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Abstract
This paper is devoted to a theoretical and numerical investigation of Nash equilibria and
Nash bargaining problems governed by bilinear (input-affine) differential models. These
systems with a bilinear state-control structure arise in many applications in, e.g., biology,
economics, physics, where competition between different species, agents, and forces needs
to be modelled. For this purpose, the concept of Nash equilibria (NE) appears appropriate,
and the building blocks of the resulting differential Nash games are different control func-
tions associated with different players that pursue different non-cooperative objectives. In
this framework, existence of Nash equilibria is proved and computed with a semi-smooth
Newton scheme combined with a relaxation method. Further, a related Nash bargaining (NB)
problem is discussed. This aims at determining an improvement of all players’ objectiveswith
respect to the Nash equilibria. Results of numerical experiments successfully demonstrate
the effectiveness of the proposed NE and NB computational framework.
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1 Introduction

This paper is devoted to a theoretical and numerical investigation of a class of differential
(dynamical) Nash games and related Nash bargaining problems governed by differential
models with bilinear state-control (input-affine) structures.

Since their appearance [24,25], Nash games have attracted the attention of many scientists
as they provide a convenient mathematical framework to investigate problems of competition
and cooperation. A competition game can be interpreted as a coupled optimization prob-
lem for which the Nash equilibrium (NE) defines the solution concept. In this framework,
non-cooperative differential Nash games were introduced in [18]. In this case, differential
(dynamical) models govern the state of the system that is subject to the action of different
controls representing the strategies of the players in the game, and to each player is associated
an objective (pay-off) functional. Differential games have receivedmuch attention in the field
of economics andmarketing [11,19], and arewell investigated in the case of linear differential
models with linear control mechanism and quadratic objectives; see, e.g., [5,13,15,28]. On
the other hand, much less is known in the case of nonlinear models, especially in the case
of a nonlinear control structure and, in particular, in the case of a bilinear structure, where a
function of the state variablemultiplies the controls. For a past review of works on differential
Nash games, we refer to [27], and for more recent and detailed discussion and references see
[13,16,19]. We also remark that nonlinear differential NE games have been investigated in
the framework of Young measures; see, e.g., [3,27]. However, the numerical implementation
of the latter framework is at its infancy and requires further development that is beyond the
scope of our present work.

In the general framework of differential Nash games, we focus on a bilinear control
structure andwe remark that bilinear control problems play a central role inmany applications
[26]. In particular, they are omnipresent in thefield of quantumcontrol problems [4].However,
the additional theoretical and numerical difficulties due to the bilinear structure hinder the
further application of the NE framework to many envisioned problems. Furthermore, Nash
games are strictly related to multi-objective optimization with nonlinear control structure,
and therefore we believe that a study of NE bilinear game problems would be beneficial for
further development and application of the differential NE framework and related fields. This
is in particular true for new problems involving quantum systems [17] and biological systems
[6], and for this reason, we show results with two related models that can both be put in the
following general bilinear structure

ẋ = f 0(x) + F(x)u, x(0) = x0, (1)

where x(t) ∈ R
n represents the n-dimensional state of the system at the time t , x0 is the

initial condition and u = (u1, . . . , uN ) represents the vector control function. The function
f 0 governs the free dynamics of the system, and the function F denotes the interaction
coupling between the control and the system.

Wepresent a theoretical and numerical investigation ofNash games governed by (1),where
the control components u j , j = 1, . . . , N , represent N players, choosing their strategy in
an admissible set, and to each player we associate a different cost functional such that a
non-cooperative problem is defined. Thus, our first purpose is to prove existence of a NE in
this framework, and for this purpose we consider the theoretical framework in [28], which
we extend to our nonlinear case. The result is that a NE exists if a sufficiently short time
horizon is considered, T < T0. Moreover, we provide an estimate of T0.

With this knowledge, we turn our attention to the numerical realisation of the NE solution.
For this purpose, we implement and analyse a relaxation scheme [20] combined with a
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semi-smooth Newton method [7–9], where the latter choice is motivated by the presence of
constraints on the players’ actions that make our game problem non-smooth.

The second aim of our work is to address the fact that a Nash equilibrium does not provide
an efficient solution with respect to the payoffs that the players could achieve by agreeing to
cooperate negotiating the surplus of payoff that they can jointly generate. For this purpose, J.
F. Nash proposed in [23] a bargaining strategy of jointly improving efficiency while keeping
close to the strategy of a NE point. The idea is to find a point that is Pareto optimal and
symmetric (the labelling of the players should not matter) that maximizes the surplus of
payoff for both players. In this way, we obtain controls that represent an improvement toward
the task of approaching the desired targets while keeping their costs as small as possible.

In order to implement this goal,we use theNash characterization of a bargaining solution to
construct an efficientmethod to explore thePareto frontier and converge to the solution sought.
For this purpose, we compute a Pareto point based on its characterization as a solution of a
bilinear optimal control problem foru and a cost functional resulting fromacompositionof the
players’ objectives. Further, we consider the framework in [12], see also [13], to reformulate
the characterization of a Nash bargaining (NB) solution and use this characterization to
construct an iterative scheme that converges to this solution on the Pareto frontier.

In the following section, we formulate a class of bilinear optimal control problems as the
starting point for the formulation of our differential Nash game. Correspondingly, we define
theNE concept and the relatedNB solution. In Sect. 3, we prove existence ofNE for our game.
For this purpose, preparatory results are presented addressing the Fréchet differentiability
of our differential model and other functional properties of the components of the dynamic
Nash game. In Sect. 4, we illustrate our numerical framework for solving a NE differential
game, which requires to introduce first-order optimality conditions that must be satisfied by
the NE solution and discuss a semi-smooth Newton scheme that is applied to this system in
such a way to obtain partial updates for the game strategies sought. Thereafter, we show how
these updates are combined in a relaxation scheme in order to construct an iterative procedure
that converges to the NE point. The convergence properties of this relaxation scheme are also
discussed. Section 5 is devoted to the analysis of our Nash bargaining problem, where we
prove a characterization of a solution to this problem, and correspondingly define a solution
procedure for its calculation. In Sect. 6, we present results of numerical experiments that
successfully validate our NE differential game framework based on a quantum model of
two spins and on a model of population dynamics with two competing species. A section of
conclusion completes this work.

2 From Bilinear Control to Bilinear Games

In many applications with (1), the aim of the controls u j is to drive the system from an initial
state x(0) = x0 to a neighbourhood of a given target state xT at a given time T . For this
purpose, the following bilinear optimal control problem is formulated

min
x,u

˜J (x, u) := 1

2
‖x(T ) − xT ‖22 + ν

2

N
∑

j=1

‖u j‖2L2

s.t. ẋ = f 0(x) +
N
∑

j=1

u j Fj (x) , t ∈ (0, T ]

x ∈ X , u ∈ U(M), (2)
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where x ∈ X is referred to as the state of the system in the set

X := {y ∈ H1(0, T ;Rn) : y(0) = x0
}

,

where H1 is the usual Sobolev space of the subset of L2 functions such that their first-order
weak derivatives have finite L2 norm; see, e.g., [1]. Further, xT ∈ R

n is a given target
and the functions f 0, Fj : Rn → R

n are assumed to be Lipschitz and two-times Fréchet
differentiable. Whenever necessary, we denote with F(x) ∈ R

n×N the matrix with columns
Fj (x), j = 1, . . . , N . The functions u j : [0, T ] → R, j = 1, . . . , N , represent the controls
belonging to the following admissible sets

U j (M) := {v ∈ L2(0, T ) : |v(t)|2 ≤ M a.e. in (0, T )
}

, (3)

where M ∈ (0,∞] is a given positive constant and N is the number of controls. We denote
U(M) = U1(M) × · · · × UN (M).

Now, turning to the framework of differential games, we can consider each scalar function
u j in (2) as the control strategy of a player that we label with j . In the present setting, all
players have the same purpose: come as close as possible to xT at final time while minimizing
the L2 cost of its action. Within the game strategy, we can now consider different control
objectives associated with different players and thus attempt to drive the bilinear system to
perform different and even competitive tasks.

Assuming that each player has chosen its control strategy, this choice determines a unique
solution x ∈ X of problem (1). We call x(t), t ∈ [0, T ], the trajectory corresponding to the
controls u1, . . . , uN . For the j th player, each choice of controls has a cost, J j (u1, . . . , uN ) :=
˜J j (x(u1, . . . , uN ), u1, . . . , uN ), defined as follows

J j (u1, . . . , uN ) = 1

2
‖x(T ) − x ( j)

T ‖22 + ν

2
‖u j‖2L2 . (4)

We call J j the objective (reduced cost functional) of player j . The J j , j = 1, . . . , N , represent
the objectives of the game.

The purpose of each player is to minimize its own cost functional. However, since the
game is non-cooperative, this criterion does not provide a suitable solution concept. On the
other hand, a Nash equilibrium is an outcome in which every player is performing the optimal
strategy knowing the other players’ choices. Thus, no player can benefit from unilaterally
changing his choice. If each player has chosen a strategy and no player can benefit by changing
strategies while the other players keep theirs unchanged, then the current set of strategy
choices and the corresponding objectives’ values constitute a Nash equilibrium (NE). A NE
is defined as follows.

Definition 1 Let M ∈ (0,∞] be fixed. The controls ui ∈ Ui (M) are said to form a Nash
equilibrium strategy for the game G = (J1, . . . , JN ; M) if for each i = 1, . . . , N , it holds

Ji (u1, . . . , ui−1, ui , ui+1, . . . , uN ) ≤ Ji (u1, . . . , ui−1, vi , ui+1, . . . , uN ) (5)

for all vi ∈ Ui (M), i = 1, . . . , N .

Whenever necessary, we denote with uNE = (uNE1 , . . . , uNEN ) a NE strategy.
It is well known that the NE solution concept is inefficient in the sense that, in many cases,

the players can jointly generate and share an improvement in their objectives by choosing to
cooperate. This is a so-called bargaining problem and we pursue the Nash bargaining (NB)
solution concept. In particular, the NB solution uNB = (uNB1 , . . . , uNBN ) requires that the
strategies of the players are Pareto optimal and satisfy the following criteria
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uNB = argmax
u∈P

N
∏

i=1

(

Ji (u
NE) − Ji (u)

)

, (6)

where P is a subset of the Pareto frontier such that Ji (uNE) ≥ Ji (u). In this formulation, we
choose uNE as the disagreement outcome, and Ji (uNE), i = 1, . . . , N , are the values of the
objectives of the game if no bargaining takes place (status quo).

Based on (6), the players act in order to maximize the Nash product of the excesses (or
defects) with respect to the solution corresponding to disagreement. Since the NB solution
concept requires Pareto optimality, the NB solution is sought in the Pareto frontier.

In this case, under the assumption that the players cooperate in trying to minimize their
performance, a set of control actions u is sought such that the resulting individual objectives
cannot be improved upon by all players simultaneously. This is a so-called Pareto efficient
solution. In the literature, a way to find Pareto solutions is to solve a parameterized optimal
control problem as follows

min
u∈U(M)

N
∑

i=1

μi Ji (u), (7)

where u = (u1, . . . , uN ), μi ∈ [0, 1] with∑N
i=1 μi = 1.

Notice that in this way not all Pareto solutions can be found; see [14]. Nevertheless,
we assume that uNB can be computed with (7) and corresponding to a specific choice of
μ = (μ1, . . . , μN ).

3 Existence of Nash Equilibria

In this section, after discussing some preliminary results, we prove a theorem stating existence
of a NE strategy for our bilinear-control problem. We closely follow the approach in [28];
see [27] for a review of this approach and the discussion of an alternative method in the
framework of Young measures.

We start this section showing some properties of the solution to (1). Clearly, this solution
depends on the initial condition, and since we focus on open-loop NE games, some of the
constants obtained in the following estimates depend on the initial state of the system denoted
with x0.

Lemma 3.1 For any u ∈ U(M) the solution x of (1) is bounded in [0, T ], i.e. there exists a
constant K such that ‖x(t)‖2 ≤ K ∀t ∈ [0, T ].
Proof It is well known that x : [0, T ] → R

n has the following form

x(t) = x0 +
∫ t

0

[

f 0(x(s)) + F(x(s))u(s)
]

ds. (8)

For any t ∈ [0, T ] one can compute

‖x(t)‖2 ≤ ‖x0‖2 +
∫ t

0
‖ f 0(x(s))‖2 + ‖F(x(s))‖2‖u(s)‖2ds (9)

= ‖x0‖2 +
∫ t

0
‖ f 0(x(s)) − f 0(0) + f 0(0)‖2ds

+
∫ t

0
‖F(x(s)) − F(0) + F(0)‖2‖u(s)‖2ds, (10)
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which then allows us to estimate

‖x(t)‖2 ≤ ‖x0‖2 +
∫ t

0
‖ f 0(0)‖2 + ‖F(0)‖2‖u(s)‖2ds

+
∫ t

0
L f 0‖x(s)‖2 + LF‖x(s)‖2‖u(s)‖2ds

≤ ‖x0‖2 + T ‖ f 0(0)‖2 + ‖F(0)‖2 T
2

+ 1

2
‖F(0)‖2‖u‖2L2

+
∫ t

0

(

L f 0 + LF

2
+ LF

2
‖u(s)‖22

)

‖x(s)‖2ds (11)

where the Lipschitz continuity of f 0 and F is used and L f 0 and LF denote the corresponding
Lipschitz constants. From estimate (11) we obtain

‖x(t)‖2 ≤ αT +
∫ t

0
β(s)‖x(s)‖2ds (12)

where

αT := ‖x0‖2 + T ‖ f 0(0)‖2 + ‖F(0)‖2 T
2

+ 1

2
‖F(0)‖2‖u‖2L2 ,

β(s) :=
(

L f 0 + LF

2
+ LF

2
‖u(s)‖22

)

. (13)

With the Gronwall theorem we get

‖x(t)‖2 ≤ αT exp
(

∫ t

0
β(s)ds

)

≤ αT exp
(

∫ T

0
β(s)ds

)

.

Therefore theLemma is provedwithK(T ) := αT exp
(

∫ T
0 β(s)ds

)

which is amonotonically

increasing function of T . 	

Lemma 3.2 The solution x is a Lipschitz function of u, for all u ∈ U(M), M ∈ (0,∞).

Proof For any u1, u2 ∈ U(M), consider the corresponding state equations given by

ẋ1 = f 0(x1) + F(x1)u1 x1(0) = x0

ẋ2 = f 0(x2) + F(x2)u2 x2(0) = x0.

Then, let z := x1 − x2. We get

ż = ( f 0(x1) − f 0(x2)
)+ F(x1)u1 − F(x2)u2. (14)

Hence,

z(t) =
∫ t

0

[

f 0(x1(s)) − f 0(x2(s)) + F(x1(s))(u1(s) − u2(s))

+[F(x1(s)) − F(x2(s))]u2(s)
]

ds (15)

and

‖z(t)‖2 ≤
∫ t

0

[

‖ f 0(x1(s)) − f 0(x2(s))‖2 + ‖F(x1(s))‖2‖u1(s) − u2(s)‖2

+‖F(x1(s)) − F(x2(s))‖2‖u2(s)‖2
]

ds
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≤
∫ t

0

[

L f 0‖x1(s) − x2(s)‖2 + ‖F(x1(s))‖2‖u1(s) − u2(s)‖2

+ LF‖x1(s) − x2(s)‖2‖u2(s)‖2
]

ds

≤ K (T )

∫ t

0
‖u1(s) − u2(s)‖2ds + (L f 0 + MLF )

∫ t

0
‖z(s)‖2ds,

where K (T )monotonically increaseswith T because of the continuity of F and the properties
of x . Finally, the Cauchy–Schwarz inequality and the Gronwall theorem imply

‖x1(t) − x2(t)‖2 ≤ (L f 0 + MLF )K (T )T 3/2‖u1 − u2‖L2 . (16)

Therefore x is a Lipschitz function in u. 	

Let us consider the linearized problem related to (1) for a general reference pair (x, u).

We have

δẋ =
⎡

⎣

(

f 0
)′

(x) +
N
∑

j=1

(

Fj
)′

(x)u j

⎤

⎦ δx +
N
∑

j=1

Fj (x)δu j in (0, T ]

δx(0) = 0, (17)

where
(

f 0
)′
and
(

Fj
)′ denote the Jacobianmatrices of f 0 and Fj , j = 1, . . . , N , respectively.

Then, the following properties hold.

Lemma 3.3 Let δu ∈ L2(0, T ;RN ) and let δx = δx(δu) be the corresponding unique
solution to (17). Then the following estimate holds

‖δx(t)‖2 ≤ C̃(T )T 3/2N‖δu‖L2 , (18)

in (0, T ).

Proof Consider the linearized problem (17). It holds

‖δx(t)‖2 ≤
∫ t

0

[

‖ ( f 0)′ (x(s)) +
N
∑

j=1

(

Fj
)′

(x(s))u j‖2‖δx(s)‖2

+
N
∑

j=1

‖Fj (x(s))‖2|δu j (s)|
]

ds

≤
∫ t

0

[

K1(T )‖δx(s)‖2 + K2(T )‖u(s)‖2‖δx(s)‖2 + C1‖δu(s)‖2
]

ds.

As in the previous Lemma, applying the Cauchy–Schwarz inequality and the Gronwall the-
orem, we get

‖δx(t)‖2 ≤ C̃(T )T 3/2N ‖δu‖L2 ,

in (0, T ), where C̃(T ) monotonically increases with T . 	

Next, consider the operator c(·, ·) : H1(0, T ;Rn)× L2(0, T ;RN ) → L2(0, T ;Rn)×R

n

defined as follows

c(x, u) :=
( d

dt x − f 0(x) −∑N
j=1 u j Fj (x)

x(0) − x0

)

.
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In this way (1) and (17) can be written respectively as

c(x, u) = 0, Dc(x, u)(δx, δu) = 0,

where (δx, δu) �→ Dc(x, u)(δx, δu) is given by

Dc(x, u)(δx, δu) =
(

d
dt δx −

[

(

f 0
)′

(x) +∑N
j=1

(

Fj
)′

(x)u j

]

δx −∑N
j=1 Fj (x)δu j

δx(0)

)

.

The operator c is Fréchet differentiable and its Fréchet derivative Dxc(x, u) is invertible.
Hence the equation

Dc(x, u)(δx, δu) = Dxc(x, u)(δx) + Duc(x, u)(δu) = 0

and the implicit function theorem (see [10]) imply that Dux(u)(δu) = δx is the solution to
the linearized problem (17).

Moreover, the assumptions on f 0, F , with the implicit function theorem imply that the
control-to-state map u �→ x(u), where x(u) ∈ H1(0, T ;Rn) is the unique solution to
(1) corresponding to u, is twice Fréchet differentiable. Therefore, denoting by δx(u, δu) ∈
H1(0, T ;Rn) the unique solution to (17) corresponding to δu and u, the following expansion
holds

x(u + δu) = x(u) + δx(u, δu) + θ(u, δu) + R(u, δu), (19)

where θ(u, δu) := x ′′(u)(δu, δu) and R(u, δu) = o(‖δu‖2
L2).

For our discussion we need to estimate θ(u, δu). Therefore the following property is
proved.

Lemma 3.4 In the above setting, for any h ∈ L2(0, T ), θ(u, h) ∈ H1(0, T ;Rn) solves the
following problem

θ̇ =
⎡

⎣

(

f 0
)′

(x) +
N
∑

j=1

(

Fj
)′

(x)u j

⎤

⎦ θ

+ (

f 0
)′′

(x)(δx, δx) +
N
∑

j=1

u j
(

Fj
)′′

(x)(δx, δx)

+ 2
N
∑

j=1

h j
(

Fj
)′

(x)δx in (0, T ]

θ(0) = 0, (20)

and

‖θ(t)‖2 ≤ C(T )T 3‖h‖2L2 , a.e. in (0, T ). (21)

Proof Consider the operator c(·, ·) and compute its second derivative. We get

Dc(x(u), u)(h) = Dxc(x(u), u)(x ′(u)(h)) + Duc(x(u), u)(h)

and hence

D2c(x(u), u)(h, h) = Dxxc(x(u), u)(x ′(u)(h), x ′(u)(h)) + Dxuc(x(u), u)(x ′(u)(h), h)

+ Dxc(x(u), u)(x ′′(u)(h, h)) + Duxc(x(u), u)(h, x ′(u)(h))
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+ Duuc(x(u), u)(h, h).

If x(u) is the solution of (1) corresponding to the control u, then c(x(u), u) = 0. Therefore
Dc(x(u), u)(h) = 0 and D2c(x(u), u)(h, h) = 0. Computing term-by-term, we get

Duc(x(u), u)(h, h) = 0, (22)

Dxxc(x(u), u)(δx, δx) = −( f 0)′′(x)(δx, δx) −
N
∑

j=1

u j (Fj )
′′(x)(δx, δx), (23)

Dxuc(x(u), u)(δx, h) = −
N
∑

j=1

h j (Fj )
′(x)(δx), (24)

Dxc(x(u), u)(θ) = θ̇ − ( f 0)′(x)(θ) −
N
∑

j=1

u j (Fj )
′(x)(θ), (25)

Duxc(x(u), u)(h, δx) = −
N
∑

j=1

h j (Fj )
′(x)(δx). (26)

By replacing (22)–(26) into D2c(x(u), u)(h, h) = 0, we get that θ solves (20).
The estimate can be proved similarly to the previous Lemma. In fact, integrating (20) over

(0, t), we get

θ(t) =
∫ t

0

⎡

⎣

(

f 0
)′

(x(s)) +
N
∑

j=1

(

Fj
)′

(x(s))u j (s)

⎤

⎦ θ(s)ds

+
∫ t

0

(

f 0
)′′

(x(s))(δx(s), δx(s)) +
N
∑

j=1

u j (s)
(

Fj
)′′

(x(s))(δx(s)δx(s))ds

+2
∫ t

0

N
∑

j=1

h j (s)
(

Fj
)′

(x(s))δx(s)ds.

Hence,

‖θ(t)‖2 ≤
∫ t

0

[

‖( f 0)′(x(s))‖2 +
N
∑

j=1

|u j (s)| ‖(Fj )
′(x(s))‖2

]

‖θ(s)‖2ds

+
∫ t

0
‖( f 0)′′(x(s))(δx(s), δx(s))‖2

+
N
∑

j=1

|u j (s)|‖(Fj )
′′(x(s))(δx(s), δx(s))‖2ds

+2
∫ t

0

N
∑

j=1

|h j (s)| ‖(Fj )
′(x(s))‖2‖δx(s)‖2ds.

Defining
(

Mi (x)
)

kl := ∂xl (∂xk f
0
i (x)), i, j, k = 1, . . . , n and

(

Ni j (x)
)

kl := ∂xl (∂xk Fi j (x)),
i, k, l = 1, . . . , n j = 1, . . . , N , it follows
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‖θ(s)‖2 ≤ (L f 0 + MLF )

∫ t

0
‖θ(s)‖2ds

+
∫ t

0
max
i

‖Mi (x)‖2‖δx(s)‖22ds + M
∫ t

0

N
∑

j=1

max
i

‖Ni j (x)‖2‖δx(s)‖22ds

+2LF

∫ t

0
‖h(s)‖2‖δx(s)‖2ds.

Using Lemma 3.3,

‖θ(s)‖2 ≤ (L f 0 + MLF )

∫ t

0
‖θ(s)‖2ds

+
∫ t

0

[

max
i

‖Mi (x)‖2 + M
N
∑

j=1

max
i

‖Ni j (x)‖2
]

C2
δx T

3‖h‖2L2ds

+ 2LF

∫ t

0
‖h(s)‖2Cδx T

3/2‖h‖L2ds.

Applying the Gronwall theorem we get

‖θ(t)‖2 ≤ C(T )T 3‖h‖2L2 , (27)

with C(T ) monotonically increasing with T . 	

Next, we introduce some functions used in the proof of the main result.
Define ψ : U(M) × U(M) → R by

ψ((u1, . . . , uN ), (v1, . . . , vN )) :=
N
∑

i=1

Ji (u1, . . . , ui−1, vi , ui+1, . . . , uN ).

Lemma 3.5 The function u∗ = (u∗
1, . . . , u

∗
N ) is an equilibrium strategy for the game G if

and only if

ψ(u∗, u∗) ≤ ψ(u∗, v), (28)

for all v ∈ U(M).

Proof Suppose u∗ = (u∗
1, . . . , u

∗
N ) is an equilibrium strategy and let v = (v1, . . . , vN ) ∈

U(M). Then

Ji (u
∗
1, . . . , u

∗
i−1, u

∗
i , u

∗
i+1, . . . , u

∗
N ) ≤ Ji (u

∗
1, . . . , u

∗
i−1, vi , u

∗
i+1, . . . , u

∗
N ), (29)

for i = 1, . . . , N . Adding these inequalities for i = 1, . . . , N , we obtain (28). Con-
versely, suppose (28) holds. Substitution of v = (u∗

1, . . . , u
∗
i−1, vi , u

∗
i+1, . . . , u

∗
N ) in (28)

gives (29). 	

Let v = (v1, . . . , vN ) ∈ U(M) be fixed. Consider the function σ : U(M) → R defined by

σ(u1, . . . , uN ) :=
N
∑

i=1

{

ν

2
‖ui‖2L2 + 1

2
‖x(T ) − x (i)

T ‖22 − 1

2
‖xi (T ) − x (i)

T ‖22
}

,

where x (i)
T are the desired players’ targets and x(t), xi (t), for t ∈ [0, T ], are the trajectories of

(1) corresponding to the controls u := (u1, . . . , uN ) and ui := (u1, . . . , ui−1, vi , ui+1, . . . ,

uN ), respectively.
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After this preparatory work, we can state the following result, similar to [28] for the linear
case, which focuses to our NE game with bilinear structure.

Lemma 3.6 There exists T0 > 0 such that for all T ∈ [0, T0) it holds that
(i) σ is weakly lower semicontinuous,
(ii) σ is convex,
(iii) σ(u) → ∞ as ‖u‖L2 → ∞.

Proof Since the functions that constitute σ are continuous, then also σ : L2(0, T ;R) ×
C([0, T ];R) → R is a continuous function. Next, we prove that there exist T0 > 0 and
ε0(T0) > 0 such that

D2σ(u)(w,w) ≥ ε0(T0)‖w‖2L2 , (30)

for any 0 < T < T0.
For the proof, let u ∈ U(M), w ∈ L2(0, T ) be fixed and compute the derivatives of σ .

We have

Dσ(u)(w) =
N
∑

i=1

[

ν〈ui , wi 〉 + 〈x(u)(T )

− x (i)
T , x ′(u)(w)(T )〉 − 〈xi (u)(T ) − x (i)

T , (xi )′(u)(w)(T )〉
]

and

D2σ(u)(w,w) =
N
∑

i=1

[

ν〈wi , wi 〉 + 〈x(u)(T ) − x (i)
T , x ′′(u)(w,w)(T )〉

− 〈xi (u)(T ) − x (i)
T , (xi )′′(u)(w,w)(T )〉

+ 〈x ′(u, w)(T ), x ′(u, w)(T )〉 − 〈(xi )′(u, w)(T ), (xi )′(u, w)(T )〉
]

.

Then, we get

D2σ(u)(w,w) =
N
∑

i=1

[

∫ T

0
ν|wi (t)|2dt + 〈x(u)(T ) − x (i)

T , θ(w,w)(T )〉

− 〈xi (u)(T ) − x (i)
T , θ i (w,w)(T )〉

+ ‖δx(u, w)(T )‖22 − ‖δxi (ui , w)(T )‖22
]

,

where δx(u, w) and δxi (ui , w) are the solutions of (17) with controls (u1, . . . , uN ) and
(u1, . . . , ui−1, wi , ui+1, . . . , uN ).

Therefore, we obtain

D2σ(u)(w,w) ≥
N
∑

i=1

[

ν‖wi‖2L2 − k1(T )T 3‖w‖2L2 − k2(T )T 3‖w‖2L2

]

=
[

ν − (k1(T ) + k2(T )
)

NT 3
]

‖w‖2L2 ,

where we used Lemmas 3.3 and 3.4 and k1(T ) := 2(K(T ) + ‖x (i)
T ‖2)C(T ), k2(T ) :=

(C̃(T )N )2.
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The coercivity of σ is then guaranteed if require

ν >
(

k1(T ) + k2(T )
)

NT 3. (31)

Therefore it is possible to choose ε0 and T0 such that (30) holds and σ is convex [29, Corollary
42.8 page 248]. Moreover, since σ is continuous, it is weakly lower semicontinuous. 	


Let v ∈ U(M) be fixed. Define ψv : U(M) → R by

ψv(u) := ψ(u, u) − ψ(u, v).

Also let Uv := {u : ψv(u) > 0}.
Lemma 3.7 There exists a T0 > 0 such that if T < T0 then Uv is weakly open and ψv(u) →
∞ as ‖u‖L2 → ∞.

Proof We have

ψv(u1, . . . , uN ) =
N
∑

i=1

(1

2
‖x(T ) − x (i)

T ‖22 − 1

2
‖xi (T ) − x (i)

T ‖22
)

+
N
∑

i=1

ν

2
‖ui‖2L2 −

N
∑

i=1

ν

2
‖vi‖2L2 .

In this expression, the first sum is continuous and the third sum is constant. By Lemma 3.6
there is a T0 > 0 such that if T < T0 then the first sum plus the second sum is weakly lower
semicontinuous and grows indefinitely as ‖u‖L2 grows indefinitely. Therefore ψv is weakly
lower semicontinuous, so that the complement set of Uv , Uc

v = {u : ψv(u) ≤ 0} is weakly
closed and its complement Uv is weakly open. 	


Next, we prove existence of a NE for our differential game.

Theorem 3.8 Let J1, . . . , JN be cost functions and M ∈ [0,∞]. There is a T0 > 0
such that for any T < T0 there exists at least an equilibrium strategy for the game
G = (J1, . . . , JN ; M).

Proof Suppose the theorem is false. Then, using Lemma 3.5, for each u ∈ U(M), there is
a v ∈ U(M) such that ψv(u) := ψ(u, u) − ψ(u, v) > 0, i.e. u ∈ Uv , where Uv is defined
above. Therefore U(M) has the following weakly open cover

U(M) ⊂ ∪v∈U(M)Uv. (32)

Next, we show that there is a finite subset of vector functions {v1, . . . , v p} of U(M) such
that

U(M) ⊂ ∪p
i=1Uvi . (33)

First suppose M < ∞. Then U(M) is a convex, bounded and closed subset of L2(0, T ;RN )

so that it is weakly compact. Then (32) must have a finite subcover (33).
Now, suppose M = ∞. Let v1 ∈ U(M). Then by Lemma 3.7, ψv1(u) → ∞ as ‖u‖L2 →

∞. Hence, there is M1 < ∞ such that ψv1(u) > 0 whenever ‖u‖L2 > M1. That is, {u :
‖u‖2

L2 > M1} ⊂ Uv1 . Now, since U(M1) is weakly compact, there exist v2, . . . , v p ∈ U(M)

such that U(M1) ⊂ ∪p
i=2Uvi . Thus, we have

U(∞) = U(M1) ∪ {u : ‖u‖2L2 > M1
} ⊂ ∪p

i=1Uvi ,
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so that once again (33) holds. Note that (33) implies that for each u ∈ U(M) there is a
j ∈ {1, . . . , p} such that ψv j (u) > 0.

Now, let V be a convex hull of {v1, . . . , v p}, i.e.,

V =
{ p
∑

i=1

λiv
i : λi ≥ 0,

p
∑

i=1

λi = 1

}

.

Notice that V ⊂ U(M). Define the functions γ j : V → R by

γ j (v) := max(ψv j (v), 0).

Since V is finite-dimensional, the weak and strong topology coincide. Notice that ψv j is
strongly continuous on U(M), hence it is continuous on V , and so γ j is continuous on V .
Finally, since we have seen that ∀v ∈ V there is at least one j ∈ {1, . . . , p} such that
ψv j (v) > 0, then the function

γ :=
p
∑

j=1

γ j

satisfies the condition

γ (v) > 0, ∀v ∈ V .

Now, define the function η : V → V by

η(v) =
p
∑

j=1

γ j (v)

γ (v)
v j .

Then η is continuous and we can apply the Brouwer fixed-point theorem to get the existence
of a point v∗ ∈ V such that η(v∗) = v∗. Suppose γ j (v

∗) > 0, j = 1, . . . , � and γ j (v
∗) = 0,

j > �. Then

γ (v∗) =
�
∑

j=1

γ j (v
∗),

and the fixed-point condition becomes

v∗ =
�
∑

j=1

γ j (v
∗)

γ (v∗)
v j .

Since γ j (v
∗) > 0 is equivalent to ψ(v∗, v∗) > ψ(v∗, v j ) , we have

ψ(v∗, v∗) =
p
∑

j=1

γ j (v
∗)

γ (v∗)
ψ(v∗, v∗) =

�
∑

j=1

γ j (v
∗)

γ (v∗)
ψ(v∗, v∗)

>

�
∑

j=1

γ j (v
∗)

γ (v∗)
ψ(v∗, v j ). (34)

Finally, it is possible to prove the convexity of ψ(v∗, v) in v as in Lemma (3.6), defin-

ing σ(v1, . . . , vN ) := ∑N
i=1

{

ν
2‖vi‖2L2 + 1

2‖xi (T ) − x (i)
T ‖22

}

, under the condition ν ≥
k1(T )NT 3, with k2 defined in Lemma 3.6.
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Hence, if ν ≥ max
{

k1(T )NT 3 + k2(T )NT 3, k1(T )NT 3
}

, then

ψ(v∗, v∗) = ψ

(

v∗,
�
∑

j=1

γ j (v
∗)

γ (v∗)
v j
)

≤
�
∑

j=1

γ j (v
∗)

γ (v∗)
ψ(v∗, v j ),

which is in contrast with (34). Therefore the theorem is proved.

As already remarked at the beginning of this section, our results concern open-loop NE
games. Thus, in particular, the value of the time horizon T0 specified in Theorem 3 may
depend on the choice of the initial condition.

4 A Numerical NE Game Framework

In this section, we illustrate a numerical procedure for solving our differential NE game. For
this purpose, let us consider the case of two players, and suppose that u∗ = (u∗

1, u
∗
2) is a

Nash equilibrium for the game. Then the following holds [5].

1. The control u∗
1 is optimal for Player 1, in the sense that it solves the following optimal

control problem

min
u1
˜J1(x, u1, u

∗
2)

s.t. ẋ = f 0(x) + u1F1(x) + u∗
2F2(x), x(0) = x0, (35)

2. The control u∗
2 is optimal for Player 2, that is, it is a solution of the following optimal

control problem

min
u2
˜J2(x, u

∗
1, u2)

s.t. ẋ = f 0(x) + u∗
1F1(x) + u2F2(x), x(0) = x0. (36)

Therefore u∗ = (u∗
1, u

∗
2) solves simultaneously two optimal control problems whose solu-

tions are characterized by the following optimality system

− ṗ1 =
[ (

(

f 0
)′

(x)
)T +

2
∑

n=1

un
(

(Fn)
′ (x)

)T
]

p1, p1(T ) = −(x(T ) − x (1)
T ),

− ṗ2 =
[ (

(

f 0
)′

(x)
)T +

2
∑

n=1

un
(

(Fn)
′ (x)

)T
]

p2, p2(T ) = −(x(T ) − x (2)
T ),

ẋ = f 0(x) +
2
∑

n=1

unFn(x), x(0) = x0,

un(t) = PUn(M)

(1

ν
〈Fn(x(t)), pn(t)〉

)

, a.e. in [0, T ], n = 1, 2, (37)

where x (n)
T , n = 1, 2, are the final targets to the players and PUn(M) denotes the L2 projector

operator on Un(M); see [9] for all details.
Now, referring to the two optimal control problems above, and as in Lemma 3.4, we can

consider the control-to-state maps u1 �→ x(u1, u∗
2) and u2 �→ x(u∗

1, u2), where x(u1, u2)
is the unique solution to our governing model, with given initial condition x(0) = x0, cor-
responding to given u1, u2. Correspondingly, we can introduce the reduced cost functionals



Dynamic Games and Applications (2021) 11:1–28 15

J1(u1, u2) := ˜J1(x(u1, u2), u1, u2) and J2(u1, u2) := ˜J2(x(u1, u2), u1, u2). Therefore the
solution to (35) can be written as u∗

1 = argminu1 J1(u1, u
∗
2), and the solution to (36) can

be written as u∗
2 = argminu2 J2(u

∗
1, u2). In this framework, a classical iterative method for

solving our NE problem is the relaxation scheme discussed in [20] and implemented in the
following algorithm.

Algorithm 4.1 (Relaxation scheme)
Initialize (u01, u

0
2); set τ ∈ (0, 1), tolu and k = 0.

repeat
1. Compute ū1 = argminu1 J1(u1, u

k
2)

2. Compute ū2 = argminu2 J2(u
k
1, u2)

3. Set (uk+1
1 , uk+1

2 ) := τ (uk1, u
k
2) + (1 − τ) (ū1, ū2)

4. k := k + 1
until ‖uk+1 − uk‖ < tolu

In this algorithm, τ is a relaxation factor that we specify in our numerical experiments. In
general, there is no a priori choice of τ available. However, in our numerical experiments we
always observe convergence of this scheme by a moderate choice of the relaxation factor. At
the end of this section, a proof of the convergence of Algorithm 4.1 is given.

The main advantage of the above algorithm is that we can compute ū1 and ū2 separately
(in parallel) using an efficient optimization scheme. Specifically, given uk2, we compute ū1
by solving the optimality system given by

− ṗ1 =
[ (

(

f 0
)′

(x)
)T + u1

(

(F1)
′ (x)

)T + uk2
(

(F2)
′ (x)

)T
]

p1,

p1(T ) = −(x(T ) − x (1)
T ),

ẋ = f 0(x) + u1F1(x) + uk2F2(x), x(0) = x0,

u1(t) = PU1(M)

(1

ν
〈F1(x(t)), p1(t)〉

)

, a.e. in [0, T ]. (38)

In a similar way, given uk1, we can compute ū2 by solving the following optimality system

− ṗ2 =
[ (

(

f 0
)′

(x)
)T + uk1

(

(F1)
′ (x)

)T + u2
(

(F1)
′ (x)

)T
]

p2,

p2(T ) = −(x(T ) − x (2)
T ),

ẋ = f 0(x) + uk1F1(x) + u2F2(x), x(0) = x0,

u2(t) = PU2(M)

(1

ν
〈F2(x(t)), p2(t)〉

)

, a.e. in [0, T ]. (39)

Next, we give a short description of the semi-smooth Newton scheme that we implement for
solving (separately) the optimality systems (38) and (39); for more details, see [8,9]. Denote

with η := (x, u1, p1) and define themapF(η) :=
(

F1(η),F2(η),F3(η)
)T

, which represent

the residual of the adjoint, state, and optimality condition equations. Therefore, the solution
to our optimality systems corresponds to the root of F(η) = 0, which can be determined by
a Newton procedure. However, for this purpose, we need the Jacobian of F , which is not
differentiable in a classical sense with respect to un , because of the projection function.

On the other hand, by sub-differential calculus, it is possible to construct a generalized
Jacobian, such that the following Newton equation is obtained [9]

(∇ηF(ηk)
)(

ηk+1 − ηk
)+ F(ηk) = 0.
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This equation can be solved by a Krylov method that requires to implement the action of the
Jacobian on an input vector, and thus allows to avoid the assembling of ∇ηF , which leads
to the possibility to define a Krylov and semi-smooth Newton matrix-free procedure. This
is the method that we use in our calculations in the Steps 1. & 2. of Algorithm 4.1, and for
computing the Pareto points discussed in the following section.

Notice that we have discussed our solution methodology at a functional level. How-
ever, its numerical realisation requires to approximate the optimality system by appropriate
numerical schemes. In particular, we approximate our model using the so-called modified
Crank-Nicolson (MCN) scheme. For this purpose, the timedomain [0, T ] is subdivided in uni-
form intervals of size h and Nt points, such that t j = ( j − 1)h and 0 = t1 < · · · < t Nt = T .

To conclude this section we prove that Algorithm 4.1 is convergent. For this purpose, we
need the following result.

Lemma 4.1 The maps u �→ pi (u), i = 1, 2, are bounded in [0, T ] and Lipschitz continuous
in u ∈ U(M), M ∈ (0,∞), i.e.,

‖pi (t)‖2 ≤ Kpi (T ), (40)

‖pi (u(1))(t) − pi (u
(2))(t)‖2 ≤ 2Kpi (T )LF

(

L f 0 + MLF
)

T 3/2‖u(1) − u(2)‖L2 , (41)

where Kpi , i = 1, 2, are monotonically increasing with T .

The proof is similar to those given in Lemmas 3.1 and 3.2, hence omitted.

Theorem 4.2 Let B(v∗) be a closed ball of U(M), M ∈ (0,∞), centered in v∗, a NE for
the game. Assume that for all v ∈ B(v∗) the optimality systems (38)–(39) are uniquely solved.

Then, the relaxation scheme proposed in Algorithm 4.1 is convergent in B(v∗).

Proof In the following we omit the dependence on t of x and pi , i = 1, 2.
Consider B(v∗), a closed ball of U(M) centered in v∗, a NE solution for the game. By our

assumption, the optimality systems (38)–(39) can be uniquely solved in B(v∗).
We want to show that the map A : B(v∗) → B(v∗), defined as

A(v) := τv + (1 − τ)ū(v) (42)

is a contraction, where ū(v) is the solution of (38)–(39), i.e.,

ū(v) =
⎛

⎝

PU1(M)

(

1
ν
〈F1(x(v̄1, v2)), p1(v̄1, v2)〉

)

PU2(M)

(

1
ν
〈F2(x(v1, v̄2)), p2(v1, v̄2)〉

)

⎞

⎠ , (43)

with v := (v1, v2) and v̄1 := ū1(v), v̄2 := ū2(v).
Let now v ∈ U(M). For the assumption on B(v∗), the map A is well defined.
Next, we prove that A is a contraction in B(v∗).
Let v := (v1, v2), w := (w1, w2) ∈ U(M) and compute ‖A(v) − A(w)‖L2 . Since

‖A(v) − A(w)‖L2 ≤ τ‖v − w‖L2 + (1 − τ)‖ū(v) − ū(w)‖L2 ,

as first, we show the Lipschitz continuity of the map v �→ ū(v), to get

‖A(v) − A(w)‖L2 ≤ (τ + (1 − τ Lū)
)‖v − w‖L2 .

For this purpose and recalling (43), we need to estimate

|〈F1(x(v̄1, v2)), p1(v̄1, v2)〉 − 〈F1(x(w̄1, w2)), p1(w̄1, w2)〉| (44)
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and

|〈F2(x(v1, v̄2)), p2(v1, v̄2)〉 − 〈F2(x(w1, w̄2)), p2(w1, w̄2)〉|. (45)

We estimate (44) and the same holds for (45). The aim is to use the boundedness and Lipschitz
continuity of the functions x and p1 proved in Lemmas 3.1, 3.2, 4.1, and of F1. Adding and
subtracting the following quantities from (44),

〈F1(x(v̄1, w2)), p1(v̄1, v2)〉,
〈F1(x(w̄1, w2)), p1(v̄1, v2)〉 (46)

we get,

|〈F1(x(v̄1, v2)), p1(v̄1, v2)〉 − 〈F1(x(w̄1, w2)), p1(w̄1, w2)〉|
≤ |〈F1(x(v̄1, v2)) − F1(x(v̄1, w2)), p1(v̄1, v2)〉| +
|〈F1(x(w̄1, w2)), p1(v̄1, v2) − p1(w̄1, w2)〉| +
|〈F1(x(v̄1, w2)) − F1(x(w̄1, w2)), p1(v̄1, v2)〉|.

Since x , p1 are Lipschitz continuous in u and bounded, and F1 is Lipschitz in x and bounded,
it follows

|〈F1(x(v̄1, v2)), p1(v̄1, v2)〉 − 〈F1(x(w̄1, w2)), p1(w̄1, w2)〉|
≤ C

[

LF,x,p T
3/2(‖v2 − w2‖L2 + ‖v̄1 − w̄1‖L2 + ‖v2 − w2‖L2 + ‖v̄1 − w̄1‖L2

)

]

≤ 2C LF,x,p T
3/2
[

‖v − w‖L2 + ‖v̄ − w̄‖L2

]

,

where C := C(T ) is the maximum between the functions bounds of p1, F1 and LF,x,p :=
LF,x,p(T ) is the maximum between the Lipschitz constants of F1, x, p1. Note that the bound
of F1 depends on K(T ) defined in Lemma 3.1. Moreover C and LF,x,p are monotonically
increasing functions of T .

Repeating the same calculations with (45), it holds

‖ū(v) − ū(w)‖L2 ≤ 2

ν
ĈT 3/2

[

‖v − w‖L2 + ‖ū(v) − ū(w)‖L2

]

,

and hence
∣

∣

∣

∣

1 − 2

ν
ĈT 3/2

∣

∣

∣

∣

‖ū(v) − ū(w)‖L2 ≤ 2

ν
ĈT 3/2‖v − w‖L2 ,

where Ĉ := 2CLF,x,p, i.e. it is a monotonically increasing funtion of T . Hence, the map
v �→ ū(v) is Lipschitz continuous with constant

Lū :=
2
ν
ĈT 3/2

∣

∣

∣1 − 2
ν
ĈT 3/2

∣

∣

∣

. (47)

Therefore A is a contraction if

τ + (1 − τ)

2
ν
ĈT 3/2

∣

∣

∣1 − 2
ν
ĈT 3/2

∣

∣

∣

< 1. (48)

Since B(v∗) ⊂ L2(0, T ) is a complete space, choosing the parameters τ, ν and T
such that (48) holds, the map A admits a unique fixed point. Hence the Algorithm 4.1
converges. 	
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5 Bargaining Solution

Consider the case N = 2, and assume that the players agree to follow a Nash’s bargaining
scheme.We can define the set S of all feasible values of the functionals, which can be achieved
with an admissible set of controls, as follows

S := {(J1(u), J2(u)) ∈ R
2 | u ∈ U(M)}. (49)

Hence, we consider the following Nash bargaining (NB) problem:

max
u

2
∏

i=1

(di − Ji (u))

s.t . u ∈ U(M), di > Ji (u) ∀i (50)

where di = Ji (uNE) is a disagreement outcome for Player i . We shall assume that there
exists at least one point s ∈ S such that di > si , ∀i , and suppose that the NB problem has a
solution u∗ ∈ U(M).

Now, we recall that the best achievable outcomes of cooperation are given by the Pareto
points [14], which form the so-called Pareto frontier. Assuming that this curve is convex,
then it is characterized by all solutions to (7). Therefore the solution to the NB problem is
sought on the Pareto frontier, as discussed by J. Nash in [23].

Next, we present a theorem that provides a characterisation of the solution to the NB
problem on the Pareto frontier. This result is essential to formulate the algorithm for the
computation of the NB point; see also [12].

Theorem 5.1 Let u∗ ∈ U(M) be such that

μ1 J1(u
∗) + μ2 J2(u

∗) ≤ μ1 J1(u) + μ2 J2(u), (51)

for all u ∈ U(M), where

μ1 = d2 − J2(u∗)
(d1 − J1(u∗)) + (d2 − J2(u∗))

(52)

and

μ2 = d1 − J1(u∗)
(d1 − J1(u∗)) + (d2 − J2(u∗))

. (53)

Then

2
∏

i=1

(

di − Ji (u)
) ≤

2
∏

i=1

(

di − Ji (u
∗)
)

. (54)

Proof Let us consider the following equation

− μ1d1 − μ2d2 = −μ1d1 − μ2d2. (55)

Adding term by term with (51), it follows

μ1(d1 − J1(u
∗)) + μ2(d2 − J2(u

∗)) ≥ μ1(d1 − J1(u)) + μ2(d2 − J2(u)).

Replacing the values of μ1, μ2, we get

(d2 − J2(u∗))(d1 − J1(u∗))
(d1 − J1(u∗)) + (d2 − J2(u∗))

+ (d2 − J2(u∗))(d1 − J1(u∗))
(d1 − J1(u∗)) + (d2 − J2(u∗))

≥
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(d2 − J2(u∗))(d1 − J1(u))

(d1 − J1(u∗)) + (d2 − J2(u∗))
+ (d2 − J2(u))(d1 − J1(u∗))

(d1 − J1(u∗)) + (d2 − J2(u∗))
.

Multiplying both sides for (d2 − J2(u∗)) + (d1 − J1(u∗)) > 0, it follows

2(d2 − J2(u
∗))(d1 − J1(u

∗)) ≥ (d2 − J2(u
∗))(d1 − J1(u)) + (d2 − J2(u))(d1 − J1(u

∗)).

Then, dividing by (d2 − J2(u∗))(d1 − J1(u∗)) > 0, the following holds

d1 − J1(u)

d1 − J1(u∗)
+ d2 − J2(u)

d2 − J2(u∗)
≤ 2

and hence

2

√

d1 − J1(u)

d1 − J1(u∗)
d2 − J2(u)

d2 − J2(u∗)
≤ d1 − J1(u)

d1 − J1(u∗)
+ d2 − J2(u)

d2 − J2(u∗)
≤ 2.

Therefore we obtain
2
∏

i=1

(

di − Ji (u)
) ≤

2
∏

i=1

(

di − Ji (u
∗)
)

.

	

Notice that in (52) and (53),μ1, μ2 ∈ (0, 1) andμ1+μ2 = 1. Theorem 5.1 states that it is

possible to find a point on the Pareto frontier that maximizes the product
∏2

i=1

(

di − Ji (u)
)

.

Based on this result, we can introduce a computational method to obtain a solution for the
bargaining problem; see also [12,13]. It works as follows

Algorithm 5.1 (Bargaining solution)

Initialize μ
(0)
1 , then μ

(0)
2 = 1 − μ

(0)
1 ; set α ∈ (0, 1) and k = 0.

Compute the disagreement outcome di for player i .
repeat
1. For fixed μ

(k)
1 , solve the optimality system and compute the corresponding payoffs.

2. Update the weight according to the following formula

μ
(k+1)
1 = (1 − α)μ

(k)
1 + α

d2 − J2(u(μ(k)))

d2 − J2(u(μ(k))) + d1 − J1(u(μ(k)))
. (56)

3. k := k + 1
until (52) holds
Set μ∗ = μ(k).

In the above algorithm, we need to solve the optimization problem for the Pareto points in
order to get the bargaining solution to our model. To this end, the following optimal control
problem is considered

min
u1,u2

˜J (x, u1, u2) := μ1˜J1(x, u1) + μ2˜J2(x, u2)

s.t . ẋ = f 0(x) + u1F1(x) + u2F2, x(0) = x0, (57)

where μ1, μ1 ∈ (0, 1), with μ1 + μ2 = 1.
A solution to (57) is characterized by the following optimality system

− ṗ =
[ (

(

f 0
)′

(x)
)T +

2
∑

n=1

(

(Fn)
′ (x)

)T
un
]

p,
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p(T ) = −μ1(x(T ) − x (1)
T ) − μ2(x(T ) − x (2)

T )

ẋ = f 0(x) +
2
∑

n=1

unFn(x), x(0) = x0

un(t) = PUn(M)

(1

ν
〈Fn(x(t)), pn(t)〉

)

, a.e. in [0, T ], n = 1, 2. (58)

Introducing the control-to-state map (u1, u2) �→ x(u1, u2) as in the previous section and
the reduced cost functional J (u1, u2) := ˜J (x(u1, u2), u1, u2), the solution to (57) can be
written as

u∗ = argmin
(u1,u2)∈U(M)

J (u1, u2).

This problem is solved utilizing the semismooth Newton method discussed in Sect. 4.

6 Numerical Experiments

In this section, we present results of numerical experiments to validate the theoretical discus-
sion and the proposed algorithms. We start considering a model of two uncoupled spin-1/2
particles, whose state configuration represents the density matrix operator and the corre-
sponding dynamics is governed by the Liouville–von Neumann master equation. This is a
basic model of importance in nuclear magnetic resonance (NMR) spectroscopy. We remark
that in the case of quantum dynamics constrained on the energy ground state, only transi-
tions between magnetic/spin states are possible. In this case, as discussed in detail in [4], the
Pauli-Schrödinger equation represented in a basis of spherical-harmonics becomes

i ȧ =
[

Bz H̃0 + Bx H̃x + i By H̃y

]

a , (59)

where the complex-valued vector a(t) represents the time-dependent coefficients of the spec-
tral discretization, and in the Hamiltonian defined by the operator in the square brackets, H̃0

and H̃x are Hermitian matrices, and H̃y is a skew-symmetric matrix. In an experimental
control setting, we can have that the z-component of the magnetic field, Bz , is fixed, and we
would like to manipulate the spin orientation of the particle by acting with the transversal
magnetic fields Bx and By , which we identify with u1 and u2, respectively, and in this case
the controlled dynamics of each spin-1/2 particle is described by the Hamiltonian

H = ν̂ Iz + u1 Ix + u2 Iy,

where ν̂ is the Larmor-frequency, u is the control, and Ix , Iy and Iz are the Pauli matrices. To
represent this model, it results very convenient to choose a frame rotating with the Larmor
frequency and use the so-called real-matrix representation [4].We obtain the followingmodel

ẋ = 2π
[

˜A + u1˜B1 + u2˜B2

]

x,

where

˜A = c

(

A 0
0 −A

)

, ˜Bi =
(

Bi 0
0 Bi

)
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Fig. 1 NE controls for the first experiment (solid line) and NB controls (dashed line); u1 on the left-hand side,
and u2 on the right-hand side. As expected, at Nash equilibrium, u2 assumes higher values than u1 because
it has to make a greater effort to reach its own target

with c = 483 and

A =
⎛

⎝

0 −1 0
1 0 0
0 0 0

⎞

⎠ , B1 =
⎛

⎝

0 0 1
0 0 0

−1 0 0

⎞

⎠ , B2 =
⎛

⎝

0 0 0
0 0 −1
0 1 0

⎞

⎠

Let x0 = (0, 0, 1, 0, 0, 1)T be the initial state of the system and consider the following targets
for the two players x (1)

T = (1, 0, 0, 1, 0, 0)T and x (2)
T = (0, 1√

2
,− 1√

2
, 0, 1√

2
,− 1√

2

)T . As in

[2], we choose T = 0.008, and based on our estimate (31), we take ν = 2 · 10−1.
Let u0 := (u01, u

0
2). We chose u0(t) = (0.1, 0.1), t ∈ [0, T ]. Our problem is to find

u1 ∈ U1(M), with M = 60, such that the system aims at performing a transition from the
initial state x0, where both spins are pointing in the z-direction, to a target state x (1)

T where
both spins are pointing in the x-direction, and to find u2 ∈ U2(M) that has the aim to drive
the system to x (2)

T , where an inversion of orientation is desired.
To solve this NE problem, we use the relaxation scheme in Algorithm 4.1 with τ = 0.5

and tolu = 10−3. In this method, the semi-smooth Newton scheme [7,9] is employed to
solve the optimality systems corresponding to the two controls. In this implementation, the
differential equations are approximated by the MCN scheme with Nt = 1000.

The tolerances for the convergence of the semi-smooth Newton and for the Krylov linear
solver are 10−7 and 10−8, respectively. These tolerances aremeat always before themaximum
number of allowed iterations, which is set equal to 100, is reached. With this procedure, we
obtain the NE controls depicted in Fig. 1, which give NE point that is shown in Fig. 2, as a
‘*’-point. At NE solution, ‖x(T ) − x (1)

T ‖2 = 0.4967 and ‖x(T ) − x (2)
T ‖2 = 0.5996.

With this point, we can consider the problem of Nash bargaining that assumes cooperation
in order to get an improvement of the players’ objectives. We solve the bargaining problem
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Fig. 2 The NE point, the NB point and the Pareto frontier of the first experiment

usingAlgorithm 5.1 withμ
(0)
1 = 0.6, α = 0.01.We obtainμ∗ = 0.47, and the corresponding

solution is depicted also in Fig. 2 with a ◦-point. Furthermore, in this figure we present our
computation of the Pareto frontier to which this point belongs.

Now, in the second experiment with out quantum model, we replace the final target of the
second player with x (2)

T = (0, 1, 0, 0, 1, 0)T , and let M = 15. All other parameters are as in
the previous experiment. In this case, the targets for the two players present similar difficulty.
By taking a lower value of M , we see that the constraints on the NE controls become active
as shown in Fig. 3.

With this solution, ‖x(T ) − x (1)
T ‖2 = 0.4155 and ‖x(T ) − x (2)

T ‖2 = 0.4155.
Furthermore, we consider the Nash bargaining problem. In this case, Algorithm 5.1 pro-

vides the solution μ∗ = 0.5, which is plotted in Fig. 4.
A comparison of the results of the two experiments is conveniently done based on the

Figs. 2 and 4 . It is clear that, in the second experiment, the two targets are placed on the same
hemisphere and therefore the game is more balanced than the game of the first experiment.
This fact can be seen also in the positioning of the NE points and NB points with respect to
the Pareto frontier.

Next, in order to provide more insight in the performance of our algorithms, we report
some results concerning the relaxation procedure and the semi-smooth Newton scheme.
Concerning the relaxation scheme inAlgorithm4.1,we give in Tables 1 and 2 the convergence
history of this scheme towards a NE point for the first and second experiment, respectively.
In both tables, we see that, initially, both functionals are minimized, and thereafter we see
that the values of the norms of the two gradients decrease until both reach zero to high
accuracy. Algorithm 4.1 stops when the updates of the controls become smaller than a given
tolerance tolu . In some sense, these tables show the history of the game up to reaching the
Nash equilibrium. Notice that similar behaviour has been already recorded [20].

To conclude this experiment, we show that our semi-smooth Newton method provides a
quadratic convergent behaviour to the solution of the given optimality system. For this pur-
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Fig. 3 NE controls (solid line), NB controls (dashed line): u1 on the left and u2 on the right: as expected the
two controls have the same range of values
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Fig. 4 The NE point, the NB point and the Pareto frontier of the second experiment

pose, we consider the case of solving (57) corresponding to the setting of the two experiments
above and choosing μ = μ∗. With this setting, we obtain the convergence behaviours shown
in Table 3.

Next, we present an application to the so-called competitive Lotka-Volterra equations; see
[21] for more details. This model describes the case of two species competing for the same
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Table 1 Relaxation scheme for
the first experiment with
ν = 2 · 10−1 and τ = 0.5

Iter ‖∇ J1‖L2 ‖∇ J2‖L2 J1(u1) J2(u2)

0 3.9315 · 10−1 2.7790 · 10−1 1.000164 1.707004

1 2.0549 · 10−1 1.5969 · 10−1 0.763244 1.455984

2 9.6836 · 10−2 7.8763 · 10−2 0.716240 1.366769

3 4.4333 · 10−2 3.6226 · 10−2 0.711989 1.337804

4 2.0480 · 10−2 1.6241 · 10−2 0.713750 1.328051

5 9.7224 · 10−3 7.2830 · 10−3 0.715280 1.324587

6 4.7624 · 10−3 3.3284 · 10−3 0.716117 1.323325

7 2.3945 · 10−3 1.5725 · 10−3 0.716527 1.322872

8 1.2244 · 10−3 7.7321 · 10−4 0.716719 1.322718

9 6.3168 · 10−4 3.9452 · 10−4 0.716808 1.322672

10 3.2689 · 10−4 2.0683 · 10−4 0.716848 1.322662

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

15 1.2014 · 10−5 9.1261 · 10−6 0.716882 1.322672

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

20 4.7112 · 10−7 3.8636 · 10−7 0.716882 1.322674

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

24 7.4457 · 10−8 5.8082 · 10−8 0.716882 1.322674

limited food resources. For example, one can consider a competition for the territory which
is directly related to food resources. In particular, each species has logistic growth in the
absence of the other. Then, we focus on the following system

ẋ1 = b1x1 − a11x
2
1 − a21x1x2

ẋ2 = b2x1 − a12x1x2 − a22x
2
2 (60)

where bi (> 0), i = 1, 2, are the birth rates of the two species and ai j (> 0), i, j = 1, 2, are
the competition efficiencies.

Suppose aii and a ji can be controlled by player i , i.e. ai j = a∗
i j + ui , with a∗

i j > 0. Then,
the system (60) can be written as (1) in the following way

ẋ =
(

b1x1 − a∗
11x

2
1 − a∗

21x1x2
b2x2 − a∗

12x1x2 − a∗
22x

2
2

)

+
(−x21 0

0 −x1x2

)

u1 +
(−x1x2 0

0 −x22

)

u2. (61)

Note that in (61) there are no restriction on the sign of ai j , i.e. also phenomena of mutualism
or symbiosis are admitted.

In the dynamical system (61), the function f 0(x) has the steady states (0, 0)T , (0, b2
a∗
22

)T ,

( b1
a∗
11

, 0)T and

(

b1a∗
22 − b2a∗

21

−a∗
12a

∗
21 + a∗

22a
∗
11

,
b2a∗

11 − b1a∗
12

−a∗
12a

∗
21 + a∗

22a
∗
11

)T

.

(The latter representing co-existence.)
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Table 2 Relaxation scheme for
the second experiment with
ν = 2 · 10−1 and τ = 0.5

Iter ‖∇ J1‖L2 ‖∇ J2‖L2 J1(u1) J2(u2)

0 3.9315 · 10−1 3.9299 · 10−1 1.001643 0.999851

1 2.6703 · 10−1 2.6694 · 10−1 0.813612 0.813495

2 1.9647 · 10−1 1.9642 · 10−1 0.752994 0.752950

3 1.1935 · 10−1 1.1925 · 10−1 0.731974 0.731956

4 6.3067 · 10−2 6.3013 · 10−2 0.723889 0.723882

5 3.2329 · 10−2 3.2302 · 10−2 0.720458 0.720456

6 1.6347 · 10−2 1.6339 · 10−2 0.718893 0.718894

7 8.2180 · 10−3 8.2117 · 10−3 0.718148 0.718150

8 4.1205 · 10−3 4.1172 · 10−3 0.717785 0.717787

9 2.0642 · 10−3 2.0625 · 10−3 0.717605 0.717608

10 1.0330 · 10−3 1.0321 · 10−3 0.717516 0.717519

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

15 3.2417 · 10−5 3.2392 · 10−5 0.717429 0.717432

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

20 1.0191 · 10−6 1.0183 · 10−6 0.717427 0.717430

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

24 6.4214 · 10−8 6.4164 · 10−8 0.717426 0.717430

Table 3 Convergence of the
semi-smooth Newton method for
the solution of (57) for the two
experiments with μ = μ∗

Iter First experiment Second experiment
‖∇ J‖L2 ‖∇ J‖L2

0 5.3748 · 10−2 4.3944 · 10−2

1 3.4197 · 10−3 8.5453 · 10−2

2 1.0608 · 10−5 2.1218 · 10−3

3 1.0596 · 10−10 1.2197 · 10−9

Now, in ourNEsettingwith the players’ objectives given in (4),we choose x (1)
T = ( b1

a∗
11

, 0)T

and x (2)
T = (0, b2

a∗
22

)T , that is, each species aims at the extinction of the other one.

In our numerical simulations, the parameters are chosen as in [22], i.e. b1 = 1, b2 =
1, a∗

11 = 2, a∗
22 = 2, a∗

12 = 1, a∗
21 = 1. Therefore x (1)

T = ( 12 , 0)
T and x (2)

T = (0, 1
2 )

T .
Furthermore, let x0 = (1.5, 1)T , ν = 0.1, T = 0.25 and u01(t) = 0, u02(t) = 0, t ∈ [0, T ].

To solve this NE problem, we use Algorithm 4.1 with τ = 0.5 and tolu = 10−3. All the
parameters in the semi-smooth Newton method and in the Krylov linear solver are as in the
previous experiments.

We obtain the NE controls depicted in Fig. 5, which give the NE point shown in Fig. 6, as
a ‘*’-point. At the Nash equilibrium solution, we get ‖x(T )− x (1)

T ‖2 = 0.6875 and ‖x(T )−
x (2)
T ‖2 = 0.8374 with x(T ) = (0.8311, 0.6026)T , and J1(uNE) = 0.2456, J2(uNE) =

0.3569.
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Fig. 5 Controls corresponding to the NE point (solid line) and at the NB point (dotted line)
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Fig. 6 The NE point, the NB point and the Pareto frontier of the Lotka–Volterra model

Concerning the convergence behaviour of our algorithms, we obtain results very similar
to those shown in the previous experiments. Therefore they are omitted.

With this point, we compute the bargaining solution using Algorithm 5.1 withμ
(0)
1 = 0.75

and α = 0.01. The corresponding point, obtained for μ∗ = 0.57, is drawn as a ◦-point in
Fig. 6.

At the bargaining solution, we get ‖x(T ) − x (1)
T ‖2 = 0.6441, ‖x(T ) − x (2)

T ‖2 = 0.7959
with x(T ) = (0.7925, 0.5739)T , and J1(uNB) = 0.2297, J2(uNB) = 0.3300.
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7 Conclusion

A theoretical and numerical investigation of Nash equilibria (NE) and Nash bargaining (NB)
problems governed by bilinear differential models was presented. In this setting, existence
of Nash equilibria was proved and computed with a semi-smooth Newton scheme combined
with a relaxation method. A related Nash bargaining problem was discussed and a com-
putational procedure for its determination was presented. Results of numerical experiments
were presented that successfully demonstrated the effectiveness of the present NE and NB
computational framework.
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