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Abstract: Pharmacologic cardiac conditioning increases the intrinsic resistance against ischemia
and reperfusion (I/R) injury. The cardiac conditioning response is mediated via complex signaling
networks. These networks have been an intriguing research field for decades, largely advancing
our knowledge on cardiac signaling beyond the conditioning response. The centerpieces of this
system are the mitochondria, a dynamic organelle, almost acting as a cell within the cell. Mitochon-
dria comprise a plethora of functions at the crossroads of cell death or survival. These include the
maintenance of aerobic ATP production and redox signaling, closely entwined with mitochondrial
calcium handling and mitochondrial permeability transition. Moreover, mitochondria host pathways
of programmed cell death impact the inflammatory response and contain their own mechanisms of
fusion and fission (division). These act as quality control mechanisms in cellular ageing, release of
pro-apoptotic factors and mitophagy. Furthermore, recently identified mechanisms of mitochondrial
regeneration can increase the capacity for oxidative phosphorylation, decrease oxidative stress and
might help to beneficially impact myocardial remodeling, as well as invigorate the heart against sub-
sequent ischemic insults. The current review highlights different pathways and unresolved questions
surrounding mitochondria in myocardial I/R injury and pharmacological cardiac conditioning.

Keywords: cardioprotection; preconditioning; ischemia/reperfusion injury; volatile anesthetics

1. Introduction

Myocardial ischemic injury is composed of two different entities with distinct molecu-
lar mechanisms. The first is ischemia itself, and the second is reperfusion injury. Ischemia
damages myocardial tissue and renders it susceptible to subsequent injury by reperfusion
as a second hit. Myocardial reperfusion is responsible for up to 50% of the overall damage
of combined ischemia/reperfusion (I/R) injury. Nevertheless, in case ischemia is not termi-
nated tissue damage becomes irreversible and as such reperfusion of myocardial tissue is
indispensable [1].

For decades, research has focused on mechanisms of myocardial I/R injury and on
how to minimize the resulting myocardial infarct size by increasing the intrinsic resistance
of the heart. Research efforts were sparked by the discovery of ischemic preconditioning
by Murray et al. in 1986. Short periods of ischemia interspersed by reperfusion followed
by a sustained ischemia limited the resulting infarct size to 25% compared to the control
group [2]. Hopes of clinically applicable benefits increased shortly thereafter, as a num-
ber of drugs were shown to exert similar conditioning effects. These, amongst others,
include opioids [3] and volatile anesthetics. Cardioprotective effects of volatile anesthetics
have been known for three decades and cardiac protection is similar in magnitude to
ischemic preconditioning [4]. Furthermore, different time frames and modalities have been
discovered, such as delayed anesthetic preconditioning and postconditioning or remote
ischemic preconditioning (RIPC) [5,6]. Opioids, on the other hand, are an example of
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conditioning agents whose receptors concomitantly act as molecular targets for other car-
dioprotective triggers [7,8]. Subsequent research efforts identified an almost uncountable
number of molecular pathways and interactions triggering and mediating this intrinsic
invigorating response. The findings helped to draw a picture of complex intracellular
networks and interactions within cardiac myocytes, advancing the field of cardiac research
beyond cardiac conditioning or even the heart as many organs share similar mechanisms
to protect themselves against ischemic damage. Moreover, the communality of molecular
mechanisms between different pharmacologic conditioning agents is overwhelming, em-
phasizing the presence of endogenous defense mechanisms not unique to the heart, but a
superordinate system.

The centerpieces of this system are the mitochondria. The myocardium is a particular
mitochondria rich tissue with an aerobic ATP production of approximately 6 kg per day [9].
Each cardiac myocyte contains about 5000 mitochondria, comprising 40% of the cytoplas-
mic space. Mitochondria originate from bacterial endosymbiosis of primitive forms of
eukaryotic cells and comprise their own mitochondrial (mt) DNA. Mitochondrial DNA
is double-stranded and codes for 13 proteins of the mitochondrial respiratory chain [10].
However, the majority of all mitochondrial >1000 proteins [11] is translated from nuclear
DNA. Although mitochondria are best known for their role as a cellular energy source,
they represent an extremely complex and dynamic organelle, almost acting as a cell within
the cell. Mitochondria comprise a plethora of functions at the crossroads of cell death
or survival. These include the maintenance of aerobic ATP production, redox signaling,
calcium transport, and pathways of cell death. The current review focuses on the different
pathways and unresolved questions surrounding mitochondria in myocardial I/R injury
and pharmacological cardioprotection.

2. Mechanisms of Myocardial Damage and Cell Death after Ischemia/Reperfusion

Myocardial ischemia is characterized by profound intracellular metabolic alterations.
Hypoxia forces a switch from aerobic to anaerobic metabolism and accumulating H+ ions
activate the Na+/H+ ion exchanger. Na+/K+ ATPase activity is reduced by concomitant
ATP depletion. The resulting Na+ accumulation leads to reversed mode operation of
the Na+/Ca2+ ion exchanger, culminating in intracellular and mitochondrial Ca2+ over-
load [12,13]. These mechanisms are exaggerated during the beginning of myocardial
reperfusion due to damage to the plasma and sarcoplasmic membranes, rapid washout of
lactate, restoration of intracellular pH, and mitochondrial respiratory chain dysfunction.
The reintroduction of O2 onto a dysfunctional respiratory chain leads to the production
of massive amounts of reactive oxygen species (ROS) and further exaggeration of intra-
cellular Ca2+ levels. Ca2+ enters the mitochondria via the mitochondrial Ca2+ uniporter
(mCU) [14] and promotes the opening of the mitochondrial permeability transition pore
(mPTP). The mCU resides in close proximity to the respiratory chain and is driven by
the electrochemical gradient across the inner mitochondrial membrane generated by the
electron transport chain [15]. The channel becomes active through the rapid restoration
of the mitochondrial membrane potential during reperfusion, and it has been shown that
knockout mCU−/− mice are protected against I/R injury. However, the channel itself
likely is not a therapeutic target as these mice also lack contractile responsiveness to acute
β-adrenergic receptor stimulation and have a reduced bioenergetic reserve [16]. On the
other hand, MCUB, a constituent incorporated into the mCU under stress conditions,
might be a more promising target. MCUB regulates the formation and stoichiometry of
mCU subunits and its overexpression limits mitochondrial Ca2+ uptake during I/R injury.
While also impairing mitochondrial bioenergetics, Ca2+ independent mechanisms might
compensate these energy deficits during chronic overexpression of MCUB. This could limit
cell death during the later stages of I/R injury and heart failure development [17].
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3. Intracellular Pathways of Pharmacologic Cardiac Conditioning

Traditionally, mechanisms of cardiac conditioning were divided into triggers of the pro-
tective response acting at the cell surface and downstream mediators targeting intracellular
effectors. Many of these molecular pathways converge at the level of the mitochondrion.
Considering the extent of published data (a total of >11,000 hits on pubmed utilizing the
term “cardiac conditioning”), it is nearly impossible to provide a comprehensive overview
on all interacting pathways. However, major building blocks of pre-mitochondrial and
mitochondrial cardioprotective signaling can be identified (Figure 1). Cardioprotective
signaling triggered by pharmacologic agents commences via G-protein and non-G-protein
coupled receptor pathways with e.g., β-adrenergic receptors [18,19] activating Gαs, pro-
teinkinase A, subsequently increasing nitric oxide production via endothelial nitric oxide
synthase [20,21]. This results in proteinkinase G and proteinkinase C (PKC) activation [22].
PKCε links cytoplasmatic and mitochondrial signaling influencing ROS production, mPTP
opening and the mitochondrial ATP-dependent K+ channel [23,24]. PKC signaling is also
linked to the reperfusion injury salvage kinase (RISK) pathway subsequent to the activation
of inhibitory G proteins [25,26]. The RISK pathway is considered the main pro-survival
kinase cascade with toll-like-receptors (TLR) and phosphatidylinositol 3-kinase (PI3K)/Akt
signaling preventing pro-inflammatory events and apoptosis through cross-talking with
nuclear factor (NF)-κB [27,28], as well as glycogen synthase kinase 3β (GSK3β). GSK3β
transfers the protective signal downstream to targets that act at or in proximity to the
mPTP [29], such as Bcl-2 family proteins, ANT, VDAC, cyclophilin D, and hexokinase
II [30]. Another major survival pathway is the survival factor enhancement (SAFE) path-
way consisting of Janus kinase (JAK)/signal transducer and activator of transcription
(STAT) signaling after activation at the transcriptional level by cytokines, i.e., interleukin
6. STAT3 is primarily a transcription factor initiating the transcription of cardioprotective
and anti-apoptotic proteins [31]. It is still questionable if STAT3 elicits direct mitochondrial
actions, including the regulation of ROS production by regulating the activities of the elec-
tron transport chain. STAT3 is believed to associate with respiratory complex I and enhance
complex I activity [32]. It also binds to cyclophilin D (CypD) inhibiting the opening of the
mPTP [33–35].

All signaling pathways interact in terms of a cardioprotective gene and pathway
network with temporo-spatially differences and likely remote conditioning of non-ischemic
areas. In this regard, ischemic conditioning has recently been suggested to induce early
activation of Ca-, adipocytokine, and insulin signaling with a central role for neprilysin
and the STAT family in intrinsic remote conditioning. This response could prevent adverse
myocardial remodeling on top of limiting acute cell death [36].
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Figure 1. Schematic depiction of (pre-) mitochondrial signaling in myocardial I/R injury and pharmacologic cardioprotection.
Mitochondria host diverse signaling modules at the crossroads of cell survival and cell death. Cytosolic signaling pathways
transduce the protective signaling into resulting in modulation of mitochondrial respiratory chain activity and finally
the prevention of mitochondria related cell death. Moreover, mitochondrial dynamics and mitochondrial regeneration
via transcriptional changes of the mitochondrial proteome modulation contribute to an enhanced intrinsic resistance
against I/R injury. Abbreviations: Akt = protein kinase B; Bax = Bcl-2-associated X protein; Bad = Bcl-2-Antagonist
of Cell Death; Bcl-2 = B-cell lymphoma-2 protein; Erk1/2 = extracellular regulated kinase 1 and 2; GSK3β = glycogen
synthase kinase 3β; Jak = janus-activated kinase; mPTP = mitochondrial permeability transition pore; NO = nitric oxide;
NOS = nitric oxide synthase; PI3K = phosphoinositid-3-kinase; PGC1α = peroxisome proliferator-activated receptor gamma
coactivator 1-α; Pim = proto-oncogene serine/threonine-protein kinase; PINK1 = PTEN-induced kinase 1; PKCε = protein
kinase Cε; PKG = proteinkinase G; PPARα/β = peroxisome proliferator activated receptor α/β; NfκB = nuclear factor
κB; NRF1/2 = Nuclear respiratory factor 1/2; RISK = reperfusion injury salvage kinase; sarcKATP = sarcolemmal ATP-
dependent potassium channel; SAFE = survival activating factor enhancement; SIRT1/2 = Sirtuin-1/2; STAT3 = signal
transducer and activator of transcription 3; TFAM = mitochondrial transcription factor A.

4. Mitochondrial Respiratory Chain and ATP Production

Cardiac mitochondria can be subdivided into two distinct populations: subsarcolem-
mal mitochondria (SSM) and interfibrillar mitochondria (IFM) [37]. SSM are more sus-
ceptible to Ca2+ overload, release of cytochrome c [38], and a decreased rate of oxidative
phosphorylation [39]. Ischemic damage occurs in a progressive, time-dependent manner
and during prolonged periods of ischemia (>60 min) damage to all constituents of the
respiratory chain can be expected. It is important to note that mitochondrial damage mainly
occurs during myocardial ischemia via compromised respiration and ROS production.
Mitochondria mediated cardiac myocyte injury primarily happens during reperfusion.
Reperfusion exaggerates oxidative stress and Ca2+ overload as respiratory chain dysfunc-
tion leads to the production of high levels of reactive oxygen species after reprovisioning
O2. A total of up to 40% of I/R injury occurs during reperfusion.

Respiratory complexes I and III are the primary sites of ROS production, while complex
II (although resisting ischemic damage for a longer time (45–60 min)) contributes to ROS
production with reverse electron flow to complex I. Reverse electron flow depends on the
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mitochondrial membrane potential (∆ψm) and is facilitated in ischemic hyperpolarized
non-phosphorylating mitochondria [40]. Dysfunction of complex IV is accompanied by
a loss of cardiolipin, a phospholipid of the inner mitochondrial membrane facilitating
electron channeling via the association of complexes III and IV into supercomplexes [41].

Studies of pharmacological conditioning have shown that cardioprotection alters a
number of mitochondrial proteins with most changes occurring in complexes of the electron
transport chain [42]. A total of 26 potential phosphorylation sites of isoflurane-induced
cardioprotection were be identified within 19 mitochondrial proteins, including those
directly related to oxidative phosphorylation [43]. Isoflurane and sevoflurane directly
inhibit respiratory complex I [44] as a beneficial mechanism both during ischemia and
reperfusion. Furthermore, isoflurane elicited a partial dissipation of the mitochondrial
membrane potential and mild uncoupling reducing mitochondrial Ca2+ uptake [45] and
ROS [46]. It has been shown that the reversible blockade of electron transport during
ischemia attenuates the production of ROS during ischemia and reperfusion [47], a finding
confirmed for volatile anesthetics early and late during reperfusion [48]. Precondition-
ing with isoflurane preserved the activity of complex III and stabilized the formation of
respiratory supercomplexes III/IV, findings accompanied by a diminished mitochondrial
susceptibility to Ca2+-induced swelling [49]. Moreover, direct actions of volatile anesthetics
onto respiratory complexes might lead to beneficial effects independent of a pre- or post-
conditioning protocol. Mitochondria from animals receiving sevoflurane anesthesia had a
preserved mitochondrial respiratory control ratio and unimpeded activities of respiratory
complex I and complex IV after I/R during myocardial injury without the use of a specific
conditioning protocol. In this regard, a significantly higher portion of complex I was found
to be in its inactive/dormant form [50]. Deactivation of complex I could be an important
mechanism preventing reverse electron flux and massive ROS production [51]. Moreover,
reversible inhibition of the electron transport chain at the beginning of reperfusion with
amobarbital reduced the extent of myocardial damage [52,53]. It is important to note that
a small amount of “signaling ROS” is considered essential to both trigger and mediate
pharmacological infarct size reduction. “Signaling ROS” originate from complex III [54]
and likely nullify the therapeutic usefulness of ROS scavengers [55].

A proposed modulator of the respiratory chain is signal transducer and activator
of transcription 3 (STAT3). STAT3 translocates to mitochondria after phosphorylation of
Ser727. In cells exposed to hypoxia/reoxygenation zinc decreased ROS production and
suppressed succinate dehydrogenase (SDH) activity via STAT3 phosphorylation at the
onset of reperfusion [56]. Transgenic mice overexpressing a mitochondria-targeted STAT3
exhibit a persistent, partial blockade of electron transfer through complex I, a genotype as-
sociated with decreased myocardial infarct size, and increased survival after I/R injury [57].
Mitochondrial actions of STAT3 are on top of its actions as a transcription factor (regulating
antioxidative, antiapoptotic, and proangiogenic gene expression). As such, STAT3 could
be considered a central mediator of cardioprotection and concomitantly represents the
complexity of multifunctionality and interactions of cardioprotective signaling networks
(Figure 2). However, the mitochondrial presence and actions of STAT3 are in doubt as
recent results found STAT3 solely along the T-tubules and in the nucleus without any
effects of hypoxia or hypoxia/reoxygenation. Moreover, pSTAT3Ser727 and total STAT3
could not be detected in pure mitochondrial preparations [58].

Essentially, numerous functions of the respiratory chain and mitochondrial metabolism
are connected to mitochondrial Ca2+ handling. Entry of Ca2+ into the mitochondrial matrix
is governed by the mitochondrial Ca2+ uniporter (mCU). The mCU is a molecular com-
plex regulated by the essential mCU regulator (EMRE) linking mCU with mitochondrial
calcium uptake 1 (MICU1). MICU1 itself is connected to MICU2. The latter two have
been suggested as gatekeepers, although the regulatory mechanism of the mCU is not
fully understood. A current model suggests a sigmoidal response, whereas at low Ca2+

concentrations, MICU1 and MICU2 prevent calcium entry. Higher intermembrane Ca2+

concentrations cause a conformational change with the entry of large amounts of Ca2 [59].
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Mitochondrial Ca2+ flux in turn impacts pyruvate dehydrogenase, complex V and the
tricarboxylic acid cycle, as well as handling of Na+ and H+. Increased mitochondrial Ca2+

diverts protons away from the ATP synthase via activation of the Na+/Ca2+ and Na+/H+

exchanger. This potentially uncouples respiration from ATP production as complex V
switches to reverse mode operation to extrude H+ [60].

Figure 2. Molecular mechanisms of ischemia/reperfusion injury and cardioprotection acting onto the mitochondria. Diverse
intracellular signaling pathways including the RISK (Erk1/2, Akt) and SAFE pathways (Jak) target mitochondrial functions.
The centerpiece of cardioprotection is the preservation of mitochondrial respiratory function verhindern massive reactive
oxygen species (ROS) production, Ca2+ overload, and subsequent opening of the mitochondrial permeability transition pore
(mPT). Abbreviations: Akt = protein kinase B; Cx43 = connexin 43; CypD = cyclophilin D; Erk1/2 = extracellular regulated
kinase 1 and 2; GSK3β = glycogen synthase kinase 3β; IMM = inner mitochondrial membrane; Jak = Janus-activated kinase;
OMM = outer mitochondrial membrane; NO = nitric oxide; PKCε = protein kinase Cε; RISK = reperfusion injury salvage
kinase; SAFE = survival activating factor enhancement; STAT3 = signal transducer and activator of transcription 3.

5. Mitochondrial Mechanisms of Cell Death

Cell death is the irreversible degeneration of vital cellular functions with a concomi-
tant disintegration of cellular membranes. A number of molecular mechanisms can be
distinguished including regulated or programmed cell death, overall leading to an apop-
totic or necrotic phenotype. In 2018, the Nomenclature Committee on Cell Death (NCCD)
defined guidelines for the definition and interpretation of different types of cell death [61].
Besides apoptosis and necrosis, pyroptosis, and ferroptosis (resulting from lipid peroxi-
dation after mitochondrial ROS release), have been described as mitochondria dependent
mechanisms of cell death (Figure 3). Opening of the mitochondrial permeability transition
pore (mPTP) is considered a hallmark at the crossroads of cell death and survival, whereas
many cardioprotective pathways converge to inhibit its opening.

The mPTP acts as a non-selective channel for ions and solutes up to 1.5 kDa across
the inner mitochondrial membrane. Opening is not only elicited by increased Ca2+ and
ROS, but modulated via cyclophilin D, free fatty acids, or a diminished transmembrane
potential. The molecular identity—as well as the gating mechanisms of the mPTP—are still
controversial. Evidence suggests that the mPTP is actually formed by the F1F0-ATPase,
i.e., complex V of the respiratory chain [62]. It has been proposed that the C-terminal
subunit e of the F1F0-ATPase causes conformational changes transforming the c-ring into
an ion conductive pore as a “death finger” [63]. In consequence mitochondrial swelling,
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membrane depolarization, uncoupling of oxidative phosphorylation, and ATP depletion
leads to cell death [64]. Moreover, if the F1F0-ATPase is the mPTP, this represents a
direct link of mitochondrial respiratory chain function and cell death. Hence, the passive,
straightforward, mechanism of preserving mitochondrial respiratory chain function likely
represents the most important step in inhibiting mPTP opening. However, the view that
the F1F0-ATPase is the pore forming component of the mPTP has been challenged as the
absence of the c-subunit did not abrogate mitochondrial permeability transition [65].

Figure 3. Mechanisms of cell death after myocardial I/R injury. After hypoxia, myocardial cell death is primarily driven
by necrosis subsequent to the loss of mitochondrial function and opening of the mitochondrial permeability transition
pore (mPTP). Necrosis also exists as a regulated form of cell death, i.e., necroptosis. Necroptosis is initiated via the
activation of death receptors (e.g., tumor necrosis factor receptor 1 (TNFR1). Signaling commences via receptor-interacting
protein 1 (RIP1), which mediates the activation of receptor-interacting protein 3 (RIP3) and mixed lineage kinase domain-
like (MLKL) alternative activation of calcium-calmodulin-kinase II (CaMKII) by the RIP3/RIP1/MLKL/FADD complex
induces mitochondrial dysfunction and membrane permeabilization via cyclophilin D, VDAC, and ANT. Pyroptosis is
associated with inflammation subsequent to the ischemic insult and mediated via the NLRP3-inflammasome, caspase-1,
and enhanced cytokine production. Mitochondria related apoptosis can also be elicited via mechanisms culminating in
the release of cytochrome c and the formation of the apoptosome. Pharmacologic cardioprotection has been shown to act
on all forms of cell death by maintaining mitochondrial function, reducing ROS production, as well as direct inhibition
of apoptotic signaling or the activation of pro-survival signaling pathways, respectively. Abbreviations: ANT = adenine
nucleotide translocator; Apaf-1 = apoptotic protease activating factor 1; Bax = Bcl-2-associated X protein; CaMKII = calcium-
calmodulin-kinase II; DAMPs = damage-associated molecular patterns; FADD = Fas-associated protein with death domain;
IL-1β = interleukin-1β; IL-18 = interleukin-18; MLKL = mixed lineage kinase domain-like; NLRP3 = NOD-, LRR-, and
pyrin domain-containing protein 3; RIP1 = receptor-interacting protein 1; TNFα = tumor necrosis factor α; TNFR1 = tumor
necrosis factor receptor 1; TRAF2 = tumor necrosis factor receptor-associated factor 2; TRADD = tumor necrosis factor
receptor type 1-associated DEATH domain; VDAC = voltage-dependent anion-selective channel.

Inhibition of mPTP opening has been a target of pharmacologic cardioprotection for
a long time [66], although some of the earlier findings might need to be revisited in light
of progress on the identity of the mPTP. Volatile anesthetics [67], noble gases [68], and
opioids [69,70] have been associated with mPTP inhibition during pre- and postcondition-
ing, whereas the activation of the RISK pathway and downstream activation of eNOS,
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GSK-3β, Hexokinase II, PKC-ε, and the mitochondrial ATP-dependent potassium channel
(mitoKATP) are involved [71]. Desflurane exposure promotes mitochondrial resistance to
Ca2+ induced mitochondrial Ca2+ release [72], which is linked to the mitochondrial translo-
cation of PKCε [73]. STAT3 knockout mice tolerated less Ca2+ until mPTP opening [74].
Moreover, cyclosporin A is a known inhibitor of mPTP opening [75] targeting cyclophilin
D, which regulates mPTP activity [76].

5.1. Necrosis

The NCCD guidelines include mitochondrial permeability transition-driven necrosis
and necroptosis. As the mPTP plays a major role in myocardial infarction and cardiac
conditioning, this type of cell death can be considered the major mechanism of cell de-
struction subsequent to the disruption of respiratory chain functionality. Hence, opening
of the mPTP is directly linked to cell death in metabolically defunct and energy deprived
cardiac myocytes.

Necroptosis is a regulated form of necrotic cell death utilizing defined signaling
pathways. Necroptosis is triggered via the activation of death receptors, often linked to
inflammatory mediators, such as TNF-α or interleukines. Tumor necrosis factor receptor 1
(TNFR1) and subsequent signaling via receptor-interacting protein 1 (RIP1) mediates the
activation of receptor-interacting protein 3 (RIP3) and mixed lineage kinase domain-like
(MLKL). These altogether facilitate disruption of the cell membrane. Alternative activa-
tion of calcium-calmodulin-kinase II (CaMKII) by the RIP3/RIP1/MLKL/Fas-associated
protein with death domain (FADD) complex induces mitochondrial dysfunction and
membrane permeabilization via cyclophilin D, voltage-dependent anion-selective channel
(VDAC), and adenine nucleotide translocator (ANT) [77,78]. The participation of necrop-
tosis in myocardial cardioprotection was shown in perfused guinea pig hearts utilizing
necrostatin-1 as necroptosis inhibitor [79]. Moreover, melatonin ameliorated TNF-α levels
and suppressed RIP3-MLKL/CaMKII signaling when given just prior to myocardial reper-
fusion [80]. Ischemic preconditioning inhibited the formation of MLKL oligomers and their
subsequent translocation within the plasma membrane, although no upstream changes in
RIP1/RIP3 expression or RIP3 phosphorylation could be found [81]. RIP1 and RIP3 also
seem to mediate myocardial remodeling. Necrostatin-1 inhibited RIP1-dependent necrosis
in murine hearts, leading to infarct size reduction and preservation of cardiac function in
magnetic resonance imaging (MRI) scans 28 days after I/R injury [82]. In a large animal
model of I/R injury, necrostatin-1 administration prior to reperfusion significantly reduced
ischemic injury and preserved left ventricular function [83]. RIP3 knockout mice had a
better ejection fraction and less hypertrophy in MRI scans 30 days after myocardial I/R
injury [84]. All of these findings are likely related to a diminished inflammatory response
as recently shown for dexmedetomidine induced preconditioning [85,86].

5.2. Apoptosis

Apoptosis only contributes a small amount of myocardial damage in the acute phase
of myocardial I/R injury. In human autopsies, approximately 1–12% of cardiac myocytes
were apoptotic in the border zone and only 0.04% in central infarction areas [87,88]. The
number of apoptotic cells likely increases within the first 48 h and the detrimental impact
of apoptosis [89] is more pronounced in the subacute phase of myocardial infarction. A
four-fold increased rate of apoptosis was shown in patients dying from early symptomatic
post-infarction heart failure due to left ventricular remodeling [90].

Molecular mechanisms of apoptosis are classified into death-receptor mediated (extrin-
sic) apoptosis and mitochondria mediated (intrinsic) apoptosis. Death receptor mediated
apoptosis is activated after, e.g., the binding of apoptosis-stimulating fragment (Fas), TNF-
α, or TNF-related apoptosis stimulating ligand (TRAIL). Death receptor activation leads
to caspase-8 activation via complexes including RIPK1, FADD, and TRADD, followed
by the cleavage and activation of caspases-3 and -7. This results in nuclear as well as
membrane apoptotic changes. Hence, to some degree death receptor signaling overlaps
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with necroptosis signaling, although with different downstream effectors. Moreover, the
activation of caspases 3 and 7 is shared by extrinsic and intrinsic apoptosis as common
end-effectors. The intrinsic, mitochondria-mediated pathway is triggered by a number
of stimuli including hypoxia/reoxygenation, ischemia/reperfusion, oxidative stress, ni-
trosative stress, proteotoxic stress, DNA damage, and increased Ca2+ concentration. These
stimuli trigger activator BH3 and downstream Bcl-2-interacting domain death agonist
(BID), Bcl-2-interacting mediator of cell death (BIM), as well as p53 upregulated modulator
of apoptosis (PUMA), which conformationally activate Bcl-2-associated X protein (Bax)
and Bcl-2 homologous antagonist killer (Bak). Bax and Bak subsequently act within the
outer mitochondrial membrane. Permeabilization of the outer mitochondrial membrane
is the pivotal event whereby signaling molecules (including cytochrome c release) gain
access to the cytosol to activate common caspase end-effectors via the apoptosome and
caspase-9 [91] (Figure 3).

As apoptosis is a regulated process, cell-death actions are opposed by pro-survival
Bcl-2 proteins inhibiting Bax and Bak activation and this balance can be modified by
cardioprotective signaling. Pharmacologic strategies inhibiting apoptotic cell death include
opioids, volatile anesthetics, adenosine [92], noble gases, propofol and dexmedetomidine,
as well as phosphodiesterase inhibitors [93,94]. All of these are routinely used in clinical
practice. Opioids or d and k-opioid receptor activation [95,96] inhibit elevated activities
of caspase-3 and -9, as well as increase the Bcl-2/Bax protein expression ratio during
myocardial I/R injury [97]. Akt phosphorylation, Bcl-2, and phospho-Bad expression
increased after isoflurane preconditioning, whereas Bax expression decreased [98]; findings
that might not translate well into the aged heart [99]. In a porcine right ventricular infarction
model xenon preconditioning was accompanied by greater numbers of caspase-3-positive
cardiac myocyte compared to isoflurane during early I/R injury [100]. However, in rats the
noble gas was superior to isoflurane in limiting adverse cardiac remodeling and contractile
dysfunction after 28 days, whereas similar expression levels of caspase-3 were found. In
the same study, myocardial infarct sizes at day 28 did not differ between controls (ketamine
anesthesia) and xenon or isoflurane anesthesia [101], emphasizing the importance of
prolonged experimental models in order to achieve more translatable results. Propofol
also exhibited antiapoptotic effects in I/R hearts, increasing the Bcl-2/Bax expression ratio
and decreasing caspase-3 activity [102]. On the other hand, the intravenous anesthetic
has been shown to induce cancer cell apoptosis [103,104], indicating that its effects can be
pro- and antiapoptotic depending on the cellular microenvironment. Dexmedetomidine
has recently received increasing attention. The α2-adrenoceptor agonist activates pro-
survival kinases [105] and inhibits apoptosis via the PI3K/Akt pathway [106], as well
as via downregulation of hypoxia-induced factor (HIF)-1α [107]. In neonatal rat cardiac
myocytes dexmedetomidine dose-dependently increased the mitochondrial membrane
potential, as well as the Bcl-2/Bax protein expression ratio [108]. Further results in rats
indicate anti-apoptotic effects of dexmedetomidine via inhibition of high mobility group
box 1 (HMGB1) expression linked to cholinergic anti-inflammatory actions during I/R
injury. HMGB1 connects the cholinergic pathway with the pro-inflammatory cascade and
concomitantly reduced IL-6 and TNF-α production could alleviate various forms of cell
death via modified death-receptor signaling. These findings were related to an improved
echocardiographic function after 4 weeks [109].

5.3. Pyroptosis

Pyroptosis is linked to inflammation and activation of nuclear factor-κB (NF-κB) via
damage associated molecular patterns (DAMPs), TNF-α, and interleukin (IL)-1β. This
leads to the assembly and upregulation of NOD-, LRR-, and pyrin domain-containing
protein 3 (NLRP3) inflammasomes in cardiac fibroblasts after 6–12 h and up to days
of reperfusion. The NLRP3 inflammasome is part of the innate immune response and
release of oxidized mtDNA fragments from damaged mitochondria additionally links
it to apoptosis [110]. Subsequent to NLRP3 inflammasome activation, caspase-1 cleaves
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gasdermin D and pro-IL-1β into gasdermin D-NT and IL-1β. In consequence gasdermin D
oligomers locate to the plasma membrane forming pores through which IL-1β leaves the
cell further triggering inflammatory cell infiltration and cytokine production. A detailed
review can be found in [111]. Pyroptosis promotes adverse cardiac remodeling [112,113]
and pharmacological inhibition of NLRP3 inflammasome assembly decreased myocardial
I/R injury in the murine heart [114]. In pigs, NLRP3-inflammasome inhibition reduced
myocardial neutrophil influx and IL-1β levels accompanied by a reduced infarct size and a
10% improvement in left ventricular ejection fraction after 7 days [115]. Interestingly, the
NLRP3-inflammasome has also been implicated as part of the cardioprotective response.
The complete absence of NLRP3 in NLRP3−/− mice increased myocardial infarct size and
abolished cardiac preconditioning with a toll-like receptor-2 agonist via the absence of
Akt phosphorylation [116]. Moreover, ischemic preconditioning was not possible in hearts
isolated from NLRP3−/− mice [117]. It is important to note that the latter studies only
investigated acute ischemic injury, whereas the main effects of pyroptosis are more likely to
come into play within later timepoints up to days after the ischemic insult and thus might
set the tone for the outcome of myocardial remodeling and heart failure development.

6. Mitochondrial Dynamics

Mitochondria contain their own mechanisms of fusion and fission (division), whereas
these mitochondrial dynamics act as quality control in cellular ageing, release of pro-
apoptotic factors, and mitophagy [118]. Mitochondrial fission leads to the division of
a single mitochondrion into two mitochondria in a coordinated process with the help
of fission proteins. Mitochondrial fusion is the contrary coordinated by fusion proteins.
Moreover, fusion proteins exert additional non-fusion actions. Fusion protein optic atrophy
1 (OPA1) alleviates mitochondrial respiration via the stabilization of mitochondrial cristae,
favoring ATP synthase oligomerization [119]. These non-fusion actions of both OPA1
and the fusion protein Mfn2 seem to contribute to cardioprotection, whereas the exact
role of mitochondrial fusion in cardioprotection remains unclear [120]. Myocardial I/R
injury induces mitochondrial fission and pharmacological inhibition of the fission protein
dynamin-related protein 1 (Drp1) with mitochondrial division inhibitor 1 (mdivi-1) reduced
myocardial infarct size in the murine heart [121]. Furthermore, the administration of mdivi-
1 exerted cardioprotection at the beginning of reperfusion, i.e., postconditioning [122].
In neonatal rat cardiac myocytes sevoflurane induced postconditioning was restored
under “diabetic” conditions via concomitant mdivi-1 preconditioning [123]. Nevertheless,
translation into humans may prove difficult as no beneficial effects of mdivi-1 were found
in a large animal postconditioning model [124] and chronic or prolonged inhibition of
mitochondrial fission leads to aggravated I/R injury and cardiomyopathy [125].

Mitochondrial fission is inseparably connected to mitophagy as a quality control instru-
ment. A “classic” pathway leading to mitophagy is canonical PINK-Parkin signaling. High
levels of damage-generated reactive oxygen species (ROS) and ATP depletion-mediated
AMPK activation suppress mTOR subsequently priming damaged mitochondria to Parkin
dependent or Parkin independent cleavage. In Parkin dependent mitophagy, PINK1
acts as the upstream regulator. PINK1 identifies defective mitochondria, whereas Parkin
translocates to the mitochondrial surface and ubiquitylates numerous outer mitochondrial
membrane (OMM) proteins. The ubiquitylated proteins recruit other proteins to initi-
ate mitophagy [126,127]. Defective and tagged mitochondria are subsequently engulfed
in double-membraned autophagosomes that fuse with lysosomes allowing hydrolytic
degradation [128]. Myocardial I/R injury leads to pronounced mitochondrial damage
and it is not surprising that these quality control mechanisms are activated and indis-
pensable to maintain mitochondrial homeostasis. Pharmacological preconditioning with
simvastatin was shown to trigger mitophagy via the PINK-Parkin pathway whereas the
activation of Parkin was indispensable for cardioprotection [129]. Furthermore, although
Parkin−/− mice display normal cardiac and mitochondrial function, they are characterized
by disorganized mitochondrial networks and significantly smaller mitochondria. Adap-
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tation to stress is impeded and they are much more prone to myocardial infarction when
compared to wild type mice [130]. Moreover, myocardial infarct size was increased in
PINK1−/− hearts compared to PINK1+/+ hearts [131]. Besides the PINK-Parkin pathway
a novel mitophagy unc-51 like autophagy activating kinase (Ulk1)/ras-related protein 9
(Rab9)/RIP1/dynamin related protein 1(Drp1) pathway has recently received increasing
attention during myocardial I/R injury. This alternate pathway mediates mitophagy via
Rab9-associated autophagosomes and knocking out Rab9 exacerbated myocardial ischemic
injury [132].

7. Mitochondrial Mechanisms of Regeneration

Mitochondrial biogenesis is an integral part of mitochondrial homeostasis as a process
of self-regeneration in which new mitochondria are generated from those existing. Mito-
chondrial biogenesis can increase mitochondrial mass and helps to adapt to cellular energy
demands. Mitochondrial biogenesis is mainly regulated on a transcriptional level via
peroxisome proliferator-activated receptor co-activator 1 alpha (PGC-1α) initiating nuclear
transcription factors such as the nuclear respiratory factor-1(NRF-1), NRF-2, and estrogen-
related receptor-α (ERR-α). Transcription of both nuclear-encoded and mitochondria
encoded proteins is augmented, whereas an increased expression of transcription factor A
(TFAM) leads to the novel production of proteins encoded by mtDNA [133]. Mitochondrial
biogenesis increases the capacity for oxidative phosphorylation, decreases oxidative stress
and helps to alleviate mitochondrial dysfunction. The β2 adrenoceptor agonist formoterol
was shown to activate the Gβγ-Akt-eNOS pathway, subsequently increasing PGC-1α
mRNA expression. This is interesting, as activation of the β2 adrenoceptor has been shown
to elicit cardiac conditioning as well [134,135]. In a cell model of hypoxia/reoxygenation
acetylcholine exerted protective effects via phosphorylation of AMP-activated protein
kinase (AMPK) and downstream activation of PGC-1α, enhancing ATP synthesis, mito-
chondrial membrane potential, and activities of mitochondrial complexes. These findings
were associated with improved cell viability [136]. Similar results could be shown for mela-
tonin via AMPK-PGC-1α-sirutin 3 (SIRT3) signaling [137]. SIRT3 is a NAD+-dependent
protein deacetylase participating in the control of energy demand during stress conditions
through the deacetylation and acetylation of mitochondrial enzymes [138]. However, the
role of mitochondrial biogenesis in acute pharmacologic protection against I/R injury has
not been comprehensively characterized. It is likely that a bigger role for mitochondrial
biogenesis might lie in the initiation and progression of myocardial remodeling, as well as
preventive measures invigorating the heart against subsequent ischemic insults, such as
exercise training [139].

8. Conclusions, Clinical Translation, and Future Perspectives

Research on cardioprotective strategies and molecular signaling has provided nu-
merous insights into myocardial function as well as mitochondrial mechanisms of cell
death and survival. It has become clear that an interacting network spanning all cellular
functions and constituents confers increased intrinsic resistance against ischemic injury.
Single ‘golden bullet’ end-effectors cannot be identified, whereas a number of drugs already
utilized in daily clinical practice are very well capable of eliciting this complex cardiopro-
tective response. Mitochondria are the final frontier at the crossroads of cell death and
survival, in particular via the preservation of mitochondrial respiratory chain functionality
and aerobic ATP-production. In this regard, respiratory chain dysfunction is linked to
the opening of the mPTP and the subsequent initiation of necrotic or apoptotic cell death.
The modulation and salvation of mitochondrial respiratory function could be useful in
limiting inflammation induced necrotic and apoptotic cell death in the acute and subacute
phase of I/R injury. The latter particularly exerting beneficial effects onto myocardial
remodeling. Selected studies on pivotal mitochondrial mechanisms of myocardial I/R
injury and cardiac conditioning are summed up in Table 1.
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Table 1. Selected studies related to mitochondrial mechanisms of cardiac conditioning.

Authors Model Protocol Identified Mechanism

Hanley, P.J. et al. 2002 [44] Intact ventricular myocytes of guineapigs Analyses of electron transport chain activity. Halothane, isoflurane, and sevoflurane inhibit complex I of
the electron transport chain.

Novalija, E. et al. 2003 [48] Isolated guinea pig hearts Sevoflurane preconditioning prior to
ischemia reperfusion.

Anesthetic preconditioning preserved mitochondrial ATP
production and attenuated mitochondrial ROS overload.

Baines, C.P. et al. 2005 [76] Ppif null mice and cyclophilin D
transgenic mice Ischemia and reperfusion (24 h). Cyclophilin D is required for Ca2+- and oxidative

damage-induced cell death.

Krolikowski, J.G. et al. 2005 [67] Male New Zealand white rabbits Isoflurane pre- and postconditioning, left
coronary artery occlusion and reperfusion.

Isoflurane conditioning inhibits mitochondrial
permeability transition.

Chen, Q. et al. 2006 [47] Isolated Fischer-344 rat hearts Amobarbital preconditioning prior to global
ischemia and reperfusion.

Mitochondrial damage occurs mainly during ischemia.
Preserved mitochondrial respiration during reperfusion
attenuates ROS release and decreases myocardial
infarct size.

Ljubkovic, M. et al. 2007 [45] Isolated rat ventricular myocytes
Analysis of mitochondrial membrane
potential, redox state and oxygen
consumption after isoflurane preconditioning.

Isoflurane preconditioning elicits partial mitochondrial
uncoupling and reduces mitochondrial Ca2+ uptake.

Feng, J. et al. 2008 [43] Isolated male adult Wistar rat hearts
Isoflurane pre- and postconditioning with
global no-flow ischemia followed by
reperfusion.

Identification of 26 potential phosphorylation sites in 19
mitochondrial proteins. Detection of a novel
phosphorylation site in adenine nucleotide translocator-1
(ANT1).

Pravdic, D. et al. 2009 [73] Isolated rat ventricular myocytes In-vivo isoflurane preconditioning in the
absence or presence of chelerythrine.

Isoflurane conditioning delays mPTP opening dependent
on PKCε activation.

Stewart, S.; Lesnefsky, E.;
Chen, Q. 2009 [53] Isolated Fischer-344 rat hearts Amobarbital postconditioning within global

ischemia and reperfusion.

Blockade of the proximal electron transport chain at
respiratory complex I attenuated maximal mitochondrial
ROS generation during reperfusion.

Boengler, K. et al. 2010 [74] Female STAT3-KO mice
Left coronary artery occlusion and
reperfusion, administration of cyclosporine A
prior to reperfusion.

STAT3-KO mice exhibited decreased ADP-stimulated
mitochondrial respiration accompanied by increased
susceptibility to mPTP opening.

Sedlic, F. et al. 2010 [46] Isolated rat ventricular myocytes Cardiomyocytes exposed to H2O2- after
isoflurane preconditioning.

Isoflurane partially decreases mitochondrial membrane
potential (∆Ψm), attenuating ROS production, decreasing
Ca2+ uptake, and preventing mPTP opening.
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Table 1. Cont.

Authors Model Protocol Identified Mechanism

Bienengraeber, M. et al. 2013 [42] Male adult Wistar rats Isoflurane preconditioning with left coronary
artery (LCA) ligation and reperfusion.

14 mitochondrial proteins were up- or downregulated in
the conditioning response, the majority belonging to
complexes of the electron transport chain.

Lotz, C. et al. 2015 [49] Male adult mice Isoflurane preconditioning prior to ischemia
and reperfusion (second window).

Isoflurane conditioning preserved the activity of
respiratory complex III, stabilized mitochondrial
supercomplexes III/IV, decreased malondialdehyde
formation, and diminished susceptibility to
Ca2+ induced swelling.

Szczepanek, K. et al. 2015 [57]
Transgenic mice overexpressing
mitochondria-targeted, transcriptionally
inactive STAT3 (MLS-STAT3E mice)

Global ischemia and reperfusion in isolated
hearts. Survival analysis after left coronary
artery occlusion followed reperfusion (second
window).

Partial and persistent blockade of complex I in
MLS-STAT3E mice decreases cardiac injury during
reperfusion with concomitantly increased survival.

Zhang, G. et al. 2018 [56] Isolated rat hearts ZnCl2 postconditioning within regional
ischemia and reperfusion.

ZnCl2 prevented ∆Ψm dissipation and mitochondrial ROS
generation at reperfusion by increasing mitochondrial
STAT3 phosphorylation at Ser727 via ERK.

Lambert, J.P. et al. 2019 [17] Tamoxifen-inducible MCUB mutant mice;
MCUB knockout cell line (MCUB−/−)

Left coronary artery (LCA) ligation with and
without reperfusion.

MCUB is incorporated into the mtCU following ischemic
injury limiting mitochondrial Ca2+ overload and cell loss
during chronic stress.

Urbani, A. et al. 2019 [62] F-ATP synthase purified from bovine heart
mitochondria

Characterization of F-ATP synthase channel
activity after reconstitution and patch clamp
experiments.

Ca2+ can transform the energy-conserving F-ATP synthase
into an energy-dissipating device, i.e., the mPTP.

Lotz, C.; Stumpner, J.;
Smul, T.M. 2020 [50] Male New Zealand white rabbits

Sevoflurane compared to propofol anesthesia.
Left coronary artery occlusion
and reperfusion.

Sevoflurane anesthesia preserved the activities of
respiratory complexes I and IV, whereas a higher portion of
complex I was in its inactive (dormant) form.



Int. J. Mol. Sci. 2021, 22, 3224 14 of 21

The challenge of translating cardiac conditioning into improved clinical outcomes
remains unresolved. Small clinical trials showed positive results with volatile anesthetics
with decreased troponin I [140,141], as well as brain natriuretic peptide [142] release in
coronary artery bypass surgery (CABG). A meta-analysis of six trials using sevoflurane
preconditioning corroborated a reduction in postoperative troponin levels after on-pump
CABG [143]. In 414 patients, the use of sevoflurane significantly reduced one-year mortality
compared to propofol anesthesia [144]. However, in a meta-analysis including fifteen trials
with a total of 1155 study patients, beneficial effects were attenuated when combining
isoflurane anesthesia and RIPC and major prospective randomized controlled trials with
RIPC have been disappointing. Both the RIPHeart trial [6] and the ERICCA study [145] did
not show survival benefits among patients undergoing cardiac surgery in 1385 or 1612 pa-
tients, respectively. While both studies were criticized for aspects of patient selection and
study design, preceding limitations at the preclinical level concomitantly fail to close the
gap between bench and bedside. Preclinical studies almost exclusively utilize healthy
young animals without co-medications, whereas the clinical population mainly consists of
comorbid older patients. For example, it is known that arterial hypertension, advanced
age [146], or diabetes mellitus abolish or dampen the conditioning response [147]. Never-
theless, an in-depth analysis of the issues and challenges relating to clinical translation is
beyond the scope of the current review. An excellent analysis and suggestions for future
research can be found in [148,149].

As translation of the acute cardioprotective response into clinical practice has been
cumbersome and, as many drugs used in daily routine supposably already confer cardio-
protection, additional benefits from single-use pharmacologic myocardial conditioning are
likely futile. Moreover, preclinical studies utilizing older and comorbid animals are neces-
sary, as well as clinical phase II studies elucidating optimal dose and timing. Moreover,
patient populations beyond CABG surgery need to be elucidated. Hence, cardioprotective
research needs to find ways to close the gap between bench and bedside. Furthermore,
the field needs to find ways to sustain the cardioprotective response during myocardial
remodeling and prohibit dysfunctional remodeling within weeks or months after I/R injury.
The respective long-term conditioning protocols, molecular and pharmacologic targets
preserving mitochondrial respiration, as well as modifying cell death mechanisms need to
be elucidated. In this regard, it is important to remember that the goal not only consists
of improved long-term survival, but also increased quality of life through ameliorated
cardiac function.
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