sections which discretization techniques are
often used. We now highlight identified schemes for BGK equations, partly given in
[PWed].

We start with contributions where the special structure of the BGK model is used in
a wider context. In these, the benefit from the reduced computational complexity
compared to the Boltzmann equation is crucial. This is useful, for instance, for
penalization techniques; in [FJ10, JL13], the BGK equation serves as preconditioner
for the numerical solution of the Boltzmann equation. The authors in [DDP11] aim
to develop an improved Monte Carlo simulation of the Boltzmann equation. As a
first step, they have developed such a method for the BGK equation. Moreover, the
BGK approach manages to couple different domains in which the regimes range from
equilibrium to very rarefied [AP12].

This gives rise to the observation that simulations of the BGK model itself are of
interest in the community. We want to mention two specific approaches for AP
schemes here. The micro-macro decomposition [CCL12, CKP20] is based on writing
the distribution function as a sum of its equilibrium part and the remnant kinetic
part. This decomposition results in one kinetic and one macroscopic equation which
can be solved by individual and adequate methods. The former equation is solved
by a particle method, whereas the fluid part is solved by a standard FV approach.
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This discretization technique fits very well to plasma applications. In the core of a
plasma, a kinetic description is mandatory. However, next to the wall of a Tokamak,
the plasma is close to a fluid such that a hybrid kinetic/fluid description is adequate.

Another approach is the parity decomposition/AP splitting [JP00, DP14] where
the distribution function is split into an even and an odd parity. This results in a
new system of equations with only one time scale where splitting techniques can be
applied appropriately.

A totally different method is the low-rank approximation. The resulting evolu-
tion equations describe the dynamics of the model constraint to the corresponding
low-rank manifold which goes with a reduction of the dimensionality of the problem.
Hence, dynamical low-rank algorithms provide robust and efficient approximations
to several kinetic models, among others to the BGK equation. [Ein19, EHY21]

There also exist contributions using exponential time integrators, often combined
with splitting techniques. The idea is to integrate parts of the equations exactly and
include modelling aspects in the remnant. This results e.g. in a distinct treatment
of collisional and collisionless particles. [DP11, Xu01, XCX21] The latter article
additionally takes care of velocity-dependent collision rates.

In [MS04], a numerical scheme for a one-species BGK model with velocity-dependent
collision frequency [Str97] is presented. Their time-explicit scheme follows a CFL
condition being restrictive if the maximal value of the collision frequency gets large.
As time-implicit method, the authors propose to linearize the target function around
the ansatz at the current value which results in an efficient scheme for the simulation
of steady-state solutions. However, as noted in [Mie00], this approach lacks conser-
vation and entropy properties at the discrete level.

Active contribution in numerics for multi-species BGK models has strongly increased
in the last years. At the discrete level, many ideas can be carried over from the
single-species schemes. In the following, we give contributions of numerical schemes
for multi-species BGK equations, which can be written in the form of the KPP model
(2.51).

We already mentioned [CKP20] as example of the micro-macro decomposition
approach.

In [HHM17a], the authors are interested in capturing physical transport coef-
ficient. They match the relaxation rates in the space homogeneous case to the
Boltzmann ones as described in Section 2.1.4. An extension to space inhomogeneous
settings is done in [HHM17b], and they examine the coupling to electric fields as
well.

In [BCGR21], the authors compare numerical results for different multi-species
BGK models. One of those models is a special case of (2.51).

Numerical schemes for quantum equations are less represented in the literature.
Still, several articles on schemes for quantum kinetic equations can be found. For
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BGK models, existing schemes are extended which often includes additional root
finding algorithms in order to solve algebraic equations [FHJ12, WMZ12, MY12].
In [YH09], a lattice method is provided based on Grad’s method. A micro-macro
decomposition is performed in [CM14]. Moreover, a relaxation time approximation
can be found in [SY08].

Having presented identified contributions concerning schemes for BGK equations, we
now shortly summarize existing approaches for the discretization of the relaxation
operator.

A straight-forward method is a time-explicit discretization as the target function
can be determined directly from given data. By establishing discrete Maxwellians
(see Section 3.1.3), the velocity discretization becomes more accurate. [Mie00]

Time-implicit techniques are more complicated because the value of the tar-
get function at the next time step is not provided ad-hoc. Indeed, for the stan-
dard one-species BGK model, the macroscopic quantities stay constant in time as
does the target function. Hence, the implication corresponds to a linear solve
[CP91, PP07, RF09, FJ10, DP13]. But for more general models, the implication goes
with more difficulties. In some set-ups (e.g. multi-species BGK models with constant
collision frequencies), the target functions can be evaluated implicitly with the help of
a moment update using an iterative solver [Pup19]. Numerical schemes for quantum
models additionally apply root finding algorithms [WMZ12]. Another approach is a
linearization of the target function [Mie00, MS04].

We are interested in a time-implicit discretization of the relaxation term. How-
ever, the given methods in the literature are not applicable to the multi-species BGK
model with velocity-dependent collision frequencies, or these do not meet our re-
quirements. Thus, we develop a new scheme enabling time-implicit target functions
while guaranteeing conservation and entropy properties at the discrete level. The
main new ingredient is a general implicit solver for the target functions.

3.2 Basic idea of our scheme

We present the basic idea of our scheme for multi-species BGK equations. This
approach works for many different settings, but we focus especially on velocity-
dependent collision frequencies and quantum models, respectively, which make a
special treatment of the target functions necessary. Parts of the following can already
be found in [HHK+22, BPW22].

The scheme is a discrete-velocity method which relies on standard time and space
discretizations from the literature.

As introduced in Section 3.1.1, we use an IMEX time discretization. Transport
terms are treated explicitly, whereas interaction parts are treated implicitly because
large collision frequencies make these terms stiff. We follow splitting methods
and IMEX RK methods up to second order, but the ideas can be carried over to
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different discretization techniques as well. The key new ingredient is a solver which
enables an implicit treatment of the BGK operator with a broad class of target
functions. Mimicking the analytic case, the crucial step is the formulation of a convex
entropy minimization problem. The solver is based on a numerical minimization
procedure in order to determine the parameters in the target functions. By this
construction, conservation and entropy properties are preserved at the discrete level,
up to numerical tolerances.

The space discretization relies on a FV method. We assume a slab geometry for
which ∂x(2)f = ∂x(3)f = 0. So we reduce the physical space dimension to one space
dimension and write x = x(1). The numerical fluxes are inspired by [MS04] and
preserve the positivity of the distribution functions provided that an adequate CFL
condition is fulfilled.

The (microscopic) velocity space remains three-dimensional (v = (v(1), v(2), v(3))).
A discrete-velocity method for the equations is proposed similar to [Mie00]. The
optimization algorithm is performed on an adequate velocity grid.

Remark 3.2.1 (1d3v). Using one space dimension but three velocity dimension is often
abbreviated by 1d3v. This set-up is of real interest as illustrated by still air. Even
though in the macroscopic framework, there is no movement in the air, molecules do
move around in all three directions at the particle level. So it does make sense to take
into account three microscopic velocity directions even if the macroscopic movement is
zero- or one-dimensional. In other words, we consider only flows with mean velocities
u = (u(1), 0, 0).

We give a general formulation for multi-species BGK equations which covers both,
the model in Section 2.2.2 with velocity-dependent collision frequencies and the
quantum model in Section 2.3. Hence, we introduce an auxiliary variable

w =

{
v for the model in Section 2.2.2 with v-dependent collision frequencies,
p for the quantum model in Section 2.3.

In the following, we identify the corresponding models by the value of w. We
consider two species i, j ∈ {1, 2} for simplicity. But the extension to more species is
straight-forward as interactions are assumed to be binary (outlined in Appendix B for
3 species). The system of PDEs reads

∂tf1 + T (f1) = R1(f1, f2)

∂tf2 + T (f2) = R2(f2, f1)
(3.29)

with the transport operator

T (fi) = v(1)∂xfi

and the relaxation operator

Ri(fi, fj) = νii(w)(Aii,τi(w)− fi) + νij(w)(Aij,τi(w)− fi). (3.30)
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Remark 3.2.2. We use the velocity v = p
mi

in the transport operator. However, this
causes problems for massless particles like photons (which we neglect in this thesis). In
such cases, a more general formulation of the velocity is required, see e.g. [EMV03].

The collision frequencies depend on the corresponding model; that is

νij(w) =

{
νij(v) w = v,

1 w = p.

We introduce the notation ai = (a
(0)
i ,a

(1)
i , a

(2)
i )⊤ ∈ R5 where

ai(v) = mi

 1
v

|v|2

 and ai(p) =

 1
p

|p|2
mi

 .

The target functions are given by

Aij,τi(w) =
1

exp(−ai(w) · λij) + τi(w)
(3.31)

with

τi(w) =


0 for w = v,

0 for w = p and for species i being classic particles,
+1 for w = p and for species i being fermions,
−1 for w = p and for species i being bosons.

The main task will be to determine the parameters (i, j = 1, 2; i ̸= j)

λii =

λ
(0)
ii

λ
(1)
ii

λ
(2)
ii

 and λij =

λ(0)ij

λ(1)

λ(2)


which depend on the corresponding distribution functions fi and fj .

Remark 3.2.3. The shape of the target functions is characterized by (3.31). The
corresponding value of the target functions comes by evaluation through the parame-
ters λ = (λ(0),λ(1), λ(2))⊤. For convenience, we provide conversion formulas for the
parameters.

In the case w = v with velocity-dependent collision frequencies, the parameters λ
coincide exactly with the parameters from Section 2.2.2, and no conversion is needed.

In the quantum case w = p, we presented the model in Section 2.3 with parameters
a,b, c. An easy calculation gives the conversion formulaeab

c

 =

 −λ(2)
− λ(1)

2λ(2)

−λ(0) + m
4

|λ(1)|2
λ(2)

 ⇐⇒ λ =

λ(0)λ(1)

λ(2)

 =

−ma|b|2 − c
2ab
−a

 .
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The target function A is a Maxwellian distribution M[n,u, T,m] in the very special
case w = p and τ = 0. (This also holds true for w = v and constant in v collision
frequencies.) Only under these circumstances, it is possible to formally convert the
parameters λ = (λ(0),λ(1), λ(2))⊤ into the macroscopic quantities n,u, T in an analytic
way, i.e.

n =
(
− π

mλ(2)

)3/2
exp

(
mλ(0) − m|λ(1)|2

4λ(2)

)
,

u = −λ(1)

2λ2
,

T = − 1

2λ(2)
,

respective

λ(0) =
1

m
log

(
n

(2π T
m )3/2

)
− |u|2

2T
,

λ(1) =
u

T
,

λ(2) = − 1

2T
.

The model is required to satisfy the conservation properties for intra-species
interactions ∫

νii(w)(Aii,τi(w)− fi)ai(w) dw = 0, (3.32)

the conservation properties for inter-species interactions∫
ν11(w) a

(0)
1 (w) (A12,τ1 − f1) dw = 0,

∫
ν22(w) a

(0)
2 (w) (A21,τ2 − f2) dw = 0,∫

ν12(w)a
(1)
1 (w) (A12,τ1 − f1) dw +

∫
ν21(w)a

(1)
2 (w) (A21,τ2 − f2) dw = 0,∫

ν12(w) a
(2)
1 (w) (A12,τ1 − f1) dw +

∫
ν21(w) a

(2)
2 (w) (A21,τ2 − f2) dw = 0

(3.33)

and the correct behavior of the entropy

H[{f1, f2}](w) =

∫
[hτ1(f1(w)) + hτ2(f2(w))] dw

with

hτi(fi) = fi log(fi)− fi + τi(1− τifi) log(1− τifi)− τi(1− τifi). (3.34)
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3.3 Time discretization

The system of equations (3.29) shall be solved numerically. At the discrete level, the
conservation properties (3.32)–(3.33) and the correct entropy behavior are required
as well. In the following, we present our scheme in details.5 We start with the
discretization of the time variable.

3.3 Time discretization

We pursue IMEX time discretizations where, in (3.29), T is treated explicitly and Ri

is treated implicitly. Our approach works for multi-species BGK quantum models,
respective for multi-species BGK equations equipped with a broad class of collision
frequencies. However, the treatment of the collision frequencies relies on Assumption
2.2.11. It states that the collision frequencies depend only implicitly on space and
time via a dependence on the mass densities ρi(x, t), the mixture mean velocity

umix(x, t) =
ρ1u1 + ρ1u2

ρ1 + ρ2
(3.35)

and the mixture temperature

Tmix(x, t) =
1

n1 + n2

(
n1T1 + n2T2 +

1

3

2∑
i=1

ρi(|ui|2 − |umix|2)
)

=
1

n1 + n2

(
n1T1 + n2T2 +

ρ1ρ2
3(ρ1 + ρ2)

(|u1 − u2|2)
)
,

introduced in Definition 2.1.16. Since the collisional process conserves these quanti-
ties, the collision frequencies νij are independent of time in the space homogeneous
setting. For example, given tℓ = ℓ∆t for ℓ ∈ N0 a simple update of f ℓi ≈ fi(x,w, tℓ)
from tℓ to tℓ+1 uses the approximation

Ri(f
ℓ+1
i , f ℓ+1

j ) ≈ νℓii
(
Aℓ+1

ii,τi
− f ℓ+1

i

)
+ νℓij

(
Aℓ+1

ij,τi
− f ℓ+1

i

)
. (3.36)

The discrete target functions Aℓ+1
ii,τi

and Aℓ+1
ij,τi

are described in detail in Section 3.3.5.
Here, we only mention that they depend on f ℓ+1

i , f ℓ+1
j , νℓii and νℓij via the solution of

a convex minimization problem. The evaluation of the collision frequencies at time
step tℓ is justified because of Assumption 2.2.11 which gives

νℓ+1
ij = νij(ρ

ℓ+1
i , ρℓ+1

j ,uℓ+1
mix , T

ℓ+1
mix ) = νij(ρ

ℓ
i , ρ

ℓ
j ,u

ℓ
mix, T

ℓ
mix) = νℓij . (3.37)

However, in more general settings, lagging the collision frequencies in this way may
cause a drop in temporal order for an otherwise high-order scheme [Low04].

In the following sections, we formulate several time discretization methods. The
main aspect is provided in Section 3.3.5 where we present our general implicit solver
in order to determine Aℓ+1

ii,τi
and Aℓ+1

ij,τi
. We want to emphasize that the implicit solver

is not limited to the presented time discretizations, but it can be used for many more
discretizations in a straight-forward way.
5 In Appendix C, we provide pseudo codes for our scheme.

105



3 Numerical schemes

3.3.1 First-order splitting

We split the system of PDEs (3.29) into a relaxation step and the transport step. The
order of the steps is not fixed. However, we expect that the relaxation processes take
place on smaller time scales, so we first perform the relaxation step and afterwards
the transport step.

Relaxation step The relaxation step is executed in each spatial cell using the
Backward Euler method (3.8)

f∗i − f ℓi
∆t

= Ri(f
∗
i , f

∗
j ), (3.38)

which can be rewritten to express f∗i as the convex combination

f∗i = cℓif
ℓ
i + cℓi∆t(ν

ℓ
iiA∗

ii,τi + νℓijA∗
ij,τi) (3.39)

with

cℓi =
1

1 +∆t(νℓii + νℓij)
. (3.40)

If A∗
ii,τi

and A∗
ij,τi

can be expressed as functions of f ℓi and f ℓj , then (3.39) provides
an explicit update formula for f ℓ

′

i . In Section 3.3.5, we show how to determine
A∗

ii,τi
and A∗

ij,τi
while preserving the conservation properties (3.32) and (3.33) at

the discrete level.
It is also possible to consider the intra-species and inter-species relaxation process

independently. However, we prefer to consider the entire relaxation process as the
different interactions are already represented by the model.

Transport step We solve the transport in x for f ℓ+1
i by the Forward Euler method

(3.2) with initial data f∗i :

f ℓ+1
i − f∗i

∆t
+ T (f∗i ) = 0. (3.41)

Details on the numerical approximation of T are given in Section 3.4.

3.3.2 First-order IMEX Runge-Kutta

We use the combination of a Backward Euler method and a Forward Euler method
for a first-order IMEX RK scheme. It is described in [ARS97] where one also finds
some stability considerations. Applying the method to (3.29) yields

f ℓ+1
i = f ℓi −∆t T (f ℓi ) + ∆tRi(f

ℓ+1
i , f ℓ+1

j )

which can be rewritten into a convex combination

f ℓ+1
i = cℓiG

ℓ
i + cℓi∆t ν

ℓ
iiAℓ+1

ii,τi
+ cℓi∆t ν

ℓ
ijAℓ+1

ij,τi
(3.42)
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with

Gℓ
i = f ℓi −∆t T (f ℓi )

and

cℓi =
1

1 +∆t(νℓii + νℓij)
.

The update (3.42) is explicit provided that Aℓ+1
ii,τi

and Aℓ+1
ij,τi

can be expressed as
functions of f ℓi . This is discussed in Section 3.3.5.

3.3.3 Second-order Strang splitting

We arrange the relaxation steps and the transport steps presented in Section 3.3.1
according to the Strang splitting method, see Definition 3.1.9.

Additionally, each step itself needs to be solved in a second-order manner. The
relaxation step is surrounded by transport steps with a half step size following the
second-order explicit Heun’s method (3.4). This will be described in Section 3.4.

Given f∗i after the transport step with a half step size. For the relaxation step, we
apply the second-order implicit trapezoidal method (3.10), resulting in

f∗∗i = c∗∗i G
∗
i + c∗∗i

∆t

2
(ν∗∗ii A∗∗

ii,τi + ν∗∗ij A∗∗
ij,τi) (3.43)

with

G∗
i = f∗i +

∆t

2
(ν∗ii(A∗

ii,τi − f∗i ) + ν∗ij(A∗
ij,τi − f∗i ))

and

c∗∗i =
1

1 + ∆t
2 (ν∗∗ii + ν∗∗ij )

.

Importantly, the values of A∗
ij,τi

for the given data G∗
i need to be determined accu-

rately in order to guarantee the conservation properties. In general, these values are
not known because of the previous transport step.

Given f∗∗i , another transport step with a half step size gives f ℓ+1
i = f∗∗∗i .

Unfortunately, accuracy properties of higher-order splitting schemes may break
down when the collision frequencies become large; see [Jin95] for a case where
the nominally second-order Strang splitting reduces to a first-order scheme in the
presence of large collision frequencies.
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3.3.4 Second-order IMEX Runge-Kutta

For a second-order IMEX RK scheme, we use the following Butcher tableaux (3.13),
(3.7),

0

γ 0 γ

1 0 1− γ γ

0 1− γ γ

0

γ γ

1 δ 1− δ 0

δ 1− δ 0

(3.44)

with

γ = 1−
√
2

2
and δ = 1− 1

2γ
, (3.45)

see [ARS97]. This IMEX RK scheme is L-stable and GSA. The left table is used for the
relaxation step, and the right table is used for the transport step.

Applying the method to (3.29) results in the following stages and updates:

f
[1]
i = f ℓi − γ∆t T (f ℓi ) + γ∆tRi(f

[1]
i , f

[1]
j ), (3.46a)

f
[2]
i = f ℓi − δ∆t T (f ℓi )− (1− δ)∆t T (f

[1]
i )

+ (1− γ)∆tRi(f
[1]
i , f

[1]
j ) + γ∆tRi(f

[2]
i , f

[2]
j ), (3.46b)

f ℓ+1
i = f

[2]
i . (3.46c)

Using

c
[r]
i =

1

1 + γ∆t(ν
[r]
ii + ν

[r]
ij )

, (3.47)

we can rewrite (3.46a) and (3.46b) as convex combination of three terms

f
[1]
i = c

[1]
i G

[1]
i + c

[1]
i γ∆t ν

[1]
ii A

[1]
ii,τi

+ c
[1]
i γ∆t ν

[1]
ij A

[1]
ij,τi

(3.48a)

f
[2]
i = c

[2]
i G

[2]
i + c

[2]
i γ∆t ν

[2]
ii A

[2]
ii,τi

+ c
[2]
i γ∆t ν

[2]
ij A

[2]
ij,τi

, (3.48b)

where the quantities

G
[1]
i = f ℓi −∆t γ T (f ℓi ) (3.49a)

G
[2]
i = f ℓi −∆t δ T (f ℓi )−∆t (1− δ)T (f

[1]
i ) + ∆t (1− γ)Ri(f

[1]
i , f

[1]
j ) (3.49b)

depend on known data. The collision frequencies ν[r]ii , ν[r]ij and constants c[r]i are

evaluated at the intermediate steps G[r]
i . This option maintains second-order accurate

as long as Assumption 2.2.11 applies where we use that collisional processes do not
change the collision frequencies.

The main computational challenge in each stage of (3.48) is to determine the
parameters of the target functions. In the following section, we explain how to
manage this.
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3.3.5 General implicit solver

In this section, we describe a method how to deal with the implication of the target
functions which is required for any of the previously presented time discretizations.
We write the implicit updates in (3.39), (3.42), (3.43) and (3.48) in a generic steady
state form

fi = ciGi + ciγ∆t(νiiAii,τi + νijAij,τi) (3.50)

where Aii,τi and Aij,τi are the unique target functions associated to fi,

ci =
1

1 + γ∆t(νii + νij)
, (3.51)

and Gi is a known function. We aim to express Aii,τi and Aij,τi as functions of Gi

and Gj so that (3.50) provides an explicit update formula for fi even though the
target functions depend on fi via moment equations. In the following, we explain
how to manage this. The resulting general implicit solver can be applied to any time
discretization method as long as the update can be written in the form of (3.50).

Applying the conservation properties (3.32) and (3.33) to (3.50) gives∫
ν11A11,τ1 a1(w) dw +

∫
ν22A22,τ2 a2(w) dw

+

∫
ν12A12,τ1 a1(w) dw +

∫
ν21A21,τ2 a2(w) dw

(3.32),(3.33)
=

∫
ν11ψ1 a1(w) dw +

∫
ν22ψ2 a2(w) dw+

+

∫
ν12ψ1 a1(w) dw +

∫
ν21ψ2 a2(w) dw

(3.50)
=

∫
ν11c1 [G1 +∆t γν11A11,τ1 +∆t γν12A12,τ1 ] a1(w) dw

+

∫
ν22c2 [G2 +∆t γν22A22,τ2 +∆t γν21A21,τ2 ] a2(w) dw

+

∫
ν12c1 [G1 +∆t γν11A11,τ1 +∆t γν12A12,τ1 ]a1(w) dw

+

∫
ν21c2 [G2 +∆t γν22A22,τ2 +∆t γν21A21,τ2 ]a2(w) dw.

(3.52)

After sorting terms, we arrive at the following moment equations∫
c1 (ν11A11,τ1 + ν12A12,τ1)a1(w) dw +

∫
c2 (ν21A21,τ2 + ν22A22,τ2)a2(w) dw

=

∫
c1 (ν11 + ν12)G1a1(w) +

∫
c2 (ν22 + ν21)G2a2(w) dw,

(3.53)
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which provide a set of constraints to determine A11,τ1 , A12,τ1 , A21,τ2 and A22,τ2 from
the given data G1 and G2.

The system of equations (3.53) can be solved in an elegant way by realizing that
these constraints in (3.53) represent first-order optimality conditions associated to
the minimization of the convex function

φtot(α1,α2,α) = H[A11,τ1 ,A12,τ1 ,A21,τ2 ,A22,τ2 ](w) + µ11 ·α1 + µ22 ·α2 + µ ·α
(3.54)

with

H[A11,τ1 ,A12,τ1 ,A21,τ2 ,A22,τ2 ](w) =
∑
i,j

∫
ciνijhτi [Aij,τi ] dw

where

hτi [Aij,τi ] =
log(1− τiAij,τi)

τi
=


−Aij,0 for τi = 0,

log(1−Aij,1) for τi = +1,

− log(1 +Aij,−1) for τi = −1.

(3.55)

Moreover, αi = (α
(0)
i ,α

(1)
i , α

(2)
i )⊤;

µii =

µ
(0)
ii

µ
(1)
ii

µ
(2)
ii

 =

∫
ciνiiGiai(w) dw (3.56)

for i = 1, 2; α = (α
(0)
12 , α

(0)
21 ,α

(1), α(2))⊤; and

µ =


µ
(0)
12

µ
(0)
21

µ(1)

µ(2)

 =

∫ 

a
(0)
1 (w)
0

a
(1)
1 (w)

a
(2)
1 (w)

 c1ν12G1 +


0

a
(0)
2 (w)

a
(1)
2 (w)

a
(2)
2 (w)

 c2ν21G2

 dw. (3.57)

The minimization problem can be decoupled as follows which makes the procedure
better handable.

Proposition 3.3.1. The components of the minimizer of (3.54) can be found by mini-
mizing the following three convex functions independently:

φi(αi) =

∫
ciνiihτi [Aii,τi ] dw + µii ·αi for i = 1, 2 and (3.58)

φ(α) =

∫
(c1ν12hτ1 [A12,τ1 ] + c2ν21hτ2 [A21,τ2 ]) dw + µ ·α (3.59)

and the minimum of (3.54) is the sum of their minima.
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Proof. The statement is trivial because (3.54) can be written as the sum of the three
potential functions, whose arguments are independent; that is, φtot(α1,α2,α) =
φ1(α1) + φ2(α2) + φ1(α).

The minimum of each potential function in (3.58) and (3.59) is found using
Newton’s method for convex optimization. More details are given in Section 3.5.

The above procedure is appealing because the minimization problems in (3.58)
and (3.59) are numerical analogs of the dual problems in the analytic case. We
emphasize this fact for both models in Sections 2.2 and 2.3 and discuss the existence
and uniqueness of solutions to (3.58) and (3.59).

For w = v (the model with velocity-dependent collision frequencies in Section
2.2), the potential functions (3.58), respective (3.59) read

φi(αi) = −
∫
ciνiiGii dv + µii ·αi, (3.60)

φ(α) = −
∫

(c1ν12G12 + c2ν21G21) dv + µ ·α, (3.61)

where αi = (α
(0)
i ,α

(1)
i , α

(2)
i )⊤ ∈ R × R3 × R− and α = (α

(0)
12 , α

(0)
21 ,α

(1), α(2))⊤ ∈
R×R×R3×R−. The dual problems in the analytic case are given in (2.77) and (2.81),
respectively. Indeed, the temporal discretization simply introduces the additional
weights cℓi → 1 as ∆t→ 0. Hence, the existence and uniqueness are guaranteed by
the theory in [HHK+21]. Essentially, one needs only replace the collision frequencies
νij by

ν∗ij = ciνij =
νij

1 + γ∆t(νii + νij)
(3.62)

and then verify that ν∗ij satisfies the conditions used in [HHK+21]. These conditions
are mild integrability conditions. Whenever they are satisfied by νij , they are easily
satisfied by ν∗ij , as well, because 0 < ci < 1.

For w = p (the quantum model in Section 2.3), it is

φi(αi) =

∫
cihτi [Eii,τi ] dp+ µii ·αi, (3.63)

φ(α) =

∫
(c1hτ1 [E12,τ1 ] + c2hτ2 [E21,τ2 ]) dp+ µ ·α. (3.64)

The consistency of the quantum model in Section 2.3 is proven by algebraic consider-
ations. However, we realize that we can reformulate the modelling problem by using
Lagrange functionals.6 For intra-species interactions, the Lagrange functional reads

Lii(g,α) =

∫
hτi(g) dp−α ·

∫
ai(p)(g − fi) dp

6 The first-order optimality condition, for instance, gives us the shape (3.31) of the target functions.
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with hτi defined in (3.34). The multipliers solve the corresponding dual problem

λii = argmin
α∈Λii

∫
hτi [Eii,τi(α)] dp+α ·

∫
ai(p)fi dp (3.65)

where Λii = {λi ∈ R5 |
∫
Aii,τi(λi)(1 + |p|2) dp < ∞}. The dual problem for

inter-species interaction can be obtained analogously:

(λ12,λ21) = argmin
(α12,α21)∈Λ12

{∫
(hτi [E12,τ1 ] + hτ2 [E21,τ2 ]) dp

+ α
(0)
12

∫
f1 dv + α

(0)
21

∫
f2 dp

+α(1) ·
∫

p(f1 + f2) dp

+ α(2)

∫
|p|2

(
1

2m1
f1 +

1

2m2
f2

)
dp

}
(3.66)

where Λ12 = {(λ12,λ21) |
∫
Aij,τi(λij)(1 + |p|2) dp < ∞ for i, j = 1, 2; i ̸= j}. We

see the close relationship of (3.63) with (3.65) and of (3.64) with (3.66), respectively.
The theory in Section 2.3 guarantees a unique solution to these problems in the
analytic case. Since ci is independent of p (we assume constant collision frequencies
νij = 1), it does not affect the minimization of (3.63) and (3.64), respectively, such
that there exists a unique solution in the discrete case as well.

Remark 3.3.2 (Determine Aℓ
ij,τi

). The main task in our scheme is to determine the
implication of the target functions, i.e. to determine Aℓ+1

ij,τi
. However, especially for the

Strang splitting, one also needs to determine the current value of the target functions
accurately. This can be done by solving the corresponding dual problems themselves
numerically.

To conclude, we summarize the main ideas of this section. The update of the
distribution functions needs to be written in the form of the convex combination
in (3.50). This is possible for many time discretization techniques even if we only
presented four different schemes. The essential step is to determine the implictly
evaluated target functions which turns (3.50) into an explicit update formula. We
achieve this by a minimization procedure which mimics the entropy behavior and
conservation properties at the discrete level. The well-posedness of the minimization
problem is guaranteed by the theoretical properties of the corresponding model.

In the following section, we discuss the discretization of the space variable.

3.4 Space discretization

As already mentioned, we assume a slab geometry and reduce the physical space di-
mension to one dimension; we set x = x(1). We divide the spatial domain [xmin, xmax]
into uniform cells Ik = [xk − ∆x

2 , xk + ∆x
2 ] for k ∈ {0, . . . ,K}.
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3.4 Space discretization

We employ a FV framework that tracks approximate cell-averaged quantities

f ℓi,k ≈ 1

∆x

∫
Ik

fi(x,w, t
ℓ) dx. (3.67)

To second order, we evaluate the spatial cell centers and do not need a further
reconstruction. To approximate the relaxation operator, we use the second-order
approximation

Rℓ
i,k = Ri(f

ℓ
i,k, f

ℓ
j,k) ≈

1

∆x

∫
Ik

R
(
fi(x,w, t

ℓ), fj(x,w, t
ℓ)
)
dx. (3.68)

This becomes more delicate and needs to be treated with care for higher-order
approximations.

3.4.1 Numerical fluxes

The transport operator T is discretized with numerical fluxes Fk+ 1
2

by

T (g) ≈ Tk(g) =
1

∆x

(
Fk+ 1

2
(g)− Fk− 1

2
(g)
)

(3.69)

for any grid function g = {gk}. There exist many different approaches for Fk+ 1
2
.

We use numerical fluxes which are already established in the literature for kinetic
equations [MS04], i.e.

Fk+ 1
2
(g) =

v(1)

2
(gk+1 + gk)−

|v(1)|
2

(
gk+1 − gk − ϕk+ 1

2
(g)
)

(3.70)

where ϕk+ 1
2

is a flux limiter. The choice ϕk+ 1
2
= 0 leads to a first-order approximation

(the well-known upwind fluxes). A second-order method is provided by

ϕk+ 1
2
(g) = minmod ((gk − gk−1), (gk+1 − gk), (gk+2 − gk+1)) (3.71)

where

minmod(a, b, c) =

{
smin(|a|, |b|, |c|), sign(a) = sign(b) = sign(c) =: s,

0, otherwise.
(3.72)

For a simple Forward Euler update (3.2) of (3.41), i.e.

f ℓ+1
i,k = f ℓi,k − ∆t

∆x

(
Fk+ 1

2
(f ℓi )− Fk− 1

2
(f ℓi )

)
, (3.73)

the positivity of fi is guaranteed by enforcing the CFL condition

∆t < α
∆x

max |v(1)| (3.74)
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with α = 1 for the first-order flux and α = 2
3 for the second-order flux. (See

Proposition 4.2.1.) Applying instead Heun’s method (3.4) yields the update formulae

f
[1]
i,k = f ℓi,k − ∆t

∆x

(
Fk+ 1

2
(f ℓi )− Fk− 1

2
(f ℓi )

)
,

f ℓ+1
i,k = f ℓi,k − ∆t

2∆x

(
Fk+ 1

2
(f ℓi )− Fk− 1

2
(f ℓi )

)
− ∆t

2∆x

(
Fk+ 1

2
(f

[1]
i )− Fk− 1

2
(f

[1]
i )
)
.

We have introduced the techniques for the discretization in time and space in our
scheme. We finally discretize the velocity and momentum variable, respectively, in
order to obtain a fully-discrete scheme.

3.5 Velocity discretization

We firstly introduce the construction of an adequate velocity grid.

3.5.1 Velocity grid

We center the discrete velocities vq = (v
(1)
q1 , v

(2)
q2 , v

(3)
q3 )⊤ with q = (q1, q2, q3) ∈ N3

0

around the mixture mean velocity umix. For space homogeneous equations, the
mixture mean velocity is given by (3.35); for space inhomogeneous problems, we
take an a priori guess. We restrict the velocities to a finite cube; that is for each
component p ∈ {1, 2, 3}

v(p) ∈ [u
(p)
mix − 6vth,i, u

(p)
mix + 6vth,i] (3.75)

where vth,i =
√

Tmix

mi
is the thermal velocity of species i. To ensure an adequate

resolution of the velocity domain, the velocity mesh size is chosen to be ∆vi =
0.25 vth,i in each direction. Any quantity is approximated at the nodes by e.g. fq ≈
f(vq).

For the quantum model, we perform the same discretization by additionally using
p = mi · v.

We emphasize again the advantage of the multi-species BGK model that it is possible
to use different grids for each species/equation [HHM17b]. This feature is a sub-
stantial benefit when the species masses, and hence the reference thermal speeds for
each species, differ significantly. And this feature relies on the fact that the particles
only interact with each other through moments.

3.5.2 Quadrature and discrete moments

All integrals with respect to w are replaced by discrete sums using the trapezoidal
rule, which is known to perform well for smooth, compactly supported functions
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3.5 Velocity discretization

because they can be viewed as periodic. (See, e.g, [Atk89, Section 5.4, Corollary 1].)
Thus

♢ =

∫
(·) dw ≈

∑
q

ωq(·)q(∆wi)
3 =: ♢W , (3.76)

where ωq = ωq1ωq2ωq3 are the weights and

ωqp =

{
1 if min(qp) < qp < max(qp),
1
2 else.

(3.77)

Be aware that the quadrature is executed on the corresponding velocity grid and
momentum grid, respectively, depending on species i.

The quadrature approximation forces us to distinguish between discrete and
continuous moments, especially when determining the discrete local equilibria Aii,τi,q

and Aij,τi,q. In fact, the minimization of (3.58) and (3.59) is solved using a discrete-
velocity grid and discrete moments µi,W ,µW as input. Thus, the parameters λii and
λij are determined such that Aii,τi,q and Aij,τi,q have the desired discrete moments,
and the conservation and entropy properties are fulfilled at the discrete level.

In Section 3.1.3, we summarized a similar approach for the standard, singles-
species BGK model, introduced in [Mie00].

We finally give the details for the minimization procedure which completes our
scheme.

3.5.3 Optimization algorithm

The minimization of (3.58) and (3.59) is solved by Newton’s method with a back-
tracking line search [DS96, p. 325], using the SNESNEWTONLS solver from PETSc
[BAA+21b, BGMS97, BAA+21a]. Newton’s method requires the evaluation of gradi-
ents and Hessians. Using (3.55), we obtain

∇αi
hτi [Aij,τi ] = −aiAij,τi

and

∇2
αi
hτi [Aij,τi ] =

{
−Aij,τi ai ⊗ ai for τi = 0,

−(Aij,τi)
2 exp(−αij · ai)ai ⊗ ai for τi = ±1.

We define the function7 ζ straight-forwardly by ∇2
αi
hτi [Aij,τi ] := ζ(Aij,τi)ai ⊗ ai.

This leads to the following gradients:

∇αi
φi ≈ −(ciνii Aii,τi ai)W + µi,W , (3.78)

∇αφ ≈ − (c1ν12 A12,τ1 a12)W − (c2ν21 A21,τ2 a21)W + µW , (3.79)

7 For numerical stability, it is better to implement
ζ(Aij,±1) = (exp(−αij · ai) + exp(αij · ai)± 2)−1.
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3 Numerical schemes

and Hessians:

∇2
αi
φi ≈ (ciνii ζ(Aii,τi)ai ⊗ ai)W (3.80)

∇2
αφ ≈ (c1ν12 ζ(A12,τ1)a12 ⊗ a12)W + (c2ν21 ζ(A21,τ2)a21 ⊗ a21)W (3.81)

where a12 = (a
(0)
1 , 0,a

(1)
1 , a

(2)
1 )⊤, a21 = (0,a2)

⊤. For illustration purposes, we give

(ciνii Aii,τi ai)W =
∑
q

ωq(ciνii)q Aii,τi,q ai,q(∆wi)
3,

and the input data in (3.56) is computed in a straight-forward way:

µi,W ≈
∑
q

ωq(ciνii)qGi,q ai,q(∆wi)
3. (3.82)

Analogously for the other terms and the input data µW in (3.57).
The Newton method is declared to have converged if one of the standard termina-

tion criteria8 is less than 10−14.

8 For solving F (x) = 0, standard termination criteria are: i) ||F || < ϵ, ii) ||F || < ϵ||F (x0)||, and iii)
||∆x|| < ϵ||x|| for the tolerance ϵ.
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Chapter 4

Properties of the numerical scheme

The discretization of an object inevitably introduces errors. Using (prohibitively)
small step sizes reduces these errors. Accordingly, one is interested in discretizations
which make practicable step sizes possible. The corresponding properties at the
discrete level need to be examined analytically before numerical tests can be started.

In this chapter, we validate properties of our scheme by analytical calculations.
To start with, we mention the order and stability of our scheme in Section 4.1.
Then we review the positivity, conservation properties, and the entropy behavior of
our scheme in Sections 4.2–4.5. These statements and proofs can also be found in
[HHK+22, BPW22].

4.1 Order and stability

All variables are discretized by first-order or second-order techniques.
When a second-order discretization is needed and a stiff RHS is encountered,

we recommend to use the second-order IMEX RK from Section 3.3.4 approach be-
cause the Strang splitting in Section 3.3.3 may suffer from an order reduction. [Jin95]

Stability is guaranteed if the corresponding CFL condition (3.74) for the transport
steps is statisfied. The relaxation steps are A-stable (or even L-stable). Hence, these
do not restrict the choice of the size of the time step regarding stability.

Time step restrictions regarding the positivity of the distribution functions are treated
in the following section.

4.2 Positivity of distribution functions

A distribution function is positive by definition, see Definition 2.1.12. We require that
a positive initial distribution function is preserved positive by our scheme which can
be guaranteed if certain time step restrictions are satisfied.

The first-order time-stepping schemes in Section 3.3.1 and 3.3.2 preserve positivity
for both first- and second-order numerical fluxes in space; see Propositions 4.2.1
and 4.2.2. Additionally, we discuss the positivity for the second-order scheme from
Section 3.3.3 in Proposition 4.2.3, and give a sufficient criterion. We provide a similar
result for the second-order time-stepping scheme from Section 3.3.4 in Proposition
4.2.4 for the space homogeneous case.
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4 Properties of the numerical scheme

Distribution functions for fermions are additionally bounded from above, see
Definition 2.3.2. The time discretization methods from Sections 3.3.1–3.3.3 combined
with the space discretization from Section 3.4 maintain this property at the discrete
level. This is shown in Proposition 4.2.5.

Proposition 4.2.1 (Positivity of first-order splitting scheme). The first-order time
discretization in Section 3.3.1 together with the space discretization described in Section
3.4 is positivity-preserving, provided that

∆t ≤ α
∆x

max |v(1)| , (4.1)

with α = 1 and α = 2
3 for the first-order and second-order fluxes, respectively.

Proof. Let f ℓi,k ≥ 0. For the relaxation step, it holds

f∗i,k
(3.39)
= cℓi,kf

ℓ
i,k + cℓi,k∆t(ν

ℓ
ii,kA∗

ii,τi,k + νℓij,kA∗
ij,τi,k) ≥ 0 (4.2)

because cℓi,k, ν
ℓ
ii,k, ν

ℓ
ij,k,A∗

ii,τi,k
,A∗

ij,τi,k
≥ 0. For the transport step (3.73), we obtain

with the first-order fluxes

f ℓ+1
i,k =

(
1− ∆t

∆x
|v(1)|

)
f∗i,k +

∆t

∆x
|v(1)|f∗i,k−sign(v1) ≥ 0, (4.3)

where the last inequality holds in each cell provided that the given CFL condition in
(4.1) holds with α = 1.

For the second-order fluxes, define σ := sign(f∗i,k − f∗i,k−1). Then one can show
that

ϕk+ 1
2
(f∗i ) ≥

{
0 if σ = +1

f∗i,k+1 − f∗i,k if σ = −1
, (4.4)

−ϕk− 1
2
(f∗i ) ≥

{
f∗i,k−1 − f∗i,k if σ = +1

0 if σ = −1
. (4.5)
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4.2 Positivity of distribution functions

Hence,

f ℓ+1
i,k

(3.73)
=

(
1− ∆t

∆x
|v(1)|

)
f∗i,k +

∆t

∆x
|v(1)|f∗i,k−sign(v(1))

+
∆t

∆x

|v(1)|
2

(ϕk+ 1
2
(f∗i )− ϕk− 1

2
(f∗i ))

≥
(
1− ∆t

∆x
|v(1)|

)
f∗i,k +

∆t

∆x
|v(1)|f∗i,k−sign(v(1))

+
∆t

∆x

|v(1)|
2

{
(f∗i,k−1 − f∗i,k) if σ = +1

(f∗i,k+1 − f∗i,k) if σ = −1

=

(
1− 3

2

∆t

∆x
|v(1)|

)
f∗i,k +

∆t

∆x
|v(1)|f∗i,k−sign(v(1))

+
∆t

∆x

|v(1)|
2

{
f∗i,k−1 if σ = +1

f∗i,k+1 if σ = −1

≥ 0,

(4.6)

provided that the CFL condition in (4.1) holds with α = 2
3 .

This results helps us for the following proposition.

Proposition 4.2.2 (Positivity of first-order IMEX RK scheme). The first-order time
discretization in Section 3.3.2 together with the space discretization described in Section
3.4 is positivity-preserving, provided that

∆t ≤ α
∆x

max |v(1)| ,

with α = 1 and α = 2
3 for the first-order and second-order fluxes, respectively.

Proof. The statement follows directly from Proposition 4.2.1 and the update formula
(3.42).

It is more difficult to guarantee positivity with a second-order time-stepping. As
discussed in Section 3.1.1, unconditionally SSP implicit Runge-Kutta schemes are
at most first-order accurate [GST01]. Modified IMEX RK schemes that preserve
positivity for the classical single-species BGK equation have been recently developed
in [HSZ18, GGHS22]. However, to our knowledge, these schemes cannot be applied
directly to BGK equations with velocity-dependent collision frequencies.

Nevertheless, we derive some sufficient conditions on the time step ∆t for
positivity-preservation in the second-order schemes presented in Section 3.3.3 and
3.3.4.
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4 Properties of the numerical scheme

Proposition 4.2.3 (Positivity of second-order splitting scheme). The second-order
splitting scheme presented in Section 3.3.3 together with the second-order space dis-
cretization described in Section 3.4 is positivity-preserving, provided that

∆t ≤ min

{
2∆x

3max |v(1)| ,
2

ν∗ii + ν∗ij

}
. (4.7)

Proof. The positivity during the transport steps T is guaranteed by the CFL condition

∆t ≤ 2∆x

3max |v(1)|

because Heun’s method (3.4) is an explicit SSP scheme (preserving any convex prop-
erty) [PR05]. For the relaxation step, we derive the above condition by guaranteeing
that the given functions G∗

i are positive. So we require

0 ≤ G∗
i = f∗i +

∆t

2
(ν∗ii(A∗

ii,τi − f∗i ) + ν∗ij(A∗
ij,τi − f∗i ))

=

(
1− ∆t

2
(ν∗ii + ν∗ij)

)
f∗i +

∆t

2
(ν∗iiA∗

ii,τi + ν∗ijA∗
ij,τi)

for i, j = 1, 2. An obvious sufficient condition for positivity reads

∆t ≤ 2

ν∗ii + ν∗ij
.

If ν∗ij become large, the time step condition (4.7) can be very restrictive. So one
may enforce instead

∆t ≤ 2f∗i
ν∗ii(f

n
i −A∗

ii,τii
) + ν∗ij(f

∗
i −A∗

ij,τi
)

(4.8)

which is a milder, but still sufficient local condition. Large collision frequencies push
each numerical kinetic distribution to the corresponding target function making the
differences in the denominator small. It follows that condition (4.8) is not very
restrictive.

We find similar results for the second-order IMEX RK scheme.

Proposition 4.2.4 (Positivity of second-order IMEX RK scheme). For the space homo-
geneous case, the second-order IMEX RK scheme presented in Section 3.3.4 is positivity-
preserving provided that

∆t ≤ 1

(1− 2γ)(ν
[1]
ii + ν

[1]
ij )

(4.9)

for i, j = 1, 2.
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4.2 Positivity of distribution functions

Proof. The positivity of f [1]i follows directly from its definition without any restriction
on the time step. For the positivity of f ℓ+1

i = f
[2]
i , we require G[2]

i ≥ 0. Using the
definition of f [1]i , we obtain

0 ≤ G
[2]
i = f ℓi +∆t(1− γ)

[
ν
[1]
ii A

[1]
ii,τi

+ ν
[1]
ij A

[1]
ij,τi

− (ν
[1]
ij + ν

[1]
ij )f

[1]
i

]
= f ℓi

[
1−∆t(1− γ)c

[1]
i (ν

[1]
ii + ν

[1]
ij )
]
+∆t(1− γ)c

[1]
i

[
ν
[1]
ii A

[1]
ii,τi

+ ν
[1]
ij A

[1]
ij,τi

]
.

Then, the most obvious sufficient condition for positivity reads

1−∆t(1− γ)c
[1]
i (ν

[1]
ii + ν

[1]
ij ) ≥ 0 ⇐⇒ ∆t ≤ 1

(1− 2γ)(ν
[1]
ii + ν

[1]
ij )

.

The time step condition (4.9) can be very restrictive if ν[1]ij become large, especially
for velocity-dependent collision frequencies. For this reason, one may instead enforce
the milder (but still sufficient) local conditions

∆t ≤ f ℓi

(1− 2γ)(ν
[1]
ii + ν

[1]
ij )f

ℓ
i − (1− γ)(ν

[1]
ii A

[1]
ii,τi

+ ν
[1]
ij A

[1]
ij,τi

)
(4.10)

and

∆t ≤ f ℓi

(1− γ)
[
(ν

[1]
ii + ν

[1]
ij )f

[1]
i − (ν

[1]
ii A

[1]
ii,τi

+ ν
[1]
ij A

[1]
ij,τi

)
] . (4.11)

When the frequencies are large, the difference between each numerical kinetic dis-
tribution and its corresponding target function is to scale with the inverse of the
frequency, in which case (4.10) and (4.11) are not very restrictive.

A distribution function of a fermion has the additional upper bound f < 1. The
following proposition shows that our scheme preserves this property.

Proposition 4.2.5 (Boundedness for fermions). If fi represents the distribution func-
tion of a fermion with f ℓi < 1, any time discretization in Section 3.3.1–3.3.3 together
with the space discretization described in Section 3.4 gives f ℓ+1

i < 1.

Proof. We perform the proof for the first-oder time splitting method in Section 3.3.1.
Let f ℓi < 1. The local equilibrium of a fermion is a Fermi-Dirac distribution function
F for which 0 < F < 1 by definition. Hence, for the relaxation step it holds

f∗i = cℓif
ℓ
i + cℓi∆t (F∗

ii + F∗
ij) < cℓi + cℓi2∆t = 1 (4.12)

because (3.51) becomes cℓi =
1

1+2∆t in the quantum set-up. For the transport step
(3.73), we obtain with the first-order fluxes

f ℓ+1
i,k =

(
1− ∆t

∆x
|v(1)|

)
f∗i,k +

∆t

∆x
|v(1)|f∗i,k−sign(v(1))

(4.12)
≤

(
1− ∆t

∆x
|v(1)|

)
+

∆t

∆x
|v(1)| = 1.
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4 Properties of the numerical scheme

For the second-order fluxes, define σ := sign(f∗i,k − f∗i,k−1). Then one can show that

ϕk+ 1
2
(f∗i ) ≤

{
0 if σ = −1

f∗i,k+1 − f∗i,k if σ = +1
,

−ϕk− 1
2
(f∗i ) ≤

{
f∗i,k−1 − f∗i,k if σ = −1

0 if σ = +1
.

Hence,

f ℓ+1
i,k

(3.73)
=

(
1− ∆t

∆x
|v(1)|

)
f∗i,k +

∆t

∆x
|v(1)|f∗i,k−sign(v(1))

+
∆t

∆x

|v(1)|
2

(ϕk+ 1
2
(f∗i )− ϕk− 1

2
(f∗i ))

≤
(
1− ∆t

∆x
|v(1)|

)
f∗i,k +

∆t

∆x
|v(1)|f∗i,k−sign(v(1))

+
∆t

∆x

|v(1)|
2

{
(f∗i,k−1 − f∗i,k) if σ = −1

(f∗i,k+1 − f∗i,k) if σ = +1

=

(
1− 3

2

∆t

∆x
|v(1)|

)
f∗i,k +

∆t

∆x
|v(1)|f∗i,k−sign(v(1))

+
∆t

∆x

|v(1)|
2

{
f∗i,k−1 if σ = −1

f∗i,k+1 if σ = +1

(4.12)
≤ 1.

The proof for the time discretization techniques in Sections 3.3.2 and 3.3.3 works
analogously.

The fully-discrete scheme maintains the same properties regarding positivity and
fi < 1 for fermions when fulfilling the CFL condition with respect to the discrete
velocities, see e.g. (4.13).

Corollary 4.2.6. Propositions 4.2.1–4.2.5 all hold true after discretizing the velocity
variable.

In the following section, we summarize the time step restrictions of our scheme.

4.3 Time step restrictions

In order to guarantee stability and positivity, the advection in space introduces
restrictions for the size of the time step resulting in a CFL condition. The Courant
number C needs to be chosen such that

0 < C ≤ α.
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4.4 Conservation of mass, total momentum and total energy

It is α = 1 for the first-order numerical fluxes and α = 2
3 for the second-order

numerical fluxes. Considering only the convection parts, the time step size ∆t for the
update tℓ → tℓ+1 is chosen to be

∆t = C
∆x

maxq1 |v(1)q1 |
. (4.13)

Additionally, we need to take care of the time step restrictions due to the preservation
of positivity during relaxation steps. In our numerical tests, the time step ∆t is
set according to the CFL condition (4.13) by default. This guarantees positivity for
the first-order time-stepping schemes. If positivity is violated for the second-order
time-stepping schemes, we reduce the time step size according to (4.7) and (4.9), re-
spectively. Thus we guarantee positivity while maintaining large time steps whenever
possible. One could instead use the less restrictive local conditions in (4.8), (4.10)
and (4.11), which requires additional iterations over the grid to find a global value
for the time step. However, in practice, violations of positivity are rare and thus we
use (4.7), respective (4.9) for simplicity.

In the following section, we address the conservation of mass, total momentum,
and total energy for our scheme.

4.4 Conservation of mass, total momentum and total en-
ergy

To start with, we look at the relaxation and transport steps in the semi-discrete
scheme, see Propositions 4.4.1 and 4.4.2. Then, we conclude with the fully-discrete
scheme, see Theorem 4.4.4.

Proposition 4.4.1 (Conservation during relaxation process). The relaxation step in
the first-order splitting scheme presented in Section 3.3.1 satisfies the conservation laws

∫
a
(0)
1 f∗1 dw =

∫
a
(0)
1 f ℓ1 dw,

∫
a
(0)
2 f∗2 dw =

∫
a
(0)
2 f ℓ2 dw, (4.14)∫ (

a
(1)
1 f∗1 + a

(1)
2 f∗2

)
dw =

∫ (
a
(1)
1 f ℓ1 + a

(1)
2 f ℓ2

)
dw, (4.15)∫ (

a
(2)
1 f∗1 + a

(2)
2 f∗2

)
dw =

∫ (
a
(2)
1 f ℓ1 + a

(2)
2 f ℓ2

)
dw. (4.16)
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4 Properties of the numerical scheme

Proof. We multiply the relaxation step (3.39) by ai, sum over i = 1, 2, and integrate
with respect to w. Sorting terms yields

∫
(f∗1 a1 + f∗2 a2) dw −

∫ (
f ℓ1 a1 + f ℓ2 a2

)
dw

(3.39)
= ∆t

[∫ (
cℓ1ν

ℓ
11A

∗
11,τ1a1 + cℓ2ν

ℓ
22A

∗
22,τ2a2 + cℓ1ν

ℓ
12A

∗
12,τ1a1 + cℓ2ν

ℓ
21A

∗
21,τ2a2

)
dw

−
∫ [

cℓ1
(
νℓ11 + νℓ12

)
f ℓ1 a1 + cℓ2

(
νℓ22 + νℓ21

)
f ℓ2 a2

]
dw

]
.

(4.17)

The RHS above corresponds to the first-order optimality conditions in (3.53). This
term is identically zero as we minimize the corresponding functions in (3.58) and
(3.59), which in turn proves the conservation statement (4.15) and (4.16). For the
number of particles, we execute the above procedure for each species individually
and obtain∫

f∗i a
(0)
i dw −

∫
f ℓi a

(0)
i dw (4.18)

(3.39)
= ∆t

∫ (
cℓiν

ℓ
iiA

∗
ii,τia

(0)
i + cℓiν

ℓ
ijA

∗
ij,τia

(0)
i

)
dw −

∫
cℓi
(
νℓii + νℓij

)
f ℓi a

(0)
i dw

(4.19)

= ∆t
[
∂
λ
(0)
i
φi(λi) + ∂

λ
(0)
ij
φ(λ)

]
(4.20)

which vanishes due to first-order optimality conditions on φi and φ being defined in
(3.58) and (3.59).

The conservation properties during the transport step are preserved which is
inherited from the FV formulation.

Proposition 4.4.2 (Conservation during transport process). For each i = 1, 2, the
transport step in the first-order splitting scheme in Section 3.3.1 combined with the
space discretization presented in Section 3.4 satisfies the conservation laws

K∑
k=0

∫
aif

ℓ+1
i,k dw∆x =

K∑
k=0

∫
aif

∗
i,k dw∆x

for periodic or zero boundary conditions.
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4.4 Conservation of mass, total momentum and total energy

Proof. For i = 1, 2, we multiply the transport step (3.41) by ai, integrate with respect
to w and sum over all cell averages in x. The result is

K∑
k=0

∫
aif

ℓ+1
i,k dw∆x

(3.41)
=

K∑
k=0

∫
aif

∗
i,k dw∆x−

K∑
k=0

∫
∆t
(
Fk+ 1

2
(f∗i )− Fk− 1

2
(f∗i )

)
ai dw

=

K∑
k=0

∫
aif

∗
i,k dw∆x−∆tΩ

where the remnant of the telescoping sum

Ω =

∫
aiFK+ 1

2
(f∗i ) dw −

∫
aiF− 1

2
(f∗i ) dw

vanishes for periodic or zero boundary conditions, e.g. FK+ 1
2
(f∗i ) = F− 1

2
(f∗i ) and

FK+ 1
2
(f∗i ) = F− 1

2
(f∗i ) = 0, respectively.

Any time-stepping scheme presented in Sections 3.3.1–3.3.4 can be broken into
relaxation and transport parts, each of which preserves the conservation of mass,
total momentum, and total energy. As a result, we have the following.

Corollary 4.4.3. For periodic or zero boundary conditions, any combination of temporal
and space discretization presented in Sections 3.3 and 3.4, respectively, conserves mass,
total momentum and total energy.

Since the optimization algorithm is executed on the discrete-velocity grid, we now
conclude with a statement on the fully-discrete scheme.

Theorem 4.4.4 (Conservation properties at the discrete level). The scheme in Section
3.3.5 together with the space discretization and velocity discretization presented in
Sections 3.4 and 3.5, respectively, satisfies the following conservation properties for
ℓ ≥ 0∑

k,q

ωq

(
f ℓ1,kqa1,q(∆w1)

3 + f ℓ2,kqa2,q(∆w2)
3
)
∆x

=
∑
k,q

ωq

(
f01,kqa1,q(∆w1)

3 + f02,kqa2,q(∆w2)
3
)
∆x (4.21)

with ai,q(v) = mi(1,vq, |vq|2)⊤, ai,q(p) = (mi,pq, |pq|2/mi)
⊤ and fni,kq ≈ f ℓi,k(vq).

We now come to the entropy behavior of our scheme.
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4 Properties of the numerical scheme

4.5 Entropy inequality

We discuss the entropy behavior for the first-order scheme in Section 3.3.1. Both
the relaxation and the transport step dissipate entropy; see Propositions 4.5.1 and
4.5.3. Additionally, we show in Proposition 4.5.2 that the minimal entropy is reached
for the relaxation step if the distribution functions coincide with the corresponding
target functions. These results rely on dissipative properties of the Backward Euler
method and make use of the conservation properties at the semi-discrete level in a
clever way.

Proposition 4.5.1 (Entropy inequality for the relaxation process in the first-order
splitting scheme). Let hτ (f) = f log f − f + τ(1− τf) log(1− τf)− τ(1− τf). The
relaxation step in the first-order splitting scheme in Section 3.3.1 fulfills the discrete
entropy inequality∫

hτ1(f
∗
1 ) + hτ2(f

∗
2 ) dw ≤

∫
hτ1(f

ℓ
1) + hτ2(f

ℓ
2) dw. (4.22)

Proof. By convexity

hτi(f
ℓ
i ) ≥ hτi(f

∗
i ) + h′τi(f

∗
i )(f

ℓ
i − f∗i ). (4.23)

The derivative

h′τ (f) = log
f

1− τf

is monotonically increasing for f ≥ 0 (τ ∈ {−1, 0}) and 0 < f < 1 (τ = +1),
respectively. This leads to the inequality

(h′(x)− h′(y))(y − x) ≤ 0 (4.24)

for all x, y ≥ 0 (τ ∈ {−1, 0}) and 0 < x, y < 1 (τ = +1), respectively. Moreover,
because

h′τi(A∗
ij,τi) = λij · a(w)

it follows that∫
νℓii h

′
τi(A∗

ii,τi)(A∗
ii,τi − f∗i ) dw = λii ·

∫
νℓii a(w)(A∗

ii,τi − f∗i ) dw = 0. (4.25)

Analogously for the inter-species terms,∫
νℓ12 h

′
τ1(A∗

12,τ1)(A∗
12,τ1 − f∗1 ) dw +

∫
νℓ21 h

′
τ2(A∗

21,τ2)(A∗
21,τ2 − f∗2 ) dw

= λ
(0)
12

∫
νℓ12 (A∗

12,τ1 − f∗1 ) dw + λ
(0)
21

∫
νℓ21 (A∗

21,τ2 − f∗2 ) dw

+

(
λ(1)

λ(2)

)
·
∫ (

νℓ12 (A∗
12,τ1 − f∗1 )

(
a
(1)
1 (w)

a
(2)
1 (w)

)
+ νℓ21 (A∗

21,τ2 − f∗2 )

(
a
(1)
2 (w)

a
(2)
2 (w)

))
dw

= 0.

(4.26)
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4.5 Entropy inequality

The integrals (4.25) and (4.26) vanish because the conservation properties are
satisfied at the semi-discrete level as well by construction of the scheme. Using the
implicit step (3.39), i.e.

f∗i − f ℓi = ∆tνℓii(A
∗
ii,τi − f∗i ) + ∆tνℓij(A

∗
ij,τi − f∗i ),

and the convexity of hτ gives

hτi(f
∗
i )− hτi(f

ℓ
i )

(4.23)
≤ h′τi(f

∗
i )(f

∗
i − f ℓi )

= ∆t νℓiih
′
τi(f

∗
i )(A

∗
ii,τi − f∗i ) + ∆tνℓijh

′
τi(f

∗
i )(A

∗
ij,τi − f∗i ).

(4.27)

Thus after integrating (4.27) in w and making use of the zeros (4.25) and (4.26),
we obtain

∫
hτ1(f

∗
1 ) dw −

∫
hτ1(f

ℓ
1) dw +

∫
hτ2(f

∗
2 ) dw −

∫
hτ2(f

ℓ
2) dw

≤ ∆t νℓ11

∫
[h′τ1(f

∗
1 )− h′τ1(A∗

11,τ1)](A∗
11,τ1 − f∗1 ) dw

+∆t νℓ22

∫
[h′τ2(f

∗
2 )− h′τ2(A∗

22,τ2)](A∗
22,τ2 − f∗2 ) dw

+∆t νℓ12

∫
[h′τ1(f

∗
1 )− h′τ1(A∗

12,τ1)](A∗
12,τ1 − f∗1 ) dw

+∆t νℓ21

∫
[h′τ2(f

∗
2 )− h′τ2(A∗

21,τ2)](A∗
21,τ2 − f∗2 ) dw

≤ 0.

(4.28)

The last inequality holds true because of (4.24).

Proposition 4.5.2 (Entropy equality for the relaxation process in the first-order
splitting scheme). The inequality in Proposition 4.5.1 is an equality if and only if
f ℓ1 = Aℓ

12,τ1 and f ℓ2 = Aℓ
21,τ2 . In such cases f∗1 = A∗

12,τ1 and f∗2 = A∗
21,τ2 .

Proof. Suppose first that f ℓ1 = Aℓ
12,τ1 and f ℓ2 = Aℓ

21,τ2 . Then according to the H-
Theorem 2.2.7/2.3.16,∫

hτ1(f
ℓ
1) + hτ2(f

ℓ
2) dw ≤

∫
hτ1(g1) + hτ2(g2) dw (4.29)

for any measurable positive functions g1 and g2 such that∫
a
(0)
1 g1dv =

∫
a
(0)
1 f ℓ1 dw,

∫
a
(0)
2 g2 dw =

∫
a
(0)
2 f ℓ2 dw, (4.30)∫ (

a
(1)
1 (w)g1 + a

(1)
2 (w)g2

)
dw =

∫ (
a
(1)
1 (w)f ℓ1 + a

(1)
2 (w)f ℓ2

)
dw, (4.31)∫ (

a
(2)
1 (w)g1 + a

(2)
2 (w)g2

)
dw =

∫ (
a
(2)
1 (w)f ℓ1 + a

(2)
2 (w)f ℓ2

)
dw. (4.32)
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4 Properties of the numerical scheme

These conditions are exactly those satisfied by f∗1 and f∗2 (cf. Theorem 4.4.1). Hence∫
hτ1(f

ℓ
1) + hτ2(f

ℓ
2) dw ≤

∫
hτ1(f

∗
1 ) + hτ2(f

∗
2 ) dw (4.33)

which shows that (4.22) is an equality. To show the converse statement, suppose
that (4.22) holds as an equality. Then according to (4.28) f∗1 = A∗

11,τ1 = A∗
12,τ1 and

f∗2 = A∗
21,τ2 = A∗

22,τ2 . Therefore, by definition of Ri in (3.30), Ri(f
∗
i , f

∗
j ) = 0, which

when plugged into (3.38), gives f ℓ1 = f∗1 and f ℓ2 = f∗2 .

Proposition 4.5.3 (Entropy inequality for the transport process in the first-order
splitting scheme). Let hτ (f) = f log f − f + τ(1− τf) log(1− τf)− τ(1− τf). The
transport step in the first-order splitting scheme in Section 3.3.1 combined with the
first-order spatial discretization in Section 3.4 fulfills the discrete entropy inequality

K∑
k=0

{∫
hτ1(f

ℓ+1
1,k ) + hτ2(f

ℓ+1
2,k ) dw

}
∆x ≤

K∑
k=0

{∫
hτ1(f

∗
1,k) + hτ2(f

∗
2,k) dw

}
∆x

(4.34)

for periodic or zero boundary conditions, provided that

∆t ≤ ∆x

max |v(1)| .

Proof. Using the notation v+ := v(1)+|v(1)|
2 and v− := v(1)−|v(1)|

2 , we write the update
formula of (3.41) with the first-order numerical fluxes as

f ℓ+1
i,k = f∗i,k − ∆t

∆x

(
v+f∗i,k + v−f∗i,k+1 − v+f∗i,k−1 − v−f∗i,k

)
=

(
1− ∆t

∆x
|v(1)|

)
f∗i,k − ∆t

∆x
v−f∗i,k+1 +

∆t

∆x
v+f∗i,k−1.

Clearly, if the CFL condition is fulfilled, then f ℓ+1
i,k is a convex linear combination of

f∗i,k, f∗i,k−1, and f∗i,k+1. Thus by the convexity of hτ , for each v(1),

K∑
k=0

hτi(f
ℓ+1
i,k )∆x

≤
∑
k

[(
1− ∆t

∆x
|v(1)|

)
hτi(f

∗
i,k)−

∆t

∆x
v−hτi(f

∗
i,k+1) +

∆t

∆x
v+hτi(f

∗
i,k−1)

]
∆x

=
∑
k

hτi(f
∗
i,k)∆x+∆tΩ

(4.35)
where the boundary term

Ω = v−f∗i,0 log(f
∗
i,0)− v−f∗i,K+1 log(f

∗
i,K+1)− v+f∗i,K log(f∗i,K) + v+f∗i,−1 log(f

∗
i,−1)
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4.5 Entropy inequality

is the only remnant of the telescoping sum and vanishes for periodic or zero boundary
conditions. Thus summation over i and integration of (4.35) with respect to w yields
the entropy inequality in (4.34).

Combining the two results above gives the following:

Corollary 4.5.4. For periodic or zero boundary conditions, the first-order splitting
scheme 3.3.1 combined with the first-order numerical fluxes in Section 3.4 fulfills the
discrete entropy inequality

K∑
k=0

{∫
hτ1(f

ℓ+1
1,k ) + hτ2(f

ℓ+1
2,k ) dw

}
∆x ≤

K∑
k=0

{∫
hτ1(f

∗
1,k) + hτ2(f

∗
2,k) dw

}
∆x

provided that

∆t ≤ ∆x

max |v(1)| .

Finally, we conclude with a statement on the fully-discrete scheme.

Theorem 4.5.5 (Entropy behavior of the first-order splitting scheme). Propositions
4.5.1–4.5.3 all hold true after replacing continuous integrals by their respective quadra-
tures.
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Chapter 5

Numerical Results
In the previous chapters, we have introduced fluid models and an adequate scheme
for multi-species BGK-type equations. We now apply the scheme to the equations.

Firstly, we perform tests to verify the order of the presented scheme in Section
5.1.

In Section 5.2, we provide different test cases for the multi-species BGK model
with constant collision frequency where we compare the results with analytic values
or simulations from the literature.

In Section 5.3, we focus on velocity-dependent collision frequencies. We illus-
trate the behavior and properties of the scheme, followed by test cases inspired by
physical experiments where we emphasize the effect of velocity-dependent colli-
sion frequencies by comparing the results with simulations using constant collision
frequencies.

Afterwards, we present numerical results for the quantum multi-species model in
Section 5.4. We verify the properties of the scheme and compare the analytical decay
rates with the results from the numerical simulations. We conclude with a test case
inspired by physical experiments.

5.1 Proof of order

In Section 5.1.1, we examine the order in space and time discretization, leaving out
the velocity variable for reasons of computational costs. In Section 5.1.2, we leave
out the space variable and run a relaxation test case which uses a discretization in
time and velocity.

5.1.1 Transport equation

We consider the simple transport equation

∂tf(x, t) + v ∂xf(x, t) = 0

where v = 2 in the domain x ∈ [−1, 1] with periodic boundaries. The function f is
initialized by

f(x, 0) = 0.5 sin(πx) + 1.
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5 Numerical Results

This problem has the unique solution

f(x, t) = 0.5 sin(π(x− 2t)) + 1, (5.1)

see Section 2.1.2.

For the simulations, we refine the grid more and more. The coarsest grid has 10
equally spaced cells in x, and we compute one time step where ∆t is set according
to the CFL condition (3.74). The next coarsest grid has 20 equally spaced cells in x,
and so on.

In Figure 5.1, the L1-error of the numerical solutions compared to the analytical
solution (5.1) is presented in a log-log plot. The first-order schemes from Sections
3.3.1 and 3.3.2 use the Forward Euler time discretization (3.2) combined with the
first-order numerical fluxes from Section 3.4.1. This combination reproduces a good
first-order convergence (left plot).

The nominally second-order schemes use the numerical fluxes with flux limiter
(3.71) from Section 3.4.1. The splitting scheme from Section 3.3.3 implements Heun’s
method (3.4), whereas the IMEX RK from Section 3.3.4 uses the time discretization
ARS-ex given in (3.6). Both methods give similar results. They do not show a good
second-order convergence, but they definitely perform better than first order (right
plot). This is typical for positivity-preserving flux limiters as they introduce numerical
dissipation.
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Figure 5.1: Numerical results for the test case 5.1.1. The L1-error of the numerical solution compared to the
analytical solution (5.1) is illustrated in a log-log plot. The Forward Euler time discretization (3.2) combined with
the first-order numerical fluxes from Section 3.4.1 shows a good first-order convergence. The nominally second-order
schemes (using a combination of Heun’s method (3.4), respective ARS-ex (3.6) and the numerical fluxes with flux
limiter from Section 3.4.1) converge faster than first order, but they do not quite reach a second-order convergence.
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5.1 Proof of order

5.1.2 Relaxation test case

We consider a space homogeneous relaxation process between two species for the
velocity-independent collision frequencies νij = nj . Initially, we set the distribution
functions to Maxwellians fi = M[ni,ui, Ti,mi] with

m1 = 1.0, n1 = 1.0, u1 = (1.0, 0, 0)⊤, T1 = 2.0,

m2 = 2.0, n2 = 1.2, u2 = (0.5, 0, 0)⊤, T2 = 1.0.

Again, we refine the grid more and more. The coarsest velocity grid has 123 nodes,
and we set the time step to ∆t = 0.02. The grid and time step are refined by factors
of 2.

We cannot solve the equations analytically such that we use a numerical solution
which is computed on a fine grid as reference solution. This grid uses 1923 velocity
nodes and a time step ∆t = 0.00125. The reference solution is obtained by the
second-order IMEX RK scheme from Section 3.3.4.

In Figure 5.2, we show the L1-error of the numerical solution compared to the
reference solution in a log-log plot. The first-order schemes from Sections 3.3.1 and
3.3.2 use the Backward Euler time discretization (3.8) which reproduces a good
first-order convergence (left plot).

The second-order splitting scheme from Section 3.3.3 implements the implicit
trapezoidal method (3.10). It gives a second-order convergence (middle plot). The
IMEX RK from Section 3.3.4 uses the time discretization ARS-im given in (3.12) and
shows a good second-order convergence (right plot). Moreover, the second-order
schemes are more accurate as the L1-error becomes smaller.
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Figure 5.2: Numerical results for the test case 5.1.2. The L1-error of the numerical solution compared to the
reference solution is illustrated in a log-log plot. The Backward Euler time discretization (3.8) shows a good first-
order convergence. The implicit trapezoidal method (3.10) and the method ARS-im (3.12) show a second-order
convergence and a higher accuracy.

We have verified the order of the individual explicit and implicit parts of the schemes.
We rely on the construction of the IMEX schemes such that we do not perform any
further tests regarding the order of the schemes. Instead we are interested in more
physically relevant test cases.
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5 Numerical Results

5.2 Numerical results for the classic multi-species BGK
model with constant collision frequencies

We present several numerical tests for the KPP model from Section 2.1.4. We verify
the decay rates for the mean velocities and temperatures in Section 5.2.1. In Sections
5.2.2 and 5.2.3, we rerun test cases from the literature being physically motivated.

In the following test cases, we define δ, γ, α of the KPP model by assuming
u12 = u21 and T12 = T21. This leads to

δ =
εm1

m1ε+m2
, α =

ε

1 + ε
, γ =

εm1(1− δ)2δ

3(1 + ε)
, ε =

m2

m1
.

5.2.1 Decay rates

This test case is inspired from [CKP20]. We consider a space homogeneous relaxation
process between two species for the velocity-independent collision frequencies

νij = 20nj .

Hence, analytical decay rates are given in (2.63) and (2.65). Initially, we set the
distribution functions to Maxwellians fi = M[ni,ui, Ti,mi] with

m1 = 1.5, n1 = 1.2, u1 = (0.1, 0, 0)⊤, T1 = 0.1,

m2 = 1.0, n2 = 1.0, u2 = (0.5, 0, 0)⊤, T2 = 1.0.

For the simulation, we use a velocity grid with 483 nodes.

In Figure 5.3, we illustrate the results for different time steps and for the time
discretization methods from Sections 3.3.1–3.3.4. The mean velocities converge ex-
ponentially fast to a common value which is clearly visible by the logarithmic plotting
scale. The same holds true for the temperature, however, the decay rate needs not
to be exponential in general. (It is a sum of exponential functions.) All schemes
hit the analytic decay rates very well for a small time step. However, larger time
steps amplify the numerical errors which makes the schemes less accurate affecting
especially the first-order schemes.

5.2.2 Hydrogen-Carbon test case 1

We want to reproduce the result of a more realistic test case, firstly presented in
[HHM17a] and inspired from plasma physics. It considers the space homogeneous
mixture of hydrogen (species 1) and carbon (species 2).
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Figure 5.3: The mean velocities and temperatures of species 1 and 2 converge to a common value. The smaller
the time step, the better match the numerical decay rates the analytic ones. The second-order schemes are more
accurate which can be clearly seen.
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We use the (velocity-independent) collision frequencies (2.106) and (2.107), see
Section 2.2.3, i.e.

νMij =
128

3

π2

(2π)3/2
nj
mi

(ZjZie
2)2

√
mimj(mi +mj)

(miTj +mjTi)3/2
Ψ(γij) , (5.2)

νTij =
256

3

π2

(2π)3/2
nj(ZjZie

2)2
√
mimj

(miTj +mjTi)3/2
Ψ(γij) . (5.3)

The masses and charge numbers of the species are given by

m1 = 1.993 · 10−23 g, m2 = 1.661 · 10−24 g, (5.4)

Z1 = 6, Z2 = 1.

Initially, the distribution functions are Maxwellians fi = M[ni,ui, Ti,mi] with

n1 = 1023 cm−3, n2 = 1023 cm−3, (5.5)

u1 = (1.26 · 105, 0, 0)⊤ cm

s
, u2 = (0, 0, 0)⊤

cm

s
,

T1 = 10 eV, T2 = 12 eV.

The velocity grid takes 483 nodes, and we use the second-order IMEX RK scheme
from Section 3.3.4 with time step ∆t = 0.1 fs.

Remark 5.2.1 (Units in numerical test cases). Incorporating units in a code is chal-
lenging, especially if particles with very small masses are considered. To overcome this
problem, we normalize the units by

cm → 1.5345 · 107, g → 6.02047 · 1023, s → 1.50658 · 1014,

resulting e.g. in the masses m1 = 12 and m2 = 1. We obtain initial values which can be
handled better by numerical calculations. The values are reconverted in the CGS system
when plotted.

This procedure is executed for any test case carrying CGS units.

In Figures 5.4 and 5.5, we illustrate the convergence of the mean velocities and
temperatures to a common value which is already predetermined by the initial data
and the mixture quantities (2.8) and (2.9). Comparing with [HHM17a], the results
are in good agreement; however, we observe a slightly slower relaxation rate. We
expect that this is due to the collision frequencies. Even though we took the formulas
from [HHM17a], some details have been left open. Our choices, given in Section
2.2.3, may influence the result in the given way.

5.2.3 Sulfur-Fluorine-Electrons test case

For a 3-species test case, we reproduce the space homogeneous example given in
[HHM17a]. In the following, the index S refers to sulfur ions, the index F refers to
fluorine ions, and the index e refers to electrons.
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Figure 5.4: Evolution of the species’ mean velocities and temperatures for the Hydrogen-Carbon test case in Section
5.2.2 using the constant collision frequencies (5.2). The quantities hit the mixture quantities (2.8) and (2.9) as
expected.

For ion-ion interactions, we use the collision frequencies (5.2), respective (5.3)
from the previous numerical example. The collision frequencies which encounter
an interaction with electrons are given in (2.109) and (2.110), respectively. For
convenience, we restate them here:

νMij =
8

3

√
2π nj

√
mj

mi

mi +mj

(miTj +mjTi)3/2
(ZiZje

2)2 log ΛGMS6, (5.6)

νTij =
16

3

√
2π nj

√
mimj

(miTj +mjTi)3/2
(ZiZje

2)2 log ΛGMS6. (5.7)

Details can be found in Section 2.2.3.
The species’ masses and charge numbers are

mS = 32.07u − 11me, mF = 19u − 7me, me = me,

ZS = 11, ZF = 7, Ze = −1

with the atomic mass u = 1.6605 · 10−24 g. Initially, we assume Maxwellian distribu-
tions fi = M[ni,ui, Ti,mi] with

nS = 1019 cm−3, nF = 6 · 1019 cm−3, ne = 53 · 1019 cm−3,

uS = uF = ue = 0
cm
s
,

TS = TF = 15 eV, Te = 100 eV.

We use velocity grids with 483 nodes for each species, and we use the second-order
IMEX RK scheme from Section 3.3.4 with time step ∆t = 100 fs.
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Figure 5.5: Evolution of the species’ mean velocities and temperatures for the Hydrogen-Carbon test case in Section
5.2.2 using the constant collision frequencies (5.3). The quantities hit the mixture quantities (2.8) and (2.9) as
expected.

The species are initialized with vanishing mean velocity, and the mean velocities stay
zero. We give the evolution of the temperatures in Figure 5.6 which converge to the
mixture temperature (2.9). As in the previous test case, the relaxation rate is slower
compared to the results in [HHM17a].
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Figure 5.6: Evolution of the species’ temperatures for the Sulfur-Fluorine-electrons test case in Section 5.2.3 using
the constant collision frequencies (5.2) and (5.6), respective (5.3) and (5.7). The quantities hit the mixture
temperature (2.9) as expected.

For the following section, we increase the complexity of the underlying model by
considering collision frequencies which are dependent on v.
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5.3 Numerical results for the classic multi-species BGK
model with velocity-dependent collision frequencies

We perform numerical experiments in order to illustrate the effect of velocity-
dependent collision frequencies in the multi-species BGK model from Section 2.2.
Most of this section can also be found in [HHK+22]. To start with, we examine
various space homogeneous set-ups. We illustrate the properties at the discrete level
in Section 5.3.1. A physical more relevant test case is provided in Section 5.3.2.

Afterwards, we run several shock tube problems for the full equations (2.69). In
Section 5.3.3, we compare the well-known Sod problem in the hydrodynamic limit
when approximated by BGK equations with different collision frequencies. We further
examine the different behavior of constant in v and velocity-dependent collision
frequencies for various shock wave problems in Sections 5.3.4 and 5.3.5. We conclude
with the interpenetration of hydrogen and helium particles in Sections 5.3.6 and
5.3.7, where the use of different collision frequencies displays a significantly different
behavior of the hydrogen species.

5.3.1 Illustrative toy problem

The purpose of this experiment is to illustrate basic properties of the multi-species
BGK model with velocity-dependent collision frequency from Section 2.2. We solve
the spatially homogeneous version of (2.69) for species with masses m1 = 1 and
m2 = 1.5. The initial distribution functions (see Figure 5.7a) are given by

fi(v, t = 0) = 0.1 ·m27
i · exp

(
− 0.01

(0.75/mi)10 − |v − ui(0)|101

)
,

with u1(0) = (0.1, 0, 0)⊤ and u2(0) = (−0.1, 0, 0)⊤. The parameter choices here are
not physical; rather they are chosen to yield an initial distribution with a particular
shape that makes the relaxation easier to visualize. With this initialization, the
mixture mean velocity and mixture temperature, defined in Definition 2.1.16, have
numerical values

umix = 0.0322 and Tmix = 0.0487.

According to Proposition 2.1.33, these values stay constant in time. The collision
frequencies take the form

νij(x,v, t) =
10nj

δij + |v − umix|3

with the regularization parameter δij = 0.1 · (∆vij)3 where ∆vij =
1
4

√
Tmix/(2µij),

and the reduced mass is µij = mimj/(mi +mj).
The simulation is run using a velocity grid with 483 nodes and the first-order tem-

poral splitting scheme from Section 3.3.1 with time step ∆t = 0.01. As demonstrated
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in Chapter 4, this scheme maintains positivity, conservation, and entropy dissipation
properties of the continuous model.

In Figure 5.7, we plot the kinetic distributions at several different times and ob-
serve convergence to their respective equilibria. It is easy to see that the convergence
to equilibrium is much faster in the center than near the tails of the distribution
functions. This is a consequence of the fact that the velocity-dependent collision
frequency amplifies the relaxation process for small relative velocities.

In Figure 5.8, we show convergence of the mean velocities and temperatures to
their equilibrium values, given by the mixture values in (2.8) and (2.9).

In Figure 5.9, we show the evolution of the entropy and the entropy dissipation.
As expected, the entropy decays monotonically.

In Figure 5.10, we demonstrate conservation properties. The scheme conserves
mass, total momentum and total energy up to numerical oscillations of the order
10−15 or less.
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Figure 5.7: Relaxation of the distribution functions to Maxwellians for the test case in Section 5.3.1. We fix
v(2) = v(3) = 0 and plot fi(v(1), v(2) = 0, v(3) = 0, t) at times t. At time progress, the two distribution
functions converge to Maxwellians centered around a common mean velocity with a width according to their common
temperature divided by mass. For reference, these Maxwellians are shown by dotted gray lines.

5.3.2 Hydrogen-Carbon test case 2

In this test case, we explore the effects of the velocity-dependent frequencies on the
relaxation behavior of a multi-species problem in a more physically relevant setting,
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Figure 5.8: Convergence of mean velocities and temperatures for the test case in Section 5.3.1. In each plot, the
dotted line denotes the mixture values, given in (2.8) and (2.9).
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Figure 5.9: Entropy and entropy dissipation for the test case in Section 5.3.1. As predicted by the theory, the entropy
decays monotonically.

with dimensional formulas given in the CGS unit system.

The collision frequencies which are used in this test case are derived in Section
2.2.3. For convenience, we give again

νij(v) = 4πnj

(
ZiZje

2

2µij

)2
1

δij + |v − umix|3
log Λij , (5.8)

where µij is the reduced mass, Zie and Zje are the charges of the two particles
and log Λij is the Coulomb logarithm. Further details can be found in Section 2.2.3.
The small regularization parameter δij > 0 in the denominator of (5.8) avoids a
singularity at zero relative velocity. For the numerical experiments one needs to
ensure that δij is much smaller than |v − umix|3, and thus we set δij = 0.1 · (∆vij)3,
where ∆vij =

1
4

√
kBTmix/(2µij). This choice ensures that ν12 and ν21 are symmetric

up to the densities.
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Figure 5.10: Global conservation properties for the test case in Section 5.3.1. The mass densities of each species,
the total momentum (M ) and total energy (E) have small oscillations of the order of 10−15 or less.

For comparison, we consider three velocity-independent collision frequencies that
are often used as simpler alternatives to (5.8).

1. Replacing |v − umix| by the thermal velocity vT =
√
kBTmix/(2µij) gives

ν̃ij = 4πnj

(
ZiZje

2

2µij

)2
1

δij + v3T
log Λij . (5.9)

2. Replacing |v − umix|3 by the weighted average

v̂3 =

∫
|v − umix|3Mij(v) dv∫

Mij(v) dv
, (5.10)

where Mij(v) = M[ni,umix, Tmix, µij ], gives

ν̂ij = 4πnj

(
ZiZje

2

2µij

)2
1

δij + v̂3
log Λij . (5.11)

3. Computing a weighted average of νij(v) directly gives

ν̄ij =

∫
νij(v)Mij(v) dv∫

Mij(v) dv
. (5.12)

While the first option above is convenient and more common in applications [SM16],
it is somewhat arbitrary. The second and third options, on the other hand, provide
a more consistent normalization. According to Proposition 2.1.33, the collision
frequencies stay constant in time because the problem is spatially homogeneous. For
purposes of illustration, we plot them in Figure 5.11.

We consider relaxation between carbon (species 1) and hydrogen (species 2),
with masses and charge numbers

m1 = 1.993 · 10−23 g, m2 = 1.661 · 10−24 g,

Z1 = 6, Z2 = 1.
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Figure 5.11: Collision frequencies given in (5.8), (5.9), (5.11) and (5.12) along the line v(2) = v(3) = 0. The
largest constant values for ν̄ correspond to the fastest relaxation process, see Figure 5.12.

Initially, the distribution functions are Maxwellians fi = M[ni,ui, Ti,mi] with

n1 = 6.1 · 1022 cm−3, n2 = 3.6133 · 1021 cm−3,

u1 = (9.818 · 105, 0, 0)⊤ cm
s
, u2 = (0, 0, 0)⊤

cm
s
,

T1 = 150 eV, T2 = 100 eV.

We simulate this test case using a velocity grid with 483 nodes and the second-order
IMEX RK scheme from Section 3.3.4 with time step ∆t = 0.8 fs.

In Figure 5.12, we plot the evolution of the differences between species temper-
atures and mean velocities. For constant collision frequencies, the convergence is
known to be exponential [CKP20]; this behavior can be clearly observed numerically.
However, the convergence of these quantities for the velocity-dependent cross section
appears much slower and distinctly different in form. A short exploration of the data
suggests that the convergence is neither exponentially fast nor can be described by a
power law.

In Figures 5.13 and 5.14, we plot the kinetic distribution of the hydrogen species
for ν(v) and ν̂, the latter giving the slowest relaxation of the velocity-independent
collision frequencies. Since the macroscopic quantities of the heavy species (car-
bon) hardly change, we only show the results for the lighter species (hydrogen).
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The relaxation process is weighted by the collision frequencies. Since the velocity-
dependent cross section is maximal at v = umix and decays at larger relative velocity,
relaxation to equilibrium in the tails of the distribution is slower when using a
velocity-dependent cross section. This can be observed in Figure 5.13 where we show
the distributions as functions of v(1) and for fixed v(2) = u(2) = 0, v(3) = u(3) = 0.
And it gets even more evident when comparing Figure 5.13 with Figure 5.14. For the
latter, we fix the second and third velocity component at v(2) = v(3) = −3.58 · 107 cm

s ,
i.e. at the tails for these components.
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Figure 5.12: Evolution of the difference in species temperatures and mean velocities for the Hydrogen-Carbon test
case in Section 5.3.2. The convergence for all velocity-independent collision frequencies—ν̃ in (5.9), ν̂ in (5.11),
and ν̄ in (5.12)—appears exponential. However, the convergence for velocity-dependent collision frequency ν(v)
given in (5.8) is significantly longer and notably different.

5.3.3 Sod problem

We run a kinetic version of the well-known Sod problem [Sod78] in the fluid regime
(i.e., with large collision frequencies). In the limit of large collision frequencies, the
distribution functions can be approximated by Maxwellians:

fi ≃ M[ni,ui, Ti,mi].

With this approximation, the conservation laws (2.84) reduce to the Euler equations
(2.11). We further reduce the problem to the single-species case by assuming m1 =
m2 =: m, ρ1 = ρ2 =: ρ, u1 = u2 =: u and T1 = T2 =: T . For convenience, we give
the Euler equations in this case explicitly. In one space dimension, with 3 translational
degrees of freedom, the single-species Euler equations are

∂tρ+∇x · (ρu) = 0, (5.13a)

∂t(ρu) +∇x · (ρu⊗ u) +∇xp = 0, (5.13b)

∂t

(
ρ|u|2
2

+
3ρT

2m

)
+∇x ·

((
ρ|u|2
2

+
3ρT

2m
+ p

)
u

)
= 0, (5.13c)

where p = ρT
m denotes the pressure.
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Figure 5.13: Relaxation of the kinetic distribution function of hydrogen in the Hydrogen-Carbon test case of Section
5.3.2 with time step ∆t = 0.8 fs. The velocity components v(2) and v(3) are fixed at u(2) = 0 and u(3) = 0,
respectively. The dashed line corresponds to the Maxwellian M2,eq = M[n2,umix, Tmix,m2], and the blue
and red lines are results computed with the velocity-independent collision frequencies ν̂ in (5.11) and the velocity-
dependent collision frequencies in ν(v) (5.8), respectively. The tails of the distribution converge more slowly for the
velocity-dependent collision frequencies.

This single-species problem can be implemented with the multi-species model by
treating the species identically. We set m1 = m2 = 1, and the initial data is given by
fi = M[ni,ui, Ti,mi] where

n1 = n2 = 1, u1 = u2 = 0, T1 = T2 = 1

for x ≤ 0 and

n1 = n2 = 0.1, u1 = u2 = 0, T1 = T2 = 0.8

for x > 0.
The equations (5.13) with these initial Riemann data can be solved analytically,

see e.g. [LeV02, Tor09]. We provide the analytical solution in Figure 5.15. The two
initial states are separated by three intermediate characteristic fields for t > 0. From
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Figure 5.14: Relaxation of the kinetic distribution function of hydrogen in the Hydrogen-Carbon test case of Section
5.3.2 with time step ∆t = 0.8 fs. The velocity components v(2) and v(3) are fixed at v(2) = v(3) = −3.58·107 cm

s ,
respectively, moving away from the center of the distribution function compared to Figure 5.13. The dashed line
corresponds to the Maxwellian M2,eq = M[n2,umix, Tmix,m2], and the blue and red lines are results computed
with the velocity-independent collision frequencies ν̂ in (5.11) and the velocity-dependent collision frequencies in
ν(v) (5.8), respectively. This part of the distribution function converges more slowly for the velocity-dependent
collision frequencies.

the left to the right, we have the left initial state, a rarefaction wave, a contact discon-
tinuity, and a shock wave separating the right initial state. The analytical solution can
be obtained by tracking the characteristics. The wave speeds can be calculated which
give us the locations of the fronts. Making use of the Rankine-Hugoniot conditions,
the macroscopic quantities can be computed.

We consider two collision frequencies: one that depends on v

νij(x,v, t) = 2 · 104 nj
δij + |v − umix|3

(5.14)

and one that does not
ν̂ij(x, t) = 2 · 104 nj

δij + v̂3
, (5.15)
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where the formula for the averaged relative velocity v̂ can be found in (5.10). Again
we use the regularization parameter δij = 0.1 · (∆vij)3 where ∆vij =

1
4

√
Tmix/(2µij)

and µij = mimj/(mi +mj).
The simulations are run using a velocity grid with 483 points and 400 equally

spaced cells in x. We use the second-order IMEX RK scheme from Section 3.3.4
combined with the second-order FV scheme from Section 3.4, with the limiter given
in (3.71). The time step ∆t = 9.29 · 10−5 is set according to the CFL condition in
(3.74).

Numerical simulations of the density, mean velocity, and temperature are given
in Figure 5.15. We include results using the BGK model with both ν(v) and ν̂, as
well as the analytic solution for the Euler equations (5.13). Both of the collision
frequencies ν(v) and ν̂ give similar results, but the deviations from the Euler solution
are more pronounced near the discontinuities in the hydrodynamic model.

For people used to the hydrodynamic regime, the bump in the mean velocity
(Figure 5.15 b, d) might be surprising. At the macroscopic level, sharp discontinuities
are observed analytically, and there is a constant mean velocity expected across the
contact discontinuity. However, at the kinetic level there are too little collisions
to push the distribution functions to Maxwellians; discontinuities go with (small)
transition regions because particles with e.g. different temperatures mix and do
not separate sharply. We see that jumps are smeared out — not only for reasons of
numerical dissipation but also due to kinetic theory. As the total energy is conserved,
a lower temperature on the RHS of the contact discontinuity goes with a higher
kinetic energy and a higher mean velocity, respectively.

5.3.4 Mach 1.7 Shock wave problem

In this example, we compute the flow across a standing Mach 1.7 normal shock
wave in a mixture of hydrogen (species 1) and helium (species 2). The shock wave
structure is difficult to capture in standard hydrodynamic schemes with a single
material/species; in mixtures we further expect species separation to occur due to
the mass difference between the two species. The shock conditions are calculated
via the Rankine-Hugoniot jump conditions for a monatomic gas [And89]. We take a
domain size of 6 microns (6 · 10−4 cm) and compute the solution in the frame of the
shock. The masses and charge numbers are (units in CGS)

m1 = 1.655 · 10−24 g, m2 = 3.308 · 10−24 g, Z1 = 1, Z2 = 2.

The initial conditions read fi = M[ni,ui, Ti,mi] with

n1 = n2 = 6.666 · 1019 cm−3, u1 = u2 = 1.7634411 · 107 cm
s
, T1 = T2 = 100 eV

for x ≤ 0 and

n1 = n2 = 1.308 · 1020 cm−3, u1 = u2 = 8.985007 · 106 cm
s
, T1 = T2 = 171.32 eV

for x > 0.
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Figure 5.15: Numerical solution at t = 0.055 of the Sod problem in Section 5.3.3. We show results for a 2-species
kinetic simulation with using the velocity-dependent collision frequency ν(v) in (5.14) (red solid line) and the
velocity-independent collision frequency ν̂ in (5.15) (dashed blue line). The solutions for both species are identical;
we show only the species 1 results. For reference, the exact solution for the Euler equations (5.13) is also provided
(dotted gray line). Both kinetic solutions recover the fluid limit fairly well, but the velocity-dependent frequencies
contribute to more kinetic behavior around transitions.

The simulations are run using a velocity grid with 483 nodes and a spatial mesh
with 200 cells. We use the second-order IMEX RK scheme from Section 3.3.4 and the
second-order spatial discretization in Section 3.4, with the limiter given in (3.71).
The time step ∆t = 22 fs is set according to the CFL condition in (3.74).

In Figure 5.16 we compare numerical results at time t = 5.390 ps using the velocity-
dependent collision frequency ν(v), given in (5.8), with those using the constant
collision frequencies ν̂, given in (5.11). In addition to these results, we plot the
relative difference

r(q) =
q({ν̂ij})− q({νij(v)})

|q({ν̂ij})|+ |q({νij(v)})|
(5.16)

for the densities (q = ni), mean velocities (q = u
(1)
i ), and temperatures (q = Ti). As

expected, both the velocity-dependent and constant collision frequency models show
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a species separation. For all hydrodynamic quantities, the differences are within a few
percent. While we expect a difference in output profiles between the two models due
to the tail particles relaxing more slowly than the bulk, it is likely that the collision
frequencies outside of the ‘kinetic’ region of the shock interface are high enough to
suppress large deviations from equilibrium.
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Figure 5.16: Fluid quantities at time t = 5.39 ps for the Mach 1.7 shock wave problem from Section 5.3.4. The initial
Riemann problem forms into a standing shock wave, where hydrogen and helium separate from each other near the
interface. Top row: velocity-dependent collision frequencies νij(v), given in (5.8); middle row: constant collision
frequencies ν̂ij , given in (5.11); bottom row: relative differences (see (5.16)). These differences are typically within
4%.

5.3.5 Mach 4 Shock wave problem

We repeat the shock wave problem from the previous case but increase the shock
speed in the mixture to Mach 4, with the expectation that the distributions will be
further out of equilibrium than in the previous case. The masses and charges of the
species are the same as in the Mach 1.7 case, but we widen the domain size to 12
microns and modify the initial conditions to construct a Mach 4 shock, again using
the Rankine-Hugoniot relations. Specifically fi = M[ni,ui, Ti,mi] where

n1 = n2 = 3.3488 · 1019 cm−3, u1 = u2 = 5.06 · 107 cm
s
, T1 = T2 = 100 eV,
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for x ≤ 0 and

n1 = n2 = 1.128 · 1020 cm−3, u1 = u2 = 1.50 · 107 cm
s
, T1 = T2 = 586.3 eV.

and for x > 0.
As in the previous case, simulations are run using a velocity grid with 483 nodes

and a spatial mesh with 200 cells. We use the second-order IMEX RK scheme from
Section 3.3.4 and the second-order spatial discretization in Section 3.4, with the
limiter given in (3.71). The time step ∆t = 25 fs is set according to the CFL condition
in (3.74).

In Figure 5.17 we compare numerical results at time t = 6.345 ps using the velocity-
dependent collision frequency ν(v), given in (5.8), with those using the constant
collision frequencies ν̂, given in (5.11). We again observe the evolution towards a
standing shock wave for both the velocity-dependent collision frequency ν(v) and
the constant collision frequency ν̂. As in the Mach 1.7 case above, while we expect a
difference in output profiles between the two models due to the tail particles relaxing
more slowly than the bulk, it is likely that the collision frequencies outside of the
‘kinetic’ region of the shock interface are high enough to suppress large deviations
from equilibrium for this test problem.

The shock wave problems are set up using hydrodynamic theory. Hence, the fluids
are already close to equilibrium suppressing the effects of the velocity-dependent
collision frequencies. The following test cases, in contrast, illustrate that constant
collision frequencies may lose details from the kinetic level which are visible with
velocity-dependent ones.

5.3.6 Interpenetration problem: high density

Standard hydrodynamic models have great difficulty in capturing interpenetrating
flows of rarefied gases. For example in ICF simulations, colliding streams of blown-off
hohlraum wall particles and capsule ablator particles result in an unphysical density
spike due to the lack of interpenetration in hydrodynamic models, which interferes
with laser energy propagation in the integrated simulation. This discrepancy has been
proposed as a cause of symmetry discrepancies in capsule drive between experiments
and simulations in ICF [BHLPD+15].

For this numerical example, we simulate the dynamics of two counter-streaming
beams of different species. We take a domain size of 50 microns (50 · 10−4 cm) and
compute the solution when hydrogen (species 1) interpenetrate with helium (species
2) particles. We include a trace amount of each species in the whole domain as a
background for ease of computation. The masses and charge numbers are (units in
CGS)

m1 = 1.655 · 10−24 g, m2 = 3.308 · 10−24 g, Z1 = 1, Z2 = 2.
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Figure 5.17: The fluid quantities for the Mach 4 shock wave problem from Section 5.3.5 (Mach 4) are presented at
time t = 6.345 ps. The initial Riemann problem forms into a standing shock wave. Top row: velocity-dependent
collision frequencies νij(v), given in (5.8); middle row: constant collision frequencies ν̂ij , given in (5.11); bottom
row: relative differences (see (5.16)). The results for the velocity-dependent collision frequency and the constant
collision frequency ν̂ij look very similar at first glance. However, the relative differences clarify the disparities. They
differ up to 4 %.

The initial conditions are fi = M[ni,ui, Ti,mi] with

n1 = 1020 cm−3, n2 = 1017 cm−3, u1 = u2 = 2.2 · 106 cm
s
, T1 = T2 = 10 eV

for x ≤ 0 and

n1 = 1017 cm−3, n2 = 1020 cm−3, u1 = u2 = −2.2 · 106 cm
s
, T1 = T2 = 10 eV

for x > 0.
The simulations are run using a velocity grid with 483 nodes and a spatial mesh

with 200 cells. We use the second-order IMEX RK scheme from Section 3.3.4 and the
second-order spatial discretization in Section 3.4, with the limiter given in (3.71).
The time step ∆t = 806 fs is set according to the CFL condition in (3.74).

In Figure 5.18, we compare the numerical results at time t = 120.870 ps using
the velocity-dependent collision frequency ν(v), given in (5.8), with those using the
constant collision frequencies ν̂, given in (5.11). The lighter hydrogen species shows
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Figure 5.18: The fluid quantities for the interpenetration problem from Section 5.3.6 are presented at time t =
120.870 ps. First row: velocity-dependent collision frequencies νij(v), given in (5.8). Second row: constant
collision frequencies ν̂ij , given in (5.11). Third row: relative differences between rows 1 and 2 according to (5.16).
Red line: hydrogen. Blue line: helium. Variations in the collision frequency induce significant differences in the profile
of the hydrogen, which penetrates much further into the right side of the domain when the collision frequency is
velocity-dependent. Due to relatively higher mass and charge state, the helium species undergoes more collisions
and is less sensitive to variations in the collision frequency.

a significant difference in profiles between the two species, and displays much more
penetration into the helium beam. Due to its relatively higher mass and charge state,
the helium species is much more collisional than the hydrogen species, and presents
a more hydrodynamic-like profile.

To highlight the different behavior due to the respective collision frequency, we
provide a direct comparison of the simulations with the velocity-dependent collision
frequency and with the constant collision frequency in Figure 5.19. It is clearly visible
that the hydrogen species behaves significantly different.

5.3.7 Interpenetration problem: low density

We repeat the interpenetration problem from above but reduce the initial densities by
two orders of magnitude, which leads to fewer collisions. We expect to see a greater
interpenetration of the two beams with less of a density spike at the interface point.
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Figure 5.19: Comparison of the fluid quantities for the interpenetration problem from Section 5.3.6 when run with
velocity-dependent collision frequencies νij(v), given in (5.8), and constant collision frequencies ν̂ij , given in
(5.11). The hydrogen species behaves significantly different.

The domain size, masses and charges are the same as before. The initial conditions
are fi = M[ni,ui, Ti,mi] with

n1 = 1018 cm−3, n2 = 1015 cm−3, u1 = u2 = 2.2 · 106 cm
s
, T1 = T2 = 10 eV

for x ≤ 0 and

n1 = 1015 cm−3, n2 = 1018 cm−3, u1 = u2 = −2.2 · 106 cm
s
, T1 = T2 = 10 eV

for x > 0.
As before, the simulations are run using a velocity grid with 483 nodes and a

spatial mesh with 200 cells. We use the second-order IMEX RK scheme from Section
3.3.4 and the second-order spatial discretization in Section 3.4, with the limiter given
in (3.71). The time step ∆t = 806 fs is set according to the CFL condition in (3.74).

In Figure 5.20, we compare the numerical results at time t = 120.870 ps using
the velocity-dependent collision frequency ν(v), given in (5.8), with those using
the constant collision frequencies ν̂, given in (5.11). As expected, we see more
interpenetration than in the high density test case. As in the higher density test
case, we see more significant differences in the lighter species of the mixture; the
hydrogen species penetrates more into the right side of the domain when the collision
frequency is velocity-dependent. Due to relatively higher mass and charge state, the
helium species is more collisional. Furthermore, the density spike at the interface
seen in the high density case has mostly disappeared.

153



5 Numerical Results

−25.0 −12.5 0.0 12.5 25.0

x [µm]

1015

1016

1017

1018

d
en

si
ty

[c
m
−

3 ]

n1, ν(v)

n2, ν(v)

−25.0 −12.5 0.0 12.5 25.0

x [µm]

−4

0

4

8

m
ea

n
ve

lo
ci

ty
[cm s

]

×106

u
(1)
1 , ν(v)

u
(1)
2 , ν(v)

−25.0 −12.5 0.0 12.5 25.0

x [µm]

10

15

20

25

30

te
m

p
er

at
u

re
[e

V
]

T1, ν(v)

T2, ν(v)

−25.0 −12.5 0.0 12.5 25.0

x [µm]

1015

1016

1017

1018

d
en

si
ty

[c
m
−

3 ] n1, ν̂

n2, ν̂

−25.0 −12.5 0.0 12.5 25.0

x [µm]

−4

0

4

8
m

ea
n

ve
lo

ci
ty

[cm s
]

×106

u
(1)
1 , ν̂

u
(1)
2 , ν̂

−25.0 −12.5 0.0 12.5 25.0

x [µm]

10

15

20

25

30

te
m

p
er

at
u

re
[e

V
] T1, ν̂

T2, ν̂

−25.0 −12.5 0.0 12.5 25.0

x [µm]

−0.30

−0.15

0.00

re
l.

d
iff

.
d

en
si

ti
es

r(n1)

r(n2)

−25.0 −12.5 0.0 12.5 25.0

x [µm]

−1.00
−0.75
−0.50
−0.25

0.00
0.25
0.50
0.75
1.00

re
l.

d
iff

.
m

ea
n

ve
l.

r(u
(1)
1 )

r(u
(1)
2 )

−25.0 −12.5 0.0 12.5 25.0

x [µm]

−0.2

−0.1

0.0

0.1

0.2

0.3

re
l.

d
iff

.
te

m
p

er
at

u
re

s

r(T1)

r(T2)

Figure 5.20: The fluid quantities for the lower density interpenetration problem from Section 5.3.7 are presented
at time t = 120.870 ps. First row: velocity-dependent collision frequencies νij(v), given in (5.8). Second row:
constant collision frequencies ν̂ij , given in (5.11);. Third row: relative differences between rows 1 and 2 according
to (5.16). Red line: hydrogen. Blue line: helium. As expected, we see more interpenetration than in the high density
test case. However, the relative sensitivity of hydrogen to the velocity-dependent collision frequency is less dramatic.

To emphasize the different behavior due to the respective collision frequency, we
provide a direct comparison of the simulations with the velocity-dependent collision
frequency and with the constant collision frequency in Figure 5.21.

We have provided several test cases for the model with velocity-dependent collision
frequency from Section 2.2. Now, we study numerical set-ups for the quantum model.

5.4 Numerical results for the quantum multi-species BGK
model

We run simulations for the quantum multi-species BGK model from Section 2.3. We
only focus on space homogeneous tests. In Section 5.4.1, we validate the results by
comparing them with the analytic decay rates (2.142) and (2.145). In Section 5.4.2,
we rerun the test case from Section 5.2.3 and encounter different types of species.

154



5.4 Numerical results for the quantum multi-species BGK model

−25.0 −12.5 0.0 12.5 25.0

x [µm]

1015

1016

1017

1018

d
en

si
ty

[c
m
−

3 ]

n1, ν(v)

n1, ν̂

−25.0 −12.5 0.0 12.5 25.0

x [µm]

−2.5

0.0

2.5

5.0

7.5

m
ea

n
ve

lo
ci

ty
[cm s

]

×106

u
(1)
1 , ν(v)

u
(1)
1 , ν̂

−25.0 −12.5 0.0 12.5 25.0

x [µm]

12

16

20

24

te
m

p
er

at
u

re
[e

V
] T1, ν(v)

T1, ν̂

−25.0 −12.5 0.0 12.5 25.0

x [µm]

1015

1016

1017

1018

d
en

si
ty

[c
m
−

3 ]

n2, ν(v)

n2, ν̂

−25.0 −12.5 0.0 12.5 25.0

x [µm]

−6

−4

−2

0

2
m

ea
n

ve
lo

ci
ty

[cm s
]

×106

u
(1)
2 , ν(v)

u
(1)
2 , ν̂

−25.0 −12.5 0.0 12.5 25.0

x [µm]

10

15

20

25

30

te
m

p
er

at
u

re
[e

V
] T2, ν(v)

T2, ν̂

Figure 5.21: Comparison of the fluid quantities for the interpenetration problem from Section 5.3.7 when run with
velocity-dependent collision frequencies νij(v), given in (5.8), and constant collision frequencies ν̂ij , given in
(5.11). The hydrogen species still behaves different but less dramatic compared to the high density test case.

5.4.1 Quantum decay rates

In this test case, we illustrate the correct behavior of our numerical scheme for
quantum particles. Moreover, we verify the decay rates which are given analytically
in Section 2.3.2.

Initially, we set the distribution functions to Maxwellians fi = M[ni,ui, Ti,mi]
with

m1 = 1.0, n1 = 1.0, u1 = (0.5, 0, 0)⊤, T1 = 1.0,

m2 = 1.5, n2 = 1.2, u2 = (0.1, 0, 0)⊤, T2 = 0.5,

inspired by the test case in Secton 5.2.1. By choosing these initial data, we do not
incorporate further physical details (e.g. for a specific quantum regime), but we want
to illustrate the basic properties of the model and scheme, respectively.

For the simulation, we use a momentum grid with 483 nodes and the first-order
splitting scheme from Section 3.3.1 with the time step ∆t = 0.01.

We run the simulation for any combination of classical particles, fermions and
bosons. In Figure 5.22, we illustrate the evolution of the entropy and the entropy
dissipation exemplary for the interactions of fermions with fermions. Additionally,
we demonstrate the conservation properties in Figure 5.23 where the numerical
oscillations in mass, total momentum and total energy are only of the order 10−14.

In Figure 5.24, we show the behavior of the mean velocities converging exponen-
tially fast to a common value. The numerical decay rate matches the analytical one
(2.142) very well. Since the decay rate is independent of the type of the species, we
only display the rate for the interactions of fermions with fermions.
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Figure 5.25 illustrates the behavior of the temperatures where we distinguish
between the kinetic temperatures Ti and the physical temperatures ϑi, see Remark
2.3.10. In the first column, we observe a gap between the final values of the species’
kinetic temperatures whenever a quantum particle is involved. This is also visible in
the middle column where the decay rate for the kinetic temperatures is illustrated.
Numerical and analytical results coincide very well, and the difference converges to
a constant value for quantum particles. Such behavior of the kinetic temperatures
for quantum particles comes by an additional term for the decay rates (2.145) which
vanishes for classical-classical interactions, see Remark 2.3.23. We compare the
results for the kinetic temperatures with the physical temperatures in the last column.
Even though the kinetic temperatures behave differently for quantum particles, the
physical temperatures converge to a common value in all cases.
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Figure 5.22: Entropy and entropy dissipation for the test case in Section 5.4.1, exemplary for fermion-fermion
interactions. As predicted by the theory, the entropy decays monotonically.
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Figure 5.23: Global conservation properties for the test case in Section 5.4.1. The mass densities of each species,
the total momentum (M ) and total energy (E) have small oscillations of the order of 10−14.
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Figure 5.24: Mean velocities for the test case in Section 5.4.1, exemplary for fermion-fermion interactions as the
convergence is independent of the type of species. The mean velocities converge exponentially fast to a common
value, and the numerical decay rate hits the analytical one very well.

5.4.2 Sulfur-Fluorine-electrons quantum test case

We repeat the test case from Section 5.2.3, but we treat the electrons like fermions;
the ions are kept to be classical particles. Moreover, we use constant collision fre-
quencies νij = 1 because of the underlying model from Section 2.3.2.

The masses and charge numbers of the species are

mS = 32.07u − 11me, mF = 19u − 7me, me = me,

ZS = 11, ZF = 7, Ze = −1

with the atomic mass u = 1.6605 · 10−24 g. Initially, we assume Maxwellian distribu-
tions fi = M[ni,ui, Ti,mi]

nS = 1019 cm−3, nF = 6 · 1019 cm−3, ne = 53 · 1019 cm−3,

uS = uF = ue = 0
cm
s
,

TS = TF = 15 eV, Te = 100 eV.

We use momentum grids with 483 nodes for each species, and we use the second-
order IMEX RK scheme from Section 3.3.4 with time step ∆t = 0.01 fs.

The species are initialized with vanishing mean velocity, and the mean velocities
stay zero. We give the evolution of the temperatures in Figure 5.26. The kinetic
temperatures approach the mixture temperature (2.9), but they do not converge to
a common value which matches the experiences from the previous test case (see
Figure 5.26 (a),(b)). The relaxation process is much faster than in Section 5.2.3.
This is not surprising because the collision frequencies νij = 1 are much larger than
before. Additionally, we observe that the sulfur and fluorine particles relax in a
slightly different way (see Figure 5.26 (c)), whereas they always hit the same values
in the purely classic test case in Section 5.2.3.
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Hence, we see an impact when treating electrons like fermions. This motivates
for future studies.
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Figure 5.25: Temperatures for the test case in Section 5.4.1. First column: kinetic temperatures; there remains
a gap between the final values whenever a quantum particle is involved. Second column: decay rates for kinetic
temperatures in logarithmic scale; numerical and analytical values coincide very well. Third column: comparison
of kinetic and physical temperature in logarithmic scale; the physical temperatures ϑ converge exponentially fast,
whereas the kinetic temperatures T behave differently for quantum particles. 159
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Figure 5.26: Evolution of the kinetic temperatures for the Sulfur-Fluorine-electrons quantum test case in Section
5.4.2 using the constant collision frequencies νij = 1 and treating the electrons like fermions. It seems as if the
kinetic temperatures hit the mixture temperature (2.9) as in the classical test case (a). However, we observe that the
differences in the kinetic temperatures only decay exponentially fast until they stay constant (b). Additionally, the
relaxation process of sulfur particles differs from the relaxation process of fluorine particles (c).
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Chapter 6

Conclusions and Outlook

We have given an introduction into kinetic theory with a focus on BGK-type equations.
A consistent multi-species BGK model with velocity-dependent collision frequency is
described in more detail including a motivation how to define collision frequencies for
Coulomb interactions in plasmas. Furthermore, we consider a quantum multi-species
BGK model and provide analytical decay rates for the mean velocities and kinetic
temperatures.

We have developed a numerical scheme which can be applied to both of the above
models. As the target functions depend only implicitly on the distribution functions,
a new approach for the implication of the target functions is required. We provide
a general implicit solver which determines the target functions via a convex min-
imization problem. This procedure mimics the dual of the minimization problem
which defines the theoretical model and also guarantees the conservation of mass,
total momentum and total energy at the discrete level during the relaxation process.
Using a standard FV method ensures the conservation properties during the transport
process. The conservation properties at the discrete level are proven analytically. The
positivity of distribution functions holds rigorously coupled to a possible time step
restriction. We prove that a discrete entropy dissipation property is fulfilled for a
first-order scheme. Second-order schemes are used for improved accuracy.

We have performed several numerical tests in order to illustrate the properties of the
BGK models and our numerical scheme. At first, we run test cases for a multi-species
BGK model with constant collision frequency comparing the results with analytical
values or simulations from the literature. The results are in good agreement.

The main part is given by several tests for the multi-species BGK model with
velocity-dependent collision frequencies where we use collision frequencies that
are suitable for plasmas and characterized by a slower relaxation in the tails of
the distribution functions. We compare the results with simulations using velocity-
independent collision frequencies of comparable size. For space homogeneous set-
ups, we illustrate that the velocity-dependent collision frequencies induce a slower
relaxation to equilibrium in the tails of the kinetic distributions; additionally, the
convergence of the mean velocities and temperatures is slower and different in form
than for constant collision frequencies. We examine several Riemann problems. The
standard Sod shock tube problem is performed: the general fluid shock structure
is recovered, however kinetic effects are better observable for velocity-dependent
collision frequencies. Moreover, we run variations to the Sod problem involving
mixtures. The profiles for the Mach shock wave problems show close agreement
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between simulations using velocity-dependent and velocity-independent collision
frequencies. Nevertheless, for the interpenetration problem the effect of velocity-
dependent collision frequencies on the lighter species (in mass and charge state) are
meaningful.

Furthermore, we illustrate the evolution of mean velocities and temperatures in
a space homogeneous setting when quantum particles are involved. The behavior
of the mean velocities is unaffected, and they converge exponentially fast to a com-
mon value like in the classical case — in contrast to the temperatures. We need to
distinguish between kinetic and physical temperatures. While the physical ones do
converge to a common value, the kinetic ones behave differently resulting in a gap
between the species’ kinetic temperatures in equilibrium. The different behavior of a
relaxation process of purely classical particles compared to a relaxation process of
classical particles and fermions inspires to further studies.

The BGK approximation of the Boltzmann operator is appreciated among other
things for the ability of efficient simulations. However, extending the models by
allowing for velocity-dependent collision frequencies or including quantum effects
is not without additional costs. For our proposed scheme, the implication of the
interaction operator is realized by a minimization problem which requires a Newton
solver. For the gradient and Hessian of the potential function, integrals in velocity
space need to be calculated via a quadrature. A more efficient implementation of the
optimization algorithm [SBT17, AHOT14, AHT12, KHH15, Abr07] including a more
advanced handling of the velocity grid and quadrature rules is necessary in order to
accelerate the solution procedure. Even though the extensions go with additional
numerical costs, the models still profit from better scaling properties than the original
Boltzmann equations. We confirm this statement in the following. For evaluating the
Boltzmann collision operator, the fastest algorithms are spectral methods whose com-
plexity for general collision kernels scale like O(MN4 logN). This can be reduced
to O(MN3 logN) for specialized kernels [GHHH17, GT09, PR00, MP06]. Here, N
is the number of points in each dimension of the velocity grid, and M is the number
of quadrature points for the approximation of the integrals over the unit sphere S2 in
R3. The size of M is problem dependent, but typically it is N ≤ M ≪ N2 [MP06].
In comparison, the number of operations needed for evaluating the BGK operator in
our scheme scales like O(N3). Thus, our presented method is more expensive than
for standard BGK models but still of lower computational complexity than for the
Boltzmann operator. Moreover, grid resolution for multi-species Boltzmann collision
operators introduce expensive requirements for problems with significant differences
in species masses [MTH+14]. Whereas we keep the advantage of BGK models that
the equations can be discretized on separate velocity grids.

Another possible feature of BGK models is the AP property. In this thesis, we have
not examined this attribute, but it would be worthwhile for future works, also in
context of the efficiency.

The idea of the implicit solver is not limited to a specific order of the underlying
scheme nor to a specific discretization technique in time. Hence, the use of high-
order schemes in time is straight-forward. The extension to higher order in space is
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more difficult because the relaxation operator also needs to undergo a high-order
reconstruction. Alternatively, one might use an SL approach.

The enlarged class of possible collision frequencies as well as including quantum
effects are physically motivated. Both extensions represent attractive options for
exploring more phenomena in the kinetic regime. Especially the quantum model asks
for further tests with more elaborated initial data and in more general settings (e.g.
shock waves).

Additionally, the models can be improved. A plasma consists of charged particles
which required to include a force term with an electric (and magnetic) field. The
associated transport in velocity space can be easily incorporated in the presented nu-
merical method. We have started a short excursion in Appendix A. We provide initial
tests where we simulate the phenomenon of Landau damping and consider Landau
damping coupled with relaxation. The numerical results match our expectations and
form a basis for further simulations. For future studies, it would be interesting to
study different species (in charge and mass) in more general set-ups and to use more
advanced methods for the transport terms.
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Appendices

A On damping of the electric field

In our scheme, we have not considered possible force terms, yet. Especially for
charged particles, this is a severe simplification. When a force term is encountered,
an advection in velocity space takes place. This is described by the additional term

Fi

mi
· ∇vfi

on the LHS of the kinetic equation, see Sections 2.1.1 and 2.1.2.

We now include a force term by the coupling to a self-consistent electric field which
has been described in Section 2.1.2. For simplicity, we only consider classical particles.
We implement a simplified version of the Lorentz force (2.17), i.e.

Fi = ZieE

where Zi denotes the charge state of species i, e the elementary charge and E the
(self-consistent) electric field. In our one-dimensional setting in space, the governing
equations for the electric field1 reduce to (2.24), i.e.

∂xE(x, t) =
q(x, t)

ε0
(6.1)

with the charge density q =
∑

i Zieni and the vacuum permittivity ε0. We assume
periodic boundary conditions and the zero-mean electrostatic condition∫

E dx = 0. (6.2)

Since the force F (x, t) acts only in the x-direction, the advection occurs only in the
first component of v: v(1). For ease in notation, we write v = v(1).

The system of PDEs (3.29) is extended to

∂tf1 + T (f1) = R1(f1, f2)

∂tf2 + T (f2) = R2(f2, f1)
(6.3)

with the transport operator

T (fi) = v ∂xfi +
Fi

mi
∂vfi

1 In this section, E stands for the electric energy which is not the energy density of a species.
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and the relaxation operator

Ri(fi, fj) = νii(Aii − fi) + νij(Aij − fi).

The system (6.3) coupled to (6.1) is also called Vlasov-Poisson-BGK equations. For
references concerning numerics, see e.g. [HHM17b, Ful21]. We apply the discretiza-
tion techniques which have been presented in Sections 3.2–3.5. The remnant parts
which come by the force term are discussed in the following.

A.1 Numerical fluxes

We discretize the force term by a FV method. We interpret the values at the discrete-
velocity grid as cell-averaged quantities, which is second-order accurate. The advec-
tion in v is discretized by numerical fluxes. Applying the same approach used for the
advection in x to the advection in v, we obtain

Fi

mi
∂vf ≈ 1

∆vi

(
Fi,q1+

1
2
− Fi,q1− 1

2

)
where

Fi,q1+
1
2
(g) =

Fi

2mi
(gq1+1 + gq1)−

|Fi|
2mi

(
gq1+1 − gq1 − ϕq1+ 1

2
(g)
)

and the flux limiter ϕ is given in (3.71).

A simple Forward Euler update (3.2) of

∂tf +
Fi

mi
∂vf = 0

reads

f ℓ+1
i,q1

= f ℓi,q1 −
∆t

∆vi

(
Fi,q1+

1
2
(f ℓi )− Fi,q1− 1

2
(f ℓi )

)
. (6.4)

The positivity of fi is guaranteed in (6.4) by enforcing the CFL condition

∆t < αmin
i

{
mi∆vi

maxx |Fi|

}
(6.5)

with α = 1 for the first-order flux and α = 2
3 for the second-order flux. Hence, the

force Fi also influences the stability criterion of the scheme.
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A.2 Determination of the force

In order to determine the forces Fi, we need to solve (6.1) for the electric field. We
approximate the electric field by Eℓ

k ≈ E(xk, tℓ). A second-order discretization for
(6.1) is given by

E∗
k+1 − E∗

k

∆x
=
qℓk+1 + qℓk

2ε0
for k = 0, ...,K − 1,

E∗
0 − E∗

K

∆x
=
ρn0 + ρnK

2ε0

(6.6)

which is calculated by a linear solver. In order to guarantee the zero-mean electro-
static condition (6.2), the electric field at time step t = tℓ is determined by

Eℓ
k = E∗

k − 1

K + 1

∫
E∗ dx. (6.7)

Finally, the force reads

F ℓ
i,k = ZieE

ℓ
k. (6.8)

Having determined the force, we take a closer look to the time step restrictions of the
entire scheme.

A.3 Time step restrictions

In order to guarantee stability and positivity, the advection in both, space and velocity,
introduce restrictions for the size of the time step resulting in a CFL condition. The
Courant number C needs to be chosen such that

0 < C ≤ α

where α = 1 for the first-order numerical fluxes and α = 2
3 for the second-order

numerical fluxes. In terms of positivity, the contributions with negative sign of the
advection in veloctiy are to be added to the contributions with negative sign of the
advection in space. Hence, considering only the convection parts, the time step size
∆t for the update tℓ → tℓ+1 is chosen to be

∆t = ∆tℓ = C min
q1,i,k

 1

|v(1)
q1

|
∆x +

|F ℓ
i,k|

mi∆vi

 = C min
q1,i,k

 ∆x∆vi

∆vi|v(1)q1 |+∆x
|F ℓ

i,k|
mi

 . (6.9)

Since the forces may change between the stages of the second-order schemes, but ∆t
is set during an entire time step, we make the assumption that the Courant number
C comprises such changes.

Additionally, we we need to take care of the time step restrictions due to the
positivity preservation during relaxation steps which is already described in Section
4.3.

Now, we are ready for numerical simulations.
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A.4 Numerical tests

We perform initial numerical tests in order to illustrate the damping of a self-consistent
electric field. In Section A.4.1, we start with the well-known Landau damping. In
Section A.4.2, we study the behavior of the electric field when an additional relaxation
process occurs.

A.4.1 Landau damping

We have introduced the phenomenon of Landau damping in Section 2.1.2. It describes
the damping of the self-consistent electric field for the (linearized) Vlasov-Poisson
system. More precisely, the electric energy

||E(x, t)||L2
=

√∫
E(x, t)2 dx (6.10)

decreases in time being converted to kinetic energy.
Ions are considered as a neutralizing background density n0 = 1. We simulate

electrons and the self-consistent electric field in a spatial domain L = [0, 4π] with
periodic boundary conditions. The distribution function of electrons follows the
Vlasov equation representing the advection in phase space. Initially, we consider a
slightly disturbed Maxwellian

fe(x,v, t = 0) = (1 + 0.01 cos(0.5x))M[ne,ue, Te,me]

with

ne = 1, ue = 0, Te = 1, me = 1,

mimicking a linearized system for our fully implemented equations. The charge
number is Ze = −1.

The simulation is run using a velocity grid with 243 nodes and a spatial mesh
with 32 cells. We use the second-order IMEX RK scheme from Section 3.3.4 and the
second-order spatial discretization in Section 3.4 with the limiter given in (3.71).
The transport in v is discretized according to Sections A.1 and A.2. The time step is
set to ∆t = 0.03 which fulfils the CFL condition (6.9).

In Figure A.1, we provide the numerical result. The electric energy decays exponen-
tially with the typical oscillations. The theory predicts a damping rate γ = 0.153
[FSB01] which is recovered by our simulation. The oscillations need to be studied in
more detail. We suspect that the dissipative fluxes may lead to the shrinking of the
amplitude of the oscillations. This needs to be verified in further tests.

Moreover, we observe a phenomenon which is known as Poincaré recurrence. This
is a numerical phenomenon occuring for a periodic problem in space run on a uniform
velocity grid [Son19]. To explain this incident, we consider the one-dimensional free
streaming equation

∂tf + v ∂xf = 0.

168



A On damping of the electric field

For a periodic problem in x with period L, we represent f by a Fourier series. The
mode k of f obeys

∂tfk − 2πik

L
vfk = 0

with the solution fk(x, t) = e
2πik
L vtfk(x, 0). As the velocities are discretized by

v = q∆v, we conclude that fk is periodic in t with period T = L
k∆v . In our set-up, we

have L = 4π and ∆v = 0.5. As the first mode dominates, the numerical result hits
this recurrence time reasonably. By reducing ∆v, the recurrence time gets larger and
will not affect numerical results.

0 5 10 15 20 25

t

10−3

10−2

||E(x, t)||L2

exp(−0.153 t)

Figure A.1: Time evolution of the electric energy (6.10) for the Landau damping in Section A.4.1. The decay rate
coincides with the theoretical prediction (gray line).

This test case only considers one species (electrons), whereas ions are treated via a
background density. We are especially interested in multi-species equations where
interactions are considered by BGK operators. Hence, the following tests handle the
ions by evolving distribution functions.

A.4.2 Landau damping coupled with relaxation

We consider the full system (6.3) for two species where we use different collision
frequencies. We vary the magnitude for

ν̂ij = c · nj
δij + v̂

(6.11)

by having different values of c = 0, 10−1, 10, 102, 103, 104. Moreover, we implement
the velocity-dependent collision frequency

νij(v) = 10 · nj
δij + |v − umix|3

. (6.12)
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The regularization parameter is δij = 0.1 · (∆vij)3 where ∆vij =
1
4

√
Tmix/(2µij and

µij = mimj/(mi +mj). The averaged velocity v̂ can be found in (2.102), respective
(5.10).

We simulate ions (species 1) and electrons (species 2) in a spatial domain L =
[0, 4π] with periodic boundary conditions. The masses and charge numbers are

m1 = m2 = 1 and Z1 = −Z2 = 1.

The initial conditions read

f1(x,v, t = 0) = M[n1,u1, T1,m1],

f2(x,v, t = 0) = (1 + 0.01 cos(0.5x))M[n2,u2, T2,m2]

with

n1 = 1, u1 = (0.5, 0, 0)⊤, T1 = 1,

n2 = 1, u2 = 0, T2 = 5.

The simulations are run using a velocity grid with 483 nodes and 32 equally spaced
cells in x. We use the second-order IMEX RK scheme from Section 3.3.4 with the
limiter given in (3.71). The transport in v is discretized according to Sections A.1
and A.2. The time step ∆t = 0.0221 is set according to the CFL condition (6.9).

In Figures A.2 and A.3, we compare the numerical results for the constant collision fre-
quencies (6.11). The mean velocities and temperatures converge locally the faster the
larger the collision frequencies are. In Figure A.2, we illustrate ||u1(x, t)−u2(x, t)||∞
and ||T1(x, t)− T2(x, t)||∞ as we consider a space inhomogeneous test case. These
global quantities show another behavior when the collision frequencies become large
(c = 103, 104). We observe a damping of the electric field for each case of c, see
Figure A.3. The electric energy does not differ visibly for c = 0 and c = 10−1. A small
but considerable relaxation process (c = 10, 102) accelerates the damping of the
electric field. However, a large value of c = 103, 104 corresponds to a slow decay of
the electric field without oscillations. This phenomenon fits to the theoretical results
in [Bau21] where it is important to assume small collision frequencies in order to
prove the damping of the electric field. It would be worth to study the effect of the
size of the collision frequency in more detail.

In Figures A.4 and A.5, we compare the result for the velocity-dependent collision
frequency (6.12) to the corresponding constant one, (6.11) with c = 10. As we al-
ready realized in previous test cases, the relaxation process of the mean velocities and
temperatures is significantly different when velocity-dependent collision frequencies
(of comparable size) are encountered, see Figure A.4. In Figure A.5, we observe that
also the damping of the electric energy is affected when using velocity-dependent
collision frequencies.

To summarize, the coupling to a self-consistent electric field leads to interesting
phenomena and asks for more numerical tests. The provided simulations serve as a
first sample.
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Figure A.2: Illustration of the time behavior of the mean velocities and temperatures for the test case in Section A.4.2.
The constant collision frequency ν̂ij in (6.11) takes different values for the factor c. The larger c the faster is the local
convergence in every cell. This does not translate one-to-one to the global behavior of ||u1(x, t)− u2(x, t)||∞
and ||T1(x, t)− T2(x, t)||∞.
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Figure A.3: Damping of the electric field for the test case in Section A.4.2. The constant collision frequency ν̂ij
in (6.11) takes different values for the factor c. The curves for c = 0 and c = 10−1 coincide. For small collision
frequencies, the phenomenon of Landau damping is still visible. When the collision frequencies become larger, the
relaxation process predominates resulting in a significantly different decay of the electric energy.
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Figure A.4: Illustration of the time behavior of the mean velocities and temperatures for the test case in Section A.4.2
where we compare between the result for the constant collision frequency ν̂ij in (6.11) using the factor c = 10
and the result for the velocity-dependent collision frequency νij(v) in (6.12). The relaxation process is obviously
different.
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Figure A.5: Damping of the electric field for the test case in Section A.4.2 where we compare between the result
for the constant collision frequency ν̂ij in (6.11) using the factor c = 10 and the result for the velocity-dependent
collision frequency νij(v) in (6.12). The decay of the electric energy shows a significantly different behavior.
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B General implicit solver for 3 species

The presented scheme is based on the general implicit solver in Section 3.3.5. We
shortly illustrate that this method can be extended to more than 2 species in a
straight-forward way. Let us consider 3 species described by distribution functions f1,
f2 and f3. The transport operators act on the individual species such that only the
relaxation process is of interest here.

As in Section 3.3.5, we write the implicit updates of the distribution functions in
a generic steady state form

fi = ciGi + ciγ∆t(νiiAii,τi + νijAij,τi + νikAik,τi) (6.13)

for i, j, k ∈ {1, 2, 3}, each of i, j, k distinct, where Aii,τi , Aij,τi and Aik,τi are the
unique target functions associated to fi,

ci =
1

1 + γ∆t(νii + νij + νik)
, (6.14)

and Gi is a known function. We aim to express Aii,τi , Aij,τi and Aik,τi as functions
of Gi, Gj and Gk so that (6.13) provides an explicit update formula for fi.

We apply the conservation properties to (6.13). An analogous calculation as in
the 2-species case leads to∫

c1 (ν11A11,τ1 + ν12A12,τ1 + ν13A13,τ1)a1 dw

+

∫
c2 (ν21A21,τ2 + ν22A22,τ2 + ν23A23,τ2)a2 dw

+

∫
c3 (ν31A31,τ3 + ν32A32,τ3 + ν33A33,τ3)a3 dw

=

∫
c1 (ν11 + ν12 + ν13)G1a1(w) dw +

∫
c2 (ν21 + ν22 + ν23)G2a2(w) dw

+

∫
c3 (ν31 + ν32 + ν33)G3a3(w) dw,

(6.15)

which provides a set of constraints to determine the target functions from the given
data.

The constraints in (6.15) represent first-order optimality conditions associated to
the minimization of the convex function

φtot(α1,α2,α3,α12,α13,α23)

= φ1(α1) + φ2(α2) + φ3(α3) + φ(α12) + φ(α13) + φ(α23)

with

φi(αi) =

∫
ciνiihτi [Aii,τi ] dw + µii ·αi
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and

φ(αij) =

∫ (
ciνijhτi [Aij,τi ] + cjνjihτj [Aji,τj ]

)
dw + µij ·αij .

This formulation already suggests that the minimization can be decoupled. As in the
2-species case, we have

hτi [Aij,τi ] =
log(1− τiAij,τi)

τi
=


−Aij,τi for τi = 0,

log(1−Aij,1) for τi = +1,

− log(1 +Aij,−1) for τi = −1.

Moreover, αi = (α
(0)
i ,α

(1)
i , α

(2)
i )⊤;

µii =

µ
(0)
ii

µ
(1)
ii

µ
(2)
ii

 =

∫
ciνiiGiai(w) dw

for i = 1, 2, 3; for i ̸= j : αij = (α
(0)
ij , α

(0)
ji ,α

(1)
ij , α

(2)
ij )⊤; and

µij =


µ
(0)
ij

µ
(0)
ji

µ
(1)
ij

µ
(2)
ij

 =

∫ 

a
(0)
i (w)
0

a
(1)
i (w)

a
(2)
i (w)

 ciνijGi +


0

a
(0)
j (w)

a
(1)
j (w)

a
(2)
j (w)

 cjνjiGj

 dw.
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C Pseudo codes

The main code has a simple structure, see Algorithm 1. The update of the distribution
functions depends on the chosen time and space discretization. In Algorithms 2–5,
we give the pseudo codes for the first-order splitting scheme, the first-order IMEX RK
scheme, the Strang splitting and the second-order IMEX RK scheme. In Algorithm 6,
we provide the pseudo code for the transport step needed for the splitting schemes.
The code’s core is represented by the relaxation process, see Algorithm 7. We con-
clude with Algorithm 8 where the update of the force according to a self-consistent
electric field is described.

Algorithm 1 The structure of the main code.

1: set initial and boundary conditions
2: create grids (see Sections 3.4 and 3.5)
3: initialize distribution functions
4: determine initial target functions (see Remark 3.3.2)
5: if force active then
6: determine initial force (see Algorithm 8)
7: end if
8: set time step according to CFL condition (see Sections 4.3 and A.3)
9: for iterations do

10: if force active or positivity violated then
11: calculate new time step size (see Sections 4.3 and A.3)
12: end if
13: update distribution functions (Algorithms 2–5)
14: end for

Algorithm 2 Update of distribution functions according to first-order splitting (Section
3.3.1): The scheme consists of a first-order relaxation step, followed by a first-order
transport step.

1: first-order relaxation step (Algorithm 7)
2: first-order transport step (Algorithm 6)
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Algorithm 3 Update of distribution functions according to first-order IMEX RK
(Section 3.3.2): The numerical fluxes are needed in order to compute the input data
for the first-order relaxation step.

1: if force active then
2: update force (see Algorithm 8)
3: end if
4: calculate first-order numerical fluxes (see Sections 3.4.1 and A.1)
5: first-order relaxation step (Algorithm 7)

Algorithm 4 Update of distribution functions according to Strang splitting (Section
3.3.3): The update starts and ends with a second-order transport step. In between,
the target functions need to be updated because they are needed for the input data
of the relaxation step.

1: second-order transport step with ∆t
2 (Algorithm 6)

2: update target functions (see Remark 3.3.2)
3: second-order relaxation step with ∆t (Algorithm 7)
4: second-order transport step with ∆t

2 (Algorithm 6)

Algorithm 5 Update of distribution functions according to second-order IMEX RK
(Section 3.3.4): Both stages begin with the numerical fluxes in order to compute the
input data for the second-order relaxation step.

1: for stages 1 and 2 do
2: if force active then
3: update force (see Algorithm 8)
4: end if
5: calculate second-order numerical fluxes (see Sections 3.4.1 and A.1)
6: second-order relaxation step (Algorithm 7)
7: end for
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Algorithm 6 The transport step (Section 3.4) follows either the Forward Euler method
(3.2) or Heun’s method (3.4).

1: for stages do
2: if force active then
3: update force (see Algorithm 8)
4: end if
5: calculate numerical fluxes (see Sections 3.4.1 and A.1)
6: update distribution functions e.g. by a combination of (3.73) and (6.4)
7: end for

Algorithm 7 The structure of the relaxation step (Section 3.3.5) is illustrated. The
input data possibly takes numerical fluxes and target functions evaluated at previous
steps/stages into account. This depends on the chosen time and space discretization.
Afterwards, varying collision frequencies are updated. Due to Assumption 2.2.11,
the collision frequencies remain untouched by the relaxation process which guar-
antees the conservation properties at the discrete level. The potential functions are
minimized by a Newton algorithm which requires the evaluation of gradients and
Hessians. This procedure yields the values of the target functions at the next time
step, followed by the update of the distribution functions. Eventually, the positivity
of the distribution functions is checked (for the second-order schemes).

1: calculate input data (3.56) and (3.57) (dependent on time discretization)
2: update collision frequencies (see Sections 2.2.3 and 3.3)
3: minimize potential functions (3.58) and (3.59) by Newton’s method which deter-

mines new values of target functions
4: update distribution functions by (3.50)
5: check positivity (see Section 4.2)

Algorithm 8 The force is determined according to Section A.2. The crucial step is to
solve a system of linear equations which determines the self-consistent electric field.

1: calculate charge density
2: calculate electric field by solving (6.6) via a linear solver
3: enforce zero-mean electrostatic condition by (6.7)
4: calculate force by (6.8)
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D Units

In the presented models, we do not emphasize the use of units which is often done in
mathematics. However, for physical reasons units should not be disregarded.

One option to avoid unit mess is to use dimensionless equations. Once these are
derived, no more attention for units is needed. Additionally, one only has to deal
with mass ratios, not with individual, possibly very small masses.

In this thesis, we have not considered dimensionless equations, but we made use
of a normalization, see Remark 5.2.1. We further mention a few things regarding
units for our equations.

D.1 CGS system

There exist several unit systems. In plasma and astrophysics, people mainly use the
CGS system. The basic units are

• [s] = cm for path length,

• [m] = g for mass,

• [t] = s for time,

which explains the system’s name. Additionally, the system is augmented by electro-
static units. The base energy unit is

• [E] = erg = g· cm2

s2 .

Nevertheless, termperatures are usually expressed in another energy unit:

• [T ] = eV.

This means that a conversion between the temperature and the base energy unit
is required (similar to the SI unit system) which is often denoted by a Boltzmann
constant kB , i.e.

3n kB︸︷︷︸
erg/eV

T︸︷︷︸
eV

=

∫
m|v − u|2︸ ︷︷ ︸

erg

f(v) dv. (6.16)

Accordingly, the typical variables in kinetic simulations have the following units:

• number density: [n] = 1/ cm3,

• velocity: [v] = cm/ s,

• temperature: [T ] = eV = 1.60218× 10−12 g cm2

s2 .

More information including constants in CGS units can be found in Appendix E.
For instance, the vacuum permitivity reads ε0 = 1/4π. This simple representation
illustrates why the CGS system is useful. When the CGS system is used in the
literature, 4πε0 is often set to 1 already in the formulas.
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D.2 Units in the quantum case

The formulae in Section 2.3 suggest [f ] = 1. Though, the distribution function is a
density in phase space; accordingly, we require

[f ] =
1

[x][p]
.

Replacing

f 7→ f

h3
· m

3

β

in all formulae corrects this issue. Here, m is the mass, h is the Planck constant and
β is the statistical weight of a particle (being the number of independent quantum
states with the same internal energy). We additionally need to replace

τ 7→ h3
β

m3
τ.

For more information, see [CC70, Chapter 17].
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E List of symbols

We provide a collection of used notation and give the CGS unit when possible. Firstly,
we present an overview over used indeces and notation for coordinates.

symbol quantity/description CGS unit index, sub/superscript

number of species i, j ↓
type of species (classic, fermion, boson) τ ↓

component r of vector (r) ↑

coordinates

t time coordinate s

ℓ ↑
∗ (splitting step) ↑

[·] (stage) ↑
x space coordinate cm k ↓

(w =)v velocity coordinate cm
s q ↓

(w =)p momentum coordinate g cm
s q ↓

a vector summarizing 1,w, |w|2

The following table presents the symbols used for operators, distribution functions
and correlated quantities, macroscopic and physical quantities.

symbol quantity/description CGS unit

operators and more

Q interaction operator

R relaxation operator

T transport operator

F numerical fluxes

distribution functions

f distribution function (classic) 1
[x]3[v]3 = 1

cm3
s3

cm3

f distribution function (quantum) 1
[x]3[p]3 = 1

cm3
s3

g3 cm3

180



E List of symbols

A target function/attractor

M Maxwell distribution function 1
[x]3[v]3 = 1

cm3
s3

cm3

G classical target function for ν(v) 1
[x]3[v]3 = 1

cm3
s3

cm3

E quantum target function 1
[x]3[p]3 = 1

cm3
s3

g3 cm3

F Fermi-Dirac distribution function 1
[x]3[p]3 = 1

cm3
s3

g3 cm3

B Bose-Einstein distribution function 1
[x]3[p]3 = 1

cm3
s3

g3 cm3

λ Lagrange multiplier; parameter in A
µ given input data ([ρ], [nu], [E])⊤

macroscopic quantities

ρ mass density [m]
[x]3 = g

cm3

n number density 1
[x]3 = 1

cm3

u mean velocity [v] = cm
s

T (kinetic) temperature eV

ϑ (physical) temperature eV

E(e) (internal) energy density [m][v]2

[x]3 = g cm2

s2
1

cm3

Q energy flux

P pressure tensor g
cm s

p pressure g
cm s

q electric charge density
√

eV cm
cm3

j electric current
√

eV cm cm
cm3 s

H entropy density

h integrand for entropy density

D entropy dissipation

φ potential function

H ‘discrete’ entropy density in scheme

h integrand for ‘discrete’ entropy density
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physical quantities

m mass g

µ reduced mass g

ν collision frequency 1
s

E electric field 10−2 Volt
cm

B magnetic field 103 g
s2Ampère

F force g cm
s2

log Λ Coulomb logarithm 1

λD Debye length/screening length cm

λdB deBroglie wave length cm

b90 distance of closest approach cm

Z charge number 1

Kn Knudsen number 1

Pr Prandtl number 1

We conclude with a summary of some physical constants.

symbol quantity/description value of constant CGS unit

physical constants

e2 square of elementary charge 1.44 · 10−7 eV cm

kB Boltzmann constant 1.60218 · 10−12 erg
eV

h Planck constant 4.135667696 · 10−15 [p][x] = eV s

ε0 vacuum permittivity 1
4π 1

c speed of light in vacuum 2.99792458 · 1010 cm
s

µ0 vacuum permeability 1
ε0c2

s2

cm2
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F Glossary of abbreviations

cm- g- s (CGS) unit system. 3, 57, 136, 141, 147, 150, 178, 180

AP asymptotic-preserving. 19, 88, 89, 99, 162

BBGKY Bogoliubov–Born–Green–Kirkwood–Yvon. 11–13

BGK Bhatnagar–Gross–Krook. ix, 2, 5, 17, 24, 32–36, 38, 41–43, 45, 46, 54–56, 66,
67, 71, 73, 79, 81, 86, 89, 90, 94, 99–102, 114, 115, 119, 131, 139, 147, 154,
161, 162, 166, 169

CFL Courant-Friedrichs-Lewy. 86, 100, 102, 113, 117–120, 122, 123, 128, 132, 147,
148, 150, 151, 153, 166, 168, 170

DIRK diagonally implicit Runge-Kutta. 82, 88

ES-BGK ellipsoidal statistical BGK. 35

FD finite difference. 90

FEM finite element. 90, 92

FV finite volume. 90, 92, 99, 102, 113, 124, 147, 161, 166

GSA globally stiffly accurate. 88, 108

ICF inertial confinement fusion. 2, 150

IMEX implicit-explicit. ix, 86–90, 101, 105, 106, 108, 117, 119, 120, 132, 133,
135–137, 143, 147, 148, 150, 151, 153, 157, 168, 170, 175

ITER International Thermonuclear Experimental Reactor. 2

JET Joint European Torus. 2

KPP Klingenberg-Pirner-Puppo. 36, 42, 43, 79, 100, 134

LHS left-hand side. 12, 13, 20, 21, 41, 74, 165

ODE ordinary differential equation. 81, 83, 86, 89, 91

PDE partial differential equation. 1, 22, 24, 83, 87, 89, 92, 102, 106, 165
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Many applications require reliable numerical 
simulations of realistic set-ups e. g. plasma 
physics. 

This book gives a short introduction into 
kinetic models of gas mixtures describing 
the time evolution of rarefied gases and 
plasmas. Recently developed models are 
presented which extend existing literature  
by including more physical phenomena. 

We develop a numerical scheme for these 
more elaborated equations. The scheme is 
proven to maintain the physical properties 
of the models at the discrete level. We show 
several numerical test cases inspired by 
physical experiments.
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