Metamorphose-Entwicklung des Spessart-Kristallins, mitteleuropäische Varisziden: Phasenpetrologische, mineralchemische und geochemische Untersuchungen an Metapeliten

Inaugural-Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Philosophischen Fakultät I der Bayerischen Julius-Maximilians-Universität Würzburg

vorgelegt von

Isabella Marx aus Montabaur

Würzburg 2008

Eingereicht am: 22. Juli 2008

Gutachter: Prof. Dr. Thomas Will
Gutachter: Prof. Dr. Reiner Klemd
der Dissertation

 Prüfer: Prof. Dr. Thomas Will
Prüfer: Prof. Dr. Herbert Voßmerbäumer der mündlichen Prüfung

Tag der mündlichen Prüfung: 17. Dezember 2008 Doktorurkunde ausgehändigt am: in memoriam Dr.-Ing. Günther Marx

Inhaltsverzeichnis

Zusan	Lusammenfassung		
1. Ein	leitung und Zielsetzung	9	
2. Geo	ographische Lage und geologischer Rahmen des Spessart-Kristallins	. 11	
2.1	Geodynamische und paläogeographische Entwicklung der Varisziden	.11	
2.2	Gliederung der Varisziden Mitteleuropas und die Stellung des Spessart-Kristallins	. 13	
2.3	Lithostratigraphische Gliederung der Gesteinsserien des Spessart-Kristallins	. 21	
2.4	Kenntnisstand zur Metamorphose-Entwicklung des Spessart-Kristallins	. 25	
2.5	Bisherige Vorstellungen zur geotektonischen Entwicklung des Spessart-Kristallins	. 29	
3. Peti	rographie	. 31	
3.1	Geländearbeit und Probennahme	. 31	
3.2	Petrographische Beschreibung der verschiedenen lithostratigraphischen Einheiten	. 31	
3.2.1	Mömbris-Formation	. 33	
	3.2.1.1 Typ I des Staurolith-Glimmerschiefers	. 37	
	3.2.1.2 Typ II des Staurolith-Glimmerschiefers	.41	
	3.2.1.3 Beschreibung der Minerale im Dünnschliff	.45	
3.2.2	Geiselbach-Formation	. 53	
3.2.3	Alzenau-Formation	. 57	
3.2.4	Elterhof-Formation	. 59	
4. Mir	neralchemie	. 63	
4.1	Granat	. 63	
4.2	Staurolith	. 79	
4.3	Biotit	. 82	
4.4	Hellglimmer	. 85	
4.5	Chlorit	. 88	
4.6	Plagioklas	. 89	
4.7	Aluminiumsilicate	. 93	
4.8	Opakminerale	. 93	

5. Geochemie		
5.1	Allgemeine geochemische Charakteristik	
5.2	Sedimentäre Edukte der Metamorphite	103
5.3	Ausgangsmaterial der Sedimente und Geotektonische Position	106
6. Pha Gru	asenpetrologie, P-T-Pseudoschnitte und Geothermobarometrie: andlagen und Methodik	113
6.1	P-T-Pseudoschnitte	113
6.2	Die Modellsysteme für Metapelite KFMASH und KMnFMASH und der Einfluß von Systemkomponenten	115
6.3	Methodische Hinweise zu den P-T-Pseudoschnitten	119
6.4	Konventionelle Geothermobarometrie und intern-konsistente Datensätze	121
6.4.1	Verwendete Geothermometer und Geobarometer	
6.4.2	Intern-konsistente thermodynamische Datensätze	
7. Met	tamorphose-Entwicklung	127
7.1	Ergebnisse der phasenpetrologischen Untersuchungen: P-T-Pseudoschnitte, konventionelle Geothermobarometrie und Berechnungen mittels intern-konsistenter Datensätze	127
7.1.1	Mömbris-Formation	128
	7.1.1.1 Typ I des Staurolith-Glimmerschiefers 7.1.1.2 Typ II des Staurolith-Glimmerschiefers	
7.1.2	Geiselbach-Formation	171
7.1.3	Alzenau-Formation und Elterhof-Formation	173
7.2	Synthese der Ergebnisse und Diskussion	174
8. Das	s Spessart-Kristallin innerhalb der Varisziden Mitteleuropas	185
9. Lite	eraturverzeichnis	195

Danksagung

Lebenslauf

Anhang

Abbildungsverzeichnis

Abb. 2.1:	Paläogeographische Entwicklung aus FRISCH & MESCHEDE (2005)	14
Abb. 2.2:	Gliederung des Orogens der mitteleuropäischen Varisziden aus FRISCH & MESCHEDE (2005)	. 15
Abb. 2.3:	Gliederung der mitteleuropäischen Varisziden nach DALLMEYER et al. (1995)	16
Abb. 2.4:	Entwicklung im östlichen Teil der Mitteldeutschen Kristallinschwelle mit den wesentlichen magmatischen Ereignissen aus ANTHES & REISCHMANN (2001)	. 19
Abb. 2.5:	Übersichtskarte zur geodynamischen Situation der mitteleuropäischen Varisziden, aus ONCKEN (1997)	. 20
Abb. 2.6:	Übersichtskarte des Spessart-Kristallins nach OKRUSCH & WEBER (1996)	. 22
Abb. 2.7:	P-T-Diagramm für die Metamorphose-Entwicklung des Spessart-Kristallins nach OKRUSCH & WEBER (1996)	.28
Abb. 3.1:	Übersichtskarte des Spessart-Kristallins mit den Fundpunkten der wichtigsten Proben, verändert nach OKRUSCH & WEBER (1996)	. 32
Abb. 3.2:	Gelände-Fotos der Mömbris-Formation	.34
Abb. 3.3 - 3	3.4: Mikrofotos IMM 039	. 38
Abb. 3.5 - 3	3.8: Mikrofotos IMM 039, IMM 061, IMM 021, IMM 044	. 39
Abb. 3.9 - 3	3.11: Mikrofotos IMM 063, IMM 089	.43
Abb. 3.12:	Mikrofoto IMM 063	.44
Abb. 3.13:	Gelände-Fotos der Geiselbach-Formation	. 53
Abb. 3.14 -	3.15: Mikrofotos IMG 009	.55
Abb. 3.16:	Mikrofoto IMG 043	.56
Abb. 3.17:	Gelände-Foto der Alzenau-Formation	.57
Abb. 3.18:	Mikrofoto IMA 016	57
Abb. 3.19 -	3.20: Mikrofotos IME 010, IME 046	.61

Fortsetzung Abbildungsverzeichnis

Abb. 4.1:	Zusammensetzung der Granat-Kristalle im Dreiecksdiagramm Almandin + Spessartin – Pyrop – Grossular
Abb. 4.2:	Zonierungsmuster verschiedener Granat-Kristalle
Abb. 4.3:	Korrelationsdiagramm MnO-Gehalt im Gesamtgestein vs. Spessartin-Gehalt im Granatkern
Abb. 4.4:	Durchschnittliche Zink-Gehalte in Staurolith vs. Zink-Gehalt im Gesamtgestein 81
Abb. 4.5:	Darstellung der Biotit-Zusammensetzung im ternären Klassifikationsdiagramm nach FOSTER (1960)
Abb. 4.6:	Eisen-Magnesium-Verhältnis im Gesamtgestein vs. durchschnittliches Eisen-Magnesium-Verhältnis in Biotit
Abb. 4.7:	Klassifikations-Diagramm Paragonit – Celadonit – Muscovit für Hellglimmer nach SCHLIESTEDT (1980)
Abb. 4.8:	Klassifikationsschema für Chlorite nach HEY (1954)
Abb. 4.9:	Darstellung der Plagioklase im ternären Feldspatsystem
Abb. 5.1:	Darstellung der geochemischen Analysen im AFM-Diagramm
Abb. 5.2:	Darstellung der geochemischen Analysen im ACF-Diagramm
Abb. 5.3:	Klassifikations diagramm SiO ₂ /Al ₂ O ₃ vs. K ₂ O/Na ₂ O nach WIMMENAUER (1984). 105
Abb. 5.4:	Korrelationsdiagramm Al ₂ O ₃ vs. MgO nach ThÉLIN (1983) 106
Abb. 5.5:	Diskriminationsdiagramme nach ROSER & KORSCH (1988) 108
Abb. 5.6:	Diskriminationsdiagramm log K ₂ O/Na ₂ O vs. SiO ₂ nach ROSER & KORSCH (1986)109
Abb. 5.7:	Diskriminationsdiagramm nach BHATIA (1983)110
Abb. 5.8:	Diskriminationsdiagramm Th-Sc-Zr/10 nach BHATIA & CROOK (1986) 111

Fortsetzung Abbildungsverzeichnis

Abb. 7.1:	Petrogenetisches Netz im erweiterten metapelitischen Modellsystem KMnFMASH (+ $q + mu + H_2O$) von WILL (1998a)	129
Abb. 7.2:	Petrogenetisches Netz im metapelitischen Modellsystem KFMASH (+ $q + H_2O$) von WILL (pers. Mitteilung)	130
Abb. 7.3:	Petrogenetisches Netz im erweiterten metapelitischen Modellsystem KMnFMASH (+ $q + H_2O$) von WILL (pers. Mitteilung)	131
Abb. 7.4:	Darstellung der peakmetamorphen Mineralparagenesen der Staurolith-Glimmerschiefer, Typ I, im AFM-Diagramm	132
Abb. 7.5:	T-X-Schnitt im metapelitischen Modellsystem KFMASH (+ $bi + mu + q + H_2O$) nach WILL (1998b)	134
Abb. 7.6:	P-T-Pseudoschnitt IMM 039	136
Abb. 7.7:	Mikrofoto IMM 039	137
Abb. 7.8:	Ergebnisse der konventionellen Geothermobarometrie für IMM 039	139
Abb. 7.9:	P-T-Pseudoschnitt IMM 051	141
Abb. 7.10:	Ergebnisse der Granat-Biotit-Thermometer für IMM 051 und IMM 056	
Abb. 7.11:	P-T-Pseudoschnitt IMM 021	145
Abb. 7.12:	Mikrofoto IMM 021	146
Abb. 7.13:	Ergebnisse der Granat-Biotit-Thermometer für IMM 061 und IMM 044	151
Abb. 7.14:	Darstellung der peakmetamorphen Mineralparagenesen der Staurolith-Glimmerschiefer, Typ II, im AFM-Diagramm	154
Abb. 7.15:	T-X _{Fe} -Schnitt im System KMnFMASH nach MAHAR et al. (1997	155
Abb. 7.16:	T-X _{Mn} -Schnitt im Modellsystem KMnFMASH nach MAHAR et al. (1997)	156
Abb. 7.17:	P-T-Pseudoschnitt IMM 089	157
Abb. 7.18:	Mikrofotos IMM 089	159
Abb. 7.19:	Ergebnisse der Granat-Biotit-Thermometer für IMM 089 und SM 1063	161
Abb. 7.20:	P-T-Pseudoschnitt IMM 063	163
Abb. 7.21:	Mikrofoto IMM 063	164
Abb. 7.22:	P-T-Pseudoschnitt SM 1063	167
Abb. 7.23:	Mikrofotos SM 1063	168
Abb. 7.24:	Druck-Temperatur-Entwicklung für das Spessart-Kristallin in der zusammenfassenden Übersicht	182
Abb. 8. 1:	Geotektonisches Umfeld und Metamorphose-Entwicklung im	

 Druck-Temperatur-Diagramm nach SPEAR (1993), mit den ermittelten	
P-T-Pfaden für das Spessart-Kristallin	187

Tabellenverzeichnis

Tab. 4.1:	Variationsbreite der Werte für X_{Fe} und X_{Mn} in Granat für die einzelnen Proben	66
Tab. 4.2:	Veränderung der chemischen Zusammensetzung von Granat im Zonierungsmuster (a.)	72
Tab. 4.3:	Beispielhafte Veränderung der chemischen Zusammensetzung von Granat im Zonierungsmuster (b.)	73
Tab. 4.4:	Mittlere Magnesium-Eisen-Verteilung für die Proben des Staurolith-Glimmerschiefers	77
Tab. 4.5:	Vergleich der Eisen-Magnesium-Verhältnisse in Biotit-Kristallen verschiedener petrographischer Situationen	84
Tab. 5.1:	Vergleich der SiO ₂ -, Al ₂ O ₃ - und CaO-Gehalte in den Gesteinen der verschiedenen lithostratigraphischen Einheiten mit Vergleichswerten nach WEDEPOHL (1968), CLARKE (o.J.) sowie PETTIJOHN et al. (1973)	97
Tab. 5.2:	Mittlere Eisen-Magnesium-Verhältnisse der Gesteinsproben aus unterschiedlichen lithostratigraphischen Einheiten	.00
Tab. 5.3:	Mittlere MnO- und TiO ₂ -Gehalte der Gesteinsproben aus unterschiedlichen lithostratigraphischen Einheiten	.01
Tab. 7.1:	Übersicht der mit unterschiedlichen Methoden ermittelten Drucke und Temperaturen am Metamorphose-Höhepunkt für die verschiedenen Proben des Staurolith-Glimmerschiefers1	.70
Tab. 7.2:	Bedingungen am Metamorphose-Höhepunkt für die verschiedenen petrographischen Einheiten des Staurolith-Glimmerschiefers 1	78

Zusammenfassung

Im Rahmen der vorliegenden Arbeit wurden die Druck-Temperatur-Bildungsbedingungen metapelitischer Gesteine aus verschiedenen lithostratigraphischen Formationen des Spessart-Kristallins untersucht. Geologisch stellt das Spessart-Kristallin einen Teil der Mitteldeutschen Kristallinzone dar, die sich innerhalb des Orogens der mitteleuropäischen Varisziden am nördlichen Rand des Saxothuringikums erstreckt. Das wesentliche Ziel der Untersuchungen bestand darin, mittels phasenpetrologischer und geothermobarometrischer Methoden die Metamorphose-Entwicklung des Spessart-Kristallins zu rekonstruieren und in Beziehung zur geodynamischen Geschichte der Varisziden zu setzen.

Der Schwerpunkt der Arbeiten lag auf den Staurolith-Glimmerschiefern der Mömbris-Formation. Darüber hinaus wurden Gesteine der Geiselbach-, Alzenau- und Elterhof-Formation einbezogen. Als Grundlage für die Phasenpetrologie wurden petrographische, mineralchemische und geochemische Untersuchungen durchgeführt. In den Staurolith-Glimmerschiefern der Mömbris-Formation ist die metamorphe Mineralparagenese

Staurolith + Granat + Biotit + Muscovit ± Chlorit + Plagioklas + Quarz verwirklicht. In einem lokal begrenzten Bereich der Mömbris-Formation liegen Gesteine mit der peakmetamorphen Paragenese

Disthen/Sillimanit + Staurolith + Granat + Biotit + Muscovit + Plagioklas + Quarz vor. In der Geiselbach-Formation treten als fazieskritische Minerale Granat + Biotit ± Staurolith auf. Die bisher noch diskutierte Staurolith-Bildung erscheint also aufgrund der Metamorphose-Bedingungen möglich, die Abwesenheit dieses Minerals in weiten Teilen der Geiselbach-Formation ist vermutlich in der chemischen Zusammensetzung der Ausgangsgesteine begründet. In der Alzenau- und Elterhof-Formation repräsentiert das gemeinsame Vorliegen von Biotit und Granat die maximalen Metamorphosebedingungen. Prograde Metamophose-Zonen können im Spessart-Kristallin nicht kartiert werden.

Die Protolithe der untersuchten Metasedimente stellten vermutlich häufig saure bis intermediäre Magmatite dar, für die Geiselbach- und Elterhof-Formation wohl auch quarzreiche Sedimente. Die geochemischen Daten lassen für die Mömbris-, Alzenau- und Elterhof-Formation Grauwacken bis Pelite als sedimentäre Edukte der Metamorphite annehmen, die Gesteine der Geiselbach-Formation könnten auf Arkosen zurückgehen. Eine Ablagerung der sedimentären Edukte im Bereich eines Kontinentalen Inselbogens bis Aktiven Kontinentalrandes ist für die Mömbris- und Alzenau-Formation wahrscheinlich, für die Geiselbach- und Elterhof-Formation liegt kein eindeutiges Bild vor. Zur Abschätzung der Metamorphosebedingungen wurden verschiedene Phasendiagramme verwendet, die auf den metapelitischen Modellsystemen KMnFMASH (K₂O-MnO-FeO-MgO-Al₂O₃-SiO₂-H₂O) und KFMASH (K₂O-FeO-MgO-Al₂O₃-SiO₂-H₂O) basieren, insbesondere P-T-Pseudoschnitte und T-X-Schnitte. Weiterhin wurden konventionelle Geothermobarometer berechnet und Abschätzungen mittels intern-konsistenter thermodynamischer Datensätze vorgenommen. Die theoretischen Grundlagen dieses phasenpetrologischen Ansatzes werden kurz erläutert.

Für den Metamorphose-Höhepunkt der Gesteine ergaben sich Temperaturen im Bereich von ca. 600 - 615 °C und Drucke um 6.5 - 8 kbar. Diese Daten weisen eine recht gute Übereinstimmung zu den bisher in der Literatur bekannten Werten für das Spessart-Kristallin auf. Im Anschluß an die amphibolitfazielle Metamorphose wurden die Gesteine mehr oder minder stark retrograd überprägt. Anzeichen für eine polymetamorphe Entwicklung dieses Teils der Mitteldeutschen Kristallinzone liegen nicht vor. Die rekonstruierten P-T-Pfade bzw. P-T-Pfad-Segmente dokumentieren eine recht einheitliche metamorphe Entwicklung im Uhrzeigersinn ("clockwise") und weisen auf eine Barrow-type Metamorphose hin. Die P-T-Pfade der meisten Proben zeigen einen charakteristischen Verlauf mit einer Phase nahezu isothermaler Dekompression. Demgegenüber konnte für einige Disthen-führende Proben ein etwas flacherer P-T-Pfad mit einer offenbar geringfügig stärker Temperatur-betonten Entwicklung differenziert werden. Das Metamorphose-Maximum ist für diese Gesteine durch Temperaturen von ca. 620 - 630 °C und Drucke von etwa 6-8 kbar gekennzeichnet. Damit wird eine leichte Zunahme des Metamorphosegrades nach Süden innerhalb der Mömbris-Formation, die verschiedentlich vermutet worden war, nachgewiesen. Die neu erarbeiteten Pfade sind aufgrund des methodischen Ansatzes, der die Zusammensetzung und Mineralparagenese der jeweiligen Probe berücksichtigt, im Vergleich zu früheren Arbeiten deutlich besser abgesichert. Sie dokumentieren erstmals in dieser Form die Druck-Temperatur-Geschichte des Spessart-Kristallins.

Die P-T-Pfade lassen auf eine relativ schnelle Versenkung der Gesteine bei einem recht niedrigen geothermischen Gradienten und eine anschließende rasche Heraushebung aus einer Tiefe von etwa 25 - 28 km auf etwa 15 - 18 km bei einer eher geringen Temperaturabnahme schließen. Die damit für das Spessart-Kristallin dokumentierte Entwicklung fügt sich gut in das aktuelle geotektonische Modell einer Kollision eines passiven Kontinentalrandes mit einem kontinentalen Bogen ein und steht in Analogie zur derzeit gängigen Vorstellung, die Mitteldeutsche Kristallinschwelle repräsentiere einen variszischen aktiven Plattenrand.

1. Einleitung und Zielsetzung

Im Rahmen der vorliegenden Arbeit sollten die Druck-Temperatur-Bildungsbedingungen metapelitischer Gesteine aus verschiedenen Formationen des zur Mitteldeutschen Kristallinzone gehörenden Spessart-Kristallins untersucht werden, insbesondere unter Verwendung verschiedener Phasendiagramme.

Für den kristallinen Vorspessart, als einem der wenigen zu Tage ausstreichenden Teile der Mitteldeutschen Kristallinschwelle, ist trotz des vergleichsweise modernen Bearbeitungsstandes die Druck-Temperatur-Entwicklungsgeschichte bis heute nur unvollständig bekannt. In Ermangelung einer signifikanten chemischen Zonierung kritischer Minerale und einer kartierbaren Aufeinanderfolge verschiedener Metamorphosezonen im Gelände sind die Möglichkeiten zur Bestimmung metamorpher P-T-Pfade durch konventionelle Methoden in diesem Gebiet begrenzt. Die Konstruktion eines vollständigen P-T-Pfades für das Spessart-Kristallin insgesamt konnte bisher nur auf der Basis weniger einzelner Berechnungen vorgenommen werden.

Darüber hinaus zeigen sich Lücken in bezug auf Druck-Temperatur-Daten für verschiedene lithostratigraphische Einheiten des Spessart-Kristallins; in Zusammenhang damit kann eine möglicherweise unterschiedliche metamorphe Entwicklung der verschiedenen Formationen bisher nur vermutet werden. Auch bleibt zu überprüfen, ob sich die in der Literatur beschriebene Vorstellung eines nach Süden hin zunehmenden Metamorphosegrades – insbesondere innerhalb der Mömbris-Formation – erhärtet. Die Frage nach einer unterschiedlichen Druck-Temperatur-Entwicklungsgeschichte einzelner Bereiche innerhalb der Mömbris-Formation, die sich in unterschiedlichen P-T-Pfaden dokumentieren würde, ist bisher völlig offen.

Zur weitergehenden Untersuchung dieser Fragestellungen wurde hier methodisch ein phasenpetrologischer Ansatz gewählt, wobei die Bearbeitung metapelitischer Gesteine aufgrund ihrer für phasenpetrologische Untersuchungen besonders geeigneten Stoffbestände im Vordergrund stand. In bezug auf die lithostratigraphischen Einheiten wurde der Schwerpunkt auf die Staurolith-Glimmerschiefer der Mömbris-Formation gelegt, da diese von der regionalen Verbreitung her unter den Metapeliten die wichtigste Gesteinsserie des kristallinen Vorspessarts darstellt und aufgrund kritischer Mineralparagenesen für phasenpetrologische Betrachtungen besonders geeignet ist. Darüber hinaus wurden auch Glimmerschiefer bzw. Quarzit-Glimmerschiefer der Geiselbach-Formation sowie metapelitische bis metapsammitische Gneise der Alzenau-Formation und der Elterhof-Formation in die Untersuchungen einbezogen.

In dieser Arbeit wurde – unter Berücksichtigung bekannter Befunde aus der Literatur – eine grundlegende petrographische Bearbeitung der verschiedenen betrachteten Gesteinsserien vorgenommen, wobei besondere Bedeutung dem Auffinden von Indexmineralen bzw. kritischen Mineralparagenesen beigemessen wurde. Die in umfassenden mineralchemischen und geochemischen Untersuchungen ermittelten Daten eignen sich über ihre Interpretation hinaus als Grundlage für die phasenpetrologischen Berechnungen.

Im Rahmen des phasenpetrologischen Ansatzes wurden P-T-Pseudoschnitte auf der Basis von petrogenetischen Netzen konstruiert. Unter diesen Phasendiagrammen für metamorphe Gesteine wurden hierzu die für Metapelite relevanten Modell-Systeme KMnFMASH ($+q + mu + H_2O$) Al₂O₃-SiO₂-H₂O) ausgewählt. Die P-T-Pseudoschnitte ermöglichen die Darstellung der Veränderung von Mineralassoziationen in Abhängigkeit von ihren Bildungsbedingungen, wie z.B. Druck und Temperatur, unter Berücksichtigung der Gesamtgesteinszusammensetzung. Die Korrelation der im Gesteinsdünnschliff beobachteten Mineralparagenesen mit dem für einen bestimmten Gesamtgesteinschemismus berechneten P-T-Pseudoschnitt gestattet die Konstruktion eines Druck-Temperatur-Pfades oder -Segmentes und damit die Dokumentation der metamorphen Entwicklung dieses Gesteins. Druck-Temperatur-Berechnungen mittels konventioneller Geothermobarometer sowie intern-konsistenter Datensätze ermöglichen eine genauere Eingrenzung des Metamorphosehöhepunktes.

Eine wesentliche Zielstellung galt der genaueren Bestimmung metamorpher P-T-Pfade für das Spessart-Kristallin, um dadurch zur Klärung der geotektonischen Situation in diesem Teil der mitteleuropäischen Varisziden beizutragen und weiterführende Hinweise auf die geotektonische Entwicklung dieses Orogengürtels zu erhalten.

2. Geographische Lage und geologischer Rahmen des Spessart-Kristallins

Der Spessart nimmt geographisch im wesentlichen das sogenannte Mainviereck ein, seine natürlichen Grenzen nach Norden hin stellen die Flüsse Kinzig und Sinn dar. In seinem nordwestlichen Teil, dem Vorspessart, ist das kristalline Grundgebirge aufgeschlossen, nachdem die permotriassischen Deckschichten, die den Hochspessart aufbauen, erodiert wurden. Der Kristallin-Komplex des Vorspessarts nimmt eine Fläche von rund 300 km² in einem Höhenniveau zwischen ca. 100 m und 400 m ü. NN ein.

Geologisch wird das Spessart-Kristallin im Nordwesten durch die Rotliegend-Sedimente des Saar-Selke-Troges begrenzt, im Osten und Süden überlagern die Deckschichten des Zechsteins und Buntsandsteins diskordant das Grundgebirge. Die westlich anschließende Untermainebene ist durch das Zutagetreten mächtiger Sedimente des Tertiär und Quartär gekennzeichnet. Der Kristallin-Komplex wird nach Westen durch die junge, etwa N-S bis NNW-SSE-verlaufende Spessart-Randverwerfung abgeschnitten, deren Sprunghöhe im Raum Aschaffenburg zwischen 200 - 250 m und bis zu 500 m bei Alzenau variiert (WEINELT 1967, STREIT & WEINELT 1971). Strukturell wird der Vorspessart als asymmetrische Kulmination des Grundgebirges verstanden (z.B. OKRUSCH & WEBER 1996). Dieses wird ebenso wie das permotriassische Deckgebirge von tertiären, überwiegend NW-SE-streichenden Störungen zerlegt.

2.1 Geodynamische und paläogeographische Entwicklung der Varisziden

Das kristalline Grundgebirge stellt einen Teil des in Zentraleuropa NE-SW-streichenden Orogengürtels der mitteleuropäischen Varisziden dar. Diese werden heute als riesiger Gebirgskörper interpretiert, den MATTAUER (1999) mit dem Himalaya verglich. Die variszische Gebirgsbildung erfolgte im wesentlichen im Devon und Karbon (z.B. FRISCH & MESCHEDE 2005).

Das moderne Verständnis sieht die geodynamische Entwicklung der Varisziden als Ergebnis aus Wanderung und Kollision der Großkontinente Laurentia, Baltica und Gondwana sowie der Mikroplatten Avalonia und Armorica im Paläozoikum (Abb. 2.1). Der Mikrokontinent **Avalonia** war bereits im Altpaläozoikum, vermutlich seit dem frühen Ordoviz, nach Norden gedriftet, wobei sich an seiner Rückseite der Rhëische Ozean geöffnet hatte. Avalonia trat zunächst mit Baltica in Kollision (Abb. 2.1, Karte 440 Ma). Beide gemeinsam kollidierten dann mit Laurentia, nachdem der Iapetus-Ozean sukzessive geschlossen worden war (Abb. 2.1, Karte 400 Ma). Diesen Abschluß der kaledonischen Orogenese ordnen z.B. FRANKE (1995), FRISCH & MESCHEDE (2005) sowie WOODCOCK et al. (2007) zeitlich gegen Ende des Silurs ein. Gondwana lag zu diesem Zeitpunkt geographisch noch im Bereich des heutigen Südpols. Die paläogeographische Position Gondwanas und die Wanderungskurve vom Ordoviz/Silur bis zum Oberdevon sind noch umstritten. So beschreiben z.B. TAIT et al. (2000) anhand unterschiedlicher Polwanderungskurven zwei verschiedene geodynamische Modelle. Das erste Modell basiert auf einer sukzessiven Nordwärts-Bewegung Gondwanas vom späten Ordoviz bis zum frühen Karbon, das alternative Modell berücksichtigt einen komplexeren Wanderungsverlauf, der eine Kollision des nördlichen Afrika mit Laurussia im späten Silur/frühen Devon und erneut im Karbon einbezieht (TAIT et al. 2000).

Als zweiter Mikrokontinent löste sich, wahrscheinlich im Silur (FRISCH & MESCHEDE 2005), **Armorica** von Gondwana ab und driftete ebenfalls nordwärts (Abb. 2.1, Karte 400 Ma), was zur Öffnung des Moldanubischen Ozeans führte (FRANKE 2002). Innerhalb Armoricas differenzieren MATTE (1991, 2001) sowie FRANKE (2000, 2002) verschiedene Mikroplatten, die durch ozeanische Suturen getrennt seien. Armorica stellt somit eine Ansammlung verschiedener Krustenfragmente dar (Armorican Terrane Assemblage, ATA) (z.B. BACHTADSE et al. 1998, FRANKE 2000, WINCHESTER et al. 2002), worauf schon TAIT et al. (1997, 2000) aufgrund paläomagnetischer und paläogeographischer Hinweise schließen. Innerhalb der ATA unterscheidet FRANKE (2000) die Fragmente Franconia, Saxo-Thuringia, Bohemia u.a. Für die Mikroplatte Moldanubia wird die Zuordnung zu Armorica (ATA) oder alternativ zu Gondwana noch diskutiert (FRANKE 2000). Daher ist der geodynamische Zusammenhang zwischen Armorica und Gondwana noch unsicher (z.B. FRANKE 2000).

Dem Andocken von Armorica an das mit Laurentia und Baltica verbundene Avalonia (Abb. 2.1, Karten 400 Ma und 310 Ma) ging die Schließung des **Rhëischen Ozeans** im Devon und Karbon voraus (z.B. DALLMEYER et al. 1995). Aufgrund faunistischer Hinweise gehen TAIT et al. (2000) von einer Schließung im mittleren Devon aus; FRANKE & ENGEL (1986) sehen den Rhëischen Ozean als nicht vor Ende des Tournai (unteres Unter-Karbon) endgültig geschlossen an. Die Subduktion erfolgte südwärts gerichtet, was aus strukturgeologischen Daten abgeleitet wurde. Die entstehenden Decken wurden entsprechend nach Norden überschoben (z.B. FRANKE 2000, FRISCH & MESCHEDE 2005). Der Lizard-Ophiolith in Cornwall wird als Rest dieses Rhëischen Ozeans interpretiert und repräsentiert somit die Rhenohercynische Sutur (z.B. WOODCOCK et al. 2007, Abb. 2.2). Deren Fortsetzung nach Osten wird noch diskutiert. WOODCOCK et al. (2007) sehen sie in der Faille de Bray (Bray Fault). Der weitere Verlauf wird z.B. aufgrund lithologischer Befunde durch die Nördliche Phyllitzone im südlichen Hunsrück und Taunus bis in den Unter-Harz (Wippraer Zone) angenommen und mit der Grenze Rhenohercynikum/Saxothuringikum parallelisiert (z.B. COCKS & FORTEY 1982, FRANKE 2000, WOODCOCK et al. 2007).

Die Nordwanderung **Gondwana**s, vermutlich seit dem Silur, führte im Karbon auch zur Kollision mit Armorica. Dadurch wurde der Moldanubische Ozean geschlossen, die entstehende Moldanubische Sutur erstreckt sich von der südlichen Bretagne über das Zentralmassiv vermutlich bis in den südlichen Schwarzwald und die südliche Böhmische Masse (FRISCH & MESCHEDE 2005). Das variszische Orogen weist daher eine bilaterale Symmetrie auf, deren nördlicher Bereich (Rhenohercynikum, Saxothuringikum) südwärts und deren südlicher Bereich (Moldanubikum) nordwärts subduziert wurde (FRANKE 2000: 35; vgl. MATTE 1986, MATTE et al. 1990, FRANKE 1989a).

2.2 Gliederung der Varisziden Mitteleuropas und die Stellung des Spessart-Kristallins

Die mitteleuropäischen Varisziden werden nach KOSSMAT (1927) von Norden nach Süden in Rhenohercynikum, Saxothuringikum und Moldanubikum gegliedert (Abb. 2.2, 2.3). Diese selbständigen Baueinheiten werden heute als Fragmente ehemaliger Platten verstanden (z.B. ONCKEN 1997). Ihre unterschiedliche geodynamische Entwicklung erfolgte im Devon bis Karbon aufgrund der Kollision zwischen den von Gondwana abgedrifteten Mikroplatten Avalonia und Armorica mit Laurentia/Baltica (z.B. DALLMEYER et al. 1995; vgl. Kap. 2.1 u. Abb. 2.2). Eine aktuelle, umfassende Übersicht zu den tektonostratigraphischen Einheiten hinsichtlich ihrer Gesteinsarten, Deformation, Magmatismus, Metamorphose und Alter geben z.B. FRANKE et al. (2000).

Abb. 2.1.

Paläogeographische Entwicklung des kaledonischen und variszischen Gebirges im Paläozoikum aus FRISCH & MESCHEDE (2005). Die Kärtchen zeigen die während der kaledonischen Gebirgsbildung vorangegangene Entwicklung im frühen und späten Ordoviz (490 Ma, 440 Ma). Die Situationen im frühen Devon (400 Ma) und im Oberkarbon (310 Ma) dokumentieren die Plattenbewegungen während der variszischen Orogenese. Zum Vergleich ist die heutige Lage der Kontinente dargestellt.

Gliederung des Orogens der mitteleuropäischen Varisziden mit den klassischen Zonen nach KOSSMAT (1927) und den Suturzonen, verändert nach FRANKE (2002), aus FRISCH & MESCHEDE (2005).

Das **Rhenohercynikum** erstreckt sich im wesentlichen von den Ardennen über das Rheinische Schiefergebirge bis in den Harz und zum Flechtinger Höhenzug (Abb. 2.3). Geodynamisch wird das Rhenohercynikum als Teil von Avalonia gedeutet (z.B. FRANKE 2000). Es ist vorwiegend aus klastischen devonischen und hemipelagischen bis pelagischen karbonischen Sedimenten aufgebaut, die das cadomische Basement überlagern (z.B. FRANKE 2000). Die eingeschalteten basischen Vulkanite des Mitteldevon bis Visé weisen geochemisch MORB- sowie Intraplatten-Signaturen auf (GRÖSSER & DÖRR 1986, FLOYD 1995). Strukturgeologisch werden verschiedene Decken unterschieden, die mit der Rhenohercynischen Sutur in Zusammenhang gestellt werden (FRANKE 2000). Im Rhenohercynikum herrschten niedriggradige metamorphe Bedingungen vor, deren Maximum – für Gesteine der Nördlichen Phyllitzone – mit bis zu 3 - 6 kbar und 300 °C angeben wird (ONCKEN et al. 1995). Diese Druck-betonte Metamorphose wird ins Karbon (ca. 325 Ma) datiert (l.c.).

Zum **Moldanubikum** werden große Teile der Vogesen und des Schwarzwaldes sowie das Teplá-Barrandium und das Moldanubikum sensu stricto gezählt (Abb. 2.3). Entsprechend variiert der lithologische Aufbau stark, von proterozoischen bis zu palöozoischen Gesteinen, verschiedenster, zumeist hoher Metamorphosegrade.

Abb. 2.3

Gliederung der mitteleuropäischen Varisziden, zurückgehend auf KOSSMAT (1927), in Rhenohercynikum, Saxothuringikum und Moldanubikum, nach DALLMEYER et al. (1995), aus NEUROTH (1997). Dargestellt ist auch die Mitteldeutsche Kristallinschwelle am nördlichen Rand des Saxothuringikums.

Das Alter der niedriggradigen bis amphibolitfaziellen Metamorphose proterozoischer Sedimente im Basement des Teplá-Barrandiums datieren ZULAUF (1997) und ZULAUF et al. (1999) mit ca. 540-550 Ma. Die strukturelle und geodynamische Situation im Moldanubikum wird noch kontrovers diskutiert (vgl. Kap. 2.1). Eine aktuelle Darstellung legt z.B. FRANKE (2000) vor.

Die geologische Entwicklung und der komplexe Aufbau des **Saxothuringikum**s, einschließlich der Mitteldeutschen Kristallinzone (s.u.), wird zusammenfassend in FRANKE et al. (2000: FRANKE, LINNEMANN et al.) dargestellt. Die parauthochthonen Einheiten bestehen lithologisch aus cadomischem Basement und einer kambro-ordovizischen Riftsequenz, überlagert von pelagischen und Flysch-Sedimenten mit ordovizischem bis Visé-Alter (FRANKE 2000). Die überlagernden allochthonen Einheiten, wie z.B. Münchberger Masse und die tektonischen "Klippen" von Wildenberg und Frankenberg, sind nach FRANKE (2000) sowohl aus Sedimenten des Ordoviz bis Devon als auch aus früh-ordovizischen mafischen Gesteinen von MORB-Zusammensetzung aufgebaut. Letztere durchliefen FRANKE (2000) zufolge vor ca. 395 Ma eine eklogitfazielle Metamorphose.

Den nördlichen Rand des Saxothuringikums bildet die ebenfalls NE-SW-streichende **Mitteldeutsche Kristallinzone** (MDKS, Abb. 2.3), die bereits von BRANDES (1919) erkannt und später von SCHOLZ (1930) und BRINKMANN (1948) definiert wurde. FRANKE (1989), MATTE (1991), DALLMEYER et al. (1995) und ONCKEN (1997) u.a. sehen die Mitteldeutsche Kristallinzone als Resultat der Kollision zwischen Rhenohercynikum und Saxothuringikum im späten Devon bis frühen Unterkarbon an. Die plattentektonische Zuordnung des Saxothuringikums wird noch kontrovers diskutiert, wobei die Mitteldeutsche Kristallinschwelle aus heutiger Sicht vermutlich zu Avalonia gehörte, der südliche Teil des Saxothuringikums hingegen zu Armorica (ATA). FRANKE (2002) vermutet, die Mitteldeutsche Kristallinschwelle sei aus der kleineren Kontinentalplatte Franconia hervorgegangen, die dem Plattenfragment Saxo-Thuringia im Norden vorgelagert gewesen sei. ZEH et al. (2005) sehen die Mitteldeutsche Kristallinschwelle als Teil der Suturzone zwischen dem östlichen Teil von Avalonia und dem Plattenfragment Saxo-Thuringia an, und ordnen es ebenfalls der ATA zu. Ausführlichere Darstellungen hierzu vermitteln z.B. DALLMEYER et al. (1995), FRANKE (2000, 2002) und MATTE (2001).

Der derzeitigen Auffassung zufolge repräsentiert die Mitteldeutsche Kristallinzone einen variszischen aktiven Plattenrand auf saxothuringischer Kruste (z.B. FRANKE 2000). Sie stellt den

einzigen bisher identifizierten aktiven Kontinentalrand im gesamten Variszidengürtel dar (OKRUSCH & RICHTER 1986, FRANKE 1989a, FRANKE & ONCKEN 1990, WILLNER et al. 1991, BEHRMANN et al. 1991, FLÖTTMANN & ONCKEN 1992, KROHE 1992). An diesem Plattenrand wurde der Rhenohercynische Ozean, der sich im Unter- bis Mitteldevon geöffnet hatte (z.B. ENGEL et al. 1983), vermutlich im Oberdevon und Karbon nach Südosten subduziert (z.B. WEBER 1984, FRANKE 1989b, 1990; FRANKE & ONCKEN 1990, DALLMEYER et al. 1995, ONCKEN 1997, ONCKEN et al. 2000). Zeitlich ordnet FRANKE (2000) die Subduktion und die anschließende Kontinent-Kontinent-Kollision um ca. 360 bis 320 Ma ein. ONCKEN (1988) postuliert für diese Kollision ein NW-SE-gerichtetes Kompressionsregime. In Zusammenhang mit der schrägen Konvergenz im Grenzbereich Rhenohercynikum/Saxothuringikum weist ONCKEN (1997) auf ein gekoppeltes kinematisches System hin, das Kontraktions- ebenso wie Extensionsdomänen aufweist. FRANKE & ONCKEN (1995) gehen in Anbetracht von Parallelitäten des Rhenohercynikums und der Mitteldeutschen Kristallinzone von einer ursprünglichen räumlichen Nähe dieser beiden Einheiten bis zur Öffnung des devonischen "Gießen-Ozeans" aus.

Für das Varisziden-Orogen nimmt ONCKEN (1998) eine Entwicklung aufgrund der Kollision eines passiven Kontinentalrandes (Rhenohercynikum) mit einem kontinentalen Bogen (Mitteldeutsche Kristallinschwelle, MGCR der saxothuringischen Zone) an und wertet die MGCR ebenfalls als Bestandteil des Saxothuringikums. Mit der magmatischen Entwicklung der Mitteldeutschen Kristallinschwelle setzen sich ANTHES & REISCHMANN (2001), ALTHERR et al. (1999) sowie ZEH et al. (2005) auseinander (vgl. Abb. 2.4). Die zeitliche Entwicklung der variszischen Orogenese in Mitteleuropa und der Mitteldeutschen Kristallinzone dokumentieren ANTHES & REISCHMANN (2001) aufgrund geochronologischer und chemischer Befunde an Magmatiten der Mitteldeutschen Kristallinzone (Abb. 2.4, vgl. DIETL 2007). Die für diese Arbeit relevanten Daten sind in Kap. 8 dargestellt.

Abb. 2.4

Entwicklung im östlichen Teil der Mitteldeutschen Kristallinschwelle mit den wesentlichen magmatischen Ereignissen, aus ANTHES & REISCHMANN (2001).

Die Mitteldeutsche Kristallinzone wird aufgrund sedimentologisch-paläontologischer Erkenntnisse, bisher bekannter P-T-t-Daten und von Hinweisen auf magmatische Ereignisse in zwei unterschiedliche tektonometamorphe Einheiten untergliedert (ONCKEN 1996, 1997; ZEH 1996, HANSCH & ZEH 2000) (Abb. 2.5). Die Einheit I ist aus Gesteinen aufgebaut, die bei Temperaturen von bis zu 700 °C und Drucken von 5 bis 6 kbar metamorph überprägt wurden. Darüber hinaus verursachte die Intrusion von Granitoiden in diese Einheiten während des Mittelkarbons (ANTHES & REISCHMANN 1996, 1997; HAMMER et al. 1996; ZEH et al. 1998) eine partielle kontaktmetamorphe Überprägung. Die Gesteine der Einheit I werden als Relikte des früheren saxothuringischen Inselbogens interpretiert (ONCKEN 1996, 1997).

Der kristalline Vorspessart wird der als subduktionsbezogen angesehenen Einheit II der Mitteldeutschen Kristallinzone zugeordnet. Diese geht nach ONCKEN (1997)auf rhenohercynische Sedimente zurück, die im Zuge der Variszischen Orogenese an die Basis der saxothuringischen Platte akkretiert wurden (ONCKEN 1997, ALTHERR et al. 1999, ONCKEN et al. 2000; Abb. 2.5). Als peak-Druck-Temperatur-Bedingungen für die metamorphe Überprägung der Gesteine dieser Einheit II wird von ca. 7 kbar und 650 °C ausgegangen. Abgesehen vom Diorit im Spessart sind Belege für mittelkarbonischen Magmatismus (329 ± 0.8 Ma, ANTHES & REISCHMANN 2001) in den Gesteinen der Einheit II nicht bekannt. Den Zusammenhang zwischen der Aufschluß-Situation und dieser Gliederung stellt ONCKEN (1997) durch eine Strukturierung der Mitteldeutschen Kristallinzone in drei Teilbereiche her. So werden die im Westen und Osten aufgeschlossenen Gesteine - Pfälzer Wald, Bergsträsser Odenwald bzw. Teile des Ruhlaer Kristallins, Kyffhäuser Kristallin – als Anteile des ehemaligen saxothuringischen Inselbogens, also der Einheit I, gesehen, während der zentrale Teil der Mitteldeutschen Kristallinzone -Böllsteiner Odenwald, Spessart, Teile des Ruhlaer Kristallins – der ehemals rhenohercynischen Einheit II zugerechnet wird (Abb. 2.5). Dieser Sichtweise schließen sich auch ZEH et al. (2005) Der Kristallin-Komplex des Vorspessart stellt einen an. somit der wenigen Grundgebirgsaufschlüsse der MDKS dar (Abb. 2.3).

Abb. 2.5

Übersichtskarte zur geodynamischen Situation der mitteleuropäischen Varisziden, aus ONCKEN (1997), mit den unterschiedlichen tektonometamorphen Einheiten. FTB = fold thrust belt.

Die lithostratigraphischen Gliederungen des Spessart-Kristallins und des Ruhlaer Kristallins wurden wiederholt miteinander verglichen (MATTHES 1954, BEDERKE 1957, BRAITSCH 1957a, NEUMANN 1966), den aktuellen Stand der Erkenntnisse vermitteln HIRSCHMANN & OKRUSCH (1988).

2.3 Lithostratigraphische Gliederung der Gesteinsserien des Spessart-Kristallins

Der Kristallin-Komplex des Vorspessarts besteht lithologisch vorwiegend aus Gneisen und Glimmerschiefern mit partiellen Einschaltungen von Quarziten, Marmoren und Amphiboliten. Wie bereits von BÜCKING (1892), THÜRACH (1893) und KLEMM (1895) zuerst erkannt und später von z.B. VON BUBNOFF (1926), MATTHES (1954, 1958), BEDERKE (1957), BRAITSCH (1957a, b), GABERT (1957), WEINELT (1962), OKRUSCH & WEINELT (1965), OKRUSCH et al. (1967), MATTHES & OKRUSCH (1974, 1977), HIRSCHMANN & OKRUSCH (1988, 2001), OKRUSCH (1983, 1995) bestätigt, gliedert sich das Spessart-Kristallin in sieben NE-SW-streichende Gesteinsverbände (Abb. 2.6), die lithologisch recht unterschiedlichen Charakter besitzen. Während der Variszischen Orogenese erfuhren sie eine recht einheitliche Mitteldruck-Metamorphose unter Bedingungen der unteren Amphibolitfazies (z.B. MATTHES & OKRUSCH 1977, OKRUSCH 1995). MATTHES & SCHUBERT (1967), OKRUSCH (1983) und OKRUSCH et al. (1985) weisen auf ein relativ flaches Einfallen der metamorphen Isograde hin. Eine zusammenfassende Darstellung des modernen Kenntnisstandes findet sich bei OKRUSCH & WEBER (1996).

Im einzelnen können im Spessart-Kristallin von NW nach SE folgende lithologische Einheiten unterschieden werden, deren Alterseinschätzungen sehr unsicher sind (Abb. 2.6):

1. Alzenau-Formation: Die Alzenau-Formation ist durch eine Wechsellagerung metapsammitischer Gneise mit Kalksilikatgneisen, Amphiboliten und graphitführenden Quarziten sowie untergeordnet auftretenden Marmor-Einschaltungen gekennzeichnet (BRAITSCH 1957a, EL SHAZLY 1983, OKRUSCH et al. 1985). Zwischen dieser bunten Serie und der Elterhof-Formation im Süden bestehen große lithologische Ähnlichkeiten. In bezug auf das Alter wird die Alzenau-Formation nach BRAITSCH (1957b) bzw. HIRSCHMANN & OKRUSCH (1988) ohne zwingende Argumente ins untere Kambrium eingestuft.

Abb. 2.6

Übersichtskarte des Spessart-Kristallins nach OKRUSCH & WEBER (1996). Das Spessart-Kristallin gliedert sich in sieben NE-SW-streichende lithologische Einheiten, die in der neueren Literatur als Formationen bezeichnet werden. Der Haibacher Biotitgneis wird inzwischen ebenfalls als Orthogneis eingestuft und ist daher dem Rotgneis-Komplex anzugliedern (OKRUSCH & WEBER 1996).

2. Geiselbach-Formation: Die Geiselbach-Formation besteht im wesentlichen aus teilweise Granat-führenden Glimmerschiefern, Quarzit-Glimmerschiefern und Quarziten. In die etwa 3000 m mächtige Folge sind untergeordnet Kalksilicatgesteine und Amphibolite eingeschaltet (z.B. GABERT 1957, PLESSMANN 1957, OKRUSCH et al. 1967, SCHNEIDER 1962). SCHNEIDER (1962) geht von einer sedimentärer Entstehung der Glimmerschiefer und Quarzite aus. Aufgrund paläontologischer Befunde wie Pteridophyten und Sporen konnte von REITZ (1987) eine Alterseinstufung ins Silur vorgenommen werden. HIRSCHMANN & OKRUSCH (1988) nehmen daher für die jüngeren Teile der Geiselbach-Formation Alter bis in den Grenzbereich Silur/Devon an, für den liegenden Teil halten sie ein ordovizisches Alter aufgrund eines lithostratigraphischen Vergleichs von BEDERKE (1957) für möglich.

3. **Mömbris-Formation**: Die Mömbris-Formation stellt nach OKRUSCH et al. (1967) bzw. OKRUSCH & WEBER (1996) eine relativ monotone Folge von Metapeliten und Metapsammiten dar, die eine minimale Mächtigkeit von etwa 2000 m aufweist. Charakteristisch ist hier die weite Verbreitung des metamorphen Indexminerals Staurolith, der sich insbesondere in den pelitischen Partien bilden konnte (z.B. MATTHES 1954, 1958; SMOLER 1987). Diese Staurolith-führenden Paragneise wechsellagern mit Staurolith-freien Paragneisen, darüber hinaus kommen in dieser Einheit Kalksilikatgneise sowie Amphibolite vor. Geochemische Untersuchungen im Hinblick auf die sedimentären Edukte und den Ablagerungsraum wurden von SMOLER (1987) durchgeführt. Die Mömbris-Formation, die das Liegende der Geiselbach-Formation darstellt, besitzt nach heutigem Kenntnisstand ein kambrisches Alter, wobei der obere Teil möglicherweise dem Ordovizium zugerechnet werden muß (OKRUSCH & WEBER 1996). Diese Einschätzungen gehen auf petrographische und geochemische Vergleiche mit dem Ruhlaer-Kristallin (MATTHES 1954, in Anlehnung an VON GAERTNER 1950) sowie die paläontologischen Befunde von REITZ (1987) (s.o.) zurück.

4. **Orthogneise**: Unter den Orthogneisen des Spessart-Kristallins unterscheiden OKRUSCH & WEBER (1996) zwei Typen: die Muscovit-Biotit-Gneise des Rotgneis-Komplexes und den Haibacher Biotitgneis (vgl. DOMBROWSKI et al. 1994, 1995). Für die Ausgangsgesteine dieser Orthogneise werden silurische Intrusionsalter angenommen (z.B. LIPPOLT 1986, NASIR et al. 1991, DOMBROWSKI et al. 1994).

5. Schweinheim-Formation: Die überwiegend aus metapelitischen Zweiglimmerschiefern aufgebaute Schweinheim-Formation wird von BRAITSCH (1957b) als das Liegende der Elterhof-Formation angesehen. Sie wäre daher zeitlich ins Proterozoikum einzustufen. 6. Elterhof-Formation: Die Elterhof-Formation ist durch eine Serie metapsammitischer Gesteine mit Einschaltungen von Kalksilikatgneisen und Amphiboliten charakterisiert (BRAITSCH 1957a, EL SHAZLY 1983), die lithologisch der Alzenau-Formation sehr ähnlich ist. Deutlich häufiger als in der Alzenau-Formation treten in der Elterhof-Formation typische Marmorzüge auf (THÜRACH 1893, OKRUSCH et al. 1967). Ein unterkambrisches Alter vermuten HIRSCHMANN & OKRUSCH (1988) auch für die Elterhof-Formation.

Die Alzenau-Formation (im Nordwesten) und die Elterhof-Formation (im Süden) werden als Reste einer ehemals zusammenhängenden Deckeneinheit interpretiert (HEINRICHS 1985, 1986 BEHR & HEINRICHS 1987 OKRUSCH & WEBER 1996), ein wesentliches Argument hierfür stellt der tektonische Kontakt zwischen der Alzenau- und der Geiselbach-Formation dar (BEDERKE 1957, GABERT 1957, PLESSMANN 1957, MURAWSKI 1958, SCHNEIDER 1962; Abb. 2.6). Für die Decke wird eine Wanderung von Süden über den Spessart hinweg angenommen, weiterhin soll die Alzenau-Formation auf die Geiselbach-Formation rücküberschoben sein (z.B. ROTHE 2005).

7. **Quarzdiorit-Granodiorit-Komplex**: Für den Quarzdiorit-Granodiorit-Komplex im südlichen Spessart-Kristallin nimmt OKRUSCH (1983), in Anlehnung an die Interpretation BÜCKINGS (1892), eine magmatische Intrusion an, die zeitgleich mit derjenigen der Rotgneis-Granitoide erfolgt sei. Im Zuge der variscischen Metamorphose erfuhren die Gesteine eine tektonische Überprägung sowie Umkristallisation und partielle Aufschmelzung. Alternativ zu dieser Sichtweise wird eine rein magmatische, in bezug auf die Variszische Orogenese spät- bis posttektonische Entstehung des Quarzdiorit-Granodiorit-Komplexes diskutiert (z.B. BRAITSCH 1957a, OKRUSCH & WEBER 1996).

Metabasitzüge: Im Spessart-Kristallin liegen Metabasit-Einschaltungen im wesentlichen innerhalb zweier ebenfalls etwa NE-SW-streichender Züge vor: dem (i) Metabasitzug Hörstein – Huckelheim im Grenzbereich von Geiselbach- und Mömbris-Formation, sowie dem (ii) Metabasitzug Aschaffenburg – Feldkahl – Rottenberg im Grenzbereich der Mömbris-Formation zum Rotgneis-Komplex (Abb. 2.6). Der Metabasitzug Hörstein – Huckelheim wird von HIRSCHMANN & OKRUSCH (2001) inzwischen als Hörstein-Huckelheim-Formation definiert. Aufgrund geochemischer Untersuchungen werden die Ausgangsgesteine der Amphibolite dieses Metabasitzuges als subalkalische, tholeiitische Basalte charakterisiert (NASIR 1986, NASIR & OKRUSCH 1991, OKRUSCH et al. 1995). Die Metabasite aus dem Bereich Aschaffenburg – Feldkahl – Rottenberg gehen auf Kalkalkali-Vulkanite zurück. In ihrer chemischen Zusammensetzung variieren sie von tholeiitischen, meist subalkalischen Basalten über Andesite bis zu Daciten (NASIR 1986, NASIR & OKRUSCH 1991, OKRUSCH et al. 1995). Zeitlich ordnen NASIR & OKRUSCH (1991) und OKRUSCH et al. (1995) den Vulkanismus, der dem Metabasitzug Hörstein – Huckelheim zugrunde liegt, durch stratigraphische Parallelisierung in den Grenzbereich Ordovizium/Silur ein.

Die einzelnen lithostratigraphischen Einheiten des Spessart-Kristallins liegen aufgrund sedimentärer und/oder tektonischer Ursachen nicht immer klar voneinander abgegrenzt vor, wie z.B. im Falle der Geiselbach- und Mömbris-Formation oder des Haibacher Biotitgneises und der Schweinheim-Formation. Teilweise existieren jedoch auch recht deutliche lithologische Abgrenzungen, wie z.B. zum Rotgneis-Komplex hin.

2.4 Kenntnisstand zur Metamorphose-Entwicklung des Spessart-Kristallins

Die metamorphe Entwicklung des Spessart-Kristallins erfolgte unter amphibolitfaziellen Bedingungen, wie aus dem Vorliegen der typischen Mineralparagenese

Plagioklas + gemeine Hornblende ± Quarz ± Epidot ± Diopsid ± Biotit ± Granat in den Amphiboliten und Hornblendegneisen der Alzenau- und Elterhof-Formation sowie der Metabasitzüge abzuleiten ist (z.B. OKRUSCH 1983, OKRUSCH 1995, OKRUSCH & WEBER 1996, NASIR & OKRUSCH 1997).

Eine erste Einschätzung der Metamorphosebedingungen an Metapeliten des zentralen Spessart-Kristallins, insbesondere der Mömbris-Formation, erarbeitete MATTHES (1954) aufgrund der Staurolith-Führung dieser Gesteine und des gelegentlichen Auftretens der Al₂SiO₅-Polymorphen Disthen bzw. Sillimanit. Die kritische amphibolitfazielle Mineralparagenese dieser Metapelite ist durch

Quarz + Plagioklas + Muscovit + Biotit + Granat + Staurolith ± Disthen/Sillimanit gekennzeichnet, untergeordnet auftretende metapsammitische Einschaltungen führen

Quarz + Plagioklas + Muscovit + Biotit + Granat (z.B. OKRUSCH 1990, OKRUSCH & WEBER 1996). Die P-T-Bedingungen des Metamorphose-Höhepunktes sind nach OKRUSCH & WEBER (1996) insbesondere durch das Stabilitätsfeld des metamorphen Indexminerals Staurolith in Gegenwart von Biotit und Quarz definiert, so daß die Staurolith-Isograde

 $Granat + Chlorit + Muscovit = Staurolith + Biotit + Quarz + H_2O$

(SPEAR & CHENEY 1989) als untere Stabilitätsgrenze überschritten worden war. Verdrängungen von Disthen durch Sillimanit zeigen jedoch stellenweise ein Überschreiten der Stabilitätsgrenze

Disthen = Sillimanit (z.B. HOLDAWAY & MUKHOPADHYAY 1993)

an (MATTHES 1954, vgl. OKRUSCH & WEBER 1996). Die Gleichgewichtskurven für Abbaureaktionen von Staurolith bzw. Muscovit in Gegenwart von Quarz wie z.B.

Staurolith + Muscovit + Quarz = Granat + Biotit + Disthen/Sillimanit + H₂O (SPEAR & CHENEY 1989) wurden dagegen nicht erreicht (OKRUSCH & WEBER 1996). Migmatitische Strukturen liegen nicht vor (OKRUSCH 1995).

Aus der Kombination relevanter Gleichgewichtskurven geben OKRUSCH & WEBER (1996) für das zentrale Spessart-Kristallin minimale $P(H_2O)$ -T-Bedingungen von etwa 5 kbar und 570 °C an, die Maximaltemperatur der Metamorphose wird mit ca. 650 °C angenommen.

Nach OKRUSCH (1983) durchliefen auch die Alzenau-Formation und Elterhof-Formation, die Schweinheim-Formation sowie der Quarzdiorit-Granodiorit-Komplex eine Metamorphose unter ähnlichen P-T-Bedingungen wie im zentralen Spessart-Kristallin im Bereich der niedrigen Amphibolitfazies. Einen vergleichbaren Metamorphosegrad ordnen OKRUSCH et al. (1967) der Geiselbach-Formation aufgrund der Mineralparagenese in den darin eingeschalteten Amphiboliten zu (vgl. S. 25). Die Anwesenheit von Staurolith in der Geiselbach-Formation wurde in der Literatur bereits verschiedentlich diskutiert (z.B. OKRUSCH & WEBER 1996). Bisher beschreibt ausschließlich WEINELT (1967) Pseudomorphosen und Relikte von Staurolith in der Geiselbach-Formation, SCHNEIDER (1962) dagegen fand keine derartigen Hinweise. Ob das Fehlen fazieskritischer Minerale, wie Staurolith, in vielen Gesteinen der Geiselbach-Formation auf deren chemische Zusammensetzung zurückzuführen ist oder durch niedrigere Metamorphose-Bedingungen verursacht wurde, ist bisher noch unklar (vgl. OKRUSCH & WEBER 1996). Im südlichen Vorspessart wird als einzige Al₂SiO₅-Polymorphe selten Sillimanit beschrieben (THÜRACH 1893, BRAITSCH 1957a, WEINELT 1971). Die weite Verbreitung der Paragenese Muscovit + Quarz in den Glimmerschiefern deutet an, dass die zweite Sillimanit-Isograde, die zur Stabilisierung von Sillimanit + Kalifeldspat (z.B. CHATTERJEE & JOHANNES 1974) führt, hier nicht überschritten wurde (OKRUSCH 1983).

Druck-Temperatur-Berechnungen anhand konventioneller Geothermobarometer wurden von einigen Autoren für verschiedene Einheiten des Spessart-Kristallins vorgenommen. So gibt SMOLER (1987) aufgrund phasenpetrologischer Studien und geothermobarometrischer Abschätzungen für den Metamorphosehöhepunkt der Gesteine der Mömbris-Formation Temperaturen von ca. 590 bis 650 °C und Drucke von 4 bis 6 kbar an. Für die Staurolithgneise der Mömbris-Formation bestimmte SMOLER (1987) Si-Gehalte von 3.1 p.f.u., woraus OKRUSCH (1995) nach MASSONNE & SCHREYER (1987) minimale Drucke von 4 kbar ableitet. Ebenfalls aus geothermobarometrischen Berechnungen ermittelten DOMBROWSKI et al. (1994) für zwei Orthogneise, den Rotgneis-Komplex bzw. den Haibacher Gneis, Metamorphosebedingungen von 600 bis 650 °C und 4 bis 7 kbar. DOMBROWSKI et al. (1994) beschreiben für die Rotgneise chemisch zonierte Muscovit-Individuen, die mit Kalifeldspat und Biotit (+ Granat) koexistieren, und im Kern hohe Werte von bis zu 3.3 Si p.f.u. aufweisen, im Randbereich dagegen nur 3.2 bis 3.1 Si p.f.u. Für die mit diesen Orthogneisen assoziierten Metasedimente der Schweinheim-Formation geben diese Autoren 590 bis 620 °C und 6 bis 8 kbar an und leiten aufgrund dieser Daten die Annahme ab, dass im prograden Ast der Metamorphose Bedingungen mit höherem P/T-Verhältnis durchlaufen wurden. An zwei Kalksilikatgneisproben von einer Lokalität nahe Feldkahl bestimmte NASIR (1986) Werte von 650 °C bei 6.5 kbar und 620 °C bei 6 kbar. Für Proben der Alzenau-Formation im Nordwesten ergaben sich nach OKRUSCH & WEBER (1996) für einen angenommenen Druck von 6 kbar etwa 635 °C, für Gesteine der mit dieser Einheit in genetischen Zusammenhang gestellten Elterhof-Formation im südlichen Teil des kristallinen Vorspessarts 640 °C bzw. 685 °C.

Für die Staurolithgneise der Mömbris-Formation bestimmte SMOLER (1987) an Granat-Kristallen, die mit Staurolith und Biotit koexistieren, X_{Fe} -Werte von 0.8 bis 0.9, im Durchschnitt 0.85 (6-21 mol-% Spessartin, $X_{Fe} = Fe^{2+}/Fe^{2+}+Mg$). Unter Verwendung der Isoplethen im KFMASH nach SPEAR & CHENEY (1989) ermittelte OKRUSCH (1995) hieraus Temperaturen von maximal 620 °C bei Drucken von ca. 6.5 kbar.

Aufgrund der Kombination dieser Ergebnisse, der P-T-Felder für den Rotgneis und den Schweinheimer Glimmerschiefer sowie der Si-Isoplethen nach MASSONNE (1991) konstruierten DOMBROWSKI et al. (1994) und OKRUSCH & WEBER (1996) für das Spessart-Kristallin einen BARROW-typen P-T-Pfad im Uhrzeigersinn (Abb. 2.7). Insgesamt ergeben sich also sowohl für die Amphibolite als auch für die Paragneise amphibolitfazielle Bedingungen von 600 bis 650 °C und 4 bis 7 kbar für den Höhepunkt der Metamorphose des Spessart-Kristallins. Eine retrograde

metamorphe Überprägung erfolgte unter niedrigeren Druck-Temperatur-Bedingungen der Grünschieferfazies (z.B. MATTHES & OKRUSCH 1974). Darüber hinaus liegen keine Anzeichen für eine polymetamorphe Entwicklung dieses Teils der Mitteldeutschen Kristallinzone vor.

Abb. 2.7

P-T-Diagramm für die Metamorphose-Entwicklung des Spessart-Kristallins nach OKRUSCH & WEBER (1996) bzw. DOMBROWSKI et al. (1994). Dargestellt sind die Gleichgewichtskurven für das Modellsystem KFMASH (K₂O-FeO-MgO-Al₂O₃-SiO₂-H₂O) nach SPEAR & CHENEY (1989), die Al₂SiO₅-Stabilitätsbeziehungen nach HOLDAWAY & MUKHOPADHYAY (1993), die Schmelzkurven für die Paragenese Muscovit + Albit + Quarz in Gegenwart von H₂O nach STORRE (1973) und die Si-Isoplethen in Muscoviten/Phengiten nach MASSONNE (1991). Die P-T-Felder für die Rotgneise (R) und die Schweinheimer Glimmerschiefer (S) ermittelten OKRUSCH & WEBER (1996) bzw. DOMBROWSKI et al. (1994) aufgrund des Granat-Biotit-Geothermometers nach PERCHUK & LAVRENT'EVA (1983) und des Muscovit-Biotit-Geothermometers nach HOISCH (1991).

OKRUSCH & WEBER (1996, S. 162) vermuten "eine leichte Abnahme des Metamorphosegrades nach Norden" (vgl. MATTHES 1954), worauf sie auch aus der Abwesenheit von Staurolith in der Geiselbach-Formation im nordwestlichen Spessart-Kristallin sowie unterschiedlicher Metamorphosedaten für die Amphibolite der verschiedenen Metabasitzüge (vgl. NASIR 1986) und metapelitische Gesteine der Mömbris-Formation (vgl. SMOLER 1987) schließen. OKRUSCH (1995) und OKRUSCH & WEBER (1996) weisen allerdings darauf hin, daß das Fehlen von Staurolith in der Geiselbach-Formation durch einen ungünstigen Pauschalchemismus verursacht sein könnte.

Obwohl im Spessart-Kristallin die P-T-Bedingungen beim Höhepunkt der Regionalmetamorphose nur wenig variierten (OKRUSCH 1983, OKRUSCH & WEBER 1996), ist die gesamte Druck-Temperatur-Geschichte der verschiedenen Einheiten bislang nur unvollständig bekannt. Dabei zeigen sich einerseits Lücken in bezug auf Daten für die verschiedenen Einheiten, andererseits konnte der gesamte P-T-Pfad (Abb. 2.7) bisher nur auf der Basis einzelner Berechnungen, meist auch noch an unterschiedlichen Gesteinen, konstruiert werden.

Die bisherigen Kenntnisse zur P-T-Geschichte des Spessart-Kristallins kamen weitgehend auf der Basis der Stabilitätsfelder kritischer Mineralparagenesen, sowie konventioneller Geothermometer und Geobarometer zustande, die häufig nur eine relativ grobe Abschätzung der Metamorphosebedingungen gestatten. Die Abwesenheit einer deutlichen chemischen Zonierung (OKRUSCH 1983) der kritischen Minerale beeinträchtigt die Anwendung dieser klassischen Methoden. Eine Kartierung verschiedener Metamorphosezonen im Gelände ist im Spessart-Kristallin, aufgrund der relativ flachen Lage der metamorphen Isograde, sehr schwierig. Die beschriebenen Faktoren erschweren insbesondere die Bestimmung metamorpher P-T-Pfade im Spessart-Kristallin, sodass die Anwendung des hier gewählten phasenpetrologischen Ansatzes besonders sinnvoll erscheint.

2.5 Bisherige Vorstellungen zur geotektonischen Entwicklung des Spessart-Kristallins

Für den Rotgneis nehmen OKRUSCH & RICHTER (1986) und HIRSCHMANN & OKRUSCH (1988) eine Platznahme der granitoiden Edukte in einem relativ seichten Intrusionsniveau vor der variscischen Deformation und Metamorphose an und gehen für das Spessart-Kristallin von H₂O-Drucken um 6 kbar – entsprechend einer Versenkungstiefe von etwa 20 bis 25 km – und Temperaturen um 620 °C aus. Erste Hinweise hierzu gehen u.a. auf BEDERKE (1957) und MATTHES & OKRUSCH (1965, 1974) zurück. In bezug auf die geotektonische Situation vermuten DOMBROWSKI et al. (1995) eine Bildung der granitischen Magmen an einem konvergenten Plattenrand. Für deren Bildung wird eine Mischung von anatektischer kontinentaler Kruste mit juvenilem Mantelmaterial in einer Inselbogen- oder Andentyp-Situation angenommen (DOMBROWSKI et al. 1994). Zeitlich ordnet bereits BEDERKE (1957) die Intrusion der granitischen Magmen am Ende des Silurs ein, was durch Rb-Sr-Gesamtgesteinsalter von 407 ± 7 Ma (OKRUSCH & WEBER 1996) und Einzelzirkon-Alter um 410 ± 18 Ma (DOMBROWSKI et al. 1995) sowie frühere Rb-Sr-Datierungen (KREUZER et al. 1973, LIPPOLT 1986, NASIR et al. 1991) für die Orthogneise bestätigt wird. Aufgrund recht einheitlicher Altersdaten verschiedener Einheiten des Spessart-Kristallins, die um 320 Ma streuen (LIPPOLT 1986, NASIR et al. 1991, DOMBROWSKI et al. 1994, OKRUSCH & WEBER 1996), postulieren z.B. OKRUSCH & WEBER (1996, S. 163) eine sehr rasche Heraushebungsphase und Abkühlung des Spessart-Kristallins "um die Wende vom frühen zum späten Karbon, wahrscheinlich kurze Zeit nach dem Höhepunkt der variszischen Metamorphose" (Visé/Namur). Für weitere Hinweise zur geotektonischen Situation und die geochronologische Einstufung sei auf Kap. 8 verwiesen.

3. Petrographie

3.1 Geländearbeit und Probennahme

Im Rahmen dieser Arbeit wurde zunächst Geländearbeit in vier verschiedenen lithologischen Einheiten des kristallinen Vorspessarts durchgeführt, wobei eine umfassende Beprobung der Metapelite den Schwerpunkt bildete. Die verwendeten Kartengrundlagen sind im Anhang, B., aufgeführt. Aus der Mömbris-Formation, der Geiselbach-Formation, der Alzenau-Formation und der Elterhof-Formation liegen insgesamt etwa 230 Gesteinsproben vor, die Fundpunkte sind in Tab. C.1 im Anhang zusammengestellt. Die Lage der Probenfundpunkte zeigt Abb. 3.1.

Die ungünstigen Aufschlussverhältnisse im Spessart-Kristallin erschwerten die Geländearbeit, insbesondere die Gewinnung frischen Probenmaterials. Die Proben sind teilweise stark verwittert. Aus diesem Grunde wurde auch bereits existierendes Probenmaterial des Staurolith-Glimmerschiefers der Mömbris-Formation (Aufsammlungen von Prof. S. Matthes, Würzburg) petrographisch und petrologisch untersucht. Weiterhin wurden aus dem Archiv des Bayerischen Geologischen Landesamtes (Aufsammlungen von Dr. Wi. Weinelt) Gesteinsdünnschliffe von 13 Proben der Geiselbach-Formation in die petrographischen Untersuchungen einbezogen (Tab. C.2 im Anhang).

3.2 Petrographische Beschreibung der verschiedenen lithostratigraphischen Einheiten

Bearbeitung ca. Die grundlegende petrographische erfolgte an insgesamt 150 Gesteinsdünnschliffen (Methodik vgl. Anhang, D.1). Dabei wurde auf die Untersuchung der metapelitischen Gneise bzw. Glimmerschiefer der Mömbris-Formation besonderer Wert gelegt, da diese Gesteine aufgrund ihres kritischen Mineralbestandes mit Staurolith, Granat, Biotit, Hellglimmer sowie teilweise sekundärem Chlorit, in einigen Fällen auch Disthen rsp. Sillimanit, für phasenpetrologische Untersuchungen besonders interessant erscheinen. In den Gesteinen der Geiselbach-, Alzenau- und Elterhof-Formation dagegen liegen als Indexminerale i.d.R. lediglich Granat und Biotit vor, sodass die kritische Mineralparagenese weniger klar einzugrenzen ist. Dennoch soll versucht werden, auch für die Geiselbach-, Alzenau- und Elterhof-Formation petrologische und mineralchemische Daten zu ermitteln. Der wenig frische Erhaltungszustand der Gesteine dieser Einheiten (vgl. Kap. 3.2) erschwert jedoch die Anwendung qualitativer petrologischer Arbeitsmethoden (vgl. Kap. 6 u. Anhang). Für die Staurolith-Glimmerschiefer der Mömbris-Formation erscheint die Anwendung solcher Methoden sinnvoll, da die Strukturen (engl. *texture*) auf Gleichgewichtsparagenesen hindeuten (vgl. Kap. 3.2.1).

Abb. 3.1

Übersichtskarte des Spessart-Kristallins mit den Fundpunkten der wichtigsten Proben, verändert nach OKRUSCH & WEBER (1996). Nahe beieinander liegende Fundorte sind ggf. durch den selben Punkt dargestellt. Eine komplette Aufstellung aller Proben und Fundpunkte ist aus Tab. C.1 im Anhang zu ersehen.
zu Abb. 3.1					
X	Mömbris-Formation	X	Geiselbach-Formation		
X	Alzenau-Formation	X	Elterhof-Formation		

Zuordnung der Proben-Nummern zu den Fundpunkten:

Lithostratigraphische Einheit	Proben-Nummer	Fundpunkt
	IMM 021	А
	IMM 029 A	В
	IMM 039	С
	IMM 004, IMM 044, IMM 063, SM 68	D
Mömbrig Formation	IMM 051	Е
Momoris-Formation	IMM 056	F
	IMM 061	G
	IMM 075 B	Н
	IMM 085, SM 1063	Ι
	IMM 089	J
	IMG 009	K
Geiselbach-Formation	IMG 027	L
	IMG 042, IMG 043	М
Alzenau-Formation	IMA 016, IMA, 021, IMA 023	Ν
	IME 007, IME 010	0
Elterhof-Formation	IME 046	Р
	IME 058	R

Im folgenden sollen die Gesteine, insbesondere die für die Phasenpetrologie sowie die mineralchemische oder geochemische Analytik ausgewählten Proben, beschrieben werden. Weitere petrographische Beschreibungen finden sich in den Arbeiten von MATTHES (1954, 1958), BRAITSCH (1957a, b), GABERT (1957), PLESSMANN (1957), SCHNEIDER (1962), OKRUSCH et al. (1967), EL SHAZLY (1983), OKRUSCH et al. (1985) und SMOLER (1987).

3.2.1 Mömbris-Formation

Die Mömbris-Formation im mittleren Teil des kristallinen Vorspessarts wird im Norden hangend von der Geiselbach-Formation begrenzt, die südliche Begrenzung bilden die Orthogneise des Rotgneis-Komplexes (Abb. 2.6, 3.1). Lithologisch stellt die Mömbris-Formation eine Folge aus Metapeliten und Metapsammiten dar, die von BÜCKING (1892) und KLEMM (1895) als "glimmerreicher, schiefriger Gneis" bzw. von THÜRACH (1893) als "Staurolithgneis" charakterisiert wurden. Eine grundlegende petrographische Bearbeitung dieser Gesteinseinheit wurde von MATTHES (1954, 1958) vorgenommen, der die Bezeichnung "Staurolith-GranatPlagioklas-Gneis" einführte. MATTHES (1954) unterscheidet innerhalb der Mömbris-Formation neben dem verbreiteten Haupttyp des Staurolith-Granat-Plagioklas-Gneises eine phyllonitischdiaphthoritische Variante desselben, sowie einen als progressiv metamorph beeinflußter Staurolith-Granat-Plagioklas-Gneis bezeichneten Typ. Darüber hinaus beschreibt MATTHES (1954) auch staurolithfreien Granat-Plagioklas-Gneis und Epidot-Hornblende-Plagioklas-Gneis. SMOLER (1987) geht weiterhin auf Quarz-Plagioklas-Felse ein. Einen Eindruck von den Aufschlussverhältnissen und der Ausbildung des Staurolith-Glimmerschiefers der Mömbris-Formation vermittelt Abb. 3.2.

Abb. 3.2: Gelände-Fotos der Mömbris-Formation. a) Kleiner Aufschluβ im Staurolith-Glimerschiefer, hinter der Katholischen Kirche in Sommerkahl. Das Gestein ist verwittert und sehr brüchig

Abb. 3.2 b) Blöcke von Staurolith-Glimmerschiefer im Wald zwischen Erlenbach und Kaltenberg

Abb. 3.2 c) Aufschluβ im Staurolith-Glimmerschiefer an der Straße zwischen Schimborn und Feldkahl

Abb. 3.2 d) Handstück des Staurolith-Glimmerschiefers, Aufschluß an der Straße zwischen Schimborn und Feldkahl.

Innerhalb der modernen internationalen Nomenklatur erscheint der in der deutschen Literatur für diese metapelitischen Gesteine eingeführte Name "Staurolithgneis" insbesondere aufgrund ihres typischen Schiefergefüges, der hohen Anteile an Glimmer-Mineralen, sowie der nur bedingt namhaften Feldspat-Gehalte nicht mehr haltbar (vgl. SCHMID et al. 2004, OKRUSCH & MATTHES 2005, KORNPROBST 1996, BUCHER & FREY 1994, WIMMENAUER 1985, WENK 1963). Daher sollte der bisherige Name wohl besser durch die Bezeichnung "Staurolith-Glimmerschiefer" (OKRUSCH, pers. Mitteilung) ersetzt werden. Im Folgenden werden diese Gesteine der Mömbris-Formation als Staurolith-Glimmerschiefer bezeichnet.

In den metapelitischen Gesteinen der Mömbris-Formation kommen überwiegend Staurolith-Granat-Plagioklas-Glimmerschiefer mit Quarz, Plagioklas, Muscovit, Biotit, Granat, Staurolith, Disthen/Sillimanit vor. Als Nebengemengteil können Chlorit sowie akzessorisch Turmalin, Apatit, Ilmenit, Hämatit, Magnetit, Rutil und Zirkon hinzutreten. Die fazieskritischen Minerale stellen Staurolith + Granat + Biotit + Muscovit ± Disthen/Sillimanit dar.

In der Mömbris-Formation kann petrographisch anhand des strukturellen (engl. *texture*) und mikroskopischen Befundes unterschieden werden in:

- **Typ I**: Staurolith-Granat-Glimmerschiefer mit großen, teilweise poikilitisch ausgebildeten Granat-Porphyroblasten, die meist im Grundgewebe, nur selten als Einschluß in Staurolith oder Plagioklas vorliegen (vgl. Kap. 3.2.1.1).
- **Typ II**: Staurolith-Granat-Glimmerschiefer mit zahlreichen, häufig kleineren, meist idiomorphen Granat-Glomeroblasten, die als Einschluß in Staurolith und Plagioklas vorkommen, teilweise auch in Glimmerlagen und im Grundgewebe verteilt. Bedeutsam ist, daß die Al₂SiO₅-Polymorphen Disthen bzw. Sillimanit nur in diesem Typ II auftreten (vgl. Kap. 3.2.1.2 u. 3.2.1.3).

Der Mineralbestand der beiden Varianten des Staurolith-Granat-Glimmerschiefers (nachfolgend als Staurolith-Glimmerschiefer bezeichnet) unterscheidet sich nicht signifikant, einen wesentlichen Unterschied stellt die Ausbildung von Granat dar. Dessen unterschiedliche Ausbildung läßt eine Entstehung in zwei Generationen vermuten. Signifikante mineralchemische Unterschiede zwischen den beiden Granat-Typen, die diese Vorstellung unterstützen könnten, liegen nicht vor. Die meisten Proben sind dem Typ I zuzuordnen. Einige Proben stellen einen Übergang zwischen den beiden Varianten dar (IMM 044, IMM 041, IMM 045). Innerhalb beider Gesteinsgruppen kann jeweils eine stärker retrograd überprägte Variante abgegrenzt werden, wobei als Kriterien die Sericitisierung der Plagioklase sowie die Chloritisierung von Granat, Biotit und Staurolith (Chlorit-Sericit-Gemenge) herangezogen wurden. Gelegentlich kommen Staurolith-freie Partien oder besonders Glimmer-reiche Anteile vor. Die beschriebene Charakterisierung steht in Analogie zu der von MATTHES (1954) erstellten Gliederung ("Haupttyp", "progressiv-metamorpher Typ"; "phyllonitisch-diaphthoritische Variante"). Eine detaillierte Übersicht gibt Tab. D.1 im Anhang.

Aus der vorgenommenen Gruppierung werden Schwerpunkte in der regionalen Verteilung der Gesteine deutlich, diese stimmt gut mit den Resultaten von MATTHES (1954) überein. So kommt der Typ I überwiegend im nördlichen und mittleren Bereich vor, während der Typ II nur im Süden der Mömbris-Formation auftritt. Eine Ausnahme bildet nur die Probe IMM 085 von der Womburg bei Schimborn, die dem Typ I zugeordnet wurde.

Modale Gesteinszusammensetzungen ausgewählter Proben des Staurolith-Glimmerschiefers sind in Tab. D.2 im Anhang dargestellt. Die Plagioklas-Gehalte liegen hier im Mittel bei etwa 25 Vol.-%, die etwas stärker variierenden Anteile von Quarz belaufen sich auf durchschnittlich ca. 12 bis 13 Vol.-%. Die Gehalte der beiden Glimmer-Minerale von 32 bis 50 Vol.-% weisen stärkere Schwankungen als diejenigen von Plagioklas oder Quarz auf. Hellglimmer ist im Durchschnitt mit ca. 17 bis 18 Vol.-% enthalten, Biotit überwiegt mit ca. 22 Vol.-%. Die Anteile von Staurolith erscheinen mit im Mittel etwa 9 bis 10 Vol.-% relativ hoch, jedoch finden sich auch bei MATTHES (1954) wiederholt Hinweise auf Staurolith-Gehalte von etwa 9 Vol.-% und mehr. Granat liegt in den hier ausgezählten Schliffen in Anteilen von durchschnittlich ca. 5 bis 6 Vol.-% vor und damit höher als von MATTHES (1954) beschrieben.

Die modale Zusammensetzung der beiden Typen weist geringe Unterschiede auf. Demgegenüber sind zwischen Einzelproben große Schwankungen zu verzeichnen. Die Mengenanteile an Plagioklas, Quarz, Hellglimmer und Biotit weichen zwischen den beiden Typen durchschnittlich nur um etwa 1 bis 2 Vol.-% voneinander ab. Im übrigen unterscheiden sich Typ I und II folgendermaßen:

Mineral	Staurolith-Glimmerschiefer Typ I	Staurolith-Glimmerschiefer Typ II
Hellglimmer	~ 18 Vol%	~ 16 Vol%
Granat	3 - 8 Vol%	5 - 11 Vol%
Staurolith	6 - 12 Vol%	8 - ≤12 Vol%

3.2.1.1 Typ I des Staurolith-Glimmerschiefers

Zugehörige Probennummern:

Typ I des Staurolith-Glimmerschiefers: IMM 004, IMM 021, IMM 024, IMM 038, IMM 039, IMM 040, IMM 043, IMM 044, IMM 051, IMM 052, IMM 053, IMM 054, IMM 056, IMM 058, IMM 059, IMM 060, IMM 085, IMM 086, IMM 088 A+B, IMM 092, IMM 101 A+B, IMM 102 A+B;

Typ I des Staurolith-Glimmerschiefers, retrograd überprägt: IMM 009, IMM 010, IMM 013, IMM 015, IMM 016, IMM 019, IMM 022, IMM 023, IMM 035, IMM 037, IMM 042, IMM 061, IMM 062, IMM 064, IMM 065 A+B, IMM 066, IMM 070, IMM 071, IMM 080, IMM 082, IMM 087, IMM 097, IMM 099, IMM 100.

Makroskopisch erscheint der Staurolith-Granat-Plagioklas-Glimmerschiefer als fein- bis mittelkörniges, flaserig-schiefriges Gestein von dunkelbräunlicher bis dunkelgrauer Farbe, das im Handstück metallisierenden bis Perlmuttglanz aufweist. Im Typ I umfließen typischerweise zusammenhängende Glimmerlagen aus Biotit und Muscovit linsenförmige Quarz-Plagioklas-Aggregate, wodurch eine lineare Textur, teilweise mit einer Streckung nach der b-Achse, bedingt wird. Teilweise ist auf den Foliationsflächen eine zweite Schieferung zu beobachten, die "Stauchfältelung" bezeichnete. MATTHES (1954)als Quarz und offenbar durch Hämatitschüppchen bisweilen leicht rötlich gefärbter Plagioklas treten vorwiegend im Querbruch hervor. Darüber hinaus sind makroskopisch dunkelbraune, mattglänzende, bis zu 1 cm lange Staurolithkristalle, sowie schwarze, stärker glänzende Prismen von Turmalin und gelegentlich Granat in Form rötlicher, wenige Millimeter großer Körnchen erkennbar.

Unter dem Mikroskop zeigt sich im Typ I des Staurolith-Glimmerschiefers ein granoblastisches bis lepidoblastisches Gefüge mit einzelnen porphyroblastischen Elementen (Abb. 3.3). Quarz und Plagioklas erscheinen darin pflasterartig miteinander verbunden, sie bilden häufig lenticulare Bereiche aus, die von lepidoblastischen Glimmeraggregaten begrenzt werden (Abb. 3.4, 3.5). Im Falle eines höheren Anteils von Plagioklas erscheint dieser porphyroblastisch ausgebildet (Abb. 3.5), wobei es zu einer Zurückdrängung von kleineren Quarzindividuen in die Kornzwischenräume kommt. Teilweise ist eine Segregation in leukokrate und phyllosiliatreiche Lagen zu verzeichnen. Die Lagen aus Biotit und Hellglimmer zeichnen gemeinsam die Hauptschieferung des Gesteins nach. Weitere charakteristische Gefügeanteile stellen Porphyroblasten von Staurolith (Abb. 3.7, 3.8), die meist an die Glimmerlagen gebunden auftreten, sowie kleinere, porphyroblastische Granat-Individuen im Grundgewebe dar (Abb. 3.3 - 3.6). Insbesondere in dem granoblastischen Gefügebereich schließen die beteiligten Kristalle häufig Korngrenzwinkel von 120° miteinander ein, wie sie für metamorphe Rekristallisationsgefüge als typisch angesehen werden. Diese strukturelle Ausbildung (engl. *texture*) kann als Hinweis auf die Einstellung einer neuen Gleichgewichtssituation gedeutet werden (z.B. WIMMENAUER 1985).

Abb. 3.3

Mikrofoto IMM 039: Typisches Gefüge des Staurolith-Glimmerschiefers, Typ I, mit porphyroblastischen, lepidoblastischen und untergeordnet auch granoblastischen Elementen. Die Granat-Kristalle und der im Abbau befindliche Staurolith liegen im Grundgewebe aus Biotit, Hellglimmern, Plagioklas, Quarz und Opakmineralen vor. Chlorit wurde retrograd gebildet. Der kleinere Granat-Kristall ist xenomorph ausgebildet. Der größere, hypidiomorphe Granat weist eine unsymmetrische Verteilung der kleinen Einschlüsse auf. Vereinzelt sind kleine, rötlichbraune Hämatitschleier erkennbar. 1 Nic., Bildbreite ca. 2.5 mm.

Anhand der Gefügemerkmale sind bedingt die relativen Altersbeziehungen der Minerale untereinander und zur externen Foliation zu erkennen. Die Lagen aus Biotit und Hellglimmer sind prä- bis im wesentlichen syntektonisch entstanden, sie zeichnen die externe Schieferung nach. Dieser gegenüber weisen die Granat- und Plagioklas-Prophyroblasten teilweise ein verlegtes Interngefüge s_i auf, das eine frühere Foliation nachzeichnet (Abb. 3.3, 3.4, 3.5). Die Diskordanz zwischen der externen Schieferung und dem Interngefüge der Granat- bzw. Plagioklas-Kristalle (Abb. 3.5) belegt deren Wachstum vor der Ausbildung der externen Foliation.

Abb. 3.5

Mikrofoto IMM 039: Hypidiomorpher bis xenomorpher Granat-Kristall mit Biotit-Einschluß und randlichem Chlorit im Typ I des Staurolith-Glimmerschiefers. Der prophyroblastische Plagioklas im rechten Bildteil ist leicht sericitisiert und besitzt ein gegenüber den Glimmern teilweise verlegtes Interngefüge s_i. 1 Nic., Bildbreite ca. 2.3 mm.

Abb. 3.6

Mikrofoto IMM 061: Granat-Kristall mit einem Biotit-Einschluß, in dem ein kleiner Granat-Kristall eingeschlossen ist. Daneben liegen Einschlüsse von Hellglimmer und Quarz vor. Biotit und Hellglimmer umfließen den Granat. 1 Nic., Bildbreite ca. 3 mm.

Abb. 3.7

Mikrofoto IMM 021: Die Staurolith-Kristalle sind in unterschiedlichem Maße von Abbaureaktionen gekennzeichnet, die insbesondere von den intrakristallinen Rissen ausgehen. Der hellgrüne Chlorit, der auch Glimmer überwächst, hat sich retrograd gebildet. Im linken unteren Quadranten ist ein relativ frischer Granat-Kristall zu erkennen. Im Grundgewebe liegen Hellglimmer, Biotit, sericitisierter Plagioklas und Quarz vor. 1 Nic., Bildbreite ca. 3.5 mm.

Abb. 3.8

Mikrofoto IMM 044: Granat-Einschlüsse in einem nahezu idiomorphen Staurolith-Kristall. Das Grundgewebe besteht aus Hellglimmer, Biotit, Plagioklas und Quarz. Im rechten oberen Quadranten befindet sich ein deutlich kleinerer Staurolith. Auffällig ist der hohe Anteil an Opakmineralen. 1 Nic., Bildbreite ca. 4 mm. Die Granat-Porphyroblasten mit Internrotation sind in bezug auf die externe Foliation als prä- bis synkinematisch gesprosst, seltener auftretende Granat-Kristalle mit unverlegtem Interngefüge s_i als syn- bis posttektonisch in bezug auf die externe Foliation des Gesteins anzusehen. Granat tritt wiederholt als Einschluß in Plagioklas auf, was darauf hinweist, daß er eines der ältesten, noch vorhandenen Gefügeelemente darstellt. Staurolith wird vielfach von den Glimmerlagen umflossen (Abb. 3.8), wächst jedoch auch in Richtung der externen Foliation, was möglicherweise ein prä- bis syntektonisches Wachstum anzeigt. Da Staurolith am Metamorphose-Höhepunkt stabil war – er könnte jedoch auch schon früher entstanden sein –, weist diese Gefügebeziehung auf einen relativ engen (zeitlichen) Zusammenhang zwischen Metamorphose-Höhepunkt und Hauptdeformation hin. Die parallel zur Hauptschieferung gewachsenen Glimmer sind vermutlich als prä- oder syntektonisch gewachsen einzustufen, während die vereinzelt auftretenden Querglimmer posttektonisch sprossten. Auch der als retrograd einzustufende Chlorit wuchs sukzessiv in bezug auf die externe Foliation des Gesteins.

Mikroskopisch lassen sich in einigen Proben (z.B. IMM 021, IMM 061) verschiedene Mineral-Generationen differenzieren. Biotit und Hellglimmer, die als Einschluß in Granat oder Plagioklas vorliegen, können als Vertreter einer ersten Generation angesehen werden. Die parallel zur externen Foliation eingeregelten Glimmer im Grundgewebe repräsentierten eine zweite Generation. Die Querglimmer sind einer weiteren, dritten Generation zuzuordnen. Mineralchemisch zeigen sich keine Unterschiede zwischen den Glimmern der verschiedenen Generationen. Auch signifikant unterschiedliche Kristallgrößen von Staurolith könnten unterschiedliche Generationen dieses Minerals repräsentieren (Abb. 3.8, vgl. Kap. 3.2.1.3).

Teilweise sind Staurolith-Glimmerschiefers genetisch im Typ I des interessante Einschlußsituationen zu beobachten, wobei die eingeschlossenen Minerale auch in der Matrix der Gesteine vorhandenen sind. Staurolith besitzt häufig Einschlüsse von Quarz und Ilmenit, untergeordnet liegen Biotit, Hellglimmer und weitere Erzminerale als Einschlüsse in Staurolith vor. Granat kommt im Typ I meist im Grundgewebe vor (Abb. 3.3 - 3.6), wobei insbesondere in stärker poikilitisch ausgebildeten Granat-Kristallen (Abb. 3.4) Einschlüsse von Hellglimmer und Quarz, seltener Biotit und Opakmineralen existieren. In Plagioklas sind ebenfalls häufig Hellglimmer, Biotit, Quarz und selten Opakminerale eingeschlossen. In einigen Fällen liegt Granat als Einschluß in Staurolith (z.B. IMM 021, IMM 039) (Abb. 7.7, Kap. 7) oder in Plagioklas (z.B. IMM 039) vor. Die Beschreibung der einzelnen Minerale ist in Kap. 3.2.1.3 gegeben.

Der Typ I des Staurolith-Glimmerschiefers besitzt die Mineralparagenese

Staurolith + Granat + Biotit + Muscovit + Plagioklas + Quarz + Akzessorien (Abb. 3.3, 3.6 u. Abb. 7.13, Kap. 7). Die kritischen Minerale Staurolith, Granat und Biotit berühren sich teilweise, oder sie kommen im Grundgewebe verteilt neben Plagioklas, Muscovit und Quarz vor. Vielfach weisen sie gerade Korngrenzen auf (vgl. Kap. 3.2.1.3). Al₂SiO₅-Polymorphe wie Disthen oder Sillimanit liegen in den hier untersuchten Proben des Typs I nicht vor. Die Berührungsparagenese von st + g + bi weist auf eine annähernde Einstellung des physikalisch-chemischen Gleichgewichtes hin (vgl. Kap. 6). Zur Dokumentation wurde für genauer untersuchte Proben (s.u.), wie von BUCHER & FREY (1994, S. 26) vorgeschlagen, eine "Matrix-Tabelle" erstellt, in der gemeinsame Korn-Korn-Kontakte registriert wurden (vgl. Anhang, D).

Zur genaueren Untersuchung des Typs I des Staurolith-Glimmerschiefers wurden folgende Proben ausgewählt: IMM 021, IMM 039, IMM 044, IMM 051, IMM 056, IMM 061 (retrograd überprägt), für die geochemische Analytik zusätzlich IMM 004 und IMM 085 u.a. Ausführliche petrographische Beschreibungen dieser Proben finden sich im Anhang, D.2.

3.2.1.2 Typ II des Staurolith-Glimmerschiefers

Zugehörige Probennummern:

Typ II des Staurolith-Glimmerschiefers: IMM 028, IMM 029 A+B, IMM 046, IMM 047, IMM 063, IMM 075 A+B, IMM 076, IMM 077, IMM 078, IMM 083, IMM 089, IMM 090, SM 68, SM 1063;

Typ II des Staurolith-Glimmerschiefers, retrograd überprägt: IMM 025, IMM 026, IMM 027, IMM 030, IMM 031.

In der makroskopischen Betrachtung sind die beiden Varianten des Staurolith-Glimmerschiefers nur schwierig zu unterscheiden. Strukturell zeichnet sich der Typ II im Vergleich zum verbreiteteren Typ I jedoch durch ein deutlicheres Hervortreten von porphyroblastisch gewachsenem Plagioklas aus, wodurch die Glimmerlagen unterbrochen werden können. Bereits im Handstück sind gelegentlich Einschlüsse von Granat in Plagioklas zu erkennen. Im Dünnschliff stellt sich beim Typ II des Staurolith-Glimmerschiefers ein granoblastisches bis lepidoblastisches, teilweise porphyroblastisches Gefüge dar, dessen Grundgewebe aus Quarz, Plagioklas sowie Hellglimmer und Biotit besteht (Abb. 3.9). Letztere können teilweise durchhaltende Glimmerbahnen bilden, die der Hauptschieferung des Gesteins folgen. In den granoblastischen Bereichen liegt vor allem Quarz teilweise pflasterartig verzahnt vor und bildet in dieser Situation wiederum typische 120° Korngrenzwinkel miteinander aus, die auf eine statische Rekristallisation hindeuten. In dem Gefüge stellen die häufig porphyroblastische Ausbildung von Plagioklas, aber auch von Staurolith, markante Elemente dar. Im Vergleich zum Typ I sind die Plagioklase im Durchschnitt etwas gröber, die Staurolith-Kristalle sowie die Glimmer etwas kleiner ausgebildet. Die Plagioklas-Porphyroblasten werden typischerweise von zahlreichen Einschlüssen kleiner, oft idiomorpher Granat-Kristalle (Glomeroblasten) poikilitisch durchsetzt (Abb. 3.9). Auch in Staurolith finden sich die winzigen, meist idiomorphen Granat-Einschlüsse (Abb. 3.9). In den Glimmerlagen und im Grundgewebe des Gesteins liegen sie seltener vor (Abb. 3.10). Diese Strukturen (engl. texture) sind charakteristisch für den Typ II des Staurolith-Glimmerschiefers. Im Gegensatz zum Typ I, der frei davon ist, treten im Typ II des Staurolith-Glimmerschiefers gelegentlich, in regional begrenzten Arealen, Al₂SiO₅-Polymorphe auf (IMM 063, SM 68, SM 1063; Abb. 3.12; Abb. 7.21, 7.23, Kap. 7.1) Überwiegend liegt Disthen, seltener auch Sillimanit vor. Die Beschreibung der einzelnen Minerale findet sich in Kap. 3.2.1.3.

Die Gefügebeziehungen im Typ II sind nicht eindeutig. Die Glimmerminerale sind überwiegend in Richtung der Hauptschieferung eingeregelt (Abb. 3.9), leicht diskordant zu dieser Richtung ausgerichtete Glimmer wuchsen vermutlich posttektonisch. Insbesondere in den porphyroblastischen Plagioklasen ist häufig ein verlegtes Interngefüge si von Hellglimmern zu beobachten. Das Auftreten der vielfach idiomorphen Granat-Kristalle in Staurolith- und Plagioklas-Porphyroblasten weist möglicherweise darauf hin, daß die Granate älter oder eventuell auch gleich alt sind wie die Wirtskristalle (Abb. 3.9, 3.12). Innerhalb der Glimmer-Bahnen bewirken die idiomorphen Granat-Kristalle in diesem Gesteinstyp gewöhnlich keine Verbiegung oder Verlagerung dieser Minerale (Abb. 3.11), was auf ein Granat-Wachstum nach der Ausbildung der Hauptschieferung hinweist. Staurolith überwächst in Einzelfällen die Foliation, was ein syn- bis postektonisches Wachstum andeutet (Abb. 3.12). Disthen, der häufig zusammen mit Staurolith vorkommt, sproßt ebenfalls parallel und schräg zur Foliation. Diese Gefügebeobachtungen deuten darauf hin, daß der Metamorphose-Höhepunkt syn- bis posttektonisch erreicht wurde. Chlorit ist auch in diesem Gesteinstyp als retrograd gebildet einzustufen.

Abb. 3.9: Mikrofotos IMM 063

Typisches porphyroblastisches Gefüge des Staurolith-Glimmerschiefers, Typ II, mit granoblastischlepidoblastischen Bereichen.

a) Der große, farblose, porphyroblastische Plagioklas ist durch leichte Sericitisierung getrübt, er weist polysynthetische Verzwilligung auf. In dem Plagioklas sowie dem großen, gelben Staurolith im rechten oberen Quadranten liegen kleine, hypidiomorphe Granat-Einschlüsse vor. Auch im Grundgewebe zwischen Biotit, Hellglimmern und dem klaren, meist xenomorphen Quarz existieren solche kleinen Granat-Kristalle. 1 Nic.

Abb. 3.9

b) Plagioklas, Quarz und Staurolith mit grauen Interferenzfarben, die Glimmer treten durch ihre bunten Interferenzfarben hervor. + Nic., Bildbreite ca. 5.5 mm.

Abb. 3.10

Mikrofoto IMM 089: Hypidiomorphe Granat-Kristalle mit winzigen Einschlüssen im Grundgewebe neben Biotit, Hellglimmer, Plagioklas und Quarz. 1 Nic., Bildbreite ca. 2 mm.

Mikrofoto IMM 089: Syn- bis postdeformativ gewachsener, idiomorpher Staurolith-Durchkreuzungszwilling nach (232) mit Einschlüssen von hypidiomorphen Granat-Kristallen, in Bahnen aus Hellglimmern und Biotit. 1 Nic., Bildbreite ca. 3 mm. Eine Abgrenzung verschiedener Mineralgenerationen ist auch im Typ II schwierig, die für den Typ I gegebenen Ausführungen behalten ihre Gültigkeit (Kap. 3.2.1.1). Granate im Grundgewebe einiger Proben (z.B. IMM 089, Abb. 3.10) könnten im Vergleich zu kleinen, häufig idiomorphen Granat-Kristallen (Abb. 3.11) eine andere Generation repräsentieren, mineralchemische Hinweise diesbezüglich konnten jedoch nicht festgestellt werden. Auch verschiedene Generationen von Staurolith, vertreten durch charakteristisch unterschiedliche Kristallgrößen, sind denkbar (z.B. IMM 089, vgl. Kap. 3.2.1.3). Für die Glimmer ähnelt die Abfolge derjenigen im Typ I. In Plagioklas eingeschlossene Biotit- und Hellglimmer-Täfelchen können einer ersten Generation, die parallel zur Hauptschieferung eingeregelten Glimmer im Grundgewebe einer zweiten Generation zugerechnet werden. Wiederum stellen die Querglimmer eine weitere, dritte Generation dar. Mineralchemisch unterschieden sich die verschiedenen Glimmer-Generationen jedoch nicht signifikant.

Abb. 3.12

Mikrofoto IMM 063: Hypidiomorphe Granat-Kristalle auf Biotit-Bahnen sowie eingeschlossen in leicht sericitisiertem Plagioklas neben Hellglimmern und Disthen (grau, re. unten), der die typische gute Spaltbarkeit aufweist. Der Staurolith am Bildrand zeigt retrograde Chloritisierung. 1 Nic., Bildbreite ca. 2.8 mm.

Im Typ II des Staurolith-Glimmerschiefers liegt ebenfalls häufig die Mineralparagenese

Staurolith + Granat + Biotit + Muscovit + Plagioklas + Quarz + Akzessorien vor (Proben IMM 089, IMM 029 A, IMM 075 B). In einigen Proben tritt noch Disthen (IMM 063, SM 68) bzw. Disthen und Sillimanit (SM 1063) hinzu, so daß sich die Paragenese zu

Staurolith + Granat + Biotit + Muscovit + Plagioklas + Quarz + Al₂SiO₅ + Akzessorien erweitert. Dabei ist Disthen als das typomorphe Mineral anzusehen. Die Minerale Staurolith, Granat und Biotit besitzen häufig gemeinsame Korn-Kontakte, zwischen Staurolith und Plagioklas liegen vielfach Glimmer vor, was auf gemeinsame Bildungsreaktionen der sich berührenden Minerale hinweist (vgl. Kap. 3.3, 2.4). Die Indexminerale treten nicht reliktisch, sondern eigenständig auf, was auch bei diesem Typ für eine annähernde Einstellung des physikalisch-chemischen Gleichgewichtes spricht. Zusammenfassend lassen sich also insbesondere die Einschlußsituation von Granat in Staurolith und Plagioklas sowie das Auftreten der Al₂SiO₅-Polymorphen als Besonderheiten dieses Typs feststellen.

Zur genaueren Untersuchung des Typs II des Staurolith-Granat-Glimmerschiefers wurden folgende Proben ausgewählt: IMM 063, IMM 089, SM 68, SM 1063, für die geochemische Analytik zusätzlich IMM 029 A, IMM 075 B u.a. Ausführliche petrographische Beschreibungen dieser Proben finden sich im Anhang, D.2.

3.2.1.3 Beschreibung der Minerale im Dünnschliff

Die Ausbildung der einzelnen Minerale den beiden Typen des Staurolith-Glimmerschiefers weist große Ähnlichkeiten auf. Die folgende mikroskopische Beschreibung der Minerale bezieht sich daher auf beide Gesteinstypen, auf Unterschiede wird hingewiesen.

Quarz erscheint im Dünnschliff xenomorph, meist isometrisch ausgebildet und besitzt rundlichovale bis ausgelängte Formen. Die etwa 0.05 bis 0.7 mm (Typ II bis 0.5 mm) großen Mineralkörner sind häufig gekrümmt, meist jedoch buchtig begrenzt, sie liegen monomineralisch oder mit Plagioklas verzahnt vor. Im Typ II kommt Quarz am häufigsten in den granoblastischen Gefügebereichen vor, die Räume zwischen den großen Plagioklas-Porphyroblasten füllen. Quarz zeigt die typische undulöse Auslöschung, die auf eine Deformation der Gesteine hinweist, darüber hinaus sind teilweise Anzeichen einer Subkornbildung zu erkennen. Gelegentlich kommen Biotit- und Hellglimmer-Einschlüsse in Quarz sowie Flüssigkeitseinschlüsse vor. Tritt Quarz selbst als Einschluß auf, wie z.B. in Staurolith, beträgt der Korndurchmesser meist nur ca. 0.05 mm. Aneinandergrenzende Quarzkörner schließen häufig typische Korngrenzwinkel von 120° miteinander ein, die auf eine Kristallisation oder Rekristallisation unter statischen Bedingungen hinweisen.

Plagioklas, der einen großen Anteil der Gesteine bildet, ist durch xenomorphe bis hypidiomorphe Kristallgestalt und isometrischen bis prismatischen Habitus gekennzeichnet. Die 0.3 bis 2.0 mm (Typ II bis 2.5 mm) großen Individuen besitzen gerade bis gekrümmte, in seltenen Fällen auch buchtige Korngenzen. Wie bereits erwähnt, kann dieses Mineral porphyroblastisch gewachsen sein oder in Form kleinerer Körner (0.1 bis 0.5 mm) gemeinsam mit Quarz ein Pflastergefüge bilden. Letztere treten im Typ I verbreitet, im Typ II nur selten auf. Für den Typ II kennzeichnend sind die zahlreichen Einschlüsse von Granat, die insbesondere porphyroblastische Plagioklas-Körner poikilitisch durchsetzen. Plagioklas löscht teilweise leicht undulös aus, in den meisten Fällen kommt er unverzwillingt vor, gelegentlich tritt jedoch polysynthetische Verzwilligung nach dem Albit- oder Periklin-Gesetz auf. In bezug auf die Zusammensetzung der Plagioklas-Mischkristalle zwischen Albit (NaAlSi₃O₈, Ab) und Anorthit (CaAl₂Si₂O₈, An) können Anorthit-Gehalte im Bereich von 20 bis 27 % An, gelegentlich bis zu 34 % An angegeben werden. Ein meist inverser Zonarbau ist jedoch durch nur geringe Unterschiede im Anorthit-Gehalt zwischen Kern und Rand gekennzeichnet. Plagioklas führt teilweise Einschlüsse von Granat, Biotit, Hellglimmer, Chlorit, Quarz oder Ilmenit. Er kann, teilweise von Spaltrissen ausgehend, durch eine mehr oder minder starke Sericitisierung gekennzeichnet sein, was auf eine retrograde Überprägung der Gesteinspartien hindeutet.

Die **Glimmer**-Minerale treten vielfach in Form von Aggregaten bzw. mehr oder minder durchhaltender Bahnen auf, die durch tektonische Deformation leicht verfaltet sein können. In diesen Lagen besitzen Biotit und Hellglimmer häufig, jedoch nicht immer, gemeinsame Korngrenzen und sind in der Foliationsebene eingeregelt. Beide Glimmerarten sprossen in Einzelfällen auch als Querglimmer, die die externe Foliation überwachsen (vgl. S. 38). Die jeweiligen Glimmer-Minerale unterschiedlicher Generationen unterscheiden sich in ihrer chemischen Zusammensetzung nicht signifikant (vgl. Kap. 4.3 u. 4.4). Im Typ II des Staurolith-Glimmerschiefers treten die Glimmer auch als Einzelkristalle oder in Gruppen innerhalb der granoblastischen Gefügebereiche auf, die dann in gewissem Maße eine lepidoblastische Ausprägung annehmen können. Ebenso wie Biotit ist Hellglimmer im Typ II feiner ausgebildet als im Typ I (s.u.).

Der meist grünbraune, selten auch braune, lepidoblastische **Biotit** besitzt gerade bis zackige Korngrenzen und weist die typische *birds-eye-structure* auf. Er ist durch Pleochroismus von X =hellbraun bis blaß-olivgrünlich nach Y, Z = dunkelbraun bis grünlichbraun gekennzeichnet. Tendenziell kommt brauner Biotit im Typ II etwas häufiger vor als im Typ I. Allerdings kann die von MATTHES (1954) beschriebene Feststellung, innerhalb der Partien mit "Einwachsungen von Granat in Plagioklas" liege stets brauner Biotit vor, aufgrund der Ergebnisse dieser Untersuchung nicht bestätigt werden. Die Länge der Biotit-Kristalle schwankt i.d.R. zwischen etwa 0.2 und 1.8 mm (Typ II 0.8 mm), ihre Breite von ca. 0.01 bis 0.3 mm (Typ II 0.1 mm). In vielen Fällen sind im Biotit pleochroitische Höfe um Zirkon-Einschlüsse herum ausgebildet. Biotit tritt im Typ I wiederholt direkt benachbart zu Granat oder als Einschluß in Granat auf. Mineralchemisch weisen Einschluß-Biotite in Granat teilweise etwas höhere X_{Fe} auf als Matrix-Biotite (vgl. Kap. 4.3).

Die **Hellglimmer** sind farblos, ebenfalls lepidoblastisch ausgebildet und besitzen gerade bis teilweise zackige Korngrenzen. Die Kristalle sind durchschnittlich etwa 0.2 bis 1.0 mm lang (Typ II 0.1 bis 0.6 mm) und 0.01 bis 0.2 mm breit (Typ II bis 0.1 mm), sie sind ebenfalls durch die *birds-eye-structure* gekennzeichnet.

Im Gesteinsgefüge treten die beiden Glimmerarten in Kontakt zu allen anderen beteiligten Mineralen, insbesondere Staurolith, Granat, Plagioklas und Quarz. Im Typ I des Staurolith-Glimmerschiefers kommt Hellglimmer im Grundgewebe sowie als Einschluß in Plagioklas und gelegentlich in Granat vor (Abb. 3.6). Matrix-Hellglimmer zeigen mineralchemisch keine signifikanten Unterschiede zu eingeschlossenen Kristallen (vgl. Kap. 4.4). Im Typ II liegen Biotit und Hellglimmer als Einschlüsse in Plagioklas-Porphyroblasten vor (Abb. 3.9a). Teilweise beschreiben sie darin ein verlegtes Interngefüge s_i. Gelegentlich treten Biotit und Granat im Typ II gemeinsam in Plagioklas eingeschlossen, benachbart auf. Hellglimmer kann im Typ II in Form kleiner Kristalle in Staurolith eingeschlossen vorkommen, für Biotit wurde dies nicht beobachtet. Im Typ II liegen wiederholt Glimmerminerale zwischen Staurolith und Plagioklas und scheinen diese Minerale voneinander zu trennen. Dies ist im Typ I nicht der Fall.

Granat kommt im Typ I des Staurolith-Granat-Glimmerschiefers als leicht bräunlichgrau bis blaßrosa gefärbte, rundliche bis ausgelängte Porphyroblasten vor, deren Durchmesser zwischen 0.05 und 2.5 mm schwanken kann. Der gerade oder häufig konvex gekrümmt, zuweilen auch buchtig begrenzte Granat kann meist hypidiomorphe oder xenomorphe (Abb. 3.3), nur selten idiomorphe Kristallgestalt verwirklichen (Abb. 3. 4). Im Typ I kommt er einerseits im Verband mit Plagioklas und Biotit vor, andererseits tritt Granat in glimmerreichen Partien des Gesteins (Abb. 3.3, 3.5, 3.6) oder selten eingeschlossen in Staurolith (Abb. 7.7 in Kap. 7) oder Plagioklas auf. Granat weist häufig Einschlüsse (Abb. 3.4 - 3.6) wie Biotit, Hellglimmer, Quarz, Chlorit, Ilmenit, seltener Plagioklas oder Staurolith und teilweise feine Einlagerungen von Rutil auf und zeigt dann poikilitische Ausbildung (Abb. 3.4). Innerhalb der Granat-Kristalle können einschlußfreie Bereiche und stärker von Einschlüssen durchsetzte Partien vorliegen (Abb. 3.3). Biotit-Einschlüsse in Granat treten vielfach mit einem atollförmigen Wachstum des Granats kombiniert auf (z.B. IMM 051, IMM 056). Liegt Granat eingeschlossen in Plagioklas vor (z.B. IMM 039), sind die Granat-Kristalle meist klein (ca. 0.05 mm Durchmesser) und, wie auch Granat-Einschlüsse in Staurolith, i.d.R. einschlußfrei. Teilweise zeigen die Granat-Kristalle Korrosionserscheinungen, die auf einen Abbau hinweisen. Granat wie auch Staurolith liegen teilweise innerhalb einer Probe als frische Kristalle und in stark abgebauter Form vor (z.B. IMM 021, IMM 061) (Abb. 3.7). Ein Atollwachstum von Granat ist im Typ I des Staurolith-Glimmerschiefers wiederholt zu beobachten. Granate mit einem aus teils chloritisiertem Biotit und/oder Plagioklas bestehendem Kern sind als Ergebnis einer retrograd bedingten, selektiven Verdrängung des Granat-Kernes anzusehen (Abb. 3.5), was auch SMOLER (1987) in dieser Weise interpretiert. Die einzelnen Granat-Kristalle sind teilweise spröd zerbrochen und können Chloritisierung aufweisen.

Ein charakteristisches Merkmal für den Typ II des Staurolith-Glimmerschiefers stellen die zahlreichen Einschlüsse von **Granat** in verschiedene Gesteinspartien dar (Abb. 3.9 - 3.12). Typischerweise liegen die meist idiomorph, gelgentlich hypidiomorph ausgebildeten Granat-Kristalle als Einschlüsse in Plagioklas-Porphyroblasten vor (Abb. 3.9), häufig treten sie auch in Staurolith-Individuen (Abb. 3.12) oder Glimmerlagen (Abb. 3.11) sowie gelegentlich in den Quarz-Pflastern auf. Die im Durchmesser meist ca. 0.02 bis 0.6 mm kleinen Granat-Kristalle besitzen nur wenige Einschlüsse von z.B. Hämatit, gelegentlich sind sie von Rissen durchzogen. Im Gegensatz zum Typ I sind die Granat-Individuen im Typ II also nicht selbst poikilitisch strukturiert, vielmehr durchsetzen sie selbst andere Gesteinsbereiche poikilitisch.

Staurolith tritt in diesen Gesteinen häufig zusammen mit melanokraten, glimmerreichen Partien auf, seltener kann er auch in den granoblastisch-lepidoblastischen Partien anwesend sein. Typischerweise liegt der Staurolith in porphyroblastischer Ausbildung mit rhomboedrischem oder prismatischem Querschnitt vor (Abb. 3.8). Die Größe variiert im Typ I stark von 0.5 bis 5 mm, gelegentlich existieren auch sehr kleine Individuen (Abb. 3.8). Im Typ II zeigen die Kristalle eine Größe von 0.2 bis 2.6 mm. Hinsichtlich der Verteilung der Kristallgröße fallen – besonders im Typ II – zwei Schwerpunkte auf: die kleineren, meist idiomorphen bis hypidiomorphen, gewöhnlich einschlußfreien Staurolithe sind überwiegend etwa 0.1 bis 0.6 mm, die größeren, häufig skelettartig strukturierten, vielfach Einschlüsse (s.u.) führenden Kristalle zwischen 1.1 und 1.5 mm groß (z.B. IMM 089). Die Häufigkeitsverteilung der Kristallgrößen läßt sich möglicherweise als Hinweis auf zwei unterschiedliche Staurolith-Generationen interpretieren; mineralchemisch finden sich dazu keine Hinweise (vgl. Kap. 4.2). Die Staurolith-Kristalle verfügen meist über hypidiomorphe Korngestalt mit insbesondere im Typ II stärkerer Tendenz zu idiomorpher Ausbildung (Abb. 3.12); seltener ist Staurolith auch xenomorph

ausgebildet (Abb. 3.11). Die häufig poikilitischen, durch intrakristalline Risse fragmentierten und teilweise spröd zerbrochenen Staurolithe (Abb. 3.7, 3.8) sind durch charakteristischen Pleochroismus von X = blaßgelblich nach Y = hellgelb und Z = orangegelb gekennzeichnet, sie verfügen über gerade bis gekrümmte, zuweilen leicht buchtige Korngrenzen. Gelegentlich treten Durchkreuzungszwillinge auf (Abb. 3.12). In vielen Fällen ist Staurolith retrograd chloritisiert. Meist liegt er benachbart zu Plagioklas, Quarz und den Glimmern, gelegentlich eingebunden in die Glimmerlagen vor. Die größeren Staurolith-Kristalle weisen häufig Einschlüsse von Quarz, Plagioklas, Biotit, Hellglimmer, Chlorit, Granat, Ilmenit oder Turmalin in stark variierender Anzahl auf (Abb. 3.8, 3.9), die Staurolith teilweise poikilitisch durchsetzen. Dabei überwiegen im Typ II insbesondere Granat (Abb. 3.12), Quarz und Ilmenit. Weniger häufig liegen kleine Hellglimmer – selten direkt benachbart zu Granat – sowie vereinzelt Hämatit eingeschlossen vor. Im Typ II tritt Biotit nicht als Einschluß in Staurolith auf, in einer einzelnen Situation liegt Biotit am inneren Saum eines skelettartigen Stauroliths neben Quarz vor. Die kleinen Staurolithe sind i.d.R. frei von Einschlüssen.

Chlorit ist im Staurolith-Glimmerschiefer hellgrün gefärbt und lepidoblastisch ausgebildet. Er besitzt gerade bis gezackte Korngrenzen bei einer Größe um ca. 0.1 mm (Typ II bis 0.3 mm) und zeigt meist einen Pleochroismus von X = hellgrün nach Z = nahezu farblos. Chlorit liegt als retrogrades Produkt vor, worauf das bevorzugte Wachstum am Rand von Granat- und Staurolith-Prophyroblasten (z.B. IMM 056, IMM 061) sowie Biotit hinweist. Die Chloritisierung von Staurolith geht vielfach auch von intrakristallinen Rissen aus. Gelegentlich werden Granat und Staurolith teilweise pseudomorph von Chlorit ersetzt. Im Typ II des Staurolith-Glimmerschiefers ist eine Chloritisierung von Granat nur vereinzelt zu beobachten, was auch in Zusammenhang mit der glomeroblastischen Ausbildung von Granat zu sehen ist. Im Grundgewebe des Gesteins ist Chlorit deutlich seltener vertreten, dort kommt er in Form kleiner Nester vor. Im Typ II ist Chlorit häufiger vorhanden als im Typ I, er tritt dabei bevorzugt mit Staurolith oder Glimmern auf und greift von diesen Situationen aus vielfach auf das Grundgewebe über. Hinweise auf prograde Chloritrelikte konnten petrographisch nicht nachgewiesen werden.

Al₂SiO₅-Polymorphe liegen nur im Typ II des Staurolith-Glimmerschiefers vor, wobei Disthen häufiger als Sillimanit auftritt. Disthen ist farblos, leistenförmig ausgebildet und zeichnet sich besonders durch seine vollkommene Spaltbarkeit sowie die charakteristische hohe Lichtbrechung aus (IMM 063, SM 68, SM 1063; Abb. 3.11 u. Abb. 7.24 b, Kap. 7.1). Die Disthen-Kristalle sind ca. 0.2 bis 0.8 mm lang und etwa 0.1 bis 0.3 mm breit (IMM 063, SM 1063), in SM 68 sind sie

bis zu 4.5 mm lang. Disthen tritt insbesondere neben Staurolith und Biotit, in IMM 063 auch neben Hellglimmer auf. In SM 1063 und SM 68 findet sich zusätzlich zu Disthen auch **Sillimanit** (Abb. 7.24 c, Kap. 7.1). In SM 1063 ist Sillimanit ebenfalls farblos und weist die typische nadelige bis fibrolithische Ausbildung auf. In SM 68 ist er fibrolithisch ausgebildet und bildet mit Disthen keine Berührungsparagenese, sondern liegt unabhängig davon in einem kleinen Teilbereich des Schliffes vor. Sillimanit kann daher nicht der Mineralparagenese dieser Probe (SM 68) zugeordnet werden. Andalusit kommt in keiner der untersuchten Proben vor. Die für den Typ II kennzeichnenden idiomorphen Granat-Individuen können gemeinsam mit Disthen vorkommen, in der Probe SM 1063 existieren Disthen sowie Sillimanit jedoch unabhängig von den zahlreichen Granat-Einschlüssen.

In den Proben des Staurolith-Glimmerschiefers treten **akzessorisch** Turmalin, Zirkon und Apatit sowie die Opakminerale Hämatit, Ilmenit, Magnetit und Rutil auf. Turmalin zeigt dabei meist eine grünblaue Farbe mit deutlichem Pleochroismus und teilweise optischem Zonarbau. In seltenen Fällen kommt Turmalin als Einschlußmineral vor oder schließt Granat ein. Ilmenit tritt verbreitet im Grundgewebe des Gesteins auf, liegt aber auch als Einschluß in Staurolith, in Granat und in Plagioklas vor. Ilmenit weist meist Entmischungslamellen von Hämatit auf. Magnetit und Rutil kommen deutlich seltener vor.

3.2.1.4 Genetische Hinweise aus der Petrographie der Mömbris-Formation

In den Staurolith-Glimmerschiefern der Mömbris-Formation war Staurolith am Metamorphose-Höhepunkt stabil. Nur lokal scheint ein etwas höherer Metamorphosegrad erreicht worden zu sein, was durch die Bildung von Disthen und seltener auch Sillimanit angezeigt wird. Staurolith wurde z.B. durch die Reaktion

$Granat + Chlorit + Muscovit = Staurolith + Biotit + Quarz + H_2O$

(SPEAR 1993) gebildet. Chlorit stellt dabei häufig den begrenzenden Faktor dar. Die Nachbarschaft von Staurolith zu Biotit ist hier von genetischer Bedeutung, da die Staurolith-Isograde zusätzlich die Bildung von Biotit verursacht. Einen weiteren Hinweis auf die Entstehung von Staurolith gemäß dieser Reaktion stellen Einschlüsse von Quarz in Staurolith dar, die auf eine mögliche gleichzeitige Bildung dieser Minerale hinweisen. Die Häufigkeit der Einschlüsse in Staurolith (vgl. Kap. 3.2.1.3) könnte nach PASSCHIER & TROUW (1996) in der deutlich verringerten Mobilität von Al-Ionen bei grünschiefer- und amphibolitfaziellen

Bedingungen (CARMICHAEL 1969) in Al-reichen Silicaten wie Staurolith begründet sein. Aus dem gleichen Grunde kann Staurolith skelettiert ausgebildet sein, wenn er in Al-armen Bereichen, wie Quarz-reichen Lagen, gewachsen ist (PASSCHIER & TROUW 1996). Das von SMOLER (1987) beschriebene seltenere Auftreten von Quarz-Einschlüssen in Staurolith im Typ II des Staurolith-Glimmerschiefers, aufgrund dessen SMOLER (1987) eine Reaktion zur Staurolith-Bildung ohne Auftreten von Quarz vorschlägt, konnte im Rahmen der vorliegenden Untersuchung nicht nachgewiesen werden.

Der Abbau von Granat durch die o.g. Reaktion könnte eine Erklärung für teilweise vorliegende "korrodierte" Granat-Kristalle darstellen (vgl. Kap. 3.2.1.3). Ein vollständiges Aufzehren von Granat ist gemäß SPEAR (1993) aufgrund der Anwesenheit von MnO und CaO im Gestein nicht anzunehmen. Nach Erreichen der Chlorit-aus-Isograde ist eine erneute Bildung von Granat nach der Reaktion

Staurolith + Biotit + Quarz = Granat + Muscovit + H_2O

(SPEAR 1993, S. 598) denkbar, was das Auftreten einer zweiten Granat-Generation, z.B. kleinerer, idiomorpher Kristalle in einigen Proben erklären könnte.

Die Granat-Glomeroblasten im Typ II des Staurolith-Glimmerschiefers bezeichnete MATTHES (1954) als "Masseneinsprossungen" von Granat in z.B. Plagioklas. Diese Bezeichnung ist insofern irreführend, als sie ein Wachstum der Granat-Individuen in die sie umschließenden Minerale hinein nahelegt, was unter Berücksichtigung chemischer Aspekte unwahrscheinlich ist. Es ist davon auszugehen, daß diese Granat-Kristalle schon vor der Bildung der Staurolith- bzw. Plagioklas-Porphyroblasten vorhanden waren bzw. gleichzeitig gebildet wurden und von diesen bei ihrem Wachstum eingeschlossen worden. Diese Vorstellung steht in Einklang mit PASSCHIER & TROUW (1996), die insbesondere bei niedrig- bis mittelgradiger Metamorphose häufig "passive Einschlüsse" beschreiben, die von Prophyroblasten überwachsen bzw. eingeschlossen werden. Eine solche Entwicklung ist ohne Beeinträchtigung des Granat vermutlich nur unter der Voraussetzung einer relativ schnellen Bildung der anderen Minerale denkbar. Die hohe Zahl der Granat-Individuen im Staurolith-Glimmerschiefer ist laut WILL (pers. Mitteilung) offensichtlich auf kinetische Gründe zurückzuführen. Bei Vorliegen einer vermutlich großen Anzahl von Kristallkeimen bestimmt die Materialzufuhr die Wachstumsgeschwindigkeit und Größe der sich bildenden Kristalle. MATTHES (1954) interpretiert die von ihm beschriebenen "Masseneinsprossungen" von Granat sowie das Auftreten der Al₂SiO₅-Minerale in "Partien mit gröberen Plagioklas-Einsprossungen" als Symptome einer progressiven Metamorphose oder stärkeren Stoffmobilisation (vgl. Kap. 7).

Chloritoid bzw. dessen Relikte wurden in keiner der Proben beobachtet, so daß sich keine Hinweise auf eine Staurolith-Bildung entsprechend der Chloritoid-Abbau-Reaktion

Chloritoid = Granat + Staurolith + Chlorit + H2O (KFMASH)

ableiten lassen. Die Tatsache, daß in den Staurolith-Glimmerschiefern kein Kalifeldspat auftritt, zeigt an, daß die Muscovit-aus-Reaktion

 $Muscovit + Quarz = Aluminiumsilicat + Kalifeldspat + H_2O$

nicht überschritten wurde. Abbaureaktionen verschiedener Minerale und die Neubildung von Chlorit deuten auf eine retrograde Überprägung des Staurolith-Glimmerschiefers unter Bedingungen der Grünschieferfazies hin. Der unterschiedliche Erhaltungzustand von Granat und Staurolith innerhalb einzelner Proben könnte – in Anlehnung an die Ausführungen von SPEAR (1993, S. 597), z.B. unter der Voraussetzung einer sich zunächst nur wenig ändernden Temperatur – auf eine wiederholte Bildung und folgenden Abbau dieser Minerale hinweisen; diese Vorstellung bleibt jedoch spekulativ.

Aus den vorliegenden Einschlußsituationen und verschiedenen Generationen einzelner Minerale in den Gesteinen der Mömbris-Formation kann nur begrenzt auf den Metamorphose-Ablauf geschlossen werden. Genetisch aussagekräftige Reaktionssäume fehlen weitgehend. Verschiedene Glimmer-Generationen (vgl. Kap. 3.2.1.1 u. 3.2.1.2) spiegeln die Reihenfolge ihrer Bildung wider, inwieweit sie Stadien mit unterschiedlichen Druck-Temperatur-Bedingungen zuzuordnen sind, bleibt unsicher. Die vergleichbare mineralchemische Zusammensetzung der Glimmer verschiedener Generationen resultiert wahrscheinlich aus einer im wesentlichen isochemischen Situation (vgl. Kap. 5), die z.B. OKRUSCH & MATTHES (2005, S. 312) für viele Metamorphite als gegeben ansehen. Durch die petrographische Situation ist der prograde Teil des P-T-Pfades kaum dokumentiert, sie spiegelt im wesentlichen den retrograden Ast wider. Im Rahmen des hier zugrundegelegten phasenpetrologischen Ansatzes lassen sich jedoch unter Verwendung der petrogenetischen Netze KFMASH und KMnFMASH (vgl. Kap. 6.2), genauere Aussagen herleiten. Eine eingehendere Betrachtung der Metamorphose-Entwicklung wird in Kap. 7 u.a. anhand der P-T-Pseudoschnitte vorgenommen.

3.2.2 Geiselbach-Formation

Die Geiselbach-Formation ist im nördlichen Teil des Spessart-Kristallins aufgeschlossen. Im NW wird sie von der Alzenau-Formation begrenzt, im SE schließt die Mömbris-Formation an, die als das tektonisch Liegende der Geiselbach-Formation interpretiert wird (Abb. 2.6, 3.1). Lithologisch stellt die Geiselbach-Formation eine monotone Folge aus Granat-führenden Glimmerschiefern, Quarz-Glimmerschiefern und Quarziten dar (OKRUSCH & WEBER 1996) (Abb. 3.13). Detaillierte petrographische und strukturgeologische Arbeiten wurden von GABERT (1957), PLESSMANN (1957) und SCHNEIDER (1962) durchgeführt (vgl. Kap. 2.3).

Abb. 3.13: Gelände-Fotos der Geiselbach-Formation. a) Glimmerschiefer bzw. Quarzite der Geiselbach-Formation im Steinbruch N Hemsbach.

Abb. 3.13 b) Handstück eines Granat-führenden Glimmerschiefers, Steinbruch N Hemsbach.

Makroskopisch sind die Metasedimente der Geiselbach-Formation als hell- bis mittelgraue Gesteine mit gelegentlichen rötlichbräunlichen Partien zu beschreiben, die teilweise leichten Fettglanz bis Perlmuttglanz aufweisen. Die Quarzite und Glimmerschiefer sind insbesondere durch hohe Gehalte an Quarz und das verbreitete Auftreten von Hellglimmer gekennzeichnet, vielfach kommen Plagioklas und Biotit, der teilweise abgebaut ist, sowie gelegentlich Granat bzw. Relikte oder Pseudomorphosen nach Granat hinzu. Eine Probe (IMG 009) weist Pseudomorphosen nach Staurolith auf (s.u., Abb. 3.15), den auch WILL (pers. Mitteilung) in Gesteinen der Geiselbach-Formation feststellte. Die kritische Paragenese umfaßt

 $Quarz + Hellglimmer \pm Plagioklas \pm Biotit \pm Granat \pm Staurolith \pm Opakphase.$

In der Geiselbach-Formation repräsentiert das gemeinsame Vorliegen von Biotit und Granat sowie offenbar auch Staurolith die maximalen Metamorphosebedingungen (Abb. 3.14 - 3.16).

Das in der Literatur (vgl. Kap. 2.4) beschriebene Fehlen von Staurolith in vielen Gesteinen dieser lithostratigraphischen Einheit hat also vermutlich chemische Ursachen (vgl. Kap. 7.1).

Petrographisch lassen sich die untersuchten Gesteinsproben zwanglos in zwei größere Gruppen unterteilen. Die erste Gesteinsgruppe umfaßt Quarzite, die zweite Gruppe Quarzitschiefer bis quarzitische Glimmerschiefer, wobei jedoch Übergangsformen existieren. Die Zuordnung der einzelnen Proben zu diesen Gruppen, mit einer Kurzbeschreibung der jeweiligen Besonderheiten, findet sich in Tab. D.3 im Anhang. Die makroskopisch dichten Quarzite (Gruppe I) sind arm an Hellglimmern, teilweise auftretender Plagioklas ist meist stark sericitisiert. Granat ist in den Quarziten nur gelegentlich vertreten. Die Quarzitschiefer bis quarzitischen Glimmerschiefer (Gruppe II) dagegen führen Quarz und Hellglimmer in ähnlichen Mengenanteilen. Im mikroskopischen Bild zeigen sich bisweilen Lagen von Hellglimmer, die Quarzkörner liegen untereinander verzahnt vor. In den meisten Proben der Quarzit- bis Glimmerschiefer tritt Granat auf. Die rhombendodekaedrische Form der etwa 1 -4 mm großen Granat-Porphyroblasten ist gewöhnlich noch erkennbar, die Granatsubstanz ist jedoch häufig pseudomorph durch Sericit und Hämatit ersetzt. Die Quarzit- bis Glimmerschiefer weisen eine deutliche lineare Textur (engl. structure), in einigen Fällen auch eine phyllonitische Ausprägung auf, die auch von OKRUSCH & WEBER (1996) auf eine retrograde grünschieferfazielle Überprägung zurückgeführt wurde. Diese ist durch die Sericitisierung von Plagioklas und die völlige oder teilweise Verdrängung von Biotit und Granat durch Chlorit bzw. von Staurolith durch Chlorit und Sericit charakterisiert und läßt auf ein thermodynamisches Ungleichgewicht schließen. In beiden Gesteinsgruppen kommen akzessorisch Opakminerale und gelegentlich Turmalin hinzu.

Für die genauere Bearbeitung und phasenpetrologische Untersuchung wurden die Proben IMG 009, IMG 027, IMG 042 und IMG 043 der Quarzitschiefer bis quarzitischen Glimmerschiefer (Gruppe II) ausgewählt, die im folgenden exemplarisch beschrieben werden. Die im Hinblick auf ein physikalisch-chemisches Gleichgewicht bedeutsamen Korn-Korn-Kontakte dieser Proben sind im Anhang, D.3 dargestellt.

Die Gesteinsprobe **IMG 009** besitzt neben Quarz sehr viel sericitischen Hellglimmer, der eine Crenulationsschieferung nachzeichnet. An einigen Stellen treten auch Querglimmer auf, die posttektonisch wuchsen und damit eine andere Generation repräsentieren. Biotit ist nur in sehr geringen Anteilen vorhanden und teilweise retrograd abgebaut. Granat befindet sich ebenfalls im

Abbau, teilweise liegt er nur noch pseudomorph mit einem Saum von opaker Phase vor (Abb. 3.14). Darüber hinaus existieren leicht gelblich gefärbte Pseudomorphosen von sericitischem Hellglimmer und wenig Chlorit, die aufgrund ihrer Form vermutlich als Pseudomorphosen nach Staurolith interpretiert werden können (Abb. 3.15). Frische Staurolith-Substanz, an der mineralchemische Untersuchungen möglich gewesen wären, liegt jedoch nicht mehr vor.

Abb. 3.14

Mikrofoto IMG 009: Quarzitischer Glimmerschiefer. Abgebauter Granat-Kristall mit einem Saum aus opaker Phase. Der Granat liegt in einer Bahn aus Hellglimmern, im Grundgewebe sind Quarz, Hellglimmer und wenig Biotit vorhanden. Neben dem Granat ist ein akzessorisch auftretender Turmalin (Schnitt \perp c) zu erkennen. 1 Nic., Bildbreite ca. 1.2 mm.

Abb. 3.15: Mikrofotos IMG 009

Quarzitischer Glimmerschiefer. a) Pseudomorphose von sericitischem Hellglimmer und etwas Chlorit, wahrscheinlich nach Staurolith, in einer straff eingeregelten Glimmer-Bahn. Frische Staurolith-Substanz liegt nicht (mehr) vor. Auffallend ist die deutliche Anwesenheit von Opakphase. Turmalin tritt akzessorisch auf. 1 Nic., Bildbreite ca. 2 mm.

b) Die Pseudomorphose ist gut erkennbar. Die bunten Interferenzfarben der Hellglimmer verdeutlichen deren hohen Anteil in dieser Gesteinspartie. + Nic., Bildbreite ca. 2 mm.

Die Probe **IMG 027** ist deutlich lagig und sehr feinkörnig ausgebildet, die Hauptminerale stellen Quarz und Hellglimmer dar. Der gelegentlich auftretende Biotit liegt nahezu komplett abgebaut vor, Granat existiert nur noch in reliktischer Form, ersetzt durch sericitisches Gemenge. Als Akzessorien sind Turmalin und Hämatit enthalten. Die Probe **IMG 042** zeichnet sich durch einen sehr hohen Gehalt an Quarz im Grundgewebe aus. Die deutlich beteiligten Hellglimmer zeichnen die Foliation des Gesteins nach. Biotit ist vielfach chloritisiert, der nur reliktisch erhaltene Granat zeigt teilweise eine atollförmige Ausbildung. Als Einschlüsse in Granat liegen Biotit, Quarz und Erz (Opakphase, in IMG 043 auch Hämatit) vor. Akzessorisch tritt Turmalin hinzu. Die Probe **IMG 043** weist starke Ähnlichkeit zu IMG 042 auf: Quarz und Hellglimmer stellen die wesentlichen Komponenten des foliierten Gesteins dar, Granat ist nur reliktisch erhalten und Biotit liegt teilweise chloritisiert vor (Abb. 3.16).

Mikrofoto IMG 043: Quarzitischer Glimmerschiefer. Stark abgebauter, skelettförmiger Granat-Kristall mit beginnender Chloritisierung und Erz-Abscheidungen in einem Grundgewebe aus überwiegend Quarz, einzelnen Hellglimmer-Blättchen und wenig Biotit. 1 Nic., Bildbreite ca. 1.8 mm.

Hinsichtlich des Auftretens von Staurolith wurden zusätzlich 13 Dünnschliffe aus dem Archiv des Bayerischen Geologischen Landesamtes durchgesehen (Material von Wi. WEINELT, vgl. Tab. C.2 im Anhang). In diesen Proben konnten jedoch keine Staurolith-Relikte nachgewiesen werden. Nur zwei Proben weisen geringe Gehalte an Chlorit-Sericit-Gemenge, möglicherweise pseudomorph nach Staurolith, auf. Somit ist Staurolith in den hier untersuchten Proben der Geiselbach-Formation nur selten festzustellen. Im Rahmen dieser Arbeit konnte auch in der Geiselbach-Formation kein Chloritoid beschrieben werden, obwohl MASSONNE (1995) ihn erwähnt.

Die Proben der Geiselbach-Formation weisen, wie auch die Proben der Alzenau- und Elterhof-Formation, ein wenig frisches Erscheinungsbild und einen schlechten Erhaltungszustand der Minerale auf. Aus diesem Grunde sind sie zur Durchführung mineralchemischer Untersuchungen nicht geeignet (SCHÜSSLER, pers. Mitteilung), die für die phasenpetrologischen Kalkulationen verwertbare Analysen liefern würden. Von ausgewählten Proben wurden jedoch Gesamtgesteinsanalysen erstellt (vgl. Kap. 5), die die Berechnung eines P-T-Pseudoschnittes ermöglichen sollen (vgl. Kap. 7).

3.2.3 Alzenau-Formation

Die Alzenau-Formation bildet die nordwestlichste lithostratigraphische Einheit des Spessart-Kristallins, nach SE wird sie von der Geiselbach-Formation begrenzt (Abb. 2.6, 3.1). Innerhalb der lithologisch bunten Serie treten metapsammitische Gneise (Abb. 3.17) gemeinsam mit Kalksilikatgneisen, Hornblendegneisen, Amphiboliten und graphitführenden Quarziten auf (BRAITSCH 1957 a, EL SHAZLY 1983, OKRUSCH et al. 1985). Die bisherige geologische Deutung gründet im wesentlichen auf den Daten der Metabasite (z.B. OKRUSCH & WEBER 1996, vgl. Kap. 2.3 u. 2.4). In dieser Untersuchung liegt der Schwerpunkt auf den Metasedimenten dieser Einheit.

Abb. 3.17 Gelände-Foto der Alzenau-Formation. Anstehende Gneise bis Glimmerschiefer im Straßenaufschluß gegenüber der Sparkasse in Alzenau.

Mikrofoto IMA 016: Glimmerschiefer bis schiefriger Gneis. Granoblastisches bis lepidoblastisches Gefüge aus Quarz, Plagioklas, Biotit und Hellglimmer. Die Plagioklase sind stark sericitisiert. Biotit ist grünlichbraun bis rötlichbraun; insbesondere die Hellglimmer weisen teilweise Knickbänder auf. 1 Nic., Bildbreite ca. 2.5 mm.

Die Metasedimente der Alzenau-Formation lassen sich als bräunlich-graue, feinkörnige Gneise beschreiben, die teilweise leicht schiefrig ausgebildet sind und Übergänge zu Glimmerschiefern aufweisen können. Petrographisch können lose drei Gruppen unterschieden werden: Gneise (zwei Gruppen) und Glimmerschiefer bis schiefrige Gneise (vgl. Tab. D.4 im Anhang). Die Gneise der Gruppe I weisen Quarz, Plagioklas und Alkalifeldspat, wenig Biotit und Hellglimmer auf, eine Probe führt Granat. Mikroskopisch ist bei den Gneisen (auch in Gruppe III) gewöhnlich ein granoblastisches bis lepidoblastisches Gefüge zu erkennen. In den Glimmerschiefern bis schiefrigen Gneisen (Gruppe II) stellen Quarz, Plagioklas, Biotit und Hellglimmer die wesentlichen Minerale dar, gelegentlich ist auch Granat vertreten. Die Glimmerschiefer bis schiefrigen Gneise sind meist foliiert, die Glimmer kommen vielfach in zusammenhängenden, teilweise deformierten Lagen vor. Die **Gneise der Gruppe III** sind als feldspatreiche Gesteine mit Quarz, Biotit und wenig Hellglimmer zu beschreiben. Unter den Feldspäten liegt in den meisten Fällen nur stark sericitisierter Plagioklas vor, Alkalifeldspat ist selten. Granat ist in allen Proben dieser Gneisgruppe enthalten, wobei auch größere Kristalle vorliegen können, teilweise besitzt er atollförmige Ausbildung. In der Gruppe III tritt Granat häufiger und in frischerem Zustand auf als in den beiden anderen Gruppen. Die Tatsache, daß Plagioklas in den Proben meist stark sericitisiert, Granat aber recht frisch ist, weist auf ein fehlendes Gleichgewicht zwischen den Mineralphasen hin.

Für die eingehendere Untersuchung wurden die Proben IMA 016 (Gruppe II), IMA 021 und IMA 023 (Gruppe III) ausgewählt, sie sind im folgenden exemplarisch beschrieben. Korn-Korn-Kontakte in diesen Gesteinen sind im Anhang, D.4 dokumentiert.

Die Gesteinsprobe **IMA 016** weist einen Mineralbestand aus Quarz und Plagioklas sowie Biotit und Hellglimmer auf. Die Glimmer sind vorwiegend auf leicht verbogenen Glimmerbahnen angeordnet (Abb. 3.18) und zeichnen eine Vorzugsorientierung nach. Biotit und Hellglimmer weisen gelegentlich Knickbänder auf, die ebenfalls auf eine Deformation des Gesteins hindeuten. Vereinzelt tritt Biotit in Form von Querglimmern auf, die posttektonisch wuchsen und als Indiz auf statische Rekristallisation gewertet werden können. In der Probe ist akzessorisch Granat enthalten. Plagioklas besitzt Einschlüsse von Granat, Biotit, Hellglimmer und Quarz.

Die feldspatreichen Gneise IMA 021 und IMA 023 sind durch ein regelloses, granoblastisches bis lepidoblastisches Gefüge gekennzeichnet, IMA 021 ist feinkörniger ausgebildet als IMA 023. In der relativ frischen Probe **IMA 021** tritt von den Feldspäten weit überwiegend Plagioklas auf. Zwischen den Plagioklas-Kristallen sind feine Glimmer-Blättchen gesproßt, wobei Hellglimmer nur in sehr geringen Mengen enthalten ist. Granat liegt in Form vergleichsweise großer, relativ frischer Kristalle vor, die Einschlüsse von Quarz und selten Hellglimmer besitzen können. Ein in Granat eingeschlossener Biotit ist völlig von Quarz ummantelt und steht somit nicht im Gleichgewicht mit dem umgebenden Granat. Opake Erzminerale fehlen weitgehend. Die Probe **IMA 023** enthält in der Matrix nur wenig Hellglimmer, Plagioklas ist stark sericitisiert und weist Einschlüsse von Biotit und Hellglimmer auf. Das Gestein besitzt relativ viel Granat, der in zergliederten, abgebauten Individuen mit xenoblastischem Habitus auftritt, die jedoch kleine, frischere Relikte enthalten. Granat zeigt vorwiegend Einschlüsse von Biotit, Quarz und Erz, wobei er insbesondere durch die Biotit-Einschlüsse poikilitisch durchsetzt sein kann. Manchmal ist Granat atollartig strukturiert. Eingeschlossen in Granat sowie als Saum zwischen Granat und Hellglimmer können feinste Umwandlungsprodukte, wie z.B. Chlorit, vorliegen.

Auch in den untersuchten Gesteinen der Alzenau-Formation ist das physikalisch-chemische Gleichgewicht, insbesondere zwischen Granat und den übrigen Mineralphasen, in Zweifel zu ziehen. Von den Proben waren ebenfalls keine verwertbaren Mineralanalysen zu erwarten (SCHÜSSLER, pers. Mitteilung), so daß auf mineralchemische Analytik verzichtet wurde. Von einigen Proben der Alzenau-Formation wurden jedoch geochemisch Gesamtgesteinsanalysen erstellt (vgl. Kap. 5).

3.2.4 Elterhof-Formation

Die Elterhof-Formation streicht in einem vergleichsweise kleinen Bereich im SW des Spessart-Kristallins aus. Dabei wird sie nach NW im wesentlichen von der Schweinheim-Formation, nach SE vom Quarzdiorit-Granodiorit-Komplex begrenzt (Abb. 2.6, 3.1). Die bunte Serie ist ebenfalls vorwiegend aus metapsammitischen Gneisen aufgebaut, unter Beteiligung von Kalksilikatgneisen, Hornblendegneisen, Amphiboliten und Marmorzügen (BRAITSCH 1957 a, EL SHAZLY 1983; vgl. Kap. 2.3). Die heutige Interpretation der Alzenau- und Elterhof-Formation als gemeinsamer Deckenkomplex (z.B. HEINRICHS 1986, BEHR & HEINRICHS 1987, OKRUSCH & WEBER 1996) basiert u.a. auf der lithologisch großen Ähnlichkeit (THÜRACH 1893) zwischen den beiden Einheiten (vgl. Kap. 2.3).

Wie auch in den übrigen Einheiten, in der Elterhof-Formation jedoch in besonderem Maße, gestaltet sich die Arbeit durch die ungünstigen Aufschlußverhältnisse sowie den schlechten Erhaltungszustand der Metasedimente schwierig. Die metapsammitischen Gesteine der Elterhof-Formation sind fein- bis mittelkörnige Gneise. Häufig besitzen sie eine hellgraue bis bräunliche Färbung, wobei helle Quarz- oder Feldspat-Körner optisch hervortreten können. Die Gesteinsproben wurden aufgrund ihres Mineralbestandes und Gefüges in vier, teilweise ineinander übergehende Gruppen unterteilt (vgl. Tab. D.5 im Anhang). Die häufig geschieferten Granat-führenden Gneise (Gruppe I) führen Quarz, Plagioklas, Biotit sowie meist wenig Hellglimmer und akzessorisch Granat. In einzelnen Fällen kann Alkalifeldspat auftreten. Gneise

der Gruppe II bestehen i.w. aus Quarz, Plagioklas, Alkalifeldspat und Biotit. Plattige Plagioklas-Gneise (Gruppe III) sind vorwiegend aus ausgelängten Quarz- und Plagioklas-Kristallen aufgebaut. Diese Gesteine führen nur wenig Biotit und Hellglimmer, Plagioklas ist sericitisiert und der akzessorisch auftretende Granat teilweise abgebaut. Zwei-Glimmer-Gneise (Gruppe IV) enthalten neben Quarz und Plagioklas Biotit und Hellglimmer in variierenden Anteilen, einige Proben führen außerdem Granat.

Die genauer untersuchten Proben IME 007, IME 010, IME 046 und IME 058 (alle Gruppe I, Granat-führende Gneise) werden im folgenden kurz charakterisiert. Die in den Gesteinen vorliegenden gemeinsamen Korn-Kontakte (vgl. Anhang, D.5), z.B. zwischen Granat und den ihn umgebenden Mineralphasen, zeigen hier nicht zwingend die Einstellung eines physikalischchemischen Gleichgewichtes an, was u.a. durch Trübungen im Randbereich von Granat und Plagioklas oder schmale Säume mit feinstem Mineralgemenge von Sericit o.ä. angedeutet ist.

Die Probe **IME 007** weist den für die Gruppe I typischen Mineralbestand aus Quarz, Plagioklas, Biotit und Hellglimmer auf, wobei Plagioklas sericitisiert ist. Die Hellglimmer treten zwischen Quarz und Plagioklas, verwachsen mit Biotit und teilweise als Querglimmer auf, was die Rekristallisation eines Teilbereiches des Gesteins andeutet. In einem Falle ist eine "Abscheidung" von Erzmineralen in Hellglimmer zu beobachten. Granat existiert in retrograd abgebauter Form und besitzt Einschlüsse von Quarz, Biotit, Hellglimmer und Erz.

Die Gesteinsprobe **IME 010** ist weniger feinkörnig als IME 007 ausgebildet. Im Vergleich zu IME 007 fallen in IME 010 auch die stärkere Sericitisierung des Plagioklases, die teilweise Chloritisierung des Biotits und der gleichzeitig bessere Erhaltungszustand des Granates auf (Abb. 3.19). Granat liegt in dieser Probe ebenfalls nicht frisch, sondern mit Adern von opaken Erzmineralen durchzogen vor. Er weist gelegentlich Einschlüsse von Biotit im Kern, sowie weiterhin von Hellglimmer und – als Abbauprodukt von Biotit – Chlorit auf. Plagioklas besitzt einige Einschlüsse von Biotit/Chlorit.

Bei der Probe **IME 046** handelt es sich um eine plattig ausgebildete Variante des Gneises mit Quarz, ebenfalls sericitisiertem Plagioklas, Biotit und einem sehr geringem Gehalt an Hellglimmer, der auf Rissen und in Plagioklas teils neu sproßt. Granat dagegen befindet sich im Abbau (Abb. 3.20), er führt Einschlüsse von Quarz, Biotit und Erz, auf Rissen auch Chlorit. Hämatit tritt akzessorisch auf.

Abb. 3.19 Mikrofoto IME 010: Granat-führender Gneis. Im Abbau befindlicher Granat-Kristall, durchsetzt von chloritisiertem Biotit und Erzmineralen. 1 Nic., Bildbreite ca. 1.8 mm.

Die Probe **IME 058** ist ebenfalls aus Quarz, Plagioklas, Biotit und Granat zusammengesetzt, Hellglimmer tritt allerdings fast nicht auf. Das Gestein ähnelt im wesentlichen den Proben IME 010 bzw. IME 046. In Granat zeigen sich Einschlüsse von Quarz, retrograd abgebautem Biotit und Hellglimmer. Die Einschlüsse von Hellglimmer in Granat sind besonders in den Randbereichen festzustellen, im Kontakt von Granat zu Plagioklas sproßt Hellglimmer in Form eines feinen Gemenges ein. Hellglimmer stellt also offenbar eine neuere Bildung in diesem Gestein dar. Ein direkter Kontakt zwischen Granat und Plagioklas liegt nicht vor, denn stets sie sind durch einen Saum aus Hellglimmer und Hämatit bzw. reinen Hellglimmer getrennt (vgl. Anhang, D.5).

Wie bereits bei der Geiselbach- und Alzenau-Formation ließ der unfrische Zustand der Gesteine keine erfolgversprechenden mineralchemischen Analysen erwarten, was auch SCHÜSSLER (pers. Mitteilung) entsprechend beurteilte. Dennoch wurden auch an ausgewählten Proben der Elterhof-Formation geochemische Analysen durchgeführt (vgl. Kap. 5).

4. Mineralchemie

Die mineralchemischen Untersuchungen konzentrierten sich auf ausgesuchte Proben des Staurolith-Granat-Plagioklas-Glimmerschiefers der Mömbris-Formation. Mineralchemische Analysen wurden an den Proben IMM 021, IMM 039, IMM 044, IMM 051, IMM 056, IMM 061, IMM 063, IMM 089, SM 68 und SM 1063 durchgeführt. Im Hinblick auf den gewählten Schwerpunkt wurden die Untersuchungen auf die Minerale Granat, Staurolith, Biotit, Hellglimmer, Chlorit und Plagioklas fokussiert; Erzminerale wurden überwiegend qualitativ untersucht. Für die Gesteinsproben aus den übrigen lithologischen Einheiten Geiselbach-, Alzenau- und Elterhof-Formation ließ der wenig frische Erhaltungszustand eine Mineralanalytik, insbesondere im Hinblick auf die Verwendung für phasenpetrologische Berechnungen, nicht sinnvoll erscheinen. Soweit an dieser Stelle sinnvoll, wird auf mineralchemische Indizien zu den Druck-Temperatur-Bedingungen der Metamorphose eingegangen, weitergehende Aussagen sind in Kap. 7 dargestellt. Methodische Hinweise finden sich im Anhang, E.1, E.2.

4.1 Granat

Ausgewählte Mikrosonden-Analysen von Granat sind in Tab. H.1 im Anhang aufgeführt. Die Berechnung der Formelbesetzung für Granat erfolgte auf der Basis von 24 Sauerstoffatomen, entsprechend zweier Einheiten der Strukturformel $X_3Y_2[ZO_4]_3$. Die Granat-Berechnung beinhaltet eine Fe³⁺-Abschätzung über ein iteratives Verfahren, wobei eine möglichst ideale Auffüllung der Gitterplätze auf 6.00 in der Tetraederposition (Z), 4.00 in der Oktaederposition (Y) und 6.00 in der X-Position erreicht werden soll. Die Granat-Endglieder wurden in der Reihenfolge Uwarowit, Andradit, Grossular, Almandin, Spessartin, Pyrop ermittelt. Die hier durchgeführten Berechnungen ergaben auch bei Analysensummen mit einer Abweichung von maximal \pm 1.5 Gew.-% i.d.R. eine leichte Überbesetzung in der X-Position.

Zusammensetzung

Die mineralchemischen Untersuchungen der Granate lassen in Bezug auf die einzelnen Mineral-Endglieder klar eine Almandin-Betonung erkennen, dessen Gehalt durchschnittlich zwischen 60 und 69 Mol-% variiert. In manchen Proben gehen die Almandin-Gehalte auf 57 bis 59 Mol-% zurück (IMM 056, IMM 063, SM 68), sie können jedoch gelegentlich auch bis zu 70 bis 73 Mol-% erreichen (IMM 051, IMM 061). Weitere Hauptkomponenten der Granate stellen Pyrop mit Anteilen in einem Variationsbereich von etwa 9 bis 16 Mol-% und Spessartin von 6 bis 20 Mol-% dar. Im Durchschnitt liegen die Pyrop-Gehalte der Granate bei etwa 11 bis 15 Mol-%. In einzelnen Analysen sind sie bis auf 6 Mol-% erniedrigt (IMM 021, IMM 039, IMM 056), teilweise steigt Pyrop auf bis zu 18 bis 19 Mol-% an (IMM 063, SM 68). Insbesondere hinsichtlich des Spessartin-Endgliedes sind in vielen Granat-Individuen deutliche Schwankungen zu verzeichnen. In einigen Proben weichen die Werte daher von den durchschnittlich festzustellenden Spessartin-Anteilen (ca. 9 bis 15 Mol-%) deutlich um einige Mol-% ab. So geht Spessartin in einigen Proben teilweise auf ca. 4 Mol-% zurück (IMM 021, IMM 039 IMM 051, IMM 061), in anderen erreicht er dagegen bis zu 21 Mol-% (IMM 063) bzw. 24 Mol-% (IMM 056, SM 68). Die Grossular-Gehalte im Granat belaufen sich auf ca. 3 bis 15 Mol-%; manche Proben weisen mit ca. 1 bis 7 Mol-% insgesamt eher niedrige Grossular-Gehalte auf (IMM 051, IMM 063, SM 68), in anderen wurden z.T. leicht erhöhte Anteile festgestellt (IMM 021, IMM 039). Die Komponenten Andradit (1 bis 4 Mol-%) und Uwarowit (im Bereich der Nachweisgrenze, ca. 0.1 Mol-%) spielen dagegen eine eher untergeordnete Rolle.

Das Dreiecksdiagramm Almandin + Spessartin – Pyrop – Grossular (Abb. 4.1) veranschaulicht das Überwiegen des Almandin-Endgliedes, in Kombination mit Spessartin. sowie die Variation der Grossular-Gehalte. Almandin-Granate enthalten DEER et al. (1992) zufolge nennenswerte Gehalte an Pyrop und Spessartin, ebenso werden dort deutliche Grossular-Anteile als möglich angegeben, was auch für die hier untersuchten Granate gilt.

Die Werte für X_{Fe} (Fe/[Fe+Mg]) der Granate liegen im Bereich von 0.78 bis 0.92. Für X_{Mn} (Mn/[Mn+Fe+Mg]) sind aufgrund des Zonarbaus der meisten Granatindividuen stärkere Schwankungen von 0.06 bis 0.22 zu verzeichnen, einzelne Werte sinken bis 0.04 ab, Maxima können bis 0.26 ansteigen. Die Variationsbreite des X_{Fe} und X_{Mn} für die Einzelproben ist in Tab. 4.1 angegeben.

Zusammensetzung der Granat-Kristalle in den Staurolith-Glimmerschiefern der Mömbris-Formation, dargestellt im Dreiecksdiagramm Almandin + Spessartin – Pyrop – Grossular. Offene Symbole: Rand, gefüllte Symbole Kern.

Probe	Bereich des X _{Fe}	Bereich des X _{Mn}
IMM 021	0.81 - 0.92	0.06 - 0.15
IMM 039	0.83 - 0.89	0.06 - 0.15
IMM 044	0.80 - 0.86	0.06 - 0.15
IMM 051	0.82 - 0.86	0.04 - 0.22
IMM 056	0.80 - 0.91	0.12 - 0.24
IMM 061	0.82 - 0.89	0.03 - 0.22
IMM 063	0.78 - 0.80	0.11 - 0.26
IMM 089	0.82 - 0.86	0.06 - 0.19
SM 1063	0.81 - 0.83	0.11 - 0.18
SM 68	0.78 - 0.82	0.10 - 0.26

Tab. 4.1

Variationsbreite der Werte für X_{Fe} (Fe/[Fe+Mg]) und X_{Mn} (Mn/[Mn+Fe+Mg]) in Granat für die einzelnen Proben.

In den Proben IMM 056, IMM 063 und SM 68 (d.h. in beiden Typen des Staurolith-Glimmerschiefers, vgl. Kap. 3.2.1) treten zwei Granat-Gruppen unterschiedlicher Zusammensetzung auf, die im Dünnschliff räumlich benachbart auftreten können, sich dort aber nicht voneinander differenzieren lassen. Wie in den übrigen Gesteinen existieren einerseits Granate, deren Zusammensetzung weitgehend der "durchschnittlichen" entspricht (s.o.). Diese sind in den drei Proben durch Endglieder-Anteile von etwa 62 bis 64 Mol-% Almandin, 15 bis 18 Mol-% Pyrop und 10 bis 13 Mol-% Spessartin sowie einen X_{Fe} um 0.77 bis 0.79 und X_{Mn} um 0.10 bis 0.15 gekennzeichnet. Darüber hinaus liegen in diesen Gesteinen auch kleine Granat-Kristalle (Durchmesser um 0.2 mm) vor, die in der Matrix xeno- bis hypidiomorph und idiomorph als Einschluß in Staurolith (nur IMM 063, SM 68) ausgebildet sind. Sie weisen Gehalte von Almandin um 57 bis 59 Mol-%, von Pyrop um 13 bis 15 Mol-% und von Spessartin um 20 bis 27 Mol-% auf (Abb. 4.2 i, k). Ihr X_{Fe} beläuft sich auf ca. 0.79 bis 0.82 (0.83). An hypidio- bis idiomorphen Granat-Einschlüssen in Plagioklas wurde die beschriebene Zusammensetzung nicht festgestellt. Im Vergleich zu den "durchschnittlichen" Granaten sind in dieser Gruppe die Gehalte an Almandin, Pyrop und Grossular erniedrigt, der X_{Fe} dagegen ist leicht erhöht. Die Analysen der vom Durchschnitt abweichenden Granate zeigen außerdem deutlich erhöhte X_{Mn}-Werte von ca. 0.19 bis 0.27, die mit den vergleichsweise hohen MnO-Gehalten im Gesamtgesteinschemismus dieser Proben korrelieren (vgl. Tab. H.8 im Anhang). Da die abweichenden Granat-Zusammensetzungen durch chemische Unterschiede in der Gesteinschemie bedingt sind, erscheint eine Interpretation als verschiedene Granat-Generationen zweifelhaft. Die Elementverteilungsmuster der abweichenden Granat-Gruppe weisen auf eine nachträgliche chemische Veränderung durch Diffusion hin (s.u.), die eine ursprüngliche Wachstumszonierung wahrscheinlich ausgeglichen hat.

Hinsichtlich der Zusammensetzung von Granat in den petrographisch unterscheidbaren Gruppen zeichnet sich folgende Tendenz ab: Im Typ I des Staurolith-Glimmerschiefers sind in Granat teilweise etwas geringere Gehalte an Pyrop und Spessartin, bezogen auf die durchschnittlichen Werte, zu verzeichnen, während X_{Fe}, Almandin und Grossular eher leicht erhöht sind. Eine mittlere Granat-Zusammensetzung kann in grober Näherung mit Alm₆₈Py₁₂Gross₁₁Spess₉ angegeben werden. Die Granate des Typs II des Staurolith-Glimmerschiefers weisen dagegen für Pyrop und Spessartin tendenziell etwas höhere Anteile auf; X_{Fe}, Almandin und Grossular sind leicht erniedrigt. Die mittlere Zusammensetzung der Granat-Kristalle des Typs II liegt bei etwa Alm₆₃Py₁₅Gross₇Spess₁₅. Von den Proben des Typs I weichen IMM 051 in Bezug auf den Grossular-Gehalt und IMM 056 bezogen auf Almandin und Spessartin von diesem Trend ab (s.o.).

Chemische Zonierung

Die mineralchemischen Analysen belegen eine leicht bis mäßig stark ausgeprägte chemische Zonierung der untersuchten Granate. In den untersuchten Granat-Individuen des Staurolith-Glimmerschiefers wurden drei verschiedene Elementverteilungsmuster festgestellt (Abb. 4.2), deren Ausprägung zwischen den Gesteinen, aber auch innerhalb derselben Probe variieren kann.

Typische Kennzeichen der unterschiedlichen Zonierungsmuster sind:

- (a.) Pyrop-Zunahme vom Kern zum Rand, Abnahme des X_{Fe} vom Kern zum Rand (Abb. 4.2 c-f),
- (b.) Pyrop-Abnahme vom Kern zum Rand, Zunahme des X_{Fe} vom Kern zum Rand, Spessartin-Zunahme vom Kern zum Rand (Abb. 4.2 g-k) und
- (c.) abgeflachte Elementverteilungsmuster für die verschiedenen Komponenten (Abb. 4.21).

Abb. 4.2: Zonierungsmuster verschiedener Granat-Kristalle. Erläuterungen im Text.

Abb. 4.2 a) Mikrofoto IMM 021: Porphyroblastischer Granat-Kristall. 1 Nic., Bildbreite ca. 1.2 mm. Zonierungsmuster vgl. Abb. 4.2 c.

b) Mikrofoto IMM 061: Porphyroblastischer Granat-Kristall mit Hellglimmer-Einschluß. 1 Nic., Bildbreite ca. 1.3 mm. Zonierungsmuster vgl. Abb. 4.2 f

Abb. 4.2 d) IMM 021 Granat II: Prograde Wachstumszonierung (a.).

Abb. 4.2e) IMM 039: Prograde Wachstumszonierung (a.) von Granat. Foto vgl. Abb. 3.4.

 Abb. 4.2

 f) IMM 061 Granat I: Prograde Wachstumszonierung (a.). Foto vgl. Abb. 4.2 b.

Abb. 4.2

g) IMM 051: Das zweite Zonierungsmuster (b.) deutet eine leichte Temperaturabnahme während des Granat-Wachstums an.

Abb. 4.2 h) IMM 061 Granat II: Zonierungsmuster (b.).

Abb. 4.2

i) IMM 063: Zonierungsmuster (b.) von Granat. Die Granat-Kristalle weisen verglichen mit der "durchschnittlichen" Zusammensetzung geringere Almandin- und Pyrop-Gehalte sowie höhere Spessartin-Gehalte auf.

Abb. 4.2 j) IMM 089: Zonierungsmuster (b.) von Granat.

Abb. 4.2 k) SM 68 Granat I: Zonierungsmuster (b.). Die Granat-Kristalle weisen verglichen mit der "durchschnittlichen" Zusammensetzung geringere Almandin- und Pyrop-Gehalte sowie höhere Spessartin-Gehalte auf.

Abb. 4.2

l) SM 68 Granat II: Das abgeflachte Elementverteilungsmuster (c.) von Granat läßt auf intensive Diffusionsprozesse während bzw. nach dem Kristallwachstum schließen.

In der Regel sind die Granat-Kristalle durch symmetrischen Zonarbau charakterisiert. Teilweise treten jedoch auch unregelmäßigere Muster auf: so verursachen z.B. Risse im Kristall oder Einschlußminerale in einzelnen Fällen Abweichungen in den Profilen. Insbesondere zwischen der zweiten Zonarbau-Variante, die relativ häufig vorkommt, und den abgeflachten Elementverteilungsmustern existieren Übergangsformen, die mehr zur einen oder anderen Ausprägung tendieren. Die Werte für X_{Mn} und ihre Variation korrelieren in allen Zonierungsmustern gewöhnlich mit der Spessartin-Komponente. Das Zonierungsmuster (a.) kommt nur in Granat-Kristallen im Typ I des Staurolith-Glimmerschiefers vor, während die beiden übrigen Elementverteilungsmuster (b., c.) im Typ I und im Typ II festzustellen sind.

Innerhalb der einzelnen Proben treten die drei Elementverteilungsmuster in unterschiedlicher Weise kombiniert auf (vgl. Anhang, E.3).

Das erste, recht komplexe, **Zonierungsmuster (a.)** mit größeren Variationen tritt insbesondere in Granat-Kristallen der Proben IMM 021, IMM 039, IMM 056 und IMM 061 auf (Abb. 4.2 c - f). Es zeigt vom Kern zum Rand einen steigenden Pyrop-Gehalt und Abnahme des X_{Fe} (Tab. 4.2). Diese Merkmale sind allerdings nicht sehr prägnant ausgebildet. Die Spessartin-Komponente nimmt vom Kern zum Rand zunächst leicht ab, weiter zum Rand hin nimmt sie wieder leicht zu (Tab. 4.2). Die Almandin-Komponente weist bei diesen Profilen einen uneinheitlichen Trend auf, der meist invers zu demjenigen für Spessartin verläuft. Almandin nimmt vom Kern zum Rand zunächst leicht zu, anschließend jedoch ab. Die Grossular-Komponente nimmt in diesem Zonierungsmuster vom Kern zum Rand stetig ab, der Verlauf zeigt deutliche Ähnlichkeiten zu dem des X_{Fe} .

<i>Tab. 4.2</i>						
Veränderung der chemischen Zusammensetzung von Granat im Zonierungsmuster (a.), jeweils vom Kern zum Rand.						
[Mol-%], K→R	Pyrop	Almandin	Spessartin	Grossular	X _{Fe}	
IMM 021	$6 \rightarrow 13, \\ 10 \rightarrow 13$	$\begin{array}{c} 65 \rightarrow 69 \rightarrow 67, \\ 68 \rightarrow 69 \rightarrow 61 \end{array}$	$\begin{array}{c} 9 \rightarrow 6, \\ 5 \rightarrow 12 \end{array}$	$16 \rightarrow 12, \\ 13 \rightarrow 9$	$\begin{array}{c} 0.91 \rightarrow 0.83, \\ 0.87 \rightarrow 0.82 \end{array}$	
IMM 039	$8 \rightarrow 12$	$64 \rightarrow 68 \rightarrow 65$	$9 \rightarrow 13$	$13 \rightarrow 6$	$0.89 \rightarrow 0.84$	
IMM 056	$6 \rightarrow 11$	$54 \rightarrow 63 \rightarrow 58$	$20 \rightarrow 14$	$14 \rightarrow 6$	$0.90 \rightarrow 0.83$	
IMM 061	$11 \rightarrow 14$	$71 \rightarrow 72 \rightarrow 68$	$4 \rightarrow 9$	$10 \rightarrow 4$	$0.86 \rightarrow 0.83$	

Der vom Kern zum Rand steigende Pyrop-Gehalt und Abnahme des X_{Fe} kennzeichnen eine prograde Wachstumszonierung von Granat. Eine Abnahme der Spessartin-Komponente vom Kern zum Rand wird ebenfalls als für eine aufsteigende Metamorphose charakteristisch angesehen (z.B. SPEAR 1993, TRACY et al. 1976). Die für prograde Zonierungen in grünschieferund amphibolitfaziellen Gesteinen typische, glockenförmige Verteilungskurve für Spessartin, die auf eine Rayleigh-Fraktionierung hindeuten würde, kann hier jedoch nicht beschrieben werden. Der Anstieg des Spessartin-Gehaltes und die Zunahme des Almandin-Gehaltes am Rand der Kristalle weisen auf eine retrograde Überprägung und einen randlich beginnenden Abbau von Granat hin. Eine Relation der Veränderung des X_{Fe} zu den Isoplethen für (Fe/Fe+Mg) in Granat im Modellsystem KFMASH nach SPEAR & CHENEY (1989) im Hinblick auf die Metamorphose-Bedingungen wird in Kap. 7 hergestellt. Die am häufigsten auftretenden **Zonierungen** (b.) sind vom Kern zum Rand hin durch eine Abnahme der Pyrop-Gehalte und Zunahme der Spessartin-Komponente gekennzeichnet (Abb. 4.2 g - k u. Tab. 4.3). Der X_{Fe} nimmt in diesen Granat-Individuen vom Kern zum Rand hin meist leicht zu. Die Almandin-Komponente weist ein etwas weniger deutlich ausgeprägtes Zonierungsmuster auf, wobei überwiegend eine Abnahme dieses Endgliedes vom Kern zum Rand hin zu beobachten ist. Für Grossular zeichnet sich eine eher unregelmäßige Verteilung mit durchschnittlichen Schwankungen in der Größenordnung um etwa 3 bis 4 Mol-% ab. Die Tendenz der Veränderung wechselt dabei oft schon von einem Analysepunkt zum nächsten, so daß kein signifikanter Trend hinsichtlich einer Zu- oder Abnahme des Grossular-Gehaltes erkennbar ist. Das beschriebene Elementverteilungsmuster für Granat kommt in der überwiegenden Zahl der untersuchten Proben vor, insbesondere in IMM 051, IMM 056, IMM 061, IMM 063, IMM 089 und SM 68.

Tab. 4.3

Beispielhafte Veränderung der chemischen Zusammensetzung von Granat im Zonierungsmuster (b.), jeweils vom Kern zum Rand.

Komponente	$K \rightarrow R [Mol-\%]$
Ругор	$13 \rightarrow 9, 10 \rightarrow 6, 16 \rightarrow 12, 18 \rightarrow 14$
Almandin	$66 \rightarrow 61, 62 \rightarrow 59, 69 \rightarrow 65, 70 \rightarrow 63$
Spessartin	$9 \rightarrow 12, 4 \rightarrow 10, 12 \rightarrow 18, 13 \rightarrow 21$
XFe	$0.82 \rightarrow 0.85, 0.83 \rightarrow 0.86, 0.77 \rightarrow 0.80, 0.84 \rightarrow 0.88$
	Variationsbereich [Mol-%]
Grossular	1 - 4, 2 - 6, 5 - 11, 10 - 15

Pyrop-Abnahme und Zunahme des X_{Fe} vom Kern zum Rand hin deuten vermutlich eine leichte Temperatur-Verringerung während des Wachstums dieser Granat-Individuen an. Eine geringe Änderung des X_{Fe} interpretieren auch KOHN et al. (1992) bzw. SPEAR (1993, S.633) als Hinweis auf eine geringe Temperaturänderung während des Granatwachstums. Die relativ flache Ausprägung der Zonierungen stellt hier jedoch einen Hinweis darauf dar, daß die Elementverteilungen durch Diffusionsprozesse bereits zurückgesetzt sind und wahrscheinlich nicht mehr die ursprüngliche Form repräsentieren. Für diese Interpretation spricht auch der sukzessive Übergang zwischen dieser Variante und den völlig abgeflachten Verteilungskurven (c.). In den Granat-Kristallen mit diesem Elementverteilungsmuster überlagern sich also offenbar die leicht retrograde Entwicklung und Diffusionsprozesse, die nach dem Kristallwachstum stattgefunden haben. Die dritte Zonierungs-Variante (c.) zeigt ein abgeflachtes Elementverteilungsmuster für die verschiedenen Komponenten (Abb. 4.2 l). Für Almandin, Spessartin und Grossular ist dabei praktisch kein Zonarbau festzustellen, Pyrop zeigt teilweise eine leichte Abnahme vom Kern zum Rand mit einer Differenz von ca. 1-2 Mol-%. X_{Fe} nimmt in solchen Fällen vom Kern zum Rand geringfügig zu. Dieses ausgeglichene Muster wurde z.B. an Granat-Kristallen der Proben IMM 039, IMM 056, IMM 063, IMM 089, SM 68 und SM 1063 festgestellt; die Granate des Gesteins SM 1063 besitzen insgesamt eine geringe Zonierungstendenz. In einzelnen Fällen dieses Elementverteilungsmusters nimmt Spessartin vom Kern zum Rand sehr geringfügig zu (z.B. IMM 089), Pyrop kann minimal abnehmen und der X_{Fe}-Wert ansteigen, was Übergänge zu der zweiten Zonarbau-Variante (b.) andeutet. In der Grossular-Kurve können, wie im Zonierungsmuster (b.), kleine, uneinheitliche Schwankungen auftreten, die vermutlich auf geringere Diffusionsraten des Ca in Granat (z.B. TRACY et al. 1992, SCHWANDT et al. 1995, 1996) zurückzuführen sind. Das flache Zonierungsmuster weist auf intensive Diffusionsprozesse während bzw. nach dem Kristallwachstum hin (z.B. TRACY et al. 1976, SPEAR 1993). Es muß davon ausgegangen werden, daß eine ursprünglich vorhandene Wachstumszonierung hierdurch weitgehend ausgeglichen und der Kristall zunehmend homogenisiert wurde.

Die höchsten Grossular-Gehalte um ca. 10-12 Mol-% wurden in den prograd zonierten Granat-Kristallen (a.) festgestellt. Granate mit diffusiv beeinflußten Zonierungsmustern (b., c.) weisen niedrigere Grossular-Gehalte auf (2-4 Mol-%, 6-8 Mol-%). Offenbar wurde also auch der Grossular-Gehalt des Granat, trotz – im Vergleich zu Fe, Mg und Mn – geringerer Diffusionsraten für Ca (CHAKRABORTY & GANGULY 1992, TRACY et al. 1992, SCHWANDT et al. 1995, 1996; s.o.), durch die Diffusion verändert.

Bei petrographisch unterschiedlich ausgeprägten Granat-Kristallen (z.B. xenomorph, idiomorph) oder solchen mit unterschiedlicher Mineral-Umgebung konnte keine klare Tendenz zu verschiedenen Gehalten der Endglieder Pyrop, Almandin und Spessartin festgestellt werden. Mineralchemische Hinweise auf eine Existenz unterschiedlicher Granat-Generationen sind daher nicht nachzuweisen. Verschiedene Granat-Zusammensetzungen innerhalb einzelner Proben sind meist auf die chemische Zonierung zurückzuführen (abgesehen von IMM 056, IMM 063, SM 68, s.o.). Das prograde Elementverteilungsmuster (a.) liegt nur in größeren Granat-Kristallen vor (Durchmesser um ca. 1 mm), die vielfach Einschlüsse führen. Im Gegensatz dazu sind das zweite wie auch das dritte, flache, Zonierungsmuster (b. und c.) besonders an kleinen Granat-Kristallen (Durchmesser um ca. 0.1 bis 0.4 mm) zu beobachten. Hierin liegt offensichtlich auch

die Ursache für das ausschließliche Vorliegen der prograden Wachstumszonierung (a.) in Granat des Typs I des Staurolith-Glimmerschiefers: ausschließlich im Typ I kommen größere Kristalle, neben kleineren, vor; im Typ II treten nur kleine Granat-Kristalle auf (s.o., vgl. Kap. 3.2.1). Offensichtlich wurden die kleineren Kristalle aufgrund ihrer geringeren Größe bereits vollständig retrograd beeinflußt und durch Diffusion überprägt, während bei den größeren Individuen die prograde Wachstumszonierung noch erhalten blieb.

Hinsichtlich der festgestellten Zonierungen in Granat besteht weitgehend Übereinstimmung mit SMOLER (1987), der – unter Bezug auf HSU (1968) – "einer aufsteigenden Metamorphose entsprechende" ebenso wie "unregelmäßige" Zonierungen und "nicht oder nur unwesentlich zonierte" Granate beschreibt.

In metapelitischen Gesteinen wird Mangan bevorzugt in das Kristallgitter von Granat eingebaut. Der große Einfluß der Systemkomponente MnO auf die Granat-Stabilität wird aufgrund verschiedener Untersuchungen deutlich, daher soll an dieser Stelle näher auf den Mn-Gehalt in den Granat-Kristallen eingegangen werden. WILL (1997) geht davon aus, daß schon etwa 0.5 Gew.-% MnO im Gestein einen dramatischen Einfluß besitzen können. Mn-führender Granat wird gegenüber Mn-freiem Granat zu niedrigeren Temperaturen hin stabilisiert (z.B. SPEAR & CHENEY 1989, BUCHER & FREY 1994, WILL 1998 b) und ist daher über einen größeren P-T-Bereich stabil (z.B. WANG & SPEAR 1991, DROOP & HARTE 1995, MAHAR et al. 1997, WILL 1998 a, b) (vgl. Kap. 6). WILL (1998 b, S. 261) weist auf den bevorzugten Einbau von Mangan in Granat hin (Rayleigh-Fraktionierung, vgl. HOLLISTER 1966) und gibt aufgrund mineralchemischer Untersuchungen für die MnO-Verteilung die Reihenfolge $X_{Mn, g} >> X_{Mn, chl} > X_{Mn, sp}$ an. Aufgrund dieser Tatsache kann eine Korrelation zwischen dem MnO-Gehalt im Gestein und dem Spessartin-Gehalt im Granatkern angenommen werden, die jedoch hier nicht nachzuweisen ist (Abb. 4.3).

Abb. 4.3:

Korrelationsdiagramm MnO-Gehalt im Gesamtgestein in [Gew.-%] vs. Spessartin-Gehalt im Granatkern in [Mol-%]. Eine Korrelation zwischen dem Mn-Gehalt im Gestein und dem Einbau dieses Elements im Granat(kern) ist nicht nachzuweisen.

In bezug auf Magnesium-Eisen-Substitutionen in Mineralen beschreibt SPEAR (1993, S. 340) für Metapelite eine Reihenfolge des Magnesium-Einbaus. Das Mg-Fe-Verhältnis nimmt demnach in Mineralen pelitischer Gesteine in der folgenden Reihenfolge zu:

niedriges Mg/Fe \rightarrow hohes Mg/Fe

 $Granat < Staurolith \le Chloritoid < Biotit \le Chlorit < Cordierit < Talk.$

Magnesium wird also im Vergleich zu Staurolith bzw. Granat bevorzugt in das Kristallgitter von Biotit eingebaut. Diese Beobachtung bestätigt sich auch für die Proben des Staurolith-Glimmerschiefers (vgl. AFM-Diagramme Kap. 7.1). Die Magnesium-Eisen-Verhältnisse X_{Mg} (Mg/[Mg+Fe]) der hier untersuchten Granate liegen bei ca. 0.1 bis 0.2 (vgl. oben X_{Fe} und Granat-Analysen). Das relative Magnesium-Eisen-Verhältnis spiegelt sich in dem Verteilungskoeffizienten zwischen Granat und Biotit bzw. Granat und Staurolith wider. Im Staurolith-Glimmerschiefer liegt der durchschnittliche Magnesium-Eisen-Verteilungskoeffizient für Granat-Biotit bei ca. 0.14, für Granat-Staurolith bei ca. 0.79, wobei die Werte gewisse Schwankungen aufweisen (Tab. 4.4). Chlorit wurde in diese Betrachtung nicht einbezogen, da er als retrograde Bildung einzustufen ist.

Probe	Gemittelter Verteilungskoeffizient für Granat-Biotit $K_D = (X_{Mg}/X_{Fe})^{g}/(X_{Mg}/X_{Fe})^{bi}$	Gemittelter Verteilungskoeffizient für Granat-Staurolith $K_D = (X_{Mg}/X_{Fe})^g/(X_{Mg}/X_{Fe})^{st}$
IMM 021	0.09 - 0.13	0.61 - 0.80
IMM 039	0.08 - 0.15	0.71 - 0.89
IMM 044	0.12 - 0.14	0.63 - 0.82
IMM 051	0.13 - 0.15	0.69 - 0.86
IMM 056	0.07 - 0.15	0.78 - 0.80
IMM 061	0.14 - 0.16	0.77 - 0.85
IMM 063	0.14 - 0.16	0.74 - 0.89
IMM 089	0.13 - 0.15	0.69 - 0.85
SM 1063	0.17 - 0.18	0.80 - 0.82
SM 68	0.14 - 0.15	0.74 - 0.91

Tab. 4.4

Mittlere Magnesium-Eisen-Verteilungskoeffizienten für die Proben des Staurolith-Glimmerschiefers.

DEER et al. (1992) geben durchschnittliche Magnesium-Eisen-Gleichgewichtskonstanten zwischen koexistierendem Granat und Biotit für unterschiedliche Metamorphosegrade an. Der durchschnittliche Wert liegt demzufolge für die Granat-Zone bei $K_D = 0.13$, für die Staurolith-Disthen-Zone bei $K_D = 0.15$ und für die Sillimanit-Zone bei $K_D = 0.27$. Der hier für den Staurolith-Glimmerschiefer ermittelte durchschnittliche Wert für Granat-Biotit von $K_D = 0.14$ rangiert also genau zwischen denen für die Granat-Zone und die Staurolith-Disthen-Zone. Es existiert somit eine sehr gute Übereinstimmung mit dem petrographischen Befund, der die Anwesenheit von Granat und Staurolith zeigt (vgl. Kap. 3.2.1). Der Vergleich der Magnesium-Eisen-Verteilungskoeffizienten zeigt für die Granat- und Staurolith-führenden, Disthen-freien Proben systematisch geringere Werte, die Disthen-führenden Gesteine (IMM 063, SM 68, SM 1063) weisen hier signifikant höhere Koeffizienten auf, die ebenfalls mit den bei DEER et al. (1992) angegebenen übereinstimmen. In der Sillimanit- und Disthen-führenden Probe SM 1063 ist im Vergleich zu den übrigen Gesteinen eine leichte erhöhte Magnesium-Eisen-Gleichgewichtskonstante zwischen Granat und Biotit von 0.17 bis 0.18 zu verzeichnen; der von DEER et al. (1992) für die Sillimanit-Zone angegebenen entspricht sie allerdings nicht.

Ergänzende Hinweise zur Granat-Zonierung

Veränderungen in der chemischen Zusammensetzung von Mineralen, wie Zonierungen, können Hinweise zur Entstehungsgeschichte von Gesteinen sowie den entsprechenden P-T-Bedingungen geben. Zonarbau in Granat läßt sich prinzipiell durch zwei verschiedene Prozesse erklären (SPEAR 1993), wobei Kombinationen auftreten können: *Wachstumszonierung* ist darauf zurückzuführen, daß aufgrund unterschiedlicher Faktoren während des Wachstums neue Schalen mit abweichender Zusammensetzung zu einem Granatkristall hinzugefügt werden. *Diffusionszonierung* resultiert aus chemischen Diffusions- und Austauschprozessen, die während oder nach dem Kristallwachstum ablaufen können. Aufgrund der thermischen Aktivierung dieses Prozesses nimmt die Diffusion mit steigender Temperatur bzw. steigendem Metamorphosegrad zu. In den untersuchten Granat-Kristallen wurden beide Varianten festgestellt.

Dem Granat-Zonierungsmuster (a.) vergleichbare Elementverteilungen beschreiben TRACY et al. (1976) bzw. SPEAR (1993) für Granate der Staurolith-Zone und interpretieren diese als Wachstumszonierung bei aufsteigenden Metamorphosebedingungen. Die Autoren weisen jedoch auf die Steilheit der Profile - insbesondere für Mn - hin, die hier nicht gegeben ist. Das Zonierungsmuster (b.) ist bereits durch Diffusion beeinflußt, was auch aus der hier meist recht flachen Kurve für Grossular deutlich wird. Aufgrund experimenteller Arbeiten weisen CHAKRABORTY & GANGULY (1992) für das größere Ca-Ion in Granat eine langsamere Diffusion nach als für die kleineren Ionen der Elemente Fe und Mg. Wie bei TRACY et al. (1992) beschrieben, diffundiert in amphibolitfaziellen Granaten Ca langsamer als Fe, Mg und Mn. SCHWANDT et al. (1995, 1996) gehen aufgrund experimenteller Daten für die Selbstdiffusion von Ca in Grossular von einer um ein bis anderthalb Größenordnungen niedrigeren Rate aus als für Mg in Pyrop. Unter dieser Voraussetzung müßte, bei nur geringem Einfluß der Diffusion, Grossular ein ausgeprägteres Zonierungsmuster aufweisen als die übrigen Endglieder. Da dies nicht vorliegt, muß für diese Granate von einem nicht unerheblichen Diffusionseinfluß ausgegangen werden. Konkrete Hinweise auf die Druck-Temperatur-Bedingungen während des Granat-Wachstums lassen sich aus den flachen Zonierungsmustern (c.) nicht mehr ableiten. Im wesentlichen flach ausgeprägte Elementverteilungsmuster für die Elemente Fe, Mg, Mn und Ca im Kristall beschreiben TRACY et al. (1976) bzw. SPEAR (1993) als Beispiel für Diffusionszonierung. Nach SPEAR (1993) spielt die Diffusion in niedriggradigen Gesteinen keine wesentliche Rolle. Die hier vorliegenden Anzeichen für Diffusion könnten auf einen Temperatureinfluß hindeuten, da diese Größe temperaturabhängig ist.

4.2 Staurolith

Repräsentative Mikrosonden-Analysen von Staurolith sind in Tab. H.2 im Anhang enthalten. Die Berechnung der Kationenbesetzung von Staurolith erfolgte wasserfrei auf der Basis von 23 Sauerstoffen, wobei sich zufriedenstellende Kationensummen ergaben. Die ideale Staurolith-Formel geben DUTROW et al. (1986) mit

 $H_{2.8\text{-}4.2}(R^{2+})_{4.0\text{-}3.3}(Al,Fe^{3+})_{17.7}(Fe,Mn)_{0.25}(Si,Al)_8O_{48}$

an, wobei \mathbb{R}^{2+} die Elemente Fe²⁺, Mg, Zn und Li enthalten kann, während man in dieser Position von sehr geringen bis fehlenden Al-Gehalten ausgeht. DEER et al. (1992) weisen auf Unsicherheiten in der Kenntnis der Staurolith-Zusammensetzung hin. Staurolithe, die gemeinsam mit Granat und/oder Biotit vorkommen, besitzen nach HOLDAWAY et al. (1986a) 2.7 bis 3.4 Wasserstoff-Atome p.f.u. – bezogen auf eine Formeleinheit von 48 (O,OH). DEER et al. (1992) nehmen einen Zusammenhang zwischen den Wasserstoff-Gehalten in Staurolith und den physikalischen Bedingungen der Metamorphose an (vgl. auch Anhang, E.2). Genauere Ausführungen zur Kristallchemie von Staurolith sowie den thermodynamischen Eigenschaften liegen in den Arbeiten von HOLDAWAY et al. (1986a, 1986b, 1991, 1995) vor, petrogenetische und kristallchemische Aspekte von Magnesium- und Zink-Staurolith untersuchen CHOPIN et al. (2003).

Die Staurolith-Zusammensetzungen weisen insgesamt relativ geringe Schwankungen auf. Mit Al_2O_3 -Gehalten von 52 bis 54 Gew.-% und hohen Eisen-Magnesium-Verhältnissen von X_{Fe} = 0.77 bis 0.82 (Fe/[Fe+Mg]) liegen sie im Bereich typischer Staurolithe aus Glimmerschiefern (z.B. DEER et al. 1992). Das Eisen-Magnesium-Verhältnis der einzelnen Proben unterscheidet sich innerhalb des genannten Bereiches geringfügig, nur in wenigen Fällen steigt der X_{Fe}-Wert auf 0.75 an (IMM 063, SM 68). Das durchschnittliche Verhältnis X_{Fe}^{Grt}/X_{Fe}^{Stau} der untersuchten Proben liegt mit etwa 1.05 etwas höher als das von OKRUSCH (1983, S. 149) mit 0.96 Staurolithe aus Proben der unterschiedlichen Typen des Staurolithangegebene. Glimmerschiefers unterscheiden sich chemisch nicht signifkant. Auch zwischen petrographisch Staurolith-Kristallen, unterschiedlich ausgebildeten die verschiedene Generationen repräsentieren können (z.B. IMM 063, IMM 089, SM 68), wurden keine mineralchemischen Unterschiede festgestellt.

Eine schwache chemische Zonierung des Staurolith ist in Bezug auf den Al₂O₃-Gehalt und X_{Mg} festzustellen. In manchen Staurolithen steigt der Al₂O₃-Gehalt um bis zu 1 bis 2 Gew.-% (z.B. 52 \rightarrow 53-54 Gew.-%) am Rand an, der X_{Mg} -Wert ist im Randbereich der Staurolithe vielfach leicht um ca. 0.01 bis 0.03 verringert (z.B. 0.21 \rightarrow 0.18; IMM 021, IMM 039, IMM 051, IMM 061, IMM 063, IMM 089, SM 68). Als mögliche Erklärung für die leichte Zonierung des Staurolith kann eine erhöhte Tschermak-Substitution (Si₁(Mg,Fe)₁Al ₋₂) während des Wachstums des Staurolith-Kerns angenommen werden. Es ist anzumerken, daß der in manchen Proben fehlende Nachweis der Zonierung möglicherweise auf eine ungünstige Verteilung der Analysenpunkte zurückzuführen ist und nicht unbedingt die Abwesenheit dieses Elementverteilungsmusters bedeuten muß.

Die Konzentration an ZnO im Staurolith variiert meist zwischen 0.1 und 0.5 Gew.-%, etwas höhere Werte von bis zu 0.9 Gew.-% wurden in wenigen Proben gemessen (IMM 039, IMM 051, SM 1063). Diese Zink-Gehalte in Staurolith sind als nennenswert einzustufen. Maximal mögliche Zink-Gehalte im Staurolith werden in der Literatur mit Werten im Bereich von 5.5 bis 7.4 Gew.-% ZnO angegeben (z.B. JUURINEN 1956, ALBEE 1972, GRIFFEN & RIBBE 1973, HOLDAWAY et al. 1986b). Der höchste Wert von 7.4 Gew.-% ZnO (JUURINEN 1956) entspricht einem Zink-Gehalt von 1.586 p.f.u. bezogen auf 48 (O, OH) (DEER et al. 1992). HOLDAWAY et al. (1986b) sehen die Möglichkeiten zum Einbau von kleinen Kationen wie Zn, Mn Li und Ti in Staurolith als begrenzt an, und gehen davon aus, daß der Tetraeder-Platz des Fe nur eine bestimmte Menge dieser Kationen aufnehmen kann. Sie beschreiben eine sehr ungleiche Zink-Verteilung und geben Anteile zwischen 0.02 und 0.07 Zn p.f.u. und als maximalen Wert 1.32 Zn p.f.u. auf der Basis von 48 Sauerstoffen an. Verdoppelt man die hier vorgenommenen Staurolith-Kationenberechnungen auf 46 Sauerstoffatome - im Hinblick auf eine bessere Vergleichbarkeit - , ergeben sich Gehalte von 0.02 bis 0.16 Zink p.f.u. Die Zink-Anteile der untersuchten Staurolithe entsprechen also absolut und in ihren Variationen den genannten Vergleichswerten.

Die Zink-Gehalte in Staurolith besitzen in diesem Zusammenhang besondere Bedeutung, da die Anwesenheit von Zn das Stabilitätsfeld dieses Minerals deutlich vergrößert (HOLLISTER 1969, KEPEZHINSKAS & KHLESTOV 1977, WILL 1997, 1998b) (vgl. Kap. 6). In Metapeliten wird Zink bevorzugt in das Kristallgitter von Staurolith eingebaut. WILL (1997) legt die Beziehung $X_{Zn, st}$ $>> X_{Zn, chl} >>> X_{Zn, g,bi,ky}$ dar. Falls im Gestein mehr Zink vorliegt als in Staurolith eingebaut werden kann, wird als zusätzliche Phase der Zink-Spinell Gahnit stabilisiert (WILL 1997). Die Frage, ob der Einbau von Zink im Staurolith-Gitter vom Zink-Gehalt im Gesamtgestein abhängt oder eine Funktion des Metamorphosegrades darstellt, soll durch eine Darstellung des Gehaltes von Zn in Staurolith gegen Zn im Gesamtgestein geklärt werden. (Abb. 4.4) Eine Abhängigkeit des Zink-Gehaltes in Staurolith von der Gesteinszusammensetzung ist nicht nachzuweisen, was durch den Staurolith-Anteil in der jeweiligen Probe sowie durch den Metamorphosegrad bedingt sein kann.

Abb. 4.4:

Durchschnittliche Zink-Gehalte in Staurolith in [Gew.-%] vs. Zink-Gehalt im Gesamtgestein in [ppm]. Für Staurolith wurde der Wert für Zn, nicht der ZnO-Gehalt einbezogen. In Anbetracht der großen Variabilität des Zn-Gehaltes in Staurolith, wurde für die Darstellung der jeweilige Durchschnitt aller Zn-Werte in den Staurolith-Analysen einer Probe zugrunde gelegt. Eine Korrelation zwischen der Gesteinszusammensetzung und dem Zink-Gehalt in Staurolith ist nicht nachzuweisen.

Hinweise zur Metamorphose aus der Staurolith-Zusammensetzung

Hinsichtlich der Druck-Temperatur-Entwicklung wertet THOMPSON (1976) vom Kern zum Rand abnehmende X_{Mg} in Staurolith als Hinweis auf eine retrograde Temperaturentwicklung bei konstantem Druck. GARCIA-CASCO & TORRES-ROLDAN (1996) deuten eine Zunahme des X_{Fe} zum Rand der Kristalle hin (entsprechend einer Abnahme des X_{Mg}) als möglichen Hinweis auf eine Dekompression. Da der beschriebene Effekt nur die äußersten Bereiche des Staurolith betrifft, könnte er auch im vorliegenden Falle eine retrograde metamorphe Entwicklung repräsentieren. GARCIA-CASCO & TORRES-ROLDAN (1996) weisen jedoch auf unterschiedliche Ergebnisse hinsichtlich systematischer Veränderungen im Magnesium-Eisen-Verhältnis in Staurolith hin (z.B. LANG & RICE 1985, HOLDAWAY et al. 1988, GUIDOTTI 1974, LABOTKA 1980).

4.3 Biotit

Repräsentative Mikrosonden-Analysen von Biotit finden sich in Tab. H.3 im Anhang. Die Berechnung der Kationenverteilung für Biotit erfolgte wasserfrei auf der Basis von 22 Sauerstoffatomen. Eine theoretische Biotit-Formel kann mit

X₂Y₄₋₆Si₆₋₅Al₂₋₃O₂₀(OH,F)₄

angegeben werden (DEER et al. 1992). Die Kationen-Positionen können folgendermaßen besetzt sein: X = K, selten Na, Ca, Ba, Rb, Cs; Y = Fe, Mg, Al, seltener Mn ,Ti, Fe³⁺, Li. Auch auf der mit Si und Al belegten Tetraeder-Position kann Fe³⁺ im Kristallgitter eingebaut werden. Die Fe³⁺-Abschätzung in komplex zusammengesetzten Mineralen, wie Glimmern, ist u.a. aufgrund der Annahme einer vollständigen Belegung der Gitterplätze häufig fehlerbehaftet (BUCHER & FREY 1994, WILL 1998b). Daher wurde hier bei der Biotit-Formelberechnung, wie von WILL (1998b) vorgeschlagen, 15 % des Gesamteisens in Fe₂O₃ umgerechnet. Dieser Quotient deckt sich mit Daten aus mössbauerspektroskopischen Untersuchungen zur Fe²⁺/Fe³⁺-Verteilung in Biotiten metapelitischer Gesteine (z.B. GUIDOTTI & DYAR 1991). DEER et al. (1992) führen aus, die Summe der Y-Ionen in Biotit erreiche selten den idealen Wert von 6 p.f.u. und liege typischerweise zwischen 5.6 und 5.9 p.f.u. Dies bestätigt sich auch für die hier untersuchten Biotit-Kristalle, deren Summen oktaedrisch koordinierter Ionen (Y) bei 5.6 bis 5.7 p.f.u., selten 5.8 liegen.

Die analysierten Biotite sind aufgrund des ternären Klassifikationsdiagramms Mg – (Fe²⁺+Mn) – R^{3+} mit ($R^{3+} = Al^{VI}+Ti^{4+}+Cr^{3+}$) nach FOSTER (1960) bzw. TROCHIM (1966) in TRÖGER (1982) (Abb. 4.5) als Meroxene einzustufen, wobei einige der darstellenden Punkte nahe am Lepidomelan-Feld liegen. Die Klassifikation der Biotite ergab in Bezug auf die verschiedenen petrographischen Gesteinstypen keine signifikanten Unterschiede. Die Biotite unterschiedlicher mikrotektonischer Situationen weisen ebenfalls recht einheitliche Zusammensetzungen auf.

Die Biotite besitzen im Durchschnitt 18 bis 20 Gew.-% Al₂O₃ und weisen ein Si/Al-Verhältnis von 1.5 bis 1.7 auf. Für oktaedrisch koordiniertes Aluminium sind Werte von 0.6 bis 0.9 p.f.u. zu verzeichnen. Sie stimmen gut mit der Aussage von BAILEY (1984) überein, der für pelitische Schiefer einen höheren Al^{VI}-Anteil als in anderen Gesteinstypen beschreibt und Al^{VI} mit 0.7 bis 0.9 Atomen auf sechs Oktaederplätzen Y (also p.f.u.) angibt.

Darstellung der Biotit-Zusammensetzung im ternären Klassifikationsdiagramm $Mg - (Fe^{2+}+Mn) - R^{3+}$ mit $(R^{3+} = Al^{VI} + Ti^{4+} + Cr^{3+})$ nach FOSTER (1960) bzw. TROCHIM (1966, in TRÖGER 1982). Offene Symbole: Rand, gefüllte Symbole Kern. Die untersuchten Biotite fallen in das Meroxen-Feld.

Die durchschnittlichen X_{Fe} -Werte (Fe/[Fe+Mg]) variieren leicht im Bereich von 0.38 bis 0.47, wobei sich ein direkter Zusammenhang zwischen dem Eisen-Magnesium-Verhältnis im Gesamtgestein und demjenigen im Biotit abzeichnet (Abb. 4.6). In einzelnen Biotit-Kristallen, die als Granat-Einschlüsse vorliegen, konnten leicht höhere X_{Fe} -Werte im Vergleich zu Matrix-Biotiten festgestellt werden (Tab. 4.5). Biotit-Kristalle in direkter Nachbarschaft zu Granat zeigen gegenüber solchen in der Grundmasse teilweise leicht höhere Eisen-Magnesium-Verhältnisse, während die X_{Fe} -Werte direkt neben Staurolith liegender Biotite vereinzelt etwas niedriger sein können (Tab. 4.5).

Abb. 4.6:

Eisen-Magnesium-Verhältnis (X_{Fe}) im Gesamtgestein vs. durchschnittliches Eisen-Magnesium-Verhältnis (X_{Fe}) in Biotit. Zur Darstellung wurde der jeweilige Durchschnitt aller X_{Fe} -Werte in den Biotit-Analysen einer Probe zugrunde gelegt. Eine Korrelation zwischen der Gesteinszusammensetzung und dem X_{Fe} -Wert in Biotit zeichnet sich ab.

Tab. 4.5

Vergleich der Eisen-Magnesium-Verhältnisse X_{Fe} in Biotit-Kristallen verschiedener petrographischer Situationen.

Probe	X _{Fe} von Biotit als Granat-Einschluß	X _{Fe} von Matrix- Biotit	X _{Fe} von Biotit neben Granat	X _{Fe} von Biotit neben Staurolith
IMM 021	0.44	0.39	-	-
IMM 056	-	0.35 - 0.39	0.39 - 0.40	0.35
IMM 061	-	0.42 - 0.45	0.44 - 0.47	-

Zwischen den verschiedenen petrographischen Typen konnten keine charakteristischen Unterschiede in der mineralchemischen Zusammensetzung der Biotite festgestellt werden. Der Vergleich der Eisen-Magnesium-Verhältnisse von Granat (0.80 - 0.88), Staurolith (0.77 - 0.82) und Biotit (0.38 - 0.47) spiegelt die Tendenz wider, daß unter amphibolitfaziellen Bedingungen Granat und Staurolith ein deutlich höheres Fe/Mg-Verhältnis aufweisen als Biotit (z.B. SPEAR 1993).

Die Ti-Gehalte der untersuchten Biotite sind mit mittleren Werten um 0.11 (0.07) bis 0.24 (0.27) p.f.u. gering. Einschluß-Biotite in Granat oder Plagioklas weisen innerhalb der jeweiligen Probe tendenziell etwas geringere Ti-Gehalte auf. Eine direkte Korrelation des Ti-Gehaltes im Biotit mit dem Magnesium-Eisen-Verhältnis, wie von BAILEY (1984) beschrieben, konnte hier nicht festgestellt werden. Hohe Titan-Gehalte in Biotit werden als Hinweis auf hohe Temperaturen interpretiert (z.B. DEER et al. 1992), so daß die vorliegenden Werte eher auf moderate Bildungstemperaturen hinweisen. Auch die Mangan-Gehalte der analysierten Biotite sind mit 0.02 bis 0.03 p.f.u. gering.

4.4 Hellglimmer

Repräsentative Mikrosonden-Analysen von Hellglimmer sind in Tab. H.4 im Anhang dokumentiert. Die Berechnung der Kationenbesetzung für Hellglimmer erfolgte wasserfrei auf der Basis von 22 Sauerstoffen, unter der Annahme $Fe^{2+} = Fe^{tot}$. Die ideale Glimmer-Formel kann mit

$X_2Y_4Z_8O_{20}(OH,F)_4$

mit X = K, Na, Ca, Rb, Cs, Ba, Y = Al, seltener Mg, Fe^{2+} , Fe^{3+} , Mn, Cr, Li, Ti, V und Z = Si, Al angegeben werden (z.B. DEER et al. 1992). Bei der Kationen-Berechnung ergab sich im Vergleich zur idealen Glimmer-Formel meist eine geringe Überbesetzung der Oktaederposition (Y) und Unterbesetzung der Zwischenschicht. Zusätzlich wurde eine Fe^{3+} -Abschätzung nach SCHLIESTEDT (1980) durchgeführt, bei der $Fe^{3+} = Si - 6 - Mg + Ti$ und $Fe^{2+} = Fe^{tot} - Fe^{3+}$ berechnet werden. Die Ergebnisse dieser Abschätzung sind jedoch nicht sehr zuverlässig, worauf z.B. auch SCHMÄDICKE (1992), ZEH (1995) und GRUNER (2000) hinweisen. GUIDOTTI (1984) führt aus, daß in Ilmenit/Hämatit-führenden Gesteinen mit einem erhöhten Fe^{3+} -Anteil in Muscovit zu rechnen ist, was mit einer gewissen Einschränkung auch für die hier untersuchten Staurolith-Glimmerschiefer-Proben gilt.

Die Phengit-Substitution MgSi \Leftrightarrow Al^{VI}Al^{IV} (Tschermaks-Substitution in umgekehrter Richtung) zwischen Muscovit [K₂Al^{VI}₄Al₂^{IV}Si₆O₂₀(OH)₄] und Paragonit [Na₂Al^{VI}₄Al₂^{IV}Si₆O₂₀(OH)₄] (DEER et al. 1992), führt zu den theoretischen Endgliedern Celadonit und Ferroceladonit (SPEAR 1993, S. 95 f.). Zusammensetzungen zwischen Muscovit, Celadonit und Ferroceladonit sind als Phengite einzuordnen. Im Diagramm nach SCHLIESTEDT (1980), das die Hellglimmer in Abhängigkeit von ihrer Paragonit-, Celadonit- und Muscovit-Komponente klassifiziert, fallen die darstellenden Punkte in das Muscovit-Feld (Abb. 4.7). Nur zwei Analysen aus der Probe IMM 039 liegen im Phengit-Feld (s.u.). Der Anteil der Paragonit-Komponente schwankt in den meisten Hellglimmern zwischen 13 und 24 Mol-%, einzelne Werte gehen auf 10 Mol-% zurück (IMM 039).

Klassifikations-Diagramm Paragonit – Celadonit – Muscovit für Hellglimmer nach SCHLIESTEDT (1980). Die untersuchten Hellglimmer sind als Muscovit zu klassifizieren, zwei Analysen (IMM 039) liegen im Phengit-Feld.

In einer Probe wurden Paragonit-Anteile bis zu 34 Mol-% gemessen (IMM 021), diese Glimmer können als Paragonit-reicher Muscovit bezeichnet werden. Ein direkter Zusammenhang zwischen dem Paragonit-Gehalt im Hellglimmer und dem Na₂O-Gehalt im Gesamtgestein (1.63 - 3.01 Gew.-%, einmal 4.56 Gew.-%) ist nicht festzustellen, was darauf zurückzuführen ist, daß in diesen Gesteinen der größte Teil des Natriums in den Plagioklas eingebaut wird (vgl. SPEAR 1993, S. 298). Die höheren Paragonit-Anteile in der Probe IMM 021 sind offensichtlich auf den mit ca. 14 Vol-% nur geringen Plagioklas-Gehalt dieser Probe zurückzuführen. Die Celadonit-Komponente variiert gewöhnlich zwischen 2 und 10 Mol-%, teilweise sinkt sie bis auf 0 Mol-% ab, in einigen Proben kann sie auf bis zu 16 Mol-% bzw. maximal auf 18 bis 20 Mol-% (SM 1063) ansteigen. Bei mittleren Zusammensetzungen von Ms₆₈₋₈₀Ce₂₋₁₀Pa₁₄₋₂₃ können die Hellglimmer somit als Paragonit- und Celadonit-führende Muscovite eingestuft werden. Hellglimmer unterschiedlicher petrographischer Situationen, wie Einschlüsse oder Grundmasse-Kristalle, zeigen chemisch keine signifikanten Unterschiede. Auch Hellglimmer, die parallel zur Hauptschieferung eingeregelt sind, und Querglimmer unterschieden sich mineralchemisch nicht.

Die Eisen-Magnesium-Verhältnisse (Fe/Fe+Mg) der Hellglimmer variieren meist zwischen 0.60 und 0.79. Geringere X_{Fe} -Werte (0.52 - 0.58) wurden in drei Hellglimmer-Analysen gemessen. Das mittlere Si/Al-Verhältnis der Hellglimmer liegt bei 1.06 bis 1.14, einzelne höhere Werte sind auf erhöhte Si-Gehalte zurückzuführen (s.u.). Die Hellglimmer weisen im Durchschnitt Si-Gehalte von 6.0 bis 6.2 p.f.u. auf. Nur in einzelnen Fällen wurden im Kern von Hellglimmern der Grundmasse mit 6.3 Si p.f.u. leicht höhere Si-Gehalte nachgewiesen (IMM 056, IMM 061, IMM 089), zum Rand dieser Kristalle hin nehmen die Si-Gehalte wieder ab. In der Probe SM 68 zeigt sich an zwei Grundmasse-Hellglimmern – in unterschiedlichen Bereichen des Dünnschliffes – eine Tendenz zu etwas höheren Si-Gehalten (6.25, 6.40 bzw. 6.30, 6.36 Si p.f.u.). Hellglimmer-Einschlüsse in Granat oder Plagioklas weisen in keiner der Proben systematisch höhere Si-Gehalte als (Kern)-Zusammensetzungen von Matrix-Hellglimmern auf. Erhöhte Si-Gehalte im Kern der Hellglimmer weisen vermutlich auf höhere Drucke bzw. Temperaturen zu Beginn des Kristallwachstums hin und könnten damit die prograde metamorphe Entwicklung repräsentieren.

In der Probe IMM 039 tritt am Rand eines Granat-Kristalls ein Hellglimmer mit Si-Gehalten von 6.52 und 6.54 p.f.u. auf. Die beiden Analysen dieses Kristalls weisen 26 bzw. 27 Mol-% Celadonit und 62 bzw. 60 Mol-% Muscovit aus, im Diagramm nach SCHLIESTEDT (1980) fallen sie daher in das Phengit-Feld. Eine starke, nahezu lineare Druckabhängigkeit des Si-Gehaltes in

phengitischen Hellglimmern beschreiben MASSONNE & SCHREYER (1987) bzw. MASSONNE (1991), und sie verwenden diese Beziehung als Geobarometer (vgl. Kap. 6). Diese Si-Gehalte ergeben gemäß MASSONNE & SCHREYER (1987) bzw. MASSONNE (1991) Drucke um ca. 7 - 8 kbar (vgl. Kap. 7).

4.5 Chlorit

Repräsentative Mikrosonden-Analysen von Chlorit sind in Tab. H.5 im Anhang aufgeführt. Die Berechnung der Formelbesetzung von Chlorit wurde mit einem Programm von FRANZ (1991) wasserfrei auf der Basis von 28 Sauerstoffen vorgenommen. Die Fe³⁺-Abschätzung erfolgte dabei nach dem Verfahren von LAIRD & ALBEE (1981) mit der Kalkulation Fe³⁺ = Al^{IV} – Al^{VI} – Cr – 2Ti und Fe²⁺ = Fe^{tot} – Fe³⁺.

Alle untersuchten Chlorite in den Staurolith-Glimmerschiefern stellen retrograde Bildungen dar und sind als Zerfallsprodukt von Granat, Staurolith oder Biotit anzusehen. Im Klassifikationsschema nach HEY (1954) liegen die darstellenden Punkte überwiegend im Ripidolith-Feld (Abb. 4.8). Chlorite der beiden petrographischen Typen des Staurolith-Glimmerschiefers zeigen keine voneinander abweichende Zusammensetzung. Signifikante chemische Unterschiede zwischen Chloriten in unterschiedlichen petrographischen Situationen liegen nicht vor. Die MnO-Gehalte der Chlorite sind mit mittleren Werten um 0.2 bis 0.4 Gew.-% gering (DEER et al. 1992, S. 335). Lediglich in IMM 061 besitzen Chlorit-Einschlüsse in Granat mit bis zu 0.5 bis 0.6 Gew.-% MnO und in SM 1063 ein zu Granat benachbarter Chlorit-Kristall mit 0.9 bis 1.0 Gew.-% MnO signifikant höhere MnO-Gehalte. Beide Gesteinsproben weisen jedoch keine erhöhten MnO-Gehalte im Gesamtgestein auf.

Die Klassifikation der Chlorite stimmt mit der von SMOLER (1987) überein, der Chlorite aus diesen Gesteinen aufgrund optischer Methoden ebenfalls als Ripidolith einstuft (nach TRÖGER 1982). Die Zusammensetzung von Chloriten aus pelitischen Gesteinen variiert LAIRD (1988) zufolge häufig in einer nahezu binären Fe-Mg-Substitution zwischen den beiden unbenannten Endgliedern (Mg₉Al₃)(Al₃Si₅)O₂₀(OH)₁₆ und (Fe₉Al₃)(Al₃Si₅)O₂₀(OH)₁₆, die wegen ihres Fe+Mg-Al-Si-Verhältnisses in der Formel manchmal als 9-6-5-Chlorite bezeichnet werden. Mit einer gewissen Näherung liegen auch die Zusammensetzungen der Chlorite der Mömbris-Formation in dem beschriebenen Bereich.

Abb. 4.8:

Klassifikationsschema für Chlorite nach HEY (1954). Die untersuchten Chlorite können als Ripidolith eingestuft werden. Chlorite, die aus den verschiedenen Mineralen entstanden sind, lassen sich nicht voneinander abgrenzen.

4.6 Plagioklas

In den Staurolith-Glimmerschiefern der Mömbris-Fromation tritt aus der Gruppe der Feldspäte ausschließlich Plagioklas auf. Repräsentative Mikrosonden-Analysen enthält Tab. H.6 im Anhang. Die Kationenberechnung von Plagioklas erfolgte auf der Basis von 8 Sauerstoff-Atomen.

DEER et al. (1992) weisen für metamorphe Gesteine auf die Abhängigkeit der Plagioklas-Zusammensetzung sowohl vom Gesamtgesteins-Chemismus als auch vom Metamorphosegrad

die hin. Die chemische Zusammensetzung der Feldspäte kann Hinweise auf Bildungsbedingungen metamorpher Gesteine geben, da die ternäre Mischbarkeit bei erhöhten Temperaturen und/oder Drucken begrenzt ist. Für Temperaturen zwischen 400 und 800°C besteht nur eine begrenzte Mischbarkeit der Feldspäte (z.B. RIBBE 1983, FUHRMANN & LINDSLEY 1988). Zunehmender Druck schränkt die Mischbarkeit noch weiter ein, wie SECK (1971) für 650 °C und 1 - 10 kbar darlegt. SPEAR (1993) sieht die Feldspäte während der Metamorphose daher als zwei binäre Mischkristallreihen an:

- die Plagioklase NaAlSi $_3O_8$ (ab) – CaAl $_2Si_2O_8$ (an) und

- die Alkalifeldspäte NaAlSi₃O₈ (ab) – KAlSi₃O₈ (or).

In Glimmerschiefern tritt Plagioklas (Oligoklas An_{>15}) verbreitet in der Amphibolitfazies auf (WIMMENAUER 1985, S. 296).

Die untersuchten Plagioklase besitzen durchschnittliche Zusammensetzungen von Ab₇₃₋₈₁An₁₉₋₂₇Or_{<1} und sind daher als Oligoklase zu klassifizieren, nur einzelne Analysen mit Anorthit-Gehalten von bis zu 34 Mol-% (IMM 039, IMM 089) liegen im Bereich der Andesine. Die Anorthit-Gehalte der Plagioklase variieren von 13 Mol-% bis 34 Mol-%. Der Anteil der Orthoklas-Komponente steigt nur in Einzelfällen auf 2-3 Mol-% an (IMM 021, IMM 051), Celsian ist mit maximal 0.1 Mol-% zu vernachlässigen. Typische Zusammensetzungen sind in Abb. 4.9 im ternären Feldspatsystem Orthoklas – Albit – Anorthit dargestellt. Vergleichbare Anorthit-Anteile im Plagioklas der Staurolith-Glimmerschiefer beschreiben auch MATTHES (1954) mit An₂₀₋₂₆₍₊₂₎ und SMOLER (1987). Die Mischkristall-Zusammensetzung der Plagioklase der beiden petrographischen Typen des Staurolith-Glimmerschiefers unterscheidet sich nicht. Klare Zonierungsmuster sind in den Plagioklasen auch bei Messungen über Profillinien nicht festzustellen, teilweise zeigt sich jedoch die Tendenz einer Anorthit-Zunahme vom Kern zum Rand um bis zu ca. 3-6 Mol-% (z.B. $20 \rightarrow 26$ Mol-%, $14 \rightarrow 18$ Mol-%; z.B. IMM 039, IMM 044, IMM 051, IMM 089).

In einigen Plagioklasen tritt stellenweise eine extreme, abrupte Albit-Zunahme und Anorthit-Abnahme um ca. 15 Mol-% bis > 20 Mol-% auf (IMM 021, IMM 051), so daß sich innerhalb der Plagioklas-Körner reine Albit-Zusammensetzungen mit Ab₉₈₋₉₉ finden (in IMM 021 vielfach ohne Übergang). Diese Entmischungen sind sowohl im Plagioklas-Kern als auch an unterschiedlich randnah gelegenen Punkten im Kristall zu beobachten, sie stehen aber nicht in Zusammenhang mit Einschlüssen von z.B. Hellglimmer, Biotit oder Granat. Albitische Plagioklas-Kerne, die von Oligoklas ummantelt werden, bezeichnen auch YARDLEY et al. (1992) für Metamorphite der Granat-Zone als weitverbreitet. Eine sprunghafte Änderung der Plagioklas-Zusammensetzung von ungefähr An₃ auf An₁₈ beim Übergang von der Grünschiefer- zur Amphibolitfazies führt SPEAR (1993, S. 405) auf die Peristerit-Lücke zwischen Albit und Oligoklas zurück. Offenbar trifft diese Erklärung für das Auftreten albitreicher Bereiche innerhalb einzelner Plagioklase auch hier zu, da die Peristerit-Lücke intermediäre Zusammensetzungen zwischen den beiden Plagioklas-Varietäten ausschließt. Petrographische Hinweise für eine Bildung von Albit aus Paragonit (vgl. SPEAR 1993, S. 591) oder eine Albit-Bildung durch Sericitisierung von Plagioklas liegen nicht vor.

Die Plagioklas-Zusammensetzungen repräsentieren einen Teil der prograden P-T-Entwicklung. YARDLEY et al. (1992) ordnen sie der Granatzone zu, SPEAR (1993) grenzt den Bereich genauer auf den Übergang zwischen Grünschieferfazies und Amphibolitfazies ein. Die leichte Zunahme des Anorthit-Gehaltes vom Kern zum Rand zeigt offenbar einen zunehmendem Metamorphosegrad an.

Ergänzende Hinweise zur Plagioklas-Zusammensetzung

Eine enge Beziehung zwischen der Zusammensetzung von Plagioklas und dem Granat-Wachstum beschreibt SPEAR (1993) für Gesteine vergleichbarer Paragenese. SPEAR (1993) weist in diesem Zusammenhang darauf hin, daß Plagioklas, nachdem er gebildet wurde, seine chemische Zusammensetzung nicht einfach durch Kationenaustausch-Reaktionen, sondern nur über Auflösung und Abscheidung ändern kann. Die experimentell nachgewiesene, relativ langsame Kationen-Diffusion in Plagioklas (GROVE et al. 1984) stellt dabei einen wesentlichen Faktor dar. Ein signifikanter Zusammenhang zwischen dem Ca-Gehalt im Plagioklas und dem Ca-Gehalt im Granat gemäß der Reaktion

Almandin + Grossular + Muscovit = 3 Anorthit + Biotit (GHENT & STOUT 1981) kann hier nicht festgestellt werden, da der Anorthit-Gehalt in Plagioklas und die Grossular-Komponente im Granat keine eindeutige Zonierung aufweisen (vgl. Kap. 4.1). Nur im Granat-Zonierungsmuster (a.) nimmt der Grossular-Gehalt leicht vom Kern zum Rand ab, Almandin jedoch zunächst zu und erst zum Rand hin ab. Eine gleichzeitige leichte Anorthit-Zunahme vom Kern zum Rand im Plagioklas liegt nur in der Probe IMM 039 vor. Aus diesen Zonierungsmustern könnte ein erster Hinweis auf die o.g. Reaktion abgeleitet werden. Insgesamt sind Abbau und Neubildung von Plagioklas während der Metamorphose denkbar. Möglicherweise wurde Matrix-Plagioklas im Laufe der Entwicklung zunächst resorbiert und wuchs später wieder weiter.

Abb. 4.9:

Darstellung der Plagioklase im ternären Feldspatsystem Orthoklas – Albit – Anorthit. Die Plagioklase sind überwiegend als Oligoklase zu klassifizieren, einzelne Analysen liegen im Bereich der Andesine und im Albit-Feld.

4.7 Aluminiumsilicate

Al₂SiO₅-Minerale treten nur in drei Gesteinsproben auf (IMM 063, SM 68 SM 1063). Überwiegend liegt Disthen vor, nur in einer Probe kommen sowohl Disthen als auch Sillimanit vor (SM 1063). Mineralchemische Untersuchungen der Al₂SiO₅-Minerale wurden im Rahmen dieser Arbeit nicht durchgeführt.

4.8 Opakminerale

Opakminerale kommen in den Gesteinsproben akzessorisch vor. Im wesentlichen handelt es sich dabei um Ilmenit, der vielfach Entmischungslamellen von Hämatit besitzt bzw. Hämatit mit Ilmenit-Entmischungen. Seltener treten Magnetit und nur gelegentlich Rutil auf. Ausgewählte Mikrosonden-Analysen von Ilmenit/Hämatit sowie von Magnetit sind in Tab. H.7 im Anhang aufgeführt. Quantitative Analysen von Rutil ergaben keine zufriedenstellenden Analysensummen. Die Kationenberechnung für Ilmenit/Hämatit erfolgte auf der Basis von 6 Sauerstoff-Atomen, für Magnetit wurde eine Basis von 4 Sauerstoffen einbezogen. Bei der Formelbesetzung für Magnetit wurde zunächst die Gitterposition für zweiwertige Kationen mit Fe²⁺ auf 1.00 aufgefüllt, das verbleibende Eisen als Fe³⁺ auf die Position der dreiwertigen Kationen plaziert. Das Fe^{2+}/Fe^{3+} -Verhältnis sollte nach dieser Berechnungsweise bei etwa 1:2 liegen. Die analysierten Magnetite besitzen einen reinen Magnetit-Anteil von über 99 Mol-%, die Elemente Al, Cr und Ti treten in Spuren auf (IMM 061).

Die in einem Gestein vorkommenden Erzminerale und Silicatminerale sind häufig gemeinsam an Reaktionen beteiligt, so daß vielfach systematische Beziehungen zwischen ihren Zusammensetzungen existieren (SPEAR 1993). Insbesondere lassen sich aus den Erzmineralen Anhaltspunkte zur Zusammensetzung der fluiden Phase (SPEAR 1993) und den Redox-Bedingungen während der Metamorphose ableiten.

Hämatit/Ilmenit tritt in den Proben des Staurolith-Glimmerschiefers in der Grundmasse auf, weiterhin als Einschluß in Granat, Staurolith und Plagioklas. Überwiegend liegen Ilmenit-Entmischungslamellen in einem Hämatit-Wirtkristall vor. Entsprechend beschreibt SMOLER (1987) als erzmikroskopischen Befund Titanohämatit als wesentliches Opakmineral der Staurolith-Glimmerschiefer. Mineralchemisch weisen die Ilmenit-Hämatit-Mischkristalle Zusammensetzungen von hem₃₃₋₇₇/ilm₆₄₋₂₂ auf. Es wurde aber auch fast reiner Ilmenit mit z.B. hem₁₉/ilm₇₈ (SM 68) und fast reiner Hämatit mit hem₉₉/ilm₁ analysiert (IMM 021, IMM 061). Systematische Unterschiede zwischen den Zusammensetzungen von eingeschlossenen Ilmenit-Hämatit-Mischkristallen (in Granat, Staurolith, Plagioklas) und solchen der Grundmasse konnten nicht nachgewiesen werden. Veränderte Ti-Gehalte in Granat-Kristallen, die Ilmenit einschließen oder direkt neben diesem liegen, wurden nicht beobachtet. Die ursprünglichen Anteile an Hämatit und Ilmenit lassen sich wegen der starken Variation der Zusammensetzung von hem₆₃/ilm₃₇ ließe sich aufgrund des Solvus nach LINDSLEY (1973) eine Temperatur von etwa 650°C ableiten; dieser Wert ist allerdings aufgrund der variierenden Mineralchemie und der Unsicherheiten des Solvus-Verlaufes nur bedingt aussagefähig.

Ergänzende Hinweise zur Zusammensetzung der Opakminerale

Die Stabilitätsbeziehungen im System FeTiO₃ – Fe₂O₃ wurden u.a. von LINDSLEY (1973) experimentell untersucht. Er konnte für Temperaturen unterhalb von knapp 780 °C eine Mischungslücke nachweisen. Dem T-X_{FeTiO3-Fe2O3}-Diagramm zufolge liegt der Solvus bei 550 °C bei Ilmenit-Hämatit-Zusammensetzungen von $X_{Fe2O3} = 0.25 - 0.7$, und er ist von 1 bis 10 kbar druckunabhängig (LINDSLEY 1973). Die genaue Form des Solvus ist jedoch nicht bekannt (z.B. LINDSLEY 1991, SPEAR 1993). Auch DEER et al. (1992) beschreiben nur für hohe Temperaturen eine vollständige Mischbarkeit zwischen Ilmenit und Hämatit. Bei sinkender Temperatur entwickeln sich aufgrund der Mischungslücke Entmischungserscheinungen. Aus den Phasenbeziehungen der Fe-Ti-Oxide in regionalmetamorphen Gesteinen schließt z.B. RUMBLE (1976), daß in amphibolitfaziellen Gesteinen Ilmenit + Hämatit die Assoziation Rutil + Magnetit (1973)beschreibt ersetzen. RUMBLE den Zusammenhang zwischen der Mineralzusammensetzung von Fe-Ti-Oxiden und der Sauerstoff-Fugazität fo2. Demzufolge können Ilmenit und Hämatit nur mit einer Zusammensetzung von hem₁₂/ilm₈₈ bis hem₇₂/ilm₂₈ koexistieren, bei 600°C, 1 kbar und log $f_{O2} = -18.2$ bis -19 atm (SPEAR 1993, S. 497, nach RUMBLE 1973). Die Ilmenit-Hämatit-Mischkristalle zeigen damit überwiegend die von RUMBLE (1973) angegebenen Zusammensetzungen. Die Entmischung der beiden Minerale ist offensichtlich auf die Abkühlung zurückzuführen. Möglicherweise haben die retrograde Überprägung der Gesteine und eine höhere Sauerstoff-Fugazität jedoch zu einer Erhöhung des Hämatit-Anteils geführt.

5. Geochemie

Im Rahmen der geochemischen Analytik wurde die Gesamtgesteins-Zusammensetzung von 40 Gesteinsproben mittels Röntgenfluoreszensanalyse untersucht, eine gesonderte FeO-Bestimmung erfolgte über Spektralphotometrie. In Anbetracht der Zielsetzung der vorliegenden Arbeit wurden überwiegend Metasedimente mit fazieskritischen Mineralen bearbeitet und auch chemisch analysiert. Da sich die Gesteine der Mömbris-Formation für die phasenpetrologischen Betrachtungen besonders eignen, wurde der Schwerpunkt auf diese Staurolith-Glimmerschiefer gelegt. Dementsprechend konnten aus den Einheiten Geiselbach, Alzenau und Elterhof nur die hier interessantesten Proben chemisch untersucht werden. Die stoffliche Charakterisierung ist daher für die Vielfalt der Gesteine dieser Einheiten nicht repräsentativ. Dies gilt in besonderem Maße für die lithologisch recht variabel aufgebaute Alzenau- und Elterhof-Formation, aus denen hier metapsammitische Gneise einbezogen wurden. Aus der Geiselbach-Formation lagen teilweise Granat-führende Glimmerschiefer bis **Ouarzite** (vgl. Kap. 3.2). vor Gesamtgesteinsanalysen von Proben der Mömbris-, Geiselbach-, Alzenau- und Elterhof-Formation sind in Tab. H.8 im Anhang zusammengestellt, methodische Hinweise enthält der Anhang, F.1.

Folgende Proben wurden geochemisch untersucht:

Mömbris-Formation: IMM 004, IMM 013, IMM 021, IMM 029, IMM 039, IMM 041, IMM 044, IMM 051, IMM 056, IMM 061, IMM 063, IMM 075 B, IMM 076, IMM 082, IMM 085, IMM 088, IMM 089, IMM 102, SM 68, SM 1063.

Geiselbach-Formation: IMG 025, IMG 027, IMG 031, IMG 038, IMG 043, IMG 046, IMG 047. Alzenau-Formation: IMA 004, IMA 013, IMA 016, IMA 017, IMA 021, IMA 023, IMA 024. Elterhof-Formation: IME 010, IME 023, IME 029, IME 036, IME 039, IME 046.

Der geochemische Charakter der Elemente beeinflußt auch ihr Verhalten während der Metamorphose. Kompatible Elemente können leicht in die Kristallstrukturen magmatischer oder metamorpher Minerale eingebaut werden, inkompatible Elemente jedoch nur schwierig (Gill 1993, S. 205). Basierend auf Ionenradius und Wertigkeit, werden die inkompatiblen Elemente in großionige lithophile Elemente (Large Ionic Lithophile Elements, LIL; auch LFS, Low Field Strength Elements) und Elemente hoher Feldstärke (High Field Strength Elements, HFS) unterschieden. Die LIL, wie z.B. K, Rb, Ba und Sr, sind durch einen großen Ionenradius und

niedrige Wertigkeiten charakterisiert. Aufgrund dieser Kennzeichen verhalten sie sich während geologischer Prozesse wie Metamorphose oder chemischer Alteration sehr mobil. Die HFS weisen einen kleinen Ionenradius und hohe Wertigkeiten auf, zu ihnen zählen z.B. Ti, Zr, Nb, Y, V, Cr, Ni und Co (z.B. GILL 1993). Sie sind chemisch relativ immobil. Im Folgenden werden insbesondere die Gehalte immobiler Elemente herangezogen, um geotektonische Position und Ablagerungsräume zu charakterisieren. Einige der verwendeten Diagramme beziehen jedoch auch mobile Elemente ein (z.B. Na₂O, K₂O); solche Diagramme dürfen nur unter der Annahme einer isochemischen Metamorphose angewendet werden. Diese Voraussetzung beschreiben OKRUSCH & MATTHES (2005, S. 312) für viele Metamorphite in bezug auf die Haupt-, Neben-und Spurenelemente als realisiert. Auch für die untersuchten Gesteine ist wohl von einer isochemischen Metamorphose auszugehen. Dennoch sei hierzu angemerkt, daß mögliche Einflüsse der Metamorphose auf den Gesteinschemismus die Verwendung der Diagramme und die Aussagefähigkeit der Interpretation einschränken.

5.1 Allgemeine geochemische Charakteristik

Zur chemischen Charakterisierung der untersuchten Metapelite und Metapsammite sollen die Analysendaten mit durchschnittlichen Zusammensetzungen von Sedimentgesteinen verglichen werden (Tab. 5.1). Die SiO₂-Gehalte der Staurolith-Glimmerschiefer der Mömbris-Formation entsprechen im Mittel etwa den von CORRENS (1968) nach WEDEPOHL (1968) für Tone, Tonsteine und Tonschiefer angegebenen Durchschnittswerten. Die Al₂O₃-Gehalte liegen geringfügig höher als der gemäß WEDEPOHL (CORRENS 1968) genannte Wert. Die Zusammensetzungen der Proben aus der Geiselbach-, Alzenau und Elterhof-Formation weisen größere Schwankungen auf als die der Mömbris-Formation, was vermutlich auch auf die geringere Probenzahl zurückzuführen ist (vgl. oben). Die Proben der Alzenau-Formation besitzen etwas höhere SiO2-Gehalte als WEDEPOHL (1968) für Tone, Tonsteine und Tonschiefer ermittelte (vgl. CORRENS 1968), während ihre Al₂O₃-Gehalte nahe dem von WEDEPOHL (vgl. CORRENS 1968) bestimmten Wert liegen. Die SiO2- und Al2O3-Gehalte der Gesteine der Alzenau-Formation stimmen ebenfalls recht gut mit der mittleren chemischen Zusammensetzung von Grauwacken überein, wie sie von PETTIJOHN et al. (1973) angegeben wird. Die durchschnittlichen SiO₂-Gehalte der Proben der Geiselbach- und Elterhof-Formation streuen um den nach CLARKE (o.J., vgl. CORRENS 1968) für Sande und Sandsteine genannten Wert. Die Al₂O₃-Gehalte für die Geiselbach- und Elterhof-Formation weichen von dem Wert gemäß CLARKE teilweise deutlich ab.

Die CaO-Gehalte der untersuchten Gesteine liegen in allen lithologischen Einheiten niedriger als der von WEDEPOHL (1968, vgl. CORRENS 1968) für Tone, Tonsteine und Tonschiefer angegebene Wert (Tab. 5.1). Die durchschnittlichen CaO-Gehalte der Mömbris-Formation kommen dem Vergleichswert dabei näher als die der Geiselbach-, Alzenau- und Elterhof-Formation. Insofern besteht Übereinstimmung mit den Ergebnissen von SMOLER (1987), der für die "Staurolith-Gneise" der Mömbris-Formation ebenfalls niedrigere CaO-Gehalte beschreibt als die von ihm verwendeten Vergleichswerte von WEDEPOHL (1968).

Tab. 5.1

Vergleich der SiO₂-, Al_2O_3 - und CaO-Gehalte in den Gesteinen der verschiedenen lithostratigraphischen Einheiten mit Vergleichswerten nach WEDEPOHL (1968) für Tone, Tonsteine und Tonschiefer, CLARKE (o.J.) für Sande und Sandsteine sowie PETTIJOHN et al. (1973) für Grauwacken.

	Eigene Daten				Vergleichswerte		
[Gew %]	Mömbris- Formation	Geiselbach- Formation	Alzenau- Formation	Elterhof- Formation	WEDEPOHL für Tone, Tonsteine, Tonschiefer	CLARKE für Sande, Sandsteine	PETTIJOHN et al. für Grauwacken
SiO ₂	57 -62	71 - 95	60 -74	72 - 86	58.9	78.7	66.7
Al ₂ O ₃	17 - 23	2 - 16	13 - 18	6 - 16	16.7	4.8	13.5
CaO	1.0 - 1.5 (min. 0.8, max. 2.6)	0.02 - 0.16	0.9 - 1.5	0.2 - 1.5	2.2		

Insgesamt zeichnet sich aus dem Vergleich der Analysen für die Mömbris-Formation eine Ähnlichkeit mit der Zusammensetzung von Tonen, Tonsteinen bzw. Tonschiefern gemäß WEDEPOHL (1968) ab. Die Daten für die Alzenau-Formation stimmen mit diesen Werten nur teilweise überein. Die Proben der Geiselbach- und der Elterhof-Formation sind mit Sanden und Sandsteinen gemäß CLARKE nur bedingt zu vergleichen.

Obwohl insbesondere die Gesteine der Mömbris-Formation relativ Aluminium-reich sind, führen nur drei der untersuchten Proben Aluminiumsilicate wie Disthen oder Sillimanit (IMM 063, SM 68, SM 1063). Diese Proben weisen mit 18.0 bis 22.5 Gew.-% keine außergewöhnlich hohen Al₂O₃-Gehalte auf. Andere Proben mit höheren Aluminium-Gehalten von z.B. 23.0 Gew.-% (IMM 051) bzw. 26.8 Gew.-% (IMM 061) enthalten keine Aluminiumsilicate, chemisch müßten sie jedoch in der Lage sein, diese zu bilden. Die Möglichkeit zur Stabilisierung der Al₂SiO₅- Minerale ist also nicht alleine auf den absoluten Al_2O_3 -Gehalt des Gesteins zurückzuführen. Vermutlich existiert kein Aluminiumüberschuß mehr zur Bildung von Al_2SiO_5 -Mineralen, wenn das Aluminium – z.B. in den Plagioklasen – an Natrium und Calcium gebunden vorliegt.

Von den Gesteinen der Mömbris-Formation wurden Proben der verschiedenen petrographischen Gesteinstypen (vgl. Kap. 3.2.1 u. Anhang, D.1) in die geochemische Analytik einbezogen. Die SiO₂/Al₂O₃-Verhältnisse des Typs I und Typs II weisen keine signifikanten Unterschiede auf, die das ausschließliche Auftreten der Al₂SiO₅-Polymorphen im Typ II bedingen könnten. Ein Trend zu etwas geringeren CaO-Gehalten ist für die Proben des Typs II (0.8 - 1.5 Gew.-%, mit Ausnahme SM 1063) im Vergleich zum Typ I (1.0 - 2.1 Gew.-%) zu verzeichnen. Die X_{Fe} der beiden Gesteinsvarianten unterscheiden sich nicht nennenswert, im Typ II ist teilweise ein höherer Anteil des Fe²⁺ am Gesamteisen Fe^{tot} festzustellen (Tab. H.8 im Anhang), signifikant ist diese Tendenz jedoch nicht. Auch die unterschiedliche Ausbildung von Granat in den beiden Gesteinstypen läßt sich nicht auf Merkmale in der Zusammensetzung der Proben zurückführen. So sind z.B. auch hinsichtlich der MnO-Gehalte keine systematischen Abweichungen zwischen den Gesteinstypen zu verzeichnen. Der Typ I des Staurolith-Glimmerschiefers und seine retrograd überprägte Form sind chemisch nicht voneinander zu differenzieren, einzig die Na₂O-Gehalte der retrograden Proben (2.4 - 3.8 Gew.-%) erscheinen etwas höher als im Typ I (1.6 -2.9 Gew.-%). Dies kann jedoch möglicherweise auf einem etwas höheren Feldspatgehalt in diesen drei Proben beruhen, an dem die retrograde Überprägung des Gesteins besonders zum Ausdruck kommt, und auf den daher die Einordnung in diese Gruppe u.a. zurückzuführen sein kann. Die Interpretation der Kennzeichen für die besonderen Varianten ist jedoch aufgrund der begrenzten Probenzahl nur eingeschränkt aussagefähig.

Das AFM-Diagramm (Abb. 5.1) ermöglicht eine geochemische Charakterisierung der untersuchten Gesteine, auch im Hinblick auf ihre Edukte. Bei der Darstellung der Analysen im AFM-Diagramm wurde berücksichtigt, daß Aluminium zum Teil an Plagioklas gebunden vorliegt, der in Diagrammen, die das System KFMASH repräsentieren, nicht darstellbar ist. Daher wurden bei der Projektion in diesem Falle die molaren Äquivalentmengen an Al₂O₃ für ²/₃ des CaO und ³/₄ des Na₂O aus der Gesteinsanalyse abgezogen. Eine Korrektur des Al₂O₃-Gehaltes im AFM-Diagramm beschreibt z.B. KORNPROBST (1996, S. 207). Von den untersuchten Proben der Alzenau-Formation wurde die Probe IMA 004 nicht im AFM-Diagramm eingetragen, da sie Alkalifeldspat führt, und in diesem Falle die hier zweckmäßige Projektion von Muscovit aus vorgenommen wurde. Die Darstellung veranschaulicht die relativ Aluminium-reiche

Zusammensetzung der meisten Proben und ihr Eisen-Magnesium-Verhältnis (Abb. 5.1). Die Gesteine der Mömbris- und Geiselbach-Formation liegen nahe dem Feld Aluminium-reicher Pelite nach SPEAR (1993, S. 339), wobei die darstellenden Punkte der Mömbris-Formation weniger streuen als die der Geiselbach-Formation. Nur eine Probe der Geiselbach-Formation liegt im Feld Aluminium-reicher Pelite nach SPEAR (1993). Die Punkte der Mömbris-Formation befinden sich insbesondere aufgrund der etwas niedrigeren Eisen-Magnesium-Verhältnisse (s.u.) nicht innerhalb dieses Feldes. Die Gesteine der Alzenau- und Elterhof-Formation variieren stärker, insbesondere hinsichtlich der "A-Komponente" im AFM-Diagramm, und liegen teilweise in dem Feld Al-armer Pelite nach SPEAR (1993, S. 339) oder nahe dabei, einzelne jedoch auch beim Feld Al-reicher Pelite.

Abb. 5.1:

Darstellung der geochemischen Analysen im AFM-Diagramm, von Muscovit aus projiziert. Die Probe IMA 004 wurde nicht im AFM-Diagramm eingetragen, da sie Alkalifeldspat führt.

Mömbris-Formation	☆	Geiselbach-Formation	Δ
Alzenau-Formation		Elterhof-Formation	0

Ein wichtiges Kriterium für die Charakterisierung der Metasedimente im Hinblick auf ihre metamorphen Mineralparagenesen stellt das Eisen-Magnesium-Verhältnis (Fe/[Fe+Mg]) im Gestein dar (Abb. 5.1, Tab. 5.2). Die X_{Fe} -Werte der Staurolith-Glimmerschiefer der Mömbris-Formation variieren insgesamt wenig, nur einzelne Proben weichen von diesem Bild ab (Tab. 5.2). Für die Gesteinsproben der Alzenau- und der Elterhof-Formation wurden relativ ähnliche X_{Fe} -Werte festgestellt, wobei diejenigen der Elterhof-Formation durchschnittlich etwas niedriger sind. Die hier analysierten Gesteine der Geiselbach-Formation besitzen teilweise ein höheres Eisen-Magnesium-Verhältnis als die Gesteine der anderen Einheiten, jedoch variieren die Werte stärker. Die hier untersuchten Gesteine aller lithostratigraphischen Einheiten weisen damit etwas geringere Eisen-Magnesium-Verhältnisse auf, als die von SPEAR (1993, S. 503) für typische pelitische Schiefer beschriebenen mittleren Fe/(Fe+Mg) von 0.5 bis 0.8.

Tab. 5.2

Mittlere Eisen-Magnesium-Verhältnisse $X_{Fe} = Fe/(Fe+Mg)$ der Gesteinsproben aus unterschiedlichen lithostratigraphischen Einheiten.

	Mömbris-	Geiselbach-	Alzenau-	Elterhof-
	Formation	Formation	Formation	Formation
X _{Fe} -Wert	0.37 - 0.46 (min. 0.33, max. 0.66)	0.39 - 0.82	0.31 - 0.60 (min. 0.15)	0.35 - 0.48

Bei konstantem Druck und konstanter Temperatur hängt die Stabilisierung einer bestimmten Paragenese wesentlich vom Eisen-Magnesium-Verhältnis des Gesteins ab (vgl. Kap. 6 u. 7). Der T-X-Schnitt im KFMASH nach POWELL & HOLLAND (1990, Fig.4; vgl. Anhang, F.2) verdeutlicht, daß mittlere und hohe Fe-Mg-Verhältnisse die Stabilisierung von Granat begünstigen, während in Gesteinen mit niedrigem X_{Fe} -Wert kein Granat gebildet werden kann. Staurolith wird bei mittleren X_{Fe} von etwa 0.4 bis 0.7, im Bereich mittlerer Drucke und von Temperaturen bis zu ca. 650 °C bei der Metamorphose stabilisiert (z.B. POWELL & HOLLAND 1990, Fig. 4). Die Proben der Mömbris-Formation besitzen daher die chemischen Voraussetzungen zur Granat- und überwiegend auch zur Staurolith-Führung. Die Abwesenheit bzw. der nur geringe Anteil von Staurolith in einigen Proben der Mömbris-Formation kann vermutlich auf etwas niedrigere X_{Fe} zurückgeführt werden. Die Eisen-Magnesium-Verhältnisse der Geiselbach-, Alzenau- und Elterhof-Formation ermöglichen meist ebenfalls die Granat-Bildung. In der Mehrzahl dieser Proben liegt auch tatsächlich Granat vor, während Staurolith in den Gesteinen dieser lithologischen Einheiten typischerweise nicht zu beobachten ist. Die Ausbildung bestimmter Minerale bzw. Mineralparagenesen in Abhängigkeit vom Fe-MgVerhältnis im Gesamtgestein ist u.a. in den Arbeiten von POWELL & HOLLAND (1990), SYMMES & FERRY (1992), SPEAR (1993), XU et al. (1994) und WILL (1998 a,b) eingehender dargestellt. SPEAR (1993, S. 503) weist weiterhin auf niedrige TiO₂-Gehalte in pelitischen Schiefern hin, die in den analysierten Proben durchweg vorliegen (Tab. 5.3).

Auch die Stabilisierung bestimmter Erzminerale hängt vom Gesteinschemismus ab. Im System KFMASH + Fe₂O₃ liegt in Gesteinen mit einem hohen Eisen-Magnesium-Verhältnis (X_{Fe}) Magnetit vor, bei niedrigem X_{Fe}-Wert dagegen Hämatit (SPEAR 1993). Unter Berücksichtigung des Systems KFMASH + TiO₂ ist in Gesteinen mit hohem X_{Fe}-Wert Ilmenit das stabile Fe-Ti-Oxid, während bei niedrigem X_{Fe}-Wert Rutil die stabile Phase darstellt. SPEAR (1993, S. 503) weist darauf hin, daß in natürlichen Paragenesen häufig Ilmenit das einzige Fe-Ti-Oxid ist. Die Proben des Staurolith-Glimmerschiefers, in denen mineralchemisch Ilmenit/Hämatit, in einem Falle auch Magnetit nachgewiesen wurde (vgl. Kap. 4.8), weisen im Gesamtgestein mittlere Fe-Mg-Verhältnisse von X_{Fe} = 0.33 - 0.45 auf. Mit den beschriebenen Phasenbeziehungen liegt daher keine eindeutige Übereinstimmung vor.

*Mittlere MnO- und TiO*₂-*Gehalte der Gesteinsproben aus unterschiedlichen lithostratigraphischen Einheiten, in* [*Gew.-%*].

[Gew%]	Mömbris- Formation	Geiselbach- Formation	Alzenau- Formation	Elterhof- Formation
TiO ₂	0.47 - 1.04	0.14 - 1.02	0.05 - 1.24	0.09 - 1.05
MnO	0.05 - 0.26 (max. 0.28, 0.35)	0.01 bis 0.02	0.03 bis 0.13	0.01 bis 0.09

Insbesondere für die Bildung von Granat spielt neben dem Eisen-Magnesium-Verhältnis auch der MnO-Gehalt der Gesteine eine bedeutende Rolle, der eine Vergrößerung des Stabilitätsfeldes dieses Minerals zu niedrigeren Drucken und Temperaturen hin bedingt (z.B. WANG & SPEAR 1991, SYMMES & FERRY 1992, SPEAR 1993, DROOP & HARTE 1995, MAHAR et al. 1997, WILL 1998 a,b; vgl. Kap. 6). Die MnO-Gehalte der verschiedenen Formationen sind in Tab. 5.3 aufgeführt. Für die Gesteine der Mömbris-Formation ist im Mittel ein um den Faktor 10 höherer MnO-Gehalt zu verzeichnen als in den übrigen lithostratigraphischen Einheiten, der offenbar schon auf das sedimentäre Edukt zurückgeht. Die MnO-Gehalte in den Proben der Alzenau-Formation sind signifikant höher als diejenigen der Elterhof-Formation. Extrem geringe MnO-Gehalte wurden eduktbedingt in den Glimmerschiefern und Quarzit-Glimmerschiefern der

Geiselbach-Formation festgestellt. Das Auftreten einer Gruppe von Granat-Kristallen mit erhöhten X_{Mn} in einigen Proben der Staurolith-Glimmerschiefer der Mömbris-Formation resultiert offenbar aus den recht hohen MnO-Gehalten dieser Gesteine von 0.20 Gew.-% (IMM 056), 0.35 Gew.-% (IMM 063) bzw. 0.28 Gew.-% (SM 68) (vgl. Kap. 4.1). WILL (1998 b, S. 262) ordnet Gesteine mit einem MnO-Gehalt von ca. \geq 0.05 Gew.-% als Mn-reich ein, demzufolge sind die Proben der Mömbris-, Alzenau- (Ausnahmen: IMA 004, IMA 013) und Elterhof-Formation (Ausnahmen: IME 029, IME 039) als Mn-reich anzusehen. Der MnO-Gehalt stellt vermutlich vielfach die Ursache dafür dar, daß hier auch Proben mit einem X_{Fe}-Wert unter etwa 0.5 noch Granat führen.

Die chemischen Voraussetzungen für die Bildung des metamorphen Index-Minerals Staurolith sehen OKRUSCH & WEBER (1996) in weiten Bereichen der Mömbris-Formation durch Aluminium-Überschuß der sedimentären Ausgangsgesteine, kombiniert mit einem hohen Fe²⁺/Mg-Verhältnis als gegeben an. Diese Einschätzung wird durch die Ergebnisse der hier vorgenommenen Analysen bestätigt. Gelegentliche Einschaltungen von Staurolith-freiem "Granat-Plagioklas-Gneis" beschreiben MATTHES (1954) sowie OKRUSCH et al. (1967) als Al₂O₃-ärmer sowie SiO₂- und Na₂O-reicher. Sie führen diese Gesteine, wie auch SMOLER (1987), auf grauwackenartige Partien zurück. Das verbreitete Fehlen von Staurolith in der Geiselbach-Formation kann nach MATTHES & OKRUSCH (1974) bzw. OKRUSCH & WEBER (1996) durch ungünstigen Pauschalchemismus oder durch niedrigere Metamorphose-Bedingungen verursacht worden sein. Die hier untersuchten Proben der Geiselbach-Formation besitzen zwar recht hohe Fe2⁺/Mg-Verhältnisse (0.39 bis 0.82), die, z.B. dem T-X-Schnitt nach POWELL & HOLLAND (1990) zufolge (vgl. Anhang, F.2), eine Staurolith-Bildung begünstigen müßten (s.o.). Ein Aluminium-Überschuß liegt in diesen Gesteinen wohl nicht vor, was sich in den nur mäßigen Al₂O₃-Gehalten (s.o.) sowie den recht hohen SiO₂/Al₂O₃-Verhältnissen zeigt (Abb. 5.3). Diese Tatsache dürfte für die Abwesenheit von Staurolith in diesen Proben der Geiselbach-Formation eine wesentliche Rolle spielen.

In diesem Zusammenhang sind auch die Zink-Gehalte der Gesteine von Interesse, da Zink das Stabilitätsfeld von Staurolith vergrößert (WILL 1997, 1998b; vgl. Kap. 6). Von allen untersuchten Proben weisen diejenigen der Geiselbach-Formation die geringsten Zink-Gehalte von meist < 5 ppm bis 24 ppm auf. Die etwas höheren Gehalte in den Proben der Alzenau- (< 5 - 147 ppm) und Elterhof-Formation (< 5 - 119 ppm) schwanken stärker. Die Zink-Gehalte der Staurolith-Glimmerschiefer der Mömbris-Formation variieren von 77 ppm bis 324 ppm, nur eine

Probe enthält mit 10 ppm deutlich weniger Zink. Im Vergleich zu diesen Staurolith-führenden Gesteinen liegen die Zink-Gehalte der Proben der Geiselbach-Formation zumindest um den Faktor 20 geringer. Somit konnte in der Geiselbach-Formation von dem Element Zink kein die Staurolith-Bildung begünstigender Effekt ausgehen.

5.2 Sedimentäre Edukte der Metamorphite

Als Edukt der Metamorphite der Mömbris-Formation sind tonige Sedimente (Pelite) anzunehmen, wofür auch die Gegenüberstellung mit den Vergleichswerten gemäß WEDEPOHL Kap. 5.1) spricht. Diese Einordnung wird durch die Darstellung (vgl. der Gesamtgesteinschemismen im ACF-Diagramm (Abb. 5.2) unterstützt, wobei die Felder zur Differenzierung verschiedener Sedimente nach SMOLER (1987) unterteilt wurden. Im ACF-Diagramm wird die relative CaO-Armut der untersuchten Gesteine deutlich. Die darstellenden Punkte der Staurolith-Glimmerschiefer der Mömbris-Formation liegen im Feld der Tonschiefer mit Tendenz zu Tonmergeln, insofern stimmt die Einstufung mit derjenigen von SMOLER (1987) überein. Die Analysen der Proben aus den Einheiten Alzenau und Elterhof streuen deutlich weiter, jedoch ebenfalls überwiegend im Bereich der Tonschiefer bis Tonmergel. Dieser Bereich der Tonschiefer und Tonmergel im ACF-Diagramm entspricht etwa dem Feld für Grauwacken nach OKRUSCH & MATTHES (2005, S. 383). Demzufolge können die Edukte der Mömbris-, Alzenau- und Elterhof-Proben als Grauwacken klassifiziert werden. Die relativ SiO₂-reichen Gesteine der Geiselbach-Formation tendieren im ACF-Diagramm stärker zur A-Ecke, was auf die Tatsache zurückgeführt werden muß, daß SiO₂ hier nicht berücksichtigt wird. Für die Geiselbach-Formation ergäben sich gemäß OKRUSCH & MATTHES (2005, S. 383) tonige Edukte, was jedoch in Anbetracht der hohen SiO₂-Gehalte nicht realistisch erscheint.

Nach dem Diagramm K₂O/Na₂O vs. SiO₂/Al₂O₃ zur Diskriminierung klastischer sedimentärer Ausgangsgesteine nach WIMMENAUER (1984) (Abb. 5.3) handelt es sich bei den Edukten der Metamorphite der Mömbris-, Alzenau- und Elterhof-Formation im wesentlichen um Pelite. Die Zusammensetzung der Proben aus der Geiselbach-Formation variiert deutlich stärker und tendiert mehr zu Arkosen bis sandigen Arkosen. Diese Klassifikation erscheint für die Edukte der Geiselbach-Formation insofern sinnvoller, als sie das SiO₂/Al₂O₃-Verhältnis berücksichtigt. Drei weitere Proben der Geiselbach-Formation sind durch deutlich höhere K₂O/Na₂O- Verhältnisse sowie teilweise auch höhere SiO₂/Al₂O₃-Verhältnisse gekennzeichnet, so daß die Punkte außerhalb der dargestellten Diagrammfläche liegen.

Darstellung der geochemischen Analysen im ACF-Diagramm mit $A = [Al_2O_3] + [Fe_2O_3] - ([Na_2O] + [K_2O]),$ C = [CaO] und F = [MgO] + [FeO] + [MnO]. Unterteilung zur Differenzierung verschiedener sedimentärer Edukte nach SMOLER (1987). Erläuterungen im Text.

Im Klassifikationsdiagramm Al₂O₃ vs. MgO nach THÉLIN (1983) (Abb. 5.4) streuen die Analysenpunkte relativ weit, und insbesondere die Proben aus der Mömbris-Formation zeigen, offenbar aufgrund ihrer recht hohen Al₂O₃-Gehalte, eine Tendenz zum Magmatitfeld. Für die Edukte der Mömbris-Formation ergeben sich Grauwacken bis Pelite, als Ausgangsgesteine für die Alzenau-Formation sind überwiegend Grauwacken anzunehmen. Die Proben der Elterhof-Formation variieren vorwiegend im Bereich der Sandsteine, teilweise bis zu Grauwacken. Für die Geiselbach-Formation weist die Klassifikation auf Arkosen bis zu Al₂O₃- und MgO-armen Sedimenten als Edukte hin.

Zusammenfassend sind als sedimentäre Edukte der Metamorphite der Mömbris-, Alzenau- und Elterhof-Formation Grauwacken bis Pelite in Betracht zu ziehen, bei den Ausgangsgesteinen der Geiselbach-Formation könnte es sich den Klassifikationen zufolge um Arkosen gehandelt haben.

Korrelationsdiagramm Al₂O₃ vs. MgO nach THÉLIN (1983) zur Diskriminierung der sedimentären Edukte.

5.3 Ausgangsmaterial der Sedimente und Geotektonische Position

Interessant ist die Frage nach den Ausgangsgesteinen der ehemaligen Sedimente, die nun als Metapelite und Metapsammite vorliegen. Hinweise hierzu können die Diskriminationsdiagramme nach ROSER & KORSCH (1988) zur Ermittlung von Tonstein-Sandstein-Assoziationen liefern. Die Diagramme wurden ursprünglich anhand der Zusammensetzungen verschiedener Grauwacken-Terranes in Neuseeland entwickelt und mit den geochemischen Analysen anderer Gesteine bekannter Herkunft getestet. Zielsetzung dieser Methode ist die chemische Differenzierung zwischen klastischen Sedimenten aus den vier Herkunftsgruppen saure Magmatite, intermediäre Magmatite, basische Magmatite und quarzreiche Sedimente. Die Variation in der Gesteinszusammensetzung wurde von ROSER & KORSCH (1988) in einem Satz linearer Funktionen ausgedrückt, die die geochemischen Hauptelemente, mit Ausnahme des SiO₂, berücksichtigen. Die genaue Systematik zur Erstellung der Diskriminanzfunktionen ist in KLOVAN & BILLINGS (1967, zitiert in ROSER & KORSCH 1988) beschrieben. Das Diagramm mit den Diskriminanzfunktionen D1 - D2 wurde für CaO-freie Gesteine entworfen, das mit den Funktionen D3 - D4 für CaO-haltige Gesteine.

Den Diskriminationsdiagrammen nach ROSER & KORSCH (1988) (Abb. 5.5) zufolge gehen die sedimentären Edukte der Gesteine der Mömbris-Formation im wesentlichen auf intermediäre Magmatite zurück, teilweise liegen die Punkte in den Grenzbereichen zu basischen und zu sauren Magmatiten. Als Protolithe der Metasedimente der Alzenau-Formation sind aufgrund dieser Darstellung saure bis intermediäre Magmatite anzunehmen. Die Metasedimente der Elterhof-Formation stammen von sauren Magmatiten bis quarzreichen Sedimenten ab. Als Ausgangsgesteine der Metasedimente der Geiselbach-Formation kommen überwiegend quarzreiche Sedimente und untergeordnet auch Magmatite saurer bis intermediärer Zusammensetzung in Frage. Insbesondere für die drei letztgenannten lithologischen Einheiten sei jedoch auf die bedingte Aussagekraft dieser Einordnung hingewiesen, die aus der begrenzten Probenzahl resultiert. Zusammenfassend ist festzustellen, daß als Protolithe der Metasedimente der untersuchten Einheiten des Spessart-Kristallins überwiegend intermediäre bis saure magmatische oder metamorphe Gesteine und quarzreiche Sedimente wahrscheinlich sind. In Anbetracht der Differenzierung der Mitteldeutschen Kristallinschwelle in zwei tektonometamorphe Einheiten (ONCKEN 1996, 1997; ZEH 1996) und der Zuordnung des Spessart-Kristallins zur Einheit II (vgl. Kap. 2.2) könnte es sich dabei um rhenohercynische Gesteine zumindest jungproterozoischen bis altpaläozoischen Alters gehandelt haben.

Zur Ableitung von Hinweisen auf die geotektonische Position des Ablagerungsraumes der sedimentären Ausgangsmaterialien wurden die Diskriminationsdiagramme von ROSER & KORSCH (1986), BHATIA (1983) sowie BHATIA & CROOK (1986) verwendet. Das Diskriminationsdiagramm K₂O/Na₂O vs. SiO₂ nach ROSER & KORSCH (1986) wurde zur Ermittlung der geotektonischen Ablagerungsposition von Sandstein-Tonstein-Assoziationen entwickelt. Die Differenzierung beruht auf der Annahme, daß Änderungen der ursprünglichen Gesamtgesteinschemie, z.B. durch Diagenese, mit der plattentektonischen Situation in Zusammenhang stehen und der Stoffbestand daher noch immer die geotektonische Position widerspiegelt. ROSER & KORSCH (1986) unterscheiden aufgrund von Gesteinsanalysen paläozoischer und mesozoischer Sedimente bekannter geotektonischer Position drei verschiedene geotektonische "Kategorien" und überprüfen diese Gliederung anhand jüngerer Sedimentgesteine. Das Diagramm gestattet eine Unterscheidung zwischen Inselbogen, Aktivem Kontinentalrand und Passivem Kontinentalrand als geotektonischem Ablagerungsraum.

Abb. 5.5:

Das Diagramm K₂O/Na₂O vs. SiO₂ nach ROSER & KORSCH (1986) (Abb. 5.6) deutet für die Staurolith-Glimmerschiefer der Mömbris-Formation auf eine Ablagerung in einer Inselbogen-Situation bzw. an einem Aktiven Kontinentalrand hin. Die Analysenpunkte der Proben aus der Alzenau-Formation streuen aufgrund ihrer schon primär stark schwankenden SiO₂-Gehalte über einen weiten Bereich. Sie liegen ebenfalls sowohl im Feld eines Aktiven Kontinentalrandes als auch dem eines Inselbogens. Die Quarzite und Glimmerschiefer der Geiselbach-Formation sowie die Gesteine der Elterhof-Formation fallen in der Darstellung überwiegend in das Feld der Ablagerungen an einem Passiven Kontinentalrand.

Abb. 5.6:

Diskriminations diagramm log K_2O/Na_2O vs. Si O_2 nach ROSER & KORSCH (1986) zur Ermittlung der tektonischen Position von Sandstein-Tonstein-Assoziationen.

Das Diskriminationsdiagramm nach BHATIA (1983) wurde zur Ermittlung der tektonischen Ablagerungsposition von Sandstein-Assoziationen entwickelt. Die von BHATIA (1983) verwendeten Diskriminanzfunktionen beruhen auf einer Diskriminanzanalyse nach NIE et al. (1975, zitiert in BHATIA 1983) und berücksichtigen die Hauptelemente. Die Diskriminanzfunktionen wurden auf der Grundlage der Analysen von Sandstein-Assoziationen vom Grauwacken-Typ aus paläozoischen Turbidit-Sequenzen erstellt, deren geotetonischer

Die Einordnung wurde Sedimentationsraum bekannt ist. anhand veröffentlichter Gesteinsanalysen von Sandsteinen verschiedener bekannter Ablagerungspositionen überprüft. (1983)unterscheidet demnach vier tektonische Ablagerungsräume: BHATIA Aktiver Passiver Kontinentalrand, Kontinentaler Inselbogen und Ozeanischer Kontinentalrand, Inselbogen.

Abb. 5.7:

Diskriminationsdiagramm nach BHATIA (1983) zur Ermittlung der tektonischen Position von Sandstein-Assoziationen. $DI = -0.0447 \text{ SiO}_2 - 0.972 \text{ TiO}_2 + 0.008 \text{ Al}_2O_3 - 0.267 \text{ Fe}_2O_3 + 0.208 \text{ FeO} - 3.082 \text{ MnO} + 0.140 \text{ MgO} + 0.195 \text{ CaO} + 0.719 \text{ Na}_2O - 0.032 \text{ K}_2O + 7.518 \text{ P}_2O_5 + 0.303; D2 = -0.421 \text{ SiO}_2 + 1.988 \text{ TiO}_2 - 0.526 \text{ Al}_2O_3 - 0.551 \text{ Fe}_2O_3 - 1.610 \text{ FeO} + 2.720 \text{ MnO} + 0.881 \text{ MgO} - 0.907 \text{ CaO} - 0.177 \text{ Na}_2O - 1.840 \text{ K}_2O + 7.244 \text{ P}_2O_5 + 43.57.$

Im Diskriminationsdiagramm nach BHATIA (1983) (Abb. 5.7) plotten die Gesteine der Mömbris-Formation überwiegend in das Feld für einen Aktiven Kontinentalrand, teilweise auch in das Feld eines Kontinentalen Inselbogens. Für die Gesteine der Geiselbach-Formation erscheint nach dieser Einordnung eine Ablagerung im Bereich eines Passiven Kontinentalrandes möglich. Die Punkte der Proben aus der Alzenau- und Elterhof-Formation streuen im Diagramm sehr stark, so daß eine Aussage hinsichtlich des Sedimentationsraumes hieraus nicht sinnvoll erscheint. BHATIA & CROOK (1986) differenzieren verschiedene tektonische Sedimentationsräume anhand der Spurenelementverteilung in den Gesteinen. Dazu eignen sich wenig mobile Spurenelemente wie z.B. Th, Sc und Zr besonders. Die Autoren sehen diese Methode als optimal zur Beschreibung des geotektonischen Sedimentationsraumes an. Basierend auf den Spurenelementanalysen von Grauwacken aus bekanntem Ablagerungsraum grenzen BHATIA & CROOK (1986) Felder für die vier geotektonischen Positionen Ozeanischer Inselbogen (Feld A), Kontinentaler Inselbogen (Feld B), Aktiver Kontinentalrand (Feld C) und Passiver Kontinentalrand (Feld D) voneinander ab (Abb. 5.8).

Abb. 5.8:

Diskriminationsdiagramm Th-Sc-Zr/10 für Grauwacken nach BHATIA & CROOK (1986). A = OzeanischerInselbogen, B = Kontinentaler Inselbogen, C = Aktiver Kontinentalrand, D = Passiver Kontinentalrand.

Die Lage der Gesteine der Mömbris-Formation im Diagramm Th-Sc-Zr nach BHATIA & CROOK (1986) läßt auf eine Sedimentation im Bereich eines Kontinentalen Inselbogens an konvergenten Plattengrenzen schließen. Eine Unterscheidung zwischen forearc-, intraarc- und backarc-Becken ist jedoch nicht möglich. Auch für die untersuchten Metasedimente der Alzenau- und der Geiselbach-Formation könnte aufgrund dieser Darstellung ein solcher Ablagerungsraum in

Betracht gezogen werden, wobei jeweils einige Analysen dieser Gesteine außerhalb des Feldes eines Kontinentalen Inselbogens liegen. Die darstellenden Punkte der Proben der Elterhof-Formation befinden sich vorwiegend außerhalb der ausgehaltenen Felder und gestatten daher keine Zuordnung zu einer der geotektonischen Positionen.

Aufgrund der verschiedenen Diskriminationsdiagramme lassen sich insbesondere für die Mömbris-Formation relativ übereinstimmende Aussagen ableiten, während das Bild für die übrigen lithostratigraphischen Einheiten weniger deutlich ist. Für die Mömbris-Formation ist eine Ablagerung der sedimentären Edukte im Bereich eines Kontinentalen Inselbogens bis Aktiven Kontinentalrandes anzunehmen. Hinsichtlich dieser Vorstellung besteht gute Ubereinstimmung zu den Ergebnissen von SMOLER (1987) für die Metasedimente der Mömbris-Formation des kristallinen Spessarts und von ZEH (1996) für Metasedimente der Truse- und Brotterode-Formation des Ruhlaer Kristallins. So geht nach SMOLER (1987) insbesondere die Mömbris-Formation auf sedimentäres Ausgangsmaterial zurück, das an einem Kontinentalrand in geringer Entfernung vom Liefergebiet abgelagert wurde. Für die Alzenau-Formation zeichnet sich ein ähnlicher Trend für eine geotektonische Situation eines Kontinentalen Inselbogens bis Aktiven Kontinentalrandes ab. Allerdings streuen die Punkte in den Diagrammen deutlich weiter, so daß diese Aussage erst durch eine Überprüfung mit einer größeren Probenzahl abgesichert werden könnte. In Bezug auf die Geiselbach-Formation ergeben sich aus den Hauptelementen Hinweise auf eine Sedimentation im Bereich eines Passiven Kontinentalrandes. Die Spurenelemente deuten eher auf eine Situation an einem Kontinentalen Inselbogen hin, nur wenige Punkte tendieren zu dem Feld für einen Passiven Kontinentalrand. Auch diese Gesteine divergieren in den Darstellungen, daher ist die Aussagekraft eingeschränkt. Die Gesteine der Elterhof-Formation weisen teilweise auf eine Ablagerung an einem Passiven Kontinentalrand hin. Diese Proben besitzen jedoch die größte Streuung von allen untersuchten Gesteinen, daher kann hier kein annähernd sicherer Trend festgestellt werden.

6. Phasenpetrologie, P-T-Pseudoschnitte und Geothermobarometrie: Grundlagen und Methodik

Wie bereits erwähnt, sollten im Rahmen dieser Arbeit genauere Erkenntnisse zur Druck-Temperatur-Entwicklung Gesteine Spessart-Kristallins der des insbesondere mit phasenpetrologischen Methoden erarbeitet werden. Die Auswahl der geeigneten Proben sowie der Schwerpunkt der Untersuchungen und Kalkulationen wurden daher auf diesen Ansatz abgestimmt. Berechnungen mittels konventioneller Geothermobarometrie ergeben i.d.R. nur einen Punkt bzw. ein Feld im P-T-Diagramm, was eine Konstruktion von P-T-Pfaden meist vereitelt. Demgegenüber ermöglicht die Konstruktion von Phasendiagrammen für metamorphe Gesteine in relevanten Modell-Systemen die Betrachtung der Phasengleichgewichte für einen Die Gesteinsdünnschliff umfassenderen Zusammensetzungsbereich. im beobachteten Mineralparagenesen werden auf diese Weise in einen Zusammenhang mit Druck und Temperatur gestellt, so daß es möglich wird, die Variation dieser Parameter abzuschätzen. Die Veränderung von Mineralparagenesen in Abhängigkeit von den Bildungsbedingungen, unter Berücksichtigung des Gesamtchemismus eines bestimmten Gesteins, läßt sich besonders anschaulich mit Hilfe von P-T-Pseudoschnitten beschreiben. Im folgenden sollen P-T-Pseudoschnitte, die metapelitischen Modellsysteme KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O) und KMnFMASH (K2O-MnO-FeO-MgO-Al₂O₃-SiO₂-H₂O), zusätzliche Systemkomponenten und der theoretische Hintergrund sowie die Grundlagen konventioneller geothermobarometrischer Berechnungen kurz erläutert werden. Auf die Systemkomponente MnO wird intensiver eingegangen, da diese in den untersuchten Metapeliten besonders bedeutsam ist. Eine Darstellung der thermodynamischen Grundlagen der Phasenpetrologie und Differenzierung verschiedener Phasendiagramme findet sich im Anhang, G.1, G.2.

6.1 P-T-Pseudoschnitte

In einem Gestein sind aufgrund seiner Zusammensetzung nicht alle Gleichgewichte ausgebildet, die das entsprechende petrogenetische Netz (P-T-Projektion, vgl. Anhang, G.2) zeigt. Die Abhängigkeit der Stabilitätsbereiche verschiedener Mineralparagenesen vom Gesteinschemismus verdeutlichen Pseudoschnitte (z.B. WILL 1997). In der geologischen Literatur gehen diese Diagramme auf HENSEN (1971) zurück. Sie enthalten Informationen über Mineralparagenesen – und ihre Änderungen –, jedoch nicht über den Mineralchemismus (WILL 1998b). Der P-T-Pseudoschnitt zeigt nur die Gleichgewichtsbeziehungen, die von dem Gestein der spezifischen Zusammensetzung "gesehen" werden können, d.h. die hierfür relevanten invarianten Punkte und univarianten Gleichgewichtskurven bzw. Teile dieser, sowie die di-, tribzw. quadrivarianten Felder. Ein wesentlicher Vorteil der P-T-Pseudoschnitte für die Anwendung auf natürliche Gesteine besteht darin, daß sie aus Phasendiagrammen konstruiert werden können, die Substitutionen von Elementen in Mineralen berücksichtigen, d.h. deren Zusammensetzung sich ändert. WILL (1998b, S. 157) bewertet Pseudoschnitte als die beste Möglichkeit, die Abhängigkeit von Mineralparagenesen von ihren Bildungsbedingungen, wie z.B. Druck und Temperatur, zu veranschaulichen. Andere Arten von Phasendiagrammen sind im Anhang, G.2, kurz erläutert.

Die Kombination des P-T-Pseudoschnittes mit den vorliegenden in der Probe Mineralparagenesen ermöglicht exaktere Aussagen zur tektonometamorphen Entwicklung eines Gesteins als die reine Berechnung des Druckes bzw. der Temperatur mittels konventioneller geothermobarometrischer Methoden (vgl. Kap. 6.4). Durch P-T-Pseudoschnitte können prograde Mineraleinschlüsse, peakmetamorphe Mineralparagenesen, retrograde Mineralneubildungen und Reaktionsgefüge in Kontext mit bestimmten Druck-Temperatur-Bedingungen gesetzt werden. Form und Richtung des Druck-Temperatur-Pfades werden damit dokumentiert; die Entwicklung des Gesteins kann über den reinen Metamorphose-Höhepunkt hinaus definiert und retrograde Einflüsse berücksichtigt werden. P-T-Pfade bzw. P-T-Pfad-Segmente, die durch Pseudoschnitte ermittelt wurden, sind VANCE & HOLLAND (1993) zufolge besser definiert als solche, die durch Anwendung konventioneller Geothermobarometrie zustande kamen. Die sich ergebenden P-T-Pfade – im Uhrzeigersinn (clockwise) oder entgegen dem Uhrzeigersinn (anti-clockwise) – können wichtige Hinweise zur Beschreibung gebirgsbildender Vorgänge und ihrer Interpretation liefern. Im Gegensatz zu den konventionellen Abschätzungsmöglichkeiten können sie Auskunft über den plattentektonischen Kontext und die Entwicklung des Orogens ermöglichen, worauf z.B. ENGLAND & THOMPSON (1984), THOMPSON & ENGLAND (1984) und SPEAR (1993) ausführlich eingehen.

6.2 Die Modellsysteme für Metapelite KFMASH und KMnFMASH und der Einfluß von Systemkomponenten

Die Untersuchung reeller Systeme ist praktisch zu kompliziert, so daß vereinfachend Modellsysteme die Gesteinszusammensetzung repräsentieren müssen. Änderungen in der Zusammensetzung eines Minerals oder Gesteins werden dabei durch voneinander unabhängige **Systemkomponenten** ausgedrückt, die i.d.R. durch die Oxide wie z.B. FeO, MgO, SiO₂ etc. definiert sind. SPEAR (1993) und WILL (1998b) unterscheiden Systemkomponenten von **Phasenkomponenten**, die meist den Mineral-Endgliedern einer bestimmten Phase entsprechen. Ausführliche Listen diverser petrogenetischer Netze verschiedener Modellsysteme finden sich z.B. bei WILL (1998b).

Metapelitische Gesteine werden häufig im Modellsystem KFMASH (K2O-FeO-MgO-Al2O3-SiO₂-H₂O) beschrieben, das wesentliche Variationen in der Zusammensetzung dieser Gesteine berücksichtigt. Petrogenetische Netze für Metapelite, die Element-Substitutionen in Mineralen einbeziehen, wurden z.B. von SPEAR & CHENEY (1989), POWELL & HOLLAND (1990), ARNOLD & SANDIFORD (1990), GUIRAUD et al. (1990), XU et al. (1994) sowie WILL et al. (1998) kalkuliert. Das System KFMASH - z.B. in der Form von POWELL & HOLLAND (1990) berücksichtigt die Element-Substitutionen FeMg₋₁ sowie den Tschermak-Austausch (Fe, Mg)-1Si-1Al^[6]Al^[4]. T-X-Schnitte in diesem System verdeutlichen (z.B. POWELL & HOLLAND 1990, PATTISON & TRACY 1991, WILL 1998b), daß das Auftreten einer bestimmten Paragenese, bei konstantem Druck und konstanter Temperatur, insbesondere vom Eisen-Magnesium-Verhältnis des Gesteins abhängt. Die Phasenbeziehungen in einem Modellsystem können durch zusätzliche Systemkomponenten stark beeinflußt werden. Metapelitische Mineralparagenesen können daher unter Berücksichtigung von Systemkomponenten wie Na₂O, Fe₂O₃, ZnO und MnO realistischer beschrieben werden (WILL 1998b). Natrium ist in metapelitischen Mineralen nur in geringen Anteilen enthalten, die Anwesenheit dieses Elements begünstigt schnell die Bildung von Plagioklas. In Bezug auf das System KFMASH weist SPEAR (1993, S. 374) auf eine frühere Granat-Bildung aufgrund des Gehaltes von CaO und MnO im Gestein hin.

Mangan beeinflußt die Stabilitätsbereiche der Minerale und ihrer Paragenesen in Metapeliten stark. Die Anwesenheit von **MnO** wird in metapelitischen Gesteinen insbesondere Granat stabilisieren (z.B. WILL 1997, 1998b), da Mangan hierin bevorzugt in das Kristallgitter von Granat eingebaut wird. Die Granat-Stabilität kann daher durch MnO zu niedrigeren

Bildungsbedingungen hin ausgeweitet werden (z.B. WANG & SPEAR 1991, SYMMES & FERRY 1992, DROOP & HARTE 1995, MAHAR et al. 1997, WILL 1998 a, b, WEI et al. 2004). In MnOhaltigen Peliten sind Granat-führende Paragenesen daher über einen größeren P-T-Bereich stabil, da Granat dann in vielen Mittel- und Hochdruck-Paragenesen als zusätzlich Phase auftritt. Nach SPEAR & CHENEY (1989) ist Mangan-führender Granat im Vergleich zu Mn-freiem bei niedrigeren Temperaturen stabil. SPEAR (1993, S. 353-356) weist darauf hin, daß MnO das gemeinsame Auftreten von Granat + Chlorit gegenüber Chloritoid + Biotit stabilisiert und quantifiziert für mittelgradige pelitische Schiefer mit Spessartin-Anteilen von 15-30 Mol-% im Granat-Kern das erste Auftreten von Granat + Chlorit mit 440 bis 470 °C im Vergleich zu etwa 525 °C für das reine KFMASH-System. Von einem um etwa 50 bis 100 °C früheren Auftreten von Granat bei Mn-Anwesenheit im Vergleich zum reinen AFM-System gehen BUCHER & FREY (1994, S. 227) aus. Auch die Reaktion

 $Granat + Chlorit = Staurolith + Biotit + H_2O$,

die das erste gemeinsame Auftreten von Staurolith + Biotit anzeigt, wird nach SPEAR (1993, S. 356) durch den MnO-Gehalt des Gesteins beeinflußt. Daher geht SPEAR (1993, S. 378) für natürliche Gesteine von einer Granat-Bildung in einem Temperaturbereich von 450 - 500 °C durch eine kontinuierliche Reaktion aus, in der MnO und CaO einbezogen werden. Über die erweiterte Granat-Stabilität hinaus beschreiben WEI et al. (2004) aufgrund des Zusatzes von Mangan zum KFMASH verschiedene Effekte: Mn vergrößere in geringerem Maße auch die Stabilität der Aluminiumsilicate, reduziere die Stabilitäten von Staurolith, Cordierit sowie von Chlorit, und weite das Stabilitätsfeld von Muscovit unter Mitteldruck-Bedingungen aus. Der Einfluß der Komponente MnO, deren Einfluß stark von der Gesteinszusammensetzung, insbesondere den relativen Gehalten an Al₂O₃ und K₂O abhängt, sollte daher bei Niedrig- und Mitteldruck-Metapeliten nicht vernachlässigt werden (WEI et al. 2004). Aufgrund der Untersuchungen von POWELL & HOLLAND (1990) sowie XU et al. (1994) beschreibt WILL (1998b), die Substitution von nur 5 % einer nicht im KFMASH enthaltenen Systemkomponente, z.B. MnO, auf der M2-Oktaeder-Position in Biotit führe zu einem mehr als 100 °C großen Stabilitätsfeld von Andalusit-Biotit, was sehr gut mit Beobachtungen natürlicher Gegebenheiten übereinstimme.

Die Berücksichtigung von MnO erweitert das Modellsystem KFMASH (K_2O -FeO-MgO-Al₂O₃-SiO₂-H₂O) zum **System KMnFMASH** (K_2O -MnO-FeO-MgO-Al₂O₃-SiO₂-H₂O), das die Element-Substitutionen FeMg₋₁ und FeMn₋₁ beinhaltet. Aus einem invarianten Punkt im KFMASH wird im KMnFMASH die Reaktion

 $Chlorit + Staurolith = Granat + Al_2SiO_5 (+ Muscovit + Biotit + Quarz + H_2O)$ zusätzlich neu stabilisiert (WILL 1998b, S. 262). Das Hinzufügen von Mangan zum System KFMASH verändert die Stabilitätsbereiche einzelner Minerale, führt jedoch nicht zu einer Änderung der Sequenz von Isograden in regionalmetamorphen Gesteinen (MAHAR et al. 1997). Der X_{Fe}-Wert und der Al-Gehalt bestimmen die relative Stabilität verschiedener Mineralparagenesen (MAHAR et al. 1997). Daraus wird ersichtlich, warum es für Metapelite mit geringen MnO-Gehalten möglich ist, Mineralreaktionen anhand des Modellsystems KFMASH vorauszusagen. Mit dem erweiterten metapelitischen Modellsystem KMnFMASH befassen sich die Arbeiten von z.B. WANG & SPEAR (1991), DROOP & HARTE (1995) sowie MAHAR et al. (1997) eingehend. WILL (1998b) beschreibt den Einfluß von MnO auf die Mineralstabilitäten im beispielhaft anhand verschiedener Reaktionen. KFMASH Aufgrund vergleichender Kalkulationen stellen WEI et al. (2004) fest, daß Pseudoschnitte im KMnFMASH zu einer besseren Übereinstimmung mit natürlichen Mineralparagenesen aus Niedrig- und Mitteldruck-Bedingungen führen, als Pseudoschnitte im System KFMASH.

Außer Mangan kann in Metapeliten auch der Zusatz der zusätzlichen Systemkomponente **ZnO** eine wesentliche Rolle spielen. Dann ergibt sich, ausgehend vom System KFMASH, das komplexe Modellsystem KZnFMASH (K₂O-ZnO-FeO-MgO-Al₂O₃-SiO₂-H₂O). Der Einbau von Zink in das Kristallgitter von Staurolith führt zu einer Ausdehnung von dessen Stabilitätsfeld (HOLLISTER 1969, KEPEZHINSKAS & KHLESTOV 1977, WILL 1997, 1998b; vgl. Kap. 4.2). Nach WILL (1998b) trifft dies bereits bei Vorliegen weniger Gewichtsprozente von ZnO im System zu. Höhere ZnO-Gehalte führen schnell zur Stabilisierung des Zn-Spinells Gahnit als neuer Mineralphase (WILL 1998b). Den Einfluß von Zink auf das Druck-Temperatur-Stabilitätsfeld von Staurolith quantifizieren VAN HINSBERG et al. (2005) aufgrund umfangreicher Untersuchungen zur thermodynamischen Stabilität verschiedener Silicatminerale. Somit führt Zink hinsichtlich des Minerals Staurolith zu einem ähnlichen Effekt wie Mangan in Bezug auf Granat, wenngleich in weniger starkem Umfang. Weitere Arbeiten, die sich mit dem Einfluß verschiedener Systemkomponenten wie z.B. TiO_2 und Fe_2O_3 in metapelitischen Gesteinszusammensetzungen befassen, liegen von WHITE et al. (2000), WHITE et al. (2001) sowie WHITE et al. (2007) vor (vgl. Anhang, G.3). Den Einfluß von Mangan und Zink auf die Stabilitäten der Mineralparagenesen in mäßig Hochdruckmetamorphen metapelitischen Schiefern untersuchen PROYER & DACHS (2000).

Die zusätzliche Berücksichtigung einer Systemkomponente gestattet eine realistischere Beschreibung der Phasenbeziehungen, führt jedoch häufig zu sehr komplexen Beziehungen im System, da sich die Varianz erhöht (vgl. Gibbs'sche Phasenregel, Anhang, G.1). Mit jeder zusätzlichen Systemkomponente vergrößert sich die Varianz um eins, d.h. die Zahl der Freiheitsgrade des Systems erhöht sich. Die Systeme KFMASH und KMnFMASH stellen hierfür Beispiele dar (vgl. WILL 1998b, S. 261ff.). Die Eingrenzung einer Mineralparagenese im Phasendiagramm wird durch die höhere Varianz schwieriger, da zur Festlegung z.B. uni- oder divarianter Gleichgewichte jeweils eine Phase mehr notwendig ist. Eine Erniedrigung der Varianz eines Systems kann durch das Vorliegen einer Überschußphase erreicht werden; so kann das Auftreten einer zusätzlichen Systemkomponente ggf. ausgeglichen werden. Überschußphasen sind stets vorhanden und können nicht aus einem System ausreagieren, von ihnen aus darf also projiziert werden. Die Dimension des Phasendiagramms erniedrigt sich für jede Überschußphase um eins. In metapelitischen Modellsystemen wird z.B. ein Überschuß an Muscovit, Quarz und H₂O sowie evtl. an Biotit angenommen.

Das Hinzufügen einer Systemkomponente verändert auch das erste Auftreten eines Minerals in dem Gestein. So ist z.B. das Auftreten von Staurolith im System KFMASH durch einen klaren, kartierbaren Isograd gekennzeichnet, während sich in Anwesenheit von z.B. ZnO Staurolith durch eine kontinuierliche "Reaktion" bildet, die sich im System nicht mehr in Form einer univarianten Reaktion, sondern als divariantes Feld darstellt (WILL 1998b). Auch für Granat läßt sich in Abhängigkeit vom Gesteinschemismus ein Übergang von einer diskontinuierlichen Reaktion zwischen den Chlorit-Einphasenfeld und den Zweiphasenfeld Granat + Chlorit zu einer kontinuierlichen Bildung feststellen (WILL 1998b).

Die Stabilitätsbeziehungen im System werden also auch durch die im Phasendiagramm berücksichtigte **Wasseraktivität** beeinflußt. Bei der Untersuchung metamorpher Gesteine, die wasserhaltige Minerale führen bzw. Carbonat-frei sind, wird meist ein Wasserüberschuß angenommen, der in einer Wasseraktivität von $a_{H2O} = 1$ ausgedrückt wird. Das Einbeziehen

weiterer fluider Phasen – über H₂O hinaus –, wie z.B. CO₂, NaCl, Methan, Stickstoff, führt ebenfalls zu komplexeren Beziehungen im System, da H₂O nicht mehr als Überschußphase angesehen werden darf. So wird für Metapelite häufig eine Wasseraktivität von $a_{H2O} = 1$ zugrundegelegt. Niedrigere Wasseraktivitäten beziehen z.B. LE BRETON & THOMPSON (1988), VIELZEUF & HOLLOWAY (1988) und SYMMES & FERRY (1991) in ihre Untersuchungen ein. Mit der Rolle verschiedener Fluide in metamorphen Gesteinen befassen sich die Arbeiten von z.B. HOLLISTER & CRAWFORD (1981), KLEMD & OKRUSCH (1990) sowie KLEMD et al. (1995). Thermodynamische Datensätze und P-T-Projektionen, die verschiedene Fluide berücksichtigen, gibt es bisher nur begrenzt, was auch auf die komplexen Beziehungen in derartigen Systemen zurückzuführen ist.

6.3 Methodische Hinweise zu den P-T-Pseudoschnitten

Im Rahmen der vorliegenden Arbeit wurden für sechs verschiedene Proben der Mömbris-Formation und eine Probe aus der Geiselbach-Formation P-T-Pseudoschnitte in den metapelitischen Modellsystemen KMnFMASH (K₂O-MnO-FeO-MgO-Al₂O₃-SiO₂-H₂O) und KFMASH (K₂O-FeO-MgO-Al₂O₃-SiO₂-H₂O) berechnet. Als Grundlage für die Konstruktion wurden zwei verschiedene P-T-Projektionen verwendet:

- P-T-Projektion für das erweiterte metapelitische Modellsystem KMnFMASH $(+ mu + q + H_2O)$ von WILL (1998a) (vgl. Abb. 7.1, Kap.7) und
- P-T-Projektion für das metapelitische Modellsystem KFMASH (+ $mu + q + H_2O$) von WILL (pers. Mitteilung).

Die P-T-Pseudoschnitte wurden mit Hilfe des Computerprogramms THERMOCALC, in den Programmversionen v2.3, v2.6 und v2.8 für Macintosh (POWELL & HOLLAND 1988, HOLLAND & POWELL 1998, HOLLAND & POWELL Internetseiten) berechnet (vgl. Anhang, G.4). Dabei wurden Datensätze nach HOLLAND & POWELL (1992) bzw. HOLLAND & POWELL (1990) verwendet, die eine substantielle Erweiterung des Datensatzes von HOLLAND & POWELL (1985) darstellen. Die Kalkulationen erfolgten für den normalisierten Gesamtgesteinschemismus $K_2O: MnO: FeO: MgO: Al_2O_3 bzw. K_2O: FeO: MgO: Al_2O_3, der jeweils aus Mineralchemie$ und Modalbestand berechnet wurde (s.u.). Nur für die Probe aus der Geiselbach-Formationwurde der Gesamtgesteinschemismus aus der geochemischen Analyse ermittelt. Eine wichtige Voraussetzung für die Anwendung von Phasendiagrammen bildet die zumindest weitgehende Einstellung eines physikalisch-chemischen Gleichgewichtes im Gestein. Ein lokales Gleichgewicht sieht WILL (1998b, S. 153) als die vermutlich häufigste Situation in Gesteinen an (vgl. Anhang, G.1). Dieses Gleichgewicht ist im Gesteinsdünnschliff durch gemeinsame Korn-Kontakte der Minerale angezeigt (z.B. BUCHER & FREY 1994, OKRUSCH & MATTHES 2005). Die Überprüfung dieses Kriteriums wurde im Rahmen der mikroskopischen Untersuchungen, wie von BUCHER & FREY (1994, S. 26) vorgeschlagen, unter Verwendung einer "Matrix-Tabelle" vorgenommen, in der gemeinsame Korn-Korn-Kontakte der verschiedenen Mineralphasen eingetragen wurden (vgl. Kap. 3.2 u. Anhang D.2 - D.5).

Der Gesteinschemismus einer Probe, für die die P-T-Pseudoschnitte berechnet werden, kann entweder durch die geochemische Gesamtgesteinsanalyse festgelegt oder mittels Kombination von Modalbestand und Mikrosondenanalytik berechnet werden. Die zweite Vorgehensweise führt nach POWELL & HOLLAND (1990) sowie WILL (1997, 1998b) meist zu einer besseren Übereinstimmung zwischen den im Schliff beobachteten Mineralparagenesen und dem Pseudoschnitt. Im Rahmen der vorliegenden Arbeit wurde daher überwiegend diese Methode angewendet. Für die Berechnung der Pseudoschnitte wurden die Anteile der relevanten Systemkomponenten auf 100 Mol-% normiert. Die grundsätzlichen Prinzipien, nach denen Pseudoschnitte erstellt werden, sind z.B. bei WILL (1998a, b) erläutert.

Der P-T-Pseudoschnitt enthält univariante Gleichgewichtskurven, divariante, trivariante und ggf. quadrivariante Felder. Dabei repräsentieren die univarianten Kurven diskontinuierliche Mineralreaktionen, die verschiedenen Felder stellen die Stabilitätsbereiche verschiedener Mineralparagenesen dar. Entlang der Reaktionskurven und innerhalb der Felder ändert sich die Zusammensetzung der beteiligten Mineralphasen, was durch Isoplethen ausgedrückt werden kann. In Verbindung mit den im Dünnschliff zu beobachtenden Mineraleinschlüssen, peakmetamorphen Mineralparagenesen und retrograden Mineralneubildungen sowie ggf. einer prograden Elementzonierung, z.B. in Granat, ermöglichen die P-T-Pseudoschnitte die Rekonstruktion der Druck-Temperatur-Geschichte, die das Gestein im Verlauf der Metamorphose durchlaufen hat. Durch eine Kombination der Pseudoschnitte mit klassischer Geothermobarometrie bzw. Berechnungen mittels intern-konsistenter Datensätze können die absoluten P-T-Daten teilweise genauer eingegrenzt werden. Die vorliegenden P-T-Pseudoschnitte stellen die Informationen über die im Gestein möglichen Mineralparagenesen unter Berücksichtigung der Gesteinszusammensetzung sehr realistisch dar, wobei zwischen den Ergebnissen für die verschiedenen Gesteinsproben gewisse Variationen vorliegen. Einzelne Stabilitätsfelder bestimmter Mineralparagenesen liegen jedoch in den verschiedenen P-T-Pseudoschnitten grundsätzlich in vergleichbaren Druck-Temperatur-Bereichen. Die durch konventionelle Geothermobarometrie und mittels intern-konsistenter Datensätze abgeleiteten Drucke und Temperaturen weisen eine deutlich größere Schwankungsbreite für die einzelnen Gesteine auf (vgl. Kap. 6.4). Die beschriebenen Ergebnisse bestätigen die von VANCE & HOLLAND (1993) getroffene Aussage, derzufolge P-T-Pfade bzw. P-T-Pfad-Segmente, die durch Pseudoschnitte festgelegt wurden, besser abgesichert sind als solche auf Basis konventioneller Geothermobarometrie.

6.4 Konventionelle Geothermobarometrie und intern-konsistente Datensätze

Geothermometer und Geobarometer beruhen auf der Verteilung bestimmter Elemente zwischen koexistierenden Mineralphasen. Dabei werden Mineralgleichgewichte verwendet, um den Druck und die Temperatur der Bildung eines Minerals bzw. einer Mineralparagenese zu bestimmen. Die Abschätzungen basieren auf der Gleichgewichtsbedingung

$$\Delta G^0 + RT \ln K = 0$$

wobei ΔG die Differenz der Freien Enthalpie der Reaktion ist, die von Druck und Temperatur abhängt (vgl. Thermodynamische Grundlagen im Anhang, G.1). Die Gleichgewichtskonstante *K* ist eine Funktion der Zusammensetzung und der Aktivitäten a_i der Minerale. Aufgrund der aus experimentellen Kalibrationen bekannten thermodynamischen Daten für ΔH , ΔS , ΔC_P und ΔV und der mineralchemischen Zusammensetzung der koexistierenden Minerale kann im P-T-Diagramm eine Linie für eine Gleichgewichtskonstante K gezeichnet werden, entlang derer die Gleichgewichtseinstellung des Gesteins abgelaufen sein muß.

In der Literatur existieren viele Kalibrationen verschiedener Geothermometer und Geobarometer für unterschiedliche Mineralparagenesen, umfassende Auflistungen hierzu geben z.B. WILL (1998b) und SPEAR (1993). Temperatur- und Druckabschätzungen mittels Geothermobarometrie dürfen nur unter der Voraussetzung vorgenommen werden, daß die untersuchten Mineralparagenesen miteinander im Gleichgewicht vorliegen. In falsch interpretierten Ungleichgewichtsbedingungen sieht WILL (1998b) die Hauptfehlerquelle solcher P-T- Abschätzungen. Die Ergebnisse konventioneller geothermobarometrischer Methoden können Unsicherheiten aus verschiedenen Gründen, wie z.B. der Kalibration, aufweisen. Als die zwei wesentlichen Quellen dieser Unsicherheiten bei der Berechnung univarianter Mineralgleichgewichte beschreibt WILL (1998b) einerseits die nur mäßig genau bekannten thermodynamischen Daten, andererseits die unzureichende Kenntnis der *a-x*-Beziehungen in Mischkristallen. Eine ausführliche Darstellung möglicher Fehlerquellen legen z.B. WILL (1998b), SPEAR (1993) sowie BUCHER & FREY (1994) dar.

Abgesehen von den methodischen Unsicherheiten der konventionellen Geothermobarometrie ist ein Nachteil dieser Methode darin zu sehen, daß hiermit häufig nur ein Punkt der Druck-Temperatur-Entwicklung bestimmt werden kann. Die Rekonstruktion des P-T-Pfades, insbesondere des prograden Metamorphose-Astes, ist häufig sehr schwierig, da die prograden Signaturen durch peakmetamorphe Bedingungen ausgelöscht wurden. Sofern prograde Mineraleinschlüsse vorliegen, wurden diese meist peakmetamorph reequilibriert, und gepanzerte Relikte befinden sich nicht mehr im Gleichgewicht. Daher lassen sich mit klassischen geothermobarometrischen Methoden vielfach nur peakmetamorphe oder retrograde Metamorphosebedingungen rekonstruieren.

6.4.1 Verwendete Geothermometer und Geobarometer

Für konventionelle geothermobarometrische Abschätzungen wurden Granat-Biotit-Thermometer in den Kalibrationen von FERRY & SPEAR (1978), HODGES & SPEAR (1982), PERCHUK & LAVRENT'EVA (1983), INDARES & MARTIGNOLE (1985), HOINKES (1986) und KLEEMANN & REINHARD (1994) sowie das Granat-Staurolith-Thermometer nach PERCHUK (1969) verwendet. Eine Druckabschätzung wurde mit dem Phengit-Barometer von MASSONNE & SCHREYER (1987) bzw. MASSONNE (1991) durchgeführt.

Granat-Biotit-Geothermometer

Dieses Thermometer beruht auf dem temperaturabhängigen Fe²⁺-Mg-Austausch zwischen Granat und Biotit entsprechend der Gleichgewichtsreaktion:

Almandin + Phlogopit = Pyrop + Annit.

Das verbreitet angewendete, fluidunabhängige Geothermometer liegt in diversen Kalibrationen vor, auf deren Ergebnisse insbesondere die verschiedenen Mischungmodelle für Granat und

Biotit einen wesentlichen Einfluß ausüben. FERRY & SPEAR (1978) kalibrierten die P-T-Abhängigkeit experimentell auf der Basis synthetischer Minerale und legen damit das System KFMASH zugrunde. Die von FERRY & SPEAR abgeleitete Gleichung lautet:

$$T [^{\circ}C] = (2089 + 9.56 \text{ P})/(0.782 - \ln K_D) - 273$$

mit $K_D = (Fe/Mg)^{Bt}/(Fe/Mg)^{Grt}$ und P [kbar]. In natürlichen Systemen liegen jedoch die Systemkomponenten Ca und Mn in Granat sowie Ti und Al^{VI} in Biotit meist ebenfalls vor, die in diesem Ansatz nicht berücksichtigt sind. Daher ist das Thermometer in dieser Kalibration nur begrenzt anwendbar. FERRY & SPEAR (1978) empfehlen die Verwendung nur für Ca- und Mn-arme Granate mit (Ca + Mn)/(Ca + Mn + Fe + Mg) ≤ 0.2 und Al^{VI}- und Ti-arme Biotite, mit (Al^{VI} + Ti)/(Al^{VI} + Ti +Fe + Mg) ≤ 0.15 . Diese Bedingungen sind in den Mineralen der untersuchten Metapelite jedoch nicht immer erfüllt, wodurch sich die häufig niedrigeren Temperaturen erklären lassen, die sich hier mit dieser Methode ergaben.

Um die Bedingungen einem realeren Gesteinssystem anzugleichen, basiert die experimentelle Kalibration von PERCHUK & LAVRENT'EVA (1983) auf natürlichen Granat- und Biotit-Kristallen. HODGES & SPEAR (1982) verwenden in ihrem Ansatz ein Granat-Aktivitätsmodell, in dem Grossular und Spessartin berücksichtigt werden, wobei für Spessartin ein ideales Mischungsverhalten angenommen wird. Auf ein nicht-ideales Mischungsverhalten zwischen Grossular und Pyrop weist SPEAR (1993, S. 528) hin. Auch in der Kalibration von HOINKES (1986) wurde eine Korrektur für die Grossular-Komponente in Granat vorgenommen. INDARES & MARTIGNOLE (1985) beziehen, über das Granat-Modell von HODGES & SPEAR (1982) hinaus, eine Korrektur für Al^{VI} und Ti in Biotit ein, die besonders bei granulitfaziellen Gesteinen von Bedeutung ist. Weiterhin wurde die neuere Kalibration von KLEEMANN & REINHARD (1994) verwendet, die den Einfluß von Al^{VI} und Ti in Biotit ebenfalls berücksichtigt. In diesem Ansatz wird bei Anwendung des Granat-Aktivitätsmodells von BERMANN (1990) auch der Mn- und Ca-Gehalt in Granat einbezogen. Die Fehler dieser Thermometer betragen meist etwa \pm 30 bis \pm 50 °C.

Die Ergebnisse der Berechnungen aufgrund der Kalibrationen von KLEEMANN & REINHARD (1994) sowie von PERCHUK & LAVRENT'EVA (1983) zeigen bei den hier untersuchten Proben die beste Übereinstimmung mit den Resultaten der übrigen Geothermobarometer und anderer methodischer Ansätze. Zwischen den Ergebnissen einzelner Granat-Biotit-Thermometer sind teilweise Unterschiede von bis zu 50 °C zu verzeichnen. So führte die Kalibration nach FERRY &

SPEAR (1978) häufig zu deutlich niedrigeren Temperaturen, das Granat-Biotit-Thermometer nach HOINKES (1986) teilweise zu höheren Werten. Diese Unterschiede sind offenbar darauf zurückzuführen, ob der jeweilige Ansatz nur den Eisen-Magnesium-Austausch berücksichtigt, wie bei FERRY & SPEAR (1978), oder ob Korrekturen, z.B. für die Grossular-Komponente im Granat, vorgenommen werden (z.B. HODGES & SPEAR 1982, PERCHUK & LAVRENT'EVA 1983, HOINKES 1986).

Granat-Staurolith-Geothermometer

Dieses fluidunabhängige Geothermometer beruht auf dem temperaturabhängigen Fe²⁺-Mg-Austausch zwischen Granat und Staurolith nach der Reaktion

Almandin + Mg-Staurolith = Pyrop + Fe-Staurolith.

Die Kalibration nach PERCHUK (1969) ergab sinnvolle Temperaturen, die mit den Ergebnissen der Granat-Biotit-Thermometrie meist gut übereinstimmen.

Phengit-Geobarometer

Dieses Geobarometer basiert auf der starken, beinahe linearen Zunahme des Si-Gehaltes p.f.u. in phengitischen Hellglimmern mit dem Druck (MASSONNE & SCHREYER 1987). Darüber hinaus ist eine moderate Verminderung des Si-Gehaltes p.f.u. mit steigender Temperatur zu verzeichnen. Diese Abhängigkeit des Si-Gehaltes von Druck und Temperatur stellen MASSONNE & SCHREYER (1987) in einem Diagramm mit Si-Isoplethen dar (vgl. Abb. 2.7, 7.8). Die dort angegebenen Si-Gehalte variieren im Bereich von 3.1 bis 3.8 p.f.u., bezogen auf 11 Sauerstoff-Atome. Das Geobarometer wurde ursprünglich für phengitische Hellglimmer in der Paragenese mit Kalifeldspat, Phlogopit und Quarz kalibriert. In ihrer Kalibration weisen MASSONNE & SCHREYER (1987) bzw. MASSONNE (1991) explizit darauf hin, daß für natürliche phengitische Hellglimmer, die nicht in der Paragenese mit Kalifeldspat, Phlogopit und Quarz, sondern mit einem Mg-Fe-Silcat vorliegen, wenigstens Minimum-Drucke abgeleitet werden können.

Erhöhte Si-Gehalte im Kern der Hellglimmer sind offenbar als Hinweis auf höhere Drucke zu Beginn des Kristallwachstums anzusehen, die während der weiteren Entwicklung abnahmen. Hellglimmer mit phengitischer Zusammensetzung lagen hier nur in zwei Fällen vor, daraus ließen sich sinnvolle Ergebnisse ableiten, die mit denjenigen anderer Methoden im wesentlichen übereinstimmen. Für die übrigen, nicht-phengitischen, Hellglimmer konnten anhand des Si-Gehaltes p.f.u. Mindestdrucke abgeschätzt werden.

6.4.2 Intern-konsistente thermodynamische Datensätze

Die Bildungsbedingungen einer Mineralparagenese können weiterhin unter Verwendung internkonsistenter Datensätze bestimmt werden. Dabei werden kalorimetrische Daten mit experimentell bestimmten Phasengleichgewichten kombiniert, um thermodynamische Datensätze zu erstellen. Die Datensätze werden als intern-konsistent bezeichnet, da die thermodynamischen Daten mit den gemessenen thermodynamischen Eigenschaften der Minerale und den Energiedifferenzen übereinstimmen, die in Zusammenhang mit den Mineralreaktionen stehen (WILL 1998a). Häufig verwendete Datensätze erarbeiteten z.B. HOLLAND & POWELL (1985, 1990, aktualisiert 1992), BERMANN (1988, 1990, 1991) sowie GOTTSCHALK (1997). Durch Nutzung dieser Datensätze kann jede mögliche Reaktion zwischen Mineralendgliedern, die in den Datensätzen enthalten sind, unter Verwendung derselben thermodynamischen Daten und Aktivitätsmodelle formuliert werden. Mit dieser Methode ist es auch möglich, verschiedene Wasseraktivitäten und Fluide unterschiedlicher Zusammensetzung einzubeziehen. Für eine bestehende Mineralparagenese wird damit eine Reihe von Reaktionen zwischen Mineralendgliedern formuliert und der Verlauf der sich ergebenden Reaktionskurven berechnet. Die Reaktionskurven, die im P-T-Diagramm unterschiedliche Steigung besitzen, beschreiben durch ihren Schnittpunkt und unter Berücksichtigung ihrer Fehlergrenzen einen Druck-Temperatur-Bereich, der die möglichen Bildungsbedingungen der Mineralparagenese definiert (vgl. POWELL & HOLLAND 1994).

Im Rahmen der vorliegenden Arbeit wurden die Berechnungen mittels intern-konsistenter Datensätze auf der Basis des Datensatzes von HOLLAND & POWELL (1990, Aktualisierung 1992) unter Verwendung des Computerprogramms THERMOCALC v2.6 für Macintosh durchgeführt (POWELL & HOLLAND 1988, HOLLAND & POWELL 1998, HOLLAND & POWELL Internetseiten). Dabei wurde eine Wasseraktivität von $a_{H2O} = 1.0$ zugrunde gelegt. Die Einschätzungen basieren für die untersuchten Gesteine u.a. auf folgenden Mineral-Endglieder-Reaktionen:

Phlogopit + Almandin = Annit + Pyrop

Grossular + Quarz + 2 Disthen = 3 Anorthit (GASP-Reaktion).

Folgende Aktivitätsmodelle und Mineralformelberechnungen wurden verwendet:

Granat: Formelberechnung auf der Basis von 12 Sauerstoffen: (Fe,Mg,Ca,Mn)₃Al₂(SiO₄)₃ mit X_{Alm} = Fe/(Fe+Mg+Ca+Mn), X_{Py} = Mg/(Fe+Mg+Ca+Mn), X_{Gross} = Ca/(Fe+Mg+Ca+Mn), ideale Mischungsaktivitäten nach dem "2-site-mixing"-Modell, Aktivitätskoeffizient nach NEWTON & HASELTON (1981),

- Biotit: Formelberechnung auf der Basis von 11 Sauerstoffen: $K^{A}(Fe,Mg)^{M1}(Fe^{3+},Fe,Mg,Ti,Mn,Al)_{2}^{M2}(Al,Si)_{2}^{T1}(Si)_{2}^{T2}(OH)_{2}O_{10}$, wobei von einem Verhältnis $(Fe/Mg)^{M1}:(Fe/Mg)^{M2} = 1:1$ ausgegangen wurde. Aktivitäten nach dem *"ideal-mixing-on-sites*"-Modell (HOLLAND & POWELL 1990), Aktivitätskoeffizient nach EUGSTER et al. (1972),
- Staurolith: Formelberechnung auf der Basis von 46 Sauerstoffen: (Mg,Fe)₄Al₁₈Si_{7.5}O₄₈H₄ mit $a_{Fe-st} = (X_{Fe})^4$, $X_{Fe} = Fe/4$ und $a_{Mg-st} = (X_{Mg})^4$, $X_{Mg} = Mg/4$,
- Plagioklas: (Na,Ca_x)Al_{x+1}Si_{3-x}O₈, thermodynamische Molfraktion nach dem 2-T-Modell von KERRICK & DARKEN (1975) und Margulesparameter nach NEWTON et al. (1980),
- Quarz und Disthen/Sillimanit $a_i = 1$.

Die Ergebnisse weisen zwar einen beträchtlichen Fehler auf, allerdings stellt die Angabe der Fehlergrenzen einen Vorteil dieser Methode dar.

7. Metamorphose-Entwicklung

Die Abschätzung der Druck-Temperatur-Bildungsbedingungen der untersuchten Gesteine des Spessart-Kristallins und ihrer metamorphen Entwicklungsgeschichte stellte ein wesentliches Ziel dieser Arbeit dar. Während bei der Untersuchung größerer Areale häufig stellvertretend für eine Metamorphosezone nur wenige Proben berücksichtigt werden können, wurden hier in Anbetracht der petrographischen Gegebenheiten und der flachen Lage der Isograden im Spessart-Kristallin mehrere Proben aus der Mömbris-Formation eingehender bearbeitet. Auf diese Weise sollte u.a. überprüft werden, ob sich innerhalb dieser lithostratigraphischen Einheit Bereiche unterschiedlicher Metamorphose-Bedingungen voneinander abgrenzen lassen. Es wurden P-T-Pseudoschnitte für sechs verschiedene Proben der Staurolith-Glimmerschiefer aus der Mömbris-Formation (IMM 039, IMM 051, IMM 021, IMM 089, IMM 063, SM 1063) und für eine Granat-Quarzit-Probe (IMG 207) aus der Geiselbach-Formation konstruiert, die die Veränderung der Mineralparagenesen in Abhängigkeit vom Chemismus des Gesteins und verschiedenen Druck-Temperatur-Bildungsbedingungen verdeutlichen. Druck-Temperaturmittels konventioneller Geothermobarometer sowie intern-konsistenter Berechnungen Datensätze ermöglichten eine genauere Dokumentation des Metamorphosehöhepunktes. Die detaillierten Ergebnisse werden im folgenden dargestellt, eine Übersicht vermittelt Tab. 7.1. Die theoretischen Grundlagen sind in Kap. 6 erläutert, methodische Hinweise enthalten Kap. 6.3, 6.4 sowie der Anhang, G.4.

7.1 Ergebnisse der phasenpetrologischen Untersuchungen: P-T-Pseudoschnitte, konventionelle Geothermobarometrie und Berechnungen mittels intern-konsistenter Datensätze

Die Berechnung der P-T-Pseudoschnitte erfolgte auf Grundlage der P-T-Projektion im System KMnFMASH + q + mu + H₂O (K₂O-MnO-FeO-MgO-Al₂O₃-SiO₂-H₂O) von WILL (1998a, Abb. 7.1) im P-T-Fenster von 0 bis 13 kbar und 500 bis 680 °C, dabei liegen Muscovit, Quarz und H₂O im Überfluß vor. Ein Pseudoschnitt basiert auf dem petrogenetischen Netz KFMASH + q + mu + H₂O (K₂O-FeO-MgO-Al₂O₃-SiO₂-H₂O) von WILL (1998a), das ein Subsystem des KMnFMASH + q + mu + H₂O bildet. Abb. 7.2 zeigt das petrogenetische Netz KFMASH + q + H₂O. Zum Vergleich wurde darüber hinaus das petrogenetische Netz im erweiterten metapelitischen Modellsystem KMnFMASH + q + H₂O von WILL (pers. Mitteilung)

dargestellt (Abb. 7.3). Da in den Gesteinen wasserhaltige Minerale vorliegen und keine Hinweise auf die Anwesenheit von CO_2 in der fluiden Phasen existieren, wurde eine Wasseraktivität von $a_{H2O} = 1.0$ angenommen. Gegenüber dem für Metapelite häufig verwendeten Modell-System KFMASH wurde bei diesen Berechnungen die Systemkomponente MnO in den meisten Pseudoschnitten mit einbezogen, da der MnO-Gehalt der Gesteine insbesondere eine Vergrößerung des Stabilitätsfeldes von Granat bedingt (vgl. Kap. 6.2). Obwohl auch die Anwesenheit von ZnO die Stabilisierung der Mineralparagenesen in metapelitischen Gesteinen deutlich beeinflussen kann (vgl. Kap. 6.2), wurde diese Systemkomponente hier nicht berücksichtigt, da bisher keine thermodynamischen Daten für Zink vorliegen. Die P-T-Pseudoschnitte wurden mit dem Computerprogramm THERMOCALC (POWELL & HOLLAND 1988, HOLLAND & POWELL 1998, HOLLAND & POWELL Internetseiten) auf der Grundlage der Datensätze von HOLLAND & POWELL (1992) bzw. HOLLAND & POWELL (1990) berechnet (vgl. Kap. 6.3). Die Grundlagen der phasenpetrologischen Untersuchungen sind in Kap. 6 ausführlicher dargestellt.

Die dargestellten Pseudoschnitte enthalten die univarianten Reaktionen (dick gezeichnete Linien) sowie die divarianten, trivarianten und ggf. quadrivarianten Mineralstabilitätsfelder, die vom Gestein aufgrund seiner Zusammensetzung "gesehen" werden können. Die Gleichgewichtskurven der Al₂SiO₅-Minerale Disthen, Andalusit und Sillimanit wurden zur Orientierung in die P-T-Pseudoschnitte mit eingezeichnet, die für das Gestein relevanten Abschnitte dieser Kurven sind dick dargestellt.

7.1.1 Mömbris-Formation

7.1.1.1 Typ I des Staurolith-Glimmerschiefers

Von den Staurolith-Glimmerschiefern der Mömbris-Formation wurden P-T-Pseudoschnitte für die Proben IMM 021, IMM 039 und IMM 051 berechnet, die den Typ I repräsentieren (vgl. Kap. 3.2.1). In diesen Proben ist das Auftreten der Minerale Staurolith + Granat + Biotit + Muscovit + Plagioklas + Quarz + Akzessorien \pm Chlorit charakteristisch. Dabei sind Granat, Staurolith, Biotit und Muscovit die fazieskritischen Minerale. Die Minerale Disthen, Sillimanit, Andalusit, Cordierit und Chloritoid liegen in diesen Gesteinen nicht vor. Zur Veranschaulichung der

Phasenbeziehungen wurden die kritischen Mineralparagenesen anhand der Zusammensetzungen miteinander koexistierender Minerale im AFM-Diagramm (Abb. 7.4) eingetragen.

Petrogenetisches Netz (P-T-Projektion) im erweiterten metapelitischen Modellsystem KMnFMASH (+ q + mu + H_2O) gemäß WILL (1998a). Die Reaktionen im KFMASH sind als Subsystem enthalten.

Petrogenetisches Netz (P-T-Projektion) im metapelitischen Modellsystem KFMASH (+ $q + H_2O$) gemäß WILL (pers. Mitteilung).

Petrogenetisches Netz (P-T-Projektion) im erweiterten metapelitischen Modellsystem KMnFMASH $(+ q + H_2O)$ gemäß WILL (pers. Mitteilung).

Darstellung der peakmetamorphen Mineralparagenesen in den Staurolith-Glimmerschiefern, Typ I, im AFM-Diagramm: IMM 039, IMM 051, IMM 021, IMM 044. Die Tatsache, daß die darstellenden Punkte der Gesamtgesteinsanalysen nicht in die Dreiphasenfelder fallen, ist vermutlich auf eine Unter- oder Überkorrektur für die Akzessorien zurückzuführen.

In einem Gestein hängt die Ausbildung einer bestimmten Mineralparagenese häufig vom Gesamtgesteinschemismus ab. Im Modellsystem KFMASH spielt dabei das Eisen-Magnesium-Verhältnis für die Stabilisierung von Granat eine wesentliche Rolle. Der T-X_{Mg/(Mg+Fe)}-Schnitt im System KFMASH nach WILL (1998b) (Abb.7.5) zeigt, wie das erste Auftreten von Granat vom Eisen-Magnesium-Verhältnis im Gestein abhängt. So kann sich in eisenreichen Proben Granat bereits bei niedrigeren Temperaturen bilden als in eisenärmeren. Die X_{Fe} der untersuchten Staurolith-Granat-Glimmerschiefer der Mömbris-Formation liegen in dem T-X-Schnitt nicht in dem Bereich einer Stabilisierung von Granat bei besonders niedrigen Temperaturen. Die Tatsache, daß sie außerhalb des Granat-Stabilitätsfeldes liegen, kann möglicherweise auf den Einfluß von Mangan im Gesamtgestein zurückgeführt werden, der hier noch nicht berücksichtigt ist. Die Relation von Modalbestand (vgl. Tab. D.2 im Anhang) und Gesteinszusammensetzung verdeutlicht jedoch, daß die Gesteine mit mittlerem X_{Fe} mehr Granat führen (Typ I: IMM 021 X_{Fe}: 0.40, IMM 039 X_{Fe}: 0.44, IMM 061 X_{Fe}: 0.45, IMM 044 X_{Fe}: 0.41; Typ II: IMM 089 X_{Fe}: 0.42, SM 1063 X_{Fe}: 0.44), während Proben mit etwas niedrigerem X_{Fe} Granat-ärmer sind (Typ I: IMM 051 X_{Fe}: 0.36, IMM 056 X_{Fe}: 0.33, IMM 102 X_{Fe}: 0.37). Ein vermehrtes Auftreten von Chlorit in den eher Magnesium-betonten Proben, das dem T-X-Schnitt zufolge zu erwarten ist, konnte in diesen Gesteinen nicht festgestellt werden.

Im System KMnFMASH wird die Stabilisierung von Granat durch die Anwesenheit von Mangan begünstigt (vgl. Kap. 6.3). Die Typ II-Proben IMM 063 (X_{Fe} : 0.37) und SM 68 (X_{Fe} : 0.36) führen trotz ihrer eher niedrigeren Eisen-Magnesium-Verhältnisse reichlich Granat, der modal Anteile von knapp 8 Vol.-% bzw. 11 Vol.-% erreicht. Dieser relative Granat-Reichtum resultiert offenbar aus den recht hohen MnO-Gehalten der beiden Proben von 0.35 Gew.-% (IMM 063) bzw. 0.28 Gew.-% (SM 68). Auch für die übrigen Proben ist dieser Aspekt zu berücksichtigen.

Der Staurolith-Isograd ist im System KFMASH vergleichsweise scharf abgegrenzt und wird von der Gesteinzusammensetzung weniger stark beeinflußt (Abb.7.5). Während der progressiven Metamorphose bildet sich Staurolith bei Temperaturen nahe 600 °C bei mittleren bis hohen Eisen-Magnesium-Verhältnissen von etwa $X_{Fe} = 0.4 - 0.9$. Aus dem T- $X_{Mg/(Mg+Fe)}$ -Schnitt im Modellsystem KFMASH nach WILL (1998b) geht hervor, daß in Gesteinen mit höherem X_{Fe} von ca. 0.9 - 1.0 nur Granat mit Biotit, Muscovit, Quarz und H₂O stabil ist, und niedrigere X_{Fe} von ca. 0 - 0.4 die Ausbildung von Chlorit mit Biotit, Muscovit, Quarz und H₂O bedingen.

Abb. 7.5

Isobarer T-X-Schnitt im metapelitischen Modellsystem KFMASH (+ bi + mu + q + H_2O) nach WILL (1998b). Deutlich zeigt sich die Abhängigkeit des ersten Auftretens von Granat vom Eisen-Magnesium-Verhältnis im Gestein. Der Einfluß von Mangan auf die Granat-, in "-Reaktion ist hier noch nicht berücksichtigt. Die gestrichelten Linien mit den kursiven Probenbezeichnungen repräsentieren die Gesteinszusammensetzungen der Staurolith-Glimmerschiefer. Erläuterungen vgl. Text.

Die hier betrachteten Staurolith-Glimmerschiefer der Mömbris-Formation liegen mit ihren Eisen-Magnesium-Verhältnissen von $X_{Fe} = 0.33 - 0.45$ (s.o.) außerhalb bzw. in der Nähe des Staurolith-Stabilitätsfeldes. Staurolith liegt jedoch in den Gesteinen häufig an die Glimmerlagen gebunden vor, was für eisenreichere Domänen innerhalb der Glimmerschiefer spricht und diese Diskrepanz erklären kann.

Die Situation für die einzelnen Proben wird im folgenden aus den P-T-Pseudoschnitten ersichtlich.

IMM 039

Der P-T-Pseudoschnitt für die Probe IMM 039 (Abb. 7.6) basiert auf der normalisierten Gesteinszusammensetzung K_2O : MnO : FeO : MgO : $Al_2O_3 = 12.00 : 1.50 : 26.40 : 19.36 : 40.7$ (Mol-%, auf 100 normiert). Die Reaktion

Chlorit + Staurolith = Biotit + Granat + Disthen + H₂O (KMnFMASH) ist für diese Gesteinsprobe nur in sehr kleinen Bereich zu "sehen". Dies ist wohl, zumindest teilweise, in dem relativ niedrigen Al₂O₃-Gehalt von 40.7 Mol-% im normalisierten Stoffbestand dieser Gesteinsprobe begründet. Die nomalisierte Gesteinszusammensetzung der Probe IMM 039 zeigt unter den Gesteinen der Mömbris-Formation, für die Pseudoschnitte berechnet wurden, den geringsten Aluminium-Gehalt. Im P-T-Pseudoschnitt dieser Probe werden durch die relative Aluminium-Armut die Stabilitätsfelder der Al₂SiO₅-Minerale Disthen bzw. Sillimanit entsprechend zurückgedrängt, Andalusit-beinhaltende Paragenesen können im Gestein gar nicht stabilisiert werden. Auch die im Vergleich zu den anderen Pseudoschnitten (s.u.) geringe Größe des divarianten Feldes g + bi + st + ky (+ mu + $q + H_2O$) ist offensichtlich ebenfalls auf den recht niedrigen Al₂O₃-Gehalt zurückzuführen. Aus dem Pseudoschnitt wird jedoch ersichtlich, daß die Bildung von Disthen, Sillimanit bzw. Cordierit aufgrund der Gesteinszusammensetzung grundsätzlich möglich gewesen wäre.

Die Abwesenheit von Disthen zeigt also, daß die Reaktion

Chlorit + Staurolith = Biotit + Granat + Disthen + H_2O (KMnFMASH, unterhalb der Singularität) bzw.

Chlorit + Staurolith + Granat = Biotit + Disthen + H_2O (KMnFMASH, oberhalb der Singularität) bzw.

 $Chlorit + Staurolith = Biotit + Disthen + H_2O (KFMASH)$

noch nicht überschritten wurde.

P-T-Pseudoschnitt IMM 039. Der Pseudoschnitt wurde im erweiterten metapelitischen Modellsystem KMnFMASH $(+q + mu + H_2O)$ für den oben angegebenen, normalisierten Stoffbestand berechnet. Quarz, Muscovit und Wasser sind Überschußphasen. Al₂SiO₅-Tripelpunkt nach HOLLAND & POWELL (1990). Der Al₂SiO₅-Tripelpunkt basiert auf dem Modellsystem und liegt bei 4.3 kbar und 550 °C.

Der rekonstruierbare Ast des P-T-Pfades ist im Dünnschliff durch folgende Situationen dokumentiert (vgl. auch Kap. 3.2.1.1 u. 3.2.1.3):

- Granat, Biotit und Staurolith liegen in gegenseitigem Kontakt vor.
- Granat-Einschlüsse in Staurolith deuten auf eine Granat-Bildung vor dem Staurolith-Wachstum hin (Abb. 7.7). Diese Situation zeigt das Überschreiten der Reaktion

Granat + Chlorit + Muscovit = Staurolith + Biotit + Quarz + H₂O (SPEAR 1993) bzw.

 $Granat + Chlorit = Biotit + Staurolith + H_2O (KFMASH) an.$

Im P-T-Pseudoschnitt wird sie durch den Übergang von der trivarianten Paragenese $g + chl + bi (+ mu + q + H_2O)$ zum divarianten Feld $g + chl + bi + st (+ mu + q + H_2O)$ deutlich. Das Ausreagieren von progradem Chlorit, der nicht im Gestein vorliegt, führte zum Übergang in das trivariante Feld $g + bi + st (+ mu + q + H_2O)$.

- Die Mineralparagenese Staurolith-Granat-Biotit-Muscovit repräsentiert den Höhepunkt der Metamorphose dieses Gesteins. Die Phasenbeziehungen veranschaulicht das AFM-Diagramm (Abb. 7.4).
- Da Chlorit retrograd aus Staurolith, Granat und Biotit gebildet wird, muß das divariante Feld g + chl + bi + st (+ mu + q + H₂O) von dem retrograden Ast des P-T-Pfades durchlaufen werden.

Abb. 7.7

Mikrofoto IMM 039: Granat-Einschluß in einem nahezu idiomorphen Staurolith-Kristall. Der Staurolith zeigt typische Einschlüsse von Quarz, er wird von Biotit und Hellglimmern umflossen und ist von Rissen durchzogen. Das Foto belegt das gemeinsame Vorkommen von Staurolith, Granat, Biotit und Hellglimmer. 1 Nic., Bildbreite ca. 2.5 mm.

Der Druck-Temperatur-Pfad für das Gestein wird im wesentlichen durch die peakmetamorphe Mineralparagenese g + bi + st (+ mu + q + H₂O) definiert, die im Pseudoschnitt durch ein trivariantes Feld repräsentiert wird. Für den Metamorphose-Höhepunkt können demzufolge Temperaturen um 600 bis 610 °C und Drucke im Bereich von ca. 6 bis 8 kbar angenommen werden. Prograd gebildeter Chlorit ist im Gestein nicht mehr vorhanden. Aufgrund des trivarianten Feldes g + chl + bi + mu + q + H₂O sowie des divarianten Feldes g + chl + bi + st (+ mu + q + H₂O) wird jedoch deutlich, daß während der prograden Metamorphoseentwicklung Chlorit stabil gewesen sein muß. Der Verlauf des prograden Astes des P-T-Pfades durch den Stabilitätsbereich von Granat steht in Einklang mit der prograden Wachtumszonierung einiger Granat-Kristalle dieses Gesteins (vgl. Kap. 4.1). Die absteigende Entwicklung wird durch die petrographisch zu beobachtende retrograde Bildung von Chlorit aus Staurolith, Granat und Biotit belegt, daher muß der P-T-Pfad durch das Stabilitätsfeld $g + chl + bi + st (+ mu + q + H_2O)$ wieder in das trivariante Feld $g + chl + bi (+ mu + q + H_2O)$ laufen. Der dokumentierte Druck-Temperatur-Pfad verläuft im Uhrzeigersinn (Interpretation vgl. Kap. 7.2 und Kap. 8).

Die peakmetamorphen Druck-Temperatur-Bedingungen wurden mittels konventioneller Geothermobarometer und intern-konsistenter Datensätze abgeschätzt. Konventionelle Granat-Biotit-Thermometer (vgl. Kap. 6.4) ergaben für IMM 039 meist Temperaturen im Bereich von 460 bis 520 °C. Im einzelnen lieferten die verschiedenen Kalibrationen der Granat-Biotit-Thermometer folgende Werte (Abb. 7.8):

- 410 420 °C nach FERRY & SPEAR (1978),
- 460 470 °C nach HODGES & SPEAR (1982),
- 480 495 °C nach PERCHUK & LAVRENT'EVA (1983),
- 475 485 °C nach INDARES & MARTIGNOLE (1985),
- 500 510 $^{\circ}$ C nach HOINKES (1986) und
- 510 520 °C nach Kleemann & Reinhard (1994).

Die Ergebnisse der unterschiedlichen Granat-Biotit-Thermometer variieren mäßig um maximal ca. 60 °C. Die Unterschiede liegen somit im Bereich der Fehlergrenzen, die für diese Thermometer häufig ± 30 bis ± 50 °C betragen. Nur die mit dem Granat-Biotit-Thermometer von FERRY & SPEAR (1978) ermittelten Werte um 410 - 420 °C liegen deutlich niedriger, was nach SPEAR (1993, S. 528) darauf zurückzuführen ist, daß die Kalibration ausschließlich den Fe-Mg-Austausch berücksichtigt. Demgegenüber beinhalten z.B. die Kalibrationen nach HODGES & SPEAR (1982), PERCHUK & LAVRENT'EVA (1983) und HOINKES (1986) zusätzlich Korrekturen für die Grossular-Komponente im Granat, die mit Pyrop ein nicht-ideales Mischungsverhalten aufweist (SPEAR 1993, vgl. Kap. 6.4).

Mit dem Geobarometer nach MASSONNE & SCHREYER (1987) (Si-Isoplethen) konnte für IMM 039 anhand zweier phengitischer Hellglimmer mit Si-Anteilen von 6.52 und 6.54 p.f.u. ein Mindestdruck der Metamorphose von ca. 7 - 8 kbar abgeleitet werden (Abb. 7.8, vgl. Kap. 4.4 u. 6.4). Dieser könnte den prograden Ast der Metamorphose-Entwicklung repräsentieren. Die Hellglimmer liegen jedoch am Rand eines Granat-Kristalls und nicht als klassische Einschluß-

Situation, von retrograden Einflüssen abgeschirmt, vor. Mittels des intern-konsistenten Datensatzes von HOLLAND & POWELL (1992) wurden für IMM 039 für eine Wasseraktivität von $a_{H2O} = 1.0$ Temperaturen von 506 ± 94 °C und Drucke von 6.0 ± 1.6 kbar abgeleitet (Abb. 7.8).

Abb. 7.8

Ergebnisse der konventionellen Geothermobarometrie für IMM 039. Dargestellt sind die Reaktionen der Granat-Biotit-Thermometer sowie die "Si-Isoplethen" des Geobarometers nach MASSONNE & SCHREYER (1987). Die Fehlergrenzen wurden aus Gründen der Übersichtlichkeit nicht dargestellt. Weiterhin sind die Ergebnisse der Berechnungen mittels des intern-konsistenten Datensatzes von HOLLAND & POWELL (1990) mit den Fehlergrenzen eingetragen. F&S = FERRY & SPEAR (1978), H&S = HODGES & SPEAR (1982), P&L = PERCHUK & LAVRENT'EVA (1983), I&M = INDARES & MARTIGNOLE (1985), Hoi = HOINKES (1986), K&R = KLEEMANN & REINHARD (1994) und H & P = HOLLAND & POWELL (1990). Die Zahlen 3.1 - 3.4 bezeichnen die Si-Gehalte in phengitischen Hellglimmern nach MASSONNE & SCHREYER (1987).

Zusammenfassend ergeben sich für die Probe IMM 039 zwischen den Ergebnissen der konventionellen Granat-Biotit-Thermometrie von ca. 500 °C und den aus dem P-T-Pseudoschnitt zu entnehmenden Temperaturen um ca. 600 °C für den Metamorphose-Höhepunkt Unterschiede im Bereich von etwa 100 °C. Auch unter Berücksichtigung der Fehlergrenzen bleiben hier Differenzen um etwa 50 °C erhalten. Diese Tatsache deutet darauf hin, daß die Eisen-Magnesium-Verteilung zwischen Granat und Biotit - auf der die Thermometer beruhen offenbar schon retrograd beeinflußt wurde und nicht mehr das wirkliche

Verteilungsgleichgewicht am Metamorphose-Höhepunkt widerspiegeln. Einen Hinweis hierauf könnten auch die teilweise abgeflachten Granat-Zonierungsprofile dieser Probe darstellen (vgl. Kap. 4.1). Die geobarometrisch abgeleiteten Metamorphose-Drucke von ca. 7 - 8 kbar und die aus dem P-T-Pseudoschnitt ablesbaren Drucke von ca. 6 - 8 kbar weisen dagegen eine gute Übereinstimmung auf. Auch die mit intern-konsistenten Datensätzen abgeschätzten Temperaturen und Drucke liegen scheinbar etwas niedriger als die im P-T-Pseudoschnitt dokumentierten Werte. Werden jedoch die großen Fehlerbereiche dieser Daten mit in Betracht gezogen, zeigt sich im wesentlichen ebenfalls eine Entsprechung.

IMM 051

Der P-T-Pseudoschnitt für die Gesteinsprobe IMM 051 (Abb. 7.9) wurde für die normalisierte Gesteinszusammensetzung K_2O : MnO : FeO : MgO : $Al_2O_3 = 12.40$: 1.00 : 23.10 : 20.40 : 43.10 (Mol-%, auf 100 normiert) berechnet. In der Darstellung wird offensichtlich, daß die Reaktion

 $Chlorit + Staurolith = Biotit + Granat + Disthen + H_2O (KMnFMASH)$

für diese Gesteinsprobe in einem deutlich größeren Bereich zu "sehen" ist als in der Probe IMM 039. Das divariante Feld g + bi + st + ky (+ mu + q + H₂O) ist, vermutlich wegen des höheren Aluminium-Anteils im Gestein, größer als im Schnitt der Probe IMM 039, dadurch kommt das trivariante Feld g + bi + st (+ mu + q + H₂O) nicht im Pseudoschnitt vor. Die genannte Gleichgewichtskurve wurde jedoch nicht in Richtung einer Disthen-Bildung überschritten, was aus dem Fehlen von Disthen in der Probe deutlich wird. Die Phasenbeziehungen in dieser Probe sind im AFM-Diagramm (Abb. 7.4) dargestellt.

Aus dem Gesteins-Dünnschliff ergeben sich im wesentlichen folgende Anhaltspunkte zur Druck-Temperatur-Entwicklung:

- Granat, Biotit und Staurolith liegen wiederum in gegenseitigem Kontakt vor.
- Aus der Anwesenheit von Staurolith wird deutlich, daß die Reaktion

Granat + Chlorit + Muscovit = Staurolith + Biotit + Quarz + H₂O (SPEAR 1993), bzw.

 $Granat + Chlorit = Biotit + Staurolith + H_2O (KFMASH)$

überschritten wurde, was sich im P-T-Pseudoschnitt durch den Übergang vom trivarianten Feld $g + chl + bi (+ mu + q + H_2O)$ zur divarianten Paragenese $g + chl + bi + st (+ mu + q + H_2O)$ zeigt.

Abb. 7.9

P-T-Pseudoschnitt IMM 051. Der Pseudoschnitt wurde im erweiterten metapelitischen Modellsystem KMnFMASH $(+q + mu + H_2O)$ für den angegebenen, normalisierten Stoffbestand berechnet. Quarz, Muscovit und Wasser sind Überschußphasen. Al₂SiO₅-Tripelpunkt nach HOLLAND & POWELL (1990).

Der Metamorphose-Höhepunkt ist in der Probe IMM 051 durch die Paragenese g + chl + bi + st (+ mu + q + H₂O) und im P-T-Pseudoschnitt durch das entsprechende Feld repräsentiert. Der Druck-Temperatur-Pfad im Uhrzeigersinn wird im wesentlichen durch dieses schmale divariante Stabilitätsfeld bestimmt und dokumentiert maximale Metamorphose-Bedingungen um 600 bis 615 °C und 6 bis 8 kbar. Auch in dieser Probe war kein prograd gebildeter Chlorit mehr nachzuweisen. Im P-T-Pseudoschnitt zeigt sich jedoch, daß der P-T-Pfad das trivariante Feld g + chl + bi (+ mu + q + H₂O) vermutlich durchlaufen haben muß. Der retrograde Ast des P-T-Pfades führt wieder in dieses trivariante Feld g + chl + bi (+ mu + q + H₂O), was aus dem Auftreten von retrograd gebildetem Chlorit zu schließen ist.

Das Gestein IMM 051 weist mit 324 ppm den höchsten Zink-Gehalt aller untersuchten Glimmerschiefer der Mömbris-Formation auf, dieser kann die Staurolith-Bildung begünstigen (vgl. Kap. 6.2). Da Zink im Modellsystem nicht enthalten ist, zeigt sich ein solcher Einfluß im Pseudoschnitt nicht. Aus der Mineralanalytik ließen sich für die Probe keine eindeutigen Hinweise zur Druck-Temperatur-Entwicklung ableiten, so liefern z.B. die Granat-Kristalle im wesentlichen abgeflachte Elementverteilungsmuster.

Durch Granat-Biotit-Thermometrie ergaben sich für IMM 051 überwiegend Temperaturen von 560 bis 595 °C, wobei die verschiedenen Kalibrationen im Detail folgende Ergebnisse lieferten (Abb. 7.10; vgl. Kap. 6.4):

- 555 565 °C nach FERRY & SPEAR (1978),
- 575 585 °C nach HODGES & SPEAR (1982),
- 570 585 °C nach Perchuk & Lavrent'eva (1983),
- 585 595 °C nach INDARES & MARTIGNOLE (1985),
- 610 620 $^\circ C$ nach HOINKES (1986) und
- 575 585 °C nach KLEEMANN & REINHARD (1994).

Die nach FERRY & SPEAR (1978) abgeschätzten Temperaturen liegen wiederum niedriger als die Ergebnisse der übrigen Kalibrationen, die Abweichung ist jedoch deutlich geringer als im Falle der Probe IMM 039 und liegt hier im Bereich des Fehlers der Abschätzungen. Das Granat-Biotit-Thermometer nach HOINKES (1986) erbrachte für IMM 051 etwas höhere Temperaturen als die Vergleichswerte, die Unterschiede liegen jedoch ebenfalls innerhalb der Fehlergrenzen. Auf der Grundlage des Granat-Staurolith-Thermometers nach PERCHUK (1969) wurden Temperaturen von 550 bis 600 °C ermittelt. Die Abschätzung des Metamorphosedrucks mit den Si-Isoplethen nach MASSONNE & SCHREYER (1987, vgl. Kap. 6.4) ergab aufgrund maximaler Si-Gehalte in

Hellglimmern von 6.12 und 6.19 p.f.u. für IMM 051 nur Mindestdrucke von 3 - 4 kbar. Diese Drucke repräsentieren offenbar nicht mehr den Peak der Metamorphose und sind geologisch nicht als realistisch anzusehen.

Die Kombination der gewonnenen Daten weist für die Probe IMM 051 peakmetamorphe Bedingungen um etwa 600 °C und 6 bis 8 kbar aus. Die mit konventionellen Granat-Biotit-Geothermometern ermittelten Temperaturen bestätigen die durch den P-T-Pfad belegte Metamorphose-Entwicklung.

Abb. 7.10

Ergebnisse der Granat-Biotit-Thermometer für IMM 051 und IMM 056. Die Fehlergrenzen wurden aus Gründen der Übersichtlichkeit nicht eingezeichnet. Die ermittelten Temperaturen unterscheiden sich innerhalb des Fehlers nicht signifikant. F&S = FERRY & SPEAR (1978), H&S = HODGES & SPEAR (1982), P&L = PERCHUK & LAVRENT'EVA (1983), I&M = INDARES & MARTIGNOLE (1985), Hoi = HOINKES (1986) und K&R = KLEEMANN & REINHARD (1994).

IMM 021

Dem P-T-Pseudoschnitt für die Gesteinsprobe IMM 021 (Abb. 7.11) liegt die normalisierte Gesteinszusammensetzung K_2O : MnO : FeO : MgO : Al₂O₃ = 13.28 : 0.90 : 20.57 : 16.65 : 48.60 (Mol-%, auf 100 normiert) zugrunde. Die Gleichgewichtskurve der wichtigen Reaktion

Chlorit + Staurolith = Biotit + Granat + Disthen + H_2O (KMnFMASH) ist für diese Probe in einem größeren Bereich relevant. Durch die Paragenese g + chl + st (+ mu + q + H_2O), die ein trivariantes Feld einnimmt, ist der Stabilitätsbereich von Staurolith bis zu niedrigeren Temperaturen von knapp 570 °C ausgeweitet. In den zuvor erläuterten P-T-Pseudoschnitten für die Gesteine IMM 039 und IMM 051 ist dieses trivariante Feld g + chl + st (+ mu + q + H_2O) nicht ausgebildet.

Für die Stabilisierung von Staurolith spielt der Zink-Gehalt im Gesamtgestein eine wichtige Rolle (vgl. Kap. 6.2). In dieser Probe liegt er mit 164 ppm im mittleren Bereich. Der Einfluß von Zink kann im P-T-Pseudoschnitt im System KMnFMASH nicht dokumentiert werden.

Im Vergleich mit den Pseudoschnitten der Proben IMM 039 und IMM 051 zeigt die Topologie dieses P-T-Pseudoschnitts, daß die Probe IMM 021 aufgrund ihrer Zusammensetzung in der Lage wäre, Chloritoid-führende Paragenesen, wie z.B. ctd + chl +g + st (+ mu + q + H₂O), zu stabilisieren. Chemisch ist dies auf den vergleichsweise höheren Al₂O₃-Gehalt im Stoffbestand der Probe zurückzuführen. Im Gestein liegt jedoch kein Chloritoid – auch nicht in reliktischer Form – vor. Sollte Chloritoid also existiert haben, müßte er im Verlauf der Metamorphose vollständig aufgezehrt worden sein. Es ist allerdings ebenfalls möglich, daß die metamorphen Druck-Temperatur-Bedingungen die Bildung von Chloritoid in diesem Gestein nicht zuließen. Die im Gestein ausgebildete Paragenese zeigt maximale Metamorphose-Bedingungen jenseits der Reaktion

Chloritoid = Granat + Chlorit + Staurolith + H2O (KFMASH)

an. Die petrographischen Gegebenheiten lassen hier keine sichere Aussage zu. Da jedoch in keiner der hier untersuchten Gesteinsproben Chloritoid vorliegt – und auch in der Literatur für das Spessart-Kristallin kein Auftreten dieses Minerals beschrieben wurde – ist anzunehmen, daß die Bildungsbedingungen von Chloritoid nicht erreicht wurden.

Abb. 7.11

P-T-Pseudoschnitt IMM 021. Der Pseudoschnitt wurde im erweiterten metapelitischen Modellsystem KMnFMASH $(+q + mu + H_2O)$ für den angegebenen, normalisierten Stoffbestand berechnet. Quarz, Muscovit und Wasser sind Überschußphasen.

Die petrographische Situation im Dünnschliff läßt sich mit dem P-T-Pseudoschnitt folgendermaßen in Zusammenhang setzen (Abb. 7.12):

- Die Anwesenheit von Granat und Staurolith in dieser Probe weist auf einen Verlauf des progrades Astes des P-T-Pfades durch das trivariante Feld der Paragenese $g + chl + st (+ mu + q + H_2O)$ hin. Die mögliche Existenz von zwei Generationen von Staurolith (und Granat) steht damit in Einklang, sie wird aus dem Pseudoschnitt jedoch nicht eindeutig erklärt (s.u., vgl. auch IMM 089).
- Das gemeinsame Vorkommen von Staurolith und Biotit zeigt das Überschreiten der Reaktion
 Granat + Chlorit + Muscovit = Staurolith + Biotit + Quarz + H₂O (SPEAR 1993), bzw.
 Granat + Chlorit = Biotit + Staurolith + H₂O (KFMASH)

an. Im P-T-Pseudoschnitt wird dies durch den Übergang vom trivarianten Feld g + chl + st (+ $mu + q + H_2O$) zur divarianten Paragenese g + chl + bi + st (+ $mu + q + H_2O$) belegt.

- Wiederum repräsentiert der gegenseitige Kontakt von Granat, Biotit und Staurolith das Metamorphose-Maximum. Die Phasenbeziehungen zeigt das AFM-Diagramm (Abb. 7.4).

Abb. 7.12

Mikrofoto IMM 021: Das Foto dokumentiert die divariante Mineralparagenese $g + chl + bi + st (+ mu + q + H_2O)$. Xenomorpher Staurolith liegt in Kontakt zu Granat und Biotit vor, Chlorit stellt eine retrograde Neubildung dar. Der Granat-Kristall wird teilweise von dem Staurolith eingeschlossen. Dieser ist stark von Rissen, mit beginnender Chloritisierung, durchzogen und fragmentiert. Im Grundgewebe liegen Biotit, Hellglimmer, leicht sericitisierter Plagioklas und Quarz vor, am Rand ist etwas Chlorit erkennbar. 1 Nic., Bildbreite ca. 3 mm.

Ein Verlauf des prograden Astes des P-T-Pfades durch das trivariante Feld $g + chl + st (+ mu + q + H_2O)$ ist damit aufgrund der im Gestein vorliegenden Mineralparagenese wahrscheinlich. Das mögliche Vorliegen einer zweiten Generation von Staurolith könnte darauf hinweisen, daß Staurolith I zunächst neben Chlorit (und Granat) stabil war und später auf Kosten von Chlorit gemeinsam mit Biotit erneut gebildet wurde (Staurolith II). Einschlüsse von Granat in Staurolith und die Abwesenheit von Chloritoid könnten als Hinweis auf eine prograde Entwicklung vom quadrivarianten Feld $g + chl (+ mu + q + H_2O)$ zu dem genannten trivarianten Feld $g + chl + st (+ mu + q + H_2O)$ interpretiert werden. Der P-T-Pfad folgt wiederum dem divarianten Feld $g + chl + st (+ mu + q + H_2O)$. Die Abwesenheit von Disthen zeigt an, daß der Pfad durch keines der divarianten Felder der Paragenesen $g + chl + st + ky (+ mu + q + H_2O)$ bzw. g + bi + kt

st + ky (+ mu + q + H₂O) verläuft. Damit wird im Temperaturbereich um knapp 600 - 620 °C der maximal anzunehmende Druck bei ca. 9 bis 9.5 kbar (bzw. die maximale Temperatur) begrenzt. Trotz des vergleichsweise hohen Al_2O_3 -Anteils im Stoffbestand dieser Probe, der eine Bildung von Aluminiumsilicaten begünstigt, liegt kein Al_2SiO_5 -Mineral, wie z.B. Disthen, vor. Dies verdeutlicht ein Metamorphose-Maximum unterhalb des Stabilitätsbereiches von Disthen. Die Reaktion

 $Chlorit + Staurolith = Biotit + Granat + Disthen + H_2O (KMnFMASH)$

lief also auch in diesem Gestein nicht ab. Die Druck-Temperatur-Bedingungen am Höhepunkt der Metamorphose könnten demnach etwa 600 - 620 °C und 6.5 - 8.5 kbar erreicht haben. Da Staurolith und Granat retrograd zu Chlorit abgebaut werden, ist der Weg des P-T-Pfades in das trivariante Feld $g + chl + bi (+ mu + q + H_2O)$ dokumentiert. Ergänzende Hinweise zum Verlauf des P-T-Pfades liefern auch die Elementverteilungsmuster in Granat und Staurolith (vgl. Kap. 4.1 bzw. 4.2). Hieraus läßt sich auf ein überwiegend progrades Granat-Wachstum schließen. Die Abnahme des X_{Fe} in Granat von z.B. 0.91 auf 0.83 bzw. 0.87 auf 0.82 vom Kern zum Rand deutet aufgrund der (Fe/Fe+Mg)-Isoplethen in Granat im KFMASH-System nach SPEAR & CHENEY (1989) auf eine Temperaturzunahme von ca. 550 - 560 °C auf etwa 600 °C während des Granat-Wachstums hin, wodurch die im P-T-Pseudoschnitt dokumentierten Temperaturen bestätigt werden. Bezogen auf Staurolith kann die Abnahme des X_{Mg} am Rand als Hinweis auf eine Druck- bzw. Temperaturabnahme gegen Ende des Wachstums gewertet werden. Diese Sachverhalte stehen in Übereinstimmung mit der zuvor beschriebenen Druck-Temperatur-Entwicklung des Gesteins, die ebenfalls im Uhrzeigersinn verläuft. Gemeinsam aus dem Druck-Temperatur-Pfad und den im Dünnschliff festzustellenden Anzeichen für ein prä- bis syntektonisches Wachstum von Granat und Staurolith ergibt sich die Vorstellung eines relativ engen zeitlichen Zusammenhanges zwischen Hauptdeformation und Metamorphose-Höhepunkt des Gesteins.

Mit Granat-Biotit-Thermometern (vgl. Kap. 6.4) wurden für IMM 021 im wesentlichen Temperaturen von 410 bis 490 °C abgeschätzt. Im einzelnen ergaben die verschiedenen Kalibrationen folgende Werte:

- 365 375 °C nach FERRY & SPEAR (1978),
- 405 415 °C nach HODGES & SPEAR (1982),
- 450 460 °C nach PERCHUK & LAVRENT'EVA (1983),
- 410 420 °C nach INDARES & MARTIGNOLE (1985),
- 435 445 °C nach HOINKES (1986) und
- 480 490 °C nach Kleemann & Reinhard (1994).

Diese Temperaturen liegen deutlich niedriger und variieren stärker als die konventionell berechneten Daten für alle anderen Proben. Offenbar wurde die ursprüngliche Eisen-Magnesium-Verteilung zwischen Granat und Biotit durch Diffusionsprozesse retrograd beeinflußt, daher ist die Aussagekraft der abgeleiteten Temperaturen in diesem Falle stark eingeschränkt. Die mit der Kalibration nach FERRY & SPEAR (1978) berechneten Temperaturen sind auch in diesem Falle geringer als die sich aus den übrigen Ansätzen ergebenden. Die geobarometrisch mit den Si-Isoplethen nach MASSONNE & SCHREYER (1987) für diese Probe ermittelten Mindestdrucke liegen bei etwa 4 kbar (maximaler Si-Gehalt in Hellglimmern 6.18 bzw. 6.25 p.f.u.) und repräsentieren wohl ebenfalls nicht mehr den Metamorphosepeak (vgl. Kap. 6.4). Diese Feststellungen stehen in Einklang mit der petrographisch beobachteten beginnenden retrograden Überprägung des Gesteins. Demgegenüber erscheinen die aus dem P-T-Pseudoschnitt entnommenen Werte von ca. 600 - 620 °C und 6.5 - 8.5 kbar für das Maximum der Metamorphose wesentlich plausibler.

Die für diese Staurolith-Glimmerschiefer des Typs I dargestellten Ergebnisse zeigen recht ähnliche Metamorphose-Bedingungen sowie einen vergleichbaren Druck-Temperatur-Pfad im Uhrzeigersinn an. Um ein räumlich dichteres und umfassenderes Bild zu bekommen, wurden an einigen Gesteinen des Typs I noch zusätzliche, punktuelle Berechnungen im KMnFMASH vorgenommen und weitere Druck-Temperatur-Abschätzungen durchgeführt. An den Proben IMM 056 und IMM 102 wurde insbesondere überprüft, welche Reaktionen im KMnFMASH in welchen Druck-Temperatur-Bereichen für die Gesteine relevant sind, und ob sich daraus abweichende P-T-Pseudoschnitte ergäben (ohne Abbildungen). Für die Gesteine IMM 056 und IMM 061 erfolgten konventinelle geothermobarometrische Abschätzungen sowie für IMM 061 auch Berechnungen mittels intern-konsistenter Datensätze.

IMM 056

Für IMM 056 basieren die KMnFMASH-Berechnungen auf der Zusammensetzung K_2O : MnO : FeO : MgO : Al₂O₃ = 12.10 : 1.22 : 20.06 : 20.69 : 45.93 (Mol-%, auf 100 normiert). Diese Gesteinszusammensetzung "sieht" im wesentlichen die Reaktionen

Chlorit + Staurolith = Biotit + Granat + Disthen + H_2O (KMnFMASH) im Druck-Temperatur-Bereich von 590 - 605 °C bei 5.2 - 6.7 kbar und

Granat + Chlorit = Biotit + Cordierit + $Al_2SiO_5 + H_2O$ (KMnFMASH) bei 579 - 581 °C und 4.35 - 4.45 kbar. Daraus resultiert für den Pseudoschnitt eine im wesentlichen ähnliche Topologie wie in den zuvor dargestellten P-T-Pseudoschnitten. Das die Paragenese repräsentierende, divariante Feld $g + chl + bi + st (+ mu + q + H_2O)$ erstreckt sich entlang der erstgenannten Reaktion und definiert damit, wie im Falle der Proben IMM 051 und IMM 021, das Maximum der Metamorphose.

Die Granat-Biotit-Thermometrie lieferte für IMM 056 Temperaturen von 535 bis 580 °C. Dabei zeigen die verschiedenen Kalibrationen folgende Werte an (Abb. 7.10):

- 510 520 °C nach FERRY & SPEAR (1978),
- 535 545 °C nach HODGES & SPEAR (1982),
- 545 560 °C nach PERCHUK & LAVRENT'EVA (1983),
- 575 585 °C nach INDARES & MARTIGNOLE (1985),
- 570 580 °C nach HOINKES (1986) und
- 550 560 °C nach Kleemann & Reinhard (1994).

Mit dem Geobarometer nach MASSONNE & SCHREYER (1987) (Si-Isoplethen, vgl. Kap. 6.4) ergaben sich anhand der Si-Gehalte im Hellglimmer von 6.32 und 6.24 p.f.u. für diese Probe Mindestdrucke von 5 - 6 kbar. Die konventionell abgeschätzten Drucke und Temperaturen liegen in diesem Falle zwar tendenziell etwas niedriger als die durch den Pseudoschnitt definierten Daten, jedoch innerhalb der Fehlergrenzen der Methoden. Die Ergebnisse stimmen somit recht gut überein und deuten für den Metamorphosepeak etwa 580 bis 600 °C und ca. 5 bis 7 kbar an. Damit zeichnen sich für die Probe IMM 056 vergleichbare Metamorphose-Bedingungen ab wie für die zuvor beschriebenen Gesteine.

IMM 102

Ähnliche Ergebnisse erbrachten auch die phasenpetrologischen Berechnungen für die Probe IMM 102, wobei der Stoffbestand K₂O : MnO : FeO : MgO : $Al_2O_3 = 6.42 : 0.28 : 30.83 : 21.65 : 40.82$ (Mol-%, auf 100 normiert) zugrundegelegt wurde. Das wichtige divariante Feld g + chl + bi + st (+ mu + q + H₂O), das die peakmetamorphe Paragenese darstellt, liegt in einem P-T-Bereich von 580 °C bei 4.5 kbar bis 603 °C bei 6.8 kbar und ist nur wenige Grad breit. Die phasenpetrologischen Berechnungen für dieses Gestein führen demnach zu vergleichbaren Resultaten wie die zuvor beschriebenen Pseudoschnitte.

IMM 061

Weitere konventionelle geothermobarometrische Abschätzungen und Berechnungen mittels intern-konsistenter Datensätze wurden an der Probe IMM 061 des Typs I durchgeführt. Petrographisch weist dieses Gestein deutliche Anzeichen einer retrograden Überprägung auf. Die Granat-Biotit-Thermometer ergaben für IMM 061 Temperaturen von 550 bis 635 °C, wobei die Kalibrationen im einzelnen zu folgenden Werten führten (Abb. 7.13):

- 550 560 °C nach FERRY & SPEAR (1978),
- 585 595 °C nach HODGES & SPEAR (1982),
- 570 585 °C nach PERCHUK & LAVRENT'EVA (1983),
- 550 560 °C nach INDARES & MARTIGNOLE (1985),
- 630 640 $^{\circ}\text{C}$ nach HOINKES (1986) und
- 580 590 °C nach Kleemann & Reinhard (1994).

Die Ergebnisse der verschiedenen Thermometer variieren hier in einem recht kleinen Bereich zwischen 550 und 595 °C, nur die Kalibration nach HOINKES (1986) lieferte ca. 50 °C höhere Werte. Das Granat-Staurolith-Thermometer nach PERCHUK (1969) weist Temperaturen von 550 bis 600 °C aus. Anhand der Si-Gehalte in Hellglimmern von 6.33 bzw. 6.27 p.f.u. zeigt das Geobarometer nach MASSONNE & SCHREYER (1987) einen Mindestdruck um 5 - 6 kbar an (vgl. Kap. 6.4).

Mittels des intern-konsistenten Datensatzes von HOLLAND & POWELL (1990) wurden für IMM 061 für eine Wasseraktivität von $a_{H2O} = 1.0$ Temperaturen von 643 ± 122 °C und Drucke von 6.1 ± 1.8 kbar abgeleitet. Diese Temperaturen liegen scheinbar höher als die der meisten konventionellen Granat-Biotit-Thermometer und des Granat-Staurolith-Thermometers. Mit den Werten nach HOINKES (1986) stimmen sie recht genau überein. Die Druck-Temperatur-Werte spiegeln die retrograde Beeinflussung des Gesteins nicht eindeutig wider, möglicherweise liegt die Abweichung zwischen den verschiedenen Ansätzen jedoch hierin begründet. Unter Berücksichtigung des angegebenen Fehlers ist jedoch zwischen den auf verschiedene Weise berechneten Daten kein signifikanter Unterschied festzustellen.

Die Probe IMM 061 besitzt sowohl Granat-Kristalle, die auf eine prograde Wachstumszonierung hinweisen, als auch solche, deren Elementverteilung auf eine Temperatur-Abnahme während des Granat-Wachstums schließen lassen. In einem bereits teilweise abgebauten Granat (Generation I?) deutet die Abnahme des X_{Fe} vom Kern zum Rand von 0.86 auf 0.83 gemäß der Isoplethen für (Fe/Fe+Mg) in Granat im System KFMASH nach SPEAR & CHENEY (1989) eine Temperaturzunahme von etwa 560 auf 590 °C im Druckbereich von ca. 6 - 7 kbar an. In einem kleinen Granat-Kristall dagegen nimmt der X_{Fe} vom Kern zum Rand leicht von 0.82 auf 0.85 zu, was aufgrund der Isoplethen nach SPEAR & CHENEY (1989) eine Abnahme der Temperatur von etwa 600 auf 570 °C anzeigt. Diese Werte stimmen recht gut mit den Ergebnissen der

Geothermometrie überein. Besonders interessant ist weiterhin, daß die verschiedenen Granat-Zonierungen offensichtlich einen P-T-Pfad im Uhrzeigersinn dokumentieren.

Abb. 7.13

Ergebnisse der Granat-Biotit-Thermometer für IMM 061 und IMM 044. Die Fehlergrenzen wurden aus Gründen der Übersichtlichkeit nicht dargestellt. Die Temperaturen für IMM 061 spiegeln die petrographisch erkennbare retrograde Überprägung des Gesteins nicht wider. Für IMM 044, petrographisch als Übergang zu charakterisieren, liegen etwas höhere Temperaturen als für die typischen Gesteine des Typs I vor. F&S = FERRY & SPEAR (1978), H&S = HODGES & SPEAR (1982), P&L = PERCHUK & LAVRENT'EVA (1983), I&M = INDARES & MARTIGNOLE (1985), Hoi = HOINKES (1986) und K&R = KLEEMANN & REINHARD (1994).

IMM 044

Die Probe IMM 044 stellt petrographisch einen Übergang zwischen dem Typ I und dem Typ II des Staurolith-Glimmerschiefers dar (vgl. Kap. 3.2.1). Die Phasenbeziehungen in diesem Gestein veranschaulicht das AFM-Diagramm (Abb. 7.4) anhand der Zusammensetzungen miteinander koexistierender Minerale. Aus der Granat-Biotit-Thermometrie ergaben sich überwiegend Temperaturen im Bereich von 570 bis 620 °C, im Detail führten die verschiedenen Kalibrationen zu folgenden Ergebnissen (Abb. 7.13):

- 570 580 °C nach FERRY & SPEAR (1978),
- 610 620 °C nach HODGES & SPEAR (1982),
- 580 590 °C nach PERCHUK & LAVRENT'EVA (1983),
- 600 610 °C nach INDARES & MARTIGNOLE (1985),
- 660 670 °C nach HOINKES (1986) und
- 590 600 °C nach Kleemann & Reinhard (1994).

Die Granat-Biotit-Thermometer ergaben damit für diese Probe etwas höhere Temperaturen als für die typischen Gesteine des Typs I. Auch in diesem Falle liegen die nach HOINKES (1986) ermittelten Werte ca. 50 °C höher als die der übrigen Ansätze. Die Druckabschätzung aufgrund der Si-Isoplethen nach MASSONNE & SCHREYER (1987) zeigt bei maximalen Si-Gehalten in Hellglimmern von 6.20 bzw. 6.24 p.f.u. nur einen Mindestdruck von 3 - 4 kbar an (vgl. Kap. 6.4), was offensichtlich nicht mehr dem Höhepunkt der Metamorphose entspricht. Mittels des intern-konsistenten Datensatzes von HOLLAND & POWELL (1990) lassen sich für die Gesteinsprobe IMM 044 für eine Wasseraktivität von $a_{H2O} = 1.0$ Temperaturen von 670 ± 127 °C und Drucke von 5.8 ± 1.8 kbar eingrenzen. Diese Ergebnisse und diejenigen des Granat-Biotit-Thermometers nach HOINKES (1986) zeigen untereinander wiederum nur sehr geringe Abweichungen, während die übrigen Thermometer-Kalibrationen zu etwas niedrigeren Temperaturen führten. Die Ergebnisse der Abschätzungen stimmen jedoch innerhalb ihrer Fehlergrenzen ebenfalls überein.

Aufgrund der ausgebildeten Mineralparagenese $g + chl + bi + st (+ mu + q + H_2O)$ (vgl. Kap. 3.2.1) gestattet der von WILL (pers. Mitteilung) für diese Probe im KMnFMASH berechnete P-T-Pseudoschnitt eine Festlegung des P-T-Maximums durch das entsprechende divariante Feld, das sich im Bereich von ca. 590 °C bei 5.3 kbar bis 610°C bei 7.5 kbar erstreckt. Damit liegen die auf der Basis des intern-konsistenten Datensatzes sowie die nach HOINKES (1986) bestimmten Temperaturen etwa 70 °C höher als die durch den Pseudoschnitt definierten. Die phasenpetrologischen Daten sind jedoch in Anbetracht der auf die Gesteinschemie bezogenen

Berechnung im erweiterten metapelitischen Modellsystem und des komplexen thermodynamischen Datensatzes als realistischer anzusehen.

Insgesamt betrachtet ergibt sich für den Typ I des Staurolith-Glimmerschiefers das Bild einer recht einheitlichen Druck-Temperatur-Entwicklung im Uhrzeigersinn. Hinsichtlich des Höhepunktes der Metamorphose sind aus der Kombination des P-T-Pseudoschnitts mit der jeweiligen Mineralparagenese für alle Proben Temperaturen von ca. 600 bis 615 °C und Drucke von etwa 6.5 - 8 kbar abzulesen. Die Ergebnisse der konventionellen Abschätzungen variieren in Bezug auf die verschiedenen Proben mit Temperaturen zwischen 470 und 600 °C und Mindestdrucken im Bereich von 4 bis 6 kbar stärker. Die Berechnungen mittels internkonsistenter Datensätze ergaben, zusammengefaßt, Maximaltemperaturen von 500 - 650 °C \pm 120 °C bei Drucken von 5.8 - 6 ± 1.8 kbar. Unter Berücksichtigung der Fehlergrenzen weisen die mit unterschiedlichen Ansätzen gewonnen Daten jedoch eine recht gute Übereinstimmung auf, wie Tab. 7.1 zeigt. Die durch die P-T-Pseudoschnitte ermittelten Metamorphose-Bedingungen wesentlich geringere Schwankungen und eine deutlich bessere zeigen allerdings Reproduzierbarkeit als die Ergebnisse der übrigen Methoden. Auch die Möglichkeit, einen Pfad Druck-Temperatur-Entwicklung abzuleiten, stellt einen der enormen Vorteil des phasenpetrologischen Ansatzes dar.

7.1.1.2 Typ II des Staurolith-Glimmerschiefers

Stellvertretend für den Typ II des Staurolith-Glimmerschiefers der Mömbris-Formation wurden P-T-Pseudoschnitte für die Proben IMM 089, IMM 063 sowie SM 1063 konstruiert. Die Differenzierung zum Typ I basiert auf dem petrographischen Befund (vgl. Kap. 3.2.1). In diesen Proben ist ebenfalls das Auftreten der Minerale Staurolith + Granat + Biotit + Muscovit + Plagioklas + Quarz + Akzessorien ± Chlorit typisch. Die Proben IMM 063 und SM 68 führen darüber hinaus Disthen, im Gestein SM 1063 liegen zusätzlich Disthen und Sillimanit vor. Die Minerale Andalusit, Cordierit und Chloritoid kommen auch in diesen Gesteinen nicht vor. Die Phasenbeziehungen wurden anhand der Zusammensetzungen miteinander koexistierender Minerale im AFM-Diagramm (Abb. 7.14) dargestellt.

Darstellung der peakmetamorphen Mineralparagenesen in den Staurolith-Glimmerschiefern, Typ II, im AFM-Diagramm: IMM 089, IMM 063, SM 1063. Die darstellenden Punkte der Gesamtgesteinsanalysen liegen vermutlich aufgrund einer Unter- oder Überkorrektur für die Akzessorien am Rande bzw. außerhalb der Dreiphasenfelder.

Der Einfluß des Gesamtgesteinschemismus auf die Stabilitätsbeziehungen wird auch für das gemeinsame Auftreten von Disthen, Staurolith, Granat und Biotit deutlich. Die Mineralparagenese Disthen + Staurolith + Granat + Biotit + Muscovit + Quarz + H₂O ist nur in drei der hier untersuchten Proben zu beobachten (IMM 063, SM 68, SM 1063). Für ihre Stabilisierung sind bei niedrigen X_{Mn} und Drucken um 6 kbar Temperaturen im Bereich von

580 - 630 °C erforderlich (Abb. 7.15). Der T-X_{Fe}-Schnitt im System KMnFMASH nach MAHAR et al. (1997) (Abb. 7.15) zeigt weiterhin, daß die Paragenese Disthen + Staurolith + Granat + Biotit + Muscovit + Quarz + H₂O nur in einem engen Intervall des Eisen-Magnesium-Verhältnisses von etwa $X_{Fe} = 0.45 - 0.60$ stabil ist. Die untersuchten Disthen-führenden Staurolith-Glimmerschiefer besitzen Eisen-Magnesium-Verhältnisse von $X_{Fe} = 0.44$ (SM 1063), $X_{Fe} = 0.37$ (IMM 063) und $X_{Fe} = 0.36$ (SM 68). Diese Werte liegen am unteren Rand bzw. außerhalb des genannten Intervalls. Allerdings ist zu beachten, daß der T- X_{Fe} -Schnitt für einen konstanten Druck von P = 6 kbar und ein X_{Mn} von 0.01 berechnet wurde. Durch andere Druckbedingungen und veränderte Mangan-Gehalte im Gestein verschieben sich die Stabilitätsfelder der Mineralparagenesen etwas.

Abb. 7.15

Isobarer T- X_{Fe} -Schnitt im System KMnFMASH nach MAHAR et al. (1997), berechnet für einen Druck von P = 6 kbar und $X_{Mn} = 0.01$. Muscovit, Quarz und H₂O liegen im Überschuß vor. Die Paragenese Disthen + Staurolith + Granat + Biotit + Muscovit + Quarz + H₂O (schraffiertes Feld) ist nur in einem engen Intervall des Eisen-Magnesium-Verhältnisses stabil. Die gestrichelten Linien mit den kursiven Probennummern kennzeichnen die Gesteinszusammensetzung Disthen-führender Staurolith-Glimmerschiefer.

Den Einfluß von Mangan auf die Mineralparagenese Disthen + Staurolith + Granat + Biotit + Muscovit + Quarz + H₂O verdeutlicht der T- X_{Mn} -Schnitt im Modellsystem KMnFMASH nach MAHAR et al. (1997) für ein mittleres Eisen-Magnesium-Verhältnis von $X_{Fe} = 0.555$ bei einem

Druck von P = 7 kbar (Abb. 7.16). Das Stabilitätsfeld dieser Paragenese verläuft mit steigendem Mangan-Gehalt zu niedrigeren Temperaturen hin. Die Minerale Disthen + Staurolith + Granat + Biotit + Muscovit + Quarz + H₂O können in manganreicheren Gesteinen daher bereits bei Temperaturen um 590 °C gemeinsam vorkommen, während die Paragenese in manganarmen Gesteinen mit einem X_{Mn} unter 0.01 erst ab Temperaturen von etwa 630 - 650 °C stabilisiert wird. Von den hier vorliegenden Disthen-führenden Proben weist nur das Gestein SM 1063 ein X_{Mn} von 0.01 auf, während IMM 063 und SM 68 – entsprechend ihrer größeren MnO-Gehalte – auch höhere X_{Mn} von 0.04 bzw. 0.03 zeigen. Möglicherweise wurde die Disthen-Bildung in diesen beiden Gesteinen durch Mangan begünstigt, das nach WEI et al. (2004) im KFMASH in geringem Maße auch die Stabilität der Aluminiumsilicate vergrößert. Die übrigen, Disthenfreien, Proben weisen X_{Mn} im Bereich von 0.01 bis 0.03, meist von $X_{Mn} = 0.02$, auf. Der grundsätzliche Einfluß von Mangan auf die Stabilitätsbeziehungen im System KFMASH ist in Kap. 6.3 ausführlich dargelegt.

Abb. 7.16

Isobarer T- X_{Mn} -Schnitt im Modellsystem KMnFMASH nach MAHAR et al. (1997) berechnet für einen Druck von P = 7 kbar und ein mittleres Eisen-Magnesium-Verhältnis von $X_{Fe} = 0.555$. Muscovit, Quarz und H₂O liegen im Überschuß vor. Das Stabilitätsfeld der Paragenese Disthen + Staurolith + Granat + Biotit + Muscovit + Quarz + H₂O ist schraffiert hervorgehoben. Die gestrichelten Linien mit den kursiven Probennummern kennzeichnen die Gesteinszusammensetzung Disthen-führender Staurolith-Glimmerschiefer.

Abb. 7.17

P-T-Pseudoschnitt IMM 089. Der Pseudoschnitt wurde im erweiterten metapelitischen Modellsystem KMnFMASH $(+q + mu + H_2O)$ für den angegebenen, normalisierten Stoffbestand berechnet. Quarz, Muscovit und Wasser sind Überschußphasen.

IMM 089

Das Auftreten der Minerale Staurolith + Granat + Biotit + Muscovit + Plagioklas + Quarz + Chlorit + Akzessorien kennzeichnet diese Probe, wobei Granat, Staurolith, Biotit und Muscovit die fazieskritischen Minerale darstellen (Abb. 7.14). Der P-T-Pseudoschnitt für die Gesteinsprobe IMM 089 (Abb. 7.17) wurde für die normalisierte Gesteinszusammensetzung K_2O : MnO : FeO : MgO : Al₂O₃ = 11.30 : 1.10 : 24.30 : 19.10 : 44.10 (Mol-%, auf 100 normiert) berechnet. Hinsichtlich der vorkommenden divarianten und trivarianten Felder besitzt er deutliche Ähnlichkeit zu dem Pseudoschnitt der Probe IMM 021 (s.o.). So bietet auch das Gestein IMM 089 grundsätzlich die chemischen Voraussetzungen zur Stabilisierung Chloritoid-führender Paragenesen, die jedoch petrographisch auch in dieser Probe nicht zu beobachten sind. Auch in diesem Pseudoschnitt ist das trivariante Feld g + chl + st (+ mu + q + H₂O) ausgebildet, so daß Staurolith schon bei niedrigeren Temperaturen ab knapp 580 °C stabilisiert werden könnte.

Die folgenden, im Dünnschliff zu beobachtenden Situationen unterstützen die Rekonstruktion der Druck-Temperatur-Entwicklung (Abb. 7.18):

- Die Anwesenheit von Granat und Staurolith in der Probe IMM 089 spricht f
 ür einen Verlauf des prograden Astes des P-T-Pfades durch das trivariante Feld der Paragenese g + chl + st (+ mu + q + H₂O). Die mögliche Differenzierung zweier Generationen von Staurolith und Granat paßt zu dieser Vorstellung (vgl. IMM 021, Kap. 3.2.1.2 u. 3.2.1.3).
- Aus dem gemeinsamen Vorkommen von Staurolith und Biotit ist zu schließen, daß die Reaktion

Granat + Chlorit + Muscovit = Staurolith + Biotit + Quarz + H₂O (SPEAR 1993), bzw.

 $Granat + Chlorit = Biotit + Staurolith + H_2O (KFMASH)$

überschritten wurde, was im P-T-Pseudoschnitt durch den Übergang vom trivarianten Feld g + chl + st (+ mu + q + H₂O) zur divarianten Paragenese g + chl + bi + st (+ mu + q + H₂O) verdeutlicht wird. Einschlüsse von Granat in Staurolith und von Biotit in Staurolith resultieren vermutlich aus dieser Entwicklung. Die kleinen, idiomorphen Granat-Einschlüsse in Staurolith könnten weiterhin das Ergebnis der Reaktion

Staurolith + Biotit + Quarz = Granat + Muscovit + H_2O (SPEAR 1993) darstellen, die SPEAR (1993, S. 598) zufolge nach dem Ausreagieren von Chlorit abgelaufen sein könnte (vgl. Kap. 3.2.1).

- Das Metamorphose-Maximum ist durch den gegenseitigen Kontakt von Granat, Biotit und Staurolith dokumentiert. Diese Paragenese ist nur in dem divarianten Feld g + chl + bi + st(+ mu + q + H₂O) verwirklicht.
- Chlorit stellt eine retrograde Neubildung dar.

In Anbetracht der Abwesenheit von Disthen existieren im Gestein keine Anzeichen für ein Überschreiten der Reaktion

Chlorit + Staurolith = Biotit + Granat + Disthen + H₂O (KMnFMASH, unterhalb der Singularität) bzw. Chlorit + Staurolith + Granat = Biotit + Disthen + H₂O (KMnFMASH, oberhalb der Singularität) bzw.

Chlorit + Staurolith = Biotit + Disthen + H_2O (KFMASH).

Das divariante Feld g + bi + st + ky (+ $mu + q + H_2O$) wird also nicht erreicht. Der P-T-Pfad muß also durch das divariante Feld der Paragenese g + chl + bi + st (+ $mu + q + H_2O$) verlaufen und definiert damit die Bedingungen am Metamorphose-Höhepunkt zu Temperaturen von etwa 605 bis 615 °C bei einem Druck von ca. 7 bis 8.5 kbar. Der dokumentierte Druck-Temperatur-

Pfad verläuft ebenfalls im Uhrzeigersinn.

Abb. 7.18: Mikrofotos IMM 089. Die Fotos dokumentieren die metamorphe Mineralparagenese $g + bi + st \pm chl (+ mu + q + H_2O)$. a) Großer, nahezu idiomorpher Staurolith (Generation I?) mit Einschlüssen von hypidiomorphen bis idiomorphen Granat-Kristallen sowie von Biotit, Ouarz und Opakmineralen. 1 Nic., Bildbreite ca. 3 mm.

b) Kleine, idiomorphe Staurolith-Kristalle (Generation II?) neben sericitisiertem Plagioklas, Biotit und Bahnen von überwiegend Hellglimmer. Im linken oberen Quadranten ist ein kleiner Granat im Grundgewebe zu erkennen. 1 Nic., Bildbreite ca. 2.5 mm.

Aus den mineralchemischen Zonierungsmustern einiger Granat-Kristalle dieser Probe sind Anzeichen für ein Granat-Wachstum bei leichter Temperaturabnahme zu erkennen, wie z.B. eine Abnahme der Pyrop-Komponente und Zunahme des X_{Fe} vom Kern zum Rand (vgl. Kap. 4.1). Diese Elementverteilungsmuster finden sich insbesondere an idiomorphen Granat-Kristallen, die als Einschlüsse in Staurolith bzw. Plagioklas vorliegen, und weisen auf eine spätere Bildung dieser Granate hin. Allerdings besitzen nicht alle idiomorphen Granat-Individuen derartige Elementverteilungen. In dem Gestein existieren auch Granate mit mehr oder minder abgeflachten Zonierungsmustern. die einer Gemeinsam sprechen Vorstellung Temperaturverringerung während des Granat-Wachstums und der Verlauf des Druck-Temperatur-Pfades im P-T-Pseudoschnitt für eine Fortsetzung der Granat-Bildung nach dem Erreichen des Metamorphose-Maximums, z.B. nach der von SPEAR vorgeschlagenen Reaktion (s.o.).

Die klassische Granat-Biotit-Thermometrie weist für IMM 089 Temperaturen im Bereich von 550 bis 630 °C aus. Die verschiedenen Kalibrationen lieferten folgende Werte (Abb. 7.19, vgl. auch Kap. 6.4):

- 550 560 °C nach FERRY & SPEAR (1978),
- 575 585 °C nach HODGES & SPEAR (1982),
- 565 580 °C nach PERCHUK & LAVRENT'EVA (1983),
- 565 575 °C nach Indares & Martignole (1985),
- 620 630 $^\circ C$ nach HOINKES (1986) und
- 575 585 °C nach Kleemann & Reinhard (1994).

Erneut führte die Kalibration nach HOINKES (1986) zu etwa 40 °C höheren Temperaturen als die übrigen Ansätze. Die auf der Grundlage des Granat-Staurolith-Thermometers nach PERCHUK (1969) ermittelten Temperaturen liegen bei 550 und 600 °C. Mit den Si-Isoplethen nach MASSONNE & SCHREYER (1987) wurde anhand maximaler Si-Gehalte in Hellglimmern von 6.18 bzw. 6.30 p.f.u. ein Mindestdruck von etwa 5 kbar bestimmt (vgl. Kap. 6.4). Berechnungen aufgrund des intern-konsistenten Datensatzes von HOLLAND & POWELL (1990) zeigen für die Gesteinsprobe IMM 089 für eine Wasseraktivität von $a_{H2O} = 1.0$ Temperaturen von 631 ± 117 °C und Drucke von 6.0 ± 1.7 kbar an. Die Granat-Biotit-Thermometer weisen für die Probe IMM 089 des Typs II des Staurolith-Glimmerschiefers – wie auch für die Gesteinsprobe IMM 044, die petrographisch einen Übergang zwischen den beiden Typen darstellt – mit bis zu 630 °C tendenziell etwas höhere Temperaturen auf als für die Proben des Typs I. Die Unterschiede liegen jedoch im Fehler und sind daher nicht signifikant.

Ergebnisse der Granat-Biotit-Thermometer für IMM 089 und SM 1063. Die Fehlergrenzen wurden aus Gründen der Übersichtlichkeit nicht eingezeichnet. Die etwas höheren Temperaturen für die Disthen-führende Probe SM 1063 stimmen mit den Daten aus dem P-T-Pseudoschnitt gut überein. F&S = FERRY & SPEAR (1978), H&S = HODGES & SPEAR (1982), P&L = PERCHUK & LAVRENT'EVA (1983), I&M = INDARES & MARTIGNOLE (1985), Hoi = HOINKES (1986) und K&R = KLEEMANN & REINHARD (1994).

Die im P-T-Pseudoschnitt für die Mineralparagenese belegten maximalen Druck-Temperatur-Bedingungen stimmen gut mit den durch konventionelle Geothermobarometrie und Berechnungen mittels intern-konsistenter Datensätze ermittelten Werten überein. Demnach sind für die Probe IMM 089 Metamorphose-Temperaturen von ca. 605 bis 620 °C und Drucke von etwa 7 bis 8 kbar anzunehmen.

Für die Typ II-Probe IMM 089 und die Probe IMM 044, die petrographisch einen Übergang zwischen beiden Varianten des Staurolith-Glimmerschiefers darstellt, ergaben die Berechnungen durch konventionelle Geothermometrie sowie mittels intern-konsistenter Datensätze etwas höhere Temperaturen als für die Gesteine des Typs I. Im Vergleich zu den Disthen-führenden Gesteinen des Typs II (s.u.) liegen die Temperaturen für IMM 089 jedoch geringfügig niedriger. Die teilweise vorliegenden petrographischen Besonderheiten dieser beiden Proben könnten daher möglicherweise durch geringfügig erhöhte Temperaturen erklärt werden. In den anzunehmenden P-T-Pfaden dieser Gesteinsproben zeichnet sich dieses Bild jedoch nicht ab, da ihre Disthenfreien Mineralparagenesen die im Pseudoschnitt maximal abzuleitenden Temperaturen begrenzen. Diese Vorstellung kann somit – auch unter Berücksichtigung der Fehlergrenzen – nicht als gesichert angesehen werden.

IMM 063 und SM 68

Die beiden Gesteinsproben IMM 063 und SM 68 gleichen sich petrographisch sehr stark und stammen vom selben Fundpunkt (vgl. Kap. 3.2.1), daher werden sie hier gemeinsam besprochen. In diesen Proben liegen die Minerale Disthen + Staurolith + Granat + Biotit + Muscovit + Plagioklas + Quarz + Chlorit + Akzessorien vor. Die fazieskritischen Minerale stellen dabei Disthen, Staurolith, Granat und Biotit dar (Abb. 7.14).

Die Versuche zur Konstruktion eines P-T-Pseudoschnittes im KMnFMASH ergaben für keine der Proben sinnvolle Ergebnisse, was vermutlich auf die recht hohen MnO-Gehalte in den Gesteinen von 0.35 Gew.-% (IMM 063) bzw. 0.28 Gew.-% (SM 68) zurückzuführen ist (vgl. Kap. 5.1 und 6.3). Daher wurde für die Probe IMM 063 ein P-T-Pseudoschnitt auf Grundlage des P-T-Diagramms KFMASH + q + mu + H₂O gemäß WILL (1998a) für die normalisierte Gesteinszusammensetzung K₂O : FeO : MgO : $Al_2O_3 = 11.57 : 21.83 : 20.05 : 46.55$ (Mol-%, auf 100 normiert) berechnet. Da MnO in diesem metapelitischen Modellsystem nicht berücksichtigt ist, weisen die Gleichgewichte im Vergleich zum KMnFMASH eine um eins niedrigere Varianz auf (vgl. Kap. 6.2).

Aus dem P-T-Pseudoschnitt für die Probe IMM 063 (Abb. 7.20) wird deutlich, daß die KFMASH-Reaktion

$Granat + Chlorit = Staurolith + Biotit + H_2O$

hier überschritten wurde. Dies wird petrographisch neben der Anwesenheit von Biotit durch Einschlüsse von Granat in Staurolith belegt, die auf die Existenz der Granat-Kristalle vor dem Staurolith-Wachstum schließen lassen. Der Verlauf dieser Gleichgewichtskurve kann SPEAR (1993, S. 356) zufolge in Abhängigkeit vom MnO-Gehalt im Gestein variieren (vgl. Kap. 6.3). Die beschriebenen hohen MnO-Gehalte bedingen eine Ausweitung des Granat-Stabilitätsfeldes (z.B. WANG & SPEAR 1991, DROOP & HARTE 1995, MAHAR et al. 1997, WILL 1998 a, b, WEI et al. 2004; vgl. Kap. 6.3). Nach WEI et al. (2004) vergrößert Mangan im KFMASH in geringem Maße auch die Stabilität der Aluminiumsilicate.

Abb. 7.20

P-T-Pseudoschnitt für den Disthen-führenden Staurolith-Glimmerschiefer IMM 063. Der Pseudoschnitt wurde im metapelitischen Modellsystem KFMASH ($+ q + mu + H_2O$) für den angegebenen, normalisierten Stoffbestand berechnet. Quarz, Muscovit und Wasser sind Überschußphasen.

Der Vergleich der nomalisierten Gesteinszusammensetzungen, auf denen die Pseudoschnitte basieren, zeigt für die Probe IMM 063 mit einen Al₂O₃-Gehalt von 46.5 Mol-% keinen signifikant höheren Aluminiumgehalt als für die übrigen Proben an, in denen sich die Werte überwiegend in einem Bereich von 43.1 Mol-% (IMM 051) bis 48.6 Mol-% (IMM 021) bewegen. Deutlich niedriger ist der Al₂O₃-Gehalt mit 40.7 Mol-% nur in der Gesteinsprobe IMM 039 (s.o.). Hieraus ist abzuleiten, daß sich, entsprechend der Aussage von WEI et al. (2004), auch in den Proben IMM 063 und SM 68 der Mangan-Gehalt im Gestein möglicherweise begünstigend auf die Disthen-Bildung auswirkte.

Die Anwesenheit von Disthen (Abb. 7.21) in diesem Falle zeigt darüber hinaus maximale Metamorphosebedingungen jenseits der KFMASH-Reaktion

 $Chlorit + Staurolith = Biotit + Disthen + H_2O$

an. Im Vergleich zu den zuvor beschriebenen Proben deutet dies auf höhere Temperaturen am Peak der Metamorphose hin, die Anzeichen für höhere Drucke sind demgegenüber vage. Die im Gestein realisierte Mineralparagenese definiert den Verlauf des P-T-Pfades durch das im KFMASH divariante Feld st + bi + ky (+ mu + q + H₂O). Für den Höhepunkt der Metamorphose sind daraus Temperaturen von bis zu 640 - 650 °C und Drucke von etwa 7 - 8 kbar abzuleiten. Petrographisch finden sich nur wenige Anhaltspunkte für den prograden Verlauf des Druck-Temperatur-Pfades. Der prograde Ast könnte durch das Feld g + st + chl (+ mu + q + H₂O) geführt haben; diese Vorstellung kann jedoch nicht sicher nachgewiesen werden, da prograd gebildeter Chlorit nicht vorliegt. Das Auftreten von retrogradem Chlorit untermauert indes den Verlauf des retrograden Teils des P-T-Pfades durch das Feld st + bi + chl (+ mu + q + H₂O). Der Druck-Temperatur-Pfad folgt wieder dem Uhrzeigersinn. Die Grenze Disthen/Sillimanit wurde in diesem Gestein nicht überschritten. Aufgrund ihrer Zusammensetzung wäre auch die Probe IMM 063 in der Lage gewesen, Chloritoid zu stabilisieren, der jedoch auch hier nicht vorliegt.

Abb. 7.21

Mikrofoto IMM 063: Disthen, erkennbar an der typischen, guten Spaltbarkeit, neben hypidiomorphen Granat-Kristallen, im Grundgewebe Hellglimmer, leicht sericitisierter Plagioklas und Quarz. 1 Nic., Bildbreite ca. 1.8 mm. Mineralchemisch zeigen auch in den Gesteinsproben IMM 063 und SM 68 - ähnlich der Probe IMM 089 - einige idiomorphe Granat-Kristalle eine Abnahme der Pyrop-Komponente und Zunahme des X_{Fe} vom Kern zum Rand, was auf das Wachstum von Granat während einer leichten Temperaturabnahme hindeutet (vgl. Kap. 4.1). Diese Granat-Individuen treten im Grundgewebe neben Biotit und Plagioklas und als Einschlüsse in Plagioklas oder Staurolith auf. In Analogie zu den Isoplethen für (Fe/Fe+Mg) in Granat im KFMASH nach SPEAR & CHENEY (1989) weist die Steigerung des X_{Fe} von z.B. 0.78 auf 0.81 vom Kern zum Rand (IMM 063 und SM 68) auf eine Temperaturabnahme von etwa 630 auf 610 °C während des Granat-Wachstums hin. Hierin ist eine relativ gute Übereinstimmung mit den im P-T-Pseudoschnitt belegten Temperaturen festzustellen. Wiederum liegen jedoch auch Granate mit abgeflachtem Zonierungsmuster vor, die auf eine retrograde Überprägung der Elementverteilung durch Diffusion schließen lassen. Dem P-T-Pseudoschnitt sind keine Hinweise auf eine Entwicklung von Granat während dieses Teils der metamorphen Entwicklung des Gesteins zu entnehmen, da im KFMASH ($+q + mu + H_2O$) das Feld st + bi + ky ($+mu + q + H_2O$) bereits divariant ist und keinen Granat beinhaltet. Der Vergleich mit den P-T-Pseudoschnitten im KMnFMASH (+q + mu + H₂O) demonstriert allerdings, daß unter Berücksichtigung der Systemkomponente MnO – die in diesen Proben in relativ hohen Anteilen enthalten ist (s.o.) – Granat auch in diesem Druck-Temperatur-Bereich stabil ist. Der P-T-Pfad für die Probe IMM 063 dokumentiert eine schnellere Temperatur- als Druckabnahme nach dem Metamorphose-Maximum. Somit lassen auch in diesem Falle die mineralchemischen Merkmale eine Granat-Sprossung während des absteigenden Astes des P-T-Pfades vermuten.

Die Abschätzung des Metamorphosedrucks mit dem Geobarometer von MASSONNE & SCHREYER (1987) (Si-Isoplethen) ergab für IMM 063 und SM 68 anhand der Si-Anteile in Hellglimmer von 6.29 p.f.u. (IMM 063) sowie 6.36 und 6.40 p.f.u. (SM 68) einen Mindestdruck der Metamorphose von etwa 5.5 - 7 kbar (vgl. Kap. 6.4). Dieser Wert repräsentiert offenbar nur bedingt den höchsten Druck während der metamorphen Entwicklung des Gesteins, sondern eher den retrograden Ast des P-T-Pfades. Die Bedingungen am Metamorphose-Höhepunkt verdeutlicht der P-T-Pseudoschnitt.

SM 1063

In dieser Probe liegen die Minerale Disthen/Sillimanit + Staurolith + Granat + Biotit + Muscovit + Plagioklas + Quarz + Akzessorien vor. Die fazieskritischen Minerale stellen dabei Disthen, Staurolith, Granat und Biotit dar (Abb. 7.14). Aus dem Dünnschliff ist zu erkennen, daß Sillimanit sich erst später – bei abnehmendem Druck – bildete. Dem P-T-Pseudoschnitt für die Gesteinsprobe SM 1063 (Abb. 7.22) liegt die normalisierte Gesteinszusammensetzung K_2O : MnO : FeO : MgO : Al₂O₃ = 9.90 : 0.80 : 23.10 : 19.10 : 47.10 (Mol-%, auf 100 normiert) zugrunde. Die Reaktion

Chlorit + Staurolith = Biotit + Granat + Disthen + H_2O (KMnFMASH, unterhalb der Singularität) bzw.

Chlorit + Staurolith + Granat = Biotit + Disthen + H_2O (KMnFMASH, oberhalb der Singularität) ist für diese Gesteinsprobe über einen relativ großen Bereich stabil. Das divariante Feld g + bi + st + ky (+ mu + q + H_2O) nimmt in diesem P-T-Pseudoschnitt einen größeren Bereich ein als in den anderen Pseudoschnitten. Es repräsentiert die Mineralparagenese am Metamorphosehöhepunkt. Aus der Gegenwart von Disthen ist das Überschreiten der genannten Reaktion im Verlauf der Metamorphose für diese Probe abzuleiten. Mineral-Einschlüsse, die einen Hinweis auf die prograde Entwicklung des Gesteins liefern könnten, liegen nicht vor. Aus der Verbreitung Chlorit-führender Paragenesen in dem P-T-Pseudoschnitt ist eine prograde Bildung von Chlorit zu vermuten, der jedoch im Dünnschliff nicht mehr nachzuweisen ist.

Der rekonstruierbare Ast des P-T-Pfades ist im Dünnschliff durch die Abfolge folgender Mineralparagenesen dokumentiert:

- Granat liegt in Berührungsparagenese mit Biotit vor, und Biotit tritt neben Disthen auf. Weiterhin gehört Staurolith zu dieser Paragenese (Abb. 7.23 a, b).
- Die Mineralparagenese g + bi + st + ky (+ mu + q + H₂O) geht durch Überschreiten der Stabilitätsgrenze Disthen = Sillimanit in das gemeinsame Auftreten von g + bi + st + sill (+ mu + q + H₂O) über. Sillimanit wächst bevorzugt in Biotit hinein (Abb. 7.23 c).
- Das divariante Feld g + chl + bi + st (+ mu + q + H_2O) muß von dem P-T-Pfad durchlaufen werden, da diese Paragenese ebenfalls verwirklicht ist (Abb. 7.23 d).
- Das gemeinsame Auftreten von $g + chl + bi + sill (+ mu + q + H_2O)$ repräsentiert die divariante Paragenese mit den niedrigsten Druck-Temperatur-Bedingungen in diesem Gestein.

Abb. 7.22

P-T-Pseudoschnitt für den Disthen- und Sillimanit-führenden Staurolith-Glimmerschiefer SM 1063. Der Pseudoschnitt wurde im erweiterten metapelitischen Modellsystem KMnFMASH ($+ q + mu + H_2O$) für den angegebenen, normalisierten Stoffbestand berechnet. Quarz, Muscovit und Wasser sind Überschußphasen. Die Zahlen bezeichnen die Reihenfolge in der die di- bzw. trivarianten Felder durchlaufen wurden.

Abb. 7.23: Mikrofotos SM 1063.

a) Granat, Biotit und Staurolith in hypidiomorpher Ausbildung. An einem Staurolith ist die beginnende Chloritisierung zu erkennen. 1 Nic., Bildbreite ca. 2 mm.

Abb. 7.23

b) Hypidiomorph ausgebildeter Staurolith neben Biotit und Disthen-Kristallen mit guter Spaltbarkeit. 1 Nic., Bildbreite ca. 2.5 mm.

Abb. 7.23: Gelände-Fotos der Geiselbach-Formation. c) Neusprossung von nadeligem bis fibrolithischem Sillimanit in Biotit und Plagioklas. In den Biotit-Kristallen sind pleochroitische Höfe erkennbar. 1 Nic., Bildbreite ca. 0.8 mm.

Abb. 7.23 *d) Granat, Staurolith und Biotit neben retrograd gebildetem Chlorit.* 1 Nic., Bildbreite ca. 2 mm.

Der P-T-Pfad für die Probe SM 1063 muß daher im Uhrzeigersinn durch das divariante Feld g + bi + st + ky (+ mu + q + H₂O) verlaufen und die Stabilitätsgrenze zu Sillimanit in das entsprechende Feld g + bi + st + sill (+ mu + q + H₂O) überschreiten. Aus diesem Verlauf ergeben sich für das Metamorphose-Maximum Temperaturen von 620 - 630 °C und Drucke im Bereich von etwa 6 - 8 kbar. Der retrograde Ast der metamorphen Entwicklung ist weiterhin aufgrund der Gegenwart von retrogradem Chlorit durch die im KMnFMASH di- und trivarianten Paragenesen g + chl + bi + st (+ mu + q + H₂O), g + chl + bi + sill (+ mu + q + H₂O) und g + chl + sill (+ mu + q + H₂O) gut dokumentiert. Die Topologie des Pseudoschnitts verdeutlicht darüber hinaus, daß die Probe über die chemischen Voraussetzungen zur Stabilisierung von Chloritoid

verfügt, dennoch tritt dieses Mineral auch in diesem Gestein nicht auf. Die abgeflachten Elementverteilungsmuster der Granate dieses Gesteins ermöglichen keine ergänzenden Aussagen zu seiner Druck-Temperatur-Entwicklung. Die X_{Fe} in Granat, die keine eindeutige Entwicklungstendenz zeigen, variieren im Bereich von 0.81 bis 0.84. Aufgrund der (Fe/Fe+Mg)-Isoplethen für Granat im KFMASH nach SPEAR & CHENEY (1989) deutet dies auf Temperaturen um etwa 600 °C während des Granat-Wachstums hin. Dieser Wert ist jedoch nur als bedingt sicher einzustufen, da diese Granat-Kristalle offensichtlich durch intensive Diffusionsprozesse beeinflußt wurden (vgl. Kap. 4.1).

Die Granat-Biotit-Thermometrie ergab für SM 1063 überwiegend Temperaturen im Bereich von 595 bis 640 °C. Die verschiedenen Kalibrationen der Granat-Biotit-Thermometer lieferten im einzelnen folgende Werte (Abb. 7.19, vgl. auch Kap. 6.4):

- 600 610 °C nach FERRY & SPEAR (1978),
- 630 640 °C nach HODGES & SPEAR (1982),
- 595 610 °C nach PERCHUK & LAVRENT'EVA (1983),
- 630 640 °C nach INDARES & MARTIGNOLE (1985),
- 680 690 °C nach HOINKES (1986) und
- 605 615 °C nach Kleemann & Reinhard (1994).

Auch in diesem Falle weist der Ansatz nach HOINKES (1986) bei einer Abweichung um 40 - 50 °C deutlich höhere Temperaturen aus als die übrigen Thermometer. Mit den Si-Isoplethen nach MASSONNE & SCHREYER (1987) wurden aufgrund der Si-Gehalte im Hellglimmer von 6.13 und 6.10 p.f.u. Mindestdrucke von nur 3 - 4 kbar abgeschätzt (vgl. Kap. 6.4). Dieser Wert ist offensichtlich nicht mehr als repräsentativ für den Höhepunkt der Metamorphose anzusehen. Allerdings deutet der P-T-Pfad für dieses Gestein einen flacheren Verlauf an, so daß die abgeleiteten Drucke einen Hinweis auf diese eher Temperatur- als Druck-betonte Situation darstellen können.

Mittels des intern-konsistenten Datensatzes von HOLLAND & POWELL (1990) ergaben sich Temperaturen von etwa 600 - 650 °C \pm 70 °C und Drucke von ca. 7 - 7.5 kbar \pm 1.2 kbar. Die Reaktionen schneiden sich jedoch nur am unteren Rand ihrer Fehlergrenzen (vgl. Anhang, G.6), so daß die Daten nur einschränkt aussagefähig sind. Es fällt auf, daß auch für diese Probe die nach HOINKES (1986) bestimmten Temperaturen mit den aufgrund des intern-konsistenten Datensatzes berechneten recht gut übereinstimmen. Wiederum sind unter Berücksichtigung der jeweiligen Fehlergrenzen zwischen den Daten der verschiedenen Abschätzungen keine signifikanten Unterschiede festzustellen. Für das Maximum der Metamorphose lassen sich für die Probe SM 1063 aus diesen Ergebnissen insgesamt Temperaturen von etwa 600 bis 650 °C und Drucke im Bereich um ca. 6.5 - 7.5 kbar ablesen.

Die Druck-Temperatur-Daten für den Metamorphose-Höhepunkt, die sich aus dem P-T-Pseudoschnitt ergeben, stimmen recht gut mit den Ergebnissen der übrigen Berechnungen für die Probe SM 1063 überein. Demnach sind für die Metamorphose Temperaturen im Bereich um 620 - 630 °C und Drucke von etwa 6 - 8 kbar anzunehmen. Wie bereits im Falle der ebenfalls Disthen-führenden Probe IMM 063 verläuft der P-T-Pfad etwas flacher als bei den Disthenfreien Staurolith-Glimmerschiefern.

Tab. 7.1

Übersicht der mit unterschiedlichen Methoden ermittelten Drucke und Temperaturen am Metamorphose-Höhepunkt für die verschiedenen Proben des Staurolith-Glimmerschiefers. Erläuterungen im Text.

	P-T- Pseudoschnitte	Konventionelle Geothermometrie u. Geobarometrie	Intern- konsistente Datensätze	Insgesamt
Тур І				
IMM 021	T: ca. 600 - 620 °C P: ca. 6.5 - 8.5 kbar	T: ca. 410 - 490 °C P: min. 4 kbar	-	T: 600 - 620 °C P: 6.5 - 8.5 kbar
IMM 039	T: ca. 600 - 610 °C P: ca. 6 - 8 kbar	T: ca. 460 - 520 °C P: ca. 7 - 8 kbar	T: 506 ± 94 °C P: 6.0 ± 1.6 kbar	T: 500 - 600 °C P: ca. 6 - 8 kbar
IMM 051	T: ca. 600 - 615 °C P: ca. 6 - 8 kbar	T: ca. 560 - 600 °C P: min. 3 - 4 kbar	-	T: 580 - 610 °C P: ca. 6 - 8 kbar
IMM 056	ähnl. IMM 021 u. IMM 051	T: 535 - 580 °C P: ca. 5 - 6 kbar	_	T: 580 - 600 °C P: ca. 5 - 7 kbar
IMM 061	_	T: ca. 550 - 635 °C P : ca. 5 - 6 kbar	T: 643 ± 122 °C P: 6.1 ± 1.8 kbar	T: 550 - 600 °C P : ca. 5 - 6 kbar
IMM044	-	T: ca. 570 - 620 °C P: min. 3 - 4 kbar	T: 670 ± 127 °C P: 5.8 ± 1.8 kbar	T: 590 – 610 °C P: ca. 6 - 7 kbar
Typ II			-	
IMM 089	T: ca. 605 - 615 °C P: ca. 7 - 8.5 kbar	T: ca. 550 - 630 °C P: min 5 kbar.	T: 631 ± 117 °C P: 6.0 ± 1.7 kbar	T: 605 - 620 °C P: ca. 7 - 8 kbar
IMM 063/ SM 68	T _{max} .: 640 - 650 °C P: ca. 7 - 8 kbar	T: – P: ca. 5.5 - 7 kbar	_	T: 610 - 630 °C P: ca. 6 - 8 kbar
SM 1063	T: ca. 620 - 630 °C P: ca. 6 - 8 kbar	T: ca. 595 - 640 °C P: min. 3 - 4 kbar	T: 600 - 650 °C P: 7 - 7.5 kbar	T: 620 - 630 °C P: ca. 6 - 8 kbar

Auch die Proben des Typs II des Staurolith-Glimmerschiefers durchliefen eine Druck-Temperatur-Entwicklung im Uhrzeigersinn. Dabei ähneln die Ergebnisse für die Disthen-freie Probe IMM 089 den Metamorphose-Bedingungen des Typs I. Für die Disthen-führenden Proben IMM 063 und SM 1063 ergaben sich dagegen etwas höhere Temperaturen von ca. 620 - 630 °C, während die Drucke – wie bei den übrigen Proben – ebenfalls im Bereich von 6 bis 8 kbar liegen. Eine Übersicht der Ergebnisse ist Tab. 7.1 zu entnehmen. Der abgeleitete Druck-Temperatur-Pfad zeigt für die Disthen-führenden Gesteine einen flacheren Verlauf, der die vermutlich etwas stärker Temperatur-betonte Situation widerspiegelt.

7.1.2 Geiselbach-Formation

In den Metasedimenten der Geiselbach-Formation ist die Mineralparagenese Quarz + Hellglimmer \pm Plagioklas \pm Biotit \pm Granat \pm Staurolith \pm Opakphase ausgebildet (vgl. Kap. 3.2.2). Als fazieskritische Minerale sind Biotit und Granat \pm Staurolith anzusehen. Aufgrund der petrographischen Untersuchungen konnten nur in einer Probe (IMG 009) Hinweise auf das Auftreten von Staurolith gefunden werden, wobei es sich um Pseudomorphosen von Chlorit und Sericit vermutlich nach Staurolith handelt (vgl. Kap. 3.2.2). Frische Mineralsubstanz, die sich zur mineralchemischen Untersuchung eignete und damit einen sicheren Nachweis ermöglichte, liegt dabei jedoch nicht mehr vor.

Für die Geiselbach-Formation wurde ein P-T-Pseudoschnitt im erweiterten metapelitischen Modellsystem KMnFMASH + q + mu + H₂O für die Granat-Quarzit-Probe IMG 027 berechnet (ohne Abb.). Die Kalkulation basiert auf der normalisierten Gesteinszusammensetzung K₂O : MnO : FeO : MgO : Al₂O₃ = 13.06 : 0.13 : 25.71 : 10.54 : 50.57 (Mol-%, auf 100 normiert), die aus der geochemischen Analyse berechnet wurde. Der Vergleich dieser Werte mit den normalisierten Gesteinszusammensetzungen, die den P-T-Pseudoschnitten der Mömbris-Formation zugrunde liegen, weist für die Probe der Geiselbach-Formation einen deutlich höheren Al₂O₃-Gehalt aus. Die normalisierten Al₂O₃-Anteile in den Proben der Mömbris-Formation variieren zwischen 40.70 und 48.60 Mol-% (auf 100 normiert). Aus der Betrachtung der Gesamtgesteinsanalysen geht jedoch hervor, daß die Gesteine der Mömbris-Formation reell Al₂O₃-Gehalte besitzen, die meist um einige Gewichtsprozente höher liegen als die der Proben aus der Geiselbach-Formation (vgl. Kap. 5). Hieraus wird der Einfluß der Kalkulationsmethode für die Gesteinszusammensetzung auf den berechneten P-T-Pseudoschnitt deutlich (vgl. auch Kap. 6.3). Aufgrund der Kalkulationen zeigt sich, daß die im KMnFMASH + q + mu + H_2O (Abb. 7.1) vom invarianten Punkt A ausgehenden Reaktionen

 $Chlorit + Staurolith = Biotit + Granat + Disthen + H_2O$ und

 $Granat + Chlorit = Biotit + Cordierit + Sillimanit + H_2O$

für diese Gesteinzusammensetzung nicht relevant sind. Die einzigen Reaktionen, die vom Gestein "gesehen" werden können, sind

 $Granat + Chlorit = Staurolith + Biotit + Cordierit + H_2O$

(oberhalb der Singularität) bei Temperaturen von 558.1 und 567.3 °C und Drucken von 3.45 bis 3.85 kbar sowie

 $Cordierit + Staurolith = Biotit + Granat + Sillimanit + H_2O$

zwischen 578.4 und 584.4 °C bei Drucken von 4.02 bis 3.89 kbar. Von den Reaktionen ausgehend sind insbesondere die divarianten Felder g + chl + bi + st, st + g + bi + cd, st + g + bi + sill, g + bi + cd + sill und g + st + chl + cd stabil (alle: $+ mu + q + H_2O$) (vgl. Anhang, G.7). Zwischen den divarianten Feldern erstrecken sich vor allem die trivarianten Felder g + chl + st, st + g + bi, g + bi + sill und g + bi + cd (alle: $+ mu + q + H_2O$). Weitere Reaktionen und Felder konnten für diese Gesteinszusammensetzung auch mit extrem kleinen Druck- und Temperaturschritten nicht nachgewiesen werden, was die Vervollständigung des P-T-Pseudoschnittes vereitelte.

Aus der zuvor beschriebenen Situation wird jedoch deutlich, daß in dem untersuchten P-T-Fenster von 500 bis 680 °C und 0 bis 13 kbar in dieser Gesteinsprobe IMG 027 grundsätzlich Mineralparagenesen stabil sein müßten, die die kritischen Minerale Staurolith, Sillimanit und/oder Cordierit beinhalten. Im Dünnschliff liegt jedoch keines jener Minerale vor. Diese Diskrepanz zwischen dem Pseudoschnitt und dem petrographischen Befund ist vermutlich auf die Methode zur Berechnung der normalisierten Gesteinszusammensetzung aus der geochemischen Analyse zurückzuführen. Der berechnete Stoffbestand spiegelt die Gegebenheiten in dem Gestein offensichtlich nur ungenau wider, während die – hier nicht mögliche – Berechnung aus Mineralzusammensetzung und Modalbestand i.d.R. zu wirklichkeitsnäheren Ergebnissen führt (vgl. Kap. 6.3). Aufgrund des nur bedingt realistischen Stoffbestandes ist die Aussagekraft des P-T-Pseudoschnittes dieser Probe eingeschränkt.

Insgesamt finden sich also Hinweise für eine aufgrund der Metamorphosebedingungen mögliche Bildung von Staurolith in der Geiselbach-Formation. Die Kombination der Erkenntnisse aus der Petrographie mit den beschriebenen Ergebnissen spricht dafür, daß die Abwesenheit von Staurolith in dem überwiegenden Teil der Gesteine der Geiselbach-Formation auf stoffliche Gründe zurückzuführen ist. Ein sicherer Beweis für diese Annahme kann aufgrund der hier vorliegenden Resultate nicht erbracht werden.

7.1.3 Alzenau-Formation und Elterhof-Formation

Die metapsammitischen Gesteine der Alzenau- und der Elterhof-Formation weisen als fazieskritische Minerale maximal Biotit + Granat auf (vgl. Kap. 3.2.3 und 3.2.4). Für die Anwendung des phasenpetrologischen Ansatzes ergibt sich dadurch die Schwierigkeit, daß das System eine vergleichsweise hohe Varianz besitzt. Die Berechnung von P-T-Pseudoschnitten für Proben dieser beiden lithologischen Einheiten mußte mangels mineralchemischer Analysen, die aufgrund des unfrischen Erhaltungszustandes der Gesteine nicht durchgeführt werden konnten, auf der Gesamtgesteinsanalyse basieren. Die Versuche zur Konstruktion von P-T-Pseudoschnitten für Gesteine der Alzenau und Elterhof-Formation lieferten trotz Berechnungen mit extrem kleinen Druck- und Temperaturschritten keine sinnvollen Ergebnisse. Eine Ursache dafür könnte im Berechnungsverfahren für den Pauschalchemismus aus der geochemischen Analyse liegen (vgl. Kap. 6.3). Somit erscheint eine zukünftige Kalkulation von P-T-Pseudoschnitten für die in diesen beiden Einheiten vergesellschafteten Amphibolite eine sinnvolle Alternative zu der Berechnung für die Metasedimente zu sein.

7.2 Synthese der Ergebnisse und Diskussion

Als wesentliches Resultat der beschriebenen Untersuchungen ergeben sich die ersten in dieser Form gesicherten Druck-Temperatur-Pfade für metapelitische Gesteine des Spessart-Kristallins, wobei die Erkenntnisse vor allem auf Berechnungen für die Staurolith-Glimmerschiefer der Mömbris-Formation basieren. Aus den eingezeichneten P-T-Pfaden läßt sich eine in sich vergleichbare metamorphe Entwicklung im Uhrzeigersinn ("clockwise") ablesen. Die P-T-Pseudoschnitte der verschiedenen Proben der Staurolith-Glimmerschiefer der Mömbrisdemonstrieren im Detail durchaus die Formation Möglichkeit zur Stabilisierung unterschiedlicher Mineralparagenesen. Aufgrund der Ähnlichkeit der in den Gesteinen ausgebildeten Mineralparagenese mit Granat, Staurolith, Biotit, Muscovit ± Chlorit resultieren jedoch relativ ähnliche Druck-Temperatur-Pfade, die eine prinzipiell einheitliche, kontinuierliche metamorphe Entwicklung belegen. Nur der für die Disthen-führenden Proben abgeleitete Pfad verläuft flacher, auf eine grundsätzlich andere Druck-Temperatur-Entwicklung dieser Gesteine ist daraus aber nicht zu schließen.

Für die Staurolith-Glimmerschiefer des Typs I und eine Probe des Typs II mit der kritischen Mineralparagenese Granat, Staurolith, Biotit und Muscovit dokumentieren die Druck-Temperatur-Pfade eine ähnliche Metamorphose-Entwicklung (P-T-Pseudoschnitte IMM 039, IMM 051, IMM 021, IMM 089). Der Verlauf des Druck-Temperatur-Pfades ist im wesentlichen durch das im KMnFMASH divariante Feld g + chl + bi + st (+ mu + q + H₂O) bzw. das trivariante Feld g + bi + st (+ mu + q + H₂O), die die kritische Paragenese repräsentieren, bestimmt. Demnach durchliefen die Gesteine eine recht einheitliche metamorphe Entwicklung im Uhrzeigersinn mit einem Maximum bei Temperaturen von ca. 600 bis 615 °C und Drucken von etwa 6.5 - 8 kbar. Während die Temperaturen am Metamorphosehöhepunkt durch die dibzw. trivarianten Felder recht genau eingegrenzt werden, variieren die abzulesenden Drucke aufgrund der steilen Lage der Felder im P-T-Pseudoschnitt teilweise etwas stärker. Im Detail sind für die verschiedenen Proben geringe Unterschiede hinsichtlich der Drucke und Temperaturen am Metamorphose-Höhepunkt zu verzeichnen. Gefügemerkmale weisen auf einen relativ engen zeitlichen Zusammenhang zwischen Hauptdeformation und Metamorphose-Höhepunkt hin.

Eine Aussage über die Veränderung des Mineralbestandes bei aufsteigenden Druck-Temperatur-Bedingungen ist, in Ermangelung dafür geeigneter Mineralassoziationen, z.B. mit Beteiligung von prograd gebildetem Chlorit, nur bedingt möglich. Auf einen Verlauf des prograden Astes des P-T-Pfades durch das KMnFMASH-trivariante Feld der Paragenese g + chl + st (+ mu + q + H₂O) in zwei Pseudoschnitten (IMM 021, IMM 089) deutet die Anwesenheit von Granat und Staurolith hin. Die mögliche Existenz zweier Generationen von Granat und Staurolith in diesen beiden Proben fügt sich in diese Vorstellung ein. Eine ähnliche Druck-Temperatur-Entwicklung kann für die übrigen Gesteine angenommen werden. Die Pseudoschnitte verdeutlichen, daß das Feld der Paragenese $g + chl + st (+ mu + q + H_2O)$ aufgrund der Gesteinszusammensetzung nicht immer stabilisiert werden konnte (IMM 039, IMM 051). Der mit dem Geobarometer nach MASSONNE & SCHREYER (1987) für eine Probe (IMM 039) ermittelte Mindestdruck der Metamorphose von ca. 7 - 8 kbar ergänzt und bestätigt die sich im P-T-Pfad abzeichnenden Erkenntnisse zum Metamorphosepeak. Den Werten liegen die höchsten Si-Gehalte in Hellglimmern von 6.52 und 6.54 p.f.u. zugrunde, die im Rahmen dieser Untersuchungen nachzuweisen waren. Die dargestellten P-T-Pfad-Segmente repräsentieren insbesondere den gut dokumentierten, retrograden Ast der Druck-Temperatur-Entwicklung. Die absteigende Entwicklung wird durch die petrographisch zu beobachtende retrograde Bildung von Chlorit aus Staurolith, Granat bzw. Biotit belegt.

Gesteinsproben des Typs II des Staurolith-Glimmerschiefers, die die kritische Die Mineralparagenese Disthen, Staurolith, Granat und Biotit besitzen, durchliefen ebenfalls eine Druck-Temperatur-Entwicklung im Uhrzeigersinn (IMM 063, SM 68, SM 1063). Der Druck-Temperatur-Pfad dieser Disthen-führenden Gesteine ist vor allem durch das divariante Feld g + $bi + st + ky (+ mu + q + H_2O)$ im KMnFMASH bzw. $st + bi + ky (+ mu + q + H_2O)$ im KFMASH definiert und verläuft flacher als derjenige der Typ I-Proben. Für den Höhepunkt der Metamorphose sind daher Temperaturen von ca. 620 bis 630 °C und Drucke von etwa 6 bis In Übereinstimmung mit den Ergebnissen der konventionellen 8 kbar abzuleiten. Geothermometrie weist dies für die Disthen-führenden Gesteine auf um zumindest 20 bis 30 °C höhere Temperaturen hin. Die Anwesenheit von Sillimanit in einer Probe (SM 1063) deutet einen etwas geringeren Druck während der retrograden Entwicklung an, der prinzipielle Verlauf des P-T-Pfades wird dadurch aber nur wenig beeinflußt. Als letzte klar festlegbare Position durchlaufen alle Pfade einen Bereich mit Temperaturen von ca. 580 °C bei Drucken um knapp 4.5 kbar.

Aus den **P-T-Pseudoschnitten** und der **Petrographie** wird deutlich, daß in diesen Gesteinen die Reaktion

 $Granat + Chlorit = Staurolith + Biotit + H_2O (KFMASH) (1)$ überschritten wurde, während die Reaktion

 $Chlorit + Staurolith = Biotit + Granat + Disthen + H_2O (2a)$

(KMnFMASH, unterhalb der Singularität) bzw.

Chlorit + Staurolith + Granat = Biotit + Disthen + $H_2O(2b)$

(KMnFMASH, oberhalb der Singularität) bzw.

Chlorit + Staurolith = Biotit + Disthen + H_2O (KFMASH) (2c)

nur in einzelnen Bereichen ablief. Auch die Stabilitätskurve

Disthen = Sillimanit (KMnFMASH)

wurde nur stellenweise erreicht. Anzeichen für eine Bildung von Schmelze liegen nicht vor. Einschlüsse von z.B. Granat in Staurolith resultieren aus der erstgenannten Reaktion (1). Die zweite Reaktion (2a-c) verursachte – sofern sie ablief – einen gewissen Abbau von Staurolith, jedoch blieben Granat und Staurolith in der Paragenese enthalten (vgl. Kap. 3.2.1).

Die mineralchemischen Hinweise Bildungsgeschichte, zur z.B. aus den Elementverteilungsmustern in Granat, Staurolith oder Plagioklas (vgl. Kap. 4), ergänzen die gewonnenen Erkenntnisse gut. Die mehr oder minder deutlich ausgebildete prograde Wachstumszonierung in einzelnen Granat-Kristallen von Proben des Typs I (z.B. IMM 039, IMM 021, IMM 056, IMM 061) steht mit der in den P-T-Pseudoschnitten und den zugehörigen Pfaden dokumentierten metamorphen Entwicklung in Einklang. Auch die Parallelisierung mit den Isoplethen für (Fe/Fe+Mg) in Granat im P-T-Diagramm des Modellsystems KFMASH nach SPEAR & CHENEY (1989, S. 156; vgl. auch SPEAR 1993, S. 373) zeigt eine recht gute Analogie zu den zuvor beschriebenen Ergebnissen. Das Granat-Wachstum begann offensichtlich im Stabilitätsfeld der Paragenese Granat + Biotit + Chlorit und setzte sich im Stabilitätsfeld von Granat + Biotit + Staurolith fort. Aus dem Vergleich der Abnahme des X_{Fe} vom Kern zum Rand in den prograd zonierten Granaten (vgl. Kap. 4.1) mit den (Fe/Fe+Mg)-Isoplethen in Granat in diesen Stabilitätsfeldern läßt sich auf eine metamorphe Entwicklung im Uhrzeigersinn mit Temperaturen im Bereich von 540 - 600 °C und Drucken um 5.5 bis 7 kbar schließen. Im Typ II, für den sich im Falle der Disthen-führenden Gesteine ein flacherer P-T-Pfad abzeichnet, konnten keine prograd zonierten Granat-Kristalle nachgewiesen werden. Anzeichen für ein Granat-Wachstum bei leichter Temperaturabnahme, die sich in beiden Typen des Staurolith-Glimmerschiefers - jedoch nicht in allen Proben - finden, repräsentieren bereits den
Metamorphose-Ast jenseits des Temperatur-Maximums. Die Zunahme des X_{Fe} dieser Granate (vgl. Kap. 4.1) zeigt entsprechend der Isoplethen für (Fe/Fe+Mg) nach SPEAR & CHENEY (1989) im Stabilitätsfeld der Paragenese Granat + Biotit + Staurolith eine Temperaturabnahme von etwa 620 °C auf ca. 570 °C an und harmoniert damit ebenfalls mit den übrigen Daten. Die abgeflachten Zonierungsmuster vieler Granat-Kristalle in beiden Gesteinsvarianten dagegen verdeutlichen intensive Diffusionsprozesse während bzw. nach dem Kristallwachstum, die eine ursprünglich vorhandene Wachstumszonierung weitgehend ausgeglichen haben. Aufgrund dieser Elementverteilungen läßt sich keine Aussage zur metamorphen Gesteinsentwicklung mehr treffen.

Staurolith weist in verschiedenen Proben eine leichte Verringerung des X_{Mg} zum Rand hin auf (vgl. Kap. 4.2), die als Hinweis auf eine Druck- bzw. Temperaturabnahme gegen Ende des Wachstums gewertet werden kann und damit ebenfalls den retrograden Teil des P-T-Pfades belegt. In bezug auf die Plagioklas-Zusammensetzung ist aus dem geringen Ansteigen des Anorthit-Gehaltes vom Kern zum Rand – aufgrund des vermehrten Calcium-Einbaus in das Kristallgitter – auf einen steigenden Metamorphosegrad während des Plagioklas-Wachstums zu schließen (vgl. Kap. 4.6). Weitergehende Aussagen zur Druck-Temperatur-Entwicklung der Gesteine ließ die mäßig ausgebildete chemische Zonierung der Minerale nicht zu. Die Elementverteilungsmuster in Granat verdeutlichen den Verlauf der metamorphen Entwicklung im Uhrzeigersinn. Mineralchemisch ist in beiden Varianten des Staurolith-Glimmerschiefers der retrograde Ast der Druck-Temperatur-Entwicklung besser dokumentiert, während sich für das prograde Segment weniger aussagefähige Hinweise abzeichnen.

Insgesamt stimmen die durch konventionelle Geothermobarometrie für die Staurolith-Glimmerschiefer ermittelten Drucke und Temperaturen recht gut mit den in den P-T-Pseudoschnitten dokumentierten maximalen P-T-Bedingungen der metamorphen Mineralparagenese überein (Tab. 7.2). Die Granat-Biotit-Thermometer in den Kalibrationen nach FERRY & SPEAR (1978), HODGES & SPEAR (1982), PERCHUK & LAVRENT'EVA (1983), INDARES & MARTIGNOLE (1985), HOINKES (1986) und KLEEMANN & REINHARD (1994) ergaben für den Peak der Metamorphose Temperaturen im Bereich von 500 bis 600 ± 30 °C für die Proben des Typs I. Im Vergleich der einzelnen Gesteine weisen zwei Proben in dieser Gruppe systematisch niedrigere Temperaturen auf (IMM 039, IMM 021). Für die Staurolith-Glimmerschiefer des Typs II liegen die konventionell berechneten Werte mit etwa 610 ± 30 °C signifikant höher als für den Typ I. Diese Daten bestätigen die Tendenz zu höheren

Temperaturen für die Disthen-führenden Gesteine, die sich auch in den Druck-Temperatur-Pfaden abzeichnet. Auf der Grundlage des Granat-Staurolith-Thermometers nach PERCHUK (1969) wurden Temperaturen zwischen 550 und 600 °C ermittelt, die den übrigen Ergebnissen praktisch entsprechen.

Mit dem Geobarometer nach MASSONNE & SCHREYER (1987) wurden insgesamt maximale Drucke von 7 - 8 kbar (IMM 039) bzw. 6 - 7 kbar (SM 68) abgeschätzt. Diese Mindestdrucke können als relativ realistisch angesehen werden, während die Werte für die anderen Gesteinsproben dagegen mehr oder minder starke Einflüsse retrograder Überprägung anzeigen. Die konventionell bestimmten Drucke korrespondieren damit ebenfalls recht gut mit den Ergebnissen aus den Pseudoschnitten. Diese Daten weisen für den Typ I des Staurolith-Glimmerschiefers (IMM 039) auf eine vergleichsweise eher Druck-betonte Situation hin, für den Typ II scheinen sie ebenfalls die Tendenz zu einer gewissen Temperatur-Betonung widerzuspiegeln. Für eine sichere Interpretation diesbezüglich ist die Datenbasis allerdings zu gering, da die Werte auf einzelnen Hellglimmern beruhen. Die umfangreichen mineralchemischen Analysen ergaben jedoch keine weiteren Anhaltspunkte für erhöhte Si-Gehalte im Hellglimmer (vgl. Kap. 4.4).

Tab. 7.2

Bedingungen am Metamorphose-Höhepunkt für die verschiedenen petrographischen Typen des Staurolith-Glimmerschiefers. Erläuterungen im Text.

-	Тур І	Disthen-führende Proben Typ II
Ergebnisse aus	T: 600 - 615 °C	T: 620 - 630 °C
P-T-Pseudoschnitten	P: 6.5 - 8 kbar	P: 6 - 8 kbar
Konventionelle	T: 500 - 600 ± 30 °C	T: 610 ± 30 °C
Geothermobarometrie	P: 7 - 8 kbar	P: 6 - 7 kbar
Insgesamt	T: 600 - 615 °C P: 7 - 8 kbar	T: 620 - 630 °C P: 6 - 8 kbar

Die teilweise etwas niedrigeren Drucke und Temperaturen, die die klassische Geothermobarometrie für den Typ I ergab (Tab. 7.2), sind vermutlich auf den sich stärker auswirkenden retrograden Einfluß zurückzuführen, der insbesondere in den Granat-Kristallen des Typs I die Eisen-Magnesium-Verteilung beeinflußte. Wie bereits ausgeführt, passen die Werte jedoch unter Berücksichtigung der Fehlergrenzen relativ gut zu den Ergebnissen der P-T-Pseudoschnitte. Hinsichtlich des Typs II korrespondieren die Ergebnisse der beiden Methoden gut miteinander (Tab. 7.2). Die Untersuchungen an einer stärker retrograd überprägten Probe

(IMM 061) zeigen keine signifikanten Abweichungen zu niedrigeren Temperaturen bzw. Drucken, die Werte liegen eher im oberen Mittelfeld und dokumentieren die retrograde Überprägung damit nicht ausdrücklich.

Unter Verwendung des intern-konsistenten Datensatzes von HOLLAND & POWELL (1990) wurden für eine Wasseraktivität von $a_{H2O} = 1.0$ durchschnittlich Temperaturen von 600 bis 670 °C ± 70 °C und Drucke von 6.0 bis 8.0 ± 0.8 kbar berechnet. Auch hier zeigt sich eine weitgehende Übereinstimmung mit den Ergebnissen der übrigen Methoden. Zum Vergleich mit den aus den P-T-Pseudoschnitten abgeleiteten Drucken und Temperaturen ist anzumerken, daß die den beiden Ansätzen zugrundeliegenden Datensätze teilweise identisch sind. Für die einzelnen Gesteine weisen die durch konventionelle Geothermobarometrie und mittels intern-konsistenter Datensätze abgeleiteten Daten eine deutlich größere Schwankungsbreite und einen größeren Fehler auf als die Ergebnisse der P-T-Pseudoschnitte.

Der Verlauf der berechneten P-T-Pfade im Uhrzeigersinn ("clockwise") und die abgeleiteten Drucke und Temperaturen stehen insgesamt in guter Übereinstimmung mit den bereits in der Literatur existierenden Daten (z.B. SMOLER 1987, OKRUSCH & WEBER 1996; vgl. Kap. 2.4). Insbesondere liegen deutliche Parallelen zwischen dem hier definierten P-T-Pfad für den Typ I und dem von DOMBROWSKI et al. (1994) für den kristallinen Spessart konstruierten P-T-Pfad vor. Auf einen flacheren P-T-Pfad, wie er sich für die Disthen-führenden Gesteine abzeichnet, liegt dagegen in der Literatur kein Hinweis vor. Die aus den P-T-Pseudoschnitten und Druck-Temperatur-Pfaden ermittelten Drucke um 6 bis 8 kbar liegen im oberen Bereich der in der Literatur beschriebenen Druck-Angaben, die sich insgesamt ergebenden Temperaturen von 600 bis 630 °C sind mit mittleren Werten früherer Arbeiten zu vergleichen (z.B. MATTHES & OKRUSCH 1977, SMOLER 1987, DOMBROWSKI et al. 1994, OKRUSCH & WEBER 1996; vgl. Kap. 2.4). So gehen OKRUSCH & WEBER (1996) für das Maximum der Metamorphose im zentralen Spessart-Kristallin von 570 bis 650 °C und etwa 5 kbar aus, SMOLER (1987) gibt für die Mömbris-Formation 590 bis 650 °C und 4 bis 6 kbar an.

Die vorliegenden Ergebnisse bestätigen die in der Literatur vorgenommene Einstufung in die Amphibolitfazies (z.B. OKRUSCH & WEBER 1996). Die beschriebenen absoluten Drucke und Temperaturen stehen in Einklang mit dem durch das Stabilitätsfeld der Paragenese Staurolith + Granat + Biotit (+ Muscovit + Quarz) nach SPEAR & CHENEY (1989) definierten Bereich (vgl. Abb. 2.7). Die untere Stabilitätsgrenze dieser Mineralparagenese in Metapeliten kann aufgrund

unterschiedlicher experimenteller Ergebnisse und thermodynamischer Berechnungen mit etwa 515 °C/3 kbar, 540 °C/5 kbar und 560 °C/8 kbar P_{H2O} angegeben werden (SPEAR & CHENEY 1989, OKRUSCH & MATTHES 2005, S. 393 bzw. 328). Die Abwesenheit von Cordierit in den Staurolith-Glimmerschiefern des Spessart-Kristallins unterstützt den Befund einer eher Mitteldruck-betonten Situation.

Mineralchemisch werden die Metamorphose-Bedingungen der Amphibolitfazies – in Einklang mit dem von OKRUSCH & MATTHES (2005) beschriebenen Sachverhalt - durch die höheren Eisen-Magnesium-Verhältnisse in Granat (0.80 - 0.88) und Staurolith (0.77 - 0.82) im Vergleich zu denen in Biotit (0.38 - 0.47) bestätigt. Hinsichtlich der variierenden Si-Gehalte in den Hellglimmern, die für viele Proben nur eine grobe Einschätzung der Druck-Bedingungen ermöglichten (vgl. Kap. 4.4), zeigen sich Parallelen zu der von DOMBROWSKI et al. (1994) und OKRUSCH & WEBER (1996) dargestellten Situation für die Rotgneise. Für diese werden "überwiegend 6.2 bis 6.3 Si" angegeben und aufgrund des Phengit-Barometers nach MASSONNE (1991) Drucke von 4 bis 7 kbar sowie Temperaturen von 600 bis 650 °C abgeleitet. Deutlich erhöhte Si-Werte mit 6.5 bis 6.6 Si p.f.u., die auf höhere Drucke und/oder Temperaturen hinweisen, wurden für stärker phengitische Kernzusammensetzungen an Muscoviten des Rotgneises beschrieben (DOMBROWSKI et al. 1994). Vergleichbare Werte konnten für die Staurolith-Glimmerschiefer der Mömbris-Formation nur einzelnen Fällen festgestellt werden. Dies ist vermutlich auf die retrograde Metamorphose der Gesteine zurückzuführen, aufgrund derer die ehemals vorliegenden Signaturen der prograden Entwicklung zurückgesetzt wurden. Die beschriebenen Kern-Zusammensetzungen in einzelnen Hellglimmern könnten allerdings einen Hinweis in diese Richtung darstellen und den P-T-Pfad im Uhrzeigersinn absichern.

Während die konventionellen Druck-Temperatur-Werte im allgemeinen recht große Schwankungen aufweisen, verdeutlichen die hier konstruierten P-T-Pseudoschnitte – besonders für die Disthen-freien Gesteine – die untereinander vergleichbare tektonometamorphe Entwicklung gut. Die im Rahmen dieser Arbeit ermittelten Ergebnisse sind deutlich sicherer, als die bisherigen Druck-Temperatur-Abschätzungen für das Spessart-Kristallin, Darüber hinaus wird die Form und der genauere Verlauf des P-T-Pfades erstmals in dieser Klarheit dokumentiert.

Das sich für die unterschiedlichen petrographischen Gruppen des Staurolith-Glimmerschiefers der Mömbris-Formation abzeichnende Bild deutet für den Typ II auf eine etwas stärkere Temperatur-Betonung hin. Der flachere Druck-Temperatur-Pfad resultiert insbesondere aus der veränderten, Disthen-führenden Mineralparagenese in einigen Gesteinen dieses Typs. Im Dünnschliff dieser Proben zeigt sich, daß Granat, Staurolith und Disthen die Glimmerlagen überwachsen, die in Richtung der Hauptschieferung eingeregelt sind. Diese Gefügesituation deutet auf einen Metamorphose-Höhepunkt nach der Hauptdeformation hin, was ebenfalls für eine stärker Temperatur-betonte Situation spricht. Der Vergleich der P-T-Pseudoschnitte und der Stoffbestände zeigt, daß aufgrund ihrer Zusammensetzung alle näher untersuchten Gesteine in der Lage gewesen wären, Disthen zu stabilisieren. Es handelt sich also bei der Disthen-Führung einiger Gesteinsproben um einen effektiv durch die Metamorphose verursachten Unterschied, der nicht nur Ursachen im Gesteinschemismus hat. Offensichtlich förderten lokal höhere Temperaturen die Bildung von Disthen (in SM 1063 zusätzlich Sillimanit). Die absoluten Temperaturunterschiede von 20 bis 30 °C innerhalb der Mömbris-Formation sind allerdings relativ gering. Im räumlichen Bild weisen damit nur Gesteine vom Kalbsbuckel bei Kleinostheim und der Womburg bei Schimborn den flacheren Druck-Temperatur-Pfad auf. Hinsichtlich der räumlichen Verbreitung der Areale mit ehemals etwas erhöhten Temperaturen wird dieses Bild durch die zuvor beschriebene Annahme etwas höherer Temperaturen für zwei Proben mit petrographischen Merkmalen des Typs II, die jedoch keinen Disthen führen, ergänzt (IMM 044, IMM 089; vgl. Kap. 7.1). Die Probe IMM 044 stammt vom Kalbsbuckel bei Kleinostheim und IMM 089 aus dem Bereich zwischen Erlenbach und Kaltenberg, unweit von Sommerkahl. Die schmale Zone, in der sich Hinweise auf höhere Temperaturen finden, zieht sich also im südlichen Bereich im Streichen durch die Mömbris-Formation und verläuft damit nahe der Grenze zum Gebiet des Rotgneis-Komplexes. Diese Feststellung paßt sehr gut zu der Gruppierung sowie der beschriebenen räumlichen petrographischen Verteilung der Gesteinsvarianten (vgl. Kap. 3.2.1). Von etwas höheren Temperaturen im Süden der Mömbris-Formation geht auch MATTHES (1954) aufgrund der Verbreitung der Al₂SiO₅-Polymorphen aus. Die Annahme leicht erhöhter Temperaturen im Süden der Mömbris-Formation fügt sich unkompliziert in die Vorstellung von OKRUSCH & WEBER (1996, S. 162) ein, die einen leichten Temperaturanstieg von der Geiselbach-Formation im Norden bis zur Elterhof-Formation im Süden für wahrscheinlich halten. Auch unter der Voraussetzung, im nördlichen Bereich des Spessart-Kristallins hätten etwas geringere Temperaturen geherrscht, erscheint für die Geiselbach-Formation eine prinzipiell mögliche Bildung von Staurolith aufgrund der Metamorphosebedingungen nicht unrealistisch (vgl. Kap 7.1).

Abb. 7.24:

Druck-Temperatur-Entwicklung für das Spessart-Kristallin in der zusammenfassenden Übersicht. Zu beachten ist der im Vergleich zu den P-T-Pseudoschnitten größere Temperaturausschnitt der Darstellung. Alle ermittelten P-T-Pfade verlaufen im Uhrzeigersinn. Eine Phase nahezu isothermaler Dekompression in der überwiegenden Zahl der Pfade (schwarz) ist in dieser Darstellung gut erkennbar. Die Pfade der Disthen-führenden Proben verlaufen etwas flacher (grau), zeigen jedoch ebenfalls die ITD. Die P-T-Pfade deuten für die Versenkung auf einen recht niedrigen geothermischen Gradienten hin, bei der Heraushebung verlaufen sie ungefähr parallel zu einem geothermischen Gradienten von etwa 30 - 40 °C/km.

Die hergeleiteten **P-T-Pfade im Uhrzeigersinn** verdeutlichen eine kontinuierliche metamorphe Entwicklung, die mit Ausnahme der Anzeichen für eine retrograde Überprägung keine Hinweise auf eine polymetamorphe Geschichte beinhalten. P-T-Pfade im Uhrzeigersinn (clockwise P-Tpaths) wurden theoretisch von ENGLAND & THOMPSON (1984) modelliert. Die Peak-Metamorphosebedingungen, die in der Regel durch das Temperaturmaximum repräsentiert werden, wurden dabei nicht bei maximalem Druck, sondern erst bei der Druckentlastung durch eine anschließende Heraushebung erreicht (vgl. WILL 1998b). Druck-Temperatur-Entwicklungen dieser Art werden als Hinweis auf eine Krustenverdickung mit anschließender Erosion und/oder Extension gedeutet. Daher sind diese Pfade generell als das Ergebnis kontinentaler Kollisionstektonik (z.B. ENGLAND & RICHARDSON 1977, RICHARDSON & ENGLAND 1979) sowie von Subduktionsvorgängen (THOMPSON & ENGLAND 1984) zu interpretieren. Eine Übersicht, wie aufgrund verschiedener P-T-Pfade Modelle zur tektonischen Entwicklung metamorpher Areale abgeleitet werden können, gibt z.B. SPEAR (1993).

Die abgeleiteten Pfade der Druck-Temperatur-Entwicklung des Spessart-Kristallins deuten, entsprechend der Aussagen von z.B. THOMPSON & ENGLAND (1984), auf eine relativ schnelle Versenkung bei einem eher niedrigen geothermischen Gradienten hin. Eine Phase nahezu isothermaler Dekompression (ITD) ist für die dargestellten Pfade aufgrund des gewählten Druck-Temperatur-Ausschnittes zunächst nicht sehr deutlich erkennbar. Im zusammenfassenden P-T-Diagramm (Abb. 7.24) zeigt sich dieses charakteristische Merkmal jedoch ausgeprägter. Nach SPEAR (1993, S. 739) kann eine isothermale Dekompression nur durch eine sehr schnelle Exhumierung verursacht sein, die durch tektonische Freilegung in Zusammenhang mit Extension oder sehr schnelle Erosion herbeigeführt werden kann. Diese Beziehung läßt für das Spessart-Kristallin auf eine Phase schneller Exhumierung schließen, die über einen Aufstiegsweg von ca. 10 bis 13 km andauerte. Die P-T-Pfade für das Spessart-Kristallin münden in eine Entwicklung entsprechend einem geothermischen Gradienten von etwa 30 - 40 °C/km ein. Dieser Ast des P-T-Pfades repräsentiert eine allmähliche Heraushebung der Gesteinseinheiten unter Temperaturabnahme. Während dieses Teils der metamorphen Entwicklung erfuhren die Gesteine teilweise eine retrograde Überprägung unter grünschieferfaciellen Bedingungen. Der etwas flachere P-T-Pfad der Disthen-führenden Proben des Typs II verläuft ebenfalls im Uhrzeigersinn (Abb. 7.24). Auch in diesem Falle stellt die ITD das wesentliche Merkmal der Druck-Temperatur-Entwicklung dar. Anhaltspunkte für eine isobare Abkühlung (IBC), die als Anzeichen für eine Krustenverdopplung oder eine Platznahme magmatischer Körper unter kühleren Krustensegmenten interpretiert wird (SPEAR 1993), liegen nicht vor. Da außer der

Disthen-Führung keine weiteren signifikanten Unterschiede zu den übrigen Proben festzustellen sind, muß zur Erklärung der abweichenden Form dieses P-T-Pfades ein lokal erhöhter Metamorphosegrad angenommen werden, wobei die Hinweise insbesondere auf eine leicht erhöhte Temperatur hindeuten. Auch die einheitliche räumliche Zuordnung der betreffenden Proben zu einer schmalen Zone im Süden der Mömbris-Formation (s.o.) spricht für diese Folgerung. Weiterhin besteht diesbezüglich Übereinstimmung mit den Vorstellungen von MATTHES (1954) sowie OKRUSCH & WEBER (1996). Eine Einordnung dieser Ergebnisse zur Metamorphose des Spessart-Kristallins in den Kenntnisstand zur variszischen Orogenese ist in Kap. 8 dargelegt.

Eine interessante Ergänzung zu der dargestellten Druck-Temperatur-Geschichte könnten auch Altersdatierungen der untersuchten Gesteine liefern, sodaß sich ein Druck-Temperatur-Zeit-Pfad rekonstruieren ließe (vgl. SPEAR 1993, S. 711 ff., BUCHER & FREY 1994, S. 65 ff.). Der gegenwärtige Kenntnisstand zum Spessart-Kristallin spricht somit für zukünftig verstärkte geochronologische Untersuchungen.

8. Das Spessart-Kristallin innerhalb der Varisziden Mitteleuropas

Aufgrund der P-T-Pfade für das Spessart-Kristallin zeichnet sich für die Versenkung der Gesteine ein geothermischer Gradient zwischen etwa 17 °C/km und 25 °C/km ab. Die neu berechneten P-T-Pfade für die Mömbris-Formation sind im Bereich zwischen ca. 7 - 8 kbar bei 600 - 615 °C und ca. 4 - 5 kbar bei 570 - 580 °C durch eine Phase nahezu isothermaler Dekompression (ITD) charakterisiert (vgl. Kap. 7.2 u. Abb. 7.24). Für den Aufstieg aus einer Tiefe von etwa 25 - 28 km auf etwa 15 - 18 km kann hieraus auf eine relativ rasche Heraushebung bei recht geringer Temperaturabnahme geschlossen werden. Die P-T-Pfade der Staurolith-Glimmerschiefer des Typs II, die ausgehend von 620 - 630 °C bei etwa 6 - 8 kbar einer Entwicklung auf ebenfalls 4 - 5 kbar bei 570 - 580 °C unterworfen waren, zeigen die isothermale Dekompression weniger ausgeprägt. Die beschriebenen P-T-Pfade verlaufen schließlich ungefähr parallel zu einer Entwicklung mit einem mäßigen geothermischen Gradienten von etwa 30 - 40 °C/km, was mit den Aussagen von OKRUSCH & WEBER (1996) korreliert. Diese Druck-Temperatur-Entwicklung kann z.B. SPEAR (1993) zufolge als typisch für die Situation im Bereich kontinentaler Orogengürtel angesehen werden (Abb. 8.1).

Insgesamt deuten die berechneten P-T-Pfade eine Situation an einem aktiven Kontinentalrand an. die Ergebnisse der geochemischen Charakterisierung Hierfür sprechen auch des Ablagerungsraumes der sedimentären Ausgangsmaterialien der Metapelite (vgl. Kap. 5). Die grundsätzliche Interpretation der konstruierten P-T-Pfade steht in guter Analogie zur derzeitigen Auffassung, die Mitteldeutsche Kristallinschwelle repräsentiere einen variszischen aktiven Plattenrand, an dem der Rhenohercynische Ozean subduziert wurde (z.B. FRANKE 1989a, b, 1990, DALLMEYER et al. 1995, ONCKEN 1997; vgl. Kap. 2.2). Eine tektonometamorphe Entwicklung des Spessart-Kristallins, die durch eine relativ schnelle Versenkung bei einem eher niedrigen geothermischen Gradienten charakterisiert wird, fügt sich gut in das von ONCKEN (1997, 1998) beschriebene geotektonische Modell ein, das eine Kollision eines passiven Kontinentalrandes (Rhenohercynikum) mit einem kontinentalen Bogen (Mitteldeutschen Kristallinschwelle, MGCR der saxothuringischen Zone) annimmt. Die Deutung der P-T-Pfade gemäß SPEAR (1993) (vgl. Kap. 7.2), die für eine schnelle tektonische Freilegung spricht, korrespondiert sehr gut mit der von ONCKEN (1997) für die Mitteldeutsche Kristallinschwelle entwickelten Vorstellung einer Exhumierung der Gesteine in Zusammenhang mit Krustendehnung, gekennzeichnet durch eine schnelle Hebung und darauf folgende tektonische Freilegung.

Der zentrale Teil der Mitteldeutschen Kristallinzone, der das Spessart-Kristallin, ebenso wie wesentliche Teile des Ruhlaer Kristallins und den östlichen Teil des Odenwaldes (Böllsteiner Odenwald) umfasst (ONCKEN 1997, ZEH et al. 2005), wird zu der tektonometamorphen Einheit II gerechnet (vgl. Kap. 2.2). Zu der von ONCKEN (1996, 1997), ONCKEN et al. (2000) sowie ZEH et al. (2005) erläuterten Vorstellung, das Spessart-Kristallin dieser als subduktionsbezogen angesehenen Einheit II der Mitteldeutschen Kristallinzone zuzuordnen (vgl. Kap. 2.2), passt auch die für die untersuchten Gesteine ermittelte Versenkungstiefe von über 20 km. Die hier erarbeiteten Drucke und Temperaturen harmonieren ebenfalls weitgehend mit den von z.B. ONCKEN (1997) für die peak-Druck-Temperatur-Bedingungen der Metamorphose dieser Einheit II angenommenen 7 kbar und 650 °C. Aufgrund der von OKRUSCH (1995) sowie OKRUSCH & WEBER (1996) dargestellten P-T-Entwicklung des Spessart-Kristallins in der oberen Grünschiefer- bis Amphibolitfazies und aus geochronologischen Daten von 318 – 324 Ma für das Spessart-Kristallin und den östlichen Odenwald (z.B. WILLNER et al. 1991) schließt ONCKEN (1997) auf eine sehr schnelle Abkühlung im Anschluß an die Peak-Metamorphose. Dies deutet für den retrograden Ast der P-T-Pfade auf eine anschließende Phase isobarer Abkühlung hin.

Der Vergleich der neuen P-T-Pfade mit bisherigen Kenntnissen zur Metamorphose anderer Gebiete dieser Einheit untermauert die Vorstellung einer gemeinsamen geotektonischen Entwicklung des Spessart-Kristallins insbesondere mit Teilen des Ruhlaer Kristallins und bestätigt damit die Zuordnung zur gleichen Einheit der Mitteldeutschen Kristallinzone. Die lithostratigraphische Parallelisierung des Ruhlaer Kristallins mit dem Spessart-Kristallin wird von HIRSCHMANN & OKRUSCH (1988) modern interpretiert. Demzufolge sind insbesondere die Mömbris-Formation im Spessart mit der Truse Fromation des Ruhlaer Kristallins und die Geiselbach-Formation mit der Ruhla-Formation zu vergleichen. Eine Ablagerung der ursprünglichen Sedimente im Bereich eines aktiven Kontinentalrandes wie bei den Metapeliten der Mömbris-Formation (SMOLER 1987, OKRUSCH & WEBER 1996; vgl. Kap. 5) beschreibt ZEH (1996) auch für die Pelite und Grauwacken der Trusetal-Gruppe.

Abb. 8.1:

Geotektonisches Umfeld und Metamorphose-Entwicklung im Druck-Temperatur-Diagramm nach SPEAR (1993), mit den ermittelten P-T-Pfaden für das Spessart-Kristallin sowie den geothermischen Gradienten bei der Versenkung und der Heraushebung der Gesteine. Die Metamorphose unter mittleren P-T-Bedingungen ist charakteristisch für kontinentale Orogengürtel.

Aufgrund der von ZEH (1996) dargestellten Druck-Temperatur-Entwicklung durchliefen auch die Gesteine der Trusetal-Gruppe und der Ruhlaer-Gruppe eine mittelgradige, BARROW-type Metamorphose bei 550 - 630 °C und 5 - 7 kbar, während andere Einheiten des Ruhlaer Kristallins (Brotterode-Formation und Zentrales Kristallin) bei Temperaturen bis 700 °C und Drucken um 5 kbar hochgradig metamorph überprägt wurden. Geochronologisch ordnen ZEH et al. (2000, 2003) die erstgenannten Einheiten (im Osten und Westen des Ruhlaer Kristallins) aufgrund von ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ -Biotit-Altern um 336 ± 4 Ma bzw. 323 ± 3 Ma ein, für die zentralen Einheiten beschreiben sie eindeutig jüngere Intrusions- und Abkühlungsalter von ⁴⁰Ar/³⁹Ar an Muscovit 311 ± 3 Ma bzw. 40 Ar/ 39 Ar an Biotit $293 - 288 \pm 3$ Ma sowie 207 Pb/ 206 Pb an Zirkon von 298 ± 2 Ma, 295 ± 3 Ma und 289 ± 4 Ma. Sowohl die BARROW-type Metamorphose unter amphibolitfaziellen Bedingungen als auch die Drucke und Temperaturen, die für die Mömbris-Formation des Spessart-Kristallins abgeleitet werden konnten, sind diesen Metamorphose-Daten für die Trusetal- und Ruhlaer-Gruppe sehr ähnlich. Die P-T-Pfade im Uhrzeigersinn verlaufen also weitgehend analog. ONCKEN (1997) sowie HANSCH & ZEH (2000) sehen in der Trusetalund der Ruhlaer-Gruppe Relikte eines früheren Ozeanboden-Bereiches, der von einem Inselbogen überfahren und an dessen Basis akkretiert wurde. Die dargestellte geologische Interpretation der hier konstruierten P-T-Pfade steht mit dieser Vorstellung in Einklang.

Die beschriebene Druck-Temperatur-Entwicklung für die Gesteine des Spessart-Kristallins unterscheidet sich dagegen vollständig von dem entgegen dem Uhrzeigersinn verlaufenden P-T-Pfad, den WILL & SCHMÄDICKE (2003) für Al₂O₃-reiche, SiO₂- und K₂O-arme Metapelite des westlichen Odenwaldes ableiten. Der westliche Odenwald wird, wie auch das Kyffhäuser Kristallin, der Einheit I der Mitteldeutschen Kristallinzone zugeordnet, die nach ONCKEN (1997) den ehemaligen saxothuringischen Inselbogen repräsentiert (vgl. Kap. 2.2). Für das Maximum der Niedrig-Druck/Hoch-Temperatur-Metamorphose ermittelten WILL & SCHMÄDICKE (2003) an diesen Gesteinen des Odenwaldes mittels P-T-Pseudoschnitten im Modellsystem KFMASH Drucke von 4 ± 0.5 kbar und Temperaturen von mindestens 640 °C. WILL & SCHMÄDICKE (2003) stellen diese variszische metamorphe Entwicklung daher in einen subduktionsbezogenen Kontext mit einem magmatischen Bogen. In bezug auf den Böllsteiner Odenwald (im Osten) leiten sie aus Hochdruck-Eklogiten Hinweise auf einen ehemaligen "paired metamorphic belt" ab. Geochronologisch ermittelten SCHUBERT et al. (2001) im zentralen und südlichen Odenwald für den Peak der Regionalmetamorphose Zirkon-Alter um ca. 336 Ma. Für das Kyffhäuser Kristallin, das ebenfalls zur Einheit I gehört, beschreiben ZEH et al. (2005) eine komplexe magmatische, metamorphe und geochronologische Entwicklung, die durch die Intrusion verschiedener magmatischer Gesteine in Metasedimente innerhalb verschiedener Krustentiefen vor etwa 341 ± 1 Ma und 333 ± 7 Ma gekennzeichnet ist. Weitere Altersdaten für verschiedene Gesteine der Varisziden liegen auch von NEUROTH (1997) vor, wobei für die Mitteldeutschen Kristallinschwelle nur ein pegmatitischer Granit des Kyffhäuser Kristallins mit einem K-Ar-Abkühlungsalter von 333 Ma datiert wurde. Der von ZEH et al. (2005) u.a. mittels P-T-Pseudoschnitten ermittelte P-T-t-Pfad zeigt für die Metapelite des Kyffhäuser Kristallins eine Phase nahezu isothermaler Dekompression von 5 - 7 kbar bei 730 °C auf 4 kbar bei 700 °C an, auf die eine annähernd isobare Abkühlung auf 580 °C bei 3.5 kbar folgt. Die Intrusions- und Abkühlungsalter der Gesteine des Kyffhäuser Kristallins stimmen gemäß ZEH et al. (2005) gut mit denen für den westlichen Odenwald (z.B. SCHUBERT et al. 2001) und das Ruhlaer Kristallin (z.B. ZEH et al. 2000, 2003) überein. Daraus schließen ZEH et al. (2005), analog zu den Vorstellungen von ALTHERR et al. (1999), auf verbreitete magmatische Aktivitäten, von denen die Mitteldeutsche Kristallinschwelle im Visé erfasst wurde.

Die Druck-Temperatur-Pfade der zur Einheit II der Mitteldeutschen Kristallinschwelle zugeordneten Gebiete (Spessart-Kristallin, Teile des Ruhlaer Kristallins) zeigen damit übereinstimmend eine weniger starke magmatische Beeinflussung als diejenigen der Einheit I der Mitteldeutschen Kristallinschwelle (westlicher Odenwald, Kyffhäuser Kristallin, Teile des Ruhlaer Kristallins). Aufgrund der hier vorliegenden Ergebnisse wird dieser Befund deutlich abgesichert. Auch die im Rahmen dieser Arbeit abgeleiteten P-T-Pfade harmonieren also gut mit dem von ONCKEN (1997) beschriebenen geotektonischen Modell. Der Vergleich der geochronologischen Daten lässt vermuten, dass die Gesteine des Spessart-Kristallins erst etwa 10 - 20 Ma später als z.B. die des Kyffhäuser Kristallins vergleichbare Temperaturen erreichten, was in Analogie zu der tieferen Krustenposition der Einheit II gesehen werden kann.

Die meisten der bisher bekannten Altersdaten verschiedener Einheiten des Spessart-Kristallins streuen um 320 Ma (LIPPOLT 1986, NASIR et al. 1991, DOMBROWSKI et al. 1994) und weisen untereinander keine signifikanten Unterschiede auf. Diese Alter repräsentieren die Regionalmetamorphose und damit die variszische Orogenese. Höhere Alter wurden im Spessart-Kristallin nur für die Orthogneise (Rotgneis und Haibacher Gneis) nachgewiesen. Aus 207 Pb/²⁰⁶Pb Altersdaten für Zirkone des Rotgneises, die zwischen 2278 ± 12 und 2734 ± 10 Ma schwanken, schließen DOMBROWSKI et al. (1995) auf eine früh-proterozoische bis spät-

archaische krustale Komponente im Rotgneis-Edukt. Rb-Sr-Gesamtgesteinsdaten und Einzelzirkon-Daten des Haibacher Gneises und des Rotgneises von 407 ± 7 Ma, 410 ± 18 Ma und 418 ± 18 Ma (DOMBROWSKI et al. 1994) interpretieren OKRUSCH & WEBER (1996) als silurisches Intrusionsalter der granitoiden Ausgangsgesteine dieser Orthogneise. Für Gesteine unterschiedlicher lithostratigraphischer Einheiten des Spessart-Kristallins bestimmten NASIR et al. (1991) an Hornblenden, Muscoviten und Biotiten konkordante K-Ar-Alter zwischen 324 und 318 Ma und schließen daraus auf eine rasche Hebung und Abkühlung an der Grenze Unter-/Oberkarbon in engem zeitlichen Zusammenhang zum Maximum der variszischen Orogenese. Zu vergleichbaren geochronologischen Ergebnissen von 320 ± 5 Ma kommt LIPPOLT (1986) aufgrund von ebenfalls an Hornblenden, Muscoviten und Biotiten bestimmten K-Ar-Altern. Ein von DOMBROWSKI et al. (1994) bestimmtes Ar-Ar-Plateaualter von 324 ± 3 Ma an einem Muscovit des Haibacher Gneises passt zu diesen Werten. OKRUSCH & WEBER (1996) heben hervor, dass Hebung und Abtragung sehr schnell erfolgt sein müssen, da die Abkühlungsalter für Hornblende, Muscovit und Biotit nicht signifikant unterscheidbar in einem engen Zeitraum um 320 Ma liegen. Die hier berechneten P-T-Pfade lassen sich mit der aus den Altersdaten entwickelten Vorstellung einer sehr raschen Heraushebungsphase und Abkühlung des Spessart-Kristallins um die Wende vom frühen zum späten Karbon (Visé/Namur), vermutlich kurze Zeit nach dem Höhepunkt der variszischen Deformation und amphibolitfaziellen Metamorphose (z.B. OKRUSCH & WEBER 1996), sehr gut korrelieren. Die in den dargestellten P-T-Pfaden zu verzeichnende Phase nahezu isothermaler Dekompression spiegelt eine Heraushebung um ca. 10 km wider (s.o. u. Kap. 7.2). Die geringe Differenz der Abkühlungsalter für die verschiedenen Minerale spricht für einen Zeitraum von maximal etwa 10 Ma für diese Exhumierung. Hieraus ergäbe sich eine mittlere Hebungsrate von minimal ca. 1 mm/a. Dieser groben Abschätzung stehen Ergebnisse von HENK (1995) gegenüber, der aufgrund von Modellierungen die Hebungsraten für den zentralen Bereich der Mitteldeutschen Kristallinschwelle (Spessart und östlicher Odenwald) mit 3 mm/a im frühen Oberkarbon beziffert, die auf 0.2 mm/a zum Ende des Karbons hin abnahmen. Für den westlichen Odenwald dagegen rechnet ONCKEN (1997) mit niedrigeren Hebungsraten von 1.3 mm/a im späten Unterkarbon, abnehmend auf 0.2 mm/a bis zum Ende des Karbons hin. Die beschriebene Größenordnung beinhaltet natürlich keine zeitliche Variation der Exhumierungsgeschwindigkeit. Sie ermöglicht zumindest aber einen Vergleich mit aktuellen Hebungsraten, die z.B. JÄCKLI (1985, S. 71) für die Region um Basel mit 0 - 0.5 mm/a und für das Gotthard-Massiv mit > 1.5 mm/a angibt.

Die P-T-Pfade spiegeln damit auch die wesentlichen Aspekte der geodynamischen Entwicklung des Gebietes wider. ONCKEN (1997) beschreibt eine aus der schrägen Konvergenz resultierende Aufteilung des kinematischen Vektors in Kontraktions- und Extensionsdomänen. Offensichtlich dominierte in der Mitteldeutschen Kristallinschwelle während des Verlaufes der Orogenese zunächst eine Phase der Krusteneinengung, anschließend eine Krustendehnung. Eine präwestfalische Krusteneinengung im Bereich der Mitteldeutschen Kristallinschwelle nehmen auch OKRUSCH & WEBER (1996) für das Spessart-Kristallin aufgrund struktureller Argumente an. Einen Hinweis auf eine Periode der Einengungs-Tektonik zu Beginn der Variszischen Orogenese könnte nach OKRUSCH & WEBER (1996) der Kalkalkali-Vulkanismus darstellen, auf den die Metabasite im Bereich Aschaffenburg - Feldkahl - Rottenberg zurückgehen. Diese Zusammenhang Krustenverkürzung ist in mit der allmählichen Schließung des Saxothuringischen Beckens während des frühen Devons zu sehen (z.B. WEBER & BEHR 1983, WEBER 1984, NEUGEBAUER 1988, FRANKE 1989a, b, 1990, FRANKE & ONCKEN 1990). Für den später erfolgten Transfer des Materials von der unteren Platte (Einheit II der Mitteldeutschen Kristallinschwelle, vgl. Kap. 2.2 u. oben) in die obere Platte sowie die Hebung und Exhumierung nimmt ONCKEN (1997) dagegen eine Krustendehnung an. Die in den P-T-Pfaden markante Phase nahezu isothermaler Dekompression (ITD) repräsentiert insbesondere diesen Teil der tektonometamorphen Entwicklung der Gesteine.

Hinsichtlich der geotektonischen Situation gehen DOMBROWSKI et al. (1994) für die Edukte der Spessart-Orthogneise (Rotgneis und Haibacher Gneis) von einer Bildung der granitoiden Magmen an einem konvergenten Plattenrand aus (vgl. Kap. 2.3 und 2.5). Für die Bildung der Magmen, aus denen im mittleren bis späten Silur die granitoiden Edukte der Orthogneise kristallisierten (OKRUSCH & WEBER 1996), nehmen DOMBROWSKI et al. (1994) eine Mischung von anatektischer kontinentaler Kruste mit juvenilem, möglicherweise durch Underplating gebildetem Mantelmaterial an, wahrscheinlich in einer Inselbogen- oder Andentyp-Situation. Auf eine vergleichbare geotektonische Position an einem konvergenten Plattenrand, z.B. einem Backarc-Becken, schließen OKRUSCH & WEBER (1996) aufgrund geochemischer Merkmale auch für die vulkanischen Edukte der Metabasitzüge. Übergänge in der Zusammensetzung der basaltischen Ausgangsgesteine der Amphibolite zwischen MORB und Inselbogen-Charakter werden als Indiz für die Einengung eines Ozeans interpretiert (z.B. OKRUSCH & WEBER 1996). Weitere Hinweise auf eine Kontinentalrand-Situation, in geringer Entfernung vom Liefergebiet, beschreibt SMOLER (1987) – basierend auf geochemischen Parametern – für die Sedimentation der Mömbris-Formation. Die hier neu abgeleiteten P-T-Pfade und die geochemischen Befunde – insbesondere für die Mömbris-Formation –, die auf eine Ablagerung der sedimentären Edukte im Bereich eines Kontinentalen Inselbogens bis Aktiven Kontinentalrandes hinweisen, stehen mit diesen Interpretationen in guter Übereinstimmung. Eine vergleichbare geotektonische Situation zeichnet sich aufgrund der geochemischen Merkmale auch für die Alzenau-Formation ab, während für die Gesteine der Geiselbach-Formation keine einheitliche Tendenz vorliegt und für die Elterhof-Formation nur sehr unsichere Hinweise abzuleiten sind (vgl. Kap. 5.3).

Die P-T-Pfade der Staurolith-Glimmerschiefer des Typs II, die etwas flacher verlaufen und leicht von einer stärkeren Temperatur-Betonung gekennzeichnet sind, lassen auf lokal erhöhte Temperaturen schließen (vgl. Kap. 7.2). Das räumlich begrenzte Auftreten der Proben mit einer solchen Druck-Temperatur-Entwicklung in einer schmalen Zone im südlichen Bereich der Mömbris-Formation, nahe der Grenze zum Gebiet des Rotgneises, spricht daher für einen thermischen Einfluß des Orthogneis-Komplexes auf die Staurolith-Glimmerschiefer im Randbereich. Staurolith-freie Gesteinspartien in der Mömbris-Formation sind offensichtlich auf einem ungünstigen Pauschalchemismus zurückzuführen, was z.B. in den Al₂O₃-Gehalten, aber auch in den Gehalten an MnO bzw. ZnO begründet sein kann. Die Daten für die Geiselbach-Formation ergeben keine Hinweise auf deutlich abweichende Druck-Temperatur-Bedingungen in dieser Einheit während der Metamorphose (vgl. Kap. 7.1), die eine andere geotektonische Entwicklung repräsentieren könnten. Die Ergebnisse deuten eher darauf hin, daß das auch hier überwiegend festzustellende Fehlen von Staurolith in der Geiselbach-Formation chemisch bedingt ist, vermutlich durch mäßige Al₂O₃-Gehalte und Abwesenheit erhöhter Zink-Gehalte (vgl. Kap. 5). Aus niedrigeren Metamorphosebedingungen resultiert dieses Merkmal demnach wahrscheinlich nicht. Auch wenn aufgrund des Metamorphosegrades eine Stabilisierung von Staurolith in der Geiselbach-Fromation möglich war, kann eine leichte Zunahme des Metamorphosegrades innerhalb des Spessart-Kristallins nach Süden nachgewiesen werden. Anzeichen für einen solchen Temperaturgradienten sind innerhalb der Mömbris-Formation, aber auch für das gesamte Spessart-Kristallin zu erkennen (vgl. auch MATTHES 1954, OKRUSCH 1995, OKRUSCH & WEBER 1996, Kap. 2.4). Ein Indiz für einen nach Süden ansteigenden Metamorphosegrad sehen OKRUSCH & WEBER (1996) auch in den höheren Temperaturen, die NASIR (1986) für Amphibolite des Metabasitzuges Aschaffenburg – Feldkahl – Rottenberg im Vergleich zu denen aus dem Bereich Hörstein – Huckelheim nachwies.

Zusammenfassend lässt sich feststellen, dass die hier konstruierten P-T-Pfade die vergleichbare tektonometamorphe Entwicklung der Gesteine gut dokumentieren und damit zur Beschreibung der orogenen Prozesse wesentlich beitragen können. Die exakte Abstimmung der Druck-Temperatur-Pfade auf den Gesteinschemismus der einzelnen Proben und ihre gegenüber Mineralparagenesen stellt einen wesentlichen Vorteil konventionellen geothermobarometrischen Methoden dar und führte zu erstmals in dieser Form gesicherten Pfaden für des Spessart-Kristallin. Alle hier konstruierten P-T-Pfade verlaufen im Uhrzeigersinn (clockwise) und bestätigen den von DOMBROWSKI et al. (1994) abgeleiteten, prinzipiellen P-T-Pfad für das Spessart-Kristallin, sie sind jedoch wesentlich exakter definiert und als zuverlässiger anzusehen. Der für die meisten Proben charakteristische Verlauf des P-T-Pfades mit einer markanten Phase nahezu isothermaler Dekompression (ITD) konnte von einem leicht flacheren Verlauf des P-T-Pfades mit einer vermutlich lokal etwas stärker Temperatur-betonten Entwicklung für einige Disthen-führende Proben differenziert werden. Die Ergebnisse stimmen mit den bisher für das Spessart-Kristallin (z.B. OKRUSCH & WEBER 1996) und die Mitteldeutsche Kristallinschwelle (z.B. DALLMEYER et al. 1995, ONCKEN 1997, FRANKE et al. 2000) existierenden Daten und grundlegenden Vorstellungen gut überein. Die neuen Erkenntnisse zur tektonometamorphen Geschichte des Spessart-Kristallins geben insofern keine Anhaltspunkte zur Entwicklung eines neuen geotektonischen Modells, da sie sehr gut mit den von ONCKEN (1997) getroffenen Aussagen und Vorhersagen harmonieren und dieses Modell daher ausgezeichnet ergänzen.

9. Literaturverzeichnis

- ALBEE, A.L. (1972): Metamorphism of pelitic rocks: reaction relations of chloritoid and staurolite. Bull. Geol. Soc. Am., 83: 3249-3268.
- ALTHERR, R., HENES-KLAIBER, U., HEGNER, E., SATIR, M. & LANGER, C. (1999): Plutonism in the Variscan Odenwald (Germany): from subduction to collision. – International J. Earth Sciences, 88: 422-443.
- ANTHES, G. & REISCHMANN, T. (1996): Geochronologie und Isotopengeochemie der NE Mitteldeutschen Kristallinschwelle. – Terra Nostra, **92/2**: 9-11.
- ANTHES, G. & REISCHMANN, T. (1997): New ²⁰⁷Pb/²⁰⁶Pb single zircon evaporation ages from the central part of the Mid German Crystalline Rise. Terra Nostra, **97/5**: 10-11.
- ANTHES, G. & REISCHMANN, T. (2001): Timing of granitoid magmatism in the eastern mid-German crystalline rise. J. Geodynamics, **31**: 119-143.
- ARNOLD, J. & SANDIFORD, M. (1990): Petrogenesis of cordierite-orthoamphibole assemblages from the Springton region, South Australia. Contrib. Mineral. Petrol., **106**: 170-182.
- ATKINS, P.W. (1990): Physikalische Chemie. 2. korr. Nachdruck der 1. Auflage, Weinheim (VCH-Verlagsgesellschaft): 890 pp.
- BACHTADSE, V., SCHÄTZ, M.R., ZWING, A., TAIT, J.A., & SOFFEL, H.C. (1998): Paleogeography of the Palaeozoic Terranes in the Variscan and Alpine foldbelts. Terra Nostra, **98/2**: 12-15.
- BAILEY, S.W. (ed.) (1984): Reviews in Mineralogy, 13: Micas. Min. Soc. America: 584 pp.
- BEDERKE, E. (1957): Alter und Metamorphose des kristallinen Grundgebirges im Spessart. Abh. hess. Landesamt Bodenforsch. (Wiesbaden), **18**: 7-19.
- BEHR, H.J. & HEINRICHS, T. (1987): Geological interpretation of DEKORP 2-S: A deep seismic reflection profile across the Saxothuringian and possible implications for the late Variscan structural evolution of Central Europe. – Tectonophysics, 142: 173-202.
- BEHRMANN, J., DROZDZEWSKI, G., HEINRICHS, T., HUCH, M., MEYER, W. & ONCKEN, O. (1991): Crustal-scale balanced cross sections through the Variscan fold belt, Germany: the central EGT-segment. – Tectonophysics, **196**: 1-21.
- BERMANN, R.G. (1988): Internally consistent thermodynamic data for minerals in the system Na₂O-K₂O-CaO-MgO-FeO-Fe₂O₃-Al₂O₃-SiO₂-TiO₂-H₂O-CO₂. J. Petrol., **29**: 445-522.
- BERMANN, R.G. (1990): Mixing properties of Ca-Mg-Fe-Mn garnets. Am. Mineral., 75: 328-344.
- BERMANN, R.G. (1991): Thermobarometry using multi-equilibrium calculations: a new technique, with petrological applications. Can. Mineral., **29**: 833-855.
- BHATIA, M.R. (1983): Plate tectonics and geochemical composition of sandstones. J. Geol., **91**: 611-627.

- BHATIA, M.R. & CROOK, K.A.W. (1986): Trace element characteristics of greywackes and tectonic discrimination of sedimentary basins. Contrib. Mineral. Petrol., **92**: 181-193.
- BOHLEN, S.R., MONTANA, A. & KERRICK, D.M. (1991): Precise determination of the equilibria kyanite = sillimanite and kyanite = andalusite and a revised triple point for Al₂SiO₅ polymorphs. Am. Mineral., **76**: 677-680.
- BONIN, B., DUBOIS, R. & GOHAU, G. (1997): Le métamorphisme et la formation des granites. Évolution des idées et concepts actuels. – Paris (Éditions Nathan): 319 pp.
- BOWEN (1940): Progressive metamorphism of siliceous limestone and dolomite. J. Geol., **48**: 225-274.
- BRAITSCH, O. (1957a): Beitrag zur Kenntnis der kristallinen Gesteine des südlichen Spessarts und ihrer geologisch-tektonischen Geschichte. – Abh. hess. Landesamt Bodenforsch. (Wiesbaden), 18: 21-72.
- BRAITSCH, O. (1957b): Zur Petrographie und Tektonik des Biotitgneises im südlichen Vorspessart. Abh. hess. Landesamt Bodenforsch. (Wiesbaden), **18**: 73-99.
- BRANDES, T. (1919): Die varistischen Züge im geologischen Bau Mitteldeutschlands. N. Jb. Miner. Geol. Paläont., Beil., **43**: 190-250.
- BRINKMANN, R. (1948): Die Mitteldeutsche Schwelle. Geol. Rundschau, 36: 56-66.
- BUBNOFF, S. VON (1926): Studium im südwestlichen Grundgebirge. II. Die tektonische Stellung des Böllsteiner Odenwaldes und des Vorspessarts. N. Jb. Mineral. Geol. Pal., **55**: 468-496.
- BUCHER, K. & FREY, M. (1994): Petrogenesis of Metamorphic Rocks. 6. Auflage, Berlin (Springer): 318 pp.
- BÜCKING, H. (1891): Geologische Specialkarte von Preussen und den Thüringischen Staaten,
 XLIX. Lieferung, Gradabteilungsblatt 68, No. 54, Blatt Bieber, mit Erläuterungen. –
 Preuß. Geol. Landesanstalt, Berlin: 55 pp.
- BÜCKING, H. (1892): Der nordwestliche Spessart. Abh. preuß. geol. Landesanstalt, N.F., **12**: 274 pp.
- CARMICHAEL, D.M. (1969): On the mechanism of prograde metamorphic reactions in quartzbearing pelitic rocks. – Contrib. Mineral. Petrol., **20**: 244-267.
- CHAKRABORTY, S. & GANGULY, J. (1992): Cation diffusion in aluminosilicate garnets experimental determination in spessartine-almandine diffusion couples, evaluation of effective binary diffusion coefficients, and applications. Contrib. Mineral. Petrol., **111**: 74-86.
- CHATTERJEE, N.D. & JOHANNES, W. (1974): Thermal stability and standard thermodynamic properties of synthetic 2M₁-muscovite KAl₂[AlSi₃O₁₀(OH)₂]. – Contrib. Mineral. Petrol., 48: 89-114.

- CHOPIN, C., GOFFE, B., UNGARETTI, L. & OBERTIE, R. (2003): Magnesiostaurolite and zincstaurolite: mineral description with a petrogenetic and crystal-chemical update. Eur. J. Mineral., **15**: 167-176.
- COCKS, L.R.M. & FORTEY, R.A. (1982): Faunal evidence for oceanic separations in the Paleozoic of Britain. J. Geol. Soc. London, **139**: 465-478. In: FRANKE, W. (2000).
- CORRENS, C.W. (1968): Einführung in die Mineralogie (Kristallographie und Petrologie) 2. Auflage, Berlin, Heidelberg (Springer): 458 pp.
- CRAMER, P. & WEINELT, W. (1978): Erläuterungen zur Geologischen Karte von Bayern 1: 25 000, Blatt 5922 Frammersbach. – Bayer. Geol. Landesamt (München): 137 pp.
- DALLMEYER, R.D., FRANKE, W. & WEBER, K. (eds.) (1995): Pre-Permian Geology of Central and Eastern Europe. IGCP Project, 233, Tectonic Series, Berlin (Springer): 604 pp.
- DEER, W.A., HOWIE, R.A. & ZUSSMAN, J. (1992): An introduction to the rock-forming minerals. - 2. Auflage, London (Longman Scientific & Technical): 696 pp.
- DEKORP Research Group (1985): First results and preliminary interpretation of deep reflection seismic recordings along profile DEKORP 2-South. J. Geophys., **57**: 137-163.
- DIETL, C. (2007): Der kristalline Vorspessart (Exkursion G am 13. April 2007). Jber. Mitt. oberrhein. geol. Ver., N.F. **89**: 237-260.
- DOMBROWSKI, A., OKRUSCH, M. & HENJES-KUNST, F. (1994): Geothermometry and geochronology on mineral assemblages of orthogneisses and related metapelites of the Spessart Crystalline Complex. Chem. Erde, **54**: 85-101.
- DOMBROWSKI, A., HENJES-KUNST, F., HÖHNDORF, A., KRÖNER, A., OKRUSCH, M. & RICHTER, P. (1995): Orthogneisses in the Spessart Crystalline Complex, Northwest Bavaria: Silurian granitoid magmatism at an active continental margin. Geol. Rundschau, **84**: 399-411.
- DROOP, G.T.R. & HARTE, B. (1995): The Effect of Mn on the Phase Relations of Medium-Grade Pelites: Constraints from Natural Assemblages on Petrogenetic Grid Topology. – J. Petrol., 36: 1549-1578.
- DUTROW, B.L., HOLDAWAY, M.J. & HINTON, R.W. (1986): Lithium in staurolite and its petrologic significance. Contrib. Mineral. Petrol., 94: 496-506.
- DUTROW, B.L. & HOLDAWAY, M.J. (1989): Experimental determination of the upper temperature stability of Fe-staurolite + quartz at medium pressures. J. Petrol., **30**: 229-248.
- EL SHAZLY, S. (1983): Petrography and geochemistry of the striated paragneiss series in the southern part of the Spessart crystalline complex. Dr. rer. nat. Diss., Techn. Universität Braunschweig 1983: 153 pp.
- ENGEL, W., FRANKE, W. & LANGENSTRASSEN, F. (1983): Palaeozoic sedimentation in the northern branch of the Mid-European Variscides; essay of an interpretation. In: MARTIN, H., EDER, F.W. (eds.): 9-41.

- ENGLAND, P.C. & RICHARDSON, S.W. (1977): The influence of erosion upon the mineral facies of rocks from different metamorphic environments. J. Geol. Soc. London, **134**: 201-213.
- ENGLAND, P.C. & THOMPSON, A.B. (1984): Pressure-Temperature-Time Paths of Regional Metamorphism, Part I: Heat transfer during the evolution of regions of thickened continental crust. – J. Petrol., 25: 894-928.
- EUGSTER, H.P., ALBEE, A.L., BENCE, A.E., THOMPSON, J.B. & WALDBAUM, D.R. (1972): The two-phase region and excess mixing properties of paragonite-muscovite crystalline solutions. J. Petrol., **13**: 147-179.
- FERRY, J.M. & SPEAR, F.S. (1978): Experimental calibration of the partitioning of Fe and Mg between biotit and garnet. Contrib. Mineral. Petrol., **66**: 113-117.
- FLÖTTMANN, T. & ONCKEN, O. (1992): Constraints on the evolution of the Mid German crystalline rise; a study of outcrops west of the River Rhine. – Geol. Rundschau, 81: 515-543.
- FLOYD, P.A. (1995): Rhenohercynian foldbelt: autochthon and nonmetamorphic nappe units igneous activity. In: DALLMEYER, R.D. et al. (eds.) (1995): 59-81.
- FRANKE, W. (1989a): Tectonostratigraphic units in the variscan belt of Central Europe. Geol. Soc. Amer. Spec. Paper, **230**: 693-708.
- FRANKE, W. (1989b): Variscan plate tectonics in Central Europe current ideas and open questions. Tectonophysics, **169**: 221-228.
- FRANKE, W. (1990): Rhenohercynian Basin and Mid-German Crystalline Rise an introduction. - In: FRANKE, W. (ed.) (1990: 1-16.
- FRANKE, W. (ed.) (1990): Mid-German Crystalline Rise & Rheinisches Schiefergebirge. Field Guide to pre-conference excursion. – IGCP, 233 – Terranes in the Circum-Atlantic Paleozoic Orogens. Conference on Paleozoic Orogens in Central Europe – Geology and Geophysics. Göttingen - Gießen: 169 pp.
- FRANKE, W. (1995): Rhenohercynian foldbelt: autochton and nonmetamorphic nappe units. In: DALLMEYER, R.D. et al. (eds.) (1995): 33-49.
- FRANKE, W. (2000): The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: FRANKE, W. et al. (eds.) (2000): 35-61.
- FRANKE, W. (2002): Die Vereinigten Platten von Europa. In: WEFER, G. (ed.): Expedition Erde - Beiträge zum Jahr der Geowissenschaften 2002, Berlin (Alfred-Wegener Stiftung): 30-35.
- FRANKE, W. & ENGEL, W. (1986): Synorogenic sedimentation in the Variscan Belt of Europe. Bulletin de la Société Géologique de France, (8), t. II, no.1: 25-33.
- FRANKE, W. & ONCKEN, O. (1990): Geodynamic evolution of the North-Central Variscides a comic strip. In: FREEMANN, R., GIESE, P. & MÜLLER, S. (eds.): The European Geotraverse: Integrative Studies. Results from the 5th Study Centre, 26 March – 7 April, European Science Foundation, Strasbourg: 187-194.

- FRANKE, W. & ONCKEN, O. (1995): Zur prädevonischen Geschichte des Rhenohercynischen Beckens. Nova Acta Leopoldina, N.F., **71**: 53-72.
- FRANKE, W., HAAK, V., ONCKEN, O. & TANNER, D. (eds.) (2000): Orogenic Processes: Quantification and Modelling in the Variscan Belt. – Geological Society, London, Special Publication, **179**: 459 pp.
- FRANZ, L. & HÄUSSINGER, H. (1992): FW-MIN, ein Programmpaket zur Berechnung von Mineralformeln. Institut für Mineralogie, Universität Würzburg, unpubliziert.
- FRISCH, W. & MESCHEDE, M. (2005): Plattentektonik Kontinentverschiebung und Gebirgsbildung. Darmstadt (Wissenschaftliche Buchgesellschaft, Primus-Verlag): 196 pp.
- FUHRMANN, M.L. & LINDSLEY, D.H. (1988): Ternary feldspar modeling and thermometry. Am. Mineral., **73**: 201-215.
- GABERT, G. (1957): Zur Geologie und Tektonik des nördlichen kristallinen Vorspessarts. Abh. hess. Landesamt Bodenforsch., **18**: 101-133.
- GAERTNER, H.R. VON (1950): Probleme des Saxothuringikums. Geol. Jahrb., 65: 409-465.
- GARCIA-CASCO, A. & TORRES-ROLDAN, R.L. (1996): Disequilibrium induced by fast decompression in St-Bt-Grt-Ky-Sill-And metapelites from the Betic Belt (Southern Spain). J. Petrol., **37**: 1207-1239.
- GHENT, E.D. & STOUT, M.Z. (1981): Geobarometry and geothermometry of plagioklase-biotitegarnet-muscovite assemblages. – Contrib. Mineral. Petrol., **76**: 92-97.
- GILL, R.C.O. (1993): Chemische Grundlagen der Geowissenschaften. Stuttgart (Enke): 294 pp.
- GOTTSCHALK, M. (1997): Internally consistent thermodynamic data for rock forming minerals in the system SiO₂-TiO₂-Al₂O₃-Fe₂O₃-CaO-MgO-FeO-K₂O-Na₂O-H₂O-CO₂. Eur. J. Mineral., **9**: 175-223.
- GRIFFEN, D.T. & RIBBE, P.H. (1973): The crystal chemistry of staurolite. Am J. Sci., 273 A: 479-495.
- GRÖSSER, J. & DÖRR, W. (1986): MOR-Basalte im östlichen Rheinischen Schiefergebirge. N. Jb. Geol. Paläont. Mh., 12: 705-722. – In: FRANKE, W., HAAK, V., ONCKEN, O. & TANNER, D. (eds.) (2000).
- GROVE, T.L., BAKER, M.B. & KINZLER, R.J. (1984): Coupled CaAl-NaSi diffusion in plagioclase feldspar: Experiments and applications to cooling rate speedometry. Geochim. Cosmochim. Acta, **48**: 2113-2121. In : SPEAR, F.S. (1993): 602.
- GRUNER, B. (2000): Metamorphoseentwicklung im Kaokogürtel, NW-Namibia: Phasenpetrologische und geothermobarometrische Untersuchungen panafrikanischer Metapelite. – Dr. rer. nat. Diss., Fakultät für Geowissenschaften, Universität Würzburg: 178 (+ 125) pp.
- GUIDOTTI, C.V. (1974): Transition from staurolite to sillimanite zone, Rangeley Quadrangle, Maine. Geol. Soc. Am. Bull., **85**: 475-490.

- GUIDOTTI, C.V. & DYAR, M.D. (1991): Ferric iron in metamorphic biotite and its petrologic and crystallochemical implications. Am. Mineral., **76**: 161-175.
- GUIDAUD, M., HOLLAND, T.J.B. & POWELL, R. (1990): Calculated mineral equilibria in the greenschist-blueschist-eclogite facies in Na₂O-FeO-MgO-Al₂O₃-SiO₂-H₂O. Contrib. Mineral. Petrol., **104**: 85-98.
- HANSCH, R. & ZEH, A. (2000): Metabasites from the Ruhla Crystalline Complex: evidence for distinct pre-Variscan plate-tectonic environments within the Mid-German Crystalline Rise. – Chem. Erde, 60: 1-25.
- HEINRICHS, T. (1985): Poster, 2nd Internat. Symp. on Observation of the Continental Crust through drilling, Seeheim/Odenwald, 7-9 oct; Göttingen.
- HEINRICHS, T. (1986): Structure and development of the Saxothuringian Zone. Third EGT Workshop: The central segment, Bad Honnef, 14 - 16 April 1986. – Eur. Sci. Found., 135-140.
- HENK, A. (1995): Late-Variscan exhumation histories of the southern Rhenohercynian Zone and western Mid-German Crystalline Rise results from thermal modelling. Geol. Rundschau, **84**: 578-590.
- HENSEN, B.J. (1971): Theoretical phase relations involving cordierite and garnet in the System MgO-FeO-Al₂O₃-SiO₂. Contrib. Mineral. Petrol., **31**: 191-214.
- HEY, M.H. (1954): A new review of chlorites. Min. Mag., 30: 278-292.
- HIRSCHMANN, G. & OKRUSCH, M. (1988): Spessart-Kristallin und Ruhlaer-Kristallin als Bestandteile der Mitteldeutschen Kristallinzone – ein Vergleich. – N. Jb. Geol. Paläont. Abh., **177**: 1-39.
- HIRSCHMANN, G. & OKRUSCH, M. (2001): Spessart und Rhön (18) Teil der MKZ. In: Stratigraphische Kommission Deutschlands: Stratigraphie von Deutschland II – Ordovizium, Kambrium, Vendium, Riphäikum. Teil II: Baden-Württemberg, Bayern, Hessen, Rheinland-Pfalz, Nordthüringen, Sachsen-Anhalt, Brandenburg. – Cour. Forsch.-Inst. Senckenberg, 234: 93-108.
- HODGES, K.V. & SPEAR, F.S. (1982): Geothermometry, geobarometry and the Al₂SiO₅ triple point at Mt. Moosilauke, New Hampshire. Am. Mineral., **67**: 1118-1134.
- HOINKES, G. (1986): Effect of grossular-content in garnet on the partitioning of Fe and Mg between garnet and biotite. Contrib. Mineral. Petrol., **92**: 393-399.
- HOISCH, T.D. (1991): Equilibria within the mineral assemblage quartz + muscovite + biotite + garnet + plagioclase, and implications for mixing properties of octahedrally-coordinated cations in muscovite and biotite. Contrib. Mineral. Petrol., **108**: 43-54.
- HOLDAWAY, M.J., DUTROW, B.L., BORTHWICK, J., SHORE, P., HARMON, R.S. & HINTON, R.W (1986a): H content of staurolite as determined by H extraction line and ion microprobe. Am. Mineral., **71**: 1135-1141.

- HOLDAWAY, M.J., DUTROW, B.L.& SHORE, P. (1986b): A model for the crrystal chemistry of staurolite. Am. Mineral., **71**: 1142-1159.
- HOLDAWAY, M.J.; DUTROW, B.L.; HINTON, R.W. (1988): Devonian and Carboniferous metamorphism in west-central Maine; the muscovit-almandine geobarometer and the staurolite problem revisited. Am. Mineral., **73**: 20-47.
- HOLDAWAY, M.J., MUKHOPADHYAY, B., DYAR, M.D., DUTROW, B.L., RUMBLE, D. III & GRAMBLING, J.A. (1991): A new perspective on staurolite crystal chemistry: use of stoichiometric and chemical end-members for a mole fraction model. Am. Mineral., **76**: 1910-1919.
- HOLDAWAY, M.J. & MUKHOPADHYAY, B. (1993): A reevaluation of the stability relations of andalusite: Thermodynamical data and phase diagram for the aluminium silicates. Am. Mineral., **78**: 298-315.
- HOLDAWAY, M.J., MUKHOPADHYAY, B. & DUTROW, B.L. (1995): Thermodynamic properties of stoichiometric staurolite H₂Fe₄Al₁₈Si₈O₄₈ and H₆Fe₂Al₁₈Si₈O₄₈. Am. Mineral., **80**: 520-533.
- HOLLAND, T.J.B. & POWELL, R. (1985): An internally consistent thermodynamic dataset with uncertainties and correlations: 2. Data and results. J. Metamorphic Geol., **3**: 343-370.
- HOLLAND, T.J.B. & POWELL, R. (1990): An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: The system K₂O-Na₂O-CaO-MgO-MnO-FeO-Fe₂O₃-Al₂O₃-TiO₂-SiO₂-C-H₂-O₂. J. Metamorphic Geol., **8**: 89-124.
- HOLLAND, T.J.B. & POWELL, R. (1992): Updated thermodynamic dataset from 1990.
- HOLLAND, T.J.B. & POWELL, R. (1998): An internally consistent thermodynamic dataset for phases of petrological interest. J. Metamorphic Geol., **16**: 309-343.
- HOLLAND, T.J.B. & POWELL, R.: www.esc.cam.ac.uk.
- HOLLISTER, L.S. (1966): Garnet zoning: an interpretation based on the Rayleigh fractionation model. Science, **154**: 1647-1651. In: SPEAR, F.S. (1993).
- HOLLISTER, L.S. (1969): Metastabile paragenetic sequence of andalusite, kyanite, and sillimanite, Kwoiek area, British Columbia. Amer. J. Sci., **267**: 352-370.
- HOLLISTER, L.S. & CRAWFORD, M.L. (1981): Fluid inclusions: Applications to petrology. Mineral. Ass. of Canada, Calgary, Short Course Handbook, **6**: 304 pp.
- HOSCHEK, G. (1967): Untersuchungen zum Stabilitätsbereich von Chloritoid und Staurolith. Contrib. Mineral. Petrol., **14**: 97-131.
- HSU, L.C. (1968): Selected phase relationships in the system Al-Mn-Fe-Si-O-H: A modell for garnet equilibria. J. Petrol., **9**: 40-83.
- INDARES, A. & MARTIGNOLE, J. (1985): Biotite-garnet-geothermometry in the granulite facies: The influence of Ti and Al in biotite. Am. Mineral., **70**: 272-278.

JÄCKLI, H. (1985): Zeitmaßstäbe der Erdgeschichte. – Basel (Birkhäuser): 159 pp.

- JOHANNES, W. (1984): Beginning of melting in the granite system Qz-Ab-Or-An-H₂O. Contrib. Mineral. Petrol., **86**: 264-273.
- JUURINEN, A. (1956): Composition and properties of staurolite. Annales Scientiarium Fennicae, Series A, III Geology, 47: 1-53. In: DEER, W.A., HOWIE, R.A. & ZUSSMAN, J. (1992).
- KEPEZHINSKAS, K.B. & KHLESTOV, V.V. (1977): The petrogenetic grid and subfacies for middle-temperature metapelites. J. Petrol., **18**: 114-143.
- KERRICK, D.M. & DARKEN, L.S. (1975): Statistical thermodynamic models for ideal oxide and silicate solid solutions, with applications to plagioclase. – Geochim. Cosmochim. Acta, 39: 1431-1442.
- KLEEMANN, U. & REINHARDT, J. (1994): Garnet-biotite thermometry revisited: The effect of Al^{VI} and Ti in biotite. Eur. J. Mineral., **6**: 925-941.
- KLEMD, R. & OKRUSCH, M. (1990): Phase relationships and fluid inclusions characteristics of the metamorphosed, stratiform sulfide deposit Matchless, Namibia. – Geol. Rundschau, 79: 433-449.
- KLEMD, R., BRÖCKER, M. & SCHRAMM, J. (1995): Characterisation of amphibolite-facies fluides of Variscan eclogites from the Orlica-Snieznik dome (Sudetes, SW Poland). – Chem. Geol., 119: 101-113.
- KLEMM, G. (1895): Beiträge zur Kenntnis des krystallinen Grundgebirges im Spessart mit besonderer Berücksichtigung der genetischen Verhältnisse. – Abh. Großherz. hess. geol. Landesanstalt, 2: 165-257.
- KOHN, M.J., ORANGE, D.L., SPEAR, F.S., RUMBLE, D. III & HARRISSON, T.M. (1992): Pressure, temperature and structural evolution of west-central New Hampshire: Hot thrusts over cold basement. – J. Petrol., 33: 521-556.
- KORNPROBST, J. (1996): Les roches métamorphiques et leur signification géodynamique. Précis de pétrologie. 2. Auflage, Paris (Masson): 228 pp.
- KOSSMAT, F. (1927): Gliederung des varistischen Gebirgsbaus. Abh. Sächs. Geol. Landesamt, 1: 1-39.
- KREUZER, H., LENZ, H., HARRE, W., MATTHES, S., OKRUSCH, M. & RICHTER, P. (1973): Zur Alterstellung der Rotgneise im Spessart, Rb/Sr-Gesamtgesteinsdatierungen. – Geol. Jahrb., A9: 69-88.
- KROHE, A. (1992): Structural evolution of intermediate crustal rocks in a strike-slip and extensional setting (Variscan Odenwald, SW-Germany): differential upward transport of metamorphic complexes and changing deformation mechanisms. – Tectonophysics, 205: 357-386.
- LABOTKA, T.C. (1980): Petrology of a medium-pressure metamorphic terrane, Funeral Mountains, California. Am. Mineral., **65**: 670-689.

- LAIRD, J. (1988): Chlorites: Metamorphic petrology. Reviews in Mineralogy, **19**: 405-454. In: SPEAR, F.S. (1993): 98.
- LAIRD, J. & ALBEE, A.L. (1981): High pressure metamorphism in mafic shists from Northerm Vermont. Am J. Sci., 281: 97-126.
- LANG, H.M. & RICE, J.M. (1985): Geothermometry, geobarometry and T-X(Fe-Mg) relations in metapelites, Snow Peak, Northern Idaho. J. Petrol., **26**: 889-924.
- LE BRETON, N. & THOMPSON, A.B. (1988): Fluid absent (dehydratation) melting of biotite in metapelites in the early stages of crustal anatexis. Contrib. Mineral. Petrol., **99**: 226-237.
- LINDSLEY, D.H. (1973): Delimination of the hematite-ilmenite miscibility gap. Geol Soc. Am. Bull., **84**: 657-662.
- LINDSLEY, D.H. (1991): Experimental studies of oxide minerals. Reviews in Mineralogy, 25: 69-106.
- LINNEMANN, U., GEHMLICH, M., TICHOMIROVA, M., BUSCHMANN, B., NASDALA, L. JONAS, P., LÜTZNER, H. & BOMBACH, K. (2000): From Cadomian subduction to Early Paleozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). – In: FRANKE, W. et al. (eds.) (2000): 131-153.
- LIPPOLT, H.J. (1986): Nachweis altpaläozoischer Primäralter (Rb-Sr) und karbonischer Abkühlungsalter (K-Ar) der Muskovit-Biotit-Gneise des Spessarts und der Biotit-Gneise des Böllsteiner Odenwaldes. Geol. Rundschau, **75**: 569-583.
- MAHAR, E.M., BAKER, J.M., POWELL, R., HOLLAND, T.J.B. & HOWELL, N. (1997): The effect of Mn on stability in metapelites. J. Metamorphic Geol., **15**: 223-238.
- MARTIN, H. & EDER, F.W. (eds.) (1983): Intracontinental Foldbelts. Case studies in the Variscan Belt of Europe and the Damara Belt in Namibia. Berlin (Springer): 945 pp.
- MASSONNE, H.-J. (1991): High-pressure, low-temperature metamorphism of pelitic and other protoliths based on experiments in the system K₂O-MgO-Al₂O₃-SiO₂-H₂O. Unpubl. Habilitationsschrift, Ruhr-Universität Bochum: 172 pp.
- MASSONNE, H.-J. (1995): The metamorphic complex of the Spessart Mountains, Germany, as an example for a non-coherent crustal section between a Variscan accretionary wedge and magmatic arc. Eur. J. Min., **7** (1): 164.
- MASSONNE, H.-J. & SCHREYER, W. (1987): Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contrib. Mineral. Petrol., **96**: 212-224.
- MATTAUER, M. (1999): Monts et merveilles. Beautés et richesses de la géologie. 2. Auflage, Paris (Hermann): 267 pp.
- MATTE, P. (1991): Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics, **196**: 309-337.

- MATTE, P. (2001): The variscan collage and orogeny (480-290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova, **13**: 122-128.
- MATTHES, S. (1954): Die Paragneise im mittleren kristallinen Vor-Spessart und ihre Metamorphose. Abh. hess. Landesamt Bodenforsch. (Wiesbaden), **8**: 86 pp.
- MATTHES, S. (1958): Zur Metamorphose des kristallinen Grundgebirges im mittleren Vorspessart. Notizbl. hess. Landesamt Bodenforsch., **86**: 320-326.
- MATTHES, S. & OKRUSCH, M. (1965): Spessart. Sammlung Geologischer Führer, 44, Berlin (Gebrüder Borntraeger): 220 pp., 1 Karte.
- MATTHES, S. & SCHUBERT, W. (1967): Der Chlorit-Hornblende-Fels von Wenighösbach im mittleren Vorspessart und seine genetischen Beziehungen zu spätkinematischen Chlorit-Amphiboliten. – In: BACKHAUS, E. (Hrsg.): Beiträge zur Geologie des Aschaffenburger Raumes, Geschichts- und Kunstverein Aschaffenburg, Aschaffenburg (Paul Pattloch Verlag): 15-46.
- MATTHES, S. & OKRUSCH, M. (1977): The Spessart crystalline complex, North-West Bavaria: Rock series, metamorphism and position within the Central German Crystalline rise. – In: La chaîne varisque d'Europe moyenne et occidentale. Colloque international du Centre National de la Recherche Scientifique (Rennes 1974), **243**: 375-390.
- MURAWSKI, H. (1958): Der geologische Bau des zentralen Vorspessarts. ZDGG, 110: 360-388.
- NASIR, S. (1986): Die Metabasite im mittleren kristallinen Vorspessart: Petrographie -Geochemie - Phasenpetrologie. – Dr. rer. nat. Diss., Fakultät für Geowissenschaften, Universität Würzburg: 191 pp.
- NASIR, S. & OKRUSCH, M. (1991): Metabasites from the Central Vor-Spessart, North-West Bavaria. Part 1: Geochemistry. N. Jb. Mineral. Monatsh., **1991**: 500-522.
- NASIR, S., OKRUSCH, M., KREUZER, H., LENZ, H. & HÖHNDORF, A. (1991): Geochronology of the Spessart Crystalline Complex, Mid-German Crystalline Rise. Mineral. Petrol., 44: 39-55.
- NEUGEBAUER, J. (1988): The variscan plate tectonic evolution: an improved "Iapetus model". Schweiz. Mineral. Petrogr. Mitt., **68**: 313-333.
- NEUMANN, W. (1966): Versuch eines lithostratigraphischen Vergleiches von Grundgebirgsanschnitten im Bereich der Mitteldeutschen Schwelle. – Geologie, **15**: 942-962.
- NEUROTH, H. (1997): K/Ar-Datierungen an detritischen Muscoviten –,,Sicherungskopien" orogener Prozesse am Beispiel der Varisziden. Göttinger Arb. Geol. Paläont., **72**: 143 pp.
- NEWTON, R.C., CHARLU, T.V. & KLEPPA, O.J. (1980): Thermochemistry of the high structural state plagioclases. Geochim. Cosmochim. Acta, 44: 933-941.
- NEWTON, R.C. & HASELTON, H.T. (1981): Thermodynamics of the garnet plagioclase Al₂SiO₅ quartz geobarometer. In : NEWTON, R.C., NAVROTSKY, A. & WOOD, B.J. (eds.) (1981): Thermodynamics of minerals and melts. Advances in Phys. Geochem., 1, Berlin, New York (Springer): 131-147.

- OKRUSCH, M. (1983): The Spessart crystalline complex, Northwest Bavaria. DMG Joint Meeting. Excursion E4. Fortschr. Mineral., **61**, Beiheft 2: 135-169.
- OKRUSCH, M. (1990): Metamorphism in the Odenwald and Spessart Crystalline Mountains (Mid-German Grystalline Rise). In: FRANKE, W. (ed.) (1990): 81-91.
- OKRUSCH, M. (1995): Chapter IV, E. Metamorphic Evolution. In: DALLMEYER, R.D. et al. (eds.) (1995): 201-213.
- OKRUSCH, M. & WEINELT, Wi. (1965): Erläuterungen zur Geologischen Karte von Bayern 1: 25 000, Blatt 5921 Schöllkrippen. – Bayer. Geol. Landesamt (München): 327 pp.
- OKRUSCH, M., STREIT, R. & WEINELT, Wi. (1967): Erläuterungen zur Geologischen Karte von Bayern 1 : 25 000, Blatt 5920 Alzenau i. Ufr. Bayer. Geol. Landesamt (München): 336 pp.
- OKRUSCH, M., MÜLLER, R. & EL SHAZLY, S. (1985): Die Amphibolite, Kalksilikatgesteine und Hornblendegneise der Alzenau-Gneisserie am NW-Spessart. – Geologica Bavarica, **87**: 5-37.
- OKRUSCH, M. & RICHTER, P. (1986): Orthogneisses of the Spessart crystalline complex, Northwest Bavaria: Indicators of the geotectonic environment? – Geol. Rundschau, **75**: 555-568.
- OKRUSCH, M., SCHUBERT, W. & NASIR, S. (1995): Chapter IV, D. Igneous activity. 1. Pre- to early variscan magmatism. In: DALLMEYER, R.D. et al. (eds.) (1995): 192-200.
- OKRUSCH, M. & WEBER, K. (1996): Der Kristallinkomplex des Vorspessart. Z. geol. Wiss., 24 (1/2): 141-174.
- OKRUSCH, M. & MATTHES, S. (2005): Mineralogie. Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde. 7. Auflage, Heidelberg (Springer): 526 pp.
- ONCKEN, O. (1988): Aspects of reconstruction of the stress history of a fold and thrust belt (Rhenish Massif, FRG). Tectonophysics, **152**: 19-40.
- ONCKEN, O. (1996): The collapse of orogenic roots and geodynamic ideas, or: collisional material paths and their consequences. Terra Nostra, **96/2**: 153-155.
- ONCKEN, O. (1997): Transformation of a magmatic arc and an orogenic root during oblique collision and it's (*sic*) consequences for the evolution of the European Variscides (Mid-German Crystalline Rise). Geol. Rundschau, **86**: 2-20.
- ONCKEN, O. (1998): Orogenic mass transfer and reflexion seismic patterns evidence from DEKORP sections across the European Variscides (central Germany). – Tectonophysics, 286: 47-61.
- ONCKEN, O., FRANZKE, H.J., DITTMAR, U. & KLÜGEL, T. (1995): Rhenohercynian foldbelt: metamorphic units structure. In: DALLMEYER, R.D. et al. (eds.) (1995): 108-117.
- ONCKEN, O., PLESCH, A., WEBER, J., RICKEN, W. & SCHRADER, S. (2000): Passive margin detachment during arc-continent collision (Central European Variscides). In: FRANKE, W. et al. (eds.) (2000): 199-216.

- PASSCHIER, C.W. & TROUW, R.A.J. (1996): Microtectonics. Berlin, Heidelberg (Springer): 289 pp.
- PATTISON, D.R.M. & TRACY, R.J. (1991): Phase equilibria and thermobarometry of metapelites.
 In: KERRICK, D.M. (ed.): Reviews in Mineralogy, 25: Contact metamorphism. Mineral. Soc. America: 105-206.
- PERCHUK, L.L. (1969): The staurolite-garnet-thermometer. Akadademij Nauk USSR, Doklady Earth Science Sections: 189-191 (in Russian).
- PERCHUK, L.L. & LAVRENT'EVA, J.V. (1983): Experimental investigations of exchange equilibria in the system cordierite garnet biotite. In: SAXENA, S. K. (ed.): Kinetics and equilibria in mineral reactions. New York (Springer): 199-233.
- PETTIJOHN, F.J., POTTER, P.E. & SIEVER, R. (1973): Sand and Sandstone. Berlin (Springer): 617 pp.
- PLESSMANN, W. (1957): Zur Baugeschichte des nordwestlichen kristallinen Spessarts. Abh. hess. Landesamt Bodenforsch. (Wiesbaden), **18**: 149-166.
- POWELL, R. (1991) Metamorphic mineral equilibria short course: Cuorse notes. Univ. Melbourne. In: WILL, T.M. (1998b): 154-157.
- POWELL, R. & HOLLAND, T.J.B. (1988): An internally consistent thermodynamic dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer programm. – J. Metamorphic Geol., 6: 173-204.
- POWELL, R. & HOLLAND, T.J.B. (1990): Calculated mineral equilibria in the pelite system KFMASH (K₂O-FeO-MgO-Al₂O₃-SiO₂-H₂O). Am. Mineral., **75**: 367-380.
- POWELL, R. & HOLLAND, T.J.B. (1994): Optimal geothermometry and geobarometry. Am. Mineral., **79**:120-133.
- PROYER, A. & DACHS, E. (2000): Contrasting parageneses in mica-schists of the Hohe Tauern, caused by manganese and zinc. Mineral. and Petrol., **69**: 197-212.
- REITZ, E. (1987): Palynologie in metamorphen Serien: I. Silurische Sporen aus einem granatführenden Glimmerschiefer des Vor-Spessart. N. Jb. Geol. Paläont. Mh., **1987**: 699-704.
- RIBBE, P.H. (ed.) (1983): Reviews in Mineralogy, 2: Chemistry, structure and nomenclature of feldspars. Mineral. Soc. America: 1-19.
- RICHARDSON, S.W. & ENGLAND, P.C. (1979): Metamorphic consequences of crustal eclogite production in overthrust orogenic zones. Earth Planet. Sci. Lett., **42**: 183-190.
- ROBINSON, P. (1991): The eye of the petrographer, the mind of the petrologist. Am. Mineral., **76**: 1781-1810.
- ROSER, B.P. & KORSCH, R.J. (1986): Determination of tectonic setting of sandstone-mudstone suites using SiO₂ content and K₂O/Na₂O ratio. J. Geol., **94**: 635-650.

- ROSER, B.P. & KORSCH, R.J. (1988): Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. – Chem. Geol., 67: 119-139.
- ROTHE, F. (2005): Die Geologie Deutschlands. Darmstadt (Wiss. Buchgesellschaft): 240 pp.
- RUMBLE, D. III (1973): Fe-Ti-oxide minerals from regionally metamorphosed quarzites of eastern New Hampshire. Contrib. Mineral. Petrol., **42**: 181-195.
- RUMBLE, D. III (1976): Oxide minerals in metamorphic rocks. In: RUMBLE, D. III (ed.): Oxide minerals. Mineral. Soc. Am. Short Course Notes, **3**: R1-R24.
- SCHLIESTEDT, M. (1980): Phasengleichgewichte in Hochdruckgesteinen von Sifnos, Griechenland. Dr. rer. nat. Diss., Universität Braunschweig: 142 pp.
- SCHMÄDICKE, E. (1992): Die Eklogite des Erzgebirges. Dr. rer. nat. Diss., Fakultät für Geowissenschaften, Universität Würzburg: 338 pp.
- SCHMID, R., FETTES, D., HARTE, B., DAVIS, E., DESMONS, J., MEYER-MARSILIUS, H.J. & SIIVOLA, J. (2004): A systematic nomenclature for metamorphic rocks: 1. How to name a metamorphic rock. Recommendations by the IUGS Subcommission on the Systematics of Metamorphic rocks. – Web version of 01.05.2004: 19 pp.
- SCHNEIDER, A. (1962): Zur Tektonik und Metamorphose des nördlichen Spessart-Kristallins. Notizbl. hess. Landesamt Bodenforsch., **20**: 246-272.
- SCHOLZ, H. (1930): Das varistische Bewegungsbild. Fortschr. Geol. Paläont., 8 (25): 235-316.
- SCHUBERT, W., LIPPOLT, H.J. & SCHWARZ, W. (2001): Early to Middle Carboniferous hornblende ⁴⁰Ar/³⁹Ar ages of amphibolites and gabbros from Bergsträsser Odenwald. Mineral. Petrol., **72**: 113-132.
- SCHWANDT, C.S., CYGAN, R.T. & WESTRICH, H.R. (1995): Mg self-diffusion in pyrope garnet. Am. Mineral., **80**: 483-490.
- SCHWANDT, C.S., CYGAN, R.T. & WESTRICH, H.R. (1996): Ca self-diffusion in grossular garnet. Am. Mineral., 81: 448-451.
- SECK, H.A. (1971): Der Einfluß des Drucks auf die Zusammensetzung koexistierender Alkalifeldspäte und Plagioklase im System NaAlSi₃O₈ (ab) KAlSi₃O₈ CaAl₂Si₂O₈ H₂O. Contrib. Mineral. Petrol., **31**: 67-86.
- SMOLER, M. (1987): Petrographische, geochemische und phasenpetrologische Untersuchungen an Metasedimenten des NW-Spessart/Bayern. – Dr. rer. nat. Diss., Fakultät für Geowissenschaften, Universität Würzburg: 256 pp.
- SPEAR, F.S. (1993): Metamorphic Phase Equilibria and Pressure-Temperature-Time-Paths. Min. Soc. Am. Monograph, 2nd printing 1995 (corrected), Washington D. C.: 799 pp.
- SPEAR, F.S. & CHENEY, J.T. (1989): A petrogenetic grid for pelitic schists in the system SiO₂-Al₂O₃-FeO-MgO-K₂O-H₂O. Contrib. Mineral. Petrol., **101**: 149-164.

- STORRE, B. (1973): Experimentelle Untersuchungen zur Stabilität von Glimmern, insbesondere von Margarit und Muscovit. – Unpubl. Habilitationsschrift, Universität Göttingen: 94 pp. – In: THOMPSON, A.B. & ALGOR, J.R. (1977).
- STREIT, R. & WEINELT, Wi. (1971): Erläuterungen zur Geologischen Karte von Bayern 1: 25 000, Blatt 6020 Aschaffenburg. – Bayer. Geol. Landesamt (München): 398 pp.
- STÜWE, K. (1997): Effective bulk composition changes due to cooling: a model predicting complexities in retrograde reaction textures. Contrib. Mineral. Petrol., **129**: 43-52.
- SYMMES, G.H. & FERRY, J.M. (1991): Evidence from mineral assemblages for infiltration of pelitic schists by aqueous fluids during metamorphism. – Contrib. Mineral. Petrol., 108: 419-438.
- SYMMES, G.H. & FERRY, J.M. (1992): The effect of whole-rock MnO content on the stability of garnet in pelitic schists during metamorphism. J. Metamorphic Geol., **10**: 221-237.
- TAIT, J.A., BACHTADSE, V., FRANKE, W. & SOFFEL, H.C. (1997): Geodynamic evolution of the European Variscan fold belt: paleomagnetic and geological constraints. – Geol. Rundschau, 86: 585-598.
- TAIT, J., SCHÄTZ, M., BACHTADSE, V. & SOFFEL, H. (2000): Palaeomagnetism and Palaeozoic palaeography of Gondwana and European terranes. In: FRANKE, W. et al. (eds.) (2000): 21-34.
- THÉLIN, P. (1983): Les gneiss œillés de la nappe du Grand Saint-Bernard. Essai d'évaluation des critères susceptibles d'en préciser l'hérédité pré-métamorphique (Alpes valaisannes, Suisse). – Thèse de doctorat, Université de Lausanne.
- THOMPSON, A.B. (1976): Mineral reactions in pelitic rocks: II. Calculations on some P-T-X (Fe-Mg) phase relations. Am. J. Sci., **276**: 235-259.
- THOMPSON, A.B. & ALGOR, J.R. (1977): Model systems for anatexis of pelitic rocks. I. Theory of melting reactions in the systems KAlO₂ NaAlO₂ Al₂O₃ SiO₂ H₂O. Contrib. Mineral. Petrol., **63**: 247-269.
- THOMPSON, A.B. & ENGLAND, P.C. (1984): Pressure-Temperature-Time Paths of Regional Metamorphism, Part II. Their inference and interpretation using mineral assemblages in metamorphic rocks. – J. Petrol., 25: 929-955.
- THÜRACH, H. (1893): Über die Gliederung des Urgebirges im Spessart. Geognost. Jahresh., **5**: 160 pp.
- TRACY, R.J., ROBINSON, P. & THOMPSON, A.B. (1976): Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachussetts. – Am. Mineral., 61: 762-775.
- TRACY, R.J., MILLER, S.J., SOLBERG, T.N. & WALDRON, K.A. (1992): Documentation of diffusional modification of garnet growth zoning in amphibolite facies garnets. – Geol. Soc. Am., Abstracts with Programs, 24: A219.

- TRÖGER, W.E. (1982): Optische Bestimmung der gesteinsbildenden Minerale, Teil 1: Bestimmungstabellen. Stuttgart (Schweizerbart): 188 pp.
- TUCKER, M.E. (1985): Einführung in die Sedimentpetrologie. Stuttgart (Enke): 265 pp.
- VAN HINSBERG, V.J., VRIEND, S.P. & SCHUMACHER, J.C. (2005): A new method to calculate end-member thermodynamic properties of minerals from their constituent polyhedra I: enthalpy, entropy and molar volume. J. Metamorphic Geol., **23** (3): 165-179.
- VANCE, D. & HOLLAND, T.J.B. (1993): A detailed isotopic and petrological study of a single garnet from the Gassetts Schist, Vermont. Contrib. Mineral. Petrol., **114**: 101-118.
- VIELZEUF, D. & HOLLOWAY, J.R. (1988): Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib. Mineral. Petrol., **98**: 257-276.
- VIELZEUF, D. & SCHMIDT, M.W. (2001): Melting relations in hydrous systems revisited: application to metapelites, metagreywackes and metabasalts. – Contrib. Mineral. Petrol., 141: 251-267.
- WANG, P. & SPEAR, F.S. (1991): A field and theoretical analysis of garnet + chlorite + chloritoid + biotite assemblages from the tri-state (MA, CT, NY) area, USA. Contrib. Mineral. Petrol., **106**: 217-235.
- WEBER, K. (1984): Variscan events: Early palaeozoic continental rift metamorphism and late Paleozoic crustal shortening. – In: HUTTON, D.H. & SANDERSON, D.J. (eds.): Variscan tectonics in the North Atlantic region. – London (Blackwell): 3-22.
- WEBER, K. & BEHR, H.-J. (1983): Geodynamic interpretation of the mid European Variscides. In: MARTIN, H. & EDER, F.W. (eds.): Intracontinental Fold Belts, Heidelberg - New York -Tokyo (Springer): 427-469.
- WEDEPOHL, K.H. (1968): Chemical fractionation in the sedimentary environment. In: AHRENS,
 L.H. (ed.) (1968): Origin and distribution of the elements. Oxford, New York (Pergamon-Press): 999-1016. In: SMOLER, M. (1987).
- WEDLER, G. (1987): Lehrbuch der Physikalischen Chemie. 3. Auflage, Weinheim (VCH-Verlagsgesellschaft): 924 pp.
- WEI, C.J.; POWELL, R. & CLARKE, G.L. (2004): Calculated phase equilibria for low- and medium-pressure metapelites in the KFMASH and KMnFMASH systems. – J. Metamorphic Geol., 22 (5): 495-508.
- WEINELT, Wi. (1962): Erläuterungen zur Geologischen Karte von Bayern 1 : 25 000, Blatt 6021 Haibach. – Bayer. Geol. Landesamt (München): 246 pp.
- WEINELT, Wi. (1967): In: OKRUSCH, M. et al. (1967).
- WEINELT, Wi. (1971): In: STREIT, R. & WEINELT, W. (1971).
- WENK, E. (1963): Zur Definition von Schiefer und Gneis. N. Jb. Mineral. Monatsh., 1963: 97-107.

- WHITE, R.W., POWELL, R, HOLLAND, T.J.B. & WORLEY, B.A. (2000): The effect of TiO₂ and Fe₂O₃ on metapelitic assemblages of greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K₂O-FeO-MgO-Al₂O₃-SiO₂-H₂O-TiO₂-Fe₂O₃. – J. Metamorphic Geol., **18** (5): 497-511.
- WHITE, R.W., POWELL, R. & HOLLAND, T.J.B. (2001): Calculation of partial melting equilibria in the system Na₂O-CaO-K₂O-FeO-MgO-Al₂O₃-SiO₂-H₂O. J. Metamorphic Geol., **19**: 139-153.
- WHITE, R.W., POWELL, R. & HOLLAND, T.J.B. (2007): Progress relating to calculation of partial melting equilibria for metapelites. J. Metamorphic Geol., **25** (5): 511-527.
- WILL, T.M. (1995): Phasengleichgewichte in metamorphen Gesteinen Thermodynamische Grundlagen und petrologische Anwendungen. – Habilitationsschrift, Fakultät für Geowissenschaften, Universität Würzburg: 321 pp.
- WILL, T.M. (1997): Unterlagen zur Lehrveranstaltung "Phasendiagramme". Mineralogisches Institut, Universität Würzburg.
- WILL, T.M. (1998a): Phase diagrams and their application to determine Pressure-Temperature Paths of Metamorphic Rocks. N. Jb. Mineral. Abh., **174** (2): 103-130.
- WILL, T.M. (1998b): Phase equilibria in metamorphic rocks: thermodynamic background and petrological applications. Lecture Notes in Earth Sciences, **71**, Berlin (Springer): 315 pp.
- WILL, T.M., OKRUSCH, M., SCHMÄDICKE, E. & CHEN, G. (1998): Phase relations in greenschistblueschist-amphibolite-eclogite facies: Calculated mineral equilibria in the system Na₂O-CaO-FeO-MgO-Al₂O₃-SiO₂-H₂O, with applications to the PT evolution of metamorphic rocks from Samos, Greece. – Contrib. Mineral.Petrol., **132**: 85-102.
- WILL, T.M. & SCHMÄDICKE, E. (2003): Isobaric cooling and anti-clockwise P-T-paths in the Variscan Odenwald Crystalline complex. J. Metamorphic Geol., **21**: 469-480.
- WILLNER, A., MASSONNE, H.J. & KROHE, A. (1991): Tectono-thermal evolution of a part of a Variscan magmatic arc: The Odenwald in the Mid-German Crystalline Rise. – Geol. Rundschau, 80: 369-389.
- WIMMENAUER, W. (1984): Das prävariskische Kristallin im Schwarzwald. Fortschr. Mineral. Beih., **62**: 69-86.
- WIMMENAUER, W. (1985): Petrographie der magmatischen und metamorphen Gesteine. Stuttgart (Enke): 382 pp.
- WINCHESTER, J.A., PHARAOH, T.C. & VERNIERS, J. (eds.) (2002): Palaeozoic Amalgamation of Central Europe. Geological Society, London, Special Publications, **201**: 353 pp.
- WINCHESTER, J.A., PHARAOH, T.C. & VERNIERS, J. (2002): Palaeozoic amalgamation of Central Europe: an introduction and synthesis of new results from recent geological and geophysical investigations. – In: WINCHESTER, J.A. et al. (eds.) (2002): 1-18.
- WOODCOCK, N.H., SOPER, H.J. & STRACHAN, R.A. (2007): A Rheic cause for the Acadian deformation in Europe. J. Geol. Soc. London, **164**: 1023-1036.

- XU, G., WILL, T.M. & POWELL, R. (1994): A calculated petrogenetic grid for the system K₂O-FeO-MgO-Al₂O₃-SiO₂-H₂O, with particular reference to contact-metamorphosed pelites. J. Metamorphic Geol., **12**: 99-119.
- YARDLEY, B.W.D., MACKENZIE, W.S. & GUILFORD, C. (1992): Atlas metamorpher Gesteine und ihrer Gefüge in Dünnschliffen. Stuttgart (Enke-Verlag): 120 pp.
- ZEH, A. (1995): Die Druck-Temperatur-Deformations-Entwicklung des Ruhlaer Kristallins (Mitteldeutsche Kristallinzone). – Dr. rer. nat. Diss., Fakultät für Geowissenschaften, Universität Würzburg: 254 pp.
- ZEH, A. (1996): Die Druck-Temperatur-Deformations-Entwicklung des Ruhlaer Kristallins (Mitteldeutsche Kristallinzone). Geotekt. Forsch., **86**, Stuttgart: 214 pp.
- ZEH, A. (1998): Framework-Programm zur Berechnung von Mineralformeln. Institut für Mineralogie, Universität Würzburg, unpubliziert.
- ZEH, A., COSCA, M.A., BRÄTZ, H., OKRUSCH, M. & TICHOMIROWA, M. (2000): Simultaneous horst-basin formation and magmatism during Late Variscan transtension: evidence from ⁴⁰Ar/³⁹Ar and ²⁰⁷Pb/²⁰⁶Pb geochronology in the Ruhla Crystalline Complex. – International J. Earth Sciences, **89**: 52-71.
- ZEH, A., WILLIAMS, I.S., BRÄTZ, H. & MILLAR, I.L. (2003): Different age response of zircon and monazite during the tectono-metamorphic evolution of a high-grade paragneiss from the Ruhla Crystalline Complex, Central Germany. – Contrib. Mineral. Petrol., 145: 691-706.
- ZEH, A., GERDES, A., WILL, T. & MILLAR, I. (2005): Provenance and Magmatic-Metamorphic Evolution of a Variscan Island-Arc Complex: Constraints from U-Pb Dating, Petrology, and Geospeedometry of the Kyffhäuser Crystalline Complex, Central Germany. – J. Petrol., 46 (7): 1393-1420.
- ZULAUF, G. (1997): Von der Anchizone bis zur Eklogitfazies: Angekippte Krustenprofile als Folge der cadomischen und variszischen Orogenese im Teplá-Barrandium (Böhmische Masse). – Geotekt. Forsch., 89, Stuttgart: 302 pp.
- ZULAUF, G., SCHITTER, F., RIEGLER, G., FINGER, F., FIALA, J. & VEJNAR, Z. (1999): Age constraints on the Cadomian evolution of the Teplá-Barrandium unit (Bohemian Massif) through electron microprobe dating of metamorphic monazite. ZDGG, **150**: 627-639.
Danksagung

Die vorliegende Arbeit wurde am Institut für Mineralogie und Kristallstrukturlehre (Vorstand Prof. Dr. Martin Okrusch) der Universität Würzburg angefertigt und im Rahmen eines DFG-Projektes gefördert.

Mein besonderer Dank gilt Herrn Prof. Dr. Thomas Will für die Vergabe des interessanten Themas, die Einführung in die Konstruktion der P-T-Pseudoschnitte sowie für sein Interesse am Zustandekommen der Arbeit.

Herrn Prof. Dr. Reiner Klemd danke ich für die Übernahme des Korreferats und hilfreiche Anmerkungen zur Geochemie.

Meine akademischen Lehrer in der Mineralogie waren zudem Herr Prof. Dr. Martin Okrusch und Herr Prof. Dr. Wolfgang Schubert. Herrn Prof. Dr. Martin Okrusch danke ich für wertvolle Hinweise zur Metamorphose des Spessart-Kristallins und hilfreiche fachliche Ratschläge. Herrn Prof. Dr. Wolfgang Schubert gebührt mein Dank für konstruktive Diskussionen zur Petrographie und fachliche Beratung. Herrn Prof. Dr. Uli Schüssler danke ich für die freundliche Unterstützung bei der Mirkosondenanalytik sowie wertvolle fachliche Hinweise. Für hilfreiche Anmerkungen zur Geochemie sei weiterhin Herren Prof. Dr. Peter Richter gedankt.

Bei den Instituts-Mitarbeitern Herrn PD Dr. Armin Zeh und Herrn Dr. Volker von Seckendorff möchte ich mich für hilfreiche EDV-Hinweise sowie ihre Diskussionsbereitschaft bedanken. Für die Überlassung einzelner Gesteinsproben von nicht mehr zugänglichen Fundstellen danke ich Herrn Dr. Eckard Amelingmeier. Weiterhin sei Herrn Peter Späthe für die Präparation der hochwertigen Dünnschliffe, Frau Rosemarie Baur für die Hilfe bei Durchführung der geochemischen Analytik, Herrn Klaus-Peter Kelber für anregende Ratschläge bei der Mikrofotographie und Bildgestaltung sowie Herr Franz Schwabenländer für die Hilfe bei computertechnischen Problemen gedankt. Meinen Dank möchte ich auch dem Bayerischen Geologischen Landesamt, insbesondere Frau Dr. Günzel, aussprechen, die Dünnschliffe von Proben aus der Geiselbach-Formation zur Verfügung stellte.

Die Arbeit profitierte sehr von der angenehmen Atmosphäre und Zusammenarbeit im Mineralogischen Institut, wofür ich allen Hochschullehrern, Mitarbeitern, Kolleginnen und Kollegen danke. In diesem Zusammenhang gebührt mein Dank auch dem Inhaber des inzwischen etablierten Lehrstuhls für Geodynamik und Geomaterialforschung, Herrn Prof. Dr. Hartwig Frimmel, für die Möglichkeit, die Arbeit in seiner Ära abzuschließen. Frau Angelika Kirchner und Frau Dr. Dorothée Kleinschrot danke ich für die freundliche Unterstützung bei der Überwindung bürokratischer Hürden.

Für die kompetente Unterstützung bei Layout-Fragen sei Frau Helga Zott gedankt.

Mein herzlicher Dank gilt nicht zuletzt meiner Mutter für ihre moralische Unterstützung während der vergangenen Jahre.

Inhaltsverzeichnis zum Anhang

A. Abkürzunge	n	A 3
A.1 Mineralabkü	irzungen	A 3
A.2 Thermodyna	mische Abkürzungen und Symbole	A 4
B. Verwendetes	Kartenmaterial	A 4
C. Probenverze	ichnis und Koordinaten der Probenfundpunkte	A 4
Tab. C.1: Tab. C.2:	Verzeichnis der Proben und Probenfundpunke Verzeichnis der Dünnschliffe aus der Geiselbach-Formation	A 5
	vom Bayerischen Geologischen Landesamt	A 9
D. Petrographie	9	A 10
D.1 Petrographis	che Methodik	A 10
D.2 Ergänzungen	n zur Petrographie der Mömbris-Formation	A 11
Tab. D.1:	Mömbris-Formation: Kurzbeschreibung der Gesteinsproben und Gruppenzuordnung	Δ 11
Tab. D.2:	Modalbestände ausgewählter Proben des Staurolith-Glimmerschiefers der Mömbris-Formation	A 18
D.3 Ergänzunger	n zur Petrographie der Geiselbach-Formation	A 26
Tab. D.3:	Geiselbach-Formation: Kurzbeschreibung der Gesteinsproben und Gruppenzuordnung	A 26
D.4 Ergänzunger	n zur Petrographie der Alzenau-Formation	A 28
Tab. D.4:	Alzenau-Formation: Kurzbeschreibung der Gesteinsproben und Gruppenzuordnung	A 28
D.5 Ergänzunger	n zur Petrographie der Elterhof-Formation	A 30
Tab. D.5:	Elterhof-Formation: Kurzbeschreibung der Gesteinsproben und Gruppenzuordnung	A 30
E. Mineralchem	ue	A 33
E.1 Methodik de	r Mineralanalytik	A 33
E.2 Auswertever	fahren	A 34
E.3 Granat-Zonie	erungsprofile	A 35
Tab. E.1:	Kombination der verschiedenen Granat-Zonierungsmuster	A 35

F. Ge	ochemie .	A 36
F.1 M	lethodik de	r Gesamtgesteinsanalytik A 36
F.2 W	eiterführer	nde Hinweise zur Geochemie A 37
G. Ph	asenpetro	logie A 38
G.1	Thermod	ynamische Grundlagen A 38
G.2	Phasendi	agramme A 42
G.3	Ergänzen	de Hinweise zu Modellsystemen und Systemkomponenten A 45
G.4	Konstruk	tion der P-T-Pseudoschnitte: Zusätzlicher methodischer Hinweis A 45
G.5	Geothern	nobarometrie: Theoretische Grundlagen A 46
G.6	Berechnu	ingen mittels intern-konsistenter Datensätze – Ergänzender Hinweis A 47
G.7	Daten zu	m P-T-Pseudoschnitt für die Geiselbach-Formation (IMG027) A 47
H. Ta	bellen zur	Mineralchemie und Geochemie A 49
	Tab. H.1	Mikrosondenanalysen von Granat A 49
	Tab. H.2	Mikrosondenanalysen von Staurolith A 180
	Tab. H.3	Mikrosondenanalysen von Biotit A 229
	Tab. H.4	Mikrosondenanalysen von Hellglimmer A 255
	Tab. H.5	Mikrosondenanalysen von Chlorit A 280
	Tab. H.6	Mikrosondenanalysen von Plagioklas A 291
	Tab. H.7	Mikrosondenanalysen von Erzmineralen A 328
	Tab. H.8	Tabelle der Gesamtgesteinszusammensetzungen A 332

A. Abkürzungen

1 Nic. = parallele Polarisatoren, + Nic. = gekreuzte Polarisatoren

p.f.u. = pro Formeleinheit, p.d.f.u. = pro doppelter Formeleinheit

P = Druck, T = Temperatur, ss = solid solution = Mischkristall, wt-% = Gew.-% = Gewichtsprozent, x = Kristall, xx = Kristalle

ES = Einschluß, GRE = Einschluß in Granat, PLE = Einschluß in Plagioklas, Mtx = Grundgewebe/Matrix

A.1 Mineralabkürzungen

ab = Albit, akf = Alkalifeldspat, akz = Akzessorien, alm = Almandin, an = Anorthit, ann = Annit, and = Andalusit, as = Aluminiumsilicat, bi = bio = Biotit, cc = Calcit, chl = Chlorit, clin =Clinochlor, ctd = Chloritoid, daph = Daphnit, ep = epidot, fsp = Feldspat, g = gra = ga = Granat, gr = grs = Grossular, hem = Hämatit, hg = hellgli = Hellglimmer, ilm = Ilmenit, ksp = kf =Kalifeldspat, ky = Disthen, L = Schmelze, mag = Magnetit, mrg = Margarit, mu = ms = Muscovit, or = Orthoklas, pa = Paragonit, ph = Phengit, phl = Phlogopit, pl = plag = Plagioklas, py = Pyrop, q = qz = Quarz, rt = Rutil, sill = sill = Sillimanit, spess = Spessartin, st = stau =Staurolith, tit = Titanit, V = Fluid

a_i	Aktivität des Mineral-Endglieds bzw. der Phasenkomponente i bei
	festgelegten Druck- und Temperaturbedingungen
С	Komponente
C_P	Wärmekapazität in kJ K ⁻¹ mol ⁻¹
F	Freiheitsgrad
G	molare Freie Enthalpie (Gibbs'sche Energie) in kJ mol ⁻¹
G^0	molare Freie Enthalpie bei festgelegten Druck- und Temperaturbedingungen
	(Standardzustand) in kJ mol ⁻¹
Н	molare Enthalpie in kJ mol ⁻¹
Κ	Gleichgewichtskonstante
n _i	Molzahl von <i>i</i>
Р	Druck in kbar
Ph	Phase
R	allgemeine Gaskonstante, $R = 0,0083143 \text{ kJ K}^{-1} \text{ mol}^{-1}$
S	molare Entropie in kJ K ⁻¹ mol ⁻¹
Т	Temperatur in K
U	Innere molare Energie in kJ mol ⁻¹
V	molares Volumen in kJ kbar ⁻¹ mol ⁻¹
X_i	Molenbruch von <i>i</i>
<i>X</i> _i	ideale Mischungsaktivität von i
γ_i	Aktivitätskoeffizient von <i>i</i>
μ_i	chemisches Potential des Mineral-Endgliedes bzw. der Phasenkomponente <i>i</i>
	bei festgelegten Druck- und Temperaturbedingungen in kJ mol ⁻¹
μ_i^0	chemisches Potential des reinen Mineral-Endgliedes i bei festgelegten Druck-
- +	und Temperaturbedingungen in kJ mol ⁻¹ (Standardpotential)

A.2 Thermodynamische Abkürzungen und Symbole

B. Verwendetes Kartenmaterial

• topographische Karten: 1:25 000: Blatt 5821 Bieber, Blatt 5920 Alzenau, Blatt 5921 Schöllkrippen, Blatt 6020 Aschaffenburg, Blatt 6021 Haibach

1:50 000: Blatt L 5920 Alzenau i. Ufr.

• geologische Karten: Geologische Karte von Bayern 1:25 000: Blatt 5920 Alzenau, Blatt 5921 Schöllkrippen, Blatt 6020 Aschaffenburg, Blatt 6021 Haibach, Blatt 5922 Frammersbach

C. Probenverzeichnis und Koordinaten der Probenfundpunkte

An dieser Stelle soll auf einen in der Literatur bisher nicht näher beschriebenen Aufschluß in der Mömbris-Formation hingewiesen werden: zwischen Erlenbach und Kaltenberg finden sich im Wald Blöcke von Staurolith-Glimmerschiefer. Darüber hinaus war während der Geländearbeiten im Rahmen von Straßenbauarbeiten ein Aufschluß am NE-Rand der BAB 3 zeitweise zugänglich.

 Tab. C.1:

 Verzeichnis der Proben und Probenfundpunkte. Die Fundorte der fett gekennzeichneten Proben sind aus Abb. 3.1

ersichtlich.

Mömbris-Formation					
Proben- bezeichnung	erste Gesteinsansprache	Fundpunkt	Rechts- und Hochwert		
IMM 001, 002, 003, 004 , 005, 006, 007	glimmerreicher Gneis	Blöcke im Wald, alter Schurf beim Wegebau am SW-Hang, nahe Kalbsbuckel bei Kleinostheim	R ³⁵ 05010 H ⁵⁵ 41450		
IMM 008	Gneis	Lesestein am Wegrand nahe Kalbsbuckel bei Kleinostheim	R ³⁵ 04800 H ⁵⁵ 41200		
IMM 009, 010, 011, 012, 013	Gneis	Lesesteine am Wegrand nahe Eichberg	R ³⁵ 07060 H ⁵⁵ 42700		
IMM 014	Glimmerschiefer, stark verwittertes Material	Baugrube in Sternberg	R ³⁵ 08070 H ⁵⁵ 44160		
IMM 015, 016, 017, 018, 019 020	glimmerreicher Gneis/ Glimmerschiefer	auflässiger Steinbruch, Rückersbacher Schlucht	R ³⁵ 06280 H ⁵⁵ 43230		
IMM 021 , 022, 023	Granat-führender Gneis/ Glimmerschiefer	Steinbruch an der Straße Hohl-Hörstein, gen. Stbr. "Pfahlloch", (auf der rechten Seite in Rtg. Hörstein)	R ³⁵ 07070 H ⁵⁵ 45440		
IMM 024, 025, 026, 027, 028, 029 A +B	Granat-führender Gneis, z.T. mit schwarzen Turmalin-xx	auflässiger Steinbruch am W-Hang des Gretenberges	R ³⁵ 11400 H ⁵⁵ 49000		
IMM 030, 031	Gneis/Glimmerschiefer	auflässiger Steinbruch am NW-Hang des Glasberges, NNW Schimborn, rechte Steinbruchseite	R ³⁵ 12000 H ⁵⁵ 46860		
IMM 032, 033, 034, 035, 036, 037, 038	Gneis/Glimmerschiefer	auflässiger Steinbruch am NW-Hang des Glasberges, NNW Schimborn, linke Steinbruchseite	R ³⁵ 1200 H ⁵⁵ 46860		
IMM 039 , 040, 041, 042, 043	glimmerreicher Gneis/ Glimmerschiefer	auflässiger Steinbruch an der "Hart" im Kirchengrund, ca. 1 km nördlich Johannesberg	R ³⁵ 10120 H ⁵⁵ 44640		
IMM 044 , 045, 046, 047, 048, 049, 050	glimmerreicher Gneis/ Glimmerschiefer	Kalbsbuckel bei Kleinostheim (Aufsammlungen von Herrn Otter, Siegburg)	R ³⁵ 05010 H ⁵⁵ 41450		
IMM 051 , 052	Staurolith-Glimmerschiefer	"Neue" Kirche in Ober-Sommerkahl (Aufsammlungen von Dr. E. Amelingmeier, Würzburg)	R ³⁵ 18600 H ⁵⁵ 48300		
IMM 053	Staurolith-führender Paragneis	Straßenbaustelle bei Feldkahl (1983) (leg. Dr. E. Amelingmeier, Würzburg)	R ³⁵ 14350 H ⁵⁵ 44560		
IMM 054, 055, 056 , 057, 058, 059, IMM 066, 067	Staurolith-Glimmerschiefer	auflässiger, teilweise verwachsener Steinbruch NW Großblankenbach, an der Straße nach Krombach (dicht vor der Brücke über den Krombach)	R ³⁵ 16130 H ⁵⁵ 48220		
IMM 060	Staurolith-Glimmerschiefer	Grauenstein (Aufsammlung Prof. Dr. S. Matthes, Probe SM 63 aus dem wiss. Gesteinsarchiv des Mineralogischen Institutes der Universität Würzburg)	R ³⁵ 11320 H ⁵⁵ 41540		

Mömbris-Formation					
Proben- bezeichnung	erste Gesteinsansprache	Fundpunkt	Rechts- und Hochwert		
IMM 061	Staurolith-Glimmerschiefer	Steinbruch am Beginn des Kettenbachtals, SW Afferbach (Aufsammlung Prof. Dr. S. Matthes, Probe SM 1044 aus dem wiss. Gesteinsarchiv des Mineralogischen Institutes der Universität Würzburg)	R ³⁵ 11970 H ⁵⁵ 43120		
IMM 062	Staurolith-Glimmerschiefer	Steinbruch am Glashof bei Daxberg (Aufsammlung Prof. Dr. S. Matthes, Probe SM 1067 aus dem wiss. Gesteinsarchiv des Mineralogischen Institutes der Universität Würzburg)	R ³⁵ 11860 H ⁵⁵ 46250		
IMM 063	Staurolith-Glimmerschiefer	Kalbsbuckel bei Kleinostheim (Aufsammlung Prof. Dr. S. Matthes, Probe SM 69 aus dem wiss. Gesteinsarchiv des Mineralogischen Institutes der Universität Würzburg)	R ³⁵ 05010 H ⁵⁵ 41450		
IMM 064	Staurolith-Glimmerschiefer	Steinbruch im Afferbachtal am Hohen Bühl (Aufsammlung Prof. Dr. S. Matthes, Probe SM 1005 aus dem wiss. Gesteinsarchiv des Mineralogischen Institutes der Universität Würzburg)	R ³⁵ 11800 H ⁵⁵ 42880		
IMM 065	Staurolith-Glimmerschiefer	Steinbruch im Kirchgrund N Johannesberg (Aufsammlung Prof. Dr. S. Matthes, Probe SM 1097 aus dem wiss. Gesteinsarchiv des Mineralogischen Institutes der Universität Würzburg)	R ³⁵ 10070 H ⁵⁵ 44740		
IMM 068, 069, 070 071	unfrischer Staurolith- Glimmerschiefer	Katholische Kirche in Ober- Sommerkahl, hinter der Kirche steht Staurolith-Glimmerschiefer an	R ³⁵ 18610 H ⁵⁵ 48340		
IMM 072, 073, 074, 075 A+ B , 076, 077	Glimmerschiefer, teilweise Staurolith-führend	Straßenanschnitt an der Straße von Schimborn nach Hösbach, bei Feldkahl	R ³⁵ 14680 H ⁵⁵ 43960		
IMM 078, 079, 080, 081	Granat-führender Gneis	Gipfel des Grauensteins	R ³⁵ 11580 H ⁵⁵ 41990		
IMM 082, 083, 084	Granat-führender Glimmerschiefer	"Felsnadel" am Grauenstein	R ³⁵ 11300 H ⁵⁵ 41910		
IMM 085 , 086, 087	Gneis/Glimmerschiefer	alter Schurf am Hang nahe Womburg bei Schimborn	R ³⁵ 13200 H ⁵⁵ 47200		
IMM 088 A+B	Granat-Plagioklas-Gneis	Straßenböschung zwischen Schimborn und Wenighösbach auf der rechten Straßenseite in Rtg. Wenighösbach	R ³⁵ 14320 H ⁵⁵ 44760		
IMM 089 , 090	Granat-führender Gneis/ Glimmerschiefer	Blöcke im Wald zwischen Erlenbach und Kaltenberg	R ³⁵ 15560 H ⁵⁵ 46760		
IMM 091	Gneis/Glimmerschiefer	Straßenböschung, Womburg bei Schimborn	R ³⁵ 13300 H ⁵⁵ 47060		
IMM 092	Gneis/Glimmerschiefer	Grube am Grauenstein	R ³⁵ 11280 H ⁵⁵ 41880		
IMM 093	fehlt	-	_		

Mömbris-Formation					
Proben- bezeichnung	erste Gesteinsansprache	Fundpunkt	Rechts- und Hochwert		
IMM 094	Staurolith-Glimmerschiefer	Katholische Kirche in Ober-Sommerkahl	R ³⁵ 18610 H ⁵⁵ 48340		
IMM 095, 096	Glimmerschiefer	Anschnitt der neuen Straße von Schimborn nach Feldkahl/Hösbach	R ³⁵ 14320 H ⁵⁵ 44410		
IMM 097, 098, 099	Gneis	Aufschluß an der Autobahn A3, westlich der Anschlußstelle Aschaffenburg-Ost, anstehende Blöcke	R ³⁵ 11130 H ⁵⁵ 39560		
IMM 100 101 A+B, 102 A+B	Granat-führender Gneis	Aufschluß an der Autobahn A3, westlich der Anschlußstelle Aschaffenburg-Ost, ca. 100 m weiter westlich als der erste Aufschlußteil	R ³⁵ 11030 H ⁵⁵ 39580		
SM 68	Staurolith-Glimmerschiefer	Kalbsbuckel bei Kleinostheim (Aufsammlung Prof. Dr. S. Matthes, Probe aus dem wiss. Gesteinsarchiv des Mineralogischen Institutes der Universität Würzburg)	R ³⁵ 05010 H ⁵⁵ 41450		
SM 1063	Staurolith-Glimmerschiefer	Womburg bei Schimborn (Aufsammlung Prof. Dr. S. Matthes, Probe aus dem wiss. Gesteinsarchiv des Mineralogischen Institutes der Universität Würzburg)	R ³⁵ 13300 H ⁵⁵ 47060		
Geiselbach-Form	nation		•		
Proben- bezeichnung	erste Gesteinsansprache	Fundpunkt	Rechts- und Hochwert		
IMG 001, 002, 003, 005, 006, 007	Quarzit der Geiselbach- Formation	Gipfel des Hahnenkamms (436 m), am Ludwigsturm	R ³⁵ 07900 H ⁵⁵ 49100		
IMG 008, 009 , 010, 011, 012, 013, 014, 015, 016, 017	Quarzite und Glimmerschiefer der Geiselbach-Formation	großer Steinbruch ca. 1 km nördlich von Hemsbach ("Steinbruch August Amberg")	R ³⁵ 08900 H ⁵⁵ 49600		
IMG 018, 109, 020, 021, 022, 023, 024, 025, 026, 027 , 028, 029	Granat-führende Quarzite und Glimmerschiefer	Straßenanschnitt an der Straße zwischen Geiselbach und Horbach, gegenüber dem sog. Parkplatz "Franzensfeste"	R ³⁵ 13900 H ⁵⁵ 55650		
IMG 030, 031, 032, 033	Quarzit	auflässiger Steinbruch "Grashecke", nördlich Stengerts	R ³⁵ 08260 H ⁵⁵ 47510		
IMG 034, 035, 036, 037	Quarzit	Schweinskaute, Höhenrücken, Blöcke im Wald			
IMG 038, 039	Quarzit	Kehre am Daunert, Quarzitblöcke in der Straßenböschung	R ³⁵ 09740 H ⁵⁵ 49100		
IMG 040, 041, 042 , 043 , 044	Glimmerschiefer und Quarzite der Geiselbach- Formation	Hang hinter dem Forsthaus Hüttengesäß, NE Brücken	R ³⁵ 10680 H ⁵⁵ 50860		

Geiselbach-Formation					
Proben- bezeichnung	erste Gesteinsansprache	Fundpunkt	Rechts- und Hochwert		
IMG 045, 046	Glimmerschiefer, Quarzit	Straßenanschnitt an der Straße zwischen Geiselbach und Horbach, ca. 200 m weiter in Rtg. Horbach als der sog. Parkplatz "Franzensfeste"	R ³⁵ 12650 H ⁵⁵ 55580		
IMG 047, 048	Quarzit	großer Steinbruch ca. 1 km nördlich von Hemsbach ("Steinbruch August Amberg")	R ³⁵ 08900 H ⁵⁵ 49600		
Alzenau-Forma	tion				
Proben- bezeichnung	erste Gesteinsansprache	Fundpunkt	Rechts- und Hochwert		
IMA 001, 002, 003	heller Gneis	Straßenanschnitt gegenüber der Sparkasse in Alzenau	R ³⁵ 05220 H ⁵⁵ 50100		
IMA 004, 005, 006, 007, 008, 009, 010, 011	Gneis	Burgfelsen Alzenau	R ³⁵ 05410 H ⁵⁵ 50150		
IMA 012, 013, 014, 015, 016 , 017, 018, 019, 020	Gneise der Alzenau- Formation	Hohlweg von Kälberau auf den Rothen- Berg	R ³⁵ 06480 H ⁵⁵ 50850		
IMA 021, 022, 023	Gneise der Alzenau- Formation	Schurf auf der Höhe P175 zwischen Kälberau und der Streumühle	R ³⁵ 06180 H ⁵⁵ 51350		
IMA 024, 025, 026, 027, 028	Gneis	Bahnböschung südwestlich des Ortes Kälberau	R ³⁵ 06510 H ⁵⁵ 50880		
Elterhof-Forma	tion	•			
Proben- bezeichnung	erste Gesteinsansprache	Fundpunkt	Rechts- und Hochwert		
IME 001, 002	Paragneis	Straßenböschung am Linden-Berg bei Laufach	R ³⁵ 22370 H ⁵⁵ 42540		
IME 003, 004, 005, 006	fehlen	_	_		
IME 007 , 008, 009, 010 , 011, 012	Gneise, schiefrige Gneise	Steinbruch Borberg, Bor-Berg-Weg, südlich Laufach	R ³⁵ 21900 H ⁵⁵ 41340		
IME 013, 014, 015, 016, 017, 018, 019	Paragneis	Steinbruch zum "Grünen Baum", Gailbach	R ³⁵ 14720 H ⁵⁵ 34720		
IME 020, 021, 022, 023, 024, 025, 026, 027, 028	Paragneise	Lesesteine der Elterhof-Formation, westlich Klingerhof: von Haibach auf der Straße nach Winzenhohl-Bahnhof Hösbach bis zur Höhe 297 m, dort re. in Rtg. Klingerhof	R ³⁵ 17180 H ⁵⁵ 37370		
IME 029, 030	Paragneise	Lesesteine der Elterhof-Formation, westlich Klingerhof	R ³⁵ 16780 H ⁵⁵ 37130		
IME 031, 032, 034, 035	Paragneise	Lesesteine der Elterhof-Formation, westlich Klingerhof	R ³⁵ 16180 H ⁵⁵ 36870		
IME 036, 037, 038, 039, 040, 041, 042	Gneise der Elterhof- Formation	Straßenböschung an der Straße Aschaffenburg-Elterhöfe	R ³⁵ 13450 H ⁵⁵ 35850		

Elterhof-Formation					
Proben- bezeichnung	erste Gesteinsansprache	Fundpunkt	Rechts- und Hochwert		
IME 043	Gneis	Wegböschung südlich Grünmorsbach	R ³⁵ 15800 H ⁵⁵ 36020		
IME 044, 045, 046	Gneise	Lesesteine in der Böschung im Feld, NE Grünmorsbach	R ³⁵ 15790 H ⁵⁵ 36350		
IME 047, 048, 049, 050, 051, 052, 053	Gneise der Elterhof- Formation	Lesesteine vom Feld unterhalb des Röthen-Waldes bei Keilberg, zwischen dem Röthen-Wald und der Autobahn A3	R ³⁵ 19070 H ⁵⁵ 38130		
IME 054, 055, 056, 057, 058	Gneise	Lesesteine der Elterhof-Formation am Westende des Hirschbaches, NW Straßenbessenbach	R ³⁵ 16100 H ⁵⁵ 36760		

Tab. C.2:

Verzeichnis der vom Bayerischen Geologischen Landesamt zur Verfügung gestellten Dünnschliffe aus der Geiselbach-Formation (Blatt 5920 Alzenau)

Dünnschliff- Nr.	kurze Gesteinsbezeichnung Fundpunkt		Rechts- und Hochwert
1133	Paragneis, staurolithfrei	östliche Stempelhöhe, Wegeinschnitt N Hohl	R ³⁵ 08140 H ⁵⁵ 47240
1135	Granat-Glimmerschiefer, quarzreich	Steinbruch im Nieder-Wald, NO Groß- Hemsbach	R ³⁵ 09140 H ⁵⁵ 49560
1141	granatführender quarzitischer Glimmerschiefer	Kleine Seitenentnahme im Buch-Wald, SO Michelbach	R ³⁵ 08510 H ⁵⁵ 50420
1148	Granat-Glimmerschiefer	S Steinbruch im Räusch-Berg, SO Hörstein	R ³⁵ 05650 H ⁵⁵ 45140
1150	Granat-Glimmerschiefer	Steinbruch am Abtsberg, SO Hörstein	R ³⁵ 06000 H ⁵⁵ 45230
5808	Quarz-Feldspat-Flasergneis	Steinbruch S Gehickel, Straßenanschnitt westl. Teil der Spitzkehre der Straße Hohl-Hörstein	R ³⁵ 06420 H ⁵⁵ 45980
5830	Granat-Glimmerschiefer	Bergnase NO Schanzen-Kopf im Forstweg (SW-Böschung)	R ³⁵ 07030 H ⁵⁵ 48300
5831	Quarzitschiefer	östl. Teil des östl. Stbr. N Schanzen- Kopf	R ³⁵ 06860 H ⁵⁵ 48420
5848	Granat-Muscovit-Quarzitschiefer	Bodeneinschlag SW Hennberg	R ³⁵ 06900 H ⁵⁵ 47120
5851	Glimmerschiefer, quarzreich	Steinbruch am Kreuzwasen	R ³⁵ 07980 H ⁵⁵ 48680
839	biotit- und granatführender Quarzitschiefer	Steinbruch am Angelsberg	R ³⁵ 08980 H ⁵⁵ 47300
881	granatführender Biotit-Muscovit- Quarzitschiefer	Abtsberg, Weg am ehemaligen Bunker, d.h. Verbindungsweg Abtsberghohle-Sandhohl	R ³⁵ 05660 H ⁵⁵ 46760
888	Granat-Glimmerschiefer, quarzreich	W Parkplatz Schoßberg-Restaurant, Wasserlos, SW Schanzen-Kopf	R ³⁵ 06140 H ⁵⁵ 47940

D. Petrographie

D.1 Petrographische Methodik

Zum Studium der Metasedimente standen aufgrund der Geländearbeit etwa 230 Gesteinsproben zur Verfügung. Etwa 150 Gesteinsdünnschliffe wurden mit einen LEITZ-Polarisationsmikroskop qualitativ untersucht. An 10 Gesteinsdünnschliffen wurden Modalbestände mit Hilfe eines SWIFT-Pointcounters ausgezählt.

Bei der petrographischen Beschreibung wurde die für metamorphe Gesteine übliche Nomenklatur mit der Endung "-blastisch" verwendet, soweit sie sich auf typisch metamorphe Bildungen und Erscheinungen bezieht. Für eher descriptive Elemente, wie z.B. die Beschreibung der Korngestalt, wurde in Anlehnung an OKRUSCH & MATTHES (2005) im Sinne einer besseren Lesbarkeit die Endung "-morph" gewählt. Die Gefügebezeichnungen folgen der konventionellen deutschen Terminologie, der Ausdruck "Struktur" entspricht der englischen Bezeichnung *"texture*", "Textur" kann mit *"structure*" übersetzt werden (vgl. OKRUSCH & MATTHES 2005, S. 13).

D.2 Ergänzungen zur Petrographie der Mömbris-Formation

Tab. D.1:

Petrographische Übersicht zur Mömbris-Formation mit Untergliederung der Gruppen. ES = Einschluß, Einschlüsse = ESES, Mtx = Matrix, GG = Grundgewebe, HG = Hellglimmer, poikilit. = poikilitisch, bl. = blastisch (z.B. idioblastisch), PSM = Pseudomorphosen, ++ = deutlich vorhanden, + = vorhanden

Probe	Staurolith	Granat	Glimmer	Plagioklas	Chlorit	Bemerkungen
I. a Typ I d	les Staurolith-G	ranat-Glimmersch	iefers			
IMM 004	gelegentlich poikilit. Individuen von Stau	Gra mit ESES, z.T. von Rissen durchzogen	Bio neben Gra, aber auch in Mtx; HG als kleine Individuen, neben Gra o. Stau, u. als Bahnen im GG	hypidiobl., neben Quarz das GG bildend, teils sericitisiert	Chl häufig neben Gra, retrograde Neubildung	Gra in Stau, neben Biotit; Akz.: Erz
IMM 021	Stau teils frisch, z.T. im Abbau	Gra von Rissen durchzogen u. randlich teilw. von Chl umgeben	Glimmerbahnen aus Bio u. HG, z.T. verfältelt, Glimmer z.T. auch in "Nestern"	beginnender Abbau von Plag	++	beginnende retrograde Über- prägung
IMM 024		Gra häufig mit Abbau- /Umwandlungs- erscheinungen, z.B. in Form von Erz u. Hämatit	HG u. Bio in relativ ausgewogenem Mengenverhältnis, Glimmer im GG eingeregelt, keine durchhaltenden Glimmerbahnen	Abbau des Plag erst beginnend	Chl in Nestern	opake Erzminerale deutlich anwesend
IMM 038	Stau fehlt	Gra häufig mit randl. Biotit u./o. Chl, ESES von kleinen aggregierten HG in Gra	HG auch als ES in Gra; dünne, mäßig durchhaltende Züge von Bio u. teilweise HG, Glimmerzüge kaum deformiert	beginnender Abbau von Plag	Chl anwesend, meist am Rand von Gra	kein Stau
IMM 039	Stau gut erhalten, z.T. beginnende Umwandlung ausgehend von Rissen	Gra z.T. mit poikilit. Ausbildung, ESES von Q, HG, Bio, Erz; Gra auch als ES in Stau	Bio gemeinsam mit HG Bahnen bildend; HG auch in Form von ungeregelten Nestern; grüner, teilweise grünbrauner Bio	Plag mäßig sericitisiert	Chl ++	Gra mit ESES, Gra auch in Stau
IMM 040	teils frischer Stau, teilweise mit beginnendem randl. Abbau	Gra z.T. helicitisch mit ESES, Gra neben Bio; Gra auch als ES in Stau	schmale Bahnen von HG u. teilw. eingeregeltem Bio	beginnender Abbau von Plag	wenig Chl	Gra mit ESES
IMM 043	Stau mit geringen Abbau- erscheinungen			Sericitisierung der Plag etwas weiter fortgeschritten		ähnl. Probe IMM 038/IMM 040
IMM 051	Stau sehr gut erhalten	poikilit., z.T. atollförmiger Gra, weniger frisch als in anderen Schliffen	Bahnen aus Bio u. HG, die andere Minerale umgeben, grünbrauner Bio	Sericitisierung des Plag nur mäßig fortgeschritten	wenig Chl	grobkörniger als z.B. IMM 038, 040, 043
IMM 052	Stau in großen xx (vgl. IMM 051), teilweise mit beginnendem Abbau wie z.B. Chloritisierung (auf Rissen) u. in kleinen, meist frisch erscheinen- den Stau-xx	Gra poikilit., z.T. atollförmig, stark in Abbau	Bio u. HG auf Bahnen u. in ungeregelten Nestern, teilweise Bildung von Querglimmern; Bio-xx > HG-xx; grünbrauner Bio	Plag mit beginnender Sericitisierung	Nester von Chl	Proben IMM 051, 052, 054 weisen untereinander starke Ähnlichkei- ten auf

Probe	Staurolith	Granat	Glimmer	Plagioklas	Chlorit	Bemerkungen
IMM 053	sehr viel Stau, Stau als große, xenom. bis hypi- diom., poikilit. Porphyroblasten u. als kleine hypidiom. bis idiom., meist poikilit. xx	relativ wenige kleine Gra-xx in Mtx	Bio meist mit Vorzugsorientierung, sehr wenig HG	xenom. Plag mit beginnender Sericitisierung	Chl anwesend, nahe bei HG	rel. feinkörniges Pflastergefüge aus Qz + Plag; Akz.: Turmalin
IMM 054	Stau z.T. frisch, z.T. stärker abgebaut	wenig Gra, Gra z.T. mit atollförmiger Stuktur, teilweise abgebaut (Erzphase)	grünbrauner Bio	Plag teils in frischerem Zustand, teils stärker sericitisiert	Chl anwesend	
IMM 056	Stau in unter- schiedlichem Erhaltungszustand	Gra mit ESES, leicht poikilit. bis atollför- mig, teilw. beginnend skelettartig	Bio grün u. grünbraun	Plag mit beginnender Sericitisierung	Chl anwesend	
IMM 058	Stau relativ frisch	Gra nur mäßig beeinträchtigt, atollartiges Aussehen kommt vor, Gra z.T. mit Hämatitschleiern	Bio grün u. grünbraun mit pleochroitischen Höfen	beginnender Plag- Abbau	Chl anwesend	
IMM 059	Stau mit begin- nendem Abbau, von Rissen durch- zogen, leicht poikilit.	Gra-freie Partie	grünbrauner Bio	Plag-Abbau beginnend bis mäßig	viel Chl	relativ Qz-reiche Partie, Akz.: Erz, Hämatit
IMM 060	viel Stau, stark poikilit., Chloritisierung von Stau	Gra ebenfalls poikilit.; Gra auch als ES in Stau; Chloritisierung von Gra	grüner Bio	Plag mit beginnender Sericitisierung	Chl ++	
IMM 085	Stau leicht poikilit., mit ESES von HG, Erz, Q	Gra ebenfalls mäßig poikilit., Ein-schlüsse von Stau, HG, Erz u. Q	grüner, z.T. braungrüner Bio; Glimmer bilden mehrkristalline Lagen o. Nester; HG überwiegt leicht gegenüber Bio	Plag mäßig sericitisiert	Chl deutlich anwesend	Akz.: Erz, Hämatit, Turmalin
IMM 086	Stau in unter- schiedlichem Erhaltungszustand: poikilit. u. skelett- artig bis relativ frisch, von Rissen durchzogen	Gra ebenfalls mäßig poikilit.	Bio grün, gelegentlich grünbraun	Plag mäßig sericitisiert	Chl deutlich anwesend	
IMM 088 A+B	Stau in kleinen Individuen anwesend	Gra-Individuen größer als Stau; Gra hypidiobl. mit Erz- ESES	grünbrauner Bio	Plag nur beginnend sericitisiert		extrem lagige Gesteinsstruktur; Gestein erscheint zerschert; Erz-xx idiobl., teils skelettartig
IMM 092	Stau xenom. bis idiom., meist stark poikilit., Durch- kreuzungs- zwillinge von Stau	Gra in Mtx, teilweise poikilit. mit ESES von Qz, selten auch Bio	grünbrauner Bio in Mtx u. auf Bahnen, deutlich mehr Bio als HG	Plag nur mäßig sericitisiert	wenig Chl	Akz.: Turmalin, Erz; in Stau: Riß, der durch Chl u. Erz nachgezeich- net wird
IMM 101 A+B	Stau meist hypidiom., teilweise poikilit.	Gra in Mtx, Schliff A mit viel Gra, B mit wenig Gra	grünbrauner Bio, pleochroitische Höfe in Bio, wenig HG	Plag nur mäßig sericitisiert	wenig Chl, besonders in Schliff B: Chl neben Stau	Akz.: Erz
IMM 102 A+B	Stau xenom. bis hypidiom., teilweise poikilit.	viel Gra in Mtx	grünbrauner bis grüner Bio, wenig HG	Plag wenig sericitisiert	wenig Chl	Akz.: Erz

Probe	Staurolith	Granat	Glimmer	Plagioklas	Chlorit	Bemerkungen
I. b Typ I,	retrograd überp	prägt				
IMM 009	Stau völlig abgebaut			Plag deutlich sericitisiert		ähnl. IMM 004
IMM 010	Stau im Abbau befindlich	größere, zerlegte Gra- Körner, häufig mit erzhaltigem Rand	gemeinsame Züge der Glimmer	Plag nur wenig abgebaut	wenig Chl	Akz.: Erz; ähnl. IMM 013
IMM 013	z.T. im Abbau zu Sericit-Chl- Gemenge befindlich	Gra im Abbau, häufig von Erzen durchzo- gen, bzw. randlich von Erz gesäumt	Bahnen von Bio u. HG, z.T. etwas stärker verfältelt	Plag z.T. retrograd in Sericitisierung befindlich	wenig Chl	Glimmerzüge etwas stärker verfältelt, als im Probe IMM 010; Akz.: viel Erz
IMM 015	Stau fehlt fast völlig	größere, teils zerlegte Körnervon Gra, Gra mit ESES von Bio	HG u. Bio richtungsmäßig einge- regelt, jedoch nur kaum durchhaltende Bahnen	Plag deutlich sericitisiert	Chl verbreitet in der Gru masse	Glimmerzüge weniger stark durchhaltend; Akz. :Erz
IMM 016	Stau im Abbau befindlich			Plag sericitisiert	Chl verbreitet in der Gru masse	
IMM 019				Plag im Abbau	sehr viel Chl	Akz.: viel Erz
IMM 022	Stau deutlich im Abbau befindlich	Abbau von Gra auf Rissen, Atoll-Struktur von Gra mit Chl - Füllung	keine durchhaltenden Glimmerbahnen, Bio gegenüber HG etwas überwiegend	geringe Sericitisierung des Plag	viel Chl, auch als Quer- chlorit	Granat wird chloritisiert; Akz.: Erz, Apatit. Turmalin, Hämatit
IMM 023	Stau z.T. stark von Rissen durchzogen		sehr viel Glimmer auf Bahnen		viel Chl	sehr glimmerreiche Partie, deutlich retrograd überprägte Probe
IMM 035	Stau-freie Partie	Gra z.T. atollförmig bis skelettartig abgebaut	durchhaltende Bahnen insbesondere von HG, z.T. unter Beteiligung von Bio; Bio auch in Form von Nestern	Abbau des Plag beginnt	viel Chl	kein Stau
IMM 037	Stau-freie Partie	Gra häufig mit ESES bzw. randl. Wachstum von Bio, Gra z.T. mit Saum von Erz	dünne, durchhaltende Bahnen von HG, von Bio begleitet	Plag deutlich sericitisiert	wenig Chl	kein Stau
IMM 042	Stau relativ stark abgebaut, z.T. völlig von sericitart. Filz überwachsen, nur noch ursprüngl. Umrisse erkennbar	starker Abbau von Gra, Gra selten mit poikilit. Ausbildung	Bio durchzieht das Gestein auf sehr schmalen, kaum durchhaltenden Bahnen; auffallend wenig HG	starke Sericitisierung der Plag	Chl deutlich präsent	ähnl. IMM 040
IMM 061	idiobl. bis hypidiobl. Stau, von Rissen durchzogen, nur teilw. poikilit., Stau z.T. in Umwandlung zu Sericit rsp. Chl	hypidioblast. bis xenoblast. Gra in atollförmiger Ausbildung mit ESES von Bio, Gra teilw. poikilit.	kräftige Bahnen von grünem (bis grünbrau- nem) Bio u. HG, die häufig Stau o. Plag umschließen, z.T. Nester von Glimmern; Bio u. HG etwa im Verhältnis 1:1; Sprossung von Querglimmern	Plag xenobl. bis hypidiobl., recht stark sericitisiert	Chl deutlich beteiligt; z.T. in Nestern auch neben Bio	ähnl. IMM 060
IMM 062	Stau fast ohne frische Partien, nur noch in mit Sericit gefüllten PSM	Gra in Umwandlung	grüner Bio	Plag sericitisiert		Akz.: viel Erz, Hämatit; Erz besonders in Fsp
IMM 064	Stau-freie Partie	Gra mit ESES, Gra mit Rissen	grüner Bio, HG leistenförmig in Mtx	Plag deutlich sericitisiert	Chl +	kein Stau
IMM 065 A+B	Stau-freie Partie	Gra z.T. mit ESES		Plag im Abbau	Chl ++	kein Stau, sehr Turmalin-reiche Partie (bes. A)

Probe	Staurolith	Granat	Glimmer	Plagioklas	Chlorit	Bemerkungen
IMM 066	Stau-Porphyrobl. teils noch frisch, teils von Rissen ausgehend serici- tisiert; Stau leicht poikilit.	Gra-freie Partie	Bahnen von überwie- gend grünbraunen Bio u. HG halten im ganzen Schliff durch; Bio > HG; Bio auch grün u. braun	große Plag- Individuen, Plag sericitisiert, ESES von HG in Plag	Chl deutlich beteiligt	Qz rekristallisiert; Akz.: viel Erz, Hämatit; Erz besonders in Stau u. Fsp
IMM 070	Stau stark von Rissen durchzo- gen, dort teilw. sericitisiert, einige Stau-xx stärker abgebaut	wenig Gra, Gra mit ESES von HG; Gra-xx z.T. mit Korrosionsbuchten	Bio grünbraun; Bio > HG	Plag deutlich sericitisiert	Chl deutlich beteiligt	Gefüge ähnl. IMM 066, jedoch grobkörniger u. mehr HG; Akz.: Turmalin
IMM 071	große Stau-xx, stark zerrissen u. z.T. umgewandelt	Gra teilw. mit ESES, Gra stark umgewandelt, z.T. unter Abscheidung von Erzphase ± Hämatit	Bio grünbraun; Bio überwiegt HG leicht	große Plag- Individuen, stark sericitisiert	Chl auf Rissen sprossend	Gefüge stark deformiert, Qz rekristallisiert; Akz.: viel Turmalin
IMM 080	Stau-freie Partie	Gra offenbar in kleinere Körner zergliedert	Bio grün - grünbraun	Plag deutlich sericitisiert, in Plag z.T. ESES von kleinen HG- xx	Chl ++	kein Stau
IMM 082	Stau stark poikilit. mit ESES von Qz, in Abbau	Gra stark poikilit. mit ESES von Qz, Stau u. HG; Gra deutlich in Abbau: stark chloriti- siert, getrübt, mit Korrosionsbuchten, Abscheidung von Erzphase ± Hämatit	Bio grünbraun; Bio neben Gra; HG in Mtx sprossend	Plag stark abgebaut	Chl ++, besonders am Rand von Gra, aber auch neben Bio	Gra mit Stau-ES
IMM 087	Stau häufig in einzelne Partien zerlegt	wenig Gra	brauner Bio, wenig HG	Plag deutlich sericitisiert	Chl anwesend	Qz rekristallisiert
IMM 097	Stau-freie Partie	sehr wenig Granat	grünbrauner, z.T. auch brauner Bio; Bio u. HG in der Mtx	Plag stark sericitisiert		kein Stau; Akz.: wenig Erz, Apatit
IMM 099	Stau-freie Partie	Gra-freie Partie	grünbrauner, z.T. auch brauner Bio; Bio u. HG in der Mtx	Plag stark sericitisiert		kein Stau, kein Gra; Akz.: wenig Erz, Apatit
IMM 100	wenig Stau, Stau xenom., stark poikilit., von Qz durchsetzt	wenig Gra	grünbrauner Bio, sehr wenig HG	Plag stark sericitisiert	Chl anwesend	Akz.: Erz
I./II. Überg	gang zwischen T	yp I und Typ II de	es Staurolith-Glimmo	erschiefers		
IMM 044	große Stau- Individuen, teilw. poikilit., mit ESES von Gra, Plag, Erz u. Qz	Gra in Mtx neben Bio u. Plag u. als ES in Stau rsp. Plag; Gra in Mtx z.T. poikilit.; Gra mit ESES von Bio u. HG	grüner Bio, z.T. auch grünbrauner Bio; Bio u. HG bilden Pakete, die andere Minerale umflasern können	Plag mäßig stark sericitisiert	Chl ++, nahe Stau u. Gra	Übergang Typ I/ Typ II
I./II. Überg	gang zwischen T	yp I und Typ II de	es Staurolith-Glimme	erschiefers, retr	ograd überp	rägt
IMM 041	Stau stark von Rissen durchzo- gen u. stark retro- grad abgebaut, nur in wenigen Fällen noch frische Stau- Partien	Gra in Mtx u. in einigen Fällen als ES in Stau u. Plag; Gra in Mtx mit ESES von Bio; Gra-Individuen sind recht klein	grüner Bio, z.T. auch grünbrauner Bio	Plag relativ stark sericitisiert	Chl ++, vor allem nahe Bio bzw. Gra	Übergang Typ I/ Typ II
IMM 045	Stau noch mit frischen Partien, z.T. jedoch auch stark umgewandelt	Gra in Mtx u. als ES in Plag u. Stau; Gra z.T. zerrissen o. korrodiert	grüner Bio partienweise im Schliff Züge aus etwa gleichen Anteilen von Bio u. HG	Plag deutlich sericitisiert	viel Chl	Übergang Typ I/ Typ II

Probe	Staurolith	Granat	Glimmer	Plagioklas	Chlorit	Bemerkungen
II. a Typ Il	des Staurolith-	Glimmerschiefers				
IMM 028	Stau z.T. schon deutlich abgebaut	Gra massenhaft in Plag u. Glimmer eingeschlossen, Gra z.T. mit optisch erkennbarem Zonar- bau, Gra selten durch Abbau getrübt	verfältelte Bahnen von Bio u. HG; Querglimmer; grünbrauner Bio	Plag mit beginnendem Abbau	Chl ++, in Nestern	Gra lagenweise besonders häufig, Akz.: Turmalin
IMM 029 A+B	Stau hypidiobl. bis xenobl., in größeren u. kleineren Individuen, z.T. von Rissen durchzogen	sehr viele idiobl. Gra- xx auf Glimmerbahnen u. in Plag	HG u. grünbrauner Bio in Mtx ziehen um Plag- Prophyroblasen herum	Plag- Porphyroblasten mit ESES von HG, Plag in Säumen o. Höfen von Qz umgeben; Plag leicht sericitisiert	Chl ++	Wechsel von Qz- reicheren Lagen u. Glimmerreicheren Lagen mit Stau u. Plag; ESES von HG in Plag zeichnen ein gegenüber der Matrix verlegtes s _i nach; Schliff IMM 029 B mit starker Qz-Rekrsitallisation
IMM 046	Stau- Porphyroblasten xenom. bis hypidiom., mit ESES von Gra	wenig Gra als ES in Stau u. in Plag	braungrüner Bio; Bio u. HG bilden kaum durchhaltende Bahnen im Schliff, Bio existiert auch unabhängig davon in Mtx	Plag mit beginnender Umwandlung	Chl ++	Disthen-führend, Ky als ES in Plag bzw. im Kontakt mit Plag
IMM 047	viel Stau, Stau meist xenom., am Rand häufig in Sericit-Chl- Gemenge umgewandelt	Gra als ES in Stau, Plag u. Turmalin	Bio u. HG in verfältelten Zügen	Plag mäßig sericitisiert, daher z.T. getrübt	viel Chl, Chl in Kontakt zu Bio, Stau, Plag	ähnl. IMM 046, jedoch stärker retrograd überprägt; Akz.: viel Turmalin
IMM 063	Stau hypidiobl., von Rissen durchzogen, besitzt ESES von Gra, Chl, Erz u. Q	sehr viel Gra in Form idiobl. ESES in Stau u. Plag	braungrüner Bio; die lepidobl. Glimmer sind ohne klare Regelung miteinander verwachsen	Plag nur leicht bis mäßig sericitisiert, Plag mit ESES von Bio u. HG, die häufig in Kon- takt mit ebenfalls eingeschlossenen Gra-x stehen	Chl ++	Disthen-führend, Ky besonders in glimmerreichen Partien u. in Kontakt mit Plag; ähnl. IMM 046; Akz.: Turmalin
IMM 075 A+B	hypidiom. bis xenom. Stau- Porphyroblasten in feinkörnigeren Gesteinsanteilen; in grobkörnigeren Gesteinsanteilen große, meist hypidiom. bis fast idiom., leicht poikilit. Stau- Prophyroblasten; Stau mit ESES von Gra	idiobl. Gra-xx, Gra in Mtx u. als ES in Stau- u. Plag- Porphyroblasten u. in Glimmern; Schliff A weniger Gra; Schliff B sehr viel Gra	grünbrauner Bio in Mtx u. in Bio-Säumen	Plag- Porphyroblasten mit ESES von Gra	Chl ++	extrem lagige Gesteinspartie mit mylonisitierten Bereichen; Lagen von feinkörnigen, z.T. rekristallisier- ten Pflastern aus xenom. Qz u. hypidiom. Plag mit einzelnen Bio- xx, grobkörnigere Lagen u. Bio- Säume; Schliff A feinkörniger, stärker lagig aufgebaut als B

Probe	Staurolith	Granat	Glimmer	Plagioklas	Chlorit	Bemerkungen
IMM 076	xenom. bis hypi- diom., gelegentlich idiom., z.T. poikilit. Stau- Porphyroblasten, kleinere u. größere Stau-xx; Stau vorwiegend in den Plag-reicheren Gesteinspartien; Stau von Rissen u. ESES durchsetzt u. z.T. stärker abgebaut	relativ viel Gra, meist idiom.; Gra über den gesamten Schliff verteilt, in Qz-reiche- ren Bereichen u. neben Stau u. Plag	Bio regellos in feineren u. gröberen Bereichen des GGs; nur selten Bahnen von Bio; Bio häufig nahe Stau; HG relativ selten, in sehr kleinen Individuen, etwas bevorzugt nahe Plag	Plag- Porphyroblasten leicht sericitisiert	Chl ++	teilweise retrograd überprägte Probe, Wechsel zwischen sehr feinkörnigen, rekristallisierten Qz-reichen Bereichen u. gröberen Bereichen mit Plag- u. Stau- Prophyroblasten; Gestein teilweise mylonitisch zerschert
IMM 077	Stau in xenobl. bis hypidiobl. Indivi- duen, teilweise poikilit., von Ris- sen durchzogen, ESES z.B. von Gra	kleine, häufig idiom. Gra-Individuen in allen Partien des Gesteins; weniger Gra als in anderen Proben; Gra auch als ES in Stau	Bio u. HG teilweise auf Bahnen; grünbrauner Bio; HG in kleineren xx als Bio	Plag- Porphyroblasten meist hypidiom., leicht sericitisiert; Plag mit ESES von Gra, Bio, HG, Qz; Plag- Porphyroblasten z.T. mit verlegtem S _i	Chl +, Chl nahe Stau o. Bio	feinkörnige, rekristallisierte Qz-reichen Partien u. gröbere Bereiche mit Plag- Prophyroblasten Akz.: Turmalin, einige größere Erzkörner mit Korrosions- buchten
IMM 078		Gra-xx häufig atollförmig, ungleichmäßig verteilt	Bio regellos in Mtx, HG als ES in o. nahe Plag	Plag hypidiom., leicht sericitisiert		Probe IMM 079 vergleichbar
IMM 083	Stau hpyidiom., stark poikilit.	kleine, idiobl. Gra-xx; Gra als ES in Stau u. in Mtx	Bio grünbraun, kleine HG sprossen an Korngrenzen von Plag			Akz.: sehr viel blaugrüner, optisch zonar gebauter, z.T. poikilit. Turmalin
IMM 089	Stau- Porphyroblasten meist hypidiobl. bis idiobl., Stau teils poikilit., mit beginnender Chloritisierung; Stau mit ESES von Gra, Chl u. Erz	Gra-Idioblasten in Stau u. Plag eingeschlossen u. in Mtx, Gra mit ESES von Bio	braungrüner Bio; HG u. Bio bilden kaum durchhaltende Züge, an denen Chl beteiligt sein kann; HG auch in einzelnen x o. kleinen Büscheln in Mtx	Plag kaum sericitisiert, Plag auch mit ESES von Bio rsp. HG u. Erz u. Q	Chl ++	Stau z.T. korrodiert, aber kaum in Sericit- Chl-Gemenge umgewandelt; Akz.: Erz, Turmalin
IMM 090	Stau-xx hypidiobl.	viele idiobl. Gra-xx	braungrüner Bio; HG u. Bio bilden keine Bahnen; Glimmer auch als ESES in Plag	Plag fast frei von Sericitisierung; Plag mit ESES von Bio u. selten HG	Chl ++, vor allem neben Bio u. Stau	mehr Gra u. weniger HG als IMM 089
SM 68	poikilit. Stau in idioblast. bis xenoblast. Ausbil- dung, besitzt ESES von Gra, Bio, Erz, Q	Gra nur z.T. in Form typ. massenhafter ESES, eher als ES in Plag u. Stau, u. auf Glimmer-Bahnen	bräunlichgrüner Bio; Bio u. HG bilden im Schliff durchhaltende Bahnen	Plag mit mäßiger Sericitisierung; als ESES treten Gra, Bio, HG, Erz u. Q auf	wenig Chl	Disthen-führend, Ky in Berührung mit Bio, HG, Plag, Erz u. Q
SM 1063	relativ kleine Stau Individuen, jedoch von variierender Größe, die in engem Verband mit Bio stehen	Gra nicht als typische massenhafte ESES; ESES von Bio in Gra	bräunlichgrüner Bio der kräftige Bahnen bildet, nimmt einen großen Teil des Schliffes ein; HG ins in wesentl. geringerem Maße beteiligt	Plag deutlich sericitisiert; mit ESES von Stau, Bio u. HG	Chl ausgeprägt beteiligt	Ky- u. Sill führend; Ky neben Stau u. Bio; Sill, meist fibrolithisch, neben Plag

Probe	Staurolith	Granat	Glimmer	Plagioklas	Chlorit	Bemerkungen
II. b Typ II de	es Staurolith-Glimn	nerschiefers, retrograd	überprägt			
IMM 025	Stau stark sericitisiert, nur selten noch relativ frische Partien, teilweise Stau- Relikte	idiobl. Gra in großen Mengen in alle Teile des Gesteins, vor allem in Plag o. Stau- Relikte eingeschlos- sen; Gra z.T. mit z.B. von Erzen getrübtem Randbereich	nur selten durchhaltende Glimmer-Bahnen; teilweise Querglimmer; Bio > HG; grünbrauner Biotit; HG teilweise nahe Plag	Plag mit mäßiger bis starker Sericitisierung	Chl ++, z.T. radial-strahlig aufgebaute Nester bildend	Gestein ist stark retrograd überprägt u. erscheint zerschert; Akz.: Turmalin
IMM 026	Stau sehr stark abgebaut, häufig in reliktische Partien zerlegt	Gra als kleine idiobl. Individuen; Gra als ES in Plag, aber auch auf Glimmer-Bahnen; Gra meist getrübt/ umgewandelt, häufig mit dunklem, fast opaken Rand o. opakem Kern u. klarem Rand	Bahnen von HG u. Bio; Querglimmer; glimmerreiche Teile des Gesteins stärker retrograd überprägt	Plag- Porphyrpblasten mit beginnender Umwandlung; Plag auch mit ESES von Glimmern	Chl ++, in Nestern gesproßt; Chl auch neben Glimmern	zwischen Plag Qz- Pflaster u. Glimmer-Bahnen Akz.: Erz, Turmalin
IMM 027	Stau relativ stark umgewandelt, nur noch selten frische Bereiche erhalten; teilweise Stau- Relikte	kleine Gra-xx in großer Menge über den ge- samten Schliff verteilt, Gra meist idiom., nur selten zerrissen o. mit atollförmiger Struktur, Gra besonders als ES in Plag, aber auch auf Glimmer-Bahnen	brauner Bio, nur selten grünbrauner Bio; verbreitet feingefältelte Züge von HG im Wechsel mit Bahnen von Bio	hypidiom. Plag- Prophyroblasten mit vielen ESES von Gra, Plag mit ESES von Sericit/HG	Chl ++, in Nestern sprossend	sehr glimmer- reiche Partie, wenig Qz xenom. bis hypidiom. zwischen Glimmer-Zügen
IMM 030	Stau-freie Partie	sehr kleine Gra-xx	Bio überwiegt HG deutlich	Plag sericitisiert	wenig Chl	kein Stau; gleichkörniges, pflasterartiges Gefüge
IMM 031	Stau-freie Partie	ebenfalls kleine Gra- xx, jedoch mehr Gra als IMM 030	Glimmer bilden eine Vorzugsrichtung aus, jedoch keine Bahnen		sehr wenig Chl	kein Stau, deutliche Beteiligung von Erzmineralen; Gefüge ähnl. IMM 030

Tab. D.2:

Modalbestände ausgewählter Proben des Staurolith-Glimmerschiefers der Mömbris-Formation

[Volumen-%]		Typ I d Glimn	es Sta nersch	urolith iefers	-	Über gang	Typ II des Staurolith- Glimmerschiefers			
	IMM 021	IMM 039	IMM 051	IMM 056	IMM 061	IMM 044	IMM 063	IMM 089	SM 68	SM 1063
Plagioklas	14,2	27,8	29,4	23,3	25,1	26,6	23,0	28,9	18,8	29,5
Quarz	9,6	17,3	12,4	17,7	6,9	12,3	17,5	11,4	14,0	5,0
Hellglimmer	30,4	15,8	15,6	16,0	23,8	21,8	15,0	15,1	13,2	9,0
Biotit	16,0	17,9	24,0	21,4	28,5	20,4	21,5	19,4	23,3	25,0
Staurolith	10,3	6,1	10,4	12,0	6,9	8,7	7,9	11,9	10,2	12,0
Granat	8,6	7,8	3,5	2,8	3,3	4,8	7,7	5,3	11,3	2,5
Chlorit	7,0	4,1	2,1	2,4	3,1	2,2	2,1	3,2	2,6	8,0
Disthen/Sillimanit	-	-	-	-	-	-	2,2	-	1,3	6,0
Opakminerale	3,9	3,0	2,3	3,7	2,1	3,0	2,6	3,2	4,4	2,8
Akzessorien	+	0,2	0,3	0,7	0,3	0,2	0,5	1,6	0,9	0,2
Summe	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0	100,0

Einzelbeschreibung ausgewählter Proben der Mömbris-Formation

Die "Matrix-Tabellen" wurden in Analogie zu BUCHER & FREY (1994) zur Darstellung der Berührungsparagenesen für ausgewählte Gesteinsproben verwendet.

• Typ I des Staurolith-Glimmerschiefers:

IMM 021: In der Gesteinsprobe IMM 021 läßt die Anordnung von Einschlüssen in größeren Granat-Kristallen teilweise ein gegenüber der externen Foliation verlegtes Interngefüge s_i erkennen. Über die bereits beschriebenen Einschlüsse hinaus, liegt Granat in Staurolith eingeschlossen vor. Granat kommt weiterhin in direkter Nachbarschaft zu Staurolith vor, Biotit tritt unmittelbar neben Granat auf. Eine Besonderheit von IMM 021 stellt der unterschiedliche Erhaltungszustand von Staurolith und Granat dar, die beide sowohl in stärker abgebauter, reliktischer, als auch in frischer Form existieren (Abb. 3.7). Die retrograd abgebauten Staurolith-Kristalle werden, z.B. von Rissen ausgehend, von einem sehr feinkörnigen, vermutlich sericitischen Gemenge ersetzt. Granat ist in der Grundmasse als frische Porphyroblasten, teilweise mit Einschlüssen, und stark abgebaut vorhanden. Als Einschluß in Staurolith zeigt Granat ebenfalls einen recht frischen Zustand. Die Zusammensetzung der unterschiedlich gut erhaltenen Granat-Kristalle weist keine signifikanten Unterschiede oder voneinander

abweichende Zonierungsmuster auf. Gefügemerkmale deuten darauf hin, daß das Wachstum von Staurolith und Granat prä- bis syntektonisch erfolgte. Chlorit ist in IMM 021 offensichtlich retrograd, z.B. entlang eines Risses in Staurolith, gewachsen und steht mit der Gesteinsmatrix in Verbindung, damit liegt keine klassische Einschlußsituation vor. Ebenso ist die Sprossung von Chlorit am Rand von Granat als retrograd einzustufen.

IMM 039: In der Probe IMM 039 liegt Granat überwiegend im Grundgewebe vor. Staurolith und Plagioklas weisen wenige Einschlüsse von Granat (Abb. 7.7, Kap. 7) sowie weiterhin Biotit-, Hellglimmer-, Quarz- und Erz-Einschlüsse auf. In Granat können Biotit, Hellglimmer, Quarz und Erz eingeschlossen auftreten (Abb. 3.4). Einmal findet sich am Rand eines Plagioklas-Individuums ein Einschluß-Granat, der selbst einen Biotit- und Chlorit-Einschluß besitzt. Im Abbau befindlicher Staurolith wurde in dieser Probe in einem Falle beobachtet. Folgende gemeinsame Korn-Kontakte liegen vor (Matrix-Tabelle gemäß BUCHER & FREY 1994, S. 26):

	st	g	bi	hg	plag	chl	erz
st		Х	Х	Х	Х	Х	Х
g			Х	Х	Х	Х	Х
bi				Х	Х	Х	Х
hg					Х	Х	Х
plag							
chl							
erz							

IMM 044: Die Probe IMM 044 stellt petrographisch einen Übergang zwischen dem Typ I und dem Typ II des Staurolith-Glimmerschiefers dar, wobei das Auftreten von Granat im Grundgewebe sowie als Einschluß ein wesentliches Kriterium darstellen. Die Granat-Kristalle der Grundmasse sind nur teilweise etwas poikilitisch, was für eine Einordnung im Typ I spräche, Einschluß-Granate sind etwas weniger stark idiomorph ausgebildet als üblicherweise im Typ II. Eingeschlossen liegt Granat in IMM 044 vor allem in Plagioklas, seltener in Staurolith vor (Abb. 3.8). Diese Granate sind mit einem Durchmesser von ca. 0.15 bis 0.48 mm für Einschlüsse und um 0.7 mm für Kristalle in der Matrix deutlich größer als in den Proben des Typ II. Die verschiedenen Granat-Varianten könnten unterschiedliche Granat-Generationen repräsentieren, mineralchemische Indizien hierzu waren nicht festzustellen. Die in IMM 044 vorkommenden Granat-Individuen sind in der Matrix und in der Einschluß-Situation recht stark von intrakristallinen Rissen durchzogen. Auch Staurolith ist teilweise in starkem Maße zerrissen bis zergliedert, was eine Beanspruchung im Bereich spröder Verformung andeutet. Diesbezüglich

zeigt sich ein deutlicher Unterschied zu Quarz und den Plagioklas-Kristallen in der Matrix, die in weit geringerem Maß von Rissen durchsetzt sind. Diese Minerale sind vermutlich bereits rekristallisiert, während die Risse in Granat bzw. Staurolith nicht verheilen konnten. In dieser Probe verlaufen Glimmer-Minerale teilweise parallel der Korngrenzen von Staurolith, die Risse in den Staurolith-Kristallen stehen dann nahezu senkrecht auf dieser Richtung. In IMM 044 besitzt Staurolith neben Granat- auch Ilmenit-Einschlüsse (Abb. 3.8), seltener schließt er Plagioklas oder Quarz ein. In Granat-Kristallen der Grundmasse sind teilweise Hellglimmer, seltener Quarz oder Biotit eingeschlossen. Plagioklas zeigt Einschlüsse von Granat und Hellglimmer. Darüber hinaus existieren Einschlußsituationen von Hellglimmer in Granat in Plagioklas sowie von Hellglimmer in Plagioklas in Staurolith. Aufgrund der verschiedenen Einschlußsituationen liegt offenbar eine Reihenfolge der Mineralbildungen von zunächst Quarz, Hellglimmer, Plagioklas und Biotit gefolgt von Granat und anschließend Staurolith vor, wobei die Abwesenheit von Biotit-Einschlüssen in Staurolith eine Staurolith-Bildung auf Kosten von Biotit nahelegt. Diese Vorstellungen stehen in Übereinstimmung mit den in Kap. 3.2.1.4 erläuterten sowie den von OKRUSCH & WEBER (1996) beschriebenen Bildungsreaktionen. In IMM 044 berühren Biotit und Hellglimmer am Rand häufig Staurolith und Granat, retrograd tritt Chlorit hinzu. Akzessorisch liegen in der Probe Hämatit-Blättchen vor. Trotz der Gemeinsamkeiten dieser Probe mit dem Typ II des Staurolith-Glimmerschiefers, tendiert das Erscheinungsbild insgesamt etwas mehr zu Typ I. Es ist wohl davon auszugehen, daß die Ausprägung des Übergangs nur eine lokale Situation anzeigt. Folgende gemeinsame Korn-Kontakte liegen in der Probe IMM 044 vor:

	st	g	bi	hg	plag	chl	erz
st		Х	Х	Х	Х	Х	Х
g			Х	Х	Х		Х
bi				Х	Х	Х	Х
hg					Х	Х	Х
plag							
chl							
erz							

IMM 051: Ein besonderes Merkmal der Probe IMM 051 stellt das Auftreten von atollförmig ausgebildetem Granat dar, der von innen her abgebaut wurde und meist Biotit oder Quarz und Feldspat umschließt. Die Granat-Kristalle sind verbreitet von Abbauerscheinungen wie randlichen Korrosionsbuchten gekennzeichnet und stark von Rissen durchzogen. **IMM 056**: In der Probe IMM 056 sind Staurolith und Granat stark poikilitisch ausgebildet. Unter den Einschlüssen herrschen in Staurolith Quarz und Opakminerale, insbesondere Ilmenit, vor. In Granat liegen vor allem Biotit und Hellglimmer, in atollförmigem Granat, Biotit und Quarz eingeschlossen vor. Chlorit berührt Staurolith randlich.

IMM 061: In der deutlich retrograd überprägten Probe IMM 061 stellt sich die beschriebene Mineralparagenese wie folgt dar: Granat liegt direkt neben Staurolith, Biotit und Chlorit berühren Granat am Rand, Chlorit sproßt randlich neben Staurolith. Ilmenit tritt häufig als Einschluß in Staurolith sowie der Grundmasse auf, in Granat sind Opakminerale etwas seltener eingeschlossen. Weiterhin liegt ein Einschluß von Granat in Biotit vor, der bereits selbst, gemeinsam mit Quarz, in einen größeren Granat eingeschlossen ist. Am Rand dieses Granat-Kristalls existiert ein Einschluß von Chlorit. In dieser Probe treten kleinere und große Staurolith-Individuen auf, Staurolith weist frischen sowie stärker abgebauten Zustand auf. Ebenso liegt auch Granat in unterschiedlicher Ausprägung vor. Der unterschiedliche Erhaltungszustand dieser Minerale könnte in dieser Probe evtl. auf die retrograde Überprägung des Gesteins zurückgeführt werden.

IMM 004: In der Gesteinsprobe IMM 004 ist besonders die Situation eines in Staurolith eingeschlossenen Granat-Kristalls interessant, der auf einer Seite von Biotit benachbart ist. Auf der anderen Seite neben dem Granat liegt Chlorit, der auf einem Riss im Staurolith sproßte.

IMM 085: Die Probe IMM 085 weist ebenfalls Einschlüsse von Hellglimmer, Quarz und Opakmineralen in Staurolith und Granat auf, Biotit liegt jedoch in dieser Probe kaum als Einschlußmineral vor. Bemerkenswert ist darüber hinaus, daß im Randbereich eines stark poikilitischen Granats ein kleines Staurolith-Individuum eingeschlossen ist. Folgende gemeinsame Korn-Kontakte liegen vor:

	st	g	bi	hg	plag	chl	erz
st		Х	Х	Х		Х	Х
g			Х	Х			
bi				Х	Х	Х	Х
hg					Х	Х	Х
plag							
chl							
erz							

• Typ II des Staurolith-Glimmerschiefers:

IMM 063: In der Probe IMM 063 ist das gemeinsame Auftreten von Granat, Staurolith, Biotit und Disthen im Hinblick auf die phasenpetrologische Untersuchung besonders bedeutsam (Abb. 3.12 u. Abb. 7.22, Kap. 7). Chlorit tritt als retrogrades Produkt meist neben Staurolith oder Biotit auf. Disthen findet sich im wesentlichen auf Glimmerbahnen, was auf eine gemeinsame Bildung mit Biotit hinweist. Granat liegt als Einschluß in Staurolith und Plagioklas vor, jedoch auch umgeben von Biotit oder Hellglimmern, teilweise in die Glimmerbahnen einbezogen. Plagioklas schließt weiterhin Biotit, Hellglimmer, Quarz und Erzminerale ein. In Staurolith treten, abgesehen von Granat, häufig Chlorit-, Quarz- und Erz-Einschlüsse auf. Darüber hinaus kommen einzelne Einschlüsse von Hellglimmer in Granat vor. In stärker zerlegten Staurolith-Individuen sind – jedoch in deutlich geringerem Ausmaß als im Typ I – auch Quarz-Einschlüsse festzustellen. Granat und Disthen berühren sich nicht wirklich unmittelbar, meist sind sie durch einen dünnen Saum voneinander getrennt, dessen Bestandteile sich mikroskopisch nicht identifizieren lassen. Folgende gemeinsame Korn-Kontakte liegen vor:

	st	g	bi	ky	hg	plag	chl	erz
st		Х	Х		Х	Х	Х	Х
g			Х		Х	Х		Х
bi				Х	Х	Х	Х	
ky					Х	Х		
hg						Х		
plag								Х
chl								
erz								

SM 68: Die Probe SM 68 stammt, wie IMM 063, vom Fundpunkt am "Kalbsbuckel bei Kleinostheim" und weist mit dieser Probe daher sehr starke Ähnlichkeiten auf. Dies drückt sich in erster Linie durch die ebenfalls Disthen-umfassende Mineralparagenese aus. In Bezug auf die Mineraleinschlüsse gleichen sich die Situationen ebenfalls, allerdings wurden in SM 68 keine Hellglimmer-Einschlüsse in Granat und kein Chlorit in Staurolith beobachtet. Hinsichtlich der gemeinsamen Korn-Kontakte kommen zusätzlich zu den für IMM 063 beschriebenen noch Disthen-Chlorit und Plagioklas-Chlorit vor. Der im Gestein unabhängig anwesende Sillimanit berührt die übrigen fazieskritischen Minerale nicht und partizipiert daher nicht an der Paragenese. Folgende gemeinsame Korn-Kontakte liegen vor:

	st	g	bi	ky	hg	plag	chl	erz
st		Х	Х		Х	Х	Х	Х
g			Х		Х	Х		
bi				Х	Х	Х		Х
ky					Х	Х	Х	Х
hg						Х		Х
plag							Х	Х
chl								
erz								

SM 1063: Von besonderem Interesse ist die Gesteinsprobe SM 1063, die neben Disthen als einzige der untersuchten Proben – fazieskritisch – auch Sillimanit führt (vgl. Kap. 7.1, Abb. 7.24). Dabei liegen die beiden Al₂SiO₅-Polymorphen in Berührungsparagenese vor. Die Minerale Granat, Staurolith, Biotit, und Disthen bzw. Sillimanit treten gemeinsam auf und repräsentieren damit das Maximum der Druck-Temperatur-Entwicklung dieser Gesteine. Chlorit stellt auch in diesem Falle ein retrogrades Produkt dar. Das Gestein SM 1063 wurde aufgrund der Anwesenheit der Al₂SiO₅-Polymorphen, die ausschließlich im Typ II des Staurolith-Glimmerschiefers vorliegen, in diese Gruppe eingeordnet, obwohl es petrographisch eher dem Typ I ähnelt. So ist Granat sowohl in Form eigenständiger Porphyroblasten als auch durch kleine Einschlüsse in Staurolith bzw. Plagioklas vertreten. Hinweise, ob es sich dabei um zwei Generationen von Granat handelt, lassen sich aus der mineralchemischen Untersuchung nicht herleiten (vgl. Kap. 4.1). Die Probe SM 1063 weist somit Merkmale beider Gesteinsgruppen auf und bildet einen gewissen Übergang zwischen den Typen. Im Gesteinsdünnschliff liegen Staurolith, Disthen und Biotit nebeneinander vor, diese Minerale bilden z.T. gemeinsame Lagen aus, wobei sich auch Staurolith und Disthen berühren. Sillimanit tritt in dieser Probe in Form schöner Nadeln und in fibrolithischer Ausbildung auf. Fibrolithischer Sillimanit liegt in Plagioklas und Biotit eingeschlossen vor, darüber hinaus gehen Fibrolithstränge in Disthen über, der mit Staurolith auf gemeinsamen Lagen vorkommt. Disthen ist i.d.R. durch kleinere Kristalle vertreten, nur selten sind es größere Individuen. Staurolith existiert ebenfalls in Körnern zweier verschiedener Größenbereiche, die verschiedene Staurolith-Generationen repräsentieren könnten. Die mineralchemische Untersuchung ergab jedoch Unterschiede, die eine Abgrenzung unterstützen könnten (vgl. Kap. 4.2). Größere Staurolith-Individuen weisen gelegentlich Einschlüsse von Quarz und Erz auf. Weiterhin tritt Biotit vereinzelt in Granat eingeschlossen auf, und Plagioklas besitzt Einschlüsse von Staurolith, Biotit sowie Hellglimmer. Folgende gemeinsame Korn-Kontakte wurden in SM 1063 festgestellt:

	st	g	bi	ky	sill	hg	plag	chl	erz
st		Х	Х	Х		Х	Х	Х	Х
g			Х			Х	Х	Х	
bi				Х	Х	Х	Х	Х	Х
ky					Х	Х	Х	Х	Х
sill						Х	Х	Х	
hg							Х	Х	Х
plag								Х	Х
chl									
erz									

IMM 089: Im Typ II des Staurolith-Glimmerschiefers gehört die Gesteinsprobe IMM 089 zu den Disthen-freien Proben. Die Minerale Granat, Staurolith und Biotit treten darin gemeinsam miteinander auf, Chlorit wurde retrograd gebildet. Als Einschluß liegt Granat in Staurolith sowie in Plagioklas vor. In poikilitischem Staurolith sind außerdem kleine Biotit-Kristalle und Erzminerale eingeschlossen, in Einzelfällen tritt Chlorit in Staurolith auf. Plagioklas führt weiterhin Einschlüsse von Biotit, Quarz und Erzmineralen. Mikroskopisch lassen sich zwei Varianten von Granat und Staurolith unterscheiden, die zwei Generationen repräsentieren könnten (Abb. 7.19, Kap. 7). So tritt Granat wieder in Porphyroblasten im Grundgewebe (Abb. 3.10), die gelegentlich Biotit-Einschlüsse aufweisen, und in Form idiomorpher kleiner Einschlüsse in Staurolith und Plagioklas auf (Abb. 3.11). Staurolith existiert sowohl in idiomorpher als auch teilweise stärker zerlegter Form, einige Kristalle sind deutlich größer als andere. Mineralchemische Unterschiede hierzu konnten nicht nachgewiesen werden (vgl. Kap. 4.2). Folgende gemeinsame Korn-Kontakte liegen vor:

	st	g	bi	hg	plag	chl	erz
st		Х	Х	Х	Х	Х	Х
g			Х	Х	Х		
bi				Х	Х	Х	Х
hg					Х	Х	Х
plag							Х
chl							
erz							

Hinsichtlich der phasenpetrologisch relevanten Mineralparagenese, mit dem gemeinsamen Auftreten von Granat, Staurolith und Biotit unter Abwesenheit von Al₂SiO₅-Mineralen, sind die Proben IMM 029 A und IMM 075 B mit IMM 089 vergleichbar. Allerdings zeichnen sich IMM 029 A und IMM 075 B durch andere strukturelle Ausbildungen aus.

IMM 029 A: Die Gesteinsprobe IMM 029 A ist durch einen Wechsel von Quarz-reicheren Partien und Glimmer-reicheren Lagen, die auch die im Gestein vorkommenden Anteile an Staurolith und Plagioklas enthalten, gekennzeichnet. Der lagige Aufbau geht offenbar auf einen Materialwechsel im ursprünglich sedimentären Gestein zurück. Einschlüsse von Hellglimmer in Plagioklas zeichnen ein gegenüber der externen Foliation verlegtes Interngefüge si nach. Granat liegt in der Grundmasse vor und bildet viele kleine Einschlüsse in anderen Mineralen, insbesondere in Staurolith und Plagioklas. Staurolith tritt in ursprünglich hypidiomorphen bis idiomorphen Individuen, die nun sehr stark zergliedert vorliegen, auf. Weiterhin existieren kleine, gut erhaltene Staurolith-Kristalle, die eine zweite Staurolith-Generation repräsentieren könnten, mineralchemisch aber keine signifikant unterschiedliche Zusammensetzung besitzen (vgl. Kap. 4.2). Granat-Einschlüsse existieren jedoch in beiden Staurolith-Ausbildungen. In Staurolith treten, neben Granat, vielfach Quarz, selten Erz oder Biotit eingeschlossen auf. Plagioklas besitzt häufig Einschlüsse von Granat, kleinen Biotit-Plättchen, Hellglimmer und Chlorit. Biotit und Hellglimmer bilden auch in dieser Probe teilweise gemeinsame Bahnen aus. Unter den Korn-Korn-Kontakten sind Granat-Staurolith, Granat-Biotit, Granat-Plagioklas, Biotit-Staurolith, Biotit-Chlorit und Staurolith-Chlorit besonders bedeutsam. Ein auffälliges Merkmal im Unterschied zu den meisten Proben dieser Gesteinsgruppe stellt der geringe Anteil von Erzmineralen in IMM 029 A dar.

IMM 075 B: Die Probe IMM 075 B repräsentiert eine stark lagig ausgebildete Gesteinspartie aus grob- und feinkörnigeren, teilweise mylonisitierten Bereichen. In den feinkörnigeren Gesteinsanteilen liegen xenomorphe bis hypidiomorphe Staurolith-Porphyroblasten vor, in den grobkörnigeren Gesteinsanteilen ist Staurolith durch große, meist hypidiomorphe bis fast idiomorphe, leicht poikilitische Prophyroblasten repräsentiert. Granat findet sich in der Gesteinsprobe in Form kleiner idiomorpher Kristalle, die sowohl als Einschlüsse in Staurolith und Plagioklas als auch in der Grundmasse und den Glimmer-reichen Partien auftreten.

D.3 Ergänzungen zur Petrographie der Geiselbach-Formation

Tab. D.3:

Petrographische Übersicht zur Geiselbach-Formation mit Untergliederung der Gruppen

Probe	Kurzbeschreibung und Bemerkungen					
I. Quarzite						
IMG 007	sehr feinkörniges Gestein, Quarz-reich, wenig Plag der stark abgebaut ist, hypidioblastische Hellgli zwischen xenoblastischen Quarzkörnchen, wenig Sericit, kein Bio, kein Gra, Akz.: Hämatit, Erz					
IMG 030	ähnl. IMG 007, + Gra-Reste/Pseudomorphosen, Akz.: Hämatit					
IMG 031	ähnl. IMG 007, + Gra-Reste, + Hämatitschleier, Glimmer z.T. mit Hämatitschleiern					
IMG 032	grobkörniger als IMG 007, fast nur Qz, wenig Hellgli, kein Bio, + Gra-Relikte					
IMG 035	ähnl. IMG 007, + Gra-Pseudomorphosen/Relikte					
IMG 037	ähnl. IMG 007, + Gra-Reste/Pseudomorphosen, + Hämatitschleier					
IMG 038	ähnl. IMG 007, schiefrige Gesteinstextur, + Gra-Pseudomorphosen/Relikte					
IMG 045	ähnl. IMG 007, + Gra-Pseudomorphosen					
IMG 046	feinkörniges Gestein, leicht schiefrige Textur, ähnl. IMG 007, + Pseudomorphosen					
IMG 047	feinkörniges Gestein, leicht schiefrige Textur, ähnl. IMG 007, + Pseudomorphosen					
II. Quarzitschie	fer bis quarzitische Glimmerschiefer					
IMG 008	sehr feinkörniger Sericit-Quarzit bis quarzit. Glimmerschiefer, leicht geregeltes Gefüge, sehr viel Hellgli, kaum Bio, kein Gra, Pseudomorphosen mit sericitischem Gemenge, Akz.: Turmalin, Erz					
IMG 009	quarzit. Glimmerschiefer, sehr viel sericit. Hellgli, fast kein Bio, + viel im Abbau befindl. Gra, Pseudomorphosen von sericit. Hellgli nach evtl. Staurolith, Akz.: Turmalin					
IMG 015	sehr feinkörniges Gestein, wenig geschiefert, Übergang zu Gruppe I, sehr wenig Bio, kein Gra, + Pseudomorphosen von Sericit					
IMG 022	stark lagig ausgebildetes Gestein, dünne, durchhaltende Glimmerbahnen mit etwas Bio, viele abgebaute, pseudomorphe Anteile, + Gra-Relikte, + Chl					
IMG 025	leicht geschiefertes Gefüge, dünne Glimmerbahnen kaum durchhaltend mit etwas Bio, + Pseudomorphosen, + Chl, Akz.: Turmalin, Hämatit (schleierartig)					
IMG 027	sehr feinkörniges und feinlagiges Gestein mit durchhaltenden Glimmerbahnen, + Pseudomorphosen von sericit. Gemenge nach Gra, + Chl					
IMG 042	Sericititquarzit bis Quarzitschiefer mit Foliation durch Glimmer, Hellgli deutlich vorhanden, + Gra-Relikte, + Chl, Akz.: Turmalin					
IMG 043	Sericititquarzit bis Quarzitschiefer mit deutlicher Foliation durch Glimmer, + Gra-Relikte, in Umwandlung befindliche Glimmer, + Chl					

Die "Matrix-Tabellen" wurden in Analogie zu BUCHER & FREY (1994) zur Darstellung der Berührungsparagenesen (gemeinsame Korn-Kontakte) verwendet.

IMG 027

	g	bi	hg	fsp	erz/hem
g			Х		Х
bi			Х		
hg					
fsp					
erz/hem					

IMG 042

	g	bi	hg	fsp	erz/hem
g		Х	Х		Х
bi/chl			Х		
hg					
fsp					
erz/hem					

IMG 043

	g	bi	hg	fsp	erz/hem
сŋ		Х	Х		Х
bi			Х		
hg					
fsp					
erz/hem					

D.4 Ergänzungen zur Petrographie der Alzenau-Formation

Tab. D:4

Petrographische Übersicht zur Alzenau-Formation mit Untergliederung der Gruppen

Probe	Kurzbeschreibung und Bemerkungen
I. Gneise	
IMA 001, 002, 004, 006	Qz, 2 Fsp (Plag + AKF), wenig Bio, wenig Hellgli; Probe IMA 004 + Gra
II. Glimmerschief	er bis schiefrige Gneise
IMA 013	Qz, Plag, Bio, Hellgli, Lagen von braunem Bio, deutlich weniger Hellgli als Bio, Hellgli ist jedoch in die Glimmerbahnen integriert, Glimmerlagen z.T. leicht verbogen, Bio + Hellgli gelegentlich mit Knickbändern, gelegentl. Quer-Bio
IMA 016	granoblastisches bis lepidoblastisches Gefüge mit Qz, Plag, Bio, Hellgli, Glimmer mit leichter Vorzugsorientierung, Glimmerlagen z.T. leicht verbogen, Bio + Hellgli gelegentlich mit Kinckbändern, + Gra
IMA 017	granoblastisches bis lepidoblastisches Gefüge mit Qz, Plag, Bio, Hellgli, + Gra
IMA 018	Qz, Plag, Bio, Hellgli, sehr feinkörnig, straff geregeltes Gefüge
IMA 020	Qz, Plag, Bio, Hellgli, sehr feinkörnig, straff geregeltes Gefüge
III. Gneise	
IMA 021	relativ frische Probe, sehr feinkörnig, regellos, granoblastisches bis lepidoblastisches Gefüge, Plag-reich, feine Glimmer zwischen den Fsp gesproßt, + Bio, fast kein Hellgli, relativ große Gra-xx, Gra relativ frisch, fast kein Erz
IMA 023	granoblastisches bis lepidoblastisches Gefüge, Fsp-reiches Gestein mit regellosem Gefüge, Qz, Fsp sehr stark sericitisiert, wenig Hellglimmer, + Bio, + Gra (relativ viel), Gra auch mit Einschlüssen von Qz und Bio, teilweise atollförmiger Gra
IMA 024	teilweise geregeltes Gefüge durch ausgelängte Quarzkörner, mehr Glimmer als IMA 023 und IMA 025, eingeregelte Fsp und Bio, Fsp sericitisiert, brauner Bio, + Gra
IMA 025	granoblastisches bis lepidoblastisches Gefüge, Fsp-reiches Gestein mit regellosem Gefüge, Oz, Fsp sericitisiert, wenig Hellglimmer, + brauner Bio, + Gra

Die "Matrix-Tabellen" wurden in Analogie zu BUCHER & FREY (1994) zur Darstellung der Berührungsparagenesen verwendet.

IMA 016

	g	bi	hg	fsp	erz/hem
g		Х	Х	Х	Х
bi			Х	Х	
hg				Х	
fsp					
erz/hem					

IMA 021

	g	bi	hg	fsp	erz/hem
g		Х	Х		
bi			Х	Х	
hg					
fsp					
erz/hem					

IMA 023

	g	bi	hg	fsp	erz/hem
g		Х	x*	Х	Х
bi			Х	Х	
hg				Х	
fsp					
erz/hem					

* mit Zwischensaum

D.5 Ergänzungen zur Petrographie der Elterhof-Formation

Tab. D.5:

Petrographische Übersicht zur Elterhof-Formation mit Untergliederung der Gruppen

Probe	Kurzbeschreibung und Bemerkungen						
I. schiefrige Grana	at-führende Gneise						
IME 002	Glimmerschiefer bis lagiger Gneis; geregeltes Gefüge: helle Qz-Plag-Lagen im Wechsel mit dunklen Lagen von Bio; Qz meist ausgelängt, undulös auslöschend; große Plag-Individuen, + Gra						
IME 007	Gneis mit Qz, Plag, Bio, Hellgli, granoblastisches bis lepidoblastisches Gefüge, Fsp getrübt, Hellgli verwachsen mit Bio oder zwischen Qz/Fsp, Hellgli z.T. als Querglimmer, + Gra, Gra in Abbau						
IME 010	Gneis mit granoblastischem bis lepidoblastischem Gefüge, weniger feinkörnig als IME 007, Fsp bis zu 5 mm lang, Bio z.T. chloritisiert, + Gra, Fsp stärker sericitisiert aber Gra besser erhalten als in IME 007, Gra dennoch nicht frisch sondern mit Adern von Opakphase (Erz), Gra z.T. mit Bio gefüllt, + Chl						
IME 011	Gneis mit Qz, Plag, Bio, AKF ?, wenig geregeltes granoblastisches bis lepidoblastisches Gefüge, + Chl in der Grundmasse, Chl retrograd aus Bio gebildet, + viel Gra, im wesentl. in Bio-reichen Partien, Gra in der Form erhalten, aber von Erz-Adern durchzogen						
IME 046	Gneis mit lagigem Gefüge mit Qz, Plag, Bio, wenig Hellgli, Plag sericitisiert, Hellgli auf Rissen, in Plag z.T. neugebildet, + im Abbau befindl. Gra						
IME 047	Gneis mit lagigem Gefüge mit Qz, Plag, Bio, wenig Hellgli, Plag sericitisiert, + Gra, (ähnl. IME 046)						
IME 052	Gneis, stark retrograd abgebaut, + Gra, (ähnl. IME 046)						
IME 058	Gneis mit Qz, Plag, Bio, + Gra, (ähnl. IME 010)						
II. Gneise							
IME 021	Gneis mit Qz, Plag, wenig Bio, AKF						
IME 024	Gneis mit Qz, Plag, Bio, AKF, – Hellgli, – Gra						
III. plattige Plagio	klas-Gneise						
IME 029	plattiger Gneis mit ausgelängtem Qz und Plag, Plag sericitisiert, wenig Bio, wenig Hellgli, Gra fast komplett zu Bio + Chl abgebaut, + Gra						
IME 035	plattiger Gneis (ähnl. IME 029), sehr wenig Bio, + Gra, Gra frischer als in IME 029						
IV. Zwei-Glimmer	Gneise						
IME 023	Gneis mit Qz, Plag, Bio (mehr Bio als IME 028), Hellgli, – Gra						
IME 028	Gneis mit Qz, Plag, Hellgli, sehr wenig Bio, – Gra						
IME 036	Gneis mit Qz, Plag, grünbraunem Bio, Hellgli, mehr Qz als Plag, + kleine Gra-xx, teilweise in Abbau						
IME 039	Gneis mit Qz, Plag, Bio, Hellgli, + wenig Gra						
IME 042	Gneis mit Qz, Plag, Bio, Hellgli, – Gra						

Die "Matrix-Tabellen" wurden in Analogie zu BUCHER & FREY (1994) zur Darstellung gemeinsamer Korn-Kontakte verwendet.

IME 007

	g	bi	hg	fsp	erz/hem
g		Х	Х	Х	Х
bi			Х	Х	Х
hg				Х	Х
fsp					
erz/hem					

IME 010

	g	bi	hg	fsp	chl	erz/hem
g		Х	±	Х	Х	Х
bi			Х	Х	Х	
hg				Х	Х	
fsp					Х	
chl						
erz/hem						

IME 046

	g	bi	hg	fsp	chl	erz/hem
g		Х		Х	Х	Х
bi				Х	Х	
hg				Х		
fsp						
chl						
erz/hem						

IME 058

	g	bi	hg	fsp	erz/hem
g		Х	Х	*	Х
bi				Х	Х
hg				Х	Х
fsp					
erz/hem					

* Kontakt von g und fsp nicht direkt, sondern nur mit einem Saum von hg bzw. hg + hem

E. Mineralchemie

E.1 Methodik der Mineralanalytik

Die Mineralanalytik wurde mit einer wellenlängendispersiven Elektronenstrahlmikrosonde vom Typ CAMECA SX-50 an polierten und mit Kohlenstoff bedampften Dünnschliffen durchgeführt. Als Standards wurden natürliche und synthetische Silicate und Oxide der Firma CAMECA (Geostandards) verwendet, die Matrixkorrektur erfolgte mit dem PAP-Programm von CAMECA. Der relative Fehler liegt für die Hauptelemente bei ca. 1 %, für die Nebenelemente mit Oxidgehalten von < 1 Gew.-% bei ca. 5 %. Folgende allgemeine Meßbedingungen lagen vor:

Beschleunigungsspannung:	15 kV
Stärke des Probenstroms:	15 nA
Strahldurchmesser:	1 - 2 μm
Meßzeit (peak):	30 s für Fe
-	20 s für alle anderen Elemente.

Bei Feldspat- und Chloritanalysen wurde der Strahldurchmesser von 1 µm auf 5 µm vergrößert, um eine bessere Meßgenauigkeit zu erreichen.

Element	Standard	Sinus 0	Mono-	Meßzeit	Meßzeit	Strahl-
		Linie	chromator	Peak	Untergrund	durchmesser
Al	Al_2O_3	Κα	TAP	20 s	je 10 s	1 µm
Ba	BaSO ₄	Lα	PET	20 s	je 10 s	1 µm
Ca	Andradit	Κα	PET	20 s	je 10 s	1 µm
Cr	Cr_2O_3	Κα	PET	20 s	je 10 s	1 µm
Fe	Fe ₂ O ₃	Κα	LIF	30 s	je 10 s	1 µm
Κ	Orthoklas	Κα	PET	20 s	je 10 s	1 µm
Mg	MgO	Κα	TAP	20 s	je 10 s	1 µm
Mn	MnTiO ₃	Κα	LIF	20 s	je 10 s	1 µm
Na	Albit	Κα	TAP	20 s	je 10 s	5 µm
Si	Andradit	Κα	PET	20 s	je 10 s	1 µm
Ti	MnTiO ₃	Κα	PET	20 s	je 10 s	1 µm

Standards und Meßbedingungen:

Eine Bestimmung der Lithium-Gehalte in Staurolith konnte mit den vorhandenen Monochromatorkristallen nicht durchgeführt werden. Lithium wird im Vergleich zu den koesistierenden Eisen-Magnesium-Phasen wie Cordierit (in den hier untersuchten Proben nicht enthalten), Biotit, Muscovit und Granat bevorzugt in das Kristallgitter von Staurolith eingebaut (DEER et al. 1992).

Zonierungen wurden in Form linearer Profile über das jeweilige Mineral (z.B. Granat, Plagioklas, Staurolith) gemessen, entweder durch manuelle Eingabe einzelner geeigneter Meßpunkte oder durch Festlegung einer Profillinie, auf der automatisch in gleichmäßigen Abständen Analysepunkte gewählt werden.

E.2 Auswerteverfahren

Die mit der Mikrosonde gemessenen Analysedaten wurden unter den Gesichtspunkten einer möglichst guten Formelbesetzung und Analysensumme von 100.00 Gew.-%, mit einer maximalen Abweichung von ± 1.5 Gew.-%, kritisch durchgesehen. Diese Kriterien nicht erfüllende Analysen wurden verworfen.

Zur Auswertung der Daten wurden Framework-Programme von ZEH (1998) sowie FRANZ & HÄUSSINGER (1992) verwendet, die sowohl Formel- als auch Endgliederberechnungen zulassen. Die Berechnung der Mineralformeln bezieht sich für die verschiedenen Minerale auf folgende Basis an Sauerstoffatomen:

Granat:	24 Sauerstoffatome
Staurolith:	23 Sauerstoffatome (wasserfrei)
Biotit:	22 Sauerstoffatome (wasserfrei)
Hellglimmer:	22 Sauerstoffatome (wasserfrei)
Chlorit:	28 Sauerstoffatome (wasserfrei)
Plagioklas:	8 Sauerstoffatome
Ilmenit/Hämatit:	6 Sauerstoffatome
Magnetit:	4 Sauerstoffatome.

Auf eine Abschätzung der Wasserstoffmenge in Staurolith, z.B. mit dem Verfahren nach HOLDAWAY et al. (1988), wurde hier aufgrund der großen Variationen damit ermittelter Werte verzichtet. Starke Abweichungen der Minimal- und Maximalwerte für Wasserstoff (von bis zu > 1 Atom p.f.u., GARCIA-CASCO & TORRES-ROLDAN 1996) bei Verwendung dieser Methode beschreiben z.B. GARCIA-CASCO & TORRES-ROLDAN (1996, S. 1216) und ZEH (1995, S. 126)
E.3 Granat-Zonierungsprofile

Tab. E.1:

Kombination der verschiedenen Granat-Zonierungsmuster in den einzelnen Proben beider petrographischer Typen des Staurolith-Glimmerschiefers. ++ =überwiegend vorliegendes Zonierungsmuster, + =Zonierungsmuster vorhanden, * =Tendenz zu (c.)

Probe	Zonierungsmuster (a.)	Zonierungsmuster (b.)	Zonierungsmuster (c.)
Тур І			
IMM 021	++	+	
IMM 039	+		+
IMM 051		+	
IMM 056	+	+	+
IMM 061	+	+	
IMM 044	+		++
Typ II			
IMM 063		+ *	
IMM 089		+ *	
SM 1063			++
SM 68		++	+

F. Geochemie

F.1 Methodik der Gesamtgesteinsanalytik

Die Auswahl der geeigneten Probenbereiche erfolgte in Anlehnung an die jeweils dem Gesteinsdünnschliff entsprechenden Bereiche, entweder wurde das Gegenstück des Dünnschliffes oder makroskopisch vergleichbar erscheinende Gesteinspartien verwendet. Für die wurden die Proben mit dem Hammer Gesamtgesteinsanalytik vorzerkleinert, Verwitterungsrinden u.ä. wurden dabei entfernt. Die Gesteine wurden mit einem Backenbrecher der Fa. SIEBTECHNIK gebrochen und geviertelt, kleine Probenstücke wurden mit dem Hammer zerkleinert. Anschließend wurden die Proben mit einer Scheibenschwingmühle mit Hartmetalleinsatz (Co-haltiges Wolframcarbid) der Fa. SIEBTECHNIK auf <40 µm aufgemahlen. Die Mahldauer betrug 2 - 3 Minuten bei ca. 700 U/min. Die Pulver wurden im Trockenschrank bei 105 - 110 °C min. vier Stunden lang auf Gewichtskonstanz vorgetrocknet.

Die Oxide der Hauptelemente SiO₂, TiO₂, Al₂O₃, Fe₂O₃, CaO, MgO, MnO, Na₂O, K₂O und P₂O₅ sowie die Spurenelemente Ba, Co, Cr, Ga, Mo, Ni, Pb, Rb, Sc, Sn, Th, U, V, Y, Zn und Zr wurden mit einem Röntgenfluoreszenzspektrometer PW 1480 der Fa. PHILIPS mit integrierter X40-Software (Geo1-Meßprogramm) gemessen. Die Eichung erfolgt hierbei gegen internationale Standards (z.B. Gesteine, Erze, Hüttenprodukte). Das Rechenmodell geht von der Pauschalzusammensetzung der Matrix aus, intern nimmt Geo1 neben der Matrixkorrektur eine Driftkorrektur aufgrund etwa ähnlicher Elementkonzentrationen vor. Für die Messungen wurden aus 600 mg Analysenprobe Borat-Schmelztabletten mit 3600 mg Spektromelt A12 (Fa. MERK) als Flußmittel und ca. 1000 mg NH₄NO₃ als Oxidationsmittel hergestellt.

Die Bestimmung der Fe²⁺-Gehalte (FeO) wurde mit einem ZEISS-Spektralphotometer ZEISS-PMD2 mit Durchflußküvette über einen roten Fe(II)-2,2'-Bipyridin-Komplex durchgeführt (Extinktion bei $\lambda = 522$ nm). Dazu wurde in einem HF/H₂SO₄-Aufschluß (SEROLAB-Aufschluß) eine Stammlösung mit einer Probenkonzentration von ca. 1 mg/ml hergestellt. Die Eichung erfolgte gegen laborinterne, gegen internationale Referenzproben (NIM-G, QLO-1, SDC-1, DR-N, NIM-N, BHVO-1) geeichte Standards.

Der relative Analysenfehler beträgt ca. 1 % für die meisten Hauptelemente, ca. 2 % für Na₂O, MgO 2 - 3 % und 1 - 8 % für die Spurenelemente. Der Glühverlust (GV) wurde über Differenzwägung nach vierstündigem Glühen des Probenpulvers bei 1000 °C bestimmt.

F.2 Weiterführende Hinweise zur Geochemie

Abb. F.1:

T-X_{Fe}-Schnitt im System KFMASH (+ $bi+mu+q+H_2O$) bei 6 kbar nach POWELL & HOLLAND (1990). Bei konstantem Druck und konstanter Temperatur hängt die Stabilisierung einer bestimmten Paragenese wesentlich vom Eisen-Magnesium-Verhältnis ab. Die Staurolith-Glimmerschiefer der Mömbris-Formation weisen mittlere X_{Fe}-Werte (0.37 - 0.46) auf und sind chemisch zur Stabilisierung von Granat und überwiegend auch von Staurolith geeignet. Die X_{Fe}-Werte der Proben der Alzenau- (0.31 - 0.60), Elterhof- (0.35 - 0.48) und Geiselbach-Formation (0.39 - 0.82) ermöglichen meist die Granat-Bildung, während Staurolith in diesen Gesteinen nicht vorkommt.

G. Phasenpetrologie

Der in dieser Arbeit gewählte Ansatz auf der Basis von Phasendiagrammen basiert auf thermodynamischen Grundlagen, die im folgenden kurz dargestellt werden. Darüber hinaus werden zum Vergleich verschiedene Arten von Phasendiagrammen erläutert.

G.1 Thermodynamische Grundlagen

Der Zustand eines Systems, also auch der eines Gesteins oder Minerals, kann durch thermodynamische Parameter beschrieben werden. Die Kombination des Ersten und Zweiten Hauptsatzes der Thermodynamik ergibt einen funktionalen Zusammenhang zwischen Innerer Energie, Wärme und mechanischer Arbeit (WILL 1998b), der durch die thermodynamische Fundamentalgleichung

$$dU = TdS - PdV$$

ausgedrückt wird. Darin steht U für die Innere Energie, S für die Entropie und V für das Molvolumen. Diese Zustandsfunktion beschreibt den Zustand eines geschlossenen Systems, das nur Energie, jedoch keine Materie mit seiner Umgebung austauscht. Der wichtigste Grundsatz der Thermodynamik besagt also, daß jedes System einem Maximum der Entropie, also maximaler Unordnung, entgegenstrebt. Eine chemische Reaktion wird nur dann spontan ablaufen, wenn durch sie die Entropie des Systems erhöht werden kann (SPEAR 1993).

Für geologische Fragestellungen stehen die Druck- und Temperaturbedingungen der Gesteinsbildung im Zentrum des Interesses. Daher liegt es nahe, den Zustand eines Systems durch eine thermodynamische Zustandsfunktion auszudrücken, in der P und T die abhängigen Zustandsvariablen sind (WILL 1995). Diese Funktion ist die Freie Enthalpie *G* (auch: Gibbs'sche Energie, Gibbs' free energy), die durch die Zustandsgleichung

$$G = U - TS + PV = H - TS$$

definiert ist. Dabei sind *U* die Innere Energie, *S* die Entropie, *V* das molare Volumen und *H* die Enthalpie. Unter den diversen thermodynamischen Größen soll hier insbesondere diese Zustandsfunktion näher betrachtet werden. Für eine ausführliche Ableitung und eingehende Darstellung der thermodynamischen Zusammenhänge sei auf die Werke von z.B. WILL (1998b), SPEAR (1993), ATKINS (1990) sowie WEDLER (1987) verwiesen.

Sofern ein System nicht nur Energie, sondern auch Materie mit der Umgebung austauscht, wird es als offenes System angesehen. Durch den Materieaustausch ändert sich die Innere Energie U

bzw. die Freie Enthalpie *G* des Systems. Das chemische Potential μ_i beschreibt die Änderung der Inneren Energie *U* des Systems, wenn sich die Stoffmenge einer Komponente i ändert:

$$\left(\frac{\partial \mathbf{U}}{\partial \mathbf{n}_{i}}\right)_{S,V,n_{j(i\neq j)}} \equiv \mu_{i}$$

Die thermodynamische Fundamentalgleichung erweitert sich damit für ein offenes System zu:

$$dU = TdS - PdV + \sum_{i} \mu_{i} dn_{i} \; .$$

In dieser Gibbs'schen Grundgleichung stellt n_i die Molzahl der Komponente i im System dar. Die Freie Enthalpie *G* kann dann für ein offenes System durch die Beziehung

$$dG = -SdT + VdP + \sum_{i} n_i d\mu_i$$

beschrieben werden.

Die Anwendung von Phasendiagrammen sowie konventionellen geothermobarometrischen Methoden auf Systeme natürlicher Gesteine hängt davon ab, ob die petrographischen Strukturen und Mineralzusammensetzungen thermodynamische Gleichgewichtsbedingungen erfüllen. Thermodynamisch kann der Gleichgewichtszustand, in dem sich ein System befindet, durch die Freie Enthalpie *G* quantitativ beschrieben werden. Im Gleichgewicht ändert sich die Freie Enthalpie der beteiligten Phasen nicht. Ein System liegt im stabilen Gleichgewicht vor, wenn es sein niedrigst-mögliches Energieniveau erreicht hat. Ein metastabiler Zustand ist dagegen nur durch ein lokales Minimum der Energie des Systems gekennzeichnet. WILL (1998b, S. 153) führt aus, daß in Gesteinen ein lokales Gleichgewicht vermutlich die häufigste Situation darstellt, bei dem Teile eines Systems bereits miteinender equlibriert sind, während sich das gesamte System noch im Ungleichgewicht mit seiner Umgebung befindet. So kann z.B. ein Biotit mit dem Rand eines benachbarten Granat-Kristalls bereits im Gleichgewicht vorliegen, nicht aber mit dem Granat-Kern. Genauere Ausführungen hierzu geben z.B. ROBINSON (1991), SPEAR (1993), STÜWE (1997) und WILL (1995, 1998b).

In einem geschlossenen System, das sich im Gleichgewichtszustand befindet, nimmt die Freie Enthalpie des Systems ihren Minimalwert an. Mathematisch kann die Definition bei konstantem Druck und konstanter Temperatur durch die Gibbs-Duhem-Gleichung ausgedrückt werden:

$$\Delta G = -S\Delta T + V\Delta P = 0.$$

Für ein offenes System nimmt sie die folgende Form an:

$$dG = SdT - VdP + \sum_{i} n_i d\mu_i = 0$$

Die Freie Enthalpie *G* stellt damit eine Funktion von Druck P, Temperatur T und der Molzahl n_i der Phasenkomponenten dar, diese Form ist z.B. für Mischkristalle von Bedeutung. WILL (1998b) weist darauf hin, daß ein Mischkristall stets stabiler ist als ein Mineral-Endglied, da die Mischphase immer eine niedrigere Freie Enthalpie besitzt.

Bei der thermodynamischen Berechnung von Mischkristallen muß ihre Zusammensetzung und damit auch ihr Mischungsverhalten berücksichtigt werden. In diesem Zusammenhang spielt die Aktivität a_i einer Phasenkomponente *i* im einem Mineral, bzw. des Mineral-Endgliedes, eine wesentliche Rolle. Die Aktivität a_i läßt sich ausgehend von der Molzahl n_i der Phasenkomponente über den Molenbruch X_i herleiten (vgl. z.B. WILL 1998b). Wesentlich ist dabei, daß die Aktivität in Bezug auf ihr chemisches Standardpotential μ_i^0 definiert ist. Ideales Mischungsverhalten vollkommen ungeordneter Mischreihen wird durch die ideale Mischungsktivität x_i beschrieben. Die meisten gesteinsbildenden Minerale zeigen jedoch ein nicht-ideales Mischungsverhalten (WILL 1998b). Der Unterschied zwischen idealem und nichtidealem Mischungsverhalten wird durch den Aktivitätskoeffizienten γ_i berücksichtigt. Die Aktivität wird in der Form

$$a_i = x_i \cdot \gamma_i$$

definiert, wobei x_i die ideale Mischungsaktivität repräsentiert und γ_i der Aktivitätskoeffizient der Phasenkomponente *i* ist. Dieser Zusammenhang wird als Aktivitäts-Molenbruch-Beziehung (*a-x*-Beziehung) bezeichnet. Diese Beziehungen können aufgrund ihrer Abhängigkeit von Druck, Temperatur und der Mischkristall-Zusammensetzung sehr komplex sein. Daher wurden aufgrund umfangreicher Untersuchungen verschiedene Mischungsmodelle, wie z.B. IMOS-Modell (ideales Mischen), das Nächster-Nachbar-Modell, das reguläre Mischungsmodell u.a., beschrieben, mit denen sich die Arbeiten von z.B. SPEAR (1993) und WILL (1998b) eingehend auseinandersetzen.

Durch weitere Ableitung läßt sich die molare Freie Enthalpie G in Abhängigkeit von der Aktivität der Phasenkomponente i ausdrücken:

$$\mu_i - \mu_i^0 = RT \ln a_i = RT \ln(x_i \cdot \gamma_i) = RT \ln x_i + RT \ln \gamma_i$$

 μ_i stellt das chemische Potential und μ_i^0 das chemisch Standardpotential dar, *R* ist die allgemeine Gaskonstante und a_i die Aktivität der Phasenkomponente *i* im relevanten PT-Bereich.

Unter Gleichgewichtsbedingungen muß aufgrund seiner Definition auch die Bedingung erfüllt sein, die Veränderung des chemischen Potentials μ

$$\Delta \mu = 0.$$

Durch Einführung des Begriffs der Gleichgewichtskonstante K, die als Funktion der Aktivitäten definiert ist, ergibt sich damit im Gleichgewicht

$$0 = \Delta \mu = \Delta G^0 + RT \ln K \, .$$

 G^0 bezeichnet hier die Standard-Freie Enthalpie bei P₀ und T₀, Delta (Δ) steht jeweils für den Unterschied der betreffenden thermodynamischen Größe zwischen den Edukten und den Produkten einer Reaktion.

Für die Berechnung der Freien Enthalpie G eines Minerals muß in der Definition die Druck- und Temperaturabhängigkeit der Enthalpie H und der Entropie S berücksichtigt werden. Durch Substitution der Definitionen der thermodynamischen Zustandsvariablen ergibt sich als Gleichgewichtsbedingung für ein System reiner Phasen:

$$\Delta G_{P,T}^{0} = \Delta (\Delta_{f} H_{P_{0}}, T_{0}) - T \Delta S_{P_{0}}, T_{0} + \int_{T_{0}}^{T} \Delta C_{P} dT - T \int_{T_{0}}^{T} \frac{\Delta C_{P}}{T} dT + \int_{P_{0}}^{P} \Delta V dP = 0,$$

wobei C_P die Wärmekapazität repräsentiert. P₀ ist üblicherweise als 1 kbar und T₀ als 298 K definiert. Wenn eine Reaktion diese Bedingung erfüllt, hat sie damit den Gleichgewichtszustand erreicht. Für die Reaktion zwischen verschiedenen Mineralphasen ergibt sich die Gleichgewichtsbedingung zu:

$$\Delta G_{P,T}^{0} = 0 = \Delta (\Delta_{f} H_{P_{0}}, T_{0}) - T\Delta S_{P_{0}}, T_{0} + \int_{T_{0}}^{T} \Delta C_{P} dT - T \int_{T_{0}}^{T} \frac{\Delta C_{P}}{T} dT + \int_{P_{0}}^{P} \Delta V dP + RT \ln K$$

Diese Gleichung beschreibt die Energiedifferenz, die sich für eine bestimmte Reaktion unter definierten Druck-Temperatur-Bedingungen ergibt. Sie ist für die Petrologie von besonderer Bedeutung, da sie die Berechnung der Freien Enthalpie eines Minerals gestattet.

Der Zusammenhang zwischen den eingeführten thermodynamischen Größen und den hier interessierenden Phasendiagrammen wird durch die von SPEAR (1993, S. 250) gegebene Definition deutlich: Ein Phasendiagramm ist die Projektion der Konfiguration minimaler Freier Enthalpie G auf die gewählten thermodynamischen Achsen. Die Konstruktion von P-T-Pseudoschnitten basiert auf den Reaktionen und invarianten Punkten im petrogenetischen Netz (vgl. Kap. 6.2). SPEAR (1993, S. 271) weist darauf hin, daß die Steigung einer univarianten

Gleichgewichtskurve in Abhängigkeit von Druck und Temperatur relativ unkompliziert durch die Gleichung von Clausius-Clapeyron ausgedrückt werden kann:

$$\left(\frac{\partial P}{\partial T}\right)_{\ln K} = \frac{\Delta S_{PT} - R \ln K}{\Delta V},$$

auf die z.B. auch WILL (1998b) sowie OKRUSCH & MATTHES (2005) näher eingehen.

Die Gleichgewichtsbeziehungen in einem heterogenen System, wie einem Phasendiagramm, lassen sich anhand der Gibbs'schen Phasenregel erläutern:

$$F = C - Ph + 2.$$

Dabei gelten folgende Definitionen:

Phasen <i>Ph</i> :	Phasen sind die physikalisch unterscheidbaren Teile eines Mehrstoffsystems, wie z.B. verschiedene Minerale, fluide Phase bzw. Gasphase oder Schmelze.
Komponenten C:	Als Komponenten bezeichnet man die geringste Zahl der selbständigen chemischen Bestandteile, die zum Aufbau der Phasen nötig sind.
Freiheitsgrade <i>F</i> :	Die Freiheitsgrade oder Varianz des Systems ist die Zahl der Zustandsvariablen, die variiert werden können, ohne den Zustand eines Systems zu verändern. Dies sind meist Druck P , Temperatur T oder Zusammensetzung X .

Dieser Regel zufolge hängt die Varianz eines Systems im Gleichgewicht damit vom Umfang des Systems, also der Zahl der Komponenten, und von der Zahl der koexistierenden Phasen ab. Die Varianz definiert damit ein invariantes (F = 0), univariantes (F = 1), di- (F = 2) oder trivariantes (F = 3) Gleichgewicht etc., das in einem Phasendiagramm z.B. in einem invarianten Punkt, entlang einer univarianten Gleichgewichtskurve oder in einem divarianten, trivarianten oder höhervarianten Feld realisiert ist. Erläuternde Beispiele zur Gibbs'schen Phasenregel geben WILL (1998b), SPEAR (1993) sowie OKRUSCH & MATTHES (2005), die Herleitung ist bei SPEAR (1993) und ATKINS (1990) dargelegt.

G.2 Phasendiagramme

Phasendiagramme erfassen die gesamte Information über Beziehungen zwischen Druck (P), Temperatur (T) und Zusammensetzung (X) eines metamorphen Gesteins in einem geeigneten Modellsystem. In den verschiedenen Phasendiagrammen lassen sich die Stabilitätsfelder bestimmter Minerale oder beobachtete Mineralparagenesen in den Kontext von Druck und Temperatur stellen. Unter den verschiedenen Typen von Phasendiagrammen, die untereinander in Beziehung stehen, stellt das P-T-Diagramm die meist verbreitete Variante dar. Grundlage phasenpetrologischer Berechnungen stellen inzwischen überwiegend intern-konsistente thermodynamische Datensätze dar, die z.B. von HOLLAND & POWELL (1985, 1990, 1998) sowie BERMANN (1988) erstellt wurden. Sie beruhen auf thermodynamischen Daten für verschiedene Minerale wie molare Enthalpie H, Entropie S und Molvolumen V sowie der Molfraktion X_i und der Aktivität für verschiedene Elemente in Mischkristallen. Gegenüber a_i geothermobarometrischen Methoden berücksichtigt die Modellierung von Phasenbeziehungen aufgrund thermodynamischer Daten komplexere Aspekte wie chemische und paragenetische Veränderungen in den Mineralen bzw. Gesteinen, was einen wesentlichen Vorteil der Methode darstellt.

Ein vollständiges Phasendiagramm (z.B. WILL 1998b, S. 165, Fig. 43a) beinhaltet z.B. POWELL (1991) zufolge die gesamte Information über den Gleichgewichtszustand eines Systems. Die Dimension des vollständigen Phasendiagramms hängt von der Anzahl der berücksichtigten Systemkomponenten ab: für n Systemkomponenten ergeben sich n-1 Kompositionsachsen und jeweils eine weitere für Druck und Temperatur. So weist z.B. WILL (1998b) darauf hin, daß das System KFMASH 7 Achsen besitzt und daher im 7-dimensionalen Raum gezeichnet werden müßte. Die Komplexität der vollständigen Phasendiagramme führte zu der Notwendigkeit, darstellbare Repräsentationsmöglichkeiten niedrigerer Dimension zu finden, was durch Projektionen, Schnitte und Pseudoschnitte durch das vollständige Phasendiagramm realisiert werden kann. Da die Verringerung der Dimension einen unvermeidbaren Informationsverlust mit sich bringt (WILL 1998b), ist in Bezug auf die jeweilige Fragestellung zu entscheiden, welche Variante sich zur Dokumentation einer petrologischen Information besonders eignet. Welche der genannten Formen gewählt wird, hängt von den Variablen ab, die auf den Achsen des Phasendiagramms dargestellt werden. Intensive Variable besitzen in allen Phasen, die miteinander im Gleichgewicht vorliegen, denselben Wert und sind im Gegensatz zu extensiven Variablen von der Stoffmenge der Komponenten unabhängig. Die wichtigsten intensiven Variablen sind Druck P, Temperatur T und das chemische Potential μ , Beispiele extensiver Variablen sind Freie Enthalpie G, Entropie S, Volumen V und die Molzahl n_i .

In einer **Projektion** werden die Informationen des vollständigen Phasendiagramms auf eine bestimmte Ebene projiziert. Ein **P-T-Diagramm**, das POWELL (1991) als P-T-Projektion bezeichnet, wurde in Bezug auf alle extensiven Variablen konstruiert, und es zeigt die Gleichgewichtsbeziehungen für den gesamten Zusammensetzungsbereich des gewählten

Systems (WILL 1998b). In P-T-Projektionen sind insbesondere die stabilen univarianten Gleichgewichtskurven, die normalerweise in einem stabilen invarianten Punkt enden, dargestellt. Diese gemeinsame Darstellung invarianter Punkte und univarianter Gleichgewichtsbeziehungen in einer Ebene intensiver Variablen wird nach BOWEN (1940, in WILL 1998b, S. 197) als petrogenetisches Netz (petrogenetic grid) für dieses System bezeichnet (z.B. SPEAR 1993, S. 254; WILL 1998b). Ein petrogenetisches Netz veranschaulicht also die stabilen Mineralvergesellschaftungen über alle Gesteinszusammensetzungen im betrachteten Druck-Temperatur-Bereich. Darin sind alle P-T-X-Informationen für das jeweilige Modellsystem (vgl. Kap. 6.3) enthalten, sowohl für das Vollsystem (z.B. KFMASH) als auch die Subsysteme (z.B. KFASH und KMASH). In der metamorphen Petrologie gestatten, SPEAR (1993, S. 288) zufolge, petrogenetische Netze die Darstellung der P-T-X-Stablitätsfelder von Mineralparagenesen und der Reaktionen zwischen diesen. Bei der Konstruktion dieser Phasendiagramme erfolgt die Bestimmung der relativen Stabilitäten der Reaktionen, wie stabil oder metastabil, nach der Schreinemakers-Analyse. Dieses Verfahren ist bei WILL (1998b) sowie SPEAR (1993) ausführlich beschrieben.

Schnitte durch das vollständige Phasendiagramm liegen meist parallel zu einer der Seitenflächen, entlang der Achsen wird jeweils eine intensive und eine extensive Variable dargestellt. In Abhängigkeit davon, welche intensive Variable bei der Konstruktion eines Schnittes durch das vollständige Phasendiagramm als konstant angesehen wird, ergeben sich z.B. isobare T-X-Schnitte, isothermale P-X-Schnitte oder isobarothermale G-X-Diagramme. Die in der petrologischen Literatur weit verbreiteten Zweistoffsysteme mit Mischkristallbildung oder binärem Eutektikum stellen demnach T-X-Schnitte dar.

Pseudoschnitte werden aus P-T-Projektionen konstruiert, die die komplette P-T-X-Information für den gesamten Zusammensetzungsbereich eines Systems beinhalten. Im P-T-Pseudoschnitt werden die Mineralparagenesen nur soweit dargestellt, wie sie aufgrund der stofflichen Gegebenheiten verwirklicht werden können. Gesteine, die gleiche Metamorphosebedingungen durchlaufen haben, können in Abhängigkeit von ihrem Stoffbestand unterschiedliche Mineralparagenesen ausbilden (vgl. z.B. WILL 1998a, b). P-T-Pseudoschnitte liefern Hinweise zur Erklärung der Stabilitäten verschiedener Mineralparagenesen und gestatten dadurch eine Abschätzung der Druck- und Temperaturveränderungen in den Gesteinen bei der Metamorphose. Bei der Untersuchung heterogener Phasengleichgewichte in Gesteinen ist daher die Konstruktion von P-T-Pseudoschnitten besonders aussagekräftig (vgl. Kap. 6.1).

G.3 Ergänzende Hinweise zu Modellsystemen und Systemkomponenten

Geringe Gehalte der Systemkomponenten TiO₂ und Fe₂O₃ in typischen metapelitischen Gesteinszusammensetzungen üben WHITE et al. (2000) zufolge nur einen geringen Einfluß auf die Gleichgewichtsbeziehungen silicatischer Minerale unter grünschiefer- bis amphibolitfaziellen Bedingungen im Vergleich zu solchen im KFMASH aus. Höhere TiO₂-Gehalte führen ebenfalls nur zu geringen Veränderungen der Stabilitätsbeziehungen, während sich in Fe₂O₃-reichen Gesteinen, verglichen mit der üblichen Barrow-Sequenz, eine deutlich veränderte Metamorphoseabfolge entwickelt (WHITE et al. 2000). Fe₂O₃-reiche Metapelite zeigen eine markante Verkleinerung der Stabilitätsfelder von Staurolith und Granat zu höheren Drücken hin, im Vergleich zu denjenigen im KFMASH (WHITE et al. 2000). Die Phasenbeziehungen hochgradiger Metapelite in verschiedenen Systemen wie KFMASH, KFMASHTO (K₂O-FeO-MgO-Al₂O₃-SiO₂-H₂O-TiO₂-O₂) und NCKFMASH (Na2O-CaO-K₂O-FeO-MgO-Al₂O₃-SiO₂-H₂O) untersuchen WHITE et al. (2007). Auf den Zusammenhang zwischen Zusammensetzung und Aktivitäten unter Berücksichtigung partieller Schmelzbildung im System NCKFMASH (Na₂O-CaO-K₂O-FeO-MgO-Al₂O₃-SiO₂-H₂O) gehen WHITE et al. (2001) ein.

Prograde Metamorphoseprozesse sind gewöhnlich durch Entwässerungsreaktionen und Dekarbonatisierungsreaktionen gekennzeichnet. Erstere spielen für pelitische Gesteine eine wesentliche Rolle. Durch geringere Wasseraktivitäten werden Entwässerungsrektionen zu niedrigeren Temperaturen, die Soliduskurven von Schmelzreaktionen dagegen zu höheren Temperaturen hin verschoben. SPEAR (1993, S. 323) erläutert den Einfluß geringerer Wasseraktivität aufgrund des Prinzips von Le Chatelier, demzufolge eine Verringerung von a_{H2O} die Reaktion von der Reaktionsseite, die Wasser enthält, hinweg verschiebt. Schmelzreaktionen in wasserhaltigen Systemen für verschiedene Gesteinstypen untersuchen z.B. VIELZEUF & SCHMIDT (2001).

G.4 Konstruktion der P-T-Pseudoschnitte: Zusätzlicher methodischer Hinweis

Bei der Konstruktion der P-T-Pseudoschnitte ist es wesentlich, darauf zu achten, ob die vom Programm "gesehene" Reaktion auf der stabilen oder metastabilen Seite der Reaktion liegt. Bei der älteren Programmversion konnte diese Information nur aus dem gesamten petrogenetischen Netz entnommen werden, bei der neuen Programmversion finden sich an den berechneten Reaktionen Hinweise auf die angrenzenden Felder. Damit sind in den neuen Programmversionen von THERMOCALC auch trivariante Felder bestimmbar, die vorher nur aufgrund logischer Argumente zur Topologie des Pseudoschnittes eingezeichnet, jedoch nicht so klar in ihrem P-T-

Rahmen eingegrenzt werden konnten. Quadrivariante Felder werden vom Programm nicht angegeben, sie ergeben sich logisch aus den im Schnitt angrenzenden Feldern.

G.5 Geothermobarometrie: Theoretische Grundlagen

Geeignete Geothermometer sind nahezu unabhängig vom Druck und weisen daher im P-T-Diagramm eine starke Steigung auf, die einem großen Wert des Differentials $(\partial P/\partial T)_{lnK}$ für diese Mineralgleichgewichte entspricht (WILL 1998b). Ein Geobarometer dagegen ist nach WILL (1998b, Abb. 21a) eine im wesentlichen Temperatur-unabhängige Reaktion und besitzt dementsprechend im P-T-Diagramm eine geringe Steigung.

Geothermometer und Geothermobarometer lassen sich im wesentlichen auf drei Arten von Mineralgleichgewichten zurückführen:

Viele Geothermometer beruhen auf Kationenaustauschreaktionen. Diese Gleichgewichte umfassen den Austausch zweier hinsichtlich Ladung und Ionenradius ähnlicher Atome zwischen zwei verschiedenen Mineralen. Diese Reaktionen weisen meist eine große Enthalpie ΔH und Entropie ΔS auf, sind jedoch durch kleine Änderungen der Molvolumina ΔV gekennzeichnet. Insbesondere der Eisen-Magnesium-Austausch (Fe²⁺-Mg) zwischen Granat und Biotit, für den diverse Kalibrationen vorliegen, wird häufig als Geothermometer genutzt. Nur wenige Geothermometer basieren dagegen auf der Verteilung von z.B. zweiwertigem Eisen und Mangan. In Massentransferreaktionen werden Mineralphasen produziert und aufgezehrt, wobei die Kationen in den Reaktanden und Produkten unterschiedliche Koordinationszahlen besitzen. Derartige Reaktionen eignen sich besonders zur Verwendung als Geobarometer, da sie gewöhnlich mit großen Änderungen der Molvolumina ΔV einhergehen. Zur Abschätzung des Druckes für metapelitische Gesteine eignen sich z.B. das GASP-Barometer (Grossular-Aluminiumsilicat-SiO₂-Plagioklas), das "Ghent-und-Stout-Barometer" oder das GRAIL-Barometer (Granat-Rutil-Aluminiumsilicat-Ilmenit-Quarz). Solvus-Thermometer, wie z.B. das Plagioklas-Alkalifeldspat-Geothermometer, beruhen auf der Zusammensetzung koexistierender Phasen entlang von Mischungslücken oder Solvus-Beziehungen zwischen koexistierenden Mineralen. Dabei werden T-X-Diagramme verwendet, um die mit der Mineralzusammensetzung korrespondierende Temperatur festzustellen. WILL (1998b) führt aus, daß bei Verwendung dieser Methode kleine Abweichungen in der gemessenen Zusammensetzung große Unsicherheiten der abgeschätzten Temperatur mit sich bringen können. Konventionellen geothermobarometrischen Methoden liegen meist Feststoffrektionen zugrunde, daher sind die Ergebnisse von den Partialdrücken fluider Phasen unabhängig. Im Falle unbekannter Zusammensetzung der fluiden Phase stellt dies einen Vorteil der Geothermobarometrie dar, allerdings können eventuelle Änderungen der Fluidzusammensetzung auch nicht berücksichtigt werden.

G.6 Berechnungen mittels intern-konsistenter Datensätze – Ergänzender Hinweis

Die Berechnung mittels des intern-konsistenten Datensatzes von HOLLAND & POWELL (1990) wird für die Probe SM 1063 exemplarisch dargestellt.

Der Berechnung berücksichtigt folgende Daten:

Granat:	$a_{py} = 0.00543$	Biotit:	$x_{ann} = 0.0297$
	$a_{alm} = 0.27467$		$x_{phl} = 0.0437$
	$a_{grs} = 0.00173$		$x_{east} = 0.0509$
	$a_{spess} = 0.00135$		$x_{sidphl} = 0.0393$
			$x_{na-phl} = 0.0018$
Plagioklas:	$a_{ab} = 0.7488$	Quarz	a = 1
	$a_{an} = 0.2426$	Disthen/Sill.	a = 1.

Für eine Wasseraktivität von $a_{H2O} = 1.0$ ergaben sich folgende voneinander unabhängige Mineral-Endglieder-Reaktionen:

- (1) Phlogopit + Almandin = Annit + Pyrop
- (2) Grossular + Quarz + 2 Disthen = 3 Anorthit (GASP-Reaktion)
- (3) Disthen = Sillimanit.

Die Reaktion (1) ergab Temperaturen von 699 ± 135 °C bei einem Druck von 6.0 ± 1.9 kbar, die GASP-Reaktion (2) erbrachte einen Druck von 8.0 ± 0.8 kbar für eine Temperatur von 494 ± 44 °C. Aus der Reaktion (3) sind 622 ± 12 °C und Drucke von 6.0 ± 0.26 kbar abzuleiten. Die Reaktionen schneiden sich nur am unteren Rand ihrer Fehlergrenzen, in einem Bereich um etwa 600 - 700 °C und ca. 7 - 7.5 kbar. Diese Daten sind daher nur eingeschränkt aussagefähig.

G.7 Daten zum P-T-Pseudoschnitt für die Geiselbach-Formation (IMG027)

Die berechneten divarianten Felder des P-T-Pseudoschnittes der Probe IMG 027 sind in folgenden Druck- und Temperatur-Bereichen stabil:

Das Feld g + chl + bi + st tritt im Pseudoschnitt im Bereich von 559 bis 563 °C bei 3.5 kbar (also 4 °C breit) auf und verjüngt sich bis hin zu 591 °C bei 6 kbar. Zwischen den beiden Reaktionen verläuft trapezförmig das divariante Feld st + g + bi + cd (+ mu + q + H₂O), also in einem Druck-Temperatur-Bereich von etwa 558 bis 586 °C bei 3.45 bis 3.8 kbar bis zu 567 bis 578 °C bei etwa 3.8 bis 4.05 kbar. Das Feld st + g + bi + sill (+ mu + q + H₂O) erstreckt sich zwischen 578 und 670 °C in einem Druckbereich von 3.9 bis 7.1 kbar. Am Endpunkt dieses Feldes setzt das mit 0.5 °C Breite sehr schmale Feld der Paragenese st + g + bi + ky (+ mu + q + H₂O) an,

das bei den Berechnungen von 670 °C bei 7.1 kbar bis zu 630 °C bei 10.3 kbar nachzuweisen war. Wie in den P-T-Pseudoschnitten der Gesteine der Mömbris-Formation verläuft das Feld der Paragenese $g + bi + cd + sill (+ mu + q + H_2O)$ sehr flach, beginnend bei einer Temperatur von 576 °C bis zu > 670 °C in dem engen Druckbereich von ca. 3.8 kbar bis ca. 4.1 kbar. Das Feld g + st + chl + cd (+ mu + q + H_2O) geht von dem Endpunkt der Reaktion

 $Granat + Chlorit = Staurolith + Biotit + Cordierit + H_2O$

aus, es ist nur etwa 0.5°C breit und verläuft von etwa 558 °C bei 3.4 kbar in Richtung eines Punktes bei 544 °C und 3.1 kbar.

Für die Gesteinszusammensetzung konnten auch mit extrem kleinen Druck- und Temperaturschritten keine weiteren Reaktionen und Felder nachgewiesen werden.

H. Tabellen zur Mineralchemie und Geochemie

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Granat	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1
	GRA1-1	GRA1-2	GRA1-3	GRA2-1	GRA2-2	GRA2-3	GRA2-4	GRA2-5	GRA2-6
				Profil I Rand					
SiO2	36,69	36,96	37,39	37,25	36,65	36,79	36,72	37,31	37,06
TiO2	0,04	0,11	0,04	0,07	0,07	0,08	0,07	0,08	0,04
AI2O3	20,91	20,98	21,02	21,22	20,49	20,82	20,94	20,83	21,22
Cr2O3	0,00	0,00	0,01	0,00	0,00	0,00	0,01	0,00	0,04
Fe2O3	1,31	1,25	0,51	1,07	1,20	1,39	1,37	1,34	0,80
MgO	3,44	2,45	3,25	3,39	3,27	3,02	3,13	2,98	2,92
CaO	4,31	5,51	4,54	5,81	5,05	5,91	5,38	5,77	5,43
MnO	5,70	2,93	5,87	2,31	2,39	2,07	2,15	2,05	2,11
FeO	27,72	30,95	27,43	29,80	29,80	30,11	30,61	30,59	31,04
Summe	100,11	101,12	100,05	100,90	98,92	100,20	100,37	100,96	100,65
Strukturforme	l bezogen a	uf 24 Sauers	toffe						
Si	5,885	5,895	5,975	5,903	5,934	5,891	5,876	5,928	5,907
AI	0,115	0,105	0,025	0,097	0,066	0,109	0,124	0,072	0,093
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,005	0,013	0,004	0,008	0,009	0,010	0,008	0,010	0,005
AI	3,837	3,837	3,934	3,865	3,844	3,822	3,826	3,830	3,895
Cr	0,000	0,000	0,001	0,000	0,000	0,000	0,001	0,001	0,005
Fe3+	0,158	0,150	0,061	0,128	0,146	0,168	0,165	0,160	0,096
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,823	0,582	0,773	0,800	0,790	0,722	0,747	0,707	0,694
Ca	0,740	0,941	0,778	0,987	0,877	1,014	0,923	0,983	0,927
Mn	0,775	0,395	0,794	0,309	0,328	0,281	0,291	0,276	0,284
Fe2+	3,718	4,128	3,665	3,949	4,035	4,033	4,097	4,065	4,137
X-Pos.:	6,056	6,046	6,011	6,044	6,029	6,050	6,058	6,031	6,043
Summe	16,055	16,046	16,010	16,045	16,029	16,050	16,058	16,031	16,044
XFe	0,82	0,88	0,83	0,83	0,84	0,85	0,85	0,85	0,86
XMn	0,15	0,08	0,15	0,06	0,06	0,06	0,06	0,05	0,06
Endalieder									
llvar	0.00	0.00	0.02	0.00	0.01	0.00	0.03	0.01	0.12
Andr	4 02	4 04	1.63	3 37	3.85	4 41	4 29	4 22	2.50
Gross.	8.20	11.52	11.29	12,96	10,68	12.34	10.93	12.06	12.72
Alm.	61.39	68.28	60.98	65.33	66.93	66.67	67.62	67.40	68.46
Spess.	12.80	6.54	13.22	5.12	5.44	4.65	4.80	4.58	4.71
Pyrop	13,59	9,63	12,86	13,23	13,10	11,93	12,34	11,72	11,49
XAIm	0,614	0,683	0,610	0,653	0,669	0,667	0,676	0,674	0,685
XSpess	0,128	0,065	0,132	0,051	0,054	0,047	0,048	0,046	0,047
ХРу	0,136	0,096	0,129	0,132	0,131	0,119	0,123	0,117	0,115
XGross	0,082	0,115	0,113	0,130	0,107	0,123	0,109	0,121	0,127

Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Granat	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1
	GRA2-7	GRA2-8	GRA2-9	GRA2-10	GRA2-11	GRA2-12	GRA2-13	GRA2-14	GRA2-15
5:02	27.29	27.00	36.06	36.00	27 /1	27.61	27 15	26 55	27.27
3102	57,20	37,00	0.15	30,99	37,41	37,01	37,15	30,35	0.15
1102	0,10	20.04	0,15	0,00	0,10	20,07	0,09	0,09	20.06
AI203	20,89	20,94	21,17	21,14	20,93	20,00	21,04	20,94	20,90
G1203	0,00	0,04	0,04	0,02	0,01	0,04	0,03	0,03	1.00
Fe2O3	1,18	1,40	1,30	1,23	1,21	0,66	1,22	0,98	1,00
MgO	3,06	3,23	3,14	3,21	3,16	3,24	3,35	3,24	3,04
CaO	5,78	5,64	5,71	5,82	6,43	5,44	5,14	5,28	5,40
MnO	2,15	2,34	2,53	2,58	2,90	3,55	3,57	3,20	3,21
FeO	30,29	30,15	30,24	29,73	28,66	28,88	29,33	29,12	29,78
Summe	100,73	100,91	101,31	100,80	100,81	100,57	100,91	99,41	100,93
Strukturforme	el bezogen a	uf 24 Sauers	toffe						
Si	5,929	5,884	5,859	5,880	5,932	5,975	5,901	5,890	5,922
AI	0,071	0,116	0,141	0,120	0,068	0,025	0,099	0,110	0,078
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ti	0,012	0,013	0,017	0,010	0,011	0,008	0,010	0,011	0,018
AI	3,846	3,808	3,814	3,841	3,843	3,884	3,840	3,867	3,848
Cr	0,001	0,004	0,004	0,002	0,001	0,005	0,004	0,004	0,005
Fe3+	0,142	0,174	0,165	0,148	0,145	0,102	0,145	0,118	0,130
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,726	0,767	0,742	0,762	0,746	0,768	0,793	0,777	0,721
Ca	0,984	0,960	0,971	0,992	1,093	0,925	0,875	0,911	0,919
Mn	0,290	0,316	0,339	0,347	0,389	0,478	0,481	0,437	0,432
Fe2+	4,029	4,010	4,009	3,953	3,800	3,837	3,897	3,925	3,958
X-Pos.:	6,029	6,052	6,061	6,054	6,028	6,008	6,045	6,049	6,030
Summe	16,029	16,052	16,062	16,055	16,028	16,008	16,044	16,050	16,030
XFe	0.85	0.84	0.84	0.84	0.84	0.83	0.83	0.83	0.85
XMn	0,06	0,06	0,07	0,07	0,08	0,09	0,09	0,08	0,08
Endglieder									
Uvar.	0,01	0,11	0,11	0,05	0,02	0,13	0,10	0,11	0,12
Andr.	3,83	4,64	4,51	3,91	3,88	2,77	3,86	3,20	3,66
Gross.	12,49	11,12	11,39	12,43	14,23	12,50	10,51	11,75	11,46
Alm.	66,83	66,26	66,15	65,30	63,04	63,86	64,46	64,88	65,64
Spess.	4,80	5,21	5,60	5,73	6,46	7,95	7,95	7,22	7,16
Pyrop	12,04	12,67	12,24	12,58	12,37	12,78	13,12	12,85	11,96
XAIm	0 669	0 663	0 664	0 652	0 620	0 620	0 645	0 640	0 666
	0,008	0,003	0,001	0,003	0,030	0,039	0,045	0,049	0,000
ASpess	0,048	0,052	0,056	0,057	0,005	0,079	0,080	0,072	0,072
хгу	0,120	0,127	0,122	0,126	0,124	0,128	0,131	0,128	0,120
XGross	0,125	0,111	0,114	0,124	0,142	0,125	0,105	0,117	0,115

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Granat	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1
	GRA2-16	GRA2-17	GRA2-18	GRA2-19	GRA2-20	GRA2-21	GRA2-22	GRA2-23	GRA2-24
SiO2	37,40	37,52	37,24	37,06	37,28	37,07	37,06	37,00	37,02
TiO2	0,09	0,11	0,08	0,11	0,10	0,06	0,09	0,13	0,13
AI2O3	20,76	20,94	20,79	20,68	21,03	20,90	20,79	20,88	20,88
Cr2O3	0,00	0,04	0,00	0,00	0,03	0,02	0,04	0,01	0,01
Fe2O3	1,35	1,24	1,33	1,50	0,74	1,14	0,80	0,85	1,10
MgO	2,99	2,93	2,92	2,79	2,68	3,04	2,72	2,71	2,31
CaO	5,49	5,80	5,75	6,46	5,88	4,45	5,52	5,50	6,08
MnO	3,07	2,99	3,13	3,13	3,28	3,67	3,36	3,55	3,60
FeO	29,88	29,89	29,56	28,79	29,52	30,35	29,48	29,44	29,59
Summe	101,03	101,45	100,79	100,52	100,53	100,69	99,86	100,07	100,72
Strukturform	el bezogen a	uf 24 Sauers	stoffe						
Si	5,941	5,933	5,930	5,916	5,945	5,920	5,952	5,934	5,917
AI	0,059	0,067	0,070	0,084	0,055	0,080	0,048	0,066	0,083
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,010	0,013	0,009	0,013	0,012	0,007	0,011	0,016	0,016
AI	3,829	3,835	3,831	3,806	3,896	3,854	3,888	3,881	3,851
Cr	0,000	0,005	0,000	0,001	0,003	0,003	0,005	0,001	0,002
Fe3+	0,161	0,148	0,160	0,180	0,089	0,137	0,096	0,102	0,132
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Μα	0 707	0 691	0 693	0 664	0.637	0 724	0.652	0 649	0 550
Ca	0.934	0.983	0,980	1 105	1 004	0 761	0,950	0.945	1 042
Mn	0 413	0 401	0 422	0 424	0 443	0 497	0 457	0 483	0 487
 Fe2+	3 970	3 953	3 936	3 844	3 937	4 054	3 960	3 948	3 955
X-Pos.:	6 024	6 027	6 031	6 036	6 021	6.036	6 018	6 024	6 033
Summe	16 024	16 027	16 031	16 036	16 021	16.036	16 018	16 025	16 033
ounno	10,021	10,021	10,001	10,000	10,021	10,000	10,010	10,020	10,000
XFe	0,85	0,85	0,85	0,85	0,86	0,85	0,86	0,86	0,88
XMn	0,08	0,08	0,08	0,09	0,09	0,09	0,09	0,09	0,10
Endglieder									
Uvar.	0,00	0,11	0,00	0,01	0,08	0,06	0,12	0,02	0,04
Andr.	4,27	3,99	4,20	4,79	2,51	3,57	2,68	2,95	3,67
Gross.	11,24	12,20	12,06	13,50	14,08	8,98	12,99	12,72	13,55
Alm.	65,89	65,58	65,26	63,68	65,38	67,16	65,80	65,53	65,56
Spess.	6,86	6,65	7,00	7,02	7,36	8,23	7,59	8,01	8,07
Pyrop	11,74	11,46	11,48	11,00	10,59	12,00	10,83	10,77	9,11
XAIm	0.659	0.656	0.653	0.637	0.654	0.672	0.658	0.655	0.656
XSpess	0,069	0,067	0,070	0,070	0,074	0,082	0,076	0,080	0,081
XPy	0,117	0.115	0,115	0.110	0.106	0.120	0.108	0.108	0.091
XGross	0.112	0.122	0.121	0.135	0.141	0.090	0.130	0.127	0.135
	3,112	5,122	3,121	5,100	3,111	5,000	5,100	3,127	5,100

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM021	imm021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Granat	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1
	GRA2-25	GRA2-26	GRA2-27	GRA2-28	GRA2-29	GRA2-30	GRA2-31	GRA2-33	GRA2-34
8:02	27 42	27.00	27.00	26.05	27.04	26.02	27.16	26.62	26.02
3102	37,43	37,00	0.11	30,95	0.04	0.12	0.05	0.12	0.00
A12O2	0,09	20.64	20.82	20.03	20,05	20,60	20,05	20,13	20,09
Cr2O3	20,05	20,04	20,02	20,97	20,97	20,05	20,70	20,77	20,77
Ee2O3	0,00	1.04	0,00	1 1 1	0,05	1 35	1.26	1.28	1.24
MaO	2 17	1,04	1 77	1,11	1.64	1,55	1,20	1,20	1,24
CaO	2,17	6.73	7.01	6.85	6.81	6 50	6.94	6.42	6.73
MnO	3.64	3.81	3.87	3.80	4.00	4.06	4 10	4 21	3 00
EeO	20.01	28.88	28.87	2,03	20 30	4,00 20 34	20.24	4,21 20.45	20.37
Summe	101 23	100.23	100.46	100.95	100.84	100.88	101 13	100 57	100.66
Summe	101,25	100,25	100,40	100,95	100,04	100,00	101,15	100,57	100,00
Strukturform	el bezogen a	uf 24 Sauers	stoffe						
Si	5,945	5,942	5,944	5,903	5,926	5,914	5,934	5,891	5,910
AI	0,055	0,058	0,056	0,097	0,074	0,086	0,066	0,109	0,090
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ti	0,010	0,023	0,013	0,011	0,011	0,016	0,006	0,016	0,011
AI	3,845	3,849	3,876	3,852	3,879	3,820	3,841	3,829	3,840
Cr	0,007	0,003	0,000	0,004	0,004	0,002	0,002	0,000	0,000
Fe3+	0,138	0,125	0,111	0,133	0,106	0,162	0,151	0,155	0,149
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,514	0,461	0,424	0,437	0,390	0,424	0,382	0,405	0,396
Ca	1,165	1,158	1,203	1,173	1,167	1,130	1,188	1,106	1,158
Mn	0,490	0,519	0,525	0,527	0,542	0,551	0,555	0,573	0,543
Fe2+	3,853	3,879	3,869	3,905	3,932	3,930	3,905	3,962	3,942
X-Pos.:	6,022	6,017	6,021	6,042	6,031	6,035	6,030	6,046	6,039
Summe	16,022	16,017	16,021	16,043	16,031	16,035	16,030	16,047	16,039
VEo	0.00	0.90	0.00	0.00	0.01	0.00	0.01	0.01	0.01
лге УМр	0,00	0,09	0,90	0,90	0,91	0,90	0,91	0,91	0,91
	0,10	0,11	0,11	0,11	0,11	0,11	0,11	0,12	0,11
Endglieder									
Uvar.	0,17	0,06	0,00	0,10	0,09	0,04	0,05	0,01	0,00
Andr.	3,71	3,71	3,11	3,59	2,92	4,44	3,92	4,24	3,98
Gross.	15,46	15,48	16,87	15,73	16,34	14,25	15,73	14,05	15,20
Alm.	63,98	64,47	64,27	64,63	65,20	65,12	64,76	65,52	65,28
Spess.	8,13	8,62	8,72	8,72	8,98	9,13	9,21	9,48	8,99
Pyrop	8,54	7,66	7,04	7,23	6,47	7,02	6,34	6,70	6,55
XAIm	0 640	0 645	0 642	0 646	0 650	0 664	0 640	0 665	0 650
Venace	0,040	0,040	0,043	0,040	0,000		0,040	0.005	0,000
Nopess	0,001		0,007	0,007	0,090	0,091	0,092	0,095	0,090
	0,000	0,077	0,070	0,072	0,000	0,070	0,003	0,007	0,000
AGIOSS	0,155	0,155	0,169	0,157	0,163	0,142	0,157	0,140	0,152

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Granat	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1
	GRA2-35	GRA2-36	GRA2-37	GRA2-38	GRA2-39	GRA2-40	GRA2-41	GRA2-42	GRA2-43
SiO2	36,69	36,86	36,95	37,26	36,67	36,54	37,17	37,19	37,30
TiO2	0,06	0,10	0,12	0,14	0,09	0,14	0,08	0,10	0,08
AI2O3	20,61	20,99	20,87	20,76	20,84	20,81	20,98	20,81	21,11
Cr2O3	0,00	0,00	0,02	0,06	0,00	0,00	0,01	0,00	0,03
Fe2O3	1,32	1,06	1,35	1,05	1,05	1,28	1,15	1,28	1,24
MgO	1,85	1,87	1,98	1,99	2,17	2,28	2,60	2,74	3,17
CaO	6,21	6,93	6,44	6,70	5,66	6,01	5,72	5,42	5,42
MnO	4,04	3,85	3,86	3,93	4,09	4,04	3,95	4,01	4,37
FeO	29,43	29,01	29,59	28,98	29,59	29,10	29,38	29,36	28,65
Summe	100,20	100,67	101,18	100,88	100,15	100,20	101,04	100,90	101,36
Strukturform	nel bezogen a	uf 24 Sauers	stoffe						
Si	5,916	5,901	5,897	5,946	5,907	5,881	5,917	5,927	5,902
AI	0,084	0,099	0,103	0,054	0,093	0,119	0,083	0,073	0,098
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ti	0,007	0,011	0,014	0,016	0,011	0,017	0,010	0,012	0,010
AI	3,833	3,862	3,822	3,850	3,862	3,828	3,852	3,835	3,840
Cr	0,001	0,000	0,002	0,007	0,000	0,000	0,001	0,000	0,003
Fe3+	0,160	0,127	0,162	0,126	0,127	0,155	0,138	0,153	0,147
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,444	0,447	0,472	0,474	0,521	0,547	0,618	0,651	0,747
Ca	1,073	1,189	1,102	1,146	0,977	1,037	0,975	0,925	0,918
Mn	0,552	0,523	0,522	0,531	0,557	0,550	0,533	0,541	0,586
Fe2+	3,969	3,884	3,949	3,867	3,985	3,917	3,911	3,914	3,792
X-Pos.:	6,038	6,043	6,044	6,018	6,041	6,051	6,036	6,030	6,044
Summe	16,038	16,043	16,044	16,019	16,041	16,051	16,037	16,031	16,044
XFe	0.90	0.90	0.89	0.89	0.88	0.88	0.86	0.86	0 84
XMn	0.11	0,00	0,00	0,00	0.11	0,00	0,00	0.11	0.11
	,	,	,	,		,			,
Endglieder									
Uvar.	0,01	0,00	0,05	0,18	0,00	0,00	0,02	0,00	0,08
Andr.	4,14	3,44	4,38	3,55	3,43	4,26	3,66	4,11	3,90
Gross.	13,62	16,24	13,80	15,30	12,75	12,87	12,47	11,23	11,22
Alm.	65,73	64,28	65,34	64,26	65,97	64,73	64,79	64,90	62,74
Spess.	9,14	8,65	8,63	8,83	9,23	9,09	8,82	8,97	9,70
Pyrop	7,36	7,39	7,80	7,88	8,63	9,05	10,23	10,79	12,36
XAIm	0,657	0,643	0,653	0,643	0,660	0,647	0,648	0,649	0,627
XSpess	0,091	0,086	0,086	0,088	0,092	0,091	0,088	0,090	0,097
XPy	0,074	0,074	0,078	0,079	0,086	0,090	0,102	0,108	0,124
XGross	0,136	0,162	0,138	0,153	0,127	0,129	0,125	0,112	0,112

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Granat	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1
	GRA2-44	GRA2-45	GRA2-46	GRA2-47	GRA2-48	GRA2-49	GRA2-50	GRA2-51	GRA2-52
SiO2	37 18	36.98	36.89	36 79	37 30	36.83	37 18	37 53	37 18
TiO2	0.06	0.06	0.09	0.00	0.33	0,00	0.05	0.04	0.03
AI2O3	21.03	20.73	21.09	21 15	20.81	20,96	21.33	21 16	21.02
Cr2O3	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.04	0.00
Fe2O3	1.00	1.40	1.26	1.07	1.05	1.24	1.04	1.11	1.24
ΜαΟ	3.31	3.34	3.50	3.40	3.68	3.78	3.67	3.60	3.70
CaO	4.39	4.29	4.02	3.60	3.54	2.93	4.05	4.80	4.68
MnO	4.93	5.44	5.59	5.41	5.09	4.99	3.90	2.82	2.25
FeO	28.78	28.18	28.39	29.16	28.97	29.66	30.01	30.32	30.58
Summe	100,68	100,41	100,81	100,59	100,77	100,40	101,23	101,43	100,69
Strukturform	al bazogan a	uf 24 Sauere	toffo						
Si	5 923	5 916	5 879	5 882	5 934	5 805	5 888	5 922	5 910
Δι	0.077	0.084	0 121	0 118	0,004	0,000	0 112	0.078	0.090
Tetr. 7	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
100.2	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,007	0,007	0,010	0,000	0,040	0,000	0,006	0,005	0,003
AI	3,873	3,824	3,839	3,869	3,834	3,850	3,871	3,858	3,848
Cr	0,000	0,001	0,000	0,002	0,000	0,000	0,000	0,005	0,000
Fe3+	0,120	0,169	0,151	0,129	0,126	0,150	0,124	0,132	0,149
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Ma	0.787	0.796	0.831	0.811	0.871	0.902	0.867	0.848	0.877
Ca	0.748	0,736	0.686	0.616	0.602	0.503	0.688	0.812	0,798
Mn	0.665	0,737	0,755	0,733	0.685	0.677	0.523	0.377	0.303
Fe2+	3.834	3.770	3.784	3.899	3.854	3.971	3.975	4.000	4.066
X-Pos.:	6.034	6.039	6.056	6.059	6.013	6.052	6.053	6.037	6.043
Summe	16,034	16,039	16,056	16,059	16,013	16,052	16,053	16,036	16,043
VEa	0 02	0.92	0.92	0.02	0.92	0.91	0.92	0.92	0.92
XNn	0,83	0,83	0,82	0,03	0,02	0,01	0,82	0,83	0,02
	0,13	0,14	0,14	0,13	0,15	0,12	0,10	0,07	0,00
Endglieder									
Uvar.	0,00	0,02	0,00	0,04	0,00	0,00	0,00	0,12	0,00
Andr.	3,17	4,36	3,99	3,20	4,14	3,72	3,22	3,42	3,77
Gross.	9,23	7,81	7,34	6,94	5,88	4,59	8,14	9,91	9,44
Alm.	63,54	62,43	62,49	64,35	64,09	65,61	65,67	66,27	67,28
Spess.	11,01	12,20	12,46	12,10	11,40	11,18	8,64	6,24	5,01
Pyrop	13,04	13,18	13,73	13,38	14,49	14,90	14,32	14,04	14,51
XAIm	0.635	0.624	0.625	0.643	0.641	0.656	0.657	0.663	0.673
XSpess	0,110	0.122	0.125	0.121	0.114	0.112	0.086	0.062	0.050
XPv	0.130	0.132	0.137	0.134	0.145	0.149	0.143	0.140	0.145
XGross	0,092	0,078	0,073	0,069	0,059	0,046	0,081	0,099	0,094

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Granat	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.2	8.2
	GRA2-53	GRA2-54	GRA2-55	GRA2.56	GRA2-57	GRA2-58	GRA2-59	Gra1-1	Gra1-2
						F	Profil I Rand		
SiO2	37,55	37,81	37,52	37,86	37,64	37,56	37,74	37,50	37,20
TiO2	0,05	0,09	0,05	0,10	0,07	0,04	0,08	0,14	0,13
AI2O3	21,51	21,60	21,56	21,63	21,38	21,30	21,73	20,80	21,00
Cr2O3	0,00	0,00	0,02	0,00	0,00	0,03	0,04	0,02	0,03
Fe2O3	0,55	0,66	0,83	0,54	0,99	0,89	0,34	0,85	0,97
MgO	3,52	3,38	3,31	3,28	3,41	3,41	3,30	2,78	2,11
CaO	4,56	5,30	5,15	5,27	4,88	4,72	4,92	4,83	6,62
MnO	2,06	1,84	1,70	1,69	1,78	1,99	2,85	2,08	2,74
FeO	31,49	31,38	31,77	31,70	31,82	31,60	30,87	31,84	30,25
Summe	101,30	102,06	101,92	102,06	101,97	101,53	101,86	100,82	101,03
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5,928	5,923	5,898	5,931	5,915	5,926	5,925	5,974	5,924
AI	0,072	0,077	0,102	0,069	0,085	0,074	0,075	0,026	0,076
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,006	0,011	0,006	0,011	0,008	0,004	0,009	0,016	0,015
AI	3,929	3,911	3,893	3,925	3,874	3,887	3,946	3,879	3,866
Cr	0,000	0,000	0,002	0,000	0,000	0,003	0,005	0,003	0,003
Fe3+	0,065	0,078	0,098	0,063	0,117	0,106	0,040	0,102	0,116
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,829	0,789	0,776	0,767	0,799	0,803	0,772	0,659	0,501
Ca	0,771	0,889	0,868	0,884	0,822	0,798	0,828	0,824	1,130
Mn	0,276	0,244	0,227	0,225	0,237	0,265	0,379	0,280	0,370
Fe2+	4,157	4,111	4,177	4,153	4,181	4,169	4,054	4,241	4,029
X-Pos.:	6,033	6,033	6,048	6,029	6,039	6,035	6,033	6,005	6,030
Summe	16,033	16,033	16,048	16,029	16,039	16,035	16,033	16,005	16,030
XFe	0,83	0,84	0,84	0,84	0,84	0,84	0,84	0,87	0,89
XMn	0,05	0,05	0,04	0,04	0,05	0,05	0,07	0,05	0,08
Endglieder									
Uvar.	0,00	0,00	0.06	0.00	0,00	0,08	0,12	0,08	0.08
Andr.	1,77	2,22	2,59	1,85	3,12	2,73	1,22	2,95	3,27
Gross.	11,01	12,51	11,70	12,82	10,49	10,42	12,38	10,70	15,39
Alm.	68,91	68,15	69,07	68,89	69,24	69,08	67,20	70,63	66,82
Spess.	4,57	4,04	3,75	3,73	3,93	4,40	6,28	4,66	6,13
Pyrop	13,74	13,08	12,84	12,72	13,23	13,30	12,80	10,97	8,32
XAIm	0 680	0 682	0 601	0.880	0 602	0 601	0 672	0 706	0 669
YSnass	0,009	0,002	0,031	0,009	0,032	0,031	0,072	0,700	0,000
XPv	0,040	0,040	0,037	0,037	0,039	0,044	0,003	0,047	0,001
XGross	0,137	0,131	0,120	0,127	0,132	0,133	0,120	0,110	0,003
AG1055	0,110	0,125	0,117	0,128	0,105	0,104	0,124	0,107	0,154

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Granat	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2
	Gra1-3	GRA1-4	GRA1-5	GRA1-6	GRA1-7	GRA1-8	GRA1-9	GRA1-10	GRA1-11
SiO2	37,02	37,04	36,77	37,54	36,76	36,48	37,02	36,17	36,58
TiO2	0,13	0,11	0,13	0,12	0,14	0,14	0,14	0,14	0,07
AI2O3	20,40	20,82	20,75	20,77	20,61	20,48	20,42	20,88	20,90
Cr2O3	0,02	0,00	0,00	0,01	0,00	0,02	0,00	0,03	0,01
Fe2O3	1,29	1,29	1,18	1,09	1,45	1,57	1,35	1,16	1,15
MgO	1,72	1,53	1,58	1,56	1,71	1,56	1,67	1,69	1,65
CaO	7,15	7,53	6,66	7,06	6,39	7,08	6,53	6,70	6,81
MnO	3,74	4,64	4,45	4,76	4,58	4,38	4,20	3,87	3,75
FeO	28,68	28,14	29,07	28,59	29,08	28,47	29,13	29,28	29,53
Summe	100,15	101,10	100,59	101,51	100,71	100,18	100,46	99,92	100,44
Strukturforme	l bezogen a	uf 24 Sauers	toffe						
Si	5,957	5,914	5,910	5,965	5,906	5,892	5,952	5,854	5,886
AI	0,043	0,086	0,090	0,035	0,094	0,108	0,048	0,146	0,114
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,015	0,013	0,015	0,014	0,016	0,017	0,017	0,017	0,008
AI	3,825	3,832	3,841	3,854	3,808	3,790	3,821	3,838	3,850
Cr	0,003	0,000	0,001	0,001	0,000	0,003	0,000	0,003	0,002
Fe3+	0,157	0,155	0,143	0,131	0,176	0,191	0,163	0,142	0,140
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,413	0,363	0,378	0,370	0,410	0,376	0,401	0,409	0,395
Ca	1,232	1,288	1,146	1,202	1,099	1,225	1,125	1,161	1,173
Mn	0,509	0,627	0,606	0,641	0,623	0,599	0,572	0,531	0,511
Fe2+	3,860	3,758	3,908	3,799	3,907	3,846	3,917	3,963	3,974
X-Pos.:	6,014	6,036	6,038	6,011	6,039	6,045	6,015	6,064	6,053
Summe	16,014	16,036	16,037	16,011	16,039	16,046	16,015	16,064	16,053
XFe	0,90	0,91	0,91	0,91	0,91	0,91	0,91	0,91	0,91
XMn	0,11	0,13	0,12	0,13	0,13	0,12	0,12	0,11	0,10
Endglieder									
Uvar.	0,07	0,00	0,01	0,02	0,00	0,06	0,00	0,09	0,04
Andr.	4,28	4,17	3,93	3,62	4,77	5,15	4,49	3,93	3,66
Gross.	16,13	17,16	15,04	16,35	13,43	15,04	14,21	15,13	15,68
Alm.	64,18	62,26	64,72	63,20	64,70	63,62	65,12	65,36	65,65
Spess.	8,47	10,39	10,03	10,66	10,32	9,91	9,52	8,75	8,44
Pyrop	6,87	6,02	6,27	6,15	6,78	6,21	6,67	6,74	6,53
XAIm	0,642	0,623	0,647	0,632	0,647	0,636	0,651	0,654	0,656
XSpess	0,085	0,104	0,100	0,107	0,103	0,099	0,095	0,088	0,084
ХРу	0,069	0,060	0,063	0,062	0,068	0,062	0,067	0,067	0,065
XGross	0,161	0,172	0,150	0,163	0,134	0,150	0,142	0,151	0,157

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Granat	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2
	GRA1-12	GRA1-13	GRA1-14	GRA1-15	GRA1-17	GRA1-18	GRA1-19	GRA1-20	GRA2-1
8:00	26 54	27.40	26.20	26.70	26.65	26.02	27.04	26.74	07.04
5102	36,54	37,19	36,39	36,70	30,05	36,93	37,01	30,71	37,21
1102	0,09	0,12	0,08	0,06	0,19	0,08	0,15	0,13	0,08
AI2O3	20,93	20,79	21,05	20,73	20,54	20,87	20,91	20,89	20,61
Cr2O3	0,04	0,02	0,01	0,04	0,01	0,00	0,00	0,00	0,02
Fe2O3	1,27	1,47	1,53	1,51	1,74	0,88	1,21	1,14	1,03
MgO	1,94	2,07	2,07	2,47	2,79	2,44	1,99	1,82	2,11
CaO	6,39	6,48	6,76	5,82	5,46	5,95	6,48	6,71	4,47
MnO	3,44	3,01	2,59	2,34	4,35	2,84	3,12	3,46	5,48
FeO	29,99	30,37	30,41	30,91	28,70	30,02	30,24	29,68	28,60
Summe	100,63	101,52	100,88	100,57	100,42	100,01	101,11	100,54	100,28
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5,869	5,912	5,831	5,887	5,881	5,932	5,905	5,894	5,967
AI	0,131	0,088	0,169	0,113	0,119	0,068	0,095	0,106	0,033
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
ті	0.011	0.015	0.010	0.007	0.023	0.010	0.018	0.015	0.010
	2 921	2 807	2,010	0,007	0,023	2 994	2 9 2 7	0,013	2,010
Ai Cr	0.005	0,007	0,001	0,005	0,002	0,004	0,000	0,000	0,003
Ci Eo2	0,005	0,002	0,001	0,005	0,002	0,000	0,000	0,000	0,002
rest V.	0,155	0,170	0,164	0,102	0,210	0,100	0,145	0,130	4 000
001. 1.	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,464	0,491	0,495	0,590	0,667	0,584	0,474	0,436	0,663
Ca	1,100	1,104	1,160	1,000	0,938	1,025	1,108	1,154	0,768
Mn	0,468	0,405	0,351	0,318	0,591	0,386	0,422	0,471	0,745
Fe2+	4,029	4,037	4,074	4,146	3,852	4,033	4,035	3,985	3,836
X-Pos.:	6,060	6,037	6,081	6,054	6,048	6,029	6,039	6,046	6,012
Summe	16,060	16,037	16,080	16,053	16,048	16,029	16,039	16,045	16,012
XFe	0.90	0.89	0.89	0.88	0.85	0.87	0.89	0.90	0.85
XMn	0.09	0.08	0.07	0.06	0.12	0.08	0.09	0.10	0.14
	,	,	,	,	,	,	,	,	,
Endglieder									
Uvar.	0,13	0,06	0,02	0,13	0,04	0,00	0,00	0,00	0,05
Andr.	4,06	4,73	4,79	4,67	5,78	2,90	4,04	3,79	3,35
Gross.	13,97	13,50	14,26	11,71	9,69	14,11	14,31	15,30	9,37
Alm.	66,47	66,88	67,01	68,48	63,69	66,89	66,81	65,91	63,81
Spess.	7,72	6,71	5,78	5,26	9,77	6,41	6,99	7,79	12,39
Pyrop	7,66	8,13	8,15	9,74	11,03	9,69	7,84	7,21	11,02
XAIm	0.665	0.669	0.670	0.685	0.637	0.669	0.668	0.659	0.638
XSpess	0.077	0.067	0.058	0.053	0.098	0.064	0.070	0.078	0.124
XPv	0.077	0.081	0.081	0.097	0.110	0.097	0.078	0.072	0.110
XGross	0 140	0 135	0 143	0 117	0 097	0 141	0 143	0 153	0 094
A01033	0,140	0,100	0,140	0,117	0,007	0,141	0,140	0,100	0,034

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Granat	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2
	GRA2-2	GRA2-3	GRA2-4	GRA2-5	GRA2-7	GRA2-8	GRA2-10	GRA2-11	GRA2-12
SiO2	36,72	36,42	36,74	36,53	36,62	37,11	36,87	36,63	37,02
TiO2	0,14	0,14	0,11	0,03	0,08	0,11	0,08	0,12	0,09
AI2O3	20,54	20,57	20,68	20,56	21,03	20,97	20,74	21,14	20,81
Cr2O3	0,00	0,02	0,02	0,00	0,04	0,00	0,01	0,01	0,02
Fe2O3	1,64	1,41	1,31	1,72	1,19	1,26	1,31	1,04	1,30
MgO	2,52	1,47	1,40	1,64	2,27	2,76	2,35	2,23	2,42
CaO	5,36	6,66	6,97	6,39	5,08	5,96	6,49	5,88	6,12
MnO	5,40	5,92	5,77	5,75	3,74	3,47	3,69	3,20	2,62
FeO	28,14	27,56	27,65	28,02	30,87	29,33	28,78	30,49	30,41
Summe	100,47	100,18	100,65	100,64	100,92	100,96	100,32	100,74	100,79
Strukturforme	l bezogen a	uf 24 Sauers	toffe						
Si	5,898	5,889	5,907	5,884	5,870	5,904	5,912	5,867	5,914
AI	0,102	0,111	0,093	0,116	0,130	0,096	0,088	0,133	0,086
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,017	0,017	0,014	0,003	0,010	0,013	0,009	0,014	0,010
AI	3,785	3,808	3,825	3,788	3,843	3,836	3,831	3,859	3,831
Cr	0,000	0,003	0,003	0,001	0,005	0,000	0,002	0,002	0,003
Fe3+	0,198	0,171	0,159	0,209	0,143	0,151	0,158	0,125	0,156
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,604	0,354	0,336	0,394	0,542	0,655	0,563	0,532	0,576
Ca	0,923	1,154	1,200	1,103	0,873	1,016	1,115	1,009	1,047
Mn	0,735	0,811	0,786	0,785	0,507	0,468	0,502	0,435	0,354
Fe2+	3,780	3,727	3,718	3,774	4,137	3,903	3,860	4,085	4,062
X-Pos.:	6,042	6,046	6,039	6,056	6,059	6,041	6,039	6,060	6,038
Summe	16,042	16,047	16,040	16,056	16,060	16,041	16,039	16,060	16,038
XFe	0,86	0,91	0,92	0,91	0,88	0,86	0,87	0,88	0,88
XMn	0,14	0,17	0,16	0,16	0,10	0,09	0,10	0,09	0,07
Endglieder									
Uvar.	0,00	0,08	0,07	0,01	0,11	0,00	0,04	0,04	0,07
Andr.	5,34	4,69	4,28	5,25	3,79	4,08	4,16	3,45	4,13
Gross.	9,94	14,33	15,52	12,95	10,51	12,74	14,26	13,16	13,13
Alm.	62,56	61,64	61,56	62,32	68,28	64,60	63,91	67,41	67,27
Spess.	12,17	13,41	13,01	12,96	8,37	7,74	8,31	7,17	5,86
Pyrop	9,99	5,86	5,56	6,51	8,94	10,84	9,32	8,77	9,54
XAIm	0,626	0,616	0,616	0,623	0,683	0,646	0,639	0,674	0,673
XSpess	0,122	0,134	0,130	0,130	0,084	0,077	0,083	0,072	0,059
XPy	0,100	0,059	0,056	0,065	0,089	0,108	0,093	0,088	0,095
XGross	0,099	0,143	0,155	0,130	0,105	0,127	0,143	0,132	0,131

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Granat	8.2	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3
	GRA2-13	GRA1-2	GRA1-3	GRA1-5	GRA1-6	GRA1-7	GRA1-9	GRA1-10	GRA1-11
SiO2	37,00	37,31	37,03	37,37	37,35	36,89	37,38	37,28	37,11
TiO2	0,12	0,09	0,09	0,08	0,12	0,05	0,14	0,08	0,09
AI2O3	20,90	21,00	21,03	21,17	20,91	21,00	21,12	21,05	20,93
Cr2O3	0,05	0,01	0,06	0,01	0,01	0,02	0,00	0,00	0,00
Fe2O3	1,11	0,86	0,83	0,89	1,10	0,86	1,17	1,11	1,43
MgO	2,59	3,05	2,97	3,39	3,43	3,51	3,68	3,48	3,32
CaO	6,05	5,31	5,76	5,52	4,75	3,66	5,09	5,19	5,26
MnO	2,44	1,97	1,96	3,25	5,40	5,75	2,56	2,31	3,25
FeO	30,35	30,96	30,50	29,07	27,66	28,24	30,00	30,26	29,54
Summe	100,61	100,57	100,22	100,75	100,73	99,98	101,14	100,76	100,94
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5,911	5,943	5,919	5,927	5,936	5,917	5,908	5,919	5,898
AI	0,089	0,057	0,081	0,073	0,064	0,083	0,092	0,081	0,102
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,014	0,011	0,011	0,009	0,015	0,006	0,017	0,010	0,011
AI	3,846	3,885	3,882	3,884	3,853	3,888	3,844	3,858	3,819
Cr	0,006	0,002	0,008	0,001	0,001	0,003	0,000	0,000	0,000
Fe3+	0,134	0,103	0,100	0,106	0,131	0,104	0,140	0,133	0,171
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Ма	0.618	0.725	0.707	0.802	0.812	0.840	0.866	0.824	0.786
Ca	1.035	0.906	0.986	0.939	0.810	0.628	0.862	0.883	0.896
Mn	0.331	0.266	0.265	0.436	0.726	0.781	0.343	0.311	0.437
Fe2+	4.055	4,125	4.077	3.856	3.677	3.789	3,966	4.018	3.926
X-Pos.:	6.038	6.023	6.035	6,032	6.025	6.038	6.038	6.035	6,045
Summe	16,037	16,023	16,035	16,032	16,025	16,038	16,038	16,036	16,045
XFe	0,87	0,85	0,85	0,83	0,82	0,82	0,82	0,83	0,83
XMn	0,07	0,05	0,05	0,09	0,14	0,14	0,07	0,06	0,08
Endglieder									
Uvar.	0,14	0,04	0,19	0,03	0,03	0,08	0,00	0,00	0,00
Andr.	3,68	2,83	2,75	2,85	3,63	2,72	3,88	3,54	4,51
Gross.	13,32	12,18	13,40	12,68	9,78	7,61	10,40	11,08	10,32
Alm.	67,16	68,49	67,56	63,92	61,03	62,75	65,69	66,57	64,94
Spess.	5,48	4,42	4,39	7,23	12,05	12,93	5,68	5,15	7,24
Pyrop	10,23	12,04	11,71	13,29	13,48	13,92	14,34	13,66	13,00
XAIm	0.672	0.685	0.676	0.639	0.610	0.628	0.657	0.666	0.649
XSpess	0.055	0.044	0.044	0.072	0.121	0.129	0.057	0.051	0.072
XPv	0.102	0.120	0.117	0.133	0.135	0.139	0.143	0.137	0.130
XGross	0 133	0 122	0 134	0 127	0.098	0.076	0 104	0 111	0 103
	0,100	0,122	0,104	0,121	0,000	0,010	0,104	5,111	5,105

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Granat 8.4<	Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
GRA1-1 GRA1-2 GRA1-3 GRA1-4 GRA1-5 GRA1-6 GRA1-7 GRA1-1 GRA1-2 SiO2 36,82 37,35 37,43 37,36 37,24 37,65 37,45 36,82 37,35 TiO2 0,08 0,06 0,12 0,12 0,06 0,11 0,04 0,08 0,06 Al2O3 21,02 21,12 20,81 21,01 20,93 21,37 20,80 21,02 21,12 Cr2O3 0,02 0,00 0,00 0,00 0,03 0,00 0,00 0,02 0,00 Fe2O3 1,01 0,75 1,25 1,00 1,17 0,44 0,83 1,01 0,75 MgO 3,47 3,19 2,80 2,72 3,49 3,31 3,26 3,47 3,15 MnO 3,78 2,25 2,19 2,31 2,92 6,09 2,81 3,78 2,26 Summe 100,01 100,78 101,23 1	Granat	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4
SiO2 36,82 37,35 37,43 37,36 37,24 37,65 37,45 36,82 37,35 TiO2 0,08 0,06 0,12 0,12 0,06 0,11 0,04 0,08 0,06 Al2O3 21,02 21,12 20,81 21,01 20,93 21,37 20,80 21,02 21,12 Cr2O3 0,02 0,00 0,00 0,00 0,03 0,00 0,00 0,02 0,07 Fe2O3 1,01 0,75 1,25 1,00 1,17 0,44 0,83 1,01 0,75 MgO 3,47 3,19 2,80 2,72 3,49 3,31 3,26 3,47 3,15 CaO 4,69 4,47 5,34 6,52 5,05 3,84 4,98 4,69 4,47 MnO 3,78 2,25 2,19 2,31 2,92 6,09 2,81 3,78 2,25 Summe 100,01 100,78 101,23 <t< th=""><th></th><th>GRA1-1</th><th>GRA1-2</th><th>GRA1-3</th><th>GRA1-4</th><th>GRA1-5</th><th>GRA1-6</th><th>GRA1-7</th><th>GRA1-1</th><th>GRA1-2</th></t<>		GRA1-1	GRA1-2	GRA1-3	GRA1-4	GRA1-5	GRA1-6	GRA1-7	GRA1-1	GRA1-2
TiO2 0,08 0,06 0,12 0,12 0,06 0,11 0,04 0,08 0,06 Al2O3 21,02 21,12 20,81 21,01 20,93 21,37 20,80 21,02 21,12 Cr2O3 0,02 0,00 0,00 0,00 0,03 0,00 0,00 0,02 0,00 Fe2O3 1,01 0,75 1,25 1,00 1,17 0,44 0,83 1,01 0,75 MgO 3,47 3,19 2,80 2,72 3,49 3,31 3,26 3,47 3,19 CaO 4,69 4,47 5,34 6,52 5,05 3,84 4,98 4,69 4,47 MnO 3,78 2,25 2,19 2,31 2,92 6,09 2,81 3,78 2,25 Summe 100,01 100,78 101,23 100,85 100,61 101,33 100,13 100,01 100,78 Strukturformel bezogen auf 24 Sauerstoffe Si 5,898 5,942 5,934 5,953 5,980 5,898 5,942 6,000	SiO2	36,82	37,35	37,43	37,36	37,24	37,65	37,45	36,82	37,35
Al2O3 21,02 21,12 20,81 21,01 20,93 21,37 20,80 21,02 21,12 Cr2O3 0,02 0,00 0,00 0,00 0,03 0,00 0,00 0,00 Fe2O3 1,01 0,75 1,25 1,00 1,17 0,44 0,83 1,01 0,75 MgO 3,47 3,19 2,80 2,72 3,49 3,31 3,26 3,47 3,19 CaO 4,69 4,47 5,34 6,52 5,05 3,84 4,98 4,69 4,47 MnO 3,78 2,25 2,19 2,31 2,92 6,09 2,81 3,78 2,25 Summe 100,01 100,78 101,23 100,85 100,61 101,33 100,13 100,01 100,78 Strukturformel bezogen auf 24 Sauerstoffe Si 5,898 5,942 5,943 5,934 5,924 5,953 5,980 5,898 5,942 Al 0,102 0,058 0,057 0,066 0,076 0,047 0,020 0,102 0,058	TiO2	0,08	0,06	0,12	0,12	0,06	0,11	0,04	0,08	0,06
Cr203 0,02 0,00 0,00 0,03 0,00 0,00 0,02 0,00 Fe2O3 1,01 0,75 1,25 1,00 1,17 0,44 0,83 1,01 0,75 MgO 3,47 3,19 2,80 2,72 3,49 3,31 3,26 3,47 3,19 CaO 4,69 4,47 5,34 6,52 5,05 3,84 4,98 4,69 4,47 MnO 3,78 2,25 2,19 2,31 2,92 6,09 2,81 3,78 2,25 Summe 100,01 100,78 101,23 100,85 100,61 101,33 100,13 100,01 100,78 Strukturformel bezogen auf 24 Sauerstoffe Si 5,898 5,942 5,934 5,924 5,953 5,980 5,898 5,942 Al 0,102 0,058 0,057 0,066 0,076 0,047 0,020 0,102 0,058 Tetr. Z: 6,000 6,000	AI2O3	21,02	21,12	20,81	21,01	20,93	21,37	20,80	21,02	21,12
Fe2O3 1,01 0,75 1,25 1,00 1,17 0,44 0,83 1,01 0,75 MgO 3,47 3,19 2,80 2,72 3,49 3,31 3,26 3,47 3,19 CaO 4,69 4,47 5,34 6,52 5,05 3,84 4,98 4,69 4,47 MnO 3,78 2,25 2,19 2,31 2,92 6,09 2,81 3,78 2,25 FeO 29,13 31,59 31,30 29,82 29,72 28,51 29,96 29,13 31,59 Summe 100,01 100,78 101,23 100,85 100,61 101,33 100,13 100,01 100,78 Strukturformel bezogen auf 24 Sauerstoffe Si 5,898 5,942 5,934 5,924 5,953 5,980 5,898 5,942 Al 0,102 0,058 0,057 0,066 0,076 0,047 0,020 0,102 0,058 Tetr. Z: 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000	Cr2O3	0,02	0,00	0,00	0,00	0,03	0,00	0,00	0,02	0,00
MgO 3,47 3,19 2,80 2,72 3,49 3,31 3,26 3,47 3,19 CaO 4,69 4,47 5,34 6,52 5,05 3,84 4,98 4,69 4,47 MnO 3,78 2,25 2,19 2,31 2,92 6,09 2,81 3,78 2,25 FeO 29,13 31,59 31,30 29,82 29,72 28,51 29,96 29,13 31,59 Summe 100,01 100,78 101,23 100,85 100,61 101,33 100,13 100,01 100,78 Strukturformel bezogen auf 24 Sauerstoffe Si 5,898 5,942 5,934 5,924 5,953 5,980 5,898 5,942 Al 0,102 0,058 0,057 0,066 0,076 0,047 0,020 0,102 0,058 Tetr. Z: 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 <	Fe2O3	1,01	0,75	1,25	1,00	1,17	0,44	0,83	1,01	0,75
CaO 4,69 4,47 5,34 6,52 5,05 3,84 4,98 4,69 4,47 MnO 3,78 2,25 2,19 2,31 2,92 6,09 2,81 3,78 2,25 FeO 29,13 31,59 31,30 29,82 29,72 28,51 29,96 29,13 31,59 Summe 100,01 100,78 101,23 100,85 100,61 101,33 100,13 100,01 100,78 Strukturformel bezogen auf 24 Sauerstoffe Si 5,898 5,942 5,934 5,924 5,953 5,980 5,898 5,942 Al 0,102 0,058 0,057 0,066 0,076 0,047 0,020 0,102 0,058 Tetr. Z: 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 Al 3,866 3,902 3,837 3,866 3,848 3,934 3,895 3,866 3,902	MgO	3,47	3,19	2,80	2,72	3,49	3,31	3,26	3,47	3,19
MnO 3,78 2,25 2,19 2,31 2,92 6,09 2,81 3,78 2,25 FeO 29,13 31,59 31,30 29,82 29,72 28,51 29,96 29,13 31,59 Summe 100,01 100,78 101,23 100,85 100,61 101,33 100,13 100,01 100,78 Strukturformel bezogen auf 24 Sauerstoffe Si 5,898 5,942 5,934 5,924 5,953 5,980 5,898 5,942 Al 0,102 0,058 0,057 0,066 0,076 0,047 0,020 0,102 0,058 Tetr. Z: 6,000	CaO	4,69	4,47	5,34	6,52	5,05	3,84	4,98	4,69	4,47
FeO 29,13 31,59 31,30 29,82 29,72 28,51 29,96 29,13 31,59 Summe 100,01 100,78 101,23 100,85 100,61 101,33 100,13 100,01 100,78 Strukturformel bezogen auf 24 Sauerstoffe Si 5,898 5,942 5,943 5,934 5,924 5,953 5,980 5,898 5,942 Al 0,102 0,058 0,057 0,066 0,076 0,047 0,020 0,102 0,058 Tetr. Z: 6,000 <t< th=""><th>MnO</th><th>3,78</th><th>2,25</th><th>2,19</th><th>2,31</th><th>2,92</th><th>6,09</th><th>2,81</th><th>3,78</th><th>2,25</th></t<>	MnO	3,78	2,25	2,19	2,31	2,92	6,09	2,81	3,78	2,25
Summe 100,01 100,78 101,23 100,85 100,61 101,33 100,13 100,01 100,78 Strukturformel bezogen auf 24 Sauerstoffe Si 5,898 5,942 5,943 5,934 5,924 5,953 5,980 5,898 5,942 Al 0,102 0,058 0,057 0,066 0,076 0,047 0,020 0,102 0,058 Tetr. Z: 6,000	FeO	29,13	31,59	31,30	29,82	29,72	28,51	29,96	29,13	31,59
Strukturformel bezogen auf 24 Sauerstoffe Si 5,898 5,942 5,934 5,924 5,953 5,980 5,898 5,942 Al 0,102 0,058 0,057 0,066 0,076 0,047 0,020 0,102 0,058 Tetr. Z: 6,000	Summe	100,01	100,78	101,23	100,85	100,61	101,33	100,13	100,01	100,78
Si 5,898 5,942 5,943 5,934 5,924 5,953 5,980 5,898 5,942 Al 0,102 0,058 0,057 0,066 0,076 0,047 0,020 0,102 0,058 Tetr. Z: 6,000	Strukturform	el bezogen a	uf 24 Sauers	toffe						
Al 0,102 0,058 0,057 0,066 0,076 0,047 0,020 0,102 0,058 Tetr. Z: 6,000 6,0	Si	5,898	5,942	5,943	5,934	5,924	5,953	5,980	5,898	5,942
Tetr. Z: 6,000	AI	0,102	0,058	0,057	0,066	0,076	0,047	0,020	0,102	0,058
Ti 0,009 0,007 0,014 0,014 0,008 0,013 0,004 0,009 0,007 AI 3,866 3,902 3,837 3,866 3,848 3,934 3,895 3,866 3,902	Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Al 3,866 3,902 3,837 3,866 3,848 3,934 3,895 3,866 3,902	Ті	0,009	0,007	0,014	0,014	0,008	0,013	0,004	0,009	0,007
	AI	3,866	3,902	3,837	3,866	3,848	3,934	3,895	3,866	3,902
Cr 0.003 0.000 0.000 0.003 0.000 0.003 0.000 0.003 0.000	Cr	0,003	0,000	0,000	0,000	0,003	0,000	0,000	0,003	0,000
Fe3+ 0.122 0.090 0.149 0.120 0.140 0.052 0.100 0.122 0.090	Fe3+	0.122	0.090	0.149	0.120	0.140	0.052	0.100	0.122	0.090
Oct. Y: 4,000 <	Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg 0.829 0.756 0.662 0.644 0.827 0.781 0.775 0.829 0.756	Mq	0,829	0,756	0,662	0,644	0,827	0,781	0,775	0,829	0,756
Ca 0.804 0.762 0.909 1.110 0.860 0.651 0.852 0.804 0.762	Ca	0.804	0.762	0.909	1.110	0.860	0.651	0.852	0.804	0.762
Mn 0.512 0.303 0.295 0.311 0.394 0.816 0.380 0.512 0.303	Mn	0,512	0,303	0,295	0,311	0,394	0,816	0,380	0,512	0,303
Fe2+ 3,901 4,204 4,156 3,961 3,954 3,769 4,001 3,901 4,204	Fe2+	3,901	4,204	4,156	3,961	3,954	3,769	4,001	3,901	4,204
X-Pos.: 6,047 6,026 6,021 6,026 6,035 6,017 6,008 6,047 6,026	X-Pos.:	6,047	6,026	6,021	6,026	6,035	6,017	6,008	6,047	6,026
Summe 16,047 16,025 16,021 16,026 16,035 16,017 16,008 16,047 16,025	Summe	16,047	16,025	16,021	16,026	16,035	16,017	16,008	16,047	16,025
XFe 0.82 0.85 0.86 0.86 0.83 0.83 0.84 0.82 0.85	XFe	0.82	0.85	0.86	0.86	0.83	0.83	0.84	0.82	0.85
XMn 0,10 0,06 0,06 0,06 0,08 0,15 0,07 0,10 0,06	XMn	0,10	0,06	0,06	0,06	0,08	0,15	0,07	0,10	0,06
Endalieder	Endalieder									
Uvar. 0.06 0.00 0.00 0.08 0.00 0.00 0.06 0.00	Uvar.	0.06	0.00	0.00	0.00	0.08	0.00	0.00	0.06	0.00
Andr. 3.26 2.43 4.05 3.33 3.68 1.63 2.60 3.26 2.43	Andr.	3.26	2.43	4.05	3.33	3.68	1.63	2.60	3.26	2.43
Gross. 9.97 10.22 11.04 15.08 10.50 9.18 11.59 9.97 10.22	Gross.	9.97	10.22	11.04	15.08	10.50	9.18	11.59	9.97	10.22
Alm. 64.52 69.76 69.02 65.73 65.52 62.64 66.59 64.52 69.76	Alm.	64.52	69.76	69.02	65.73	65.52	62.64	66.59	64.52	69.76
Spess. 8,47 5.03 4,89 5,16 6,52 13,56 6,32 8,47 5,03	Spess.	8.47	5.03	4.89	5.16	6.52	13.56	6.32	8.47	5.03
Pyrop 13,70 12,55 10,99 10,69 13,71 12,98 12,90 13,70 12,55	Pyrop	13,70	12,55	10,99	10,69	13,71	12,98	12,90	13,70	12,55
XAIm 0.645 0.698 0.690 0.657 0.655 0.626 0.666 0.645 0.698	XAIm	0 645	0 698	0 690	0 657	0 655	0.626	0 666	0 645	0 698
XSpess 0.085 0.050 0.049 0.052 0.065 0.136 0.063 0.085 0.050	XSpess	0.085	0.050	0.049	0.052	0.065	0 136	0.063	0.085	0.050
XPv 0.137 0.126 0.110 0.107 0.137 0.130 0.129 0.137 0.126	XPv	0 137	0 126	0 110	0 107	0 137	0 130	0 129	0 137	0 126
XGross 0.100 0.102 0.110 0.151 0.105 0.092 0.116 0.100 0.102	XCross	0 100	0.102	0.110	0.151	0.105	0.092	0.116	0.100	0.102

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Granat	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4
	GRA1-3	GRA1-4	GRA1-5	GRA1-6	GRA1-7	GRAP1	GRAP2	GRAP3	GRAP4
						Profil II Rand			
SiO2	37,43	37,36	37,24	37,65	37,45	36,47	36,60	37,25	37,30
TiO2	0,12	0,12	0,06	0,11	0,04	0,04	0,09	0,13	0,07
AI2O3	20,81	21,01	20,93	21,37	20,80	20,32	20,75	20,70	20,73
Cr2O3	0,00	0,00	0,03	0,00	0,00	0,03	0,01	0,02	0,03
Fe2O3	1,25	1,00	1,17	0,44	0,83	1,79	1,59	1,33	0,77
MgO	2,80	2,72	3,49	3,31	3,26	3,19	3,46	3,63	3,36
CaO	5,34	6,52	5,05	3,84	4,98	4,70	4,53	4,60	5,08
MnO	2,19	2,31	2,92	6,09	2,81	5,31	4,29	2,75	2,05
FeO	31,30	29,82	29,72	28,51	29,96	27,62	28,85	30,06	30,23
Summe	101,23	100,85	100,61	101,33	100,13	99,45	100,16	100,47	99,62
Strukturforme	el bezogen a	uf 24 Sauers	offe						
Si	5,943	5,934	5,924	5,953	5,980	5,901	5,872	5,936	5,979
AI	0,057	0,066	0,076	0,047	0,020	0,099	0,128	0,064	0,021
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,014	0,014	0,008	0,013	0,004	0,004	0,011	0,016	0,008
AI	3,837	3,866	3,848	3,934	3,895	3,775	3,796	3,823	3,895
Cr	0,000	0,000	0,003	0,000	0,000	0,003	0,001	0,002	0,004
Fe3+	0,149	0,120	0,140	0,052	0,100	0,217	0,192	0,159	0,092
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Ma	0,662	0,644	0,827	0,781	0,775	0,768	0,827	0,862	0,804
Ca	0,909	1,110	0,860	0,651	0,852	0,814	0,779	0,785	0,872
Mn	0,295	0,311	0,394	0,816	0,380	0,728	0,582	0,372	0,279
Fe2+	4,156	3,961	3,954	3,769	4,001	3,737	3,871	4,005	4,052
X-Pos.:	6,021	6,026	6,035	6,017	6,008	6,047	6,058	6,024	6,006
Summe	16,021	16,026	16,035	16,017	16,008	16,047	16,058	16,024	16,006
XFe	0.86	0.86	0.83	0.83	0.84	0.83	0.82	0.82	0.83
XMn	0.06	0.06	0.08	0,00	0,04	0,14	0,02	0,02	0.05
	-,	-,	-,	-,	-,	-,	-,	-,	-,
Endglieder									
Uvar.	0,00	0,00	0,08	0,00	0,00	0,09	0,03	0,05	0,11
Andr.	4,05	3,33	3,68	1,63	2,60	5,50	5,03	4,37	2,52
Gross.	11,04	15,08	10,50	9,18	11,59	7,87	7,80	8,62	11,90
Alm.	69,02	65,73	65,52	62,64	66,59	61,80	63,89	66,48	67,46
Spess.	4,89	5,16	6,52	13,56	6,32	12,03	9,61	6,17	4,64
Pyrop	10,99	10,69	13,71	12,98	12,90	12,71	13,65	14,31	13,38
XAIm	0.690	0.657	0.655	0.626	0.666	0.618	0,639	0.665	0.675
XSpess	0.049	0.052	0.065	0.136	0.063	0.120	0.096	0.062	0.046
XPv	0.110	0.107	0.137	0.130	0.129	0.127	0.136	0.143	0.134
XGross	0 110	0 151	0 105	0.092	0 116	0.079	0.078	0.086	0 119
	0,110	0,101	0,100	0,002	5,110	0,010	0,010	0,000	5,115

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Granat	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4
	GRAP5	GRAP6	GRAP7	GRAP8	GRAP9	GRAP10	GRAP11	GRAP12	GRAP13
SiO2	37,07	36,90	37,17	37,23	37,12	37,86	38,19	37,35	37,26
TiO2	0,07	0,04	0,08	0,12	0,11	0,08	0,12	0,05	0,07
AI2O3	21,18	21,06	21,02	20,95	21,23	21,34	21,19	20,93	21,12
Cr2O3	0,00	0,00	0,01	0,00	0,05	0,01	0,00	0,02	0,04
Fe2O3	1,05	0,93	1,02	0,97	0,70	0,54	0,49	1,05	0,57
MgO	2,87	3,11	2,94	2,97	3,04	2,93	2,81	2,63	2,50
CaO	5,45	4,88	5,23	5,31	5,10	5,37	5,79	5,54	5,79
MnO	2,00	2,08	1,91	2,00	2,07	2,15	2,18	2,16	2,17
FeO	31,35	31,24	31,43	31,07	31,30	31,37	30,83	31,34	31,06
Summe	101,03	100,23	100,80	100,62	100,72	101,66	101,59	101,07	100,58
Strukturforme	l bezogen a	uf 24 Sauers	toffe						
Si	5,895	5,908	5,921	5,934	5,911	5,963	6,007	5,941	5,946
AI	0,105	0,092	0,079	0,066	0,089	0,037	0,000	0,059	0,054
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,007	6,000	6,000
Ті	0,009	0,005	0,009	0,014	0,013	0,010	0,014	0,006	0,008
AI	3,866	3,883	3,868	3,870	3,897	3,925	3,928	3,865	3,919
Cr	0,000	0,000	0,001	0,000	0,006	0,001	0,000	0,003	0,005
Fe3+	0,126	0,112	0,122	0,116	0,084	0,064	0,058	0,126	0,069
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,681	0,741	0,697	0,706	0,721	0,688	0,659	0,623	0,594
Ca	0,929	0,837	0,893	0,907	0,870	0,907	0,975	0,944	0,990
Mn	0,269	0,281	0,258	0,269	0,279	0,287	0,290	0,291	0,293
Fe2+	4,169	4,183	4,187	4,142	4,168	4,131	4,056	4,169	4,145
X-Pos.:	6,048	6,043	6,034	6,025	6,039	6,013	5,980	6,027	6,023
Summe	16,048	16,043	16,035	16,026	16,038	16,013	15,987	16,027	16,023
XFe	0,86	0,85	0,86	0,85	0,85	0,86	0,86	0,87	0,87
XMn	0,05	0,05	0,05	0,05	0,05	0,06	0,06	0,06	0,06
Endglieder									
Uvar.	0,00	0,00	0,03	0,00	0,16	0,03	0,00	0,07	0,11
Andr.	3,34	2,90	3,27	3,25	2,40	1,85	1,81	3,28	1,92
Gross.	12,02	10,96	11,50	11,81	11,86	13,20	14,51	12,32	14,40
Alm.	68,94	69,22	69,38	68,75	69,02	68,70	67,82	69,17	68,83
Spess.	4,44	4,66	4,28	4,47	4,62	4,78	4,85	4,83	4,87
Pyrop	11,26	12,26	11,55	11,72	11,95	11,44	11,01	10,34	9,87
XAIm	0,689	0,692	0,694	0,688	0,690	0,687	0,678	0,692	0,688
XSpess	0,044	0,047	0,043	0,045	0,046	0,048	0,049	0,048	0,049
ХРу	0,113	0,123	0,116	0,117	0,119	0,114	0,110	0,103	0,099
XGross	0,120	0,110	0,115	0,118	0,119	0,132	0,145	0,123	0,144

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Granat	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4
	GRAP14	GRAP15	GRAP16	GRAP17	GRAP18	GRAP19	GRAP20	GRAP21	GRAP22
SiO2	36,94	37,10	37,05	37,32	37,26	37,11	37,27	36,59	37,13
TiO2	0,06	0,11	0,10	0,07	0,14	0,10	0,09	0,11	0,21
AI2O3	20,90	20,57	20,64	21,00	20,86	20,83	21,24	20,64	20,96
Cr2O3	0,02	0,01	0,05	0,02	0,02	0,00	0,00	0,04	0,00
Fe2O3	0,87	1,43	1,12	1,13	1,27	1,24	0,62	1,34	1,26
MgO	2,53	2,62	2,53	2,77	2,77	3,02	3,07	3,20	3,29
CaO	5,68	5,76	6,11	6,19	6,18	5,77	5,55	4,85	4,78
MnO	2,20	2,25	2,31	2,34	2,46	2,68	3,65	3,00	2,78
FeO	30,92	30,72	30,20	30,22	30,04	29,72	29,02	29,90	30,62
Summe	100,11	100,56	100,11	101,05	100,98	100,48	100,51	99,66	101,03
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5,930	5,935	5,944	5,925	5,922	5,921	5,931	5,898	5,900
AI	0,070	0,065	0,056	0,075	0,078	0,079	0,069	0,102	0,100
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ti	0,007	0,013	0,012	0,009	0,017	0,012	0,010	0,014	0,025
AI	3,885	3,813	3,847	3,853	3,828	3,839	3,915	3,818	3,824
Cr	0,003	0,002	0,006	0,003	0,003	0,000	0,000	0,005	0,000
Fe3+	0,105	0,173	0,135	0,135	0,152	0,149	0,075	0,162	0,151
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,605	0,624	0,604	0,654	0,656	0,718	0,729	0,768	0,779
Ca	0,977	0,988	1,051	1,053	1,052	0,987	0,947	0,838	0,814
Mn	0,299	0,304	0,314	0,314	0,331	0,362	0,492	0,409	0,375
Fe2+	4,151	4,110	4,052	4,012	3,992	3,966	3,862	4,030	4,070
X-Pos.:	6,031	6,027	6,021	6,033	6,030	6,033	6,030	6,045	6,037
Summe	16,032	16,026	16,022	16,033	16,031	16,033	16,029	16,044	16,037
XFe	0,87	0,87	0,87	0,86	0,86	0,85	0,84	0,84	0,84
XMn	0,06	0,06	0,06	0,06	0,07	0,07	0,10	0,08	0,07
Endglieder									
Uvar.	0,08	0,04	0,15	0,07	0,06	0,00	0,00	0,14	0,00
Andr.	2,79	4,61	3,67	3,57	4,21	4,01	2,11	4,37	4,38
Gross.	13,33	11,74	13,62	13,80	13,17	12,35	13,59	9,36	9,11
Alm.	68,82	68,20	67,29	66,50	66,20	65,74	64,05	66,67	67,41
Spess.	4,95	5,05	5,22	5,21	5,48	6,00	8,16	6,77	6,21
Pyrop	10,03	10,35	10,04	10,85	10,87	11,90	12,09	12,70	12,90
XAIm	0,688	0,682	0,673	0,665	0,662	0,657	0,641	0,667	0,674
XSpess	0,050	0,051	0,052	0,052	0,055	0,060	0,082	0,068	0,062
ХРу	0,100	0,104	0,100	0,108	0,109	0,119	0,121	0,127	0,129
XGross	0,133	0,117	0,136	0,138	0,132	0,124	0,136	0,094	0,091
			•	•			•		•

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Granat	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4	8.4
	GRAP23	GRAP24	GRAP25	GRAP26	GRAP27	GRAP28	GRAP31	GRAP32	GRAP33
SiO2	37,14	37,36	37,01	36,64	37,43	37,42	37,36	37,26	38,02
TiO2	0,14	0,08	0,06	0,08	0,07	0,05	0,12	0,10	0,09
AI2O3	20,84	20,96	20,88	20,61	21,33	21,07	21,18	21,31	21,33
Cr2O3	0,04	0,05	0,02	0,00	0,01	0,01	0,02	0,00	0,00
Fe2O3	1,13	1,12	1,09	1,52	0,84	0,85	0,90	1,34	0,81
MgO	3,12	3,14	3,04	3,09	3,31	3,84	3,59	3,74	3,59
CaO	5,08	5,39	4,94	5,34	5,20	3,61	5,26	4,84	4,80
MnO	2,61	2,41	2,44	2,36	2,40	3,46	3,09	3,59	4,75
FeO	30,49	30,49	30,89	30,19	30,69	30,36	29,28	29,48	28,57
Summe	100,60	100,99	100,36	99,81	101,28	100,67	100,80	101,65	101,96
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5,924	5,930	5,921	5,897	5,916	5,946	5,919	5,871	5,956
AI	0,076	0,070	0,079	0,103	0,084	0,054	0,081	0,129	0,044
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0.017	0.009	0.007	0.009	0.009	0.006	0.015	0.012	0.010
AI	3.842	3.851	3.859	3.807	3.890	3.891	3.875	3.829	3.893
Cr	0.005	0.006	0.003	0.000	0.001	0.001	0.002	0.000	0.000
Fe3+	0.136	0.134	0.131	0.184	0.100	0.101	0.108	0.159	0.096
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Ма	0.742	0.743	0.726	0.742	0.779	0.910	0.847	0.878	0.838
Ca	0.868	0.917	0.846	0.920	0.880	0.614	0.892	0.817	0.806
Mn	0.352	0.323	0.331	0.321	0.321	0.465	0.415	0.479	0.630
Fe2+	4,068	4,047	4,133	4,064	4,056	4,034	3,879	3,884	3,743
X-Pos.:	6,030	6,031	6,036	6,047	6,037	6,024	6,033	6,059	6,017
Summe	16,030	16,031	16,036	16,047	16,037	16,024	16,033	16,059	16,017
XFe	0.85	0.84	0.85	0.85	0.84	0.82	0.82	0.82	0.82
XMn	0,07	0,06	0,06	0,06	0,06	0,09	0,08	0,09	0,12
Endalieder									
Uvar.	0.12	0.15	0.07	0.00	0.04	0.03	0.06	0.00	0.01
Andr.	3.79	3.56	3.43	4.79	2.70	2.68	3.04	4.23	2.65
Gross.	10.49	11.49	10.51	10.43	11.84	7.48	11.69	9.25	10.73
Alm.	67,45	67,11	68,48	67,20	67,19	66,97	64,29	64,11	62,22
Spess.	5.84	5.36	5.48	5.31	5.32	7.72	6.88	7.91	10.46
Pyrop	12,31	12,32	12,03	12,27	12,90	15,11	14,04	14,50	13,93
XAIm	0.675	0.671	0.685	0.672	0.672	0.670	0.643	0.641	0.622
XSpess	0.058	0.054	0.055	0.053	0.053	0.077	0.069	0.079	0.105
XPv	0.123	0.123	0.120	0.123	0.129	0.151	0.140	0.145	0.139
XGross	0,105	0,115	0,105	0,104	0,118	0,075	0,117	0,093	0,107

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Granat	8.4	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.6
	GRAP34	GRA1-1	GRA1-2	GRA1-3	GRA1-4	GRA1-5	GRA1-6	GRA1-7	GRA1-1
	Profil II Rand								
SiO2	37,88	37,31	37,27	37,35	37,22	37,48	37,09	37,18	37,60
TiO2	0,01	0,04	0,03	0,03	0,07	0,02	0,09	0,08	0,09
AI2O3	21,62	21,44	21,14	21,21	21,02	21,15	21,03	20,87	21,17
Cr2O3	0,00	0,01	0,00	0,00	0,01	0,02	0,00	0,03	0,01
Fe2O3	0,75	0,30	0,65	0,62	0,93	0,70	0,83	0,65	0,69
MgO	3,46	3,09	3,73	3,55	3,57	3,37	3,11	3,43	3,36
CaO	4,04	3,70	4,57	4,85	4,49	4,44	5,32	4,63	4,44
MnO	6,51	7,66	2,97	3,78	3,70	2,46	2,24	2,85	5,36
FeO	28,20	27,29	29,66	28,91	29,38	31,13	30,49	29,89	28,33
Summe	102,46	100,85	100,03	100,30	100,39	100,78	100,19	99,60	101,04
Strukturforn	nel bezogen au	If 24 Sauers	toffe						
Si	5,926	5,937	5,945	5,944	5,931	5,954	5,928	5,964	5,955
AI	0,074	0,063	0,055	0,056	0,069	0,046	0,072	0,036	0,045
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
ті	0 001	0.005	0.003	0.003	0.008	0 002	0.010	0.010	0.010
Δι	3 911	3 958	3 919	3 922	3 879	3 914	3 889	3 908	3 907
Cr	0,000	0,002	0,000	0,022	0,001	0,012	0,000	0.004	0,001
Fe3+	0.088	0,002	0.078	0,000	0,001	0.083	0,000	0,004	0.082
Oct. Y:	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
	.,	.,	.,	.,	.,	.,	.,	.,	.,
Mg	0,806	0,734	0,888	0,843	0,849	0,799	0,741	0,820	0,794
Ca	0,678	0,631	0,782	0,828	0,767	0,756	0,911	0,796	0,753
Mn	0,863	1,033	0,401	0,509	0,499	0,331	0,304	0,387	0,718
Fe2+	3,690	3,631	3,956	3,847	3,916	4,135	4,075	4,010	3,752
X-Pos.:	6,036	6,029	6,026	6,027	6,031	6,022	6,032	6,013	6,017
Summe	16,037	16,029	16,026	16,027	16,031	16,022	16,031	16,013	16,017
XFe	0,82	0,83	0,82	0,82	0,82	0,84	0,85	0,83	0,83
XMn	0,16	0,19	0,08	0,10	0,09	0,06	0,06	0,07	0,14
Endglieder									
Uvar.	0,00	0,734	0,888	0,843	0,849	0,799	0,741	0,820	0.02
Andr.	2,21	0,631	0,782	0,828	0,767	0,756	0,911	0,796	2,30
Gross.	9,01	1,033	0,401	0,509	0,499	0,331	0,304	0,387	10,19
Alm.	61,12	3,631	3,956	3,847	3,916	4,135	4,075	4,010	62,35
Spess.	14,29	6,029	6,026	6,027	6,031	6,022	6,032	6,013	11,94
Pyrop	13,36	16,029	16,026	16,027	16,031	16,022	16,031	16,013	13,19
XAIm	0.611	0.036	0.040	0.038	0.039	0.041	0.041	0.040	0.624
XSpess	0.143	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.119
XPy	0,134	0,160	0,160	0,160	0,160	0,160	0,160	0,160	0,132
XGross	0.090	0.010	0.004	0.005	0.005	0.003	0.003	0.004	0.102
	-,	.,	-,	-,	-,	-,	-,	-,	,,. -

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Granat	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6	8.6
	GRA1-2	GRA1-3	GRA1-4	GRA1-5	GRA1-6	GRA1-7	GRA1-8	GRA1-9	GRA1-10
SiO2	36,92	37,27	37,19	37,30	37,40	37,12	36,89	36,90	36,98
TiO2	0,07	0,09	0,08	0,11	0,10	0,15	0,12	0,10	0,12
AI2O3	20,93	21,07	20,98	21,23	20,93	20,66	20,91	21,06	20,90
Cr2O3	0,00	0,02	0,00	0,00	0,00	0,02	0,00	0,00	0,00
Fe2O3	1,29	1,02	1,16	0,63	1,21	1,22	1,35	1,35	1,23
MgO	3,51	3,30	3,13	3,02	3,20	3,20	3,36	3,53	3,54
CaO	5,13	5,23	5,17	5,24	5,04	5,12	4,81	5,14	4,63
MnO	2,29	2,01	2,17	2,32	2,33	2,44	2,82	2,73	3,77
FeO	30,12	30,81	30,97	30,88	30,95	30,29	30,30	29,84	29,17
Summe	100,25	100,83	100,85	100,71	101,16	100,22	100,56	100,66	100,35
Strukturforme	l bezogen a	uf 24 Sauers	toffe						
Si	5,897	5,920	5,917	5,932	5,931	5,937	5,889	5,875	5,904
AI	0,103	0,080	0,083	0,068	0,069	0,063	0,111	0,125	0,096
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,008	0,011	0,010	0,013	0,012	0,018	0,014	0,012	0,015
AI	3,838	3,864	3,851	3,912	3,843	3,833	3,823	3,827	3,837
Cr	0,000	0,002	0,000	0,000	0,000	0,003	0,000	0,000	0,000
Fe3+	0,155	0,122	0,139	0,075	0,144	0,147	0,162	0,161	0,148
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,836	0,781	0,742	0,715	0,756	0,763	0,800	0,838	0,843
Са	0,878	0,891	0,882	0,893	0,856	0,877	0,823	0,877	0,792
Mn	0,310	0,270	0,293	0,312	0,313	0,331	0,381	0,368	0,510
Fe2+	4,024	4,093	4,121	4,107	4,104	4,051	4,045	3,973	3,895
X-Pos.:	6,047	6,034	6,037	6,028	6,029	6,022	6,049	6,056	6,040
Summe	16,047	16,034	16,037	16,028	16,029	16,022	16,049	16,056	16,041
XFe	0,83	0,84	0,85	0,85	0,84	0,84	0,83	0,83	0,82
XMn	0,06	0,05	0,06	0,06	0,06	0,06	0,07	0,07	0,10
Endglieder									
Uvar.	0,00	0,06	0,00	0,00	0,00	0,07	0,00	0,00	0,01
Andr.	4,03	3,32	3,70	2,19	3,89	4,10	4,38	4,30	4,05
Gross.	10,49	11,38	10,90	12,62	10,31	10,38	9,23	10,19	9,05
Alm.	66,54	67,83	68,26	68,14	68,08	67,27	66,86	65,61	64,49
Spess.	5,12	4,47	4,85	5,18	5,19	5,49	6,30	6,08	8,44
Pyrop	13,83	12,94	12,29	11,86	12,53	12,68	13,23	13,83	13,96
XAIm	0,665	0,678	0,683	0,681	0,681	0,673	0,669	0,656	0,645
XSpess	0.051	0.045	0,048	0.052	0,052	0.055	0,063	0.061	0.084
XPy	0,138	0,129	0,123	0,119	0,125	0,127	0,132	0,138	0,140
XGross	0,105	0,114	0,109	0,126	0,103	0,104	0,092	0,102	0,091

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Granat	8.6	8.6	8.7	8.7	8.7	8.7	8.7	8.7	8.7
	GRA1-11	GRA1-12	GRA1-1	GRA1-2	GRA1-3	GRA1-4	GRA1-5	GRA1-6	GRA1-7
SiO2	37,18	36,98	37,12	36,75	36,93	37,79	37,13	36,91	36,85
TiO2	0,05	0,01	0,00	0,05	0,00	0,09	0,15	0,18	0,04
AI2O3	20,94	21,17	21,63	20,67	20,79	21,23	21,03	20,68	21,10
Cr2O3	0,02	0,00	0,00	0,00	0,02	0,03	0,07	0,03	0,00
Fe2O3	1,10	0,85	0,35	1,43	1,62	0,00	1,14	0,88	1,34
MgO	3,44	3,19	3,59	3,51	3,97	3,53	2,46	2,51	3,86
CaO	4,40	3,68	3,34	4,09	2,88	3,29	6,46	5,98	3,54
MnO	4,66	6,99	5,84	4,37	5,10	4,55	6,50	6,46	5,08
FeO	28,79	27,73	28,88	29,06	29,43	28,70	26,22	26,01	28,94
Summe	100,58	100,60	100,74	99,92	100,74	99,21	101,16	99,64	100,74
Strukturform	nel bezogen a	uf 24 Sauers	toffe						
Si	5,926	5,910	5,904	5,906	5,893	6,050	5,899	5,943	5,872
AI	0,074	0,090	0,096	0,094	0,107	0,000	0,101	0,057	0,128
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,050	6,000	6,000	6,000
	,	,		,	,	,	,	,	,
Ті	0,006	0,001	0,000	0,006	0,000	0,011	0,018	0,022	0,005
AI	3,860	3,897	3,959	3,821	3,802	4,005	3,836	3,867	3,834
Cr	0,002	0,000	0,000	0,000	0,002	0,003	0,009	0,004	0,000
Fe3+	0,132	0,102	0,042	0,172	0,195	0,000	0,136	0,107	0,161
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,019	4,000	4,000	4,000
Mg	0,816	0,761	0,850	0,840	0,945	0,843	0,583	0,603	0,916
Ca	0,751	0,630	0,570	0,705	0,492	0,565	1,100	1,031	0,604
Mn	0,629	0,946	0,787	0,594	0,690	0,617	0,875	0,882	0,686
Fe2+	3,837	3,706	3,841	3,905	3,927	3,842	3,484	3,503	3,856
X-Pos.:	6,033	6,044	6,048	6,044	6,054	5,866	6,042	6,018	6,062
Summe	16,033	16,044	16,048	16,044	16,054	15,935	16,042	16,018	16,062
XFe	0.82	0.83	0.82	0.82	0.81	0.82	0.86	0.85	0.81
XMn	0,12	0,17	0,14	0,11	0,12	0,12	0,18	0,18	0,13
Endglieder									
Uvar.	0,05	0,00	0,00	0,00	0,06	0,09	0,22	0,09	0,00
Andr.	3,45	2,56	1,03	4,43	4,83	0,27	3,84	3,21	4,10
Gross.	8,94	7,87	8,39	7,22	3,24	9,26	14,14	13,83	5,86
Alm.	63,60	61,32	63,51	64,61	64,87	65,49	57,66	58,20	63,61
Spess.	10,43	15,66	13,01	9,83	11,39	10,52	14,48	14,65	11,31
Pyrop	13,53	12,59	14,06	13,90	15,61	14,36	9,65	10,02	15,11
XAIm	0,636	0,613	0,635	0,646	0,649	0,655	0,577	0,582	0,636
XSpess	0,104	0,157	0,130	0,098	0,114	0,105	0,145	0,146	0,113
XPy	0,135	0,126	0,141	0,139	0,156	0,144	0,097	0,100	0,151
XGross	0,089	0,079	0,084	0,072	0,032	0,093	0,141	0,138	0,059
				•			•		

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM021	IMM021	IMM021	IMM021	IMM039	IMM039	IMM039	IMM039	IMM039
Granat	8.7	8.7	8.7	8.7	5.1	5.1	5.1	5.1	5.1
	GRA1-8	GRA1-9	GRA2-4	GRA2-5	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A
					Profil Rand				
SiO2	37,31	37,49	36,86	37,13	36,85	37,06	37,64	37,09	37,02
TiO2	0,06	0,02	0,06	0,11	0,03	0,01	0,03	0,05	0,09
AI2O3	20,71	20,90	21,14	20,82	21,09	20,82	21,03	20,83	20,98
Cr2O3	0,00	0,03	0,00	0,02	0,00	0,02	0,00	0,00	0,00
Fe2O3	1,09	0,94	1,00	1,22	0,74	0,94	1,14	1,18	1,38
MgO	3,61	3,89	2,62	2,28	3,14	3,33	3,53	3,36	3,31
CaO	2,45	2,85	5,10	6,12	3,06	4,01	4,26	4,28	4,54
MnO	6,53	5,32	2,78	3,07	5,78	3,98	3,40	2,94	2,73
FeO	28,83	29,25	31,26	30,21	29,62	29,83	30,42	30,68	30,99
Summe	100,59	100,68	100,81	100,97	100,31	100,00	101,45	100,41	101,04
Strukturformel	bezogen a	uf 24 Sauerst	offe						
Si	5,962	5,964	5,891	5,924	5,917	5,945	5,946	5,929	5,889
AI	0,038	0,036	0,109	0,076	0,083	0,055	0,054	0,071	0,111
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0.007	0.002	0.007	0.013	0.000	0.000	0.000	0.010	0.010
AI	3.862	3.883	3.873	3.838	3.910	3.880	3.860	3.850	3.820
Cr	0.000	0.004	0.000	0.003	0.000	0.000	0.000	0.000	0.000
Fe3+	0.131	0.112	0.120	0.146	0.090	0.110	0.130	0.140	0.170
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,859	0,923	0,624	0,542	0,750	0,800	0,830	0,800	0,790
Са	0,419	0,485	0,873	1,045	0,530	0,690	0,720	0,730	0,770
Mn	0,884	0,717	0,376	0,415	0,790	0,540	0,460	0,400	0,370
Fe2+	3,853	3,891	4,178	4,031	3,980	4,000	4,020	4,100	4,120
X-Pos.:	6,015	6,017	6,051	6,032	6,040	6,030	6,030	6,030	6,050
Summe	16,016	16,017	16,051	16,032	16,040	16,030	16,030	16,030	16,050
XFe	0,82	0,81	0,87	0,88	0,84	0,83	0,83	0,84	0,84
XMn	0,16	0,13	0,07	0,08	0,14	0,10	0,09	0,08	0,07
Endglieder									
Uvar.	0,00	0,09	0,00	0,06	0,00	0,08	0,00	0,00	0,00
Andr.	3,45	2,84	3,15	3,96	2,30	2,88	3,45	3,67	4,38
Gross.	3,52	5,14	11,29	13,31	6,41	8,47	8,51	8,49	8,40
Alm.	64,05	64,67	69,04	66,82	65,86	66,40	66,69	67,98	68,14
Spess.	14,70	11,91	6,22	6,87	13,01	8,97	7,56	6,61	6,09
Pyrop	14,28	15,35	10,30	8,98	12,43	13,20	13,79	13,26	12,99
XAIm	0.640	0.647	0,690	0.668	0.659	0.664	0.667	0.680	0.681
XSpess	0.147	0 119	0,062	0.069	0 130	0,090	0.076	0.066	0.061
XPv	0.143	0.153	0,103	0.090	0.124	0.132	0.138	0.133	0.130
XGross	0,035	0.051	0,113	0.133	0.064	0.085	0.085	0.085	0.084

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039
Granat	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1
	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A
		~~~~							
SiO2	37,16	36,97	37,19	37,71	37,54	37,23	37,46	37,32	37,15
1102	0,02	0,06	0,00	0,01	0,06	0,06	0,06	0,05	0,03
AI2O3	20,99	20,98	21,09	20,79	20,69	20,92	20,82	20,85	20,58
Cr2O3	0,04	0,00	0,00	0,00	0,04	0,00	0,01	0,01	0,00
Fe2O3	1,16	0,93	1,02	1,19	1,01	1,10	1,33	1,23	1,40
MgO	3,40	3,39	3,28	3,39	3,28	3,36	3,08	2,89	2,96
CaO	4,63	4,21	3,97	3,43	3,79	3,98	4,29	4,44	4,16
MnO	2,66	3,02	3,33	3,96	3,68	3,59	3,66	3,89	4,19
FeO	30,71	30,59	31,07	30,92	30,65	30,53	30,74	30,54	30,18
Summe	100,77	100,15	100,95	101,40	100,74	100,77	101,45	101,22	100,65
Strukturform	nel bezogen a	uf 24 Sauers	toffe						
Si	5,916	5,920	5,920	5,975	5,981	5,933	5,941	5,936	5,946
AI	0,084	0,080	0,080	0,025	0,019	0,067	0,059	0,064	0,054
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,000	0,010	0,000	0,000	0,010	0,010	0,010	0,010	0,000
AI	3,850	3,880	3,880	3,860	3,870	3,860	3,830	3,850	3,830
Cr	0,010	0,000	0,000	0,000	0,010	0,000	0,000	0,000	0,000
Fe3+	0,140	0,110	0,120	0,140	0,120	0,130	0,160	0,150	0,170
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Ма	0.810	0.810	0.780	0.800	0.780	0.800	0.730	0.690	0.710
Ca	0.790	0.720	0.680	0.580	0.650	0.680	0.730	0.760	0.710
Mn	0,360	0,410	0,450	0,530	0,500	0,480	0,490	0,520	0,570
Fe2+	4,090	4,100	4,140	4,100	4,080	4,070	4,080	4,060	4,040
X-Pos.:	6,040	6,040	6,040	6,010	6,010	6,030	6,030	6,030	6,030
Summe	16,040	16,040	16,040	16,010	16,010	16,030	16,030	16,030	16,030
VEA	0.84	0.94	0.94	0.94	0.94	0.94	0.95	0.96	0.95
лге XMp	0,84	0,84	0,84	0,84	0,84	0,84	0,85	0,86	0,00
	0,07	0,00	0,00	0,10	0,09	0,09	0,09	0,10	0,11
Endglieder									
Uvar.	0,13	0,00	0,00	0,00	0,13	0,00	0,04	0,02	0,00
Andr.	3,52	2,97	3,04	3,57	3,20	3,45	4,12	3,82	4,28
Gross.	9,41	8,99	8,17	6,12	7,44	7,82	7,95	8,72	7,56
Alm.	67,67	67,85	68,48	68,16	68,00	67,47	67,65	67,40	67,03
Spess.	5,94	6,79	7,42	8,84	8,27	8,04	8,15	8,68	9,43
Pyrop	13,34	13,40	12,88	13,31	12,96	13,22	12,09	11,37	11,71
XAIm	0 677	0 679	0 685	0 682	0 680	0 675	0 677	0 674	0.670
XSness	0 059	0.068	0 074	0.088	0.083	0.080	0.082	0.087	0.094
XPv	0 133	0 134	0 129	0 133	0 130	0 132	0 121	0 114	0 117
XGross	0,100	0,104	0,120	0,100	0,100	0,102	0,121	0,114	0,117
701035	0,094	0,090	0,002	0,001	0,074	0,070	0,000	0,007	0,076

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039
Granat	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1
	GRA1B	GRA1B	GRA1B	GRA1B	GRA1B	GRA1B	GRA1B	GRA1C	GRA1C
C:00	00.70	27.00	07.00	07.04	20.05	07.00	07.00	07.45	07.07
5102	36,76	37,30	37,39	37,24	36,95	37,32	37,20	37,15	37,07
1102	0,04	0,07	0,11	0,07	0,10	0,04	0,11	0,06	0,07
AI203	20,94	20,75	20,79	20,81	20,89	20,66	20,70	20,95	20,87
Cr203	0,05	0,02	0,00	0,00	0,07	0,00	0,02	0,03	0,02
rezus Mao	1,10	0,77	1,25	0,82	1,06	1,32	0,81	0,81	1,01
MgO CaO	2,20	2,20	2,02	2,21	2,01	2,41	2,50	2,75	2,00
	5,69	5,09	0,22	5,89	6,01	5,33	5,11	4,32	4,20
	4,14	4,37	4,10	4,20	4,27	4,30	4,23	3,99	4,05
FeU	29,66	29,64	29,46	29,11	29,53	29,59	29,30	30,56	30,64
Summe	100,58	100,47	101,44	100,40	100,91	101,05	100,10	100,62	100,79
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5,898	5,978	5,943	5,965	5,911	5,952	5,970	5,943	5,932
AI	0,102	0,022	0,057	0,035	0,089	0,048	0,030	0,057	0,068
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ti	0,000	0,010	0,010	0,010	0,010	0,010	0,010	0,010	0,010
AI	3,860	3,900	3,840	3,890	3,850	3,840	3,890	3,890	3,870
Cr	0,010	0,000	0,000	0,000	0,010	0,000	0,000	0,000	0,000
Fe3+	0,130	0,090	0,150	0,100	0,130	0,160	0,100	0,100	0,120
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Ма	0.530	0.540	0.480	0.530	0.480	0.570	0.610	0.660	0.630
Ca	0.980	0.870	1.060	1.010	1.030	0.910	0.880	0.740	0.720
Mn	0.560	0.590	0.560	0.580	0.580	0.590	0.580	0.540	0.550
Fe2+	3,980	4.000	3.920	3,900	3.950	3.950	3.940	4.090	4,130
X-Pos.:	6.050	6.010	6.020	6.010	6.040	6.020	6.010	6.030	6.030
Summe	16,050	16,010	16,020	16,010	16,040	16,020	16,010	16,030	16,030
XFe	0,88	0,88	0,89	0,88	0,89	0,87	0,87	0,86	0,87
XMn	0,11	0,12	0,11	0,12	0,12	0,12	0,11	0,10	0,10
Endglieder									
Uvar.	0,14	0,06	0,00	0,00	0,21	0,01	0,06	0,09	0,05
Andr.	3,40	2,51	4,05	2,67	3,53	4,06	2,78	2,60	3,24
Gross.	12,63	11,98	13,55	14,15	13,31	11,04	11,79	9,60	8,65
Alm.	65,80	66,58	65,09	64,83	65,42	65,54	65,60	67,86	68,44
Spess.	9,31	9,88	9,35	9,58	9,58	9,83	9,58	8,98	9,10
Pyrop	8,71	8,99	7,96	8,77	7,95	9,51	10,18	10,87	10,52
VAIm	0.659	0.666	0.654	0.649	0.654	0.655	0.656	0 670	0.604
	860,0	0,000		0,048	0,004	0,000	0,000	0,000	0,084
vev	0,093	0,099	0,094	0,090	0,090	0,098	0,090	0,090	0,091
	0,087	0,090	0,080	0,088	0,080	0,095	0,102	0,109	0,105
AGross	0,126	0,120	0,136	0,142	0,133	0,110	0,118	0,096	0,087

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat
Probe	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039
Granat	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1
	GRA1C	GRA1C	GRA1C	GRA1C	GRA1C	GRA1C	GRA1C	GRA1C	GRA1C
SiO2	37,18	37,16	36,97	36,97	37,09	37,40	37,05	37,30	37,21
TiO2	0,04	0,09	0,01	0,03	0,10	0,02	0,06	0,08	0,03
AI2O3	20,60	20,71	20,75	20,79	20,91	20,66	20,54	20,84	20,80
Cr2O3	0,00	0,00	0,01	0,02	0,04	0,00	0,00	0,00	0,04
Fe2O3	1,36	1,21	1,31	0,93	1,27	1,05	1,16	0,95	0,93
MgO	2,83	2,88	2,83	3,06	3,02	2,91	2,96	2,82	3,03
CaO	4,03	4,18	4,17	3,81	4,13	4,61	4,75	4,84	4,21
MnO	4,03	4,06	4,06	3,99	4,08	3,68	3,63	3,46	3,35
FeO	30,73	30,45	30,57	30,46	30,55	30,15	29,70	30,35	30,78
Summe	100,80	100,74	100,68	100,06	101,19	100,48	99,85	100,64	100,38
Strukturform	el bezogen au	uf 24 Sauers	toffe						
Si	5,947	5,941	5,922	5,943	5,907	5,979	5,959	5,955	5,956
AI	0.053	0.059	0.078	0.057	0.093	0.021	0.041	0.045	0.044
Tetr. Z:	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
	-,	-,	-,	-,	-,	- ,	-,	-,	-,
Ті	0,010	0,010	0,000	0,000	0,010	0,000	0,010	0,010	0,000
AI	3,830	3,840	3,840	3,880	3,830	3,870	3,850	3,880	3,880
Cr	0,000	0,000	0,000	0,000	0,010	0,000	0,000	0,000	0,000
Fe3+	0,160	0,150	0,160	0,110	0,150	0,130	0,140	0,110	0,110
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Ma	0 690	0 600	0 690	0 720	0 720	0 600	0.710	0.670	0 720
Nig Co	0,000	0,090	0,000	0,730	0,720	0,090	0,710	0,070	0,720
Ga Mn	0,090	0,720	0,720	0,000	0,700	0,790	0,820	0,830	0,720
	0,550	0,550	0,550	0,540	0,550	0,500	0,490	0,470	0,450
rez+	4,110	4,070	4,100	4,100	4,070	4,030	3,990	4,050	4,120
X-POS.:	6,020	6,020	6,040	6,030	6,040	6,010	6,020	6,020	6,020
Summe	16,020	16,020	16,040	16,030	16,040	16,010	16,020	16,020	16,020
XFe	0,86	0,86	0,86	0,85	0,85	0,85	0,85	0,86	0,85
XMn	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,09	0,09
Endalieder									
Uvar.	0.00	0.00	0.02	0.07	0.13	0.00	0.00	0.00	0.12
Andr.	4.20	3.90	3.95	2.87	4.06	3,20	3,70	3.08	2.88
Gross	7 27	8,00	7 89	7 94	7 47	9 94	9 90	10.68	9,00
Alm.	68 24	67.58	67.85	67.95	67.35	67.05	66 40	67.34	68 44
Sness	9.06	9.13	9 11	9.01	9 11	8 28	8 23	7 77	7 55
Pyron	11 22	11 39	11 18	12 16	11.88	11 53	11 78	11 14	12 01
гуюр	11,22	11,55	11,10	12,10	11,00	11,55	11,70	11,14	12,01
XAIm	0,682	0,676	0,679	0,680	0,674	0,671	0,664	0,673	0,684
XSpess	0,091	0,091	0,091	0,090	0,091	0,083	0,082	0,078	0,076
ХРу	0,112	0,114	0,112	0,122	0,119	0,115	0,118	0,111	0,120
XGross	0,073	0,080	0,079	0,079	0,075	0,099	0,099	0,107	0,090

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039
Granat	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1
	GRA1C	GRA1C	GRA1C	GRA1C	GRA1C	GRA1C	GRA1C	GRA1C	GRA1C
SiO2	36.52	36.67	36.67	37.34	37.51	37.66	37.09	36.92	37.55
TiO2	0,05	0,01	0,01	0,04	0,01	0,06	0.07	0,06	0,07
AI2O3	20,62	20,68	20,68	21,09	20,64	21,09	20,79	21,00	21,09
Cr2O3	0,00	0,00	0,00	0,00	0,00	0,00	0,06	0,01	0,02
Fe2O3	0,77	0,71	0,71	0,69	1,08	0,94	1,26	1,29	0,65
MgO	3,06	3,23	3,23	3,26	3,17	3,11	3,07	3,54	3,30
CaO	3,98	3,82	3,82	4,30	4,45	4,89	4,98	4,41	3,91
MnO	3,41	3,39	3,39	3,17	3,11	2,93	3,02	3,17	4,30
FeO	30,26	30,26	30,26	30,64	30,52	30,76	30,31	30,22	30,01
Summe	98,67	98,77	98,77	100,53	100,49	101,44	100,65	100,62	100,90
Strukturforme	l bezogen au	uf 24 Sauerst	offe						
Si	5,944	5,955	5,955	5,951	5,985	5,953	5,920	5,889	5,964
AI	0,056	0,045	0,045	0,049	0,015	0,047	0,080	0,111	0,036
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
ті	0.010	0.000	0.000	0.000	0.000	0.010	0.010	0.010	0.010
ΔΙ	3 900	3,000	3 910	3 910	3,870	3 880	3,830	3 840	3 910
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe3+	0,000	0,000	0,000	0,000	0,000	0,000	0,010	0,000	0,000
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Mg	0,740	0,780	0,780	0,780	0,750	0,730	0,730	0,840	0,780
Ca	0,690	0,660	0,660	0,730	0,760	0,830	0,850	0,750	0,660
Mn	0,470	0,470	0,470	0,430	0,420	0,390	0,410	0,430	0,580
Fe2+	4,120	4,110	4,110	4,080	4,070	4,070	4,050	4,030	3,990
X-Pos.:	6,020	6,020	6,020	6,020	6,010	6,020	6,040	6,050	6,010
Summe	16,020	16,020	16,020	16,020	16,010	16,020	16,040	16,050	16,010
XFe	0,85	0,84	0,84	0,84	0,84	0,85	0,85	0,83	0,84
XMn	0,09	0,09	0,09	0,08	0,08	0,08	0,08	0,08	0,11
Endglieder									
Uvar.	0,00	0,00	0,00	0.00	0.00	0,00	0,18	0,04	0.05
Andr.	2,50	2,19	2,19	2,19	3,28	2,95	3,99	4,03	2,14
Gross.	9,02	8,85	8,85	10,01	9,38	10,82	9,95	8,38	8,87
Alm.	68,36	68,24	68,24	67,82	67,80	67,55	67,03	66,59	66,31
Spess.	7,80	7,75	7,75	7,11	7,00	6,51	6,76	7,07	9,63
Pyrop	12,32	12,98	12,98	12,88	12,54	12,17	12,09	13,89	13,01
XAIm	0.684	0.682	0.682	0.678	0.678	0.676	0.670	0.666	0.663
XSpess	0,078	0.078	0,078	0.071	0.070	0.065	0.068	0.071	0.096
XPv	0.123	0.130	0.130	0.129	0.125	0.122	0.121	0.139	0.130
XGross	0,090	0,089	0,089	0,100	0,094	0,108	0,100	0,084	0,089

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039
Granat	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1
	GRA1C	GRA1-D	GRA1-D	GRA1-D	GRA1-D	GRA1-D	GRA1-1	GRA1-2	GRA1-3
	Profil Rand								
SiO2	37,48	37,28	36,94	37,04	37,09	37,09	36,31	37,25	36,43
TiO2	0,19	0,20	0,29	0,30	0,18	0,15	0,07	0,00	0,00
AI2O3	21,03	20,69	20,56	20,63	20,58	20,67	21,05	20,76	20,88
Cr2O3	0,02	0,00	0,08	0,01	0,05	0,00	0,00	0,01	0,03
Fe2O3	0,88	1,06	1,24	1,21	1,20	1,34	1,24	1,00	1,05
MgO	2,85	2,43	2,29	2,50	2,59	2,74	3,30	3,19	3,28
CaO	3,45	5,59	5,89	5,09	4,59	4,37	3,30	2,76	3,25
MnO	6,44	5,47	5,56	5,46	5,53	5,44	5,12	5,14	4,40
FeO	29,38	27,97	27,65	28,47	28,82	29,09	29,80	30,53	30,34
Summe	101,72	100,67	100,50	100,71	100,62	100,88	100,19	100,64	99,66
Strukturforr	nel bezogen a	uf 24 Sauers	toffe						
Si	5,941	5,954	5,922	5,927	5,942	5,928	5,847	5,963	5,889
AI	0,059	0,046	0,078	0,073	0,058	0,072	0,153	0,037	0,111
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
ті	0 020	0 023	0.035	0.036	0 022	0.018	0.010	0.000	0.000
	3 870	3 8/9	3,806	3,818	3 828	3 822	3 840	3,880	3 870
Cr	0,000	0,049	0,000	0,010	0,020	0,022	0,000	0,000	0,000
Eo3+	0,000	0,000	0,010	0,001	0,000	0,000	0,000	0,000	0,000
Oct Y	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000
000.11	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,670	0,579	0,547	0,596	0,619	0,653	0,790	0,760	0,790
Ca	0,590	0,956	1,012	0,873	0,788	0,749	0,570	0,470	0,560
Mn	0,870	0,740	0,755	0,740	0,751	0,736	0,700	0,700	0,600
Fe2+	3,890	3,736	3,707	3,810	3,861	3,888	4,010	4,090	4,100
X-Pos.:	6,020	6,012	6,021	6,019	6,018	6,026	6,070	6,020	6,060
Summe	16,020	16,011	16,021	16,019	16,018	16,027	16,070	16,020	16,060
XFe	0,85	0,87	0,87	0,86	0,86	0,86	0,84	0,84	0,84
XMn	0,16	0,15	0,15	0,14	0,14	0,14	0,13	0,13	0,11
Endqlieder									
Uvar.	0,07	0,00	0.24	0,03	0,16	0,00	0.00	0,04	0.09
Andr.	3,19	3,77	4,60	4,51	4,13	4,45	3,92	2,99	3,18
Gross.	6,47	12,14	11,96	9,96	8,80	7,98	5,46	4,84	6,02
Alm.	64,70	62,15	61,57	63,30	64,16	64,52	66,08	67,90	67,73
Spess.	14,37	12,31	12,54	12,30	12,47	12,22	11,50	11,58	9,94
Pyrop	11,20	9,63	9,08	9,90	10,28	10,83	13,04	12,65	13,03
XAIm	0,647	0,621	0,616	0,633	0,642	0,645	0,661	0,679	0,677
XSpess	0.144	0.123	0.125	0.123	0.125	0.122	0.115	0.116	0.099
XPy	0.112	0.096	0.091	0.099	0,103	0.108	0.130	0,127	0.130
XGross	0.065	0.121	0.120	0.100	0.088	0.080	0.055	0.048	0.060
	-,	-,-=-	- , - = -	.,	.,	- ,	.,	.,	.,

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039
Granat	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1
	GRA1-4	GRA1-7	GRA1-8	GRA1-9	GRA1-10	GRA1-11	GRA1-12	GRA1-13	GRA1-14
0.00	00.74	07.00	00.57	00.00	00.74	07.45	07.05	07.00	07.40
5102	36,74	37,38	36,57	36,90	36,71	37,45	37,35	37,09	37,10
1102	0,08	0,07	0,04	0,07	0,11	0,05	0,04	0,00	0,06
AI203	20,67	20,67	20,69	20,86	20,85	20,91	20,87	20,94	20,73
Cr203	0,02	0,03	0,05	0,02	0,05	0,01	0,00	0,00	0,04
Fe2O3	1,65	1,51	1,17	1,18	1,21	1,12	1,37	0,96	1,32
MgO	3,23	2,83	3,48	2,67	1,92	2,78	3,52	3,31	3,22
CaO	3,45	5,13	3,64	0,52	6,84	5,51	3,82	3,06	4,64
MnO	4,36	3,51	4,20	2,16	3,90	3,09	4,19	5,72	2,96
FeO	30,58	30,19	29,63	29,79	28,91	30,21	30,06	29,47	30,48
Summe	100,78	101,32	99,47	100,17	100,50	101,13	101,22	100,55	100,55
Strukturforme	el bezogen a	uf 24 Sauers	toffe						
Si	5,886	5,939	5,908	5,910	5,892	5,947	5,928	5,936	5,927
AI	0,114	0,061	0,092	0,090	0,108	0,053	0,072	0,064	0,073
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,010	0,010	0,000	0,010	0,010	0,010	0,000	0,000	0,010
AI	3,790	3,810	3,850	3,850	3,840	3,860	3,830	3,880	3,830
Cr	0,000	0,000	0,010	0,000	0,010	0,000	0,000	0,000	0,000
Fe3+	0,200	0,180	0,140	0,140	0,150	0,130	0,160	0,120	0,160
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,770	0,670	0,840	0,640	0,460	0,660	0,830	0,790	0,770
Ca	0,590	0,870	0,630	1,120	1,180	0,940	0,650	0,520	0,790
Mn	0,590	0,470	0,570	0,290	0,530	0,420	0,560	0,780	0,400
Fe2+	4,100	4,010	4,000	3,990	3,880	4,010	3,990	3,940	4,070
X-Pos.:	6,050	6,030	6,040	6,040	6,050	6,020	6,030	6,030	6,030
Summe	16,050	16,030	16,040	16,040	16,050	16,020	16,030	16,030	16,030
YEo	0.94	0.96	0.83	0.86	0.80	0.86	0.83	0.93	0.94
XMn	0,04	0,80	0,83	0,00	0,09	0,00	0,05	0,83	0,04
	0,11	0,00	0,11	0,00	0,11	0,00	0,10	0,14	0,00
Endglieder									
Uvar.	0,06	0,08	0,16	0,07	0,15	0,03	0,00	0,00	0,12
Andr.	5,16	4,68	3,64	3,72	3,94	3,48	4,19	2,88	4,11
Gross.	4,56	9,73	6,64	14,73	15,38	12,06	6,57	5,82	8,93
Alm.	67,68	66,55	66,21	66,05	64,17	66,60	66,13	65,38	67,50
Spess.	9,78	7,84	9,51	4,85	8,77	6,90	9,33	12,86	6,64
Pyrop	12,75	11,11	13,85	10,57	7,59	10,93	13,79	13,07	12,71
V A las	0.077	0.000	0.000	0.004	0.040	0.000	0.004	0.054	0.075
XAIM	0,677	0,666	0,662	0,661	0,642	0,666	0,661	0,654	0,675
ASpess	0,098	0,078	0,095	0,049	0,088	0,069	0,093	0,129	0,066
хгу	0,128	0,111	0,139	0,106	0,076	0,109	0,138	0,131	0,127
XGross	0,046	0,097	0,066	0,147	0,154	0,121	0,066	0,058	0,089

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039
Granat	5.2	5.2	5.2	5.2	5.2	5.3	5.3	5.3	5.3
	GRA1-1	GRA1-2	GRA1-3	GRA1-4	GRA1-5	GRA1-1	GRA1-2	GRA2-1	GRA2-2
SiO2	36,91	37,12	37,16	37,61	36,96	36,89	37,24	36,82	37,05
TiO2	0,04	0,07	0,08	0,06	0,12	0,22	0,05	0,05	0,09
AI2O3	20,88	20,76	20,91	20,93	21,24	20,76	20,40	20,69	20,38
Cr2O3	0,00	0,02	0,01	0,00	0,02	0,00	0,01	0,01	0,03
Fe2O3	0,69	1,03	1,12	0,65	0,86	0,74	1,04	0,75	0,80
MgO	3,24	3,02	3,35	3,49	3,03	3,09	2,93	1,27	1,06
CaO	3,81	6,02	4,95	3,84	5,71	3,26	3,62	9,19	8,46
MnO	4,54	1,68	3,06	4,09	2,39	5,68	5,35	2,58	3,76
FeO	29,47	30,17	29,81	29,81	30,25	29,22	29,27	27,86	27,74
Summe	99,58	99,89	100,45	100,48	100,58	99,86	99,91	99,22	99,37
Strukturforme	l bezogen au	uf 24 Sauers	toffe						
Si	5.946	5.946	5.926	5.987	5.890	5.943	5.996	5.956	6.000
AI	0.054	0.054	0.074	0.013	0.110	0.057	0.004	0.044	0.000
Tetr. Z:	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
	- ,	- ,	- ,	-,	-,	- ,	-,	-,	-,
Ті	0,000	0,010	0,010	0,010	0,010	0,030	0,010	0,010	0,010
AI	3,910	3,860	3,860	3,910	3,880	3,880	3,870	3,900	3,890
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe3+	0,080	0,120	0,130	0,080	0,100	0,090	0,130	0,090	0,100
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,780	0,720	0,800	0,830	0,720	0,740	0,700	0,310	0,260
Са	0,660	1,030	0,850	0,650	0,970	0,560	0,630	1,590	1,470
Mn	0,620	0,230	0,410	0,550	0,320	0,780	0,730	0,350	0,520
Fe2+	3,970	4,040	3,980	3,970	4,030	3,940	3,940	3,770	3,760
X-Pos.:	6,020	6,020	6,030	6,000	6,050	6,020	6,000	6,020	5,990
Summe	16,020	16,020	16,030	16,000	16,050	16,020	16,000	16,020	15,990
XFe	0,84	0,85	0,83	0,83	0,85	0,84	0,85	0,93	0,94
XMn	0,12	0,05	0,08	0,10	0,06	0,14	0,14	0,08	0,11
Endalieder									
llvar	0.00	0.06	0.02	0.00	0.06	0.00	0.02	0.04	0.08
Andr	2 20	3 31	3 57	2 13	2 92	2 91	3 31	2 43	2 70
Gross	8 70	13 78	10.44	8 77	13 12	6.43	7.09	2,40	21.60
Alm	65 91	67 10	65 91	66 12	66 65	65.43	65,70	62 62	62.67
Snoss	10.20	3 70	6 85	0,12	5 33	12.88	12 15	5.87	8 60
Byron	12 90	11 97	13 21	13.80	11 91	12,00	12,13	5,07	4 26
Гуюр	12,50	11,97	10,21	15,00	11,91	12,04	11,72	5,07	4,20
XAIm	0,659	0,671	0,659	0,661	0,667	0,654	0,657	0,626	0,627
XSpess	0,103	0,038	0,069	0,092	0,053	0,129	0,122	0,059	0,086
ХРу	0,129	0,120	0,132	0,138	0,119	0,123	0,117	0,051	0,043
XGross	0,087	0,138	0,104	0,088	0,131	0,064	0,071	0,240	0,217

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039
Granat	5.3	5.3	5.3	5.3	5.3	5.4	5.4	5.4	5.4
	GRA2-3	GRA2-4	GRA2-5	GRA2-6	GRA2-7	GRA1-1	GRA1-2	GRA1-3	GRA1-4
SiO2	37.44	36.29	37.29	37.04	37.21	36.45	36.77	36.51	37.53
TiO2	0.09	0.08	0.02	0.14	0.13	0.00	0.02	0.03	0.00
AI2O3	20.82	20.47	20.84	20.50	20.53	21.37	20.94	20.83	21.13
Cr2O3	0,00	0,00	0,02	0,00	0,00	0,01	0,00	0,00	0,00
Fe2O3	0,47	1,00	1,19	0,56	0,66	0,84	1,06	0,39	0,82
MgO	2,67	2,80	2,59	1,37	1,86	3,30	3,41	2,74	3,65
CaO	4,30	5,03	5,97	8,22	6,17	3,33	3,41	3,28	3,74
MnO	4,84	3,60	1,15	1,83	4,83	4,77	4,36	6,34	3,03
FeO	29,55	29,08	31,83	29,40	28,21	30,25	30,15	28,69	31,06
Summe	100,18	98,35	100,90	99,06	99,60	100,32	100,12	98,81	100,96
Strukturforme	bezogen a	uf 24 Sauers	toffe						
Si	6.001	5.927	5.940	6.001	6.005	5.854	5.906	5.949	5.952
AI	0.000	0.073	0.060	0.000	0.000	0.146	0.094	0.051	0.048
Tetr. Z:	6,001	6,000	6,000	6,001	6,005	6,000	6,000	6,000	6,000
Ті	0,010	0,010	0,000	0,020	0,020	0,000	0,000	0,000	0,000
AI	3,930	3,870	3,850	3,910	3,900	3,900	3,870	3,950	3,900
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe3+	0,060	0,120	0,140	0,070	0,080	0,100	0,130	0,050	0,100
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Ма	0.640	0.680	0.620	0.330	0.450	0.790	0.820	0.660	0.860
Са	0.740	0,880	1,020	1,430	1.070	0,570	0.590	0.570	0.640
Mn	0.660	0.500	0.150	0.250	0.660	0.650	0.590	0.880	0.410
Fe2+	3.960	3.970	4.240	3.980	3.810	4.060	4.050	3.910	4.120
X-Pos.:	5.990	6.030	6.030	5.990	5.980	6.070	6.050	6.020	6.020
Summe	15,990	16,030	16,030	15,990	15,990	16,070	16,050	16,020	16,020
YEo	0.86	0.95	0.97	0.02	0.80	0.94	0.83	0.95	0.93
XMn	0,00	0,00	0,07	0,92	0,03	0,04	0,03	0,05	0,03
	0,12	0,10	0,00	0,00	0,10	0,12	0,11	0,10	0,00
Endglieder									
Uvar.	0,00	0,00	0,06	0,01	0,00	0,03	0,00	0,00	0,00
Andr.	1,68	3,28	3,61	2,14	2,39	2,50	3,25	1,26	2,45
Gross.	10,63	11,30	13,22	21,66	15,46	6,90	6,45	8,25	8,10
Alm.	66,08	65,86	70,33	66,50	63,65	66,89	66,99	64,92	68,37
Spess.	10,95	8,25	2,56	4,19	11,03	10,69	9,81	14,53	6,76
Pyrop	10,65	11,31	10,22	5,50	7,47	12,99	13,50	11,03	14,32
XAIm	0,661	0,659	0,703	0,665	0,637	0,669	0,670	0,649	0,684
XSpess	0,110	0,083	0,026	0,042	0,110	0,107	0,098	0,145	0,068
XPy	0,107	0,113	0,102	0,055	0,075	0,130	0,135	0,110	0,143
XGross	0,106	0,113	0,132	0,217	0,155	0,069	0,065	0,083	0,081

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039
Granat	5.5	5.5	5.5	5.5	5.5	5.5	5.5	5.6	5.6
	GRA1-1	GRA1-2	GRA1-3	GRA1-4	GRA1-5	GRA1-6	GRA1-7	GRA1-1	GRA1-2
SiO2	35,52	36,01	36,32	36,65	37,27	36,55	36,19	37,05	36,72
1102	0,00	0,04	0,04	0,05	0,04	0,08	0,10	0,06	0,02
AI203	20,70	20,65	21,05	20,73	20,78	20,46	20,87	20,93	20,64
Cr2O3	0,00	0,01	0,00	0,00	0,00	0,02	0,04	0,04	0,00
Fe2O3	1,28	1,28	1,26	0,85	0,78	0,86	1,02	0,30	0,20
MgO	2,88	3,14	2,77	2,56	3,31	2,48	3,21	3,16	2,68
CaO	2,60	3,10	5,54	4,97	3,25	4,87	3,32	3,76	5,22
MinO FaO	6,47	5,19	3,45	4,41	4,99	3,97	4,86	4,84	2,82
FeU	29,26	29,64	29,57	29,14	29,68	29,49	29,77	29,21	29,58
Summe	98,71	99,06	100,00	99,36	100,10	98,78	99,38	99,34	97,88
Strukturforme	el bezogen au	uf 24 Sauers	toffe						
Si	5,835	5,869	5,848	5,934	5,976	5,955	5,870	5,974	5,999
AI	0,165	0,131	0,152	0,066	0,024	0,045	0,130	0,026	0,001
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ti	0,000	0,010	0,010	0,010	0,000	0,010	0,010	0,007	0,003
AI	3,840	3,840	3,840	3,890	3,900	3,880	3,860	3,951	3,973
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,010	0,005	0,000
Fe3+	0,160	0,160	0,150	0,100	0,090	0,110	0,120	0,037	0,024
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,710	0,760	0,660	0,620	0,790	0,600	0,780	0,759	0,653
Ca	0,460	0,540	0,960	0,860	0,560	0,850	0,580	0,649	0,914
Mn	0,900	0,720	0,470	0,600	0,680	0,550	0,670	0,661	0,390
Fe2+	4,020	4,040	3,980	3,950	3,980	4,020	4,040	3,939	4,041
X-Pos.:	6,080	6,060	6,070	6,030	6,010	6,020	6,060	6,009	5,999
Summe	16,080	16,060	16,070	16,030	16,010	16,020	16,060	16,009	15,999
YEo	0.85	0.84	0.86	0.86	0.83	0.87	0.84	0.84	0.86
XMn	0,05	0,04	0,00	0,00	0,00	0,07	0,04	0,04	0,00
	0,10	0,10	0,00	0,12	0,12	0,	0,12	0,12	0,00
Endglieder									
Uvar.	0,00	0,04	0,00	0,00	0,00	0,05	0,14	0,13	0,00
Andr.	3,89	4,02	3,91	2,74	2,46	2,86	3,36	1,09	0,68
Gross.	3,63	4,88	11,83	11,56	6,84	11,21	6,03	9,58	14,56
Alm.	66,09	66,66	65,57	65,44	66,24	66,76	66,64	65,55	67,37
Spess.	14,80	11,81	7,74	10,03	11,28	9,11	11,01	11,01	6,50
Pyrop	11,59	12,59	10,95	10,23	13,18	10,01	12,82	12,64	10,89
XAIm	0.661	0.667	0.656	0.654	0.662	0.668	0.666	0.656	0.674
XSpess	0.148	0.118	0.077	0,100	0.113	0.091	0,110	0.110	0.065
XPv	0.116	0.126	0.110	0.102	0.132	0.100	0.128	0.126	0.109
XGross	0.036	0.049	0.118	0.116	0.068	0.112	0.060	0.096	0.146
	0,000	0,010	0,110	0,110	0,000	•,··· <b>-</b>	0,000	0,000	5,110

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039
Granat	5.6	5.6	5.6	5.6	5.7	5.7	5.7	5.7	5.7
	GRA1-3	GRA1-4	GRA1-5	GRA1-6	GRA1-1	GRA1-2	GRA1-3	GRA2-1	GRA2-2
SiO2	37.47	37.55	36.42	36.77	36.20	36.12	36.74	37,15	37.51
TiO2	0.00	0.01	0.10	0.05	0.03	0.05	0.07	0.04	0.05
AI2O3	21.00	20.70	20.79	21.04	20.64	20.83	20.47	20.73	21.29
Cr2O3	0.01	0.00	0.00	0.00	0.00	0.00	0.03	0.06	0.00
Fe2O3	0.22	0.59	0.64	1.20	0.71	0.73	0.63	0.24	0.00
MaO	3.29	3.34	2.48	2.56	3.18	3.18	1.35	3.04	3.26
CaO	4,04	3,91	5,94	6,60	3,35	3,12	8,09	4,44	3,76
MnO	3,99	3,79	2,17	2,11	5,15	4,80	3,32	3,70	4,36
FeO	29,49	29,17	30,10	30,11	28,92	29,79	27,97	29,15	29,78
Summe	99,52	99,06	98,63	100,44	98,16	98,63	98,67	98,54	100,02
Strukturforme	l bezogen al	uf 24 Sauers	toffe						
Si	6.011	6.042	5.924	5.882	5,926	5,895	5,982	6.019	5,993
AI	0.000	0.000	0.076	0.118	0.074	0.105	0.018	0.000	0.007
Tetr. Z:	6.011	6.042	6.000	6.000	6.000	6.000	6.000	6.019	6.000
	- / -	- / -	- ,	- ,	- ,	- )	- ,	- )	-,
Ті	0,000	0,001	0,012	0,006	0,004	0,006	0,009	0,005	0,005
AI	3,971	3,926	3,910	3,849	3,909	3,903	3,910	3,958	4,002
Cr	0,002	0,000	0,000	0,000	0,000	0,000	0,004	0,007	0,000
Fe3+	0,027	0,072	0,078	0,145	0,087	0,090	0,078	0,029	0,000
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,008
Ma	0 796	0 800	0.601	0.612	0 775	0 772	0 227	0 734	0 777
NIG Co	0,700	0,800	1.026	0,012	0,775	0,773	0,327	0,734	0,777
Mn	0,034	0,074	0,300	0.286	0,307	0,545	0.458	0,770	0,044
Fo2+	3 956	3 926	4 095	4 029	3 959	4 067	3 808	3 949	3 978
Y-Pos	5 978	5 916	6,032	6,057	6,036	6,049	6,004	5 961	5 989
Summe	15.989	15.958	16.032	16.056	16.035	16.049	16.005	15.979	15.997
	,						,		
XFe	0,83	0,83	0,87	0,87	0,84	0,84	0,92	0,84	0,84
XMn	0,10	0,10	0,06	0,06	0,13	0,12	0,10	0,10	0,11
Endglieder									
Uvar.	0,04	0,00	0,00	0,00	0,00	0,00	0,10	0,18	0,01
Andr.	0,69	1,86	2,24	3,72	2,25	2,39	2,16	0,86	0,14
Gross.	10,87	9,53	14,92	14,96	7,47	6,62	21,25	11,87	10,61
Alm.	66,17	66,36	67,89	66,51	65,60	67,22	63,42	66,24	66,42
Spess.	9,07	8,72	4,97	4,71	11,83	10,98	7,62	8,53	9,85
Pyrop	13,15	13,53	9,97	10,10	12,85	12,78	5,45	12,31	12,98
XAIm	0,662	0,664	0,679	0,665	0,656	0,672	0,634	0,662	0,664
XSpess	0,091	0,087	0,050	0,047	0,118	0,110	0,076	0,085	0,099
XPy	0,131	0,135	0,100	0,101	0,128	0,128	0,054	0,123	0,130
XGross	0,109	0,095	0,149	0,150	0,075	0,066	0,212	0,119	0,106

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039
Granat	5.7	5.7	5.7	5.8	5.8	5.8	5.8	5.9	5.9
	GRA2-3	GRA2-4	GRA2-5	GRA1-1	GRA1-2	GRA1-3	GRA1-4	GRA1-1	GRA1-2
SiO2	37,23	38,28	36,95	36,25	38,43	36,74	37,19	37,59	36,84
TiO2	0,07	0,11	0,09	0,05	0,03	0,03	0,06	0,00	0,07
AI2O3	20,70	20,89	20,79	20,98	21,73	21,04	20,84	20,89	20,63
Cr2O3	0,00	0,00	0,02	0,00	0,02	0,05	0,04	0,00	0,00
Fe2O3	0,45	0,66	0,65	0,73	0,00	0,36	1,39	0,79	1,26
MgO	2,38	2,81	3,28	2,61	2,92	2,97	2,87	3,09	3,34
CaO	6,25	4,53	4,50	6,41	5,50	5,21	5,74	2,93	3,08
MnO	1,70	3,91	3,34	2,47	2,50	2,48	2,39	6,52	5,33
FeO	30,32	29,22	29,62	29,20	30,39	30,12	30,51	29,24	29,54
Summe	99,10	100,40	99,25	98,70	101,51	99,01	101,02	101,05	100,09
Strukturform	el hezogen al	uf 24 Sauers	toffe						
Si	6 008	6 077	5 957	5 887	6 024	5 938	5 915	5 985	5 927
Δ1	0,000	0,000	0.043	0,007	0,024	0.062	0.085	0.015	0.073
Tetr 7	6,008	6.077	6,000	6,000	6 024	6,000	6,000	6,000	6,000
1001.2.	0,000	0,011	0,000	0,000	0,024	0,000	0,000	0,000	0,000
Ti	0,008	0,013	0,011	0,007	0,004	0,004	0,008	0,000	0,009
AI	3,937	3,908	3,907	3,904	4,014	3,946	3,821	3,906	3,838
Cr	0,000	0,000	0,002	0,000	0,002	0,006	0,005	0,000	0,000
Fe3+	0,055	0,079	0,079	0,089	0,000	0,044	0,167	0,094	0,153
Oct. Y:	4,000	4,000	4,000	4,000	4,020	4,000	4,000	4,000	4,000
Ma	0 570	0.000	0 700	0.004	0.000	0 747	0.004	0.704	0.000
Mg	0,573	0,666	0,789	0,631	0,682	0,717	0,681	0,734	0,800
Ca	1,080	0,770	0,778	1,116	0,924	0,903	0,977	0,500	0,532
Mn	0,233	0,525	0,456	0,340	0,332	0,339	0,322	0,880	0,727
Fe2+	4,093	3,879	3,993	3,966	3,984	4,070	4,058	3,893	3,974
X-Pos.:	5,979	5,840	6,017	6,053	5,921	6,029	6,039	6,007	6,032
Summe	15,987	15,917	16,016	16,053	15,964	16,029	16,039	16,007	16,032
XFe	0,88	0,85	0,84	0,86	0,85	0,85	0,86	0,84	0,83
XMn	0,05	0,10	0,09	0,07	0,07	0,07	0,06	0,16	0,13
Endalieder									
Uvar.	0.00	0.00	0.05	0.00	0.06	0.16	0 12	0.00	0.00
Andr.	1.58	2.36	2,25	2.37	0.09	1,19	4.33	2.36	4.02
Gross	16.48	10.82	10.63	16.06	15 46	13.62	11 74	5,96	4 80
Alm.	68.45	66.42	66.37	65.52	67.28	67.52	67.20	64,81	65.88
Spess	3 89	8 99	7 58	5 61	5 60	5.63	5.33	14 65	12 05
Pyrop	9,59	11.40	13.11	10.43	11.51	11.88	11.28	12.23	13.26
	0,00	,	. 0, 1 1	. 0, 10	. 1,0 1	. 1,00	. 1,20	. 2,20	10,20
XAIm	0,685	0,664	0,664	0,655	0,673	0,675	0,672	0,648	0,659
XSpess	0,039	0,090	0,076	0,056	0,056	0,056	0,053	0,146	0,120
ХРу	0,096	0,114	0,131	0,104	0,115	0,119	0,113	0,122	0,133
XGross	0,165	0,108	0,106	0,161	0,155	0,136	0,117	0,060	0,048

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039
Granat	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9
	GRA1-3	GRA1-4	GRA1-5	GRA1-6	GRA1-7	GRA1-8	GRA1-9	GRA1-10	GRA1-11
SiO2	37.45	37.35	37.17	37.81	37.57	37.56	37.30	37.36	37.08
TiO2	0.03	0.03	0.06	0.03	0.02	0.03	0.02	0.01	0.04
AI2O3	20.95	21.16	21.02	21.09	21.21	21.37	21.11	21.09	21.08
Cr2O3	0,00	0,00	0,00	0,09	0,03	0,04	0,00	0,00	0.00
Fe2O3	0,97	0,84	0,91	0,51	0,76	0,64	0,63	0,61	0,96
MqO	3,52	3,44	3,40	3,29	3,54	3,47	3,31	3,13	3,35
CaO	3,23	3,33	3,19	3,62	3,59	3,42	3,50	3,41	3,37
MnO	5,06	4,74	5,21	4,99	4,78	5,25	5,13	5,39	5,38
FeO	29,75	30,20	29,77	29,80	29,77	29,74	29,54	29,72	29,53
Summe	100,94	101,09	100,73	101,22	101,26	101,53	100,54	100,70	100,79
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5.955	5.934	5.931	5.987	5.947	5.935	5.953	5.961	5.916
AI	0,045	0,066	0,069	0,013	0,053	0,065	0,047	0,039	0,084
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
ті	0.004	0.004	0.007	0.004	0.002	0.003	0.003	0.001	0.005
11 A1	2,004	2,004	2 994	2,004	2,002	0,003	2 0 2 2	2,001	2,005
Ai Cr	3,000	3,890	0,000	0.011	3,903	0,005	0,000	0,000	0,000
Eo2	0,000	0,000	0,000	0,011	0,004	0,003	0,000	0,000	0,000
Cet V	4 000	4,000	4,000	4 000	4 000	4,000	4 000	4 000	4 000
001.1.	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,833	0,814	0,808	0,776	0,836	0,818	0,788	0,743	0,797
Ca	0,550	0,566	0,546	0,614	0,608	0,579	0,599	0,582	0,576
Mn	0,682	0,638	0,704	0,669	0,640	0,703	0,693	0,728	0,727
Fe2+	3,957	4,013	3,973	3,947	3,941	3,930	3,942	3,965	3,940
X-Pos.:	6,021	6,031	6,030	6,005	6,025	6,030	6,022	6,019	6,040
Summe	16,021	16,031	16,031	16,005	16,025	16,031	16,022	16,019	16,040
XFe	0,83	0,83	0,83	0,84	0,83	0,83	0,83	0,84	0,83
XMn	0,12	0,12	0,13	0,12	0,12	0,13	0,13	0,13	0,13
Endalieder									
Uvar.	0.00	0.00	0.00	0.27	0.09	0.13	0.00	0.00	0.00
Andr.	2.97	2.58	2.89	1.62	2.32	1.97	1.94	1.83	2.97
Gross.	6.16	6.80	6.17	8.34	7.68	7.49	8.00	7.84	6.57
Alm.	65,71	66,54	65,88	65,72	65,40	65,17	65,46	65,88	65,23
Spess.	11.32	10.58	11.67	11.14	10.63	11.66	11.51	12.10	12.03
Pyrop	13,84	13,50	13,40	12,91	13,87	13,57	13,09	12,35	13,19
XΔIm	0 657	0 665	0 650	0 657	0 654	0 652	0 655	0 650	0 652
YSnees	0,007	0,000	0,009	0,007	0,004	0,032	0,000	0,009	0,002
XPv	0,113	0,100	0,117	0,111	0,100	0,117	0,113	0,121	0,120
XGross	0,100	0,100	0,104	0,123	0,133	0,130	0,131	0,123	0,102
	0,002	0,000	0,002	0,000	0,011	0,010	0,000	5,070	5,000

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM044	IMM044	IMM044
Granat	5.9	5.9	5.9	5.9	5.9	5.9	1.1	1.1	1.1
	GRA1-12	GRA1-13	GRA1-14	GRA1-15	GRA1-16	GRA1-17	GRA1-3	GRA 1-4	Gra 2-1
SiO2	37,12	37,38	37,31	37,47	36,69	37,11	37,04	37,21	37,13
1102	0,00	0,09	0,04	0,02	0,05	0,02	0,01	0,01	0,01
AI2O3	20,75	20,86	21,05	20,86	20,94	20,99	20,94	21,08	21,04
Cr2O3	0,05	0,00	0,00	0,01	0,00	0,01	0,02	0,00	0,00
Fe2O3	0,98	0,78	0,57	0,64	0,67	0,54	1,74	1,48	1,61
MgO	3,29	3,23	3,23	3,09	2,97	2,99	3,98	4,15	3,94
CaO	3,37	3,22	3,15	3,15	3,47	3,01	3,63	3,34	3,18
MnO	5,28	5,89	6,14	6,16	6,35	6,66	5,18	5,12	5,24
FeO	29,39	29,15	29,00	29,11	28,50	28,87	28,70	28,89	29,34
Summe	100,22	100,60	100,49	100,50	99,64	100,21	101,24	101,28	101,49
Strukturform	el bezogen a	uf 24 Sauers	stoffe						
Si	5,953	5,970	5,962	5,990	5,927	5,959	5,875	5,890	5,881
AI	0,047	0,030	0,038	0,010	0,073	0,041	0,125	0,110	0,119
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ti	0,000	0,010	0,004	0,002	0,005	0,003	0,000	0,000	0,000
AI	3,876	3,896	3,928	3,920	3,913	3,931	3,790	3,820	3,810
Cr	0,006	0,001	0,000	0,001	0,000	0,001	0,000	0,000	0,000
Fe3+	0,118	0,093	0,068	0,077	0,081	0,066	0,210	0,180	0,190
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Μα	0 786	0 768	0 770	0 737	0 716	0 717	0 940	0 980	0 930
Ca	0,700	0,700	0,770	0,787	0,601	0.518	0,620	0,500	0,500
Mn	0,078	0,001	0,831	0,834	0,869	0,906	0,020	0,690	0,040
 Fe2+	3 942	3 894	3 876	3 893	3 849	3 877	3 810	3 820	3 890
X-Pos.:	6.024	6,009	6,016	6,003	6.034	6,018	6,060	6.050	6,060
Summe	16.024	16.010	16.017	16.003	16.034	16.019	16.060	16.050	16.060
		,	,	,	,	,		,	,
XFe	0,83	0,84	0,83	0,84	0,84	0,84	0,80	0,80	0,81
XMn	0,13	0,15	0,15	0,15	0,16	0,16	0,13	0,13	0,13
Endalieder									
Livar	0.15	0.01	0.00	0.02	0.00	0.03	0.07	0.00	0.00
Andr.	2 93	2 59	1 81	1.98	2 16	1 71	5 15	4.38	4 77
Gross	6,52	2,00 6,57	7 15	6.98	7.80	6.88	4 97	4 98	4 14
Alm.	65 44	64 79	64 43	64 85	63 79	64 42	62 79	63 15	64 14
Sness	11 92	13 25	13.82	13.89	14 39	15.06	11 48	11 33	11 60
Pyrop	13.04	12,78	12,80	12,28	11.86	11,91	15.54	16,15	15.34
	10,04	.2,70	.2,50	. 2,20	,50	,	10,04	10,10	10,04
XAIm	0,654	0,648	0,644	0,648	0,638	0,644	0,628	0,632	0,641
XSpess	0,119	0,132	0,138	0,139	0,144	0,151	0,115	0,113	0,116
ХРу	0,130	0,128	0,128	0,123	0,119	0,119	0,155	0,162	0,153
XGross	0,065	0,066	0,072	0,070	0,078	0,069	0,050	0,050	0,041

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044
Granat	1.2	1.2	1.2	1.2	1.2	1.3	1.3	1.3	1.3
	Gra1-1	Gra1-2	Gra1-3	Gra1-4	Gra1-5	Gra1-1	Gra1-2	Gra1-3	Gra1-4
8:02	27.10	27.62	26 54	26.02	26.02	26.04	26 47	26 12	26 50
3102	37,10	37,03	0.02	30,82	30,62	30,94	0.05	30,13	0.05
1102	0,05	0,04	0,03	0,00	0,02	0,04	0,05	0,12	20,05
A1203	20,97	21,09	21,10	21,40	21,37	21,01	20,81	20,70	20,91
G1203	0,00	1.21	0,00	0,03	0,00	0,00	0,04	1.02	1 20
Fe2O3 MaO	1,50	1,31	1,24	2.04	3,70	1,49	1,75	1,92	2.60
NigO CaO	4,02	4,11	3,03	3,94	3,00	3,44	2,75	2,51	2,09
MnO	3,82	4,33	4,55	3,94	2 00	4,43	4 01	4.60	3 90
EeO	4,97	2,74	2,93	20.35	2,99	30.51	20.20	28.20	20 30
Summe	100.90	101 45	100.05	100.08	100.00	101 04	100.68	100.20	100.26
Summe	100,90	101,45	100,05	100,00	100,00	101,04	100,00	100,29	100,20
Strukturform	nel bezogen a	uf 24 Sauers	toffe						
Si	5,892	5,926	5,850	5,882	5,883	5,877	5,847	5,821	5,878
AI	0,108	0,074	0,150	0,118	0,117	0,123	0,153	0,179	0,122
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
т	0.010	0.000	0.000	0.000	0.000	0.000	0.010	0.010	0.010
11 Al	3 820	0,000	0,000	3,000	3,000	3,820	3 780	3 750	3 840
	0,020	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,040
Eo2	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Cot V	4,000	4 000	4,000	4,000	4,000	4,000	4 000	4 000	4 000
000.1.	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,950	0,960	0,910	0,940	0,920	0,820	0,660	0,600	0,650
Ca	0,650	0,730	0,780	0,670	0,760	0,760	0,950	1,050	0,930
Mn	0,670	0,370	0,400	0,530	0,400	0,430	0,540	0,630	0,530
Fe2+	3,780	3,970	3,990	3,920	3,970	4,060	3,930	3,800	3,950
X-Pos.:	6,050	6,030	6,070	6,060	6,060	6,060	6,070	6,080	6,060
Summe	16,050	16,030	16,070	16,060	16,060	16,060	16,070	16,080	16,060
XEo	0.80	0.80	0.81	0.81	0.81	0.83	0.86	0.86	0.86
XMn	0,00	0,00	0.07	0,01	0.08	0,00	0,00	0,00	0,00
	0,12	0,07	0,07	0,10	0,00	0,00	0,11	0,12	0,10
Endglieder									
Uvar.	0,00	0,05	0,01	0,09	0,00	0,00	0,12	0,00	0,02
Andr.	4,58	3,95	3,77	2,10	2,32	4,55	5,37	6,09	4,03
Gross.	6,15	8,11	9,02	8,92	10,29	7,93	10,10	11,24	11,38
Alm.	62,49	65,85	65,62	64,72	65,55	66,99	64,65	62,46	65,17
Spess.	11,05	6,06	6,54	8,70	6,68	7,06	8,97	10,31	8,76
Pyrop	15,74	15,97	15,03	15,47	15,16	13,47	10,81	9,90	10,65
XAlm	0 625	0 659	0 656	0 647	0 656	0 670	0 647	0 625	0 652
XSness	0 111	0,000	0.065	0.087	0,000	0.070	0,047	0 103	0,002
XPv	0,111	0,001	0,000	0,007	0,007	0,071	0,090	0,103	0,000
XGross	0,107	0,100	0,100	0,100	0,102	0,133	0,100	0,033	0,107
701035	0,002	0,001	0,080	0,009	0,105	0,019	0,101	0,112	0,114

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044
Granat	1.3	1.3	1.3	1.3	1.4	1.4	1.4	1.4	1.4
	Gra1-5	Gra1-6	Gra1-7	Gra1-8	Gra1-1	Gra1-2	Gra1-3	Gra2-1	Gra2-2
SiO2	37,10	36,37	36,78	36,77	36,66	36,00	36,83	36,93	37,13
TiO2	0,04	0,11	0,03	0,06	0,00	0,00	0,04	0,04	0,03
AI2O3	21,36	20,91	21,19	21,08	21,01	20,94	21,20	20,98	21,29
Cr2O3	0,00	0,00	0,01	0,03	0,04	0,02	0,07	0,00	0,00
Fe2O3	0,87	1,44	1,04	1,34	1,50	1,66	1,44	1,56	1,33
MgO	3,22	2,77	3,63	2,88	3,94	3,52	3,65	3,80	3,93
CaO	4,21	6,00	2,92	5,58	4,66	5,65	5,61	3,50	4,06
MnO	2,88	3,70	5,80	4,54	3,10	2,43	2,12	4,86	3,49
FeO	31,51	28,74	29,23	28,58	29,30	29,15	29,90	29,39	30,10
Summe	101,19	100,04	100,63	100,86	100,21	99,37	100,86	101,06	101,36
Strukturforr	nel bezogen al	uf 24 Sauers	toffe						
Si	5.893	5.850	5.879	5.865	5.859	5.813	5.848	5.874	5.871
AI	0.107	0.150	0.121	0.135	0.141	0.187	0.152	0.126	0.129
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ti	0,000	0,010	0,000	0,010	0,000	0,000	0,000	0,010	0,000
AI	3,890	3,810	3,870	3,830	3,810	3,800	3,810	3,810	3,840
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,010	0,000	0,000
Fe3+	0,100	0,170	0,120	0,160	0,180	0,200	0,170	0,190	0,160
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,760	0,660	0,870	0,680	0,940	0,850	0,860	0,900	0,930
Ca	0,720	1,030	0,500	0,950	0,800	0,980	0,950	0,600	0,690
Mn	0,390	0,500	0,790	0,610	0,420	0,330	0,290	0,660	0,470
Fe2+	4,180	3,870	3,910	3,810	3,910	3,940	3,970	3,910	3,980
X-Pos.:	6,050	6,070	6,060	6,060	6,070	6,090	6,070	6,060	6,060
Summe	16,050	16,070	16,060	16,060	16,070	16,090	16,070	16,060	16,060
XFe	0,85	0,85	0,82	0,85	0,81	0,82	0,82	0,81	0,81
XMn	0,07	0,10	0,14	0,12	0,08	0,06	0,06	0,12	0,09
Endalieder									
Livar	0.00	0.00	0.03	0.08	0.11	0.05	0.23	0.00	0.00
Andr	2 69	4 63	3 18	4 17	4 47	4 97	4 36	4 75	4 01
Gross	9.13	12 40	5.04	11 /0	8.57	11.02	11 11	5.07	7 33
Alm	69 15	63 72	64.49	62.87	64.49	64.60	65 37	64 51	65 66
Shore	6 /1	9.21	12.07	10.12	6.00	5.46	4 70	10.91	7 72
Spess.	12.61	10.04	12,97	10,12	15 45	12 00	4,70	14.86	1,12
гуюр	12,01	10,94	14,29	11,20	15,45	13,90	14,23	14,00	15,29
XAIm	0,692	0,637	0,645	0,629	0,645	0,646	0,654	0,645	0,657
XSpess	0,064	0,083	0,130	0,101	0,069	0,055	0,047	0,108	0,077
ХРу	0,126	0,109	0,143	0,113	0,155	0,139	0,142	0,149	0,153
XGross	0,091	0,124	0,050	0,115	0,086	0,110	0,111	0,051	0,073

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044
Granat	1.4	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6
	Gra2-3	Gra1-1	Gra1-2	Gra1-3	Gra1-4	Gra1-5	Gra1-6	Gra1-7	Gra1-8
SiO2	36,67	37,15	37,55	37,24	36,87	37,31	37,07	36,69	36,98
TiO2	0,07	0,04	0,05	0,05	0,02	0,06	0,08	0,01	0,06
AI2O3	21,37	20,90	20,96	21,41	20,87	20,99	21,04	20,89	20,65
Cr2O3	0,00	0,02	0,00	0,02	0,01	0,01	0,00	0,00	0,02
Fe2O3	1,70	1,35	1,17	1,08	1,59	1,57	1,34	1,12	1,55
MgO	4,00	3,83	3,89	3,93	3,49	3,41	4,02	3,68	3,79
CaO	3,81	3,49	4,02	3,49	4,64	4,32	3,01	3,10	2,96
MnO	3,97	3,30	2,70	3,79	2,89	3,95	4,97	5,35	4,94
FeO	30,02	30,78	30,69	30,56	30,32	30,18	29,48	29,01	29,61
Summe	101,61	100,86	101,03	101,57	100,70	101,80	101,01	99,85	100,56
Strukturforme	el bezogen au	uf 24 Sauers	offe						
Si	5,803	5,911	5,943	5,880	5,881	5,896	5,891	5,902	5,913
AI	0,197	0,089	0,057	0,120	0,119	0,104	0,109	0,098	0,087
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,010	0,000	0,010	0,010	0,000	0,010	0,010	0,000	0,010
AI	3,790	3,830	3,850	3,860	3,810	3,800	3,830	3,860	3,800
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe3+	0,200	0,160	0,140	0,130	0,190	0,190	0,160	0,140	0,190
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,940	0,910	0,920	0,930	0,830	0,800	0,950	0,880	0,900
Ca	0,650	0,590	0,680	0,590	0,790	0,730	0,510	0,530	0,510
Mn	0,530	0,440	0,360	0,510	0,390	0,530	0,670	0,730	0,670
Fe2+	3,970	4,100	4,060	4,040	4,050	3,990	3,920	3,900	3,960
X-Pos.:	6,090	6,040	6,030	6,060	6,060	6,050	6,050	6,050	6,040
Summe	16,090	16,040	16,030	16,060	16,060	16,050	16,050	16,050	16,040
XFe	0,81	0,82	0,82	0,81	0,83	0,83	0,80	0,82	0,81
XMn	0,10	0,08	0,07	0,09	0,07	0,10	0,12	0,13	0,12
Endglieder									
Uvar.	0,00	0,07	0,00	0,05	0,03	0,04	0,00	0,00	0,05
Andr.	5,20	4,12	3,64	3,31	4,79	4,80	4,18	3,40	4,81
Gross.	5,40	5,65	7,69	6,39	8,26	7,25	4,28	5,42	3,54
Alm.	65,19	67,77	67,43	66,62	66,78	65,92	64,73	64,54	65,57
Spess.	8,73	7,35	6,01	8,36	6,45	8,73	11,06	12,05	11,08
Pyrop	15,48	15,04	15,23	15,28	13,68	13,26	15,74	14,59	14,96
XAIm	0,652	0,678	0,674	0,666	0,668	0,659	0,647	0,645	0,656
XSpess	0,087	0,074	0,060	0,084	0,065	0,087	0,111	0,121	0,111
ХРу	0,155	0,150	0,152	0,153	0,137	0,133	0,157	0,146	0,150
XGross	0,054	0,057	0,077	0,064	0,083	0,073	0,043	0,054	0,035

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051
Granat	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1
	GRA1-1	GRA1-2	GRA1-3	GRA1-4	GRA1-5	GRA1-6	GRA1-7	GRA1-8	GRA1-9
		Profil Rand							
SiO2	36,69	36,88	36,24	37,17	36,70	36,67	36,36	36,95	36,63
TiO2	0,00	0,06	0,02	0,07	0,04	0,03	0,05	0,01	0,01
AI2O3	20,76	20,55	20,62	21,22	20,70	20,69	21,10	20,81	20,87
Cr2O3	0,02	0,00	0,00	0,04	0,00	0,02	0,00	0,02	0,02
Fe2O3	0,75	0,67	1,11	0,60	1,22	0,77	0,92	0,65	1,05
MgO	3,10	3,27	3,56	3,63	3,52	3,60	3,48	3,59	3,68
CaO	1,77	2,01	1,87	2,00	2,25	2,31	2,28	2,46	2,60
MnO	7,51	7,15	5,74	5,57	5,09	4,68	4,56	4,30	4,21
FeO	29,12	28,61	29,84	30,58	30,48	30,31	31,16	30,71	30,68
Summe	99,72	99,20	98,99	100,89	99,99	99,09	99,92	99,48	99,75
Strukturforme	l bezogen a	auf 24 Sauers	toffe						
Si	5,943	5,982	5,904	5,926	5,916	5,946	5,869	5,961	5,904
AI	0,057	0,018	0,096	0,074	0,084	0,054	0,131	0,039	0,096
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
т	0.000	0.007	0.002	0.000	0.004	0.004	0.006	0.001	0.001
	2,000	0,007	0,002	0,009	0,004	0,004	0,000	0,001	2,001
	3,900	3,911	3,003	3,914	3,040	3,900	3,002	3,910	3,009
Gr Eo2	0,003	0,001	0,000	0,005	0,000	0,003	0,000	0,002	0,002
rest V	4,000	0,082	0,130	0,072	0,140	0,094	0,112	0,079	0,120
001. 1.	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,747	0,792	0,863	0,862	0,846	0,871	0,838	0,863	0,885
Са	0,307	0,349	0,326	0,342	0,389	0,402	0,394	0,425	0,450
Mn	1,030	0,983	0,792	0,752	0,695	0,642	0,624	0,587	0,575
Fe2+	3,945	3,881	4,065	4,078	4,109	4,110	4,206	4,143	4,136
X-Pos.:	6,029	6,005	6,046	6,033	6,040	6,025	6,062	6,019	6,046
Summe	16,029	16,005	16,047	16,033	16,040	16,025	16,062	16,019	16,047
XFe	0.84	0.83	0.82	0.83	0.83	0.83	0.83	0.83	0.82
XMn	0,18	0,17	0,14	0,13	0,12	0,11	0,11	0,10	0,10
Endaligder									
Llugieder	0.07	0.01	0.00	0.12	0.00	0.06	0.00	0.05	0.05
Andr	2.28	2 22	3 4 2	2 01	0,00	2 42	2 92	1.08	3 20
Gross	2,20	3.58	1 07	2,01	2.67	2, <del>4</del> 2	2,52	5.02	J 10
Δlm	65.43	64 63	67.24	67 59	68.03	68 22	69 39	68 84	68 41
Sness	17.08	16 36	13 10	12.46	11 51	10.66	10.29	9.76	9.51
Pyron	12 40	13,50	14 28	12,40	14.01	14 45	13.82	14 35	14 64
i yiop	12,40	10,10	14,20	14,20	14,01	14,40	10,02	14,00	14,04
XAIm	0,654	0,646	0,672	0,676	0,680	0,682	0,694	0,688	0,684
XSpess	0,171	0,164	0,131	0,125	0,115	0,107	0,103	0,098	0,095
ХРу	0,124	0,132	0,143	0,143	0,140	0,145	0,138	0,143	0,146
XGross	0,028	0,036	0,020	0,035	0,027	0,042	0,036	0,050	0,042

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051
Granat	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1
	GRA1-10	GRA1-11	GRA1-12	GRA1-13	GRA1-14	GRA1-15	GRA1-16	GRA1-17	GRA2-2
									Profil Rand
SiO2	37,25	36,96	37,00	36,88	36,47	36,31	36,73	36,53	36,64
TiO2	0,01	0,01	0,07	0,07	0,02	0,05	0,06	0,03	0,00
AI2O3	21,13	20,75	20,88	21,31	20,71	21,02	20,66	20,83	20,84
Cr2O3	0,00	0,03	0,04	0,02	0,02	0,00	0,00	0,02	0,04
Fe2O3	0,55	1,09	0,91	0,83	1,03	0,91	1,03	0,50	1,08
MgO	3,53	3,68	3,75	3,75	3,41	3,36	3,32	2,84	3,37
CaO	2,72	2,36	2,25	2,22	2,29	2,07	2,04	1,82	2,19
MnO	4,01	3,99	4,24	4,36	5,18	6,51	6,96	8,64	6,17
FeO	31,23	31,30	31,11	31,44	30,33	29,54	29,05	28,19	29,81
Summe	100,43	100,17	100,24	100,87	99,46	99,77	99,85	99,38	100,13
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5,953	5,935	5,931	5,883	5,912	5,875	5,933	5,940	5,905
AI	0,047	0,065	0,069	0,117	0,088	0,125	0,067	0,060	0,095
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
ті	0.001	0.001	0.009	0.009	0.003	0.006	0.007	0.004	0.000
AI	3,932	3,862	3,877	3,889	3,869	3,884	3,867	3,933	3,864
Cr	0.000	0.004	0.005	0.003	0.003	0.000	0.000	0.002	0.004
Fe3+	0.067	0.132	0,110	0,100	0,126	0,111	0,126	0.061	0,132
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,841	0,881	0,897	0,891	0,823	0,810	0,799	0,688	0,809
Ca	0,465	0,405	0,387	0,379	0,397	0,359	0,353	0,316	0,378
Mn	0,543	0,543	0,575	0,589	0,711	0,893	0,953	1,190	0,842
Fe2+	4,174	4,203	4,171	4,194	4,112	3,997	3,924	3,834	4,018
X-Pos.:	6,024	6,032	6,029	6,053	6,042	6,059	6,030	6,028	6,048
Summe	16,023	16,032	16,030	16,054	16,042	16,060	16,030	16,028	16,047
XFe	0,83	0,83	0,82	0,82	0,83	0,83	0,83	0,85	0,83
XMn	0,10	0,10	0,10	0,10	0,13	0,16	0,17	0,21	0,15
Endglieder									
Uvar.	0,00	0,11	0,13	0,07	0,07	0,00	0,00	0,06	0,11
Andr.	1,68	3,31	2,95	2,68	3,19	2,89	3,31	1,61	3,26
Gross.	6,04	3,30	3,33	3,50	3,30	3,04	2,56	3,58	2,88
Alm.	69,29	69,68	69,18	69,29	68,05	65,97	65,08	63,60	66,44
Spess.	9,02	8,99	9,54	9,73	11,76	14,73	15,80	19,74	13,93
Pyrop	13,97	14,61	14,87	14,72	13,62	13,37	13,25	11,41	13,38
XAIm	0 693	0 697	0 692	0 693	0.680	0.660	0.651	0.636	0 664
XSpess	0,000	0,007	0,002	0,000	0 118	0 147	0 158	0 197	0,004
XPv	0 140	0 146	0 149	0 147	0 136	0 134	0 133	0 114	0 134
XGross	0.060	0.033	0.033	0.035	0.033	0.030	0.026	0.036	0.029
	-,	-,		.,	.,	.,		-,0	-,0

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051
Granat	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1
	GRA2-3	GRA2-4	GRA2-5	GRA2-6	GRA2-7	GRA2-8	GRA2-9	GRA2-10	GRA2-11
SiO2	36,87	36,80	36,89	36,81	36,79	36,34	37,30	37,28	36,80
TiO2	0,01	0,04	0,07	0,06	0,00	0,01	0,05	0,03	0,02
AI2O3	20,64	21,28	21,16	20,97	20,60	21,13	21,20	20,78	21,16
Cr2O3	0,02	0,01	0,02	0,00	0,00	0,00	0,03	0,00	0,00
Fe2O3	1,68	1,13	0,98	0,86	0,96	0,78	0,82	0,41	0,79
MgO	3,50	3,06	3,06	3,27	3,43	3,35	3,50	3,11	3,55
CaO	2,89	3,98	3,65	3,29	2,89	2,11	2,40	1,84	2,25
MnO	2,22	1,68	1,82	2,02	3,88	6,27	5,23	7,32	5,62
FeO	33,01	33,27	33,36	32,85	30,77	29,81	30,84	29,09	30,19
Summe	100,82	101,24	101,01	100,13	99,32	99,80	101,36	99,85	100,37
Strukturforme	el bezogen a	uf 24 Sauers	toffe						
Si	5,901	5,863	5,889	5,916	5,954	5,877	5,924	6,007	5,902
AI	0,099	0,137	0,111	0,084	0,046	0,123	0,076	0,000	0,098
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,007	6,000
Ті	0,001	0,004	0,009	0,007	0,000	0,002	0,006	0,004	0,002
AI	3,794	3,859	3,871	3,888	3,883	3,903	3,892	3,947	3,902
Cr	0,003	0,001	0,003	0,000	0,000	0,000	0,004	0,000	0,000
Fe3+	0,202	0,136	0,117	0,104	0,117	0,095	0,098	0,050	0,095
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,834	0,727	0,728	0,783	0,827	0,808	0,829	0,746	0,848
Ca	0,495	0,680	0,624	0,566	0,500	0,365	0,408	0,318	0,387
Mn	0,301	0,227	0,246	0,275	0,531	0,858	0,703	0,999	0,763
Fe2+	4,419	4,433	4,453	4,414	4,165	4,030	4,095	3,921	4,050
X-Pos.:	6,049	6,067	6,052	6,039	6,023	6,062	6,036	5,984	6,048
Summe	16,049	16,066	16,052	16,038	16,023	16,061	16,035	15,991	16,048
VEo	0.94	0.96	0.96	0.95	0.02	0 02	0 02	0.94	0 02
XNn	0,84	0,80	0,80	0,85	0,83	0,85	0,05	0,04	0,03
	0,00	0,04	0,00	0,00	0,10	0,10	0,12	0,10	0,10
Endglieder									
Uvar.	0,07	0,02	0.07	0.00	0.00	0,00	0,09	0,00	0,00
Andr.	5,03	3,46	3,13	2,77	2,91	2,39	2,58	1,34	2,41
Gross.	3,08	7,74	7,12	6,61	5,39	3,64	4,08	3,97	3,99
Alm.	73,05	73,07	73,58	73,10	69,14	66,49	67,86	65,52	66,96
Spess.	4.97	3.74	4.07	4.55	8.82	14.16	11.65	16.70	12.62
Pyrop	13.79	11.98	12.03	12.97	13.74	13.33	13.74	12.47	14.02
2 - I-	-,	.,	_,	_,	-,	-,	-,	,	· .,
XAIm	0,731	0,731	0,736	0,731	0,691	0,665	0,679	0,655	0,670
XSpess	0,050	0,037	0,041	0,046	0,088	0,142	0,117	0,167	0,126
ХРу	0,138	0,120	0,120	0,130	0,137	0,133	0,137	0,125	0,140
XGross	0,031	0,077	0,071	0,066	0,054	0,036	0,041	0,040	0,040

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051
Granat	9.1	9.1	9.1	9.3	9.3	9.3	9.3	9.3	9.3
	CPA2 12	CPA2 12	CPA2 14	CPA1 1	CPA1 2	CPA1 2		GRA2-	CPA2 4
	GRAZ-12	GRAZ-13	GRAZ-14	GRAI-I	GRAT-2	GRAT-2	GRAZ-1	JDIN nehen Rio	GRAZ-4
SiO2	36.87	36.03	36.45	36.76	37.07	37 11	36 53	36.89	36.80
TiO2	0.04	0.02	0.05	0.05	0.01	0.01	0.03	0.04	0.05
AI2O3	21.03	21.04	20.88	21 04	20.83	20.93	20.56	20.74	20.94
Cr2O3	0.05	0.00	0.03	0.02	0.00	0.02	0.00	0.01	0.00
Fe2O3	1,13	1.03	1.00	0.93	0.84	0.71	0.73	0,69	0.88
MaO	3.29	3.58	3.34	3.23	3.28	3.43	3.34	3.00	3.53
CaO	3.18	2.73	3.17	1.92	1.91	1.85	2.08	1.92	2.15
MnO	2.20	2.71	3.39	7.71	7.25	6.34	6.69	8.00	4.90
FeO	33.11	32.56	31.33	29.02	29.21	29.99	28.77	28.64	30.92
Summe	100,89	100,61	99,63	100,67	100,38	100,40	98,74	99,92	100,26
Strukturform	nel bezogen a	uf 24 Sauers	stoffe						
Si	5,893	5,907	5,891	5,900	5,955	5,952	5,956	5,960	5,925
AI	0,107	0,093	0,109	0,100	0,045	0,048	0,044	0,040	0,075
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,004	0,003	0,006	0,006	0,001	0,001	0,004	0,005	0,006
AI	3,854	3,873	3,869	3,879	3,897	3,909	3,906	3,909	3,888
Cr	0,006	0,000	0,003	0,002	0,000	0,003	0,000	0,002	0,000
Fe3+	0,135	0,124	0,122	0,112	0,102	0,086	0,090	0,084	0,106
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Ma	0 700	0.054	0.005	0 774	0 705	0.004	0.044	0 700	0.045
Nig	0,783	0,854	0,805	0,774	0,785	0,821	0,811	0,722	0,845
Ca	0,544	0,468	0,549	0,330	0,328	0,316	0,304	0,332	0,370
IVIN Eo2	0,296	0,307	0,404	1,049	0,900	0,001	0,923	1,094	0,000
Fezt	4,420	4,330	4,233	5,695	5,925	4,024	5,925	5,009	4,100
A-FUS Summo	16 051	16 045	16.052	16 047	16 022	16 023	16.020	16 017	16.035
Summe	10,031	10,045	10,032	10,047	10,022	10,025	10,020	10,017	10,055
XFe	0.85	0.84	0.84	0.83	0.83	0.83	0.83	0.84	0.83
XMn	0.05	0.07	0.08	0.18	0.17	0.15	0.16	0.19	0.12
	- ,	- 1 -	- ,	-, -	- 1	-, -	-, -	-, -	- ,
Endglieder									
Uvar.	0,15	0,00	0,08	0,05	0,00	0,07	0,00	0,04	0,00
Andr.	3,47	3,14	3,17	2,92	2,55	2,18	2,33	2,23	2,79
Gross.	5,37	4,60	5,82	2,48	2,90	3,03	3,71	3,24	3,35
Alm.	73,14	72,06	69,97	64,41	65,15	66,80	65,16	64,30	68,82
Spess.	4,93	6,07	7,66	17,34	16,37	14,29	15,34	18,18	11,04
Pyrop	12,95	14,12	13,30	12,80	13,03	13,63	13,46	12,00	14,00
XAIm	0,731	0,721	0,700	0,644	0,651	0,668	0,652	0,643	0,688
XSpess	0,049	0,061	0,077	0,173	0,164	0,143	0,153	0,182	0,110
ХРу	0,129	0,141	0,133	0,128	0,130	0,136	0,135	0,120	0,140
XGross	0,054	0,046	0,058	0,025	0,029	0,030	0,037	0,032	0,033

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051
Granat	9.3	9.3	9.3	9.3	9.3	9.3	9.3	9.3	9.3
	GRA2-5	GRA2-6	GRA2-7	GRA2-8	GRA2-9	GRA2-10	GRA2-11	GRA2-12	GRA2-13
SiO2	36,78	36,84	37,04	37,01	36,51	37,08	36,02	36,37	36,60
TiO2	0,01	0,00	0,00	0,03	0,06	0,04	0,04	0,05	0,00
AI2O3	20,95	20,70	21,13	21,01	20,92	20,94	20,67	20,79	21,04
Cr2O3	0,00	0,00	0,02	0,03	0,01	0,00	0,03	0,00	0,02
Fe2O3	0,46	0,62	0,00	0,29	0,71	0,63	1,33	1,30	0,71
MgO	3,58	3,46	2,90	3,10	3,40	3,58	3,38	3,46	3,46
CaO	2,55	2,48	1,81	1,84	2,43	2,76	3,26	2,97	2,29
MnO	3,81	3,89	8,15	7,61	3,91	2,85	2,32	2,91	5,66
FeO	31,04	31,10	28,61	29,03	31,47	32,00	32,01	31,92	29,95
Summe	99,20	99,09	99,66	99,95	99,44	99,88	99,05	99,77	99,72
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5,948	5,970	5,984	5,966	5,911	5,956	5,864	5,876	5,909
AI	0,052	0,030	0,016	0,034	0,089	0,044	0,136	0,124	0,091
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,002	0,000	0,000	0,004	0,008	0,004	0,004	0,007	0,000
AI	3,941	3,924	4,008	3,958	3,904	3,920	3,829	3,836	3,911
Cr	0,000	0,000	0,003	0,003	0,002	0,000	0,003	0,000	0,002
Fe3+	0,057	0,076	0,000	0,036	0,087	0,076	0,163	0,158	0,087
Oct. Y:	4,000	4,000	4,011	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,863	0,836	0,699	0,745	0,821	0,858	0,821	0,834	0,833
Ca	0,442	0,430	0,312	0,317	0,422	0,475	0,568	0,513	0,396
Mn	0,521	0,534	1,116	1,038	0,537	0,388	0,320	0,398	0,774
Fe2+	4,198	4,215	3,865	3,914	4,262	4,299	4,358	4,313	4,044
X-Pos.:	6,025	6,016	5,992	6,015	6,041	6,020	6,067	6,059	6,046
Summe	16,025	16,015	16,003	16,015	16,041	16,020	16,066	16,059	16,046
XFe	0,83	0,83	0,85	0,84	0,84	0,83	0,84	0,84	0,83
XMn	0,09	0,10	0,20	0,18	0,10	0,07	0,06	0,07	0,14
Endalieder									
Uvar	0.01	0.00	0.06	0.08	0.04	0.00	0.08	0.00	0.05
Andr.	1.45	1.89	0.00	0.98	2.35	1,99	4,13	4.07	2,15
Gross	5.88	5.26	5 15	4 21	4 60	5,90	5 15	4 40	4.34
Alm.	69.68	70.07	64.50	65.07	70.55	71.41	71.84	71.19	66.88
Spess	8 65	8 88	18.62	17 27	8.88	6 4 4	5 27	6.57	12 80
Pyrop	14,33	13,90	11,67	12,39	13,59	14,25	13,53	13,77	13,77
					•	·			
XAIm	0,697	0,701	0,645	0,651	0,705	0,714	0,718	0,712	0,669
XSpess	0,087	0,089	0,186	0,173	0,089	0,064	0,053	0,066	0,128
ХРу	0,143	0,139	0,117	0,124	0,136	0,143	0,135	0,138	0,138
XGross	0,059	0,053	0,052	0,042	0,046	0,059	0,051	0,044	0,043

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051
Granat	9.3	9.3	9.3	9.3	9.3	9.3	9.3	9.4	9.4
	GRA2-14	GRA2-16	GRA2-15	GRA2-17	GRA2-18	GRA2-19	GRA2-20	GRA1-3	GRA1-4
SiO2	36,65	36,66	36,27	36,47	36,19	36,40	36,01	37,21	36,25
TiO2	0,03	0,00	0,03	0,00	0,00	0,03	0,03	0,05	0,00
AI2O3	20,82	20,91	20,83	21,00	21,07	20,60	20,67	20,64	20,63
Cr2O3	0,00	0,02	0,00	0,04	0,03	0,02	0,00	0,02	0,04
Fe2O3	0,84	0,95	0,89	0,55	0,75	0,77	0,84	0,89	0,80
MgO	3,51	3,79	3,36	3,27	3,58	3,28	3,20	2,96	2,88
CaO	2,40	2,49	1,90	1,87	2,10	1,65	1,86	1,33	1,39
MnO	4,95	3,98	6,27	7,05	5,34	7,36	7,59	9,23	8,60
FeO	30,29	30,87	29,73	29,20	30,20	28,79	28,36	28,42	28,57
Summe	99,49	99,67	99,27	99,47	99,27	98,90	98,56	100,73	99,15
Strukturform	el bezogen a	uf 24 Sauers	stoffe						
Si	5.927	5.909	5.897	5.913	5.873	5.937	5.901	5.976	5.923
AI	0.073	0.091	0.103	0.087	0.127	0.063	0.099	0.024	0.077
Tetr. Z:	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
	-,	-,	-,	-,	-,	-,	-,	-,	-,
Ті	0,004	0,000	0,003	0,000	0,000	0,004	0,004	0,005	0,000
AI	3,894	3,882	3,888	3,927	3,904	3,898	3,892	3,884	3,896
Cr	0,000	0,002	0,000	0,005	0,004	0,003	0,000	0,003	0,005
Fe3+	0,102	0,115	0,109	0,067	0,092	0,094	0,104	0,107	0,099
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,846	0,911	0,813	0,791	0,865	0,796	0,782	0,708	0,701
Са	0,416	0,430	0,331	0,325	0,365	0,289	0,326	0,229	0,244
Mn	0,678	0,543	0,863	0,968	0,735	1,017	1,053	1,255	1,190
Fe2+	4,095	4,161	4,042	3,960	4,099	3,927	3,887	3,817	3,904
X-Pos.:	6,035	6,045	6,050	6,044	6,064	6,030	6,048	6,010	6,038
Summe	16,035	16,045	16,050	16,043	16,064	16,030	16,048	16,009	16,039
ΧFo	0.83	0.82	0.83	0.83	0.83	0.83	0.83	0.84	0.85
XMn	0,12	0.10	0,15	0,00	0,13	0,18	0,18	0.22	0.21
	0,12	0,10	0,10	0,11	0,10	0,10	0,10	0,22	0,2 .
Endglieder									
Uvar.	0,00	0,06	0,00	0,12	0,10	0,06	0,00	0,08	0,13
Andr.	2,62	2,87	2,79	1,68	2,28	2,45	2,66	2,81	2,46
Gross.	4,27	4,19	2,69	3,58	3,64	2,28	2,73	0,93	1,45
Alm.	67,86	68,83	66,82	65,51	67,60	65,13	64,27	63,52	64,65
Spess.	11,24	8,99	14,26	16,02	12,11	16,87	17,41	20,89	19,70
Pyrop	14,01	15,06	13,44	13,09	14,27	13,21	12,93	11,78	11,61
XAIm	0 670	0 699	0 669	0 655	0 676	0 651	0 642	0 625	0.646
Venace	0,079	0,000	0,000	0,000	0,070	0,001	0,043	0,000	0,040
Nopess	0,112	0,090	0,143	0,100	0,121	0,109	0,174	0,209	0,197
лгу	0,140	0,151	0,134	0,131	0,143	0,132	0,129	0,118	0,116
AGross	0,043	0,042	0,027	0,036	0,036	0,023	0,027	0,009	0,015

## Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051
Granat	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4
	GRA1-5	GRA1-6	GRA1-7	GRA1-8	GRA1-9	GRA1-11	GRA2-1	GRA2-2	GRA2-3
SiO2	36,55	36,86	37,17	36,72	37,65	36,47	36,36	36,14	36,04
TiO2	0,01	0,04	0,02	0,02	0,03	0,03	0,01	0,00	0,00
AI2O3	20,92	20,82	21,05	21,07	21,38	20,93	20,87	20,66	20,98
Cr2O3	0,00	0,02	0,05	0,03	0,00	0,00	0,00	0,05	0,00
Fe2O3	1,01	0,67	0,52	0,53	0,16	0,70	0,67	1,04	0,84
MgO	3,31	3,32	3,28	3,07	3,06	2,97	2,73	3,07	3,31
CaO	1,78	1,66	1,62	1,58	1,74	1,98	1,68	1,69	1,71
MnO	7,17	7,26	7,33	7,85	8,13	8,13	8,35	7,60	6,29
FeO	29,38	29,20	29,59	29,31	29,35	28,51	28,92	29,03	30,07
Summe	100,13	99,86	100,62	100,18	101,50	99,73	99,58	99,29	99,23
Strukturforme	l bezogen a	uf 24 Sauers	offe						
Si	5,898	5,951	5,955	5,924	5,976	5,912	5,916	5,894	5,870
AI	0,102	0,049	0,045	0,076	0,024	0,088	0,084	0,106	0,130
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,001	0,004	0,003	0,002	0,003	0,003	0,001	0,000	0,000
AI	3,876	3,912	3,929	3,929	3,977	3,911	3,917	3,866	3,897
Cr	0,000	0,002	0,006	0,004	0,000	0,000	0,000	0,006	0,000
Fe3+	0,123	0,082	0,062	0,064	0,020	0,086	0,082	0,128	0,103
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mq	0,796	0,799	0,784	0,738	0,724	0,718	0,662	0,747	0,803
Ca	0,308	0,287	0,277	0,273	0,296	0,344	0,293	0,296	0.298
Mn	0,980	0,993	0,995	1,073	1,093	1,116	1,150	1,050	0,868
Fe2+	3,966	3,943	3.965	3.954	3.897	3.864	3,935	3,960	4.096
X-Pos.:	6.051	6.022	6.021	6.038	6.010	6.043	6.041	6.053	6.065
Summe	16,051	16,022	16,021	16,037	16,010	16,043	16,041	16,053	16,065
VF-	0.00	0.00	0.00	0.04	0.04	0.04	0.00	0.04	0.04
лге VMm	0,83	0,83	0,63	0,64	0,64	0,84	0,86	0,64	0,64
	0,17	0,17	0,17	0,19	0,19	0,20	0,20	0,10	0,15
Endglieder									
Uvar.	0,00	0,05	0,15	0,10	0,00	0,00	0,00	0,15	0,00
Andr.	3,07	2,15	1,62	1,65	0,57	2,21	2,07	3,17	2,54
Gross.	2,03	2,57	2,84	2,76	4,36	3,49	2,78	1,57	2,37
Alm.	65,54	65,47	65,85	65,50	64,83	63,95	65,14	65,42	67,54
Spess.	16,20	16,49	16,52	17,77	18,19	18,47	19,04	17,35	14,31
Pyrop	13,16	13,27	13,02	12,22	12,04	11,88	10,96	12,34	13,23
XAIm	0.655	0.655	0,659	0.655	0.648	0.639	0.651	0.654	0.675
XSpess	0.162	0.165	0,165	0,178	0.182	0.185	0,190	0.174	0.143
XPv	0.132	0.133	0.130	0.122	0.120	0.119	0.110	0.123	0.132
XGross	0.020	0.026	0.028	0.028	0.044	0.035	0.028	0.016	0.024
A01033	0,020	0,020	0,020	0,020	0,044	0,000	0,020	0,010	0,024

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051
Granat	9.4	9.4	9.6	9.6	9.6	9.6	9.6	9.6	9.6
	GRA2-6	GRA2-7	GRA1-1	GRA1-2	GRA1-3	GRA1-4	GRA1-5	GRA1-6	GRA1-7?
SiO2	36.85	36 31	35 76	36 10	36.64	36.05	36.28	36.20	30 78
5102 TiO2	0.00	0.04	0.02	0.01	0.04	0.00	0.03	0.02	0.05
AI2O3	21 35	20.82	20.69	20.83	21.00	21.07	20.93	21 04	24.46
Cr2O3	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Fe2O3	0.49	1 44	1.31	1 21	0.90	1 44	1 11	0,00	0,00
MaO	3 18	3 35	3 23	3 41	3,30	3 31	3.28	3 41	3.53
CaO	1 82	2 02	2 04	2 73	2 58	2 76	2 53	2.38	1 26
MnO	6.87	7 02	7 13	4 05	5,00	4 59	3 34	4.39	5 19
FeO	30 14	29.28	28.83	31.04	30.42	31.04	32 33	31 17	26.97
Summe	100,70	100,27	99,00	99,48	100,08	100,25	99,82	99,50	101,23
<b>.</b>									
Strukturform	el bezogen a	uf 24 Sauers	toffe	5 000	5 000	5.040	E 070	5 000	0.400
SI	5,907	5,861	5,848	5,869	5,902	5,818	5,870	5,868	6,103
	0,093	0,139	0,152	0,131	0,098	0,182	0,130	0,132	0,000
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,103
Ті	0,000	0,005	0,003	0,002	0,001	0,000	0,004	0,002	0,005
AI	3,941	3,820	3,835	3,851	3,889	3,826	3,861	3,888	4,423
Cr	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,001	0,000
Fe3+	0,059	0,175	0,161	0,148	0,109	0,175	0,135	0,110	0,000
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,429
Ma	0 760	0.806	0 788	0 824	0 792	0 796	0 791	0 824	0.806
	0,700	0,000	0,700	0,024	0,792	0,790	0,791	0,024	0,000
Mn	0,012	0,950	0,007	0,556	0,443	0,477	0,458	0,410	0,207
Fo2+	4 040	3 952	3 944	4 210	4 098	4 190	4 375	4 225	3 460
X-Pos	6,046	6.068	6 075	4,210 6,065	4,000 6,048	6 091	6,063	4,220 6,065	5 148
Summe	16,046	16,067	16,075	16,065	16,048	16,091	16,063	16,065	15,680
XFe	0,84	0,83	0,83	0,84	0,84	0,84	0,85	0,84	0,81
XMn	0,16	0,17	0,17	0,10	0,13	0,11	0,08	0,11	0,14
Endglieder									
Uvar.	0,00	0,00	0,00	0,00	0,03	0,00	0,00	0,01	0,00
Andr.	1,46	4,43	4,06	3,70	2,73	4,30	3,44	2,76	0,16
Gross.	3,70	1,33	1,82	4,11	4,59	3,54	3,81	4,03	3,87
Alm.	66,83	65,13	64,91	69,41	67,76	68,79	72,16	69,66	67,21
Spess.	15,43	15,81	16,25	9,18	11,78	10,31	7,55	9,95	13,10
Pyrop	12,58	13,29	12,97	13,59	13,10	13,06	13,05	13,59	15,67
XAIm	0 668	0 651	0 649	0 694	0.678	0 688	0 722	0 697	0 672
YSness	0,000	0,001	0,0-9	0,004	0,070	0,000	0,722	0,007	0,072
XPv	0,104	0,100	0,100	0,092	0,110	0,103	0,070	0,099	0,131
XGross	0,120	0.013	0,100	0,100	0.046	0.035	0,100	0.040	0,107
	5,007	3,010	0,010	0,041	0,040	0,000	0,000	3,040	5,000

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051
Granat	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6
	GRA1-8	GRA1-9	GRA1-10	GRA1-11	GRA1-12	GRA1-13	GRA1-14	GRA1-15	GRA1-16
SiO2	35,74	35,86	35,94	35,53	35,60	36,18	35,59	36,26	36,40
TiO2	0,01	0,05	0,04	0,00	0,00	0,03	0,03	0,02	0,00
AI2O3	21,22	20,64	20,68	20,40	20,77	21,03	20,74	20,68	21,11
Cr2O3	0,03	0,02	0,00	0,04	0,00	0,06	0,05	0,00	0,03
Fe2O3	1,08	1,59	0,72	1,65	0,92	1,23	1,56	1,45	0,92
MqO	3,47	3,58	2,92	2,93	2,97	3,77	3,55	3,55	3,48
CaO	1,59	1,76	1,34	1,39	1,73	1,66	1,94	2,29	1,96
MnO	5,96	5,87	8,67	8,90	7,78	5,04	4,66	3,59	5,83
FeO	30,65	30,07	28,31	28,23	28,75	31,09	31,11	31,87	30,33
Summe	99,73	99,45	98,60	99,06	98,51	100,08	99,23	99,70	100,06
Strukturforme	el bezogen a	uf 24 Sauers	stoffe						
Si	5,803	5,837	5,904	5,840	5,858	5,840	5,809	5,873	5,871
AI	0,197	0,163	0,096	0,160	0,142	0,160	0,191	0,127	0,129
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
ті	0,001	0,006	0,005	0,000	0,000	0,004	0,004	0,002	0,000
AI	3,864	3,796	3,907	3,791	3,886	3,840	3,798	3,821	3,884
Cr	0,004	0,002	0,000	0,005	0,000	0,007	0,006	0,000	0,004
Fe3+	0,132	0,195	0,089	0,204	0,114	0,149	0,192	0,177	0,111
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Ma	0.840	0.869	0.714	0.718	0.727	0.907	0.863	0.856	0.837
Ca	0.276	0.307	0.236	0.244	0.304	0.287	0.339	0.398	0.338
Mn	0,819	0,810	1,206	1,239	1,084	0,688	0,645	0,492	0,797
 Fe2+	4,163	4,093	3,889	3,880	3,956	4,196	4,247	4,316	4,092
X-Pos.:	6,098	6,079	6,045	6,080	6,072	6,078	6,094	6,063	6,064
Summe	16,098	16,079	16,046	16,080	16,071	16,078	16,094	16,063	16,064
ΧFo	0,83	0.82	0.84	0.84	0.84	0,82	0.83	0,83	0,83
XMn	0,14	0,14	0,21	0,21	0,19	0,12	0,11	0,09	0,14
Endaligdor									
Lluar	0.09	0.05	0.00	0.13	0.00	0.18	0.15	0.00	0.10
Andr	3.27	4.96	2.32	3.89	2.81	3.77	4.83	4.41	2.76
Gross	1,17	0,03	1,58	0,00	2,19	0,77	0,58	2,15	2,71
Alm	68,27	67,34	64,33	63,81	65,16	69,04	69,69	71,20	67,48
Sness	13,43	13,32	19,95	20,37	17,86	11,32	10,58	8,11	13,14
Pyrop	13,78	14,30	11,81	11,81	11,98	14,92	14,16	14,13	13,80
XAIm	0.683	0.673	0.643	0.638	0.652	0.690	0.697	0.712	0.675
YSnose	0.134	0.133	0.199	0.204	0.179	0.113	0.106	0.081	0.131
XPv	0.138	0.143	0.118	0.118	0.120	0.149	0.142	0.141	0.138
XGross	0,012	0,000	0,016	0,000	0,022	0,008	0,006	0,021	0,027

## Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051
Granat	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6
	GRA1-17	GRA1-18	GRA2-1	GRA2-2	GRA2-3	GRA2-4	GRA2-5	GRA2-7	GRA2-8
SiO2	36.37	35.66	36.06	36.36	36 22	36 19	36 48	36 15	35.88
TiO2	0.02	0.00	0.16	0.03	0.13	0.07	0.01	0 11	0.02
AI2O3	21.03	20.87	20,90	20.86	21.00	20.61	20.94	20.43	20.98
Cr2O3	0.03	0.00	0.00	0.00	0.02	0.02	0.00	0.01	0.02
Fe2O3	0.88	1.28	0.85	1.51	1.30	1.62	1.35	2.04	0.98
MaO	3.36	3.32	2.76	3.39	3.59	3.68	3.60	3.58	3.11
CaO	2,46	1.95	1.46	1.58	1.80	1,60	1.70	1.54	1.25
MnO	5.63	6.80	9,20	7,16	6,26	5.81	5.67	6.41	8.17
FeO	29,99	29.27	28.40	29.76	30.05	30.32	30.77	30.05	29.18
Summe	99,77	99,15	99,78	100,65	100,37	99,92	100,51	100,32	99,58
Strukturform	el bezogen a	uf 24 Sauers	offe						
Si	5 879	5 825	5 860	5 855	5 835	5 859	5 867	5 845	5 846
ΔI	0 121	0,025	0 131	0 145	0 165	0 141	0 133	0 155	0 154
Tetr 7	6,000	6,000	6,000	6,000	6,100	6,000	6,000	6,000	6,104
160.2.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,003	0,000	0,020	0,003	0,016	0,009	0,002	0,013	0,002
AI	3,886	3,842	3,876	3,814	3,823	3,791	3,835	3,738	3,875
Cr	0,004	0,000	0,000	0,000	0,002	0,002	0,000	0,001	0,002
Fe3+	0,107	0,158	0,104	0,183	0,158	0,198	0,163	0,248	0,120
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Ma	0.808	0.807	0.669	0.814	0.861	0.889	0.864	0.863	0.754
Ca	0.426	0.341	0.254	0.273	0.311	0.277	0.292	0.266	0.217
Mn	0.771	0.941	1.268	0.977	0.854	0.796	0.772	0.878	1.128
Fe2+	4,054	3,998	3,864	4,008	4,048	4,104	4,138	4,063	3,976
X-Pos.:	6,060	6,087	6,055	6,072	6,075	6,067	6,066	6,071	6,076
Summe	16,059	16,087	16,056	16,071	16,074	16,066	16,066	16,071	16,076
XFe	0.83	0.83	0.85	0.83	0.82	0.82	0.83	0.82	0.84
XMn	0,14	0,16	0,22	0,17	0,15	0,14	0,13	0,15	0,19
<b>F</b> u dalla da u									
Enaglieder	0.00	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.00
Uvar.	0,09	0,00	0,00	0,00	0,05	0,06	0,00	0,03	0,06
Anur.	2,72	3,90	3,00	4,50	4,31	4,51	4,00	4,30	3,02
Gross.	4,23	1,70	1,12	0,00	0,76	0,00	0,74	0,00	0,50
Alm.	66,90	00,00	03,82	66,01	00,04	67,65	00,22	00,93	00,44
Spess.	12,73	15,46	20,93	16,08	14,06	13,12	12,72	14,47	18,50
гугор	13,34	13,27	11,05	13,40	14,17	14,65	14,24	14,22	12,42
XAIm	0,669	0,657	0,638	0,660	0,666	0,677	0,682	0,669	0,654
XSpess	0,127	0,155	0,209	0,161	0,141	0,131	0,127	0,145	0,186
ХРу	0,133	0,133	0,110	0,134	0,142	0,147	0,142	0,142	0,124
XGross	0,042	0,017	0,011	0,000	0,008	0,000	0,007	0,000	0,005

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM051	IMM051	IMM051	IMM051	IMM056	IMM056	IMM056	IMM056	IMM056
Granat	9.6	9.6	9.6	9.6	10.1	10.1	10.1	10.1	10.1
	GRA2-9	GRA2-10	GRA2-11	GRA2-12	GRA1-1	GRA1-2	GRA1-3	GRA1-5	GRA1-6
5102	36,39	36,06	36,32	37,14	37,00	36,74	37,34	37,19	37,61
1102	0,02	0,03	0,08	0,08	0,04	0,11	0,11	0,04	0,05
AI2O3	21,14	21,14	20,96	20,92	21,06	20,62	20,70	21,06	21,38
Cr2O3	0,04	0,01	0,07	0,00	0,00	0,00	0,02	0,03	0,03
Fe2O3	1,05	0,80	0,72	1,06	0,52	1,26	1,16	0,92	0,24
MgO	3,42	3,51	3,17	3,44	3,04	2,54	3,56	3,78	3,65
CaO	1,51	1,78	1,92	1,89	2,82	5,30	1,98	3,21	3,61
MnO	7,22	6,68	7,58	6,36	9,67	5,60	8,42	4,41	5,55
FeO	29,77	29,42	28,86	30,20	26,01	27,81	27,70	29,98	28,59
Summe	100,55	99,44	99,67	101,09	100,17	99,99	100,99	100,63	100,70
Strukturforme	l bezogen a	uf 24 Sauers	toffe						
Si	5,856	5,853	5,888	5,927	5,944	5,918	5,955	5,926	5,966
AI	0,144	0,147	0,112	0,073	0,056	0,082	0,045	0,074	0,034
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ti	0,003	0,004	0,009	0,010	0,005	0,013	0,013	0,004	0,006
AI	3,865	3,897	3,893	3,862	3,933	3,833	3,845	3,880	3,962
Cr	0,005	0,002	0,009	0,000	0,000	0,000	0,003	0,004	0,004
Fe3+	0,127	0,098	0,088	0,128	0,063	0,153	0,139	0,111	0,029
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mq	0,820	0,850	0,765	0.818	0,728	0,611	0,846	0,898	0.862
Ca	0,260	0,310	0,334	0,323	0,486	0,914	0,339	0,547	0,614
Mn	0,984	0,918	1,040	0,859	1,316	0,764	1,138	0,595	0,745
Fe2+	4,006	3,994	3,912	4,031	3,495	3,746	3,694	3,995	3,793
X-Pos.:	6,071	6,071	6,051	6,031	6,025	6,035	6,016	6,036	6,014
Summe	16,071	16,071	16,051	16,031	16,025	16,035	16,016	16,035	16,014
VE	0.02	0.92	0.94	0.92	0.02	0.96	0.01	0.80	0.94
лге УМр	0,03	0,62	0,04	0,63	0,03	0,86	0,01	0,62	0,01
	0,17	0,10	0,10	0,15	0,24	0,15	0,20	0,11	0,14
Endglieder									
Uvar.	0,13	0,04	0,23	0,00	0,00	0,00	0,07	0,10	0,09
Andr.	3,20	2,52	2,41	3,43	1,68	4,13	3,80	2,86	0,87
Gross.	0,96	2,54	2,87	1,93	6,38	11,01	1,76	6,10	9,26
Alm.	66,00	65,78	64,65	66,84	58,00	62,07	61,40	66,19	63,07
Spess.	16,21	15,12	17,19	14,25	21,85	12,66	18,91	9,86	12,39
Pyrop	13,51	13,99	12,65	13,56	12,08	10,12	14,06	14,88	14,33
XAIm	0.660	0.658	0 646	0 668	0 580	0 621	0 614	0 662	0.631
XSness	0 162	0 151	0 172	0 142	0.218	0 127	0 189	0 000	0 124
XPv	0 135	0 140	0 126	0 136	0 121	0 101	0 141	0 149	0,124
XGross	0,133	0,140	0,120	0,100	0,121	0,101	0,141	0,1-3	0,140
701022	0,010	0,025	0,029	0,019	0,004	0,110	0,010	0,001	0,093

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Granat	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1
	GRA1-7	GRA1-8	GRA1-9	GRA1-10	GRA1-11	GRA1-12	GRA1-15	GRA1-16	GRA1-17
SiO2	27.54	27 12	27 11	26.97	27.29	36.66	26.90	26.99	26.90
5102 TiO2	0.06	0.00	0.08	0.03	0.06	0.08	0.13	0.03	0.06
A12O3	21.45	20.83	20.08	20,89	20.87	20,50	20.41	20.68	20.55
Cr2O3	21,43	20,03	20,30	20,09	20,07	20,33	20,41	20,00	20,55
Fe2O3	0,03	0,02	0,00	1 01	1 27	1 56	1 50	0,00	1 26
MaO	3 68	3 33	3 56	3.43	3.62	3 53	3 38	3 32	3 31
CaO	3,88	3,55	2 58	2 68	2.02	1.82	1.85	2 10	2 59
MnO	4 15	4 63	2,00 6.05	6 33	2,00 8 14	8.69	9.52	7 66	7 51
FeO	29.82	29 17	29 30	29.02	28.06	27 50	26 77	28 21	27 94
Summe	101,03	99,36	100,49	100,26	101,32	100,43	100,46	99,96	100,10
Strukturforme	el bezogen a	uf 24 Sauers	toffe						
Si	5,939	5,980	5,935	5,920	5,929	5,898	5,933	5,946	5,940
AI	0,061	0,020	0,065	0,080	0,071	0,102	0,067	0,054	0,060
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,007	0,000	0,010	0,003	0,007	0,009	0,016	0,004	0,007
AI	3,939	3,936	3,889	3,872	3,841	3,802	3,801	3,876	3,840
Cr	0,004	0,002	0,000	0,002	0,001	0,000	0,002	0,000	0,000
Fe3+	0,051	0,062	0,100	0,122	0,151	0,189	0,181	0,120	0,153
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Ма	0.868	0 799	0.848	0 820	0 857	0.848	0.810	0 798	0 794
Ca	0,658	0,733	0,040	0,020	0,007	0,040	0,010	0,730	0,754
Mn	0,556	0,632	0,442	0,401	0,040 1 097	1 184	1 297	1 046	1 024
 Fe2+	3 945	3 931	3 919	3 898	3 733	3 700	3 600	3 803	3 762
X-Pos.:	6.027	6,010	6.028	6,039	6.032	6,046	6,025	6,025	6.027
Summe	16,027	16,010	16,028	16,039	16,032	16,046	16,025	16,025	16,026
XFe	0,82	0,83	0,82	0,83	0,81	0,81	0,82	0,83	0,83
XIVIN	0,10	0,12	0,15	0,15	0,19	0,21	0,23	0,19	0,18
Endglieder									
Uvar.	0,09	0,06	0,00	0,06	0,02	0,00	0,05	0,00	0,00
Andr.	1,43	1,54	2,74	3,11	3,93	4,93	4,91	3,09	3,98
Gross.	9,40	9,18	4,59	4,47	1,77	0,26	0,33	3,18	3,43
Alm.	65,45	65,40	65,01	64,54	61,88	61,20	59,75	63,12	62,43
Spess.	9,23	10,51	13,60	14,25	18,19	19,59	21,53	17,36	16,99
Pyrop	14,40	13,30	14,06	13,58	14,21	14,02	13,44	13,25	13,17
XAIm	0.655	0.654	0.650	0.645	0.619	0.612	0.597	0.631	0.624
XSpess	0.092	0.105	0.136	0.142	0.182	0.196	0.215	0.174	0.170
XPy	0.144	0.133	0.141	0.136	0.142	0.140	0.134	0.132	0.132
XGross	0,094	0,092	0,046	0,045	0,018	0,003	0,003	0,032	0,034

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Granat	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1
	GRA1-18	GRA1-19	GRA1-20	GRA1-21	GRA1-22	GRA1-23	GRA1-24	GRA1-25	GRA1-26
SiO2	36,95	37,50	36,71	36,69	37,23	37,02	36,66	36,63	36,98
TiO2	0,06	0,16	0,03	0,04	0,02	0,08	0,06	0,01	0,02
AI2O3	20,68	20,65	20,46	20,47	20,82	20,57	20,67	20,93	20,97
Cr2O3	0,01	0,00	0,03	0,03	0,03	0,01	0,03	0,03	0,01
Fe2O3	1,21	1,02	1,44	1,40	1,10	1,35	1,56	0,83	0,79
MgO	3,21	2,84	3,22	3,34	3,50	3,24	3,62	3,49	3,70
CaO	3,06	4,53	1,63	1,49	2,53	2,24	2,16	2,04	1,65
MnO	7,02	7,08	9,86	9,78	8,30	9,23	8,27	8,97	8,60
FeO	28,15	26,98	26,90	26,91	27,23	26,94	27,47	26,84	27,53
Summe	100,35	100,76	100,29	100,13	100,76	100,67	100,49	99,76	100,25
Strukturforme	el bezogen a	uf 24 Sauers	toffe						
Si	5,933	5,978	5,925	5,926	5,944	5,938	5,888	5,914	5,935
AI	0,067	0,022	0,075	0,074	0,056	0,062	0,112	0,086	0,065
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ti	0,007	0,019	0,003	0,005	0,002	0,010	0,007	0,001	0,002
AI	3,846	3,858	3,817	3,822	3,862	3,826	3,800	3,895	3,901
Cr	0,001	0,000	0,004	0,003	0,004	0,001	0,003	0,003	0,001
Fe3+	0,146	0,123	0,175	0,170	0,132	0,164	0,189	0,101	0,096
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,769	0,676	0,775	0,804	0,834	0,774	0,866	0,841	0,884
Ca	0,527	0,773	0,282	0,258	0,434	0,384	0,372	0,352	0,284
Mn	0,955	0,955	1,348	1,338	1,122	1,254	1,125	1,227	1,169
Fe2+	3,779	3,597	3,631	3,635	3,636	3,614	3,689	3,623	3,695
X-Pos.:	6,030	6,001	6,037	6,034	6,026	6,026	6,052	6,043	6,032
Summe	16,030	16,001	16,036	16,034	16,026	16,026	16,052	16,043	16,032
XFe	0.83	0.84	0.82	0.82	0.81	0.82	0.81	0.81	0.81
XMn	0,17	0,18	0,23	0,23	0,20	0,22	0,20	0,22	0,20
Enaglieder	0.00		0.40				0.00		
Uvar.	0,03	0,00	0,10	0,08	0,11	0,02	0,08	0,09	0,03
Anar.	3,81	3,54	4,43	4,19	3,34	4,31	4,86	2,52	2,43
Gross.	4,89	9,33	0,15	0,00	3,75	2,05	1,19	3,23	2,20
Alm.	02,00	59,94	60,15	60,24	60,35	59,97	60,96	59,96	01,20
opess.	15,83	15,92	22,33	22,17	18,62	20,80	18,59	20,30	19,37
гугор	12,75	11,20	12,84	13,32	13,84	12,85	14,31	13,91	14,00
XAIm	0,627	0,599	0,602	0,602	0,603	0,600	0,610	0,600	0,613
XSpess	0,158	0,159	0,223	0,222	0,186	0,208	0,186	0,203	0,194
ХРу	0,128	0,113	0,128	0,133	0,138	0,128	0,143	0,139	0,147
XGross	0,049	0,093	0,002	0,000	0,037	0,021	0,012	0,032	0,023

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Granat	10.1	10.1	10.1	10.1	10.1	10.2	10.2	10.2	10.2
	GRA1-27	GRA1-28	GRA1-29	GRA1-31	GRA1-32	GRA1-4	GRA1-7	GRA1-8	GRA1-10
SiO2	36,67	36,67	37,01	36,99	36,98	36,93	37,61	37,06	36,81
TiO2	0,03	0,10	0,05	0,02	0,04	0,05	0,07	0,03	0,00
AI2O3	20,61	20,15	21,08	20,88	20,39	20,55	20,76	20,76	20,81
Cr2O3	0,05	0,02	0,00	0,00	0,04	0,01	0,00	0,00	0,02
Fe2O3	0,99	1,20	1,16	0,52	1,18	0,89	0,69	1,14	0,46
MgO	3,45	3,36	3,96	3,14	3,40	3,13	2,91	3,31	3,18
CaO	1,84	1,89	2,17	2,13	1,90	1,63	1,80	1,62	2,02
MnO	8,65	8,91	6,36	9,39	8,64	11,01	11,22	10,61	10,38
FeO	27,28	26,70	29,12	26,79	27,30	25,66	25,84	26,26	25,63
Summe	99,56	99,00	100,91	99,86	99,87	99,86	100,90	100,78	99,32
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5.936	5.970	5.897	5.964	5.968	5.970	6.010	5.939	5.966
AI	0.064	0.030	0.103	0.036	0.032	0.030	0.000	0.061	0.034
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,010	6,000	6,000
	0,000	0,000	0,000	0,000	0,000	0,000	0,010	0,000	0,000
Ті	0,004	0,013	0,006	0,003	0,004	0,006	0,008	0,003	0,000
AI	3,868	3,837	3,855	3,933	3,847	3,885	3,909	3,860	3,941
Cr	0,007	0,002	0,000	0,000	0,005	0,001	0,000	0,000	0,003
Fe3+	0,121	0,148	0,139	0,064	0,144	0,108	0,082	0,138	0,056
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,831	0,815	0,941	0,754	0,819	0,754	0,694	0,791	0,768
Ca	0,318	0,330	0,370	0,369	0,329	0,282	0,309	0,278	0,350
Mn	1,186	1,228	0,858	1,282	1,181	1,508	1,518	1,440	1,425
Fe2+	3,694	3,636	3,879	3,613	3,685	3,468	3,454	3,520	3,474
X-Pos.:	6,030	6,010	6,048	6,017	6,014	6,012	5,975	6,028	6,017
Summe	16,030	16,009	16,048	16,017	16,014	16,012	15,985	16,029	16,017
XFe	0.82	0.82	0.80	0.83	0.82	0.82	0.83	0.82	0.82
XMn	0,21	0,22	0,15	0,23	0,21	0,26	0,27	0,25	0.25
	- ,	- ,	-, -	-, -	- 1	-, -	- ,	-, -	-, -
Endglieder									
Uvar.	0,17	0,06	0,00	0,00	0,13	0,03	0,00	0,00	0,08
Andr.	3,11	4,00	3,62	1,66	3,69	2,85	2,28	3,51	1,41
Gross.	2,00	1,44	2,50	4,47	1,66	1,81	2,89	1,10	4,33
Alm.	61,26	60,50	64,14	60,04	61,27	57,69	57,81	58,38	57,74
Spess.	19,67	20,44	14,19	21,31	19,64	25,08	25,41	23,89	23,68
Pyrop	13,79	13,56	15,56	12,53	13,62	12,54	11,62	13,12	12,76
XAIm	0 612	0 605	0 6/1	0 600	0 612	0 577	0 579	0 594	0 577
Venace	0,013	0,000	0,041	0,000	0,013	0,011	0,070	0,004	0,017
vov	0,197	0,204	0,142	0,213	0,196	0,251	0,254	0,239	0,237
лгу Холог	0,138	0,136	0,100	0,125	0,130	0,125	0,110	0,131	0,128
AGross	0,020	0,014	0,025	0,045	0,017	0,018	0,029	0,011	0,043

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Granat	10.2	10.2	10.2	10.2	10.2	10.2	10.3	10.3	10.3
	GRA3-5	GRA4-1	GRA4-2	GRA4-3	GRA4-5	GRA4-6	GRA1-1	GRA1-2	GRA1-3
SiO2	36,62	37,71	36,96	37,06	37,28	36,62	37,62	37,42	37,30
TiO2	0,02	0,00	0,06	0,05	0,00	0,06	0,00	0,02	0,07
AI2O3	20,55	20,96	20,95	20,61	21,10	20,73	21,58	20,89	21,21
Cr2O3	0,02	0,00	0,00	0,06	0,00	0,02	0,00	0,00	0,01
Fe2O3	1,07	0,40	0,51	0,85	0,11	0,54	0,00	0,55	0,49
MgO	2,64	2,93	3,40	3,19	3,11	2,42	3,07	3,58	3,90
CaO	1,48	1,82	1,87	1,69	1,82	1,83	2,24	2,02	2,39
MnO	12,40	11,39	10,03	10,41	10,83	12,07	10,44	8,00	6,77
FeO	25,30	25,26	26,06	26,24	25,85	25,39	26,29	27,77	28,29
Summe	100,09	100,47	99,83	100,14	100,09	99,68	101,25	100,24	100,42
Strukturforme	l bezogen a	uf 24 Sauers	toffe						
Si	5,938	6,033	5,954	5,970	5,990	5,953	5,971	5,991	5,947
AI	0,062	0,000	0,046	0,030	0,010	0,047	0,029	0,009	0,053
Tetr. Z:	6,000	6,033	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,002	0,000	0,007	0,005	0,000	0,007	0,000	0,002	0,008
AI	3,865	3,952	3,931	3,884	3,987	3,924	4,008	3,932	3,932
Cr	0,003	0,000	0,001	0,008	0,000	0,003	0,000	0,000	0,001
Fe3+	0,131	0,048	0,062	0,103	0,013	0,066	0,000	0,066	0,059
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,008	4,000	4,000
Ma	0.638	0.700	0.818	0.765	0.744	0.586	0.726	0.855	0.928
	0,257	0.311	0.323	0.291	0.313	0.319	0.381	0.346	0.408
Ca Mn	1,703	1.543	1.368	1.420	1.474	1.662	1.404	1.084	0.914
Fo2+	3,432	3.379	3.511	3.536	3.474	3.452	3.490	3.718	3.773
X-Pos	6,029	5,933	6,020	6,012	6,005	6,020	6,002	6,004	6,023
Summe	16,030	15,967	16,020	16,012	16,005	16,020	16,010	16,004	16,023
VE-	0.84	0.83	0.81	0.82	0.82	0.85	0.83	0.81	0.80
лге VMp	0.29	0.27	0.24	0.25	0.26	0.29	0.25	0.19	0.16
	0,20	0,21	0,2 1	0,20	0,20	0,20	0,20	0,10	0,10
Endglieder									
Uvar.	0,07	0,00	0,01	0,19	0,00	0,07	0,00	0,00	0,03
Andr.	3,31	1,21	1,71	2,70	0,32	1,82	0,01	1,71	1,65
Gross.	0,89	4,03	3,65	1,94	4,88	3,42	6,34	4,06	5,09
Alm.	56,92	56,95	58,32	58,82	57,85	57,34	58,15	61,93	62,64
Spess.	28,24	26,01	22,72	23,62	24,55	27,62	23,39	18,06	15,18
Pyrop	10,58	11,79	13,58	12,73	12,39	9,74	12,10	14,24	15,40
XAIm	0,569	0,570	0,583	0,588	0,579	0,573	0,582	0,619	0,626
XSpess	0,282	0,260	0,227	0,236	0,245	0,276	0,234	0,181	0,152
ХРу	0,106	0,118	0,136	0,127	0,124	0,097	0,121	0,142	0,154
XGross	0,009	0,040	0,037	0,019	0,049	0,034	0,063	0,041	0,051

## Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Granat	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3
	GRA1-4	GRA1-5	GRA1-6	GRA1-8	GRA1-9	GRA1-10	GRA1-11	GRA1-12	GRA1-13
6:02	27.04	27.14	27.04	27.02	26.05	27.05	27.04	26.05	27.20
5102	37,24	37,14	37,21	37,02	30,95	57,25	37,21	30,95	0.02
A12O2	20.85	20.08	21.28	20,03	20,00	20.81	20,03	20.66	20,03
Cr2O3	20,85	20,98	21,20	20,71	20,00	20,81	20,77	20,00	20,90
Ee2O3	0,00	0,00	0,05	0,00	0,02	0,02	0,02	0,00	0,00
MaO	3.84	3 93	3.03	3,83	3 78	3,66	3.85	3 4 3	3.80
lingo CaO	2,04	2,95	3,95 2 10	2,60	2,60	2.24	2.24	2 30	2 71
MnO	2,32 6 30	6.01	2,10 6.20	2,09	2,00	2,24	6 36	2,30	2,71
FeO	28.52	28.95	20.35	28.44	28 42	28.00	28 70	27 30	28.81
Summe	100 14	20,95	29,33	20,44 00 70	20,42	100.29	100.24	27,53 99.87	100.49
Summe	100,14	33,30	100,77	55,70	33,30	100,23	100,24	55,07	100,49
Strukturforme	el bezogen a	uf 24 Sauers	toffe						
Si	5,960	5,952	5,924	5,953	5,958	5,964	5,957	5,954	5,961
AI	0,040	0,048	0,076	0,047	0,042	0,036	0,043	0,046	0,039
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
ті	0.002	0.006	0 002	0 004	0.007	0.012	0 004	0.001	0 004
Δ1	3 894	3 915	3 917	3 877	3 926	3 890	3 877	3 878	3 904
Cr	0,000	0,000	0.003	0,000	0,020	0,002	0.003	0,000	0,000
Fe3+	0,000	0.079	0,000	0,000	0.065	0.095	0,000	0,000	0,000
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,916	0,939	0,933	0,919	0,907	0,873	0,918	0,824	0,902
Ca	0,433	0,386	0,359	0,463	0,448	0,383	0,385	0,398	0,463
Mn	0,853	0,816	0,837	0,817	0,829	0,874	0,862	1,110	0,810
Fe2+	3,817	3,880	3,908	3,824	3,832	3,882	3,854	3,691	3,842
X-Pos.:	6,019	6,021	6,037	6,022	6,017	6,012	6,019	6,022	6,018
Summe	16,019	16,021	16,037	16,022	16,017	16,012	16,019	16,022	16,018
XFe	0.81	0.81	0.81	0.81	0.81	0.82	0.81	0.82	0.81
XMn	0,15	0,14	0,15	0,15	0,15	0,16	0,15	0,20	0,15
Endglieder									
Uvar.	0,00	0,00	0,08	0,00	0,07	0,05	0,07	0,01	0,00
Andr.	2,65	2,11	2,00	3,04	1,80	2,69	3,00	3,02	2,40
Gross.	4,53	4,30	3,87	4,65	5,59	3,64	3,32	3,57	5,30
Alm.	63,42	64,44	64,74	63,49	63,69	64,57	64,04	61,29	63,84
Spess.	14,18	13,56	13,86	13,56	13,77	14,54	14,32	18,43	13,46
Pyrop	15,21	15,59	15,46	15,25	15,08	14,52	15,26	13,68	14,99
XAIm	0.634	0 644	0 647	0.635	0.637	0 646	0 640	0.613	0.638
XSpess	0 142	0 136	0 139	0 136	0 138	0 145	0 143	0 184	0 135
XPv	0.152	0,156	0,155	0,153	0.151	0.145	0.153	0.137	0.150
XGross	0.045	0.043	0.039	0.047	0.056	0.036	0.033	0.036	0.053

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Granat	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3
	GRA1-14	GRA1-15	GRA1-16	GRA1-17	GRA1-18	GRA2-1	GRA2-2	GRA2-3	GRA2-4
SiO2	37,60	37,57	37,28	37,57	37,28	36,45	36,84	37,07	36,90
TiO2	0,02	0,03	0,05	0,00	0,03	0,00	0,00	0,01	0,04
AI2O3	21,30	20,86	21,00	20,72	20,74	20,82	20,69	20,96	20,70
Cr2O3	0,04	0,00	0,00	0,00	0,00	0,00	0,04	0,05	0,03
Fe2O3	0,52	0,73	0,74	1,37	1,01	0,98	0,91	0,90	0,96
MgO	3,78	3,84	3,90	3,89	3,77	3,27	3,66	3,58	3,63
CaO	2,84	3,29	3,29	2,65	2,49	1,96	1,82	1,89	2,15
MnO	6,10	5,47	5,26	6,22	6,52	9,97	7,85	8,54	7,34
FeO	28,91	28,44	28,56	28,74	28,46	26,20	27,84	27,65	28,05
Summe	101,12	100,23	100,09	101,14	100,31	99,65	99,65	100,64	99,80
Strukturforme	el bezogen a	uf 24 Sauers	toffe						
Si	5,955	5,989	5,954	5,961	5,964	5,905	5,947	5,931	5,945
AI	0,045	0,011	0,046	0,039	0,036	0,095	0,053	0,069	0,055
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,003	0,003	0,006	0,000	0,004	0,000	0,000	0,002	0,004
AI	3,931	3,909	3,906	3,837	3,874	3,880	3,884	3,884	3,875
Cr	0,004	0,000	0,000	0,000	0,000	0,000	0,005	0,006	0,004
Fe3+	0,062	0,088	0,089	0,163	0,122	0,120	0,111	0,109	0,117
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,893	0,912	0,929	0,919	0,898	0,790	0,880	0,853	0,872
Ca	0,482	0,561	0,563	0,450	0,427	0,341	0,315	0,324	0,372
Mn	0,818	0,739	0,712	0,835	0,883	1,367	1,074	1,157	1,002
Fe2+	3,828	3,792	3,815	3,814	3,808	3,550	3,759	3,700	3,780
X-Pos.:	6,021	6,004	6,019	6,019	6,016	6,048	6,027	6,034	6,025
Summe	16,021	16,004	16,020	16,019	16,016	16,048	16,027	16,034	16,025
XFe	0,81	0,81	0,80	0,81	0,81	0,82	0,81	0,81	0,81
XMn	0,15	0,14	0,13	0,15	0,16	0,24	0,19	0,20	0,18
Endglieder									
Uvar.	0,11	0,00	0,00	0,00	0,00	0,00	0,11	0,15	0,10
Andr.	1,62	2,28	2,35	4,07	3,13	2,98	2,76	2,74	3,02
Gross.	6,28	7,07	7,00	3,41	3,97	2,66	2,34	2,47	3,05
Alm.	63,58	63,16	63,38	63,37	63,28	58,69	62,37	61,32	62,73
Spess.	13,59	12,31	11,83	13,88	14,68	22,61	17,82	19,18	16,63
Pyrop	14,83	15,19	15,44	15,27	14,93	13,06	14,59	14,14	14,47
X A Less	0.000	0.000	0.007	0.007	0.000	0 505	0.004	0.040	0.00-
XAIM	0,636	0,632	0,634	0,634	0,633	0,587	0,624	0,613	0,627
ASpess	0,136	0,123	0,118	0,139	0,147	0,226	0,178	0,192	0,166
хРу	0,148	0,152	0,154	0,153	0,149	0,131	0,146	0,141	0,145
XGross	0,063	0,071	0,070	0,034	0,040	0,027	0,023	0,025	0,031

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Granat	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3
	GRA2-5	GRA2-6	GRA2-8	GRA2-9	GRA2-11	GRA2-13	GRA2-14	GRA2-15	GRA2-16
SiO2	37,02	37,11	36,48	37,06	36,98	37,09	37,12	36,83	36,81
TiO2	0,10	0,08	0,12	0,10	0,09	0,07	0,09	0,08	0,05
AI2O3	20,60	20,59	20,23	20,50	20,59	20,84	20,23	20,42	20,35
Cr2O3	0,06	0,03	0,01	0,02	0,00	0,04	0,01	0,02	0,07
Fe2O3	1,24	1,29	1,69	1,24	1,27	0,99	1,68	1,34	1,36
MgO	3,55	3,44	3,38	3,37	3,70	3,60	3,64	3,53	3,43
CaO	2,75	2,92	2,47	2,60	1,97	2,09	2,06	2,02	2,07
MnO	6,89	7,05	7,93	8,07	8,11	8,71	8,30	8,24	9,10
FeO	28,11	27,96	27,32	27,28	27,53	27,11	27,29	27,41	26,62
Summe	100,32	100,48	99,61	100,24	100,25	100,54	100,43	99,87	99,85
Strukturforme	el bezogen a	uf 24 Sauers	toffe						
Si	5.937	5.944	5.914	5.954	5.938	5.937	5.958	5.944	5.946
AI	0.063	0.056	0.086	0.046	0.062	0.063	0.042	0.056	0.054
Tetr. Z:	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
	,	,	,	,	,	,	,	,	
Ті	0,012	0,010	0,014	0,012	0,011	0,008	0,011	0,009	0,006
AI	3,830	3,830	3,778	3,835	3,835	3,868	3,784	3,827	3,820
Cr	0,007	0,004	0,001	0,002	0,000	0,005	0,002	0,002	0,008
Fe3+	0,150	0,156	0,206	0,150	0,154	0,119	0,203	0,162	0,165
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,848	0,822	0,816	0,807	0,885	0,859	0,871	0,849	0,825
Ca	0,472	0,501	0,428	0,448	0,339	0,359	0,354	0,349	0,357
Mn	0,935	0,956	1,088	1,098	1,103	1,181	1,128	1,126	1,245
Fe2+	3,770	3,744	3,703	3,664	3,697	3,629	3,663	3,700	3,596
X-Pos.:	6,025	6,023	6,036	6,018	6,025	6,028	6,015	6,023	6,023
Summe	16,025	16,023	16,036	16,017	16,025	16,028	16,015	16,023	16,024
VEa	0.82	0.92	0.92	0.92	0.01	0.01	0.01	0.94	0.91
лге УМр	0,62	0,82	0,82	0,62	0,81	0,81	0,81	0,81	0,01
	0,17	0,17	0,19	0,20	0,19	0,21	0,20	0,20	0,22
Endglieder									
Uvar.	0,19	0,10	0,04	0,05	0,00	0,12	0,04	0,05	0,21
Andr.	4,04	4,14	5,47	4,04	4,11	3,15	5,34	4,27	4,28
Gross.	3,61	4,08	1,59	3,35	1,52	2,68	0,51	1,47	1,45
Alm.	62,57	62,17	61,35	60,90	61,36	60,20	60,89	61,42	59,71
Spess.	15,52	15,87	18,03	18,25	18,31	19,59	18,75	18,70	20,67
Pyrop	14,08	13,64	13,52	13,41	14,70	14,26	14,47	14,09	13,69
XAIm	0.626	0 622	0 614	0 609	0.614	0 602	0 609	0.614	0 597
XSness	0 155	0 150	0 180	0 182	0,014 0 183	0,002	0,000	0,01⊒7 0 187	0 207
XPv	0,133	0,135	0,100	0,102	0,103	0,130	0,107	0,107	0,207
XGross	0.036	0.041	0,100	0,104	0.015	0,027	0,1-0	0.015	0.015
A01033	0,000	0,041	0,010	0,000	0,010	0,027	0,000	0,010	0,010

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Granat	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.6	10.6
	GRA2-18	GRA2-19	GRA2-20	GRA2-21	GRA2-22	GRA2-23	GRA2-24	GRA1-1	GRA1-2
SiO2	36,48	36,56	36,24	36,92	36,88	37,05	36,90	36,79	36,23
TiO2	0,07	0,13	0,06	0,07	0,00	0,00	0,05	0,10	0,10
AI2O3	20,69	20,38	20,72	20,84	21,02	21,15	20,84	20,49	20,63
Cr2O3	0,04	0,03	0,04	0,02	0,01	0,03	0,03	0,01	0,00
Fe2O3	0,83	1,62	1,28	1,30	1,07	0,48	0,66	1,35	1,14
MgO	3,49	3,51	3,56	3,59	3,67	3,45	3,48	2,81	2,71
CaO	2,29	2,01	2,18	2,32	1,75	1,89	2,81	5,02	5,13
MnO	8,55	8,86	7,59	8,06	8,65	9,48	6,56	6,54	5,79
FeO	26,60	26,93	27,87	27,66	27,62	26,79	28,21	26,67	27,18
Summe	99,03	100,01	99,55	100,77	100,68	100,33	99,55	99,79	98,90
Strukturforme	el bezogen a	uf 24 Sauers	stoffe						
Si	5,925	5,904	5,874	5,904	5,904	5,941	5,950	5,930	5,893
AI	0,075	0,096	0,126	0,096	0,096	0,059	0,050	0,070	0,107
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ti	0,009	0,015	0,008	0,009	0,000	0,000	0,006	0,012	0,013
AI	3,885	3,783	3,831	3,833	3,870	3,938	3,910	3,823	3,848
Cr	0,004	0,004	0,005	0,002	0,002	0,004	0,004	0,001	0,000
Fe3+	0,101	0,197	0,156	0,157	0,129	0,058	0,080	0,164	0,139
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,844	0,844	0,861	0,856	0,877	0,826	0,836	0,674	0,658
Ca	0,399	0,348	0,379	0,397	0,300	0,324	0,486	0,867	0,893
Mn	1,177	1,211	1,042	1,091	1,173	1,287	0,896	0,893	0,798
Fe2+	3,613	3,637	3,778	3,699	3,698	3,592	3,804	3,595	3,698
X-Pos.:	6,033	6,041	6,060	6,044	6,048	6,029	6,022	6,029	6,047
Summe	16,033	16,041	16,059	16,044	16,048	16,030	16,022	16,029	16,047
XFo	0.81	0.81	0.81	0.81	0.81	0.81	0.82	0.84	0.85
XMn	0.21	0,01	0.18	0.19	0.20	0.23	0,16	0,04 0.17	0,00
	0,2 .	0,21	0,10	0,10	0,20	0,20	0,10	0,	0,10
Endglieder									
Uvar.	0,11	0,10	0,13	0,05	0,04	0,10	0,09	0,03	0,00
Andr.	2,75	5,26	4,05	4,11	3,20	1,45	2,14	4,38	3,77
Gross.	3,75	0,40	2,08	2,42	1,72	3,83	5,84	9,97	11,00
Alm.	59,89	60,21	62,34	61,21	61,15	59,58	63,16	59,62	61,15
Spess.	19,51	20,05	17,19	18,06	19,40	21,35	14,88	14,81	13,20
Pyrop	13,99	13,97	14,21	14,16	14,49	13,69	13,89	11,18	10,88
XAIm	0,599	0,602	0,623	0,612	0,611	0,596	0,632	0,596	0,612
XSpess	0,195	0,201	0,172	0,181	0,194	0,214	0,149	0,148	0,132
ХРу	0,140	0,140	0,142	0,142	0,145	0,137	0,139	0,112	0,109
XGross	0,038	0,004	0,021	0,024	0,017	0,038	0,058	0,100	0,110

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Granat	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6
	GRA1-3	GRA1-4	GRA1-5	GRA1-6	GRA1-7	GRA1-8	GRA1-9	GRA1-10	GRA1-11
SiO2	36,49	37,16	36,85	36,70	37,09	36,80	36,96	36,91	36,97
TiO2	0,09	0,11	0,14	0,13	0,12	0,15	0,19	0,14	0,10
AI2O3	20,40	20,74	20,46	20,39	20,48	20,64	20,59	20,33	20,83
Cr2O3	0,08	0,00	0,01	0,00	0,02	0,02	0,01	0,00	0,01
Fe2O3	1,14	1,18	1,21	0,93	1,10	1,09	0,86	1,04	0,65
MgO	2,34	2,13	1,84	1,66	1,56	1,48	1,44	1,40	1,42
CaO	5,69	6,20	6,28	6,47	6,45	6,68	6,46	6,48	6,36
MnO	5,22	5,76	6,54	7,27	7,74	8,20	8,40	8,69	9,09
FeO	27,60	27,51	26,69	25,61	25,79	25,23	25,20	24,76	24,79
Summe	99,05	100,79	100,01	99,15	100,36	100,28	100,10	99,74	100,23
Strukturforme	el bezogen a	uf 24 Sauers	toffe						
Si	5.931	5.939	5.944	5,965	5,966	5,928	5.960	5,976	5,954
AI	0,069	0.061	0.056	0.035	0.034	0.072	0.040	0 024	0.046
Tetr 7	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
100.2	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,011	0,013	0,016	0,015	0,015	0,018	0,023	0,017	0,012
AI	3,840	3,845	3,834	3,871	3,849	3,848	3,873	3,856	3,907
Cr	0,010	0,000	0,002	0,000	0,002	0,002	0,001	0,000	0,002
Fe3+	0.139	0.142	0.147	0.114	0.133	0.132	0.104	0.126	0.079
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,568	0,506	0,442	0,402	0,375	0,355	0,347	0,337	0,341
Са	0,990	1,062	1,086	1,126	1,112	1,154	1,116	1,123	1,097
Mn	0,718	0,779	0,893	1,000	1,054	1,118	1,147	1,191	1,240
Fe2+	3,752	3,677	3,600	3,481	3,469	3,400	3,398	3,352	3,339
X-Pos.:	6,028	6,024	6,020	6,010	6,010	6,027	6,008	6,004	6,017
Summe	16,029	16,024	16,020	16,010	16,009	16,027	16,008	16,003	16,017
VEa	0.97	0.00	0.90	0.00	0.00	0.01	0.01	0.01	0.01
XFe XMp	0,07	0,00	0,09	0,90	0,90	0,91	0,91	0,91	0,91
	0,14	0,10	0,10	0,20	0,22	0,23	0,23	0,24	0,25
Endglieder									
Uvar.	0,26	0,00	0,04	0,00	0,05	0,06	0,03	0,00	0,04
Andr.	3,73	3,87	4,08	3,22	3,70	3,73	3,16	3,58	2,26
Gross.	12,44	13,77	13,91	15,52	14,75	15,35	15,38	15,13	15,93
Alm.	62,24	61,03	59,80	57,92	57,72	56,41	56,56	55,83	55,49
Spess.	11,92	12,94	14,84	16,65	17,54	18,56	19,09	19,84	20,61
Pyrop	9,41	8,40	7,33	6,70	6,23	5,89	5,78	5,62	5,67
XAIm	0 622	0.610	0 509	0 570	0 577	0 564	0 566	0 559	0 555
VSpace	0,022	0,010	0,090	0,019	0,017	0,004	0,000	0,000	0,000
Nopess	0,119	0,129	0,148	0,100	0,175	0,180	0,191	0,198	0,206
лгу	0,094	0,084	0,073	0,067	0,062	0,059	0,058	0,056	0,057
XGross	0,124	0,138	0,139	0,155	0,147	0,154	0,154	0,151	0,159

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Granat	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6
	GRA1-12	GRA1-13	GRA1-14	GRA1-15	GRA1-16	GRA1-17	GRA1-18	GRA1-19	GRA1-20
SiO2	36,54	36,92	36,82	37,08	36,51	36,49	36,76	37,08	37,08
TiO2	0,12	0,14	0,13	0,16	0,20	0,15	0,14	0,19	0,10
AI2O3	20,17	20,75	20,42	20,72	19,98	20,14	20,34	20,38	20,52
Cr2O3	0,06	0,01	0,00	0,07	0,04	0,03	0,00	0,04	0,01
Fe2O3	1,40	1,08	1,31	1,13	1,30	1,13	1,26	1,06	1,26
MgO	1,64	1,69	2,32	1,67	1,62	1,55	1,51	1,54	2,12
CaO	6,37	6,81	3,55	6,59	5,99	6,26	6,41	6,69	4,70
MnO	8,67	8,68	8,30	9,03	8,79	9,22	9,33	8,91	8,42
FeO	24,42	24,38	27,53	24,50	24,50	23,87	24,09	24,19	26,51
Summe	99,37	100,45	100,38	100,95	98,94	98,83	99,85	100,07	100,72
Strukturform	el bezogen a	uf 24 Sauers	stoffe						
Si	5,942	5,926	5,942	5,930	5,963	5,961	5,950	5,975	5,952
AI	0,058	0,074	0,058	0,070	0,037	0,039	0,050	0,025	0,048
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ti	0,014	0,017	0,016	0,019	0,025	0,019	0,017	0,022	0,012
AI	3,807	3,851	3,826	3,835	3,810	3,839	3,829	3,844	3,834
Cr	0,008	0,001	0,000	0,009	0,005	0,004	0,000	0,005	0,002
Fe3+	0,171	0,130	0,159	0,136	0,160	0,138	0,154	0,129	0,152
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Ma	0.007	0.404	0.550	0.000	0.005	0.077	0.005	0.070	0 500
	0,397	0,404	0,558	0,398	0,395	0,377	0,365	0,370	0,506
Ca	1,109	1,172	0,614	1,129	1,049	1,096	1,111	1,155	0,808
IVIN Fe2:	1,194	1,160	1,134	1,223	1,210	1,270	1,260	1,210	1,140
rez+	3,321	3,273	3,715	3,270	3,340 6,006	3,201	3,201 6.017	3,239 6.001	3,009
A-FUS Summo	16 021	0,020	16 021	16,020	16,006	16 010	16 017	16,001	16 019
Summe	10,021	10,020	10,021	10,020	10,000	10,010	10,017	10,001	10,010
XFe	0.89	0.89	0.87	0.89	0.89	0.90	0.90	0.90	0.88
XMn	0,24	0,24	0,21	0,25	0,25	0,26	0,26	0.25	0.22
	,	,	,	,	,		,	,	,
Endglieder									
Uvar.	0,19	0,03	0,00	0,22	0,13	0,10	0,00	0,12	0,04
Andr.	4,62	3,67	4,34	3,88	4,62	3,92	4,25	3,78	4,09
Gross.	13,61	15,73	5,86	14,64	12,72	14,22	14,21	15,36	9,30
Alm.	55,16	54,29	61,70	54,36	55,71	54,27	54,20	54,31	59,14
Spess.	19,82	19,58	18,83	20,30	20,25	21,23	21,27	20,27	19,02
Pyrop	6,60	6,70	9,27	6,60	6,57	6,27	6,06	6,16	8,41
XAIm	0,552	0,543	0,617	0,544	0,557	0,543	0,542	0,543	0,591
XSpess	0,198	0,196	0,188	0,203	0,202	0,212	0,213	0,203	0,190
ХРу	0,066	0,067	0,093	0,066	0,066	0,063	0,061	0,062	0,084
XGross	0,136	0,157	0,059	0,146	0,127	0,142	0,142	0,154	0,093

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Granat	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6
	GRA1-21	GRA1-22	GRA1-23	GRA1-24	GRA1-25	GRA1-26	GRA1-27	GRA1-28	GRA1-29
SiO2	36.80	37 24	36 59	37 22	36.85	36 60	36 72	36.96	37 23
TiO2	0.13	0.04	0.05	0.07	0.06	0.03	0.00	0.00	0.02
AI2O3	20.23	20.66	20.49	20.91	20.54	20.44	21.03	20.95	21.28
Cr2O3	0.00	0.00	0.04	0.04	0.00	0.00	0.00	0.01	0.00
Fe2O3	1.44	1.32	1.39	1.17	0.78	1.32	0.78	0.85	0.50
MaQ	2 44	3 16	3 38	3 43	3 41	3 51	3 48	3 64	3.68
CaO	4.51	3.37	2,18	2.57	2.26	2,25	2,65	3.10	3.54
MnO	7.87	6,97	7.05	7.07	6.41	6.56	5.71	5.09	4.91
FeO	26.37	28.09	28.71	28.77	28.86	28.74	29.49	29.33	29.15
Summe	99,79	100,85	99,88	101,25	99,18	99,45	99,85	99,93	100,31
Strukturform	al bazogan a	uf 24 Sauers	toffe						
Si	5 952	5 947	5 916	5 924	5 974	5 931	5 914	5 932	5 938
ΔI	0.048	0.053	0.084	0,024	0.026	0,069	0.086	0.068	0.062
Tetr 7	6,040	6,000	6,004	6,000	6,020	6,000	6,000	6,000	6,002
160.2.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,015	0,005	0,006	0,008	0,008	0,004	0,000	0,000	0,002
AI	3,810	3,837	3,820	3,846	3,897	3,835	3,905	3,896	3,937
Cr	0,000	0,000	0,005	0,005	0,000	0,001	0,000	0,002	0,000
Fe3+	0,175	0,159	0,169	0,140	0,095	0,161	0,095	0,102	0,060
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Ma	0,588	0,751	0,815	0,813	0,824	0,847	0,834	0,872	0.876
Ca	0,782	0,577	0,377	0,438	0,393	0,390	0,457	0,533	0,605
Mn	1,079	0,943	0,966	0,953	0,880	0,900	0,779	0,692	0,663
Fe2+	3,568	3,752	3,881	3,829	3,913	3,896	3,972	3,938	3,887
X-Pos.:	6,017	6,024	6,038	6,034	6,010	6,032	6,043	6,034	6,030
Summe	16,016	16,024	16,039	16,034	16,009	16,032	16,043	16,034	16,030
XFe	0.86	0.83	0.83	0.82	0.83	0.82	0.83	0.82	0.82
XMn	0,21	0,17	0,17	0,17	0,16	0,16	0,14	0,13	0,12
Endalieder									
Livar	0.00	0.00	0.13	0.13	0.00	0.01	0.00	0.04	0.00
Andr	0,00 4 74	4.08	4 35	3 69	2.56	4 10	2 35	2 54	1 56
Gross	8.26	4,00 5,50	1 76	3 44	2,00	2 35	5 22	6.25	8.47
Δlm	59 30	62 29	64 27	63.46	65 11	64 58	65 73	65.26	64 46
Sness	17 93	15.66	16.00	15.80	14 64	14 92	12.89	11 47	10.99
Pyrop	9,78	12,47	13,49	13,48	13,71	14,04	13,81	14,44	14,52
	_		_	_	_	_	_	_	
XAIm	0,593	0,623	0,643	0,635	0,651	0,646	0,657	0,653	0,645
XSpess	0,179	0,157	0,160	0,158	0,146	0,149	0,129	0,115	0,110
ХРу	0,098	0,125	0,135	0,135	0,137	0,140	0,138	0,144	0,145
XGross	0,083	0,055	0,018	0,034	0,040	0,023	0,052	0,063	0,085

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat
Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Granat	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6	10.6
	GRA1-30	GRA1-31	GRA1-32	GRA1-33	GRA1-34	GRA1-35	GRA1-36	GRA1-37	GRA1-38
SiO2	37,40	37,03	37,10	37,24	37,70	37,19	36,75	37,28	36,78
TiO2	0,04	0,01	0,04	0,07	0,09	0,02	0,07	0,04	0,07
AI2O3	21,06	21,44	20,93	20,88	21,30	20,86	20,85	20,96	20,91
Cr2O3	0,01	0,00	0,00	0,01	0,01	0,00	0,05	0,00	0,03
Fe2O3	0,76	0,42	0,41	0,87	0,50	0,71	0,98	0,56	0,79
MgO	3,90	3,69	2,89	3,67	3,87	3,29	2,72	3,37	3,09
CaO	3,05	2,71	2,80	3,34	3,18	3,06	5,83	3,87	2,15
MnO	5,65	6,85	10,10	4,87	5,33	5,54	4,37	4,67	8,27
FeO	28,66	28,27	25,68	29,28	29,13	29,43	28,13	29,19	28,17
Summe	100,54	100,43	99,95	100,22	101,10	100,11	99,74	99,93	100,26
Strukturform	el hezogen a	uf 24 Sauers	stoffe						
Si	5 953	5 913	5 973	5 953	5 960	5 967	5 914	5 971	5 923
AI	0.047	0.087	0.027	0.047	0.040	0.033	0.086	0.029	0.077
Tetr. Z:	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
	-,	-,	- )	- )	- ,	- ,	- ,	- ,	- ,
Ті	0,005	0,001	0,005	0,009	0,010	0,002	0,009	0,005	0,008
AI	3,902	3,947	3,945	3,886	3,928	3,912	3,867	3,928	3,892
Cr	0,002	0,000	0,001	0,001	0,002	0,000	0,006	0,000	0,004
Fe3+	0,091	0,051	0,049	0,104	0,060	0,086	0,118	0,068	0,096
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,925	0,879	0,694	0,875	0,911	0,787	0,653	0,805	0,743
Ca	0,520	0,464	0,482	0,572	0,538	0,526	1,005	0,664	0,370
Mn	0,761	0,926	1,377	0,659	0,713	0,753	0,595	0,633	1,128
Fe2+	3,814	3,774	3,457	3,914	3,852	3,949	3,785	3,910	3,794
X-Pos.:	6,020	6,043	6,011	6,020	6,015	6,015	6,039	6,012	6,035
Summe	16,021	16,043	16,011	16,019	16,015	16,015	16,039	16,012	16,035
XFe	0,80	0.81	0.83	0,82	0.81	0.83	0.85	0.83	0.84
XMn	0,14	0,17	0,25	0,12	0,13	0,14	0,12	0,12	0,20
Enaglieder	0.04	0.01	0.04	0.00	0.04	0.00	0.45	0.00	0.40
Uvar.	0,04	0,01	0,01	0,02	0,04	0,00	0,15	0,00	0,10
Anur.	2,40	1,30	1,35	2,02	1,74	2,19	3,13	1,01	2,30
Gross.	63.20	0,30 62.45	0,00 57,52	0,00 65.01	64.04	0,04 65 65	13,35	9,23	3,40 62.97
AIIII. Smaaa	03,30	02,40	57,52	10.05	11.00	10,00	02,00	10.52	19.60
Spess.	12,04	13,32	22,92	10,95	15 15	12,52	9,00	10,00	10,09
ryiop	10,00	14,04	11,00	14,04	10,10	13,09	10,01	15,59	12,31
XAIm	0,634	0,625	0,575	0,650	0,640	0,657	0,627	0,650	0,629
XSpess	0,126	0,153	0,229	0,110	0,119	0,125	0,099	0,105	0,187
ХРу	0,154	0,145	0,115	0,145	0,152	0,131	0,108	0,134	0,123
XGross	0,062	0,064	0,067	0,067	0,072	0,065	0,133	0,092	0,035

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM056	IMM056	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Granat	10.6	10.6	11.1	11.1	11.1	11.1	11.1	11.1	11.1
	GRA1-39	GRA1-40	GRA1-1	GRA1-3	GRA1-4	GRA1-5	GRA1-6	GRA1-12	GRA1-13
SiO2	36,64	36,61	36,54	36,79	36,95	36,62	36,98	36,00	36,26
TiO2	0,09	0,09	0,04	0,02	0,03	0,07	0,03	0,06	0,08
AI2O3	20,43	20,49	20,54	21,05	20,94	20,62	21,02	20,72	20,42
Cr2O3	0,03	0,03	0,04	0,01	0,04	0,06	0,00	0,00	0,03
Fe2O3	1,47	1,40	0,98	0,53	0,94	0,89	0,14	0,96	1,05
MgO	2,99	2,64	2,66	3,00	3,19	2,95	2,06	2,80	3,02
CaO	2,28	3,16	1,80	1,90	1,98	1,81	1,73	1,95	2,19
MnO	8,30	7,85	7,82	7,09	6,73	7,23	9,26	7,50	6,70
FeO	28,01	28,00	29,39	29,78	30,00	29,55	29,21	29,21	29,17
Summe	100,24	100,26	99,82	100,16	100,81	99,80	100,42	99,20	98,91
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5 918	5 913	5 938	5 933	5 922	5 937	5 977	5 884	5 925
Δ1	0.082	0.087	0.062	0.067	0.078	0.063	0.023	0 1 1 6	0.075
Tetr 7	6,002	6,000	6,002	6,000	6,000	6,000	6,020	6,000	6,000
100.2.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,011	0,011	0,004	0,002	0,003	0,009	0,004	0,007	0,009
AI	3,808	3,815	3,871	3,933	3,877	3,877	3,979	3,875	3,858
Cr	0,003	0,004	0,006	0,001	0,005	0,007	0,000	0,000	0,003
Fe3+	0.178	0.170	0.119	0.064	0.114	0.108	0.017	0.118	0.129
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,720	0,635	0,645	0,722	0,763	0,714	0,496	0,682	0,736
Са	0,395	0,547	0,313	0,328	0,340	0,314	0,299	0,341	0,383
Mn	1,136	1,073	1,077	0,968	0,914	0,992	1,267	1,038	0,928
Fe2+	3,784	3,783	3,994	4,016	4,021	4,007	3,947	3,992	3,986
X-Pos.:	6,035	6,038	6,029	6,033	6,038	6,027	6,009	6,054	6,033
Summe	16,036	16,038	16,029	16,033	16,038	16,027	16,010	16,054	16,033
XFe	0,84	0,86	0,86	0,85	0,84	0,85	0,89	0,85	0,84
XMn	0,20	0,20	0,19	0,17	0,16	0,17	0,22	0,18	0,16
Endglieder									
Uvar.	0,08	0,10	0,14	0,02	0,13	0,18	0,00	0,00	0,08
Andr.	4,70	4,50	3,07	1,64	2,91	2,91	0,52	3,11	3,44
Gross.	1,76	4,46	1,98	3,77	2,59	2,14	4,46	2,53	2,84
Alm.	62,70	62,66	66,25	66,56	66,60	66,48	65,69	65,94	66,07
Spess.	18,82	17,78	17,86	16,05	15,13	16,46	21,08	17,15	15,37
Pyrop	11,93	10,51	10,70	11,96	12,64	11,84	8,25	11,27	12,20
ΧΔIm	0 627	0 627	0 662	0 666	0 666	0 665	0 657	0 650	0 661
VSnoss	0,027	0,021	0,002	0,000	0,000	0,000	0,007	0,009	0,001
vohese	0,100	0,176	0,179	0,101	0,101	C01,0	0,211	0,172	0,104
AF'Y	0,119	0,105	0,107	0,120	0,120	0,118	0,083	0,113	0,122
AGross	0,018	0,045	0,020	0,038	0,026	0,021	0,045	0,025	0,028

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Granat	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1
	GRA1-14	GRA1-15	GRA1-16	GRA1-17	GRA1-18	GRA1-19	GRA1-20	GRA1-21	GRA1-22
SiO2	36,29	36,21	36,38	36,60	36,48	36,49	36,15	36,61	37,15
TiO2	0,00	0,05	0,04	0,02	0,01	0,07	0,05	0,05	0,02
AI2O3	20,78	20,70	20,63	20,88	20,44	20,43	20,50	20,82	21,02
Cr2O3	0,00	0,01	0,01	0,05	0,01	0,03	0,02	0,06	0,05
Fe2O3	0,71	0,48	1,23	0,43	0,95	0,89	1,33	0,66	0,11
MgO	2,24	2,71	3,14	2,97	3,12	3,17	3,09	3,41	2,68
CaO	2,08	1,81	1,82	2,34	1,87	2,29	2,27	2,12	1,79
MnO	8,65	7,70	6,90	6,78	6,67	6,21	6,51	5,93	7,69
FeO	28,87	29,04	29,67	29,24	29,43	29,28	29,39	29,73	29,70
Summe	99,62	98,70	99,82	99,30	98,98	98,86	99,30	99,38	100,22
Strukturforme	el bezogen a	uf 24 Sauers	toffe						
Si	5,919	5,935	5,901	5,943	5,951	5,951	5,891	5,930	5,986
AI	0,081	0,065	0,099	0,057	0,049	0,049	0,109	0,070	0,014
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,000	0,006	0,004	0,002	0,001	0,008	0,006	0,006	0,003
AI	3,913	3,933	3,844	3,939	3,881	3,878	3,828	3,906	3,978
Cr	0,000	0,001	0,002	0,007	0,001	0,004	0,003	0,007	0,006
Fe3+	0,087	0,059	0,150	0,052	0,117	0,110	0,163	0,080	0,013
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
		0.000		0 740			0 754		
NIG	0,544	0,662	0,759	0,719	0,759	0,769	0,751	0,823	0,644
Ca	0,364	0,317	0,316	0,406	0,328	0,401	0,396	0,368	0,310
MIN Falls	1,195	1,070	0,948	0,932	0,921	0,858	0,899	0,813	1,050
Fez+	3,938	3,981	4,024	3,970	4,016	3,993	4,007	4,028	4,002
X-Pos.:	6,041	6,030	6,047	6,027	6,024	6,021	6,051	6,032	6,005
Summe	16,041	16,030	16,047	16,027	16,024	16,021	16,051	16,032	16,005
XFe	0,88	0,86	0,84	0,85	0,84	0,84	0,84	0,83	0,86
XMn	0,21	0,19	0,17	0,17	0,16	0,15	0,16	0,14	0,18
Endalieder									
Uvar.	0.00	0.04	0.04	0.16	0.03	0.10	0.07	0.18	0.14
Andr.	2,17	1,63	3,83	1,36	2,94	2,94	4,18	2,14	0,40
Gross.	3,86	3,59	1,36	5,22	2,47	3,62	2,29	3,77	4,61
Alm.	65,19	66,02	66,54	65,87	66,67	66,31	66,21	66,78	66,65
Spess.	19,78	17,74	15,68	15,46	15,29	14,25	14,85	13,48	17,48
Pyrop	9,00	10,98	12,55	11,92	12,60	12,78	12,40	13,64	10,72
XAIm	0.652	0 660	0 665	0 659	0.667	0.663	0 662	0 668	0 666
XSness	0 198	0 177	0 157	0 155	0 153	0 143	0,002	0 135	0 175
XPv	0.090	0 110	0 126	0 119	0 126	0 128	0 124	0 136	0 107
XGross	0,000	0,110	0,120	0.052	0,120	0,120	0,124	0,100	0.046
101033	0,009	0,000	0,014	0,002	0,020	0,000	0,023	0,000	0,040

Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Granat	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1
	GRA1-23	GRA1-24	GRA1-25	GRA1-26	GRA2-1	GRA2-2	GRA2-3	GRA2-4	GRA2-5
SiO2	36 17	36.05	36 25	36 67	36 57	36 62	36 49	36 66	36 51
TiO2	0.03	0.04	0.03	0.00	0.04	0.00	0.04	0.04	0.03
AI2O3	20.56	20 54	20.69	20.64	21.08	20.89	20.97	20.86	21.03
Cr2O3	0.01	0.00	0.00	0.02	0.00	0.00	0.00	0.02	0.05
Fe2O3	0.91	1,23	0.81	0.61	1.09	1.00	0.85	0.74	0.80
MaO	2,89	3.28	3.24	2,77	3.27	3.71	3.74	3.64	3.68
CaO	1.82	1.97	2.14	1.84	2.01	2.41	2.33	2.48	2,70
MnO	7.20	6.59	6.10	7.55	6.09	4.63	4.36	4.20	4.11
FeO	29.36	29.25	29.55	29.27	30.56	30.43	30.68	30.70	30.65
Summe	98,93	98,96	98,80	99,37	100,71	99,69	99,45	99,33	99,55
Strukturform	el hezogen a	uf 24 Sauers	stoffe						
Si	5 919	5 890	5 917	5 966	5 873	5 907	5 898	5 928	5 894
Δ1	0.081	0,000	0.083	0.034	0 127	0,007	0 102	0.072	0,004
Tetr. 7	6,000	6,000	6,000	6,000	6,000	6,000	6,102	6,000	6,000
1001.2.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,004	0,004	0,004	0,000	0,005	0,000	0,004	0,005	0,003
AI	3,884	3,844	3,897	3,924	3,863	3,878	3,892	3,903	3,894
Cr	0,001	0,000	0,000	0,002	0,000	0,000	0,000	0,002	0,006
Fe3+	0,111	0,151	0,099	0,074	0,131	0,121	0,103	0,090	0,097
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mq	0,704	0,799	0,788	0.672	0,782	0,893	0,901	0,877	0,885
Ca	0,319	0,345	0,374	0,320	0,346	0,417	0,404	0,429	0,467
Mn	0,998	0,912	0,844	1,041	0,829	0,632	0,597	0,575	0,562
Fe2+	4,018	3,996	4,033	3,983	4,104	4,106	4,148	4,152	4,138
X-Pos.:	6,039	6,053	6,040	6,016	6,061	6,047	6,049	6,033	6,051
Summe	16,039	16,053	16,040	16,017	16,061	16,047	16,049	16,033	16,051
XFe	0.85	0.83	0.84	0.86	0.84	0.82	0.82	0.83	0.82
XMn	0,17	0,16	0,15	0,18	0,15	0,11	0,11	0,10	0,10
Endalieder									
Uvar	0.03	0.00	0.00	0.06	0.00	0.00	0.00	0.05	0 14
Andr.	2,86	3,86	2,56	1.85	3.37	3.01	2,67	2.36	2.49
Gross	2 40	1 84	3 64	3 42	2 33	3.88	4 02	4 70	5.08
Alm.	66.53	66.02	66.78	66.20	67.72	67.90	68.57	68.82	68.37
Spess.	16.53	15.07	13.97	17.30	13.67	10.45	9.86	9.53	9.29
Pyrop	11,65	13,21	13,05	11,18	12,91	14,76	14,89	14,54	14,62
XAIm	0 665	0.860	999.0	0 662	0 677	0 670	0 686	0 688	0 684
YSnoss	0,000	0,000	0,000	0,002	0,077	0,079	0,000	0,000	0,004
VDV	0,100 0,117	0,101	0,140	0,173	0,137	0,100	0,099	0,095	0,093
AF y YGraes	0,117	0,132	0,131	0,112	0,129	0,140	0,149	0,140	0,140
AG1035	0,024	0,010	0,030	0,034	0,023	0,039	0,040	0,047	0,051

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Granat	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.2	11.2
	GRA2-6	GRA2-7	GRA2-8	GRA2-9	GRA2-10	GRA2-11	GRA2-12	GRA1-2	GRA1-3
SiO2	36,56	36,68	36,61	36,73	36,68	36,37	36,28	36,87	36,49
TiO2	0,03	0,04	0,01	0,02	0,03	0,01	0,06	0,07	0,09
AI2O3	20,75	21,16	20,62	20,97	20,89	20,97	20,77	20,81	20,77
Cr2O3	0,00	0,02	0,00	0,00	0,00	0,01	0,00	0,04	0,03
Fe2O3	1,19	0,89	1,05	1,15	0,91	1,14	1,11	0,81	0,91
MgO	3,78	3,67	3,63	3,73	3,70	3,41	3,01	3,12	3,21
CaO	2,63	2,56	2,30	2,39	2,36	2,27	2,49	4,42	3,26
MnO	3,99	4,04	4,18	4,26	4,37	5,43	6,88	1,64	3,28
FeO	30,61	31,21	30,87	31,09	30,76	30,43	29,09	31,88	31,37
Summe	99,54	100,27	99,27	100,33	99,69	100,03	99,69	99,65	99,41
Strukturforme	l bezogen a	uf 24 Sauers	toffe						
Si	5.904	5.885	5.933	5,893	5,915	5.871	5.886	5,938	5.910
AI	0.096	0.115	0.067	0.107	0.085	0.129	0,114	0.062	0.090
Tetr. Z:	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
	-,	-,	-,	-,	-,	-,	-,	-,	-,
Ті	0,003	0,004	0,001	0,003	0,003	0,001	0,007	0,009	0,010
AI	3,853	3,886	3,871	3,858	3,885	3,860	3,857	3,889	3,874
Cr	0,000	0,003	0,000	0,000	0,000	0,001	0,000	0,005	0,004
Fe3+	0,144	0,107	0,128	0,139	0,111	0,139	0,136	0,098	0,111
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,910	0,878	0,876	0,893	0,889	0,821	0,727	0,748	0,775
Ca	0,456	0,440	0,400	0,410	0,407	0,393	0,433	0,762	0,566
Mn	0,546	0,549	0,573	0,578	0,597	0,742	0,945	0,224	0,450
Fe2+	4,134	4,188	4,183	4,171	4,148	4,108	3,947	4,293	4,250
X-Pos.:	6,046	6,055	6,033	6,052	6,041	6,064	6,053	6,027	6,040
Summe	16,046	16,055	16,033	16,052	16,041	16,064	16,053	16,027	16,040
XFe	0,82	0,83	0,83	0,82	0,82	0,83	0,84	0,85	0,85
XMn	0,10	0,10	0,10	0,10	0,11	0,13	0,17	0,04	0,08
Endeligder									
Liver	0.00	0.06	0.00	0.00	0.01	0.02	0.00	0.12	0.10
Andr	0,00	2 77	0,00	3.52	2.83	3.45	0,00	0,12	3.02
Gross	3,88	2,17	3 4 2	3.26	2,00	3,45	3,61	2,00	6.24
Δlm	68 39	69 17	69 35	68.91	5,50 68 66	67 74	65 21	71 24	70.36
Snoss	9.04	9.07	9.50	0,51	00,00	12 23	15.62	3 71	7.45
Byron	5,04 15.04	3,07 14 50	9,50 14 53	3,33 14 75	3,00 14 72	12,25	12.01	12 41	12.83
	10,04	1,00	17,00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	17,12	10,04	12,01	12,71	12,00
XAIm	0,684	0,692	0,693	0,689	0,687	0,677	0,652	0,712	0,704
XSpess	0,090	0,091	0,095	0,096	0,099	0,122	0,156	0,037	0,075
ХРу	0,150	0,145	0,145	0,148	0,147	0,135	0,120	0,124	0,128
XGross	0,039	0,044	0,034	0,033	0,039	0,030	0,036	0,099	0,062

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Granat	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2
	GRA1-1	GRA1-4	GRA1-5	GRA1-6	GRA1-7	GRA1-8	GRA1-9	GRA1-11	GRA1-12
	Granat I Profi	I Rand							
SiO2	36,39	36,71	35,91	36,48	36,52	36,31	36,26	36,51	36,48
TiO2	0,07	0,07	0,10	0,05	0,00	0,05	0,03	0,06	0,05
AI2O3	20,98	21,01	20,58	20,74	21,40	21,07	20,87	21,04	20,85
Cr2O3	0,01	0,00	0,06	0,06	0,02	0,08	0,00	0,00	0,00
Fe2O3	1,13	1,26	1,41	1,11	0,75	0,69	1,27	1,15	0,77
MgO	3,60	3,84	3,81	3,78	3,64	3,50	3,62	3,48	3,11
CaO	2,52	2,25	2,82	3,14	3,39	2,88	3,10	3,80	4,28
MnO	4,29	3,82	3,24	2,99	3,09	3,78	3,25	2,01	1,68
FeO	30,97	31,66	30,81	30,93	31,27	30,96	31,14	32,00	31,83
Summe	99,95	100,61	98,74	99,28	100,07	99,33	99,53	100,06	99,05
Strukturfori	mel bezogen au	uf 24 Sauers	toffe						
Si	5,868	5,877	5,854	5,898	5,860	5,879	5,864	5,868	5,914
AI	0,132	0,123	0,146	0,102	0,140	0,121	0,136	0,132	0,086
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
ті	0 008	0 009	0.012	0.006	0.000	0.006	0.003	0.008	0.006
AI	3 854	3 840	3 808	3 850	3 908	3,900	3 843	3 853	3 899
Cr	0.001	0,000	0.007	0.008	0.002	0,000	0,000	0,000	0,000
Fe3+	0,137	0,151	0,173	0,135	0.090	0.084	0,154	0,139	0.094
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,866	0,916	0,927	0,911	0,870	0,845	0,873	0,834	0,752
Ca	0,435	0,387	0,493	0,544	0,583	0,500	0,537	0,654	0,743
Mn	0,586	0,517	0,447	0,410	0,420	0,519	0,445	0,274	0,230
Fe2+	4,176	4,238	4,200	4,183	4,197	4,193	4,211	4,301	4,315
X-Pos.:	6,063	6,057	6,067	6,048	6,070	6,057	6,067	6,063	6,040
Summe	16,062	16,057	16,067	16,048	16,070	16,057	16,066	16,062	16,040
XFe	0,83	0,82	0,82	0,82	0,83	0,83	0,83	0,84	0,85
XMn	0,10	0,09	0,08	0,07	0,08	0,09	0,08	0,05	0,04
Endglieder									
Uvar.	0,03	0,00	0,18	0,20	0,06	0,26	0,00	0,00	0,01
Andr.	3,58	3,96	4,57	3,51	2,22	2,24	3,88	3,63	2,49
Gross.	3,57	2,42	3,39	5,29	7,33	5,76	4,97	7,15	9,80
Alm.	68,88	69,96	69,22	69,17	69,15	69,23	69,41	70,95	71,44
Spess.	9,66	8,54	7,37	6,77	6,92	8,56	7,34	4,52	3,81
Pyrop	14,28	15,12	15,28	15,06	14,33	13,95	14,39	13,76	12,45
XAIm	0.689	0.700	0.692	0.692	0.691	0.692	0.694	0.709	0,714
XSpess	0.097	0.085	0,074	0,068	0.069	0,086	0.073	0.045	0.038
XPy	0.143	0,151	0,153	0,151	0,143	0,140	0,144	0.138	0,124
XGross	0.036	0.024	0.034	0.053	0.073	0.058	0.050	0.072	0.098

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Granat	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2
	GRA1-13	GRA1-14	GRA1-15	GRA1-16	GRA1-17	GRA1-18	GRA1-19	GRA1-20	GRA1-21
SiO2	35,90	36,38	36,21	36,67	36,32	36,14	36,24	36,11	36,08
TiO2	0,09	0,07	0,12	0,08	0,03	0,02	0,00	0,02	0,04
AI2O3	20,78	20,92	20,94	20,57	20,70	20,82	20,88	20,80	20,50
Cr2O3	0,00	0,03	0,00	0,01	0,00	0,00	0,00	0,00	0,00
Fe2O3	1,05	0,82	1,33	0,83	1,28	1,41	1,07	1,17	1,03
MgO	2,92	2,92	2,69	2,75	2,95	3,23	3,31	3,09	2,81
CaO	4,29	4,54	4,91	4,87	4,25	3,26	3,34	2,74	2,22
MnO	1,67	1,66	1,80	1,84	2,07	2,56	3,08	4,26	7,18
FeO	32,01	31,96	32,09	31,35	31,87	32,32	31,38	31,27	28,99
Summe	98,71	99,29	100,09	98,98	99,46	99,76	99,29	99,46	98,84
Strukturforme	el bezogen a	uf 24 Sauers	stoffe						
Si	5,862	5,893	5,842	5,952	5,886	5,852	5,878	5,870	5,911
AI	0,138	0,107	0,158	0,048	0,114	0,148	0,122	0,130	0,089
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,011	0,008	0,015	0,010	0,004	0,002	0,000	0,002	0,005
AI	3,860	3,887	3,823	3,887	3,840	3,826	3,869	3,855	3,868
Cr	0,000	0,004	0,000	0,001	0,000	0,000	0,000	0,000	0,000
Fe3+	0,129	0,101	0,162	0,101	0,157	0,171	0,130	0,143	0,127
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,710	0,705	0,648	0,665	0,714	0,780	0,801	0,750	0,685
Ca	0,751	0,787	0,849	0,847	0,738	0,566	0,580	0,478	0,390
Mn	0,232	0,228	0,246	0,253	0,284	0,350	0,423	0,586	0,996
Fe2+	4,371	4,329	4,330	4,255	4,320	4,377	4,257	4,251	3,971
X-Pos.:	6,064	6,049	6,072	6,020	6,055	6,073	6,061	6,065	6,042
Summe	16,064	16,049	16,072	16,019	16,055	16,073	16,061	16,064	16,042
XFe	0,86	0,86	0,87	0,86	0,86	0,85	0,84	0,85	0,85
XMn	0,04	0,04	0,05	0,05	0,05	0,06	0,08	0,10	0,18
Endglieder									
Uvar.	0,00	0,10	0,00	0,02	0,00	0,00	0,00	0,00	0,00
Andr.	3,46	2,70	4,36	2,78	3,97	4,29	3,24	3,58	3,28
Gross.	8,92	10,22	9,62	11,27	8,22	5,03	6,34	4,30	3,17
Alm.	72,09	71,57	71,31	70,68	71,34	72,07	70,23	70,10	65,73
Spess.	3,82	3,76	4,05	4,20	4,69	5,77	6,98	9,67	16,48
Pyrop	11,71	11,66	10,67	11,05	11,79	12,84	13,21	12,36	11,34
~ • •		<i>z</i> = · · ·				<i>c</i> =-	<i>z</i> ==		
XAIm	0,721	0,716	0,713	0,707	0,713	0,721	0,702	0,701	0,657
XSpess	0,038	0,038	0,040	0,042	0,047	0,058	0,070	0,097	0,165
ХРу	0,117	0,117	0,107	0,110	0,118	0,128	0,132	0,124	0,113
XGross	0,089	0,102	0,096	0,113	0,082	0,050	0,063	0,043	0,032

Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM021	IMM061	IMM061	IMM061
Granat	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2
	GRA1-22	GRA1-23	GRA1-24	GRA1-25	GRA1-26	GRA1-27	GRA1-28	GRA1-29	GRA1-30
SiO2	36,72	36,55	36,53	36,39	36,43	36,26	36,75	36,69	36,74
TiO2	0,08	0,03	0,09	0,10	0,08	0,11	0,02	0,09	0,09
AI2O3	20,72	20,78	21,04	20,81	20,84	20,81	20,92	21,17	21,08
Cr2O3	0,02	0,00	0,00	0,06	0,00	0,00	0,07	0,00	0,00
Fe2O3	1,00	1,02	0,74	1,43	0,84	1,06	0,83	0,95	1,03
MgO	3,49	3,46	3,15	3,04	2,90	2,86	2,91	3,04	3,26
CaO	2,94	3,09	4,14	4,70	4,56	4,90	4,91	4,63	3,93
MnO	3,41	2,57	1,85	1,57	1,38	1,26	1,24	1,19	1,21
FeO	31,26	31,95	31,99	32,01	32,16	31,97	32,12	32,64	33,12
Summe	99,63	99,45	99,52	100,11	99,19	99,22	99,75	100,41	100,46
Strukturform	el bezogen a	uf 24 Sauers	stoffe						
Si	5,926	5,912	5,897	5,858	5,906	5,881	5,918	5,878	5,885
AI	0,074	0,088	0,103	0,142	0,094	0,119	0,082	0,122	0,115
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,010	0,004	0,011	0,012	0,010	0,013	0,003	0,010	0,011
AI	3,866	3,872	3,900	3,807	3,887	3,858	3,888	3,875	3,864
Cr	0,002	0,000	0,000	0,007	0,000	0,000	0,008	0,000	0,000
Fe3+	0,122	0,124	0,089	0,173	0,103	0,129	0,100	0,114	0,125
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,839	0,833	0,758	0,730	0,701	0,692	0,697	0,727	0,777
Ca	0,508	0,536	0,715	0,811	0,792	0,851	0,847	0,795	0,674
Mn	0,466	0,352	0,254	0,215	0,190	0,173	0,169	0,162	0,163
Fe2+	4,219	4,321	4,319	4,310	4,360	4,336	4,326	4,372	4,437
X-Pos.:	6,031	6,042	6,046	6,065	6,043	6,052	6,040	6,056	6,053
Summe	16,032	16,042	16,046	16,065	16,042	16,053	16,040	16,056	16,052
XFe	0,83	0,84	0,85	0,86	0,86	0,86	0,86	0,86	0,85
XMn	0,08	0,06	0,05	0,04	0,04	0,03	0,03	0,03	0,03
Endglieder									
Uvar.	0,06	0,00	0,00	0,17	0,00	0,00	0,21	0,00	0,00
Andr.	3,28	3,18	2,48	4,59	2,79	3,53	2,57	3,09	3,35
Gross.	5,08	5,70	9,35	8,61	10,30	10,53	11,26	10,04	7,80
Alm.	69,96	71,51	71,43	71,06	72,15	71,65	71,63	72,19	73,31
Spess.	7,72	5,83	4,19	3,54	3,14	2,86	2,79	2,68	2,70
Pyrop	13,91	13,79	12,54	12,03	11,61	11,43	11,55	12,00	12,85
XAIm	0,700	0,715	0,714	0,711	0,722	0,716	0,716	0,722	0,733
XSpess	0,077	0,058	0,042	0,035	0,031	0,029	0,028	0,027	0,027
ХРу	0,139	0,138	0,125	0,120	0,116	0,114	0,115	0,120	0,128
XGross	0,051	0,057	0,094	0,086	0,103	0,105	0,113	0,100	0,078

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Granat	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2	11.2
	GRA1-31	GRA1-32	GRA1-33	GRA1-34	GRA1-35	GRA1-36	GRA1-37	GRA1-38	GRA1-39
				Granat I	Profil Rand				
SiO2	36,49	36,63	36,52	36,76	37,05	36,79	36,62	36,23	36,13
TiO2	0,04	0,06	0,01	0,04	0,08	0,06	0,08	0,04	0,08
AI2O3	20,94	20,77	21,18	21,10	21,29	20,65	20,71	20,68	20,56
Cr2O3	0,01	0,04	0,01	0,00	0,01	0,00	0,02	0,00	0,00
Fe2O3	0,96	1,03	1,16	0,85	0,61	1,46	0,82	1,35	1,31
MgO	3,32	3,25	3,41	3,59	3,45	3,25	3,45	3,21	3,13
CaO	3,79	4,38	4,25	3,67	4,06	3,33	2,92	2,44	4,34
MnO	1,15	1,18	1,23	1,38	2,81	4,21	4,38	6,33	1,99
FeO	32,87	32,17	32,52	32,54	31,05	30,67	30,18	29,40	31,28
Summe	99,58	99,51	100,29	99,94	100,42	100,42	99,19	99,69	98,81
Strukturforme	el bezogen a	ouf 24 Sauers	toffe						
Si	5,891	5,911	5,855	5,901	5,911	5,907	5,933	5,876	5,884
AI	0,109	0,089	0,145	0,099	0,089	0,093	0,067	0,124	0,116
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,005	0,007	0,002	0,005	0,010	0,007	0,010	0,005	0,010
AI	3,877	3,863	3,857	3,893	3,915	3,816	3,887	3,830	3,830
Cr	0,001	0,005	0,001	0,000	0,001	0,000	0,003	0,000	0,000
Fe3+	0,117	0,125	0,140	0,103	0,074	0,176	0,101	0,165	0,160
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,800	0,781	0,815	0,859	0,821	0,779	0,833	0,777	0,759
Са	0,655	0,757	0,730	0,632	0,694	0,573	0,507	0,425	0,757
Mn	0,158	0,161	0,167	0,187	0,380	0,572	0,600	0,870	0,275
Fe2+	4,439	4,342	4,360	4,369	4,144	4,119	4,088	3,988	4,261
X-Pos.:	6,052	6,041	6,071	6,047	6,039	6,043	6,028	6,060	6,053
Summe	16,052	16,041	16,072	16,047	16,039	16,043	16,029	16,060	16,053
XFe	0.85	0.85	0.84	0.84	0.83	0.84	0.83	0.84	0.85
XMn	0,03	0,03	0,03	0,03	0,07	0,10	0,11	0,15	0,05
Enaglieder		0.40					0.07		
Uvar.	0,02	0,12	0,03	0,00	0,03	0,00	0,07	0,00	0,00
Andr.	3,03	3,29	3,51	2,07	2,08	4,55	2,75	4,21	4,21
Gross.	72.25	9,1Z	0,40	7,70	9,39	4,93	0,00 67 91	2,60	70.40
Allili. Smaaa	73,30	71,07	71,01	72,25	6 20	00,10	07,01	14.26	10,40
Spess. Byrop	2,01 12,22	2,07	2,75 12,42	3,10	0,3U 13.50	9,47	9,90	14,30	4,00
i yiop	13,22	12,93	13,42	14,20	13,39	12,09	13,02	12,02	12,00
XAIm	0,733	0,719	0,718	0,723	0,686	0,682	0,678	0,658	0,704
XSpess	0,026	0,027	0,027	0,031	0,063	0,095	0,100	0,144	0,045
ХРу	0,132	0,129	0,134	0,142	0,136	0,129	0,138	0,128	0,125
XGross	0,078	0,091	0,085	0,078	0,094	0,049	0,056	0,028	0,083

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Granat	11.2	11.2	11.2	11.2	11.2	11.2	11.3	11.3	11.3
	GRA1-40	GRA1-41	GRA1-42	GRA1-43	GRA1-44	GRA1-45	GRA1-1	GRA1-2	GRA1-3
SiO2	36,24	36,25	36,86	35,96	36,75	37,44	36,95	36,64	36,76
TiO2	0,08	0,12	0,13	0,06	0,03	0,08	0,02	0,00	0,07
AI2O3	20,87	20,80	21,09	20,86	20,73	21,33	20,68	20,56	20,63
Cr2O3	0,08	0,02	0,00	0,01	0,00	0,07	0,03	0,04	0,00
Fe2O3	1,24	1,04	1,02	1,30	0,79	0,71	0,61	0,85	0,97
MgO	3,58	2,85	3,48	3,06	3,36	3,60	3,17	3,17	3,04
CaO	3,39	4,81	4,03	4,05	2,44	4,06	2,05	2,12	2,00
MnO	2,22	1,39	1,66	2,01	5,14	1,96	6,33	5,96	6,30
FeO	31,92	31,98	32,21	32,05	30,21	32,02	29,75	29,93	30,18
Summe	99,62	99,26	100,48	99,38	99,44	101,26	99,58	99,27	99,95
Strukturform	nel bezogen a	uf 24 Sauers	stoffe						
Si	5,856	5,880	5,889	5,839	5,947	5,922	5,978	5,954	5,943
AI	0,144	0,120	0,111	0,161	0,053	0,078	0,022	0,046	0,057
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,010	0,014	0,015	0,008	0,004	0,009	0,003	0,000	0,009
AI	3,831	3,856	3,862	3,832	3,900	3,899	3,920	3,890	3,874
Cr	0,010	0,003	0,000	0,001	0,000	0,008	0,004	0,005	0,000
Fe3+	0,150	0,127	0,123	0,159	0,096	0,084	0,074	0,104	0,118
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,862	0,689	0,830	0,741	0,811	0,849	0,763	0,767	0,734
Ca	0,587	0,835	0,689	0,705	0,423	0,687	0,356	0,369	0,347
Mn	0,304	0,191	0,225	0,277	0,704	0,263	0,867	0,820	0,863
Fe2+	4,314	4,338	4,304	4,353	4,087	4,236	4,024	4,068	4,080
X-Pos.:	6,066	6,054	6,048	6,076	6,025	6,034	6,010	6,024	6,024
Summe	16,067	16,053	16,048	16,076	16,025	16,034	16,010	16,023	16,024
XFe	0,83	0,86	0,84	0,85	0,83	0,83	0,84	0,84	0,85
XMn	0,06	0,04	0,04	0,05	0,13	0,05	0,15	0,15	0,15
Endglieder									
Uvar.	0,24	0,06	0,01	0,03	0,00	0,21	0,10	0,13	0,00
Andr.	3,96	3,50	3,41	4,12	2,49	2,32	1,90	2,60	3,14
Gross.	5,47	10,23	7,98	7,46	4,52	8,87	3,92	3,40	2,62
Alm.	71,11	71,66	71,16	71,64	67,84	70,20	66,96	67,53	67,73
Spess.	5,01	3,16	3,72	4,55	11,68	4,35	14,42	13,62	14,33
Pyrop	14,21	11,38	13,72	12,20	13,46	14,06	12,70	12,73	12,18
XAIm	0,711	0,717	0,712	0,716	0,678	0,702	0,670	0,675	0,677
XSpess	0,050	0,032	0,037	0,046	0,117	0,044	0,144	0,136	0,143
XPy	0,142	0,114	0,137	0,122	0,135	0,141	0,127	0,127	0,122
XGross	0,055	0,102	0,080	0,075	0,045	0,089	0,039	0,034	0,026

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMMN061	IMM061	IMM061	IMM061
Granat	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3
	GRA1-3	GRA1-4	GRA1-5	GRA1-6	GRA1-7	GRA1-8	GRA1-9	GRA1-10	GRA1-11
SiO2	36,22	36,75	37,02	36,80	36,90	36,72	36,66	36,97	37,34
TiO2	0,04	0,06	0,02	0,00	0,01	0,04	0,04	0,02	0,02
AI2O3	20,65	20,49	20,43	20,59	20,66	20,53	20,53	21,01	20,91
Cr2O3	0,00	0,02	0,01	0,00	0,02	0,05	0,03	0,00	0,04
Fe2O3	1,28	0,94	1,15	1,03	1,50	1,09	1,37	0,83	0,65
MgO	3,26	3,17	3,16	3,29	3,33	3,34	3,34	3,18	2,93
CaO	2,03	1,74	1,77	1,85	1,72	1,99	1,97	2,12	1,98
MnO	6,29	6,90	6,55	6,32	6,36	6,11	6,22	6,42	7,05
FeO	29,79	29,50	30,04	29,93	30,49	29,85	29,96	30,14	30,07
Summe	99,57	99,59	100,14	99,80	100,99	99,71	100,11	100,69	100,98
Strukturforme	l bezogen a	uf 24 Sauers	toffe						
Si	5,884	5,958	5,973	5,950	5,914	5,941	5,918	5,927	5,972
AI	0,116	0,042	0,027	0,050	0,086	0,059	0,082	0,073	0,028
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
т:	0.005	0.008	0.000	0.000	0.001	0.005	0.005	0.000	0.000
	0,000	0,008	0,002	0,000	0,001	0,005	0,005	0,002	0,002
AI Or	3,030	3,874	3,657	3,875	3,617	3,850	3,825	3,897	3,914
Cr Color	0,001	0,003	0,001	0,000	0,002	0,007	0,004	0,000	0,005
Fe3+	0,157	0,115	0,140	0,125	0,180	0,132	0,166	0,101	0,078
	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,788	0,766	0,759	0,792	0,795	0,804	0,803	0,760	0,697
Ca	0,354	0,303	0,305	0,320	0,296	0,345	0,341	0,364	0,339
Mn	0,865	0,948	0,895	0,865	0,864	0,838	0,850	0,871	0,955
Fe2+	4,048	4,001	4,053	4,047	4,087	4,040	4,044	4,041	4,022
X-Pos.:	6,055	6,017	6,013	6,024	6,042	6,027	6,039	6,036	6,013
Summe	16,055	16,017	16,013	16,025	16,042	16,027	16,038	16,036	16,013
XFe	0,84	0,84	0,84	0,84	0,84	0,83	0,83	0,84	0,85
XMn	0,15	0,17	0,16	0,15	0,15	0,15	0,15	0,15	0,17
Endalieder									
Uvar.	0.01	0.07	0.03	0.00	0.06	0.16	0.09	0.00	0.13
Andr.	4.01	3.06	3.53	3.12	4.50	3.42	4.25	2.56	1.99
Gross.	1.82	1.90	1.51	2.19	0.33	2.14	1.30	3.47	3.51
Alm.	66,85	66,49	67,41	67,18	67,64	67,03	66,97	66,94	66,88
Spess.	14.29	15.76	14.88	14.37	14.30	13.90	14.08	14.44	15.89
Pyrop	13,02	12,72	12,63	13,14	13,16	13,35	13,30	12,59	11,60
	0.000	0.00-	0 07 i	0.070	0.075	0.070	0.070	0.000	0.000
XAIM	0,668	0,665	0,674	0,672	0,676	0,670	0,670	0,669	0,669
XSpess	0,143	0,158	0,149	0,144	0,143	0,139	0,141	0,144	0,159
хРу	0,130	0,127	0,126	0,131	0,132	0,133	0,133	0,126	0,116
XGross	0,018	0,019	0,015	0,022	0,003	0,021	0,013	0,035	0,035

Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Granat	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3
	GRA1-12	GRA2-1	GRA2-2	GRA2-3	GRA2-4	GRA2-5	GRA2-6	GRA2-7	GRA2-8
		Profil Gra	nat II Rand						
SiO2	37,30	36,72	36,46	37,00	36,68	37,16	37,40	37,02	37,13
TiO2	0,00	0,03	0,02	0,04	0,04	0,04	0,06	0,03	0,06
AI2O3	21,00	20,64	20,64	20,71	20,54	21,02	20,82	20,63	20,75
Cr2O3	0,02	0,00	0,06	0,00	0,00	0,03	0,00	0,04	0,00
Fe2O3	0,21	0,91	1,14	1,02	1,06	0,70	1,00	1,06	0,79
MgO	2,67	3,06	3,23	3,30	3,35	3,48	3,41	3,38	3,51
CaO	2,32	1,62	1,59	1,65	1,62	1,70	1,83	1,78	1,72
MnO	7,76	7,17	6,71	6,46	6,24	5,89	5,70	5,80	5,69
FeO	29,08	29,70	29,99	30,28	30,09	30,67	30,94	30,58	30,51
Summe	100,36	99,85	99,84	100,44	99,61	100,70	101,16	100,32	100,14
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5,994	5,946	5,910	5,948	5,945	5,945	5,962	5,953	5,969
AI	0,006	0,054	0,090	0,052	0,055	0,055	0,038	0,047	0,031
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
т:	0.000	0.004	0.002	0.005	0.005	0.005	0.007	0.004	0.007
	0,000	0,004	0,003	0,003	0,005	0,005	0,007	0,004	2 000
Al Cr	3,972	3,000	3,00Z	3,07Z	3,007	3,900	3,073	3,003	3,090
Eo2	0,002	0,000	0,007	0,000	0,000	0,004	0,000	0,004	0,000
Cot V:	0,025	4,000	4,000	4,000	4,000	0,084	4,000	4,000	0,095
001.1.	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,640	0,737	0,781	0,790	0,808	0,831	0,810	0,811	0,840
Ca	0,399	0,282	0,276	0,283	0,281	0,292	0,312	0,307	0,295
Mn	1,056	0,984	0,922	0,879	0,857	0,798	0,770	0,790	0,775
Fe2+	3,908	4,022	4,065	4,071	4,078	4,104	4,125	4,113	4,101
X-Pos.:	6,003	6,025	6,044	6,024	6,025	6,025	6,016	6,021	6,012
Summe	16,003	16,025	16,044	16,024	16,025	16,025	16,016	16,021	16,012
XFe	0.86	0,85	0,84	0,84	0,83	0,83	0,84	0,84	0,83
XMn	0,19	0,17	0,16	0,15	0,15	0,14	0,13	0,14	0,14
Endalieder									
llvar	0.06	0.00	0.18	0.00	0.00	0.09	0.00	0.11	0.00
Andr.	0,00	2 84	3.51	3 18	3,32	2 20	3 17	3.30	2,55
Gross	5 97	1.83	0.88	1.52	1.34	2,56	2 01	1 68	2,37
Alm.	65.09	66.76	67.27	67.59	67.70	68.11	68.56	68.31	68.23
Spess.	17.59	16.32	15.25	14.59	14.22	13.25	12,79	13.12	12.89
Pyrop	10,66	12,24	12,92	13,12	13,41	13,79	13,46	13,47	13,97
			•						
XAIm	0,651	0,668	0,673	0,676	0,677	0,681	0,686	0,683	0,682
XSpess	0,176	0,163	0,152	0,146	0,142	0,133	0,128	0,131	0,129
ХРу	0,107	0,122	0,129	0,131	0,134	0,138	0,135	0,135	0,140
XGross	0,060	0,018	0,009	0,015	0,013	0,026	0,020	0,017	0,024

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Granat	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3
	GRA2-9	GRA2-10	GRA2-11	GRA2-12	GRA2-13	GRA2-14	GRA2-15	GRA2-16	GRA2-17
SiO2	37,01	37,06	37,08	37,31	37,32	37,30	37,25	37,70	37,28
TiO2	0,05	0,06	0,06	0,00	0,04	0,10	0,03	0,06	0,06
AI2O3	20,76	20,58	20,96	21,13	20,91	20,80	20,77	21,12	20,65
Cr2O3	0,04	0,00	0,02	0,00	0,01	0,00	0,01	0,00	0,01
Fe2O3	0,98	1,31	0,76	0,64	0,98	1,01	0,59	0,89	0,62
MgO	3,60	3,65	3,62	3,62	3,56	3,52	3,47	3,26	3,02
CaO	2,10	1,90	1,88	1,81	1,78	1,67	1,70	2,05	1,88
MnO	5,14	5,22	5,15	5,45	5,41	5,68	5,88	6,60	6,91
FeO	30,57	30,67	30,90	30,88	31,08	30,91	30,36	30,42	29,76
Summe	100,23	100,44	100,43	100,84	101,09	100,99	100,06	102,09	100,18
Strukturformo	bozogon a	uf 24 Soucre	toffo						
Strukturionne	5 0/2		5 040	5 050	5 0/9	5 053	5 097	5 056	6 000
31 A1	0.057	0,055	0,060	0,950	0,052	5,955	0,907	0.044	0,000
Totr 7:	6,000	6,000	0,000	6,000	6,002	6,047	6,013	6,044	6,000
1eu. 2.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
ті	0.005	0.007	0.007	0.000	0.005	0.012	0.004	0.007	0.007
AI	3.872	3.835	3.899	3.923	3.876	3.867	3.923	3.888	3.917
Cr	0.005	0.000	0.003	0.000	0.001	0.000	0.001	0.000	0.001
Fe3+	0.118	0.158	0.092	0.077	0.118	0.121	0.072	0.106	0.075
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
	,	,	,	,	,	,	,	,	
Mg	0,861	0,873	0,864	0,861	0,846	0,837	0,831	0,768	0,725
Ca	0,360	0,327	0,323	0,309	0,304	0,286	0,292	0,348	0,324
Mn	0,699	0,709	0,699	0,737	0,730	0,768	0,800	0,883	0,942
Fe2+	4,106	4,115	4,140	4,119	4,143	4,126	4,081	4,020	4,005
X-Pos.:	6,026	6,024	6,027	6,025	6,024	6,018	6,004	6,018	5,996
Summe	16,026	16,024	16,027	16,025	16,024	16,017	16,004	16,019	15,996
XFe	0.83	0.82	0.83	0.83	0.83	0.83	0.83	0.84	0.85
XMn	0,12	0,12	0,12	0,13	0,13	0,13	0,14	0,16	0,17
Endglieder									
Uvar.	0,12	0,01	0,06	0,00	0,02	0,00	0,02	0,00	0,03
Andr.	3,08	4,10	2,45	1,92	3,06	3,31	1,90	2,81	2,04
Gross.	2,79	1,32	2,85	3,20	1,97	1,44	2,95	2,97	3,33
Alm.	68,13	68,31	68,70	68,37	68,78	68,56	67,97	66,79	66,79
Spess.	11,60	11,76	11,60	12,23	12,12	12,77	13,32	14,68	15,71
Pyrop	14,29	14,50	14,33	14,28	14,05	13,91	13,84	12,75	12,09
XAIm	0.681	0.683	0.687	0.684	0.688	0.686	0.680	0.668	0.668
XSpess	0.116	0.118	0.116	0.122	0.121	0.128	0.133	0.147	0.157
XPy	0.143	0,145	0,143	0,143	0,141	0.139	0.138	0,128	0.121
XGross	0.028	0.013	0.029	0.032	0.020	0.014	0.029	0.030	0.033
	.,	.,	.,	.,	.,	.,	,,	-,	-,0

Tab. H.1: Mikrosondenanalysen von Granat

Probe IMM061 IMM061 IMM061 IMM061 IMM061 IMM061 IMM061 IMM061	1 IMM061
Granat 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.	.3 11.3
GRA2-18 GRA3-1 GRA3-2 GRA3-3 GRA3-4 GRA3-5 GRA4-1 GRA4	2 GRA4-3
Profil Granat II Rand	
<b>SiO2</b> 37,30 36,57 36,44 35,92 36,25 36,14 36,68 36,0	4 37,17
<b>TiO2</b> 0,05 0,07 0,00 0,02 0,06 0,01 0,04 0,0	6 0,01
Al2O3 20,93 20,31 20,49 20,81 20,48 20,72 20,57 20,5	3 20,54
<b>Cr2O3</b> 0,02 0,01 0,03 0,00 0,00 0,01 0,03 0,0	0,04
Fe2O3 0,18 0,87 1,20 0,98 1,00 0,97 0,96 1,0	4 0,68
<b>MgO</b> 2,88 2,92 2,99 3,32 3,14 3,15 2,64 2,	3 2,46
<b>CaO</b> 1,57 1,80 1,84 1,88 1,99 1,95 1,60 1,5	0 1,57
MnO 7,57 6,85 6,98 5,93 6,19 6,19 8,32 8,	4 8,61
<b>FeO</b> 29,74 29,55 29,66 30,05 29,73 29,99 29,27 29,0	0 29,19
Summe 100,24 98,95 99,63 98,91 98,85 99,13 100,12 99,53	3 100,25
Strukturformel bezogen auf 24 Sauerstoffe	
Si 6,001 5,973 5,924 5,870 5,924 5,895 5,945 5,9	1 6,007
AI 0,000 0,027 0,076 0,130 0,076 0,105 0,055 0,05	9 0,000
Tetr. Z: 6,001 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000	6,007
<b>Ti</b> 0.006 0.009 0.000 0.002 0.007 0.002 0.005 0.0 ⁰	0.001
Al 3,969 3,883 3,850 3,877 3,870 3,878 3,874 3,8	5 3,912
Cr 0.002 0.002 0.004 0.000 0.000 0.002 0.004 0.00	0,005
<b>Fe3+</b> 0.022 0.106 0.146 0.120 0.123 0.119 0.117 0.11	.7 0,082
Oct. Y: 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000 <	0 4,000
<b>Ma</b> 0.691 0.712 0.725 0.808 0.766 0.765 0.637 0.67	0 0.592
<b>Ca</b> 0.271 0.314 0.320 0.329 0.348 0.341 0.278 0.33	9 0,271
Mn 1,031 0,948 0,961 0,821 0,857 0,855 1,142 1,14	4 1,178
Fe2+ 4,002 4,036 4,032 4,106 4,064 4,090 3,967 3,9	3 3,944
<b>X-Pos.:</b> 5,994 6,010 6,038 6,064 6,035 6,052 6,025 6,0	5,986
Summe 15,995 16,009 16,038 16,064 16,034 16,052 16,025 16,025	.6 15,993
XFe 0.85 0.85 0.85 0.84 0.84 0.84 0.86 0.4	6 0.87
XMn 0,18 0,17 0,14 0,15 0,15 0,20 0,7	9 0,21
Endalieder	
Uvar. 0.06 0.04 0.09 0.01 0.00 0.04 0.10 0.4	0 0.12
Andr. 0,71 2,88 3,63 3,03 3,24 2,99 3,03 3,	5 2,07
Gross. 3,75 2,31 1,58 2,39 2,54 2,60 1,48 2,	1 2,33
Alm. 66,76 67,16 66,77 67,71 67,34 67,59 65,85 65,	.7 65,89
<b>Spess.</b> 17,20 15,77 15,92 13,54 14,20 14,13 18,96 18,	1 19,68
Pyrop 11,52 11,84 12,01 13,32 12,69 12,65 10,58 10,58	6 9,90
<b>XAIm</b> 0.668 0.672 0.668 0.677 0.673 0.676 0.658 0.6	0.659
<b>XSpess</b> 0.172 0.158 0.159 0.135 0.142 0.141 0.190 0.11	3 0.197
<b>XPv</b> 0.115 0.118 0.120 0.133 0.127 0.126 0.106 0.1	0 0.099

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Granat	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5
	GRA1-1	GRA1-2	GRA1-3	GRA1-2	GRA1-3	GRA1-4	GRA1-5	GRA1-6	GRA1-7
SiO2	37,00	36,81	36,71	36,01	36,26	36,58	36,32	36,39	36,29
TiO2	0,10	0,07	0,06	0,13	0,08	0,06	0,00	0,02	0,05
AI2O3	20,76	20,51	20,81	20,75	20,55	20,64	21,07	20,53	20,71
Cr2O3	0,00	0,05	0,00	0,01	0,03	0,02	0,03	0,00	0,06
Fe2O3	0,99	0,82	1,15	1,13	1,36	1,26	1,16	1,05	1,08
MgO	2,77	3,18	3,71	3,00	2,99	3,12	3,06	2,94	2,95
CaO	4,52	1,98	1,79	1,81	1,93	2,02	1,76	1,75	1,75
MnO	2,90	5,94	4,93	7,22	6,98	6,78	7,19	7,11	7,37
FeO	31,21	30,13	31,02	29,54	29,70	29,70	30,09	29,61	29,60
Summe	100,23	99,48	100,16	99,59	99,88	100,18	100,68	99,40	99,85
Strukturforme	l bezogen a	uf 24 Sauers	toffe						
Si	5,940	5,966	5,907	5,862	5,887	5,909	5,853	5,927	5,891
AI	0,060	0,034	0,093	0,138	0,113	0,091	0,147	0,073	0,109
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,012	0,008	0,007	0,016	0,010	0,007	0,000	0,003	0,006
AI	3,869	3,886	3,854	3,844	3,820	3,838	3,855	3,869	3,855
Cr	0,000	0,006	0,000	0,001	0,003	0,003	0,004	0,000	0,007
Fe3+	0,119	0,100	0,139	0,138	0,167	0,153	0,141	0,129	0,132
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,662	0,769	0,889	0,728	0,723	0,752	0,734	0,715	0,714
Ca	0,778	0,343	0,308	0,316	0,336	0,350	0,304	0,306	0,305
Mn	0,394	0,816	0,672	0,995	0,959	0,928	0,981	0,980	1,014
Fe2+	4,191	4,084	4,174	4,021	4,032	4,012	4,056	4,034	4,019
X-Pos.:	6,024	6,012	6,043	6,061	6,051	6,042	6,074	6,034	6,052
Summe	16,024	16,013	16,043	16,061	16,051	16,042	16,074	16,035	16,051
XFe	0,86	0,84	0,82	0,85	0,85	0,84	0,85	0,85	0,85
XMn	0,08	0,14	0,12	0,17	0,17	0,16	0,17	0,17	0,18
Endalieder									
Uvar.	0.00	0.16	0.00	0.02	0.08	0.07	0.09	0.00	0.18
Andr.	3.26	2.70	3.63	3.82	4.38	3.96	3.47	3.27	3.41
Gross.	9.65	2.85	1.46	1.37	1.09	1.77	1.44	1.79	1.45
Alm.	69,57	67,93	69,08	66,35	66,63	66,40	66,77	66,84	66,41
Spess.	6.54	13.57	11.12	16.42	15.86	15.36	16.15	16.25	16.75
Pyrop	10,99	12,79	14,71	12,02	11,96	12,45	12,08	11,85	11,80
V A I	0.000	0.070	0.004	0.000	0.000	0.004	0.000	0.000	0.001
	0,696	0,679	0,691	0,663	0,666	0,664	0,668	0,668	0,664
ASpess	0,065	0,136	U,111	0,164	0,159	0,154	0,161	0,162	0,167
	0,110	0,128	0,147	0,120	0,120	0,124	0,121	0,118	0,118
AGross	0,097	0,028	0,015	0,014	0,011	0,018	0,014	0,018	0,014

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Granat	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5
	GRA1-8	GRA2-1	GRA2-2	GRA2-3	GRA2-4	GRA2-5	GRA2-6	GRA2-7	GRA2-8
SiO2	36,81	36,72	36,88	37,05	37,62	37,35	36,40	36,81	36,81
TiO2	0,03	0,03	0,07	0,01	0,07	0,06	0,02	0,07	0,03
AI2O3	20,41	21,14	20,66	20,60	20,83	21,16	20,87	20,80	21,10
Cr2O3	0,00	0,03	0,03	0,00	0,00	0,00	0,02	0,05	0,00
Fe2O3	1,37	0,36	1,36	1,22	0,91	0,74	0,72	0,85	1,03
MgO	2,40	3,01	3,44	3,35	3,86	3,24	3,00	3,52	3,72
CaO	1,65	2,27	2,08	2,23	2,15	2,33	2,41	2,42	2,54
MnO	8,47	6,83	5,70	5,63	3,73	5,89	6,05	4,08	3,92
FeO	29,65	29,52	30,42	30,30	31,78	30,60	29,94	31,25	31,36
Summe	100,78	99,90	100,64	100,40	100,94	101,36	99,41	99,84	100,51
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5,945	5,927	5,916	5,952	5,980	5,940	5,912	5,931	5,892
AI	0,055	0,073	0,084	0,048	0,020	0,060	0,088	0,069	0,108
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,003	0,004	0,008	0,002	0,009	0,007	0,002	0,009	0,004
AI	3,829	3,948	3,824	3,851	3,883	3,905	3,907	3,881	3,872
Cr	0,000	0,003	0,004	0,000	0,000	0,000	0,003	0,006	0,000
Fe3+	0,167	0,044	0,164	0,148	0,108	0,089	0,088	0,104	0,124
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,577	0,723	0,823	0,801	0,914	0,768	0,725	0,846	0,889
Ca	0,286	0,392	0,358	0,384	0,366	0,397	0,420	0,417	0,435
Mn	1,159	0,934	0,774	0,766	0,502	0,793	0,832	0,557	0,531
Fe2+	4,005	3,985	4,082	4,071	4,225	4,069	4,066	4,211	4,197
X-Pos.:	6,027	6,035	6,037	6,022	6,006	6,027	6,043	6,030	6,052
Summe	16,026	16,035	16,038	16,023	16,006	16,027	16,043	16,030	16,052
XFe	0,87	0,85	0,83	0,84	0,82	0,84	0,85	0,83	0,83
XMn	0,20	0,17	0,14	0,14	0,09	0,14	0,15	0,10	0,09
Endglieder									
Uvar.	0,01	0,09	0,10	0,00	0,00	0,00	0,06	0,14	0,00
Andr.	4,24	1,19	4,29	3,72	2,92	2,37	2,25	2,80	3,17
Gross.	0,49	5,22	1,54	2,66	3,16	4,21	4,63	3,98	4,01
Alm.	66,45	66,04	67,61	67,59	70,34	67,52	67,29	69,83	69,36
Spess.	19,23	15,48	12,82	12,72	8,35	13,15	13,76	9,23	8,77
Pyrop	9,58	11,98	13,64	13,30	15,22	12,74	12,00	14,02	14,68
XAIm	0,665	0,660	0,676	0,676	0,703	0,675	0,673	0,698	0,694
XSpess	0,192	0,155	0,128	0,127	0,084	0,132	0,138	0,092	0,088
ХРу	0,096	0,120	0,136	0,133	0,152	0,127	0,120	0,140	0,147
XGross	0,005	0,052	0,015	0,027	0,032	0,042	0,046	0,040	0,040

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Granat	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5
	GRA2-9	GRA2-10	GRA2-11	GRA2-12	GRA2-13	GRA2-14	GRA1-15	GRA2-16	GRA2-17
SiO2	37,12	36,85	37,13	36,93	36,47	36,32	36,89	36,54	36,57
TiO2	0,06	0,01	0,08	0,05	0,00	0,07	0,03	0,00	0,00
AI2O3	21,18	20,91	20,79	20,94	20,85	20,22	20,50	20,88	20,41
Cr2O3	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,03	0,00
Fe2O3	0,88	1,02	1,09	1,00	1,30	1,75	0,87	1,29	1,24
MgO	3,83	3,35	3,35	3,29	3,51	3,43	2,87	3,34	3,06
CaO	2,46	2,19	3,66	4,44	3,49	2,20	1,89	1,80	2,06
MnO	3,79	5,69	2,99	1,47	1,92	4,73	7,45	5,54	6,33
FeO	31,55	30,43	31,35	32,02	32,27	30,75	29,29	31,18	29,87
Summe	100,87	100,45	100,45	100,14	99,81	99,46	99,81	100,60	99,54
Strukturforme	l bezogen a	uf 24 Sauers	stoffe						
Si	5,911	5,917	5,939	5,918	5,880	5,903	5,974	5,880	5,941
AI	0,089	0,083	0,061	0,082	0,120	0,097	0,026	0,120	0,059
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ti	0,008	0,001	0,010	0,006	0,000	0,009	0,004	0,000	0,000
AI	3,887	3,876	3,859	3,874	3,841	3,777	3,887	3,840	3,849
Cr	0,000	0,000	0,000	0,000	0,001	0,000	0,003	0,004	0,000
Fe3+	0,105	0,123	0,131	0,120	0,158	0,214	0,106	0,157	0,152
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
	0.000	0.000	0 700	0 705	0.044	0.000	0.000	0.000	0 744
Mg	0,909	0,802	0,799	0,785	0,844	0,830	0,693	0,800	0,741
Ca	0,420	0,378	0,627	0,761	0,603	0,384	0,328	0,310	0,358
Mn	0,511	0,773	0,406	0,199	0,263	0,651	1,022	0,754	0,871
Fe2+	4,201	4,087	4,194	4,292	4,351	4,180	3,967	4,196	4,059
X-Pos.:	6,041	6,040	6,026	6,038	6,060	6,045	6,011	6,060	6,029
Summe	16,041	16,040	16,025	16,038	16,060	16,044	16,011	16,060	16,029
YEe	0.82	0.84	0.84	0.85	0.84	0.83	0.85	0.84	0.85
XMn	0,02	0,04	0,04	0,00	0,04	0,00	0,00	0,04	0,05
	0,00	0,11	0,00	0,01	0,00	0,12	0,10	0,10	0,10
Endglieder									
Uvar.	0.00	0.00	0.00	0.00	0.01	0.00	0.07	0.10	0.00
Andr.	2,80	3,10	3,51	3,14	3,91	5,53	2,74	3,88	3,77
Gross.	4,15	3,15	6,89	9,47	6,02	0,82	2,65	1,13	2,17
Alm.	69,55	67,66	69,61	71,08	71,79	69,15	66,01	69,24	67,32
Spess.	8,45	12,80	6,73	3,30	4,33	10,78	17,00	12,45	14,45
Pyrop	15,06	13,29	13,25	13,00	13,93	13,73	11,54	13,20	12,29
	·						-	-	
XAIm	0,695	0,677	0,696	0,711	0,718	0,691	0,660	0,692	0,673
XSpess	0,085	0,128	0,067	0,033	0,043	0,108	0,170	0,125	0,145
ХРу	0,151	0,133	0,133	0,130	0,139	0,137	0,115	0,132	0,123
XGross	0,041	0,031	0,069	0,095	0,060	0,008	0,026	0,011	0,022

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Granat	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5
	GRA2-18	GRA2-19	GRA2-20	GRA2-21	GRA2-22	GRA2-23	GRA2-24	GRA2-25	GRA2-26
SiO2	36,58	36,85	36,90	37,16	36,83	36,72	37,11	36,94	37,03
TiO2	0,01	0,05	0,05	0,04	0,06	0,09	0,05	0,02	0,08
AI2O3	20,71	20,76	21,06	20,72	20,78	20,86	20,74	20,75	21,03
Cr2O3	0,00	0,02	0,00	0,03	0,01	0,00	0,01	0,01	0,01
Fe2O3	1,66	1,08	0,82	1,08	1,17	1,37	0,94	1,21	0,72
MgO	3,71	3,62	3,31	3,47	2,66	2,46	3,24	2,62	3,04
CaO	2,67	2,35	1,84	2,79	5,01	5,19	3,11	4,85	3,89
MnO	3,13	4,03	5,88	3,40	2,38	1,67	1,72	2,12	2,60
FeO	31,91	31,34	30,83	31,77	31,37	32,44	33,36	31,95	31,97
Summe	100,37	100,09	100,69	100,47	100,27	100,80	100,28	100,48	100,37
Strukturform	el bezogen a	uf 24 Sauers	stoffe						
Si	5,877	5,926	5,916	5,950	5,917	5,884	5,955	5,926	5,932
AI	0,123	0,074	0,084	0,050	0,083	0,116	0,045	0,074	0,068
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,002	0,006	0,006	0,005	0,007	0,011	0,006	0,003	0,010
AI	3,798	3,861	3,895	3,860	3,850	3,824	3,879	3,850	3,902
Cr	0,000	0,002	0,000	0,004	0,001	0,000	0,002	0,001	0,001
Fe3+	0,201	0,130	0,099	0,130	0,142	0,166	0,113	0,146	0,087
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,888	0,867	0,790	0,829	0,638	0,587	0,775	0,627	0,725
Ca	0,459	0,405	0,317	0,479	0,862	0,891	0,534	0,833	0,668
Mn	0,426	0,549	0,799	0,461	0,323	0,226	0,233	0,288	0,353
Fe2+	4,287	4,214	4,134	4,254	4,215	4,348	4,478	4,287	4,282
X-Pos.:	6,060	6,035	6,039	6,023	6,038	6,052	6,020	6,036	6,029
Summe	16,061	16,034	16,039	16,023	16,038	16,052	16,019	16,036	16,029
XFe	0,83	0,83	0,84	0,84	0,87	0,88	0,85	0,87	0,86
XMn	0,08	0,10	0,14	0,08	0,06	0,04	0,04	0,06	0,07
Endglieder									
Uvar.	0,00	0,06	0,00	0,11	0,02	0,00	0,04	0,03	0,03
Andr.	5,00	3,40	2,61	3,36	3,70	4,37	2,97	3,70	2,41
Gross.	2,57	3,25	2,63	4,49	10,56	10,35	5,85	10,07	8,64
Alm.	70,74	69,83	68,44	70,63	69,80	71,84	74,39	71,03	71,04
Spess.	7,03	9,10	13,23	7,65	5,36	3,74	3,87	4,78	5,86
Pyrop	14,66	14,37	13,09	13,77	10,56	9,71	12,87	10,39	12,03
XAIm	0,707	0,698	0,684	0,706	0,698	0,718	0,744	0,710	0,710
XSpess	0,070	0,091	0,132	0,077	0,054	0,037	0,039	0,048	0,059
XPy	0,147	0,144	0,131	0,138	0,106	0,097	0,129	0,104	0,120
XGross	0,026	0,032	0,026	0,045	0,106	0,104	0,059	0,101	0,086

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Granat	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5
	GRA2-27	GRA2-28	GRA2-29	GRA2-30	GRA2-31	GRA2-32	GRA2-33	GRA2-34	GRA2-35
SiO2	37,12	36,65	35,75	36,76	36,56	36,42	37,08	37,10	36,69
TiO2	0,06	0,15	0,06	0,02	0,04	0,01	0,04	0,06	0,02
AI2O3	20,92	20,35	19,77	20,36	20,29	20,22	20,62	20,49	20,25
Cr2O3	0,02	0,02	0,03	0,04	0,01	0,00	0,05	0,06	0,01
Fe2O3	1,21	1,46	2,11	1,24	1,57	1,39	1,60	0,89	1,38
MgO	3,38	3,08	2,77	3,29	3,55	3,31	3,82	3,22	3,36
CaO	2,45	1,75	1,69	1,65	1,88	1,79	2,07	1,71	1,98
MnO	3,29	6,56	7,70	6,26	5,53	5,60	4,71	6,25	5,65
FeO	32,83	30,21	29,03	30,15	30,19	30,34	30,98	30,28	30,12
Summe	101,26	100,23	98,91	99,76	99,63	99,07	100,97	100,05	99,45
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5.916	5.925	5.889	5,955	5,925	5.941	5,919	5,983	5,954
AI	0.084	0.075	0.111	0.045	0.075	0.059	0.081	0.017	0.046
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
	-,	-,	-,	-,	-,	-,	-,	-,	-,
Ti	0,007	0,018	0,007	0,002	0,005	0,001	0,004	0,007	0,002
AI	3,846	3,802	3,728	3,841	3,802	3,828	3,798	3,878	3,828
Cr	0,003	0,003	0,003	0,006	0,002	0,000	0,006	0,007	0,001
Fe3+	0,145	0,178	0,262	0,151	0,191	0,171	0,192	0,108	0,169
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Ма	0.802	0.742	0.681	0.795	0.857	0.804	0.909	0.774	0.813
Ca	0.418	0.303	0.298	0.286	0.327	0.312	0.355	0.295	0.344
Mn	0.444	0.898	1.074	0.858	0.759	0.773	0.637	0.853	0.776
Fe2+	4.375	4.085	3.999	4.084	4.091	4,140	4.136	4.083	4.088
X-Pos.:	6.039	6.028	6.052	6.022	6.034	6.030	6.038	6.005	6.021
Summe	16,038	16,029	16,052	16,022	16,035	16,029	16,038	16,005	16,022
VEo	0.95	0.95	0.95	0.94	0.92	0.94	0.92	0.94	0 02
XMn	0,85	0,05	0,85	0,84	0,03	0,84	0,02	0,04	0,03
	0,00	0,10	0,10	0,10	0,10	0,14	0,11	0,10	0,14
Endglieder									
Uvar.	0,07	0,07	0,08	0,14	0,04	0,00	0,15	0,18	0,04
Andr.	3,76	4,87	4,84	3,82	4,89	4,27	4,87	2,87	4,26
Gross.	3,09	0,09	0,00	0,79	0,49	0,91	0,86	1,86	1,42
Alm.	72,46	67,76	66,08	67,81	67,80	68,65	68,51	68,00	67,90
Spess.	7,35	14,90	17,75	14,25	12,58	12,83	10,55	14,21	12,89
Pyrop	13,28	12,31	11,25	13,20	14,20	13,34	15,06	12,88	13,50
XAIm	0.725	0.678	0.661	0.678	0.678	0.687	0.685	0.680	0.679
XSpess	0.073	0.149	0.177	0.142	0.126	0.128	0.106	0.142	0.129
XPv	0.133	0.123	0.113	0.132	0.142	0.133	0.151	0.129	0.135
XGross	0.031	0.001	0 000	0.008	0.005	0.009	0 009	0.019	0.014
	0,001	0,001	0,000	0,000	0,000	0,000	5,005	0,013	0,014

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Granat	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5
	GRA2-36	GRA2-37	GRA2-38	GRA2-39	GRA2-40	GRA2-41	GRA2-42	GRA2-43	GRA2-44
SiO2	36,71	36,85	37,45	36,73	36,97	37,09	37,22	36,79	37,54
TiO2	0,03	0,03	0,04	0,06	0,04	0,09	0,02	0,00	0,04
AI2O3	20,57	20,97	21,08	20,87	20,84	20,89	21,07	21,13	21,12
Cr2O3	0,00	0,02	0,00	0,02	0,02	0,00	0,03	0,01	0,00
Fe2O3	0,91	0,56	0,65	0,62	1,00	0,94	0,79	0,90	0,19
MgO	3,25	2,42	3,12	2,75	3,07	2,53	3,50	3,56	2,97
CaO	1,96	4,53	3,81	4,37	4,24	5,32	2,87	3,11	2,90
MnO	5,94	1,69	2,22	1,45	1,65	1,75	3,70	2,93	5,79
FeO	30,09	32,88	32,50	32,60	32,39	31,92	31,54	31,84	30,04
Summe	99,44	99,95	100,87	99,45	100,22	100,52	100,72	100,26	100,59
Strukturform	el bezogen a	uf 24 Sauers	stoffe						
Si	5,954	5,941	5,962	5,939	5,931	5,936	5,938	5,897	5,997
AI	0,046	0,059	0,038	0,061	0,069	0,064	0,062	0,103	0,003
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,003	0,004	0,005	0,007	0,005	0,011	0,002	0,000	0,005
AI	3,886	3,926	3,918	3,916	3,871	3,876	3,899	3,890	3,972
Cr	0,000	0,002	0,000	0,003	0,003	0,000	0,004	0,002	0,000
Fe3+	0,111	0,067	0,078	0,075	0,121	0,113	0,095	0,108	0,023
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,785	0,582	0,741	0,663	0,734	0,604	0,832	0,850	0,707
Ca	0,340	0,783	0,650	0,757	0,728	0,913	0,490	0,534	0,497
Mn	0,816	0,230	0,299	0,198	0,224	0,237	0,499	0,397	0,783
Fe2+	4,081	4,433	4,326	4,408	4,346	4,273	4,209	4,270	4,012
X-Pos.:	6,021	6,028	6,016	6,026	6,032	6,027	6,030	6,051	5,999
Summe	16,021	16,028	16,016	16,027	16,032	16,027	16,030	16,051	15,999
XFe	0,84	0,88	0,85	0,87	0,86	0,88	0,83	0,83	0,85
XMn	0,14	0,04	0,06	0,04	0,04	0,05	0,09	0,07	0,14
Endglieder									
Uvar.	0,00	0,05	0,00	0,07	0,07	0,00	0,09	0,04	0,00
Andr.	2,85	1,78	2,06	2,04	3,13	3,07	2,41	2,68	0,69
Gross.	2,80	11,15	8,73	10,46	8,87	12,07	5,62	6,11	7,59
Alm.	67,77	73,54	71,91	73,15	72,06	70,89	69,79	70,56	66,88
Spess.	13,55	3,82	4,97	3,29	3,71	3,94	8,28	6,57	13,06
Pyrop	13,03	9,66	12,32	11,00	12,16	10,03	13,80	14,04	11,78
XAIm	0.678	0.735	0.719	0.731	0.721	0.709	0.698	0.706	0.669
XSpess	0.135	0.038	0.050	0.033	0.037	0.039	0.083	0.066	0.131
XPv	0.130	0.097	0.123	0.110	0.122	0.100	0.138	0,140	0,118
XGross	0,028	0,112	0.087	0.105	0.089	0,121	0.056	0.061	0.076

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Granat	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5
	GRA2-45	GRA2-46	GRA2-47	GRA2-48	GRA2-49	GRA2-50	GRA2-51	GRA2-52	GRA2-53
SiO2	36,70	36,42	37,29	36,60	36,54	36,63	36,76	36,74	36,84
TiO2	0,04	0,06	0,06	0,00	0,01	0,04	0,18	0,14	0,07
AI2O3	20,97	20,68	20,77	20,80	20,61	20,93	20,78	21,12	20,74
Cr2O3	0,02	0,04	0,03	0,01	0,02	0,00	0,00	0,03	0,03
Fe2O3	0,92	0,95	0,92	0,95	1,40	1,00	1,16	0,92	0,86
MgO	3,08	2,71	3,01	3,36	3,35	3,24	3,50	2,94	3,25
CaO	4,74	4,93	4,29	2,39	2,16	2,11	2,75	4,84	4,00
MnO	1,50	1,81	2,33	5,26	5,95	5,86	3,96	1,86	1,91
FeO	31,84	31,50	31,75	30,31	30,00	30,49	31,15	31,86	31,81
Summe	99,80	99,10	100,45	99,68	100,04	100,30	100,23	100,44	99,50
Strukturforn	nel hezogen a	uf 24 Sauers	toffe						
Si	5 906	5 913	5 964	5 918	5 903	5 900	5 905	5 883	5 942
ΔI	0.094	0.087	0,004	0.082	0,000	0,000	0,000	0 117	0.058
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
	-,	-,	-,	-,	-,	-,	-,	-,	-,
Ті	0,004	0,007	0,007	0,000	0,001	0,005	0,022	0,017	0,008
AI	3,882	3,871	3,879	3,882	3,826	3,873	3,838	3,869	3,884
Cr	0,002	0,006	0,004	0,002	0,003	0,000	0,000	0,004	0,004
Fe3+	0,111	0,116	0,110	0,116	0,170	0,121	0,140	0,111	0,104
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,740	0,656	0,717	0,810	0,807	0,777	0,838	0,702	0,782
Ca	0,817	0,858	0,735	0,414	0,374	0,365	0,474	0,831	0,691
Mn	0,204	0,249	0,316	0,720	0,814	0,799	0,539	0,252	0,261
Fe2+	4,284	4,277	4,246	4,099	4,053	4,107	4,185	4,266	4,290
X-Pos.:	6,045	6,039	6,014	6,042	6,048	6,048	6,036	6,051	6,025
Summe	16,045	16,040	16,014	16,041	16,048	16,048	16,036	16,050	16,025
XFe	0,85	0,87	0,86	0,84	0,83	0,84	0,83	0,86	0,85
XMn	0,04	0,05	0,06	0,13	0,14	0,14	0,10	0,05	0,05
Endalieder									
Livar	0.05	0.14	0.10	0.04	0.07	0.00	0.00	0.09	0.10
Andr	2.87	3.08	2 93	2.88	4 24	3 14	4.02	0,09 3 16	2 70
Gross	10.59	11 00	9 19	2,00	1.88	2 89	3.83	10.48	2,75
Δlm	70.87	70.82	70.60	67.84	67.02	67 91	69 34	70,40	71 21
Sness	3 38	4 12	5 25	11 91	13.46	13 21	8 93	4 16	4 34
Pyron	12 24	10.85	11.93	13 40	13.34	12 85	13.88	11 60	12 97
	12,27	10,00	11,00	10,40	10,04	12,00	10,00	11,00	12,01
XAIm	0,709	0,708	0,706	0,678	0,670	0,679	0,693	0,705	0,712
XSpess	0,034	0,041	0,053	0,119	0,135	0,132	0,089	0,042	0,043
ХРу	0,122	0,109	0,119	0,134	0,133	0,128	0,139	0,116	0,130
XGross	0,106	0,110	0,092	0,039	0,019	0,029	0,038	0,105	0,086

Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Granat	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5
	GRA2-54	GRA2-55	GRA2-56	GRA2-57	GRA2-58	GRA2-59	GRA2-60	GRA2-61	GRA2-62
SiO2	36,81	36,99	36,77	36,51	36,70	37,07	36,90	36,76	37,00
TiO2	0,00	0,04	0,49	0,00	0,04	0,01	0,05	0,01	0,02
AI2O3	21,11	21,04	20,58	20,88	20,79	20,73	20,76	20,65	20,97
Cr2O3	0,00	0,00	0,05	0,00	0,03	0,01	0,01	0,00	0,01
Fe2O3	0,67	0,95	1,24	1,18	1,55	1,21	0,82	1,69	0,95
MgO	3,53	3,53	3,47	3,51	3,69	3,59	3,32	3,91	3,66
CaO	2,28	2,92	2,66	3,10	3,05	2,74	3,51	3,06	3,23
MnO	4,58	3,19	3,57	2,92	2,97	2,93	2,14	2,27	2,06
FeO	31,07	31,90	31,70	31,71	31,72	32,13	32,09	31,96	32,33
Summe	100,05	100,55	100,53	99,81	100,53	100,42	99,60	100,30	100,22
Strukturform	el bezogen a	uf 24 Sauers	stoffe						
Si	5.919	5.916	5.895	5.888	5.880	5.939	5.949	5.893	5.925
AI	0.081	0.084	0.105	0.112	0.120	0.061	0.051	0.107	0.075
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
т	0.000	0.004	0.050	0.000	0.004	0.001	0.006	0.002	0.002
	0,000	0,004	0,039	0,000	0,004	0,001	0,000	0,002	2 004
Al Cr	0,000	0,002	0,705	0,000	3,800	0,002	3,093	0,000	0.004
En2	0,000	0,000	0,000	0,000	0,003	0,002	0,002	0,000	0,001
rest Oct Vi	0,001	0,114	0,150	0,143	0,100	0,145	0,100	0,204	4 000
	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,846	0,842	0,830	0,845	0,882	0,858	0,797	0,935	0,873
Ca	0,393	0,501	0,457	0,536	0,523	0,469	0,607	0,525	0,555
Mn	0,623	0,431	0,485	0,398	0,403	0,398	0,292	0,308	0,279
Fe2+	4,178	4,266	4,251	4,277	4,250	4,304	4,326	4,284	4,330
X-Pos.:	6,040	6,040	6,023	6,056	6,058	6,030	6,022	6,053	6,036
Summe	16,040	16,040	16,023	16,056	16,058	16,030	16,022	16,053	16,036
XFe	0.83	0.84	0.84	0.84	0.83	0.83	0.84	0.82	0.83
XMn	0,11	0,08	0,09	0,07	0,07	0,07	0,05	0,06	0,05
Endalieder									
Uvar.	0.00	0.01	0.15	0.00	0.08	0.04	0.04	0.00	0.02
Andr.	2.01	2.93	5.20	3.53	4.72	3.65	2.64	5.10	2.89
Gross.	4.50	5.35	2.24	5.32	3.84	4.10	7.40	3.58	6.29
Alm.	69.17	70.63	70.58	70.62	70.15	71.38	71.84	70.79	71.73
Spess.	10.32	7.14	8.06	6.58	6.65	6.60	4,85	5.09	4.62
Pyrop	14,01	13,93	13,78	13,95	14,56	14,23	13,24	15,45	14,46
VAIm	0 602	0 706	0 706	0 706	0 700	0 744	0 740	0 700	0 717
	0,092	0,700	0,700	0,700	0,702	0,714	0,710	0,708	0,717
ASpess	0,103	0,071	0,081	0,066	0,066	0,066	0,048	0,051	0,046
лгу	0,140	0,139	0,138	0,139	0,146	0,142	0,132	0,155	0,145
XGross	0,045	0,053	0,022	0,053	0,038	0,041	0,074	0,036	0,063

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM063	IMM063	IMM063	IMM063
Granat	11.5	11.5	11.5	11.5	11.5	2.2	2.2	2.2	2.2
	GRA2-63	GRA2-64	GRA2-65	GRA2-66	GRA2-67	Gra 1-1	Gra 1-2	Gra 3-1	Gra 3-2
SiO2	36,93	37,14	37,47	37,28	37,30	36,98	36,73	37,60	37,32
TiO2	0,02	0,04	0,01	0,06	0,04	0,05	0,02	0,07	0,01
AI2O3	20,77	21,00	20,73	20,99	21,27	20,79	21,00	21,07	21,31
Cr2O3	0,00	0,00	0,04	0,06	0,01	0,00	0,01	0,04	0,02
Fe2O3	1,21	0,81	1,42	1,01	0,34	1,13	1,43	0,97	0,83
MgO	3,68	3,72	3,77	3,66	2,94	3,68	4,23	4,18	3,98
CaO	3,08	3,05	2,46	2,15	2,00	2,41	1,94	2,04	2,15
MnO	1,98	2,06	3,74	4,30	7,16	8,38	7,75	7,14	8,21
FeO	32,47	32,45	31,75	31,71	30,07	26,86	27,50	28,26	27,40
Summe	100,14	100,28	101,38	101,23	101,13	100,28	100,61	101,36	101,23
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5.924	5.939	5.947	5.929	5.952	5.929	5.870	5.945	5.916
AI	0.076	0.061	0.053	0.071	0.048	0.071	0.130	0.055	0.084
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
	-,	-,	- ,	- ,	- ,	- ,	-,	-,	- ,
Ті	0,003	0,005	0,001	0,008	0,005	0,006	0,003	0,008	0,001
AI	3,851	3,897	3,824	3,863	3,953	3,858	3,825	3,871	3,898
Cr	0,000	0,000	0,005	0,008	0,001	0,000	0,001	0,005	0,002
Fe3+	0,146	0,098	0,170	0,121	0,041	0,136	0,172	0,116	0,099
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,881	0,886	0,891	0,869	0,699	0,879	1,007	0,985	0,941
Ca	0,530	0,523	0,417	0,366	0,342	0,414	0,332	0,346	0,366
Mn	0,269	0,279	0,502	0,580	0,968	1,139	1,049	0,956	1,102
Fe2+	4,356	4,340	4,215	4,218	4,013	3,601	3,675	3,737	3,633
X-Pos.:	6,036	6,028	6,026	6,032	6,021	6,032	6,063	6,024	6,042
Summe	16,037	16,028	16,026	16,032	16,022	16,033	16,063	16,024	16,041
XFe	0,83	0,83	0,83	0,83	0,85	0,80	0,78	0,79	0,79
XMn	0,05	0,05	0,09	0,10	0,17	0,20	0,18	0,17	0,19
Endalieder									
Uvar.	0.00	0.00	0.12	0.19	0.03	0.00	0.02	0.12	0.05
Andr.	3.70	2.55	4.26	3.21	1.13	3.54	4.32	3.08	2.49
Gross.	5.07	6.12	2.55	2.67	4.52	3.31	1.13	2.55	3.52
Alm.	72.16	72.00	69.94	69.92	66.64	59.69	60.61	62.04	60.12
Spess.	4.46	4.63	8.34	9,61	16.07	18.87	17.29	15.87	18.24
Pyrop	14,60	14,70	14,79	14,40	11,61	14,57	16,62	16,34	15,58
		c ===				c	0.000	0.000	c
XAIM	0,722	0,720	0,699	0,699	0,666	0,597	0,606	0,620	0,601
XSpess	0,045	0,046	0,083	0,096	0,161	0,189	0,173	0,159	0,182
хру	0,146	0,147	0,148	0,144	0,116	0,146	0,166	0,163	0,156
XGross	0,051	0,061	0,025	0,027	0,045	0,033	0,011	0,026	0,035

Probe	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063
Granat	2.2	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3
	Gra 4-1	GRA1-1	GRA1-2	GRA1-3	GRA1-4	GRA1-5	GRA1-6	GRA1-7	GRA 1-8
SiO2	37,11	36,99	36,92	37,18	37,16	36,91	37,39	37,31	37,50
TiO2	0,03	0,06	0,01	0,00	0,03	0,00	0,05	0,06	0,03
AI2O3	20,70	20,90	21,10	21,17	21,11	20,97	21,10	20,95	21,10
Cr2O3	0,00	0,02	0,04	0,00	0,00	0,01	0,03	0,00	0,04
Fe2O3	1,28	0,88	0,90	0,52	0,79	1,19	0,70	1,01	1,17
MgO	3,96	3,88	4,13	3,98	4,09	4,14	4,34	4,22	4,27
CaO	2,51	2,45	2,21	2,13	2,20	2,41	1,96	2,41	2,28
MnO	7,79	7,54	7,41	7,28	7,16	7,08	6,77	6,85	6,70
FeO	26,88	27,27	27,47	27,87	27,83	27,60	28,15	27,73	28,37
Summe	100,25	99,99	100,20	100,12	100,37	100,31	100,51	100,56	101,46
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5,939	5,933	5,907	5,947	5,932	5,902	5,949	5,939	5,925
AI	0,061	0,067	0,093	0,053	0,068	0,098	0,051	0,061	0,075
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,003	0,007	0,001	0,000	0,004	0,000	0,006	0,008	0,004
AI	3,843	3,884	3,886	3,938	3,902	3,855	3,906	3,871	3,852
Cr	0,000	0,003	0,005	0,000	0,000	0,001	0,004	0,000	0,005
Fe3+	0,154	0,106	0,108	0,062	0,094	0,144	0,084	0,121	0,139
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,944	0,928	0,986	0,949	0,974	0,987	1,030	1,000	1,005
Ca	0,430	0,421	0,379	0,365	0,377	0,412	0,334	0,411	0,386
Mn	1,057	1,024	1,005	0,986	0,968	0,959	0,913	0,924	0,896
Fe2+	3,598	3,657	3,676	3,728	3,714	3,691	3,746	3,692	3,748
X-Pos.:	6,028	6,031	6,046	6,027	6,032	6,049	6,023	6,027	6,035
Summe	16,029	16,030	16,046	16,027	16,032	16,049	16,023	16,027	16,036
XFe	0,79	0,80	0,79	0,80	0,79	0,79	0,78	0,79	0,79
XMn	0,19	0,18	0,18	0,17	0,17	0,17	0,16	0,16	0,16
Endglieder									
Uvar.	0,00	0,06	0,13	0,01	0,01	0,03	0,11	0,01	0,14
Andr.	3,91	2,81	2,70	1,55	2,44	3,57	2,25	3,20	3,54
Gross.	3,23	4,10	3,44	4,50	3,80	3,22	3,20	3,61	2,72
Alm.	59,68	60,65	60,80	61,85	61,57	61,02	62,20	61,25	62,10
Spess.	17,53	16,98	16,62	16,36	16,04	15,85	15,16	15,33	14,85
Pyrop	15,65	15,40	16,31	15,75	16,14	16,32	17,10	16,60	16,65
XAIm	0,597	0,606	0,608	0,618	0,616	0,610	0,622	0,613	0,621
XSpess	0,175	0,170	0,166	0,164	0,160	0,158	0,152	0,153	0,149
ХРу	0,157	0,154	0,163	0,157	0,161	0,163	0,171	0,166	0,166
XGross	0,032	0,041	0,034	0,045	0,038	0,032	0,032	0,036	0,027

Probe	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063
Granat	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.4	2.5
	GRA1-9	GRA 1-10	GRA1-11	GRA1-12	GRA1-13	GRA 1-14	GRA1-15	Gra 2-2	Gra 2-1
SiO2	37,00	37,26	36,99	37,16	36,93	37,36	37,20	37,08	37,21
TiO2	0,00	0,07	0,00	0,00	0,05	0,04	0,06	0,08	0,05
AI2O3	21,22	21,13	20,90	21,33	21,02	21,12	20,87	21,09	20,97
Cr2O3	0,02	0,01	0,00	0,03	0,00	0,01	0,00	0,00	0,08
Fe2O3	1,36	0,67	1,18	0,63	1,06	1,10	0,76	1,39	1,33
MgO	4,56	4,16	4,28	4,23	4,03	4,28	3,83	3,96	3,44
CaO	2,17	2,47	2,32	2,33	2,61	2,25	2,42	2,43	4,81
MnO	6,65	6,58	6,59	6,75	6,90	7,11	7,28	8,46	7,81
FeO	28,09	27,95	27,88	28,00	27,68	27,86	27,60	26,90	25,36
Summe	101,06	100,31	100,15	100,45	100,28	101,12	100,02	101,39	101,07
Strukturforme	bezogen a	uf 24 Sauers	toffe						
Si	5,868	5,940	5,917	5,918	5,905	5,919	5,960	5,883	5,903
AI	0,132	0,060	0,083	0,082	0,095	0,081	0,040	0,117	0,097
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ti	0,000	0,008	0,000	0,000	0,006	0,004	0,008	0,009	0,006
AI	3,836	3,910	3,858	3,921	3,866	3,863	3,900	3,825	3,824
Cr	0,002	0,001	0,000	0,004	0,000	0,001	0,000	0,000	0,010
Fe3+	0,162	0,081	0,142	0,075	0,127	0,131	0,092	0,166	0,159
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	1,078	0,989	1,020	1,004	0,961	1,011	0,914	0,936	0,813
Ca	0,368	0,422	0,398	0,397	0,446	0,381	0,416	0,414	0,818
Mn	0,894	0,889	0,893	0,911	0,935	0,954	0,988	1,136	1,050
Fe2+	3,726	3,727	3,730	3,729	3,702	3,692	3,699	3,568	3,365
X-Pos.:	6,066	6,027	6,041	6,041	6,044	6,039	6,017	6,055	6,046
Summe	16,066	16,026	16,041	16,041	16,044	16,038	16,016	16,054	16,045
XFe	0,78	0,79	0,79	0,79	0,79	0,78	0,80	0,79	0,81
XMn	0,16	0,16	0,16	0,16	0,17	0,17	0,18	0,20	0,20
Endglieder									
Uvar.	0,05	0,03	0,00	0,11	0,00	0,02	0,00	0,00	0,26
Andr.	4,01	2,21	3,54	1,86	3,32	3,37	2,48	4,34	4,11
Gross.	2,01	4,77	3,05	4,61	4,07	2,92	4,43	2,49	9,17
Alm.	61,42	61,84	61,75	61,72	61,25	61,14	61,48	58,94	55,66
Spess.	14,74	14,74	14,79	15,08	15,47	15,80	16,42	18,77	17,36
Pyrop	17,76	16,41	16,88	16,62	15,90	16,75	15,19	15,46	13,44
VAIm	0.644	0.640	0.647	0.647	0.640	0.644	0.645	0 500	
	0,014	0,018	0,017	0,017	0,012	0,011	0,015	0,569	0,007
Nopess	0,147	0,147	0,148	0,151	0,155	0,158	0,164	0,188	0,174
	0,178	0,164	0,169	0,100	0,159	0,107	0,152	0,155	0,134
XGross	0,020	0,048	0,030	0,046	0,041	0,029	0,044	0,025	0,092

Probe	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063
Granat	2.5	2.5	2.5	2.6	2.6	2.7	2.7	2.7	2.8
	Gra 4-1	Gra 5-1	Gra 5-2	Gra 1-4	Gra 2-3	Gra 1-1	Gra 1-2	Gra 1-3	GRA1-1
SiO2	35,78	37,27	37,10	36,82	36,64	36,98	36,88	37,36	37,11
TiO2	0,04	0,04	0,05	0,02	0,02	0,05	0,00	0,01	0,00
AI2O3	19,83	20,74	20,87	20,78	20,77	20,87	20,74	20,88	20,97
Cr2O3	0,00	0,02	0,00	0,02	0,00	0,00	0,02	0,00	0,03
Fe2O3	2,67	1,64	1,56	1,64	1,85	1,51	2,02	1,41	0,81
MgO	3,81	3,86	3,77	3,77	3,42	3,73	4,07	3,66	3,51
CaO	2,06	2,56	2,44	2,50	2,21	2,39	2,40	2,37	2,28
MnO	8,75	8,58	8,67	9,43	10,90	10,05	8,73	9,68	9,45
FeO	26,16	26,65	26,87	25,84	25,42	25,52	26,44	26,14	26,29
Summe	99,08	101,36	101,33	100,82	101,23	101,10	101,28	101,50	100,44
Strukturform	el bezogen au	uf 24 Sauers	toffe						
Si	5,848	5,916	5,897	5,884	5,859	5,892	5,867	5,926	5,942
AI	0,152	0,084	0,103	0,116	0,141	0,108	0,133	0,074	0,058
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,004	0,005	0,006	0,002	0,003	0,006	0,000	0,002	0,000
AI	3,667	3,797	3,807	3,799	3,774	3,812	3,756	3,830	3,899
Cr	0,000	0,003	0,000	0,002	0,000	0,000	0,002	0,000	0,004
Fe3+	0,329	0,196	0,187	0,197	0,223	0,182	0,242	0,169	0,098
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,927	0,914	0,894	0,898	0,815	0,886	0,964	0,865	0,837
Ca	0,360	0,436	0,415	0,429	0,379	0,409	0,409	0,402	0,391
Mn	1,211	1,153	1,167	1,277	1,476	1,356	1,176	1,300	1,281
Fe2+	3,576	3,537	3,572	3,454	3,399	3,400	3,517	3,469	3,520
X-Pos.:	6,074	6,040	6,048	6,057	6,069	6,051	6,066	6,036	6,029
Summe	16,074	16,040	16,048	16,057	16,069	16,051	16,066	16,036	16,029
XFe	0,79	0,79	0,80	0,79	0,81	0,79	0,78	0,80	0,81
XMn	0,21	0,21	0,21	0,23	0,26	0,24	0,21	0,23	0,23
Endglieder									
Uvar.	0,00	0,07	0,00	0,05	0,00	0,00	0,06	0,00	0,09
Andr.	5,93	4,98	4,78	4,93	5,58	4,66	5,98	4,23	2,44
Gross.	0,00	2,17	2,09	2,10	0,66	2,10	0,71	2,43	3,96
Alm.	58,87	58,57	59,06	57,02	56,01	56,20	57,98	57,46	58,39
Spess.	19,94	19,09	19,29	21,08	24,32	22,41	19,38	21,54	21,25
Pyrop	15,26	15,13	14,78	14,82	13,43	14,64	15,89	14,33	13,88
XAIm	0,589	0,586	0,591	0,570	0,560	0,562	0,580	0,575	0,584
XSpess	0,199	0,191	0,193	0,211	0,243	0,224	0,194	0,215	0,212
ХРу	0,153	0,151	0,148	0,148	0,134	0,146	0,159	0,143	0,139
XGross	0,000	0,022	0,021	0,021	0,007	0,021	0,007	0,024	0,040

Probe	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063
Granat	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
	GRA1-2	GRA1-3	GRA 1-4	GRA 1-5	GRA 1-6	GRA1-7	GRA1-8	GRA 1-10	GRA2A1
									Profil Rand
SiO2	37,19	37,31	37,04	37,57	37,19	37,31	37,27	37,35	37,70
TiO2	0,01	0,00	0,03	0,01	0,00	0,01	0,00	0,03	0,01
AI2O3	20,69	20,88	20,71	20,78	20,70	21,04	21,12	20,78	21,24
Cr2O3	0,00	0,00	0,04	0,06	0,02	0,00	0,01	0,00	0,00
Fe2O3	1,01	0,86	1,27	0,93	1,36	0,87	0,66	0,62	0,08
MgO	3,59	3,88	3,99	3,92	3,92	3,95	3,71	3,54	3,45
CaO	2,07	2,00	1,85	2,21	2,05	2,25	2,19	2,34	2,39
MnO	9,12	8,62	8,45	8,39	8,47	8,36	8,65	8,74	8,87
FeO	26,56	26,81	27,02	26,81	26,97	26,84	26,96	26,58	26,75
Summe	100,23	100,37	100,39	100,67	100,67	100,62	100,57	99,99	100,49
Strukturforme	el bezogen a	uf 24 Sauers	toffe						
Si	5,966	5,963	5,931	5,982	5,939	5,944	5,948	5,992	6,006
AI	0,034	0,037	0,069	0,018	0,061	0,056	0,052	0,008	0,000
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,006
ті	0.001	0.000	0.003	0.001	0.000	0.001	0.000	0.004	0.001
AI	3,878	3,897	3,839	3,881	3,834	3,895	3,920	3,920	3,989
Cr	0.000	0.000	0.005	0.007	0.002	0.000	0.001	0.000	0.000
Fe3+	0,122	0,103	0,153	0,111	0,164	0,105	0.079	0.075	0.010
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mai	0.050	0.005	0.050	0.024	0.000	0.000	0.000	0.047	0.040
Mg	0,859	0,925	0,952	0,931	0,933	0,939	0,883	0,847	0,818
Ca	0,356	0,343	0,317	0,377	0,350	0,384	0,375	0,402	0,408
Mn Fall	1,240	1,166	1,146	1,131	1,146	1,128	1,169	1,188	1,196
Fe2+	3,563	3,584	3,618	3,570	3,602	3,576	3,598	3,566	3,564
X-Pos.:	6,017	6,018	6,032	6,009	6,031	6,027	6,025	6,003	5,987
Summe	16,017	16,018	16,033	16,009	16,031	16,027	16,026	16,002	15,993
XFe	0,81	0,79	0,79	0,79	0,79	0,79	0,80	0,81	0,81
XMn	0,22	0,21	0,20	0,20	0,20	0,20	0,21	0,21	0,21
Endglieder									
Uvar.	0,00	0,00	0,13	0,18	0,05	0,00	0.03	0.00	0.00
Andr.	3,05	2,57	3,87	2,79	4,07	2,63	1,98	1,98	0,27
Gross.	2,87	3,12	1,24	3,30	1,67	3,74	4,21	4,72	6,54
Alm.	59,21	59,55	59,97	59,41	59,73	59,33	59,72	59,41	59,53
Spess.	20,60	19,38	18,99	18,83	19,00	18,71	19,40	19,78	19,98
Pyrop	14,27	15,38	15,79	15,49	15,46	15,58	14,65	14,10	13,67
XAIm	0.592	0.596	0.600	0.594	0.597	0.593	0.597	0.594	0.595
XSpess	0,002	0 194	0 190	0 188	0 190	0 187	0 194	0 198	0 200
XPv	0,143	0,154	0,158	0.155	0.155	0.156	0.147	0,141	0,137
XGross	0.029	0.031	0.012	0.033	0.017	0.037	0.042	0.047	0.065
	0,020	0,001	0,012	0,000	0,017	0,007	0,042	0,047	0,000

Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063
Granat	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
	GRA2A2	GRA2A3	GRA2A4	GRA2A5	GRA2A6	GRA2A7	GRA2A8	GRA2A9	GRA2A10
SiO2	37,13	37,62	37,38	37,25	37,29	37,76	37,04	37,69	37,61
TiO2	0,00	0,01	0,04	0,02	0,05	0,06	0,03	0,00	0,04
AI2O3	20,91	21,11	21,00	21,19	21,10	21,19	21,09	20,92	21,06
Cr2O3	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,04	0,00
Fe2O3	0,76	0,47	0,65	0,75	0,67	0,78	0,97	1,00	0,81
MgO	3,63	3,79	3,71	4,01	3,88	4,18	4,16	4,07	4,03
CaO	2,41	2,52	2,78	2,47	2,53	2,53	2,30	2,66	2,65
MnO	8,57	8,31	7,80	7,56	7,36	7,23	7,09	6,74	6,66
FeO	26,67	26,73	26,98	27,34	27,53	27,57	27,72	27,91	28,04
Summe	100,10	100,58	100,34	100,58	100,40	101,28	100,39	101,02	100,89
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5,955	5,985	5,966	5,932	5,948	5,960	5,912	5,970	5,964
AI	0,045	0,015	0,034	0,068	0,052	0,040	0,088	0,030	0,036
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,000	0,002	0,004	0,003	0,006	0,007	0,003	0,000	0,005
AI	3,906	3,942	3,917	3,908	3,914	3,901	3,881	3,876	3,899
Cr	0,002	0,000	0,000	0,000	0,000	0,000	0,000	0,005	0,000
Fe3+	0,092	0,057	0,078	0,090	0,080	0,092	0,116	0,119	0,096
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,869	0,900	0,883	0,952	0,924	0,983	0,990	0,962	0,953
Ca	0,413	0,430	0,476	0,421	0,432	0,428	0,393	0,451	0,451
Mn	1,164	1,120	1,054	1,019	0,994	0,967	0,958	0,904	0,894
Fe2+	3,577	3,557	3,602	3,641	3,673	3,639	3,701	3,698	3,718
X-Pos.:	6,023	6,006	6,014	6,033	6,022	6,017	6,042	6,015	6,015
Summe	16,023	16,006	16,015	16,033	16,023	16,017	16,042	16,015	16,016
XFe	0,80	0,80	0,80	0,79	0,80	0,79	0,79	0,79	0,80
XMn	0,21	0,20	0,19	0,18	0,18	0,17	0,17	0,16	0,16
Endglieder									
Uvar.	0,05	0,00	0,00	0,00	0,00	0,00	0,00	0,12	0,00
Andr.	2,28	1,46	2,07	2,29	2,15	2,46	2,97	2,97	2,53
Gross.	4,53	5,70	5,84	4,69	5,03	4,65	3,53	4,41	4,97
Alm.	59,38	59,22	59,88	60,35	60,99	60,47	61,26	61,47	61,81
Spess.	19,33	18,64	17,53	16,89	16,50	16,07	15,86	15,03	14,86
Pyrop	14,42	14,98	14,68	15,78	15,34	16,34	16,38	16,00	15,84
XAIm	0,594	0,592	0,599	0,604	0,610	0,605	0,613	0,615	0,618
XSpess	0,193	0,186	0,175	0,169	0,165	0,161	0,159	0,150	0,149
XPy	0,144	0,150	0,147	0,158	0,153	0,163	0,164	0,160	0,158
XGross	0,045	0,057	0,058	0,047	0,050	0,047	0,035	0,044	0,050

Probe	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063
Granat	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
	GRA2A11	GRA2B1	GRA2B2	GRA2B3	GRA2B4	GRA2B5	GRA2B6	GRA2B7	GRA2B8
SiO2	37,80	37,74	37,31	37,25	37,52	37,04	37,30	37,38	37,55
TiO2	0,00	0,00	0,00	0,05	0,00	0,01	0,00	0,04	0,04
AI2O3	21,06	21,12	20,94	20,72	20,84	20,99	21,16	21,07	20,93
Cr2O3	0,04	0,00	0,04	0,02	0,00	0,00	0,00	0,01	0,04
Fe2O3	0,98	0,98	1,02	1,18	1,17	1,21	1,14	1,17	0,92
MgO	4,26	4,22	4,35	4,36	4,52	4,46	4,46	4,28	4,35
CaO	2,43	2,33	2,46	2,45	2,46	2,42	2,10	3,02	2,61
MnO	6,54	6,59	6,25	6,08	6,06	6,08	6,20	6,06	6,08
FeO	28,28	28,44	28,05	28,01	27,99	28,12	28,68	27,95	28,06
Summe	101,39	101,42	100,41	100,12	100,57	100,32	101,04	100,96	100,58
Strukturforn	al bazagan a	uf 24 Sauara	toffo						
Silukluhom	5 063	5 056	5 0/1	5 0/0	5 058	5 908	5 011	5 021	5 063
51 Al	0,903	0.044	0.059	0,949	0.042	0,002	0.080	0.079	0.037
Ai Totr 7	6,000	6,044	6,009	6,000	6,042	6,092	0,009 6,000	6,079	6,000
160.2.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ti	0,000	0,000	0,000	0,006	0,000	0,001	0,000	0,004	0,004
AI	3,879	3,884	3,872	3,850	3,859	3,855	3,864	3,855	3,880
Cr	0,005	0,000	0,005	0,003	0,000	0,000	0,000	0,002	0,006
Fe3+	0,117	0,116	0,122	0,141	0,140	0,145	0,136	0,139	0,110
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	1,001	0,994	1,032	1,037	1,069	1,060	1,054	1,010	1,029
Ca	0,410	0,394	0,419	0,420	0,419	0,414	0,356	0,512	0,444
Mn	0,874	0,880	0,843	0,823	0,816	0,821	0,832	0,813	0,817
Fe2+	3,731	3,753	3,735	3,742	3,717	3,751	3,801	3,703	3,726
X-Pos.:	6,018	6,021	6,030	6,022	6,021	6,046	6,044	6,037	6,016
Summe	16,018	16,022	16,029	16,022	16,021	16,046	16,044	16,037	16,017
XFe	0.79	0.79	0.78	0.78	0.78	0.78	0.78	0.79	0.78
XMn	0,16	0,16	0,15	0,15	0,15	0,15	0,15	0,15	0,15
Endglieder									
Uvar.	0,12	0,00	0,13	0,08	0,00	0,00	0,00	0,04	0,14
Andr.	2,91	2,90	3,04	3,67	3,50	3,61	3,39	3,56	2,86
Gross.	3,79	3,65	3,78	3,22	3,46	3,24	2,51	4,88	4,39
Alm.	62,01	62,32	61,95	62,14	61,74	62,04	62,89	61,33	61,93
Spess.	14,53	14,62	13,99	13,67	13,55	13,58	13,77	13,47	13,58
Pyrop	16,64	16,50	17,11	17,22	17,76	17,53	17,45	16,72	17,10
XAIm	0.620	0.623	0.620	0.621	0.617	0.620	0.629	0.613	0.619
XSpess	0.145	0.146	0.140	0.137	0.135	0.136	0.138	0.135	0.136
XPy	0,166	0,165	0,171	0,172	0,178	0,175	0,174	0,167	0,171
XGross	0.038	0.037	0.038	0.032	0.035	0.032	0.025	0.049	0.044
	0,000	5,000	2,000	-,	5,000	5,00-	5,020	5,0.0	5,5 . 1

Probe	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063
Granat	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
	GRA2B9	GRA2B10	GRA2C1	GRA2C2	GRA2C3	GRA2C4	GRA2C5	GRA2C6	GRA2C7
SiO2	37,08	37,28	37,39	37,23	37,49	37,36	37,49	37,40	37,39
TiO2	0,01	0,03	0,04	0,03	0,01	0,06	0,03	0,00	0,02
AI2O3	21,05	21,46	21,02	21,00	20,87	20,79	21,04	20,98	20,99
Cr2O3	0,04	0,01	0,01	0,02	0,01	0,01	0,08	0,00	0,03
Fe2O3	0,86	0,41	1,00	0,70	0,89	1,20	0,89	1,00	0,95
MgO	4,20	4,17	4,31	4,10	4,12	4,05	4,16	4,04	3,84
CaO	2,66	2,59	2,50	2,40	2,66	2,75	2,46	2,44	2,69
MnO	6,34	6,42	6,52	6,86	6,81	7,15	7,19	7,47	7,72
FeO	27,83	28,13	27,89	27,71	27,46	27,27	27,58	27,41	27,19
Summe	100,08	100,50	100,69	100,05	100,31	100,63	100,92	100,74	100,81
Strukturform	el bezogen a	auf 24 Sauers	toffe						
Si	5,926	5,926	5,939	5,952	5,974	5,947	5,946	5,949	5,947
AI	0,074	0,074	0,061	0,048	0,026	0,053	0,054	0,051	0,053
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,002	0,004	0,005	0,004	0,001	0,008	0,004	0,000	0,002
AI	3,891	3,946	3,874	3,909	3,893	3,847	3,880	3,881	3,881
Cr	0,005	0,001	0,002	0,003	0,001	0,002	0,011	0,000	0,004
Fe3+	0,103	0,049	0,120	0,084	0,107	0,143	0,107	0,119	0,114
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	1,001	0,989	1,021	0,977	0,979	0,960	0,983	0,957	0,910
Ca	0,456	0,441	0,425	0,412	0,454	0,469	0,418	0,416	0,459
Mn	0,859	0,864	0,877	0,929	0,920	0,964	0,966	1,006	1,039
Fe2+	3,720	3,740	3,705	3,705	3,660	3,630	3,658	3,646	3,617
X-Pos.:	6,035	6,035	6,029	6,023	6,012	6,023	6,025	6,025	6,025
Summe	16,036	16,035	16,028	16,022	16,013	16,023	16,025	16,025	16,025
XFe	0,79	0,79	0,78	0,79	0,79	0,79	0,79	0,79	0,80
XMn	0,15	0,15	0,16	0,17	0,17	0,17	0,17	0,18	0,19
Endglieder									
Uvar.	0,12	0,02	0,04	0,06	0,02	0,04	0,26	0,00	0,09
Andr.	2,61	1,32	3,09	2,19	2,67	3,76	2,74	2,97	2,88
Gross.	4,84	5,98	3,91	4,58	4,86	3,99	3,93	3,93	4,64
Alm.	61,63	61,98	61,46	61,51	60,87	60,27	60,72	60,52	60,03
Spess.	14,23	14,32	14,55	15,42	15,29	16,00	16,03	16,70	17,25
Pyrop	16,58	16,39	16,94	16,23	16,29	15,94	16,31	15,88	15,10
XAIm	0,616	0,620	0,615	0,615	0,609	0,603	0,607	0,605	0,600
XSpess	0,142	0,143	0,146	0,154	0,153	0,160	0,160	0,167	0,173
XPy	0,166	0,164	0,169	0,162	0,163	0,159	0,163	0,159	0,151
XGross	0,048	0,060	0,039	0,046	0,049	0,040	0,039	0,039	0,046

Probe	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063
Granat	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
	GRA2C8	GRA2C9	GRA2C10	GRA2C11	GRA2P1	GRA2P2	GRA2P3	GRA2P4	GRA2P5
				Profil Rand					
SiO2	37,27	37,18	37,11	36,78	37,32	37,31	37,46	37,26	37,06
TiO2	0,03	0,00	0,01	0,06	0,01	0,01	0,01	0,03	0,00
AI2O3	21,14	20,88	20,85	20,98	21,07	20,91	21,01	21,14	20,96
Cr2O3	0,00	0,00	0,05	0,00	0,01	0,00	0,05	0,00	0,05
Fe2O3	0,74	0,59	0,71	0,83	0,89	1,28	1,07	1,12	1,21
MgO	3,84	3,65	3,60	3,57	4,40	4,42	4,44	4,44	4,29
CaO	2,55	2,20	2,30	2,25	2,09	2,20	2,17	2,13	2,20
MnO	8,19	8,72	8,92	9,12	6,36	6,28	6,40	6,42	6,50
FeO	26,85	26,60	26,42	26,41	28,35	28,34	28,29	28,42	28,28
Summe	100,60	99,82	99,98	99,99	100,50	100,75	100,89	100,97	100,55
Strukturforme	l bezogen a	auf 24 Sauers	stoffe						
Si	5,938	5,974	5,959	5,916	5,938	5,929	5,940	5,910	5,910
AI	0,062	0,026	0,041	0,084	0,062	0,071	0,060	0,090	0,090
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
т:	0.000	0.000	0.004	0.007	0.004	0.004	0.001	0.004	0.000
	0,003	0,000	0,001	0,007	0,001	0,001	0,001	0,004	0,000
AI	3,908	3,929	3,906	3,893	3,891	3,847	3,865	3,862	3,848
Cr T-0	0,000	0,000	0,007	0,000	0,001	0,000	0,007	0,000	0,006
Fe3+	0,089	0,071	0,085	0,100	0,107	0,153	0,127	0,134	0,146
	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,911	0,874	0,863	0,857	1,044	1,047	1,050	1,050	1,020
Ca	0,435	0,379	0,395	0,387	0,356	0,375	0,369	0,361	0,376
Mn	1,105	1,186	1,214	1,242	0,858	0,845	0,859	0,862	0,878
Fe2+	3,578	3,574	3,549	3,552	3,774	3,767	3,751	3,769	3,771
X-Pos.:	6,029	6,013	6,020	6,038	6,031	6,034	6,030	6,043	6,046
Summe	16,029	16,013	16,020	16,038	16,030	16,035	16,030	16,043	16,045
XFe	0,80	0,80	0,80	0,81	0,78	0,78	0,78	0,78	0,79
XMn	0,20	0,21	0,22	0,22	0,15	0,15	0,15	0,15	0,15
Endaligder									
Lingiledei	0.00	0.00	0.17	0.00	0.02	0.00	0.16	0.00	0.14
Andr	2 30	1 77	2 16	2.68	2 69	3.81	3 19	3 43	3 61
Gross	4 92	4 52	4 23	3 74	3 19	2 39	2 76	2 55	2 47
Alm.	59.35	59 44	58.95	58 83	62 58	62 43	62 22	62,37	62,38
Sness	18 32	19.73	20.16	20 57	14 22	14 01	14 25	14 27	14 53
Pyrop	15 11	14 54	14.33	14 19	17.31	17.35	17 42	17.38	16.86
i yiop	10,11	14,04	14,00	14,10	17,01	17,00	17,42	17,00	10,00
XAIm	0,593	0,594	0,589	0,588	0,626	0,624	0,622	0,624	0,624
XSpess	0,183	0,197	0,202	0,206	0,142	0,140	0,143	0,143	0,145
ХРу	0,151	0,145	0,143	0,142	0,173	0,174	0,174	0,174	0,169
XGross	0,049	0,045	0,042	0,037	0,032	0,024	0,028	0,025	0,025

Probe	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063
Granat	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
	GRA2P6	GRA2P7	GRA2P9	GRA2P10	GRA2P11	GRA2P12	GRA2P13	GRA3-1	GRA3-2
SiO2	37,61	37,64	37,23	37,51	37,47	37,56	37,25	37,21	37,38
TiO2	0,00	0,00	0,03	0,02	0,01	0,02	0,02	0,04	0,00
AI2O3	20,94	21,07	21,15	21,24	21,19	21,14	21,11	21,12	21,58
Cr2O3	0,03	0,03	0,00	0,01	0,04	0,04	0,00	0,00	0,06
Fe2O3	0,84	0,83	0,76	0,59	1,02	0,56	0,68	1,00	0,40
MgO	4,33	4,33	4,08	4,12	4,13	3,94	3,72	4,18	4,19
CaO	2,20	2,26	2,15	2,40	2,35	2,43	2,32	2,55	2,86
MnO	6,66	6,81	7,27	7,39	7,84	8,08	8,56	6,50	6,01
FeO	27,96	27,90	27,86	27,48	27,36	26,94	26,86	28,11	28,40
Summe	100,56	100,86	100,52	100,75	101,42	100,71	100,52	100,70	100,87
Strukturform	nel bezogen a	uf 24 Sauers	stoffe						
Si	5,976	5,964	5,934	5,953	5,924	5,968	5,945	5,917	5,919
AI	0,024	0,036	0,066	0,047	0,076	0,032	0,055	0,083	0,081
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,000	0,000	0,003	0,002	0,001	0,002	0,002	0,005	0,000
AI	3,896	3,898	3,906	3,926	3,872	3,926	3,916	3,876	3,945
Cr	0,003	0,004	0,000	0,001	0,005	0,005	0,000	0,000	0,008
Fe3+	0,101	0,099	0,091	0,071	0,122	0,067	0,082	0,120	0,047
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	1,025	1,023	0,969	0,974	0,974	0,934	0,886	0,991	0,989
Са	0,375	0,384	0,368	0,408	0,397	0,414	0,396	0,435	0,485
Mn	0,896	0,914	0,981	0,993	1,050	1,087	1,158	0,875	0,806
Fe2+	3,715	3,697	3,714	3,648	3,618	3,580	3,585	3,738	3,761
X-Pos.:	6,012	6,018	6,031	6,023	6,038	6,015	6,026	6,039	6,041
Summe	16,012	16,018	16,031	16,023	16,038	16,015	16,026	16,039	16,041
XFe	0,78	0,78	0,79	0,79	0,79	0,79	0,80	0,79	0,79
XMn	0,16	0,16	0,17	0,18	0,19	0,19	0,21	0,16	0,15
Endglieder									
Uvar.	0,08	0,09	0,00	0,03	0,12	0,13	0,00	0,00	0,20
Andr.	2,51	2,46	2,35	1,81	3,05	1,73	2,10	3,09	1,17
Gross.	3,64	3,83	3,75	4,94	3,42	5,02	4,48	4,11	6,66
Alm.	61,80	61,43	61,57	60,57	59,91	59,52	59,50	61,90	62,26
Spess.	14,91	15,18	16,26	16,49	17,39	18,08	19,21	14,49	13,34
Pyrop	17,06	17,01	16,07	16,17	16,12	15,53	14,71	16,40	16,37
XAIm	0,618	0,614	0,616	0,606	0,599	0,595	0,595	0,619	0,623
XSpess	0,149	0,152	0,163	0,165	0,174	0,181	0,192	0,145	0,133
XPy	0,171	0,170	0,161	0,162	0,161	0,155	0,147	0,164	0,164
XGross	0,036	0,038	0,037	0,049	0,034	0,050	0,045	0,041	0,067

Probe	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063
Granat	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
	GRA3-3	GRA3-4	GRA3-5	GRA3-6	GRA3-7	GRA3-8	GRA3-9	GRA3-10	GRA3-11
SiO2	37,22	37,82	37,36	37,42	37,60	37,37	37,53	37,34	37,44
TiO2	0,01	0,00	0,02	0,03	0,03	0,00	0,02	0,00	0,04
AI2O3	21,41	21,13	21,61	21,21	21,43	21,47	21,24	21,14	21,10
Cr2O3	0,01	0,00	0,00	0,00	0,00	0,00	0,03	0,00	0,00
Fe2O3	0,63	0,94	0,70	0,69	0,89	0,57	0,88	0,94	1,09
MgO	4,31	4,39	4,41	4,46	4,75	4,64	4,65	4,66	4,61
CaO	2,97	2,76	3,00	2,60	2,64	2,65	2,66	2,57	3,01
MnO	5,39	5,39	5,07	5,19	4,99	4,83	4,75	4,69	4,61
FeO	28,53	28,81	29,01	28,83	29,00	29,01	29,13	29,09	28,82
Summe	100,49	101,24	101,19	100,43	101,32	100,55	100,89	100,43	100,71
Strukturforme	l bezogen a	uf 24 Sauers	toffe						
Si	5,913	5,963	5,895	5,944	5,916	5,922	5,933	5,931	5,929
AI	0,087	0,037	0,105	0,056	0,084	0,078	0,067	0,069	0,071
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
<b>T</b> :	0.004	0.000	0.000	0.004	0.004	0.000	0.000	0.000	0.004
	0,001	0,000	0,003	0,004	0,004	0,000	0,002	0,000	0,004
AI	3,923	3,889	3,914	3,914	3,891	3,932	3,890	3,888	3,866
Cr	0,001	0,000	0,000	0,000	0,000	0,000	0,004	0,000	0,000
Fe3+	0,076	0,111	0,083	0,082	0,105	0,068	0,104	0,112	0,129
	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Ma	1 022	1 032	1 038	1 057	1 113	1 096	1 095	1 102	1 088
Ca	0.505	0.467	0.508	0.442	0.445	0.450	0.450	0.437	0.510
Mn	0,305	0,407	0,508	0,442	0,440	0,430	0,430	0,437	0,510
Fo2+	3 701	3 799	3 828	3,830	3,817	3 844	3 851	3 865	3 817
Y-Pos ·	6.042	6,735	5,020 6.052	5,030	6.040	6.038	6.032	5,005 6.034	6.033
Summe	16 043	16.019	16.051	16 026	16 040	16.039	16.032	16 035	16 033
Gamme	10,040	10,015	10,001	10,020	10,040	10,000	10,052	10,000	10,000
XFe	0,79	0,79	0,79	0,78	0,77	0,78	0,78	0,78	0,78
XMn	0,13	0,13	0,12	0,13	0,12	0,12	0,11	0,11	0,11
Endglieder									
Uvar.	0,03	0,01	0,00	0,00	0,00	0,00	0,09	0,00	0,00
Andr.	1,90	2,77	2,13	2,15	2,70	1,70	2,65	2,79	3,33
Gross.	6,43	4,98	6,26	5,19	4,67	5,75	4,71	4,45	5,12
Alm.	62,73	63,12	63,26	63,55	63,18	63,66	63,84	64,04	63,27
Spess.	11,99	11,97	11,20	11,59	11,02	10,74	10,55	10,46	10,25
Pyrop	16,91	17,15	17,15	17,53	18,43	18,16	18,15	18,27	18,03
VAlm	0.007	0.004	0.000	0.005	0.000	0.007	0.000	0.040	0.000
	0,627	0,631	0,633	0,635	0,632	0,637	0,638	0,640	0,633
ASpess	0,120	0,120	0,112	0,116	0,110	0,107	0,106	0,105	0,103
хгу	0,169	0,172	0,171	0,175	0,184	0,182	0,181	0,183	0,180
XGross	0,064	0,050	0,063	0,052	0,047	0,058	0,047	0,044	0,051

Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063
Granat	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
	GRA3-12	GRA3-13	GRA 3-14	GRA3-15	GRA3-16	GRA3-17	GRA3-18	GRA 3-19	GRA 3-20
SiO2	37,47	37,20	37,16	37,73	37,33	37,51	37,62	37,62	37,54
TiO2	0,00	0,06	0,01	0,02	0,01	0,00	0,06	0,02	0,03
AI2O3	20,84	21,13	20,56	21,02	21,36	21,31	21,16	21,04	21,28
Cr2O3	0,01	0,03	0,00	0,03	0,02	0,00	0,00	0,00	0,00
Fe2O3	1,24	1,24	1,29	1,03	0,61	0,84	0,96	0,62	0,82
MgO	4,64	4,80	4,52	4,61	4,70	4,59	4,68	4,62	4,51
CaO	2,73	2,57	2,53	2,52	2,57	2,49	2,82	2,43	2,76
MnO	4,71	4,71	4,73	4,67	4,51	4,72	4,69	4,67	4,78
FeO	28,83	29,02	28,80	29,39	29,23	29,50	28,93	29,12	29,21
Summe	100,46	100,76	99,60	101,00	100,34	100,95	100,92	100,13	100,95
Strukturform	nel bezogen a	uf 24 Sauers	stoffe						
Si	5,951	5,894	5,958	5,960	5,927	5,930	5,940	5,981	5,933
AI	0,049	0,106	0,042	0,040	0,073	0,070	0,060	0,019	0,067
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
ті	0.000	0.007	0.001	0.002	0.001	0 000	0.007	0.003	0 004
AI	3 851	3 842	3 843	3 872	3 923	3,900	3 878	3 923	3 898
Cr	0,001	0.003	0,000	0.003	0.003	0,000	0,000	0,000	0,000
Fe3+	0 148	0 148	0 156	0 122	0.073	0 100	0 114	0.074	0.098
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	1,098	1,134	1,081	1,086	1,111	1,082	1,102	1,095	1,063
Ca	0,465	0,437	0,435	0,426	0,437	0,421	0,476	0,413	0,468
Mn	0,633	0,632	0,642	0,624	0,606	0,632	0,627	0,629	0,640
Fe2+	3,829	3,847	3,862	3,883	3,881	3,900	3,821	3,871	3,861
X-Pos.:	6,024	6,049	6,020	6,019	6,035	6,035	6,026	6,008	6,032
Summe	16,024	16,049	16,020	16,019	16,036	16,035	16,026	16,008	16,031
XFe	0,78	0,77	0,78	0,78	0,78	0,78	0,78	0,78	0,78
XMn	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,12
Endglieder									
Uvar.	0,03	0.08	0,00	0.08	0.07	0,01	0,00	0.00	0,00
Andr.	3,68	3,84	3,91	3,10	1,84	2,48	3,03	1,91	2,53
Gross.	4,00	3,30	3,31	3,89	5,33	4,49	4,88	4,96	5,23
Alm.	63,56	63,59	64,15	64,51	64,31	64,62	63,41	64,44	64,01
Spess.	10.51	10.44	10.66	10.37	10.04	10.48	10.40	10.47	10.61
Pyrop	18,22	18,75	17,96	18,05	18,42	17,93	18,29	18,22	17,62
ΧΔIm	0.636	0.636	0.642	0.645	0.643	0.646	0.634	0 644	0.640
YSnose	0,000	0,000	0,072	0,0-0	0,040	0,040 0 105	0,004	0,077	0,040
XPv	0,103	0,104	0,107	0,104	0,100	0,100	0,104	0,100	0,100
XGross	0,102	0,107	0,100	0,100	0,104	0.045	0,100	0,102	0,170
	0,040	0,000	0,000	0,000	0,000	0,040	5,0-3	0,000	0,002

Probe	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063
Granat	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
	GRA 3-21	GRA3-22	GRA3-23	GRA 3-24	GRA3-25	GRA3-26	GRA3-27	GRA3-28	GRA3-30
SiO2	37,99	37,47	37,67	37,41	37,56	37,25	37,25	37,11	37,63
TiO2	0,04	0,05	0,04	0,06	0,02	0,04	0,01	0,04	0,00
AI2O3	21,20	21,08	21,28	20,99	21,41	21,36	20,91	21,19	21,27
Cr2O3	0,00	0,05	0,03	0,04	0,01	0,00	0,04	0,01	0,04
Fe2O3	0,75	0,95	0,89	1,29	0,16	0,72	0,74	0,34	0,32
MgO	4,66	4,59	4,63	4,44	4,28	4,12	3,95	3,75	4,00
CaO	2,72	2,42	2,74	2,53	2,29	2,40	2,18	2,40	2,66
MnO	4,78	5,10	5,27	5,58	5,86	6,24	6,34	6,63	6,36
FeO	29,04	29,04	28,66	28,80	28,78	28,76	28,71	28,46	28,28
Summe	101,18	100,74	101,22	101,13	100,39	100,87	100,14	99,94	100,56
Strukturform	el bezogen a	uf 24 Sauers	stoffe						
Si	5,977	5,937	5,935	5,921	5,967	5,914	5,960	5,949	5,976
AI	0,023	0,063	0,065	0,079	0,033	0,086	0,040	0,051	0,024
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,005	0,006	0,004	0,007	0,003	0,004	0,002	0,005	0,000
AI	3,907	3,875	3,886	3,836	3,976	3,910	3,905	3,952	3,957
Cr	0,000	0,007	0,004	0,005	0,002	0,000	0,005	0,002	0,005
Fe3+	0,088	0,113	0,106	0,153	0,020	0,086	0,089	0,041	0,038
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	1,092	1,084	1,088	1,048	1,013	0,976	0,942	0,897	0,948
Ca	0,459	0,411	0,462	0,428	0,390	0,407	0,374	0,411	0,452
Mn	0,636	0,684	0,704	0,748	0,789	0,839	0,860	0,900	0,855
Fe2+	3,821	3,849	3,776	3,811	3,824	3,818	3,842	3,815	3,756
X-Pos.:	6,009	6,028	6,030	6,036	6,016	6,041	6,018	6,024	6,012
Summe	16,009	16,029	16,030	16,036	16,015	16,041	16,019	16,024	16,012
XFe	0,78	0,78	0,78	0,78	0,79	0,80	0,80	0,81	0,80
XMn	0,11	0,12	0,13	0,13	0,14	0,15	0,15	0,16	0,15
Endglieder									
Uvar.	0,00	0,16	0,09	0,12	0,04	0,00	0,13	0,04	0,12
Andr.	2,33	2,95	2,74	3,98	0,55	2,24	2,26	1,14	0,96
Gross.	5,31	3,71	4,84	3,00	5,89	4,51	3,83	5,65	6,45
Alm.	63,59	63,84	62,62	63,15	63,57	63,21	63,84	63,33	62,48
Spess.	10,59	11,34	11,67	12,39	13,11	13,89	14,29	14,95	14,23
Pyrop	18,18	17,99	18,04	17,37	16,84	16,16	15,65	14,89	15,76
X A Los	0.000	0.000	0.000	0.007	0.000	0.000	0.000	0.000	0.00-
XAIM	0,636	0,638	0,626	0,631	0,636	0,632	0,638	0,633	0,625
ASpess	0,106	0,113	0,117	0,124	0,131	0,139	0,143	0,149	0,142
хРу	0,182	0,180	0,180	0,174	0,168	0,162	0,157	0,149	0,158
XGross	0,053	0,037	0,048	0,030	0,059	0,045	0,038	0,056	0,064

Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Granat	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1
	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A
SiO2	36,85	36,78	36,96	37,17	36,69	36,92	37,09	36,99	37,02
TiO2	0,03	0,02	0,05	0,03	0,04	0,06	0,02	0,00	0,13
AI2O3	20,80	20,84	20,78	21,07	20,87	20,66	20,66	20,79	20,60
Cr2O3	0,00	0,00	0,05	0,00	0,04	0,02	0,01	0,03	0,00
Fe2O3	0,30	0,80	1,05	1,04	1,31	0,92	1,50	0,98	1,36
MgO	2,62	3,33	3,49	3,49	3,48	3,42	3,57	3,21	3,41
CaO	2,67	3,34	3,58	4,01	3,35	3,59	3,76	3,95	3,86
MnO	7,90	4,62	3,74	2,98	2,69	2,36	2,10	2,05	2,07
FeO	28,17	29,79	30,35	30,97	31,92	31,56	31,88	32,02	31,85
Summe	99,34	99,51	100,05	100,76	100,37	99,51	100,58	100,01	100,29
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5,981	5,937	5,931	5,919	5,887	5,953	5,925	5,942	5,931
AI	0,019	0,063	0,069	0,081	0,113	0,047	0,075	0,058	0,069
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,003	0,002	0,006	0,003	0,004	0,008	0,002	0,000	0,015
AI	3,959	3,901	3,861	3,872	3,833	3,878	3,816	3,878	3,821
Cr	0,001	0,000	0,006	0,000	0,005	0,002	0,001	0,004	0,000
Fe3+	0,037	0,098	0,127	0,125	0,158	0,112	0,180	0,118	0,164
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,634	0,802	0,834	0,829	0,831	0,823	0,849	0,769	0,815
Ca	0,463	0,577	0,616	0,685	0,575	0,620	0,644	0,679	0,662
Mn	1,087	0,631	0,509	0,402	0,365	0,322	0,284	0,279	0,281
Fe2+	3,824	4,020	4,073	4,124	4,283	4,256	4,259	4,302	4,268
X-Pos.:	6,008	6,030	6,031	6,039	6,055	6,019	6,037	6,029	6,027
Summe	16,008	16,031	16,031	16,039	16,054	16,020	16,036	16,029	16,027
XFe	0,86	0,83	0,83	0,83	0,84	0,84	0,83	0,85	0,84
XMn	0,20	0,12	0,09	0,08	0,07	0,06	0,05	0,05	0,05
Endglieder									
Uvar.	0,01	0,00	0,15	0,00	0,13	0,05	0,03	0,09	0,00
Andr.	1,00	2,48	3,31	3,19	4,01	2,98	4,54	2,94	4,46
Gross.	6,70	7,09	6,75	8,15	5,37	7,26	6,11	8,24	6,53
Alm.	63,65	66,67	67,53	68,29	70,74	70,70	70,55	71,35	70,82
Spess.	18,09	10,46	8,43	6,65	6,03	5,35	4,71	4,63	4,66
Pyrop	10,55	13,30	13,83	13,72	13,73	13,66	14,07	12,76	13,53
XAIm	0,636	0,667	0,675	0,683	0,707	0,707	0,706	0,713	0,708
XSpess	0,181	0,105	0,084	0,067	0,060	0,053	0,047	0,046	0,047
XPy	0.106	0.133	0.138	0.137	0.137	0.137	0.141	0.128	0.135
XGross	0.067	0.071	0.067	0.082	0.054	0.073	0.061	0.082	0.065
Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
---------------	--------------	--------------	--------	--------	--------	--------	---------	---------	---------
Granat	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1
	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1-16	GRA1-17	GRA1-18
SiO2	36,84	37,13	37,22	36,59	36,73	36,75	36,94	37,01	37,11
TiO2	0,05	0,05	0,09	0,07	0,03	0,07	0,03	0,00	0,03
AI2O3	20,66	20,87	20,61	20,56	20,50	20,42	20,58	20,62	21,11
Cr2O3	0,00	0,00	0,01	0,01	0,02	0,00	0,00	0,01	0,01
Fe2O3	1,08	0,99	1,30	1,07	1,48	1,08	0,67	0,60	0,45
MgO	3,33	3,34	3,18	3,45	3,26	3,19	2,69	3,14	3,18
CaO	3,83	3,62	3,69	3,05	3,33	2,87	2,75	2,82	3,13
MnO	2,21	2,46	3,01	3,31	3,47	4,85	7,96	6,58	5,36
FeO	31,63	31,97	31,61	31,06	31,20	30,10	27,93	28,48	29,78
Summe	99,62	100,41	100,71	99,17	100,01	99,31	99,53	99,26	100,16
Strukturforme	l bezogen au	uf 24 Sauers	toffe						
Si	5,938	5,941	5,949	5,932	5,920	5,959	5,986	5,992	5,952
AI	0,062	0,059	0,051	0,068	0,080	0,041	0,014	0,008	0,048
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
<b>_</b> .	0.007		0.040		0.004				0.004
11	0,007	0,006	0,010	0,008	0,004	0,008	0,003	0,000	0,004
AI	3,863	3,876	3,832	3,860	3,814	3,861	3,916	3,925	3,941
Cr	0,000	0,000	0,001	0,002	0,003	0,000	0,000	0,002	0,001
Fe3+	0,130	0,119	0,156	0,130	0,180	0,132	0,081	0,073	0,055
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,801	0,795	0,757	0,835	0,782	0,770	0,650	0,757	0,761
Ca	0,662	0,620	0,632	0,530	0,576	0,498	0,477	0,489	0,538
Mn	0,302	0,334	0,407	0,454	0,473	0,666	1,092	0,902	0,728
Fe2+	4,264	4,277	4,225	4,211	4,207	4,082	3,786	3,855	3,995
X-Pos.:	6,028	6,027	6,021	6,030	6,038	6,016	6,005	6,004	6,022
Summe	16,028	16,027	16,021	16,030	16,038	16,016	16,005	16,004	16,022
XFe	0.84	0.84	0.85	0.83	0.84	0.84	0.85	0.84	0.84
XMn	0,06	0,06	0,08	0,08	0,09	0,12	0,20	0,16	0,13
En della de s									
Enaglieder	0.00	0.00	0.00	0.04	0.07	0.00	0.00	0.04	0.00
Uvar.	0,00	0,00	0,03	0,04	0,07	0,00	0,00	0,04	0,02
Anar.	3,41	3,10	4,16	3,44	4,55	3,49	2,11	1,84	1,45
Gross.	7,57	7,20	6,31	5,31	4,91	4,80	5,83	6,28	7,47
Aim.	70,73	70,97	70,17	69,84	69,67	67,85	63,05	64,22	66,33
Spess.	5,01	5,53	6,77	7,54	7,84	11,06	18,19	15,03	12,09
Ругор	13,29	13,20	12,57	13,84	12,96	12,80	10,83	12,60	12,63
XAIm	0,707	0,710	0,702	0,698	0,697	0,679	0,630	0,642	0,663
XSpess	0,050	0,055	0,068	0,075	0,078	0,111	0,182	0,150	0,121
ХРу	0,133	0,132	0,126	0,138	0,130	0,128	0,108	0,126	0,126
XGross	0,076	0,072	0,063	0,053	0,049	0,048	0,058	0,063	0,075

Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Granat	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.2
	GRA1-19	GRA1-21	GRA1-22	GRA1-23	GRA1-24	GRA1-25	GRA1-26	GRA1-27	GRA1-1
SiO2	36,95	37,21	36,70	37,21	36,91	37,07	37,36	36,76	37,22
TiO2	0,01	0,04	0,04	0,01	0,02	0,07	0,06	0,08	0,02
AI2O3	20,77	20,69	20,67	20,88	20,67	20,91	20,50	20,64	20,98
Cr2O3	0,00	0,01	0,02	0,00	0,00	0,01	0,00	0,03	0,01
Fe2O3	0,86	1,09	1,56	0,74	0,82	1,03	1,30	1,30	0,54
MgO	3,35	3,11	3,30	3,43	3,36	3,29	3,24	3,00	3,25
CaO	3,20	3,44	3,52	3,19	3,11	3,14	2,88	3,43	2,38
MnO	4,66	3,60	3,32	3,31	3,63	3,76	4,25	5,72	4,77
FeO	29,91	31,33	31,31	31,34	30,89	31,41	31,17	29,34	31,18
Summe	99,71	100,51	100,44	100,11	99,40	100,68	100,77	100,28	100,36
Strukturforn	nel bezogen a	uf 24 Sauers	stoffe						
Si	5,953	5,958	5,893	5,964	5,963	5,928	5,973	5,915	5,967
AI	0,047	0,042	0,107	0,036	0,037	0,072	0,027	0,085	0,033
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,001	0,005	0,005	0,002	0,002	0,008	0,007	0,010	0,003
AI	3,895	3,863	3,804	3,909	3,899	3,867	3,836	3,830	3,931
Cr	0,000	0,001	0,002	0,000	0,000	0,001	0,000	0,003	0,001
Fe3+	0,105	0,131	0,189	0,089	0,100	0,124	0,157	0,157	0,065
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,805	0,743	0,790	0,819	0,810	0,785	0,772	0,719	0,777
Ca	0,552	0,590	0,605	0,547	0,538	0,538	0,494	0,591	0,409
Mn	0,636	0,488	0,452	0,449	0,496	0,509	0,575	0,779	0,648
Fe2+	4,030	4,196	4,204	4,202	4,173	4,200	4,168	3,948	4,181
X-Pos.:	6,023	6,018	6,050	6,018	6,017	6,032	6,010	6,038	6,016
Summe	16,023	16,018	16,051	16,017	16,017	16,032	16,010	16,038	16,016
XFe	0,83	0,85	0,84	0,84	0,84	0,84	0,84	0,85	0,84
XMn	0,12	0,09	0,08	0,08	0,09	0,09	0,10	0,14	0,12
Endglieder									
Uvar.	0,00	0,02	0,06	0,00	0,00	0,02	0,01	0,08	0,02
Andr.	2,62	3,39	4,81	2,25	2,53	3,27	4,09	4,14	1,68
Gross.	6,54	6,39	5,13	6,84	6,41	5,63	4,12	5,56	5,10
Alm.	66,92	69,73	69,48	69,83	69,35	69,63	69,36	65,39	69,50
Spess.	10,56	8,12	7,47	7,47	8,25	8,44	9,57	12,91	10,78
Pyrop	13,36	12,35	13,05	13,61	13,46	13,01	12,85	11,92	12,92
XAIm	0,669	0,697	0,695	0,698	0,694	0,696	0,694	0,654	0,695
XSpess	0,106	0,081	0,075	0,075	0,083	0,084	0,096	0,129	0,108
ХРу	0,134	0,124	0,131	0,136	0,135	0,130	0,129	0,119	0,129
XGross	0,065	0,064	0,051	0,068	0,064	0,056	0,041	0,056	0,051

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Granat	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2	7.2
	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A
SiO2	36,95	37,09	37,05	36,71	36,98	36,87	37,11	36,73	37,13
TiO2	0,06	0,05	0,03	0,02	0,02	0,04	0,00	0,55	0,02
AI2O3	21,14	21,00	20,97	20,65	20,84	20,87	20,81	20,70	20,94
Cr2O3	0,00	0,02	0,00	0,00	0,08	0,00	0,00	0,05	0,01
Fe2O3	0,71	0,41	0,95	1,15	0,99	0,88	1,32	1,39	0,98
MgO	3,46	3,41	3,66	3,61	3,60	3,71	3,76	3,77	3,67
CaO	2,26	2,31	2,23	2,03	2,19	2,24	2,19	2,29	2,51
MnO	4,68	4,63	4,54	4,57	4,66	4,38	4,44	4,42	4,39
FeO	31,29	31,01	31,12	31,02	31,06	30,93	31,20	31,05	30,95
Summe	100,54	99,91	100,54	99,75	100,43	99,92	100,84	100,95	100,59
Strukturforme	al hezogen ai	uf 24 Sauers	toffe						
Si	5 917	5 964	5 928	5 929	5 929	5 932	5 925	5 865	5 934
ΔΙ	0.083	0,004	0.072	0.071	0.071	0.068	0.075	0 135	0,066
Tetr 7	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
1011121	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,007	0,005	0,003	0,002	0,002	0,005	0,000	0,066	0,002
AI	3,907	3,943	3,882	3,858	3,867	3,888	3,841	3,760	3,878
Cr	0,000	0,002	0,001	0,000	0,010	0,000	0,000	0,007	0,002
Fe3+	0,085	0,049	0,114	0,139	0,120	0,107	0,159	0,167	0,118
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,825	0,816	0,874	0,870	0,861	0,889	0,895	0,898	0,873
Ca	0,387	0,398	0,381	0,351	0,377	0,386	0,375	0,392	0,429
Mn	0,635	0,631	0,615	0,624	0,633	0,596	0,601	0,598	0,594
Fe2+	4,190	4,171	4,164	4,190	4,164	4,161	4,167	4,147	4,136
X-Pos.:	6,038	6,016	6,035	6,035	6,035	6,032	6,038	6,035	6,032
Summe	16,038	16,016	16,035	16,035	16,035	16,032	16,038	16,034	16,032
XFe	0,84	0,84	0,83	0,83	0,83	0,82	0,82	0,82	0,83
XMn	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11
Endalieder									
Livar	0.00	0.06	0.01	0.00	0.26	0.00	0.00	0 17	0.04
Andr	2 30	1 37	2 91	3 52	3.03	2 77	3 94	5.80	2 98
Gross	<u> </u>	5 20	3 39	2 30	2 95	3.62	2 27	0.53	4.09
Alm.	69.40	69.33	69.01	69.42	69.00	68.98	69.01	68 71	68.57
Spess	10.52	10.48	10.20	10.35	10 49	9.89	9.95	9.91	9.85
Pyrop	13.67	13.57	14.48	14.41	14.27	14.73	14.83	14.88	14.47
	. 0,01	.0,07	, .0	,	,	,, 0	. 1,00	. 1,00	, ./
XAIm	0,694	0,693	0,690	0,694	0,690	0,690	0,690	0,687	0,686
XSpess	0,105	0,105	0,102	0,103	0,105	0,099	0,100	0,099	0,098
ХРу	0,137	0,136	0,145	0,144	0,143	0,147	0,148	0,149	0,145
XGross	0,041	0,052	0,034	0,023	0,030	0,036	0,023	0,005	0,041

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Granat	7.2	7.2	7.2	7.2	7.3	7.3	7.3	7.3	7.3
	GRA1A	GRA1A	GRA1A	GRA1A	GRA1-1	GRA1-2	GRA1-3	GRA1-4	GRA1-5
SiO2	37,23	36,81	37,22	37,16	36,74	36,93	37,27	37,39	37,37
TiO2	0,04	0,00	0,00	0,03	0,00	0,05	0,02	0,04	0,07
AI2O3	20,89	21,02	20,87	20,95	21,36	21,22	21,24	20,80	21,09
Cr2O3	0,04	0,01	0,04	0,01	0,00	0,00	0,01	0,00	0,04
Fe2O3	1,12	0,94	0,79	0,34	0,39	0,43	0,61	1,15	0,64
MgO	3,68	3,45	3,52	3,15	2,95	3,06	3,10	2,91	3,07
CaO	2,17	2,51	2,18	2,25	3,89	3,81	4,02	5,27	5,52
MnO	4,54	4,68	4,68	4,91	5,68	5,90	6,07	5,48	4,79
FeO	31,32	30,92	31,15	31,19	29,00	28,63	28,46	27,73	27,81
Summe	101,02	100,33	100,43	99,98	100,01	100,02	100,80	100,77	100,39
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5,933	5,909	5,961	5,980	5,905	5,929	5,935	5,954	5,952
AI	0,067	0,091	0,039	0,020	0,095	0,071	0,065	0,046	0,048
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,005	0,000	0,000	0,004	0,000	0,005	0,003	0,005	0,008
AI	3,856	3,886	3,900	3,954	3,952	3,942	3,922	3,857	3,910
Cr	0,005	0,001	0,004	0,002	0,000	0,000	0,002	0,000	0,005
Fe3+	0,135	0,113	0,095	0,041	0,047	0,052	0,073	0,138	0,077
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,873	0,827	0,839	0,755	0,706	0,732	0,736	0,691	0,728
Ca	0,370	0,431	0,373	0,388	0,670	0,655	0,686	0,898	0,942
Mn	0,613	0,637	0,634	0,669	0,773	0,802	0,819	0,739	0,647
Fe2+	4,174	4,151	4,172	4,197	3,898	3,844	3,790	3,692	3,704
X-Pos.:	6,031	6,046	6,019	6,008	6,048	6,033	6,031	6,020	6,020
Summe	16,031	16,046	16,019	16,008	16,047	16,033	16,031	16,020	16,020
XFe	0,83	0,83	0,83	0,85	0,85	0,84	0,84	0,84	0,84
XMn	0,11	0,11	0,11	0,12	0,14	0,15	0,15	0,14	0,13
Endglieder									
Uvar.	0,12	0,03	0,11	0,04	0,00	0,00	0,04	0,00	0,13
Andr.	3,47	2,80	2,37	1,11	1,19	1,42	1,89	3,57	2,12
Gross.	2,55	4,29	3,72	5,30	9,90	9,43	9,45	11,35	13,40
Alm.	69,21	68,66	69,31	69,85	64,46	63,71	62,84	61,34	61,53
Spess.	10,17	10,54	10,54	11,13	12,78	13,30	13,58	12,27	10,74
Pyrop	14,48	13,67	13,94	12,56	11,68	12,13	12,20	11,47	12,09
XAIm	0,692	0,687	0,693	0,699	0,645	0,637	0,628	0,613	0,615
XSpess	0,102	0,105	0,105	0,111	0,128	0,133	0,136	0,123	0,107
XPy	0,145	0,137	0,139	0,126	0,117	0,121	0,122	0,115	0,121
XGross	0,025	0,043	0,037	0.053	0,099	0,094	0,094	0,114	0,134

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Granat	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3
	GRA1-6	GRA1-7	GRA1-8	GRA1-9	GRA1-10	GRA2-1	GRA2-2	GRA2-3	GRA2-4
SiO2	37,03	37,12	36,95	37,32	37,23	36,91	36,87	37,38	37,19
TiO2	0,05	0,08	0,10	0,06	0,09	0,00	0,00	0,02	0,02
AI2O3	21,05	20,90	20,97	20,89	20,83	21,40	21,16	21,01	21,05
Cr2O3	0,00	0,02	0,00	0,04	0,00	0,02	0,02	0,00	0,03
Fe2O3	1,12	0,79	1,00	0,91	1,15	0,56	0,66	0,66	0,62
MgO	3,02	3,06	2,89	2,76	2,70	2,93	3,01	3,08	3,30
CaO	5,64	4,75	5,31	4,84	4,91	3,84	3,77	3,71	3,80
MnO	4,97	5,53	5,50	6,07	6,87	6,54	6,46	5,40	5,21
FeO	27,69	27,81	27,59	27,87	27,13	28,52	28,28	29,34	29,00
Summe	100,56	100,06	100,32	100,75	100,90	100,72	100,25	100,59	100,22
Strukturforme	l bezogen a	uf 24 Sauers	toffe						
Si	5.904	5.946	5.912	5.952	5.937	5.899	5.916	5.967	5.950
AI	0.096	0.054	0.088	0.048	0.063	0.101	0.084	0.033	0.050
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
	- ,	-,	- )	-,	- ,	-,	-,	-,	-,
Ті	0,006	0,010	0,013	0,008	0,010	0,000	0,000	0,002	0,002
AI	3,860	3,891	3,866	3,879	3,852	3,930	3,917	3,920	3,919
Cr	0,000	0,003	0,000	0,005	0,000	0,002	0,003	0,000	0,003
Fe3+	0,134	0,096	0,121	0,109	0,138	0,068	0,080	0,079	0,075
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,718	0,731	0,690	0,655	0,642	0,697	0,721	0,733	0,786
Ca	0,963	0,815	0,911	0,827	0,839	0,657	0,649	0,635	0,651
Mn	0,671	0,750	0,745	0,820	0,927	0,885	0,878	0,729	0,706
Fe2+	3,692	3,726	3,693	3,718	3,619	3,812	3,795	3,917	3,880
X-Pos.:	6,045	6,023	6,038	6,021	6,027	6,051	6,042	6,015	6,024
Summe	16,045	16,022	16,038	16,020	16,027	16,051	16,042	16,015	16,024
XFe	0,84	0,84	0,84	0,85	0,85	0,85	0,84	0,84	0,83
XMn	0,13	0,14	0,15	0,16	0,18	0,16	0,16	0,14	0,13
Endalieder									
Uvar	0.00	0.08	0.00	0 11	0.00	0.06	0.08	0.00	0.08
Andr.	3.47	2.62	3.31	2.90	3.68	1.68	1.99	2.01	1.93
Gross.	12.47	10.83	11.77	10.72	10.23	9.12	8.67	8.55	8.80
Alm.	61.08	61.87	61.15	61.76	60.05	63.01	62.81	65.12	64.42
Spess.	11.11	12.45	12.34	13.63	15.39	14.62	14.52	12.13	11.72
Pyrop	11,88	12,15	11,42	10,88	10,65	11,52	11,93	12,19	13,05
V Alma	0.014	0.040	0.040	0.040	0.000	0.000	0.000	0.054	0.044
	0,611	0,619	0,612	0,618	0,600	0,630	0,628	0,651	0,644
ASpess	0,111	0,125	0,123	0,136	0,154	0,146	0,145	0,121	0,117
ХРУ	0,119	0,121	0,114	0,109	0,107	0,115	0,119	0,122	0,131
AGross	0,125	0,108	0,118	0,107	0,102	0,091	0,087	0,085	0,088

Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Granat	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3
	GRA2-5	GRA2-6	GRA2-7	GRA2-8	GRA2-9	GRA2-10	GRA2-11	GRA2-12	GRA2-13
SiO2	37,21	37,48	36,88	37,11	37,19	37,26	37,50	37,06	37,04
TiO2	0,00	0,00	0,06	0,02	0,07	0,14	0,11	0,04	0,00
AI2O3	21,17	21,00	20,86	20,85	20,76	21,12	20,86	21,03	21,24
Cr2O3	0,01	0,01	0,03	0,00	0,00	0,01	0,00	0,02	0,00
Fe2O3	0,87	1,20	1,41	1,27	1,08	0,95	0,94	1,07	0,84
MgO	3,48	3,30	3,28	3,44	3,33	3,38	3,40	3,38	3,32
CaO	3,67	5,45	5,66	4,91	4,99	4,96	5,42	5,47	5,41
MnO	4,76	4,25	3,88	3,54	3,46	3,27	3,09	2,96	2,99
FeO	29,64	28,37	28,25	29,24	29,17	29,75	29,07	29,26	29,46
Summe	100,82	101,07	100,31	100,39	100,07	100,84	100,40	100,30	100,30
Strukturforme	el bezogen a	uf 24 Sauers	toffe						
Si	5,922	5,936	5,893	5,922	5,948	5,916	5,964	5,911	5,907
AI	0,078	0,064	0,107	0,078	0,052	0,084	0,036	0,089	0,093
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ti	0,000	0,000	0,007	0,003	0,008	0,016	0,014	0,005	0.000
AI	3,894	3,855	3,820	3,844	3,862	3,869	3,874	3,865	3,899
Cr	0,002	0,002	0,004	0,001	0,000	0,001	0,000	0,002	0,000
Fe3+	0,104	0,143	0,170	0,153	0,130	0,114	0,113	0,129	0,101
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,826	0,780	0,781	0,819	0,794	0,800	0,807	0,803	0,790
Ca	0,625	0,925	0,969	0,839	0,855	0,843	0,923	0,935	0,924
Mn	0,642	0,570	0,525	0,478	0,469	0,439	0,416	0,400	0,403
Fe2+	3,945	3,758	3,775	3,902	3,902	3,951	3,866	3,903	3,929
X-Pos.:	6,039	6,032	6,049	6,038	6,021	6,034	6,012	6,042	6,047
Summe	16,039	16,032	16,050	16,038	16,022	16,034	16,011	16,042	16,046
XFe	0,83	0,83	0,83	0,83	0,83	0,83	0,83	0,83	0,83
XMn	0,12	0,11	0,10	0,09	0,09	0,08	0,08	0,08	0,08
Endglieder									
Uvar.	0,04	0,04	0,09	0,01	0,00	0,03	0,00	0,05	0,00
Andr.	2,59	3,56	4,38	3,86	3,44	3,23	3,15	3,33	2,50
Gross.	7,72	11,74	11,55	10,01	10,77	10,72	12,20	12,10	12,78
Alm.	65,33	62,29	62,40	64,63	64,81	65,47	64,31	64,61	64,98
Spess.	10,63	9,44	8,68	7,92	7,79	7,28	6,92	6,62	6,67
Pyrop	13,68	12,92	12,90	13,56	13,19	13,26	13,42	13,30	13,06
XAIm	0.653	0.623	0.624	0.646	0.648	0.655	0.643	0.646	0.650
XSpess	0.106	0.094	0.087	0.079	0.078	0.073	0.069	0.066	0.067
XPy	0.137	0,129	0,129	0,136	0,132	0.133	0.134	0.133	0,131
XGross	0,077	0,117	0,115	0,100	0,108	0,107	0,122	0,121	0,128

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Granat	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3
	GRA2-14	GRA2-15	GRA2-16	GRA2-17	GRA2-18	GRA2-19	GRA2-20	GRA2-21	GRA2-22
SiO2	37,25	37,06	37,31	37,68	37,05	36,82	36,77	36,98	37,04
TiO2	0,02	0,07	0,08	0,01	0,04	0,01	0,04	0,05	0,02
AI2O3	21,16	20,89	21,11	21,09	20,86	21,20	20,95	21,05	20,99
Cr2O3	0,13	0,03	0,03	0,00	0,00	0,00	0,03	0,03	0,00
Fe2O3	0,83	1,35	0,74	0,70	1,11	1,19	1,21	1,07	0,81
MgO	3,42	3,39	3,40	3,21	3,36	3,37	3,32	3,34	3,18
CaO	5,30	5,40	5,34	5,27	4,92	4,78	4,75	4,86	4,85
MnO	3,10	2,95	3,13	3,52	3,75	4,10	4,26	4,26	4,47
FeO	29,42	29,42	29,22	29,30	29,01	29,16	28,86	28,80	28,60
Summe	100,62	100,56	100,34	100,78	100,10	100,64	100,18	100,43	99,96
Strukturform	el bezogen a	uf 24 Sauers	stoffe						
Si	5,919	5,904	5,938	5,975	5,928	5,872	5,891	5,903	5,935
AI	0,081	0,096	0,062	0,025	0,072	0,128	0,109	0,097	0,065
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,002	0,009	0,009	0,001	0,004	0,001	0,005	0,005	0,002
AI	3,882	3,825	3,898	3,916	3,862	3,857	3,846	3,863	3,900
Cr	0,017	0,004	0,004	0,000	0,000	0,000	0,003	0,004	0,000
Fe3+	0,099	0,162	0,089	0,083	0,134	0,142	0,146	0,128	0,098
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,811	0,805	0,806	0,759	0,800	0,802	0,793	0,795	0,759
Ca	0,902	0,922	0,910	0,896	0,843	0,817	0,815	0,831	0,832
Mn	0,418	0,398	0,422	0,472	0,508	0,554	0,578	0,576	0,607
Fe2+	3,909	3,919	3,890	3,885	3,882	3,889	3,867	3,844	3,832
X-Pos.:	6,040	6,044	6,027	6,012	6,033	6,063	6,052	6,045	6,031
Summe	16,040	16,044	16,027	16,012	16,034	16,063	16,052	16,046	16,031
VEo	0.83	0.83	0.83	0.84	0.83	0.83	0.83	0.83	0.92
XMn	0,03	0,03	0,05	0,04	0,03	0,05	0,03	0,03	0,03
	0,00	0,00	0,00	0,00	0,10	0,11	0,11	0,11	0,12
Endalieder									
Uvar.	0.42	0.11	0.09	0.00	0.00	0.00	0.08	0.10	0.00
Andr.	2,51	4,23	2,44	2,10	3,44	3,56	3,74	3,32	2,50
Gross.	12.01	10.92	12.57	12.80	10.53	9.92	9.65	10.33	11.30
Alm.	64,73	64,84	64,54	64,62	64,35	64,15	63,89	63,58	63,55
Spess.	6.91	6.59	7.00	7.86	8.41	9.14	9.54	9.53	10.07
Pyrop	13,42	13,32	13,37	12,62	13,27	13,23	13,10	13,15	12,59
	- , -	- ,	- / -	,	- 1	-, -	-, -	- , -	,
XAIm	0,647	0,648	0,645	0,646	0,643	0,642	0,639	0,636	0,635
XSpess	0,069	0,066	0,070	0,079	0,084	0,091	0,095	0,095	0,101
XPy	0,134	0,133	0,134	0,126	0,133	0,132	0,131	0,131	0,126
XGross	0,120	0,109	0,126	0,128	0,105	0,099	0,097	0,103	0,113

Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Granat	7.3	7.3	7.4	7.4	7.4	7.4	7.4	7.4	7.4
	GRA2-23	GRA2-24	GRA1-1	GRA1-2	GRA1-3	GRA1-4	GRA1-5	GRA1-6	GRA1-7
				Profil Rand					
SiO2	37,23	36,98	37,24	37,30	37,02	37,30	37,23	37,15	37,25
TiO2	0,03	0,04	0,00	0,00	0,03	0,04	0,00	0,06	0,04
AI2O3	20,93	21,19	20,93	20,80	21,20	21,09	21,18	20,77	20,73
Cr2O3	0,00	0,00	0,00	0,03	0,03	0,01	0,00	0,00	0,03
Fe2O3	0,71	0,70	0,26	1,04	0,74	0,76	0,45	1,06	1,35
MgO	3,08	3,09	2,78	3,32	3,31	3,54	3,53	3,58	3,57
CaO	5,25	4,80	2,40	2,72	3,18	3,07	3,11	2,85	2,90
MnO	4,64	4,95	7,36	5,72	5,16	4,58	4,25	4,11	3,99
FeO	28,03	28,48	29,08	29,91	30,04	30,34	30,46	30,78	31,11
Summe	99,89	100,22	100,04	100,83	100,71	100,72	100,23	100,37	100,97
Strukturforr	nel bezogen a	uf 24 Sauers	toffe						
Si	5,961	5,916	5,997	5,957	5,913	5,943	5,953	5,946	5,936
AI	0,039	0,084	0,003	0,043	0,087	0,057	0,047	0,054	0,064
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
т	0.003	0.005	0.000	0.000	0.004	0.005	0.000	0.007	0.005
	0,003	0,005	0,000	0,000	0,004	0,005	0,000	0,007	2 0,005
Ai Cr	0,000	0,000	3,909	0.004	3,903	0,001	0,001	3,000	0,029
Ci Eo2	0,000	0,000	0,000	0,004	0,004	0,001	0,001	0,000	0,003
Cot V	0,080	4,000	4,000	0,125	0,009	4,000	4 000	4 000	4 000
001. 1.	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,734	0,736	0,667	0,789	0,787	0,841	0,841	0,855	0,849
Ca	0,900	0,823	0,414	0,465	0,544	0,524	0,533	0,489	0,496
Mn	0,629	0,670	1,003	0,773	0,699	0,618	0,576	0,558	0,538
Fe2+	3,754	3,810	3,916	3,994	4,012	4,043	4,074	4,121	4,147
X-Pos.:	6,017	6,039	6,001	6,022	6,042	6,026	6,024	6,023	6,029
Summe	16,018	16,039	16,001	16,022	16,042	16,026	16,024	16,023	16,029
XFe	0.84	0.84	0.85	0.83	0.84	0.83	0.83	0.83	0.83
XMn	0,12	0,13	0,18	0,14	0,13	0,11	0,10	0,10	0,10
Endalisdar									
Enaglieder	0.00	0.00	0.00	0.00	0.40	0.00	0.04	0.00	0.00
Ovar.	0,00	0,00	0,00	0,09	0,10	0,02	0,01	0,00	0,08
Andr.	2,21	2,22	0,79	3,12	2,30	2,39	1,30	3,35	4,17
Gross.	12,75	11,40	6,11	4,50	6,60	6,28	7,48	4,77	3,97
Alm.	62,39	63,09	05,20	00,33	00,41	67,09	67,62	66,43	00,77
Spess.	10,46	11,10	16,72	12,84	11,56	10,26	9,56	9,26	8,93
гугор	12,20	12,18	11,12	13,11	13,03	13,96	13,96	14,19	14,08
XAIm	0,624	0,631	0,653	0,663	0,664	0,671	0,676	0,684	0,688
XSpess	0,105	0,111	0,167	0,128	0,116	0,103	0,096	0,093	0,089
ХРу	0,122	0,122	0,111	0,131	0,130	0,140	0,140	0,142	0,141
XGross	0,127	0,114	0,061	0,045	0,066	0,063	0,075	0,048	0,040

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Granat	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4
	GRA1-8	GRA1-9	GRA1-10	GRA1-11	GRA1-12	GERA1-13	GRA1-14	GRA1-15	GRA1-16
SiO2	37,37	37,26	37,46	37,14	37,31	37,52	37,28	37,19	36,84
TiO2	0,04	0,07	0,00	0,06	0,02	0,04	0,02	0,05	0,04
AI2O3	20,82	20,97	21,15	20,82	21,04	21,00	21,05	21,14	21,01
Cr2O3	0,02	0,02	0,00	0,04	0,00	0,00	0,04	0,00	0,02
Fe2O3	0,69	0,61	0,81	1,30	0,58	0,77	0,87	1,21	0,97
MgO	3,48	3,59	3,67	3,53	3,58	3,66	3,71	3,73	3,66
CaO	3,10	3,24	3,18	3,06	3,56	3,51	3,37	3,45	3,50
MnO	3,67	3,55	3,28	3,10	2,85	2,76	2,69	2,68	2,59
FeO	31,00	30,83	31,46	31,93	31,19	31,41	31,63	31,82	31,46
Summe	100,19	100,13	101,02	100,98	100,12	100,67	100,67	101,26	100,09
Strukturform	el hezogen al	uf 24 Sauers	toffe						
Si	5 981	5 962	5 946	5 920	5 964	5 967	5 937	5 899	5 906
AI	0.019	0.038	0.054	0.080	0.036	0.033	0.063	0 101	0.094
Tetr. Z:	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
	-,	- /	- ,	-,	-,	-,	-,	-,	- ,
Ті	0,005	0,008	0,000	0,008	0,003	0,004	0,002	0,005	0,005
AI	3,909	3,916	3,903	3,831	3,927	3,903	3,888	3,850	3,876
Cr	0,003	0,002	0,000	0,006	0,000	0,000	0,005	0,000	0,002
Fe3+	0,083	0,073	0,097	0,156	0,070	0,093	0,104	0,144	0,117
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,830	0,855	0,869	0,840	0,853	0,868	0,880	0,883	0,875
Ca	0,531	0,555	0,541	0,522	0,609	0,598	0,574	0,586	0,601
Mn	0,498	0,481	0,441	0,418	0,386	0,372	0,363	0,359	0,351
Fe2+	4,149	4,125	4,176	4,257	4,169	4,177	4,213	4,221	4,217
X-Pos.:	6,008	6,015	6,027	6,036	6,017	6,015	6,030	6,048	6,045
Summe	16,007	16,015	16,027	16,036	16,017	16,015	16,030	16,048	16,044
XFe	0,83	0,83	0,83	0,84	0,83	0,83	0,83	0,83	0,83
XMn	0,09	0,09	0,08	0,08	0,07	0,07	0,07	0,07	0,06
Endalieder									
Livar	0.07	0.06	0.00	0.14	0.00	0.00	0.13	0.01	0.05
Andr	2 20	2.03	2 41	4 07	1.82	2 41	2 65	3 71	3.03
Gross	6.57	7 13	6.57	4 44	8 31	7.53	6 75	5 97	6,86
Δlm	69.06	68 57	69.28	70 52	69.29	69 44	69.86	69.78	69.77
Sness	20,00 8 28	7 90	7 21	6 03	6 4 2	6 12	50,00 6 03	5 Q/	5 81
Pyron	13.82	14 22	14 42	13 01	14 17	14 43	14 50	14 50	1 <u>4</u> 48
	10,02	17,22	· <b>-</b> , <b>-Z</b>	10,01	17,17	17,75	17,00	17,00	17,70
XAIm	0,691	0,686	0,693	0,705	0,693	0,694	0,699	0,698	0,698
XSpess	0,083	0,080	0,073	0,069	0,064	0,062	0,060	0,059	0,058
ХРу	0,138	0,142	0,144	0,139	0,142	0,144	0,146	0,146	0,145
XGross	0,066	0,071	0,066	0,044	0,083	0,075	0,067	0,060	0,069

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Granat	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4
	GRA1-17	GRA1-18	GRA1-20	GRA1-21	GRA1-22	GRA1-23	GRA1-24	GRA1-25	GRA1-26
SiO2	37,48	37,33	37,52	37,10	37,28	37,06	37,41	37,23	37,27
TiO2	0,04	0,04	0,09	0,07	0,03	0,04	0,04	0,00	0,02
AI2O3	20,92	21,03	20,87	21,18	21,37	21,02	21,01	21,15	21,13
Cr2O3	0,03	0,01	0,04	0,03	0,00	0,00	0,01	0,00	0,01
Fe2O3	0,72	0,76	0,96	0,62	0,70	1,24	1,14	0,93	0,62
MgO	3,63	3,63	3,72	3,62	3,78	3,63	3,80	3,62	3,51
CaO	3,61	3,59	3,34	3,57	3,45	3,46	3,15	3,27	3,15
MnO	2,64	2,70	2,84	2,83	3,02	3,26	3,57	3,97	4,15
FeO	31,31	31,35	31,48	31,27	31,29	31,20	31,05	30,72	30,65
Summe	100,38	100,43	100,84	100,28	100,92	100,91	101,18	100,90	100,51
Strukturform	nel bezogen a	uf 24 Sauers	stoffe						
Si	5,974	5,952	5,961	5,926	5,916	5,901	5,932	5,923	5,948
AI	0,026	0,048	0,039	0,074	0,084	0,099	0,068	0,077	0,052
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,005	0,005	0,010	0,008	0,003	0,005	0,005	0,000	0,002
AI	3,905	3,903	3,871	3,913	3,914	3,846	3,857	3,889	3,921
Cr	0,004	0,001	0,004	0,004	0,000	0,000	0,002	0,000	0,001
Fe3+	0,086	0,091	0,114	0,074	0,083	0,149	0,136	0,111	0,075
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,863	0,864	0,880	0,863	0,895	0,863	0,899	0,858	0,835
Ca	0,617	0,613	0,569	0,611	0,586	0,590	0,536	0,558	0,538
Mn	0,356	0,365	0,382	0,382	0,406	0,440	0,479	0,535	0,561
Fe2+	4,174	4,180	4,184	4,177	4,153	4,155	4,118	4,087	4,090
X-Pos.:	6,011	6,022	6,015	6,033	6,040	6,047	6,032	6,039	6,025
Summe	16,010	16,022	16,014	16,033	16,040	16,047	16,032	16,039	16,025
XFe	0,83	0,83	0,83	0,83	0,82	0,83	0,82	0,83	0,83
XMn	0,07	0,07	0,07	0,07	0,07	0,08	0,09	0,10	0,10
Endglieder									
Uvar.	0,09	0,03	0,11	0,10	0,00	0,00	0,04	0,00	0,03
Andr.	2,28	2,39	3,10	2,05	2,15	3,82	3,50	2,76	1,92
Gross.	7,90	7,76	6,24	7,97	7,56	5,93	5,34	6,47	6,97
Alm.	69,45	69,42	69,56	69,24	68,76	68,71	68,26	67,69	67,88
Spess.	5,93	6,06	6,36	6,34	6,72	7,28	7,95	8,87	9,32
Pyrop	14,35	14,34	14,64	14,30	14,81	14,26	14,91	14,21	13,87
XAIm	0,694	0,694	0,696	0,692	0,688	0,687	0,683	0,677	0,679
XSpess	0,059	0,061	0,064	0,063	0,067	0,073	0,079	0,089	0,093
ХРу	0,144	0,143	0,146	0,143	0,148	0,143	0,149	0,142	0,139
XGross	0,079	0,078	0,062	0,080	0,076	0,059	0,053	0,065	0,070

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Granat	7.4	7.4	7.4	7.4	7.4	7.8	7.8	7.8	7.8
	GRA1-27	GRA1-28	GRA1-29	GRA1-30	GRA1-32	GRA1-1	GRA1-2	GRA1-3	GRA1-4
					Profil Rand				
SiO2	36,93	37,14	36,90	36,90	37,01	36,42	37,14	37,02	36,67
TiO2	0,07	0,05	0,00	0,02	0,02	0,05	0,02	0,02	0,03
AI2O3	21,17	21,16	20,94	20,94	20,87	21,01	20,93	20,75	20,94
Cr2O3	0,00	0,01	0,00	0,01	0,03	0,04	0,00	0,04	0,01
Fe2O3	0,90	0,64	1,16	0,68	0,52	0,48	0,51	0,94	0,81
MgO	3,31	3,26	3,13	2,82	2,50	3,09	3,01	3,23	3,15
CaO	3,33	3,00	2,62	2,96	2,44	2,17	2,36	2,32	2,38
MnO	4,79	5,87	6,73	7,23	8,40	6,33	6,65	6,46	6,00
FeO	30,24	29,55	29,41	28,63	28,52	29,80	29,61	29,55	30,02
Summe	100,73	100,67	100,88	100,18	100,30	99,39	100,23	100,33	100,01
<b>o</b>									
Strukturforme	e bezogen a	ut 24 Sauers	storre	5.044	F 007	5 014	F 070	F 0.40	E 040
51	5,898	5,933	5,909	5,941	5,967	5,911	5,970	5,949	5,916
Al Tata 7	0,102	0,067	0,091	0,059	0,033	0,089	0,030	0,051	0,084
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
ті	0.008	0.006	0.000	0.002	0.002	0.010	0.000	0.000	0.000
AI	3.884	3.916	3.860	3.914	3.932	3.930	3,940	3.880	3,900
Cr	0.000	0.001	0.000	0.001	0.004	0.010	0.000	0.010	0.000
Fe3+	0.108	0.076	0.140	0.083	0.063	0.060	0.060	0.110	0.100
Oct. Y:	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
	,	,	,	,	,	,	,	,	,
Mg	0,788	0,777	0,746	0,678	0,601	0,750	0,720	0,770	0,760
Ca	0,570	0,513	0,449	0,510	0,422	0,380	0,410	0,400	0,410
Mn	0,649	0,794	0,912	0,985	1,146	0,870	0,910	0,880	0,820
Fe2+	4,039	3,948	3,938	3,855	3,845	4,050	3,980	3,970	4,050
X-Pos.:	6,046	6,031	6,046	6,029	6,015	6,040	6,010	6,020	6,040
Summe	16,047	16,031	16,046	16,029	16,015	16,040	16,010	16,020	16,040
XFe	0.84	0.84	0.84	0.85	0.86	0.84	0.85	0.84	0.84
XMn	0.12	0.14	0,01	0.18	0.20	0.15	0,00	0,01	0,01
			,	,	,	,	,	,	
Endglieder									
Uvar.	0,00	0,03	0,00	0,02	0,09	0,13	0,00	0,14	0,03
Andr.	2,87	2,04	3,47	2,10	1,62	1,62	1,60	2,87	2,52
Gross.	6,56	6,43	3,96	6,35	5,30	4,51	5,16	3,62	4,26
Alm.	66,81	65,45	65,14	63,95	63,93	66,96	66,20	65,93	67,06
Spess.	10,73	13,16	15,09	16,35	19,06	14,41	15,06	14,59	13,57
Pyrop	13,03	12,88	12,34	11,24	10,00	12,37	11,98	12,84	12,56
XAIm	0.668	0.655	0.651	0.639	0.639	0.670	0.662	0.659	0.671
XSpess	0.107	0.132	0.151	0.163	0,191	0.144	0.151	0.146	0.136
XPy	0.130	0.129	0.123	0.112	0.100	0.124	0.120	0.128	0.126
XGross	0.066	0.064	0.040	0.063	0.053	0.045	0.052	0.036	0.043
	5,000	0,00-	5,040	0,000	5,000	0,040	0,002	5,000	0,040

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Granat	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8
	GRA1-5	GRA1-6	GRA1-7	GRA1-8	GRA1-9	GRA1-10	GRA1-11	GRA1-12	GRA1-13
SiO2	37,03	36,92	36,53	36,97	37,07	37,04	36,90	36,78	36,98
TiO2	0,03	0,01	0,00	0,02	0,00	0,00	0,04	0,00	0,02
AI2O3	20,68	20,87	20,96	20,88	20,68	20,99	20,80	20,74	20,60
Cr2O3	0,03	0,02	0,00	0,08	0,02	0,01	0,02	0,04	0,05
Fe2O3	0,91	0,65	1,13	0,66	1,11	0,80	1,01	1,00	1,00
MgO	3,35	3,33	3,41	3,21	3,47	3,48	3,59	3,57	3,51
CaO	2,29	2,39	2,35	2,05	2,51	2,53	2,63	2,50	3,02
MnO	5,82	5,84	5,61	5,76	5,62	5,43	5,22	5,11	4,92
FeO	29,92	29,77	30,20	30,61	29,79	30,06	29,81	30,00	29,56
Summe	100,06	99,80	100,19	100,24	100,27	100,34	100,02	99,74	99,66
Strukturforme	el bezogen a	uf 24 Sauers	toffe						
Si	5,960	5,952	5,884	5,948	5,951	5,937	5,931	5,931	5,959
AI	0,040	0,048	0,116	0,052	0,049	0,063	0,069	0,069	0,041
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
AI	3,880	3,920	3,860	3,910	3,860	3,900	3,870	3,870	3,870
Cr	0,000	0,000	0,000	0,010	0,000	0,000	0,000	0,010	0,010
Fe3+	0,110	0,080	0,140	0,080	0,130	0,100	0,120	0,120	0,120
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,800	0,800	0,820	0,770	0,830	0,830	0,860	0,860	0,840
Ca	0,400	0,410	0,410	0,350	0,430	0,430	0,450	0,430	0,520
Mn	0,790	0,800	0,770	0,780	0,760	0,740	0,710	0,700	0,670
Fe2+	4,030	4,010	4,070	4,120	4,000	4,030	4,010	4,050	3,980
X-Pos.:	6,020	6,020	6,060	6,030	6,020	6,030	6,030	6,030	6,020
Summe	16,020	16,020	16,060	16,030	16,020	16,030	16,030	16,030	16,020
XFe	0,83	0,83	0,83	0,84	0,83	0,83	0,82	0,82	0,83
XMn	0,14	0,14	0,14	0,14	0,14	0,13	0,13	0,12	0,12
Endglieder									
Uvar.	0,10	0,08	0,00	0,25	0,05	0,03	0,05	0,14	0,14
Andr.	2,82	1,99	3,38	2,03	3,34	2,41	3,15	3,00	3,10
Gross.	3,65	4,78	3,31	3,57	3,76	4,75	4,31	4,03	5,41
Alm.	66,92	66,64	67,16	68,36	66,38	66,80	66,44	67,04	66,18
Spess.	13,17	13,24	12,64	13,02	12,68	12,22	11,79	11,57	11,16
Pyrop	13,34	13,28	13,50	12,77	13,78	13,79	14,26	14,23	14,01
XAIm	0,669	0,666	0,672	0,684	0,664	0,668	0,664	0,670	0,662
XSpess	0.132	0.132	0.126	0.130	0,127	0.122	0.118	0.116	0.112
XPy	0.133	0.133	0.135	0,128	0,138	0.138	0,143	0,142	0,140
XGross	0,037	0,048	0,033	0,036	0,038	0,048	0,043	0,040	0,054

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Granat	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8
	GRA1-14	GRA1-15	GRA1-16	GRA1-17	GRA1-18	GRA1-19	GRA1-20	GRA1-21	GRA1-22
SiO2	36,69	36,94	36,94	36,85	36,72	36,95	37,13	36,62	36,72
TiO2	0,03	0,02	0,03	0,04	0,00	0,04	0,07	0,02	0,02
AI2O3	20,81	21,01	20,93	20,53	21,14	20,71	21,14	20,86	20,99
Cr2O3	0,03	0,00	0,02	0,00	0,01	0,02	0,06	0,00	0,00
Fe2O3	0,90	0,87	1,04	1,19	0,56	1,14	0,75	1,54	1,15
MgO	3,58	3,58	3,63	3,64	3,74	3,76	3,56	3,55	3,61
CaO	2,59	2,59	2,36	2,51	2,38	2,54	2,31	2,32	2,46
MnO	4,99	4,87	4,80	4,71	4,76	4,50	4,61	4,57	4,52
FeO	29,95	30,41	30,72	30,16	30,30	30,39	31,28	31,29	30,97
Summe	99,57	100,29	100,47	99,63	99,61	100,05	100,91	100,77	100,44
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5,924	5,923	5,918	5,946	5,917	5,935	5,921	5,871	5,890
AI	0,076	0,077	0,082	0,054	0,083	0,065	0,079	0,129	0,110
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,000	0,000	0,000	0,000	0,000	0,000	0,010	0,000	0,000
AI	3,880	3,890	3,870	3,850	3,930	3,850	3,890	3,810	3,860
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,010	0,000	0,000
Fe3+	0,110	0,110	0,130	0,140	0,070	0,140	0,090	0,190	0,140
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,860	0,850	0,870	0,880	0,900	0,900	0,850	0,850	0,860
Ca	0,450	0,440	0,400	0,430	0,410	0,440	0,390	0,400	0,420
Mn	0,680	0,660	0,650	0,640	0,650	0,610	0,620	0,620	0,610
Fe2+	4,040	4,080	4,120	4,070	4,080	4,080	4,170	4,200	4,150
X-Pos.:	6,040	6,040	6,040	6,020	6,040	6,030	6,040	6,060	6,050
Summe	16,040	16,040	16,040	16,020	16,040	16,030	16,040	16,060	16,050
XFe	0,82	0,83	0,83	0,82	0,82	0,82	0,83	0,83	0,83
XMn	0,12	0,12	0,12	0,12	0,12	0,11	0,11	0,11	0,11
Endalieder									
Uvar	0.08	0.00	0.08	0.00	0.04	0.06	0 19	0.00	0.00
Andr.	2,80	2,68	3,20	3,73	1.68	3.55	2.44	4,64	3.51
Gross	<u> </u>	4 68	3 43	3 48	5.08	3,63	3 91	1 93	3 46
Alm.	66,99	67 54	68 16	67 55	67.58	67 70	69.11	69.20	68 62
Sness	11 30	10.94	10.78	10.69	10.76	10 15	10 32	10 24	10 15
Pyrop	14 28	14 15	14.37	14 55	14 85	14 91	14 03	13 99	14 26
	14,20	14,10	,,,,,,	14,00	14,00	14,01	14,00	10,00	17,20
XAIm	0,670	0,675	0,682	0,676	0,676	0,677	0,691	0,692	0,686
XSpess	0,113	0,109	0,108	0,107	0,108	0,102	0,103	0,102	0,102
ХРу	0,143	0,142	0,144	0,146	0,149	0,149	0,140	0,140	0,143
XGross	0,046	0,047	0,034	0,035	0,051	0,036	0,039	0,019	0,035

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Granat	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8
	GRA1-23	GRA1-24	GRA1-25	GRA1-26	GRA1-27	GRA1-28	GRA1-29	GRA1-30	GRA1-31
SiO2	36,90	36,87	37,11	36,99	36,80	37,13	36,69	37,23	37,28
TiO2	0,03	0,04	0,03	0,05	0,01	0,02	0,01	0,07	0,05
AI2O3	20,77	20,85	21,08	20,64	20,91	20,93	20,96	20,89	20,83
Cr2O3	0,07	0,05	0,00	0,03	0,00	0,06	0,04	0,00	0,04
Fe2O3	1,33	1,15	0,95	1,18	0,97	0,91	1,02	0,81	0,98
MgO	3,69	3,74	3,73	3,91	3,84	3,86	3,98	3,84	3,82
CaO	2,27	2,61	2,41	2,18	2,16	2,41	2,28	2,30	2,59
MnO	4,48	4,34	4,21	4,25	4,23	4,30	4,24	4,27	4,23
FeO	31,10	30,67	31,27	30,80	31,02	30,78	30,69	30,85	30,70
Summe	100,64	100,32	100,79	100,03	99,94	100,40	99,91	100,26	100,52
Strukturform	nel bezogen a	uf 24 Sauers	stoffe						
Si	5,909	5,911	5,920	5,941	5,918	5,936	5,898	5,956	5,952
AI	0,091	0,089	0,080	0,059	0,082	0,064	0,102	0,044	0,048
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,000	0,000	0,000	0,010	0,000	0,000	0,000	0,010	0,010
AI	3,830	3,850	3,880	3,850	3,880	3,880	3,870	3,890	3,870
Cr	0,010	0,010	0,000	0,000	0,000	0,010	0,000	0,000	0,000
Fe3+	0,160	0,140	0,110	0,140	0,120	0,110	0,120	0,100	0,120
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,880	0,890	0,890	0,940	0,920	0,920	0,950	0,920	0,910
Ca	0,390	0,450	0,410	0,370	0,370	0,410	0,390	0,390	0,440
Mn	0,610	0,590	0,570	0,580	0,580	0,580	0,580	0,580	0,570
Fe2+	4,170	4,110	4,170	4,140	4,170	4,120	4,130	4,130	4,100
X-Pos.:	6,040	6,040	6,040	6,030	6,040	6,030	6,050	6,020	6,020
Summe	16,040	16,040	16,040	16,030	16,040	16,030	16,050	16,020	16,020
XFe	0,83	0,82	0,82	0,82	0,82	0,82	0,81	0,82	0,82
XMn	0,11	0,11	0,10	0,10	0,10	0,10	0,10	0,10	0,10
Endglieder									
Uvar.	0,22	0,15	0,00	0,08	0,00	0,20	0,12	0,00	0,12
Andr.	4,05	3,57	2,93	3,67	2,93	2,79	3,09	2,64	3,10
Gross.	2,18	3,69	3,91	2,47	3,22	3,84	3,29	3,92	4,13
Alm.	68,92	68,06	69,08	68,65	69,07	68,24	68,21	68,60	68,07
Spess.	10,06	9,76	9,42	9,59	9,54	9,66	9,53	9,61	9,49
Pyrop	14,59	14,78	14,67	15,54	15,24	15,26	15,76	15,24	15,09
XAIm	0.689	0.681	0.691	0.687	0.691	0.682	0.682	0.686	0.681
XSpess	0.101	0.098	0.094	0.096	0.095	0.097	0.095	0.096	0.095
XPv	0,146	0.148	0.147	0.155	0.152	0.153	0.158	0.152	0.151
XGross	0,022	0,037	0,039	0,025	0,032	0,038	0,033	0,039	0,041

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Granat	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8
	GRA1-32	GRA1-33	GRA1-34	GRA1-35	GRA1-36	GRA1-37	GRA1-38	GRA1-39	GRA1-40
SiO2	37,16	37,10	37,00	36,91	36,84	31,21	37,04	37,20	37,06
TiO2	0,04	0,11	0,04	0,05	0,03	0,00	0,00	0,01	0,03
AI2O3	21,09	21,20	20,79	20,95	20,95	21,44	21,18	21,07	21,30
Cr2O3	0,02	0,00	0,00	0,01	0,04	0,03	0,00	0,01	0,02
Fe2O3	0,69	0,67	0,84	1,12	0,88	1,59	0,84	1,00	0,92
MgO	3,85	3,61	3,57	3,78	3,61	6,78	3,77	3,83	3,77
CaO	2,26	2,60	2,26	2,63	2,41	0,87	2,33	2,25	2,69
MnO	4,21	4,13	4,29	4,40	4,38	2,39	4,54	4,56	4,66
FeO	31,10	31,28	31,16	30,61	30,99	27,83	30,94	31,01	30,62
Summe	100,42	100,70	99,95	100,46	100,13	92,14	100,64	100,94	101,07
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5.938	5.919	5.951	5.906	5.918	5.408	5.914	5.923	5.892
AI	0.062	0.081	0.049	0.094	0.082	0.592	0.086	0.077	0.108
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,000	0,010	0,000	0,010	0,000	0,000	0,000	0,000	0,003
AI	3,910	3,910	3,890	3,860	3,890	3,790	3,900	3,880	3,885
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,003
Fe3+	0,080	0,080	0,100	0,140	0,110	0,210	0,100	0,120	0,110
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Ма	0.000	0.000	0.000	0.000	0.070	4 750	0.000	0.040	0.004
	0,920	0,860	0,860	0,900	0,870	1,750	0,900	0,910	0,894
Ca	0,390	0,440	0,390	0,450	0,410	0,160	0,400	0,380	0,457
Min E-0	0,570	0,560	0,580	0,600	0,600	0,350	0,610	0,620	0,628
rez+	4,160	4,170	4,190	4,100	4,160	4,030	4,130	4,130	4,072
X-Pos.:	6,030	6,030	6,020	6,040	6,040	6,300	6,040	6,040	6,051
Summe	16,030	16,030	16,020	16,040	16,040	16,300	16,040	16,040	16,052
XFe	0,82	0,83	0,83	0,82	0,83	0,70	0,82	0,82	0,82
XMn	0,10	0,10	0,10	0,11	0,11	0,06	0,11	0,11	0,11
Endalieder									
Uvar.	0,06	0.01	0.00	0.04	0.12	0,11	0.00	0.02	0.06
Andr.	2,18	2,33	2,66	3,49	2,74	2,44	2,50	3,00	2,81
Gross.	4,17	5.03	3,80	3,91	4,01	0,00	4,11	3,35	4,69
Alm.	68,92	69,17	69,60	67,77	68,94	64,07	68,37	68,39	67,29
Spess.	9,45	9,24	9,71	9.87	9.86	5.57	10,17	10,19	10,37
Pyrop	15,22	14,22	14,23	14,91	14,33	27,81	14,85	15,06	14,78
~ • •									
XAIM	0,689	0,692	0,696	0,678	0,689	0,641	0,684	0,684	0,673
XSpess	0,095	0,092	0,097	0,099	0,099	0,056	0,102	0,102	0,104
хРу	0,152	0,142	0,142	0,149	0,143	0,278	0,149	0,151	0,148
XGross	0,042	0,050	0,038	0,039	0,040	0,000	0,041	0,034	0,047

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Granat	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8
	GRA1-41	GRA1-42	GRA1-43	GRA1-44	GRA1-45	GRA1-46	GRA1-47	GRA1-48	GRA1-49
SiO2	37,34	37,11	37,09	37,33	36,91	36,86	37,06	37,05	36,80
TiO2	0,00	0,02	0,03	0,06	0,02	0,01	0,04	0,05	0,07
AI2O3	20,92	21,24	21,12	21,01	21,28	20,67	21,03	20,81	21,00
Cr2O3	0,01	0,00	0,00	0,02	0,01	0,00	0,03	0,01	0,00
Fe2O3	0,86	0,66	0,89	0,91	0,57	1,04	0,82	0,98	0,41
MgO	3,76	3,62	3,59	3,59	3,54	3,46	3,47	3,29	2,96
CaO	2,69	2,38	2,57	2,53	2,68	2,76	2,34	2,07	2,12
MnO	4,80	5,06	5,00	5,36	5,33	5,68	6,34	6,74	7,41
FeO	30,09	30,61	30,50	30,20	29,98	29,23	29,51	29,62	29,11
Summe	100,46	100,69	100,79	101,01	100,33	99,71	100,63	100,61	99,87
Strukturform	nel bezogen a	uf 24 Sauers	stoffe						
Si	5,960	5,923	5,918	5,940	5,911	5,945	5,928	5,941	5,944
AI	0,040	0,077	0,082	0,060	0,089	0,055	0,072	0,059	0,056
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,000	0,002	0,004	0,008	0,003	0,001	0,005	0,005	0,008
AI	3,896	3,918	3,889	3,882	3,927	3,872	3,893	3,874	3,941
Cr	0,001	0,000	0,000	0,003	0,002	0,000	0,003	0,002	0,000
Fe3+	0,103	0,079	0,107	0,109	0,068	0,126	0,099	0,119	0,050
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,894	0,862	0,855	0,852	0,844	0,831	0,827	0,785	0,713
Ca	0,461	0,407	0,439	0,431	0,461	0,478	0,401	0,356	0,367
Mn	0,649	0,684	0,676	0,723	0,723	0,776	0,858	0,915	1,013
Fe2+	4,016	4,086	4,070	4,020	4,016	3,942	3,948	3,971	3,932
X-Pos.:	6,019	6,038	6,039	6,026	6,044	6,027	6,034	6,027	6,024
Summe	16,020	16,038	16,039	16,026	16,043	16,027	16,034	16,027	16,024
XFe	0,82	0,83	0,83	0,83	0,83	0,83	0,83	0,83	0,85
XMn	0,12	0,12	0,12	0,13	0,13	0,14	0,15	0,16	0,18
Endglieder									
Uvar.	0,02	0,00	0,00	0,06	0,04	0,00	0,08	0,04	0,00
Andr.	2,57	2,02	2,76	2,89	1,76	3,17	2,58	3,09	1,45
Gross.	5,06	4,72	4,51	4,20	5,82	4,76	3,99	2,78	4,63
Alm.	66,73	67,66	67,39	66,72	66,44	65,41	65,43	65,89	65,26
Spess.	10,78	11,33	11,19	11,99	11,97	12,88	14,23	15,18	16,82
Pyrop	14,85	14,27	14,15	14,14	13,97	13,79	13,71	13,03	11,83
XAIm	0,667	0,677	0,674	0,667	0,664	0,654	0,654	0,659	0,653
XSpess	0,108	0,113	0,112	0,120	0,120	0,129	0,142	0,152	0,168
ХРу	0,148	0,143	0,142	0,141	0,140	0,138	0,137	0,130	0,118
XGross	0,051	0,047	0,045	0,042	0,058	0,048	0,040	0,028	0,046

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Granat	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8
	GRA1-50	GRA2-1	GRA2-2	GRA2-3	GRA2-4	GRA2-5	GRA2-6	GRA2-6	GRA2-8
SiO2	36,70	37,16	37,27	37,10	37,11	36,99	37,32	37,01	36,94
TiO2	0,03	0,00	0,00	0,02	0,07	0,02	0,01	0,00	0,03
AI2O3	21,12	20,90	20,84	21,10	20,74	20,82	21,16	20,99	21,25
Cr2O3	0,01	0,00	0,04	0,00	0,02	0,01	0,00	0,04	0,02
Fe2O3	0,18	0,43	0,85	0,89	1,00	0,83	0,44	0,78	1,14
MgO	2,97	3,05	3,32	3,45	3,36	3,43	3,62	3,56	3,69
CaO	2,09	2,67	2,26	2,19	2,16	2,25	2,32	2,07	2,28
MnO	7,76	6,89	6,75	6,30	6,13	5,78	5,68	5,57	5,55
FeO	28,69	28,79	29,35	29,89	29,95	29,93	29,89	30,36	30,45
Summe	99,54	99,90	100,67	100,93	100,54	100,06	100,43	100,39	101,35
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5,943	5,982	5,963	5,922	5,949	5,950	5,962	5,934	5,875
AI	0,057	0,018	0,037	0,078	0,051	0,050	0,038	0,066	0,125
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
	0.004				0.000		0.004	0.000	
11	0,004	0,000	0,000	0,002	0,009	0,002	0,001	0,000	0,003
AI	3,973	3,948	3,892	3,892	3,867	3,896	3,946	3,901	3,857
Cr	0,001	0,000	0,006	0,000	0,003	0,001	0,000	0,004	0,003
Fe3+	0,021	0,052	0,102	0,106	0,121	0,101	0,053	0,095	0,137
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,716	0,732	0,791	0,821	0,803	0,822	0,861	0,850	0,875
Ca	0,363	0,460	0,387	0,374	0,371	0,388	0,397	0,356	0,388
Mn	1,064	0,939	0,914	0,852	0,832	0,787	0,768	0,757	0,748
Fe2+	3,884	3,876	3,927	3,990	4,016	4,027	3,993	4,071	4,050
X-Pos.:	6,027	6,008	6,019	6,037	6,021	6,024	6,019	6,034	6,061
Summe	16,027	16,009	16,019	16,038	16,021	16,024	16,019	16,033	16,061
XFe	0,84	0.84	0,83	0,83	0.83	0.83	0,82	0.83	0,82
XMn	0,19	0,17	0,16	0,15	0,15	0,14	0,14	0,13	0,13
Endalieder									
Livar	0.02	0.00	0.14	0.00	0.06	0.03	0.00	0.11	0.07
Andr	0,02	1 30	2 54	2 70	3 24	2 57	1 34	2 35	3 47
Gross	5 37	6 36	3 74	3 49	2.85	3.85	5 25	3 44	2.86
Alm.	64 45	64 52	65 25	66,09	66 69	66 84	66.34	67 46	66.82
Sness	17 64	15 64	15 19	14 11	13.82	13.07	12 76	12 54	12 34
Pyrop	11,88	12,19	13,14	13.60	13.33	13.65	14,31	14.09	14.44
	11,00	.2,10	,	.0,00	.0,00	.0,00	,	. 1,00	,
XAIm	0,644	0,645	0,652	0,661	0,667	0,668	0,663	0,675	0,668
XSpess	0,176	0,156	0,152	0,141	0,138	0,131	0,128	0,125	0,123
ХРу	0,119	0,122	0,131	0,136	0,133	0,136	0,143	0,141	0,144
XGross	0,054	0,064	0,037	0,035	0,029	0,039	0,053	0,034	0,029

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Granat	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8
	GRA2-10	GRA2-11	GRA2-12	GRA1-13	GRA2-14	GRA2-15	GRA2-16	GRA2-17	GRA2-18
SiO2	37,14	37,14	37,16	36,67	37,20	36,82	37,01	37,14	37,06
TiO2	0.01	0.03	0.04	0.03	0.00	0.03	0.04	0.00	0.01
AI2O3	21,00	20,89	21,02	20,82	21,29	20,68	21,00	20,69	20,85
Cr2O3	0,01	0,00	0,02	0,00	0,03	0,00	0,01	0,00	0,03
Fe2O3	0,86	0,76	1,11	0,64	0,41	0,97	0,43	0,95	0,80
MgO	3,62	3,58	3,53	3,32	3,39	3,34	3,16	3,24	3,03
CaO	2,19	1,99	2,25	1,88	2,42	2,20	2,17	2,09	1,99
MnO	5,47	5,63	5,57	5,77	6,14	6,44	6,51	6,67	6,99
FeO	30,29	30,24	30,55	30,30	29,81	29,35	29,70	29,58	29,81
Summe	100,60	100,26	101,24	99,43	100,68	99,83	100,03	100,35	100,57
Strukturform	nel bezogen a	uf 24 Sauers	stoffe						
Si	5,937	5,957	5,916	5,943	5,941	5,944	5,958	5,968	5,952
AI	0,063	0,043	0,084	0,057	0,059	0,056	0,042	0,032	0,048
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
ті	0.001	0.003	0.005	0 004	0 000	0 004	0.005	0.000	0.001
AI	3 895	3,906	3 860	3 918	3 946	3 878	3 941	3 885	3 899
Cr	0,000	0,000	0,002	0,000	0.004	0,000	0.001	0,000	0.003
Fe3+	0 104	0,000	0 133	0.078	0.049	0 118	0.053	0 114	0.097
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,863	0,856	0,838	0,803	0,806	0,804	0,758	0,775	0,726
Ca	0,375	0,343	0,384	0,327	0,414	0,380	0,374	0,360	0,343
Mn	0,741	0,765	0,751	0,791	0,831	0,880	0,888	0,908	0,951
Fe2+	4,050	4,056	4,067	4,106	3,980	3,962	3,999	3,975	4,004
X-Pos.:	6,030	6,019	6,040	6,027	6,030	6,026	6,019	6,017	6,023
Summe	16,031	16,020	16,040	16,027	16,030	16,026	16,019	16,016	16,024
XFe	0,82	0,83	0,83	0,84	0,83	0,83	0,84	0,84	0,85
XMn	0,13	0,13	0,13	0,14	0,15	0,16	0,16	0,16	0,17
Endglieder									
Uvar.	0,03	0,00	0,05	0,00	0,10	0,00	0,03	0,00	0,09
Andr.	2,60	2,36	3,42	2,04	1,22	3,04	1,43	2,85	2,42
Gross.	3,60	3,34	2,89	3,38	5,54	3,27	4,75	3,13	3,18
Alm.	67,17	67,39	67,33	68,13	66,00	65,74	66,44	66,06	66,47
Spess.	12,29	12,70	12,43	13,13	13,78	14,61	14,75	15,08	15,78
Pyrop	14,32	14,22	13,88	13,32	13,37	13,35	12,60	12,88	12,06
XAIm	0.672	0.674	0.673	0.681	0.660	0.657	0.664	0.661	0.665
XSpess	0,123	0,127	0,124	0,131	0,138	0,146	0,148	0,151	0,158
ХРу	0,143	0,142	0,139	0,133	0,134	0,133	0,126	0,129	0,121
XGross	0,036	0,033	0,029	0,034	0,055	0,033	0,047	0,031	0,032

Probe	IMM089	IMM089	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063
Granat	7.8	7.8	3.1	3.1	3.1	3.1	3.1	3.1	3.1
	GRA2-19	GRA2-20	GRA 1-1	GRA 1-2	GRA 1-3	GRA 1-4	GRA 1-5	GRA 1-6	GRA 1-7
SiO2	37,01	37,21	36,70	37,15	37,02	37,60	36,89	36,90	37,11
TiO2	0,01	0,01	0,07	0,04	0,00	0,02	0,05	0,06	0,05
AI2O3	20,78	20,81	20,76	21,13	20,61	21,13	20,92	21,05	20,81
Cr2O3	0,00	0,01	0,04	0,00	0,00	0,01	0,02	0,00	0,00
Fe2O3	0,63	0,48	1,41	0,97	1,02	0,62	1,15	0,58	1,25
MgO	3,00	2,80	3,43	3,87	3,69	3,74	3,41	3,41	3,61
CaO	2,04	2,23	2,99	2,85	2,58	3,03	2,95	2,35	2,84
MnO	7,23	7,54	5,79	4,92	5,16	4,61	6,20	6,31	6,10
FeO	29,28	29,11	29,27	29,85	29,57	30,10	29,03	29,36	28,93
Summe	99,98	100,21	100,46	100,78	99,65	100,85	100,62	100,01	100,69
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5,972	5,990	5,890	5,914	5,963	5,969	5,906	5,933	5,927
AI	0,028	0,010	0,110	0,086	0,037	0,031	0,094	0,067	0,073
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
	0.004	0.004	0.000	0.005			0.000	0.007	
	0,001	0,001	0,008	0,005	0,000	0,002	0,006	0,007	0,006
AI	3,923	3,939	3,817	3,878	3,876	3,923	3,853	3,922	3,843
Cr	0,000	0,002	0,005	0,000	0,000	0,001	0,003	0,000	0,000
Fe3+	0,076	0,058	0,170	0,117	0,123	0,074	0,139	0,070	0,150
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,723	0,672	0,822	0,918	0,886	0,884	0,813	0,818	0,859
Ca	0,353	0,385	0,515	0,487	0,445	0,515	0,505	0,404	0,485
Mn	0,988	1,028	0,787	0,663	0,704	0,620	0,841	0,860	0,825
Fe2+	3,950	3,919	3,928	3,973	3,984	3,996	3,886	3,948	3,864
X-Pos.:	6,014	6,004	6,052	6,041	6,019	6,015	6,045	6,030	6,033
Summe	16,014	16,004	16,051	16,041	16,018	16,015	16,045	16,030	16,033
XFe	0,85	0,85	0,83	0,81	0,82	0,82	0.83	0,83	0,82
XMn	0,17	0,18	0,14	0,12	0,13	0,11	0,15	0,15	0,15
Endalieder									
Livar	0.00	0.04	0.12	0.00	0.00	0.02	0.06	0.00	0.00
Andr	1 92	1 49	4 4 2	3.01	3.08	1.89	3 58	1 93	3 90
Gross	3 95	4 87	3.97	5.04	4 32	6 64	4 72	4 78	4 15
Alm.	65.68	65 28	64 91	65 77	66 19	66 43	64 28	65 48	64 04
Sness	16 43	17 12	13.01	10.98	11 69	10 31	13 91	14 26	13.68
Pyrop	12.01	11.19	13.58	15,19	14.72	14,70	13.45	13.56	14.24
7 I-	,.,	.,	. 0,00		· ·,· <b>–</b>	,. 0		. 0,00	,
XAIm	0,657	0,653	0,649	0,658	0,662	0,664	0,643	0,655	0,640
XSpess	0,164	0,171	0,130	0,110	0,117	0,103	0,139	0,143	0,137
ХРу	0,120	0,112	0,136	0,152	0,147	0,147	0,134	0,136	0,142
XGross	0,040	0,049	0,040	0,050	0,043	0,066	0,047	0,048	0,041

Probe	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063
Granat	3.1	3.1	3.4	3.4	3.4	3.4	3.4	3.5	3.5
	GRA 1-8	GRA 1-9	GRA 1-1	GRA1-2	GRA 1-3	GRA 2-1	GRA2-2	GRA1-1	GRA1-2
SiO2	37,18	37,18	36,58	37,30	36,95	36,91	37,00	36,95	36,71
TiO2	0,02	0,03	0,03	0,05	0,10	0,02	0,01	0,05	0,01
AI2O3	21,19	20,89	20,93	20,95	20,72	20,91	20,98	21,16	21,02
Cr2O3	0,00	0,04	0,02	0,00	0,01	0,00	0,00	0,00	0,01
Fe2O3	0,69	0,77	0,77	0,91	0,96	0,74	1,31	0,86	0,81
MgO	3,53	3,25	3,53	3,91	3,66	3,32	3,56	3,65	3,35
CaO	2,99	2,84	2,92	2,80	2,58	2,47	3,09	2,93	2,84
MnO	5,64	6,09	5,60	4,60	5,62	6,56	5,02	5,11	6,10
FeO	29,38	29,35	29,01	29,95	29,26	29,06	29,97	29,80	29,11
Summe	100,62	100,43	99,37	100,46	99,87	100,00	100,93	100,52	99,97
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5,931	5,955	5,912	5,948	5,942	5,941	5,900	5,905	5,910
AI	0,069	0,045	0,088	0,052	0,058	0,059	0,100	0,095	0,090
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,002	0,003	0,004	0,006	0,012	0,002	0,001	0,006	0,001
AI	3,915	3,899	3,901	3,886	3,870	3,908	3,843	3,890	3,899
Cr	0,000	0,005	0,002	0,000	0,002	0,000	0,000	0,000	0,002
Fe3+	0,083	0,093	0,093	0,109	0,116	0,090	0,157	0,104	0,098
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,839	0,777	0,850	0,930	0,878	0,797	0,847	0,869	0,803
Ca	0,512	0,487	0,505	0,478	0,444	0,426	0,527	0,502	0,490
Mn	0,762	0,826	0,766	0,621	0,765	0,894	0,679	0,691	0,832
Fe2+	3,920	3,932	3,921	3,995	3,935	3,912	3,996	3,982	3,919
X-Pos.:	6,033	6,022	6,042	6,023	6,023	6,029	6,049	6,045	6,044
Summe	16,033	16,021	16,042	16,023	16,023	16,029	16,049	16,045	16,044
XFe	0,82	0,84	0,82	0,81	0,82	0,83	0,83	0,82	0,83
XMn	0,14	0,15	0,14	0,11	0,14	0,16	0,12	0,12	0,15
Endglieder									
Uvar.	0,00	0,12	0,06	0,00	0,04	0,00	0,00	0,00	0,04
Andr.	2,11	2,39	2,40	2,85	3,20	2,29	3,91	2,71	2,48
Gross.	6,37	5,58	5,90	5,08	4,14	4,78	4,80	5,59	5,59
Alm.	64,97	65,29	64,89	66,32	65,34	64,88	66,07	65,88	64,84
Spess.	12,64	13,72	12,68	10,31	12,70	14,83	11,22	11,43	13,76
Pyrop	13,91	12,90	14,06	15,44	14,58	13,22	14,00	14,38	13,29
XAIm	0,650	0,653	0,649	0,663	0,653	0,649	0,661	0,659	0,648
XSpess	0,126	0,137	0,127	0,103	0,127	0,148	0,112	0,114	0,138
ХРу	0,139	0,129	0,141	0,154	0,146	0,132	0,140	0,144	0,133
XGross	0,064	0,056	0,059	0,051	0,041	0,048	0,048	0,056	0,056

Probe	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063
Granat	3.5	3.5	3.5	3.7	3.7	3.7
	GRA1-3	GRA1-4	GRA1-5	GRA1-3	GRA2-1	GRA2-2
5:02	27.04	27.77	27.40	26.90	26.02	26.02
5102	37,04	37,27	37,40	30,69	30,82	30,62
1102	0,00	0,01	0,07	0,03	0,07	20,00
A1203	21,11	20,74	20,97	20,78	20,99	20,07
Ee2O3	0,01	1 18	0,03	0,00	0,08	0,00
MaO	3 15	3 36	3 74	3.06	3 58	3.61
MgC CaO	2 70	2,50	2.96	2.40	2,00	3.01
MnO	6 71	6.76	5.09	7 26	2,50 4 63	4 81
FeO	28.92	28.92	29.84	28.37	29.66	28 78
Summe	100,24	100,83	101,28	99,32	99,02	98,77
	)	,	- , -	, -	, -	,
Strukturforme	l bezogen a	uf 24 Sauers	toffe			
Si	5,945	5,954	5,941	5,975	5,953	5,960
AI	0,055	0,046	0,059	0,025	0,047	0,040
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000
т:	0.000	0.001	0.009	0.004	0.009	0.007
	3 937	3 857	3,858	3 942	3 952	3 0/2
Cr	0.001	0,000	0.004	0,000	0,952	0.000
Eo3+	0,001	0,000	0,004	0,000	0,010	0,000
Oct. Y	4 000	4 000	4 000	4 000	4 000	4 000
000.11	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,754	0,801	0,884	0,740	0,863	0,870
Ca	0,480	0,445	0,502	0,433	0,512	0,591
Mn	0,912	0,914	0,683	0,995	0,633	0,659
Fe2+	3,881	3,863	3,955	3,843	4,011	3,896
X-Pos.:	6,027	6,023	6,025	6,011	6,020	6,017
Summe	16,028	16,023	16,025	16,011	16,020	16,017
XEo	0.84	0.83	0.82	0.84	0.82	0.82
XMn	0,04	0,05	0,02	0,04	0,02	0,02
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,10	0,10	0,12	0,10	0,11	0,12
Endglieder						
Uvar.	0,03	0,00	0,09	0,00	0,25	0,00
Andr.	1,55	3,55	3,46	1,45	0,93	1,46
Gross.	6,38	3,83	4,78	5,75	7,33	8,37
Alm.	64,39	64,14	65,65	63,93	66,63	64,75
Spess.	15,14	15,18	11,34	16,56	10,52	10,96
Pyrop	12,51	13,30	14,68	12,31	14,34	14,47
XΔIm	0 644	0.641	0 656	0 630	0 666	0.648
YSness	0,044	0,041	0,000	0,000	0,000	0,040
XPv	0 125	0,132	0 147	0 123	0 143	0 145
XGross	0.064	0.038	0.048	0.057	0.073	0.084
	0,004	0,000	0,040	0,001	0,010	0,004

Tab. H.1: Mikrosondenanalysen von Granat

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Granat	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
	GRA1-1	GRA1A-1	GRA1A-2	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A
							~~~~		
SiO2	37,24	37,58	37,26	37,27	37,35	36,95	36,85	37,38	37,13
102	0,05	0,03	0,05	0,04	0,04	0,09	0,05	0,03	0,03
AI2O3	21,17	21,00	21,10	21,17	20,92	21,00	20,80	20,99	20,89
Cr2O3	0,01	0,00	0,06	0,03	0,00	0,05	0,00	0,00	0,01
Fe2O3	0,04	1,03	0,97	0,72	0,91	0,84	1,32	0,70	1,05
MgO	3,98	4,09	4,19	3,56	4,00	4,10	4,05	4,14	4,30
CaO	2,68	2,53	2,66	2,51	2,59	2,44	2,60	2,39	2,41
MnO	7,02	7,98	7,64	9,14	7,98	7,69	7,39	7,50	7,52
FeO	27,08	26,84	26,82	26,48	26,62	26,84	27,06	27,04	26,76
Summe	99,28	101,08	100,75	100,91	100,41	100,00	100,13	100,18	100,08
Strukturform	el bezogen a	uf 24 Sauers	stoffe						
Si	5.980	5.953	5.920	5.934	5.955	5.918	5.905	5.965	5.935
AI	0.020	0.047	0.080	0.066	0.045	0.082	0.095	0.035	0.065
Tetr. Z:	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000	6.000
	- /	- /	-,	-,	-,	-,	- /	- /	-,
Ti	0,006	0,004	0,006	0,005	0,005	0,011	0,006	0,004	0,003
AI	3,987	3,873	3,871	3,906	3,886	3,882	3,834	3,913	3,869
Cr	0,002	0,000	0,007	0,004	0,000	0,006	0,000	0,000	0,001
Fe3+	0,005	0,123	0,116	0,086	0,110	0,101	0,160	0,084	0,126
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,953	0,966	0,993	0,844	0,950	0,978	0,968	0,985	1,024
Ca	0,462	0,430	0,454	0,428	0,443	0,419	0,446	0,408	0,413
Mn	0,955	1,070	1,028	1,232	1,078	1,043	1,003	1,014	1,018
Fe2+	3,637	3,556	3,563	3,526	3,549	3,595	3,627	3,609	3,577
X-Pos.:	6,007	6,022	6,037	6,031	6,020	6,035	6,044	6,016	6,032
Summe	16,007	16,022	16,037	16,031	16,020	16,036	16,044	16,016	16,031
XFe	0.79	0.79	0.78	0.81	0.79	0.79	0.79	0.79	0.78
XMn	0,17	0,19	0,18	0,22	0,19	0,19	0,18	0,18	0,18
Endglieder									
Uvar.	0,04	0,00	0,18	0,10	0,00	0,15	0,00	0,00	0,03
Andr.	0,27	3,16	3,02	2,25	2,85	2,79	4,11	2,18	3,21
Gross.	7,37	3,98	4,31	4,75	4,50	4,00	3,26	4,60	3,61
Alm.	60,54	59,05	59,02	58,47	58,97	59,57	60,01	59,99	59,30
Spess.	15,90	17,77	17,03	20,43	17,91	17,29	16,60	16,85	16,87
Pyrop	15,87	16,04	16,44	14,00	15,78	16,20	16,02	16,38	16,98
XAIm	0 605	0 500	0 590	0 585	0 590	0 596	0 600	0 600	0 503
YSness	0,000	0,030	0,000	0,000	0,000	0,000	0,000	0,000	0,000
XPv	0,159	0,170	0,170	0,204	0,179	0,173	0,100	0,100	0,109
XGross	0,109	0,100	0,104	0,140	0,100	0,102	0,100	0,104	0,170
AG1033	0,074	0,040	0,040	0,047	0,040	0,040	0,000	0,040	0,000

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Granat	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A
SiO2	37 17	37 17	37.08	37 41	37 53	37 70	37 41	37 53	37 50
TiO2	0.10	0.10	0.04	0.08	0,00	0.04	0.02	0.01	0,00
A12O3	20.98	20.98	20.98	21 16	21.03	21 13	21.01	20.74	20.80
Cr2O3	0.00	0.00	0.04	0.01	0.04	0.02	0.00	0.04	0.03
Fe2O3	0,96	0,96	0,04	0.75	0,04 1.06	0,80	0,00	1 43	0,00
MaO	4 10	4 10	4 14	4 21	4 26	4 19	4 04	4 01	3 76
CaO	2,72	2,72	2.56	2.56	2.54	2.74	2.90	2.91	2.62
MnO	7.45	7.45	7,44	7,47	7,73	7.57	7,58	7,90	8.43
FeO	26.85	26.85	26.93	27.02	26.85	26.86	26,61	26.55	26.36
Summe	100,35	100,35	100,12	100,67	101,05	101,04	100,39	101,11	100,30
Strukturform	nel hezoden al	of 24 Sauers	offe						
Silukiunom	5 020	5 020	5 020	5 940	5 0/3	5 960	5 058	5 9/9	5 000
ΔI	0.071	0.071	0.071	0,040	0.057	0.040	0.042	0,040	0,000
Tetr 7	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,001
160.2.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,012	0,012	0,005	0,009	0,000	0,005	0,002	0,001	0,003
AI	3,872	3,872	3,882	3,899	3,868	3,898	3,900	3,824	3,911
Cr	0,000	0,000	0,004	0,001	0,005	0,002	0,000	0,005	0,004
Fe3+	0,116	0,115	0,109	0,090	0,126	0,095	0,098	0,171	0,082
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Ma	0.975	0.975	0.987	0.996	1.005	0.987	0.958	0.948	0.894
Ca	0.466	0.466	0 438	0,436	0 431	0 464	0 495	0 495	0 447
Mn	1.007	1.007	1.007	1,005	1.037	1.014	1.023	1.061	1,139
Fe2+	3,581	3,582	3,601	3,588	3,556	3.552	3.543	3.520	3,518
X-Pos.:	6.029	6.030	6.034	6.025	6.029	6.017	6.020	6.024	5,998
Summe	16,029	16,030	16,033	16,025	16,029	16,017	16,020	16,025	15,999
VE-	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.00
лге УМр	0,79	0,79	0,78	0,78	0,78	0,78	0,79	0,79	0,80
	0,10	0,10	0,10	0,10	0,19	0,10	0,19	0,19	0,21
Endglieder									
Uvar.	0,00	0,00	0,11	0,03	0,13	0,05	0,00	0,11	0,09
Andr.	3,19	3,18	2,83	2,48	3,14	2,49	2,50	4,28	2,14
Gross.	4,54	4,54	4,32	4,73	3,87	5,17	5,73	3,83	5,22
Alm.	59,40	59,40	59,68	59,55	58,98	59,04	58,86	58,43	58,65
Spess.	16,70	16,70	16,69	16,68	17,20	16,85	16,99	17,61	18,99
Pyrop	16,18	16,18	16,36	16,53	16,68	16,40	15,92	15,74	14,90
XAIm	0,594	0,594	0,597	0,595	0,590	0,590	0,589	0,584	0,587
XSpess	0,167	0,167	0,167	0,167	0,172	0,168	0,170	0,176	0,190
ХРу	0,162	0,162	0,164	0,165	0,167	0,164	0,159	0,157	0,149
XGross	0,045	0,045	0,043	0,047	0,039	0,052	0,057	0,038	0,052

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Granat	4.1	4.1	4.1	4.1	4.2	4.2	4.2	4.2	4.2
	GRA2-4	GRA2-5	GRA2-6	GRA2-7	GRA1-1	GRA1-2	GRA1-3	GRA1-4	GRA1-5
					Granat II	Profil Rand			
SiO2	36,57	37,02	36,89	37,27	37,89	37,53	37,82	37,61	37,20
TiO2	0,01	0,04	0,02	0,05	0,05	0,04	0,06	0,05	0,02
AI2O3	20,87	21,02	20,98	20,89	21,37	21,06	21,21	21,17	21,37
Cr2O3	0,04	0,03	0,02	0,02	0,03	0,03	0,00	0,00	0,02
Fe2O3	0,78	0,72	1,06	0,69	0,31	0,72	0,91	0,60	0,34
MgO	2,36	4,01	4,21	3,78	4,61	4,56	4,82	4,58	4,57
CaO	1,97	2,05	1,94	2,01	2,77	2,90	2,48	2,57	2,85
MnO	10,54	8,24	8,00	8,88	5,00	4,78	4,87	4,62	4,60
FeO	27,23	26,88	27,04	26,62	28,70	28,61	29,05	29,21	28,75
Summe	100,35	99,98	100,15	100,20	100,72	100,23	101,22	100,41	99,73
Strukturforme	el bezogen a	uf 24 Sauers	toffe						
Si	5,919	5,934	5,908	5,967	5,979	5,962	5,952	5,965	5,935
AI	0,081	0,066	0,092	0,033	0,021	0,038	0,048	0,035	0,065
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,001	0,005	0,002	0,006	0,006	0,005	0,007	0,006	0,002
AI	3,900	3,905	3,868	3,908	3,953	3,905	3,886	3,922	3,954
Cr	0,004	0,003	0,002	0,003	0,003	0,004	0,000	0,000	0,003
Fe3+	0,094	0,087	0,127	0,083	0,037	0,085	0,108	0,072	0,040
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,570	0,957	1,005	0,902	1,084	1,079	1,131	1,083	1,087
Са	0,341	0,351	0,333	0,344	0,469	0,493	0,417	0,437	0,487
Mn	1,444	1,118	1,085	1,203	0,668	0,644	0,649	0,620	0,621
Fe2+	3,685	3,604	3,622	3,563	3,787	3,801	3,823	3,874	3,836
X-Pos.:	6,040	6,030	6,045	6,013	6,008	6,017	6,020	6,015	6,032
Summe	16,040	16,030	16,045	16,014	16,007	16,017	16,021	16,014	16,031
XFe	0.87	0.79	0.78	0.80	0.78	0.78	0.77	0.78	0.78
XMn	0,25	0,20	0,19	0,21	0,12	0,12	0,12	0,11	0,11
Endalieder									
Uvar.	0.11	0.08	0.06	0.07	0.08	0 10	0.00	0.00	0.08
Andr.	2.38	2.28	3.21	2.21	1.07	2.26	2.86	1.94	1.06
Gross.	3.15	3.46	2.24	3.44	6.64	5.83	4.08	5.33	6.94
Alm.	61.01	59.76	59.92	59.26	63.04	63.18	63.50	64.41	63.60
Spess.	23.91	18.54	17.95	20.01	11.12	10.70	10.79	10.31	10.30
Pyrop	9,43	15,88	16,62	15,01	18,04	17,93	18,78	18,01	18,02
XAIm	0.610	0 508	0 500	0 503	0 630	0 632	0 635	0 644	0 636
YSnee	0,010	0,090	0,099	0,090	0,030	0,032	0,000	0,044	0,000
XPv	0,239	0,100	0,179	0,200	0,111	0,107	0,100	0,103	0,103
XGross	0,034	0,109	0,100	0,100	0,100	0,179	0,100	0,100	0,100
AG1055	0,032	0,055	0,022	0,034	0,000	0,000	0,041	0,000	0,009

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Granat	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2
	GRA1-6	GRA1-7	GRA1-8	GRA1-9	GRA1-10	GRA1-11	GRA1-12	GRA1-13	GRA1-14
SiO2	37,46	37,78	37,45	37,60	37,82	37,53	37,58	37,61	37,51
TiO2	0,02	0,05	0,04	0,06	0,04	0,06	0,02	0,06	0,00
AI2O3	21,20	20,99	20,82	20,88	20,98	20,96	21,08	21,16	21,22
Cr2O3	0,00	0,01	0,00	0,01	0,00	0,01	0,00	0,00	0,03
Fe2O3	0,89	0,91	0,99	1,16	1,16	0,92	0,90	0,80	0,70
MgO	4,74	4,83	4,71	4,93	4,79	4,83	4,90	4,82	4,66
CaO	2,90	2,46	2,56	2,51	2,85	2,37	2,40	2,72	2,62
MnO	4,41	4,42	4,30	4,36	4,25	4,19	4,26	4,10	4,19
FeO	28,91	29,24	29,11	29,02	29,16	29,43	29,32	29,26	29,53
Summe	100,52	100,68	99,97	100,53	101,06	100,30	100,46	100,52	100,45
Strukturforme	l bezogen a	uf 24 Sauers	toffe						
Si	5,934	5,973	5,967	5,956	5,960	5,959	5,955	5,952	5,948
AI	0,066	0,027	0,033	0,044	0,040	0,041	0,045	0,048	0,052
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,002	0,006	0,004	0,007	0,004	0,007	0,002	0,007	0,000
AI	3,892	3,884	3,877	3,854	3,858	3,882	3,891	3,898	3,913
Cr	0,000	0,001	0,000	0,001	0,000	0,001	0,000	0,000	0,004
Fe3+	0,106	0,108	0,119	0,138	0,138	0,110	0,107	0,095	0,084
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	1,118	1,137	1,119	1,164	1,126	1,144	1,157	1,137	1,101
Ca	0,492	0,417	0,437	0,425	0,482	0,403	0,408	0,461	0,445
Mn	0,592	0,592	0,580	0,585	0,567	0,563	0,572	0,550	0,563
Fe2+	3,830	3,865	3,879	3,844	3,843	3,907	3,885	3,873	3,916
X-Pos.:	6,032	6,011	6,015	6,019	6,018	6,018	6,021	6,020	6,026
Summe	16,032	16,011	16,014	16,019	16,018	16,017	16,022	16,020	16,026
XFe	0,77	0,77	0,78	0,77	0,77	0,77	0,77	0,77	0,78
XMn	0,11	0,11	0,10	0,10	0,10	0,10	0,10	0,10	0,10
Endalieder									
Livar	0.00	0.03	0.00	0.03	0.00	0.03	0.00	0.00	0.00
Andr	2.69	2.86	3.07	3,61	3.54	2 92	2 72	2.54	2 00
Gross	5.46	2,00	4 20	3.44	3,34 1 17	3 76	4.05	5 12	2,00 5 21
Alm	63 50	4,04 64 31	64.49	63.87	63.86	64.93	4,05 64 53	64 33	6/ 00
Space	0,50	04,31	04,43	03,07	03,00	04,95	04,00	04,55	0,35
Spess. Byron	9,01	9,04	9,04	9,72	9,43	9,30	9,49	9,13	9,30
гуюр	10,04	10,92	10,00	19,55	10,71	19,01	19,21	10,09	10,27
XAIm	0,635	0,643	0,645	0,639	0,639	0,649	0,645	0,643	0,650
XSpess	0,098	0,098	0,096	0,097	0,094	0,094	0,095	0,091	0,093
ХРу	0,185	0,189	0,186	0,193	0,187	0,190	0,192	0,189	0,183
XGross	0,055	0,040	0,042	0,034	0,045	0,038	0,041	0,051	0,052

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Granat	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2
	GRA1-15	GRA1-16	GRA1-17	GRA1-18	GRA1-19	GRA1-21	GRA1-22	GRA1-23	GRA1-24
SiO2	37,65	37,43	37,64	37,39	37,64	37,55	37,69	37,57	37,66
1102	0,02	0,06	0,04	0,00	0,00	0,00	0,05	0,03	0,00
AI203	21,18	21,02	21,19	21,15	21,38	21,32	21,11	21,20	21,25
Cr2O3	0,05	0,00	0,04	0,00	0,00	0,01	0,04	0,00	0,03
Fe2O3	0,82	1,05	1,06	0,67	0,82	0,53	1,32	0,52	0,42
MgO	4,93	4,85	4,95	4,83	4,65	4,64	4,76	4,60	4,38
CaO	2,77	2,87	2,79	2,61	2,89	2,86	2,66	2,89	2,88
MinO	4,13	4,17	4,25	4,28	4,43	4,36	4,65	4,68	4,79
FeO	29,07	28,90	29,08	28,95	29,30	29,07	29,31	28,64	28,99
Summe	100,61	100,35	101,03	99,89	101,10	100,33	101,59	100,13	100,39
Strukturform	el bezogen a	uf 24 Sauers	toffe						
Si	5,950	5,937	5,930	5,952	5,932	5,953	5,923	5,967	5,974
AI	0,050	0,063	0,070	0,048	0,068	0,047	0,077	0,033	0,026
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
								·	
Ті	0,002	0,007	0,005	0,000	0,000	0,000	0,006	0,003	0,000
AI	3,895	3,867	3,864	3,919	3,903	3,936	3,833	3,936	3,947
Cr	0,006	0,000	0,005	0,000	0,000	0,001	0,005	0,000	0,003
Fe3+	0,097	0,125	0,125	0,081	0,097	0,063	0,156	0,062	0,050
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	1,161	1,147	1,164	1,146	1,092	1,096	1,116	1,089	1,035
Ca	0,468	0,488	0,472	0,445	0,489	0,486	0,448	0,491	0,489
Mn	0,553	0,560	0,567	0,578	0,591	0,586	0,619	0,630	0,644
Fe2+	3,841	3,833	3,831	3,854	3,861	3,855	3,853	3,804	3,846
X-Pos.:	6,024	6,028	6,033	6,024	6,033	6,023	6,035	6,014	6,013
Summe	16,024	16,028	16,033	16,024	16,034	16,023	16,035	16,015	16,013
XEo	0.77	0.77	0.77	0.77	0.78	0.78	0.78	0.78	0.70
XMn	0,10	0,10	0.10	0.10	0,11	0,10	0,11	0,11	0,12
7.1111	0,10	0,10	0,10	0,10	0,11	0,11	0,11	0,11	0,12
Endglieder									
Uvar.	0,16	0,00	0,13	0,00	0,00	0,03	0,11	0,00	0,08
Andr.	2,47	3,31	3,24	2,01	2,42	1,56	4,04	1,62	1,24
Gross.	5,15	4,79	4,45	5,39	5,68	6,49	3,27	6,55	6,80
Alm.	63,76	63,59	63,50	63,99	64,00	64,00	63,84	63,25	63,96
Spess.	9,19	9,28	9,39	9,59	9,80	9,73	10,25	10,47	10,71
Pyrop	19,27	19,03	19,29	19,03	18,10	18,19	18,49	18,11	17,20
VAIm	0.630	0.696	0.605	0.640	0.640	0.640	0.600	0.600	0.640
	0,038	0,030	0,035	0,640	0,640	0,640	0,038	0,033	0,640
vovess	0,092	0,093	0,094	0,090	0,098	0,097	0,103	0,105	0,107
хгу	0,193	0,190	0,193	0,190	0,181	0,182	0,185	0,181	0,172
XGross	0,051	0,048	0,045	0,054	0,057	0,065	0,033	0,065	0,068

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Granat	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2
	GRA1-25	GRA1-26	GRA2-1	GRA2-2	GRA2-3	GRA2-4	GRA2-5	GRA2-6	GRA2-7
	Granat II	Profil Rand							
SiO2	37,49	37,58	37,47	36,70	37,52	37,17	37,13	37,34	37,45
TiO2	0,03	0,02	0,03	0,00	0,01	0,01	0,00	0,01	0,04
AI2O3	21,33	21,12	20,92	20,70	20,95	20,71	20,97	20,97	21,27
Cr2O3	0,03	0,03	0,00	0,01	0,00	0,01	0,00	0,00	0,00
Fe2O3	0,58	0,68	0,52	0,75	0,83	1,34	1,15	0,98	0,55
MgO	4,45	4,53	2,98	3,42	3,66	3,97	3,85	3,87	3,94
CaO	2,94	2,75	2,37	2,26	1,93	2,08	2,25	2,41	2,12
MnO	4,90	5,24	10,64	9,56	9,49	8,90	9,00	8,70	8,67
FeO	28,81	28,43	25,75	25,74	26,59	26,40	26,43	26,47	26,82
Summe	100,55	100,40	100,68	99,13	100,97	100,59	100,78	100,73	100,85
Strukturforme	el bezogen a	auf 24 Sauers	toffe						
Si	5,941	5,963	5,992	5,952	5,970	5,937	5,921	5,947	5,949
AI	0,059	0,037	0,008	0,048	0,030	0,063	0,079	0,053	0,051
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ti	0,004	0,003	0,004	0,000	0,002	0,002	0,000	0,001	0,005
AI	3,924	3,913	3,934	3,908	3,899	3,836	3,863	3,882	3,930
Cr	0,003	0,004	0,000	0,001	0,000	0,001	0,000	0,000	0,000
Fe3+	0,069	0,081	0,062	0,091	0,099	0,161	0,138	0,117	0,065
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	1,052	1,072	0,710	0,826	0,867	0,946	0,914	0,918	0,933
Ca	0,500	0,468	0,406	0,392	0,329	0,355	0,384	0,411	0,361
Mn	0,657	0,704	1,441	1,314	1,279	1,204	1,216	1,173	1,166
Fe2+	3,818	3,773	3,443	3,492	3,539	3,526	3,524	3,525	3,563
X-Pos.:	6,027	6,017	6,001	6,024	6,014	6,031	6,039	6,027	6,024
Summe	16,027	16,017	16,001	16,024	16,014	16,031	16,039	16,027	16,023
XFe	0,78	0,78	0,83	0,81	0,80	0,79	0,79	0,79	0,79
XMn	0,12	0,13	0,26	0,23	0,22	0,21	0,22	0,21	0,21
Endalieder									
Uvar.	0.08	0 10	0.00	0.03	0.00	0.02	0.00	0.00	0.00
Andr.	1.81	2.08	1.65	2.27	2.51	4.05	3.42	2.93	1.74
Gross.	6.39	5.60	5.11	4.21	2.96	1.82	2.94	3.88	4.25
Alm.	63,35	62,70	57,38	57,96	58,85	58,47	58,36	58,48	59,15
Spess.	10,91	11,71	24,02	21,81	21,27	19,96	20,14	19,47	19,37
Pyrop	17,45	17,82	11,84	13,72	14,42	15,68	15,14	15,23	15,50
XAIm	0.624	0.627	0.574	0 580	0.589	0 585	0.584	0 585	0 502
YSness	0,034	0,027	0,374	0,000	0,000	0,000	0,004	0,000	0,092
XPv	0,109	0,117	0,240	0,210	0,213	0,200	0,201	0,190	0,194
XGross	0,173	0,170	0.051	0,137	0,144	0,107	0,131	0,102	0,100
101055	0,004	0,050	0,001	0,042	0,030	0,010	0,029	0,039	0,042

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Granat	4.2	4.2	4.3	4.3	4.3	4.3	4.3	4.3	4.3
	GRA2-10	GRA2-12	GRA1-2	GRA1-3	GRA1-4	GRA1A	GRA1A	GRA1A	GRA1A
						Granat I Profi	Rand		
SiO2	37,53	37,40	37,26	37,04	37,22	36,66	37,35	36,94	37,64
TiO2	0,03	0,16	0,06	0,05	0,01	0,02	0,00	0,00	0,00
AI2O3	21,25	21,29	20,88	20,96	21,01	20,60	20,91	20,98	20,91
Cr2O3	0,00	0,00	0,02	0,00	0,02	0,02	0,03	0,02	0,00
Fe2O3	0,79	0,26	0,25	0,41	0,78	0,60	0,40	0,59	0,82
MgO	3,90	3,45	3,61	3,73	3,74	2,85	3,13	3,39	3,44
CaO	2,15	2,10	2,45	2,51	2,09	2,38	2,33	2,26	2,55
MnO	8,91	10,04	8,22	8,11	8,93	10,66	10,34	9,78	9,37
FeO	26,80	26,17	26,64	26,57	26,70	25,25	25,69	25,91	26,31
Summe	101,35	100,86	99,38	99,37	100,50	99,06	100,17	99,87	101,03
Strukturforme	el bezogen a	uf 24 Sauers	toffe						
Si	5,940	5,954	5,998	5,966	5,947	5,968	5,994	5,947	5,984
AI	0,060	0,046	0,002	0,034	0,053	0,032	0,006	0,053	0,016
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,003	0,019	0,008	0,006	0,001	0,002	0,000	0,000	0,000
AI	3,904	3,949	3,960	3,945	3,903	3,921	3,949	3,927	3,902
Cr	0,000	0,000	0,002	0,000	0,002	0,003	0,003	0,002	0,000
Fe3+	0,094	0,032	0,030	0,050	0,094	0,074	0,048	0,071	0,098
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Ma	0 020	0.010	0.967	0 905	0 901	0 602	0.750	0.915	0.915
Nig	0,920	0,010	0,007	0,095	0,091	0,093	0,750	0,015	0,010
Ca Mn	0,305	0,300	0,423	0,433	0,300	0,415	0,400	0,390	0,433
Eo2	1,194	1,555	1,121	2,570	2,209	2 4 2 9	2 4 4 9	2 4 9 9	2 400
Y-Ros ·	5,540	5,405	5,007	5,579	5,000	5,430	5,440	5,400	5,490
A-F05	16.020	16.014	15 007	16 014	16.026	16.015	16.003	16.026	16,000
Summe	10,020	10,014	15,997	10,014	10,020	10,015	10,003	10,020	10,000
XFe	0,79	0,81	0,81	0,80	0,80	0,83	0,82	0,81	0,81
XMn	0,21	0,24	0,20	0,20	0,21	0,26	0,25	0,24	0,23
Endglieder									
Uvar.	0,00	0,01	0.05	0,00	0.05	0,07	0,09	0,05	0,00
Andr.	2,40	1,27	0,94	1,38	2,37	1,90	1,20	1,77	2,45
Gross.	3,66	4,67	6.05	5,82	3,53	4,93	5,38	4,65	4,77
Alm.	58,86	57,95	59,81	59,51	59,21	57,15	57,44	57,88	58,22
Spess.	19,81	22,50	18,69	18,40	20,06	24,43	23,41	22,13	21,00
Pyrop	15,26	13,60	14,45	14,89	14,78	11,51	12,49	13,52	13,56
V A las	0 500	0 570	0 500	0 505	0 500	0 570	0 574	0 570	0 500
	0,589	0,579	0,598	0,595	0,592	0,572	0,574	0,579	0,582
ASpess	0,198	0,225	0,187	0,184	0,201	0,244	0,234	0,221	0,210
хру	0,153	0,136	0,145	0,149	0,148	0,115	0,125	0,135	0,136
XGross	0,037	0,047	0,061	0,058	0,035	0,049	0,054	0,047	0,048

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Granat	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A
SiO2	37,08	37,32	37,60	37,67	37,54	37,25	37,61	37,43	37,26
TiO2	0,00	0,03	0,04	0,01	0,03	0,04	0,04	0,03	0,01
AI2O3	21,36	21,12	21,22	21,10	20,96	21,00	21,04	20,95	21,38
Cr2O3	0,00	0,00	0,00	0,04	0,00	0,00	0,04	0,00	0,01
Fe2O3	0,47	0,56	0,78	0,74	0,92	1,34	0,88	0,99	0,47
MgO	3,60	3,83	3,93	3,72	3,90	4,10	4,04	4,05	4,09
CaO	2,41	2,19	2,18	2,50	2,23	2,14	2,28	2,19	2,14
MnO	8,94	8,69	8,80	8,56	8,52	8,31	8,34	8,24	8,01
FeO	26,65	26,66	26,84	26,91	26,87	27,09	26,87	26,91	27,18
Summe	100,51	100,39	101,38	101,25	100,98	101,27	101,14	100,78	100,54
Strukturform	el bezogen au	uf 24 Sauerst	offe						
Si	5,922	5,957	5,947	5,967	5,962	5,909	5,958	5,952	5,931
AI	0,078	0,043	0,053	0,033	0,038	0,091	0,042	0,048	0,069
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ti	0,000	0,003	0,005	0,001	0,004	0,004	0,005	0,003	0,001
AI	3,943	3,930	3,902	3,905	3,885	3,835	3,885	3,879	3,942
Cr	0,000	0,000	0,000	0,005	0,001	0,000	0,006	0,001	0,001
Fe3+	0,057	0,067	0,092	0,089	0,110	0,160	0,105	0,118	0,057
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,857	0,912	0,927	0,878	0,924	0,969	0,953	0,959	0,969
Са	0,412	0,375	0,369	0,424	0,379	0,364	0,387	0,374	0,365
Mn	1,210	1,174	1,178	1,149	1,145	1,117	1,119	1,110	1,080
Fe2+	3,559	3,559	3,550	3,565	3,569	3,594	3,560	3,579	3,619
X-Pos.:	6,039	6,020	6,024	6,015	6,017	6,043	6,018	6,022	6,034
Summe	16,039	16,020	16,024	16,016	16,017	16,043	16,018	16,022	16,034
XFe	0.81	0.80	0.79	0.80	0.79	0.79	0.79	0.79	0.79
XMn	0,22	0,21	0,21	0,21	0,20	0,20	0,20	0,20	0,19
	·		·		·				
Endglieder									
Uvar.	0,00	0,00	0,00	0,11	0,01	0,00	0,14	0,01	0,02
Andr.	1,41	1,74	2,43	2,25	2,85	4,09	2,73	3,02	1,43
Gross.	5,42	4,48	3,70	4,68	3,43	1,93	3,56	3,17	4,60
Alm.	58,94	59,12	58,93	59,27	59,31	59,47	59,15	59,44	59,98
Spess.	20,04	19,51	19,56	19,10	19,04	18,48	18,59	18,43	17,89
Pyrop	14,20	15,15	15,38	14,59	15,36	16,03	15,83	15,93	16,07
XAIm	0,589	0,591	0,589	0,593	0,593	0,595	0,591	0,594	0,600
XSpess	0,200	0,195	0,196	0,191	0,190	0,185	0,186	0,184	0,179
XPy	0,142	0,152	0,154	0,146	0,154	0,160	0,158	0,159	0.161
XGross	0.054	0.045	0.037	0.047	0.034	0,019	0.036	0.032	0.046
	0,001	0,010	0,007	0,017	0,001	0,010	0,000	0,002	3,510

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Granat	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A
SiO2	37,39	37,02	37,34	37,56	37,60	37,31	37,34	37,73	37,68
TiO2	0,03	0,00	0,08	0,03	0,00	0,01	0,00	0,02	0,00
AI2O3	21,19	21,04	20,93	21,09	20,96	21,49	21,23	21,08	21,07
Cr2O3	0,01	0,05	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Fe2O3	0,57	1,25	1,22	0,67	0,95	0,73	1,06	0,97	0,73
MgO	4,13	4,18	4,18	4,27	4,17	4,25	4,23	4,18	4,23
CaO	2,28	1,93	2,09	2,15	2,31	2,21	2,20	2,33	1,95
MnO	7,87	8,08	7,80	7,87	7,68	7,84	7,67	7,74	7,62
FeO	26,99	27,33	27,40	26,94	27,15	27,34	27,53	27,31	27,58
Summe	100,44	100,87	101,02	100,58	100,82	101,17	101,26	101,35	100,85
Strukturform	el bezogen au	uf 24 Sauers	offe						
Si	5,952	5,896	5,929	5,967	5,968	5,904	5,912	5,959	5,976
AI	0,048	0,104	0,071	0,033	0,032	0,096	0,088	0,041	0,024
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
	-		·	·	·	·			
Ті	0,004	0,000	0,009	0,004	0,000	0,001	0,000	0,002	0,000
AI	3,928	3,844	3,845	3,916	3,888	3,912	3,873	3,883	3,913
Cr	0,001	0,006	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe3+	0,068	0,149	0,145	0,080	0,113	0,087	0,127	0,115	0,087
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,980	0,993	0,988	1,011	0,987	1,002	0,997	0,984	1,001
Ca	0,389	0,329	0,356	0,366	0,392	0,375	0,374	0,393	0,331
Mn	1,061	1,090	1,049	1,058	1,033	1,051	1,029	1,035	1,023
Fe2+	3,593	3,641	3,639	3,579	3,603	3,618	3,645	3,607	3,657
X-Pos.:	6,022	6,053	6,031	6,014	6,015	6,047	6,044	6,019	6,012
Summe	16,022	16,052	16,031	16,014	16,016	16,047	16,044	16,019	16,012
XFe	0.79	0.79	0.79	0.78	0.78	0.78	0.79	0.79	0.79
XMn	0,19	0,19	0,18	0,19	0,18	0,19	0,18	0,18	0,18
Endglieder									
Uvar.	0,02	0,15	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Andr.	1,79	3,70	3,84	2,08	2,82	2,19	3,14	2,92	2,18
Gross.	4,65	1,59	2,06	4,00	3,70	4,02	3,04	3,61	3,33
Alm.	59,66	60,15	60,33	59,51	59,90	59,83	60,30	59,92	60,84
Spess.	17,61	18,00	17,38	17,60	17,17	17,38	17,02	17,20	17,02
Pyrop	16,27	16,41	16,39	16,81	16,41	16,58	16,50	16,35	16,65
XAIm	0.597	0.602	0,603	0,595	0,599	0,598	0,603	0,599	0.608
XSpess	0.176	0.180	0.174	0.176	0.172	0.174	0.170	0.172	0.170
XPv	0.163	0.164	0,164	0,168	0,164	0,166	0,165	0,163	0.166
XGross	0,047	0.016	0,021	0,040	0,037	0,040	0,030	0,036	0.033

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Granat	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
	GRA1A	GRA1B	GRA1B	GRA1B	GRA1B	GRA1B	GRA1B	GRA1B	GRA1B
SiO2	37,85	37,55	37,79	37,68	37,66	37,81	37,61	37,91	37,85
TiO2	0,00	0,02	0,05	0,06	0,02	0,00	0,01	0,00	0,01
AI2O3	21,29	21,12	21,22	21,15	21,00	21,37	20,88	21,35	21,31
Cr2O3	0,04	0,00	0,01	0,03	0,02	0,01	0,02	0,00	0,00
Fe2O3	0,71	0,97	0,70	0,90	0,98	0,53	1,08	0,53	0,54
MgO	4,19	4,22	4,34	4,27	4,28	4,33	4,29	4,25	4,11
CaO	2,21	2,38	2,08	2,18	2,08	2,25	2,14	2,33	2,43
MnO	7,66	7,45	7,62	7,54	7,59	7,48	7,50	7,54	7,59
FeO	27,64	27,42	27,47	27,57	27,47	27,46	27,40	27,44	27,45
Summe	101,58	101,13	101,27	101,39	101,10	101,24	100,94	101,35	101,29
Strukturform	hozogon a	of 24 Source	offo						
Strukturiorine	5 060	5 042	5 06/	5 047	5 061	5 062	5 06/	5 072	5 072
31	5,960	0,942	0,904	0,947	0,020	5,903	0,904	5,973	0,972
Al Totr 7	0,040	0,058	0,036	0,053	0,039	0,037	0,036	0,027	0,028
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ti	0,000	0,003	0,006	0,007	0,002	0,000	0,002	0,000	0,001
AI	3,911	3,881	3,910	3,882	3,879	3,936	3,867	3,937	3,935
Cr	0,005	0,000	0,001	0,004	0,002	0,001	0,003	0,000	0,000
Fe3+	0,084	0,116	0,083	0,107	0,116	0,063	0,129	0,063	0,064
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,985	0,996	1,021	1,006	1,010	1,017	1,014	0,998	0,968
Ca	0,372	0,403	0,352	0,369	0,352	0,380	0,363	0,394	0,410
Mn	1,022	0,998	1,018	1,008	1,018	0,999	1,007	1,006	1,014
Fe2+	3,640	3,630	3,625	3,640	3,637	3,622	3,633	3,615	3,622
X-Pos.:	6,020	6,028	6,015	6,022	6,017	6,018	6,018	6,014	6,014
Summe	16,020	16,028	16,015	16,023	16,018	16,018	16,017	16,014	16,014
VEa	0.70	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.70
XFe XMp	0,79	0,78	0,78	0,78	0,78	0,78	0,78	0,78	0,79
	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10
Endglieder									
Uvar.	0,12	0,00	0,04	0,10	0,06	0,02	0,06	0,00	0,00
Andr.	2,10	2,95	2,22	2,85	2,96	1,59	3,25	1,56	1,62
Gross.	3,97	3,74	3,59	3,18	2,83	4,71	2,73	4,99	5,20
Alm.	60,48	60,22	60,26	60,44	60,44	60,19	60,38	60,12	60,22
Spess.	16,98	16,56	16,92	16,74	16,92	16,60	16,74	16,74	16,86
Pyrop	16,36	16,53	16,98	16,70	16,79	16,90	16,84	16,60	16,09
X A Las	0.005	0.000	0.000	0.004	0.004	0.000	0.004	0.004	0.000
XAIM	0,605	0,602	0,603	0,604	0,604	0,602	0,604	0,601	0,602
XSpess	0,170	0,166	0,169	0,167	0,169	0,166	0,167	0,167	0,169
хРу	0,164	0,165	0,170	0,167	0,168	0,169	0,168	0,166	0,161
XGross	0,040	0,037	0,036	0,032	0,028	0,047	0,027	0,050	0,052

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Granat	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
	GRA1B	GRA1B	GRA1B	GRA1B	GRA1B	GRA1B	GRA1B	GRA1B	GRA1B
SiO2	37,53	37,49	37,64	37,42	37,69	37,96	37,69	37,59	37,59
TiO2	0,01	0,02	0,02	0,04	0,00	0,00	0,00	0,03	0,03
AI2O3	21,29	21,00	20,99	21,30	21,34	21,47	21,38	21,34	21,27
Cr2O3	0,03	0,00	0,00	0,00	0,01	0,03	0,03	0,00	0,02
Fe2O3	0,35	1,34	1,03	0,65	0,79	0,46	0,60	0,54	0,39
MgO	4,12	4,27	4,25	4,18	4,16	4,18	4,05	3,88	3,29
CaO	2,25	2,06	2,21	2,29	2,27	2,39	2,42	2,29	2,23
MnO	7,65	7,77	7,75	7,70	7,75	7,81	7,77	8,03	8,79
FeO	27,27	27,53	27,23	27,29	27,57	27,38	27,46	27,52	27,70
Summe	100,49	101,49	101,12	100,87	101,57	101,68	101,40	101,22	101,30
Strukturform	el bezogen au	uf 24 Sauerst	offe						
Si	5,966	5,926	5,958	5,936	5,941	5,965	5,948	5,951	5,968
AI	0,034	0,074	0,042	0,064	0,059	0,035	0,052	0,049	0,032
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Ті	0,001	0,002	0,002	0,005	0,000	0,000	0,000	0,003	0,003
AI	3,955	3,839	3,874	3,917	3,906	3,941	3,925	3,932	3,946
Cr	0,003	0,000	0,000	0,000	0,001	0,004	0,004	0,000	0,003
Fe3+	0,041	0,160	0,123	0,078	0,093	0,055	0,071	0,064	0,047
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,977	1,006	1,003	0,988	0,977	0,979	0,953	0,915	0,777
Ca	0,383	0,350	0,374	0,388	0,384	0,402	0,409	0,388	0,378
Mn	1,031	1,040	1,038	1,034	1,035	1,039	1,039	1,077	1,182
Fe2+	3,626	3,639	3,604	3,619	3,634	3,598	3,624	3,643	3,677
X-Pos.:	6,016	6,035	6,020	6,030	6,030	6,018	6,025	6,023	6,015
Summe	16,016	16,035	16,020	16,030	16,030	16,018	16,026	16,023	16,014
XFe	0,79	0,78	0,78	0,79	0,79	0,79	0,79	0,80	0,83
XMn	0,18	0,18	0,18	0,18	0,18	0,19	0,18	0,19	0,21
Endglieder									
Uvar.	0.08	0.00	0.00	0.00	0.02	0.10	0.09	0.00	0.08
Andr.	1.05	4.02	3.12	2.06	2.32	1.37	1.78	1.69	1.26
Gross.	5.24	1.77	3.09	4.38	4.03	5.22	4.91	4.75	4.96
Alm.	60.26	60.30	59.87	60.02	60.27	59.79	60.15	60.48	61.13
Spess.	17.13	17.23	17.25	17.15	17,16	17.27	17.24	17.88	19.65
Pyrop	16,23	16,67	16,67	16,39	16,20	16,26	15,82	15,19	12,93
XAIm	0,603	0,603	0,599	0,600	0,603	0,598	0,602	0,605	0,611
XSpess	0,171	0,172	0,172	0,172	0,172	0,173	0,172	0,179	0,196
ХРу	0,162	0,167	0,167	0,164	0,162	0,163	0,158	0,152	0,129
XGross	0,052	0,018	0,031	0,044	0,040	0,052	0,049	0,048	0,050

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Granat	4.3	4.3	4.3	4.3	4.3	4.3	4.5	4.5	4.5
	GRA1B	GRA1B	GRA1B	GRA1B	GRA1B	GRA1B	GRA1A	GRA1A	GRA1A
					Granat I	Profil Rand			
SiO2	36,91	37,71	37,81	37,79	37,67	37,44	37,06	36,77	37,31
TiO2	0,00	0,05	0,03	0,00	0,03	0,08	0,05	0,00	0,01
AI2O3	20,70	21,13	21,36	21,34	21,29	21,27	20,88	20,92	21,24
Cr2O3	0,00	0,03	0,01	0,02	0,02	0,00	0,04	0,02	0,00
Fe2O3	1,34	0,35	0,60	0,67	0,81	0,36	1,02	0,95	0,74
MgO	2,96	3,52	3,88	4,00	3,94	3,46	3,78	3,86	4,00
CaO	1,95	2,44	2,40	2,17	2,64	2,26	2,17	2,02	2,20
MnO	9,40	8,63	8,34	8,60	8,97	9,56	8,49	8,26	7,88
FeO	27,70	27,03	27,26	27,06	26,21	26,45	26,98	27,07	27,47
Summe	100,96	100,87	101,69	101,64	101,59	100,87	100,46	99,85	100,84
Strukturforme	el bezogen a	uf 24 Sauerst	offe						
Si	5,923	5,992	5,957	5,956	5,940	5,959	5,930	5,917	5,931
AI	0,077	0,008	0,043	0,044	0,060	0,041	0,070	0,083	0,069
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
ті	0.000	0.005	0.004	0.000	0.004	0.010	0.006	0.000	0.001
ΔΙ	3,839	3 949	3 924	3 919	3 897	3 947	3,866	3,883	3 910
Cr	0,000	0,043	0.002	0.002	0.002	0,000	0,005	0,002	0,000
Fe3+	0 162	0.042	0.071	0,002	0,002	0.043	0,000	0,002	0,000
Oct. Y:	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
	,	,		,			,	,	,
Mg	0,709	0,833	0,910	0,940	0,927	0,820	0,902	0,925	0,948
Ca	0,335	0,415	0,405	0,366	0,446	0,386	0,371	0,348	0,375
Mn	1,278	1,161	1,112	1,148	1,199	1,289	1,150	1,126	1,061
Fe2+	3,717	3,592	3,592	3,567	3,457	3,521	3,610	3,642	3,651
X-Pos.:	6,038	6,001	6,019	6,021	6,028	6,016	6,033	6,041	6,034
Summe	16,038	16,001	16,019	16,022	16,028	16,016	16,032	16,041	16,034
XFe	0,84	0,81	0,80	0,79	0,79	0,81	0,80	0,80	0,79
XMn	0,22	0,21	0,20	0,20	0,21	0,23	0,20	0,20	0,19
Endalieder									
Uvar.	0.00	0.08	0.04	0.05	0.06	0.00	0.13	0.05	0.00
Andr.	4,02	1,18	1,87	1,97	2,50	1,31	3,20	2,86	2,24
Gross.	1,52	5,64	4,82	4,06	4,84	5,10	2,82	2,85	3,97
Alm.	61,56	59,86	59,68	59,24	57,34	58,53	59,84	60,30	60,51
Spess.	21,16	19,35	18,48	19,07	19,88	21,42	19,06	18,63	17,58
Pyrop	11,74	13,89	15,12	15,61	15,38	13,64	14,95	15,31	15,70
XAIm	0.616	0 599	0 597	0 592	0.573	0.585	0 598	0.603	0.605
XSpess	0 212	0,193	0,185	0,191	0,199	0 214	0,191	0,186	0 176
XPv	0.117	0,139	0,151	0,156	0,154	0.136	0.149	0,153	0.157
XGross	0.015	0.056	0.048	0.041	0.048	0.051	0.028	0,029	0.040
	0,010	0,000	0,010	0,011	0,010	0,001	0,020	0,010	5,510

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Granat	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A
SiO2	37,98	37,46	37,11	37,70	37,82	37,45	37,53	37,61	37,70
TiO2	0,02	0,02	0,00	0,01	0,00	0,00	0,06	0,01	0,02
AI2O3	20,97	20,99	21,08	20,93	20,93	20,72	20,96	21,11	21,21
Cr2O3	0,04	0,00	0,03	0,02	0,01	0,04	0,03	0,01	0,00
Fe2O3	0,69	0,63	1,01	0,74	0,71	1,26	1,04	0,92	0,83
MgO	4,02	3,96	4,05	4,03	4,11	4,37	4,20	4,25	4,17
CaO	2,25	2,39	2,16	2,36	2,05	2,03	2,30	2,22	2,12
MnO	7,84	7,59	7,82	7,68	7,36	7,35	7,41	7,32	7,28
FeO	27,25	27,25	27,43	27,21	27,75	27,42	27,51	27,68	28,09
Summe	101,08	100,29	100,69	100,68	100,75	100,65	101,03	101,12	101,41
Strukturform	nel bezogen au	uf 24 Sauers	offe						
Si	6,007	5,976	5,915	5,989	6,002	5,958	5,948	5,952	5,953
AI	0,000	0,024	0,085	0,011	0,000	0,042	0,052	0,048	0,047
Tetr. Z:	6,007	6,000	6,000	6,000	6,002	6,000	6,000	6,000	6,000
Ті	0,003	0,002	0,000	0,002	0,000	0,000	0,007	0,001	0,002
AI	3,909	3,922	3,876	3,908	3,914	3,844	3,864	3,889	3,899
Cr	0,006	0,000	0,004	0,003	0,001	0,005	0,004	0,001	0,000
Fe3+	0,083	0,075	0,121	0,088	0,085	0,150	0,124	0,109	0,099
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	0,949	0,942	0,961	0,954	0,973	1,036	0,992	1,002	0,981
Ca	0,381	0,409	0,368	0,402	0,349	0,346	0,390	0,377	0,358
Mn	1,050	1,026	1,056	1,033	0,990	0,991	0,994	0,981	0,974
Fe2+	3,604	3,635	3,656	3,615	3,683	3,648	3,647	3,663	3,709
X-Pos.:	5,984	6,011	6,042	6,004	5,995	6,021	6,022	6,023	6,023
Summe	15,991	16,011	16,042	16,004	15,998	16,021	16,022	16,024	16,023
XFe	0,79	0,79	0,79	0,79	0,79	0,78	0,79	0,79	0,79
XMn	0,19	0,18	0,19	0,18	0,18	0,17	0,18	0,17	0,17
Endalieder									
Uvar.	0.14	0.00	0.09	0.06	0.02	0.13	0.11	0.02	0.00
Andr.	2.13	1.94	3.00	2.24	2.13	3.76	3.28	2.74	2.51
Gross.	4.10	4.86	3.00	4.39	3.68	1.86	3.09	3.49	3.44
Alm.	60.22	60.47	60.51	60.21	61.44	60.59	60.55	60.81	61.59
Spess.	17.55	17.06	17.48	17.20	16.51	16,46	16.51	16,29	16.17
Pyrop	15,85	15,67	15,91	15,89	16,23	17,21	16,46	16,64	16,29
XAIm	0,602	0,605	0,605	0,602	0,614	0,606	0,606	0,608	0,616
XSpess	0,176	0,171	0,175	0,172	0,165	0,165	0,165	0,163	0,162
ХРу	0,159	0,157	0,159	0,159	0,162	0,172	0,165	0,166	0,163
XGross	0,041	0,049	0,030	0,044	0,037	0,019	0,031	0,035	0,034

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Granat	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1B	GRA1B
5:02	27.64	27.61	27 47	27.26	27.61	27.90	27 / 9	27.46	27.54
5102 TiO2	0.04	0.05	0.02	0.00	0.03	0.04	0.06	0.05	0.06
A12O3	21.16	21 10	20.97	21 10	21.27	21.02	21 51	21 17	21.05
Cr2O3	0.02	0.03	20,57	21,10	0.03	0.02	0.02	0.00	0.00
Fe2O3	0,02	0,00	1.07	0,00	0,00	0,02	0,02	1.03	1 01
MaQ	4 35	4 17	4 44	4 32	4 31	4 40	4 38	4 36	4 21
CaO	2 37	2 40	2 17	2 13	2 16	2 12	1.87	2 13	2 16
MnO	7 23	7 25	7 24	7 14	7 22	7.31	7 29	7.39	7.31
FeO	27.50	27,51	27.37	27 79	27 79	27.62	28.12	27 64	27.81
Summe	101,22	100,77	100,74	100,81	101,11	101,37	101,26	101,22	101,15
	,	,						,	,
Strukturform	el bezogen au	of 24 Sauers	toffe						
Si	5,946	5,965	5,947	5,933	5,947	5,974	5,921	5,925	5,945
AI	0,054	0,035	0,053	0,067	0,053	0,026	0,079	0,075	0,055
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
ті	0.001	0.006	0.003	0.000	0.003	0.005	0.007	0.006	0.007
AI	3 886	3 910	3 870	3 882	3 910	3 881	3 925	3 871	3 873
Cr	0.003	0.004	0,000	0.000	0.003	0.002	0.002	0.000	0.000
Fe3+	0,000	0.079	0 128	0 118	0.083	0 113	0.066	0 122	0 120
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
	,	,	,	,	,	,	,	,	,
Mg	1,025	0,985	1,050	1,022	1,017	1,034	1,031	1,028	0,994
Ca	0,401	0,408	0,368	0,362	0,365	0,358	0,316	0,361	0,367
Mn	0,968	0,974	0,973	0,960	0,967	0,976	0,976	0,989	0,981
Fe2+	3,633	3,649	3,633	3,690	3,675	3,641	3,714	3,656	3,683
X-Pos.:	6,027	6,015	6,025	6,034	6,025	6,010	6,036	6,035	6,024
Summe	16,026	16,014	16,025	16,034	16,025	16,010	16,036	16,035	16,024
XFe	0.78	0.79	0.78	0.78	0.78	0.78	0.78	0.78	0.79
XMn	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17
Endglieder									
Uvar.	0,07	0,10	0,00	0,00	0,08	0,06	0,05	0,00	0,00
Andr.	2,77	2,14	3,25	2,93	2,15	2,93	1,81	3,19	3,17
Gross.	3,82	4,54	2,86	3,06	3,83	2,98	3,37	2,79	2,92
Alm.	60,29	60,66	60,30	61,15	61,00	60,59	61,53	60,58	61,14
Spess.	16,06	16,19	16,16	15,91	16,05	16,24	16,16	16,39	16,28
Pyrop	17,00	16,37	17,43	16,95	16,88	17,20	17,07	17,04	16,50
XAIm	0,603	0,607	0,603	0,612	0,610	0,606	0,615	0,606	0,611
XSpess	0,161	0,162	0,162	0,159	0,161	0,162	0,162	0,164	0,163
XPy	0,170	0,164	0,174	0,169	0,169	0,172	0,171	0,170	0,165
XGross	0,038	0,045	0,029	0,031	0,038	0,030	0,034	0,028	0,029

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Granat	4.5	4.5	4.5	4.5	4.7	4.7	4.7	4.7	4.7
	GRA1B	GRA1C	GRA1C	GRA1C	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A
SiO2	37,93	37,79	37,51	37,61	37,05	37,12	37,31	37,66	37,21
TiO2	0,02	0,05	0,00	0,04	0,02	0,01	0,02	0,04	0,04
AI2O3	21,24	21,17	21,22	21,16	21,15	21,17	21,17	21,13	21,23
Cr2O3	0,00	0,05	0,00	0,00	0,00	0,01	0,03	0,00	0,00
Fe2O3	0,54	0,35	0,45	0,36	0,59	0,92	0,50	0,71	0,89
MgO	4,34	3,81	3,83	3,39	3,30	3,46	3,60	3,82	3,91
CaO	2,12	2,17	2,21	2,31	2,40	3,16	3,11	3,06	3,11
MnO	7,49	8,23	8,47	9,07	9,79	9,28	8,40	8,25	7,94
FeO	27,49	27,37	27,00	26,95	26,15	25,77	26,23	26,30	26,48
Summe	101,16	100,99	100,68	100,90	100,46	100,88	100,37	100,97	100,81
Strukturform	nel bezogen au	uf 24 Sauers	toffe						
Si	5,984	5,991	5,968	5,984	5,934	5,913	5,953	5,966	5,912
AI	0.016	0.009	0.032	0.016	0.066	0.087	0.047	0.034	0.088
Tetr. Z:	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
				·	·		·	·	·
Ті	0,002	0,006	0,000	0,005	0,002	0,001	0,003	0,004	0,005
AI	3,934	3,946	3,946	3,952	3,926	3,887	3,933	3,911	3,889
Cr	0,000	0,007	0,000	0,000	0,000	0,002	0,004	0,001	0,000
Fe3+	0,064	0,042	0,054	0,044	0,071	0,110	0,061	0,085	0,107
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Mg	1,021	0,900	0,908	0,804	0,789	0,821	0,857	0,902	0,925
Ca	0,358	0,369	0,376	0,394	0,412	0,538	0,531	0,520	0,530
Mn	1,001	1,105	1,141	1,222	1,328	1,252	1,135	1,107	1,068
Fe2+	3,627	3,629	3,592	3,585	3,503	3,433	3,499	3,485	3,518
X-Pos.:	6,007	6,002	6,016	6,005	6,032	6,044	6,022	6,014	6,041
Summe	16,007	16,002	16,016	16,006	16,032	16,044	16,022	16,014	16,041
XFe	0.78	0.80	0.80	0.82	0.82	0.81	0.80	0.79	0.79
XMn	0,18	0,20	0,20	0,22	0,24	0,23	0,21	0,20	0,19
Endglieder									
Uvar.	0,00	0,16	0,00	0,00	0,00	0,04	0,09	0,01	0,00
Andr.	1,64	1,19	1,34	1,21	1,84	2,75	1,58	2,22	2,76
Gross.	4,32	4,79	4,91	5,36	5,00	6,12	7,15	6,42	6,00
Alm.	60,38	60,46	59,71	59,70	58,06	56,80	58,10	57,95	58,24
Spess.	16,66	18,41	18,96	20,34	22,02	20,71	18,85	18,41	17,69
Pyrop	17,00	14,99	15,09	13,39	13,08	13,58	14,23	15,00	15,31
XAIm	0 604	0 605	0 597	0.597	0.581	0.568	0.581	0 579	0.582
XSness	0 167	0 184	0 100	0 202	0.220	0 207	0 1 2 0	0 184	0 177
XPv	0 170	0 150	0 151	0 134	0,220	0 136	0 142	0 150	0 153
XGross	0.043	0,100	0,101	0,104	0,101	0,100	0,172	0,100	0,100
701035	0,043	0,040	0,049	0,004	0,000	0,001	0,071	0,004	0,000

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat
Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Granat	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7
	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A	GRA1A
SiO2	37.40	37.51	37.77	38.05	37.66	37.58	37.87	37.27	37.64	37.55
TiO2	0.02	0.04	0.01	0.07	0.00	0.01	0.06	0.05	0.04	0.04
AI2O3	21.07	20.92	21.07	20.98	20.86	21.09	21.00	21.10	21.14	20.97
Cr2O3	0.01	0.05	0.02	0.00	0.01	0.00	0.02	0.03	0.00	0.00
Fe2O3	0,60	1,11	0,81	0,73	0,76	0,99	0,79	1,16	1,06	0,99
MgO	3,90	3,81	4,00	3,96	4,02	4,10	3,99	4,15	4,19	4,12
CaO	2,93	2,97	2,86	3,02	2,98	2,86	2,75	2,76	2,92	2,82
MnO	7,90	7,88	7,63	7,60	7,40	7,46	7,49	7,42	7,37	7,37
FeO	26,40	26,86	26,93	26,61	26,62	27,00	27,22	27,11	27,01	26,97
Summe	100,23	101,16	101,09	101,02	100,32	101,09	101,18	101,04	101,38	100,82
Strukturforr	nel bezog	en auf 24 Sa	auerstoffe							
Si	5,964	5,946	5,974	6,010	5,994	5,947	5,985	5,910	5,939	5,957
AI	0,036	0,054	0,026	0,000	0,006	0,053	0,015	0,090	0,061	0,043
Tetr. Z:	6,000	6,000	6,000	6,010	6,000	6,000	6,000	6,000	6,000	6,000
ті	0.003	0 005	0.001	0 008	0 000	0.001	0 007	0.006	0 004	0.005
AI	3 924	3 855	3 901	3,906	3,906	3 880	3 897	3 853	3 870	3 877
Cr	0.001	0.007	0.003	0.000	0.002	0.000	0.002	0.004	0.000	0.000
Fe3+	0.073	0.133	0.096	0.086	0.092	0.118	0.094	0.138	0,125	0,118
Oct. Y:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Ma	0.007	0.001	0.042	0.022	0.054	0.067	0.020	0.001	0.096	0.074
NIG Co	0,927	0,901	0,943	0,933	0,954	0,967	0,939	0,961	0,960	0,974
Ca	0,501	0,504	0,460	0,511	0,509	0,465	0,400	0,469	0,493	0,479
Eo2	2 521	2 561	2 562	2,515	0,990	2 574	2 507	0,997	0,905	2,577
Y-Pos	5,521 6 017	6 025	5,505 6 012	5 077	5,545 6 004	5,574 6,026	5,597 6,004	5,595 6 042	6 020	6 020
Summe	16.017	16.025	16.012	15.986	16.003	16.026	16.004	16.042	16.029	16.019
	,	,		,	,		,		,	,
XFe	0,79	0,80	0,79	0,79	0,79	0,79	0,79	0,79	0,78	0,79
XMn	0,19	0,19	0,18	0,19	0,18	0,18	0,18	0,18	0,18	0,18
Endglieder										
Uvar.	0,02	0,17	0,07	0,00	0,04	0,00	0,06	0,09	0,00	0,00
Andr.	1,88	3,43	2,42	2,37	2,29	2,97	2,52	3,57	3,22	3,06
Gross.	6,43	4,77	5,57	6,18	6,14	5,08	5,18	4,10	4,96	4,90
Alm.	58,53	59,11	59,25	58,82	59,02	59,31	59,91	59,50	59,12	59,42
Spess.	17,73	17,57	17,00	17,02	16,63	16,59	16,69	16,50	16,34	16,44
Pyrop	15,41	14,95	15,69	15,61	15,88	16,04	15,64	16,24	16,35	16,18
XAIm	0,585	0,591	0,593	0,588	0,590	0,593	0,599	0,595	0,591	0,594
XSpess	0,177	0,176	0,170	0,170	0,166	0,166	0,167	0,165	0,163	0,164
ХРу	0,154	0,150	0,157	0,156	0,159	0,160	0,156	0,162	0,164	0,162
XGross	0,064	0,048	0,056	0,062	0,061	0,051	0,052	0,041	0,050	0,049

Fortsetzung Tab. H.1: Mikrosondenanalysen von Granat

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Staurolith	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2
	STAU1-1	STAU1-2	STAU1-3	STAU1-4	STAU1-5	STAU1-6	STAU1-7	STAU2-1	STAU2-2
SiO	27 20	27 69	27 43	27 02	27 74	27 78	27 50	27 81	27 75
	0.46	0.51	0.51	0.51	0.53	0.49	0.53	0.45	0.50
	53 42	53.28	53.05	53 49	53 17	53 72	53 44	54.06	54 12
Cr ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MaO	2.03	2.23	2.22	2.28	2.25	2.16	2.08	2.02	2.07
CaO	0,00	0,00	0,00	0.00	0,00	0,00	0,00	0.00	0.00
MnO	0,65	0,70	0,71	0,72	0,66	0,60	0,66	0,61	0,62
FeO	13,52	13,75	13,35	13,88	13,77	13,58	14,01	13,19	13,22
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,31	0,36	0,68	0,37	0,55	0,38	0,42	0,43	0,41
Summe	97,60	98,53	97,95	98,28	98,66	98,71	98,64	98,58	98,68
Strukturform	nel hezogen :	auf 23 Sauer	stoffe						
Si	3 800	3 836	3 824	3 761	3 841	3 834	3 811	3 836	3 825
Ti	0.049	0.054	0.053	0.054	0.055	0.051	0.056	0.047	0.052
AI	8.795	8.699	8,716	8.773	8.677	8,739	8.729	8,789	8,791
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mq	0,423	0,460	0,462	0,474	0,465	0,445	0,430	0,416	0,424
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,077	0,082	0,083	0,084	0,077	0,071	0,077	0,071	0,072
Fe	1,579	1,593	1,557	1,616	1,595	1,567	1,623	1,522	1,523
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,032	0,037	0,070	0,038	0,056	0,039	0,043	0,044	0,041
Formelbese	tzuna								
Si	3.800	3,836	3.824	3,761	3.841	3,834	3.811	3,836	3.825
AI(IV)	0.200	0,164	0,021	0.239	0.159	0.166	0.189	0.164	0.175
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
	8 505	9 525	9.540	9 524	9 5 1 9	9 572	9 540	9 625	9 6 1 6
	0,000	0,000	0,000	0,000	0,010	0,000	0,000	0,025	0,010
Ti	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Summe:	8,644	8,589	8,593	8,588	8,573	8,624	8,596	8,672	8,668
Mg	0,423	0,460	0,462	0,474	0,465	0,445	0,430	0,416	0,424
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,077	0,082	0,083	0,084	0,077	0,071	0,077	0,071	0,072
Fe2+	1,579	1,593	1,557	1,616	1,595	1,567	1,623	1,522	1,523
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,032	0,037	0,070	0,038	0,056	0,039	0,043	0,044	0,041
Summe:	2,111	2,172	2,172	2,212	2,193	2,122	2,173	2,053	2,060
i otal:	14,755	14,761	14,765	14,800	14,766	14,746	14,769	14,725	14,728
XMg	0,204	0,215	0,220	0,218	0,218	0,214	0,202	0,207	0,210

Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Staurolith	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2
	STAU2-3G	STAU2-4	STAU2-5	STAU2-6	STAU2-7	STAU2-8G	STAU3-1	STAU3-2	STAU3-3
8:0	27.56	27 45	27.22	27 56	27.65	27.52	26.06	27 55	27.65
310 ₂	27,50	27,45	27,23	27,50	27,00	27,55	20,90	27,55	27,05
	0,40 54.04	0,35 52,40	0,40 54.22	52.00	52.95	0,50	0,31 52.79	0,40 52.49	52.99
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2 17	2.14	2.08	2 10	2 18	2 10	2,06	2.18	2.05
CaO	2,17	2,14	2,00	2,10	2,10	2,10	2,00	2,10	2,00
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	13 36	13 32	12.86	13.05	13.43	13 13	13 19	13.06	13 28
CuO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ZnO	0,00	0,39	0.44	0,36	0.38	0.56	0.46	0.33	0.29
Summe	98,61	97,91	97,91	98,23	98,69	99,05	97,62	97,72	98,41
Strukturfor	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,805	3,819	3,779	3,816	3,817	3,783	3,764	3,832	3,822
11	0,050	0,058	0,050	0,053	0,052	0,058	0,053	0,051	0,061
AI	8,793	8,756	8,870	8,795	8,762	8,829	8,847	8,769	8,779
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,446	0,444	0,430	0,434	0,448	0,430	0,429	0,452	0,422
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Min Fe	0,070	0,078	0,072	0,088	0,082	0,077	0,079	0,074	0,079
re Cu	1,542	1,550	1,493	1,511		1,510	1,540	1,520	1,535
Cu Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
211	0,041	0,040	0,045	0,037	0,039	0,057	0,047	0,034	0,030
Formelbese	tzung								
Si	3,805	3,819	3,779	3,816	3,817	3,783	3,764	3,832	3,822
AI(IV)	0,195	0,181	0,221	0,184	0,183	0,217	0,236	0,168	0,178
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,598	8,575	8,649	8,611	8,579	8,612	8,611	8,601	8,601
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,050	0,058	0,050	0,053	0,052	0,058	0,053	0,051	0,061
Summe:	8,648	8,633	8,699	8,664	8,631	8,670	8,664	8,652	8,662
Ma	0 446	0 444	0 430	0 434	0 448	0 430	0 429	0 452	0 422
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,000	0.078	0.072	0.088	0.082	0,000	0,000	0.074	0,000
 Fe2+	1 542	1 550	1 493	1 511	1 551	1 510	1 540	1 520	1,535
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0.041	0.040	0.045	0.037	0.039	0.057	0.047	0.034	0.030
Summe:	2.099	2.112	2.040	2.070	2.120	2.074	2.095	2.080	2.066
Total:	14,747	14,745	14,739	14,734	14,751	14,744	14,759	14,732	14,728
		<i>.</i>		<i>z</i> - :					
хМд	0,217	0,214	0,216	0,214	0,215	0,213	0,209	0,221	0,207

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Staurolith	8.2	8.2	8.2	8.2	8.2	8.2	8.3	8.3	8.3
	STAU3-4	STAU4-1	STAU5-1	STAU5-2	STAU5-3	STAU5-4	STAU1-1	STAU1-2	STAU1-3
SiO ₂	27,37	27,57	27,76	27,65	27,66	27,65	26,89	27,07	27,05
TiO ₂	0,51	0,53	0,57	0,46	0,54	0,49	0,41	0,48	0,49
	54,72	54,88	53,62	53,01	53,24	53,23	53,28	53,19	52,92
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	1,92	1,88	2,16	2,26	2,07	2,18	1,73	2,28	2,14
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,67	0,74	0,64	0,64	0,71	0,66	0,66	0,69	0,63
FeO	12,60	12,55	13,96	13,87	13,65	13,99	13,37	14,18	13,90
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,33	0,53	0,37	0,32	0,37	0,37	0,48	0,55	0,33
Summe	98,12	98,67	99,08	98,22	98,23	98,57	96,81	98,44	97,46
Strukturforn	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,782	3,791	3,826	3,843	3,841	3,833	3,789	3,770	3,794
Ті	0,053	0,055	0,059	0,048	0,056	0,051	0,043	0,050	0,052
AI	8,911	8,893	8,710	8,684	8,714	8,696	8,846	8,731	8,748
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,395	0,386	0,444	0,469	0,428	0,451	0,363	0,473	0,448
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,078	0,086	0,075	0,076	0,083	0,077	0,079	0,081	0,075
Fe	1,456	1,443	1,609	1,612	1,585	1,622	1,575	1,652	1,631
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,034	0,053	0,037	0,033	0,038	0,038	0,050	0,057	0,034
Formelbeset	tzung								
Si	3,782	3,791	3,826	3,843	3,841	3,833	3,789	3,770	3,794
AI(IV)	0,218	0,209	0,174	0,157	0,159	0,167	0,211	0,230	0,206
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,693	8,684	8,536	8,527	8,555	8,529	8,635	8,501	8,542
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,053	0,055	0,059	0,048	0,056	0,051	0,043	0,050	0,052
Summe:	8,746	8,739	8,595	8,575	8,611	8,580	8,678	8,551	8,594
Mg	0,395	0,386	0,444	0,469	0,428	0,451	0,363	0,473	0,448
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,078	0,086	0,075	0,076	0,083	0,077	0,079	0,081	0,075
Fe2+	1,456	1,443	1,609	1,612	1,585	1,622	1,575	1,652	1,631
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,034	0,053	0,037	0,033	0,038	0,038	0,050	0,057	0,034
Summe:	1,963	1,968	2,165	2,190	2,134	2,188	2,067	2,263	2,188
Total:	14,709	14,707	14,760	14,765	14,745	14,768	14,745	14,814	14,782
XMg	0,205	0,201	0,209	0,217	0,204	0,210	0,180	0,215	0,208

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Staurolith	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3
	STAU1-4	STAU1-5	STAU1-6	STAU1-7	STAU1-8	STAU1-9	STAU1-10	STAU2-1	STAU2-2
SiO	27.86	27 47	27 52	27 47	27 /0	27.68	27 56	27 37	27 53
	27,00	0.50	0.57	0.52	27,45	27,00	27,50	27,37	0.51
	52 92	52 27	53 18	53 52	53 21	53 27	53 92	54 10	53 78
Cr ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00
MaQ	2 26	2 31	2,30	2,35	2 23	2,32	2,34	2 11	2 14
CaO	0.00	0,00	0,00	0,00	0.00	0.00	0.00	0.00	0,00
MnO	0,65	0,60	0,61	0,68	0.70	0.51	0,61	0,64	0,69
FeO	13.77	14.10	13.80	13.55	13.56	14.32	13.49	13.59	13.72
CuO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ZnO	0.35	0.42	0.56	0.46	0.49	0.43	0.37	0.41	0.57
Summe	98,30	97,67	98,54	98,55	98,19	99,02	98,70	98,69	98,95
Strukturform	nal hazagan d	ouf 22 Souce	otoffo						
Strukturiorii	2 967		2 0 1 0	2 904	2 9 2 2	2 924	3 905	2 7 9 2	2 901
51 Ті	0.052	0.053	0.050	0.054	0.053	0.052	0.041	0.048	0.053
11 Al	0,052	0,000	0,039	9,034	0,033	9,052	0,041	0,048	0,055
Ai Cr	0,000	0,001	0,094	0,735	0,719	0,074	0,773	0,011	0,751
Ma	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,407	0,400	0,475	0,400	0,402	0,470	0,402	0,435	0,441
Mn	0,000	0,000	0,000	0,000	0.082	0,000	0,000	0,000	0,000
Fe	1 598	1 653	1 601	1,570	1,577	1 654	1 557	1,570	1,584
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,036	0,044	0,057	0,047	0,050	0,043	0,038	0,042	0,059
F									
Formelbese	tzung	0.040	0.040	0.004	0.000	0.004	0.005	0 700	0.004
51	3,867	3,849	3,818	3,804	3,822	3,824	3,805	3,782	3,801
AI(IV)	0,133	0,151	0,182	0,196	0,178	0,176	0,195	0,218	0,199
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,523	8,480	8,512	8,539	8,541	8,498	8,578	8,593	8,552
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,052	0,053	0,059	0,054	0,053	0,052	0,041	0,048	0,053
Summe:	8,575	8,533	8,571	8,593	8,594	8,550	8,619	8,641	8,605
Μα	0.467	0.483	0.475	0.485	0.462	0.478	0.482	0.435	0.441
Ca	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.077	0.071	0.072	0.080	0.082	0.060	0.071	0.075	0.080
Fe2+	1.598	1.653	1.601	1.570	1.577	1.654	1.557	1.570	1.584
Cu	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Zn	0.036	0.044	0.057	0,047	0.050	0.043	0.038	0,042	0.059
Summe:	2,178	2,251	2,205	2,182	2,171	2,235	2,148	2,122	2,164
Total:	14,753	14,784	14,776	14,775	14,765	14,785	14,767	14,763	14,769
XMa	0.218	0.219	0.221	0.227	0.218	0.218	0.228	0.209	0.210
	-, -	., .,			., .	-, -	., ,	.,	-, -

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Staurolith	8.3	8.6	8.6	8.6	8.6	8.6	8.6	8.7	8.7
	STAU2-3	STAU1-1	STAU1-2	STAU1-3	STAU1-4	STAU1-5	STAU1-6	STAU1-1	STAU1-2
SiO ₂	27.39	27.65	27.68	27.29	27.68	27.86	27.63	27.37	27.66
TiO	0.53	0.51	0.55	0.49	0.44	0.49	0.48	0.48	0.48
Al ₂ O ₃	53,42	53,40	53,66	53,24	53,54	54,15	53,68	53,43	53,11
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	2,18	2,31	2,14	2,02	2,23	1,92	1,88	2,15	2,16
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,72	0,61	0,58	0,57	0,61	0,63	0,68	0,64	0,63
FeO	13,74	13,99	13,79	13,61	13,12	13,47	13,19	13,22	13,48
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,58	0,40	0,38	0,43	0,34	0,50	0,37	0,56	0,34
Summe	98,56	98,88	98,77	97,65	97,95	99,01	97,91	97,84	97,86
Strukturforn	nel bezogen a	auf 23 Sauer	stoffe						
Si	3.799	3.821	3.822	3.812	3.841	3.832	3.838	3.812	3.851
Ті	0,056	0,053	0,057	0,052	0,046	0,051	0,050	0,050	0,050
AI	8,734	8,698	8,735	8,766	8,757	8,778	8,789	8,771	8,714
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,451	0,476	0,440	0,421	0,462	0,394	0,389	0,447	0,448
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,084	0,071	0,067	0,068	0,071	0,074	0,080	0,075	0,074
Fe	1,594	1,617	1,593	1,590	1,523	1,549	1,533	1,540	1,569
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,059	0,041	0,038	0,044	0,034	0,050	0,038	0,057	0,035
Formelbese	tzuna								
Si	3,799	3,821	3,822	3,812	3,841	3,832	3,838	3,812	3,851
AI(IV)	0,201	0,179	0,178	0,188	0,159	0,168	0,162	0,188	0,149
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8 533	8 519	8 557	8 578	8 598	8 610	8 627	8 583	8 565
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ti	0.056	0.053	0.057	0.052	0.046	0.051	0.050	0.050	0.050
Summe:	8,589	8,572	8,614	8,630	8,644	8,661	8,677	8,633	8,615
Ma	0.451	0.476	0.440	0 421	0.462	0 304	0 380	0 447	0 448
Ca	0,451	0,470	0,440	0,421	0,402	0,094	0,509	0,447	0,440
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fo2+	1 594	1 617	1 593	1 590	1 523	1 549	1 533	1 540	1 569
Cu	0 000	0 000	0.000	0.000	0 000	0 000	0.000	0 000	0 000
Zn	0.059	0.041	0.038	0.044	0.034	0.050	0.038	0.057	0.035
Summe:	2.188	2.205	2.138	2.123	2.090	2.067	2.040	2.119	2.126
Total:	14,777	14,777	14,752	14,753	14,734	14,728	14,717	14,752	14,741
XMg	0,212	0,220	0,210	0,202	0,225	0,195	0,194	0,217	0,214

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM039	IMM039	IMM039
Staurolith	8.7	8.7	8.7	8.7	8.7	8.7	5.2	5.2	5.2
	STAU1-3	STAU1-4	STAU1-5	STAU1-6	STAU1-7	STAU1-8	STAU1-1	STAU1-2	STAU1-3
SiO ₂	27,98	27,76	27,58	27,43	27,24	27,35	26,94	27,47	27,06
TiO ₂	0,52	0,55	0,53	0,48	0,41	0,44	0,62	0,64	0,63
Al ₂ O ₃	53,61	54,10	53,72	53,66	53,66	54,01	53,49	52,74	53,03
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	2,15	2,20	2,21	2,02	2,07	2,14	1,96	2,11	1,95
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,60	0,61	0,66	0,67	0,64	0,61	0,51	0,51	0,42
FeO	13,46	13,46	12,96	13,03	13,02	13,00	13,72	13,98	13,61
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,30	0,54	0,44	0,45	0,62	0,41	0,55	0,49	0,44
Summe	98,63	99,22	98,10	97,73	97,64	97,95	97,79	97,94	97,14
Strukturforn	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,860	3,813	3,822	3,817	3,799	3,796	3,765	3,834	3,800
Ті	0,054	0,057	0,056	0,050	0,043	0,045	0,065	0,067	0,067
AI	8,717	8,758	8,776	8,803	8,820	8,835	8,808	8,677	8,776
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,442	0,451	0,456	0,419	0,431	0,442	0,407	0,439	0,408
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,071	0,071	0,078	0,079	0,075	0,072	0,061	0,061	0,050
Fe	1,553	1,546	1,502	1,517	1,518	1,509	1,603	1,632	1,598
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,031	0,055	0,045	0,046	0,063	0,042	0,057	0,051	0,045
Formelbeset	tzung								
Si	3,860	3,813	3,822	3,817	3,799	3,796	3,765	3,834	3,800
AI(IV)	0,140	0,187	0,178	0,183	0,201	0,204	0,235	0,166	0,200
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,577	8,571	8,598	8,620	8,619	8,631	8,573	8,511	8,576
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,054	0,057	0,056	0,050	0,043	0,045	0,065	0,067	0,067
Summe:	8,631	8,628	8,654	8,670	8,662	8,676	8,638	8,578	8,643
Mg	0,442	0,451	0,456	0,419	0,431	0,442	0,407	0,439	0,408
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,071	0,071	0,078	0,079	0,075	0,072	0,061	0,061	0,050
Fe2+	1,553	1,546	1,502	1,517	1,518	1,509	1,603	1,632	1,598
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,031	0,055	0,045	0,046	0,063	0,042	0,057	0,051	0,045
Summe:	2,097	2,123	2,081	2,061	2,087	2,065	2,128	2,183	2,101
Total:	14,728	14,751	14,735	14,731	14,749	14,741	14,766	14,761	14,744
XMg	0,214	0,218	0,224	0,208	0,213	0,219	0,197	0,206	0,199

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039
Staurolith	5.2	5.2	5.2	5.2	5.3	5.3	5.4	5.4	5.4
	STAU1-4	STAU1-5	STAU1-6	STAU1-7	STAU1-1	STAU1-2	STAU1-1	STAU1-2	STAU1-3
SiO ₂	28.00	27.69	27.89	27.63	27.58	27.78	27.05	27.33	27.45
TiO	0.63	0.58	0.54	0.61	0.62	0.66	0.61	0.70	0.79
	52,92	52,68	53,29	53,64	53,36	53,23	53,93	53,01	53,19
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	2,05	2,00	1,79	1,97	1,84	1,89	1,46	1,73	1,59
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,49	0,43	0,45	0,54	0,47	0,51	0,57	0,56	0,56
FeO	13,88	13,47	12,62	13,52	13,10	12,97	13,08	13,27	12,74
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,50	0,53	0,52	0,62	0,63	0,53	0,55	0,50	0,49
Summe	98,48	97,37	97,11	98,51	97,60	97,57	97,24	97,09	96,82
Strukturforn	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,880	3,875	3,893	3,825	3,846	3,869	3,785	3,834	3,850
Ті	0,065	0,061	0,057	0,063	0,065	0,069	0,064	0,074	0,084
AI	8,644	8,687	8,766	8,752	8,767	8,737	8,894	8,765	8,793
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,424	0,417	0,373	0,406	0,381	0,392	0,305	0,362	0,332
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,058	0,050	0,053	0,063	0,056	0,060	0,068	0,066	0,066
Fe	1,609	1,576	1,473	1,565	1,528	1,511	1,531	1,556	1,495
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,051	0,055	0,054	0,063	0,065	0,055	0,057	0,052	0,051
Formelbeset	tzung								
Si	3,880	3,875	3,893	3,825	3,846	3,869	3,785	3,834	3,850
AI(IV)	0,120	0,125	0,107	0,175	0,154	0,131	0,215	0,166	0,150
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,524	8,562	8,659	8,577	8,613	8,606	8,679	8,599	8,643
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,065	0,061	0,057	0,063	0,065	0,069	0,064	0,074	0,084
Summe:	8,589	8,623	8,716	8,640	8,678	8,675	8,743	8,673	8,727
Mg	0,424	0,417	0,373	0,406	0,381	0,392	0,305	0,362	0,332
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,058	0,050	0,053	0,063	0,056	0,060	0,068	0,066	0,066
Fe2+	1,609	1,576	1,473	1,565	1,528	1,511	1,531	1,556	1,495
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,051	0,055	0,054	0,063	0,065	0,055	0,057	0,052	0,051
Summe:	2,142	2,098	1,953	2,097	2,030	2,018	1,961	2,036	1,944
Total:	14,731	14,721	14,669	14,737	14,708	14,693	14,704	14,709	14,671
XMg	0,203	0,204	0,196	0,200	0,194	0,200	0,160	0,183	0,175

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039
Staurolith	5.4	5.4	5.4	5.6	5.6	5.6	5.6	5.6	5.6
	STAU1-4	STAU1-5	STAU1-6	STAU1-1	STAU1-2	STAU1-3	STAU1-4	STAU1-5	STAU1-6
SiO ₂	27,06	27,48	27,30	26,36	27,45	27,23	27,13	27,70	27,31
TiO ₂	0,60	0,65	0,48	0,66	0,58	0,57	0,56	0,64	0,61
Al ₂ O ₃	53,43	53,74	54,11	52,74	53,24	52,94	52,89	53,12	53,12
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	1,64	1,59	1,70	1,88	1,88	1,95	1,89	1,84	1,80
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,52	0,54	0,51	0,50	0,54	0,44	0,54	0,55	0,47
FeO	13,39	13,05	12,90	14,04	13,57	13,88	13,93	13,12	13,62
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,51	0,73	0,47	0,40	0,46	0,47	0,46	0,56	0,39
Summe	97,15	97,78	97,47	96,58	97,71	97,49	97,41	97,52	97,31
Strukturforn	nel bezogen a	auf 23 Sauers	stoffe						
Si	3,797	3,826	3,804	3,737	3,830	3,816	3,808	3,864	3,826
Ті	0,063	0,068	0,050	0,071	0,060	0,060	0,059	0,067	0,064
AI	8,835	8,817	8,885	8,813	8,756	8,742	8,748	8,734	8,769
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,343	0,329	0,353	0,398	0,390	0,408	0,396	0,383	0,376
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,062	0,064	0,061	0,061	0,064	0,053	0,064	0,065	0,055
Fe	1,572	1,519	1,503	1,665	1,583	1,627	1,635	1,530	1,596
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,053	0,075	0,048	0,041	0,047	0,049	0,048	0,058	0,040
Formelbeset	tzung								
Si	3,797	3,826	3,804	3,737	3,830	3,816	3,808	3,864	3,826
AI(IV)	0,203	0,174	0,196	0,263	0,170	0,184	0,192	0,136	0,174
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,632	8,643	8,689	8,550	8,586	8,558	8,556	8,598	8,595
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,063	0,068	0,050	0,071	0,060	0,060	0,059	0,067	0,064
Summe:	8,695	8,711	8,739	8,621	8,646	8,618	8,615	8,665	8,659
Mg	0,343	0,329	0,353	0,398	0,390	0,408	0,396	0,383	0,376
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,062	0,064	0,061	0,061	0,064	0,053	0,064	0,065	0,055
Fe2+	1,572	1,519	1,503	1,665	1,583	1,627	1,635	1,530	1,596
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,053	0,075	0,048	0,041	0,047	0,049	0,048	0,058	0,040
Summe:	2,030	1,987	1,965	2,165	2,084	2,137	2,143	2,036	2,067
Total:	14,725	14,698	14,704	14,786	14,730	14,755	14,758	14,701	14,726
XMg	0,173	0,172	0,184	0,187	0,192	0,195	0,189	0,193	0,186

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM039	IMM039	IMM039	IMM039	IMM039	IMM044	IMM044	IMM044	IMM044
Staurolith	5.6	5.8	5.8	5.8	5.8	1.1	1.1	1.1	1.1
	STAU1-7	STAU1-1	STAU1-2	STAU1-3	STAU1-4	STAU1-1	STAU1-2	STAU1-3	STAU1-4
SiO ₂	27,32	27,59	27,51	27,67	27,86	27,35	27,73	27,67	27,46
TiO ₂	0,57	0,58	0,59	0,67	0,53	0,58	0,53	0,50	0,56
Al ₂ O ₃	52,93	53,65	52,84	53,09	53,35	52,79	53,05	52,80	53,04
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	1,85	1,68	1,69	1,92	1,80	2,32	2,29	2,24	2,45
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,52	0,56	0,55	0,46	0,49	0,59	0,64	0,65	0,68
FeO	13,67	13,20	13,96	13,44	13,05	14,45	14,58	14,05	14,39
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,35	0,45	0,54	0,45	0,41	0,12	0,18	0,34	0,12
Summe	97,22	97,72	97,67	97,69	97,49	98,20	99,01	98,24	98,69
Strukturforn	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,832	3,840	3,850	3,856	3,880	3,812	3,834	3,850	3,807
Ті	0,060	0,061	0,062	0,070	0,055	0,061	0,055	0,052	0,059
AI	8,751	8,800	8,714	8,721	8,757	8,671	8,646	8,658	8,667
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,387	0,349	0,352	0,399	0,374	0,481	0,472	0,464	0,507
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,062	0,066	0,065	0,054	0,058	0,070	0,075	0,077	0,080
Fe	1,604	1,536	1,633	1,566	1,520	1,685	1,686	1,634	1,668
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,037	0,046	0,056	0,046	0,042	0,012	0,019	0,035	0,012
Formelbeset	tzung								
Si	3,832	3,840	3,850	3,856	3,880	3,812	3,834	3,850	3,807
AI(IV)	0,168	0,160	0,150	0,144	0,120	0,188	0,166	0,150	0,193
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,583	8,640	8,564	8,577	8,637	8,483	8,480	8,508	8,474
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,060	0,061	0,062	0,070	0,055	0,061	0,055	0,052	0,059
Summe:	8,643	8,701	8,626	8,647	8,692	8,544	8,535	8,560	8,533
Mg	0,387	0,349	0,352	0,399	0,374	0,481	0,472	0,464	0,507
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,062	0,066	0,065	0,054	0,058	0,070	0,075	0,077	0,080
Fe2+	1,604	1,536	1,633	1,566	1,520	1,685	1,686	1,634	1,668
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,037	0,046	0,056	0,046	0,042	0,012	0,019	0,035	0,012
Summe:	2,090	1,997	2,106	2,065	1,994	2,248	2,252	2,210	2,267
Total:	14,733	14,698	14,732	14,712	14,686	14,792	14,787	14,770	14,800
XMg	0,189	0,179	0,172	0,198	0,192	0,215	0,212	0,213	0,225

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044
Staurolith	1.1	1.1	1.1	1.2	1.2	1.2	1.2	1.3	1.3
	STAU1-5	STAU1-6	STAU1/2	STAU1-1	STAU1-2	STAU1-3	STAU1-4	STAU1-1	STAU1-2
SiO	27 74	27 13	27 25	27.39	27 46	27.37	27 45	27 26	27.51
	0.62	0.58	0.56	0.57	0.59	0.54	0.54	0.53	0.56
	53.10	53.44	53.44	53.51	53.81	52.77	53.41	53.73	53.69
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MaO	2.43	2.37	2.34	2.30	2.26	2.46	2.22	2.24	2.12
CaO	0,00	0.00	0,00	0.00	0,00	0,00	0,00	0,00	0,00
MnO	0,66	0,61	0,74	0,61	0,57	0,60	0,65	0,66	0,54
FeO	14,11	14,25	13,92	13,60	13,89	14,37	14,34	13,85	13,81
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,23	0,21	0,31	0,31	0,34	0,17	0,08	0,14	0,19
Summe	98,88	98,57	98,55	98,29	98,91	98,29	98,69	98,41	98,40
Strukturforn	nel bezogen a	auf 23 Sauer	stoffe						
Si	3.833	3.765	3.781	3.800	3.790	3.811	3.802	3.780	3.810
Ti	0.064	0.060	0.058	0.059	0.061	0.056	0.056	0.055	0.058
AI	8.649	8.742	8.738	8,749	8.753	8.660	8.720	8.780	8.764
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mq	0,501	0,489	0,483	0,476	0,464	0,512	0,458	0,462	0,437
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,078	0,072	0,087	0,072	0,067	0,071	0,077	0,078	0,063
Fe	1,630	1,654	1,614	1,578	1,604	1,674	1,661	1,606	1,600
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,023	0,022	0,031	0,032	0,034	0,018	0,008	0,014	0,019
Formelbese	tzuna								
Si	3.833	3.765	3.781	3.800	3.790	3.811	3.802	3.780	3.810
AI(IV)	0,167	0,235	0,219	0,200	0,210	0,189	0,198	0,220	0,190
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8 482	8 507	8 519	8 549	8 543	8 471	8 522	8 560	8 574
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ti	0.064	0.060	0.058	0.059	0.061	0.056	0.056	0.055	0.058
Summe:	8,546	8,567	8,577	8,608	8,604	8,527	8,578	8,615	8,632
Ma	0 501	0 489	0 483	0.476	0.464	0 512	0 458	0 462	0 437
Ca	0,000	0,409	0,405	0,470	0,404	0,012	0,450	0,402	0,437
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fo2+	1 630	1 654	1 614	1 578	1 604	1 674	1 661	1,606	1 600
Cu	0 000	0 000	0 000	0 000	0 000	0 000	0 000	0 000	0 000
Zn	0.023	0.022	0.031	0.032	0.034	0.018	0.008	0.014	0.019
Summe:	2.232	2.237	2.215	2.158	2.169	2.275	2.204	2.160	2.119
Total:	14,778	14,804	14,792	14,766	14,773	14,802	14,782	14,775	14,751
XMa	0 227	0 224	0 221	0.004	0.017	0 227	0 200	0.215	0 200
AWIY	0,227	0,221	0,221	0,224	0,217	0,227	0,208	0,215	0,208

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM051	IMM051
Staurolith	1.3	1.3	1.4	1.4	1.4	1.4	1.4	9.1	9.1
	STAU1-3	STAU1-4	STAU1-1	STAU1-2	STAU1-3	STAU1-4	STAU1-5	STAU1-1	STAU1-2
SiO ₂	27,75	27,38	27,49	27,50	27,55	27,57	27,75	27,00	27,41
TiO ₂	0,55	0,59	0,60	0,51	0,53	0,54	0,54	0,56	0,64
Al ₂ O ₃	53,65	52,95	53,70	54,24	53,88	53,38	53,74	53,44	53,30
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	2,29	2,34	1,95	2,19	2,19	2,17	2,12	1,76	2,01
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,62	0,64	0,51	0,58	0,51	0,51	0,56	0,67	0,63
FeO	13,61	13,97	13,17	12,67	13,46	14,09	13,48	14,11	14,17
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,34	0,21	0,19	0,22	0,38	0,30	0,15	0,52	0,45
Summe	98,80	98,08	97,60	97,91	98,49	98,55	98,35	98,05	98,61
Strukturforn	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,828	3,814	3,825	3,807	3,809	3,821	3,837	3,771	3,805
Ті	0,057	0,062	0,063	0,053	0,055	0,056	0,057	0,059	0,066
AI	8,721	8,693	8,806	8,847	8,778	8,718	8,757	8,796	8,718
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,471	0,485	0,404	0,453	0,451	0,448	0,437	0,366	0,416
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,073	0,075	0,060	0,068	0,059	0,060	0,065	0,079	0,073
Fe	1,570	1,627	1,532	1,466	1,556	1,632	1,559	1,647	1,645
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,034	0,022	0,020	0,022	0,039	0,030	0,015	0,054	0,046
Formelbeset	tzung								
Si	3,828	3,814	3,825	3,807	3,809	3,821	3,837	3,771	3,805
AI(IV)	0,172	0,186	0,175	0,193	0,191	0,179	0,163	0,229	0,195
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,549	8,507	8,631	8,654	8,587	8,539	8,594	8,567	8,523
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,057	0,062	0,063	0,053	0,055	0,056	0,057	0,059	0,066
Summe:	8,606	8,569	8,694	8,707	8,642	8,595	8,651	8,626	8,589
Mg	0,471	0,485	0,404	0,453	0,451	0,448	0,437	0,366	0,416
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,073	0,075	0,060	0,068	0,059	0,060	0,065	0,079	0,073
Fe2+	1,570	1,627	1,532	1,466	1,556	1,632	1,559	1,647	1,645
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,034	0,022	0,020	0,022	0,039	0,030	0,015	0,054	0,046
Summe:	2,148	2,209	2,016	2,009	2,105	2,170	2,076	2,146	2,180
Total:	14,754	14,778	14,710	14,716	14,747	14,765	14,727	14,772	14,769
XMg	0,223	0,222	0,203	0,228	0,218	0,209	0,212	0,175	0,195

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051
Staurolith	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1	9.1
	STAU1-3	STAU1-4	STAU1-5	STAU1-6	STAU1-7	STAU1-8	STAU1-9	STAU1-10	STAU2-1
SiO	27 22	27 35	27 10	27 39	27 48	27 29	26.68	27 33	27 25
	0.55	0.64	0.62	0.54	0.55	0.58	0.58	0.52	0.69
	52 91	53 35	52 91	53 72	53 34	53 43	53 72	53 72	52 65
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MaO	2.10	2.10	2,12	1.99	1.97	1.97	1.72	2.07	2.08
CaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MnO	0,59	0,58	0,55	0.63	0,60	0,60	0,52	0,61	0,59
FeO	14,00	14,34	14,49	14,03	14,02	13,97	13,66	13,77	14,30
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,53	0,44	0,47	0,62	0,40	0,62	0,48	0,58	0,34
Summe	97,90	98,80	98,25	98,92	98,36	98,46	97,35	98,60	97,89
Strukturforn	nel hezogen :	auf 23 Sauer	stoffe						
Si	3 805	3 702	3 783	3 789	3 818	3 793	3 742	3 788	3 812
Ti	0.058	0.067	0,765	0.056	0.057	0,755	0.061	0.054	0.072
ΔΙ	8 716	8 716	8 706	8 759	8 734	8 751	8 881	8 774	8 680
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ma	0.438	0.433	0.440	0.410	0.407	0.409	0.359	0.428	0.434
Ca	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.070	0.068	0.066	0.073	0.071	0.071	0.062	0.071	0.070
Fe	1,636	1,662	1,692	1,624	1,629	1,624	1,603	1,596	1,673
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,055	0,045	0,049	0,064	0,041	0,063	0,050	0,059	0,035
Formelbeset	tzuna								
Si	3 805	3 792	3 783	3 789	3 818	3 793	3 742	3 788	3 812
	0,195	0.208	0.217	0.211	0,182	0,207	0.258	0,212	0.188
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
	8,521	8,508	8,489	8,548	8,552	8,544	8,623	8,562	8,492
Cr T:	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
II Summo:	0,058	0,067	0,065	0,056	0,057	0,060	0,001	0,054	0,072
Summe.	0,579	0,070	0,004	0,004	8,009	0,004	0,004	0,010	0,504
Mg	0,438	0,433	0,440	0,410	0,407	0,409	0,359	0,428	0,434
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,070	0,068	0,066	0,073	0,071	0,071	0,062	0,071	0,070
Fe2+	1,636	1,662	1,692	1,624	1,629	1,624	1,603	1,596	1,673
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,055	0,045	0,049	0,064	0,041	0,063	0,050	0,059	0,035
Summe:	2,199	2,208	2,247	2,171	2,148	2,167	2,074	2,154	2,212
i otal:	14,778	14,783	14,801	14,775	14,757	14,771	14,758	14,770	14,776
XMg	0,204	0,200	0,200	0,195	0,193	0,194	0,177	0,204	0,199

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051
Staurolith	9.1	9.1	9.1	9.1	9.1	9.3	9.3	9.3	9.3
	STAU2-2	STAU2-3	STAU2-4	STAU2-5	STAU2-6	STAU1-1	STAU1-2	STAU1-3	STAU1-4
SiO	27 55	27 43	27 21	26 95	26 89	27 55	27 72	27 46	27.38
	0.66	0.67	0.70	0.70	0.72	0.83	0.61	0.60	0.58
	53,28	52.94	52,71	52,72	52.24	54.43	54.04	53.58	54.36
Cr ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MaO	2.21	2.12	2.13	2.17	2.11	1.92	1.97	1.93	1.86
CaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MnO	0.61	0.53	0.59	0.62	0.55	0.65	0.59	0.65	0.59
FeO	14.27	14.04	14.28	14.40	14.25	12.43	12.85	13.56	13.11
CuO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ZnO	0,39	0,32	0,62	0,48	0,47	0,46	0,58	0,64	0,54
Summe	98,98	98,03	98,23	98,04	97,24	98,28	98,35	98,42	98,41
Strukturforn	nel bezogen :	auf 23 Sauer	stoffe						
Si	3 810	3 823	3 700	3 772	3 702	3 801	3 820	3 810	3 786
Ti	0.069	0,020	0.074	0.074	0.077	0.087	0.063	0.062	0,060
Δ1	8 684	8,696	8 674	8 697	8 683	8 849	8 798	8 761	8 857
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ma	0,456	0 440	0 444	0 453	0 444	0,395	0 405	0,399	0,383
Ca	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.072	0.062	0.069	0.074	0.066	0.076	0.069	0.077	0.069
Fe	1.650	1.636	1.667	1.685	1.681	1.434	1,484	1,574	1.516
Cu	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Zn	0,040	0,032	0,064	0,050	0,049	0,047	0,059	0,065	0,055
Formolboso									
c:	2 910	2 0 2 2	2 700	2 770	2 702	2 901	2 920	2 910	2 706
	3,810	3,023 0 177	0,799 0,201	0.228	0.208	0 100	3,029 0 171	3,010	0.214
	4,000	4 000	4 000	4 000	4,000	4,000	4 000	4 000	4 000
Summe.	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,494	8,519	8,473	8,469	8,475	8,650	8,627	8,571	8,643
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,069	0,070	0,074	0,074	0,077	0,087	0,063	0,062	0,060
Summe:	8,563	8,589	8,547	8,543	8,552	8,737	8,690	8,633	8,703
Mg	0,456	0,440	0,444	0,453	0,444	0,395	0,405	0,399	0,383
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,072	0,062	0,069	0,074	0,066	0,076	0,069	0,077	0,069
Fe2+	1,650	1,636	1,667	1,685	1,681	1,434	1,484	1,574	1,516
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,040	0,032	0,064	0,050	0,049	0,047	0,059	0,065	0,055
Summe:	2,218	2,170	2,244	2,262	2,240	1,952	2,017	2,115	2,023
Total:	14,781	14,759	14,791	14,805	14,792	14,689	14,707	14,748	14,726
XMg	0,209	0,206	0,204	0,205	0,203	0,208	0,207	0,195	0,194

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051
Staurolith	9.3	9.3	9.3	9.3	9.3	9.3	9.3	9.3	9.3
	STAU1-5	STAU1-6	STAU1-7	STAU2-1	STAU2-2	STAU2-3	STAU2-4	STAU2-5	STAU2-6
SiO ₂	27,55	27,74	27,36	27,13	27,17	27,14	27,19	27,38	27,11
TiO ₂	0,62	0,56	0,47	0,49	0,53	0,53	0,43	0,60	0,65
Al ₂ O ₃	53,60	53,87	54,94	53,57	53,35	53,67	54,20	54,01	53,98
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	1,81	1,89	1,92	1,85	1,76	1,91	1,75	1,65	1,81
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,69	0,66	0,60	0,65	0,66	0,62	0,54	0,58	0,60
FeO	13,25	13,54	12,96	13,57	13,54	13,33	12,91	12,79	13,47
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,52	0,56	0,46	0,33	0,58	0,43	0,47	0,45	0,54
Summe	98,04	98,82	98,71	97,59	97,60	97,62	97,48	97,46	98,16
Strukturforn	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,828	3,829	3,766	3,791	3,801	3,788	3,789	3,814	3,768
Ті	0,064	0,058	0,049	0,051	0,056	0,055	0,045	0,063	0,067
AI	8,777	8,761	8,913	8,822	8,797	8,829	8,902	8,866	8,842
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,376	0,390	0,394	0,386	0,367	0,398	0,363	0,342	0,376
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,081	0,077	0,070	0,076	0,078	0,073	0,064	0,068	0,071
Fe	1,540	1,563	1,492	1,586	1,584	1,556	1,504	1,490	1,566
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,054	0,057	0,046	0,034	0,060	0,045	0,049	0,046	0,055
Formelbeset	tzung								
Si	3,828	3,829	3,766	3,791	3,801	3,788	3,789	3,814	3,768
AI(IV)	0,172	0,171	0,234	0,209	0,199	0,212	0,211	0,186	0,232
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,605	8,590	8,679	8,613	8,598	8,617	8,691	8,680	8,610
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,064	0,058	0,049	0,051	0,056	0,055	0,045	0,063	0,067
Summe:	8,669	8,648	8,728	8,664	8,654	8,672	8,736	8,743	8,677
Mg	0,376	0,390	0,394	0,386	0,367	0,398	0,363	0,342	0,376
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,081	0,077	0,070	0,076	0,078	0,073	0,064	0,068	0,071
Fe2+	1,540	1,563	1,492	1,586	1,584	1,556	1,504	1,490	1,566
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,054	0,057	0,046	0,034	0,060	0,045	0,049	0,046	0,055
Summe:	2,051	2,087	2,002	2,082	2,089	2,072	1,980	1,946	2,068
Total:	14,720	14,735	14,730	14,746	14,743	14,744	14,716	14,689	14,745
XMg	0,188	0,192	0,201	0,188	0,181	0,196	0,188	0,180	0,187

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051
Staurolith	9.3	9.3	9.4	9.4	9.4	9.4	9.4	9.6	9.6
	STAU2-7	STAU2-8	STAU1-1	STAU1-2	STAU1-3	STAU1-4	STAU1-5	STAU1-1	STAU1-2
SiO ₂	26,80	26,62	26,61	27,23	27,39	27,50	27,19	27,47	27,49
TiO ₂	0,50	0,47	0,56	0,61	0,58	0,64	0,62	0,56	0,53
Al ₂ O ₃	53,34	53,72	53,83	53,82	53,34	53,99	53,72	54,42	54,08
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	1,68	1,66	1,84	1,73	1,70	1,66	1,96	1,60	1,81
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,56	0,65	0,61	0,62	0,63	0,59	0,64	0,71	0,58
FeO	13,42	13,56	13,75	13,36	13,58	13,53	13,91	12,89	12,69
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,73	0,67	0,44	0,50	0,51	0,47	0,67	0,85	0,52
Summe	97,02	97,36	97,64	97,87	97,71	98,38	98,70	98,50	97,70
Strukturforn	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,772	3,738	3,725	3,792	3,824	3,809	3,770	3,797	3,819
Ті	0,053	0,050	0,058	0,063	0,060	0,066	0,065	0,058	0,056
AI	8,850	8,891	8,881	8,833	8,777	8,815	8,780	8,866	8,854
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,352	0,347	0,385	0,359	0,353	0,343	0,404	0,330	0,374
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,067	0,078	0,072	0,073	0,074	0,069	0,075	0,083	0,068
Fe	1,580	1,593	1,610	1,556	1,585	1,567	1,613	1,490	1,474
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,076	0,070	0,046	0,051	0,053	0,048	0,069	0,087	0,053
Formelbeset	tzung								
Si	3,772	3,738	3,725	3,792	3,824	3,809	3,770	3,797	3,819
AI(IV)	0,228	0,262	0,275	0,208	0,176	0,191	0,230	0,203	0,181
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,622	8,629	8,606	8,625	8,601	8,624	8,550	8,663	8,673
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,053	0,050	0,058	0,063	0,060	0,066	0,065	0,058	0,056
Summe:	8,675	8,679	8,664	8,688	8,661	8,690	8,615	8,721	8,729
Mg	0,352	0,347	0,385	0,359	0,353	0,343	0,404	0,330	0,374
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,067	0,078	0,072	0,073	0,074	0,069	0,075	0,083	0,068
Fe2+	1,580	1,593	1,610	1,556	1,585	1,567	1,613	1,490	1,474
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,076	0,070	0,046	0,051	0,053	0,048	0,069	0,087	0,053
Summe:	2,075	2,088	2,113	2,039	2,065	2,027	2,161	1,990	1,969
Total:	14,750	14,767	14,777	14,727	14,726	14,717	14,776	14,711	14,698
XMg	0,176	0,172	0,186	0,180	0,175	0,173	0,193	0,173	0,195

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM056	IMM056	IMM056
Staurolith	9.6	9.6	9.6	9.6	9.6	9.6	10.1	10.1	10.1
	STAU1-3	STAU1-4	STAU1-5	STAU1-6	STAU1-7	STAU1-8	STAU1-1	STAU1-2	STAU2-1
C :0	07.44	07.40	07.07	07.04	07.00	00.00	07.00	07.00	07.00
5102	27,11	27,10	27,07	27,31	27,08	26,93	27,89	27,30	27,99
	0,53	0,57	0,56	0,59	0,56	0,59	0,40	0,37	0,00
	53,98	52,36	53,32	53,29	53,60	54,34	53,79	53,79	54,25
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	1,88	2,02	2,01	2,06	2,08	1,99	2,22	2,25	2,15
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,68	0,64	0,62	0,61	0,58	0,60	0,74	0,80	0,77
FeU	13,54	14,05	14,29	13,87	13,87	13,52	13,34	13,16	13,14
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,51	0,59	0,57	0,53	0,50	0,50	0,42	0,28	0,40
Summe	98,22	97,33	98,43	98,27	98,25	98,47	98,80	97,94	99,27
Strukturform	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,767	3,816	3,771	3,800	3,768	3,732	3,844	3,794	3,835
Ті	0,056	0,060	0,059	0,061	0,058	0,062	0,041	0,038	0,058
AI	8,840	8,688	8,753	8,739	8,789	8,876	8,738	8,811	8,760
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,388	0,424	0,417	0,428	0,431	0,411	0,456	0,466	0,438
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,079	0,076	0,073	0,072	0,068	0,071	0,086	0,094	0,090
Fe	1,574	1,654	1,664	1,614	1,614	1,567	1,537	1,530	1,506
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,052	0,062	0,058	0,055	0,051	0,051	0,043	0,029	0,040
Formelbeset	tzung								
Si	3,767	3,816	3,771	3,800	3,768	3,732	3,844	3,794	3,835
AI(IV)	0,233	0,184	0,229	0,200	0,232	0,268	0,156	0,206	0,165
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
A1(\/I)	8 607	8 504	8 524	8 539	8 557	8 608	8 582	8 605	8 595
Cr	0,000	0.000	0.000	0,000	0.000	0.000	0.000	0,000	0.000
Ti	0,056	0,060	0.059	0.061	0.058	0.062	0.041	0.038	0.058
Summe:	8,663	8,564	8,583	8,600	8,615	8,670	8,623	8,643	8,653
			0.447	0.400			0.450	0.400	0.400
Mg	0,388	0,424	0,417	0,428	0,431	0,411	0,456	0,466	0,438
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Min E-0	0,079	0,076	0,073	0,072	0,068	0,071	0,086	0,094	0,090
Fez+	1,574	1,654	1,664	1,614	1,614	1,567	1,537	1,530	1,506
CU Zm	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
LII Summer	0,052	0,062	0,058	0,055	0,051	0,051	0,043	0,029	0,040
Summe:	2,093	2,210	2,212 14 705	2,109	2,104	∠,100 14,770	Z, 122 14 745	2,119	2,074
i Ulai.	14,700	14,700	14,790	14,709	14,779	14,770	14,740	14,702	14,727
XMg	0,190	0,197	0,193	0,202	0,204	0,200	0,219	0,223	0,216

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Staurolith	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1
	STAU2-2	STAU12-3	STAU2-4	STAU2-5	STAU3-1	STAU3-2	STAU4-1	STAU4-2	STAU4-3
0.0	07.04	07.00	07.50	07.07	07 70		00.40	07.00	07.05
SIO ₂	27,84	27,90	27,58	27,27	27,79	27,55	32,19	27,82	27,35
	0,46	0,42	0,50	0,53	0,43	0,42	0,27	0,38	0,52
	54,38	54,65	53,84	53,52	52,98	53,44	42,26	53,27	53,02
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	2,07	2,13	2,06	2,24	2,17	2,09	1,65	2,40	2,37
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,70	0,83	0,82	0,79	0,77	0,78	0,60	0,74	0,77
FeO	12,55	13,07	12,78	13,06	13,48	13,34	11,91	13,34	13,25
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,34	0,22	0,34	0,31	0,28	0,25	0,32	0,34	0,22
Summe	98,34	99,22	97,93	97,72	97,90	97,86	89,21	98,29	97,49
Strukturforn	nel bezogen	auf 23 Sauer	stoffe						
Si	3,836	3,819	3,826	3,798	3,868	3,833	4,850	3,855	3,821
Ті	0,048	0,043	0,052	0,056	0,045	0,043	0,031	0,040	0,055
AI	8,830	8,817	8,803	8,787	8,691	8,763	7,503	8,699	8,730
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ma	0,426	0,436	0,426	0,465	0,451	0,434	0,371	0,497	0,494
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,082	0,096	0,096	0,094	0,090	0,091	0,076	0,087	0,091
Fe	1,446	1,496	1,483	1,521	1,569	1,552	1,500	1,546	1,548
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,034	0,023	0,035	0,032	0,028	0,025	0,036	0,034	0,022
Formelbese	tzung								
SI	3,836	3,819	3,826	3,798	3,868	3,833	4,850	3,855	3,821
AI(IV)	0,164	0,181	0,174	0,202	0,132	0,167	-0,850	0,145	0,179
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,666	8,636	8,629	8,585	8,559	8,596	8,353	8,554	8,551
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,048	0,043	0,052	0,056	0,045	0,043	0,031	0,040	0,055
Summe:	8,714	8,679	8,681	8,641	8,604	8,639	8,384	8,594	8,606
Ma	0.400	0.400	0.400	0.405	0 454	0 40 4	0.074	0.407	0 404
NIG	0,426	0,436	0,426	0,465	0,451	0,434	0,371	0,497	0,494
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Min E o	0,082	0,096	0,096	0,094	0,090	0,091	0,076	0,087	0,091
re2+	1,446	1,496	1,483	1,521	1,569	1,552	1,500	1,546	1,548
	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
2n	0,034	0,023	0,035	0,032	0,028	0,025	0,036	0,034	0,022
Summe:	1,988	2,051	2,040	2,112	2,138	2,102	1,983	2,164	2,155
i otal:	14,702	14,730	14,721	14,753	14,742	14,741	14,367	14,758	14,761
XMg	0,218	0,215	0,213	0,224	0,214	0,209	0,191	0,233	0,232

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Staurolith	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1
	STAU4-5	STAU4-6	STAU4-7	STAU4-8	STAU5-1	STAU5-2	STAU5-3	STAU5-4	STAU5-5
SiO	27 32	27 21	27 36	27.45	27.62	27.65	27 72	27 72	27.03
	27,52	0.47	27,50	0.43	27,02	27,05	0.43	0.50	27,05
	53 95	53 71	53.88	53.81	53 27	53 42	53 12	52 94	53 17
Cr ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MaQ	2 10	2.08	2 05	2 21	2 53	2 24	2 27	2 16	2,33
CaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MnO	0.87	0.82	0.87	0.74	0.73	0.83	0.84	0.77	0.76
FeO	13.60	12.88	12.85	12.72	13.68	13.82	13.51	13.46	13.05
CuO	0,00	0,00	0.00	0.00	0,00	0,00	0,00	0,00	0,00
ZnO	0,25	0,30	0,40	0,28	0,35	0,20	0,33	0.36	0,50
Summe	98,48	97,46	97,86	97,65	98,62	98,59	98,24	97,91	97,39
Strukturforn	nel bezogen :	auf 23 Sauer	stoffo						
Si	3 785	3 796	3 802	3 816	3 823	3 828	3 849	3 850	3 784
Ti	0.041	0.049	0.047	0.045	0.045	0.046	0.045	0.053	0.059
Δ1	8 808	8 832	8 826	8 816	8 690	8 715	8 693	8 689	8 773
Cr	0,000	0.000	0.000	0.000	0,000	0.000	0,000	0,000	0.000
Ma	0,433	0.432	0.425	0.458	0.522	0.462	0,000	0,447	0.486
Ca	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0,102	0.097	0.102	0.087	0.085	0.097	0.099	0.091	0.090
Fe	1,576	1,503	1,493	1,479	1,584	1,600	1,569	1,567	1,527
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,026	0,031	0,041	0,029	0,036	0,021	0,034	0,037	0,051
Formelbese	tzuna								
Si	3 785	3 796	3 802	3 816	3 823	3 828	3 849	3 859	3 784
	0,215	0.204	0,198	0,184	0,020	0,020	0,151	0,141	0,704
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
	8,593	8,628	8,628	8,632	8,513	8,543	8,542	8,548	8,557
Cr T:	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
11 Summor	0,041	0,049	0,047	0,045	0,045	0,046	0,045	0,053	0,059
Summe.	0,034	0,077	0,075	0,077	0,000	0,009	0,007	0,001	0,010
Mg	0,433	0,432	0,425	0,458	0,522	0,462	0,470	0,447	0,486
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,102	0,097	0,102	0,087	0,085	0,097	0,099	0,091	0,090
Fe2+	1,576	1,503	1,493	1,479	1,584	1,600	1,569	1,567	1,527
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,026	0,031	0,041	0,029	0,036	0,021	0,034	0,037	0,051
Summe:	2,137	2,063	2,061	2,053	2,227	2,180	2,172	2,142	2,154
i otal:	14,771	14,740	14,736	14,730	14,785	14,769	14,759	14,743	14,770
XMg	0,205	0,213	0,210	0,226	0,238	0,214	0,220	0,212	0,231

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM056								
Staurolith	10.1	10.1	10.1	10.1	10.2	10.2	10.2	10.2	10.2
	STAU5-6	STAU5-7	STAU5-8	STAU5-9	STAU1-1	STAU1-2	STAU1-3	STAU1-4	STAU1-5
8:0	27.54	27.24	27 21	26.91	27.62	27 42	26.04	27.65	27.94
310 ₂	27,54	27,34	27,31	20,01	27,02	27,43	20,94	27,05	27,04
	52 78	52.85	53 40	52 71	54 41	54 19	53 27	53 72	53.56
Cr.O.	0.00	0.00	0,40	0.00	0.00	0.00	0.00	0.00	0.00
	2 4 3	2.53	2 41	2 31	2 25	2 17	2 16	2 24	2.28
CaO	2,40	2,55	0.00	0.00	2,20	2,17	2,10	2,24	0.00
MnO	0,00	0,00	0,00	0.84	0.84	0.84	0,00	0,80	0,00
FeO	13 39	13 58	13 47	13 49	12 95	12 80	12.32	13.02	12 67
CuO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ZnO	0.23	0.24	0,30	0.42	0.36	0.49	0.57	0.43	0.32
Summe	97,65	97,87	98,18	97,08	98,89	98,35	96,56	98,40	97,96
Strukturform	el bezogen a	auf 23 Sauer	stoffe						
Si	3,844	3,813	3,795	3,776	3,798	3,793	3,791	3,826	3,858
Ti	0,051	0,058	0,050	0,053	0,047	0,046	0,059	0,048	0,049
AI	8,683	8,688	8,745	8,750	8,817	8,831	8,834	8,758	8,746
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,505	0,525	0,499	0,484	0,461	0,448	0,452	0,461	0,471
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,093	0,093	0,096	0,100	0,098	0,098	0,090	0,104	0,096
Fe	1,563	1,584	1,566	1,588	1,489	1,480	1,450	1,507	1,468
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,024	0,025	0,031	0,043	0,037	0,050	0,059	0,044	0,032
Formelbeset	zung								
Si	3,844	3,813	3,795	3,776	3,798	3,793	3,791	3,826	3,858
AI(IV)	0,156	0,187	0,205	0,224	0,202	0,207	0,209	0,174	0,142
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
	0 5 7 7	9 501	9 5 4 0	0 506	0 615	0 604	0 605	0 501	9 604
	8,527	8,501	8,540	8,526	8,615	8,624	8,625	8,584	8,604
Summe:	8,527 0,000 0,051	8,501 0,000 0,058	8,540 0,000 0.050	8,526 0,000 0.053	8,615 0,000 0.047	8,624 0,000 0,046	8,625 0,000 0,059	8,584 0,000 0.048	8,604 0,000
ounne.	8,527 0,000 0,051 8,578	8,501 0,000 0,058 8,559	8,540 0,000 0,050 8,590	8,526 0,000 0,053 8,579	8,615 0,000 0,047 8,662	8,624 0,000 0,046 8,670	8,625 0,000 0,059 8,684	8,584 0,000 0,048 8,632	8,604 0,000 0,049 8,653
Mg	8,527 0,000 0,051 8,578	8,501 0,000 0,058 8,559	8,540 0,000 0,050 8,590	8,526 0,000 0,053 8,579	8,615 0,000 0,047 8,662	8,624 0,000 0,046 8,670	8,625 0,000 0,059 8,684	8,584 0,000 0,048 8,632	8,604 0,000 0,049 8,653
	8,527 0,000 0,051 8,578 0,505	8,501 0,000 0,058 8,559 0,525	8,540 0,000 0,050 8,590 0,499	8,526 0,000 0,053 8,579 0,484	8,615 0,000 0,047 8,662 0,461	8,624 0,000 0,046 8,670 0,448	8,625 0,000 0,059 8,684 0,452	8,584 0,000 0,048 8,632 0,461	8,604 0,000 0,049 8,653 0,471
Ca	8,527 0,000 0,051 8,578 0,505 0,000	8,501 0,000 0,058 8,559 0,525 0,000	8,540 0,000 0,050 8,590 0,499 0,000	8,526 0,000 0,053 8,579 0,484 0,000	8,615 0,000 0,047 8,662 0,461 0,000	8,624 0,000 0,046 8,670 0,448 0,000	8,625 0,000 0,059 8,684 0,452 0,000	8,584 0,000 0,048 8,632 0,461 0,000	8,604 0,000 0,049 8,653 0,471 0,000
Ca Mn	8,527 0,000 0,051 8,578 0,505 0,000 0,093	8,501 0,000 0,058 8,559 0,525 0,000 0,093	8,540 0,000 0,050 8,590 0,499 0,000 0,096	8,526 0,000 0,053 8,579 0,484 0,000 0,100	8,615 0,000 0,047 8,662 0,461 0,000 0,098	8,624 0,000 0,046 8,670 0,448 0,000 0,098	8,625 0,000 0,059 8,684 0,452 0,000 0,090	8,584 0,000 0,048 8,632 0,461 0,000 0,104	8,604 0,000 0,049 8,653 0,471 0,000 0,096
Ca Mn Fe2+	8,527 0,000 0,051 8,578 0,505 0,000 0,093 1,563	8,501 0,000 0,058 8,559 0,525 0,000 0,093 1,584	8,540 0,000 0,050 8,590 0,499 0,000 0,096 1,566	8,526 0,000 0,053 8,579 0,484 0,000 0,100 1,588	8,615 0,000 0,047 8,662 0,461 0,000 0,098 1,489	8,624 0,000 0,046 8,670 0,448 0,000 0,098 1,480	8,625 0,000 0,059 8,684 0,452 0,000 0,090 1,450	8,584 0,000 0,048 8,632 0,461 0,000 0,104 1,507	8,604 0,000 0,049 8,653 0,471 0,000 0,096 1,468
Ca Mn Fe2+ Cu	8,527 0,000 0,051 8,578 0,505 0,000 0,093 1,563 0,000	8,501 0,000 0,058 8,559 0,525 0,000 0,093 1,584 0,000	8,540 0,000 0,050 8,590 0,499 0,000 0,096 1,566 0,000	8,526 0,000 0,053 8,579 0,484 0,000 0,100 1,588 0,000	8,615 0,000 0,047 8,662 0,461 0,000 0,098 1,489 0,000	8,624 0,000 0,046 8,670 0,448 0,000 0,098 1,480 0,000	8,625 0,000 0,059 8,684 0,452 0,000 0,090 1,450 0,000	8,584 0,000 0,048 8,632 0,461 0,000 0,104 1,507 0,000	8,604 0,000 0,049 8,653 0,471 0,000 0,096 1,468 0,000
Ca Mn Fe2+ Cu Zn	8,527 0,000 0,051 8,578 0,505 0,000 0,093 1,563 0,000 0,024	8,501 0,000 0,058 8,559 0,525 0,000 0,093 1,584 0,000 0,025	8,540 0,000 0,050 8,590 0,499 0,000 0,096 1,566 0,000 0,031	8,526 0,000 0,053 8,579 0,484 0,000 0,100 1,588 0,000 0,043	8,615 0,000 0,047 8,662 0,461 0,000 0,098 1,489 0,000 0,037	8,624 0,000 0,046 8,670 0,448 0,000 0,098 1,480 0,000 0,050	8,625 0,000 0,059 8,684 0,452 0,000 0,090 1,450 0,000 0,059	8,584 0,000 0,048 8,632 0,461 0,000 0,104 1,507 0,000 0,044	8,604 0,000 0,049 8,653 0,471 0,000 0,096 1,468 0,000 0,032
Ca Mn Fe2+ Cu Zn Summe:	8,527 0,000 0,051 8,578 0,505 0,000 0,093 1,563 0,000 0,024 2,185	8,501 0,000 0,058 8,559 0,525 0,000 0,093 1,584 0,000 0,025 2,227	8,540 0,000 0,050 8,590 0,499 0,000 0,096 1,566 0,000 0,031 2,192	8,526 0,000 0,053 8,579 0,484 0,000 0,100 1,588 0,000 0,043 2,215	8,615 0,000 0,047 8,662 0,461 0,000 0,098 1,489 0,000 0,037 2,085	8,624 0,000 0,046 8,670 0,448 0,000 0,098 1,480 0,000 0,050 2,076	8,625 0,000 0,059 8,684 0,452 0,000 0,090 1,450 0,000 0,059 2,051	8,584 0,000 0,048 8,632 0,461 0,000 0,104 1,507 0,000 0,044 2,116	8,604 0,000 0,049 8,653 0,471 0,000 0,096 1,468 0,000 0,032 2,067
Ca Mn Fe2+ Cu Zn Summe: Total:	8,527 0,000 0,051 8,578 0,505 0,000 0,093 1,563 0,000 0,024 2,185 14,763	8,501 0,000 0,058 8,559 0,525 0,000 0,093 1,584 0,000 0,025 2,227 14,786	8,540 0,000 0,050 8,590 0,499 0,000 0,096 1,566 0,000 0,031 2,192 14,782	8,526 0,000 0,053 8,579 0,484 0,000 0,100 1,588 0,000 0,043 2,215 14,794	8,615 0,000 0,047 8,662 0,461 0,000 0,098 1,489 0,000 0,037 2,085 14,747	8,624 0,000 0,046 8,670 0,448 0,000 0,098 1,480 0,000 0,050 2,076 14,746	8,625 0,000 0,059 8,684 0,452 0,000 0,090 1,450 0,000 0,059 2,051 14,735	8,584 0,000 0,048 8,632 0,461 0,000 0,104 1,507 0,000 0,044 2,116 14,748	8,604 0,000 0,049 8,653 0,471 0,000 0,096 1,468 0,000 0,032 2,067 14,720

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Staurolith	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2
	STAU1-6	STAU1-7	STAU1-8	STAU1-9	STAU1-10	STAU1-11	STAU1-12	STAU1-13	STAU1-14
SiO ₂	27,38	27,93	28,14	28,15	27,35	27,94	27,87	27,46	27,92
TiO ₂	0,46	0,44	0,45	0,47	0,46	0,44	0,44	0,41	0,42
Al ₂ O ₃	53,83	53,71	53,98	54,12	53,45	53,19	53,24	52,88	53,57
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	2,11	2,13	2,41	2,16	2,26	2,33	2,20	2,13	2,20
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,78	0,83	0,89	0,87	0,89	0,83	0,87	0,89	0,90
FeO	13,11	13,25	13,32	12,92	12,97	12,97	13,02	13,32	13,01
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,40	0,29	0,43	0,58	0,36	0,37	0,47	0,47	0,29
Summe	98,06	98,58	99,61	99,27	97,74	98,07	98,11	97,55	98,31
Strukturforn	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,801	3,855	3,848	3,856	3,810	3,875	3,866	3,841	3,862
11	0,048	0,046	0,046	0,048	0,048	0,046	0,046	0,043	0,044
AI	8,808	8,736	8,701	8,739	8,774	8,692	8,707	8,718	8,731
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,437	0,438	0,491	0,442	0,470	0,481	0,455	0,445	0,453
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,092	0,097	0,103	0,101	0,105	0,097	0,102	0,105	0,106
Fe	1,522	1,529	1,524	1,481	1,511	1,504	1,511	1,558	1,505
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,041	0,030	0,043	0,058	0,037	0,038	0,048	0,048	0,030
Formelbese	tzuna								
Si	3 801	3 855	3 8/8	3 856	3 810	3 875	3 866	3 8/1	3 862
	0 199	0 145	0 152	0 144	0 190	0 125	0 134	0 159	0 138
Summe	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000
ounne.	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8.609	8.591	8.549	8.595	8.584	8.567	8.573	8.559	8.593
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ті	0.048	0.046	0.046	0.048	0.048	0.046	0.046	0.043	0.044
Summe:	8,657	8,637	8,595	8,643	8,632	8,613	8,619	8,602	8,637
Mg	0,437	0,438	0,491	0,442	0,470	0,481	0,455	0,445	0,453
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,092	0,097	0,103	0,101	0,105	0,097	0,102	0,105	0,106
Fe2+	1,522	1,529	1,524	1,481	1,511	1,504	1,511	1,558	1,505
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,041	0,030	0,043	0,058	0,037	0,038	0,048	0,048	0,030
Summe:	2,092	2,094	2,161	2,082	2,123	2,120	2,116	2,156	2,094
Total:	14,749	14,731	14,756	14,725	14,755	14,733	14,735	14,758	14,731
XMg	0,213	0,212	0,232	0,218	0,225	0,231	0,220	0,211	0,219

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Staurolith	10.2	10.2	10.2	10.2	10.6	10.6	10.6	10.6	10.6
	STAU1-15	STAU1-16	STAU1-17	STAU1-18	STAU1-1	STAU1-2	STAU1-3	STAU1-4	STAU1-5
SiO ₂	27.60	27.33	27.71	27.75	27.43	27.52	27.75	27.26	27.44
TiO	0.49	0.43	0.43	0.47	0.48	0.49	0.50	0.44	0.43
Al ₂ O ₃	53,63	53,60	53,80	54,58	53,39	53,96	53,78	54,64	53,25
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	2,00	1,98	2,00	1,81	1,98	2,15	1,94	1,83	2,22
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,93	0,86	0,83	0,84	0,83	0,66	0,60	0,71	0,71
FeO	12,44	13,01	12,73	12,34	13,28	13,36	12,78	12,76	13,56
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,55	0,49	0,44	0,49	0,26	0,31	0,44	0,24	0,40
Summe	97,64	97,69	97,93	98,28	97,65	98,45	97,78	97,89	98,01
Strukturforn	nel bezogen	auf 23 Sauer	stoffe						
Si	3,840	3,810	3,843	3,827	3,826	3,805	3,851	3,778	3,820
Ті	0,051	0,045	0,044	0,049	0,050	0,051	0,052	0,046	0,045
AI	8,793	8,807	8,795	8,871	8,776	8,793	8,796	8,924	8,737
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,415	0,411	0,413	0,372	0,411	0,444	0,401	0,378	0,462
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,109	0,102	0,097	0,098	0,098	0,077	0,071	0,084	0,083
Fe	1,447	1,517	1,477	1,423	1,549	1,545	1,483	1,479	1,579
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,057	0,050	0,045	0,050	0,027	0,032	0,045	0,025	0,041
Formelbese	tzung								
Si	3,840	3,810	3,843	3,827	3,826	3,805	3,851	3,778	3,820
AI(IV)	0,160	0,190	0,157	0,173	0,174	0,195	0,149	0,222	0,180
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,633	8,617	8,638	8,698	8,602	8,598	8,647	8,702	8,557
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,051	0,045	0,044	0,049	0,050	0,051	0,052	0,046	0,045
Summe:	8,684	8,662	8,682	8,747	8,652	8,649	8,699	8,748	8,602
Mg	0,415	0,411	0,413	0,372	0,411	0,444	0,401	0,378	0,462
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,109	0,102	0,097	0,098	0,098	0,077	0,071	0,084	0,083
Fe2+	1,447	1,517	1,477	1,423	1,549	1,545	1,483	1,479	1,579
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,057	0,050	0,045	0,050	0,027	0,032	0,045	0,025	0,041
Summe:	2,028	2,080	2,032	1,943	2,085	2,098	2,000	1,966	2,165
Total:	14,712	14,742	14,714	14,690	14,737	14,747	14,699	14,714	14,767
XMg	0,211	0,203	0,208	0,196	0,200	0,215	0,205	0,195	0,217

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM061	IMM061
Staurolith	10.6	10.6	10.6	10.6	10.6	10.6	10.6	11.1	11.1
	STAU1-6	STAU1-7	STAU1-8	STAU1-9	STAU1-10	STAU1-11	STAU1-12	STAU1-1	STAU1-2
0.0	07.00	07.44	07.50	07.44	07.05	07.04	07.54	07.40	~~~~
510 ₂	27,60	27,44	27,58	27,44	27,95	27,31	27,54	27,46	26,89
	0,47	0,49	0,43	0,40	0,48	0,47	0,47	0,60	0,56
	52,83	53,67	53,92	53,25	53,15	52,56	53,47	54,18	53,79
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	2,36	2,09	1,98	2,35	2,38	2,26	2,24	1,76	1,76
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,67	0,70	0,70	0,73	0,70	0,84	0,77	0,51	0,59
FeO	13,58	13,18	13,09	13,37	13,29	13,80	13,11	13,66	13,68
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,43	0,41	0,24	0,26	0,41	0,52	0,20	0,37	0,20
Summe	97,93	97,97	97,93	97,79	98,34	97,76	97,80	98,53	97,47
Strukturforn	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,846	3,813	3,826	3,823	3,869	3,825	3,830	3,797	3,761
Ті	0,049	0,051	0,045	0,041	0,050	0,049	0,049	0,062	0,059
AI	8.677	8.789	8.816	8.742	8.672	8.674	8.762	8.829	8.868
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ma	0.490	0.434	0.410	0.487	0.492	0.472	0.465	0.363	0.368
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0.079	0.082	0.082	0.086	0.082	0.100	0.090	0.060	0.070
Fe	1,582	1,531	1,518	1,558	1,539	1,616	1,524	1,579	1,601
Cu	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Zn	0,044	0,042	0,025	0,027	0,041	0,054	0,021	0,037	0,021
Formolhoco	1711D 0								
c:	2 9/6	2 0 1 2	2 0 2 6	2 0 2 2	2 960	2 925	2 920	2 707	2 761
	3,040 0 154	0 197	3,020 0 174	3,023 0 177	3,009	3,023 0 175	3,030	3,797	0.220
AI(IV) Summo:	4,000	4 000	4 000	4 000	4 000	4 000	4,000	4,000	4 000
Summe.	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,523	8,602	8,642	8,565	8,541	8,499	8,592	8,626	8,629
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,049	0,051	0,045	0,041	0,050	0,049	0,049	0,062	0,059
Summe:	8,572	8,653	8,687	8,606	8,591	8,548	8,641	8,688	8,688
Ма	0.490	0.434	0.410	0.487	0.492	0.472	0.465	0.363	0.368
Ca	0,000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000
Mn	0.079	0.082	0.082	0.086	0.082	0,100	0.090	0.060	0.070
Fe2+	1 582	1 531	1 518	1,558	1 539	1 616	1 524	1 579	1 601
Cu	0 000	0 000	0 000	0 000	0 000	0 000	0.000	0 000	0 000
Zn	0.044	0.042	0.025	0 027	0.041	0.054	0 021	0.037	0 021
 Summe	2 195	2 089	2 035	2 158	2 154	2 242	2 100	2 039	2 060
Total:	14,767	14,742	14,722	14,764	14,745	14,790	14,741	14,727	14,748
XMg	0,228	0,212	0,204	0,229	0,233	0,216	0,224	0,181	0,180

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Staurolith	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1	11.1
	STAU1-3	STAU1-4	STAU1-5	STAU1-6	STAU1-7	STAU1-8	STAU1-9	STAU1-10	STAU1-11
SiO	27 16	27 54	27 28	27.26	27.05	27.60	27.26	27.03	27 15
	0.59	0.66	0.66	0.66	0.59	0.71	0.63	0.65	0.65
	53,64	53.00	52,39	52.55	53,99	52.53	53.09	52.88	53,17
Cr ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MaO	1.85	1.99	2.04	1.93	1.85	2.16	1.93	1.99	1.96
CaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MnO	0,53	0,54	0,54	0,53	0.55	0,50	0,49	0,48	0,50
FeO	13,32	13,99	13,91	14,06	12,85	13,89	13,56	13,67	13,88
CuO	0,00	0,00	0.00	0.00	0,00	0,00	0,00	0.00	0,00
ZnO	0,24	0,34	0,22	0,28	0,24	0,06	0,18	0,30	0,24
Summe	97,34	98,06	97,02	97,28	97,11	97,45	97,14	97,01	97,55
Strukturforn	nel hezogen :	auf 23 Sauer	stoffe						
Si	3 796	3 835	3 838	3 830	3 781	3 861	3 821	3 802	3 798
Ti	0,062	0.069	0,070	0,070	0.062	0.074	0.067	0.068	0.068
AI	8 836	8 700	8 688	8 701	8 892	8 660	8 770	8 765	8 767
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ma	0.386	0.414	0.427	0.405	0.385	0.450	0.403	0.416	0.410
Ca	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.063	0.064	0.064	0.063	0.065	0.059	0.058	0.058	0.059
Fe	1,556	1,630	1,637	1,652	1,502	1,625	1,590	1,608	1,624
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,025	0,035	0,022	0,029	0,024	0,007	0,019	0,031	0,025
Formelbese	tzuna								
Si	3 796	3 835	3 838	3 830	3 781	3 861	3 821	3 802	3 798
AI(IV)	0.204	0.165	0,162	0,000	0.219	0.139	0.179	0,198	0.202
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
A 1/1/11	0.000	0 505	0.500	0.504	0.070	0.504	0.504	0 5 6 7	0.505
	8,632	8,535	8,526	8,531	8,673	8,521	8,591	8,567	8,505
	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
II Summo:	0,062	0,009	0,070	0,070	0,002 8,735	0,074	0,007	0,000	0,000
Summe.	0,094	0,004	0,590	8,001	0,755	0,595	0,000	0,000	0,033
Mg	0,386	0,414	0,427	0,405	0,385	0,450	0,403	0,416	0,410
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,063	0,064	0,064	0,063	0,065	0,059	0,058	0,058	0,059
Fe2+	1,556	1,630	1,637	1,652	1,502	1,625	1,590	1,608	1,624
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,025	0,035	0,022	0,029	0,024	0,007	0,019	0,031	0,025
Summe:	2,030	2,143	2,150	2,149	1,976	2,141	2,070	2,113	2,118
Total:	14,724	14,747	14,746	14,750	14,711	14,736	14,728	14,748	14,751
XMg	0,192	0,196	0,201	0,191	0,197	0,211	0,196	0,200	0,196

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Staurolith	11.1	11.1	11.1	11.1	11.1	11.1	11.4	11.4	11.4
	STAU1-12	STAU1-13	STAU2-1	STAU2-2	STAU2-3	STAU2-4	STAU1-1	STAU1-2	STAU2-1
8:0	27.20	06.76	07 40	26.79	26.42	26.70	06 70	27.04	26.49
510 ₂	27,30	26,76	27,13	20,78	20,42	20,78	20,72	27,04	20,10
	0,62	0,58	0,56	0,59	0,58	0,59	0,63	0,67	0,00
	52,86	52,65	53,61	54,14	53,68	54,70	54,62	54,48	53,33
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	1,96	1,93	1,91	1,75	1,89	1,81	1,95	1,81	1,82
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,53	0,57	0,48	0,51	0,49	0,53	0,50	0,48	0,58
FeO	13,63	14,07	13,47	13,47	13,97	13,04	12,52	12,85	13,31
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,20	0,28	0,14	0,40	0,22	0,30	0,30	0,24	0,51
Summe	97,10	96,84	97,33	97,64	97,25	97,75	97,24	97,56	96,38
Strukturform	nel bezogen	auf 23 Sauer	stoffe						
Si	3,831	3,780	3,792	3,738	3,712	3,724	3,725	3,759	3,709
Ті	0,065	0,062	0,061	0,062	0,062	0,061	0,066	0,070	0,070
AI	8,742	8,766	8,832	8,907	8,889	8,964	8,974	8,928	8,905
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,411	0,407	0,399	0,365	0,396	0,375	0,406	0,376	0,385
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,063	0,068	0,057	0,060	0,059	0,062	0,059	0,056	0,070
Fe	1,599	1,663	1,575	1,573	1,641	1,517	1,460	1,494	1,577
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,021	0,030	0,015	0,041	0,023	0,030	0,031	0,024	0,053
Formelbese	tzuna								
Si	3.831	3,780	3.792	3.738	3.712	3.724	3.725	3.759	3.709
AI(IV)	0,169	0,220	0,208	0,262	0,288	0,276	0,275	0,241	0,291
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
A 1/1/11	0 570	0 5 4 6	0.604	0.645	9 604	0.600	9 600	0.607	0.614
	0,573	0,540	8,624 0,000	8,645 0,000	8,601	0,000	8,699	8,887 0,000	0,014
	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Summe:	0,005	0,002 8,608	0,001	0,002 8 707	0,002	8 749	0,000	0,070 8 757	8 684
ounine.	0,000	0,000	0,000	0,707	0,000	0,740	0,700	0,707	0,004
Mg	0,411	0,407	0,399	0,365	0,396	0,375	0,406	0,376	0,385
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,063	0,068	0,057	0,060	0,059	0,062	0,059	0,056	0,070
Fe2+	1,599	1,663	1,575	1,573	1,641	1,517	1,460	1,494	1,577
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,021	0,030	0,015	0,041	0,023	0,030	0,031	0,024	0,053
Summe:	2,094	2,168	2,046	2,039	2,119	1,984	1,956	1,950	2,085
Total:	14,732	14,776	14,731	14,746	14,782	14,733	14,721	14,707	14,769
XMg	0,198	0,190	0,196	0,183	0,189	0,192	0,211	0,195	0,190

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Staurolith	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4	11.4
	STAU2-2	STAU2-3	STAU2-4	STAU3-1	STAU3-2	STAU3-3	STAU3-4	STAU3-5	STAU3-6
SiO	26.64	27.02	27.02	27 27	26.06	27.05	27 10	27.04	27 20
	20,04	27,02	27,02	27,37	20,90	27,05	27,10	27,04	27,39
	53 52	53.66	53 30	55 52	54.28	53 55	53 78	53.88	53.80
Cr.O.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1.82	1.68	1.83	1 58	1 78	2 17	2.07	2.07	1 95
CaO	0.00	0.00	0.00	0,00	0.00	0.00	2,07	2,07	0.00
MnO	0,00	0,00	0,50	0,00	0,00	0.48	0.47	0,58	0.48
FeO	13 28	12 91	13.30	12.32	13 21	13 94	13 60	13 81	13 69
CuO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ZnO	0.33	0.25	0.31	0.32	0.20	0.40	0.08	0.36	0.19
Summe	96,81	96,69	96,91	98,05	97,57	98,23	97,75	98,32	98,16
Strukturforn	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,750	3,794	3,795	3,772	3,756	3,763	3,774	3,755	3,799
Ті	0,065	0,064	0,067	0,051	0,064	0,066	0,068	0,062	0,069
AI	8,878	8,882	8,824	9,017	8,912	8,781	8,826	8,819	8,797
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,383	0,351	0,383	0,325	0,369	0,450	0,429	0,428	0,404
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,072	0,068	0,062	0,052	0,063	0,056	0,055	0,068	0,057
Fe	1,563	1,516	1,563	1,419	1,539	1,622	1,584	1,604	1,588
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,035	0,026	0,032	0,033	0,021	0,041	0,008	0,037	0,020
Formelbese	tzung								
Si	3,750	3,794	3,795	3,772	3,756	3,763	3,774	3,755	3,799
AI(IV)	0,250	0,206	0,205	0,228	0,244	0,237	0,226	0,245	0,201
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
	0.000	0.070	0.040	0 700		0.544		0.574	0.500
AI(VI)	8,628	8,676	8,619	8,789	8,668	8,544	8,600	8,574	8,596
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
	0,065	0,064	0,067	0,051	0,064	0,066	0,068	0,062	0,069
Summe:	8,693	8,740	8,686	8,840	8,732	8,610	8,008	8,030	8,005
Mg	0,383	0,351	0,383	0,325	0,369	0,450	0,429	0,428	0,404
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,072	0,068	0,062	0,052	0,063	0,056	0,055	0,068	0,057
Fe2+	1,563	1,516	1,563	1,419	1,539	1,622	1,584	1,604	1,588
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,035	0,026	0,032	0,033	0,021	0,041	0,008	0,037	0,020
Summe:	2,053	1,961	2,040	1,829	1,992	2,169	2,076	2,137	2,069
Total:	14,746	14,701	14,726	14,669	14,724	14,779	14,744	14,773	14,734
YM a	0.400	0 4 0 4	0.404	0 4 0 4	0 407	0.040	0.007	0.004	0 407
NING	0,190	0,181	0,191	0,181	0,187	0,212	0,207	0,204	0,197

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM063
Staurolith	11.4	11.4	11.4	11.4	11.4	11.5	11.5	11.5	2.2
	STAU3-7	STAU3-8	STAU3-9	STAU3-10	STAU3-11BI	STAU1-1	STAU1-2	STAU1-3	Stau 1-1
SiO ₂	27,28	26,06	27,57	27,04	26,58	27,34	27,24	27,23	26,96
TiO₂	0,68	0,57	0,63	0,63	0,60	0,45	0,52	0,57	0,50
Al ₂ O ₃	53,24	54,11	53,24	52,70	54,19	54,24	54,12	53,86	53,10
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	2,09	1,81	1,99	2,21	1,76	1,86	2,03	1,89	2,36
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,52	0,56	0,54	0,51	0,57	0,48	0,48	0,46	0,91
FeO	13,99	13,94	13,61	14,63	13,68	12,96	13,65	13,38	13,83
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,24	0,26	0,25	0,13	0,12	0,34	0,22	0,26	0,53
Summe	98,05	97,31	97,84	97,84	97,51	97,68	98,25	97,65	98,19
Strukturforn	nel bezogen a	auf 23 Sauers	stoffe						
Si	3.800	3.662	3.838	3.786	3.716	3,799	3.775	3.792	3.763
Ti	0.071	0.060	0.066	0.067	0.064	0.047	0.054	0.060	0.052
AI	8,739	8,963	8.736	8.697	8,929	8.882	8.841	8.842	8.735
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ma	0.434	0.379	0.413	0.461	0.367	0.385	0.419	0.393	0.490
Ca	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.062	0.067	0.064	0,060	0.067	0.057	0.057	0.055	0 108
Fe	1.630	1.638	1.585	1.714	1,600	1.506	1.582	1,558	1.614
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,025	0,027	0,025	0,013	0,013	0,035	0,023	0,027	0,055
Formelbese	zung	0.000	0.000	0 700	0.740	0 700	0 775	0 700	0 700
51	3,800	3,662	3,838	3,786	3,716	3,799	3,775	3,792	3,763
AI(IV)	0,200	0,338	0,102	0,214	0,284	0,201	0,225	0,208	0,237
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,539	8,625	8,574	8,483	8,645	8,681	8,616	8,634	8,498
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,071	0,060	0,066	0,067	0,064	0,047	0,054	0,060	0,052
Summe:	8,610	8,685	8,640	8,550	8,709	8,728	8,670	8,694	8,550
Ма	0 434	0.379	0 413	0 461	0.367	0.385	0 419	0 393	0 490
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0.062	0.067	0.064	0,060	0.067	0,000	0.057	0,000	0,000
 Fe2±	1 630	1 638	1 585	1 714	1 600	1 506	1 582	1 558	1 614
Cu	0 000	0 000	0 000	0 000	0.000	0 000	0.000	0 000	0 000
Zn	0.025	0,000	0.025	0,000	0.013	0.035	0.023	0.027	0.055
 Summe	2 151	2 111	2 087	2 248	2 047	1 983	2 081	2 033	2 267
Total:	14,761	14,796	14,727	14,798	14,756	14,711	14,751	14,727	14,817
						.		,	
XMg	0,204	0,182	0,200	0,206	0,181	0,198	0,204	0,196	0,222

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063
Staurolith	2.2	2.2	2.2	2.4	2.4	2.4	2.4	2.4	2.4
	Stau 1-2	Stau 1-3	Stau 1-4	Stau 1-1	Stau 1-2	Stau 1-3	Stau 1-4	Stau 1-5	Stau1-6
SiO ₂	27.16	27.39	27.23	27.57	27.22	27.76	27.53	27.36	27.49
TiO ₂	0,48	0,44	0,38	0,47	0,48	0,48	0,41	0,49	0,49
	53,44	53,48	53,65	53,39	53,87	53,94	53,90	53,27	53,46
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	2,34	2,31	2,41	2,16	2,21	2,12	2,06	2,37	2,39
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,87	0,88	0,79	0,79	0,72	0,76	0,91	0,81	0,87
FeO	14,06	13,99	13,86	13,66	13,56	13,39	13,45	13,71	14,20
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,32	0,36	0,29	0,43	0,27	0,22	0,43	0,27	0,38
Summe	98,66	98,86	98,61	98,47	98,32	98,68	98,68	98,27	99,28
Strukturform	el bezogen a	ouf 23 Sauers	stoffe						
Si	3,769	3,791	3,775	3,823	3,775	3,829	3,806	3,801	3,794
Ті	0,050	0,046	0,039	0,049	0,050	0,050	0,043	0,051	0,050
AI	8,741	8,726	8,764	8,726	8,806	8,767	8,783	8,725	8,694
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,484	0,477	0,497	0,446	0,456	0,436	0,424	0,491	0,492
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,102	0,103	0,093	0,093	0,084	0,089	0,106	0,095	0,101
Fe	1,631	1,620	1,607	1,584	1,573	1,545	1,555	1,593	1,639
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,032	0,037	0,030	0,044	0,028	0,022	0,044	0,027	0,039
Formelbeset	zung								
Si	3,769	3,791	3,775	3,823	3,775	3,829	3,806	3,801	3,794
AI(IV)	0,231	0,209	0,225	0,177	0,225	0,171	0,194	0,199	0,206
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,510	8,517	8,539	8,549	8,581	8,596	8,589	8,526	8,488
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,050	0,046	0,039	0,049	0,050	0,050	0,043	0,051	0,050
Summe:	8,560	8,563	8,578	8,598	8,631	8,646	8,632	8,577	8,538
Mg	0,484	0,477	0,497	0,446	0,456	0,436	0,424	0,491	0,492
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,102	0,103	0,093	0,093	0,084	0,089	0,106	0,095	0,101
Fe2+	1,631	1,620	1,607	1,584	1,573	1,545	1,555	1,593	1,639
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,032	0,037	0,030	0,044	0,028	0,022	0,044	0,027	0,039
Summe:	2,249	2,237	2,227	2,167	2,141	2,092	2,129	2,206	2,271
Total:	14,809	14,800	14,805	14,765	14,772	14,738	14,761	14,783	14,809
XMg	0,218	0,217	0,226	0,210	0,216	0,211	0,203	0,225	0,220

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063
Staurolith	2.5	2.5	2.5	2.5	2.5	2.5	2.6	2.6	2.6
	STAU 1-1	STAU 1-2	STAU 1-3	STAU 1-4	STAU 1-5	STAU 1-6	STAU 1-1	STAU 1-2	STAU 3-1
SiO	27.40	27 15	27.05	27.67	27 13	27 10	27 70	27.66	28.20
	27,40	27,15	27,05	0.51	27,13	27,19	27,70	27,00	20,20
	53 36	53 25	52.81	53 19	52 91	52.69	52 65	53 21	53.81
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MaO	2,46	2,64	2,66	2,66	2.47	2.36	2,62	2,66	2,40
CaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MnO	0.87	0.82	0.74	0.67	0.79	0.87	0.75	0.80	0.66
FeO	13,70	14,45	13,97	13,93	14,10	14,33	13,90	13,05	13,43
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,26	0,35	0,35	0,25	0,19	0,32	0,43	0,39	0,37
Summe	98,51	99,12	98,01	98,87	97,99	98,26	98,49	98,25	99,33
Strukturforn	nel bezogen -	auf 23 Sauer	stoffo						
Si	3 700	3 760	3 779	3 823	3 789	3 795	3 846	3 834	3 864
Ti	0.048	0.049	0.045	0.052	0.042	0.052	0,047	0.051	0.048
AI	8 720	8 689	8 695	8 660	8 709	8 670	8 617	8 691	8 689
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Μα	0.509	0.545	0.554	0.547	0.515	0.491	0.542	0.550	0.490
Ca	0,000	0,000	0.000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,103	0,096	0,087	0,078	0,094	0,102	0,088	0,094	0,076
Fe	1,589	1,673	1,632	1,610	1,646	1,673	1,614	1,512	1,539
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,026	0,035	0,036	0,025	0,019	0,033	0,044	0,039	0,038
Formelbese	tzuna								
Si	3.799	3,760	3.779	3.823	3,789	3.795	3.846	3.834	3.864
AI(IV)	0,201	0,240	0,221	0,177	0,211	0,205	0,154	0,166	0,136
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
	8 510	8 1 1 0	8 171	8 /83	8 108	8 /65	8 /63	8 525	8 553
Cr	0,010	0,443	0,474	0,400	0,430	0,400	0,403	0,020	0,000
Ti	0.048	0.049	0.045	0.052	0.042	0.052	0.047	0.051	0.048
Summe:	8,567	8,498	8,519	8,535	8,540	8,517	8,510	8,576	8,601
N/	0 500	0 5 4 5	0 55 4	0 5 4 7	0 545	0.404	0.540	0 550	0.400
NIG Co	0,509	0,545	0,554	0,547	0,515	0,491	0,542	0,550	0,490
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Eo2	1 590	0,090	0,007	1,610	1,646	1,672	0,088	1 512	1 520
Cu	0.000	0,073	0.000	0.000	0,040	0,073	0.000	0.000	0.000
Zn	0.026	0,000	0,000	0,000	0,000	0,000	0.044	0,000	0,000
Summe [.]	2 227	2 349	2 309	2 260	2 274	2 299	2 288	2 195	2 143
Total:	14,794	14,847	14,828	14,795	14,814	14,816	14,798	14,771	14,744
	0.007	0.005	6 6 4 i	0.045	0.000	o o / =	6 6 <i>6</i> 6	0.005	0.000
хмд	0,231	0,235	0,244	0,245	0,228	0,217	0,241	0,225	0,233

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063
Staurolith	2.6	2.6	2.7	2.7	2.7	2.8	2.8	2.8	2.8
	STAU 3-2	STAU 3-3	STAU 1-1	STAU 1-2	STAU 1-3	STAU 1-1	STAU1-2	STAU1-3	STAU1-4
SiO ₂	27,99	27,53	27,83	27,85	27,55	27,90	27,63	27,71	27,45
TiO ₂	0,48	0,45	0,46	0,52	0,49	0,43	0,43	0,50	0,48
Al ₂ O ₃	53,74	53,58	54,24	53,33	53,06	54,03	53,29	52,82	52,55
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	2,27	2,43	2,07	2,56	2,65	2,41	2,48	2,54	2,64
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,77	0,74	0,97	0,78	0,76	0,71	0,66	0,76	0,75
FeO	13,41	13,59	12,30	13,64	13,72	13,21	13,37	13,47	13,35
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,28	0,33	0,57	0,30	0,36	0,37	0,23	0,33	0,32
Summe	98,95	98,64	98,43	98,97	98,58	99,06	98,08	98,13	97,54
Strukturform	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,851	3,807	3,836	3,839	3,818	3,832	3,834	3,852	3,838
Ті	0,050	0,047	0,047	0,054	0,051	0,044	0,045	0,052	0,051
AI	8,713	8,734	8,813	8,664	8,666	8,745	8,718	8,652	8,659
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,466	0,500	0,424	0,526	0,548	0,494	0,513	0,526	0,549
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,090	0,086	0,113	0,090	0,089	0,083	0,077	0,090	0,089
Fe	1,543	1,572	1,418	1,573	1,590	1,517	1,551	1,565	1,561
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,029	0,033	0,058	0,031	0,036	0,037	0,023	0,034	0,033
Formelbeset	tzung								
Si	3,851	3,807	3,836	3,839	3,818	3,832	3,834	3,852	3,838
AI(IV)	0,149	0,193	0,164	0,161	0,182	0,168	0,166	0,148	0,162
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,564	8,541	8,649	8,503	8,484	8,577	8,552	8,504	8,497
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,050	0,047	0,047	0,054	0,051	0,044	0,045	0,052	0,051
Summe:	8,614	8,588	8,696	8,557	8,535	8,621	8,597	8,556	8,548
Mg	0,466	0,500	0,424	0,526	0,548	0,494	0,513	0,526	0,549
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,090	0,086	0,113	0,090	0,089	0,083	0,077	0,090	0,089
Fe2+	1,543	1,572	1,418	1,573	1,590	1,517	1,551	1,565	1,561
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,029	0,033	0,058	0,031	0,036	0,037	0,023	0,034	0,033
Summe:	2,128	2,191	2,013	2,220	2,263	2,131	2,164	2,215	2,232
Total:	14,742	14,779	14,709	14,777	14,798	14,752	14,761	14,771	14,780
XMg	0,222	0,232	0,217	0,240	0,246	0,236	0,239	0,241	0,250

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063
Staurolith	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
	STAU1-5	STAU1-6	STAU1-7	STAU1-8	STAU1-9	STAU 1-10	STAU1-11	STAU1-12	STAU1-13
SIO ₂	27,89	27,44	27,52	27,43	27,08	27,45	27,42	27,69	27,37
	0,42	0,53	0,48	0,43	0,42	0,48	0,43	0,42	0,40
	52,90	52,69	52,86	52,43	52,34	52,91	52,97	52,88	52,66
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	2,46	2,47	2,53	2,56	2,50	2,55	2,56	2,58	2,44
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,68	0,75	0,72	0,75	0,70	0,66	0,67	0,73	0,71
FeO	13,64	13,57	13,43	13,88	13,55	13,80	13,88	13,85	13,44
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,29	0,29	0,21	0,34	0,32	0,33	0,36	0,28	0,16
Summe	98,27	97,73	97,74	97,82	96,89	98,18	98,28	98,42	97,19
Strukturforn	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,869	3,832	3,836	3,835	3,816	3,819	3,814	3,842	3,838
Ті	0,044	0,055	0,051	0,045	0,044	0,050	0,045	0,044	0,043
AI	8,650	8,672	8,686	8,639	8,694	8,677	8,682	8,649	8,701
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,508	0,514	0,525	0,534	0,525	0,529	0,531	0,533	0,511
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,079	0,088	0,085	0,089	0,083	0,078	0,078	0,086	0,085
Fe	1,582	1,585	1,566	1,623	1,597	1,606	1,614	1,607	1,576
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,030	0,029	0,022	0,035	0,033	0,034	0,037	0,028	0,016
Formelbese	tzuna								
Si	3 869	3 832	3 836	3 835	3 816	3 819	3 814	3 842	3 838
	0,131	0,168	0,164	0,165	0,184	0,181	0,186	0.158	0,162
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
	·					·			·
AI(VI)	8,519	8,504	8,522	8,474	8,510	8,496	8,496	8,491	8,539
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,044	0,055	0,051	0,045	0,044	0,050	0,045	0,044	0,043
Summe:	8,563	8,559	8,573	8,519	8,554	8,546	8,541	8,535	8,582
Mq	0,508	0,514	0,525	0,534	0,525	0,529	0,531	0,533	0,511
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,079	0,088	0,085	0,089	0,083	0,078	0,078	0,086	0,085
Fe2+	1,582	1,585	1,566	1,623	1,597	1,606	1,614	1,607	1,576
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,030	0,029	0,022	0,035	0,033	0,034	0,037	0,028	0,016
Summe:	2,199	2,216	2,198	2,281	2,238	2,247	2,260	2,254	2,188
Total:	14,762	14,775	14,771	14,800	14,792	14,793	14,801	14,789	14,770
XMg	0,234	0,235	0,241	0,238	0,238	0,239	0,239	0,239	0,235

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM089	IMM089
Staurolith	2.8	2.8	2.8	2.8	2.8	2.8	2.8	7.3	7.3
	STAU1-14	STAU1-15	STAU1-16	STAU1-17	STAU1-18	STAU1-19	STAU1-20	STAU1-1	STAU1-2
S :0	07.00	07.40	07.40	07.55	07.04	07.47	07.50	00.70	07.00
510 ₂	27,30	27,48	27,42	27,55	27,64	27,47	27,53	26,72	27,28
	0,42	0,46	0,47	0,39	0,58	0,49	0,38	0,47	0,53
	53,71	52,77	52,76	52,92	52,29	52,66	53,10	53,66	52,96
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1.07
NigO CaO	2,33	2,50	2,49	2,31	2,31	2,43	2,42	1,77	1,07
CaO MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FoO	12.26	12 52	12.42	12 99	12.61	12.51	12.69	14 12	14.05
	0.00	0.00	0.00	13,00	0.00	0.00	13,00	14,12	0.00
ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Summe	97.96	97.99	97 49	98 35	97.80	97.91	98.06	97.67	97.50
ounne	57,50	57,55	57,45	50,55	57,00	57,51	50,00	57,07	57,50
Strukturform	nel bezogen	auf 23 Saue	rstoffe						
Si	3,794	3,829	3,833	3,829	3,861	3,829	3,830	3,742	3,821
Ті	0,044	0,048	0,049	0,040	0,061	0,052	0,040	0,050	0,055
AI	8,795	8,668	8,694	8,669	8,609	8,688	8,707	8,860	8,747
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,482	0,531	0,519	0,521	0,522	0,505	0,503	0,370	0,390
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,089	0,098	0,088	0,087	0,089	0,093	0,081	0,068	0,065
Fe	1,541	1,576	1,569	1,613	1,590	1,575	1,592	1,654	1,646
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,019	0,038	0,019	0,036	0,043	0,034	0,026	0,034	0,026
Formelbese	tzuna								
Si	3 704	3 820	3 833	3 820	3 861	3 820	3 830	3 742	3 821
	0,704	0,023	0 167	0 171	0 139	0,023	0,000	0.258	0 179
Summe [.]	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000	4 000
Cullino	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
AI(VI)	8,589	8,497	8,527	8,498	8,470	8,517	8,537	8,602	8,568
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,044	0,048	0,049	0,040	0,061	0,052	0,040	0,050	0,055
Summe:	8,633	8,545	8,576	8,538	8,531	8,569	8,577	8,652	8,623
Ma	0 482	0.531	0.519	0.521	0.522	0 505	0.503	0.370	0.390
Ca	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.000
Mn	0.089	0.098	0.088	0.087	0.089	0.093	0.081	0.068	0.065
Fe2+	1.541	1.576	1.569	1.613	1.590	1.575	1.592	1.654	1.646
Cu	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000	0.000
Zn	0.019	0.038	0.019	0.036	0,043	0.034	0.026	0.034	0.026
Summe:	2,131	2,243	2,195	2,257	2,244	2,207	2,202	2,126	2,127
Total:	14,764	14,788	14,771	14,795	14,775	14,776	14,779	14,778	14,750
XMg	0,228	0,241	0,239	0,234	0,237	0,232	0,231	0,177	0,186

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Staurolith	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3
	STAU1-3	STAU1-4	STAU1-5	STAU1-6	STAU1-7	STAU1-8	STAU1-9	STAU1-10	STAU1-11
SiO ₂	27.25	27.45	27.57	27.27	27.65	27.27	27.48	27.26	27.82
TiO ₂	0.54	0.54	0.58	0.56	0.55	0.58	0.67	0.58	0.58
	53,07	53,15	52,89	52,84	53,21	53,45	52,88	52,79	52,92
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	2,03	2,17	2,12	2,15	2,20	2,22	2,17	2,29	2,27
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,61	0,61	0,64	0,61	0,55	0,61	0,60	0,55	0,58
FeO	14,12	14,46	14,34	14,00	14,19	14,31	14,18	14,08	14,27
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,26	0,12	0,29	0,08	0,08	0,22	0,15	0,39	0,24
Summe	97,88	98,50	98,43	97,50	98,44	98,66	98,13	97,94	98,67
Strukturform	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,806	3,812	3,833	3,818	3,834	3,782	3,826	3,808	3,854
Ті	0,056	0,056	0,061	0,059	0,057	0,060	0,070	0,061	0,061
AI	8,736	8,700	8,667	8,719	8,696	8,735	8,680	8,691	8,639
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,423	0,449	0,440	0,448	0,455	0,459	0,451	0,477	0,468
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,073	0,072	0,075	0,072	0,065	0,072	0,071	0,065	0,067
Fe	1,649	1,680	1,667	1,639	1,646	1,659	1,651	1,645	1,653
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,027	0,012	0,029	0,008	0,008	0,023	0,016	0,040	0,024
Formelbeset	tzung								
Si	3,806	3,812	3,833	3,818	3,834	3,782	3,826	3,808	3,854
AI(IV)	0,194	0,188	0,167	0,182	0,166	0,218	0,174	0,192	0,146
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,542	8,512	8,500	8,537	8,530	8,517	8,506	8,499	8,493
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,056	0,056	0,061	0,059	0,057	0,060	0,070	0,061	0,061
Summe:	8,598	8,568	8,561	8,596	8,587	8,577	8,576	8,560	8,554
Mg	0,423	0,449	0,440	0,448	0,455	0,459	0,451	0,477	0,468
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,073	0,072	0,075	0,072	0,065	0,072	0,071	0,065	0,067
Fe2+	1,649	1,680	1,667	1,639	1,646	1,659	1,651	1,645	1,653
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,027	0,012	0,029	0,008	0,008	0,023	0,016	0,040	0,024
Summe:	2,172	2,213	2,211	2,167	2,174	2,213	2,189	2,227	2,212
Total:	14,770	14,781	14,772	14,763	14,761	14,790	14,765	14,787	14,766
XMg	0,197	0,204	0,202	0,207	0,210	0,210	0,208	0,218	0,214

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Staurolith	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3
	STAU1-12	STAU1-13	STAU1-14	STAU1-15	STAU1-16	STAU1-17	STAU1-18	STAU1-19	STAU1-20
SIO ₂	27,49	27,50	27,40	27,50	27,52	27,61	27,59	27,42	27,48
	0,48	0,54	0,61	0,54	0,48	0,56	0,58	0,50	0,51
	52,50	52,58	52,91	53,05	52,97	53,47	53,59	53,82	54,68
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	2,30	2,22	2,17	2,13	2,05	2,13	1,98	1,84	1,74
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Nino Feo	0,58	0,53	0,53	0,53	0,54	0,57	0,59	0,63	0,59
FeU CuiO	14,44	14,47	14,26	14,25	14,22	14,09	13,91	13,92	13,69
CuO 7=0	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Summa	0,28	0,27	0,14	0,22	0,10	0,21	0,23	0,23	0,20
Summe	90,00	90,10	90,01	90,21	97,00	90,04	90,47	90,33	90,93
Strukturforn	nel bezogen	auf 23 Sauer	stoffe						
Si	3,839	3,837	3,820	3,827	3,839	3,821	3,822	3,803	3,782
Ті	0,050	0,056	0,064	0,056	0,051	0,059	0,060	0,052	0,053
AI	8,641	8,648	8,694	8,700	8,708	8,722	8,749	8,798	8,870
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,478	0,462	0,451	0,441	0,427	0,439	0,409	0,380	0,356
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,068	0,063	0,063	0,062	0,064	0,066	0,069	0,074	0,068
Fe	1,686	1,688	1,662	1,658	1,658	1,631	1,611	1,614	1,576
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,028	0,028	0,015	0,022	0,010	0,021	0,023	0,024	0,026
Formelbese	tzung								
Si	3,839	3,837	3,820	3,827	3,839	3,821	3,822	3,803	3,782
AI(IV)	0,161	0,163	0,180	0,173	0,161	0,179	0,178	0,197	0,218
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
ΔI(VI)	8 480	8 485	8 514	8 527	8 547	8 543	8 571	8 601	8 652
Cr	0.000	0,000	0.000	0.000	0.000	0,000	0.000	0.000	0.000
Ti	0.050	0.056	0.064	0.056	0.051	0.059	0,060	0.052	0.053
Summe:	8,530	8,541	8,578	8,583	8,598	8,602	8,631	8,653	8,705
	,	,	,	,	,	,	,	,	,
Mg	0,478	0,462	0,451	0,441	0,427	0,439	0,409	0,380	0,356
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,068	0,063	0,063	0,062	0,064	0,066	0,069	0,074	0,068
Fe2+	1,686	1,688	1,662	1,658	1,658	1,631	1,611	1,614	1,576
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,028	0,028	0,015	0,022	0,010	0,021	0,023	0,024	0,026
Summe:	2,260	2,241	2,191	2,183	2,159	2,157	2,112	2,092	2,026
Total:	14,790	14,782	14,769	14,766	14,757	14,759	14,743	14,745	14,731
					- ·		- ·	- · ·	· ·=-
хMg	0,214	0,209	0,207	0,204	0,198	0,206	0,196	0,184	0,178

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Staurolith	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4
	STAU1-1	STAU1-2	STAU1-3	STAU1-4	STAU1-5	STAU1-6	STAU1-7	STAU1-8	STAU1-9
SiO ₂	27,34	27,70	27,77	27,40	27,40	27,89	27,69	27,65	27,45
TiO ₂	0,72	0,66	0,65	0,58	0,67	0,68	0,76	0,72	0,70
Al ₂ O ₃	52,84	53,03	53,26	53,17	53,41	53,15	52,95	53,04	52,77
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	2,04	2,18	2,16	2,03	1,82	1,95	1,87	1,98	1,96
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,47	0,49	0,48	0,57	0,53	0,55	0,58	0,54	0,52
FeO	13,94	14,11	13,94	14,05	13,78	13,71	14,00	14,05	14,33
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,17	0,29	0,28	0,40	0,21	0,25	0,19	0,28	0,38
Summe	97,52	98,45	98,54	98,20	97,81	98,19	98,02	98,25	98,10
Strukturforn	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,825	3,842	3,844	3,814	3,817	3,869	3,854	3,842	3,829
Ті	0,075	0,069	0,068	0,061	0,070	0,071	0,080	0,075	0,073
AI	8,712	8,670	8,688	8,723	8,771	8,690	8,686	8,688	8,678
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,426	0,451	0,445	0,421	0,378	0,404	0,387	0,409	0,408
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,055	0,057	0,056	0,067	0,063	0,065	0,068	0,063	0,061
Fe	1,613	1,637	1,614	1,636	1,605	1,591	1,630	1,633	1,671
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,017	0,029	0,029	0,041	0,022	0,026	0,019	0,028	0,039
Formelbese	tzung								
Si	3,825	3,842	3,844	3,814	3,817	3,869	3,854	3,842	3,829
AI(IV)	0,175	0,158	0,156	0,186	0,183	0,131	0,146	0,158	0,171
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,537	8,512	8,532	8,537	8,588	8,559	8,540	8,530	8,507
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,075	0,069	0,068	0,061	0,070	0,071	0,080	0,075	0,073
Summe:	8,612	8,581	8,600	8,598	8,658	8,630	8,620	8,605	8,580
Mg	0,426	0,451	0,445	0,421	0,378	0,404	0,387	0,409	0,408
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,055	0,057	0,056	0,067	0,063	0,065	0,068	0,063	0,061
Fe2+	1,613	1,637	1,614	1,636	1,605	1,591	1,630	1,633	1,671
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,017	0,029	0,029	0,041	0,022	0,026	0,019	0,028	0,039
Summe:	2,111	2,174	2,144	2,165	2,068	2,086	2,104	2,133	2,179
Total:	14,723	14,755	14,744	14,763	14,726	14,716	14,724	14,738	14,759
XMg	0,202	0,210	0,210	0,198	0,185	0,196	0,186	0,194	0,191

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Staurolith	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4
	STAU1-10	STAU1-11	STAU1-12	STAU1-13	STAU1-14	STAU1-15	STAU1-16	STAU1-17	STAU1-18
SiO ₂	28.22	27.71	27.52	27.56	27.38	27.53	27.40	27.65	27.74
TiO	0.70	0.76	0.58	0.66	0.64	0.57	0.54	0.64	0.61
Al ₂ O ₃	54,07	53,41	54,10	53,14	53,82	53,85	54,15	54,05	53,44
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	1,75	1,72	1,67	1,86	1,77	1,87	1,63	1,69	1,97
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,54	0,59	0,54	0,55	0,57	0,56	0,60	0,59	0,58
FeO	13,76	13,60	13,79	14,01	13,72	13,75	13,92	13,53	13,72
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,30	0,20	0,31	0,27	0,05	0,45	0,18	0,32	0,31
Summe	99,34	98,00	98,51	98,05	97,94	98,59	98,43	98,46	98,35
Strukturforn	nel bezoaen	auf 23 Sauer	stoffe						
Si	3,866	3,849	3,807	3,837	3,805	3,810	3,795	3,823	3,844
Ті	0,072	0,080	0,060	0,069	0,067	0,060	0,056	0,067	0,063
AI	8,731	8,744	8,821	8,719	8,815	8,781	8,839	8,806	8,727
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,357	0,375	0,343	0,386	0,366	0,386	0,336	0,348	0,406
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,063	0,070	0,063	0,065	0,067	0,066	0,071	0,068	0,068
Fe	1,576	1,580	1,596	1,631	1,595	1,591	1,613	1,564	1,590
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,030	0,021	0,032	0,028	0,005	0,046	0,019	0,033	0,031
Formelbese	tzung								
Si	3,866	3,849	3,807	3,837	3,805	3,810	3,795	3,823	3,844
AI(IV)	0,134	0,151	0,193	0,163	0,195	0,190	0,205	0,177	0,156
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8 597	8 593	8 628	8 556	8 620	8 591	8 634	8 629	8 571
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ti	0.072	0.080	0.060	0.069	0.067	0.060	0.056	0.067	0.063
Summe:	8,669	8,673	8,688	8,625	8,687	8,651	8,690	8,696	8,634
Ма	0 357	0 375	0 343	0 386	0 366	0 386	0 336	0 348	0 406
Ca	0,000	0,000	0,040	0,000	0,000	0,000	0,000	0,040	0,400
Mn	0.063	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
 Fe2+	1 576	1,580	1,596	1 631	1 595	1 591	1 613	1 564	1,590
Cu	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Zn	0.030	0.021	0.032	0.028	0.005	0.046	0.019	0.033	0.031
Summe:	2,026	2,046	2,034	2,110	2,033	2,089	2,039	2,013	2,095
Total:	14,695	14,719	14,722	14,735	14,720	14,740	14,729	14,709	14,729
XMg	0,179	0,178	0,172	0,185	0,181	0,189	0,167	0,176	0,197
Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
--------------------------------	-------------	--------------	---------	---------	---------	---------	---------	---------	---------
Staurolith	7.4	7.4	7.6	7.6	7.6	7.6	7.6	7.6	7.6
	STAU1-19	STAU1-20	STAU1-1	STAU1-2	STAU1-3	STAU1-4	STAU1-5	STAU1-6	STAU1-7
SiO ₂	27,84	27,77	27,38	27,58	27,37	27,32	27,23	27,56	27,52
TiO ₂	0,59	0,55	0,55	0,57	0,58	0,57	0,60	0,53	0,57
Al ₂ O ₃	53,10	53,02	52,76	53,28	53,50	52,76	52,89	52,94	53,55
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	1,89	2,00	2,08	2,12	2,14	2,13	2,14	2,16	2,07
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,51	0,55	0,57	0,53	0,57	0,60	0,52	0,55	0,55
FeO	14,12	14,29	13,99	14,07	13,91	13,99	13,87	14,03	13,85
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,30	0,32	0,15	0,41	0,28	0,30	0,12	0,32	0,22
Summe	98,36	98,49	97,48	98,55	98,34	97,68	97,38	98,08	98,31
Strukturforn	nel bezogen	auf 23 Sauer	stoffe						
Si	3,864	3,854	3,834	3,824	3,800	3,822	3,814	3,838	3,816
Ті	0,062	0,058	0,058	0,059	0,060	0,060	0,063	0,055	0,059
AI	8,685	8,672	8,707	8,707	8,752	8,701	8,733	8,689	8,752
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,392	0,413	0,434	0,438	0,442	0,444	0,448	0,448	0,428
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,060	0,064	0,068	0,063	0,067	0,072	0,062	0,065	0,065
Fe	1,638	1,659	1,638	1,631	1,615	1,637	1,625	1,633	1,606
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,031	0,033	0,016	0,042	0,028	0,031	0,013	0,033	0,022
Formelbese	tzung								
Si	3,864	3,854	3,834	3,824	3,800	3,822	3,814	3,838	3,816
AI(IV)	0,136	0,146	0,166	0,176	0,200	0,178	0,186	0,162	0,184
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,549	8,526	8,541	8,531	8,552	8,523	8,547	8,527	8,568
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,062	0,058	0,058	0,059	0,060	0,060	0,063	0,055	0,059
Summe:	8,611	8,584	8,599	8,590	8,612	8,583	8,610	8,582	8,627
Mg	0,392	0,413	0,434	0,438	0,442	0,444	0,448	0,448	0,428
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,060	0,064	0,068	0,063	0,067	0,072	0,062	0,065	0,065
Fe2+	1,638	1,659	1,638	1,631	1,615	1,637	1,625	1,633	1,606
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,031	0,033	0,016	0,042	0,028	0,031	0,013	0,033	0,022
Summe:	2,121	2,169	2,156	2,174	2,152	2,184	2,148	2,179	2,121
Total:	14,732	14,753	14,755	14,764	14,764	14,767	14,758	14,761	14,748
XMg	0,187	0,193	0,203	0,206	0,208	0,206	0,210	0,209	0,204

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	SM1063	SM1063	SM1063	SM1063
Staurolith	7.6	7.6	7.6	7.6	7.6	3.2	3.2	3.2	3.2
	STAU1-8	STAU1-9	STAU1-10	STAU1-11	STAU1-12	STAU 1-1	STAU 1-2	STAU2-1	STAU2-2
SiO ₂	27,61	27,26	27,47	27,25	27,45	26,55	27,61	27,32	27,78
TiO ₂	0,57	0,61	0,62	0,60	0,57	0,64	0,69	0,65	0,60
	53,07	53,03	52,95	53,31	53,54	53,94	54,92	53,56	53,31
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	2,21	2,10	2,18	2,06	2,07	1,57	1,64	1,59	1,72
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,53	0,51	0,56	0,59	0,62	0,51	0,54	0,60	0,49
FeO	13,97	13,88	13,93	13,94	13,80	12,43	12,90	12,70	13,36
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,11	0,11	0,22	0,14	0,15	0,74	0,84	0,67	0,77
Summe	98,07	97,48	97,94	97,88	98,19	96,38	99,15	97,08	98,04
Strukturforn	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,839	3,813	3,829	3,799	3,811	3,743	3,788	3,824	3,862
Ті	0,059	0,064	0,065	0,063	0,059	0,068	0,072	0,068	0,063
AI	8,698	8,743	8,697	8,760	8,761	8,963	8,879	8,838	8,735
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,458	0,437	0,454	0,428	0,428	0,329	0,336	0,333	0,357
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,062	0,060	0,066	0,069	0,072	0,061	0,063	0,071	0,058
Fe	1,625	1,624	1,624	1,625	1,602	1,466	1,480	1,487	1,553
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,012	0,011	0,022	0,015	0,015	0,077	0,085	0,069	0,079
Formelbese	tzung								
Si	3,839	3,813	3,829	3,799	3,811	3,743	3,788	3,824	3,862
AI(IV)	0,161	0,187	0,171	0,201	0,189	0,257	0,212	0,176	0,138
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,537	8,556	8,526	8,559	8,572	8,706	8,667	8,662	8,597
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,059	0,064	0,065	0,063	0,059	0,068	0,072	0,068	0,063
Summe:	8,596	8,620	8,591	8,622	8,631	8,774	8,739	8,730	8,660
Mg	0,458	0,437	0,454	0,428	0,428	0,329	0,336	0,333	0,357
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,062	0,060	0,066	0,069	0,072	0,061	0,063	0,071	0,058
Fe2+	1,625	1,624	1,624	1,625	1,602	1,466	1,480	1,487	1,553
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,012	0,011	0,022	0,015	0,015	0,077	0,085	0,069	0,079
Summe:	2,157	2,132	2,166	2,137	2,117	1,933	1,964	1,960	2,047
Total:	14,753	14,752	14,757	14,759	14,748	14,707	14,703	14,690	14,707
XMg	0,214	0,206	0,212	0,201	0,203	0,177	0,179	0,176	0,181

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063
Staurolith	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3
	STAU3-1	STAU4-1	STAU1	STAU1-1	STAU 1-2	STAU2-1	STAU2-2	STAU3-1	STAU3-2
SiO ₂	27,11	27,78	27,53	27,53	27,70	27,67	27,59	27,69	27,97
TiO ₂	0,60	0,60	0,56	0,56	0,61	0,76	0,69	0,55	0,52
Al ₂ O ₃	54,29	53,71	53,13	53,13	53,35	53,55	53,88	53,88	54,03
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	1,68	1,67	1,81	1,81	1,92	1,66	1,52	1,72	1,69
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,56	0,50	0,55	0,55	0,57	0,55	0,54	0,55	0,58
FeO	12,39	12,57	13,33	13,33	13,24	12,85	13,06	12,62	12,92
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,99	0,75	0,42	0,42	0,56	0,55	0,48	0,48	0,58
Summe	97,61	97,58	97,32	97,32	97,94	97,59	97,76	97,48	98,28
Strukturforn	nel bezogen a	auf 23 Sauers	stoffe						
Si	3,776	3,863	3,850	3,850	3,851	3,851	3,835	3,850	3,865
Ті	0,062	0,062	0,058	0,058	0,063	0,080	0,072	0,057	0,054
AI	8,910	8,803	8,759	8,759	8,740	8,785	8,827	8,831	8,798
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,349	0,346	0,378	0,378	0,398	0,344	0,315	0,357	0,347
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,066	0,059	0,065	0,065	0,067	0,065	0,064	0,064	0,068
Fe	1,443	1,462	1,559	1,559	1,539	1,495	1,518	1,467	1,493
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,102	0,077	0,043	0,043	0,057	0,057	0,049	0,049	0,059
Formelbeset	tzung								
Si	3,776	3,863	3,850	3,850	3,851	3,851	3,835	3,850	3,865
AI(IV)	0,224	0,137	0,150	0,150	0,149	0,149	0,165	0,150	0,135
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
	8 686	8 666	8 609	8 609	8 591	8 636	8 662	8 681	8 663
Cr	0,000	0,000	0,000	0,000	0.000	0,000	0.000	0.000	0.000
Ti	0,062	0.062	0.058	0.058	0.063	0.080	0.072	0.057	0.054
Summe:	8,748	8,728	8,667	8,667	8,654	8,716	8,734	8,738	8,717
N4	0.040	0.040	0.070	0.070	0.000	0.044	0.045	0.057	0.047
Mg	0,349	0,346	0,378	0,378	0,398	0,344	0,315	0,357	0,347
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Min	0,066	0,059	0,065	0,065	0,067	0,065	0,064	0,064	0,068
Fez+	1,443	1,462	1,559	1,559	1,539	1,495	1,518	1,467	1,493
CU 7m	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
2N Summer	0,102	0,077	0,043	0,043	0,057	0,057	0,049	0,049	0,059
Summe:	1,900	1,944	∠,045	2,045	2,001	1,901	1,940	1,937	1,907
i Ulai.	14,708	14,072	14,712	14,712	14,713	14,077	14,000	14,070	14,004
XMg	0,188	0,185	0,189	0,189	0,199	0,181	0,166	0,189	0,182

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063
Staurolith	3.4	3.4	3.4	3.5	3.5	3.5	3.5	3.7	3.7
	STAU1-1	STAU1-2	STAU1-3	STAU1-1	STAU2-1	STAU2-2	STAU2-3	STAU1-1	STAU1-2
SiO ₂	27,81	27,81	27,78	26,99	27,05	27,28	27,34	27,82	27,83
TiO ₂	0,50	0,59	0,51	0,53	0,50	0,51	0,53	0,60	0,56
Al ₂ O ₃	52,56	53,04	53,33	54,17	53,37	53,55	53,29	53,93	53,72
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	1,96	1,86	1,80	1,72	1,84	1,96	1,78	1,57	1,70
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,49	0,55	0,54	0,49	0,46	0,51	0,45	0,58	0,49
FeO	13,50	12,90	13,33	13,02	12,43	13,10	13,24	12,24	12,20
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,36	0,40	0,46	0,82	0,77	0,83	0,86	0,70	0,91
Summe	97,17	97,15	97,76	97,72	96,43	97,74	97,49	97,45	97,40
Strukturforn	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,896	3,886	3,867	3,763	3,810	3,805	3,824	3,867	3,872
Ті	0,052	0,062	0,053	0,055	0,053	0,053	0,056	0,063	0,059
AI	8,678	8,735	8,749	8,899	8,858	8,802	8,785	8,835	8,810
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,409	0,388	0,374	0,358	0,387	0,407	0,372	0,326	0,353
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,059	0,065	0,064	0,057	0,055	0,060	0,054	0,069	0,058
Fe	1,581	1,507	1,552	1,517	1,464	1,528	1,549	1,423	1,420
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,037	0,041	0,047	0,084	0,080	0,085	0,089	0,072	0,093
Formelbeset	tzung								
Si	3,896	3,886	3,867	3,763	3,810	3,805	3,824	3,867	3,872
AI(IV)	0,104	0,114	0,133	0,237	0,190	0,195	0,176	0,133	0,128
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,574	8,621	8,616	8,662	8,668	8,607	8,609	8,702	8,682
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,052	0,062	0,053	0,055	0,053	0,053	0,056	0,063	0,059
Summe:	8,626	8,683	8,669	8,717	8,721	8,660	8,665	8,765	8,741
Mg	0,409	0,388	0,374	0,358	0,387	0,407	0,372	0,326	0,353
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,059	0,065	0,064	0,057	0,055	0,060	0,054	0,069	0,058
Fe2+	1,581	1,507	1,552	1,517	1,464	1,528	1,549	1,423	1,420
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,037	0,041	0,047	0,084	0,080	0,085	0,089	0,072	0,093
Summe:	2,086	2,001	2,037	2,016	1,986	2,080	2,064	1,890	1,924
Total:	14,712	14,684	14,706	14,733	14,707	14,740	14,729	14,655	14,665
XMg	0,200	0,198	0,188	0,185	0,203	0,204	0,188	0,179	0,193

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	SM1063	SM1063	SM1063	SM1063	SM68	SM68	SM68	SM68	SM68
Staurolith	3.8	3.8	3.8	3.8	4.1	4.1	4.1	4.1	4.1
	STAU1-1	STAU1-2	STAU1-3	STAU1-4	STAU1-1	STAU1-2	STAU1-3	STAU 1-4	STAU 1-5
SiO ₂	27,66	27,60	27,76	27,78	27,25	27,92	27,51	27,31	27,55
TiO ₂	0,61	0,58	0,58	0,58	0,45	0,50	0,46	0,48	0,49
	53,79	54,10	54,33	53,42	53,59	53,71	52,69	53,27	53,65
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	1,72	1,60	1,54	1,70	2,26	2,62	2,55	2,49	2,56
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,52	0,53	0,49	0,52	0,75	0,68	0,64	0,65	0,62
FeO	12,49	11,73	11,83	12,76	13,33	12,99	13,21	13,74	12,88
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,80	0,97	0,90	0,86	0,32	0,16	0,23	0,21	0,27
Summe	97,58	97,10	97,43	97,61	97,95	98,57	97,29	98,15	98,01
Strukturform	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,847	3,845	3,853	3,869	3,791	3,846	3,848	3,798	3,817
Ті	0,063	0,061	0,060	0,061	0,048	0,051	0,049	0,050	0,051
AI	8,818	8,884	8,887	8,769	8,787	8,718	8,687	8,728	8,762
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,356	0,333	0,318	0,352	0,469	0,537	0,531	0,517	0,528
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,061	0,062	0,057	0,061	0,089	0,080	0,076	0,077	0,073
Fe	1,452	1,367	1,374	1,486	1,550	1,496	1,546	1,598	1,492
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,082	0,099	0,092	0,088	0,033	0,016	0,023	0,022	0,028
Formelbeset	tzung								
Si	3,847	3,845	3,853	3,869	3,791	3,846	3,848	3,798	3,817
AI(IV)	0,153	0,155	0,147	0,131	0,209	0,154	0,152	0,202	0,183
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,665	8,729	8,740	8,638	8,578	8,564	8,535	8,526	8,579
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,063	0,061	0,060	0,061	0,048	0,051	0,049	0,050	0,051
Summe:	8,728	8,790	8,800	8,699	8,626	8,615	8,584	8,576	8,630
Ма	0.356	0.333	0.318	0.352	0.469	0.537	0.531	0.517	0.528
Ca	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.061	0.062	0.057	0.061	0.089	0.080	0.076	0.077	0.073
Fe2+	1.452	1.367	1.374	1,486	1.550	1,496	1.546	1.598	1.492
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,082	0,099	0,092	0,088	0,033	0,016	0,023	0,022	0,028
Summe:	1,951	1,861	1,841	1,987	2,141	2,129	2,176	2,214	2,121
Total:	14,679	14,651	14,641	14,686	14,767	14,744	14,760	14,790	14,751
XMg	0,191	0,189	0,182	0,185	0,222	0,254	0,247	0,236	0,252

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Staurolith	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
	STAU1-6	STAU1-7	STAU1A-1	STAU1A-2	STAU1A-3	STAU1A-4	STAU1A-5	STAU1A-6	STAU1A-7
SiO.	27 70	27 25	27 29	27 34	27 23	27 51	27.64	27 53	27.66
	0.51	0.49	0.46	0.55	0.52	0.51	0.49	0.49	27,00
	52 73	52.83	53.07	53 13	52.80	53 10	52 78	52.67	53 20
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MaO	2,60	2.40	2,25	2,30	2.30	2.39	2,55	2,64	2,56
CaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MnO	0.68	0.72	0.82	0.77	0.81	0.77	0.74	0.72	0.72
FeO	13.72	13.53	13.70	13.77	13.43	13.72	13.23	13.47	13.61
CuO	0,00	0,00	0.00	0,00	0.00	0.00	0,00	0,00	0,00
ZnO	0,19	0,12	0,27	0,28	0,16	0,18	0,28	0,23	0,10
Summe	98,12	97,34	97,86	98,15	97,25	98,18	97,72	97,74	98,38
Cturilitiumforum									
Strukturiorii		aur 23 Sauer	2 000	2 905	2 0 1 0	2 0 2 2	2 952	2 940	2 0 2 1
5і ті	3,001	0.052	3,009	3,605	0.055	3,023	3,603	3,640	0.056
11 Al	9,034	0,052 8,720	9,049	9,030	9,000	0,000	0,031	0,032	0,000
Cr	0,009	0,720	0,729	0,715	0,724	0,090	0,009	0,009	0,000
Ma	0,000	0,000	0,000	0,000	0,000	0,000	0,531	0,548	0,000
Ca	0,000	0,000	0,400	0,470	0,401	0,400	0,001	0,040	0,020
Mn	0,000	0.085	0,000	0,000	0,000	0,000	0.088	0.085	0.084
Fe	1,595	1,584	1,600	1,603	1,575	1,595	1.542	1,571	1.577
Cu	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Zn	0,019	0,012	0,027	0,029	0,016	0,019	0,029	0,023	0,010
Formelbese	tzung	0.047		0.005	0.040	0.000	0.050	0.040	0.004
51	3,851	3,817	3,809	3,805	3,818	3,823	3,853	3,840	3,831
AI(IV)	0,149	0,103	0,191	0,195	0,162	0,177	0,147	0,160	0,169
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,490	8,537	8,538	8,520	8,542	8,521	8,522	8,499	8,517
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,054	0,052	0,049	0,058	0,055	0,053	0,051	0,052	0,056
Summe:	8,544	8,589	8,587	8,578	8,597	8,574	8,573	8,551	8,573
Mq	0,539	0.501	0,468	0,478	0,481	0,495	0,531	0,548	0,528
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0.000	0,000	0,000
Mn	0,079	0,085	0,097	0,091	0,096	0,091	0,088	0,085	0,084
Fe2+	1,595	1,584	1,600	1,603	1,575	1,595	1,542	1,571	1,577
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,019	0,012	0,027	0,029	0,016	0,019	0,029	0,023	0,010
Summe:	2,232	2,182	2,192	2,201	2,168	2,200	2,190	2,227	2,199
Total:	14,776	14,771	14,779	14,779	14,765	14,774	14,763	14,778	14,772
XMg	0,244	0,231	0,216	0,220	0,223	0,227	0,246	0,249	0,241

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Staurolith	4.1	4.1	4.1	4.1	4.1	4.1	4.2	4.2	4.2
	STAU1A-8	STAU1A-9	STAU1A-10	STAU1A-11	STAU1A-12	STAU1A-13	STAU1-1	STAU1-2	STAU1-3
8:0	27.07	27.60	27 52	27 54	27 50	27.65	22 22	27.67	27.07
310 ₂	27,07	27,00	27,52	27,34	27,30	27,05	27,02	27,07	21,91
	0,30 53.25	0,49 53.00	53.00	0,4J	53 33	52.99	52 21	52.42	52 20
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2.56	2.45	2.48	2.54	2 42	2 25	2 59	2 47	2.48
CaO	2,50	2,40	2,40	2,54	0.00	2,20	2,00	2,47	2,40
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	13.30	13 44	13 79	13.81	13.83	13 71	13.28	13 29	12 75
CuO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ZnO	0,19	0.33	0.23	0.35	0,17	0.26	0.22	0,00	0.24
Summe	97,67	98,13	98,29	98,57	98,60	99,06	98,40	98,22	97,95
Strukturforn	nel bezogen	auf 23 Saue	rstoffe						
Si	3,778	3,835	3,822	3,817	3,818	3,809	3,849	3,834	3,875
Ti	0,052	0,051	0,050	0,047	0,057	0,051	0,053	0,044	0,048
AI	8,760	8,693	5,690	8,685	8,698	8,746	8,676	8,723	8,701
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,532	0,507	0,512	0,524	0,499	0,462	0,535	0,509	0,511
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,095	0,086	0,084	0,084	0,086	0,095	0,090	0,089	0,091
Fe	1,552	1,561	1,602	1,600	1,600	1,579	1,536	1,539	1,477
Cu Zm	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,020	0,034	0,024	0,036	0,017	0,026	0,023	0,021	0,024
Formelbese	tzung								
Si	3,778	3,835	3,822	3,817	3,818	3,809	3,849	3,834	3,875
AI(IV)	0,222	0,165	0,178	0,183	0,182	0,191	0,151	0,166	0,125
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
	8 538	8 528	5 512	8 502	8 516	8 555	8 525	8 557	8 576
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ti	0.052	0.051	0.050	0.047	0.057	0.051	0.053	0.044	0.048
Summe:	8,590	8,579	5,562	8,549	8,573	8,606	8,578	8,601	8,624
Mg	0,532	0,507	0,512	0,524	0,499	0,462	0,535	0,509	0,511
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
win F- 0	0,095	0,086	0,084	0,084	0,086	0,095	0,090	0,089	0,091
Fe2+	1,552	1,561	1,602	1,600	1,600	1,579	1,536	1,539	1,477
Cu Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
∠n Summer	0,020	0,034	0,024	0,036	0,017	0,026	0,023	0,021	0,024
Summe:	2,199	2,108	2,222	2,244	2,202	2,102	2,184	2,158	2,103
i Ulai.	14,709	14,707	11,704	14,793	14,775	14,700	14,702	14,709	14,727
XMg	0,244	0,235	0,233	0,237	0,228	0,216	0,247	0,238	0,246

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Staurolith	4.2	4.2	4.2	4.2	4.3	4.3	4.3	4.5	4.5
	STAU1-4	STAU1-5	STAU1-6	STAU1-7	STAU1-1	STAU1-2	STAU1-3	STAU1A	STAU1A
SiO ₂	27,92	27,59	27,63	27,88	27,71	27,22	28,08	27,12	27,60
TiO ₂	0,51	0,46	0,55	0,46	0,51	0,46	0,48	0,46	0,48
Al ₂ O ₃	52,95	53,01	53,29	53,26	53,46	53,19	53,03	53,14	53,20
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	2,33	2,38	2,36	2,42	2,46	2,25	2,38	1,84	2,21
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,71	0,75	0,65	0,75	0,61	0,68	0,69	0,94	0,82
FeO	13,70	13,32	13,35	13,67	13,23	13,54	12,68	13,91	13,93
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,14	0,18	0,18	0,32	0,22	0,19	0,23	0,12	0,18
Summe	98,26	97,69	98,01	98,76	98,20	97,54	97,56	97,53	98,42
Strukturforn	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,872	3,845	3,836	3,851	3,837	3,804	3,902	3,800	3,830
Ті	0,053	0,048	0,057	0,048	0,053	0,048	0,050	0,049	0,050
AI	8,655	8,707	8,719	8,670	8,725	8,761	8,684	8,777	8,701
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,481	0,494	0,489	0,498	0,507	0,469	0,493	0,384	0,457
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,084	0,088	0,076	0,088	0,072	0,080	0,081	0,112	0,097
Fe	1,589	1,553	1,550	1,579	1,532	1,583	1,473	1,630	1,616
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,014	0,019	0,019	0,032	0,023	0,020	0,023	0,012	0,018
Formelbeset	tzung								
Si	3,872	3,845	3,836	3,851	3,837	3,804	3,902	3,800	3,830
AI(IV)	0,128	0,155	0,164	0,149	0,163	0,196	0,098	0,200	0,170
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,527	8,552	8,555	8,521	8,562	8,565	8,586	8,577	8,531
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,053	0,048	0,057	0,048	0,053	0,048	0,050	0,049	0,050
Summe:	8,580	8,600	8,612	8,569	8,615	8,613	8,636	8,626	8,581
Mg	0,481	0,494	0,489	0,498	0,507	0,469	0,493	0,384	0,457
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,084	0,088	0,076	0,088	0,072	0,080	0,081	0,112	0,097
Fe2+	1,589	1,553	1,550	1,579	1,532	1,583	1,473	1,630	1,616
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,014	0,019	0,019	0,032	0,023	0,020	0,023	0,012	0,018
Summe:	2,168	2,154	2,134	2,197	2,134	2,152	2,070	2,138	2,188
Total:	14,748	14,754	14,746	14,766	14,749	14,765	14,706	14,764	14,769
XMg	0,223	0,232	0,231	0,230	0,240	0,220	0,241	0,181	0,211

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Staurolith	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
	STAU1A	STAU1A	STAU1A	STAU1B	STAU1B	STAU1B	STAU1B	STAU1B	STAU1B
SiO ₂	27,33	27,97	27,99	27,38	28,04	27,71	27,75	27,62	27,47
TiO ₂	0,49	0,48	0,52	0,44	0,47	0,44	0,47	0,50	0,38
Al ₂ O ₃	53,42	53,42	53,62	53,01	53,37	53,64	53,20	53,15	53,49
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	2,26	2,29	2,23	2,03	2,22	2,11	2,35	2,35	2,34
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,79	0,76	0,76	0,84	0,79	0,80	0,87	0,81	0,81
FeO	13,51	13,81	13,44	13,63	13,36	13,66	13,80	13,93	13,49
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,37	0,21	0,18	0,19	0,17	0,19	0,21	0,26	0,22
Summe	98,17	98,94	98,74	97,51	98,41	98,54	98,64	98,61	98,19
Strukturform	nel bezogen a	auf 23 Sauers	stoffe						
Si	3,800	3,855	3,857	3,830	3,876	3,833	3,840	3,828	3,813
Ті	0,051	0,050	0,054	0,046	0,049	0,045	0,049	0,052	0,040
AI	8,753	8,678	8,709	8,740	8,694	8,744	8,678	8,680	8,752
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,468	0,471	0,459	0,423	0,458	0,434	0,484	0,485	0,483
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,093	0,089	0,089	0,099	0,092	0,093	0,102	0,095	0,095
Fe	1,571	1,592	1,549	1,595	1,544	1,580	1,597	1,614	1,566
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,038	0,022	0,018	0,019	0,017	0,020	0,022	0,026	0,023
Formelbeset	tzung								
Si	3,800	3,855	3,857	3,830	3,876	3,833	3,840	3,828	3,813
AI(IV)	0,200	0,145	0,143	0,170	0,124	0,167	0,160	0,172	0,187
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,553	8,533	8,566	8,570	8,570	8,577	8,518	8,508	8,565
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ti	0,051	0,050	0,054	0,046	0,049	0,045	0,049	0,052	0,040
Summe:	8,604	8,583	8,620	8,616	8,619	8,622	8,567	8,560	8,605
Mg	0,468	0,471	0,459	0,423	0,458	0,434	0,484	0,485	0,483
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,093	0,089	0,089	0,099	0,092	0,093	0,102	0,095	0,095
Fe2+	1,571	1,592	1,549	1,595	1,544	1,580	1,597	1,614	1,566
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,038	0,022	0,018	0,019	0,017	0,020	0,022	0,026	0,023
Summe:	2,170	2,174	2,115	2,136	2,111	2,127	2,205	2,220	2,167
Total:	14,774	14,757	14,735	14,752	14,730	14,749	14,772	14,780	14,772
XMg	0,220	0,219	0,219	0,200	0,219	0,206	0,222	0,221	0,225

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Staurolith	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
	STAU1B	STAU1B	STAU1C	STAU1C	STAU1C	STAU1C	STAU1D	STAU1D	STAU1D
C :0	07.00	07.05	07 70	07.00	00.40	00.05	07.00	07.00	07.00
510 ₂	27,89	27,85	27,79	27,86	28,19	28,25	27,69	27,96	27,89
	0,46	0,45	0,52	0,45	0,50	0,47	0,49	0,46	0,45
	0.00	54,50	0.00	52,90	52,62	0.00	0.00	0.00	0.09
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	2,44	2,30	2,23	2,32	2,34	2,33	2,27	2,30	2,30
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
EeO	13.67	12 78	13 / 9	13.47	13 69	13.88	13.52	13.26	13.63
CuO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Summe	99.03	98.58	98.45	97,90	98.53	99.52	98.46	98.49	99.06
••••••	00,00	00,00	00,10	01,00	00,00	00,01	00,10	00,10	00,00
Strukturform	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,840	3,829	3,847	3,875	3,900	3,870	3,831	3,861	3,835
Ті	0,047	0,047	0,054	0,047	0,052	0,048	0,051	0,050	0,047
AI	8,688	8,809	8,703	8,670	8,612	8,663	8,731	8,701	8,731
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,500	0,472	0,459	0,482	0,483	0,476	0,469	0,485	0,471
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,087	0,077	0,089	0,079	0,087	0,084	0,083	0,088	0,084
Fe	1,574	1,470	1,562	1,567	1,583	1,589	1,564	1,531	1,567
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,031	0,017	0,033	0,024	0,025	0,021	0,023	0,022	0,018
Formelbeset	zuna								
Si	3.840	3.829	3.847	3.875	3.900	3.870	3.831	3.861	3.835
AI(IV)	0,160	0,171	0,153	0,125	0,100	0,130	0,169	0,139	0,165
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,528	8,638	8,550	8,545	8,512	8,533	8,562	8,562	8,566
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,047	0,047	0,054	0,047	0,052	0,048	0,051	0,050	0,047
Summe:	8,575	8,685	8,604	8,592	8,564	8,581	8,613	8,612	8,613
Ma	0.500	0.472	0.459	0.482	0.483	0.476	0.469	0.485	0.471
Ca	0,000	0.000	0,000	0.000	0,000	0.000	0.000	0.000	0.000
Mn	0.087	0.077	0.089	0.079	0.087	0.084	0.083	0.088	0.084
Fe2+	1.574	1.470	1.562	1.567	1.583	1.589	1.564	1.531	1.567
Cu	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Zn	0.031	0.017	0.033	0.024	0.025	0.021	0.023	0.022	0.018
Summe:	2,192	2,036	2,143	2,152	2,178	2,170	2,139	2,126	2,140
Total:	14,767	14,721	14,747	14,744	14,742	14,751	14,752	14,738	14,753
XMg	0,231	0,234	0,218	0,226	0,224	0,222	0,222	0,231	0,222

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Staurolith	4.5	4.5	4.5	4.5	4.5	4.7	4.7	4.7	4.7
	STAU1D	STAU1D	STAU1E	STAU1E	STAU1E	STAU1-1	STAU1-2	STAU1-3	STAU1-4
SiO ₂	28,30	28,01	27,84	28,00	28,18	28,06	27,53	27,50	27,74
TiO ₂	0,52	0,47	0,49	0,45	0,44	0,51	0,48	0,46	0,43
Al ₂ O ₃	53,53	54,26	52,96	53,50	53,47	53,16	53,04	53,28	53,46
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	2,28	2,23	2,34	2,41	2,46	2,47	2,59	2,73	2,67
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,80	0,80	0,73	0,79	0,82	0,70	0,64	0,58	0,64
FeO	13,62	13,11	13,18	13,47	13,44	13,60	13,31	13,54	13,76
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,13	0,16	0,13	0,18	0,33	0,28	0,22	0,14	0,36
Summe	99,19	99,03	97,66	98,79	99,14	98,79	97,81	98,23	99,06
Strukturform	nel bezogen a	auf 23 Sauers	stoffe						
Si	3,884	3,841	3,874	3,858	3,872	3,871	3,831	3,813	3,822
Ті	0,054	0,048	0,051	0,047	0,046	0,053	0,050	0,048	0,045
AI	8,659	8,769	8,687	8,689	8,659	8,642	8,701	8,708	8,681
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,467	0,455	0,485	0,494	0,504	0,509	0,538	0,564	0,548
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,092	0,093	0,087	0,092	0,095	0,082	0,075	0,068	0,075
Fe	1,564	1,504	1,534	1,553	1,544	1,569	1,549	1,570	1,585
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,014	0,016	0,013	0,018	0,033	0,029	0,023	0,014	0,037
Formelbeset	tzung								
Si	3,884	3,841	3,874	3,858	3,872	3,871	3,831	3,813	3,822
AI(IV)	0,116	0,159	0,126	0,142	0,128	0,129	0,169	0,187	0,178
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,543	8,610	8,561	8,547	8,531	8,513	8,532	8,521	8,503
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,054	0,048	0,051	0,047	0,046	0,053	0,050	0,048	0,045
Summe:	8,597	8,658	8,612	8,594	8,577	8,566	8,582	8,569	8,548
Mg	0,467	0,455	0,485	0,494	0,504	0,509	0,538	0,564	0,548
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,092	0,093	0,087	0,092	0,095	0,082	0,075	0,068	0,075
Fe2+	1,564	1,504	1,534	1,553	1,544	1,569	1,549	1,570	1,585
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,014	0,016	0,013	0,018	0,033	0,029	0,023	0,014	0,037
Summe:	2,137	2,068	2,119	2,157	2,176	2,189	2,185	2,216	2,245
Total:	14,734	14,726	14,731	14,751	14,753	14,755	14,767	14,785	14,793
XMg	0,220	0,222	0,230	0,231	0,235	0,236	0,249	0,256	0,248

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Staurolith	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7
	STAU1-5	STAU1-6	STAU1-7	STAU1-8	STAU1-9	STAU1-10	STAU1-11	STAU1-12	STAU1-13
SiO ₂	27,44	27,79	28,01	27,57	27,88	27,94	28,06	27,81	27,77
TiO ₂	0,55	0,48	0,52	0,51	0,51	0,49	0,47	0,49	0,49
	53,03	53,40	52,98	53,10	52,80	52,90	53,02	52,76	52,88
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	2,64	2,66	2,68	2,74	2,55	2,72	2,73	2,73	2,49
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,58	0,69	0,72	0,63	0,74	0,69	0,66	0,72	0,68
FeO	13,78	13,90	14,01	13,77	13,37	14,16	13,27	13,78	13,69
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,21	0,18	0,20	0,24	0,28	0,21	0,16	0,16	0,29
Summe	98,23	99,09	99,11	98,56	98,14	99,10	98,37	98,45	98,29
Strukturforn	nel bezogen a	auf 23 Sauer	stoffe						
Si	3,812	3,827	3,859	3,818	3,870	3,853	3,879	3,854	3,854
Ті	0,057	0,050	0,054	0,054	0,053	0,051	0,049	0,051	0,051
AI	8,683	8,668	8,603	8,665	8,638	8,599	8,637	8,618	8,650
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,546	0,546	0,551	0,565	0,528	0,559	0,562	0,563	0,516
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,069	0,081	0,084	0,074	0,087	0,080	0,077	0,085	0,079
Fe	1,601	1,601	1,614	1,595	1,552	1,633	1,534	1,598	1,589
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,021	0,019	0,020	0,025	0,029	0,021	0,016	0,017	0,030
Formelbeset	tzung								
Si	3,812	3,827	3,859	3,818	3,870	3,853	3,879	3,854	3,854
AI(IV)	0,188	0,173	0,141	0,182	0,130	0,147	0,121	0,146	0,146
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,495	8,495	8,462	8,483	8,508	8,452	8,516	8,472	8,504
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,057	0,050	0,054	0,054	0,053	0,051	0,049	0,051	0,051
Summe:	8,552	8,545	8,516	8,537	8,561	8,503	8,565	8,523	8,555
Ма	0.546	0.546	0.551	0.565	0.528	0.559	0.562	0.563	0.516
Ca	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0,069	0,081	0,084	0,074	0,087	0,080	0,077	0,085	0,079
Fe2+	1,601	1,601	1,614	1,595	1,552	1,633	1,534	1,598	1,589
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,021	0,019	0,020	0,025	0,029	0,021	0,016	0,017	0,030
Summe:	2,237	2,247	2,269	2,259	2,196	2,293	2,189	2,263	2,214
Total:	14,789	14,792	14,785	14,796	14,757	14,796	14,754	14,786	14,769
XMg	0,246	0,245	0,245	0,253	0,244	0,246	0,259	0,251	0,236

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Staurolith	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7
	STAU1-14	STAU1-15	STAU1-16	STAU1-9	STAU1-10	STAU1-11	STAU1-12	STAU1-13	STAU1-14
SiO ₂	27.98	27.66	27.52	27.88	27.94	28.06	27.81	27.77	27.98
TiO ₂	0,49	0,49	0,47	0,51	0,49	0,47	0,49	0,49	0,49
Al ₂ O ₃	53,46	53,82	52,99	52,80	52,90	53,02	52,76	52,88	53,46
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MgO	2,55	2,58	2,62	2,55	2,72	2,73	2,73	2,49	2,55
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,66	0,54	0,72	0,74	0,69	0,66	0,72	0,68	0,66
FeO	13,60	13,78	12,95	13,37	14,16	13,27	13,78	13,69	13,60
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,22	0,06	0,23	0,28	0,21	0,16	0,16	0,29	0,22
Summe	98,97	98,92	97,51	98,14	99,10	98,37	98,45	98,29	98,97
Strukturforn	nel bezogen	auf 23 Sauei	rstoffe						
Si	3,851	3,808	3,837	3,870	3,853	3,879	3,854	3,854	3,851
Ті	0,051	0,050	0,050	0,053	0,051	0,049	0,051	0,051	0,051
AI	8,672	8,733	8,709	8,638	8,599	8,637	8,618	8,650	8,672
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mg	0,523	0,530	0,544	0,528	0,559	0,562	0,563	0,516	0,523
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,077	0,063	0,085	0,087	0,080	0,077	0,085	0,079	0,077
Fe	1,565	1,586	1,510	1,552	1,633	1,534	1,598	1,589	1,565
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,022	0,006	0,024	0,029	0,021	0,016	0,017	0,030	0,022
Formelbese	tzung								
Si	3,851	3,808	3,837	3,870	3,853	3,879	3,854	3,854	3,851
AI(IV)	0,149	0,192	0,163	0,130	0,147	0,121	0,146	0,146	0,149
Summe:	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
AI(VI)	8,523	8,541	8,546	8,508	8,452	8,516	8,472	8,504	8,523
Cr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ті	0,051	0,050	0,050	0,053	0,051	0,049	0,051	0,051	0,051
Summe:	8,574	8,591	8,596	8,561	8,503	8,565	8,523	8,555	8,574
Mg	0,523	0,530	0,544	0,528	0,559	0,562	0,563	0,516	0,523
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,077	0,063	0,085	0,087	0,080	0,077	0,085	0,079	0,077
Fe2+	1,565	1,586	1,510	1,552	1,633	1,534	1,598	1,589	1,565
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,022	0,006	0,024	0,029	0,021	0,016	0,017	0,030	0,022
Summe:	2,187	2,185	2,163	2,196	2,293	2,189	2,263	2,214	2,187
Total:	14,761	14,776	14,759	14,757	14,796	14,754	14,786	14,769	14,761
XMg	0,241	0,243	0,254	0,244	0,246	0,259	0,251	0,236	0,241

Fortsetzung Tab. H.2: Mikrosondenanalysen von Staurolith

Probe	SM68	SM68
Staurolith	4.7	4.7
	STAU1-15	STAU1-16
SiO ₂	27,66	27,52
TiO ₂	0,49	0,47
	53,82	52,99
Cr ₂ O ₃	0,00	0,00
MaO	2.58	2.62
CaO	0.00	0.00
MnO	0.54	0.72
FeO	13.78	12.95
CuO	0.00	0.00
ZnO	0.06	0.23
Summe	98.92	97.51
••••••	00,01	01,01
Strukturforn	nel bezogen	auf 23 Sauerstoffe
Si	3.808	3.837
Ti	0.050	0.050
ΔΙ	8 733	8 709
Cr	0,000	0,000
Ma	0,530	0 544
Ca	0,000	0,000
Mn	0.063	0.085
Fe	1 586	1 510
	0,000	0,000
Zn	0,000	0,000
211	0,000	0,024
Formelbese	tzuna	
Si	3 808	3 837
	0,000	0.163
Summe:	4 000	4,000
Summe.	4,000	4,000
	8 5/1	8 5/6
Cr	0,041	0,040
ті	0,000	0,000
Summe	8 591	8 596
ounne.	0,001	0,000
Ma	0 530	0 544
Ca	0,000	0,044
Mn	0,000	0,000
Eo2+	1 586	1,510
Cu	0.000	0.000
0u 7n	0,000	0,000
Summer	0,000	0,024
Total	2,100 14 779	2,103
i otai.	14,770	17,100
XMa	0.243	0.254
		-,

Fortsetzung Tab	H.2:	Mikrosondenanalysen	von Staurolith

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Biotit	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.2
	BIO1-1	BIO1-2	BIO1-3	BIO2-1	BIO2-2	BIO3-1	BIO3-2	BIO3-3	BIO3-4	
	GRE	GRE	GRE	DI02-1	DI02-2	DI03-1	BI03-2	DI03-3	DI03-4	BIOTET
SiO2	36 23	35.88	35.91	35.62	35.90	36.53	35.95	36 10	36 45	36.24
TiO2	0.83	0.75	0.71	1.31	1.42	1.26	1.41	1.12	1.48	1.43
AI2O3	18.90	18.45	17.87	18.60	18.65	19.02	19.03	19.57	18.73	18.98
Cr2O3	0.05	0.02	0.01	0.06	0.06	0.00	0.00	0.00	0.00	0.00
Fe2O3	3.08	3.23	3.17	2.82	2.83	2.70	2.81	2.69	2.71	2.79
MqO	11,17	11,64	11,55	12,27	12,30	12,66	12,79	12,79	12,63	12,31
CaO	0.00	0.06	0.05	0.12	0.08	0.01	0.01	0.03	0.01	0.13
MnO	0,41	0,28	0,36	0,18	0,24	0,20	0,18	0,17	0,16	0,19
FeO	15,71	16,48	16,18	14,38	14,43	13,76	14,34	13,71	13,84	14,21
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BaO	0,11	0,07	0,10	0,03	0,02	0,00	0,00	0,03	0,00	0,00
Na2O	0,17	0,24	0,21	0,36	0,31	0,31	0,37	0,32	0,39	0,42
K2O	8,67	8,83	8,36	8,14	8,25	9,00	8,98	8,57	8,97	8,52
H2O	3,99	3,99	3,95	3,97	3,99	4,04	4,04	4,04	4,03	4,03
Summe	99,32	99,92	98,43	97,85	98,48	99,50	99,89	99,13	99,41	99,21
Strukturform	nel bezogen	auf 22 Sauer	stoffe							
Si	5,440	5,387	5,458	5,386	5,393	5,422	5,339	5,366	5,420	5,398
Ті	0,094	0,085	0,081	0,149	0,160	0,141	0,158	0,125	0,166	0,160
AI	3,344	3,266	3,201	3,315	3,302	3,327	3,331	3,428	3,282	3,333
Cr	0,006	0,003	0,001	0,007	0,007	0,000	0,000	0,000	0,000	0,000
Fe3+	0,348	0,365	0,363	0,321	0,320	0,301	0,314	0,301	0,304	0,312
Mg	2,501	2,606	2,617	2,766	2,756	2,801	2,831	2,833	2,799	2,734
Ca	0,000	0,010	0,008	0,020	0,013	0,001	0,001	0,005	0,002	0,020
Mn	0,052	0,035	0,046	0,023	0,031	0,025	0,022	0,021	0,020	0,024
Fe2+	1,973	2,070	2,057	1,819	1,813	1,708	1,781	1,704	1,721	1,770
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ва	0,007	0,004	0,006	0,002	0,001	0,000	0,000	0,002	0,000	0,000
Na	0,048	0,069	0,061	0,105	0,090	0,090	0,105	0,092	0,113	0,120
К	1,660	1,692	1,622	1,570	1,582	1,704	1,701	1,626	1,702	1,618
Summe	15,472	15,591	15,520	15,482	15,468	15,521	15,584	15,504	15,529	15,489
Si	5,440	5,387	5,458	5,386	5,393	5,422	5,339	5,366	5,420	5,398
AI IV	2,560	2,613	2,542	2,614	2,607	2,578	2,661	2,634	2,580	2,602
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	0,784	0,653	0,659	0,700	0,695	0,749	0,670	0,794	0,702	0,731
Ті	0,094	0,085	0,081	0,149	0,160	0,141	0,158	0,125	0,166	0,160
Cr	0,006	0,003	0,001	0,007	0,007	0,000	0,000	0,000	0,000	0,000
Fe3+	0,348	0,365	0,363	0,321	0,320	0,301	0,314	0,301	0,304	0,312
Fe2+	1,973	2,070	2,057	1,819	1,813	1,708	1,781	1,704	1,721	1,770
Mn	0,052	0,035	0,046	0,023	0,031	0,025	0,022	0,021	0,020	0,024
Mg	2,501	2,606	2,617	2,766	2,756	2,801	2,831	2,833	2,799	2,734
oktaedr.	5,756	5,817	5,823	5,785	5,782	5,725	5,776	5,778	5,712	5,731
Ca	0,000	0,010	0,008	0,020	0,013	0,001	0,001	0,005	0,002	0,020
Ва	0,007	0,004	0,006	0,002	0,001	0,000	0,000	0,002	0,000	0,000
Na	0,048	0,069	0,061	0,105	0,090	0,090	0,105	0,092	0,113	0,120
к	1,660	1,692	1,622	1,570	1,582	1,704	1,701	1,626	1,702	1,618
interl.	1,715	1,774	1,697	1,697	1,686	1,796	1,808	1,725	1,817	1,758
Summe	15,472	15,591	15,520	15,482	15,468	15,521	15,584	15,504	15,529	15,489
X(Fe)	0,441	0,443	0,440	0,397	0,397	0,379	0,386	0,376	0,381	0,393

Tab. H.3: Mikrosondenanalysen von Biotit

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Biotit	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.3	8.3	8.3
	BIO1-2	BIO1-3	BIO1-4	BIO1-5	BIO1-6	BIO2-1	BIO2-2	BIO1-1	BIO1-2	BIO2-1
SiO2	35,79	36,78	36,51	36,03	36,22	36,32	36,23	36,37	36,55	35,83
TiO2	1,61	1,71	1,62	1,55	1,71	1,64	1,61	1,64	1,58	1,74
AI2O3	18,61	19,03	19,37	18,50	18,54	19,01	19,26	18,88	18,91	18,68
Cr2O3	0,03	0,00	0,03	0,01	0,03	0,02	0,00	0,03	0,00	0,04
Fe2O3	2,78	2,77	2,70	2,79	2,85	2,73	2,71	2,72	2,68	2,75
MgO	12,44	12,22	12,29	11,95	12,05	12,51	12,48	12,15	12,49	12,29
CaO	0,06	0,01	0,05	0,00	0,00	0,04	0,03	0,04	0,01	0,00
MnO	0,14	0,17	0,21	0,20	0,19	0,12	0,09	0,15	0,16	0,20
FeO	14,16	14,12	13,78	14,24	14,52	13,92	13,81	13,87	13,66	14,01
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BaO	0,00	0,00	0,00	0,00	0,06	0,01	0,00	0,00	0,00	0,00
Na2O	0,40	0,45	0,43	0,34	0,34	0,39	0,38	0,38	0,39	0,36
K2O	8,69	9,02	8,78	8,95	8,90	9,01	8,96	8,89	9,03	8,76
H2O	4,00	4,07	4,06	3,99	4,02	4,05	4,04	4,02	4,04	4,00
Summe	98,70	100,34	99,80	98,55	99,42	99,77	99,61	99,13	99,48	98,65
Strukturfor	mel bezog	en auf 22 Sa	auerstoffe							
Si	5,372	5,421	5,396	5,422	5,408	5,385	5,373	5,421	5,425	5,377
Ti	0,182	0,189	0,180	0,176	0,192	0,183	0,180	0,184	0,176	0,196
AI	3,292	3,305	3,373	3,281	3,263	3,322	3,366	3,317	3,307	3,304
Cr	0,003	0,000	0,003	0,001	0,003	0,003	0,000	0,003	0,000	0,004
Fe3+	0,314	0,307	0,301	0,316	0,320	0,305	0,302	0,305	0,299	0,310
Mg	2,784	2,685	2,707	2,681	2,682	2,764	2,760	2,700	2,762	2,751
Ca	0,009	0,001	0,007	0,000	0,000	0,006	0,005	0,006	0,001	0,000
Mn	0,018	0,021	0,026	0,026	0,023	0,016	0,011	0,019	0,020	0,025
Fe2+	1,778	1,741	1,703	1,793	1,814	1,726	1,712	1,729	1,695	1,758
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ва	0,000	0,000	0,000	0,000	0,004	0,001	0,000	0,000	0,000	0,000
Na	0,117	0,129	0,122	0,098	0,100	0,112	0,110	0,110	0,112	0,106
Κ	1,665	1,696	1,656	1,717	1,695	1,704	1,696	1,691	1,709	1,678
Summe	15,533	15,496	15,475	15,511	15,504	15,526	15,516	15,483	15,507	15,509
Si	5.372	5.421	5.396	5,422	5,408	5.385	5.373	5,421	5,425	5.377
ALIV	2.628	2,579	2,604	2,578	2,592	2,615	2,627	2,579	2,575	2,623
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
	-,	-,	-,	-,	-,	-,	-,	-,	-,	-,
AI VI	0,664	0,726	0,769	0,703	0,671	0,707	0,739	0,738	0,732	0,681
Ті	0,182	0,189	0,180	0,176	0,192	0,183	0,180	0,184	0,176	0,196
Cr	0,003	0,000	0,003	0,001	0,003	0,003	0,000	0,003	0,000	0,004
Fe3+	0,314	0,307	0,301	0,316	0,320	0,305	0,302	0,305	0,299	0,310
Fe2+	1,778	1,741	1,703	1,793	1,814	1,726	1,712	1,729	1,695	1,758
Mn	0,018	0,021	0,026	0,026	0,023	0,016	0,011	0,019	0,020	0,025
Mg	2,784	2,685	2,707	2,681	2,682	2,764	2,760	2,700	2,762	2,751
oktaedr.	5,742	5,670	5,689	5,695	5,705	5,703	5,705	5,677	5,685	5,726
Ca	0,009	0,001	0,007	0,000	0,000	0,006	0,005	0,006	0,001	0,000
Ва	0,000	0,000	0,000	0,000	0,004	0,001	0,000	0,000	0,000	0,000
Na	0,117	0,129	0,122	0,098	0,100	0,112	0,110	0,110	0,112	0,106
к	1,665	1,696	1,656	1,717	1,695	1,704	1,696	1,691	1,709	1,678
interl.	1,791	1,826	1,786	1,815	1,798	1,823	1,811	1,807	1,822	1,784
Summe	15,533	15,496	15,475	15,511	15,504	15,526	15,516	15,483	15,507	15,509
X(Fe)	0,390	0,393	0,386	0,401	0,403	0,384	0,383	0,390	0,380	0,390

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM039	IMM039
Biotit	8.4	8.4	8.4	8.4	8.7	8.7	8.7	8.7	5.1	5.1
	BIO1-1 GRN	BIO2-1	BIO2-2	BIO2-3	BIO1-1	BIO1-2	BIO1-3	BIO1-4	BIO1-2	BIO1-3
SiO2	36,06	35,95	36,04	35,53	36,14	36,68	36,22	35,97	35,64	35,34
TiO2	1,70	1,01	1,00	0,76	1,31	1,35	1,38	1,32	1,64	1,70
AI2O3	18,77	18,62	18,90	19,35	18,94	18,99	19,10	19,05	18,35	18,18
Cr2O3	0,04	0,00	0,02	0,01	0,03	0,07	0,03	0,00	0,00	0,01
Fe2O3	2,76	2,84	2,72	2,75	2,66	2,66	2,70	2,71	3,09	3,20
MgO	12,24	13,05	12,69	12,99	12,52	12,68	12,64	12,39	11,01	10,99
CaO	0,06	0,00	0,03	0,06	0,00	0,01	0,00	0,00	0,00	0,00
MnO	0,16	0,21	0,21	0,25	0,14	0,13	0,24	0,14	0,20	0,22
FeO	14,06	14,47	13,84	14,02	13,57	13,55	13,78	13,80	15,76	16,30
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BaU	0,00	0,06	0,03	0,01	0,02	0,05	0,02	0,07	0,05	0,15
Nazo	0,43	0,31	0,32	0,27	0,39	0,40	0,36	0,37	0,30	0,14
K20	0,00	0,72	0,70 4.00	2 00	0,77	0,79	0,94 4.04	0,00 4.00	0,90 2.07	9,07
H2U Summo	4,02	4,01	4,00	3,99	4,00	4,05	4,04	4,00	3,97	3,90
Summe	99,14	99,27	90,00	90,20	90,50	99,40	99,40	90,40	90,97	99,20
Strukturforn	nel bezogei	n auf 22 Sa	auerstoffe							
Si	5,386	5,374	5,405	5,337	5,413	5,438	5,384	5,396	5,390	5,355
Ті	0,191	0,114	0,113	0,086	0,148	0,151	0,154	0,149	0,187	0,194
AI	3,304	3,280	3,340	3,426	3,344	3,318	3,346	3,369	3,270	3,246
Cr	0,005	0,000	0,003	0,001	0,004	0,008	0,004	0,000	0,000	0,002
Fe3+	0,310	0,319	0,306	0,311	0,300	0,296	0,302	0,306	0,352	0,364
Mg	2,724	2,908	2,837	2,909	2,796	2,801	2,801	2,771	2,481	2,483
Ca	0,010	0,000	0,005	0,009	0,000	0,002	0,000	0,000	0,000	0,000
Mn	0,020	0,027	0,027	0,031	0,018	0,016	0,030	0,018	0,026	0,028
Fe2+	1,756	1,809	1,736	1,762	1,699	1,679	1,714	1,732	1,994	2,066
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ba	0,000	0,004	0,002	0,000	0,001	0,003	0,001	0,004	0,003	0,009
Na	0,125	0,091	0,092	0,077	0,113	0,114	0,105	0,108	0,088	0,042
K	1,686	1,662	1,675	1,593	1,676	1,663	1,696	1,642	1,728	1,754
Summe	15,518	15,589	15,540	15,543	15,510	15,489	15,537	15,493	15,520	15,543
Si	5,386	5,374	5,405	5,337	5,413	5,438	5,384	5,396	5,390	5,355
AI IV	2,614	2,626	2,595	2,663	2,587	2,562	2,616	2,604	2,610	2,645
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
	0 691	0 655	0 745	0 763	0 756	0 756	0 730	0 765	0 661	0.601
Ti	0,191	0,000	0,113	0.086	0,148	0,151	0,154	0,149	0,187	0,194
Cr	0.005	0.000	0.003	0.001	0.004	0.008	0.004	0.000	0.000	0.002
Fe3+	0.310	0.319	0.306	0.311	0.300	0.296	0.302	0.306	0.352	0.364
Fe2+	1,756	1,809	1,736	1,762	1,699	1,679	1,714	1,732	1,994	2,066
Mn	0,020	0,027	0,027	0,031	0,018	0,016	0,030	0,018	0,026	0,028
Mg	2,724	2,908	2,837	2,909	2,796	2,801	2,801	2,771	2,481	2,483
oktaedr.	5,697	5,832	5,768	5,863	5,720	5,707	5,735	5,739	5,700	5,738
•	0.040		0.005							
Ca Ro	0,010	0,000	0,005	0,009	0,000	0,002	0,000	0,000	0,000	0,000
Ba No	0,000	0,004	0,002	0,000	0,001	0,003	0,001	0,004	0,003	0,009
Nid K	0,125	0,091	0,092	0,077	0,113	0,114	0,105	0,108	0,088	0,042
n intorl	1,000	1,002	1,070 1 772	1,090	1,070	1,003	1,090	1,04Z	1,720	1,704
Summe	1,021 15 518	15 580	15 540	15 543	15 510	1,702 15 480	15 537	1,704 15 203	15 520	15 542
54	10,010	.0,000	10,040	.0,040	.0,010	10,400	.0,007	.0,400	.0,020	10,040
X(Fe)	0,392	0,384	0,380	0,377	0,378	0,375	0,380	0,385	0,446	0,454

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Probe	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039
Biotit	5.1	5.1	5.1	5.1	5.1	5.1	5.2	5.2	5.2	5.2
	BIO2-1	BIO2-2	BIO2-3	BIO3-1	BIO4-1	BIO4-2	BIO1-1	BIO1-2	BIO2-1	BIO2-2
SiO2	34,84	34,57	35,20	35,76	35,08	36,02	35,12	34,99	36,03	35,40
TiO2	1,38	1,42	1,47	1,66	1,68	1,68	1,38	1,73	1,62	1,72
AI2O3	18,87	18,63	18,96	18,96	18,58	18,47	19,23	18,72	18,35	18,80
Cr2O3	0,01	0,03	0,03	0,04	0,02	0,02	0,02	0,00	0,03	0,06
Fe2O3	3,26	3,11	3,18	3,11	3,13	3,10	3,06	3,14	3,11	3,09
MgO	10,58	10,68	10,93	10,88	11,11	11,07	10,17	10,32	10,54	10,73
CaO	0,03	0,02	0,03	0,01	0,00	0,00	0,00	0,00	0,00	0,00
MnO	0,22	0,14	0,26	0,20	0,19	0,16	0,15	0,13	0,10	0,13
FeO	16,63	15,88	16,22	15,86	15,94	15,78	15,59	16,03	15,88	15,74
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BaO	0,00	0,09	0,14	0,06	0,06	0,07	0,07	0,10	0,02	0,09
Na2O	0,09	0,19	0,18	0,30	0,28	0,28	0,20	0,20	0,24	0,22
K2O	8,56	9,24	9,02	9,15	9,05	9,01	9,28	9,40	9,13	9,22
H2O	3,93	3,90	3,98	4,00	3,96	4,00	3,93	3,94	3,97	3,97
Summe	98,40	97,90	99,59	99,98	99,05	99,65	98,19	98,70	99,02	99,17
Christen	mal hara	on out 22 C								
Strukturior	mei bezog	en auf 22 S	auerstoffe		E 04E	F 40F		F 000	E 440	5 250
5I T:	5,314	5,310	5,310	5,356	5,315	5,405	5,357	5,332	5,442	5,350
	0,159	0,164	0,167	0,187	0,191	0,189	0,159	0,198	0,184	0,195
	3,391	3,374	3,370	3,347	3,319	3,200	3,430	3,303	3,200	3,349
En2	0,001	0,004	0,004	0,005	0,003	0,002	0,002	0,000	0,003	0,007
rest Ma	0,374	0,300	0,301	0,001	0,300	0,349	0,001	0,300	0,304	0,551
iviy Co	2,400	2,440	2,409	2,429	2,509	2,477	2,313	2,345	2,375	2,417
Ga Mn	0,004	0,002	0,004	0,001	0,000	0,000	0,000	0,000	0,000	0,000
Eo2+	2 1 2 1	2 040	2.046	1 086	2 020	1 081	1 088	2 0/3	2,006	1 080
rez t Cu	2,121	2,040	2,040	0,000	2,020	0,000	1,900	2,043	2,000	0,000
Cu Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
ZII Ro	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Da Na	0,000	0,005	0,008	0,003	0,003	0,004	0,004	0,000	0,001	0,000
K	1 665	1 810	1 735	1 7/8	1 7/18	1 725	1 805	1 827	1 760	1 778
Summe	15 490	15 591	15 550	15 524	15 570	15 500	15 512	15 552	15 475	15 522
ounne	10,400	10,001	10,000	10,024	10,070	10,000	10,012	10,002	10,470	10,022
Si	5.314	5.310	5.310	5.356	5.315	5.405	5.357	5.332	5.442	5.350
ALIV	2,686	2,690	2,690	2.644	2,685	2,595	2,643	2,668	2,558	2,650
tetr.	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000
	,	,	,	,	,	,	,	,	,	,
AI VI	0,705	0,684	0,680	0,703	0,634	0,671	0,813	0,695	0,710	0,699
Ti	0,159	0,164	0,167	0,187	0,191	0,189	0,159	0,198	0,184	0,195
Cr	0,001	0,004	0,004	0,005	0,003	0,002	0,002	0,000	0,003	0,007
Fe3+	0,374	0,360	0,361	0,351	0,356	0,349	0,351	0,360	0,354	0,351
Fe2+	2,121	2,040	2,046	1,986	2,020	1,981	1,988	2,043	2,006	1,989
Mn	0,029	0,018	0,033	0,025	0,024	0,020	0,019	0,017	0,013	0,016
Mg	2,406	2,446	2,459	2,429	2,509	2,477	2,313	2,345	2,375	2,417
oktaedr		/ _								
•	5,794	5,715	5,749	5,685	5,737	5,690	5,644	5,659	5,645	5,674
0-	0.004	0.000	0.004	0.004	0.000	0.000	0.000	0.000	0.000	0.000
Ca	0,004	0,002	0,004	0,001	0,000	0,000	0,000	0,000	0,000	0,000
Ва	0,000	0,005	0,008	0,003	0,003	0,004	0,004	0,006	0,001	0,006
ina K	0,026	0,057	0,053	0,087	0,081	0,081	0,058	0,060	0,069	0,065
n interl	1,005	1,810	1,735	1,748	1,748	1,725	1,805	1,827	1,760	1,778
niteri.	1,090	1,070	1,001	1,039	1,033	1,010	1,007	1,093	1,03U	1,040
Summe	10,490	15,591	10,000	10,024	15,570	15,500	15,512	10,002	15,475	15,522
X(Fe)	0,468	0,455	0,454	0,450	0,446	0,444	0,462	0,466	0,458	0,451

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Probe	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039
Biotit	5.3	5.3	5.3	5.4	5.4	5.5	5.5	5.5	5.6	5.6
	BIO1-1	BIO1-2	BIO2-2	BIO1-1	BIO1-2	BIO1-1	BIO102	BIO1-3	BIO1-1	BIO1-2
SiO2	35,25	35,12	35,22	34,17	34,89	35,08	35,30	35,68	35,17	35,21
TiO2	1,40	1,57	2,16	2,40	1,89	1,78	1,60	1,50	1,49	1,57
AI2O3	18,72	18,61	18,27	18,45	19,26	18,83	18,75	19,15	18,31	18,35
Cr2O3	0,00	0,00	0,06	0,02	0,00	0,03	0,00	0,04	0,03	0,00
Fe2O3	3,12	3,11	3,08	3,68	3,51	3,11	3,11	3,16	3,16	3,19
MgO	10,90	10,75	10,68	8,80	8,91	10,77	10,72	10,70	10,14	10,13
CaO	0,01	0,00	0,01	0,00	0,00	0,01	0,01	0,00	0,02	0,00
MnO	0,15	0,11	0,15	0,20	0,20	0,14	0,15	0,10	0,21	0,17
FeO	15,90	15,84	15,71	18,79	17,88	15,85	15,84	16,10	16,12	16,24
CuO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BaO	0.02	0.07	0.04	0.04	0.00	0.04	0.00	0.03	0.05	0.03
Na2O	0.13	0.17	0.16	0.14	0.09	0.18	0.26	0.27	0.17	0.11
K20	9.18	9.34	8.95	9.47	9.60	9.18	8.98	9.02	9.25	9.25
H2O	3.95	3.94	3.94	3.92	3.96	3.96	3.95	4.00	3.91	3.92
Summe	98,73	98,61	98.44	100.08	100.17	98,94	98,66	99.74	98.03	98,17
••••••	00,10	00,01	00,11	,	,	00,01	00,00		00,00	
Strukturfor	mel bezoo	ien auf 22 S	auerstoffe							
Si	5.352	5.347	5.357	5.223	5.285	5.318	5.356	5.355	5.395	5.392
Ti	0.160	0.179	0.247	0.275	0.215	0.203	0.182	0.169	0.172	0.180
AI	3.350	3.339	3.276	3.324	3,439	3.364	3.352	3.386	3.310	3.312
Cr	0.000	0.000	0.007	0.002	0.000	0.003	0.000	0.004	0.004	0.000
Fe3+	0.356	0.356	0.353	0.424	0.400	0.354	0.355	0.357	0.365	0.367
Ma	2,468	2,440	2,423	2.004	2.012	2,432	2,426	2.394	2.318	2.313
Ca	0.001	0.000	0.001	0.000	0.000	0.001	0.002	0.000	0.003	0.000
Mn	0.019	0.015	0.020	0.026	0.025	0.018	0.019	0.013	0.027	0.022
 Fe2+	2 019	2 016	1 999	2 402	2 265	2 009	2 010	2 021	2 068	2 080
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ba	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,001	0,004	0,002	0,000	0,000	0,000	0,000	0,002	0,000	0,002
ĸ	1 777	1 813	1 737	1 8/6	1 855	1 774	1 738	1 726	1 810	1 807
Summe	15 543	15 558	15 470	15 570	15 521	15 531	15 516	15 506	15 525	15 507
cuinto	10,010	10,000	10,110	10,010	10,021	10,001	10,010	10,000	10,020	10,001
Si	5,352	5,347	5,357	5,223	5,285	5,318	5,356	5,355	5,395	5,392
AI IV	2,648	2,653	2,643	2,777	2,715	2,682	2,644	2,645	2,605	2,608
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	0,701	0,686	0,633	0,547	0,724	0,681	0,708	0,741	0,704	0,704
Ті	0,160	0,179	0,247	0,275	0,215	0,203	0,182	0,169	0,172	0,180
Cr	0,000	0,000	0,007	0,002	0,000	0,003	0,000	0,004	0,004	0,000
Fe3+	0,356	0,356	0,353	0,424	0,400	0,354	0,355	0,357	0,365	0,367
Fe2+	2,019	2,016	1,999	2,402	2,265	2,009	2,010	2,021	2,068	2,080
Mn	0,019	0,015	0,020	0,026	0,025	0,018	0,019	0,013	0,027	0,022
Mg	2,468	2,440	2,423	2,004	2,012	2,432	2,426	2,394	2,318	2,313
oktaedr										
•	5,724	5,691	5,682	5,680	5,640	5,701	5,700	5,698	5,658	5,667
•										
Ca	0,001	0,000	0,001	0,000	0,000	0,001	0,002	0,000	0,003	0,000
ва	0,001	0,004	0,002	0,003	0,000	0,003	0,000	0,002	0,003	0,002
Na	0,039	0,049	0,048	0,041	0,026	0,052	0,076	0,080	0,050	0,031
ĸ	1,777	1,813	1,737	1,846	1,855	1,774	1,738	1,726	1,810	1,807
interi.	1,819	1,866	1,789	1,890	1,881	1,830	1,816	1,808	1,867	1,840
Summe	15,543	15,558	15,470	15,570	15,521	15,531	15,516	15,506	15,525	15,507
X(Fe)	0,450	0,453	0,452	0,545	0,530	0,452	0,453	0,458	0,472	0,473
-										

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Probe	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044
Biotit	1.1	1.1	1.2	1.2	1.2	1.3	1.3	1.3	1.3	1.3
	BIO1-1	BIO1-2	BIO1-1	BIO1-2	BIO1-3	BIO1-1	BIO1-2	BIO1-3	BIO2-1	BIO3-1
SiO2	36,70	36,03	35,86	35,91	36,32	35,91	36,12	36,30	35,52	36,17
TiO2	1,45	1,37	1,51	1,52	1,53	1,34	1,49	1,42	1,47	1,41
AI2O3	19,18	19,98	20,05	19,71	20,09	19,06	19,78	19,78	19,80	19,31
Cr2O3	0,03	0,00	0,02	0,00	0,02	0,04	0,04	0,02	0,00	0,05
Fe2O3	2,83	2,77	2,58	2,69	2,72	2,93	2,81	2,80	2,64	2,79
MgO	12,37	11,95	11,49	11,87	11,44	12,09	12,01	11,87	12,26	12,11
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,02	0,04	0,00
MnO	0,14	0,12	0,10	0,21	0,14	0,18	0,18	0,08	0,13	0,18
FeO	14,44	14,12	13,15	13,72	13,86	14,92	14,31	14,27	13,45	14,24
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,00	0,00	0,00	0.00	0,00	0,00	0,00	0.00	0.00	0,00
BaO	0,05	0,02	0,09	0,07	0,00	0,06	0,07	0,10	0.03	0,06
Na2O	0,30	0,39	0,33	0,46	0,39	0,25	0,37	0,29	0,51	0,29
K2O	9,08	8,98	8,76	8,87	8,96	9,25	9,14	9,31	8,65	9,03
H2O	4,08	4,05	3,99	4,02	4,05	4,03	4,06	4,06	4,01	4,03
Summe	100,66	99,77	97,92	99,06	99,51	100,05	100,39	100,30	98,51	99,68
Strukturfor	rmel bezog	jen auf 22 S	auerstoffe							
Si	5,402	5,342	5,384	5,356	5,384	5,348	5,336	5,366	5,318	5,378
Ti	0,160	0,152	0,170	0,172	0,170	0,150	0,166	0,158	0,166	0,158
AI	3,328	3,490	3,548	3,464	3,510	3,346	3,444	3,444	3,494	3,384
Cr	0,004	0,000	0,002	0,000	0,002	0,004	0,004	0,002	0,000	0,006
Fe3+	0,314	0,308	0,292	0,302	0,304	0,328	0,312	0,312	0,298	0,312
Mg	2,714	2,640	2,572	2,638	2,528	2,686	2,646	2,614	2,738	2,682
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,002	0,004	0,006	0,000
Mn	0,018	0,016	0,012	0,026	0,018	0,024	0,022	0,010	0,016	0,022
Fe2+	1,778	1,750	1,652	1,712	1,718	1,858	1,768	1,764	1,684	1,770
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ba	0,002	0,002	0,006	0,004	0,000	0,004	0,004	0,006	0,002	0,004
Na	0,086	0,112	0,096	0,134	0,112	0,072	0,106	0,082	0,148	0,084
K	1,704	1,698	1,678	1,688	1,694	1,758	1,722	1,756	1,652	1,712
Summe	15,510	15,510	15,412	15,496	15,440	15,578	15,532	15,518	15,522	15,512
c ;	E 402	E 242	E 201	E 256	E 201	E 249	E 226	E 266	E 210	E 270
	0,40Z	0,042	0,004	0,000	0,004	0,040	0,000	0,000	0,010	0,070
ALIV	2,590	2,000	2,010	2,044	2,010	2,002	2,004	2,034	2,002	2,022
	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
AI VI	0,730	0,832	0,932	0,820	0,894	0,694	0,780	0,810	0,812	0,762
Ti	0.160	0.152	0.170	0.172	0.170	0.150	0.166	0.158	0.166	0.158
Cr	0,004	0,000	0,002	0,000	0,002	0,004	0,004	0,002	0,000	0,006
Fe3+	0,314	0,308	0,292	0,302	0,304	0,328	0,312	0,312	0,298	0,312
Fe2+	1,778	1,750	1,652	1,712	1,718	1,858	1,768	1,764	1,684	1,770
Mn	0,018	0,016	0,012	0,026	0,018	0,024	0,022	0,010	0,016	0,022
Mg	2,714	2,640	2,572	2,638	2,528	2,686	2,646	2,614	2,738	2,682
oktaedr										
•	5,718	5,698	5,632	5,670	5,634	5,744	5,698	5,670	5,714	5,712
Ca	0 000	0 000	0 000	0.000	0 000	0 000	0 002	0.004	0.006	0 000
Ga Ra	0,000	0,000	0,000	0,000	0,000	0,000	0,002	0,004	0,000	0,000
Na	0.002	0,002	0,000	0,004	0,000	0,004	0,004	0,000	0,002	0,004
K	1 704	1 698	1 678	1 688	1 694	1 758	1 722	1 756	1 652	1 712
interl	1 792	1 812	1 780	1 826	1 806	1 834	1 834	1 848	1 808	1 800
Summe	15.510	15.510	15.412	15.496	15,440	15.578	15.532	15.518	15.522	15.512
2	. 3,510	.0,010	,	.0,100	. 0, 170	. 0,070	.0,002	. 0,010	.0,022	10,012
X(Fe)	0,396	0,399	0,391	0,394	0,405	0,409	0,401	0,403	0,381	0,398

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Probe	IMM044	IMM044	IMM044	IMM044	IMM044	IMM051	IMM051	IMM051	IMM051	IMM051
Biotit	1.4	1.4	1.6	1.6	1.6	9.1	9.1	9.1	9.1	9.1
	BIO1-1	BIO1-2	BIO1-2	BIO2-2	BIO3-1	BIO1-1	BIO1-4	BIO2-1	BIO2-2	BIO1-1 GS
0:00	20.22	20.00	25.00	05.07	20.05	25.04	25.04	25.22	25.00	04.74
5102	30,33	36,32 1 20	35,86	35,87	36,05	35,64	35,21	35,32	35,22	34,71
1102	20.20	1,29	10.94	1,55	10.60	20,00	20.06	10 72	1,72	10.50
AI203 Cr203	20,39	0.04	19,04	19,94	19,00	20,04	20,00	0.00	0.00	19,59
Eo2O3	2.68	2 78	2.80	2 70	2.88	2 02	2 93	3.05	2.06	3.01
MaO	11 51	11 40	11 87	12.08	12.00	10 73	10 74	10 72	10.98	10.95
CaO	0.00	0.00	0.00	0.00	0.00	0.12	0.05	0.03	0.06	0.14
MnO	0,00	0,00	0,00	0,00	0,00	0,12	0,00	0,00	0,00	0,14
FeO	13.68	14.17	14.27	13.78	14.66	14.87	14.97	15.58	15.08	15.35
CuO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ZnO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
BaO	0,00	0,07	0,04	0,13	0,07	0,02	0,00	0,00	0,00	0,02
Na2O	0,35	0,38	0,37	0,39	0,35	0,36	0,30	0,28	0,35	0,34
K2O	9,06	8,86	8,85	9,01	9,19	8,49	8,77	8,80	8,54	8,51
H2O	4,05	4,02	4,03	4,04	4,07	4,00	3,96	3,95	3,94	3,94
Summe	99,48	99,05	99,53	99,65	100,75	98,61	98,12	98,48	97,83	97,88
Strukturfo	rmel bezog	jen auf 22 S	auerstoffe							
Si	5,380	5,420	5,334	5,324	5,318	5,351	5,333	5,359	5,358	5,289
Ti	0,150	0,144	0,156	0,172	0,182	0,076	0,111	0,202	0,196	0,127
AI	3,558	3,450	3,478	3,490	3,408	3,651	3,580	3,350	3,378	3,518
Cr	0,000	0,006	0,006	0,000	0,066	0,002	0,000	0,000	0,000	0,001
Fe3+	0,298	0,312	0,314	0,302	0,320	0,329	0,334	0,349	0,339	0,345
Mg	2,540	2,536	2,632	2,672	2,656	2,402	2,424	2,426	2,490	2,486
Ca	0,000	0,000	0,000	0,000	0,000	0,018	0,007	0,004	0,009	0,023
Mn E-0	0,012	0,016	0,018	0,022	0,018	0,019	0,023	0,032	0,019	0,027
Fe2+	1,694	1,768	1,776	1,712	1,808	1,867	1,895	1,977	1,918	1,956
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
ZN	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Da No	0,000	0,004	0,002	0,008	0,004	0,001	0,000	0,000	0,000	0,001
ind K	1 710	1 686	1 680	1 706	1 730	1 625	1 60/	1 704	0,104	1 654
Summe	15,442	15,450	15,502	15,522	15,610	15,446	15,489	15,483	15,468	15,529
Si	5 380	5 420	5 334	5 324	5 318	5 351	5 333	5 359	5 358	5 289
	2 620	2 580	2,666	2 676	2 682	2 649	2 667	2 641	2 642	2 711
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
	0,938	0,870	0,812	0,814	0,726	1,002	0,913	0,708	0,736	0,807
Ті	0,150	0,144	0,156	0,172	0,182	0,076	0,111	0,202	0,196	0,127
Cr	0,000	0,006	0,006	0,000	0,066	0,002	0,000	0,000	0,000	0,001
Fe3+	0,298	0,312	0,314	0,302	0,320	0,329	0,334	0,349	0,339	0,345
Fe2+	1,694	1,768	1,776	1,712	1,808	1,867	1,895	1,977	1,918	1,956
Mn	0,012	0,016	0,018	0,022	0,018	0,019	0,023	0,032	0,019	0,027
Mg	2,540	2,536	2,632	2,672	2,656	2,402	2,424	2,426	2,490	2,486
oktaedr	5,632	5,652	5,714	5,694	5,776	5,698	5,701	5,693	5,698	5,750
62	0.000	0.000	0.000	0.000	0.000	0.049	0.007	0.004	0.000	0.000
Ua Ra	0,000	0,000	0,000	0,000	0,000	0,018	0,007	0,004	0,009	0,023
Da Na	0,000	0,004	0,002	0,000	0,004	0,001	0,000	0,000	0,000	0,001
K	1 710	1 696	1 620	1 706	1 720	1 625	1 60/	1 701	1 657	1 654
interl	1 810	1 798	1 788	1 828	1,730	1 740	1 788	1 790	1 770	1 770
Summe	15,442	15,450	15,502	15,522	15,610	15,446	15,489	15,483	15,468	15,529
X(Fe)	0,400	0,411	0,403	0,391	0,405	0,437	0,439	0,449	0,435	0,440

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051
Biotit	9.1	9.1	9.1	9.1	9.3	9.3	9.3	9.3	9.3	9.3
	BIO1-2	BIO1-3	BIO2	BIO2-2				BIO2-1	BIO2-2	BIO2-3
	GS	GS	GR	GR	BIO1-1	BI01-2	BIO1-3	GRET	GRET	GRET
SiO2	35 11	35 40	35.34	35 71	35.58	35.69	35 77	33 43	34 79	35 21
TiO2	1.09	1.40	1.45	1.48	2.21	1.87	1.89	1.84	1.78	1.74
AI2O3	19,16	19.65	19.14	19.37	20,11	19,15	19,13	17.88	20.52	19.73
Cr2O3	0.01	0.01	0.01	0.00	0.06	0.07	0.04	0.01	0.02	0.03
Fe2O3	2 97	2 82	3.06	3,01	2 78	2 92	2.93	3 26	2 76	2 91
MaO	11 13	10.96	11 14	11 43	10 45	10.85	10.81	10.55	9.97	11 04
CaO	0.26	0 17	0.08	0.04	0.00	0.01	0.07	0.05	0.04	0.01
MnO	0,20	0.18	0.17	0.28	0.13	0.21	0,01	0,00	0.23	0.18
FeO	15 12	14 40	15.61	15.33	14 20	14 87	14 94	16 61	14 09	14.86
CuO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0.05	0.05
Na2O	0,07	0,00	0,00	0.46	0,00	0,02	0,00	0,07	0,00	0,00
K20	7 82	8.28	8.87	8,40	9.00	9.00	8,40	8 49	8 82	9.03
H2O	3 93	3.96	3.98	4 02	4 01	3 99	3 99	3,43	3 94	3 99
Summe	97 22	97.65	0,00 00 18	90,86	90.06	90,00	98.86	96.49	07 38	90,00
Gamme	57,22	57,05	55,10	55,00	55,00	55,05	50,00	50,45	57,50	55,10
Strukturfo	rmel bezog	en auf 22 S	auerstoffe							
Si	5,358	5,363	5,324	5,329	5,325	5,366	5,378	5,236	5,295	5,289
Ti	0,125	0,160	0,164	0,166	0,249	0,211	0,213	0,217	0,204	0,197
AI	3,447	3,509	3,398	3,407	3,547	3,393	3,390	3,300	3,680	3,493
Cr	0,001	0,002	0,001	0,000	0,008	0,008	0,004	0,001	0,002	0,004
Fe3+	0,341	0,322	0,347	0,338	0,314	0,330	0,332	0,384	0,316	0,329
Mg	2,532	2,476	2,503	2,542	2,331	2,431	2,424	2,463	2,261	2,473
Ca	0,043	0,028	0,013	0,006	0,000	0,002	0,011	0,009	0,006	0,002
Mn	0,019	0,023	0,022	0,035	0,016	0,026	0,020	0,026	0,029	0,023
Fe2+	1,930	1,824	1,967	1,913	1,777	1,869	1,879	2,176	1,793	1,867
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ва	0,004	0,003	0,000	0,000	0,000	0,001	0,000	0,004	0,003	0,003
Na	0,119	0,105	0,094	0,133	0,086	0,096	0,116	0,087	0,110	0,112
κ	1,523	1,600	1,705	1,662	1,762	1,740	1,674	1,695	1,712	1,731
Summe	15,443	15,413	15,538	15,531	15,415	15,475	15,440	15,597	15,413	15,523
Si	5 358	5 363	5 324	5 320	5 325	5 366	5 378	5 236	5 205	5 280
	2 642	2 637	2 676	2 671	2 675	2 634	2 622	2 764	2 705	2 711
tetr	8 000	8,000	8,000	8,000	8 000	8 000	8 000	8 000	8 000	8 000
	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
AI VI	0,806	0,872	0,722	0,735	0,872	0,759	0,768	0,536	0,975	0,782
Ti	0,125	0,160	0,164	0,166	0,249	0,211	0,213	0,217	0,204	0,197
Cr	0,001	0,002	0,001	0,000	0,008	0,008	0,004	0,001	0,002	0,004
Fe3+	0,341	0,322	0,347	0,338	0,314	0,330	0,332	0,384	0,316	0,329
Fe2+	1,930	1,824	1,967	1,913	1,777	1,869	1,879	2,176	1,793	1,867
Mn	0,019	0,023	0,022	0,035	0,016	0,026	0,020	0,026	0,029	0,023
Mg	2,532	2,476	2,503	2,542	2,331	2,431	2,424	2,463	2,261	2,473
oktaedr	E 7E A	E 670	F 700	F 700	E E 67	E 606	E 640	E 001	E E04	E 674
•	5,754	5,678	5,726	5,729	5,567	5,636	5,640	5,801	5,581	5,674
Ca	0,043	0,028	0,013	0,006	0,000	0,002	0,011	0,009	0,006	0,002
Ва	0,004	0,003	0,000	0,000	0,000	0,001	0,000	0,004	0,003	0,003
Na	0,119	0,105	0,094	0,133	0,086	0,096	0,116	0,087	0,110	0,112
К	1,523	1,600	1,705	1,662	1,762	1,740	1,674	1,695	1,712	1,731
interl.	1,689	1,735	1,812	1,801	1,848	1,840	1,801	1,796	1,832	1,848
Summe	15,443	15,413	15,538	15,531	15,415	15,475	15,440	15,597	15,413	15,523
X(Fe)	0.433	0,424	0,440	0.429	0.433	0.435	0.437	0.469	0,442	0,430

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051
Biotit	9.3	9.3	9.3	9.4	9.4	9.4	9.4	9.4	9.4	9.4
	GRET	GRET	GRET	BIO1-1	BIO1-2	BIO1-3	BIO2-1	BIO2-2	BIO2-3&	BIO2-4
SiO2	35,47	35,27	35,22	34,85	34,43	35,10	35,35	35,07	35,12	34,10
TiO2	1,72	1,76	1,39	1,75	1,67	1,85	1,84	1,80	1,86	1,78
AI2O3	19,31	18,95	19,11	18,95	18,71	18,86	18,45	18,37	19,37	18,91
Cr2O3	0,03	0,00	0,01	0,00	0,00	0,00	0,00	0,01	0,00	0,07
Fe2O3	2,96	2,89	2,87	3,11	2,91	2,95	3,05	3,07	2,89	3,04
MgO	10,96	11,03	11,08	10,88	11,24	11,15	11,01	11,05	11,04	11,01
CaO	0,01	0,00	0,00	0,01	0,01	0,10	0,05	0,01	0,11	0,08
MnO	0,18	0,16	0,25	0,22	0,22	0,17	0,21	0,18	0,15	0,15
FeO	15,12	14,76	14,63	15,84	14,85	15,03	15,53	15,63	14,74	15,48
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BaO	0,13	0,05	0,04	0,00	0,11	0,03	0,00	0,00	0,01	0,12
Nazo	0,32	0,38	0,35	0,25	0,25	0,33	0,37	0,27	0,35	0,33
K20	9,19	8,76	9,09	9,17	9,15	8,95	8,83	8,98	8,83	8,82
Eumma	3,99	3,95	3,94	3,90	3,91	3,90	3,90	3,94	3,97	3,91
Summe	99,40	97,95	97,97	90,99	97,40	90,47	90,03	90,30	90,44	97,70
Strukturfor	rmel bezog	jen auf 22 S	Sauerstoffe							
Si Ti	5,329	5,357	5,356	5,284	5,288	5,320	5,358	5,340	5,308	5,232
	0,195	0,201	0,159	0,200	0,193	0,211	0,209	0,206	0,212	0,206
AI Cr	0,004	3,393	3,424 0.001	3,300	3,300	3,309	3,290	3,290 0.001	0,000	0,009
Eo3+	0,004	0,000	0,001	0,000	0,000	0,000	0,000	0,001	0,000	0,000
Ма	2 455	2 497	2 511	2 460	2 573	2 520	2 489	2 509	2 487	2 5 1 9
Ca	0,001	0,000	0,000	0,002	0.002	0.016	0.008	2,000	0.018	0.012
Mn	0.023	0.020	0.032	0.028	0.029	0.021	0.026	0.023	0.020	0.019
Fe2+	1.899	1.874	1.861	2.009	1.908	1.906	1.969	1.991	1.864	1.987
Cu	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ва	0,008	0,003	0,002	0,000	0,007	0,002	0,000	0,000	0,001	0,007
Na	0,092	0,111	0,102	0,074	0,074	0,097	0,108	0,080	0,102	0,099
К	1,762	1,698	1,763	1,774	1,793	1,731	1,707	1,744	1,703	1,726
Summe	15,524	15,485	15,540	15,570	15,590	15,530	15,518	15,542	15,493	15,585
Si	5,329	5,357	5,356	5,284	5,288	5,320	5,358	5,340	5,308	5,232
AI IV	2,671	2,643	2,644	2,716	2,712	2,680	2,642	2,660	2,692	2,768
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	0,749	0,750	0,780	0,670	0,676	0,690	0,654	0,637	0,758	0,652
Ti	0,195	0,201	0,159	0,200	0,193	0,211	0,209	0,206	0,212	0,206
Cr	0,004	0,000	0,001	0,000	0,000	0,000	0,000	0,001	0,000	0,008
Fe3+	0,335	0,331	0,328	0,354	0,337	0,336	0,347	0,351	0,329	0,351
Fe2+	1,899	1,874	1,861	2,009	1,908	1,906	1,969	1,991	1,864	1,987
Mn	0,023	0,020	0,032	0,028	0,029	0,021	0,026	0,023	0,020	0,019
Mg oktaedr	2,455	2,497	2,511	2,460	2,573	2,520	2,489	2,509	2,487	2,519
•	5,660	5,673	5,673	5,720	5,715	5,683	5,696	5,717	5,669	5,741
Ca	0,001	0,000	0,000	0,002	0,002	0,016	0,008	0,001	0,018	0,012
Ва	0,008	0,003	0,002	0,000	0,007	0,002	0,000	0,000	0,001	0,007
Na	0,092	0,111	0,102	0,074	0,074	0,097	0,108	0,080	0,102	0,099
К	1,762	1,698	1,763	1,774	1,793	1,731	1,707	1,744	1,703	1,726
interl.	1,864	1,812	1,867	1,849	1,874	1,846	1,822	1,825	1,824	1,844
Summe	15,524	15,485	15,540	15,570	15,590	15,530	15,518	15,542	15,493	15,585
X(Fe)	0,436	0,429	0,426	0,450	0,426	0,431	0,442	0,442	0,428	0,441

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM056	IMM056	IMM056	IMM056	IMM056
Biotit	9.6	9.6	9.6	9.6	9.6	10.1	10.1	10.1	10.1	10.1
	BIO3-1	BIO3-2	BIO4-1			BIO1-1		BIO1-2	BIO1-3	BIO2-1
	GRR	GRR	GRR	BIO4-2	BIO5-1	GRE	BIO2-1	GRE	GRE	GRE
0.00		05.00	05.45	05.00		05.04	05.04	05.00		05.07
SI02	34,43	35,23	35,15	35,22	36,00	35,61	35,91	35,33	34,51	35,67
1102	1,96	2,09	1,67	2,04	1,86	1,44	1,49	1,36	1,41	1,22
AI203	18,92	20,19	20,26	19,12	18,97	19,13	19,19	18,75	18,53	19,17
Gr203	0,06	0,00	0,05	0,06	0,04	0,05	0,04	0,00	0,05	0,00
Fe2O3	2,97	2,66	2,80	2,76	2,94	2,63	2,58	2,62	2,67	2,69
MgO CaO	11,68	10,85	11,62	11,62	11,17	12,55	11,84	12,10	12,32	12,10
	0,08	0,05	0,00	0,00	0,02	0,06	0,17	0,03	0,07	0,08
IVIIIO EcO	15 12	12 56	14.26	14.06	15.01	12.40	12 17	12.26	12.62	12 74
	15,12	0.00	14,20	14,00	0.00	0.00	0.00	0.00	13,03	0.00
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZIIO ReO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na2O	0,03	0,07	0,00	0,00	0,00	0,04	0,05	0,07	0,04	0,02
K2O	0,34	0,32 8 00	0,55	0,52	0,50	0,50	0,50	0,34 9.75	0,42	0,50
H2O	3.04	3 08	0,97 4 01	3 08	0,03 4 01	3 00	3 07	3 03	3 00	3.07
Summo	08.02	08 11	4,01	08 47	4,01	08 10	07 12	06.87	3,90 06 50	3,97
Summe	30,02	30,11	33,23	30,47	55,51	30,13	57,12	30,07	30,33	51,15
Strukturfo	rmel hezoa	en auf 22 S	auerstoffe							
Si	5 238	5 306	5 252	5 313	5 387	5 354	5 429	5 390	5 307	5 387
Ti	0.224	0.237	0,187	0.232	0.210	0,163	0,169	0,156	0,163	0,138
AI	3,392	3.584	3,567	3,400	3.346	3,389	3,419	3.372	3,359	3,413
Cr	0.007	0.000	0.006	0.007	0.005	0.006	0.005	0.000	0.006	0.000
Fe3+	0.339	0.301	0.314	0.313	0.331	0.297	0.294	0.301	0.309	0.306
Ma	2.650	2.436	2.587	2.613	2.493	2.813	2.669	2.752	2.824	2.725
Ca	0.013	0.008	0.000	0.000	0.004	0.010	0.027	0.005	0.011	0.014
Mn	0,027	0,028	0,015	0,024	0,028	0,030	0,020	0,030	0,031	0,020
Fe2+	1,924	1,708	1,781	1,774	1,878	1,685	1,665	1,705	1,753	1,736
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ва	0,002	0,004	0,005	0,000	0,005	0,002	0,003	0,004	0,002	0,001
Na	0,100	0,095	0,096	0,093	0,104	0,110	0,112	0,101	0,124	0,105
К	1,607	1,710	1,709	1,752	1,649	1,665	1,578	1,702	1,730	1,647
Summe	15,523	15,417	15,520	15,519	15,438	15,524	15,389	15,519	15,620	15,491
Si	5,238	5,306	5,252	5,313	5,387	5,354	5,429	5,390	5,307	5,387
AI IV	2,762	2,694	2,748	2,687	2,613	2,646	2,571	2,610	2,693	2,613
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	0,630	0,890	0,819	0,712	0,733	0,744	0,847	0,763	0,666	0,800
Ti	0,224	0,237	0,187	0,232	0,210	0,163	0,169	0,156	0,163	0,138
Cr	0,007	0,000	0,006	0,007	0,005	0,006	0,005	0,000	0,006	0,000
Fe3+	0,339	0,301	0,314	0,313	0,331	0,297	0,294	0,301	0,309	0,306
Fe2+	1,924	1,708	1,781	1,774	1,878	1,685	1,665	1,705	1,753	1,736
Mn	0,027	0,028	0,015	0,024	0,028	0,030	0,020	0,030	0,031	0,020
Mg	2,650	2,436	2,587	2,613	2,493	2,813	2,669	2,752	2,824	2,725
OKIdeur	5.801	5,600	5,710	5.674	5.678	5,737	5,669	5,707	5,752	5,725
•	0,001	0,000	0,110	0,011	0,010	0,101	0,000	0,101	0,102	0,120
Са	0.013	0.008	0.000	0.000	0.004	0.010	0.027	0.005	0.011	0.014
Ba	0.002	0.004	0.005	0.000	0.005	0.002	0.003	0.004	0.002	0.001
Na	0.100	0.095	0.096	0.093	0.104	0.110	0.112	0.101	0.124	0.105
K	1.607	1,710	1,709	1,752	1,649	1,665	1.578	1,702	1.730	1.647
interl.	1.722	1.817	1.810	1.845	1.761	1.787	1.720	1.812	1.868	1.766
Summe	15.523	15,417	15.520	15.519	15.438	15.524	15.389	15.519	15.620	15.491
· ·· ·····	-,	-,	-,	-,	2,700	-, -	2,200	-,	-,	-,
X(Fe)	0,421	0,412	0,408	0,404	0,430	0,375	0,384	0,382	0,383	0,389

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Biotit	10.1	10.1	10.1	10.1	10.1	10.1	10.2	10.2	10.2	10.2
	GRE	BIO4-1	BIO4-2	BIO5-1	BIO5-2	BIO5-3	BIO2-2	BIO3-1	BIO3-2	BIO3-3
SiO2	35,78	36,25	36,31	35,49	35,46	36,09	36,01	35,88	36,47	35,60
TiO2	1,32	1,48	1,48	1,41	1,36	1,63	1,34	1,44	1,39	1,45
AI2O3	19,45	19,05	18,99	18,61	18,71	19,51	19,31	19,03	19,54	19,29
Cr2O3	0,00	0,07	0,03	0,01	0,02	0,08	0,05	0,04	0,02	0,00
Fe2O3	2,79	2,57	2,67	2,77	2,81	2,49	2,65	2,66	2,68	2,68
MgO	11,23	12,06	12,29	12,17	11,44	11,95	12,06	12,28	12,33	11,87
CaO	0,14	0,11	0,14	0,22	0,04	0,06	0,09	0,04	0,01	0,01
MnO	0,20	0,20	0,21	0,20	0,19	0,22	0,21	0,19	0,20	0,18
FeO	14,23	13,09	13,63	14,10	14,33	12,70	13,51	13,57	13,66	13,66
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	0,00	0,02	0,00	0,04	0,00	0,04	0,00	0,00	0,11	0,02
Nazu Kao	0,30	0,57	7 99	0,55	0,27	0,30	0,45	0,37	0,39	0,29
H2O	3.92	2,05	7,00 7.01	3.00	3,07	0,09 4.00	4.00	3 00	0,00 4.05	3.08
Summe	97 32	97.08	98.15	97.60	97.66	97.96	98 34	98.27	99.50	98.21
Ound	01,02	01,00		57,00	07,00	07,00	50,04	50,27	00,00	50,21
Strukturior		en auf 22 5	auerstone	E 270	F 207	E 410	F 400	F 201	E 401	E 267
JI Ti	0 151	0 168	0 167	0 161	0,397	0 184	5,400 0 151	0 163	0 155	0 165
ΔΙ	3 468	3 382	3 350	3 324	3 356	3 448	3 412	3 370	3 410	3 428
Cr	0,000	0.008	0.004	0.002	0.003	0 010	0.006	0.005	0.002	0,420
Fe3+	0.318	0.291	0.301	0.315	0.322	0.281	0.299	0.301	0.299	0.304
Ma	2.533	2.710	2.742	2,749	2.595	2.671	2.696	2.750	2.722	2.667
Ca	0,023	0,017	0,022	0,036	0,007	0,009	0,015	0,007	0,001	0,002
Mn	0,025	0,025	0,027	0,026	0,024	0,028	0,026	0,024	0,025	0,023
Fe2+	1,800	1,649	1,706	1,787	1,824	1,593	1,694	1,705	1,692	1,723
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ва	0,000	0,001	0,003	0,002	0,000	0,003	0,003	0,005	0,007	0,001
Na	0,088	0,167	0,132	0,162	0,081	0,087	0,131	0,107	0,112	0,084
Κ	1,528	1,467	1,503	1,558	1,761	1,700	1,645	1,666	1,639	1,762
Summe	15,350	15,347	15,390	15,501	15,527	15,427	15,479	15,494	15,464	15,526
Si	5,415	5,461	5,433	5,378	5,397	5,413	5,400	5,391	5,401	5,367
AI IV	2,585	2,539	2,567	2,622	2,603	2,587	2,600	2,609	2,599	2,633
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	0,883	0,843	0,783	0,702	0,754	0,861	0,812	0,761	0,811	0,795
Ті	0,151	0,168	0,167	0,161	0,156	0,184	0,151	0,163	0,155	0,165
Cr	0,000	0,008	0,004	0,002	0,003	0,010	0,006	0,005	0,002	0,000
Fe3+	0,318	0,291	0,301	0,315	0,322	0,281	0,299	0,301	0,299	0,304
Fe2+	1,800	1,649	1,706	1,787	1,824	1,593	1,694	1,705	1,692	1,723
Mn	0,025	0,025	0,027	0,026	0,024	0,028	0,026	0,024	0,025	0,023
Mg	2,533	2,710	2,742	2,749	2,595	2,671	2,696	2,750	2,722	2,667
oktaedr	5,710	5,695	5,730	5,743	5,678	5,629	5,685	5,709	5,705	5,676
Ca	0.023	0.017	0.022	0.036	0.007	0.009	0.015	0.007	0.001	0.002
Ва	0,000	0,001	0,003	0,002	0,000	0,003	0,003	0,005	0,007	0,001
Na	0,088	0,167	0,132	0,162	0,081	0,087	0,131	0,107	0,112	0,084
к	1,528	1,467	1,503	1,558	1,761	1,700	1,645	1,666	1,639	1,762
interl.	1,640	1,652	1,661	1,758	1,849	1,798	1,794	1,785	1,759	1,850
Summe	15,350	15,347	15,390	15,501	15,527	15,427	15,479	15,494	15,464	15,526
X(Fe)	0,416	0,378	0,383	0,394	0,413	0,374	0,386	0,383	0,383	0,392

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Biotit	10.2	10.2	10.2	10.3	10.3	10.3	10.3	10.3	10.3	10.4
	BIO4-1	BIO4-2	BIO4-3			BIO3-1	BIO3-2	BIO3-3	BIO3-4	BIO1-1
	STN	STN	STN	BIO2-2	BIO2-3	GRE	GRE	GRE	GRE	PLE
0.00	00.40	05 70	00 0 7		05.00	05.00	05 70		05.40	
5102	36,43	35,70	36,07	36,36	35,96	35,99	35,70	35,63	35,19	36,05
1102	1,78	1,78	1,84	1,53	1,61	1,59	1,58	1,55	1,57	1,41
AI203	19,46	19,25	19,23	18,64	18,68	19,05	18,57	18,86	18,92	19,42
Gr203	0,02	0,00	0,04	0,02	0,08	0,03	0,00	0,01	0,01	0,07
rezus Mao	2,50	2,47	2,40	2,74	2,00	2,39	2,01	2,31	2,39	2,73
MgO CaO	12,00	12,90	12,00	12,49	0.14	12,74	12,50	12,30	12,33	12,22
CaU MnO	0,01	0,00	0,00	0,00	0,14	0,01	0,02	0,02	0,01	0,02
FoO	12 74	12.57	12.66	14.00	13.52	13 21	13 20	12 70	13.22	13.01
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na2O	0.32	0.36	0.37	0.39	0.45	0,39	0.34	0.30	0.27	0.38
K20	9.00	8,98	9.05	8,31	7.92	9.01	9.01	9.03	8,96	8.39
H2O	4.06	4.01	4.03	4.02	3.99	4.02	3.97	3.96	3.95	4.02
Summe	99.31	98.22	98.85	98.87	97.75	98.88	97.89	97.28	97.25	98.90
		,	,	,	,	,	,	,	,	,
Strukturfor	rmel bezog	en auf 22 S	auerstoffe							
Si	5,387	5,347	5,369	5,427	5,410	5,372	5,393	5,398	5,349	5,377
Ті	0,198	0,200	0,206	0,171	0,182	0,179	0,180	0,176	0,180	0,158
AI	3,391	3,398	3,373	3,279	3,313	3,351	3,306	3,368	3,389	3,413
Cr	0,003	0,000	0,005	0,003	0,010	0,003	0,000	0,001	0,001	0,008
Fe3+	0,278	0,278	0,278	0,308	0,300	0,291	0,296	0,286	0,297	0,306
Mg	2,835	2,880	2,854	2,779	2,799	2,834	2,814	2,791	2,795	2,716
Ca	0,001	0,000	0,000	0,010	0,023	0,002	0,003	0,003	0,001	0,004
Mn	0,017	0,027	0,021	0,034	0,034	0,031	0,031	0,037	0,028	0,025
Fe2+	1,575	1,575	1,575	1,747	1,701	1,649	1,680	1,620	1,681	1,735
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ва	0,000	0,000	0,003	0,002	0,001	0,000	0,004	0,000	0,001	0,005
Na	0,090	0,104	0,107	0,112	0,130	0,114	0,099	0,088	0,079	0,110
K	1,698	1,715	1,718	1,583	1,521	1,716	1,736	1,745	1,737	1,596
Summe	15,473	15,524	15,509	15,454	15,422	15,542	15,543	15,514	15,536	15,454
Si	5,387	5,347	5,369	5,427	5,410	5,372	5,393	5,398	5,349	5,377
AI IV	2,613	2,653	2,631	2,573	2,590	2,628	2,607	2,602	2,651	2,623
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
A I \/I	0 779	0.746	0 740	0 706	0 700	0 700	0.600	0.766	0 707	0 701
	0,770	0,740	0,742	0,700	0,723	0,723	0,099	0,700	0,737	0,791
Cr	0,190	0,200	0,200	0,171	0,102	0,179	0,100	0,170	0,100	0,150
Fo3+	0,003	0,000	0,003	0,003	0,010	0,003	0,000	0,001	0,001	0,000
Fe2+	1 575	1 575	1 575	1 747	1 701	1 649	1 680	1 620	1 681	1 735
Mn	0.017	0.027	0.021	0.034	0.034	0.031	0.031	0.037	0.028	0.025
Μα	2,835	2.880	2.854	2,779	2,799	2,834	2,814	2,791	2,795	2,716
oktaedr	_,	_,	_,	_,	_,	_,	_,•••	_,	_,	_,
	5,683	5,705	5,682	5,748	5,748	5,710	5,701	5,679	5,718	5,739
Са	0.001	0.000	0.000	0.010	0.023	0.002	0.003	0.003	0.001	0.004
Ва	0.000	0.000	0.003	0.002	0.001	0.000	0.004	0.000	0.001	0.005
Na	0,090	0,104	0,107	0,112	0,130	0,114	0,099	0,088	0.079	0,110
к	1,698	1,715	1,718	1,583	1,521	1,716	1,736	1,745	1,737	1,596
interl.	1,790	1,819	1,828	1,707	1,674	1,832	1,842	1,836	1,819	1,715
Summe	15,473	15,524	15,509	15,454	15,422	15,542	15,543	15,514	15,536	15,454
V/F-)	0.057	0.054	0.050	0.000	0.070	0.000	0.074	0.007	0.070	0.000
л(ге)	0,357	0,354	0,356	0,386	0,378	0,368	0,374	0,367	0,376	0,390

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM061	IMM061	IMM061
Biotit	10.4	10.4	10.4	10.4	10.4	10.6	10.6	11.1	11.1	11.1
	BIO1-2	BIO1-3	BIO2-1	BIO2-2	BIO2-3			BIO1-1		
	FLC	FLE	FLE	FLE	FLE	BIO1-1	BI01-2	GRN	BI01-2	BI01-3
SiO2	35.62	36 11	36.20	35 71	36 30	35 73	36 31	34 98	35 27	35 42
TiO2	1 43	1 48	1 46	1 43	1 51	1 40	1 29	1 84	1 74	1 73
AI2O3	18.91	19.34	19.34	18.96	18.63	19.04	19.39	19.07	18,72	19,10
Cr2O3	0.01	0.04	0.09	0.06	0.03	0.01	0.05	0.06	0.05	0.00
Fe2O3	2.68	2.71	2.74	2.70	2.75	2.71	2.64	3.06	2.98	2.99
MgO	11,89	11,78	12,31	12,13	12,40	12,21	12,38	10,88	11,15	11,12
CaO	0,09	0,08	0,03	0,05	0,10	0,17	0,18	0,00	0,00	0,03
MnO	0,21	0,15	0,19	0,12	0,20	0,23	0,21	0,18	0,18	0,13
FeO	13,68	13,84	13,99	13,75	14,02	13,83	13,46	15,58	15,22	15,22
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BaO	0,06	0,00	0,00	0,10	0,00	0,00	0,04	0,11	0,15	0,02
Na2O	0,37	0,30	0,34	0,35	0,36	0,41	0,52	0,36	0,38	0,47
K2O	8,31	8,42	8,69	8,71	8,81	8,53	8,32	9,09	9,09	8,91
H2O	3,95	4,00	4,04	3,98	4,02	3,99	4,03	3,97	3,96	3,99
Summe	97,21	98,25	99,50	98,04	99,23	98,25	98,82	99,17	98,88	99,11
Strukturfo	rmel bezog	jen auf 22 S	auerstoffe							
Si	5,406	5,413	5,385	5,386	5,425	5,374	5,405	5,287	5,337	5,331
Ti	0,164	0,167	0,163	0,162	0,169	0,159	0,145	0,209	0,198	0,196
AI	3,382	3,417	3,381	3,370	3,273	3,375	3,401	3,398	3,339	3,388
Cr	0,001	0,005	0,010	0,008	0,004	0,001	0,006	0,007	0,005	0,000
Fe3+	0,306	0,306	0,306	0,306	0,308	0,307	0,296	0,348	0,340	0,338
Mg	2,689	2,632	2,722	2,720	2,755	2,737	2,747	2,451	2,514	2,496
Ca Mn	0,015	0,013	0,005	0,008	0,010	0,027	0,029	0,000	0,000	0,005
IVIII Eo2+	0,027	0,019	0,023	1 734	0,020	0,030	1,027	1 970	1 026	1 016
ге <u>г</u> т Си	0,000	0.000	0.000	0.000	0.000	0.000	0,000	0,000	0.000	0.000
Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ba	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,107	0.087	0.096	0,101	0,105	0,120	0,150	0,105	0,000	0,137
K	1.608	1.610	1.645	1.676	1.675	1.637	1.579	1.754	1.754	1.710
Summe	15.444	15.405	15.474	15.499	15.504	15.504	15.463	15.557	15.556	15.534
	,	,	,	,	,	,	,	,	,	
Si	5,406	5,413	5,385	5,386	5,425	5,374	5,405	5,287	5,337	5,331
AI IV	2,594	2,587	2,615	2,614	2,575	2,626	2,595	2,713	2,663	2,669
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	0,787	0,830	0,767	0,756	0,698	0,749	0,807	0,685	0,676	0,718
Ti	0,164	0,167	0,163	0,162	0,169	0,159	0,145	0,209	0,198	0,196
Cr	0,001	0,005	0,010	0,008	0,004	0,001	0,006	0,007	0,005	0,000
Fe3+	0,306	0,306	0,306	0,306	0,308	0,307	0,296	0,348	0,340	0,338
Fe2+	1,735	1,735	1,736	1,734	1,748	1,739	1,676	1,970	1,926	1,916
Mn	0,027	0,019	0,023	0,016	0,026	0,030	0,027	0,023	0,023	0,017
Mg oktaedr	2,689	2,632	2,722	2,726	2,755	2,737	2,747	2,451	2,514	2,496
·	5,710	5,694	5,727	5,708	5,707	5,721	5,703	5,692	5,682	5,681
Ca	0,015	0,013	0,005	0,008	0,016	0,027	0,029	0,000	0,000	0,005
Ва	0,004	0,000	0,000	0,006	0,000	0,000	0,002	0,007	0,009	0,001
Na	0,107	0,087	0,096	0,101	0,105	0,120	0,150	0,105	0,111	0,137
К	1,608	1,610	1,645	1,676	1,675	1,637	1,579	1,754	1,754	1,710
interl.	1,734	1,710	1,747	1,791	1,796	1,784	1,760	1,866	1,874	1,853
Summe	15,444	15,405	15,474	15,499	15,504	15,504	15,463	15,557	15,556	15,534
X(Fe)	0.392	0.397	0 389	0 389	0.388	0 389	0 379	0 446	0 434	0 434
	3,002	0,001	0,000	0,000	0,000	0,000	0,010	0,-1-0	0,-10-1	0,704

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Biotit 11.1 <	Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
BIO-1 BIO2-1 BIO2-1 BIO3-1 BIO3-2 BIO3-3 BIO3-1 BIO3-2 BIO3-3 BIO3-1 BIO3-2 SiO2 35,19 34,70 34,92 34,89 34,76 35,61 34,61 34,62 34,50 35,53 TiO2 1,58 1,57 1,77 1,70 1,80 1,71 1,74 1,84 1,92 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,87 1,83 1,30 3,01 3,01 3,01 3,01 3,00 3,01 3,03 3,03 3,03 1,98 1,98 1,98 1,98 1,98 1,98 1,98 1,98 1,98 1,98 1,98 1,98 1,98 1,98 1,98 1,98 1,98 3,98 3,98 3,98 3,98 3,98 3,98 3,98 3,98 3,98 3,98 3,98 3,98 3,98 3,98 3,98 3,98	Biotit	11.1	11.1	11.1	11.1	11.1	11.1	11.2	11.2	11.2	11.2
BIO1-4 CSN BIO3-1 BIO3-2 BIO3-3 CRN BIO4-1 BIO4-2 SIO2 35,19 34,70 34,82 34,89 34,76 35,61 34,61 34,62 34,50 35,53 AI203 19,45 19,02 19,23 19,29 18,37 19,16 19,11 18,81 18,57 18,76 AI203 3,00 3,01 3,01 3,01 3,01 3,02 2,86 3,20 3,17 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 3,03 10,06 0,01 0,01 0,01 0,00 <			BIO2-1	BIO2-2				BIO1-1	BIO1-2		
SiO2 35,19 34,70 34,92 34,76 35,61 34,61 34,62 34,50 35,53 TiO2 1,58 1,57 1,77 1,70 1,80 1,77 1,74 1,84 19,25 1,87 1,81 11,85 1,81 11,85 1,87 Cr203 0.03 0,01 0,05 0,01 0,00 0,06 0,02 0,01 0,03 3,03 Se203 0,03 0,04 1,07 1,11 1,11 1,14 1,44 0,12 1,033 1,036 CaO 0,01 0,00 0,05 0,06 0,01 0,01 0,00		BIO1-4	GSN	SN	BI03-1	BI03-2	BI03-3	GRN	GRN	BI04-1	BI04-2
Dick Dirk Dirk <thdirk< th=""> Dirk Dirk <thd< th=""><th>SiO2</th><th>35 10</th><th>34 70</th><th>34 02</th><th>34 80</th><th>34 76</th><th>35.61</th><th>34 61</th><th>34 62</th><th>34 50</th><th>35 53</th></thd<></thdirk<>	SiO2	35 10	34 70	34 02	34 80	34 76	35.61	34 61	34 62	34 50	35 53
Inc. Inc. <th< th=""><th></th><th>1 58</th><th>1 57</th><th>1 77</th><th>1 70</th><th>1 80</th><th>1 71</th><th>1 74</th><th>34,02 1.64</th><th>1 92</th><th>1 72</th></th<>		1 58	1 57	1 77	1 70	1 80	1 71	1 74	34,02 1.64	1 92	1 72
Nacco 19/2 <t< th=""><th>A12O3</th><th>10.45</th><th>10.02</th><th>10.23</th><th>10.20</th><th>18.37</th><th>10.16</th><th>10,11</th><th>18.01</th><th>18.57</th><th>18.76</th></t<>	A12O3	10.45	10.02	10.23	10.20	18.37	10.16	10,11	18.01	18.57	18.76
Fe203 3,00 3,01 3,01 3,02 2,80 3,20 3,17 3,03 3,03 Mg0 10,89 10,84 11,07 11,11 11,11 10,34 10,28 10,38 10,38 10,38 Gao 0,01 0,00 0,03 0,06 0,01 0,01 0,01 0,00 0,00 MnO 0,16 0,24 0,18 0,15 0,14 0,11 0,11 0,01 0,01 0,01 0,00	Cr2O3	0.03	0.01	0.05	0.01	0.00	0.00	0.06	0.02	0.01	0.03
Number 10.08 <t< th=""><th>Fe2O3</th><th>3 00</th><th>3.01</th><th>3 01</th><th>3 01</th><th>3.02</th><th>2.86</th><th>3 20</th><th>3 17</th><th>3.03</th><th>3.03</th></t<>	Fe2O3	3 00	3.01	3 01	3 01	3.02	2.86	3 20	3 17	3.03	3.03
Ange Ange <th< th=""><th>MaO</th><th>10.98</th><th>10.89</th><th>10.84</th><th>11 07</th><th>11 11</th><th>11 11</th><th>10 34</th><th>10.29</th><th>10 38</th><th>10.96</th></th<>	MaO	10.98	10.89	10.84	11 07	11 11	11 11	10 34	10.29	10 38	10.96
Cuc Colo Colo <thc< th=""><th>CaO</th><th>0.01</th><th>0.00</th><th>0.03</th><th>0.05</th><th>0.06</th><th>0.01</th><th>0.01</th><th>0.01</th><th>0.00</th><th>0.00</th></thc<>	CaO	0.01	0.00	0.03	0.05	0.06	0.01	0.01	0.01	0.00	0.00
Bits Diss Diss <thdiss< th=""> Diss Diss <thd< th=""><th>MnO</th><th>0,01</th><th>0,00</th><th>0,00</th><th>0,00</th><th>0,00</th><th>0.14</th><th>0,01</th><th>0,01</th><th>0,00</th><th>0,00</th></thd<></thdiss<>	MnO	0,01	0,00	0,00	0,00	0,00	0.14	0,01	0,01	0,00	0,00
No. No.0	FeO	15 32	15 36	15 34	15 33	15 40	14 60	16 31	16 16	15.46	15.45
Code 0.00 <th< th=""><th>CuO</th><th>0.00</th><th>0.00</th><th>0.00</th><th>0.00</th><th>0.00</th><th>0.00</th><th>0.00</th><th>0.00</th><th>0.00</th><th>0.00</th></th<>	CuO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Line 0.007 0.08 0.007 0.08 0.007 0.017 0.018 0.007 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.018 0.018 0.010 0.013 0.015 Na20 0.33 0.37 0.46 0.41 0.48 0.43 0.32 0.35 0.51 0.42 0.42 0.42 0.43 0.42 0.43 0.42 0.44 0.44 0.43 0.44 0.42 0.44 0.42 0.44 0.42 0.43 0.44 0.42 0.44<	ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na2O 0.39 0.37 0.46 0.41 0.43 0.43 0.32 0.36 0.51 0.42 K2O 9,12 8,91 8,96 8,73 8,32 8,75 8,84 8,99 8,85 8,77 Summe 99,31 98,09 98,80 98,62 97,53 98,48 98,66 98,28 97,33 98,83 Strukturformel bezogen auf 22 Sauerstoffe 5 5 5,286 5,276 5,287 5,282 5,326 5,372 5,270 5,295 5,314 5,360 AI 3,452 3,421 3,432 3,441 3,318 3,406 3,429 3,409 3,370 3,340 Cr 0,004 0,001 0,006 0,001 0,002 0,001 0,002 0,001 0,002 0,001 0,002 0,001 0,002 0,001 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 <	BaO	0,00	0.08	0,00	0,00	0,00	0,00	0,00	0,00	0.03	0.05
NL2C 0,03 0,03 0,04 0,03 0,02 0,03 0,03 0,04 K2O 3,98 3,93 3,96 3,96 3,91 3,98 3,94 3,92 3,89 3,97 Summe 99,31 98,09 98,60 96,52 97,53 98,48 98,66 96,28 97,33 98,83 Strukturformel bezogen auf 22 Sauerstoffe Si 5,296 5,287 5,286 5,372 5,270 5,295 5,314 5,366 Al 3,452 3,421 3,432 3,441 3,318 3,406 3,429 3,409 3,370 3,340 Cr 0,004 0,006 0,001 0,006 0,001 0,002 0,001 0,000 0,002 0,001 0,000 0,000 0,000 0,001 0,000 0,000 0,000 0,001 0,000 0,000 0,001 0,000 0,000 0,000 0,001 0,000 0,000 0,000 0,000 0,000 0,000	Na2O	0,07	0,00	0,07	0,01	0.48	0.43	0,00	0,00	0,00	0,00
Hz0 51,3	K2O	0,00	8 Q1	0,40 8 96	8 73	8 32	0, 4 5 8 75	8.84	8 99	8 85	8 77
Inco 50.00 50.00 50.01 50.01 50.01 50.02 50.01 50.01 50.02 50.02 50.01 50.02 50.02 50.01 50.02 50.01 50.00 70.02 50.01 70.02 70.01 70.00 <th7< th=""><th>H2O</th><th>3 98</th><th>3 93</th><th>3.96</th><th>3 96</th><th>3 01</th><th>3 98</th><th>3 04</th><th>3 92</th><th>3 80</th><th>3 97</th></th7<>	H2O	3 98	3 93	3.96	3 96	3 01	3 98	3 04	3 92	3 80	3 97
Summe 95,01 90,03 90,02 91,03 90,04 90,000 90,00 90,00 <t< th=""><th>Summo</th><th>00.31</th><th>08.00</th><th>08.80</th><th>08.62</th><th>07.53</th><th>08.48</th><th>08.66</th><th>08.28</th><th>07 33</th><th>08.83</th></t<>	Summo	00.31	08.00	08.80	08.62	07.53	08.48	08.66	08.28	07 33	08.83
Strukturformel bezogen auf 22 Sauerstoffe Si 5,298 5,296 5,287 5,282 5,326 5,372 5,270 5,295 5,314 5,360 Ti 0,179 0,180 0,201 0,193 0,208 0,194 0,200 0,189 0,223 0,195 All 3,452 3,421 3,432 3,441 3,318 3,406 3,429 3,409 3,370 0,002 0,001 0,000 0,	Summe	99,31	90,09	90,00	90,02	97,55	90,40	90,00	90,20	97,55	90,03
Si 5,298 5,296 5,287 5,282 5,326 5,372 5,270 5,295 5,314 5,366 Ti 0,179 0,180 0,201 0,193 0,208 0,194 0,200 0,189 0,223 0,195 Al 3,452 3,421 3,432 3,441 3,318 3,406 3,429 3,409 3,370 3,340 Ng 2,464 2,478 2,447 2,488 2,537 2,499 2,347 2,346 2,342 2,468 Ca 0,002 0,000 0,005 0,008 0,010 0,001 0,001 0,000 </th <th>Strukturfo</th> <th>rmel bezog</th> <th>en auf 22 S</th> <th>auerstoffe</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Strukturfo	rmel bezog	en auf 22 S	auerstoffe							
Ti 0,179 0,180 0,201 0,193 0,202 0,194 0,200 0,189 0,223 0,195 AI 3,452 3,421 3,432 3,441 3,318 3,406 3,429 3,409 3,370 3,340 Cr 0,004 0,001 0,006 0,001 0,000 0,000 0,007 0,002 0,001 0,004 Gr 0,340 0,344 0,342 0,348 0,325 0,367 0,365 0,351 0,342 Ga 0,002 0,000 0,005 0,008 0,010 0,002 0,001 0,000 </th <th>Si</th> <th>5.298</th> <th>5.296</th> <th>5.287</th> <th>5,282</th> <th>5.326</th> <th>5.372</th> <th>5,270</th> <th>5,295</th> <th>5.314</th> <th>5.366</th>	Si	5.298	5.296	5.287	5,282	5.326	5.372	5,270	5,295	5.314	5.366
Al 3,452 3,421 3,332 3,441 3,318 3,406 3,429 3,409 3,370 3,340 Cr 0,004 0,001 0,006 0,001 0,000 0,002 0,001 0,004 Fe3+ 0,340 0,346 0,343 0,342 0,348 0,325 0,367 0,365 0,351 0,344 Mg 2,464 2,478 2,447 2,498 2,537 2,499 2,347 2,346 2,382 2,468 Ca 0,002 0,001 0,002 0,001 0,001 0,001 0,001 0,001 0,000	Ti	0,179	0,180	0.201	0,193	0.208	0.194	0.200	0,189	0.223	0,195
Cr 0,004 0,001 0,006 0,001 0,000 0,000 0,007 0,002 0,001 0,004 Fe3+ 0,340 0,343 0,342 0,348 0,325 0,367 0,365 0,351 0,344 Mg 2,464 2,478 2,447 2,498 2,537 2,499 2,347 2,346 2,382 2,468 Ca 0,002 0,001 0,005 0,008 0,019 0,018 0,024 0,002 0,001 0,000 <t< th=""><th>AI</th><th>3,452</th><th>3,421</th><th>3,432</th><th>3.441</th><th>3,318</th><th>3,406</th><th>3,429</th><th>3,409</th><th>3.370</th><th>3,340</th></t<>	AI	3,452	3,421	3,432	3.441	3,318	3,406	3,429	3,409	3.370	3,340
Fe3+ 0,340 0,346 0,342 0,348 0,325 0,367 0,365 0,351 0,344 Mg 2,464 2,478 2,447 2,488 2,537 2,499 2,347 2,346 2,382 2,488 Ca 0,002 0,000 0,005 0,008 0,010 0,002 0,001 0,001 0,000 0,000 Mn 0,020 0,001 0,002 0,001 0,002 0,004 0,002 0,000 <t< th=""><th>Cr</th><th>0.004</th><th>0.001</th><th>0.006</th><th>0.001</th><th>0.000</th><th>0.000</th><th>0.007</th><th>0.002</th><th>0.001</th><th>0.004</th></t<>	Cr	0.004	0.001	0.006	0.001	0.000	0.000	0.007	0.002	0.001	0.004
Mg 2,444 2,478 2,447 2,498 2,537 2,499 2,347 2,346 2,382 2,468 Ca 0,002 0,001 0,002 0,001 0,001 0,000 <th>Fe3+</th> <th>0.340</th> <th>0.346</th> <th>0.343</th> <th>0.342</th> <th>0.348</th> <th>0.325</th> <th>0.367</th> <th>0.365</th> <th>0.351</th> <th>0.344</th>	Fe3+	0.340	0.346	0.343	0.342	0.348	0.325	0.367	0.365	0.351	0.344
Ca 0.002 0.000 0.005 0.008 0.010 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.000 0.	Μα	2,464	2,478	2,447	2,498	2,537	2,499	2.347	2,346	2,382	2,468
Disc Disc <thdis< th=""> Disc <thdisc< th=""> Di</thdisc<></thdis<>	Ca	0,002	0,000	0,005	0,008	0.010	0.002	0.001	0.001	0,000	0,000
Intern Older Older <t< th=""><th>Mn</th><th>0.020</th><th>0.031</th><th>0.022</th><th>0.021</th><th>0.019</th><th>0.018</th><th>0.024</th><th>0.026</th><th>0.024</th><th>0.017</th></t<>	Mn	0.020	0.031	0.022	0.021	0.019	0.018	0.024	0.026	0.024	0.017
Licit Host	 Fe2+	1 929	1 961	1 942	1 941	1 973	1 842	2 078	2,067	1 992	1 952
Char Construction Construction <thconstruction< th=""> Construction</thconstruction<>	Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0.000	0,000
Image: Spectral system Spectra system Spectra system Spect	Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Date Disol Disol <thd< th=""><th>Ba</th><th>0,000</th><th>0,000</th><th>0,000</th><th>0,000</th><th>0,000</th><th>0,000</th><th>0,000</th><th>0,000</th><th>0,000</th><th>0,000</th></thd<>	Ba	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Nu 0,115 0,105 0,116 0,115 0,116 0,116 0,116 0,116 0,116 0,	Na	0,004	0,000	0,004	0,001	0,000	0,000	0,000	0,000	0,002	0,000
N 1,000 1,0	K	1 752	1 735	1 730	1 685	1 627	1 685	0,004 1 717	1 753	1 739	1 691
Si 5,298 5,296 5,287 5,282 5,326 5,372 5,270 5,295 5,314 5,366 Al IV 2,702 2,704 2,713 2,718 2,674 2,628 2,730 2,705 2,686 2,634 tetr. 8,000 1,0192	Summe	15 559	15 563	15 554	15 534	15 517	15 474	15 534	15 558	15 548	15 501
Si 5,298 5,296 5,287 5,282 5,326 5,372 5,270 5,295 5,314 5,366 Al IV 2,702 2,704 2,713 2,718 2,674 2,628 2,730 2,705 2,686 2,634 tetr. 8,000 1,042 1,942 1,941 1,973 1,842 2,078 2,067 1,992 1,952	••••••	.0,000	,	10,001	10,001				,	10,010	10,001
AI IV 2,702 2,704 2,713 2,718 2,674 2,628 2,730 2,705 2,686 2,634 tetr. 8,000 1,992 0,223 0,195 0,194 0,200 0,011 0,004 0,004 0,001 0,001 0,001 0,001 0,001 0,002 0,011 0,012 0,011 0,017 Mg 0,244 0,442 2,447 2,498 2,537 2,499 2,347 2,346 2,38	Si	5,298	5,296	5,287	5,282	5,326	5,372	5,270	5,295	5,314	5,366
tetr. 8,000 <th< th=""><th>AI IV</th><th>2,702</th><th>2,704</th><th>2,713</th><th>2,718</th><th>2,674</th><th>2,628</th><th>2,730</th><th>2,705</th><th>2,686</th><th>2,634</th></th<>	AI IV	2,702	2,704	2,713	2,718	2,674	2,628	2,730	2,705	2,686	2,634
Al VI 0,749 0,717 0,719 0,724 0,644 0,778 0,699 0,704 0,683 0,706 Ti 0,179 0,180 0,201 0,193 0,208 0,194 0,200 0,189 0,223 0,195 Cr 0,004 0,001 0,006 0,001 0,000 0,000 0,007 0,002 0,001 0,004 Fe3+ 0,340 0,346 0,343 0,342 0,348 0,325 0,367 0,365 0,351 0,344 Fe2+ 1,929 1,961 1,942 1,941 1,973 1,842 2,078 2,067 1,992 1,952 Mn 0,020 0,031 0,022 0,021 0,019 0,018 0,024 0,026 0,024 0,017 Mg 2,464 2,478 2,447 2,498 2,537 2,499 2,347 2,346 2,382 2,468 oktaedr . 5,686 5,714 5,680 5,721 5,730 5,655 5,722 5,698 5,656 5,686 Ca	tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI 0,749 0,717 0,719 0,724 0,644 0,778 0,699 0,704 0,683 0,706 Ti 0,179 0,180 0,201 0,193 0,208 0,194 0,200 0,189 0,223 0,195 Cr 0,004 0,001 0,006 0,001 0,000 0,000 0,007 0,002 0,001 0,004 Fe3+ 0,340 0,346 0,343 0,342 0,348 0,325 0,367 0,365 0,351 0,344 Fe2+ 1,929 1,961 1,942 1,941 1,973 1,842 2,078 2,067 1,992 1,952 Mn 0,020 0,031 0,022 0,021 0,019 0,018 0,024 0,026 0,024 0,017 Mg 2,464 2,478 2,447 2,498 2,537 2,499 2,347 2,346 2,382 2,468 oktaedr . 5,686 5,714 5,680 5,721 5,730 5,655 5,722 5,698 5,656 5,686 Ca											
Ti 0,179 0,180 0,201 0,193 0,208 0,194 0,200 0,189 0,223 0,195 Cr 0,004 0,001 0,006 0,001 0,000 0,000 0,007 0,002 0,001 0,004 Fe3+ 0,340 0,346 0,343 0,342 0,348 0,325 0,367 0,365 0,351 0,344 Fe2+ 1,929 1,961 1,942 1,941 1,973 1,842 2,078 2,067 1,992 1,952 Mn 0,020 0,031 0,022 0,021 0,019 0,018 0,024 0,026 0,024 0,017 Mg 2,464 2,478 2,447 2,498 2,537 2,499 2,347 2,346 2,382 2,468 oktaedr . 5,686 5,714 5,680 5,721 5,730 5,655 5,722 5,698 5,656 5,686 Ca 0,002 0,000 0,005 0,008	AI VI	0,749	0,717	0,719	0,724	0,644	0,778	0,699	0,704	0,683	0,706
Cr 0,004 0,001 0,006 0,001 0,000 0,007 0,002 0,001 0,004 Fe3+ 0,340 0,346 0,343 0,342 0,348 0,325 0,367 0,365 0,351 0,344 Fe2+ 1,929 1,961 1,942 1,941 1,973 1,842 2,078 2,067 1,992 1,952 Mn 0,020 0,031 0,022 0,021 0,019 0,018 0,024 0,026 0,024 0,017 Mg 2,464 2,478 2,447 2,498 2,537 2,499 2,347 2,346 2,382 2,468 oktaedr .	Ti	0,179	0,180	0,201	0,193	0,208	0,194	0,200	0,189	0,223	0,195
Fe3+ 0,340 0,346 0,343 0,342 0,348 0,325 0,367 0,365 0,351 0,344 Fe2+ 1,929 1,961 1,942 1,941 1,973 1,842 2,078 2,067 1,992 1,952 Mn 0,020 0,031 0,022 0,021 0,019 0,018 0,024 0,026 0,024 0,017 Mg 2,464 2,478 2,447 2,498 2,537 2,499 2,347 2,346 2,382 2,468 oktaedr . 5,686 5,714 5,680 5,721 5,730 5,655 5,722 5,698 5,656 5,686 Ca 0,002 0,000 0,005 0,008 0,010 0,002 0,001 0,000 0,000 Ba 0,004 0,005 0,004 0,001 0,009 0,006 0,000 0,002 0,003 Na 0,115 0,109 0,134 0,119 0,141 0,126 0,094 0,106 0,153 0,122 K 1,752 1,735	Cr	0,004	0,001	0,006	0,001	0,000	0,000	0,007	0,002	0,001	0,004
Fe2+ 1,929 1,961 1,942 1,941 1,973 1,842 2,078 2,067 1,992 1,952 Mn 0,020 0,031 0,022 0,021 0,019 0,018 0,024 0,026 0,024 0,017 Mg 2,464 2,478 2,447 2,498 2,537 2,499 2,347 2,346 2,382 2,468 oktaedr . 5,686 5,714 5,680 5,721 5,730 5,655 5,722 5,698 5,656 5,686 Ca 0,002 0,000 0,005 0,008 0,010 0,002 0,001 0,000 0,000 0,000 Ba 0,004 0,005 0,004 0,001 0,009 0,006 0,000 0,002 0,003 Na 0,115 0,109 0,134 0,119 0,141 0,126 0,094 0,106 0,153 0,122 K 1,752 1,735 1,730 1,685 1,627 1,685 1,717 1,753 1,739 1,691 interl. 1,873	Fe3+	0,340	0,346	0,343	0,342	0,348	0,325	0,367	0,365	0,351	0,344
Mn 0,020 0,031 0,022 0,021 0,019 0,018 0,024 0,026 0,024 0,017 Mg 2,464 2,478 2,447 2,498 2,537 2,499 2,347 2,346 2,382 2,468 . 5,686 5,714 5,680 5,721 5,730 5,655 5,722 5,698 5,656 5,686 Ca 0,002 0,000 0,005 0,008 0,010 0,002 0,001 0,001 0,000 0,000 Ba 0,004 0,005 0,004 0,001 0,009 0,006 0,000 0,002 0,001 0,000 0,002 0,001 0,000 <th>Fe2+</th> <th>1,929</th> <th>1,961</th> <th>1,942</th> <th>1,941</th> <th>1,973</th> <th>1,842</th> <th>2,078</th> <th>2,067</th> <th>1,992</th> <th>1,952</th>	Fe2+	1,929	1,961	1,942	1,941	1,973	1,842	2,078	2,067	1,992	1,952
Mg oktaedr 2,464 2,478 2,447 2,498 2,537 2,499 2,347 2,346 2,382 2,468 . 5,686 5,714 5,680 5,721 5,730 5,655 5,722 5,698 5,656 5,686 Ca 0,002 0,000 0,005 0,008 0,010 0,002 0,001 0,000 0,000 Ba 0,004 0,005 0,004 0,001 0,009 0,006 0,000 0,002 0,000 Na 0,115 0,109 0,134 0,119 0,141 0,126 0,094 0,106 0,153 0,122 K 1,752 1,735 1,730 1,685 1,627 1,685 1,717 1,753 1,739 1,691 interl. 1,873 1,849 1,873 1,813 1,788 1,819 1,812 1,860 1,893 1,815 Summe 15,559 15,563 15,554 15,534 15,517 15,474 15,534 </th <th>Mn</th> <th>0,020</th> <th>0,031</th> <th>0,022</th> <th>0,021</th> <th>0,019</th> <th>0,018</th> <th>0,024</th> <th>0,026</th> <th>0,024</th> <th>0,017</th>	Mn	0,020	0,031	0,022	0,021	0,019	0,018	0,024	0,026	0,024	0,017
oktaedr 5,686 5,714 5,680 5,721 5,730 5,655 5,722 5,698 5,656 5,686 Ca 0,002 0,000 0,005 0,008 0,010 0,002 0,001 0,001 0,000 0,000 Ba 0,004 0,005 0,004 0,001 0,009 0,006 0,000 0,002 0,003 Na 0,115 0,109 0,134 0,119 0,141 0,126 0,094 0,106 0,153 0,122 K 1,752 1,735 1,730 1,685 1,627 1,685 1,717 1,753 1,739 1,691 interl. 1,873 1,849 1,873 1,813 1,788 1,819 1,812 1,860 1,893 1,815 Summe 15,559 15,563 15,554 15,534 15,517 15,474 15,534 15,548 15,501 X(Fe) 0,439 0,442 0,443 0,437 0,437 0,424 0,47	Mg	2,464	2,478	2,447	2,498	2,537	2,499	2,347	2,346	2,382	2,468
Ca 0,002 0,000 0,005 0,008 0,010 0,002 0,001 0,001 0,000 0,000 Ba 0,004 0,005 0,004 0,001 0,009 0,006 0,000 0,000 0,002 0,001 0,000 0,000 Na 0,115 0,109 0,134 0,119 0,141 0,126 0,094 0,106 0,153 0,122 K 1,752 1,735 1,730 1,685 1,627 1,685 1,717 1,753 1,739 1,691 interl. 1,873 1,849 1,873 1,813 1,788 1,819 1,812 1,860 1,893 1,815 Summe 15,559 15,563 15,554 15,534 15,517 15,474 15,534 15,548 15,548 15,501 X(Fe) 0,439 0,442 0,443 0,437 0,437 0,424 0.470 0,468 0.455 0.442	oktaedr	5 000	E 744	5 000	E 704	F 700		F 700	F 000		5 000
Ca 0,002 0,000 0,005 0,008 0,010 0,002 0,001 0,001 0,000 0,000 Ba 0,004 0,005 0,004 0,001 0,009 0,006 0,000 0,000 0,002 0,001 0,000 0,000 0,002 0,003 Na 0,115 0,109 0,134 0,119 0,141 0,126 0,094 0,106 0,153 0,122 K 1,752 1,735 1,730 1,685 1,627 1,685 1,717 1,753 1,739 1,691 interl. 1,873 1,849 1,873 1,813 1,788 1,819 1,812 1,860 1,893 1,815 Summe 15,559 15,563 15,554 15,534 15,517 15,474 15,534 15,558 15,548 15,501 X(Fe) 0,439 0,442 0,443 0,437 0,437 0,424 0,470 0,468 0,455 0.442	•	5,686	5,714	5,680	5,721	5,730	5,655	5,722	5,698	5,656	5,686
Ca 0,002 0,000 0,003 0,003 0,010 0,002 0,001 0,000 0,	Ca	0.000	0 000	0.005	0 000	0.010	0.000	0.004	0.004	0.000	0.000
Na 0,115 0,109 0,134 0,119 0,141 0,126 0,094 0,106 0,002 0,003 0,003 K 1,752 1,735 1,730 1,685 1,627 1,685 1,717 1,753 1,739 1,691 interl. 1,873 1,849 1,873 1,813 1,788 1,819 1,812 1,860 1,893 1,815 Summe 15,559 15,563 15,554 15,534 15,517 15,474 15,534 15,558 15,548 15,501	Ba	0,002	0,000	0,000	0,000	0,010	0,002	0,001	0,001	0,000	0,000
Ka 0,113 0,103 0,134 0,119 0,141 0,120 0,094 0,106 0,153 0,122 K 1,752 1,735 1,730 1,685 1,627 1,685 1,717 1,753 1,739 1,691 interl. 1,873 1,849 1,873 1,813 1,788 1,819 1,812 1,860 1,893 1,815 Summe 15,559 15,563 15,554 15,534 15,517 15,474 15,534 15,548 15,501 X(Fe) 0,439 0,442 0,443 0,437 0,437 0,424 0.470 0,468 0.455 0.442	Na	0,004	0,000	0,004	0,001	0,009	0,000	0,000	0,000	0,002	0,003
N 1,752 1,753 1,750 1,005 1,027 1,005 1,717 1,753 1,739 1,091 interl. 1,873 1,849 1,873 1,813 1,788 1,819 1,812 1,860 1,893 1,815 Summe 15,559 15,563 15,554 15,534 15,517 15,474 15,534 15,558 15,548 15,501	ina K	1 750	1 725	1 720	1 605	1 607	1 605	0,094	0,100	0,100	1 601
X(Fe) 0,439 0,442 0,443 0,437 0,437 0,437 0,424 0,470 0,468 0,455 0.442	n intorl	1,102	1,130	1,130	COU, I	1,021		1,717	1,100	1,139	1,091
X(Fe) 0,439 0,442 0,443 0,437 0,437 0,437 0,424 0.470 0,468 0.455 0.442	Summe	1,013	1,049	1,013	1,013	1,100	1,019	1,012	1,000	1,093	1,010
X(Fe) 0,439 0,442 0,443 0,437 0,437 0,424 0,470 0,468 0,455 0.442	Juilline	10,009	10,000	10,004	10,004	10,017	10,474	10,034	10,000	10,040	10,501
	X(Fe)	0,439	0,442	0.443	0.437	0.437	0.424	0.470	0.468	0.455	0.442

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Biotit	11.2	11.2	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.3
	BIO5-2	BIO5-3	BIO1-1	BIO1-2	BIO2-1	BIO2-2	BIO2-3	BIO3-1	BIO3-2	BIO3-3
SiO2	34,59	34,77	35,05	35,44	35,16	35,79	35,63	35,61	35,38	35,17
TiO2	1,66	1,59	1,45	1,70	1,80	1,74	1,68	1,68	1,70	1,76
AI2O3	18,72	18,56	19,22	18,58	19,18	19,32	19,37	18,90	18,86	19,09
Cr2O3	0,02	0,02	0,00	0,05	0,03	0,02	0,04	0,01	0,01	0,02
Fe2O3	3,05	3,06	3,07	3,14	3,01	3,04	3,13	3,01	3,15	3,06
MgO	10,79	10,86	10,74	10,92	10,81	10,83	10,93	10,67	10,83	10,93
CaO	0,00	0,03	0,05	0,02	0,03	0,00	0,00	0,00	0,01	0,00
MnO F=O	0,11	0,17	0,20	0,12	0,13	0,16	0,16	0,11	0,15	0,21
FeU	15,50	15,59	15,64	16,02	15,30	15,50	15,96	15,37	16,05	15,62
	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZIIU RaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
DaU Na2O	0,05	0,10	0,02	0,04	0,14	0,05	0,13	0,05	0,10	0,09
Na20	8.02	0,37	0,40 8.44	0,45 8.52	8.88	0,49	0,42 8,82	0,40 8 70	0,37 8.67	0,45
H2O	3 01	3 91	3 95	3 97	3 97	0,07 4 01	4 02	3 97	3 98	3 98
Summe	97 76	97.67	98.28	98.97	98.92	99.82	100 29	98 57	99.25	99.22
ounne	01,10	01,01	00,20	50,57	00,02	00,02	100,20	00,07	00,20	00,22
Strukturfor	rmel bezod	en auf 22 S	auerstoffe							
Si	5.303	5.329	5.322	5.356	5.313	5.349	5.315	5.386	5.336	5.305
Ti	0,191	0,184	0,166	0,194	0,204	0,195	0,189	0,191	0,193	0,200
AI	3,383	3,353	3,441	3,310	3,415	3,403	3,405	3,369	3,353	3,393
Cr	0,002	0,003	0,000	0,005	0,003	0,002	0,005	0,002	0,001	0,002
Fe3+	0,352	0,353	0,351	0,357	0,343	0,342	0,351	0,343	0,357	0,348
Mg	2,467	2,481	2,430	2,459	2,435	2,414	2,430	2,407	2,436	2,458
Ca	0,000	0,005	0,009	0,004	0,004	0,000	0,000	0,000	0,002	0,000
Mn	0,014	0,022	0,025	0,015	0,017	0,020	0,020	0,014	0,020	0,027
Fe2+	1,995	1,998	1,987	2,025	1,941	1,937	1,991	1,944	2,024	1,971
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ва	0,003	0,006	0,001	0,002	0,008	0,003	0,007	0,003	0,006	0,005
Na	0,113	0,111	0,134	0,133	0,120	0,143	0,122	0,117	0,108	0,131
Κ	1,745	1,687	1,634	1,642	1,713	1,692	1,679	1,697	1,669	1,699
Summe	15,567	15,532	15,501	15,502	15,518	15,499	15,516	15,473	15,504	15,539
. .					4 -	40				
51	5,303	5,329	5,322	5,356	5,313	5,349	5,315	5,386	5,336	5,305
	2,697	2,671	2,678	2,644	2,687	2,651	2,685	2,614	2,664	2,695
leu.	8,000	8,000	8,000	0,000	8,000	0,000	0,000	8,000	8,000	8,000
	0.686	0.682	0.763	0.666	0.729	0.752	0.720	0.755	0.689	0.698
Ti	0,191	0.184	0,166	0,194	0.204	0,195	0,189	0,191	0,193	0,200
Cr	0.002	0.003	0.000	0.005	0.003	0.002	0.005	0.002	0.001	0.002
Fe3+	0.352	0.353	0.351	0.357	0.343	0.342	0.351	0.343	0.357	0.348
Fe2+	1,995	1,998	1,987	2,025	1,941	1,937	1,991	1,944	2,024	1,971
Mn	0,014	0,022	0,025	0,015	0,017	0,020	0,020	0,014	0,020	0,027
Mg	2,467	2,481	2,430	2,459	2,435	2,414	2,430	2,407	2,436	2,458
oktaedr										
•	5,706	5,722	5,722	5,721	5,673	5,662	5,707	5,656	5,720	5,703
6.	0.000	0.005	0.000	0.004	0.004	0.000	0.000	0.000	0.000	0.000
ua Ro	0,000	0,005	0,009	0,004	0,004	0,000	0,000	0,000	0,002	0,000
Da	0,003	0,006	0,001	0,002	0,008	0,003	0,007	0,003	0,006	0,005
ina K	0,113	0,111	1 624	0,133	U, 12U	0,143	0,122	0,117	0,108	1,131
interl	1,740	1,007 1,800	1 770	1,042 1,780	1,713	1 837	1,079	1,097	1 78/	1,099
Summe	15 567	15 532	15 501	15 502	15 518	15 400	15 516	15 473	15 504	15 530
Samile	10,007	10,002	10,001	10,002	10,010	10,400	10,010	10,110	10,004	10,000
X(Fe)	0,447	0,446	0,450	0,452	0,444	0,445	0,450	0,447	0,454	0,445
-										

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Biotit	11.4	11.4	11.4	11.5	11.5	11.5	11.5	11.5	11.5	11.5
	BIO1-2	BIO1-3	BIO1-4	BIO1-1	BIO1-2	BIO1-5	BIO1-6	BIO1-7	GRE	GRE
SiO2	35,38	34,72	35,16	35,21	35,75	34,69	35,74	34,94	35,61	35,83
TiO2	1,67	1,81	1,75	1,39	1,67	1,58	1,57	1,58	1,43	1,54
AI2O3	18,34	18,83	19,44	19,02	18,88	19,26	19,14	19,00	19,19	19,50
Cr2O3	0,07	0,00	0,04	0,00	0,01	0,01	0,01	0,00	0,02	0,00
Fe2O3	3,16	2,98	2,85	3,11	3,13	3,19	3,06	3,17	3,10	3,12
MgO	10,82	10,94	10,99	10,82	10,82	10,39	10,60	10,78	10,79	11,13
CaO	0,00	0,00	0,00	0,00	0,00	0,01	0,01	0,00	0,01	0,00
MnO	0,10	0,17	0,13	0,15	0,17	0,14	0,13	0,13	0,20	0,20
FeO	16,09	15,19	14,55	15,84	15,95	16,28	15,63	16,16	15,80	15,89
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BaO	0,09	0,03	0,05	0,07	0,11	0,03	0,05	0,07	0,09	0,07
Na2O	0,32	0,47	0,52	0,49	0,45	0,43	0,51	0,45	0,47	0,45
K2O	8,58	8,76	8,77	8,65	8,67	8,39	8,63	8,77	8,84	8,84
H2O	3,95	3,93	3,96	3,96	4,00	3,94	3,98	3,96	3,99	4,04
Summe	98,57	97,81	98,20	98,70	99,60	98,33	99,04	99,00	99,53	100,60
Strukturfo	rmel bezoge	en auf 22 S	auerstoffe							
Si	5,374	5,304	5,321	5,337	5,367	5,285	5,381	5,295	5,351	5,321
Ti	0,190	0,207	0,200	0,158	0,189	0,181	0,178	0,180	0,161	0,173
AI	3,284	3,390	3,467	3,396	3,340	3,458	3,396	3,393	3,398	3,414
Cr	0,008	0,000	0,005	0,000	0,001	0,001	0,001	0,000	0,002	0,000
Fe3+	0,361	0,342	0,325	0,354	0,353	0,366	0,347	0,361	0,350	0,348
Mg	2,451	2,492	2,479	2,445	2,422	2,359	2,378	2,436	2,416	2,464
Ca	0,000	0,000	0,000	0,000	0,000	0,001	0,001	0,000	0,001	0,000
Mn E- 0	0,013	0,022	0,017	0,020	0,021	0,018	0,016	0,017	0,025	0,025
Fe2+	2,044	1,940	1,842	2,008	2,003	2,074	1,967	2,048	1,985	1,973
Cu 7	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Da	0,005	0,002	0,003	0,004	0,000	0,002	0,003	0,004	0,005	0,004
ina K	1 662	1 707	1 603	1 673	1 661	1 620	1 657	1 605	1 605	1 676
Summe	15 487	15 546	15 503	15 530	15 493	15 500	15 472	15 561	15 528	15 527
ounne	10,407	10,040	10,000	10,000	10,400	10,000	10,472	10,001	10,020	10,021
Si	5,374	5,304	5,321	5,337	5,367	5,285	5,381	5,295	5,351	5,321
	2,626	2,696	2,679	2,663	2,633	2,715	2,619	2,705	2,649	2,679
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	0,658	0,694	0,788	0,733	0,707	0,743	0,777	0,688	0,750	0,735
Ti	0,190	0,207	0,200	0,158	0,189	0,181	0,178	0,180	0,161	0,173
Cr	0,008	0,000	0,005	0,000	0,001	0,001	0,001	0,000	0,002	0,000
Fe3+	0,361	0,342	0,325	0,354	0,353	0,366	0,347	0,361	0,350	0,348
Fe2+	2,044	1,940	1,842	2,008	2,003	2,074	1,967	2,048	1,985	1,973
Mn	0,013	0,022	0,017	0,020	0,021	0,018	0,016	0,017	0,025	0,025
Mg	2,451	2,492	2,479	2,445	2,422	2,359	2,378	2,436	2,416	2,464
oktaedr.	5,725	5,698	5,655	5,717	5,695	5,741	5,663	5,730	5,689	5,719
Ca	0,000	0,000	0,000	0,000	0,000	0,001	0,001	0,000	0,001	0,000
Ва	0,005	0,002	0,003	0,004	0,006	0,002	0,003	0,004	0,005	0,004
Na	0,095	0,140	0,151	0,144	0,131	0,127	0,148	0,131	0,138	0,128
Κ	1,662	1,707	1,693	1,673	1,661	1,629	1,657	1,695	1,695	1,676
interl.	1,762	1,848	1,848	1,821	1,798	1,759	1,809	1,830	1,839	1,808
Summe	15,487	15,546	15,503	15,539	15,493	15,500	15,472	15,561	15,528	15,527
X(Fe)	0,455	0,438	0,426	0,451	0,453	0,468	0,453	0,457	0,451	0,445

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Probe	IMM061	IMM061	IMM061	IMM061	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063
Biotit	11.5	11.5	11.5	11.5	2.1	2.1	2.1	2.1	2.1	2.1
	BIO2-3	BIO3-1	BIO3-2	BIO3-3	BIO1-1	BIO1-2	BIO2-1		BIO2-1	BIO3-1
	GRE	GRN	GRN	GRN	GR	GR	GRN	BIO2-2	GRN	GRN
SiO2	35,86	35,16	35,50	35,27	35,78	35,44	36,04	36,11	37,38	36,32
1102	1,50	1,75	1,77	1,77	0,08	0,15	1,08	1,15	1,05	1,43
AI2O3	19,48	18,83	19,15	19,24	20,80	19,56	21,56	19,53	20,17	20,01
Cr2O3	0,00	0,00	0,01	0,00	0,01	0,00	0,10	0,05	0,03	0,01
Fe2O3	3,08	3,15	3,10	3,13	3,01	3,24	2,68	2,82	2,63	2,74
MgO	11,26	10,62	10,75	10,84	11,13	11,56	11,76	12,51	12,48	12,23
CaO	0,00	0,00	0,03	0,02	0,07	0,04	0,08	0,05	0,01	0,02
MnO	0,16	0,17	0,18	0,12	0,26	0,23	0,19	0,19	0,15	0,22
FeO	15,71	16,07	15,79	15,94	15,33	16,53	13,68	14,38	13,41	13,97
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BaO	0,08	0,06	0,11	0,01	0,05	0,01	0,09	0,00	0,05	0,00
Na2O	0,41	0,48	0,38	0,37	0,24	0,24	0,38	0,46	0,46	0,34
K2O	8,79	8,55	8,65	8,55	6,38	8,09	6,96	8,56	7,76	8,88
H2O	4,03	3,96	3,99	3,99	3,98	3,98	4,06	4,05	4,10	4,07
Summe	100,36	98,80	99,40	99,25	97,09	99,08	98,65	99,86	99,67	100,23
Strukturfo	rmel bezog	jen auf 22 S	Sauerstoffe							
Si	5,331	5,328	5,336	5,308	5,397	5,338	5,321	5,349	5,468	5,349
Ti	0,168	0,200	0,200	0,201	0,010	0,017	0,120	0,128	0,116	0,158
AI	3,414	3,364	3,393	3,413	3,697	3,473	3,751	3,410	3,478	3,473
Cr	0,000	0,000	0,001	0,000	0,001	0,000	0,011	0,006	0,004	0,001
Fe3+	0,345	0,359	0,350	0,354	0,341	0,367	0,298	0,314	0,290	0,304
Mg	2,495	2,400	2,408	2,432	2,501	2,597	2,588	2,764	2,722	2,686
Ca	0,000	0,000	0,005	0,003	0,012	0,007	0,012	0,008	0,002	0,003
Mn	0,020	0,022	0,023	0,016	0,033	0,029	0,023	0,024	0,019	0,027
Fe2+	1,953	2,036	1,985	2,006	1,933	2,082	1,689	1,781	1,641	1,720
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ва	0,005	0,004	0,006	0,000	0,003	0,001	0,005	0,000	0,003	0,000
Na	0,118	0,140	0,112	0,108	0,069	0,071	0,110	0,133	0,131	0,097
К	1,667	1,654	1,658	1,642	1,227	1,555	1,310	1,618	1,448	1,669
Summe	15,514	15,507	15,477	15,483	15,222	15,537	15,239	15,535	15,320	15,487
Si	5,331	5,328	5,336	5,308	5,397	5,338	5,321	5,349	5,468	5,349
AI IV	2,669	2,672	2,664	2,692	2,603	2,662	2,679	2,651	2,532	2,651
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	0,744	0,692	0,729	0,721	1,093	0,811	1,072	0,758	0,946	0,822
Ті	0,168	0,200	0,200	0,201	0,010	0,017	0,120	0,128	0,116	0,158
Cr	0,000	0,000	0,001	0,000	0,001	0,000	0,011	0,006	0,004	0,001
Fe3+	0,345	0,359	0,350	0,354	0,341	0,367	0,298	0,314	0,290	0,304
Fe2+	1,953	2,036	1,985	2,006	1,933	2,082	1,689	1,781	1,641	1,720
Mn	0,020	0,022	0,023	0,016	0,033	0,029	0,023	0,024	0,019	0,027
Mg	2,495	2,400	2,408	2,432	2,501	2,597	2,588	2,764	2,722	2,686
oktaedr										
•	5,725	5,710	5,697	5,730	5,912	5,904	5,802	5,775	5,737	5,718
-										_
Ca	0,000	0,000	0,005	0,003	0,012	0,007	0,012	0,008	0,002	0,003
Ва	0,005	0,004	0,006	0,000	0,003	0,001	0,005	0,000	0,003	0,000
Na	0,118	0,140	0,112	0,108	0,069	0,071	0,110	0,133	0,131	0,097
K	1,667	1,654	1,658	1,642	1,227	1,555	1,310	1,618	1,448	1,669
interl.	1,790	1,797	1,780	1,753	1,310	1,634	1,437	1,759	1,583	1,769
Summe	15,514	15,507	15,477	15,483	15,222	15,537	15,239	15,535	15,320	15,487
X(Fe)	0 430	0 450	0 452	0 452	0 436	0 445	0 305	0 202	0 376	0 200
N(1 C)	0,409	0,409	0,402	0,402	0,400	0,440	0,395	0,392	0,570	0,390

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Probe	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063
Biotit	2.1	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.4	2.4
	BIO 3-2	BIO 1-1	BIO 1-2	BIO 1-3	BIO 2-1	BIO 2-2	BIO 3-1	BIO 3-2	BIO 1-1	BIO 1-2
SiO2	36,26	35,76	36,87	36,49	36,81	36,37	36,52	36,49	36,78	36,55
TiO2	1,29	1,23	1,21	1,22	1,24	1,32	1,28	1,19	1,17	1,25
AI2O3	20,13	19,28	19,56	19,75	19,33	19,94	19,72	19,81	20,81	19,99
Cr2O3	0,02	0,02	0,01	0,05	0,05	0,07	0,00	0,00	0,01	0,00
Fe2O3	2,77	2,58	2,65	2,76	2,84	2,75	2,65	2,64	2,50	2,68
MgO	12,55	13,00	13,05	12,84	12,92	12,58	12,81	12,88	12,76	12,47
CaO	0,01	0,01	0,03	0,01	0,01	0,02	0,01	0,00	0,02	0,00
MnO	0,26	0,22	0,21	0,19	0,22	0,26	0,20	0,22	0,22	0,18
FeO	14,12	13,17	13,50	14,06	14,47	14,03	13,53	13,46	12,74	13,67
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BaO	0,00	0,00	0,09	0,08	0,09	0,00	0,00	0,13	0,05	0,08
Na2O	0,37	0,49	0,51	0,43	0,32	0,44	0,41	0,48	0,46	0,46
K2O	8,75	8,33	8,47	8,53	8,76	8,62	8,67	8,71	8,86	8,84
H2O	4,09	4,00	4,09	4,09	4,10	4,08	4,07	4,08	4,12	4,08
Summe	100,60	98,08	100,24	100,48	101,16	100,47	99,87	100,09	100,50	100,23
Strukturfor	mel bezog	en auf 22 S	auerstoffe							
Si	5,323	5,360	5,407	5,358	5,384	5,341	5,380	5,370	5,361	5,374
Ti	0,142	0,138	0,133	0,134	0,137	0,146	0,141	0,132	0,128	0,138
AI	3,483	3,406	3,381	3,417	3,332	3,452	3,424	3,436	3,575	3,465
Cr	0,002	0,002	0,001	0,006	0,006	0,008	0,000	0,000	0,001	0,000
Fe3+	0,306	0,291	0,292	0,305	0,312	0,304	0,294	0,292	0,274	0,297
Mg	2,745	2,905	2,852	2,809	2,817	2,753	2,813	2,825	2,772	2,732
Ca	0,001	0,002	0,005	0,002	0,001	0,003	0,002	0,000	0,003	0,000
Mn	0,032	0,028	0,025	0,023	0,028	0,032	0,025	0,027	0,027	0,022
Fe2+	1,734	1,652	1,656	1,727	1,770	1,723	1,667	1,657	1,552	1,681
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ва	0,000	0,000	0,005	0,005	0,005	0,000	0,000	0,008	0,003	0,004
Na	0,106	0,142	0,145	0,122	0,090	0,125	0,118	0,137	0,131	0,130
к	1,638	1,593	1,584	1,597	1,635	1,614	1,629	1,636	1,648	1,658
Summe	15,512	15,519	15,487	15,503	15,517	15,501	15,493	15,520	15,475	15,501
Si	5,323	5,360	5,407	5,358	5,384	5,341	5,380	5,370	5,361	5,374
AI IV	2,677	2,640	2,593	2,642	2,616	2,659	2,620	2,630	2,639	2,626
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	0,806	0,767	0,788	0,775	0,716	0,793	0,804	0,806	0,936	0,839
Ті	0,142	0,138	0,133	0,134	0,137	0,146	0,141	0,132	0,128	0,138
Cr	0,002	0,002	0,001	0,006	0,006	0,008	0,000	0,000	0,001	0,000
Fe3+	0,306	0,291	0,292	0,305	0,312	0,304	0,294	0,292	0,274	0,297
Fe2+	1,734	1,652	1,656	1,727	1,770	1,723	1,667	1,657	1,552	1,681
Mn	0,032	0,028	0,025	0,023	0,028	0,032	0,025	0,027	0,027	0,022
Mg	2,745	2,905	2,852	2,809	2,817	2,753	2,813	2,825	2,772	2,732
oktaedr.	5,767	5,782	5,748	5,779	5,786	5,759	5,744	5,740	5,691	5,709
_										
Ca	0,001	0,002	0,005	0,002	0,001	0,003	0,002	0,000	0,003	0,000
Ва	0,000	0,000	0,005	0,005	0,005	0,000	0,000	0,008	0,003	0,004
Na	0,106	0,142	0,145	0,122	0,090	0,125	0,118	0,137	0,131	0,130
K	1,638	1,593	1,584	1,597	1,635	1,614	1,629	1,636	1,648	1,658
interl.	1,745	1,737	1,740	1,725	1,731	1,743	1,749	1,780	1,784	1,792
Summe	15,512	15,519	15,487	15,503	15,517	15,501	15,493	15,520	15,475	15,501
X(Fe)	0,387	0,362	0,367	0,381	0,386	0,385	0,372	0,370	0,359	0,381

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Probe	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063
Biotit	2.5	2.5	2.6	2.7	2.7	2.8	2.8	2.8	2.8	2.8
	BIO 1-1	BIO 2-1	BIO 1-1	BIO 1-1	BIO 1-2	BIO1-1	BIO1-2	BIO1-3	BIO1-4	BIO1-5
SiO2	36,12	35,77	35,52	36,12	36,57	36,65	36,07	36,52	36,38	36,58
TiO2	1,28	1,18	1,05	1,64	1,51	1,27	1,31	1,31	1,28	1,26
AI2O3	19,38	19,30	19,35	19,34	19,53	19,43	18,84	18,80	19,22	18,95
Cr2O3	0,06	0,03	0,00	0,05	0,00	0,09	0,02	0,04	0,06	0,02
Fe2O3	2,56	2,70	2,76	2,76	2,68	2,51	2,61	2,61	2,66	2,67
MgO	12,38	12,65	12,68	12,54	12,56	12,90	12,69	12,80	12,74	12,81
CaO	0,13	0,12	0,03	0,01	0,04	0,04	0,00	0,01	0,00	0,00
MnO	0,15	0,21	0,24	0,27	0,21	0,22	0,24	0,23	0,23	0,23
FeO	13,03	13,75	14,09	14,06	13,68	12,80	13,30	13,29	13,57	13,63
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BaO	0,00	0,06	0,03	0,02	0,00	0,09	0,06	0,00	0,00	0,00
Na2O	0,34	0,45	0,44	0,46	0,42	0,43	0,32	0,40	0,34	0,45
K2O	7,24	7,77	8,79	8,93	8,77	9,00	8,87	8,69	8,96	8,83
H2O	3,98	4,00	4,01	4,06	4,07	4,06	4,00	4,02	4,04	4,04
Summe	96,65	97,97	99,00	100,26	100,05	99,49	98,31	98,72	99,48	99,46
Strukturfor	mel bezoo	ien auf 22 S	auerstoffe							
Si	5.445	5.368	5.318	5.336	5.387	5.416	5.413	5.445	5.397	5.425
Ti	0.145	0.133	0.119	0.182	0.168	0.141	0.148	0.146	0.142	0.140
AI	3,442	3,413	3.415	3,368	3,391	3,385	3,331	3,303	3,360	3.312
Cr	0.007	0.003	0.000	0.006	0.000	0.011	0.002	0.005	0.007	0.002
Fe3+	0,290	0.305	0.311	0.307	0.297	0.279	0.295	0.292	0.297	0.298
Ma	2,782	2,831	2,831	2,762	2,757	2,843	2,839	2.845	2,818	2,832
Ca	0.021	0.019	0.005	0.002	0.006	0.006	0.000	0.002	0.000	0.000
Mn	0.019	0.026	0.031	0.034	0.027	0.028	0.030	0.029	0.028	0.029
Fe2+	1 643	1 726	1 765	1 737	1 686	1,583	1 669	1 657	1 683	1 690
Cu	0.000	0.000	0,000	0.000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ba	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,000	0,004	0,002	0,001	0,000	0,000	0,000	0,000	0,000	0,000
K	1 303	1 488	1 679	1 683	1 647	1 607	1 698	1 652	1 696	1 670
Summe	15 286	15 447	15 603	15 549	15 484	15 516	15 521	15 492	15 525	15 528
Culling	10,200	10,111	10,000	10,010	10,101	10,010	10,021	10,102	10,020	10,020
Si	5,445	5,368	5,318	5,336	5,387	5,416	5,413	5,445	5,397	5,425
AI IV	2,555	2,632	2,682	2,664	2,613	2,584	2,587	2,555	2,603	2,575
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
	0 888	0 781	0 733	0 704	0 778	0 800	0 744	0 748	0 756	0 737
Ti	0 145	0,133	0,100	0 182	0 168	0 141	0 148	0 146	0 142	0 140
Cr	0,140	0,100	0,110	0,102	0,100	0,141	0,140	0,140	0,142	0,140
Fo3+	0,007	0,000	0,000	0,000	0,000	0,011	0,002	0,000	0,007	0,002
Fe2±	1 643	1 726	1 765	1 737	1 686	1 583	1 669	1 657	1 683	1 690
Mn	0.019	0.026	0.031	0.034	0.027	0.028	0.030	0 020	0.028	0.020
Ma	2 782	2 831	2 831	2 762	2 757	2 843	2 839	2 845	2 818	2 832
oktaedr	2,102	2,001	2,001	2,102	2,101	2,040	2,000	2,040	2,010	2,002
	5,773	5,806	5,790	5,731	5,712	5,684	5,727	5,723	5,732	5,729
6.2	0.024	0.010	0.005	0.002	0.006	0.006	0.000	0.002	0.000	0.000
ua Ra	0,021	0,019	0,000	0,002	0,000	0,000	0,000	0,002	0,000	0,000
Da No	0,000	0,004	0,002	0,001	0,000	0,005	0,003	0,000	0,000	0,000
ina K	1 202	1 400	1 670	1 600	1 6 4 7	1 607	1,092	1 650	1,097	1,130
r. interl	1,393	1,400	1,079	1,000	1,047	1,097	1,090	1,760	1,090	1,070
nilen.	1,010	1,041	1,013	1,010	1,112	1,032	1,794	1,709	1,793	1,000
Summe	13,280	10,447	10,003	10,049	10,484	10,010	15,521	10,492	10,020	10,528
X(Fe)	0,371	0,379	0,384	0,386	0,379	0,358	0,370	0,368	0,374	0,374

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Biotit 2.8 7.1<	Probe	IMM063	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
BIO1-6 BIO1-1 BIO1-2 BIO1-3 BIO1-4 BIO1-5 BIO1-6 BIO1-7 BIO2-1 BIO2-2 SiO2 36,42 34,94 34,96 35,46 35,26 35,56 35,78 35,44 35,31 TiO2 1.21 1.42 1.51 1.56 1.49 1.58 1.64 1.88 1.44 AI203 1.65 0.06 0.00 0.04 0.00 0.04 0.00 0.04 0.00 0.04 0.00 0.07 0.06 0.00	Biotit	2.8	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1	7.1
SiQ2 36,42 34,94 34,96 35,45 35,26 35,86 35,54 35,78 35,44 35,31 TiQ2 1,21 1,42 1,51 1,56 1,49 1,59 1,88 1,67 1,88 1,48 1,48 1,489 1,85		BIO1-6	BIO1-1	BIO1-2	BIO1-3	BIO1-4	BIO1-5	BIO1-6	BIO1-7	BIO2-1	BIO2-2
SiO2 36,42 34,44 34,46 35,46 35,26 35,86 35,76 35,78 35,74 35,44 35,45 AL203 18,81 19,39 19,12 19,06 19,05 19,16 18,80 18,90 18,81 1,44 AL203 2,82 2,96 3,00 0,00 0,04 0,00<											
TiO2 1.21 1.42 1.51 1.56 1.49 1.59 1.58 1.67 1.68 1.48 Cr203 0.05 0.00 0.01 0.00 0.04 0.00 0.06 0.00 0.04 0.00 Percons 0.22 2.66 2.96 2.96 2.96 2.98 2.98 2.98 3.08 Mg0 1.22 1.15 11.33 10.90 11.47 11.47 11.47 11.33 11.00 11.27 Cao 0.03 0.00 0	SiO2	36,42	34,94	34,96	35,45	35,26	35,86	35,54	35,78	35,44	35,31
Al203 18,81 19,33 19,12 19,06 19,05 19,16 18,80 11,21 CaO 0.03 0.00 0.01 0.00<	TiO2	1,21	1,42	1,51	1,56	1,49	1,59	1,58	1,67	1,68	1,44
Cr203 0.05 0.00 0.01 0.00 0.04 0.00 0.05 0.00 0.04 0.00 Per203 L282 11.15 11.33 10.90 11.47 11.47 11.47 11.33 11.00 11.01 Ca0 0.03 0.00	AI2O3	18,81	19,39	19,12	19,06	19,23	19,05	19,16	18,80	18,99	18,85
Fa203 2,62 2,96 3,08 2,96 2,95 2,98 2,98 3,08 Mg0 1,22 11,15 11,33 11,00 11,21 11,33 11,00 0,00	Cr2O3	0,05	0,00	0,01	0,00	0,04	0,00	0,05	0,00	0,04	0,00
MgO 12,82 11,15 11,33 10,90 11,47 11,37 11,47 11,37 11,47 11,37 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 11,00 10,00 0,00	Fe2O3	2,62	2,96	3,08	2,96	2,91	2,96	2,95	2,98	2,98	3,08
CaO 0.03 0.00 0.01 0.00 0.01 0.00	MgO	12,92	11,15	11,33	10,90	11,47	11,27	11,47	11,33	11,00	11,21
MnO 0,15 0,22 0,20 0,14 0,19 0,21 0,21 0,18 15,18 15,20 CuO 0,00 0,	CaO	0,03	0,00	0,01	0,00	0,00	0,00	0,01	0,00	0,00	0,02
FeO 13,37 15,09 15,72 15,07 14,84 15,07 15,05 15,10 15,10 Cuo 0.000 0.000	MnO	0,15	0,22	0,20	0,14	0,19	0,21	0,21	0,16	0,16	0,26
Cu0 0.00	FeO	13,37	15,09	15,72	15,07	14,84	15,07	15,05	15,18	15,20	15,70
ZnO 0.00	CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BaC 0.07 0.09 0.02 0.00 0.13 0.09 0.03 0.07 0.08 Na2O 0.42 0.25 0.24 0.25 0.24 0.25 0.13 0.09 0.07 0.08 K2O 8.90 9.17 9.36 9.19 8.90 9.10 9.14 9.35 9.25 9.16 9.16 9.16 9.17 9.16 9.16 9.16 9.16 9.16 9.16 9.16 9.16 9.16 9.16 9.16 9.16 9.16 9.16 9.16 9.17 9.16 9.12 9.17 9.16 9.17 9.16 9.17 9.16 9.17 9.16 9.17 9.16 9.17 9.16 9.17 9.16 9.16 9.17 9.16 9.17 9.16 9.17 9.16 9.17 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13 9.13 <th>ZnO</th> <th>0,00</th>	ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na20 0.42 0.24 0.32 0.25 0.36 0.32 0.25 0.16 0.11 K20 6.90 9.17 9.36 9.910 9.10 9.14 9.35 9.22 9.01 Summe 99.00 98.64 99.58 98.64 98.55 99.59 99.57 99.50 98.91 99.09 Strukturformel bezogen auf 22 Sauerstoffe 5.325 5.371 5.328 5.370 5.381 5.351 5.335 TI 0.136 0.162 0.171 0.177 0.169 0.179 0.178 0.179 0.188 0.191 0.164 Al 3.304 3.462 3.397 3.383 3.384 3.383 3.384 3.325 3.379 3.367 Cr 0.006 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	BaO	0,07	0,09	0,05	0,02	0,00	0,13	0,09	0,03	0,07	0,08
R20 8,90 9,17 9,36 9,19 8,90 9,14 9,35 9,22 9,01 Summe 99,00 98,64 99,58 98,64 98,55 99,59 99,57 99,50 98,91 99,09 Strukturformel bezogen auf 22 Sauerstoffe Si 5,427 5,294 5,270 5,362 5,325 5,371 5,328 5,370 5,351 5,335 Ti 0,136 0,162 0,171 0,177 0,169 0,179 0,188 0,191 0,164 Al 3,304 3,462 3,397 3,393 0,3433 0,333 0,333 0,333 0,333 0,333 0,333 0,333 0,333 0,333 0,333 0,333 0,333 0,333 0,333 0,333 0,333 0,334 2,4275 2,525 Ca 0,004 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,00	Na2O	0,42	0,25	0,24	0,32	0,25	0,36	0,32	0,25	0,16	0,16
HZU 4,03 3,96 3,97 3,97 4,01 4,00 3,97 3,97 3,97 3,97 3,97 99,50 99,57 99,50 99,91 99,91 99,91	K20	8,90	9,17	9,36	9,19	8,90	9,10	9,14	9,35	9,22	9,01
Summe 99,00 98,84 99,85 99,85 99,87 99,87 99,87 99,80 99,81 99,91 Strukturformel bezogen auf 22 Sauerstoffe 5 2 5,371 5,328 5,370 5,386 5,371 5,328 5,370 5,311 5,328 5,371 5,328 5,371 5,328 5,370 5,311 1,991 <t< th=""><th>H2O</th><th>4,03</th><th>3,96</th><th>3,98</th><th>3,97</th><th>3,97</th><th>4,01</th><th>4,00</th><th>4,00</th><th>3,97</th><th>3,97</th></t<>	H2O	4,03	3,96	3,98	3,97	3,97	4,01	4,00	4,00	3,97	3,97
Strukturformel bezogen auf 22 Sauerstoffe Si 5.427 5.294 5.270 5.362 5.371 5.328 5.370 5.351 5.351 Ti 0.136 0.162 0.171 0.169 0.179 0.179 0.188 0.191 0.164 Al 3.344 3.422 3.397 3.388 3.423 3.383 3.325 3.379 3.357 Cr 0.006 0.000 0.002 0.000 0.004 0.000 0.	Summe	99,00	98,64	99,58	98,64	98,55	99,59	99,57	99,50	98,91	99,09
Si 5,427 5,294 5,270 5,362 5,371 5,328 5,370 5,381 5,335 Ti 0,136 0,162 0,171 0,179 0,179 0,179 0,188 0,191 0,184 Al 3,304 3,462 3,397 3,386 3,423 3,363 3,384 3,325 3,379 3,357 Cr 0,006 0,000 0,002 0,000 0,006 0,000	Strukturfo	rmel hezon	ion auf 22 S	auerstoffe							
Circ Olds Olds <th< th=""><th>Si</th><th>5 427</th><th>5 294</th><th>5 270</th><th>5 362</th><th>5 325</th><th>5 371</th><th>5 328</th><th>5 370</th><th>5 351</th><th>5 335</th></th<>	Si	5 427	5 294	5 270	5 362	5 325	5 371	5 328	5 370	5 351	5 335
Al 3,304 3,462 3,397 3,398 3,423 3,363 3,384 3,325 3,379 3,377 Cr 0,006 0,000 0,002 0,000 0,004 0,000 0,005 0,000 Fe3+ 0,294 0,337 0,350 0,336 0,331 0,333 0,333 0,333 0,333 0,336 0,339 0,350 Mg 2,519 2,547 2,449 2,541 2,547 2,457 2,545 2,547 2,457 2,553 2,534 2,475 2,525 Ca 0,004 0,000 0,002 0,000	Ti	0.136	0,162	0,171	0,002	0,169	0,179	0,020	0,188	0,191	0.164
Cr 0,006 0,000 0,002 0,004 0,004 0,006 0,006 0,000 0,005 0,000 Fe3+ 0,294 0,337 0,350 0,336 0,331 0,333 0,333 0,333 0,336 0,337 0,300 0,000 </th <th>AI</th> <th>3,304</th> <th>3,462</th> <th>3,397</th> <th>3,398</th> <th>3,423</th> <th>3,363</th> <th>3,384</th> <th>3.325</th> <th>3.379</th> <th>3,357</th>	AI	3,304	3,462	3,397	3,398	3,423	3,363	3,384	3.325	3.379	3,357
Fe3+ 0,294 0,337 0,350 0,336 0,331 0,333 0,333 0,333 0,333 0,336 0,339 0,350 Mg 2,870 2,519 2,547 2,459 2,511 2,515 2,563 2,534 2,475 2,525 Ca 0,004 0,000 0,002 0,000	Cr	0.006	0.000	0.002	0.000	0.004	0.000	0.006	0.000	0.005	0.000
Mg 2,870 2,519 2,547 2,459 2,581 2,515 2,563 2,534 2,475 2,525 Ca 0,004 0,000 0,002 0,000 <th>Fe3+</th> <th>0.294</th> <th>0.337</th> <th>0.350</th> <th>0.336</th> <th>0.331</th> <th>0.333</th> <th>0.333</th> <th>0.336</th> <th>0.339</th> <th>0.350</th>	Fe3+	0.294	0.337	0.350	0.336	0.331	0.333	0.333	0.336	0.339	0.350
Ca 0,004 0,000 0,002 0,000 0,000 0,001 0,000 0,000 0,000 Mn 0,019 0,029 0,026 0,018 0,024 0,026 0,027 0,020 0,020 0,002 Fe2+ 1,666 1,912 1,982 1,906 1,874 1,887 1,887 1,905 1,919 1,984 Cu 0,000 <t< th=""><th>Ma</th><th>2.870</th><th>2.519</th><th>2.547</th><th>2.459</th><th>2.581</th><th>2.515</th><th>2.563</th><th>2.534</th><th>2.475</th><th>2.525</th></t<>	Ma	2.870	2.519	2.547	2.459	2.581	2.515	2.563	2.534	2.475	2.525
Mn 0.019 0.029 0.026 0.018 0.024 0.026 0.027 0.020 0.020 0.033 Fe2+ 1.666 1.912 1.982 1.906 1.874 1.887 1.887 1.905 1.919 1.984 Cu 0.000	Ca	0.004	0.000	0.002	0.000	0.000	0.000	0.001	0.000	0.000	0.002
Fe2+ 1.666 1.912 1.982 1.906 1.874 1.887 1.887 1.905 1.919 1.984 Cu 0.000 </th <th>Mn</th> <th>0.019</th> <th>0.029</th> <th>0.026</th> <th>0.018</th> <th>0.024</th> <th>0.026</th> <th>0.027</th> <th>0.020</th> <th>0.020</th> <th>0.033</th>	Mn	0.019	0.029	0.026	0.018	0.024	0.026	0.027	0.020	0.020	0.033
Cu 0,000 0,	Fe2+	1,666	1,912	1,982	1,906	1,874	1,887	1,887	1,905	1,919	1,984
Zn 0,000 0,001 0,002 0,002 0,004 0,005 Na 0,121 0,073 0,071 0,095 0,073 0,105 0,092 0,072 0,047 0,046 K 1,691 1,773 1,800 1,774 1,715 1,738 1,748 1,790 1,776 1,737 Summe 15,541 15,567 15,620 15,527 15,521 15,522 15,542 15,508 15,539 Si 5,427 5,294 5,270 5,362 5,325 5,371 5,328 5,370 5,351 5,335 Al IV 2,573 2,706 2,730 2,638 2,675 2,629 2,672 2,630 2,649 2,665 tetr. 8,00	Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ba 0,004 0,005 0,003 0,001 0,000 0,008 0,005 0,002 0,004 0,005 Na 0,121 0,073 0,071 0,095 0,073 0,105 0,092 0,072 0,047 0,046 K 1,691 1,773 1,800 1,774 1,715 1,738 1,748 1,790 1,776 1,737 Summe 15,541 15,567 15,620 15,527 15,521 15,524 15,542 15,508 15,539 Si 5,427 5,294 5,270 5,362 5,325 5,371 5,328 5,370 5,351 5,335 A IV 2,573 2,706 2,730 2,638 2,675 2,629 2,672 2,630 2,649 2,665 tetr. 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 Al VI 0,731 0,756 0,667 0,761 0,748 0,733 0,712 <th>Zn</th> <th>0,000</th>	Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na 0,121 0,073 0,071 0,095 0,073 0,105 0,092 0,072 0,047 0,046 K 1,691 1,773 1,800 1,774 1,715 1,738 1,748 1,790 1,776 1,737 Summe 15,541 15,567 15,620 15,527 15,521 15,524 15,522 15,542 15,508 15,539 Si 5,427 5,294 5,270 5,362 5,325 5,371 5,328 5,370 5,351 5,335 AI IV 2,573 2,706 2,730 2,638 2,675 2,629 2,672 2,630 2,649 2,665 tetr. 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 0,016 0,000 0,005 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Ва	0,004	0,005	0,003	0,001	0,000	0,008	0,005	0,002	0,004	0,005
K 1,691 1,773 1,800 1,774 1,715 1,738 1,748 1,790 1,776 1,737 Summe 15,541 15,567 15,620 15,527 15,521 15,524 15,522 15,542 15,508 15,539 Si 5,427 5,294 5,270 5,362 5,325 5,371 5,328 5,370 5,351 5,335 Al IV 2,573 2,706 2,730 2,638 2,675 2,629 2,672 2,630 2,649 2,663 tetr. 8,000 9,0179 0,179 0,179 0,179 0,179 0,171 0,164 0,024 0,026	Na	0,121	0,073	0,071	0,095	0,073	0,105	0,092	0,072	0,047	0,046
Summe 15,541 15,567 15,620 15,527 15,521 15,524 15,552 15,542 15,508 15,539 Si 5,427 5,294 5,270 5,362 5,325 5,371 5,328 5,370 5,351 5,335 Al IV 2,573 2,706 2,730 2,638 2,675 2,629 2,672 2,630 2,649 2,665 tetr. 8,000 8,00	К	1,691	1,773	1,800	1,774	1,715	1,738	1,748	1,790	1,776	1,737
Si 5,427 5,294 5,270 5,362 5,325 5,371 5,328 5,370 5,351 5,335 Al IV 2,573 2,706 2,730 2,638 2,675 2,629 2,672 2,630 2,649 2,665 tetr. 8,000	Summe	15,541	15,567	15,620	15,527	15,521	15,524	15,552	15,542	15,508	15,539
Si 5,427 5,294 5,270 5,362 5,325 5,371 5,328 5,370 5,351 5,335 AI IV 2,573 2,706 2,730 2,638 2,675 2,629 2,672 2,630 2,649 2,665 tetr. 8,000											
Al IV 2,573 2,706 2,730 2,638 2,675 2,629 2,672 2,630 2,649 2,665 tetr. 8,000 8	Si	5,427	5,294	5,270	5,362	5,325	5,371	5,328	5,370	5,351	5,335
tetr. 8,000 Ti 0,136 0,121 0,171 0,177 0,169 0,027 0,020 0,020 0,033 Mn 0,019 0,029 0,026 0,018 0,022 0,020 0,020 0,020 0,020 0,000	AI IV	2,573	2,706	2,730	2,638	2,675	2,629	2,672	2,630	2,649	2,665
Al VI 0,731 0,756 0,667 0,761 0,748 0,733 0,712 0,695 0,731 0,693 Ti 0,136 0,162 0,171 0,177 0,169 0,179 0,179 0,188 0,191 0,164 Cr 0,006 0,000 0,002 0,000 0,004 0,000 0,006 0,000 0,005 0,000 Fe3+ 0,294 0,337 0,350 0,336 0,331 0,333 0,333 0,336 0,339 0,350 Fe2+ 1,666 1,912 1,982 1,906 1,874 1,887 1,887 1,905 1,919 1,984 Mn 0,019 0,029 0,026 0,018 0,024 0,026 0,027 0,020 0,020 0,033 Mg 2,870 2,519 2,547 2,459 2,581 2,515 2,563 2,534 2,475 2,525 oktaedr 0,004 0,000 0,002 0,000 0,000 0,001 0,000 0,000 0,002 Na 0,121 0,073 <th>tetr.</th> <th>8,000</th>	tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
Air 0,731 0		0 731	0 756	0.667	0 761	0 7/8	0 733	0 712	0 605	0 731	0 603
In 0,133 0,102 0,171 0,173 0,103 0,173 0,103 0,103 0,103 0,104 0,104 Cr 0,006 0,000 0,002 0,000 0,004 0,000 0,006 0,000 0,005 0,000 Fe3+ 0,294 0,337 0,350 0,336 0,331 0,333 0,333 0,336 0,339 0,350 Fe2+ 1,666 1,912 1,982 1,906 1,874 1,887 1,887 1,905 1,919 1,984 Mn 0,019 0,029 0,026 0,018 0,024 0,026 0,027 0,020 0,020 0,033 Mg 2,870 2,519 2,547 2,459 2,581 2,515 2,563 2,534 2,475 2,525 oktaedr . . 5,721 5,716 5,744 5,658 5,732 5,674 5,706 5,679 5,680 5,749 Ba 0,004 0,005 0,003 0,001 0,000 0,002 0,004 0,005 0,003 0,073		0,731	0,750	0,007	0,701	0,740	0,735	0,712	0,035	0,751	0,033
Fe3+ 0,294 0,337 0,350 0,336 0,331 0,333 0,333 0,336 0,339 0,350 Fe2+ 1,666 1,912 1,982 1,906 1,874 1,887 1,887 1,905 1,919 1,984 Mn 0,019 0,029 0,026 0,018 0,024 0,026 0,027 0,020 0,020 0,033 Mg 2,870 2,519 2,547 2,459 2,581 2,515 2,563 2,534 2,475 2,525 oktaedr . . 5,721 5,716 5,744 5,658 5,732 5,674 5,706 5,679 5,680 5,749 Ca 0,004 0,000 0,002 0,000 0,000 0,001 0,000 0,002 0,000 0,002 0,004 0,005 0,002 0,000 0,002 0,000 0,002 0,004 0,005 0,003 0,011 0,000 0,002 0,004 0,005 0,005 0,002 0,004 0,005 0,005 0,002 0,004 0,005 0,005 0,022	Cr	0,130	0,102	0,171	0,177	0,103	0,173	0,173	0,100	0,191	0,104
Fe2+ 1,666 1,912 1,982 1,906 1,874 1,887 1,887 1,905 1,919 1,984 Mn 0,019 0,029 0,026 0,018 0,024 0,026 0,027 0,020 0,020 0,033 Mg 2,870 2,519 2,547 2,459 2,581 2,515 2,563 2,534 2,475 2,525 oktaedr . 5,721 5,716 5,744 5,658 5,732 5,674 5,706 5,679 5,680 5,749 Ca 0,004 0,000 0,002 0,000 <t< th=""><th>Fo3+</th><th>0,000</th><th>0,000</th><th>0,002</th><th>0,000</th><th>0,004</th><th>0,000</th><th>0,000</th><th>0,000</th><th>0,000</th><th>0,000</th></t<>	Fo3+	0,000	0,000	0,002	0,000	0,004	0,000	0,000	0,000	0,000	0,000
Mn 0,019 0,029 0,026 0,018 0,024 0,026 0,027 0,020 0,020 0,033 Mg 2,870 2,519 2,547 2,459 2,581 2,515 2,563 2,534 2,475 2,525 oktaedr . 5,721 5,716 5,744 5,658 5,732 5,674 5,706 5,679 5,680 5,749 Ca 0,004 0,000 0,002 0,000 0,000 0,000 0,001 0,000 0,000 0,002 Ba 0,004 0,005 0,003 0,001 0,000 0,002 0,000 0,003 0,001 0,000 0,002 0,004 0,005 Na 0,121 0,073 0,071 0,095 0,073 0,105 0,092 0,072 0,047 0,046 K 1,691 1,773 1,800 1,774 1,715 1,738 1,748 1,790 1,776 1,737 interl. 1,820 1,851 1,876 1,870 1,789 1,850 1,846 1,864 1,828	Fe2+	1 666	1 912	1 982	1,906	1 874	1 887	1 887	1,905	1 919	1 984
Mg 2,870 2,519 2,547 2,459 2,581 2,515 2,563 2,534 2,475 2,525 oktaedr 5,721 5,716 5,744 5,658 5,732 5,674 5,706 5,679 5,680 5,749 Ca 0,004 0,000 0,002 0,000 0,000 0,000 0,001 0,000 0,000 0,002 Ba 0,004 0,005 0,003 0,001 0,000 0,002 0,004 0,005 0,003 0,001 0,000 0,002 0,004 0,005 0,003 0,001 0,000 0,002 0,004 0,005 0,002 0,004 0,005 0,002 0,004 0,005 0,002 0,004 0,005 0,002 0,004 0,005 0,002 0,004 0,005 0,002 0,004 0,005 0,002 0,004 0,005 0,002 0,004 0,005 0,002 0,004 0,005 0,002 0,004 0,005 0,002 0,047	Mn	0.019	0.029	0.026	0.018	0.024	0.026	0.027	0.020	0.020	0.033
oktaedr 5,721 5,716 5,744 5,658 5,732 5,674 5,706 5,679 5,680 5,749 Ca 0,004 0,000 0,002 0,000 0,000 0,001 0,000 0,000 0,002 Ba 0,0121 0,005 0,003 0,001 0,000 0,002 0,004 0,005 0,002 0,004 0,005 0,002 0,004 0,005 0,002 0,004 0,005 0,002 0,004 0,005 0,002 0,004 0,005 0,002 0,004 0,005 0,002 0,004 0,005 0,002 0,004 0,005 0,002 0,004 0,005 0,002 0,004 0,005 0,002 0,004 0,005 0,005 0,002 0,004 0,005 Na 0,121 0,073 0,071 0,095 0,073 0,105 0,092 0,072 0,047 0,046 K 1,691 1,773 1,800 1,774 1,715 1,738 1,748 1,790 1,776 1,737 interl. 1,820 1,851	Ma	2.870	2,519	2.547	2,459	2,581	2,515	2,563	2.534	2.475	2,525
5,721 5,716 5,744 5,658 5,732 5,674 5,706 5,679 5,680 5,749 Ca 0,004 0,000 0,002 0,000 0,000 0,001 0,000 0,000 0,002 Ba 0,004 0,005 0,003 0,001 0,000 0,002 0,000 0,000 0,001 0,000 0,000 0,002 Na 0,121 0,073 0,071 0,095 0,073 0,105 0,092 0,072 0,047 0,046 K 1,691 1,773 1,800 1,774 1,715 1,738 1,748 1,790 1,776 1,737 interl. 1,820 1,851 1,876 1,870 1,789 1,850 1,846 1,864 1,828 1,790 Summe 15,541 15,567 15,620 15,527 15,521 15,522 15,542 15,508 15,539 X(Fe) 0,367 0,431 0,438 0,437 0,421 0,429<	oktaedr	_,	_,	_,	_,	_,	_,	_,	_,	_,	_,
Ca 0,004 0,000 0,002 0,000 0,000 0,001 0,000 0,000 0,002 Ba 0,004 0,005 0,003 0,001 0,000 0,002 0,003 0,001 0,000 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,002 0,003 0,005 0,005 0,002 0,004 0,005 Na 0,121 0,073 0,071 0,095 0,073 0,105 0,092 0,072 0,047 0,046 K 1,691 1,773 1,800 1,774 1,715 1,738 1,748 1,790 1,776 1,737 interl. 1,820 1,851 1,876 1,870 1,789 1,850 1,846 1,864 1,828 1,790 Summe Summe 15,541 15,567 15,620 15,527 15,524 15,552 15,542 15,508 15,539		5,721	5,716	5,744	5,658	5,732	5,674	5,706	5,679	5,680	5,749
Ca 0,004 0,000 0,002 0,000 0,000 0,001 0,000 0,000 0,002 Ba 0,004 0,005 0,003 0,001 0,000 0,008 0,005 0,002 0,004 0,002 Ba 0,004 0,005 0,003 0,001 0,000 0,008 0,005 0,002 0,004 0,005 Na 0,121 0,073 0,071 0,095 0,073 0,105 0,092 0,072 0,047 0,046 K 1,691 1,773 1,800 1,774 1,715 1,738 1,748 1,790 1,776 1,737 interl. 1,820 1,851 1,876 1,870 1,789 1,850 1,846 1,864 1,828 1,790 Summe 15,541 15,567 15,620 15,527 15,524 15,552 15,542 15,508 15,539 X(Fe) 0,367 0,431 0,438 0,437 0,421 0,429 0,424 0,429 0,437 0,440	•										
Ba 0,004 0,005 0,003 0,001 0,000 0,008 0,005 0,002 0,004 0,005 Na 0,121 0,073 0,071 0,095 0,073 0,105 0,092 0,072 0,047 0,046 K 1,691 1,773 1,800 1,774 1,715 1,738 1,748 1,790 1,776 1,737 interl. 1,820 1,851 1,876 1,870 1,789 1,850 1,846 1,864 1,828 1,790 Summe 15,541 15,567 15,620 15,527 15,521 15,552 15,542 15,508 15,539 X(Fe) 0,367 0,431 0,438 0,437 0,421 0,429 0,424 0,429 0,437 0,440	Ca	0,004	0,000	0,002	0,000	0,000	0,000	0,001	0,000	0,000	0,002
Na 0,121 0,073 0,071 0,095 0,073 0,105 0,092 0,072 0,047 0,046 K 1,691 1,773 1,800 1,774 1,715 1,738 1,748 1,790 1,776 1,737 interl. 1,820 1,851 1,876 1,870 1,789 1,850 1,846 1,864 1,828 1,790 Summe 15,541 15,567 15,620 15,527 15,521 15,524 15,552 15,542 15,508 15,539	ва	0,004	0,005	0,003	0,001	0,000	0,008	0,005	0,002	0,004	0,005
N 1,091 1,773 1,800 1,774 1,715 1,738 1,748 1,790 1,776 1,737 interl. 1,820 1,851 1,876 1,870 1,789 1,850 1,846 1,864 1,828 1,790 Summe 15,541 15,567 15,620 15,527 15,521 15,524 15,552 15,542 15,508 15,539 X(Fe) 0,367 0,431 0,438 0,437 0,421 0,429 0,424 0,429 0,437 0,440	Na	0,121	0,073	0,071	0,095	0,073	0,105	0,092	0,072	0,047	0,046
X(Fe) 0,367 0,431 0,438 0,437 0,421 0,429 0,424 0,429 0,424 0,429 0,437 0,440	n interl	1,091	1,773	1,800	1,774	1,/15	1,738	1,748	1,790	1,776	1,/3/
X(Fe) 0,367 0,431 0,438 0,437 0,421 0,429 0,424 0,429 0,429 0,437 0,440	niteri.	1,82U	1,001	1,0/0	1,870	1,789	1,000	1,840	1,804	1,828 15 500	1,790
X(Fe) 0,367 0,431 0,438 0,437 0,421 0,429 0,424 0,429 0,437 0,440	Summe	15,541	10,007	15,620	15,527	15,521	15,524	10,002	15,542	10,508	15,539
	X(Fe)	0,367	0,431	0,438	0,437	0,421	0,429	0,424	0,429	0,437	0,440

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Biotit 7,1 7,1 7,1 7,1 7,1 7,1 7,1 7,1 7,1 7,1 7,1 7,1 1,1 BIO1-1 BIO1-1 BIO1-1 BIO1-1 BIO1-3 BIO1-4 BIO1-3 BIO1-4 BIO1-1 BIO1-3 BIO1-4 BIO1-4 BIO1-1 BIO1-3 BIO1-4 BIO1-3 BIO1-4 BIO1-3 BIO1-3 BIO1-4 BIO1-4 BIO1-3 BIO1-4 BIO1-4 BIO1-4 BIO1-4 BIO1-4 BIO1-3 BIO1-4 BIO1-4 BIO1-3 BIO1-4 BIO1-4 BIO1-4 BIO1-3 BIO1-4 BIO1-3 BIO1-4 BIO1-3 BIO1-3 <t< th=""><th>Probe</th><th>IMM089</th><th>IMM089</th><th>IMM089</th><th>IMM089</th><th>IMM089</th><th>IMM089</th><th>IMM089</th><th>IMM089</th><th>IMM089</th><th>IMM089</th></t<>	Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
BIO2-3 BIO2-4 BIO2-5 BIO2-6 BIO2-7 BIO2-8 BIO1-1 BIO1-1 BIO1-3 BIO1-4 SiO2 35,46 35,24 35,43 35,89 35,75 35,41 AI203 19,00 18,80 19,16 18,83 18,87 18,57 18,57 19,23 18,72 18,97 Cr203 0,00 0,02 0,00	Biotit	7.1	7.1	7.1	7.1	7.1	7.1	7.3	7.4	7.4	7.4
SiO2 35,46 35,24 35,43 35,89 35,67 35,19 33,83 35,69 35,72 35,44 TO2 1,56 1,64 1,53 1,64 1,55 1,55 1,877 1,835 18,72 18,97 Cr2O3 0,00 0,02 0,00 0,00 0,00 0,00 0,00 0,03 0,03 Fe2O3 3,02 3,07 3,08 3,03 3,06 2,99 2,81 3,03 3,08 MgO 1,13 1,19 1,140 1,14,41 1,125 1,13,41 1,120 1,130 GLO 0,00		BIO2-3	BIO2-4	BIO2-5	BIO2-6	BIO2-7	BIO2-8	BIO1-1	BIO1-1	BIO1-3	BIO1-4
SiO2 35.46 35.24 35.83 35.87 35.19 33.83 35.85 35.72 35.74 AI203 19.00 18.80 18.16 1.833 18.57 18.57 19.35 18.72 18.81 Cr203 0.00 0.02 0.00 <th></th>											
Ticz 1.66 1.64 1.63 1.64 1.65 1.55 1.87 1.84 1.72 Cr203 0.00 0.02 0.00 0.06 0.05 0.00 0.00 0.03 0.02 Fe203 3.02 3.07 3.08 3.03 3.03 3.06 2.99 2.81 3.01 3.08 GaO 0.02 0.00 0.01 0.00 <th>SiO2</th> <th>35,46</th> <th>35,24</th> <th>35,43</th> <th>35,89</th> <th>35,67</th> <th>35,19</th> <th>33,83</th> <th>35,95</th> <th>35,72</th> <th>35,41</th>	SiO2	35,46	35,24	35,43	35,89	35,67	35,19	33,83	35,95	35,72	35,41
AI203 19,00 18,80 19,16 19,83 19,83 18,87 18,87 19,35 18,27 18,27 18,27 18,27 18,27 18,27 18,27 18,27 18,27 18,27 18,27 18,27 18,27 18,25 11,25 11,34 11,20 11,34 11,20 11,34 11,20 11,34 11,25 11,34 11,25 11,34 11,25 11,34 11,25 11,34 11,25 11,34 11,25 11,34 11,25 11,35 15,56 15,72 15,56 15,72 15,56 15,72 15,56 15,72 15,56 15,72 11,34 11,35 15,57 15,56 15,72 13,34 15,35 15,77 15,60 15,72 13,34 15,35 15,77 15,30 15,31 15,30 15,31 15,32 14,34 15,35 15,37 15,66 10,22 0,26 0,29 0,23 0,22 0,26 0,29 0,36 3,35 3,35 4,31 3,36	TiO2	1,56	1,64	1,53	1,64	1,61	1,55	1,55	1,87	1,84	1,75
Cr203 0.00 0.02 0.00 0.06 0.00 <t< th=""><th>AI2O3</th><th>19,00</th><th>18,80</th><th>19,16</th><th>18,93</th><th>18,93</th><th>18,57</th><th>18,57</th><th>19,35</th><th>18,72</th><th>18,91</th></t<>	AI2O3	19,00	18,80	19,16	18,93	18,93	18,57	18,57	19,35	18,72	18,91
Fe203 3.02 3.07 3.08 3.03 3.03 3.06 2.89 2.81 3.01 3.08 Mg0 1.13 1.140 11.40 11.43 11.25 11.34 11.26 Cao 0.02 0.00 0.01 0.00 0.00 0.00 0.02 0.00 0.00 MnO 0.18 0.23 0.18 0.18 0.17 0.17 0.15 0.13 0.13 CuO 0.00 <th>Cr2O3</th> <th>0,00</th> <th>0,02</th> <th>0,00</th> <th>0,06</th> <th>0,05</th> <th>0,00</th> <th>0,00</th> <th>0,00</th> <th>0,03</th> <th>0,02</th>	Cr2O3	0,00	0,02	0,00	0,06	0,05	0,00	0,00	0,00	0,03	0,02
Mg0 11,31 11,26 11,26 11,25 11,26 11,37 11,35 1	Fe2O3	3,02	3,07	3,08	3,03	3,03	3,06	2,99	2,81	3,01	3,08
Ca0 0,02 0,01 0,01 0,00	MgO	11,31	11,09	11,26	11,40	11,43	11,25	11,25	11,34	11,20	11,09
Mno 0,18 0,18 0,18 0,17 0,17 0,17 0,15 0,16 0,00	CaO	0,02	0,00	0,01	0,00	0,00	0,00	0,00	0,02	0,00	0,00
FeO 15,37 15,66 15,72 15,43 15,43 15,23 14,34 15,35 15,36 15,37 Cu0 0,00	MnO	0,18	0,23	0,18	0,18	0,18	0,17	0,17	0,15	0,15	0,13
Cu0 0.00	FeO	15,37	15,65	15,72	15,43	15,47	15,59	15,23	14,34	15,35	15,70
ZnO 0.00	CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BaO 0.07 0.00 0.07 0.07 0.02 0.06 0.08 Na2O 0.25 0.29 0.24 0.29 0.26 0.19 0.19 0.32 0.26 0.25 K2O 9.25 9.17 9.16 9.01 8.74 9.12 9.12 8.92 8.92 8.92 9.93 9.947 99.18 99.947 99.18 99.947 99.13 99.42 98.69 98.69 99.10 99.23 99.44 Strukturformel bezogen ut 22 Sauerstofe 5 332 5.341 5.341 5.341 5.341 5.341 5.345 5.369 5.326 Al 3.366 3.347 3.341 3.343 3.342 3.324 3.341 0.349 0.344 0.349 0.344 0.349 0.344 0.349 0.344 0.349 0.344 0.349 0.344 0.349 0.344 0.349 0.344 0.349 0.346 0.340 0.349 0.349 0.340 0.349 <t< th=""><th>ZnO</th><th>0,00</th><th>0,00</th><th>0,00</th><th>0,00</th><th>0,00</th><th>0,00</th><th>0,00</th><th>0,00</th><th>0,00</th><th>0,00</th></t<>	ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na20 0.25 0.29 0.24 0.29 0.26 0.19 0.19 0.32 0.26 0.25 K20 9.25 9.17 9.16 9.01 8.74 9.12 8.92 8.92 8.93 Summe 99.47 99.18 99.84 99.97 94.42 98.69 98.69 99.10 99.23 99.43 Strukturformet bezogen auf 22 Sauerstoffe 5 5 5.31 5.341 5.347 5.369 5.328 T1 0.76 0.166 0.712 0.184 0.342 0.341 0.228 0.269 0.349 0.348 0.340 0.342 0.349 0.341 0.340 <	BaO	0,07	0,00	0,07	0,11	0,06	0,07	0,07	0,02	0,06	0,09
K20 9.25 9.17 9.16 9.01 8.74 9.12 9.12 9.12 9.12 9.12 9.12 9.12 9.12 9.13 9.9.3 9.9.3 9.9.3 9.9.3 9.9.3 9.9.4 9.13 9.9.4 9.9.4 9.9.5 9.9.5 9.9.5 9.9.3 9.9.4 9.9.3 9.9.4 9.9.4 9.9.5 9.9.5 9.9.4 9.9.4 9.9.5 9.9.5 9.9.5 9.9.3 9.9.4 9.9.3 9.9.4 9.9.4 9.9.4 9.9.4 9.9.4 9.9.4 9.9.4 9.9.4 9.9.4 9.9.4 9.9.4 9.9.4 9.9.4 9.9.4 9.9.4 9.9.4 9.9.3 9.9.4 <	Na2O	0,25	0,29	0,24	0,29	0,26	0,19	0,19	0,32	0,26	0,25
H2O 3.99 3.97 4.00 4.02 4.00 3.95 3.95 4.01 3.99 3.99 Summe 99,47 99,18 99,84 99,97 99,42 98,69 98,69 99,10 99,23 99,44 Strukturformel bezogen auf 22 Sauerstoffe 5 5,350 5,351 5,341 5,375 5,369 5,328 Ti 0,176 0,186 0,172 0,184 0,182 0,176 0,211 0,208 0,199 Al 3,366 3,347 3,331 3,344 3,322 3,223 3,228 2,699 2,488 Cr 0,000 <th>K2O</th> <th>9,25</th> <th>9,17</th> <th>9,16</th> <th>9,01</th> <th>8,74</th> <th>9,12</th> <th>9,12</th> <th>8,92</th> <th>8,92</th> <th>9,03</th>	K2O	9,25	9,17	9,16	9,01	8,74	9,12	9,12	8,92	8,92	9,03
Summe 99,47 99,18 99,84 99,97 99,42 98,69 98,69 99,10 99,23 99,44 Strukturformel bezogen auf 22 Sauerstoffe Si 5,332 5,324 5,312 5,360 5,360 5,341 5,317 5,369 5,328 All 3,366 3,347 3,387 3,341 3,342 3,322 3,499 3,417 3,344 Cr 0,000 0,002 0,000 0,007 0,005 0,000 0,000 0,004 0,004 0,044 0,0349 0,344 0,344 0,340 0,340 0,344 0,340 0,349 0,344 0,340 0,344 0,340 0,344 0,349 0,344 0,340 0,344 0,340 0,342 1,349 1,348 1,372 1,928 1,976 1,978 1,978 1,772 1,298 1,976 1,702 1,299 1,976 Cu 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	H2O	3,99	3,97	4,00	4,02	4,00	3,95	3,95	4,01	3,99	3,99
Strukturformel bezogen auf 22 Sauerstoffe Si 5,332 5,324 5,312 5,360 5,351 5,341 5,375 5,369 5,328 Ti 0,176 0,186 0,172 0,184 0,182 0,176 0,176 0,211 0,208 0,199 Al 3,366 3,347 3,387 3,331 3,346 3,322 3,322 3,409 3,317 3,354 Cr 0,000 0,	Summe	99,47	99,18	99,84	99,97	99,42	98,69	98,69	99,10	99,23	99,44
Strukturformel bezverstoffe Si 5,332 5,332 5,332 5,341 </th <th></th>											
Si 5,322 5,324 5,312 5,360 5,360 5,341 5,341 5,375 5,369 5,328 Ti 0,176 0,186 0,172 0,184 0,182 0,176 0,176 0,211 0,208 0,199 Al 3,366 3,347 3,337 3,340 0,342 0,349 0,341 0,340 0,342 0,349 0,316 0,340 0,342 Cr 0,003 0,001 0,001 0,000	Strukturfo	rmel bezog	jen auf 22 S	auerstoffe							
Ti 0.176 0.186 0.172 0.184 0.182 0.176 0.176 0.211 0.208 0.199 AI 3.366 3.347 3.381 3.346 3.322 3.322 3.322 3.317 3.354 Cr 0.000 0.002 0.000 0.007 0.005 0.000 0.000 0.004 0.004 0.004 Mg 2.535 2.498 2.517 2.538 2.556 2.544 2.544 2.528 2.509 2.488 Ca 0.003 0.001 0.000 </th <th>Si</th> <th>5,332</th> <th>5,324</th> <th>5,312</th> <th>5,360</th> <th>5,350</th> <th>5,341</th> <th>5,341</th> <th>5,375</th> <th>5,369</th> <th>5,328</th>	Si	5,332	5,324	5,312	5,360	5,350	5,341	5,341	5,375	5,369	5,328
Al 3,366 3,347 3,387 3,331 3,346 3,322 3,222 3,409 3,317 3,354 Cr 0,000 0,002 0,000 0,007 0,005 0,000 0,000 0,000 0,004 0,002 Fe3+ 0,341 0,348 0,342 0,349 0,344 0,344 0,349 0,316 0,340 0,344 Mg 2,535 2,488 2,517 2,538 2,556 2,544 2,528 2,509 2,488 Ca 0,003 0,001 0,000 <td< th=""><th>Ti</th><th>0,176</th><th>0,186</th><th>0,172</th><th>0,184</th><th>0,182</th><th>0,176</th><th>0,176</th><th>0,211</th><th>0,208</th><th>0,199</th></td<>	Ti	0,176	0,186	0,172	0,184	0,182	0,176	0,176	0,211	0,208	0,199
Cr 0.000 0.002 0.000 0.007 0.005 0.000 0.000 0.004 0.004 Fe3+ 0.341 0.349 0.348 0.340 0.342 0.349 0.349 0.346 0.340 0.342 Mg 2.535 2.548 2.556 2.544 2.544 2.528 2.509 2.488 Ca 0.003 0.001 0.000 </th <th>AI</th> <th>3,366</th> <th>3,347</th> <th>3,387</th> <th>3,331</th> <th>3,346</th> <th>3,322</th> <th>3,322</th> <th>3,409</th> <th>3,317</th> <th>3,354</th>	AI	3,366	3,347	3,387	3,331	3,346	3,322	3,322	3,409	3,317	3,354
Fe3+ 0,341 0,348 0,348 0,349 0,349 0,349 0,349 0,349 0,349 0,349 0,349 0,349 0,349 0,349 0,349 0,349 0,349 0,349 0,349 0,349 0,349 0,340 0,349 0,349 0,340 0,349 0,348 0,340 0,349 0,344 0,349 0,340 0,349 0,341 0,300 0,000	Cr	0,000	0,002	0,000	0,007	0,005	0,000	0,000	0,000	0,004	0,002
Mg 2,555 2,498 2,517 2,538 2,556 2,544 2,524 2,528 2,509 2,488 Ca 0,003 0,001 0,001 0,000 <th>Fe3+</th> <th>0,341</th> <th>0,349</th> <th>0,348</th> <th>0,340</th> <th>0,342</th> <th>0,349</th> <th>0,349</th> <th>0,316</th> <th>0,340</th> <th>0,349</th>	Fe3+	0,341	0,349	0,348	0,340	0,342	0,349	0,349	0,316	0,340	0,349
Ca 0.003 0.001 0.001 0.000 0.	Mg	2,535	2,498	2,517	2,538	2,556	2,544	2,544	2,528	2,509	2,488
Mn 0.023 0.030 0.023 0.022 0.022 0.019 0.019 0.019 Fe2+ 1.933 1.978 1.971 1.927 1.940 1.978 1.978 1.792 1.929 1.976 Cu 0.000 0.001 0.003 0.000 0.001 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	Ca	0,003	0,001	0,001	0,000	0,000	0,000	0,000	0,004	0,000	0,000
Fe2+ 1,933 1,978 1,971 1,927 1,940 1,978 1,778 1,792 1,929 1,976 Cu 0,000 0,007 0,085 0,093 0,074 0,074 K 1,775 1,768 1,550 15,517 15,494 15,557 15,549 15,544 15,524 5,346 2,640 2,650 2,659 2,625 2,631 2,672 2,631 2,672 2,631 2,672 2,631 2,672 2,631 2,672 2,631 2,672	Mn	0,023	0,030	0,023	0,023	0,022	0,022	0,022	0,019	0,019	0,016
Cu 0.000 0.001 0.003 0.001 0.003 0.001 0.	Fe2+	1,933	1,978	1,971	1,927	1,940	1,978	1,978	1,792	1,929	1,976
Zn 0,000 0,001 0,003 0,003 0,003 0,003 0,003 0,004 0,004 0,004 0,004 0,001 0,003 0,003 0,004 Na 0,073 0,086 0,071 0,084 0,075 0,055 0,055 0,093 0,074 0,074 K 1,775 1,768 1,755 1,765 1,702 1,710 1,733 Summe 15,562 15,568 15,517 15,494 15,557 15,494 15,484 15,524 AI IV 2,668 2,676 2,688 2,640 2,650 2,659 2,625 2,631 2,672 tetr. 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 <t< th=""><th>Cu</th><th>0,000</th><th>0,000</th><th>0,000</th><th>0,000</th><th>0,000</th><th>0,000</th><th>0,000</th><th>0,000</th><th>0,000</th><th>0,000</th></t<>	Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ba 0,004 0,000 0,004 0,004 0,004 0,004 0,001 0,003 0,003 Na 0,073 0,086 0,071 0,084 0,075 0,055 0,093 0,074 0,074 K 1,775 1,768 1,753 1,716 1,753 1,716 1,755 1,765 1,765 1,765 1,765 1,765 1,765 1,765 1,765 1,765 1,765 1,740 1,733 Summe 15,562 15,563 15,517 15,494 15,557 15,449 15,524 Al IV 2,668 2,676 2,688 2,640 2,650 2,659 2,625 2,631 2,672 tetr. 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 Al VI 0,698 0,671 0,699 0,691 0,696 0,663 0,663 0,784 0,686 0,633 Cr 0,000 0,000 0,000	Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na 0,073 0,086 0,071 0,084 0,075 0,055 0,093 0,074 0,074 K 1,775 1,768 1,753 1,716 1,672 1,765 1,765 1,702 1,710 1,733 Summe 15,562 15,568 15,560 15,517 15,494 15,557 15,549 15,449 15,544 15,524 Si 5,332 5,324 5,312 5,360 5,350 5,341 5,341 5,375 5,369 5,328 A IV 2,668 2,676 2,688 2,640 2,650 2,659 2,625 2,631 2,672 tetr. 8,000 <	Ва	0,004	0,000	0,004	0,006	0,004	0,004	0,004	0,001	0,003	0,005
K 1,775 1,768 1,753 1,716 1,672 1,765 1,765 1,702 1,710 1,733 Summe 15,562 15,568 15,560 15,517 15,494 15,557 15,557 15,449 15,544 15,524 Si 5,332 5,324 5,312 5,360 5,350 5,341 5,341 5,375 5,369 5,328 Al IV 2,668 2,676 2,688 2,640 2,650 2,659 2,625 2,631 2,672 tetr. 8,000 8,00	Na	0,073	0,086	0,071	0,084	0,075	0,055	0,055	0,093	0,074	0,074
Summe 15,562 15,568 15,560 15,517 15,494 15,557 15,449 15,444 15,524 Si 5,332 5,324 5,312 5,360 5,350 5,341 5,341 5,375 5,369 5,328 Al IV 2,668 2,676 2,688 2,640 2,659 2,659 2,625 2,631 2,672 tetr. 8,000	K	1,775	1,768	1,753	1,716	1,672	1,765	1,765	1,702	1,710	1,733
Si 5,332 5,324 5,312 5,360 5,350 5,341 5,341 5,375 5,369 5,328 Al IV 2,668 2,676 2,688 2,640 2,650 2,659 2,625 2,631 2,672 tetr. 8,000	Summe	15,562	15,568	15,560	15,517	15,494	15,557	15,557	15,449	15,484	15,524
AI IV 2,668 2,676 2,688 2,640 2,650 2,659 2,625 2,631 2,672 tetr. 8,000 8	Si	5 332	5 324	5 312	5 360	5 350	5 341	5 341	5 375	5 369	5 328
Art V 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 8,000 <th< th=""><th></th><th>2,668</th><th>2 676</th><th>2 688</th><th>2 640</th><th>2 650</th><th>2 650</th><th>2 650</th><th>2 625</th><th>2 631</th><th>2,520</th></th<>		2,668	2 676	2 688	2 640	2 650	2 650	2 650	2 625	2 631	2,520
AI VI 0,698 0,671 0,699 0,691 0,696 0,663 0,663 0,784 0,686 0,683 Ti 0,176 0,186 0,172 0,184 0,182 0,176 0,176 0,211 0,208 0,199 Cr 0,000 0,002 0,000 0,007 0,005 0,000 0,000 0,004 0,002 Fe3+ 0,341 0,349 0,348 0,340 0,342 0,349 0,349 0,316 0,340 0,349 Fe2+ 1,933 1,978 1,971 1,927 1,940 1,978 1,972 1,929 1,976 Mn 0,023 0,030 0,023 0,022 0,022 0,022 0,019 0,019 0,016 Mg 2,535 2,498 2,517 2,538 2,556 2,544 2,528 2,509 2,488 oktaedr . 5,707 5,713 5,731 5,711 5,744 5,733 5,650 5,696 5,712 Ca 0,003 0,001 0,000 0,000 0,004	tetr	2,000	2,070	2,000	2,040	2,000	2,000	2,000	2,025	8 000	8,000
Al VI 0,698 0,671 0,699 0,691 0,696 0,663 0,663 0,784 0,686 0,683 Ti 0,176 0,186 0,172 0,184 0,182 0,176 0,176 0,211 0,208 0,199 Cr 0,000 0,002 0,000 0,007 0,005 0,000 0,000 0,000 0,004 0,002 Fe3+ 0,341 0,349 0,348 0,340 0,342 0,349 0,349 0,316 0,340 0,349 Fe2+ 1,933 1,978 1,971 1,927 1,940 1,978 1,978 1,792 1,929 1,976 Mn 0,023 0,023 0,023 0,022 0,022 0,022 0,019 0,019 0,016 Mg 2,535 2,498 2,517 2,538 2,556 2,544 2,528 2,509 2,488 oktaedr . 5,707 5,713 5,731 5,711 5,744 5,733 5,650 5,696 5,712 Ca 0,003 0,001 0,000	totil	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ti 0,176 0,186 0,172 0,184 0,182 0,176 0,176 0,211 0,208 0,199 Cr 0,000 0,002 0,000 0,007 0,005 0,000 0,000 0,000 0,004 0,002 Fe3+ 0,341 0,349 0,348 0,340 0,342 0,349 0,349 0,316 0,340 0,349 Fe2+ 1,933 1,978 1,971 1,927 1,940 1,978 1,978 1,792 1,929 1,976 Mn 0,023 0,030 0,023 0,023 0,022 0,022 0,022 0,019 0,019 0,016 Mg 2,535 2,498 2,517 2,538 2,556 2,544 2,528 2,509 2,488 oktaedr .	AI VI	0,698	0,671	0,699	0,691	0,696	0,663	0,663	0,784	0,686	0,683
Cr 0,000 0,002 0,000 0,007 0,005 0,000 0,000 0,004 0,002 Fe3+ 0,341 0,349 0,348 0,340 0,342 0,349 0,349 0,316 0,340 0,349 Fe2+ 1,933 1,978 1,971 1,927 1,940 1,978 1,978 1,792 1,929 1,976 Mn 0,023 0,030 0,023 0,023 0,022 0,022 0,022 0,019 0,019 0,016 Mg 2,535 2,498 2,517 2,538 2,556 2,544 2,528 2,509 2,488 oktaedr . 5,707 5,713 5,731 5,711 5,744 5,733 5,650 5,696 5,712 Ca 0,003 0,001 0,000 0,000 0,000 0,000 0,004 0,004 0,000 0,000 Ba 0,073 0,086 0,071 0,084 0,075 0,055 0,055	Ті	0,176	0,186	0,172	0,184	0,182	0,176	0,176	0,211	0,208	0,199
Fe3+ 0,341 0,349 0,348 0,340 0,342 0,349 0,349 0,316 0,340 0,349 Fe2+ 1,933 1,978 1,971 1,927 1,940 1,978 1,978 1,792 1,929 1,976 Mn 0,023 0,030 0,023 0,023 0,022 0,022 0,022 0,019 0,019 0,016 Mg 2,535 2,498 2,517 2,538 2,556 2,544 2,528 2,509 2,488 oktaedr . 5,707 5,713 5,731 5,711 5,744 5,733 5,733 5,650 5,696 5,712 Ca 0,003 0,001 0,000 0,000 0,000 0,004 0,000 0,000 Ba 0,004 0,000 0,004 0,004 0,004 0,001 0,003 0,007 Na 0,073 0,086 0,071 0,084 0,075 0,055 0,055 0,093 0,074 0,074 K 1,775 1,768 1,753 1,716 1,672	Cr	0,000	0,002	0,000	0,007	0,005	0,000	0,000	0,000	0,004	0,002
Fe2+ 1,933 1,978 1,971 1,927 1,940 1,978 1,978 1,792 1,929 1,976 Mn 0,023 0,030 0,023 0,023 0,022 0,022 0,022 0,019 0,019 0,016 Mg 2,535 2,498 2,517 2,538 2,556 2,544 2,544 2,528 2,509 2,488 . 5,707 5,713 5,731 5,711 5,744 5,733 5,733 5,650 5,696 5,712 Ca 0,003 0,001 0,001 0,000 0,000 0,000 0,004 0,000 0,000 Ba 0,073 0,086 0,071 0,084 0,075 0,055 0,093 0,074 0,074 Na 0,073 0,086 0,071 0,084 0,075 1,765 1,702 1,710 1,733 interl. 1,855 1,854 1,828 1,806 1,750 1,825 1,825 1,799 1,788 1,812 Summe 15,562 15,568 15,560 15,517 <th>Fe3+</th> <th>0,341</th> <th>0,349</th> <th>0,348</th> <th>0,340</th> <th>0,342</th> <th>0,349</th> <th>0,349</th> <th>0,316</th> <th>0,340</th> <th>0,349</th>	Fe3+	0,341	0,349	0,348	0,340	0,342	0,349	0,349	0,316	0,340	0,349
Mn 0,023 0,030 0,023 0,023 0,022 0,022 0,019 0,019 0,016 Mg 2,535 2,498 2,517 2,538 2,556 2,544 2,544 2,528 2,509 2,488 oktaedr 5,707 5,713 5,731 5,711 5,744 5,733 5,733 5,650 5,696 5,712 Ca 0,003 0,001 0,001 0,000 0,000 0,000 0,004 0,000 0,000 Ba 0,004 0,000 0,004 0,006 0,004 0,004 0,001 0,003 0,074 0,007 Na 0,073 0,086 0,071 0,084 0,075 0,055 0,093 0,074 0,074 K 1,775 1,768 1,753 1,716 1,672 1,765 1,702 1,710 1,733 interl. 1,855 1,854 1,828 1,806 1,750 1,825 1,825 1,799 1,788	Fe2+	1,933	1,978	1,971	1,927	1,940	1,978	1,978	1,792	1,929	1,976
Mg oktaedr 2,535 2,498 2,517 2,538 2,556 2,544 2,544 2,528 2,509 2,488 . 5,707 5,713 5,731 5,711 5,744 5,733 5,733 5,650 5,696 5,712 Ca 0,003 0,001 0,001 0,000 0,000 0,000 0,004 0,000 0,004 0,001 0,003 <th>Mn</th> <th>0,023</th> <th>0,030</th> <th>0,023</th> <th>0,023</th> <th>0,022</th> <th>0,022</th> <th>0,022</th> <th>0,019</th> <th>0,019</th> <th>0,016</th>	Mn	0,023	0,030	0,023	0,023	0,022	0,022	0,022	0,019	0,019	0,016
oktaedr 5,707 5,713 5,731 5,711 5,744 5,733 5,733 5,650 5,696 5,712 Ca 0,003 0,001 0,001 0,000 0,000 0,000 0,004 0,000 0,000 Ba 0,004 0,000 0,004 0,004 0,004 0,003 0,003 0,003 0,000 0,000 0,004 0,000 0,000 0,004 0,000 0,000 0,004 0,003 0,005 0,003 0,003 0,005 Na 0,073 0,086 0,071 0,084 0,075 0,055 0,093 0,074 0,074 K 1,775 1,768 1,753 1,716 1,672 1,765 1,702 1,710 1,733 interl. 1,855 1,854 1,828 1,806 1,750 1,825 1,825 1,799 1,788 1,812 Summe 15,562 15,568 15,560 15,517 15,494 15,557 15,449 15	Mg	2,535	2,498	2,517	2,538	2,556	2,544	2,544	2,528	2,509	2,488
5,707 5,713 5,731 5,711 5,744 5,733 5,733 5,650 5,696 5,712 Ca 0,003 0,001 0,001 0,000 0,000 0,000 0,000 0,004 0,000 0,000 Ba 0,004 0,000 0,004 0,004 0,004 0,001 0,003 0,005 Na 0,073 0,086 0,071 0,084 0,075 0,055 0,055 0,093 0,074 0,074 K 1,775 1,768 1,753 1,716 1,672 1,765 1,765 1,702 1,710 1,733 interl. 1,855 1,854 1,828 1,806 1,750 1,825 1,825 1,799 1,788 1,812 Summe 15,562 15,568 15,560 15,517 15,494 15,557 15,449 15,444 15,524 X(Fe) 0,433 0,442 0,439 0,432 0,431 0,437 0,415 0,435 0,443<	oktaedr										
Ca 0,003 0,001 0,001 0,000 0,000 0,000 0,000 0,004 0,000 0,000 Ba 0,004 0,000 0,004 0,004 0,006 0,004 0,004 0,001 0,003 0,005 Na 0,073 0,086 0,071 0,084 0,075 0,055 0,055 0,093 0,074 0,074 K 1,775 1,768 1,753 1,716 1,672 1,765 1,765 1,702 1,710 1,733 interl. 1,855 1,854 1,828 1,806 1,750 1,825 1,825 1,799 1,788 1,812 Summe 15,562 15,568 15,560 15,517 15,494 15,557 15,449 15,484 15,524 X(Fe) 0,433 0,442 0,439 0,432 0,431 0,437 0,437 0,415 0,435 0,443	•	5,707	5,713	5,731	5,711	5,744	5,733	5,733	5,650	5,696	5,712
Ba 0,004 0,004 0,006 0,004 0,004 0,000 0,000 Na 0,073 0,086 0,071 0,084 0,075 0,055 0,055 0,093 0,074 0,074 K 1,775 1,768 1,753 1,716 1,672 1,765 1,702 1,710 1,733 interl. 1,855 1,854 1,828 1,806 1,750 1,825 1,825 1,799 1,788 1,812 Summe 15,562 15,568 15,560 15,517 15,494 15,557 15,557 15,449 15,484 15,524 X(Fe) 0,433 0,442 0,439 0,432 0,431 0,437 0,415 0,435 0,443	Ca	0 003	0 001	0 001	0 000	0 000	0 000	0 000	0 004	0 000	0 000
Na 0,073 0,086 0,071 0,084 0,075 0,055 0,055 0,093 0,074 0,074 K 1,775 1,768 1,753 1,716 1,672 1,765 1,765 1,702 1,710 1,733 interl. 1,855 1,854 1,828 1,806 1,750 1,825 1,825 1,799 1,788 1,812 Summe 15,562 15,568 15,560 15,517 15,494 15,557 15,557 15,449 15,484 15,524 X(Fe) 0,433 0,442 0,439 0,432 0,431 0,437 0,415 0,435 0,443	Ba	0.004	0.000	0.004	0.006	0.004	0.004	0.004	0.001	0.003	0.005
K 1,775 1,768 1,753 1,716 1,672 1,765 1,765 1,702 1,710 1,733 interl. 1,855 1,854 1,828 1,806 1,750 1,825 1,825 1,799 1,788 1,812 Summe 15,562 15,568 15,560 15,517 15,494 15,557 15,557 15,449 15,484 15,524 X(Fe) 0,433 0,442 0,439 0,432 0,431 0,437 0,437 0,415 0,435 0,443	Na	0.073	0.086	0.071	0.084	0.075	0.055	0.055	0.093	0.074	0.074
interl. 1,855 1,854 1,828 1,806 1,750 1,825 1,825 1,799 1,788 1,812 Summe 15,562 15,568 15,560 15,517 15,494 15,557 15,449 15,444 15,524 X(Fe) 0,433 0,442 0,439 0,432 0,431 0,437 0,437 0,415 0,435 0,443	K	1,775	1,768	1,753	1,716	1,672	1,765	1,765	1,702	1,710	1,733
Summe 15,562 15,568 15,560 15,517 15,494 15,557 15,449 15,444 15,524 X(Fe) 0,433 0,442 0,439 0,432 0,431 0,437 0,437 0,415 0,435 0,443	interl	1,855	1,854	1,828	1.806	1,750	1.825	1.825	1,799	1,788	1,812
X(Fe) 0,433 0,442 0,439 0,432 0,431 0,437 0,437 0,415 0,435 0,443	Summe	15.562	15.568	15.560	15.517	15.494	15.557	15.557	15.449	15.484	15.524
X(Fe) 0,433 0,442 0,439 0,432 0,431 0,437 0,437 0,415 0,435 0,443	-	-,-•	2,200	2,200	2,2	-,	2,20.	2,20.	2,710	-, /0 .	
	X(Fe)	0,433	0,442	0,439	0,432	0,431	0,437	0,437	0,415	0,435	0,443

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Probe	IMM089									
Biotit	7.6	7.6	7.6	7.6	7.8	7.8	7.8	7.8	7.8	7.8
	BIO1-1	BIO1-2	BIO1-3	BIO1-4	BIO1-1	BIO1-2	BIO1-3	BIO1-4	BIO1-5	BIO2-1
SiO2	35,97	36,17	35,79	35,89	35,81	36,06	36,29	35,95	35,79	35,55
TiO2	1,53	1,59	1,63	1,58	1,51	1,57	1,57	1,65	1,61	1,69
AI2O3	18,36	18,40	18,69	18,91	18,46	18,57	18,39	19,11	19,04	18,70
Cr2O3	0,08	0,05	0,00	0,06	0,08	0,02	0,04	0,02	0,02	0,01
Fe2O3	2,82	2,94	2,91	2,92	3,12	3,03	3,03	2,94	3,00	3,07
MgO	11,41	11,54	11,63	11,62	11,44	11,39	11,32	11,11	11,34	11,08
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02
MnO	0,14	0,13	0,11	0,14	0,16	0,20	0,16	0,14	0,13	0,15
FeO	14,38	14,97	14,82	14,90	15,91	15,47	15,44	14,97	15,31	15,66
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BaO	0,02	0,17	0,02	0,01	0,10	0,02	0,17	0,05	0,00	0,00
Na2O	0,26	0,23	0,30	0,23	0,20	0,23	0,19	0,24	0,19	0,18
K2O	9,13	9,15	9,13	9,26	9,24	9,23	9,28	9,33	9,30	9,27
H2O	3,96	4,00	3,99	4,01	4,00	4,01	4,01	4,00	4,01	3,98
Summe	98,06	99,35	99,01	99,52	100,02	99,79	99,88	99,48	99,74	99,35
Strukturformel bezogen auf 22 Sauerstoffe										
Si	5,449	5,427	5,382	5,371	5,368	5,398	5,431	5,384	5,356	5,356
Ti	0,175	0,180	0,184	0,178	0,170	0,177	0,176	0,186	0,182	0,192
AI	3,279	3,254	3,312	3,335	3,261	3,277	3,243	3,373	3,358	3,320
Cr	0,010	0,006	0,000	0,008	0,009	0,002	0,005	0,003	0,002	0,002
Fe3+	0,321	0,332	0,329	0,329	0,352	0,342	0,341	0,331	0,338	0,348
Mg	2,576	2,582	2,606	2,592	2,558	2,543	2,526	2,480	2,529	2,488
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,003
Mn	0,018	0,017	0,014	0,017	0,021	0,025	0,020	0,017	0,017	0,019
Fe2+	1,822	1,879	1,864	1,865	1,995	1,936	1,933	1,875	1,915	1,973
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ва	0,001	0,010	0,001	0,001	0,006	0,001	0,010	0,003	0,000	0,000
Na	0,075	0,068	0,087	0,068	0,057	0,066	0,055	0,071	0,055	0,051
K	1,765	1,752	1,752	1,769	1,767	1,763	1,771	1,782	1,776	1,782
Summe	15,491	15,507	15,532	15,533	15,562	15,529	15,512	15,503	15,529	15,534
Si	5,449	5,427	5,382	5,371	5,368	5,398	5,431	5,384	5,356	5,356
AI IV	2,551	2,573	2,618	2,629	2,632	2,602	2,569	2,616	2,644	2,644
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	0,728	0,681	0,694	0,707	0,629	0,675	0,674	0,757	0,714	0,676
Ti	0,175	0,180	0,184	0,178	0,170	0,177	0,176	0,186	0,182	0,192
Cr	0,010	0,006	0,000	0,008	0,009	0,002	0,005	0,003	0,002	0,002
Fe3+	0,321	0,332	0,329	0,329	0,352	0,342	0,341	0,331	0,338	0,348
Fe2+	1,822	1,879	1,864	1,865	1,995	1,936	1,933	1,875	1,915	1,973
Mn	0,018	0,017	0,014	0,017	0,021	0,025	0,020	0,017	0,017	0,019
Mg	2,576	2,582	2,606	2,592	2,558	2,543	2,526	2,480	2,529	2,488
oktaedr	5 650	E 677	F 602	E 606	E 700	F 700	E 675	E 610	F 607	E 609
•	5,050	5,077	5,092	5,090	5,755	5,700	5,075	5,040	5,097	5,090
Ca	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,003
Ва	0,001	0,010	0,001	0,001	0,006	0,001	0,010	0,003	0,000	0,000
Na	0,075	0,068	0,087	0,068	0,057	0,066	0,055	0,071	0,055	0,051
K	1,765	1,752	1,752	1,769	1,767	1,763	1,771	1,782	1,776	1,782
interl.	1,841	1,830	1,840	1,837	1,829	1,829	1,837	1,855	1,831	1,837
Summe	15,491	15,507	15,532	15,533	15,562	15,529	15,512	15,503	15,529	15,534
X(Fe)	0,414	0,421	0,417	0,418	0,438	0,432	0,433	0,431	0,431	0,442

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit
Probe	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063
Biotit	3.1	3.1	3.1	3.1	3.1	3.2	3.2	3.2	3.2	3.3
	BIO1-1	BIO1-2	BIO1-3	Bio2-1	Bio2-2	Bio1-1	Bio1-2	Bio2-1	Bio2-2	BIO1-1
SiO2	35,48	35,02	35,10	33,65	34,90	34,61	35,67	35,49	35,05	34,98
TiO2	1,40	1,61	1,62	1,52	1,65	1,66	1,66	1,64	1,65	1,44
AI2O3	19,48	19,68	19,10	19,21	19,24	19,31	19,72	19,93	19,85	19,69
Cr2O3	0,00	0,06	0,05	0,00	0,01	0,06	0,07	0,00	0,02	0,08
Fe2O3	3,08	3,02	3,10	3,41	2,95	3,06	3,13	2,98	2,89	3,15
MgO	10,92	10,79	11,07	11,51	10,74	10,60	10,75	10,69	10,73	10,27
CaO	0,09	0,07	0,06	0,08	0,04	0,00	0,00	0,00	0,00	0,01
MnO	0,14	0,17	0,17	0,16	0,14	0,12	0,12	0,16	0,10	0,16
FeO	15,69	15,38	15,80	17,41	15,05	15,61	15,97	15,21	14,76	16,09
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BaO	0,06	0,18	0,10	0,06	0,07	0,12	0,09	0,18	0,04	0,10
Na2O	0,33	0,33	0,22	0,21	0,21	0,21	0,18	0,27	0,15	0,25
K20	9,04	8,97	9,06	7,85	8,92	9,23	9,26	9,03	9,37	9,24
H2O	4,00	3,98	3,98	3,94	3,93	3,94	4,03	4,01	3,97	3,97
Summe	99,71	99,24	99,43	99,02	97,86	98,53	100,64	99,60	98,59	99,43
Strukturfo	rmal hazaa	ion out 22 S	ouorstoffo							
Sirukturioi	5 321	5 277	5 202	5 120	5 320	5 271	5 305	5 313	5 200	5 283
ті	0 158	0 182	0 18/	0 174	0 100	0 100	0 185	0 185	0 188	0 163
ΔΙ	3 443	3 496	3 305	3 446	3 456	3 465	3 458	3 517	3 536	3 505
Cr	0,140	0,400	0,006	0,000	0,400	0,400	0,400	0,000	0.002	0,000
Fe3+	0,347	0.342	0,000	0,000	0,339	0,351	0,351	0,000	0.329	0,359
Ma	2 442	2 425	2 489	2 610	2 442	2 405	2,383	2,387	2 418	2 313
Ca	0.015	0.010	0,009	0.014	0.007	0,000	0,000	0,000	0,000	0.002
Mn	0.017	0.021	0.022	0.021	0.018	0.015	0.016	0.020	0.013	0.021
Fe2+	1.967	1.938	1.992	2.215	1.919	1.988	1.986	1.905	1.866	2.032
Cu	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ва	0,004	0,010	0,006	0,003	0,004	0,007	0,005	0,011	0,002	0,006
Na	0,094	0,095	0,063	0,063	0,062	0,063	0,051	0,077	0,043	0,073
К	1,730	1,724	1,742	1,524	1,735	1,794	1,756	1,725	1,806	1,779
Summe	15,538	15,528	15,551	15,581	15,491	15,556	15,505	15,476	15,504	15,544
Si	5,321	5,277	5,292	5,120	5,320	5,271	5,305	5,313	5,299	5,283
AI IV	2,679	2,723	2,708	2,880	2,680	2,729	2,695	2,687	2,701	2,717
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
		0 770						0.004	0.005	
	0,764	0,773	0,686	0,566	0,776	0,736	0,763	0,831	0,835	0,787
	0,158	0,182	0,184	0,174	0,190	0,190	0,185	0,185	0,188	0,163
Cr	0,000	0,007	0,006	0,000	0,001	0,007	0,008	0,000	0,002	0,010
Fe3+	0,347	0,342	0,351	0,391	0,339	0,351	0,351	0,336	0,329	0,359
FeZ+	1,967	1,938	1,992	2,215	1,919	1,988	1,986	1,905	1,800	2,032
wn Ma	0,017	0,021	0,022	0,021	0,018	0,015	0,016	0,020	0,013	0,021
oktaedr	2,442	2,423	2,409	2,010	2,442	2,405	2,303	2,307	2,410	2,313
	5,695	5,688	5,731	5,977	5,683	5,693	5,692	5,663	5,652	5,684
Ca	0,015	0,010	0,009	0,014	0,007	0,000	0,000	0,000	0,000	0,002
Ва	0,004	0,010	0,006	0,003	0,004	0,007	0,005	0,011	0,002	0,006
Na	0,094	0,095	0,063	0,063	0,062	0,063	0,051	0,077	0,043	0,073
К	1,730	1,724	1,742	1,524	1,735	1,794	1,756	1,725	1,806	1,779
interl.	1,843	1,840	1,820	1,604	1,808	1,863	1,813	1,813	1,852	1,860
Summe	15,538	15,528	15,551	15,581	15,491	15,556	15,505	15,476	15,504	15,544
	0.440	o	0.115	0 150	0.110	0.450	0.455		0.405	0.405
х(⊦е)	0,446	0,444	0,445	0,459	0,440	0,453	0,455	0,444	0,435	0,468

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Probe	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM68	SM68	SM68
Biotit	3.3	3.3	3.3	3.4	3.4	3.8	3.8	4.1	4.1	4.1
	BIO1-2	BIO 2-1	BIO 2-2	BIO2-1	Bio2-1	Bio1-2	Bio1-3	BIO2-1	BIO3-1	BIO3-2
SiO2	35,45	34,91	35,62	35,23	35,23	34,74	35,04	36,46	36,89	36,98
TiO2	1,68	1,80	1,92	1,71	1,71	1,59	1,63	1,57	1,39	1,40
AI2O3	19,81	19,38	19,51	19,28	19,28	19,88	19,73	18,37	18,87	18,66
Cr2O3	0,05	0,00	0,04	0,05	0,05	0,00	0,07	0,03	0,08	0,05
Fe2O3	3,10	3,02	3,08	3,23	3,23	2,94	3,14	2,81	2,63	2,57
MgO	10,26	10,10	10,82	10,15	10,15	10,85	11,93	12,76	12,82	13,22
CaO	0,06	0,00	0,00	0,00	0,00	0,01	0,00	0,02	0,00	0,00
MnO	0,18	0,18	0,16	0,13	0,13	0,16	0,17	0,13	0,15	0,23
FeO	15,82	15,41	15,71	16,48	16,48	14,97	16,00	14,32	13,40	13,11
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BaO	0,11	0,00	0,06	0,09	0,09	0,11	0,17	0,07	0,00	0,02
Na2O	0,18	0,22	0,28	0,09	0,09	0,17	0,12	0,32	0,42	0,47
K2O	9,20	8,99	9,17	9,30	9,30	9,41	8,43	8,83	8,71	8,83
H2O	4,00	3,93	4,03	3,98	3,98	3,96	4,03	4,04	4,05	4,06
Summe	99,91	97,95	100,37	99,71	99,71	98,80	100,46	99,72	99,40	99,61
0										
Strukturfo	rmel bezog	en auf 22 S	auerstoffe	5.040	5.040	F 0F7	5 040	5 440	E 450	5 404
51	5,312	5,324	5,307	5,313	5,313	5,257	5,212	5,418	5,458	5,461
	0,189	0,206	0,215	0,194	0,194	0,181	0,182	0,176	0,155	0,150
	3,496	3,464	3,425	3,420	3,420	3,340	3,450	3,217	3,290	3,247
Gr Go2	0,005	0,000	0,004	0,005	0,005	0,000	0,009	0,003	0,009	0,006
гез+ Ма	0,350	0,347	0,345	0,307	0,307	0,334	0,351	0,314	0,293	0,200
wy Co	2,292	2,295	2,402	2,201	2,201	2,440	2,040	2,620	2,020	2,910
Ca Mn	0,009	0,000	0,000	0,000	0,000	0,002	0,000	0,003	0,000	0,000
IVIII Eo2	1 092	1,025	1.057	2 079	2 079	1 804	1 000	1 770	1 659	0,029
rez+	1,962	1,900	0,000	2,078	2,078	1,694	1,990	1,779		1,019
Cu Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
ZII Ro	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Da Na	0,007	0,000	0,003	0,000	0,000	0,007	0,010	0,004	0,000	0,001
Na K	1 757	1 750	1 742	1 700	1 700	1 916	1 600	1 674	1 645	1 662
n Summo	15 478	15 462	1,742	15 502	15 502	15 555	15 514	15 522	15 473	15 512
ounne	10,470	10,402	10,001	10,002	10,002	10,000	10,014	10,022	10,470	10,012
Si	5.312	5.324	5.307	5.313	5.313	5.257	5.212	5.418	5.458	5.461
ALIV	2,688	2.676	2,693	2,687	2,687	2,743	2,788	2,582	2,542	2,539
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
	,	,	,	,	,		,	,	,	,
AI VI	0,810	0,808	0,732	0,739	0,739	0,803	0,670	0,635	0,748	0,708
Ті	0,189	0,206	0,215	0,194	0,194	0,181	0,182	0,176	0,155	0,156
Cr	0,005	0,000	0,004	0,005	0,005	0,000	0,009	0,003	0,009	0,006
Fe3+	0,350	0,347	0,345	0,367	0,367	0,334	0,351	0,314	0,293	0,286
Fe2+	1,982	1,966	1,957	2,078	2,078	1,894	1,990	1,779	1,658	1,619
Mn	0,023	0,023	0,020	0,017	0,017	0,020	0,021	0,016	0,019	0,029
Mg	2,292	2,295	2,402	2,281	2,281	2,448	2,646	2,826	2,828	2,910
oktaedr		5 0 4 0	F 070					10	40	/ /
•	5,651	5,646	5,676	5,681	5,681	5,681	5,870	5,749	5,710	5,714
6.	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ca De	0,009	0,000	0,000	0,000	0,000	0,002	0,000	0,003	0,000	0,000
ыа	0,007	0,000	0,003	0,006	0,006	0,007	0,010	0,004	0,000	0,001
ina K	0,053	0,066	0,080	0,026	0,026	0,049	0,034	0,092	0,119	0,135
r.	1,/5/	1,750	1,742	1,790	1,790	1,816	1,600	1,674	1,645	1,662
interi.	1,827	1,816	1,825	1,821	1,821	1,8/4	1,644	1,773	1,764	1,798
Summe	15,478	15,462	15,501	15,502	15,502	15,555	15,514	15,522	15,473	15,512
X(Fe)	0,464	0,461	0,449	0,477	0,477	0,436	0,429	0,386	0,370	0,357

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Biotit	4.1	4.2	4.2	4.2	4.3	4.3	4.3	4.3	4.3	4.3
	BIO3-3	BIO1-1	BIO1-2	BIO1-3	BIO1-1	BIO1-2	Bio1-3	BIO2-1	BIO2-2	BIO2-3
		~ ~ ~ /								
SIO2	36,21	36,51	36,25	36,12	36,42	36,35	36,54	36,46	36,17	37,22
TiO2	1,38	1,35	1,50	1,35	1,23	1,28	1,44	1,37	1,31	1,25
AI2O3	19,17	19,13	19,16	18,86	18,86	19,15	19,23	18,81	19,20	19,00
Cr2O3	0,06	0,11	0,10	0,07	0,03	0,03	0,03	0,02	0,00	0,00
Fe2O3	2,58	2,63	2,67	2,69	2,67	2,67	2,63	2,64	2,68	2,66
MgO	12,79	12,89	12,85	12,56	12,97	13,09	13,10	12,91	13,02	13,09
CaO	0,00	0,00	0,00	0,08	0,00	0,00	0,00	0,04	0,04	0,00
MnO	0,22	0,15	0,11	0,13	0,18	0,17	0,20	0,23	0,26	0,17
FeO	13,14	13,39	13,64	13,71	13,62	13,64	13,44	13,47	13,67	13,55
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BaO	0,04	0,05	0,00	0,06	0,05	0,03	0,03	0,00	0,03	0,00
Na2O	0,49	0,37	0,36	0,37	0,35	0,48	0,43	0,42	0,48	0,45
K2O	8,64	8,81	8,73	8,31	8,74	8,83	8,91	8,72	8,47	8,71
H2O	4,02	4,05	4,04	4,00	4,03	4,05	4,07	4,03	4,04	4,09
Summe	98,72	99,42	99,41	98,29	99,15	99,77	100,06	99,12	99,38	100,18
Strukturfor	mel bezog	en auf 22 S	auerstoffe							
Si	5.397	5.409	5.376	5.414	5.418	5.377	5.384	5.422	5.367	5.463
Ti	0.155	0.151	0.168	0.152	0.137	0.142	0.160	0.153	0.146	0.138
AI	3.368	3.341	3.350	3.332	3.307	3.340	3.340	3.296	3.358	3.286
Cr	0.007	0.012	0.011	0.008	0.003	0.004	0.003	0.003	0.000	0.000
Fe3+	0.289	0.293	0.298	0.303	0.299	0.298	0.292	0.296	0.299	0.293
Ma	2.841	2.846	2.840	2,806	2,875	2,888	2.878	2,861	2,881	2,863
Ca	0.000	0.000	0.000	0.013	0.000	0.000	0.000	0.006	0.007	0.001
Mn	0.028	0.018	0.013	0.016	0.022	0.022	0.025	0.029	0.033	0.021
 Fe2+	1 638	1 659	1 691	1 719	1 694	1 687	1 656	1 675	1 696	1 663
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0.000	0,000	0,000	0,000
Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ba	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,002	0,003	0,000	0,003	0,003	0,002	0,002	0,000	0,002	0,000
Na K	1 642	1 664	1 651	1 599	1 650	1 666	1,675	1 654	1 602	1 621
Summe	15 509	15 503	15 504	15 461	15 520	15 562	15 537	15 514	15 529	15 488
ounne	10,000	10,000	10,004	10,401	10,020	10,002	10,007	10,014	10,020	10,400
Si	5,397	5,409	5,376	5,414	5,418	5,377	5,384	5,422	5,367	5,463
AI IV	2,603	2,591	2,624	2,586	2,582	2,623	2,616	2,578	2,633	2,537
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	0,765	0,750	0,726	0,745	0,725	0,717	0,724	0,718	0,725	0,750
Ті	0,155	0,151	0,168	0,152	0,137	0,142	0,160	0,153	0,146	0,138
Cr	0,007	0,012	0,011	0,008	0,003	0,004	0,003	0,003	0,000	0,000
Fe3+	0,289	0,293	0,298	0,303	0,299	0,298	0,292	0,296	0,299	0,293
Fe2+	1,638	1,659	1,691	1,719	1,694	1,687	1,656	1,675	1,696	1,663
Mn	0,028	0,018	0,013	0,016	0,022	0,022	0,025	0,029	0,033	0,021
Mg	2,841	2,846	2,840	2,806	2,875	2,888	2,878	2,861	2,881	2,863
oktaedr										
•	5,722	5,729	5,748	5,749	5,757	5,757	5,738	5,735	5,780	5,728
Ca	0,000	0,000	0,000	0,013	0,000	0,000	0,000	0,006	0,007	0,001
Ва	0,002	0,003	0,000	0,003	0,003	0,002	0,002	0,000	0,002	0,000
Na	0,142	0,107	0,104	0,108	0,102	0,138	0,123	0,120	0,138	0,129
К	1,642	1,664	1,651	1,588	1,659	1,666	1,675	1,654	1,603	1,631
interl.	1,787	1,774	1,755	1,712	1,764	1,805	1,799	1,780	1,749	1,760
Summe	15,509	15,503	15,504	15,461	15,520	15,562	15,537	15,514	15,529	15,488
X(Fe)	0,366	0,368	0,373	0,380	0,371	0,369	0,365	0,369	0,371	0,367

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Biotit	4.3	4.3	4.3	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6
	BIO2-4	BIO2-5	BIO2-6	BIO1-1	BIO1-2	BIO2-1	BIO2-2	BIO2-3	BIO2-4	BIO2-5	BIO2-6
SiO2	36.70	36.44	36.20	36.59	36.71	36.66	36.03	36.41	36.18	36.38	36.29
TiO2	1.34	1 24	1 41	1.34	1.35	1 28	1.06	1 22	1.31	1.33	1 45
AI2O3	10 17	10,24	10.40	18.43	18.81	10 15	18.87	19.00	18 75	10 11	10 20
Cr2O3	0.00	0.01	0.02	0.05	0.02	0.01	0.01	0.02	0.01	0.05	0.02
G1203	0,00	0,01	0,05	0,05	0,02	0,01	0,01	0,02	0,01	0,05	0,03
rezus Mao	2,09	2,00	2,09	2,79	2,75	2,04	2,11	2,03	2,01	2,00	2,02
MgO	13,05	13,10	12,74	13,23	13,07	13,16	12,93	13,02	13,13	13,09	12,90
CaO	0,01	0,00	0,00	0,01	0,03	0,03	0,04	0,02	0,00	0,00	0,03
MnO	0,18	0,19	0,14	0,21	0,19	0,27	0,22	0,22	0,19	0,20	0,19
FeO	13,69	13,58	13,20	14,22	14,01	13,45	14,10	13,40	13,31	13,68	13,37
CuO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ZnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
BaO	0,03	0,02	0,00	0,01	0,12	0,00	0,00	0,07	0,00	0,01	0,03
Na2O	0,47	0,45	0,37	0,27	0,32	0,42	0,40	0,40	0,46	0,36	0,44
K2O	8,66	8,73	8,76	9,09	9,05	8,89	8,66	8,68	8,59	8,83	8,78
H2O	4,07	4,06	4,04	4,06	4,07	4,07	4,02	4,04	4,01	4,05	4,04
Summe	100,05	99,65	98,96	100,30	100,50	100,02	99,12	99,12	98,54	99,76	99,35
Strukturfo	ormel bezo	ogen auf 22	2 Sauersto	ffe							
Si	5.404	5.390	5.380	5.408	5.408	5.402	5.379	5.412	5.407	5.381	5.383
Ti	0 148	0 138	0 158	0 149	0 149	0 142	0 1 1 9	0 137	0 147	0 148	0 162
Δ1	3 328	3 345	3 4 1 5	3 210	3 266	3 326	3 321	3 328	3 302	3 331	3 356
Cr	0,020	0,040	0,003	0,005	0,200	0,020	0,021	0,020	0,002	0,001	0,000
Eo2	0,000	0,001	0,000	0,000	0,005	0,001	0,002	0,002	0,001	0,000	0,003
гезт Ма	0,290	0,290	0,209	2 014	0,303	0,292	0,311	0,294	0,295	0,299	0,295
Mg Ca	2,004	2,000	2,823	2,914	2,870	2,691	2,070	2,000	2,920	2,000	2,652
Ca	0,002	0,000	0,000	0,002	0,005	0,005	0,007	0,003	0,000	0,000	0,005
Mn	0,023	0,024	0,017	0,027	0,023	0,033	0,028	0,028	0,024	0,025	0,024
Fe2+	1,686	1,679	1,641	1,758	1,726	1,657	1,761	1,666	1,663	1,693	1,658
Cu	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Zn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ва	0,002	0,001	0,000	0,000	0,007	0,000	0,000	0,004	0,000	0,001	0,002
Na	0,134	0,130	0,106	0,078	0,092	0,119	0,115	0,115	0,132	0,103	0,125
K	1,627	1,648	1,660	1,715	1,700	1,672	1,648	1,646	1,638	1,666	1,661
Summe	15,515	15,540	15,492	15,576	15,553	15,541	15,568	15,519	15,533	15,538	15,523
C :	E 404	5 200	5 200	F 400	F 400	F 400	F 070	F 440	E 407	5 204	F 202
51	5,404	5,390	5,380	5,408	5,408	5,402	5,379	5,412	5,407	5,381	5,383
ALIV	2,596	2,610	2,620	2,592	2,592	2,598	2,621	2,588	2,593	2,619	2,617
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	0.732	0.735	0.794	0.618	0.673	0.728	0.699	0.740	0.709	0.712	0.739
ті	0.148	0.138	0.158	0.149	0.149	0.142	0.119	0.137	0.147	0.148	0.162
Cr	0,000	0,001	0.003	0.005	0.003	0.001	0.002	0.002	0.001	0.005	0.003
Eo3+	0 298	0.296	0.289	0 310	0 305	0 202	0.311	0 204	0 203	0 200	0 203
Fo2+	1 686	1 679	1 641	1 758	1 726	1 657	1 761	1 666	1 663	1 603	1 658
Mn	0.022	0.024	0.017	0.027	0.022	0.022	0.029	0.028	0.024	0.025	0.024
Ma	2 864	2 999	0,017	2 01/	2 970	2 801	2 9 7 9	2 995	2 024	2 996	2 952
wy oldoodr	2,004	2,000	Z,023	Z,914	2,070	2,091	2,070	2,000	2,920	2,000	Z,00Z
oktaeor.	5,751	5,761	5,725	5,781	5,749	5,745	5,797	5,752	5,763	5,768	5,730
Ca	0,002	0,000	0,000	0,002	0,005	0,005	0,007	0,003	0,000	0,000	0,005
Ва	0,002	0,001	0,000	0,000	0,007	0,000	0,000	0,004	0,000	0,001	0,002
Na	0.134	0,130	0,106	0.078	0.092	0.119	0,115	0,115	0,132	0,103	0.125
к	1.627	1.648	1.660	1.715	1,700	1.672	1.648	1.646	1.638	1,666	1.661
interl.	1.764	1.779	1.767	1.795	1.804	1.796	1.770	1.768	1.770	1.770	1.793
Summe	15,515	15,540	15,492	15,576	15,553	15,541	15,568	15,519	15,533	15,538	15,523
	-		-	-	-	-	-	-	-	-	
X(Fe)	0,371	0,368	0,368	0,376	0,376	0,364	0,380	0,366	0,362	0,370	0,368

Fortsetzung Tab. H.3: Mikrosondenanalysen von Biotit

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Hellgli	8.1	8.1	8.1	8.1	8.1	8.1	8.2	8.2	8.2	8.2
	HG1-1GRN	HG1-2GRN	HG2-1	HG2-2	HG2-4	HG2-5	HG1-1	HG1-2	HG1-3	HG2-1
SiO2	45,80	45,71	45,88	45,85	44,64	45,70	46,11	45,85	45,68	45,52
TiO2	0,36	0,36	0,27	0,25	0,32	0,34	0,40	0,35	0,36	0,30
AI2O3	35,85	35,81	36,67	36,51	35,17	36,29	35,78	35,63	35,91	35,92
Cr2O3	0,03	0,11	0,04	0,02	0,00	0,01	0,04	0,03	0,00	0,00
MgO	0,65	0,62	0,48	0,53	0,46	0,48	0,60	0,54	0,52	0,45
CaO	0,01	0,00	0,02	0,04	0,00	0,02	0,02	0,03	0,00	0,02
MnO	0,01	0,02	0,00	0,00	0,00	0,04	0,01	0,00	0,02	0,03
FeO	2,68	2,53	2,17	2,32	2,47	2,65	2,67	2,47	2,50	2,48
BaO	0,19	0,11	0,12	0,13	0,24	0,15	0,15	0,23	0,21	0,19
Na2O	1,81	1,51	1,87	1,71	1,82	2,52	2,54	2,33	2,47	1,84
K2O	8,62	9,02	5,98	6,74	8,37	7,32	7,78	7,85	7,53	8,55
H2O	4,53	4,52	4,51	4,51	4,41	4,53	4,55	4,51	4,51	4,50
Summe	100,44	100,32	98,00	98,61	97,78	99,94	100,63	99,86	99,71	99,81
Strukturform	nel bezogen a	uf 22 Sauersto	offe							
Si	6,067	6,068	6,108	6,097	6,066	6,047	6,083	6,094	6,071	6,066
Ті	0,035	0,036	0,027	0,025	0,033	0,034	0,040	0,035	0,036	0,030
AI	5,596	5,603	5,754	5,723	5,633	5,660	5,563	5,582	5,624	5,642
Cr	0,003	0,012	0,004	0,002	0,000	0,001	0,004	0,003	0,000	0,000
Ma	0,128	0,123	0,096	0,104	0,093	0,094	0,119	0,107	0,103	0,090
Ca	0,001	0,000	0,002	0,006	0,000	0,003	0,003	0,004	0,000	0,003
Mn	0,001	0,002	0,000	0,000	0,000	0,004	0,001	0,000	0,002	0,003
Fe	0,297	0,281	0,241	0,258	0,281	0,293	0,294	0,275	0,278	0,277
Ва	0,010	0,006	0,006	0,007	0,013	0,008	0,008	0,012	0,011	0,010
Na	0,464	0,389	0,483	0,442	0,479	0,648	0,649	0,599	0,635	0,475
к	1,456	1,528	1,015	1,143	1,450	1,236	1,310	1,332	1,276	1,453
Summe	14,058	14,047	13,735	13,807	14,049	14,030	14,073	14,044	14,036	14,048
			,	,	,	,	,	,	,	
Si	6,067	6,068	6,108	6,097	6,066	6,047	6,083	6,094	6,071	6,066
AI IV	1,933	1,932	1,892	1,903	1,934	1,953	1,917	1,906	1,929	1,934
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	3,664	3,671	3,862	3,820	3,699	3,708	3,646	3,677	3,695	3,707
Cr	0,003	0,012	0,004	0,002	0,000	0,001	0,004	0,003	0,000	0,000
Ті	0,035	0,036	0,027	0,025	0,033	0,034	0,040	0,035	0,036	0,030
Fe 2+=tot	0,297	0,281	0,241	0,258	0,281	0,293	0,294	0,275	0,278	0,277
Mn	0,001	0,002	0,000	0,000	0,000	0,004	0,001	0,000	0,002	0,003
Mg	0,128	0,123	0,096	0,104	0,093	0,094	0,119	0,107	0,103	0,090
okta.	4,128	4,125	4,230	4,210	4,107	4,135	4,104	4,096	4,114	4,107
Ва	0,010	0,006	0,006	0,007	0,013	0,008	0,008	0,012	0,011	0,010
Ca	0,001	0,000	0,002	0,006	0,000	0,003	0,003	0,004	0,000	0,003
Na	0,464	0,389	0,483	0,442	0,479	0,648	0,649	0,599	0,635	0,475
к	1,456	1,528	1,015	1,143	1,450	1,236	1,310	1,332	1,276	1,453
interlayer	1,930	1,922	1,506	1,597	1,942	1,895	1,970	1,947	1,922	1,942
Summe	14,058	14,047	13,735	13,807	14,049	14,030	14,073	14,044	14,036	14,048
X(Fe)	0,70	0,70	0,72	0,71	0,75	0,76	0,71	0,72	0,73	0,76
Ма	0.04	0.00	0.14	0.35	0.00	0.17	0.13	0.22	0.00	0.15
Ра	24,15	20,28	32,18	27,77	24,81	34,31	33,10	30.96	33,23	24,61
Ce	3.36	3.40	5.41	4.87	3.32	2.36	4.17	4.72	3.55	3.29
Mu	72,45	76.32	62.27	67.02	71,87	63,15	62.60	64,10	63,22	71,95
	, -	,	*	•		•	*	*	*	, -
Fe tot	0,297	0,281	0,241	0,258	0,281	0,293	0,294	0,275	0,278	0,277
Fe 2+	-0,025	-0,019	0,039	0,019	0,007	-0,013	0,004	0,022	0,005	0,006
Fe 3+	0,322	0,300	0,203	0,240	0,275	0,306	0,290	0,253	0,273	0,271

Tab. H.4: Mikrosondenanalysen von Hellglimmer

Probe IMM021 Hellgli 8.2 8.2 8.3 8.3 8.3 8.3 8.3 8.3 8.4 8.4 HG2-2 HG2-3 HG1-1 HG1-2 HG1-3 HG2-1 HG2-2 HG2-3 HG1-1 HG2-1 SiO2 45.52 45.83 46,45 46.00 46.32 45.73 45,65 45.57 46,00 45,84 TiO2 0,34 0,36 0,45 0,48 0,51 0,37 0,39 0,34 0,33 0,32 AI2O3 35,90 35,74 34,60 33,68 32,86 35,44 35,21 35,32 35,57 35,97 Cr2O3 0,01 0,03 0,09 0,03 0,04 0,00 0,03 0,01 0,05 0,00 MgO 0,50 0,58 0,86 1,09 0,57 0,60 0,66 0,57 1,14 0,72 CaO 0.03 0.03 0.01 0,00 0,04 0,01 0,01 0,02 0,03 0.03 MnO 0,00 0.05 0,01 0.07 0.05 0,01 0.03 0.03 0,03 0.01 FeO 2,74 2,39 3.09 2,38 2,44 2.65 2,66 2,39 3.01 3.09 BaO 0,32 0,17 0,18 0,16 0,22 0,23 0,21 0,23 0,24 0,20 Na2O 2,08 1,73 2,38 1,98 2,39 2,00 1,51 1,91 2,02 2,36 K20 7,93 7,81 8,36 8,62 8,32 8,37 7,78 8,25 8,27 7,74 4,52 4,49 H20 4,51 4,52 4,46 4,44 4,49 4,49 4,53 4,52 Summe 99,87 99,86 100,45 99,21 98,83 99,40 99,45 99,41 100,23 100,09 Strukturformel bezogen auf 22 Sauerstoffe Si 6,254 6,104 6.089 6,058 6.085 6,158 6.184 6,106 6,092 6.079 Ti 0,034 0.036 0,044 0,048 0.051 0,037 0,040 0.034 0.033 0,032 AI 5,632 5,592 5,406 5,337 5,229 5,577 5,549 5,561 5,552 5,622 Cr 0,001 0.003 0,009 0.003 0,004 0,000 0,003 0,001 0,005 0.000 0,100 0,114 0,219 0,229 0,119 0,131 0,142 Mg 0.171 0.114 0.112 Ca 0,004 0,005 0,001 0,000 0,006 0,001 0,001 0,002 0,004 0,004 Mn 0,005 0,008 0,006 0,001 0,003 0,003 0,001 0,000 0,002 0,003 Fe 0,305 0,265 0,334 0,348 0,348 0,266 0,273 0.296 0,294 0.265 Ва 0,016 0,009 0,010 0,008 0,011 0,012 0,011 0,012 0,011 0.012 Na 0,536 0,614 0,515 0,450 0,394 0,494 0,524 0,616 0,606 0,508 κ 1,347 1,323 1,399 1,433 1,484 1,418 1,427 1,319 1,314 1,396 14,039 14,017 Summe 14,051 14,047 14,025 14,056 14,064 14,030 14,033 14,057 Si 6,058 6.085 6,158 6,184 6.254 6,106 6,104 6.089 6,092 6,079 AI IV 1,942 1,915 1,842 1,816 1,746 1,894 1,896 1,911 1,908 1,921 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 tetr. AI VI 3,690 3,677 3,564 3,522 3,484 3,682 3,653 3,650 3,644 3,701 Cr 0,001 0,003 0,009 0,003 0,004 0,000 0,003 0,001 0,005 0,000 Ti 0.036 0,044 0,048 0,051 0,037 0,040 0,034 0,033 0.032 0,034 Fe 2+=tot 0,305 0,265 0,334 0,348 0,348 0,266 0,273 0,296 0,294 0,265 Mn 0,000 0,005 0,002 0,008 0,006 0,001 0,003 0,003 0,003 0,001 Mg 0,100 0,114 0,171 0,219 0,229 0,114 0,119 0,131 0,142 0,112 okta. 4,130 4,100 4,123 4.147 4,122 4,100 4,092 4,115 4,121 4,112 Ba 0,008 0,012 0,016 0,009 0,010 0,011 0,012 0,011 0,012 0.011 Ca 0,004 0.005 0,001 0.000 0,006 0,001 0,001 0,002 0,004 0,004 Na 0,536 0,614 0,515 0,450 0,394 0,494 0,524 0,616 0,606 0.508 Κ 1,484 1,396 1,347 1,323 1,399 1,433 1,418 1,427 1,319 1,314 interlayer 1,903 1,950 1,924 1,892 1,896 1,925 1,964 1,949 1,936 1,918 14,051 14,047 14,039 14,017 14,025 14,056 14,064 14,057 14,030 Summe 14,033 X(Fe) 0,70 0,66 0,61 0,60 0,70 0,70 0,69 0,67 0,70 0,75 0,00 0.06 Ма 0,20 0,24 0.06 0,31 0,07 0,13 0,21 0,19 Ра 28,41 31,63 26,89 23,90 20,92 25,82 26,86 31,80 31,51 26,62 Ce 2,92 4,23 7,90 9,22 12,71 5,28 5,20 4,45 4,59 3,94 68,47 63,91 65,16 66,88 66,05 68,84 67,87 63,62 63,69 69,25 Mu Fe tot 0,305 0,265 0,334 0,348 0,348 0,266 0,273 0,296 0,294 0,265 Fe 2+ -0,008 0,006 0,032 0,014 0,077 0,029 0,025 -0,009 -0,018 -0,001 Fe 3+ 0,313 0,260 0,302 0,334 0,272 0,237 0,249 0,304 0,312 0,267

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Hellgli	8.4	8.4	8.5	8.5	8.5	8.5	8.5	8.7	8.7	8.7
	HG2-2	HG2-3	HG1-1PLE	HG1-2PLE	HG1-3PLE	HG1-4PLE	HG2-2PLE	HG1-1	HG1-2	HG1-3
SiO2	45,65	45,14	46,19	45,82	45,90	45,61	45,42	45,97	45,23	45,62
TiO2	0,37	0,29	0,38	0,42	0,32	0,35	0,37	0,33	0,28	0,30
AI2O3	34,85	35,37	35,07	34,33	34,70	34,82	35,35	35,73	35,79	35,78
Cr2O3	0,00	0,00	0,02	0,01	0,05	0,00	0,05	0,00	0,01	0,06
MgO	0,67	0,65	0,77	0,89	0,79	0,78	0,57	0,54	0,57	0,61
CaO	0,00	0,02	0,00	0,04	0,00	0,01	0,04	0,00	0,02	0,02
MnO	0,01	0,00	0,05	0,00	0,01	0,00	0,00	0,01	0,00	0,01
FeO	2,54	2,54	2,86	2,79	2,52	2,68	2,51	2,38	2,41	2,36
BaO	0,25	0,17	0,21	0,26	0,27	0,23	0,21	0,11	0,15	0,12
Na2O	1,91	2,36	1,92	2,04	1,48	1,88	1,58	2,27	2,09	2,38
K2O	8,41	7,50	8,38	8,02	8,85	8,25	8,92	8,03	8,16	7,63
H2O	4,47	4,46	4,52	4,47	4,48	4,47	4,48	4,52	4,48	4,50
Summe	99,18	98,49	100,31	99,12	99,34	99,09	99,67	99,85	99,38	99,35
Strukturform	mel bezog	en auf 22 S	auerstoffe							
Si	6,127	6,075	6,127	6,152	6,152	6,123	6,084	6,100	6,055	6,078
Ti	0,038	0,029	0,038	0,043	0,032	0,036	0,037	0,033	0,028	0,030
AI	5,513	5,609	5,483	5,432	5,481	5,508	5,581	5,589	5,647	5,618
Cr	0,000	0,000	0,002	0,001	0,005	0,000	0,005	0,000	0,001	0,006
Mg	0,134	0,129	0,153	0,177	0,157	0,156	0,114	0,107	0,113	0,121
Ca	0,000	0,002	0,000	0,005	0,000	0,002	0,005	0,000	0,003	0,002
Mn	0,001	0,000	0,006	0,000	0,002	0,000	0,000	0,001	0,000	0,001
Fe	0,285	0,286	0,317	0,313	0,282	0,301	0,282	0,264	0,270	0,263
Ва	0,013	0,009	0,011	0,014	0,014	0,012	0,011	0,006	0,008	0,006
Na	0,498	0,615	0,493	0,531	0,384	0,489	0,409	0,585	0,543	0,615
К О	1,439	1,288	1,418	1,373	1,513	1,413	1,524	1,360	1,393	1,296
Summe	14,048	14,043	14,048	14,041	14,021	14,039	14,052	14,045	14,061	14,036
Si	6.127	6.075	6.127	6.152	6.152	6.123	6.084	6.100	6.055	6.078
ALIV	1.873	1.925	1.873	1.848	1.848	1.877	1.916	1.900	1.945	1.922
tetr.	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000
AI VI	3.640	3.684	3.610	3.584	3.633	3.630	3.665	3.689	3.702	3.696
Cr	0.000	0.000	0.002	0.001	0.005	0.000	0.005	0.000	0.001	0.006
Ti	0,038	0,029	0,038	0,043	0,032	0.036	0,037	0,033	0,028	0,030
Fe 2+=tot	0,285	0,286	0,317	0,313	0,282	0,301	0,282	0,264	0,270	0,263
Mn	0,001	0,000	0,006	0,000	0,002	0,000	0,000	0,001	0,000	0,001
Mg	0,134	0,129	0,153	0,177	0,157	0,156	0,114	0,107	0,113	0,121
okta.	4,097	4,129	4,126	4,118	4,111	4,123	4,103	4,094	4,114	4,116
Ва	0,013	0,009	0,011	0,014	0,014	0,012	0,011	0,006	0,008	0,006
Ca	0,000	0,002	0,000	0,005	0,000	0,002	0,005	0,000	0,003	0,002
Na	0,498	0,615	0,493	0,531	0,384	0,489	0,409	0,585	0,543	0,615
К	1,439	1,288	1,418	1,373	1,513	1,413	1,524	1,360	1,393	1,296
interlayer	1,951	1,914	1,923	1,923	1,911	1,916	1,949	1,951	1,947	1,919
Summe	14,048	14,043	14,048	14,041	14,021	14,039	14,052	14,045	14,061	14,036
X(Fe)	0,68	0,69	0,68	0,64	0,64	0,66	0,71	0,71	0,71	0,68
()		,			,		,	,		
Ма	0,00	0,13	0,02	0,29	0,00	0,11	0,27	0,00	0,17	0,11
Ра	25,71	32,29	25,77	27,81	20,24	25,67	21,11	30,08	27,99	32,15
Ce	6,35	3,75	6,35	7,60	7,59	6,13	4,20	5,01	2,75	3,90
Mu	67,94	63,84	67,86	64,31	72,17	68,10	74,41	64,91	69,09	63,84
Fe tot	0,285	0,286	0,317	0,313	0,282	0,301	0,282	0,264	0,270	0,263
Fe 2+	0,031	-0,026	0,012	0,017	0,027	0,002	0,007	0,025	-0,030	-0,013
Fe 3+	0,254	0,312	0,305	0,295	0,255	0,299	0,275	0,239	0,300	0,276

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

Probe	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039
Hellgli	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.2	5.2
	HG1-1GRE	HG1-2GRE	HG1-3GRE	HG2-1	HG3-1	HG3-2	HG4-1	HG4-2	HG1-1	HG1-2
SiO2	44,15	45,24	44,58	45,71	48,56	49,17	45,09	45,81	45,23	45,55
TiO2	0,56	0,46	0,52	0,60	0,47	0,48	0,49	0,50	0,51	0,57
AI2O3	34,37	34,73	34,80	34,32	30,75	30,60	34,63	34,49	34,80	33,77
Cr2O3	0,01	0,00	0,01	0,00	0,01	0,01	0,03	0,01	0,04	0,00
MgO	0,68	0,70	0,66	0,80	1,74	1,85	0,73	0,77	0,52	0,76
CaO	0,01	0,01	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,01
MnO	0,06	0,05	0,00	0,01	0,01	0,07	0,00	0,04	0,00	0,00
FeO	2,84	2,66	3,01	3,06	2,67	2,85	2,89	3,05	2,71	2,96
BaO	0,28	0,19	0,30	0,24	0,22	0,18	0,35	0,26	0,42	0,22
Na2O	1,19	1,14	1,28	1,24	0,75	0,83	1,19	1,18	1,19	1,17
K2O	9,66	9,42	9,43	9,16	9,30	9,35	9,45	9,37	9,61	9,44
H2O	4,38	4,45	4,43	4,47	4,47	4,50	4,44	4,48	4,45	4,43
Summe	98,27	98,96	99,03	99,59	98,93	99,85	99,35	99,92	99,52	98,90
Strukturfo	rmel bezoger	n auf 22 Saue	rstoffe							
Si	6,040	6,104	6,041	6,135	6,524	6,548	6,086	6,134	6,094	6,166
Ti	0,057	0,046	0,053	0,061	0,047	0,048	0,049	0,050	0,052	0,058
AI	5,543	5,522	5,558	5,429	4,868	4,803	5,509	5,443	5,525	5,387
Cr	0,001	0,000	0,001	0,000	0,001	0,001	0,003	0,001	0,004	0,000
Mg	0,140	0,140	0,133	0,161	0,349	0,367	0,146	0,154	0,105	0,152
Ca	0,002	0,002	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,002
Mn	0,006	0,006	0,000	0,002	0,001	0,008	0,000	0,005	0,000	0,000
Fe	0,325	0,300	0,341	0,344	0,300	0,317	0,326	0,341	0,305	0,335
Ва	0,015	0,010	0,016	0,012	0,011	0,009	0,019	0,014	0,022	0,011
Na	0,316	0,299	0,336	0,324	0,195	0,214	0,312	0,305	0,311	0,307
к	1,686	1,621	1,631	1,569	1,593	1,588	1,628	1,601	1,652	1,630
Summe	14,132	14,049	14,109	14,036	13,889	13,904	14,078	14,047	14,071	14,050
Si	6.040	6.104	6.041	6.135	6.524	6.548	6.086	6.134	6.094	6.166
ALIV	1.960	1.896	1.959	1.865	1.476	1.452	1.914	1.866	1.906	1.834
tetr.	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000
AI VI	3.583	3.626	3.599	3.564	3.392	3.351	3.595	3.577	3.619	3.554
Cr	0.001	0.000	0.001	0.000	0.001	0.001	0.003	0.001	0.004	0.000
Ті	0,057	0,046	0,053	0,061	0,047	0,048	0,049	0,050	0,052	0,058
Fe 2+=tot	0,325	0,300	0,341	0,344	0,300	0,317	0,326	0,341	0,305	0,335
Mn	0,006	0,006	0,000	0,002	0,001	0,008	0,000	0,005	0,000	0,000
Mg	0,140	0,140	0,133	0,161	0,349	0,367	0,146	0,154	0,105	0,152
okta.	4,112	4,117	4,127	4,131	4,090	4,091	4,120	4,128	4,085	4,100
Ва	0,015	0,010	0,016	0,012	0,011	0,009	0,019	0,014	0,022	0,011
Са	0,002	0,002	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,002
Na	0,316	0,299	0,336	0,324	0,195	0,214	0,312	0,305	0,311	0,307
к	1,686	1,621	1,631	1,569	1,593	1,588	1,628	1,601	1,652	1,630
interlayer	2,020	1,931	1,982	1,905	1,799	1,812	1,958	1,920	1,985	1,950
Summe	14,132	14,049	14,109	14,036	13,889	13,904	14,078	14,047	14,071	14,050
X(Fe)	0,70	0,68	0,72	0,68	0,46	0,46	0,69	0,69	0,74	0,69
Ма	0,10	0,09	0,00	0,00	0,00	0,05	0,00	0,00	0,02	0,10
Ра	15,79	15,56	17,06	17,10	10,90	11,89	16,07	16,02	15,84	15,84
Ce	2,01	5,20	2,04	6.76	26.18	27.38	4,30	6.68	4,70	8.31
Mu	82,11	79,15	80,89	76,14	62,92	60,68	79,63	77,30	79,44	75,75
Fe tot	0,325	0,300	0,341	0,344	0,300	0,317	0,326	0,341	0,305	0,335
Fe 2+	-0,042	0,011	-0.039	0.035	0,221	0,228	-0.011	0.030	0.041	0.072
Fe 3+	0,367	0,289	0,380	0,309	0,079	0,089	0,337	0,312	0,264	0,263

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

Probe	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039
Hellgli	5.2	5.3	5.3	5.3	5.3	5.3	5.5	5.5	5.6	5.6
	HG1-3	HG1-1	HG1-2	HG1-3	HG2-1	HG2-2	HG2GRA	HG3-1	HG1-1	HG1-2
SiO2	45,56	45,13	45,05	44,53	45,12	44,16	44,44	44,74	45,25	45,58
TiO2	0,44	0,41	0,56	0,50	0,43	0,39	0,59	0,48	0,38	0,43
AI2O3	34,10	34,83	33,87	34,79	34,45	34,23	34,53	33,99	35,96	34,57
Cr2O3	0,04	0,01	0,00	0,03	0,04	0,02	0,01	0,00	0,00	0,00
MgO	0,68	0,57	0,85	0,65	0,73	0,71	0,69	0,72	0,50	0,66
CaO	0,00	0,01	0,00	0,00	0,01	0,05	0,00	0,01	0,00	0,00
MnO	0,02	0,00	0,02	0,00	0,00	0,00	0,03	0,00	0,01	0,00
FeO	2,80	2,95	3,44	3,02	2,62	2,54	3,17	3,10	2,66	2,81
BaO	0,16	0,29	0,26	0,47	0,17	0,19	0,27	0,37	0,38	0,24
Na2O	1,23	1,21	1,17	1,26	1,03	1,11	1,24	1,16	1,22	1,16
K2O	9,28	9,49	9,37	9,19	9,58	9,57	9,23	9,28	9,46	9,31
H2O	4,43	4,45	4,42	4,42	4,42	4,36	4,41	4,39	4,50	4,46
Summe	98,73	99,35	99,05	98,87	98,59	97,38	98,20	98,25	100,22	99,26
Strukturforn	nel bezoger	n auf 22 Sauei	rstoffe							
Si	6,162	6,086	6,110	6,043	6,116	6,074	6,045	6,108	6,033	6,137
Ті	0,044	0,042	0,057	0,051	0,043	0,040	0,060	0,049	0,038	0,043
AI	5,436	5,536	5,415	5,564	5,504	5,549	5,537	5,469	5,651	5,485
Cr	0,005	0,001	0,000	0,003	0,004	0,002	0,001	0,000	0,000	0,000
Mg	0,137	0,115	0,171	0,132	0,147	0,146	0,141	0,147	0,100	0,132
Са	0,000	0,002	0,000	0,000	0,001	0,007	0,000	0,001	0,000	0,000
Mn	0,002	0,000	0,003	0,000	0,000	0,000	0,004	0,000	0,001	0,000
Fe	0,316	0,333	0,390	0,342	0,297	0,292	0,361	0,354	0,297	0,316
Ва	0,008	0,015	0,014	0,025	0,009	0,010	0,014	0,020	0,020	0,013
Na	0,323	0,316	0,308	0,331	0,270	0,297	0,326	0,307	0,316	0,303
к	1,601	1,633	1,621	1,592	1,657	1,679	1,602	1,616	1,610	1,599
Summe	14,035	14,078	14,089	14,083	14,050	14,098	14,090	14,071	14,066	14,029
Si	6,162	6,086	6,110	6,043	6,116	6,074	6,045	6,108	6,033	6,137
AI IV	1,838	1,914	1,890	1,957	1,884	1,926	1,955	1,892	1,967	1,863
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	3,598	3,622	3,525	3,607	3,621	3,624	3,582	3,576	3,685	3,622
Cr	0,005	0,001	0,000	0,003	0,004	0,002	0,001	0,000	0,000	0,000
Ті	0,044	0,042	0,057	0,051	0,043	0,040	0,060	0,049	0,038	0,043
Fe 2+=tot	0,316	0,333	0,390	0,342	0,297	0,292	0,361	0,354	0,297	0,316
Mn	0,002	0,000	0,003	0,000	0,000	0,000	0,004	0,000	0,001	0,000
Mg	0,137	0,115	0,171	0,132	0,147	0,146	0,141	0,147	0,100	0,132
okta.	4,103	4,112	4,147	4,136	4,112	4,105	4,148	4,126	4,120	4,114
Ва	0,008	0,015	0,014	0,025	0,009	0,010	0,014	0,020	0,020	0,013
Ca	0,000	0,002	0,000	0,000	0,001	0,007	0,000	0,001	0,000	0,000
Na	0,323	0,316	0,308	0,331	0,270	0,297	0,326	0,307	0,316	0,303
к	1,601	1,633	1,621	1,592	1,657	1,679	1,602	1,616	1,610	1,599
interlayer	1,932	1,966	1,943	1,948	1,938	1,993	1,943	1,945	1,946	1,915
Summe	14,035	14,078	14,089	14,083	14,050	14,098	14,090	14,071	14,066	14,029
X(Fe)	0,70	0,74	0,69	0,72	0,67	0,67	0,72	0,71	0,75	0,70
Ма	0.01	0.10	0.00	0.00	0.08	0.36	0.00	0.06	0.00	0.00
Ра	16.77	16.20	15.96	17.22	14.01	14.98	16.91	15.97	16.43	15.94
Ce	8.10	4.31	5.52	2.14	5.81	3.72	2.25	5.38	1.66	6.84
Mu	75.12	79.38	78.52	80.65	80.11	80.93	80.84	78.59	81.91	77.22
	,.=	,	,.=	,00	,	,00	- 5,01	. 2,00	,• .	···,
Fe tot	0,316	0,333	0,390	0,342	0,297	0,292	0,361	0,354	0,297	0,316
Fe 2+	0,070	0,013	-0,004	-0,038	0,013	-0,032	-0,036	0,009	-0,029	0,047
Fe 3+	0,247	0,320	0,394	0,380	0,284	0,324	0,396	0,345	0,325	0,269
	., .	-,	- ,	,	,	,	-,	,	,	,

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

Probe	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044
Hellgli	1.1	1.1	1.1	1.1	1.1	1.1	1.2	1.2	1.2	1.3
	HG 1-1	HG 1-2	HG 2-1	HG 2-2	HG 3-1	HG 3-2	HG 1-1	HG1-2	HG1-3	HG1-1
SiO2	45,49	45,40	46,37	45,48	45,03	45,72	44,84	45,15	45,25	44,62
TiO2	0,37	0,42	0,48	0,46	0,46	0,43	0,46	0,37	0,41	0,40
AI2O3	34,85	34,78	32,97	34,91	34,39	34,82	35,60	35,13	34,22	34,96
Cr2O3	0,05	0,05	0,05	0,05	0,02	0,09	0,02	0,00	0,02	0,02
MgO	0,69	0,62	1,17	0,72	0,71	0,96	0,65	0,71	0,80	0,68
CaO	0,00	0,00	0,02	0,01	0,00	0,00	0,02	0,01	0,01	0,00
MnO	0,00	0,00	0,00	0,00	0,01	0,04	0,01	0,04	0,00	0,04
FeO	2,86	2,75	3,09	3,03	3,02	3,03	2,83	2,76	3,16	2,97
BaO	0,23	0,10	0,18	0,13	0,25	0,27	0,12	0,18	0,17	0,28
Na2O	1,61	1,73	1,24	1,58	1,53	1,67	1,47	1,52	1,31	1,48
K2O	8,84	8,62	9,23	8,84	8,75	8,48	8,96	9,05	9,06	8,88
H2O	4,47	4,45	4,45	4,48	4,43	4,50	4,47	4,46	4,43	4,43
Summe	98,97	98,93	99,25	99,68	98,62	99,94	98,95	99,38	98,86	98,82
Strukturform	nel bezoger	n auf 22 Sauer	stoffe							
Si	6,105	6,112	6,246	6,091	6,102	6,100	6,020	6,068	6,123	6,044
Ті	0,037	0,042	0,049	0,047	0,047	0,043	0,046	0,038	0,042	0,041
AI	5,513	5,519	5,235	5,510	5,493	5,475	5,632	5,565	5,458	5,582
Cr	0,006	0,006	0,006	0,006	0,002	0,009	0,002	0,000	0,002	0,002
Mg	0,138	0,123	0,235	0,145	0,144	0,192	0,130	0,142	0,161	0,137
Са	0,000	0,000	0,002	0,002	0,000	0,000	0,003	0,001	0,001	0,001
Mn	0,000	0,000	0,000	0,000	0,002	0,005	0,001	0,004	0,000	0,004
Fe	0,321	0,309	0,348	0,339	0,343	0,338	0,318	0,311	0,357	0,337
Ва	0,012	0,005	0,010	0,007	0,013	0,014	0,006	0,009	0,009	0,015
Na	0,420	0,453	0,323	0,410	0,403	0,432	0,384	0,396	0,344	0,388
К	1,513	1,480	1,586	1,510	1,513	1,443	1,534	1,551	1,563	1,535
Summe	14,065	14,050	14,039	14,065	14,061	14,052	14,075	14,085	14,060	14,085
Si	6,105	6,112	6,246	6,091	6,102	6,100	6,020	6,068	6,123	6,044
AI IV	1,895	1,888	1,754	1,909	1,898	1,900	1,980	1,932	1,877	1,956
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	3,618	3,631	3,481	3,600	3,595	3,576	3,652	3,633	3,580	3,626
Cr	0,006	0,006	0,006	0,006	0,002	0,009	0,002	0,000	0,002	0,002
Ті	0,037	0,042	0,049	0,047	0,047	0,043	0,046	0,038	0,042	0,041
Fe 2+=tot	0,321	0,309	0,348	0,339	0,343	0,338	0,318	0,311	0,357	0,337
Mn	0,000	0,000	0,000	0,000	0,002	0,005	0,001	0,004	0,000	0,004
Mg	0,138	0,123	0,235	0,145	0,144	0,192	0,130	0,142	0,161	0,137
okta.	4,120	4,112	4,119	4,136	4,132	4,162	4,149	4,128	4,142	4,146
Ва	0,012	0,005	0,010	0,007	0,013	0,014	0,006	0,009	0,009	0,015
Ca	0,000	0,000	0,002	0,002	0,000	0,000	0,003	0,001	0,001	0,001
Na	0,420	0,453	0,323	0,410	0,403	0,432	0,384	0,396	0,344	0,388
к	1,513	1,480	1,586	1,510	1,513	1,443	1,534	1,551	1,563	1,535
interlayer	1,945	1,938	1,920	1,929	1,929	1,890	1,926	1,958	1,918	1,939
Summe	14,065	14,050	14,039	14,065	14,061	14,052	14,075	14,085	14,060	14,085
X(Fe)	0,70	0,71	0,60	0,70	0,70	0,64	0,71	0,69	0,69	0,71
Ма	0,00	0,00	0,12	0,10	0,00	0,00	0,13	0,07	0,06	0,03
Ра	21,73	23,42	16,88	21,34	21,02	23,05	19,98	20,32	18,05	20,19
Ce	5,27	5,62	12,31	4,53	5,12	5,01	1,00	3,40	6,13	2,21
Mu	73,00	70,96	70,69	74,02	73,87	71,94	78,88	76,21	75,76	77,57
Fe tot	0,321	0,309	0,348	0,339	0,343	0,338	0,318	0,311	0,357	0,337
Fe 2+	0,004	0,031	0,060	-0,007	0,005	-0,048	-0,064	-0,037	0,003	-0,052
Fe 3+	0,317	0,278	0,288	0,346	0,337	0,386	0,381	0,347	0,354	0,388

Probe	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044	IMM044
Hellgli	1.3	1.3	1.3	1.3	1.3	1.3	1.6	1.6	1.6	1.6
	HG1-2	HG 1-3	HG 2-1	HG 2-2	HG 3-1	HG 3-2	HG 1-1GRE	HG1-3-GRE	HG2-1	HG3-1
SiO2	45,58	44,60	45,32	45,09	45,02	44,82	46,11	45,07	45,59	46,14
TiO2	0,43	0,40	0,43	0,36	0,43	0,38	0,54	0,44	0,42	0,51
AI2O3	35,15	34,78	34,99	35,24	34,76	35,12	33,42	34,79	34,30	33,68
Cr2O3	0,04	0,07	0,02	0,00	0,05	0,02	0,06	0,02	0,02	0,00
MgO	0,70	0,65	0,70	0,63	0,84	0,76	1,11	0,74	0,79	1,00
CaO	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,02	0,00	0,01
MnO	0,05	0,00	0,00	0,02	0,02	0,00	0,03	0,01	0,00	0,05
FeO	2,76	2,90	3,00	2,85	3,01	3,11	3,10	3,07	3,01	2,97
BaO	0,15	0,22	0,13	0,07	0,20	0,25	0,30	0,15	0,12	0,13
Na2O	1,34	1,48	1,44	1,25	1,58	1,46	1,25	1,50	1,35	1,28
K2O	8,39	9,00	9,03	9,29	8,98	8,88	8,86	8,84	8,97	9,11
H2O	4,47	4,42	4,47	4,46	4,45	4,45	4,46	4,45	4,45	4,46
Summe	99,01	98,57	99,45	99,25	99,35	99,26	99,23	100,10	100,01	99,35
Strukturfor	mel bezog	en auf 22 S	Sauerstoffe							
Si	6,111	6,056	6,083	6,067	6,065	6,040	6,207	6,076	6,144	6,200
Ti	0,043	0,041	0,044	0,036	0,043	0,038	0,055	0,045	0,043	0,052
AI	5,554	5,566	5,535	5,587	5,518	5,578	5,301	5,528	5,447	5,335
Cr	0,004	0,007	0,002	0,000	0,005	0,002	0,006	0,002	0,002	0,000
Mg	0,140	0,132	0,139	0,127	0,169	0,153	0,223	0,150	0,159	0,200
Ca	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,002	0,000	0,001
Mn	0,006	0,000	0,000	0,002	0,002	0,000	0,004	0,001	0,000	0,005
Fe	0,309	0,329	0,337	0,320	0,339	0,351	0,349	0,346	0,339	0,333
Ва	0,008	0,011	0,007	0,004	0,011	0,013	0,016	0,008	0,006	0,007
Na	0,348	0,390	0,374	0,326	0,413	0,380	0,327	0,393	0,351	0,333
К	1,435	1,559	1,545	1,594	1,543	1,528	1,522	1,520	1,543	1,562
Summe	13,958	14,091	14,065	14,063	14,109	14,085	14,009	14,070	14,035	14,028
Si	6,111	6,056	6,083	6,067	6,065	6,040	6,207	6,076	6,144	6,200
AI IV	1,889	1,944	1,917	1,933	1,935	1,960	1,793	1,924	1,856	1,800
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	3,665	3,622	3,618	3,654	3,583	3,619	3,508	3,605	3,592	3,535
Cr	0,004	0,007	0,002	0,000	0,005	0,002	0,006	0,002	0,002	0,000
Ti	0,043	0,041	0,044	0,036	0,043	0,038	0,055	0,045	0,043	0,052
Fe 2+=tot	0,309	0,329	0,337	0,320	0,339	0,351	0,349	0,346	0,339	0,333
Mn	0,006	0,000	0,000	0,002	0,002	0,000	0,004	0,001	0,000	0,005
Mg	0,140	0,132	0,139	0,127	0,169	0,153	0,223	0,150	0,159	0,200
okta.	4,167	4,131	4,139	4,140	4,142	4,163	4,144	4,147	4,135	4,125
Ва	0,008	0,011	0,007	0,004	0,011	0,013	0,016	0,008	0,006	0,007
Ca	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,002	0,000	0,001
Na	0,348	0,390	0,374	0,326	0,413	0,380	0,327	0,393	0,351	0,333
K	1,435	1,559	1,545	1,594	1,543	1,528	1,522	1,520	1,543	1,562
interlayer	1,791	1,960	1,926	1,923	1,967	1,922	1,864	1,923	1,900	1,903
Summe	13,958	14,091	14,065	14,063	14,109	14,085	14,009	14,070	14,035	14,028
X(Fe)	0,69	0,71	0,71	0,72	0,67	0,70	0,61	0,70	0,68	0,62
Ма	0,00	0,00	0,00	0,00	0,00	0,05	0,00	0,12	0,00	0,07
Ра	19,53	20,00	19,47	16,96	21,11	19,93	17,70	20,50	18,55	17,55
Ce	5,55	2,80	4,15	3,35	3,24	2,02	10,35	3,82	7,22	10,00
Mu	74,92	77,21	76,38	79,68	75,64	78,01	71,95	75,56	74,23	72,38
Fe tot	0,309	0,329	0,337	0,320	0,339	0,351	0,349	0,346	0,339	0,333
Fe 2+	0,015	-0,034	-0,013	-0,024	-0,061	-0,074	0,039	-0,028	0,029	0,052
Fe 3+	0,295	0,363	0,349	0,344	0,401	0,425	0,310	0,374	0,311	0,282

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

Probe	IMM044	IMM044	IMM044	IMM044	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051
Hellgli	1.6	1.6	1.6	1.6	9.1	9.1	9.1	9.1	9.1	9.1
-	HG3-2	HG4-1	HG5-1	HG6-1	HG1-1	HG1-2	HG1-3	HG1-4	HG1-5	HG2-1
SiO2	45,16	45,13	45,19	44,92	45,56	45,63	45,33	45,97	45,64	45,38
TiO2	0,44	0,45	0,46	0,39	0,50	0,46	0,49	0,53	0,46	0,47
AI2O3	35,30	34,74	35,20	34,63	35,23	35,25	34,91	34,85	35,08	34,79
Cr2O3	0,03	0,00	0,00	0,00	0,00	0,03	0,01	0,01	0,02	0,01
MgO	0,79	0,72	0,67	1,01	0,57	0,69	0,67	0,69	0,62	0,59
CaO	0,00	0,01	0,02	0,00	0,00	0,00	0,00	0,02	0,00	0,00
MnO	0,00	0,00	0,01	0,07	0,04	0,03	0,01	0,02	0,01	0,01
FeO	3,02	2,89	3,00	3,21	2,58	2,96	2,73	2,89	3,00	2,89
BaO	0,15	0,23	0,16	0,26	0,21	0,30	0,19	0,31	0,18	0,25
Na2O	1,34	1,51	1,38	0,81	1,37	1,41	1,33	1,25	1,55	1,34
K2O	8,69	8,82	9,00	9,85	9,24	9,28	9,30	9,08	8,91	9,11
H2O	4,47	4,45	4,47	4,45	4,49	4,51	4,46	4,50	4,49	4,46
Summe	99,36	98,97	99,52	99,62	99,81	100,53	99,47	100,07	99,96	99,34
Strukturfor	mel bezog	gen auf 22 S	Sauerstoffe	•						
Si	6,057	6,089	6,063	6,061	6,093	6,075	6,092	6,131	6,096	6,106
Ті	0,045	0,046	0,047	0,040	0,050	0,046	0,049	0,053	0,046	0,048
AI	5,580	5,525	5,566	5,506	5,553	5,531	5,530	5,477	5,523	5,517
Cr	0,003	0,000	0,000	0,000	0,000	0,004	0,001	0,001	0,002	0,001
Mg	0,158	0,145	0,135	0,203	0,114	0,138	0,134	0,137	0,123	0,119
Ca	0,000	0,001	0,002	0,001	0,000	0,000	0,000	0,003	0,000	0,000
Mn	0,000	0,000	0,001	0,008	0,005	0,004	0,001	0,003	0,001	0,001
Fe	0,339	0,326	0,336	0,362	0,289	0,329	0,306	0,322	0,335	0,325
Ва	0,008	0,012	0,008	0,014	0,011	0,015	0,010	0,016	0,010	0,013
Na	0,348	0,395	0,358	0,212	0,354	0,364	0,346	0,323	0,401	0,350
K	1,486	1,518	1,540	1,696	1,577	1,576	1,594	1,544	1,518	1,564
Summe	14,024	14,059	14,056	14,101	14,046	14,082	14,064	14,011	14,055	14,045
Si	6,057	6,089	6,063	6,061	6,093	6,075	6,092	6,131	6,096	6,106
	1,943	1,911	1,937	1,939	1,907	1,925	1,908	1,869	1,904	1,894
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
	3,637	3,614	3,629	3,567	3,646	3,606	3,621	3,608	3,619	3,623
Cr T	0,003	0,000	0,000	0,000	0,000	0,004	0,001	0,001	0,002	0,001
	0,045	0,046	0,047	0,040	0,050	0,046	0,049	0,053	0,046	0,048
Fe 2+=tot	0,339	0,326	0,336	0,362	0,289	0,329	0,306	0,322	0,335	0,325
wn Ma	0,000	0,000	0,001	0,008	0,005	0,004	0,001	0,003	0,001	0,001
wg okto	0,100	0,140	0,130	0,203	0,114	0,130	0,134	0,137	0,123	0,119
OKId. Ro	4,102	4,132	4,140	4,179	4,104	4,120	4,114	4,124	4,127	4,117
Da Ca	0,000	0,012	0,008	0,014	0,011	0,015	0,010	0,010	0,010	0,013
Na	0,000	0,001	0,002	0,001	0,000	0,000	0,000	0,003	0,000	0,000
ina K	1 / 86	0,395	0,550	1 606	1 577	0,304	1 594	0,525	1 518	0,550
interlavor	1,400	1,010	1,040	1,030	1,077	1,570	1,554	1,344	1 028	1,004
Summo	14 024	1/ 050	14 056	1/ 101	14 046	1/ 082	1,950	14 011	14 055	14 045
Summe	14,024	14,000	14,000	14,101	14,040	14,002	14,004	14,011	14,000	14,045
X(Fe)	0,68	0,69	0,71	0,64	0,72	0,71	0,70	0,70	0,73	0,73
Ма	0.00	0.08	0 13	0.03	0.00	0.00	0.00	0 15	0.00	0.00
Pa	18 96	20.64	18 84	11 12	18 33	18 75	17 85	17 20	20.88	18.28
Ce	2 86	20,04 4 44	3 15	3.03	4 63	3 74	4 58	6 56	20,00 4 80	5 20
Mu	78 18	74 84	77 89	85 82	-,00 77 ∩4	77 52	-,50 77 57	76 00	74 32	76 44
	. 0, 10	. 1,0 1	. , ,00	00,0L	. , , , , , , , ,	. 1,02	,01	, 0,00	. 1,02	, 0, 14
Fe tot	0,339	0,326	0,336	0,362	0,289	0,329	0,306	0,322	0,335	0,325
Fe 2+	-0,056	-0,010	-0,025	-0,102	0,029	-0,017	0,007	0,047	0,018	0,034
Fe 3+	0,395	0,337	0,361	0,465	0,260	0,346	0,300	0,275	0,316	0,291

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051
Hellgli	9.1	9.1	9.3	9.3	9.3	9.3	9.3	9.3	9.3	9.4
	HG2-2	HG3-1	HG1-1	HG1-2	HG1-3	HG2-1	HG3-1GBN	HG3-2GBN	HG4-1GBN	HG2-1
SiO2	44,84	45,40	46,33	45,69	45,31	44,78	45,75	45,53	44,70	44,09
TiO2	0,40	0,45	0,38	0,40	0,46	0,21	0,39	0,44	0,23	0,44
AI2O3	34,94	34,69	34,24	34,73	34,70	35,73	35,92	35,42	35,28	35,34
Cr2O3	0,04	0,05	0,05	0,03	0,02	0,00	0,03	0,01	0,00	0,00
MgO	0,58	0,67	0,84	0,67	0,61	0,39	0,59	0,56	0,51	0,48
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,08	0,07	0,05	0,00
MnO	0,00	0,00	0,01	0,01	0,01	0,01	0,04	0,03	0,00	0,04
FeO	2,78	2,84	2,77	2,90	2,86	2,49	2,65	2,89	2,45	2,82
BaO	0,17	0,17	0,20	0,20	0,21	0,28	0,10	0,13	0,20	0,26
Na2O	1,35	1,32	1,26	1,34	1,39	1,44	1,34	1,33	1,27	1,36
K2O	9,07	9,22	9,36	9,29	9,30	9,22	8,65	9,23	9,20	9,03
H2O	4,43	4,46	4,49	4,48	4,45	4,45	4,52	4,50	4,42	4,41
Summe	98,63	99,24	99,89	99,76	99,33	98,98	99,98	100,14	98,39	98,68
Strukturforr	nel bezog	en auf 22 S	Sauerstoffe)						
Si	6,073	6,111	6,190	6,123	6,103	6,040	6,075	6,074	6,065	6,003
Ті 	0,041	0,046	0,038	0,041	0,046	0,021	0,038	0,044	0,023	0,045
AI	5,577	5,502	5,392	5,485	5,508	5,681	5,622	5,568	5,642	5,670
Cr	0,004	0,005	0,005	0,003	0,002	0,000	0,003	0,001	0,000	0,000
Mg	0,117	0,134	0,166	0,134	0,123	0,079	0,116	0,112	0,103	0,096
Ca	0,000	0,000	0,000	0,001	0,000	0,000	0,012	0,009	0,007	0,000
win Fe	0,000	0,000	0,001	0,001	0,001	0,001	0,004	0,004	0,000	0,004
ге Ро	0,314	0,320	0,309	0,325	0,322	0,260	0,294	0,322	0,278	0,321
Da	0,009	0,009	0,010	0,011	0,011	0,015	0,005	0,007	0,011	0,014
ina K	1 568	1 582	1 505	1 580	1 508	1 586	0,343	0,343	1 502	1 567
Summe	14 057	14 054	14 034	14.060	1,000	14 079	13 980	1,570	14 054	14 080
Cullino	11,001	1 1,00 1	11,001	1,000	1,010	11,010	10,000	11,001	11,001	11,000
Si	6,073	6,111	6,190	6,123	6,103	6,040	6,075	6,074	6,065	6,003
AI IV	1,927	1,889	1,810	1,877	1,897	1,960	1,925	1,926	1,935	1,997
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	3,650	3,612	3,581	3,608	3,611	3,721	3,696	3,642	3,707	3,673
Cr	0,004	0,005	0,005	0,003	0,002	0,000	0,003	0,001	0,000	0,000
Ті	0,041	0,046	0,038	0,041	0,046	0,021	0,038	0,044	0,023	0,045
Fe 2+=tot	0,314	0,320	0,309	0,325	0,322	0,280	0,294	0,322	0,278	0,321
Mn	0,000	0,000	0,001	0,001	0,001	0,001	0,004	0,004	0,000	0,004
Mg	0,117	0,134	0,166	0,134	0,123	0,079	0,116	0,112	0,103	0,096
okta.	4,126	4,117	4,102	4,113	4,105	4,102	4,152	4,125	4,111	4,140
Ва	0,009	0,009	0,010	0,011	0,011	0,015	0,005	0,007	0,011	0,014
Ca	0,000	0,000	0,000	0,001	0,000	0,000	0,012	0,009	0,007	0,000
Na	0,354	0,345	0,326	0,347	0,362	0,376	0,345	0,343	0,333	0,358
К	1,568	1,582	1,595	1,589	1,598	1,586	1,466	1,570	1,592	1,567
interlayer	1,931	1,937	1,932	1,947	1,971	1,976	1,828	1,929	1,943	1,940
Summe	14,057	14,054	14,034	14,060	14,076	14,079	13,980	14,054	14,054	14,080
X(Fe)	0,73	0,70	0,65	0,71	0,72	0,78	0,72	0,74	0,73	0,77
Ма	0,00	0,02	0,00	0,03	0,00	0,00	0,64	0,48	0,38	0,00
Pa	18,43	17,88	16,98	17,93	18,49	19,15	18,93	17,84	17,23	18,61
Ce	3,65	5,53	9,48	6,17	5,15	2,02	3,73	3,70	3,24	0,15
Mu	77,92	76,56	73,53	75,87	76,36	78,83	76,70	77,98	79,15	81,23
Fe tot	0,314	0,320	0,309	0,325	0,322	0,280	0,294	0,322	0,278	0,321
Fe 2+	-0,003	0,022	0,062	0,030	0,026	-0,017	-0,003	0,006	-0,015	-0,048
Fe 3+	0,317	0,298	0,247	0,294	0,296	0,297	0,297	0,316	0,293	0,368

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

Probe

IMM051

Hellgli 9.4 9.6 9.6 9.6 9.6 9.6 9.6 9.6 10.1 HG2-2 HG1-1PLR HG1-2PLR HG2-1GRE HG2-2GRE HG3-1GRE HG4-1 HG4-2 HG1-1BI/GRE HG1-2BI/GR SiO2 44.92 45.19 43,87 45.03 43,98 44.64 44.69 44.97 45,34 TiO2 0,44 0.62 0.43 0.31 0,38 0,20 0,40 0.45 0.39 AI2O3 34,94 35,48 34,59 35,13 35,24 36,27 35,09 34,32 34,79 Cr2O3 0,01 0,02 0,02 0,04 0,00 0,05 0,03 0,01 0,00 0,85 MgO 0,60 0,52 0,66 0,57 0,56 0,45 0,60 0,70 CaO 0,00 0.01 0,00 0,04 0,02 0.05 0,00 0,01 0.02 MnO 0,01 0.00 0,00 0.08 0.09 0,01 0,00 0,00 0.02 FeO 2,91 2,51 2,92 3,07 3,10 2.65 2,56 2,74 3.06 BaO 0,38 0,24 0,13 0,17 0,05 0,07 0,17 0,24 0,24 Na2O 1,94 1,37 1,25 1,36 1,82 1.46 1,37 1,20 1,49 K20 9,24 8,39 8,42 8,70 9,11 9,38 8,86 9.22 9,22 4,44 H20 4,39 4,47 4,37 4,44 4,44 4,48 4,43 4,46 Summe 98,16 99,30 97,78 98,75 98,82 99,31 98,73 98,82 99,39 Strukturformel bezogen auf 22 Sauerstoffe Si 6,035 6.035 6.072 6,097 5,999 6,047 6,030 6,020 6,116 Ti 0.045 0,044 0.031 0.038 0,020 0,040 0.046 0.039 0.063 AI 5,632 5,616 5,590 5,598 5,608 5,722 5,591 5,475 5,514 Cr 0,001 0,002 0,002 0,004 0,000 0,006 0,003 0,001 0,000 0,103 0,116 0,089 0,120 Mg 0.121 0.135 0.112 0.170 0.140 Ca 0,000 0,002 0,000 0,006 0,003 0,007 0,000 0,001 0,003 0,010 0,011 0,001 0,000 Mn 0,001 0,000 0,000 0,000 0,002 Fe 0,333 0,282 0,334 0,347 0.350 0,297 0,289 0.310 0,344 Ва 0,020 0,013 0,007 0,009 0,003 0,004 0,009 0,013 0.013 Na 0,363 0,325 0,362 0,509 0,477 0,379 0,359 0,315 0,389 κ 1,609 1,579 1,617 1,446 1,450 1,486 1,570 1,619 1,520 14,087 14,055 14,067 Summe 14,125 14,033 14,120 14,110 14,030 14,061 Si 5,999 6,047 6,030 6.035 6,035 6,020 6.072 6,116 6,097 AI IV 2,001 1,953 1,970 1,965 1,965 1,980 1,928 1,884 1,903 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 tetr. 8,000 AI VI 3,631 3,663 3,619 3,633 3,643 3,742 3,663 3,592 3,611 Cr 0,001 0,002 0,002 0,004 0,000 0,006 0,003 0,001 0,000 Ti 0.045 0,044 0.031 0.038 0,020 0,040 0.046 0.039 0,063 Fe 2+=tot 0,333 0,282 0,334 0,347 0,350 0,297 0,289 0,310 0,344 Mn 0,001 0,000 0,000 0,010 0,011 0,001 0,000 0,000 0,002 Mg 0,121 0,103 0,135 0,116 0,112 0,089 0,120 0,170 0,140 4,141 okta. 4,133 4,114 4,134 4,153 4,153 4,117 4,119 4,137 Ва 0,009 0,009 0,020 0,013 0,007 0,003 0,004 0,013 0,013 Ca 0,000 0,002 0,000 0,006 0.003 0,007 0,000 0,001 0,003 Na 0.363 0.325 0,362 0,509 0,477 0,379 0.359 0.315 0,389 Κ 1,609 1,579 1,617 1,446 1,450 1,486 1,570 1,619 1,520 interlayer 1,992 1,919 1,985 1,970 1,934 1,876 1,938 1,948 1,924 14,087 14,055 Summe 14,125 14,033 14,120 14,110 14,030 14,067 14,061

0,75

0,28

25,96

1,77

71,99

0,347

-0,049

0,397

0,76

0,17

24,72

1,73

73,39

0,350

-0,039

0,389

0,71

0,00

18,62

3,62

77,76

0,289

-0,008

0,297

0,77

0.35

20,26

0,98

78,40

0,297

-0,050

0,346

0,65

0,06

16,28

5,82

77,84

0,310

-0,009

0,319

0,71

0,14

20,33

4,87

74,66

0,344

-0,003

0,347

IMM051

IMM051

IMM056

IMM056

10.1

46,00

0,31

34,14

0,01

0,83

0.09

0,01

2,90

0,18

1,16

8,68

4,45

98,77

6,196

0,031

5,419

0,001

0,167

0,013

0,001

0,327

0,010

0,302

1,492

13,959

6,196

1,804

8,000

3,616

0,001

0,031

0,327

0,001

0,167

4,142

0,010

0.013

0,302

1,492

1,817

13,959

0,66

0,73

16,73

9,82

72,72

0,327

0,061

0,266

IMM051

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

IMM051

IMM051

IMM051

IMM051

X(Fe)

Ма

Ра

Ce

Mu

Fe tot

Fe 2+

Fe 3+

0,73

0,00

18,40

0,00

81,60

0,333

-0,077

0,410

0,73

0.08

17,05

2,36

80,50

0,282

0,007

0,276

0,71

0,00

18,29

80,22

0,334

-0,061

0,396

1,49

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Hellgli	10.1	10.1	10.1	10.2	10.2	10.2	10.2	10.2	10.2	10.3
	HG1-4BI/GR	HG2-1	HG2-2	HG2-3GRN	HG3-1	HG3-2	HG4-1	HG4-2	HG5-1QIBI	HG1-2GRN
SiO2	45,46	45,00	45,80	44,91	45,28	45,14	45,48	45,86	45,99	45,22
TiO2	0,40	0,30	0,25	0,39	0,31	0,40	0,35	0,42	0,25	0,34
AI2O3	35,26	35,54	35,68	35,01	35,03	35,72	34,86	35,34	36,74	35,13
Cr2O3	0,05	0,02	0,01	0,00	0,01	0,06	0,04	0,12	0,00	0,00
MgO	0,61	0,55	0,61	0,58	0,71	0,59	0,69	0,67	0,43	0,67
CaO	0,01	0,01	0,00	0,02	0,00	0,01	0,00	0,00	0,02	0,00
MnO	0,00	0,00	0,05	0,04	0,04	0,00	0,00	0,00	0,03	0,03
FeO	3,00	2,74	2,63	2,61	2,83	2,65	3,03	2,77	2,53	2,90
BaO	0,34	0,25	0,12	0,31	0,24	0,25	0,26	0,34	0,27	0,26
Na2O	1,62	1,78	1,54	1,56	1,53	1,50	1,49	1,65	1,55	1,52
K2O	8,71	8,50	8,74	8,91	8,83	8,75	8,77	8,83	8,92	8,66
H2O	4,49	4,46	4,51	4,44	4,46	4,48	4,47	4,52	4,56	4,46
Summe	99,79	99,18	99,88	98,75	99,23	99,53	99,45	100,46	101,23	99,09
Strukturforn	nel bezogen a	uf 22 Saue	rstoffe							
Si	6,076	6,049	6,095	6,072	6,088	6,043	6,106	6,091	6,044	6,082
Ті	0,040	0,030	0,025	0,039	0,031	0,041	0,035	0,042	0,024	0,034
AI	5,554	5,630	5,597	5,579	5,551	5,635	5,516	5,532	5,691	5,567
Cr	0,005	0,002	0,001	0,000	0,001	0,007	0,004	0,013	0,000	0,000
Mg	0,122	0,111	0,120	0,117	0,141	0,117	0,138	0,133	0,083	0,135
Ca	0,002	0,001	0,000	0,002	0,000	0,001	0,000	0,000	0,003	0,000
Mn	0,000	0,000	0,005	0,005	0,004	0,000	0,000	0,000	0,003	0,003
Fe	0,335	0,308	0,293	0,296	0,318	0,296	0,340	0,308	0,278	0,326
Ва	0,018	0,013	0,006	0,016	0,013	0,013	0,014	0,018	0,014	0,013
Na	0,419	0,464	0,397	0,408	0,399	0,390	0,389	0,424	0,394	0,396
к	1,485	1,457	1,483	1,537	1,514	1,493	1,502	1,496	1,496	1,485
Summe	14,056	14,065	14,022	14,071	14,061	14,037	14,044	14,055	14,031	14,041
Si	6.076	6 049	6 095	6 072	6 088	6.043	6 106	6 091	6 044	6 082
	1 924	1 951	1 905	1 928	1 912	1 957	1 894	1 909	1 956	1 918
tetr	8 000	8 000	8 000	8,000	8 000	8 000	8 000	8 000	8,000	8 000
	3 630	3 679	3 691	3 652	3 639	3 678	3 622	3 622	3 735	3 649
Cr	0,005	0,002	0,001	0,000	0,000	0.007	0.004	0.013	0,000	0,000
Ti	0.040	0.030	0.025	0,039	0.031	0.041	0.035	0.042	0.024	0.034
Fe 2+=tot	0.335	0.308	0.293	0,296	0.318	0,296	0,340	0.308	0.278	0.326
Mn	0.000	0.000	0.005	0.005	0.004	0.000	0,000	0.000	0.003	0.003
Μα	0.122	0.111	0.120	0.117	0.141	0.117	0.138	0.133	0.083	0.135
okta.	4.132	4.130	4.135	4.108	4.135	4.139	4.140	4.118	4.124	4.147
Ва	0.018	0.013	0.006	0.016	0.013	0.013	0.014	0.018	0.014	0.013
Са	0,002	0,001	0,000	0,002	0,000	0,001	0,000	0,000	0,003	0,000
Na	0.419	0.464	0.397	0.408	0.399	0.390	0.389	0.424	0.394	0.396
к	1,485	1,457	1,483	1,537	1,514	1,493	1,502	1,496	1,496	1,485
interlayer	1,924	1,936	1,887	1,963	1,926	1,898	1,904	1,937	1,907	1,895
Summe	14,056	14,065	14,022	14,071	14,061	14,037	14,044	14,055	14,031	14,041
X(Fe)	0,73	0,73	0,71	0,72	0,69	0,72	0,71	0,70	0,77	0,71
Мо	0.10	0.07	0.00	0.12	0.00	0.06	0.00	0.01	0.15	0.00
ivia Do	0,10	0,07	21 1 2	0,1Z	20.94	20,00	20.56	22 07	0,10	0,00
	ספ,ו∠ כס כ	24,13 2 1F	ZI,IZ 172	20,90	20,04 1 10	20,09	20,00 5 00	22,01 1 51	20,01	CU,1∠ 4 ∩0
Mu	5,0Z 7/ 10	2,40 72 25	4,13 7/ 15	5,02 75 21	4,40 7/ 77	2,10 77 00	5,29 7/ 15	72 20	76 92	4,00 7/ 07
inu	74,10	70,00	, 1 , 13	70,01	· · · / /	11,03	74,13	10,00	10,02	74,07
Fe tot	0,335	0,308	0,293	0,296	0,318	0,296	0,340	0,308	0,278	0,326
Fe 2+	-0,005	-0,032	0,000	-0,005	-0,022	-0,033	0,003	-0,001	-0,014	-0,019
Fe 3+	0,340	0,340	0,294	0,300	0,340	0,330	0,338	0,308	0,293	0,345
	-									-

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Hellgli	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.3	10.4	10.4
	HG1-3GRN	HG2-1	HG2-2	HG2-3	HG2-4	HG3-1	HG3-2	HG3-3	HG1-1PLE	HG1-2PLE
SiO2	45,65	46,60	46,39	45,91	45,85	45,94	47,84	46,87	46,85	46,17
TiO2	0,42	0,35	0,32	0,27	0,34	0,25	0,39	0,38	0,38	0,30
AI2O3	35,13	34,55	35,43	35,00	35,30	35,07	33,39	33,71	34,43	35,00
Cr2O3	0,01	0,02	0,00	0,06	0,00	0,03	0,00	0,01	0,01	0,01
MgO	0,70	0,84	0,60	0,61	0,68	0,68	1,22	1,12	0,88	0,79
CaO	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,03	0,02	0,00
MnO	0,01	0,04	0,01	0,03	0,02	0,00	0,00	0,00	0,01	0,02
FeO	2,75	2,91	2,82	2,78	2,98	2,62	2,92	2,97	2,55	2,79
BaO	0,28	0,27	0,14	0,24	0,32	0,27	0,15	0,14	0,29	0,21
Na2O	1,66	1,31	1,52	1,62	1,48	1,56	1,08	1,31	1,29	1,34
K2O	8,82	9,21	8,98	8,52	8,76	8,76	9,15	9,03	9,00	8,87
H2O	4,49	4,52	4,54	4,49	4,51	4,49	4,54	4,50	4,52	4,50
Summe	99,90	100,57	100,73	99,58	100,22	99,69	100,62	100,09	100,22	100,01
Strukturforn	nel bezogen a	uf 22 Saue	erstoffe							
Si	6,096	6,184	6,132	6,139	6,102	6,137	6,321	6,243	6,219	6,147
Ті	0,042	0,035	0,032	0,027	0,034	0,026	0,039	0,038	0,038	0,030
AI	5,529	5,404	5,521	5,515	5,537	5,520	5,200	5,292	5,387	5,492
Cr	0,001	0,002	0,000	0,006	0,000	0,003	0,000	0,001	0,001	0,001
Mg	0,139	0,166	0,119	0,122	0,135	0,134	0,240	0,221	0,174	0,156
Са	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,004	0,002	0,000
Mn –	0,002	0,004	0,001	0,003	0,003	0,000	0,000	0,000	0,002	0,002
Fe	0,307	0,323	0,311	0,311	0,331	0,293	0,322	0,331	0,283	0,310
Ва	0,015	0,014	0,007	0,013	0,016	0,014	0,008	0,007	0,015	0,011
Na	0,430	0,336	0,390	0,421	0,382	0,404	0,276	0,338	0,333	0,346
n Cumme	1,503	1,559	1,515	1,453	1,487	1,493	1,543	1,534	1,524	1,507
Summe	14,003	14,020	14,020	14,011	14,029	14,025	15,949	14,009	13,970	14,003
Si	6 096	6 184	6 132	6 1 3 9	6 102	6 137	6 321	6 243	6 2 1 9	6 147
	1 904	1 816	1 868	1 861	1 898	1 863	1 679	1 757	1 781	1 853
tetr.	8,000	8 000	8 000	8,000	8 000	8 000	8 000	8 000	8 000	8 000
	3,625	3,588	3,653	3,654	3,639	3,657	3,521	3,535	3,606	3,639
Cr	0.001	0.002	0.000	0.006	0.000	0.003	0.000	0.001	0.001	0.001
Ti	0,042	0,035	0,032	0,027	0,034	0,026	0,039	0,038	0.038	0,030
Fe 2+=tot	0,307	0,323	0,311	0,311	0,331	0,293	0,322	0,331	0,283	0,310
Mn	0,002	0,004	0,001	0,003	0,003	0,000	0,000	0,000	0,002	0,002
Mg	0,139	0,166	0,119	0,122	0,135	0,134	0,240	0,221	0,174	0,156
okta.	4,116	4,117	4,116	4,124	4,143	4,113	4,123	4,126	4,103	4,139
Ва	0,015	0,014	0,007	0,013	0,016	0,014	0,008	0,007	0,015	0,011
Ca	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,004	0,002	0,000
Na	0,430	0,336	0,390	0,421	0,382	0,404	0,276	0,338	0,333	0,346
к	1,503	1,559	1,515	1,453	1,487	1,493	1,543	1,534	1,524	1,507
interlayer	1,947	1,908	1,912	1,887	1,886	1,912	1,826	1,882	1,874	1,863
Summe	14,063	14,026	14,028	14,011	14,029	14,025	13,949	14,009	13,978	14,003
X(Fe)	0,69	0,66	0,72	0,72	0,71	0,69	0,57	0,60	0,62	0,66
Ма	0.00	0.00	0.00	0.00	0.05	0.00	0.01	0.19	0.11	0.00
Pa	22.25	17.73	20.46	22.45	20.43	21.30	15.17	18.03	17.89	18.66
Ce	4.79	9.19	6.62	6.93	5.11	6.83	16.07	12.15	10.95	7.36
Mu	72.96	73.08	72.93	70.62	74.42	71.87	68.75	69.63	71.05	73.98
	,	,	/	,	, -	<i>,</i> –	, -	,	,	-,
Fe tot	0,307	0,323	0,311	0,311	0,331	0,293	0,322	0,331	0,283	0,310
Fe 2+	-0,001	0,053	0,045	0,044	0,001	0,028	0,120	0,060	0,083	0,021
Fe 3+	0,308	0,270	0,266	0,267	0,330	0,265	0,203	0,272	0,200	0,290

- A 266 -

Probe	IMM056	IMM056	IMM056	IMM056	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Hellgli	10.4	10.4	10.4	10.4	11.1	11.1	11.1	11.1	11.1	11.1
	HG1-3PLE	HG2-1PLE	HG2-2PLE	HG2-3PLE	HG1-1GRE	HG1-2	HG1-3GRE	HG2-1GRN	HG2-2GRN	HG3-1
SiO2	46,31	46,81	45,79	45,76	44,79	44,36	45,08	45,11	45,00	45,13
TiO2	0,24	0,31	0,25	0,31	0,42	0,52	0,49	0,44	0,40	0,70
AI2O3	34,73	34,49	35,25	34,93	34,96	34,95	34,50	35,27	36,07	35,47
Cr2O3	0,00	0,02	0,03	0,01	0,01	0,05	0,04	0,01	0,01	0,04
MgO	0,86	0,97	0,66	0,69	0,65	0,59	0,64	0,50	0,39	0,52
CaO	0,02	0,03	0,03	0,02	0,03	0,02	0,00	0,02	0,01	0,00
MnO	0,03	0,00	0,00	0,00	0,02	0,06	0,11	0,05	0,00	0,03
FeO	2,71	2,90	2,77	2,82	3,12	3,07	3,12	2,67	2,44	2,31
BaO	0,24	0,19	0,21	0,21	0,27	0,28	0,27	0,35	0,28	0,27
Na2O	1,31	1,21	1,47	1,48	1,50	1,52	1,48	1,50	1,43	1,46
K2O	8,31	8,53	8,70	8,71	9,12	9,03	9,23	9,06	9,18	9,08
H2O	4,49	4,52	4,49	4,48	4,44	4,42	4,44	4,46	4,48	4,47
Summe	99,25	99,93	99,67	99,43	99,30	98,90	99,38	99,42	99,66	99,48
Strukturforr	nel bezoger	auf 22 Sau	erstoffe							
Si	6,189	6,217	6,117	6,131	6,045	6,016	6,084	6,064	6,024	6,050
Ti	0,024	0,031	0,025	0,031	0,043	0,053	0,050	0,044	0,040	0,070
AI	5,469	5,398	5,549	5,514	5,560	5,587	5,487	5,588	5,690	5,604
Cr	0,000	0,002	0,003	0,001	0,001	0,005	0,004	0,001	0,001	0,004
Mg	0,171	0,191	0,131	0,138	0,131	0,120	0,129	0,099	0,078	0,105
Ca	0,003	0,004	0,004	0,003	0,005	0,002	0,000	0,002	0,001	0,000
Mn -	0,003	0,000	0,000	0,000	0,002	0,007	0,013	0,006	0,000	0,003
Fe	0,303	0,322	0,309	0,316	0,352	0,348	0,352	0,300	0,273	0,259
ва	0,012	0,010	0,011	0,011	0,014	0,015	0,014	0,019	0,015	0,014
ina M	0,340	0,310	0,301	0,304	0,392	0,399	0,307	0,390	0,371	0,379
n Summo	12 020	12 020	1,402	1,400	1,009	1,005	1,000	1,004	1,000	14 042
Summe	15,550	15,550	14,013	14,017	14,115	14,115	14,100	14,003	14,000	14,042
Si	6.189	6.217	6.117	6.131	6.045	6.016	6.084	6.064	6.024	6.050
ALIV	1.811	1.783	1.883	1.869	1.955	1.984	1.916	1.936	1.976	1.950
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	3,658	3,614	3,666	3,645	3,605	3,603	3,571	3,653	3,714	3,654
Cr	0,000	0,002	0,003	0,001	0,001	0,005	0,004	0,001	0,001	0,004
Ті	0,024	0,031	0,025	0,031	0,043	0,053	0,050	0,044	0,040	0,070
Fe 2+=tot	0,303	0,322	0,309	0,316	0,352	0,348	0,352	0,300	0,273	0,259
Mn	0,003	0,000	0,000	0,000	0,002	0,007	0,013	0,006	0,000	0,003
Mg	0,171	0,191	0,131	0,138	0,131	0,120	0,129	0,099	0,078	0,105
okta.	4,159	4,160	4,135	4,131	4,133	4,137	4,119	4,104	4,106	4,095
Ва	0,012	0,010	0,011	0,011	0,014	0,015	0,014	0,019	0,015	0,014
Ca	0,003	0,004	0,004	0,003	0,005	0,002	0,000	0,002	0,001	0,000
Na	0,340	0,310	0,381	0,384	0,392	0,399	0,387	0,390	0,371	0,379
Κ	1,416	1,445	1,482	1,488	1,569	1,563	1,588	1,554	1,568	1,554
interlayer	1,772	1,769	1,878	1,886	1,981	1,979	1,989	1,965	1,955	1,946
Summe	13,930	13,930	14,013	14,017	14,113	14,115	14,108	14,069	14,060	14,042
X(Fe)	0,64	0,63	0,70	0,70	0,73	0,74	0,73	0,75	0,78	0,71
Ma	0.40	0.00	0.04	0.45	0.04	0.40	0.00	0.14		0.00
Pa	10 21	0,23 17 64	20,21	20,13 20 49	0,24 10.06	20 20	19 60	20.06	10 15	10,00
Ce	9.45	10.84	5 84	20,40 6 53	2 24	0 79	4 20	3 21	1 18	2 40
Mu	71 06	71 29	73.56	72 84	77 57	78 79	76 20	76 62	79.62	77 91
	71,00	11,20	70,00	72,04	, 07	.0,.0	10,20	10,02	10,02	,
Fe tot	0.303	0.322	0.309	0.316	0.352	0.348	0.352	0.300	0.273	0.259
Fe 2+	0.042	0.057	0.010	0,023	-0.043	-0.051	0.005	0.009	-0.015	0.016
Fe 3+	0.260	0.265	0.299	0.293	0.395	0.399	0.347	0.291	0.288	0.243
						-	-	-	-	

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Hellgli	11.1	11.1	11.1	11.2	11.2	11.2	11.2	11.2	11.2	11.2
	HG3-2	HG4-1	HG4-2	HG1-1GRE	HG1-2GRE	HG3-1GRE	HG3-2GRE	HG3-4GRE	HG4-2	HG5-1
SiO2	44,87	44,42	44,80	44,64	44,84	44,93	46,39	45,06	45,51	44,60
TiO2	0,26	0,48	0,50	0,44	0,34	0,39	0,50	0,51	0,50	0,53
AI2O3	36,12	34,33	34,50	35,40	35,30	35,05	32,85	34,22	34,42	34,67
Cr2O3	0,03	0,02	0,07	0,01	0,03	0,01	0,00	0,04	0,00	0,00
MgO	0,38	0,69	0,61	0,59	0,61	0,63	1,21	0,79	0,75	0,79
CaO	0,01	0,00	0,01	0,00	0,00	0,00	0,00	0,05	0,00	0,02
MnO	0,00	0,00	0,00	0,01	0,00	0,01	0,03	0,03	0,01	0,07
FeO	2,47	2,89	2,65	3,28	3,23	3,08	3,18	2,95	2,71	2,95
BaO	0,21	0,28	0,27	0,28	0,25	0,29	0,09	0,23	0,27	0,33
Na2O	1,74	1,45	1,48	1,37	1,44	1,38	1,00	1,35	1,27	1,37
K2O	8,76	8,99	9,02	9,12	8,95	9,17	9,21	8,96	9,07	9,13
H2O	4,47	4,39	4,41	4,46	4,46	4,45	4,44	4,42	4,45	4,42
Summe	99,32	98,01	98,28	99,50	99,45	100,24	98,91	98,59	98,89	98,89
Strukturform	el bezoger	n auf 22 Sa	uerstoffe							
Si	6,018	6,071	6,090	6,010	6,035	6,055	6,263	6,109	6,137	6,046
Ti	0,026	0,049	0,051	0,044	0,035	0,040	0,051	0,052	0,051	0,054
AI	5,711	5,531	5,527	5,618	5,600	5,567	5,226	5,468	5,470	5,539
Cr	0,004	0,002	0,007	0,001	0,003	0,001	0,000	0,005	0,000	0,000
Mg	0,075	0,140	0,123	0,118	0,123	0,127	0,244	0,160	0,151	0,159
Ca	0,001	0,000	0,002	0,000	0,000	0,000	0,000	0,007	0,000	0,003
Mn	0,000	0,000	0,000	0,001	0,000	0,001	0,003	0,003	0,001	0,008
Fe	0,277	0,330	0,302	0,369	0,364	0,348	0,359	0,335	0,305	0,334
Ва	0,011	0,015	0,015	0,015	0,013	0,015	0,005	0,012	0,014	0,017
Na	0,453	0,383	0,389	0,358	0,375	0,360	0,261	0,354	0,333	0,359
K	1,499	1,567	1,564	1,566	1,537	1,576	1,585	1,550	1,561	1,579
Summe	14,074	14,088	14,068	14,099	14,085	14,090	13,997	14,055	14,024	14,099
o :	0.040	0.074	0.000	0.040	0.005	0.055	0.000	0.400	0.407	0.040
51	6,018	6,071	6,090	6,010	6,035	6,055	6,263	6,109	6,137	6,046
ALIV	1,982	1,929	1,910	1,990	1,965	1,945	1,737	1,891	1,863	1,954
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
	3,729	3,602	3,017	3,027	3,035	3,021	3,469	3,576	3,607	3,365
	0,004	0,002	0,007	0,001	0,003	0,001	0,000	0,005	0,000	0,000
Fo 21-tot	0,020	0,049	0,001	0,044	0,035	0,040	0,051	0,052	0,001	0,004
	0,277	0,550	0,302	0,509	0,004	0,040	0,003	0,003	0,505	0,004
Ma	0,000	0,000	0,000	0,001	0,000	0,001	0,000	0,000	0,001	0,000
okta	4 111	4 123	4 100	4 160	4 160	4 138	4 145	4 132	4 116	4 141
Ba	0.011	0.015	0.015	0.015	0.013	0.015	0.005	0.012	0.014	0.017
Ca	0.001	0.000	0.002	0.000	0.000	0.000	0.000	0.007	0.000	0.003
Na	0.453	0.383	0.389	0.358	0.375	0.360	0.261	0.354	0.333	0.359
ĸ	1,499	1.567	1.564	1,566	1.537	1.576	1.585	1.550	1.561	1.579
interlaver	1.964	1.966	1.969	1.939	1.925	1.952	1.851	1.923	1.908	1.959
Summe	14.074	14.088	14.068	14.099	14.085	14.090	13.997	14.055	14.024	14.099
	*	,	,	,	,	,	,		,	,
X(Fe)	0,79	0,70	0,71	0,76	0,75	0,73	0,60	0,68	0,67	0,68
Ма	0.04	0.00	0.09	0.00	0.00	0.01	0.01	0.36	0.02	0.16
Pa	23.20	19.65	19.90	18.63	19.61	18.60	14.13	18.51	17.56	18.49
Ce	0.92	3.55	4.50	0.48	1.75	2.73	13.13	5.44	6.84	2.32
Mu	75,84	76,80	75,52	80,90	78,64	78,66	72,73	75,70	75,58	79,02
Fe tot	0.277	0.330	0,302	0.369	0.364	0.348	0.359	0.335	0.305	0,334
Fe 2+	-0.031	-0.019	0.018	-0,064	-0.054	-0.033	0.069	0.001	0.037	-0.059
Fe 3+	0,308	0,349	0,284	0,433	0,417	0,380	0,289	0,334	0,268	0,393

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Hellgli	11.2	11.3	11.3	11.3	11.3	11.3	11.3	11.3	11.4	11.4
	HG5-2	HG1-1GRN	HG1-2GRN	HG2-2	HG3-1	HG3-2	HG3-3	HG4-1	HG1-1	HG1-2
SiO2	45,29	45,11	45,54	46,00	45,62	47,25	47,49	44,84	45,10	44,70
TiO2	0,49	0,49	0,57	0,47	0,52	0,53	0,63	0,50	0,55	0,73
AI2O3	34,21	35,58	35,55	35,21	34,91	33,57	32,48	35,57	35,41	35,08
Cr2O3	0,04	0,00	0,06	0,00	0,05	0,02	0,00	0,04	0,08	0,03
MgO	0,78	0,49	0,51	0,68	0,74	1,04	1,34	0,55	0,45	0,52
CaO	0,00	0,02	0,00	0,00	0,00	0,01	0,01	0,00	0,00	0,00
MnO	0,00	0,00	0,00	0,02	0,00	0,02	0,01	0,01	0,00	0,00
FeO	2,98	2,68	2,48	3,02	2,92	2,94	2,98	2,68	2,55	2,56
BaO	0,18	0,23	0,23	0,35	0,11	0,24	0,17	0,34	0,34	0,24
Na2O	1,39	1,51	1,43	1,31	1,32	1,16	1,13	1,52	1,47	1,36
K2O	9,09	9,20	9,19	8,99	8,95	9,03	9,10	8,94	8,95	9,16
H2O	4,44	4,48	4,50	4,52	4,48	4,52	4,49	4,46	4,47	4,44
Summe	98,90	99,72	100,04	100,54	99,66	100,29	99,84	99,46	99,31	98,86
Strukturfor	mel bezoge	en auf 22 Sau	erstoffe							
Si	6,124	6,041	6,071	6,109	6,106	6,275	6,339	6,025	6,058	6,043
Ti	0,050	0,049	0,057	0,047	0,052	0,053	0,063	0,050	0,055	0,074
AI	5,451	5,616	5,585	5,512	5,507	5,253	5,109	5,633	5,606	5,590
Cr	0,004	0,000	0,006	0,000	0,006	0,002	0,000	0,004	0,008	0,003
Mg	0,156	0,098	0,102	0,135	0,147	0,206	0,267	0,110	0,090	0,105
Ca	0,000	0,002	0,000	0,000	0,000	0,002	0,001	0,000	0,000	0,000
Mn	0,000	0,000	0,000	0,002	0,000	0,002	0,001	0,001	0,000	0,000
Fe	0,337	0,300	0,277	0,336	0,327	0,327	0,332	0,301	0,287	0,289
ва	0,009	0,012	0,012	0,018	0,006	0,013	0,009	0,018	0,018	0,013
Na K	0,304	0,393	0,370	0,330	0,343	0,290	0,293	0,395	1 522	0,307
n Summo	1,009	1,072	1,303	1,020	1,020	12 050	12 064	1,002	14 027	1,001
Summe	14,005	14,005	14,043	14,010	14,021	15,555	15,504	14,070	14,007	14,000
Si	6,124	6.041	6.071	6.109	6.106	6.275	6.339	6.025	6.058	6.043
ALIV	1.876	1.959	1.929	1.891	1.894	1.725	1.661	1.975	1.942	1.957
tetr.	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000
AI VI	3,575	3,657	3,656	3,620	3,612	3,528	3,448	3,658	3,664	3,633
Cr	0,004	0,000	0,006	0,000	0,006	0,002	0,000	0,004	0,008	0,003
Ti	0,050	0,049	0,057	0,047	0,052	0,053	0,063	0,050	0,055	0,074
Fe 2+=tot	0,337	0,300	0,277	0,336	0,327	0,327	0,332	0,301	0,287	0,289
Mn	0,000	0,000	0,000	0,002	0,000	0,002	0,001	0,001	0,000	0,000
Mg	0,156	0,098	0,102	0,135	0,147	0,206	0,267	0,110	0,090	0,105
okta.	4,123	4,105	4,098	4,140	4,144	4,117	4,112	4,124	4,104	4,104
Ва	0,009	0,012	0,012	0,018	0,006	0,013	0,009	0,018	0,018	0,013
Ca	0,000	0,002	0,000	0,000	0,000	0,002	0,001	0,000	0,000	0,000
Na	0,364	0,393	0,370	0,336	0,343	0,298	0,293	0,395	0,382	0,357
К	1,569	1,572	1,563	1,523	1,528	1,529	1,549	1,532	1,533	1,581
interlayer	1,942	1,979	1,945	1,878	1,877	1,841	1,852	1,945	1,933	1,951
Summe	14,065	14,083	14,043	14,018	14,021	13,959	13,964	14,070	14,037	14,055
¥(۲۰)	0.69	0.75	0.72	0.71	0.60	0.61	0.55	0.72	0.76	0.72
л(ге)	0,66	0,75	0,73	0,71	0,69	0,61	0,55	0,73	0,76	0,73
Ма	0,00	0,12	0,00	0,00	0,00	0,09	0,08	0,00	0,00	0,01
Ра	18,85	19,96	19,13	18,07	18,32	16,29	15,88	20,51	19,95	18,44
Ce	6,19	2,06	3,55	5,45	5,28	13,74	16,95	1,27	2,91	2,14
Mu	74,96	77,85	77,32	76,48	76,40	69,88	67,09	78,23	77,14	79,42
Fe tot	0.337	0.300	0 277	0.336	0.327	0.327	0.332	0.301	0 287	0 289
Fe 2+	0.017	-0.008	0.026	0.021	0.011	0.122	0.135	-0.035	0.023	0.012
Fe 3+	0,319	0.307	0.251	0.315	0.316	0.205	0.197	0.335	0.264	0.277
	-,	-,	-,	-,0	.,	- ,	-,	.,	-,== -	-,

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

Probe IMM061 Hellgli 11.4 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5 HG1-3 HG1-1GRE HG1-2GRE HG1-3GRE HG1-4GRE HG2-1 HG2-2 HG2-3 HG3-1 HG3-2 SiO2 44,73 45,80 45,60 45.55 44,73 45.16 45.43 45,10 45,46 46,55 TiO2 0,61 0,44 0,50 0,47 0,43 0,51 0,56 0,52 0.45 0,49 AI2O3 35,36 35,61 35,81 35,51 35,73 34,69 34,64 35,20 34,99 34,94 Cr2O3 0,01 0,00 0,01 0,00 0,02 0,02 0,02 0,00 0,00 0,03 0,54 MgO 0,63 0,54 0,55 0,56 0,67 0,73 0,63 0,75 0,72 CaO 0.00 0.02 0,02 0.01 0,00 0.00 0.00 0,00 0,00 0,00 MnO 0.00 0.02 0,03 0,00 0,02 0,01 0,01 0,00 0,04 0,00 FeO 2,76 2,93 3,16 2,92 3,13 3,02 3,04 2,91 2,97 3,02 BaO 0,26 0,17 0,11 0,11 0,15 0,29 0,29 0,28 0,23 0,31 Na2O 1,40 1,35 1,52 1,48 1,45 1,51 1,40 1,34 1.49 1,44 K20 9,15 8,89 8,84 8,82 8,91 8,80 9,11 9,09 9.03 8,93 H20 4,45 4,52 4,57 4,50 4,52 4,42 4,45 4,48 4,46 4,48 Summe 99,24 100,49 101,56 100,01 100,50 98,65 99,34 99,86 99,49 99,84 Strukturformel bezogen auf 22 Sauerstoffe 6,064 Si 6,077 6,026 6,076 6.104 6.079 6.051 6,067 6,083 6.086 Ti 0,061 0,044 0.050 0,047 0,043 0,052 0.057 0.053 0,045 0,050 AI 5,614 5,568 5,534 5,579 5,594 5,545 5,501 5,550 5,545 5,514 Cr 0,001 0,000 0,001 0.000 0,002 0,002 0,003 0,000 0,000 0.003 0,108 0,124 0,106 0,108 0,146 0,126 0,149 Mg 0,110 0,136 0.145 Ca 0,000 0,003 0,003 0,001 0,000 0,000 0,000 0,000 0,000 0,000 Mn 0,000 0,002 0,003 0,000 0,001 0,000 0,002 0,001 0,000 0,004 Fe 0,311 0,325 0,346 0,326 0,348 0,343 0,342 0.326 0,334 0.338 Ва 0,014 0,009 0,006 0,006 0,008 0,015 0,016 0,015 0,012 0,016 Na 0,365 0,392 0,375 0,376 0,390 0,369 0,353 0,346 0,387 0,374 κ 1,572 1,504 1,479 1,500 1,510 1,523 1,565 1,551 1,549 1,526 14,006 14,022 14,058 Summe 14,053 14,067 14,086 14,056 14,073 14,045 14,044 Si 6,026 6,076 6,104 6,079 6,051 6,067 6.083 6,077 6,064 6,086 AI IV 1,974 1,924 1,896 1,921 1,949 1,933 1,917 1,923 1,936 1,914 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 tetr. AI VI 3,641 3,644 3,638 3,658 3,646 3,612 3,584 3,627 3,610 3,600 Cr 0,001 0,000 0,001 0,000 0,002 0,002 0,003 0,000 0,000 0,003 Ti 0,061 0,044 0,050 0,047 0,043 0,052 0.057 0,053 0,045 0,050 Fe 2+=tot 0,311 0,325 0,346 0,326 0,348 0,343 0,342 0,326 0,334 0,338 Mn 0,000 0,002 0,003 0,000 0,002 0,001 0,001 0,000 0,004 0,000 Mg 0,108 0,124 0,106 0,108 0,110 0,136 0,146 0,126 0,145 0,149 4,144 4,150 okta. 4,122 4,137 4,140 4,146 4,133 4,132 4,138 4,139 Ba 0,014 0,006 0,012 0,009 0,006 0,008 0,015 0.016 0.015 0,016 Ca 0,000 0,003 0,003 0,001 0,000 0,000 0.000 0,000 0,000 0.000 Na 0.365 0,392 0.375 0.376 0,390 0.369 0.353 0,346 0,387 0,374 Κ 1,572 1,504 1,479 1,500 1,510 1,523 1,565 1,551 1,549 1,526 interlayer 1,951 1,908 1,862 1,882 1,907 1,908 1,934 1,912 1,948 1,917 14,006 14,022 14,053 14,067 14,044 14,086 14,056 Summe 14,073 14,045 14,058 X(Fe) 0,74 0,72 0,77 0,75 0,76 0,72 0,70 0,72 0,70 0,69 0.00 0.08 0.02 0.00 0,00 Ма 0,13 0,15 0,00 0,01 0.00 Ра 18,84 20,65 20,20 20,01 20,53 19,50 18,41 18,25 20,00 19,70 Ce 1,32 3,80 5,19 3,94 2,57 3,36 4,17 3,86 3,22 4,29 79,84 75,42 75,97 76,91 77,14 77,40 77,89 76,78 76,01 Mu 74,46 Fe tot 0,311 0,325 0,346 0,326 0,348 0,343 0,342 0,326 0,334 0,338 Fe 2+ -0,020 -0,004 0,048 0,018 -0,016 -0,017 -0,005 0,003 -0,036 -0,013 Fe 3+ 0,331 0,329 0,298 0,308 0,363 0,360 0,347 0,323 0,370 0,351

Fortsetzung Tab. H.4: Mikrosondenanalysen	von Hellglimmer
---	-----------------

Probe	IMM061	IMM061	IMM061	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063
Hellgli	11.5	11.5	11.5	2.1	2.1	2.1	2.1	2.1	2.1	2.3
	HG3-3	HG4-1PLE	HG4-2PLE	HG1-1GRN	HG2-1GRN	HG3-1	HG3-2	HG4-1	HG4-2	HG1-1PLE
SiO2	45,25	45,54	45,80	45,05	45,48	45,40	44,85	45,75	45,31	45,72
TiO2	0,49	0,48	0,49	0,24	0,29	0,35	0,33	0,37	0,31	0,37
AI2O3	35,04	35,30	34,95	35,32	34,76	35,19	35,21	34,98	35,58	34,70
Cr2O3	0,00	0,02	0,05	0,02	0,02	0,04	0,05	0,02	0,04	0,02
MgO	0,60	0,68	0,73	0,68	0,78	0,82	0,69	0,76	0,53	0,73
CaO	0,00	0,03	0,00	0,02	0,05	0,01	0,01	0,01	0,00	0,04
MnO	0,07	0,03	0,00	0,05	0,03	0,00	0,00	0,00	0,00	0,05
FeO	2,86	2,72	2,93	2,91	2,93	2,82	2,92	2,92	2,72	2,56
BaO	0,31	0,20	0,32	0,23	0,22	0,19	0,24	0,29	0,24	0,23
Na2O	1,44	1,42	1,30	1,68	1,68	1,58	1,66	1,68	1,71	1,26
K2O	8,86	9,12	8,89	8,53	8,50	8,65	8,56	8,49	8,67	9,47
H2O	4,46	4,49	4,49	4,46	4,46	4,48	4,45	4,49	4,48	4,47
Summe	99,38	99,99	99,95	99,20	99,18	99,50	99,00	99,71	99,59	99,54
Strukturfor	mel bezog	en auf 22 Sau	lerstoffe							
Si	6,082	6,078	6,115	6,057	6,113	6,080	6,048	6,113	6,065	6,132
Ti	0,049	0,048	0,049	0,024	0,029	0,035	0,034	0,037	0,031	0,038
AI	5,551	5,553	5,500	5,598	5,507	5,553	5,596	5,508	5,612	5,485
Cr	0,000	0,002	0,005	0,002	0,002	0,004	0,006	0,002	0,004	0,002
Mg	0,121	0,135	0,144	0,137	0,155	0,163	0,138	0,151	0,106	0,145
Ca	0,000	0,004	0,000	0,003	0,007	0,002	0,001	0,001	0,000	0,005
Mn	0,008	0,003	0,000	0,006	0,003	0,000	0,000	0,000	0,000	0,005
Fe	0,321	0,304	0,327	0,327	0,329	0,316	0,330	0,326	0,304	0,287
Ва	0,016	0,011	0,017	0,012	0,012	0,010	0,013	0,015	0,013	0,012
Na	0,374	0,368	0,336	0,438	0,437	0,410	0,434	0,436	0,443	0,328
К	1,519	1,553	1,515	1,463	1,458	1,477	1,473	1,446	1,480	1,620
Summe	14,040	14,057	14,009	14,069	14,051	14,050	14,071	14,036	14,058	14,060
Si	6,082	6,078	6,115	6,057	6,113	6,080	6,048	6,113	6,065	6,132
AI IV	1,918	1,922	1,885	1,943	1,887	1,920	1,952	1,887	1,935	1,868
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	3,632	3,631	3,615	3,655	3,620	3,634	3,644	3,621	3,676	3,618
Cr	0,000	0,002	0,005	0,002	0,002	0,004	0,006	0,002	0,004	0,002
Ti	0,049	0,048	0,049	0,024	0,029	0,035	0,034	0,037	0,031	0,038
Fe 2+=tot	0,321	0,304	0,327	0,327	0,329	0,316	0,330	0,326	0,304	0,287
Mn	0,008	0,003	0,000	0,006	0,003	0,000	0,000	0,000	0,000	0,005
Mg	0,121	0,135	0,144	0,137	0,155	0,163	0,138	0,151	0,106	0,145
okta.	4,131	4,122	4,141	4,152	4,138	4,151	4,151	4,137	4,122	4,095
Ва	0,016	0,011	0,017	0,012	0,012	0,010	0,013	0,015	0,013	0,012
Ca	0,000	0,004	0,000	0,003	0,007	0,002	0,001	0,001	0,000	0,005
Na	0,374	0,368	0,336	0,438	0,437	0,410	0,434	0,436	0,443	0,328
к	1,519	1,553	1,515	1,463	1,458	1,477	1,473	1,446	1,480	1,620
interlayer	1,909	1,935	1,868	1,917	1,913	1,899	1,920	1,898	1,936	1,966
Summe	14,040	14,057	14,009	14,069	14,051	14,050	14,071	14,036	14,058	14,060
X(Fe)	0.73	0.69	0.69	0.71	0.68	0.66	0.70	0.68	0.74	0.66
X(1 C)	0,70	0,00	0,00	0,71	0,00	0,00	0,70	0,00	0,74	0,00
Ма	0,00	0,22	0,00	0,17	0,35	0,08	0,05	0,04	0,00	0,28
Ра	19,76	19,12	18,17	23,01	22,97	21,71	22,73	23,14	23,06	16,79
Ce	4,08	3,89	5,75	2,87	5,65	4,02	2,40	5,65	3,23	6,61
Mu	76,16	76,78	76,08	73,95	71,02	74,19	74,82	71,17	73,72	76,33
Fe tot	0.321	0.304	0.327	0.327	0.329	0.316	0.330	0.326	0.304	0.287
Fe 2+	0.010	-0.010	0.020	-0.055	-0.013	-0.048	-0.056	0.000	-0.010	0.025
Fe 3+	0.311	0.313	0.308	0.382	0.343	0.364	0,386	0,326	0,314	0.262
	0,011	0,010	0,000	0,002	0,010	0,007	0,000	0,020	0,017	0,202

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

IMM063 IMM063 IMM063 IMM063 IMM063 Probe IMM063 IMM063 IMM063 IMM063 IMM063 2.3 Hellgli 2.3 2.3 2.4 2.4 2.4 2.5 2.5 2.6 2.7 HG1-2PLE HG1-3PLE HG1-4PLE HG1-1 HG1-2 HG1-3 HG2-1 HG2-2 HG1-2 HG1-1 SiO2 45.49 45.48 45.37 45.28 46.78 45,38 45,39 45.56 45,72 45,58 TiO2 0,36 0,29 0,31 0,32 0.33 0.48 0,33 0,33 0,32 0,36 AI2O3 34,56 34,73 34,42 34,64 32,89 35,14 34,91 34,98 34,48 34,67 Cr2O3 0,04 0,02 0,00 0,01 0,00 0,00 0,00 0,00 0,04 0,01 0,78 MgO 0,73 0,72 0,77 0,78 0,72 0,83 0,86 1,21 0,67 CaO 0,03 0,02 0.03 0,00 0,00 0.00 0,00 0.00 0.00 0,00 MnO 0.00 0.02 0,02 0.03 0,00 0.00 0.03 0.03 0,00 0.05 FeO 2,62 2,58 2,63 2,97 2,93 2,78 3,00 3.02 2,93 2,92 BaO 0,19 0,19 0,29 0,20 0,16 0,15 0,26 0,26 0,23 0,14 Na2O 1,51 1,46 1,65 1,64 1,50 1,19 1,55 1,31 1,72 1,53 K20 9,02 9,21 8,73 9,00 8,70 8,74 8,78 8,84 9,11 8,72 4,45 H20 4,46 4,43 4,45 4,46 4,47 4,47 4,48 4,47 4,47 Summe 99,04 99,04 98,65 98,98 99,20 99,32 99,53 99,73 99,39 99,41 Strukturformel bezogen auf 22 Sauerstoffe Si 6,132 6,122 6,142 6,108 6.285 6,089 6,091 6.100 6,139 6.117 Ti 0.030 0,031 0,032 0.033 0,048 0,034 0,034 0.032 0.036 0.036 AI 5,490 5,510 5,491 5,506 5,208 5.556 5,520 5,519 5,456 5,484 Cr 0,004 0,002 0,000 0,001 0,000 0,000 0,000 0,000 0,004 0,001 0,155 0,146 0,156 0,145 0,242 0,155 0,143 0,173 Mg 0,134 0,167 Ca 0,005 0,003 0,004 0,000 0,000 0,000 0,000 0,000 0,000 0,000 Mn 0,002 0,003 0,004 0,000 0,004 0,003 0,005 0,000 0,000 0,000 Fe 0,296 0,290 0,297 0,334 0,329 0,312 0,337 0,338 0,329 0,328 Ва 0,010 0,010 0,015 0,010 0,008 0,008 0,013 0,014 0,012 0,007 Na 0,394 0,381 0,313 0,406 0,342 0,446 0,429 0,427 0,399 0,391 κ 1,566 1,549 1,590 1,501 1,542 1,488 1,493 1,492 1,503 1,514 14,056 14,057 Summe 14,067 14,068 14,046 14,072 14,032 14,059 14,005 14,076 Si 6,132 6,122 6,142 6,108 6,285 6.089 6,091 6,100 6,139 6,117 AI IV 1,868 1,878 1,858 1,892 1,715 1,911 1,909 1,900 1,861 1,883 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 tetr. 8,000 8,000 AI VI 3,622 3,632 3,633 3,614 3,493 3,645 3,612 3,619 3,595 3,601 Cr 0,004 0,002 0,000 0,001 0,000 0,000 0,000 0,000 0,004 0,001 Ti 0,030 0,031 0,032 0,033 0,048 0,034 0,034 0,032 0,036 0,036 0,338 Fe 2+=tot 0,296 0,290 0,297 0,334 0,329 0,312 0,337 0,329 0,328 Mn 0,000 0,002 0,003 0,004 0,000 0,000 0,004 0,003 0,000 0,005 Mg 0,146 0,156 0,145 0,155 0,242 0,134 0,155 0,143 0,167 0,173 okta. 4,097 4,113 4,110 4,142 4,112 4,124 4,141 4,135 4,131 4,144 Ва 0,010 0,008 0,014 0,012 0,007 0,010 0,010 0,015 0,008 0,013 Ca 0,005 0,003 0,004 0,000 0,000 0,000 0,000 0,000 0,000 0.000 Na 0,394 0,381 0,313 0,406 0,342 0,446 0,429 0,427 0.399 0,391 Κ 1,566 1,549 1,590 1,501 1,542 1,488 1,493 1,492 1,503 1,514 interlayer 1,975 1,943 1,923 1,918 1,892 1,943 1,935 1,933 1,915 1,913 14,056 14,032 14,059 14,067 14,068 14,046 14,057 Summe 14,072 14,005 14,076 X(Fe) 0,67 0,65 0,67 0,68 0,58 0,70 0,68 0,70 0,66 0,66 0,24 0,17 0,00 0,00 0,01 Ма 0,19 0,00 0,00 0,00 0.00 Ра 20,06 19,68 16,43 21,29 18,15 23,07 22,31 22,24 20,99 20,54 6,59 7,08 Ce 6,11 5,39 14,26 4,43 4,56 4,98 6,94 5,84 73,11 74,03 76,30 73,32 67,59 72,50 72,78 72,07 Mu 73,13 73,62 Fe tot 0,296 0,290 0,297 0,334 0,329 0,312 0,337 0,338 0,329 0,328 Fe 2+ 0,016 -0,002 0,029 -0,015 0,091 -0,012 -0,030 -0,011 0,009 -0,020 Fe 3+ 0,280 0,292 0,268 0,349 0,238 0,324 0,367 0,349 0,320 0,348

Probe	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM089
Hellgli	2.7	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	7.1
	HG1-2	HG1-1	HG1-2	HG1-3	HG1-4	HG1-5	HG2-1	HG2-3	HG2-4	HG1-2
SiO2	45,52	45,22	46,13	45,43	45,45	45,52	45,07	45,35	45,75	46,68
TiO2	0,30	0,35	0,31	0,33	0,27	0,28	0,33	0,37	0,39	0,51
AI2O3	35,65	35,24	35,62	35,76	36,05	35,82	34,93	34,52	34,03	32,40
Cr2O3	0,01	0,00	0,01	0,04	0,01	0,01	0,01	0,01	0,05	0,04
MgO	0,62	0,63	0,73	0,58	0,56	0,55	0,65	0,74	0,83	1,13
CaO	0,01	0,00	0,02	0,00	0,03	0,00	0,02	0,00	0,00	0,00
MnO	0,00	0,10	0,11	0,07	0,06	0,13	0,03	0,00	0,00	0,00
FeO	2,62	3,14	2,77	2,37	2,35	2,44	2,63	2,73	2,79	2,97
BaO	0,21	0,09	0,13	0,08	0,11	0,07	0,28	0,26	0,16	0,20
Na2O	1,88	1,98	1,87	2,10	2,09	2,01	1,71	1,49	1,59	1,11
K2O	8,42	8,49	8,24	8,18	8,19	8,25	8,68	8,71	8,76	9,42
H2O	4,50	4,48	4,54	4,49	4,50	4,50	4,44	4,44	4,45	4,44
Summe	99,70	99,73	100,43	99,47	99,66	99,58	98,84	98,61	98,78	98,88
Strukturform	el bezogen	auf 22 Sauer	stoffe							
Si	6,072	6,056	6,100	6,065	6,051	6,069	6,086	6,130	6,172	6,308
Ті	0,030	0,035	0,031	0,033	0,027	0,028	0,034	0,037	0,040	0,052
AI	5,605	5,561	5,552	5,626	5,658	5,629	5,559	5,498	5,411	5,161
Cr	0,001	0,000	0,001	0,004	0,001	0,001	0,001	0,001	0,005	0,004
Mg	0,124	0,126	0,145	0,115	0,112	0,109	0,131	0,149	0,166	0,227
Ca	0,001	0,000	0,003	0,000	0,004	0,000	0,002	0,000	0,000	0,000
Mn	0,000	0,011	0,013	0,008	0,006	0,014	0,004	0,000	0,000	0,000
Fe	0,292	0,351	0,306	0,265	0,262	0,272	0,297	0,308	0,315	0,335
Ва	0,011	0,005	0,007	0,004	0,006	0,003	0,015	0,014	0,008	0,011
Na	0,485	0,514	0,480	0,543	0,540	0,519	0,449	0,390	0,416	0,291
к	1,432	1,450	1,390	1,393	1,390	1,403	1,495	1,502	1,508	1,624
Summe	14,054	14,110	14,028	14,055	14,057	14,049	14,072	14,029	14,041	14,015
Si	6,072	6,056	6,100	6,065	6,051	6,069	6,086	6,130	6,172	6,308
AI IV	1,928	1,944	1,900	1,935	1,949	1,931	1,914	1,870	1,828	1,692
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	3,677	3,617	3,652	3,690	3,709	3,698	3,645	3,628	3,583	3,469
Cr	0,001	0,000	0,001	0,004	0,001	0,001	0,001	0,001	0,005	0,004
Ті	0,030	0,035	0,031	0,033	0,027	0,028	0,034	0,037	0,040	0,052
Fe 2+=tot	0,292	0,351	0,306	0,265	0,262	0,272	0,297	0,308	0,315	0,335
Mn	0,000	0,011	0,013	0,008	0,006	0,014	0,004	0,000	0,000	0,000
Mg	0,124	0,126	0,145	0,115	0,112	0,109	0,131	0,149	0,166	0,227
okta.	4,124	4,141	4,148	4,115	4,117	4,123	4,111	4,123	4,110	4,088
Ва	0,011	0,005	0,007	0,004	0,006	0,003	0,015	0,014	0,008	0,011
Ca	0,001	0,000	0,003	0,000	0,004	0,000	0,002	0,000	0,000	0,000
Na	0,485	0,514	0,480	0,543	0,540	0,519	0,449	0,390	0,416	0,291
К	1,432	1,450	1,390	1,393	1,390	1,403	1,495	1,502	1,508	1,624
interlayer	1,929	1,969	1,880	1,940	1,940	1,925	1,961	1,906	1,932	1,926
Summe	14,054	14,110	14,028	14,055	14,057	14,049	14,072	14,029	14,041	14,015
X(Fe)	0,70	0,74	0,68	0,70	0,70	0,71	0,69	0,67	0,65	0,60
Ма	0.05	0.00	0 14	0.00	0 22	0.00	0 11	0.00	0.00	0.02
Pa	25 29	26 19	25.65	28.06	27 92	27 00	23.06	20 60	21 61	15 18
Ce	3.58	2 81	5 02	3.23	2 57	3 47	4.32	6 49	8.62	15 41
Mu	71 08	71 00	69.18	68 70	69 30	69 54	72 50	72 Q1	69.76	69 30
	. 1,00	71,00	55,10	00,70	00,00	00,04	. 2,00	12,01	00,10	00,00
Fe tot	0.292	0.351	0.306	0.265	0.262	0.272	0.297	0.308	0.315	0.335
Fe 2+	-0.022	-0.034	-0.014	-0.018	-0.034	-0.012	-0.011	0.019	0.046	0.133
Fe 3+	0.314	0.385	0.320	0.282	0.295	0.284	0.307	0.290	0.269	0.202
•	0,011	2,000	0,020	0,202	0,200	0,207	0,001	0,200	0,200	0,202

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Hellgli	7.1	7.1	7.1	7.1	7.1	7.3	7.3	7.3	7.4	7.4
	HG1-3	HG1-4	HG2-1	HG2-2	HG2-3	HG1-1	HG1-2	HG1-3	HG1-1	HG1-2
SiO2	44,76	45,13	45,47	45,08	45,32	45,62	45,55	45,57	45,04	45,90
TiO2	0,40	0,44	0,36	0,35	0,57	0,34	0,33	0,41	0,44	0,41
AI2O3	34,76	35,04	35,08	34,60	34,58	33,89	33,94	34,59	34,72	34,31
Cr2O3	0.08	0.06	0.01	0.05	0.09	0.04	0.04	0.05	0.02	0.06
ΜαΟ	0.51	0.57	0.52	0.62	0.59	0.80	0.76	0.71	0.58	0.74
CaO	0,00	0.00	0.00	0.00	0,00	0.01	0.02	0.00	0.01	0.01
MnO	0,00	0,00	0,00	0.02	0,00	0.00	0.05	0,00	0.00	0,01
EeO	2,60	2,00	2,00	2.87	2 78	2 65	2.84	2.74	2.68	2 60
ReO	2,05	0.25	0.26	2,07	0.28	2,00	2,04	0.29	2,00	2,03
	0,20	0,25	0,20	0,29	0,20	0,23	1.20	0,20	0,44	0,31
Nazo	1,30	1,08	1,39	1,30	1,20	1,00	1,30	1,31	1,41	1,10
K20	9,35	8,90	9,07	9,07	9,10	9,35	9,27	9,28	9,06	9,25
H2O	4,42	4,46	4,47	4,43	4,45	4,42	4,43	4,46	4,43	4,46
Summe	98,63	99,21	99,36	98,77	99,01	98,43	98,73	99,38	98,87	99,26
Strukturforn	nel bezogen	auf 22 Sauer	stoffe							
Si	6,075	6,074	6,106	6,104	6,114	6,187	6,169	6,128	6,095	6,171
Ті	0,041	0,045	0,036	0,036	0,057	0,034	0,033	0,042	0,045	0,041
AI	5,561	5,558	5,552	5,522	5,498	5,417	5,417	5,481	5,536	5,436
Cr	0,009	0,006	0,001	0,005	0,009	0,005	0,004	0,006	0,002	0,006
Mg	0,103	0,114	0,105	0,125	0,118	0,162	0,153	0,142	0,117	0,149
Ca	0,000	0,000	0,000	0,000	0,000	0,001	0,003	0,000	0,002	0,001
Mn	0,000	0,000	0,000	0,002	0,004	0,000	0,005	0,000	0,000	0,000
Fe	0,305	0,307	0,311	0,325	0,313	0,300	0,322	0,308	0,303	0,302
Ва	0,014	0,013	0,014	0,015	0,015	0,012	0,012	0,015	0,024	0,016
Na	0,363	0,438	0,362	0,356	0,330	0,284	0,340	0,342	0,371	0,302
к	1.618	1.527	1.553	1.567	1.566	1.617	1.601	1.592	1.563	1.587
Summe	14.090	14.082	14.040	14.058	14.023	14.019	14.058	14.055	14.058	14.011
	.,	.,	.,	,	,===	,	,	.,	,	,=
Si	6.075	6.074	6.106	6.104	6,114	6,187	6,169	6.128	6.095	6,171
	1 925	1 926	1 894	1 896	1 886	1 813	1 831	1 872	1 905	1 829
tetr	8 000	8,000	8,000	8,000	8,000	8 000	8 000	8 000	8 000	8 000
	3,636	3,632	3 657	3,626	3 611	3 604	3 585	3 600	3 631	3 607
Cr Cr	0,000	0,002	0,001	0,020	0,000	0,004	0,004	0,000	0,001	0,007
	0,003	0,000	0,001	0,005	0,003	0,005	0,004	0,000	0,002	0,000
	0,041	0,045	0,030	0,030	0,007	0,034	0,033	0,042	0,045	0,041
	0,305	0,307	0,311	0,325	0,313	0,300	0,322	0,308	0,303	0,302
ivin M.:-	0,000	0,000	0,000	0,002	0,004	0,000	0,005	0,000	0,000	0,000
wg	0,103	0,114	0,105	0,125	0,118	0,162	0,153	0,142	0,117	0,149
okta.	4,094	4,104	4,110	4,119	4,113	4,104	4,103	4,106	4,099	4,105
Ва	0,014	0,013	0,014	0,015	0,015	0,012	0,012	0,015	0,024	0,016
Ca	0,000	0,000	0,000	0,000	0,000	0,001	0,003	0,000	0,002	0,001
Na	0,363	0,438	0,362	0,356	0,330	0,284	0,340	0,342	0,371	0,302
К	1,618	1,527	1,553	1,567	1,566	1,617	1,601	1,592	1,563	1,587
interlayer	1,996	1,978	1,929	1,939	1,911	1,915	1,955	1,949	1,959	1,905
Summe	14,090	14,082	14,040	14,058	14,023	14,019	14,058	14,055	14,058	14,011
X(Fe)	0,75	0,73	0,75	0,72	0,73	0,65	0,68	0,69	0,72	0,67
Mo	0.00	0.01	0.02	0.00	0.00	0.05	0.12	0.00	0.00	0.05
ivia Do	0,00	0,01	10.02	10.50	0,00	14.04	17 50	17 70	10.45	15.00
r'a Ca	18,34	22,27	18,90	18,52	17,38	14,94	17,50	17,70	19,15	15,96
Ce	3,76	3,69	5,28	5,21	5,69	9,35	8,43	6,38	4,74	8,57
Ми	77,90	74,03	75,80	76,27	76,92	75,66	73,94	75,93	76,02	75,42
Fe tot	0 305	0 207	<u>0 211</u>	0 325	0 212	0 200	0 300	U 2U8	0 203	U 3U3
Fo 2+	0,000	0,007	0,011	0,020	0,013	0,000	0,022	0,000	0,000	0,002
- C 4T	0,013	0,004	0,037	0,010	0,004	0,000	0,040	0,020	0,023	0,004
re 9 1	0,292	0,302	0,275	0,310	0,259	0,240	0,274	0,280	0,281	0,239

- A 274 -

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Hellgli	7.4	7.4	7.6	7.6	7.6	7.8	7.8	7.8	7.8	7.8
	HG1-3	HG1-4	HG1-1	HG1-2	HG1-3	HG1-1	HG1-1	HG1-3	HG1-4	HG1-5
SiO2	44,68	44,81	45,25	45,07	45,40	45,15	45,61	45,99	45,64	45,34
TiO2	0,41	0,41	0,40	0,41	0,36	0,38	0,45	0,46	0,43	0,40
AI2O3	35,05	35,41	34,07	34,63	34,39	35,05	34,57	34,27	34,27	34,53
Cr2O3	0,05	0,05	0,05	0,06	0,00	0,06	0,03	0,02	0,06	0,04
MgO	0,50	0,53	0,70	0,65	0,72	0,61	0,68	0,77	0,74	0,73
CaO	0,01	0,00	0,00	0,01	0,00	0,05	0,01	0,01	0,03	0,01
MnO	0,00	0,02	0,00	0,00	0,00	0,07	0,05	0,00	0,00	0,05
FeO	2,81	2,51	2,73	2,65	2,75	2,82	2,78	2,95	2,78	2,66
BaO	0,35	0,31	0,31	0,29	0,27	0,36	0,26	0,31	0,31	0,25
Na2O	1,44	1,53	1,26	1,22	1,37	1,30	1,32	1,37	1,27	1,35
K2O	9,14	9,16	9,31	9,48	9,17	9,35	9,49	9,20	9,10	9,21
H2O	4,43	4,45	4,42	4,43	4,44	4,46	4,47	4,48	4,45	4,44
Summe	98,89	99,17	98,52	98,89	98,87	99,66	99,71	99,80	99,09	99,01
Strukturform	el bezogen	auf 22 Sauer	rstoffe							
Si	6,050	6,038	6,145	6,098	6,135	6,070	6,123	6,161	6,153	6,119
Ті	0,042	0,042	0,041	0,041	0,037	0,038	0,046	0,046	0,043	0,041
AI	5,593	5,624	5,454	5,523	5,477	5,553	5,470	5,411	5,445	5,493
Cr	0,005	0,006	0,005	0,006	0,000	0,006	0,004	0,002	0,006	0,004
Mg	0,102	0,106	0,141	0,131	0,145	0,122	0,137	0,154	0,149	0,146
Ca	0,001	0,000	0,000	0,001	0,000	0,006	0,001	0,001	0,005	0,002
Mn	0,000	0,002	0,000	0,000	0,000	0,008	0,005	0,000	0,000	0,005
Fe	0,318	0,283	0,310	0,300	0,311	0,317	0,312	0,330	0,314	0,300
Ва	0,019	0,016	0,016	0,016	0,014	0,019	0,014	0,016	0,016	0,013
Na	0,378	0,400	0,333	0,320	0,360	0,339	0,342	0,356	0,331	0,352
к	1,579	1,575	1,614	1,637	1,580	1,604	1,626	1,572	1,564	1,586
Summe	14,087	14,093	14,058	14,074	14,060	14,083	14,079	14,050	14,026	14,061
Si	6,050	6,038	6,145	6,098	6,135	6,070	6,123	6,161	6,153	6,119
AI IV	1,950	1,962	1,855	1,902	1,865	1,930	1,877	1,839	1,847	1,881
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	3,644	3,662	3,599	3,621	3,612	3,623	3,593	3,573	3,598	3,611
Cr	0,005	0,006	0,005	0,006	0,000	0,006	0,004	0,002	0,006	0,004
Ті	0,042	0,042	0,041	0,041	0,037	0,038	0,046	0,046	0,043	0,041
Fe 2+=tot	0,318	0,283	0,310	0,300	0,311	0,317	0,312	0,330	0,314	0,300
Mn	0,000	0,002	0,000	0,000	0,000	0,008	0,005	0,000	0,000	0,005
Mg	0,102	0,106	0,141	0,131	0,145	0,122	0,137	0,154	0,149	0,146
okta.	4,110	4,101	4,095	4,101	4,105	4,115	4,096	4,105	4,110	4,108
Ва	0,019	0,016	0,016	0,016	0,014	0,019	0,014	0,016	0,016	0,013
Ca	0,001	0,000	0,000	0,001	0,000	0,006	0,001	0,001	0,005	0,002
Na	0,378	0,400	0,333	0,320	0,360	0,339	0,342	0,356	0,331	0,352
к	1,579	1,575	1,614	1,637	1,580	1,604	1,626	1,572	1,564	1,586
interlayer	1,976	1,992	1,963	1,974	1,955	1,968	1,983	1,945	1,916	1,953
Summe	14,087	14,093	14,058	14,074	14,060	14,083	14,079	14,050	14,026	14,061
N/= \				0.70	0.00	0.70	0.70			0.07
X(Fe)	0,76	0,73	0,69	0,70	0,68	0,72	0,70	0,68	0,68	0,67
Ма	0,06	0,00	0,00	0,07	0,00	0,33	0,05	0,05	0,24	0,08
Ра	19,29	20,25	17,09	16,34	18,55	17,38	17,38	18,44	17,41	18,16
Се	2,52	1,91	7,27	4,91	6,75	3,50	6,16	8,07	7,67	5,93
Mu	78,13	77,83	75,64	78,68	74,70	78,79	76,40	73,44	74,68	75,83
Fe tot	0,318	0,283	0,310	0,300	0,311	0,317	0,312	0,330	0,314	0,300
Fe 2+	-0,009	-0,025	0,045	0,008	0,027	-0,014	0,032	0,053	0,048	0,014
Fe 3+	0,327	0,308	0,264	0,292	0,284	0,331	0,280	0,277	0,266	0,286

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

Probe	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063
Hellgli	3.1	3.1	3.1	3.1	3.1	3.2	3.2	3.2	3.5	3.5
-	HG1-1	HG1-2	HG2-2	HG3-1	HG3-2	HG1-1	HG1-2	HG2-1	HG1-1PLE	HG1-2PLE
SiO2	44,92	45,69	45,78	45,25	44,59	45,19	45,00	45,64	45,73	46,12
TiO2	0,47	0,54	0,54	0,55	0,50	0,92	0,53	0,47	0,10	0,16
AI2O3	35,36	35,68	35,40	35,20	35,50	35,59	35,82	35,66	35,36	35,29
Cr2O3	0,00	0,00	0,03	0,04	0,03	0,02	0,02	0,04	0,00	0,00
MgO	0,61	0,64	0,68	0,71	0,62	0,56	0,59	0,80	0,77	0,79
CaO	0,02	0,00	0,00	0,01	0,00	0,00	0,00	0,02	0,04	0,00
MnO	0,10	0,04	0,05	0,02	0,00	0,01	0,04	0,00	0,01	0,00
FeO	2,75	2,92	3,15	3,05	2,92	2,69	2,61	2,89	2,81	2,83
BaO	0,20	0,28	0,26	0,40	0,51	0,34	0,33	0,40	0,07	0,11
Na2O	1,09	1,24	1,20	1,22	1,23	1,00	1,22	1,47	1,27	1,36
K2O	9,74	9,30	9,32	9,26	9,19	9,77	9,37	8,72	9,13	9,10
H2O	4,46	4,52	4,52	4,48	4,45	4,50	4,49	4,52	4,49	4,51
Summe	99,73	100,79	101,80	100,23	99,57	101,01	100,03	100,56	100,21	100,23
Strukturform	nel bezoger	n auf 22 Sa	uerstoffe							
Si	6,035	6,058	6,071	6,052	6,006	6,021	6,017	6,054	6,106	6,129
Ti	0,048	0,053	0,054	0,056	0,051	0,092	0,054	0,047	0,010	0,015
AI	5,600	5,574	5,532	5,549	5,634	5,589	5,646	5,575	5,565	5,526
Cr	0,000	0,000	0,003	0,004	0,003	0,002	0,002	0,005	0,000	0,000
Mg	0,123	0,127	0,135	0,141	0,124	0,112	0,117	0,157	0,153	0,156
Ca	0,003	0,000	0,000	0,002	0,000	0,000	0,000	0,003	0,006	0,000
Mn	0,012	0,004	0,006	0,002	0,000	0,001	0,004	0,000	0,001	0,000
Fe	0,309	0,324	0,349	0,341	0,329	0,299	0,292	0,321	0,314	0,314
Ва	0,010	0,015	0,014	0,021	0,027	0,018	0,017	0,021	0,003	0,005
Na	0,285	0,320	0,309	0,316	0,320	0,257	0,316	0,378	0,328	0,351
K	1,669	1,573	1,577	1,580	1,579	1,661	1,599	1,475	1,555	1,542
Summe	14,094	14,048	14,050	14,064	14,074	14,051	14,063	14,035	14,043	14,039
c :	0.005	0.050	0.074	0.050	0.000	0.004	0.047	0.054	0.400	C 400
51	6,035	6,058	6,071	6,052	6,006	6,021	6,017	0,054	0,100	0,129
	1,965	1,942	1,929	1,948	1,994	1,979	1,983	1,946	1,894	1,871
	0,000	0,000	0,000 3,603	0,000 2,601	0,000 2,641	0,000 2,610	0,000	3,000	0,000 2,671	0,000 2,655
Cr	0,000	0.000	0,003	0.004	0.003	0.002	0,003	0.005	0,000	0,000
ті	0,000	0,000	0,003	0,004	0,003	0,002	0,002	0,003	0,000	0,000
Fe 2+=tot	0,040	0,000	0,004	0,000	0,001	0,002	0,004	0,047	0,010	0,010
Mn	0,000	0,024	0,040	0,041	0,020	0,200	0,202	0,021	0,014	0,014
Μα	0.123	0,127	0,135	0,141	0,124	0.112	0,117	0,157	0,153	0,000
okta.	4,126	4,141	4.150	4,145	4,148	4.115	4.131	4.159	4.150	4,141
Ва	0.010	0.015	0.014	0.021	0.027	0.018	0.017	0.021	0.003	0.005
Ca	0,003	0,000	0,000	0,002	0,000	0,000	0.000	0,003	0,006	0,000
Na	0,285	0,320	0,309	0,316	0,320	0,257	0,316	0,378	0,328	0,351
к	1,669	1,573	1,577	1,580	1,579	1,661	1,599	1,475	1,555	1,542
interlayer	1,967	1,907	1,900	1,920	1,926	1,936	1,932	1,877	1,892	1,898
Summe	14,094	14,048	14,050	14,064	14,074	14,051	14,063	14,035	14,043	14,039
X(Fe)	0,72	0,72	0,72	0,71	0,73	0,73	0,71	0,67	0,67	0,67
Ма	0,18	0,00	0,02	0,11	0,00	0,00	0,00	0,17	0,32	0,00
Ра	14,56	16,90	16,36	16,66	16,84	13,40	16,52	20,35	17,38	18,53
Ce	1,77	2,89	3,55	2,61	0,31	1,05	0,85	2,71	5,31	6,43
Mu	83,49	80,21	80,08	80,62	82,84	85,55	82,63	76,77	76,99	75,04
Fe tot	0,309	0,324	0,349	0,341	0,329	0,299	0,292	0,321	0,314	0,314
Fe 2+	-0,039	-0,016	-0,010	-0,033	-0,067	0,001	-0,046	-0,056	-0,037	-0,012
Fe 3+	0,348	0,340	0,359	0,374	0,397	0,298	0,338	0,377	0,351	0,326

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

Probe	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM1063	SM68	SM68	SM68
Hellgli	3.5	3.5	3.7	3.7	3.8	3.8	3.8	4.1	4.1	4.1
	HG2-1	HG2-2	HG1-1PLE	HG1-2PLE	HG1-1	HG1-2	HG1-3	HG1-1	HG1-2	HG1-3
SiO2	44,81	44,90	45,03	45,20	44,50	44,90	44,78	48,01	45,56	45,51
TiO2	0,51	0,54	0,44	0,47	0,56	0,38	0,57	0,40	0,29	0,39
AI2O3	34,71	35,35	35,21	35,47	35,85	36,33	35,48	32,88	34,58	34,77
Cr2O3	0,00	0,02	0,02	0,01	0,05	0,06	0,02	0,02	0,03	0,02
MqO	0,67	0.65	0,79	0,61	0,47	0,52	0,57	0,67	0.69	0,69
CaO	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01
MnO	0.00	0.00	0.03	0.00	0.01	0.00	0.00	0.05	0.00	0.07
FeO	3.08	2.58	2.99	2.77	2.54	2.38	2.53	2.36	2.83	2.81
BaO	0.48	0.49	0.31	0.46	0.42	0.32	0.49	0.28	0.11	0.20
Na2O	1.22	1.20	1.23	1.25	1.25	1.17	1.20	1.46	1.67	1.69
K20	9.29	9.11	9.09	9.22	9.27	9.42	9.17	8.69	8.98	8.78
H2O	4.43	4.46	4,47	4.48	4.45	4.49	4.45	4,49	4.46	4.47
Summe	99.27	99.28	99.60	99.93	99.39	99.94	99.30	99.26	99.22	99.39
Strukturforme	el bezogen	auf 22 Sau	erstoffe	00,00	00,00	00,01	00,00	00,20	00,22	00,00
Si	6.062	6.044	6.048	6.051	5,992	5,998	6.032	6.407	6,130	6.110
Ti	0.052	0.054	0.044	0.047	0.056	0.038	0.057	0.040	0.029	0.039
AI	5 534	5 608	5 573	5 597	5 689	5 719	5 632	5 172	5 483	5 502
Cr	0,000	0.002	0,002	0.001	0,005	0.007	0.002	0.002	0.003	0.002
Ma	0 135	0 131	0,002	0 122	0.094	0 103	0 115	0.133	0 138	0.138
Ca	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0.001	0,000	0.002
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,006	0,000	0.008
Fe	0,000	0,000	0,000	0,000	0,001	0,000	0.285	0,000	0,000	0,000
Ba	0,045	0.026	0,000	0.024	0,200	0,200	0,200	0,204	0,016	0.010
Na	0,020	0,020	0,320	0,024	0,022	0,017	0,020	0,010	0,000	0,010
K	1 603	1 565	1 557	1 575	1 592	1 606	1 576	1 480	1 541	1 505
Summe	14 080	14 036	14 059	14 052	14 064	14 056	14 037	13 895	14 085	14 070
Gamme	14,000	14,000	14,000	14,002	14,004	14,000	14,007	10,000	14,000	14,070
Si	6 062	6 044	6 048	6 051	5 992	5 998	6 032	6 407	6 130	6 1 1 0
	1 938	1 956	1 952	1 949	2 008	2 002	1 968	1 593	1 870	1 890
tetr.	8 000	8 000	8,000	8 000	8,000	8 000	8 000	8 000	8 000	8,000
	3 596	3 653	3 621	3 648	3 681	3 717	3 665	3 579	3 614	3 612
Cr	0.000	0.002	0.002	0.001	0.005	0.007	0.002	0.002	0.003	0.002
Ti	0.052	0.054	0.044	0.047	0.056	0.038	0.057	0.040	0.029	0.039
Fe 2+=tot	0.349	0,290	0.336	0.310	0.286	0.265	0.285	0.264	0.319	0.315
Mn	0.000	0,000	0.003	0.000	0.001	0.000	0.000	0.006	0.000	0.008
Ma	0,135	0,131	0,159	0.122	0.094	0,103	0,115	0,133	0,138	0,138
okta.	4,132	4,131	4,165	4,128	4,123	4,130	4,124	4.023	4,103	4,115
Ва	0.025	0.026	0.017	0.024	0.022	0.017	0.026	0.015	0.006	0.010
Ca	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.001	0.000	0.002
Na	0.319	0.314	0.320	0.324	0.327	0.304	0.312	0.377	0.435	0.439
K	1.603	1.565	1.557	1.575	1.592	1.606	1.576	1,480	1.541	1.505
interlaver	1,948	1,905	1.894	1.923	1.942	1.926	1.914	1.872	1.981	1.956
Summe	14.080	14.036	14.059	14.052	14.064	14.056	14.037	13.895	14.085	14.070
	.,		.,	,	.,	.,	.,		,	,
X(Fe)	0,72	0,69	0,68	0,72	0,75	0,72	0,71	0,67	0,70	0,70
Ma	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00
ivia De	0,00	0,00	0,00	0,05	0,00	0,02	0,00	0,03	0,00	0,08
ra Co	16,59	16,71	17,05	17,04	17,04	15,89	16,54	20,30	22,00	22,56
Ce Mu	3,10	2,21	2,40	2,56	0,00	0,00	1,61	20,35	6,52	5,51
WU	80,30	81,08	80,55	80,35	82,96	84,08	81,85	59,32	71,48	71,84
Fe tot	0,349	0,290	0,336	0,310	0,286	0,265	0,285	0,264	0,319	0,315
Fe 2+	-0,021	-0,032	-0,067	-0,024	-0,045	-0,067	-0,025	0,314	0,022	0,011
Fe 3+	0,370	0,323	0,403	0,334	0,331	0,332	0,310	-0,050	0,297	0,304
	÷		-	-						

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Hellgli	4.1	4.2	4.2	4.2	4.3	4.3	4.3	4.3	4.3	4.3
	HG1-4	HG1-1	HG1-2	HG1-3	HG1-1	HG1-2	HG1-3	HG1-4	HG2-1	HG2-2
SiO2	46,66	45,57	45,70	45,99	45,25	45,58	45,70	45,69	45,93	45,84
TiO2	0,43	0,32	0,35	0,36	0,33	0,41	0,39	0,33	0,41	0,38
AI2O3	33.29	34.81	34.12	34.72	35.14	34.62	34.84	35.00	34.94	34.86
Cr2O3	0.03	0.01	0.04	0.02	0.01	0.05	0.00	0.00	0.00	0.00
MaO	1 07	0.66	0.84	0.72	0.64	0.74	0.75	0.67	0.76	0.71
CaO	0.00	0,00	0,00	0.02	0.00	0.00	0.00	0.00	0.00	0.00
MnO	0,00	0,00	0,00	0,02	0,00	0,00	0,00	0,00	0,00	0,00
EeO	3,00	2 00	2 90	2 92	2.86	2 90	3.04	3.02	3.07	2.84
BaO	0.18	2,50	2,50	0.19	0.29	2,00	0,04	0,00	0.25	2,04
Na2O	0,10	1.64	1.56	1,60	1 74	1 69	1 71	1 57	1 50	1.61
Nazo	1,41	1,04	1,50	1,00	1,74	1,00	1,71	1,57	1,09	1,01
K20	9,08	8,80	8,86	8,81	8,62	8,76	8,93	9,02	8,92	8,82
H2O	4,48	4,47	4,45	4,49	4,47	4,47	4,49	4,49	4,51	4,49
Summe	99,64	99,36	99,01	99,78	99,37	99,43	100,06	100,07	100,51	99,76
Strukturform	iel bezogen a	iuf 22 Sauei	stoffe							
Si	6,251	6,119	6,161	6,144	6,079	6,119	6,105	6,104	6,111	6,128
Ti	0,043	0,033	0,035	0,036	0,033	0,041	0,039	0,033	0,041	0,038
AI	5,257	5,508	5,421	5,465	5,563	5,478	5,485	5,511	5,479	5,492
Cr	0,003	0,001	0,004	0,002	0,001	0,005	0,000	0,000	0,000	0,000
Mg	0,213	0,131	0,168	0,144	0,128	0,148	0,149	0,134	0,150	0,141
Ca	0,000	0,000	0,000	0,003	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,004	0,000	0,001	0,000	0,000	0,000	0,003	0,002	0,006	0,001
Fe	0,336	0,325	0,326	0,326	0,321	0,326	0,339	0,339	0,341	0,317
Ва	0,009	0,010	0,010	0,009	0,015	0,012	0,011	0,013	0,018	0,010
Na	0,366	0,426	0,407	0,414	0,454	0,437	0,443	0,406	0,410	0,418
к	1,553	1,507	1,523	1,502	1,478	1,500	1,521	1,537	1,514	1,504
Summe	14,035	14,061	14,056	14,045	14,072	14,066	14,096	14,079	14,070	14,049
Si	6,251	6,119	6,161	6,144	6,079	6,119	6,105	6,104	6,111	6,128
AI IV	1,749	1,881	1,839	1,856	1,921	1,881	1,895	1,896	1,889	1,872
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	3,508	3,627	3,582	3,609	3,641	3,597	3,590	3,615	3,590	3,620
Cr	0,003	0,001	0,004	0,002	0,001	0,005	0,000	0,000	0,000	0,000
Ті	0,043	0,033	0,035	0,036	0,033	0,041	0,039	0,033	0,041	0,038
Fe 2+=tot	0,336	0,325	0,326	0,326	0,321	0,326	0,339	0,339	0,341	0,317
Mn	0,004	0,000	0,001	0,000	0,000	0,000	0,003	0,002	0,006	0,001
Mg	0,213	0,131	0,168	0,144	0,128	0,148	0,149	0,134	0,150	0,141
okta.	4.107	4.117	4.117	4.117	4.126	4.118	4.120	4.123	4.128	4.117
Ва	0.009	0.010	0.010	0.009	0.015	0.012	0.011	0.013	0.018	0.010
Са	0.000	0.000	0.000	0.003	0.000	0.000	0.000	0.000	0.000	0.000
Na	0.366	0.426	0.407	0.414	0.454	0.437	0.443	0.406	0.410	0.418
ĸ	1 553	1 507	1 523	1 502	1 478	1 500	1 521	1 537	1 514	1 504
interlaver	1,000	1 943	1,020	1,002	1 946	1 948	1,021	1,007	1 942	1 031
Summo	14 025	14.061	1,940	14 045	14 072	14.066	14.006	14.070	1,042	14 040
Summe	14,055	14,001	14,050	14,045	14,072	14,000	14,090	14,079	14,070	14,049
X(Fe)	0,61	0,71	0,66	0,69	0,71	0,69	0,69	0,72	0,70	0,69
Ма	0,00	0,00	0,00	0,13	0,00	0,00	0,00	0,00	0,00	0,00
Ра	19,07	22,05	21,10	21,60	23,49	22,56	22,56	20,88	21,33	21,75
Ce	12,56	5,94	8,05	7,19	3,94	5,96	5,23	5,21	5,55	6,40
Mu	68,38	72,01	70,85	71,08	72,57	71,48	72,21	73,91	73,12	71,84
Fe tot	0.336	0.325	0.326	0.326	0.321	0.326	0.339	0.339	0.341	0.317
Fe 2+	0.081	0.020	0.028	0.036	-0.016	0.012	-0.006	0.003	0.002	0.025
Fe 3+	0 255	0.305	0 298	0 290	0.338	0.314	0.345	0.336	0.339	0 293
	0,200	5,000	0,200	0,200	0,000	3,014	3,040	5,000	5,000	0,200

- A 278 -

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Hellgli	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3	4.3
	HG2-3	HG2-4	HG2-5	HG2-6	HG2-7	HG3-1	HG3-2	HG3-3	HG3-4
SiO2	45,71	45,44	46,13	45,79	45,97	47,83	45,83	45,63	46,89
TiO2	0,41	0,38	0,40	0,41	0,39	0,55	0,32	0,41	0,52
AI2O3	34,88	34,63	34,89	35,02	35,33	32,22	35,11	34,83	32,48
Cr2O3	0,01	0,00	0,07	0,00	0,02	0,05	0,02	0,08	0,03
MgO	0,78	0,81	0,75	0,80	0,63	1,49	0,65	0,79	1,28
CaO	0,00	0,00	0,00	0,02	0,00	0,00	0,01	0,00	0,00
MnO	0,02	0,00	0,00	0,00	0,00	0,07	0,00	0,03	0,01
FeO	2,99	3,01	2,95	2,99	2,92	2,93	2,79	3,02	3,13
BaO	0,28	0,21	0,16	0,22	0,24	0,17	0,19	0,22	0,21
Na2O	1,69	1,66	1,85	1,65	1,67	1,25	1,74	1,59	1,35
K2O	8,76	8,66	8,51	8,79	8,75	9,09	8,99	8,94	9,12
H2O	4,49	4,46	4,51	4,50	4,52	4,51	4,50	4,49	4,46
Summe	100,01	99,28	100,17	100,19	100,42	100,16	100,15	100,02	99,50
Strukturforme	el bezogen a	ut 22 Saue	rstorre	0 4 0 4	C 404	0.005	C 400	C 000	0.000
5I т;	0,100	0,110	0,132	0,101	0,104	0,303	0,109	0,099	0,300
	0,041 5.401	0,030	0,040	0,041	0,039	0,000	0,032	0,041 5 497	0,052
AI Cr	0,001	0,409	0,407	0,000	0,029	0,005	0,002	0,407	0.004
Ma	0,001	0,000	0,007	0,000	0,002	0,005	0,002	0,000	0,004
ivig Ca	0,154	0,102	0,149	0,139	0,125	0,290	0,129	0,157	0,257
Mn	0,000	0,000	0,000	0,002	0,000	0,000	0,001	0,000	0,000
Fe	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001
Ba	0,004	0,000	0,020	0,000	0,024	0,020	0,010	0,000	0,002
Na	0 439	0 433	0,000	0 427	0 429	0,321	0,010	0,011	0.352
K	1,492	1.485	1.444	1.494	1.482	1.543	1.528	1.525	1.563
Summe	14.074	14.066	14.051	14.068	14.046	13.983	14.089	14.081	14.033
	,-	,	,	,	,	-,	,	,	,
Si	6,105	6,110	6,132	6,101	6,104	6,365	6,109	6,099	6,300
AI IV	1,895	1,890	1,868	1,899	1,896	1,635	1,891	1,901	1,700
tetr.	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI VI	3,596	3,599	3,599	3,601	3,633	3,419	3,625	3,586	3,442
Cr	0,001	0,000	0,007	0,000	0,002	0,005	0,002	0,008	0,004
Ті	0,041	0,038	0,040	0,041	0,039	0,055	0,032	0,041	0,052
Fe 2+=tot	0,334	0,338	0,328	0,333	0,324	0,326	0,311	0,338	0,352
Mn	0,003	0,000	0,000	0,000	0,000	0,008	0,000	0,003	0,001
Mg	0,154	0,162	0,149	0,159	0,125	0,296	0,129	0,157	0,257
okta.	4,128	4,137	4,123	4,133	4,124	4,109	4,100	4,132	4,107
Ва	0,015	0,011	0,008	0,011	0,012	0,009	0,010	0,011	0,011
Ca	0,000	0,000	0,000	0,002	0,000	0,000	0,001	0,000	0,000
Na	0,439	0,433	0,476	0,427	0,429	0,321	0,451	0,412	0,352
К	1,492	1,485	1,444	1,494	1,482	1,543	1,528	1,525	1,563
interlayer	1,946	1,929	1,928	1,935	1,923	1,873	1,990	1,949	1,926
Summe	14,074	14,066	14,051	14,068	14,046	13,983	14,089	14,081	14,033
X(Fe)	0.68	0.68	0 69	0.68	0.72	0.52	0.71	0.68	0.58
X(1 C)	0,00	0,00	0,00	0,00	0,72	0,02	0,71	0,00	0,00
Ма	0,00	0,00	0,00	0,13	0,00	0,00	0,06	0,00	0,00
Ра	22,72	22,59	24,79	22,22	22,45	17,23	22,76	21,29	18,38
Ce	5,24	5,50	6,60	5,05	5,20	18,26	5,47	4,96	14,98
Mu	72,04	71,91	68,61	72,61	72,35	64,51	71,70	73,75	66,65
Fe tot	0,334	0,338	0,328	0,333	0,324	0,326	0,311	0,338	0,352
Fe 2+	-0,009	-0,014	0,023	-0,017	0,018	0,124	0,012	-0,017	0,095
Fe 3+	0,342	0,352	0,306	0,349	0,306	0,202	0,299	0,354	0,257

Fortsetzung Tab. H.4: Mikrosondenanalysen von Hellglimmer

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Chlorit	8.1	8.1	8.1	8.2	8.2	8.2	8.2	8.2	8.4	8.4
	Chl1-1	Chl1-2	Chl1-4	CHL1-1	CHL1-2	CHL1-3	CHL1-4	CHL1-5	CHL1-1	CHL1-2
SiO2	25,03	24,89	26,90	24,80	24,26	24,80	24,24	24,13	25,56	24,43
TiO2	0,12	0,11	0,08	0,12	0,13	0,10	0,09	0,11	0,12	0,05
AI2O3	23,67	22,79	24,38	23,90	23,24	23,26	23,09	23,17	22,19	22,70
Fe2O3	0,00	1,16	0,00	0,00	1,26	0,69	1,94	1,68	1,13	1,24
MgO	18,30	18,50	17,68	18,33	18,38	18,11	18,20	18,33	19,31	18,60
CaO	0,08	0,05	0,09	0,03	0,02	0,02	0,02	0,00	0,06	0,01
MnO	0,40	0,38	0,37	0,35	0,35	0,29	0,31	0,29	0,37	0,32
FeO	20,26	19,61	19,46	19,91	19,03	20,08	19,37	18,87	19,11	18,67
Na2O	0,00	0,00	0,01	0,02	0,00	0,00	0,00	0,06	0,04	0,00
K2O	0,02	0,03	0,26	0,01	0,00	0,18	0,01	0,00	0,00	0,00
Summe	87,88	87,52	89,23	87,46	86,66	87,53	87,26	86,63	87,88	86,02
Strukturfo	rmel hezoa	en auf 28 S	auerstoffe							
Si	5 126	5 127	5 371	5 093	5 039	5 1 1 3	5 018	5 017	5 225	5 102
Ti	0.019	0.018	0.012	0.018	0.020	0.015	0.014	0.017	0.018	0.008
AI	5.712	5,535	5,737	5,785	5.688	5.651	5.635	5.677	5.346	5.587
Fe3+	0.000	0.179	0.000	0.000	0.197	0.108	0.302	0.262	0.173	0.194
Ma	5.583	5.680	5,260	5.610	5.687	5,565	5.617	5.678	5.883	5,789
Ca	0.017	0.012	0.020	0.006	0.004	0.004	0.004	0.000	0.012	0.002
Mn	0,070	0,067	0,063	0,060	0,062	0,051	0.053	0,051	0,065	0,056
Fe2+	3,469	3,378	3,249	3,419	3,304	3,462	3,353	3,281	3,267	3,261
Na	0,000	0,000	0,002	0,008	0,000	0,000	0,001	0,023	0,015	0,000
к	0,004	0,007	0,067	0,002	0,000	0,048	0,003	0,000	0,000	0,000
Summe	20,001	20,002	19,782	20,002	19,999	20,017	20,001	20,008	20,005	19,999
e;	5 126	5 107	5 271	5 002	5 020	5 112	5 019	5 017	5 225	5 102
	2 874	2 873	2 620	2 007	2 061	2 887	2 082	2 083	3,223 2,775	2 808
Summe	8,000	8,000	2,029 8,000	8,000	8,000	8,000	2,902 8,000	2,903 8,000	8,000	2,090 8,000
AI(VI)	2,838	2,662	3,109	2,877	2,726	2,764	2,653	2,695	2,571	2,689
Fe3+	0,000	0,179	0,000	0,000	0,197	0,108	0,302	0,262	0,173	0,194
Ti	0,019	0,018	0,012	0,018	0,020	0,015	0,014	0,017	0,018	0,008
Fe2+	3,469	3,378	3,249	3,419	3,304	3,462	3,353	3,281	3,267	3,261
Mn	0,070	0,067	0,063	0,060	0,062	0,051	0,053	0,051	0,065	0,056
Mg	5,583	5,680	5,260	5,610	5,687	5,565	5,617	5,678	5,883	5,789
Ca	0,017	0,012	0,020	0,006	0,004	0,004	0,004	0,000	0,012	0,002
Na	0,000	0,000	0,002	0,008	0,000	0,000	0,001	0,023	0,015	0,000
K	0,004	0,007	0,067	0,002	0,000	0,048	0,003	0,000	0,000	0,000
Summe	12,001	12,002	11,782	12,002	11,999	12,017	12,001	12,008	12,005	11,999
Total	20,001	20,002	19,782	20,002	19,999	20,017	20,001	20,008	20,005	19,999
XFe	0,383	0,373	0,382	0,379	0,367	0,383	0,374	0,366	0,357	0,360

Tab. H.5: Mikrosondenanalysen von Chlorit

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM039	IMM039
Chlorit	8.4	8.6	8.6	8.6	8.6	8.6	8.7	8.7	5.3	5.3
	CHL1-3	CHL1-1	CHL1-2	CHL1-3	CHL1-4	CHL1-5	CHL1-1	CHL1-2	Chl 1-1	Chl 1-2
SiO2	25 18	24 01	24 65	24 52	24 60	23 94	25.07	24 11	24 63	24 72
TiO2	0.06	0.04	0.08	0.08	0.05	0.07	0.13	0.13	0 14	0 11
AI2O3	22.85	23 44	23 64	22.93	23.09	23 35	22.80	22 52	22 73	22 55
Fe2O3	0.29	0.97	0.00	0.00	0.28	0 90	0.31	0.00	1 15	0.00
MaO	18 59	16 59	16 62	16 24	17 14	16 76	18.67	16 59	17 21	16 94
CaO	0.04	0.03	0.07	0.04	0.03	0.00	0.00	0.03	0.01	0.00
MnO	0,04	0,00	0,07	0,04	0,00	0,00	0,00	0,00	0,01	0,00
FeO	19 75	21.58	21.83	22 65	21.33	21 14	19.45	19.91	21 70	21 72
Na2O	0.02	0.02	0.01	0.00	0.03	0.01	0.04	0.00	0.00	0.02
K20	0.01	0.02	0.00	0,00	0.04	0,01	0.03	0,00	0,00	0.01
Summe	87.13	87.04	87.22	86.76	86.90	86.59	86.88	83.58	87.78	86.33
••••••	01,10	01,01	0.,	00,10	00,00	00,00	00,00	00,00	01,10	00,00
Strukturfor	rmel bezog	en auf 28 S	auerstoffe							
Si	5,194	5,028	5,127	5,157	5,134	5,029	5,183	5,198	5,110	5,200
Ti	0,009	0,007	0,013	0,013	0,008	0,011	0,021	0,022	0,021	0,018
AI	5,556	5,784	5,797	5,683	5,680	5,781	5,553	5,722	5,559	5,589
Fe3+	0,045	0,152	0,000	0,000	0,044	0,142	0,048	0,000	0,180	0,000
Mg	5,713	5,175	5,154	5,088	5,332	5,247	5,750	5,329	5,324	5,310
Ca	0,009	0,007	0,016	0,009	0,007	0,000	0,000	0,006	0,002	0,000
Mn	0,060	0,059	0,054	0,054	0,057	0,074	0,069	0,055	0,036	0,046
Fe2+	3,407	3,778	3,798	3,983	3,724	3,713	3,361	3,589	3,766	3,820
Na	0,009	0,009	0,003	0,001	0,013	0,003	0,016	0,000	0,000	0,009
K	0,003	0,006	0,001	0,001	0,010	0,002	0,007	0,000	0,003	0,001
Summe	20,004	20,005	19,963	19,990	20,007	20,001	20,007	19,920	20,000	19,993
Si	5,194	5,028	5,127	5,157	5,134	5,029	5,183	5,198	5,110	5,200
AI(IV)	2,806	2,972	2,873	2,843	2,866	2,971	2,817	2,802	2,890	2,800
Summe	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
A 1/1/11	0.740	0.040	0.004	0.040	0.044	0.000	0 700	0.000	0.000	0 700
	2,749	2,012	2,924	2,640	2,014	2,809	2,730	2,920	2,009	2,769
гез т	0,045	0,152	0,000	0,000	0,044	0,142	0,040	0,000	0,100	0,000
11 Eo2+	3 407	0,007	3 708	3 083	0,000	3 713	0,021 3 361	3 580	3 766	3 820
Nn	0,407	0.050	0.054	0.054	0.057	0.074	0.060	0.055	0.026	0.046
Ma	0,000 5 713	0,039 5 175	5 154	5 088	5 332	5 247	0,009 5 750	5 3 2 0	5 324	5 310
ivig Ca	0,000	0.007	0.016	0,000	0.007	0,000	0,000	0,006	0,024	0,000
Na	0,009	0,007	0,010	0,009	0,007	0,000	0,000	0,000	0,002	0,000
Na K	0,003	0,003	0,003	0,001	0,010	0,003	0,010	0,000	0,000	0,003
n Summo	12 004	12 005	11 063	11 000	12 007	12 001	12 007	11 020	12 000	11 003
Total	20 004	20.005	10 062	10 000	20 007	20 001	20 007	10 020	20 000	10 002
iotai	20,004	20,000	19,903	13,330	20,007	20,001	20,007	13,320	20,000	13,333
XFe	0,373	0,422	0,424	0,439	0,411	0,414	0,369	0,402	0,414	0,418

Fortsetzung Tab. H.5: Mikrosondenanalysen von Chlorit

Probe	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM039	IMM044	IMM044
Chlorit	5.3	5.4	5.4	5.4	5.7	5.7	5.7	5.7	1.2	1.2
	Chl 1-3	Chl 1-1	Chl 1-2	Chl 1-3	Chl 1-1	Chl 1-2	Chl 1-3	Chl 1-4	CHL 1-1	CHL 1-3
SiO2	24,10	24,66	24,60	24,07	25,35	24,17	24,47	23,71	23,87	23,95
TiO2	0,11	0,09	0,13	0,13	0,18	0,13	0,10	0,08	0,15	0,30
AI2O3	23,36	22,92	22,06	22,88	23,08	22,66	23,47	22,69	24,03	24,25
Fe2O3	1,06	0,38	0,52	0,94	0,00	0,00	0,00	0,62	0,00	0,63
MgO	17,01	15,14	16,19	13,87	16,12	16,16	15,97	15,84	16,23	16,41
CaO	0,01	0,00	0,03	0,02	0,01	0,02	0,02	0,00	0,02	0,00
MnO	0,28	0,36	0,32	0,35	0,30	0,31	0,26	0,34	0,33	0,31
FeO	21,23	25,12	22,96	26,50	21,62	22,31	21,61	22,09	21,81	22,57
Na2O	0,00	0,02	0,00	0,00	0,05	0,00	0,00	0,03	0,03	0,04
K2O	0,00	0,00	0,00	0,01	0,02	0,01	0,02	0,03	0,01	0,00
Summe	87,16	88,69	86,81	88,76	86,73	85,76	85,92	85,41	86,49	88,46
Strukturfo	rmel hezoa	en auf 28 S	auerstoffe							
Si	5 020	5 141	5 105	5.067	5 289	5 142	5 163	5 077	5 017	4 947
Ti	0,020	0.015	0,100	0.021	0.028	0,142	0,100	0.014	0.024	0.046
ΔΙ	5 744	5 631	5 489	5 676	5 675	5 682	5 837	5 726	5 952	5 902
Fe3+	0,144	0,060	0,400	0,070	0,000	0,002	0,000	0,720	0,002	0,002
Ma	5 289	4 704	5 094	4 351	5 012	5 123	5 020	5 055	5 084	5 051
Ca	0,003	0,000	0.007	0.005	0.003	0.003	0.004	0,000	0,005	0,000
Mn	0,000	0,000	0.057	0,000	0,000	0,000	0,004	0,000	0,000	0,000
Fe2+	0,040 3 703	4 380	4 054	4 666	0,004 3 773	3,000	3 813	3 956	3 833	3 899
Na	0,000	0.007	0,000	0,000	0.021	0,000	0,000	0,000	0.013	0.018
K	0,000	0,000	0,000	0.002	0,006	0,000	0,006	0.007	0,010	0,000
Summe	19,999	20,002	20,000	20,000	19,860	19,998	19,906	20,006	19,990	20,015
Si	5,029	5,141	5,195	5,067	5,289	5,142	5,163	5,077	5,017	4,947
AI(IV)	2,971	2,859	2,805	2,933	2,711	2,858	2,837	2,923	2,983	3,053
Summe	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI(VI)	2.772	2.773	2.684	2.743	2.964	2.824	3.000	2.803	2.970	2.850
Fe3+	0,166	0,060	0,082	0,149	0,000	0,000	0,000	0,099	0,000	0,098
Ti	0.017	0.015	0.020	0.021	0.028	0.020	0.016	0.014	0.024	0.046
Fe2+	3,703	4,380	4,054	4,666	3,773	3,969	3,813	3,956	3,833	3,899
Mn	0,049	0,063	0,057	0,062	0,054	0,056	0,046	0,061	0.059	0.055
Mg	5,289	4,704	5,094	4,351	5,012	5,123	5,020	5,055	5,084	5,051
Ca	0,003	0,000	0,007	0,005	0,003	0,003	0,004	0,000	0,005	0,000
Na	0,000	0,007	0,000	0,000	0,021	0,000	0,000	0,011	0,013	0,018
к	0,000	0,000	0,000	0,002	0,006	0,003	0,006	0,007	0,003	0,000
Summe	11,999	12,002	12,000	12,000	11,860	11,998	11,906	12,006	11,990	12,015
Total	19,999	20,002	20,000	20,000	19,860	19,998	19,906	20,006	19,990	20,015
VE	0.440	0.400	0.440	0 547	0.400	0.400	0.400	0.400	0.440	0.445
XF6	0,412	0,482	0,443	0,517	0,429	0,436	0,432	0,439	0,442	0,445

Fortsetzung Tab. H.5: Mikrosondenanalysen von Chlorit

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM056	IMM056
Chlorit	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	10.5	10.5
	CHL1-1	CHL1-2	CHL1-3	CHL1-4	CHL1-5	CHL1-6	CHL1-7	CHL1-8	CHL1-1	CHL1-2
5:02	24.27	24 47	24.05	22 72	22.67	22 59	22 42	22.80	26.54	26 70
3102	24,27	24,47	24,05	23,73	23,07	23,00	23,43	23,00	20,04	20,70
1102	0,07	0,00	0,07	0,09	0,05	0,10	0,11	0,00	0,00	0,00
A1203	23,20	23,55	22,91	21,00	0.32	23,71	23,70	23,50	23,00	23,02
MaO	15.45	14.40	15 21	15.61	15.02	0,49 15.40	1,20	16.09	17.02	17 71
Nigo CaO	0.02	0.10	0.06	0.02	0.02	0.01	0.05	0.00	0.10	0.16
MnO	0,02	0,10	0,00	0,03	0,02	0,01	0,05	0,09	0,10	0,10
FoO	23 /1	23.08	23.62	22 32	23.40	23.01	22 30	22.16	21.03	10.25
Na2O	23,41	23,00	23,02	0.05	23,43	23,01	22,33	0.03	21,05	0.18
K20	0,00	0,02	0,04	0,00	0,00	0,00	0,01	0,00	0,03	0,10
Summe	86.85	86.02	86 39	85 12	85.60	86 79	87.02	87 51	89.08	88 14
Canine	00,00	00,02	00,00	00,12	00,00	00,70	01,02	07,01	00,00	00,14
Strukturfor	rmel bezog	jen auf 28 S	auerstoffe							
Si	5,121	5,196	5,116	5,120	5,089	4,984	4,937	4,980	5,353	5,399
Ti	0,012	0,008	0,011	0,014	0,008	0,026	0,018	0,012	0,009	0,010
AI	5,785	5,889	5,744	5,560	5,755	5,905	5,904	5,797	5,676	5,629
Fe3+	0,000	0,000	0,011	0,179	0,052	0,079	0,191	0,225	0,000	0,000
Mg	4,859	4,584	4,823	5,019	4,814	4,877	4,935	5,016	5,119	5,338
Ca	0,005	0,022	0,015	0,006	0,005	0,003	0,010	0,021	0,021	0,035
Mn	0,061	0,044	0,060	0,058	0,053	0,054	0,054	0,058	0,059	0,050
Fe2+	4,131	4,098	4,203	4,028	4,223	4,067	3,945	3,878	3,547	3,273
Na	0,001	0,009	0,017	0,022	0,000	0,000	0,005	0,013	0,020	0,071
К	0,003	0,013	0,011	0,002	0,000	0,008	0,003	0,005	0,010	0,014
Summe	19,977	19,863	20,009	20,008	19,999	20,002	20,002	20,006	19,815	19,819
Si	5,121	5,196	5,116	5,120	5.089	4,984	4,937	4,980	5,353	5,399
AI(IV)	2.879	2.804	2.884	2.880	2.911	3.016	3.063	3.020	2.647	2.601
Summe	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI(VI)	2,906	3,085	2,860	2,680	2,844	2,889	2,841	2,778	3,029	3,028
Fe3+	0,000	0,000	0,011	0,179	0,052	0,079	0,191	0,225	0,000	0,000
Ti	0,012	0,008	0,011	0,014	0,008	0,026	0,018	0,012	0,009	0,010
Fe2+	4,131	4,098	4,203	4,028	4,223	4,067	3,945	3,878	3,547	3,273
Mn	0,061	0,044	0,060	0,058	0,053	0,054	0,054	0,058	0,059	0,050
Mg	4,859	4,584	4,823	5,019	4,814	4,877	4,935	5,016	5,119	5,338
Ca	0,005	0,022	0,015	0,006	0,005	0,003	0,010	0,021	0,021	0,035
Na	0,001	0,009	0,017	0,022	0,000	0,000	0,005	0,013	0,020	0,071
K	0,003	0,013	0,011	0,002	0,000	0,008	0,003	0,005	0,010	0,014
Summe	11,977	11,863	12,009	12,008	11,999	12,002	12,002	12,006	11,815	11,819
Total	19,977	19,863	20,009	20,008	19,999	20,002	20,002	20,006	19,815	19,819
XFe	0,459	0,472	0,466	0,445	0,467	0,455	0,444	0,436	0,409	0,380

Fortsetzung Tab. H.5: Mikrosondenanalysen von Chlorit

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Chlorit	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5
	CHL1-3	CHL1-4	CHL1-5	CHL1-6	CHL1-7	CHL1-8	CHL2-1	CHL2-2	CHL2-3	CHL2-4
SiO2	26,12	25,63	27,69	26,22	27,31	25,44	24,34	24,37	25,26	23,75
TiO2	0,06	0,10	0,07	0,07	0,04	0,05	0,15	0,13	0,12	0,17
AI2O3	24,54	24,22	25,33	23,50	23,97	23,65	23,08	22,81	24,03	21,95
Fe2O3	0,00	0,00	0,00	0,00	0,00	0,00	0,64	0,00	0,00	0,83
MgO	18,65	17,92	14,60	17,25	16,44	17,63	18,19	17,89	18,55	17,49
CaO	0,09	0,07	0,10	0,10	0,12	0,05	0,00	0,05	0,01	0,00
MnO	0,44	0,36	0,29	0,38	0,32	0,33	0,43	0,46	0,43	0,43
FeO	20,15	19,44	18,16	19,98	18,45	19,39	19,19	19,32	20,13	19,07
Na2O	0,02	0,06	0,05	0,17	0,07	0,00	0,04	0,00	0,01	0,03
K2O	0,01	0,04	0,02	0,02	0,42	0,01	0,00	0,01	0,07	0,00
Summe	90,08	87,84	86,30	87,67	87,15	86,55	86,03	85,04	88,59	83,71
Strukturfor	mel bezog	en auf 28 S	auerstoffe							
Si	5,193	5,213	5,633	5,355	5,552	5,254	5,087	5,148	5,123	5,120
Ті	0,008	0,015	0,011	0,011	0,006	0,008	0,023	0,021	0,018	0,027
AI	5,749	5,807	6,075	5,656	5,743	5,757	5,685	5,680	5,743	5,577
Fe3+	0,000	0,000	0,000	0,000	0,000	0,000	0,100	0,000	0,000	0,134
Mg	5,525	5,431	4,427	5,249	4,982	5,426	5,664	5,634	5,605	5,618
Ca	0,020	0,016	0,022	0,021	0,026	0,011	0,000	0,011	0,003	0,001
Mn	0,074	0,062	0,049	0,065	0,055	0,057	0,076	0,083	0,074	0,078
Fe2+	3,350	3,307	3,090	3,412	3,136	3,348	3,355	3,413	3,413	3,438
Na	0,007	0,025	0,018	0,069	0,029	0,000	0,014	0,000	0,002	0,011
Κ	0,002	0,009	0,004	0,005	0,109	0,001	0,000	0,002	0,018	0,000
Summe	19,929	19,885	19,329	19,843	19,639	19,861	20,004	19,992	19,997	20,003
Si	5.193	5.213	5.633	5.355	5.552	5.254	5.087	5.148	5.123	5.120
AI(IV)	2.807	2.787	2.367	2.645	2.448	2.746	2.913	2.852	2.877	2.880
Summe	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
	0.040	0.000	0 700	0.044	0.000	0.040	0 770	0.000	0.000	0.007
AI(VI)	2,942	3,020	3,708	3,011	3,296	3,010	2,772	2,828	2,866	2,697
гез+ т:	0,000	0,000	0,000	0,000	0,000	0,000	0,100	0,000	0,000	0,134
11	0,008	0,015	0,011	0,011	0,006	0,008	0,023	0,021	0,018	0,027
rez+	3,350	3,307	3,090	3,412	3,130	3,340	3,300	3,413	3,413	3,430
wn Ma	0,074	0,062	0,049	0,065	0,055	0,057	0,076	0,083	0,074	0,078
wig Co	5,525	0,431	4,427	5,249	4,962	5,420 0.014	5,004	5,634	5,005	0,010
Ca No	0,020	0,016	0,022	0,021	0,020	0,011	0,000	0,011	0,003	0,001
ina K	0,007	0,025	0,010	0,009	0,029	0,000	0,014	0,000	0,002	0,011
Summe	0,002 11 020	11 885	11 320	11 843	11 630	11 861	12 004	11 002	11 007	12 003
Total	19 020	19 885	19 320	19 843	19 630	19 861	20 004	19 992	19 997	20 003
	10,020	10,000	10,020	10,040	10,000	10,001	20,004	10,002	10,001	20,003
XFe	0,377	0,378	0,411	0,394	0,386	0,381	0,372	0,377	0,378	0,380

Fortsetzung Tab. H.5: Mikrosondenanalysen von Chlorit

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM061	IMM061
Chlorit	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	11.1	11.1
	CHL2-5	CHL3-1	CHL3-2	CHL3-3	CHL4-1	CHL4-2	CHL4-3	CHL4-4	CHL1-1	CHL1-2
SiO2	25 15	25 50	25.67	24.65	26 59	25.93	25.65	26.24	23.95	24 39
	0.11	0.11	0.13	0.08	0.14	0 17	20,00	20,24	23,33	0 11
A12O3	23.84	23 50	23 50	23 12	23.01	23.82	24.16	24.45	22 71	22 53
Fe2O3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1 34	0.55
MaO	18 53	18.53	17 23	18 21	16.63	18 15	17 79	16.80	16.60	17 41
CaO	0.02	0.07	0.12	0.03	0.14	0.05	0.02	0,00	0.05	0.01
MnO	0,02	0,07	0,12	0,00	0,14	0,00	0,02	0,00	0,00	0,01
FeO	19.40	19.92	21 17	19.52	19.76	10,00	19.63	18.92	21.27	20.61
Na2O	0.02	0.02	0.08	0.02	0.10	0.05	0.05	0.00	0.06	0.00
K20	0,02	0,02	0,00	0,02	0.08	0,00	0,00	0,00	0,00	0,00
Summe	87.42	88.09	88.30	86.02	87.83	87.83	87.74	87.08	86.49	85.89
••••••	0.,	00,00	00,00	00,01	01,00	01,00	0.,	01,00	00,10	00,00
Strukturfo	rmel bezog	en auf 28 S	auerstoffe							
Si	5,147	5,192	5,246	5,146	5,407	5,269	5,225	5,352	5,050	5,142
Ti	0,017	0,017	0,020	0,012	0,022	0,026	0,016	0,017	0,027	0,017
AI	5,752	5,659	5,661	5,687	5,732	5,704	5,801	5,877	5,643	5,598
Fe3+	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,212	0,087
Mg	5,652	5,622	5,247	5,665	5,040	5,496	5,401	5,134	5,243	5,470
Ca	0,004	0,016	0,026	0,006	0,031	0,010	0,005	0,020	0,010	0,002
Mn	0,062	0,055	0,063	0,069	0,081	0,066	0,056	0,063	0,048	0,049
Fe2+	3,321	3,397	3,618	3,408	3,361	3,260	3,344	3,227	3,751	3,633
Na	0,008	0,008	0,030	0,009	0,040	0,019	0,021	0,000	0,024	0,001
K	0,000	0,001	0,012	0,000	0,022	0,028	0,000	0,004	0,002	0,002
Summe	19,964	19,966	19,924	20,003	19,735	19,877	19,869	19,694	20,009	20,000
Si	5.147	5.192	5.246	5.146	5.407	5.269	5.225	5.352	5.050	5.142
AI(IV)	2,853	2,808	2,754	2,854	2,593	2,731	2,775	2,648	2,950	2,858
Summe	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI(VI)	2,899	2,851	2,907	2,834	3,139	2,972	3,026	3,229	2,693	2,740
Fe3+	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,212	0,087
	0,017	0,017	0,020	0,012	0,022	0,026	0,016	0,017	0,027	0,017
Fe2+	3,321	3,397	3,618	3,408	3,361	3,260	3,344	3,227	3,751	3,633
Mn	0,062	0,055	0,063	0,069	0,081	0,066	0,056	0,063	0,048	0,049
Mg	5,652	5,622	5,247	5,665	5,040	5,496	5,401	5,134	5,243	5,470
Ca	0,004	0,016	0,026	0,006	0,031	0,010	0,005	0,020	0,010	0,002
Na	0,008	0,008	0,030	0,009	0,040	0,019	0,021	0,000	0,024	0,001
ĸ	0,000	0,001	0,012	0,000	0,022	0,028	0,000	0,004	0,002	0,002
Summe	11,964	11,966	11,924	12,003	11,735	11,877	11,869	11,694	12,009	12,000
Iotal	19,964	19,966	19,924	20,003	19,735	19,877	19,869	19,694	20,009	20,000
XFe	0,370	0,377	0,408	0,376	0,400	0,372	0,382	0,386	0,417	0,399

Fortsetzung Tab. H.5: Mikrosondenanalysen von Chlorit

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Chlorit	11.1	11.1	11.1	11.1	11.1	11.2	11.2	11.2	11.2	11.2
	CHL1-3	CHL2-1	CHL2-2	CHL2-3	CHL2-4	CHL1-1	CHL1-2	CHL1-3	CHL1-4	CHL2-1
SiO2	24,70	23,94	24,58	23,90	23,98	24,14	24,15	24,17	24,18	24,62
TiO2	0,11	0,14	0,07	0,08	0,13	0,15	0,11	0,15	0,13	0,08
AI2O3	22,31	23,29	23,50	23,16	23,68	22,27	22,75	22,76	22,49	22,17
Fe2O3	0,42	1,44	0,61	0,89	0,60	0,67	1,05	1,27	1,43	1,15
MgO	17,28	16,64	16,77	16,89	16,48	16,85	16,90	17,06	17,18	16,83
CaO	0,00	0,09	0,05	0,04	0,05	0,01	0,02	0,02	0,00	0,02
MnO	0,26	0,27	0,33	0,27	0,25	0,27	0,34	0,33	0,28	0,30
FeO	21,22	21,53	22,21	20,91	21,83	21,15	21,19	21,08	20,88	21,93
Na2O	0,04	0,02	0,03	0,00	0,04	0,00	0,00	0,00	0,00	0,03
K2O	0,01	0,03	0,01	0,01	0,03	0,01	0,02	0,01	0,01	0,00
Summe	86,34	87,38	88,16	86,15	87,07	85,52	86,51	86,84	86,58	87,13
Strukturfo	mel bezog	en auf 28 S	auerstoffe							
Si	5.190	5.000	5.081	5.040	5.017	5,133	5.081	5,066	5.081	5,161
Ti	0.017	0.022	0.011	0.013	0.020	0.023	0.017	0.024	0.021	0.012
AI	5.526	5.734	5.726	5.755	5.840	5.582	5.641	5.622	5.570	5.477
Fe3+	0,066	0,227	0,094	0,140	0,094	0,108	0,166	0,200	0,227	0,181
Mg	5,413	5,180	5,168	5,306	5,138	5,339	5,299	5,328	5,379	5,258
Ca	0,000	0,019	0,012	0,008	0,011	0,003	0,005	0,004	0,000	0,004
Mn	0,046	0,048	0,058	0,049	0,045	0,048	0,060	0,059	0,050	0,054
Fe2+	3,730	3,761	3,840	3,687	3,819	3,761	3,729	3,694	3,670	3,845
Na	0,015	0,006	0,010	0,000	0,017	0,000	0,000	0,001	0,000	0,011
К	0,002	0,007	0,003	0,002	0,007	0,003	0,004	0,003	0,001	0,000
Summe	20,005	20,004	20,004	20,000	20,008	20,001	20,001	20,001	20,000	20,003
Si	5,190	5,000	5.081	5.040	5.017	5,133	5.081	5.066	5.081	5,161
AI(IV)	2.810	3.000	2,919	2.960	2.983	2.867	2.919	2.934	2.919	2.839
Summe	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
A 1/2 /2	0.740	0.704		0.705	0.057	0.745	0.704	0.000	0.054	0.000
AI(VI)	2,716	2,734	2,808	2,795	2,857	2,715	2,721	2,688	2,651	2,638
Fe3+	0,066	0,227	0,094	0,140	0,094	0,108	0,166	0,200	0,227	0,181
11	0,017	0,022	0,011	0,013	0,020	0,023	0,017	0,024	0,021	0,012
Fe2+	3,730	3,761	3,840	3,687	3,819	3,761	3,729	3,694	3,670	3,845
wn Ma	0,046	0,048	0,058	0,049	0,045	0,048	0,060	0,059	0,050	0,054
wg Co	5,413	5,180	5,168	5,306	5,138	5,339	5,299	5,328	5,379	5,258
Ca No	0,000	0,019	0,012	0,008	0,011	0,003	0,005	0,004	0,000	0,004
ind V	0,015	0,000	0,010	0,000	0,017	0,000	0,000	0,001	0,000	0,011
r. Summo	12 005	12 004	12 004	12 000	12 009	12 001	12 004	12 001	12 000	12 002
Total	20.005	20.004	20.004	20.000	20.000	20.001	20.001	20 001	20.000	20 002
Iolai	20,000	20,004	20,004	20,000	20,000	20,001	20,001	20,001	20,000	20,003
XFe	0,408	0,421	0,426	0,410	0,426	0,413	0,413	0,409	0,405	0,422

Fortsetzung Tab. H.5: Mikrosondenanalysen von Chlorit
Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Chlorit	11.2	11.2	11.2	11.2	11.3	11.3	11.4	11.4	11.4	11.4
		CHL3-	CHL3-	CHL3-					<u></u>	
	CHL2-2	1GRE	2GRE	3GRE	CHL1-1	CHL1-2	CHL1-1	CHL1-2	CHL2-1	CHL2-2
SiO2	24,20	24,19	24,42	24,27	25,02	24,93	23,94	24,58	23,44	24,21
TiO2	0,12	0,01	0,09	0,07	0,12	0,17	0,11	0,09	0,08	0,07
AI2O3	22,02	21,32	21,55	21,93	22,91	23,08	23,55	23,57	23,37	22,73
Fe2O3	1,94	0,12	0,53	0,48	0,67	0,00	1,15	0,00	1,88	1,52
MgO	16,99	12,92	15,19	15,00	16,80	16,40	16,86	16,15	16,22	16,96
CaO	0,00	0,00	0,00	0,00	0,05	0,05	0,00	0,05	0,00	0,02
MnO	0,25	0,51	0,57	0,58	0,27	0,28	0,26	0,30	0,35	0,33
FeO	21,16	27,29	23,98	24,14	22,73	23,29	21,20	22,26	21,48	21,27
Na2O	0,03	0,02	0,00	0,00	0,05	0,01	0,02	0,06	0,03	0,00
K2O	0,00	0,03	0,00	0,00	0,09	0,07	0,06	0,03	0,00	0,02
Summe	86,70	86,39	86,33	86,47	88,70	88,28	87,14	87,06	86,86	87,12
Strukturfo	rmel bezoa	on auf 28 S	auerstoffe							
Si	5 097	5 260	5 226	5 188	5 154	5 164	4 998	5 135	4 939	5 067
Ti	0,007	0,200	0.014	0,100	0,104	0,104	0.018	0,100	0.013	0,007
Δι	5 466	5 464	5 4 3 6	5 525	5 563	5 635	5 796	5 804	5 802	5 607
Fe3+	0,307	0,101	0,400	0,020	0,000	0,000	0,180	0,000	0.298	0 239
Ma	5,333	4 186	4 844	4 778	5 159	5 061	5 245	5 028	5 093	5 287
Ca	0,000	0.000	0.000	0.000	0.010	0.011	0.000	0.010	0.000	0.004
Mn	0.044	0.093	0 104	0 104	0.047	0.049	0.045	0.052	0.063	0.058
Fe2+	3,728	4,963	4,291	4.315	3,916	4.034	3,702	3,891	3,785	3,722
Na	0.010	0.010	0.000	0.000	0.018	0.002	0.009	0.023	0.011	0.000
K	0.000	0.009	0.000	0.001	0.022	0.018	0.015	0.007	0.000	0.005
Summe	20.003	20.006	19.999	20.000	20.014	20.001	20.008	19.964	20.003	20.001
	-,	-,	-,	-,	- , -	- ,	- ,	- ,	- ,	- ,
Si	5,097	5,260	5,226	5,188	5,154	5,164	4,998	5,135	4,939	5,067
AI(IV)	2,903	2,740	2,774	2,812	2,846	2,836	3,002	2,865	3,061	2,933
Summe	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI(VI)	2,563	2,725	2,662	2,713	2,717	2,799	2,794	2,939	2,741	2,674
Fe3+	0,307	0,019	0,086	0,077	0,105	0,000	0,180	0,000	0,298	0,239
Ті	0,019	0,001	0,014	0,011	0,018	0,027	0,018	0,014	0,013	0,011
Fe2+	3,728	4,963	4,291	4,315	3,916	4,034	3,702	3,891	3,785	3,722
Mn	0,044	0,093	0,104	0,104	0,047	0,049	0,045	0,052	0,063	0,058
Mg	5,333	4,186	4,844	4,778	5,159	5,061	5,245	5,028	5,093	5,287
Ca	0,000	0,000	0,000	0,000	0,010	0,011	0,000	0,010	0,000	0,004
Na	0,010	0,010	0,000	0,000	0,018	0,002	0,009	0,023	0,011	0,000
Κ	0,000	0,009	0,000	0,001	0,022	0,018	0,015	0,007	0,000	0,005
Summe	12,003	12,006	11,999	12,000	12,014	12,001	12,008	11,964	12,003	12,001
Total	20,003	20,006	19,999	20,000	20,014	20,001	20,008	19,964	20,003	20,001
XFe	0,411	0,542	0,470	0,474	0,431	0,443	0,414	0,436	0,426	0,413

Fortsetzung Tab. H.5: Mikrosondenanalysen von Chlorit

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM063	IMM063	IMM089	IMM089
Chlorit	11.5	11.5	11.5	11.5	11.5	11.5	2.4	2.4	7.4	7.4
	CHL1-	CHL1-	CHL2-	CHL2-	CHL2-	CHL2-			.	
	1GRE	2GRE	1GRE	2GRE	3GRE	4GRE	Chl1-2	Chl1-3	Chl1-1	Chl1-2
8:02	24.42	24.05	24 50	24.40	24.66	24.20	24.06	24.66	20.24	24.24
3102	24,42	24,05	24,50	24,19	24,00	24,39	24,90	24,00	29,34	24,31
1102	0,10	0,00	0,10	0,11	0,11	0,04	0,00	0,10	0,11	0,12
AIZU3	22,54	1 25	22,37	22,42	22,09	21,39	23,03	23,46	24,13	23,23
rezus Mao	0,71	1,55	0,41	1,00	1,00	0,00	17.54	16.80	11.05	14.07
MgO	14,85	14,74	15,44	15,21	15,00	14,10	17,54	16,80	11,95	14,97
	0,05	0,06	0,01	0,00	0,02	0,06	0,02	0,05	0,01	0,05
MinO E-O	0,50	0,45	0,41	0,40	0,35	0,64	0,39	0,41	0,25	0,30
FeU	25,00	24,63	24,06	24,15	24,27	25,44	21,37	20,74	19,67	24,73
Nazo	0,00	0,02	0,00	0,00	0,01	0,09	0,06	0,06	0,00	0,01
K20	0,00	0,00	0,01	0,00	0,00	0,01	0,05	0,04	2,21	0,00
Summe	88,18	87,98	87,31	87,54	88,76	87,02	88,36	86,33	87,66	87,71
Strukturfo	rmel bezoa	en auf 28 S	auerstoffe							
Si	5.135	5.074	5.171	5.109	5.127	5.229	5.113	5,159	5.979	5.111
Ti	0.016	0.010	0.015	0.017	0.016	0.007	0.008	0.015	0.017	0.018
AI	5.586	5.621	5.564	5,580	5,560	5,403	5,754	5,789	5,797	5,758
Fe3+	0.113	0.214	0.066	0.169	0.156	0.138	0.016	0.000	0.000	0.000
Μα	4.654	4.635	4.858	4,786	4.852	4,505	5.354	5.238	3.629	4.691
Ca	0.011	0.014	0.001	0.000	0.004	0.014	0.004	0.011	0.001	0.010
Mn	0.088	0.080	0.074	0.072	0.061	0.117	0.068	0.072	0.043	0.053
Fe2+	4.396	4.346	4.248	4.266	4.221	4.560	3.661	3.628	3.352	4.349
Na	0.000	0.008	0.000	0.001	0.004	0.039	0.022	0.024	0.000	0.002
К	0.001	0.000	0.004	0.000	0.000	0.002	0.013	0.010	0.575	0.001
Summe	20,000	20,002	20,001	20,000	20,001	20,014	20,012	19,948	19,393	19,993
	·			·		·			·	
Si	5,135	5,074	5,171	5,109	5,127	5,229	5,113	5,159	5,979	5,111
AI(IV)	2,865	2,926	2,829	2,891	2,873	2,771	2,887	2,841	2,021	2,889
Summe	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI(VI)	2.721	2.696	2.735	2.689	2.687	2.632	2.866	2.949	3.776	2.869
Fe3+	0.113	0.214	0.066	0.169	0.156	0.138	0.016	0.000	0.000	0.000
Ti	0.016	0.010	0.015	0.017	0.016	0.007	0.008	0.015	0.017	0.018
Fe2+	4,396	4,346	4,248	4,266	4,221	4,560	3,661	3,628	3,352	4,349
Mn	0.088	0.080	0.074	0.072	0.061	0.117	0.068	0.072	0.043	0.053
Ma	4.654	4.635	4.858	4.786	4.852	4.505	5.354	5.238	3.629	4.691
Ca	0.011	0.014	0.001	0.000	0.004	0.014	0.004	0.011	0.001	0.010
Na	0,000	0,008	0,000	0.001	0.004	0.039	0,022	0,024	0.000	0.002
к	0,001	0,000	0,004	0.000	0.000	0.002	0.013	0.010	0.575	0.001
Summe	12,000	12,002	12,001	12,000	12,001	12,014	12,012	11,948	11,393	11,993
Total	20,000	20,002	20,001	20,000	20,001	20.014	20,012	19,948	19,393	19,993
	-					,	•			
XFe	0,486	0,484	0,466	0,471	0,465	0,503	0,406	0,409	0,480	0,481

Fortsetzung Tab. H.5: Mikrosondenanalysen von Chlorit

Probe	IMM089	IMM089	IMM089	SM1063						
Chlorit	7.4	7.4	7.4	3.4	3.4	3.4	3.5	3.5	3.5	3.8
	Chl1-3	Chl1-4	Chl1-5	Chl 1-1	Chl 1-2	Chl 1-3	Chl 1-1	Chl 1-2	Chl 2-1	Chl 1-1
SiO2	24,30	24,22	23,54	25,22	24,45	25,45	24,31	24,80	24,74	24,59
TiO2	0,10	0,01	0,09	0,10	0,17	0,18	0,04	0,14	0,10	0,19
AI2O3	23,14	23,36	22,19	22,66	22,13	23,24	21,92	21,72	23,31	23,50
Fe2O3	0,00	0,44	0,79	0,00	0,57	0,00	0,63	0,11	0,23	0,20
MgO	14,67	14,71	14,65	15,44	15,65	16,02	14,73	14,75	14,65	17,43
CaO	0,00	0,05	0,01	0,11	0,03	0,06	0,06	0,03	0,05	0,02
MnO	0,32	0,32	0,33	0,24	0,30	0,25	0,96	1,04	0,98	0,24
FeO	24,76	25,12	23,86	23,34	23,42	24,39	24,16	24,86	25,18	21,20
Na2O	0,00	0,01	0,01	0,08	0,11	0,05	0,03	0,02	0,11	0,05
K2O	0,11	0,02	0,00	0,17	0,05	0,15	0,00	0,03	0,11	0,02
Summe	87,38	88,25	85,45	87,35	86,87	89,79	86,83	87,49	89,46	87,44
Strukturfo	rmel bezog	en auf 28 S	auerstoffe							
Si	5,133	5,079	5,094	5,283	5,177	5,204	5,189	5,258	5,129	5,091
Ті	0,015	0,001	0,014	0,015	0,026	0,028	0,006	0,022	0,015	0,030
AI	5,761	5,774	5,658	5,593	5,521	5,600	5,514	5,429	5,697	5,734
Fe3+	0,000	0,070	0,128	0,000	0,090	0,000	0,101	0,018	0,036	0,032
Mg	4,618	4,598	4,723	4,819	4,938	4,879	4,684	4,661	4,526	5,380
Ca	0,000	0,010	0,002	0,024	0,007	0,014	0,013	0,007	0,012	0,003
Mn	0,056	0,056	0,060	0,043	0,054	0,044	0,174	0,187	0,172	0,042
Fe2+	4,373	4,405	4,317	4,089	4,148	4,170	4,312	4,409	4,366	3,671
Na	0,000	0,002	0,004	0,032	0,044	0,020	0,012	0,007	0,045	0,020
К	0,030	0,006	0,000	0,045	0,014	0,039	0,000	0,008	0,028	0,006
Summe	19,986	20,003	20,001	19,944	20,020	19,998	20,004	20,005	20,026	20,008
Si	5,133	5,079	5,094	5,283	5,177	5,204	5,189	5,258	5,129	5,091
AI(IV)	2,867	2,921	2,906	2,717	2,823	2,796	2,811	2,742	2,871	2,909
Summe	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
AI(VI)	2.893	2.853	2.752	2.876	2.698	2.803	2.703	2.687	2.826	2.826
Fe3+	0,000	0,070	0,128	0,000	0,090	0,000	0,101	0,018	0,036	0,032
Ti	0.015	0,001	0.014	0.015	0,026	0,028	0,006	0,022	0.015	0,030
Fe2+	4,373	4,405	4,317	4,089	4,148	4,170	4,312	4,409	4,366	3,671
Mn	0,056	0,056	0,060	0,043	0,054	0,044	0,174	0,187	0,172	0,042
Mg	4,618	4,598	4,723	4,819	4,938	4,879	4,684	4,661	4,526	5,380
Ca	0,000	0,010	0,002	0,024	0,007	0,014	0,013	0,007	0,012	0,003
Na	0,000	0,002	0,004	0,032	0,044	0,020	0,012	0,007	0,045	0,020
К	0,030	0,006	0,000	0,045	0,014	0,039	0,000	0,008	0,028	0,006
Summe	11,986	12,003	12,001	11,944	12,020	11,998	12,004	12,005	12,026	12,008
Total	19,986	20,003	20,001	19,944	20,020	19,998	20,004	20,005	20,026	20,008
XFe	0,486	0,489	0,477	0,459	0,456	0,461	0,479	0,486	0,491	0,405

Fortsetzung Tab. H.5: Mikrosondenanalysen von Chlorit

Probe	SM1063	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Chlorit	3.8	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6
	Chl 1-2	Chl1-1	Chl1-2	Chl1-3	Chl1-4	Chl1-5	Chl2-1	Chl3-1	Chl3-2	Chl3-3	Chl3-4
SiO2	24,58	25,51	25,16	26,01	25,36	25,11	25,73	26,10	25,75	27,64	25,68
TiO2	0,14	0,10	0,08	0,13	0,13	0,14	0,03	0,07	0,07	0,39	0,09
AI2O3	23,85	22,35	23,01	22,96	22,79	22,74	22,42	21,86	22,63	22,28	22,92
Fe2O3	0,21	0,89	0,06	0,12	0,74	0,96	0,00	0,02	0,00	0,00	0,89
MgO	17,52	19,96	18,94	19,62	19,26	19,19	19,34	19,82	19,69	18,40	20,13
CaO	0,01	0,02	0,00	0,07	0,02	0,00	0,00	0,02	0,02	0,03	0,02
MnO	0,26	0,38	0,44	0,48	0,41	0,43	0,42	0,35	0,37	0,35	0,39
FeO	21,15	17,89	19,10	19,32	18,99	18,77	18,87	18,90	18,68	18,64	18,06
Na2O	0,02	0,00	0,02	0,00	0,03	0,02	0,01	0,00	0,01	0,06	0,01
K2O	0,01	0,05	0,02	0,05	0,02	0,00	0,01	0,00	0,01	1,36	0,04
Summe	87,74	87,14	86,81	88,76	87,76	87,35	86,82	87,14	87,22	89,16	88,24
Strukturfo	rmel bezo	non auf 28	Sauerstof	fo							
Si	5 067	5 222	5 180	5 245	5 182	5 156	5 203	5 349	5 265	5 547	5 101
Ti	0,007	0,222	0,100	0,240	0,102	0,100	0,200	0,040	0,200	0.058	0,101
ΔΙ	5 796	5 303	5 592	5 456	5 488	5 502	5 4 3 6	5 280	5 455	5 270	5 461
Fe3+	0,730	0,000	0,002	0,400	0,400	0 149	0,400	0,200	0,400	0,000	0,401
Ma	5 382	6 091	5 820	5 897	5 864	5 872	5 930	6 053	6,000	5 503	6 065
Ca	0,002	0,001	0,020	0.014	0,004	0,000	0,000	0,000	0,002	0,007	0,000
Mn	0,000	0,004	0,000	0,014	0,000	0,000	0,000	0,004	0,000	0,007	0,000
Fo2+	3 646	3 062	3 294	3 257	3 245	3 222	3 247	3 230	3 194	3 128	3 054
Na	0,040	0,002	0,204	0,207	0,240	0,222	0.002	0,200	0,002	0.021	0,004
K	0,003	0,000	0,000	0,000	0,015	0,000	0,002	0,000	0,002	0,021	0,000
Summe	20,001	20 004	20,004	20 004	20,000	20,000	10 087	10,000	20,000	10,040	20,005
Gamme	20,000	20,004	20,000	20,004	20,000	20,002	10,007	10,000	20,000	10,044	20,000
Si	5,067	5,222	5,189	5,245	5,182	5,156	5,293	5,349	5,265	5,547	5,191
AI(IV)	2,933	2,778	2,811	2,755	2,818	2,844	2,707	2,651	2,735	2,453	2,809
Summe	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
	0.000	0.045	0 704	0 700	0.000	0.057	0 700	0.000	0 700	0.040	0.050
AI(VI)	2,863	2,615	2,781	2,702	2,669	2,657	2,729	2,629	2,720	2,818	2,652
Fe3+	0,032	0,137	0,009	0,018	0,114	0,149	0,000	0,003	0,000	0,000	0,136
11	0,021	0,016	0,013	0,020	0,021	0,021	0,004	0,010	0,010	0,058	0,013
Fez+	3,646	3,062	3,294	3,257	3,245	3,222	3,247	3,239	3,194	3,128	3,054
Mn	0,046	0,066	0,076	0,082	0,070	0,074	0,073	0,061	0,063	0,060	0,067
Mg	5,382	6,091	5,820	5,897	5,864	5,872	5,930	6,053	6,002	5,503	6,065
Ca	0,003	0,004	0,000	0,014	0,005	0,000	0,000	0,004	0,005	0,007	0,003
Na	0,009	0,000	0,006	0,000	0,013	0,008	0,002	0,000	0,002	0,021	0,005
ĸ	0,001	0,013	0,004	0,014	0,005	0,000	0,002	0,000	0,003	0,349	0,009
Summe	12,003	12,004	12,003	12,004	12,006	12,002	11,987	11,999	12,000	11,944	12,005
Total	20,003	20,004	20,003	20,004	20,006	20,002	19,987	19,999	20,000	19,944	20,005
XFe	0,404	0,334	0,361	0,356	0,356	0,354	0,354	0,349	0,347	0,362	0,335

Fortsetzung Tab. H.5: Mikrosondenanalysen von Chlorit

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021
Plagioklas	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3
	PLAG1-1	PLAG1-3	PLAG1-4	PLAG1-5	PLAG1-6	PLAG1-7	PLAG1-8	PLAG1-9	PLAG1-12
SiO2	62,54	62,26	62,77	63,06	61,64	63,15	61,46	62,91	62,47
AI2O3	23,61	23,43	23,48	23,16	23,94	23,30	23,77	23,07	23,10
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	4,58	4,46	4,70	3,10	5,16	4,30	5,17	4,34	4,27
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,07	0,02	0,00	0,10	0,00	0,08	0,06	0,05	0,10
BaO	0,00	0,03	0,00	0,03	0,01	0,00	0,02	0,00	0,00
Na2O	9,09	9,17	8,97	9,44	8,68	9,36	8,82	8,97	9,27
K2O	0,07	0,11	0,07	0,66	0,09	0,10	0,07	0,08	0,14
Summe	99,95	99,47	99,99	99,54	99,52	100,28	99,37	99,43	99,35
Si	2 770	2 772	2 777	2 802	2 745	2 787	2 745	2 795	2 784
ΔΙ	1 232	1 229	1 224	1 213	1 257	1 212	1 251	1 208	1 213
Summe1	4 002	4 001	4 001	4 015	4 002	3,998	3 996	4 003	3 997
Ма	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ca	0.217	0.213	0.223	0,147	0.246	0,203	0.248	0,207	0.204
Mn	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.003	0.001	0.000	0.004	0.000	0.003	0.002	0.002	0.004
Ва	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Na	0,780	0,792	0,769	0,813	0,750	0,800	0,764	0,773	0,801
к	0,004	0,006	0,004	0,037	0,005	0,006	0,004	0,005	0,008
Summe2	1,004	1,012	0,996	1,002	1,001	1,012	1,018	0,986	1,016
Summe 1+2	5,006	5,013	4,997	5,017	5,003	5,010	5,014	4,989	5,013
Albit	77 0/	78 20	77 25	81 /5	74 80	70 32	75 20	78 51	70.10
Orthok	0.37	0,23	0.37	3 75	0.51	0.55	0.30	0.48	0.77
Anorthit	21 60	21.05	0,37 72 27	3,73 14 75	24 59	20,00	24 27	0,40 21.01	20.12
Colsian	21,09	21,00	22,31	0.04	24,00	20,13	24,37	21,01	20,13
CUMMO	100.00	100.00	100.00	100.00	100.02	100.00	100.00	100.00	100.00
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM021								
Plagioklas	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5
	PLAG1-1	PLAG1-2	PLAG1-3	PLAG1-4	PLAG1-5	PLAG1-6	PLAG1-7	PLAG1-8	PLAG1-9
SiO2	62,58	62,00	62,28	62,09	62,41	62,61	62,69	62,39	62,28
AI2O3	23,60	23,47	23,28	23,37	23,47	23,39	23,57	23,62	23,16
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	4,69	4,58	4,63	4,58	4,60	4,57	4,63	4,84	4,58
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,10	0,08	0,08	0,06	0,08	0,05	0,03	0,03	0,00
BaO	0,06	0,00	0,00	0,00	0,00	0,00	0,03	0,02	0,00
Na2O	9,02	9,29	9,18	9,09	8,90	9,14	9,08	8,92	8,91
K2O	0,09	0,10	0,09	0,09	0,12	0,06	0,08	0,09	0,06
Summe	100,13	99,53	99,53	99,28	99,58	99,82	100,11	99,90	98,99
Si	2,769	2,763	2,773	2,770	2,773	2,776	2,772	2,766	2,782
AI	1,231	1,233	1,221	1,229	1,229	1,222	1,229	1,234	1,219
Summe1	4,000	3,995	3,994	3,999	4,003	3,999	4,001	4,000	4,002
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,222	0,218	0,221	0,219	0,219	0,217	0,219	0,230	0,219
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,004	0,003	0,003	0,002	0,003	0,002	0,001	0,001	0,000
Ва	0,001	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000
Na	0,774	0,803	0,792	0,787	0,767	0,786	0,778	0,767	0,771
κ	0,005	0,006	0,005	0,005	0,007	0,003	0,005	0,005	0,003
Summe2	1,005	1,030	1,021	1,013	0,996	1,008	1,004	1,002	0,994
Summe 1+2	5,005	5,025	5,015	5,012	4,998	5,007	5,005	5,003	4,996
Albit	77,22	78,16	77,82	77,81	77,23	78,07	77,61	76,56	77,59
Orthokl.	0,50	0,58	0,49	0,53	0,69	0,34	0,45	0,48	0,35
Anorthit	22,18	21,26	21,69	21,66	22,09	21,59	21,88	22,94	22,06
Celsian	0,10	0,00	0,00	0,00	0,00	0,00	0,06	0,03	0,00
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM021								
Plagioklas	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5
	PLAG1-10	PLAG1-11	PLAG1-12	PLAG1-13	PLAG1-14	PLAG1-15	PLAG1-16	PLAG1-17	PLAG1-18
SiO2	62,22	62,66	68,50	68,18	68,40	68,32	68,60	61,61	62,49
AI2O3	23,35	23,72	20,19	19,58	19,91	19,91	20,02	23,82	23,42
MgO	0,01	0,00	0,00	0,00	0,00	0,02	0,00	0,00	0,00
CaO	4,62	4,57	0,03	0,06	0,12	0,02	0,04	5,23	4,60
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,00	0,09	0,03	0,06	0,06	0,05	0,11	0,04	0,04
BaO	0,00	0,03	0,02	0,00	0,00	0,00	0,00	0,01	0,04
Na2O	9,20	9,07	11,74	11,60	11,50	11,63	11,49	8,54	9,04
K2O	0,11	0,10	0,01	0,02	0,05	0,04	0,03	0,09	0,11
Summe	99,51	100,24	100,52	99,50	100,03	99,99	100,28	99,34	99,75
Si	2,770	2,768	2,976	2,991	2,984	2,983	2,984	2,749	2,774
AI	1,225	1,235	1,034	1,013	1,024	1,024	1,027	1,253	1,226
Summe1	3,996	4,003	4,010	4,004	4,008	4,007	4,011	4,001	4,000
Mg	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000
Ca	0,220	0,216	0,001	0,003	0,006	0,001	0,002	0,250	0,219
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,000	0,003	0,001	0,002	0,002	0,002	0,004	0,001	0,002
Ва	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001
Na	0,794	0,777	0,989	0,987	0,973	0,985	0,969	0,739	0,778
к	0,006	0,006	0,000	0,001	0,003	0,002	0,001	0,005	0,006
Summe2	1,021	1,003	0,992	0,993	0,983	0,991	0,976	0,995	1,006
Summe 1+2	5,017	5,006	5,002	4,996	4,991	4,998	4,987	4,997	5,006
Albit	77,84	77,73	99,79	99,61	99,16	99,67	99,65	74,32	77,52
Orthokl.	0,60	0,56	0,03	0,11	0,26	0,22	0,15	0,52	0,63
Anorthit	21,57	21,66	0,14	0,28	0,57	0,11	0,20	25,14	21,79
Celsian	0,00	0,05	0,04	0,00	0,01	0,00	0,00	0,02	0,07
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM021								
Plagioklas	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5
	PLAG1-19	PLAG1-20	PLAG1-21	PLAG1-22	PLAG1-23	PLAG1-24	PLAG1-25	PLAG1-26	PLAG1-27
SiO2	62,52	61,84	62,49	64,44	61,44	61,93	62,31	62,12	61,43
AI2O3	23,69	23,80	23,34	22,88	23,61	23,43	23,45	23,63	23,86
MgO	0,00	0,00	0,00	0,08	0,01	0,00	0,00	0,00	0,00
CaO	4,64	4,62	3,77	1,27	4,74	4,64	4,83	4,98	5,22
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,04	0,07	0,05	0,20	0,07	0,00	0,03	0,00	0,04
BaO	0,00	0,02	0,06	0,08	0,00	0,05	0,01	0,01	0,06
Na2O	9,17	8,86	9,03	9,97	8,88	9,01	9,00	8,93	8,59
K2O	0,11	0,08	0,30	0,62	0,11	0,10	0,10	0,09	0,09
Summe	100,16	99,30	99,04	99,53	98,85	99,16	99,72	99,75	99,30
Si	2,765	2,757	2,788	2,847	2,755	2,767	2,769	2,760	2,744
AI	1,235	1,251	1,227	1,191	1,248	1,234	1,228	1,237	1,256
Summe1	4,000	4,008	4,016	4,039	4,002	4,000	3,996	3,997	4,000
Mg	0,000	0,000	0,000	0,006	0,000	0,000	0,000	0,000	0,000
Ca	0,220	0,221	0,180	0,060	0,228	0,222	0,230	0,237	0,250
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,001	0,003	0,002	0,007	0,003	0,000	0,001	0,000	0,001
Ва	0,000	0,000	0,001	0,001	0,000	0,001	0,000	0,000	0,001
Na	0,787	0,766	0,782	0,854	0,772	0,780	0,775	0,769	0,744
к	0,006	0,005	0,017	0,035	0,006	0,006	0,006	0,005	0,005
Summe2	1,014	0,995	0,982	0,963	1,009	1,009	1,012	1,011	1,002
Summe 1+2	5,014	5,003	4,998	5,001	5,011	5,009	5,008	5,008	5,002
Albit	77,69	77,22	79,74	89,87	76,77	77,34	76,70	76,07	74,40
Orthokl.	0,61	0,48	1,76	3,65	0,60	0,58	0,56	0,48	0,50
Anorthit	21,70	22,26	18,40	6,33	22,63	21,99	22,73	23,43	25,00
Celsian	0,00	0,04	0,10	0,15	0,00	0,09	0,02	0,02	0,11
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM021	IMM039	IMM044						
Plagioklas	8.5	5.1	5.1	5.2	5.2	5.2	5.3	5.3	1.3
	PLAG1-28	Plag 1-1	Plag 1-2	Plag 1-1	Plag 1-2	Plag 1-3	Plag 1-1	Plag 1-2	Plag 1-1
SiO2	62,45	61,07	60,62	58,58	58,89	59,33	60,26	59,96	61,33
AI2O3	23,74	24,26	25,11	25,14	25,15	25,55	25,25	24,77	24,56
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	4,63	5,67	6,71	7,18	7,22	7,24	6,77	6,46	5,56
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,04	0,02	0,12	0,03	0,02	0,08	0,00	0,02	0,01
BaO	0,05	0,00	0,06	0,01	0,00	0,02	0,01	0,06	0,00
Na2O	9,30	8,65	7,77	7,61	7,38	7,46	7,68	7,90	8,49
K2O	0,11	0,11	0,10	0,12	0,08	0,10	0,10	0,11	0,16
Summe	100,32	99,77	100,49	98,66	98,74	99,78	100,06	99,28	100,10
Si	2,761	2,721	2,686	2,651	2,659	2,652	2,680	2,689	2,720
AI	1,237	1,274	1,311	1,341	1,338	1,346	1,323	1,309	1,284
Summe1	3,998	3,995	3,997	3,992	3,997	3,999	4,003	3,998	4,004
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,219	0,271	0,319	0,348	0,349	0,347	0,322	0,310	0,264
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,002	0,001	0,004	0,001	0,001	0,003	0,000	0,001	0,000
Ва	0,001	0,000	0,001	0,000	0,000	0,000	0,000	0,001	0,000
Na	0,797	0,747	0,667	0,667	0,646	0,647	0,662	0,686	0,730
к	0,006	0,006	0,006	0,007	0,005	0,005	0,005	0,006	0,009
Summe2	1,025	1,024	0,997	1,023	1,000	1,002	0,990	1,005	1,003
Summe 1+2	5,023	5,019	4,995	5,016	4,997	5,001	4,993	5,003	5,007
A 11. 14	77.00	70.07	07.00	05.07	04.00	04.74	00.00	00.05	70 74
	77,90	72,97	67,22	65,27	64,60	64,74	66,89	68,35	72,74
Orthokl.	0,61	0,59	0,56	0,65	0,46	0,54	0,54	0,63	0,91
Anorthit	21,42	26,43	32,11	34,06	34,94	34,69	32,55	30,91	26,35
Celsian	0,08	0,00	0,11	0,02	0,00	0,03	0,02	0,11	0,00
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM044	IMM051							
Plagioklas	1.3	1.3	1.3	1.3	1.6	1.6	1.6	1.6	9.6
	Plag 1-2	Plag 1-3	Plag 1-4	Plag 1-5	Plag 1-1	Plag 1-2	Plag 1-3	Plag 1-4	PLAG1-2
SiO2	61,91	62,65	62,20	62,42	62,65	63,50	65,32	64,06	62,23
AI2O3	24,11	23,58	23,51	23,60	24,37	23,32	22,44	23,30	23,13
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,03	0,09
CaO	5,02	4,42	4,49	4,34	4,79	4,12	2,86	3,70	1,20
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,03	0,09	0,02	0,04	0,17	0,03	0,06	0,00	0,25
BaO	0,01	0,03	0,02	0,00	0,00	0,02	0,04	0,02	0,62
Na2O	8,94	9,19	9,05	9,25	9,17	9,32	9,96	9,49	9,64
K2O	0,14	0,14	0,16	0,12	0,09	0,09	0,13	0,07	1,07
Summe	100,16	100,10	99,44	99,77	101,25	100,39	100,82	100,66	98,22
Si	2,742	2,772	2,769	2,770	2,745	2,795	2,852	2,807	2,809
AI	1,259	1,230	1,234	1,234	1,258	1,210	1,155	1,203	1,230
Summe1	4,001	4,002	4,003	4,004	4,003	4,005	4,007	4,010	4,039
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,002	0,006
Ca	0,238	0,210	0,214	0,206	0,225	0,194	0,134	0,174	0,058
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,001	0,003	0,001	0,001	0,006	0,001	0,002	0,000	0,009
Ва	0,000	0,001	0,000	0,000	0,000	0,000	0,001	0,000	0,011
Na	0,768	0,789	0,781	0,796	0,779	0,795	0,843	0,806	0,843
К	0,008	0,008	0,009	0,007	0,005	0,005	0,007	0,004	0,061
Summe2	1,016	1,010	1,005	1,010	1,015	0,996	0,988	0,986	0,989
Summe 1+2	5,017	5,011	5,009	5,014	5,018	5,000	4,995	4,996	5,028
Albit	75,71	78,36	77,73	78,89	77,23	79,95	85,60	81,92	86,61
Orthokl.	0,80	0,76	0,89	0,66	0,49	0,49	0,74	0,40	6,30
Anorthit	23,48	20,83	21,34	20,45	22,28	19,52	13,59	17,64	5,97
Celsian	0,01	0,05	0,03	0,00	0,00	0,03	0,08	0,04	1,12
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM051	IMM051	IMM051						
Plagioklas	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6
	PLAG1-3	PLAG1-4	PLAG1-6	PLAG1-7	PLAG1-8	PLAG1-9	PLAG1-10	PLAG1-11	PLAG1-12
SiO2	61,41	61,49	61,52	61,96	61,74	62,52	62,44	63,05	63,41
AI2O3	23,03	22,82	22,62	22,59	22,55	22,47	22,34	22,72	22,63
MgO	0,00	0,00	0,02	0,00	0,00	0,00	0,00	0,00	0,00
CaO	4,06	3,87	3,79	3,73	3,68	3,61	3,54	3,58	3,46
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,06	0,02	0,03	0,06	0,06	0,02	0,02	0,00	0,03
BaO	0,07	0,02	0,00	0,00	0,02	0,04	0,08	0,03	0,02
Na2O	9,56	9,53	9,84	9,42	9,57	9,45	9,59	9,56	9,55
K2O	0,16	0,12	0,13	0,16	0,19	0,15	0,18	0,15	0,15
Summe	98,35	97,87	97,95	97,92	97,82	98,25	98,20	99,09	99,25
Si	2,770	2,782	2,784	2,798	2,794	2,811	2,812	2,810	2,820
AI	1,225	1,217	1,207	1,202	1,203	1,191	1,186	1,194	1,186
Summe1	3,995	3,999	3,991	4,001	3,998	4,002	3,998	4,004	4,005
Mg	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,196	0,187	0,184	0,181	0,179	0,174	0,171	0,171	0,165
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,002	0,001	0,001	0,002	0,002	0,001	0,001	0,000	0,001
Ва	0,001	0,000	0,000	0,000	0,000	0,001	0,001	0,000	0,000
Na	0,837	0,836	0,863	0,824	0,840	0,824	0,838	0,826	0,823
К	0,009	0,007	0,007	0,009	0,011	0,009	0,010	0,009	0,009
Summe2	1,045	1,031	1,057	1,016	1,032	1,008	1,021	1,007	0,998
Summe 1+2	5,040	5,030	5,048	5,017	5,030	5,010	5,019	5,011	5,004
Albit	80.20	81 12	81 87	81.31	81 58	81 80	82 09	82 09	82 54
Orthoki	0.87	0.64	0.69	0.88	1.06	0.86	1 02	0.87	0.87
Anorthit	18 82	18 20	17 44	17 81	17,34	17 26	16 75	17.00	16.54
Celsian	0.12	0.03	0.00	0.00	0.03	0.08	0 14	0.05	0.04
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
	,	,	,	,	,	,	,	,	,

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM051								
Plagioklas	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6
	PLAG1-13	PLAG1-14	PLAG1-15	PLAG1-16	PLAG1-17	PLAG1-18	PLAG1-19	PLAG1-20	PLAG1-21
SiO2	63,35	63,32	63,33	63,22	64,02	63,40	62,17	63,05	66,30
AI2O3	22,68	22,26	22,23	22,33	22,08	22,31	22,05	22,20	20,74
MgO	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02
CaO	3,69	3,58	3,50	3,28	3,19	3,07	3,38	3,06	0,09
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,03	0,00	0,06	0,00	0,10	0,02	0,03	0,02	0,02
BaO	0,03	0,00	0,00	0,00	0,05	0,00	0,03	0,07	0,03
Na2O	9,56	9,54	9,87	9,67	9,89	9,64	9,80	9,83	11,45
K2O	0,14	0,17	0,16	0,15	0,12	0,17	0,15	0,15	0,18
Summe	99,49	98,88	99,15	98,66	99,45	98,60	97,60	98,38	98,82
Si	2,813	2,827	2,824	2,827	2,841	2,834	2,817	2,829	2,936
AI	1,187	1,171	1,168	1,177	1,155	1,175	1,178	1,174	1,083
Summe1	4,000	3,998	3,992	4,004	3,996	4,009	3,994	4,003	4,019
Mg	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001
Ca	0,175	0,171	0,167	0,157	0,152	0,147	0,164	0,147	0,004
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,001	0,000	0,002	0,000	0,004	0,001	0,001	0,001	0,001
Ва	0,001	0,000	0,000	0,000	0,001	0,000	0,001	0,001	0,000
Na	0,823	0,826	0,853	0,839	0,851	0,836	0,861	0,855	0,983
к	0,008	0,010	0,009	0,009	0,007	0,009	0,008	0,008	0,010
Summe2	1,009	1,007	1,032	1,004	1,014	0,993	1,034	1,013	1,000
Summe 1+2	5,009	5,005	5,024	5,008	5,010	5,001	5,029	5,016	5,019
Albit	81,74	82,03	82,89	83,50	84,21	84,25	83,27	84,51	98,52
Orthokl.	0,79	0,97	0,89	0,87	0,68	0,95	0,82	0,83	1,02
Anorthit	17,42	16,99	16,22	15,63	15,02	14,80	15,87	14,53	0,42
Celsian	0,05	0,00	0,00	0,00	0,09	0,00	0,05	0,13	0,04
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM051								
Plagioklas	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6
	PLAG1-22	PLAG1-23	PLAG1-24	PLAG1-25	PLAG1-27	PLAG1-29	PLAG1-30	PLAG1-31	PLAG1-32
SiO2	64,76	63,04	63,40	62,45	62,27	62,09	62,33	63,43	62,69
AI2O3	21,90	22,49	22,30	22,25	22,32	21,80	22,24	22,07	22,56
MgO	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	2,43	3,40	3,24	3,26	3,31	3,11	3,32	2,98	3,37
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,04	0,02	0,03	0,00	0,11	0,01	0,04	0,00	0,00
BaO	0,04	0,00	0,03	0,00	0,02	0,00	0,01	0,01	0,00
Na2O	10,05	9,61	9,38	9,86	9,79	9,77	9,92	9,78	9,77
K2O	0,07	0,09	0,11	0,11	0,15	0,08	0,10	0,14	0,14
Summe	99,31	98,65	98,48	97,92	97,98	96,86	97,95	98,41	98,52
Si	2,867	2,819	2,835	2,817	2,811	2,829	2,813	2,840	2,811
AI	1,143	1,185	1,175	1,183	1,187	1,171	1,183	1,165	1,192
Summe1	4,010	4,005	4,011	4,000	3,998	4,000	3,996	4,005	4,003
Mg	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,115	0,163	0,155	0,158	0,160	0,152	0,160	0,143	0,162
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,001	0,001	0,001	0,000	0,004	0,000	0,002	0,000	0,000
Ва	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,863	0,833	0,814	0,862	0,857	0,863	0,868	0,849	0,849
к	0,004	0,005	0,006	0,006	0,009	0,005	0,006	0,008	0,008
Summe2	0,985	1,002	0,976	1,026	1,030	1,020	1,036	1,000	1,019
Summe 1+2	4,995	5,007	4,987	5,026	5,028	5,020	5,032	5,006	5,022
Albit	87 77	83 21	83 43	84 03	83 49	84 64	83 95	84 92	83.35
Orthok	0.41	0.52	0.63	0.61	0.86	0.47	0.53	0.79	0.76
Anorthit	11.74	16.27	15,90	15.36	15.61	14,89	15.50	14.27	15.89
Celsian	0.08	0.00	0.04	0.00	0.04	0.00	0.02	0.02	0.00
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM051								
Plagioklas	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6
	PLAG1-33	PLAG1-36	PLAG1-37	PLAG1-38	PLAG1-39	PLAG1-40	PLAG1-41	PLAG1-42	PLAG1-43
SiO2	63,25	61,06	68,05	64,56	62,71	63,59	61,40	64,68	67,06
AI2O3	21,89	23,08	19,65	21,67	22,60	22,49	23,24	21,58	20,06
MgO	0,00	0,00	0,02	0,00	0,00	0,04	0,00	0,00	0,02
CaO	3,07	4,56	0,10	2,00	3,57	2,92	3,96	2,33	0,06
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,00	0,02	0,00	0,04	0,01	0,05	0,04	0,05	0,07
BaO	0,00	0,00	0,02	0,04	0,00	0,02	0,07	0,00	0,00
Na2O	9,81	9,10	11,57	10,83	9,38	9,66	9,18	10,28	11,73
K2O	0,08	0,07	0,05	0,07	0,13	0,26	0,32	0,10	0,05
Summe	98,09	97,89	99,45	99,20	98,40	99,04	98,22	99,01	99,04
Si	2,842	2,765	2,988	2,867	2,812	2,831	2,771	2,873	2,962
AI	1,159	1,232	1,017	1,134	1,195	1,180	1,236	1,130	1,044
Summe1	4,001	3,996	4,004	4,001	4,007	4,011	4,006	4,003	4,006
Mg	0,000	0,000	0,001	0,000	0,000	0,003	0,000	0,000	0,001
Ca	0,148	0,221	0,005	0,095	0,172	0,139	0,192	0,111	0,003
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,000	0,001	0,000	0,001	0,000	0,002	0,001	0,002	0,002
Ва	0,000	0,000	0,000	0,001	0,000	0,000	0,001	0,000	0,000
Na	0,854	0,798	0,984	0,933	0,816	0,834	0,803	0,885	1,004
к	0,004	0,004	0,003	0,004	0,007	0,014	0,018	0,006	0,003
Summe2	1,006	1,024	0,993	1,033	0,995	0,993	1,016	1,004	1,013
Summe 1+2	5,008	5,021	4,998	5,034	5,002	5,004	5,022	5,007	5,020
Albit	84,90	78,00	99,21	90,37	82,02	84,40	79,17	88,37	99,45
Orthokl.	0,43	0,38	0,29	0,36	0,72	1,47	1,82	0,57	0,25
Anorthit	14,67	21,62	0,48	9,20	17,26	14,11	18,88	11,06	0,30
Celsian	0,00	0,00	0,03	0,06	0,00	0,03	0,13	0,00	0,00
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051	IMM051
Plagioklas	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6
	PLAG1-33	PLAG1-36	PLAG1-37	PLAG1-38	PLAG1-39	PLAG1-40	PLAG1-41	PLAG1-42	PLAG1-43
SiO2	63,25	61,06	68,05	64,56	62,71	63,59	61,40	64,68	67,06
AI2O3	21,89	23,08	19,65	21,67	22,60	22,49	23,24	21,58	20,06
MgO	0,00	0,00	0,02	0,00	0,00	0,04	0,00	0,00	0,02
CaO	3,07	4,56	0,10	2,00	3,57	2,92	3,96	2,33	0,06
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,00	0,02	0,00	0,04	0,01	0,05	0,04	0,05	0,07
BaO	0,00	0,00	0,02	0,04	0,00	0,02	0,07	0,00	0,00
Na2O	9,81	9,10	11,57	10,83	9,38	9,66	9,18	10,28	11,73
K2O	0,08	0,07	0,05	0,07	0,13	0,26	0,32	0,10	0,05
Summe	98,09	97,89	99,45	99,20	98,40	99,04	98,22	99,01	99,04
Si	2,842	2,765	2,988	2,867	2,812	2,831	2,771	2,873	2,962
AI	1,159	1,232	1,017	1,134	1,195	1,180	1,236	1,130	1,044
Summe1	4,001	3,996	4,004	4,001	4,007	4,011	4,006	4,003	4,006
Mg	0,000	0,000	0,001	0,000	0,000	0,003	0,000	0,000	0,001
Ca	0,148	0,221	0,005	0,095	0,172	0,139	0,192	0,111	0,003
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,000	0,001	0,000	0,001	0,000	0,002	0,001	0,002	0,002
Ва	0,000	0,000	0,000	0,001	0,000	0,000	0,001	0,000	0,000
Na	0,854	0,798	0,984	0,933	0,816	0,834	0,803	0,885	1,004
к	0,004	0,004	0,003	0,004	0,007	0,014	0,018	0,006	0,003
Summe2	1,006	1,024	0,993	1,033	0,995	0,993	1,016	1,004	1,013
Summe 1+2	5,008	5,021	4,998	5,034	5,002	5,004	5,022	5,007	5,020
Albit	84 90	78.00	00.21	00 37	82.02	84.40	70 17	88 37	00 /5
Orthok	04,30	0.38	0.20	0.36	02,02	1 47	1 92	00,57	0.25
Anorthit	14 67	21.62	0,29	0,30	17.26	1,47	18.88	11.06	0,20
Colsian	0,00	0.00	0,40	3,20 0.06	0.00	0.03	0.12	0.00	0,30
Summe	100.00	100.00	100.00	100.00		100.00	100.00		100.00
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM051	IMM051	IMM051	IMM051	IMM051	IMM056	IMM056	IMM056	IMM056
Plagioklas	9.6	9.6	9.6	9.6	9.6	10.4	10.4	10.4	10.4
	PLAG1-44	PLAG1-45	PLAG2-1	PLAG2-4	PLAG2-6	PLAG1-1	PLAG1-2	PLAG1-3	PLAG1-4
SiO2	67,51	62,42	61,25	62,66	65,27	62,10	62,44	61,70	62,03
AI2O3	20,01	23,28	22,99	23,44	20,76	23,66	23,86	24,14	23,99
MgO	0,00	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00
CaO	0,08	4,29	4,10	4,37	0,61	5,02	4,86	5,23	5,16
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,08	0,09	0,05	0,04	0,06	0,06	0,06	0,09	0,06
BaO	0,05	0,00	0,00	0,03	0,02	0,00	0,04	0,00	0,00
Na2O	11,46	8,96	9,39	8,97	11,21	8,92	8,91	8,78	8,80
K2O	0,04	0,12	0,09	0,10	0,30	0,07	0,12	0,12	0,08
Summe	99,23	99,16	97,86	99,61	98,23	99,83	100,28	100,06	100,11
Si	2,972	2,783	2,773	2,781	2,917	2,758	2,759	2,737	2,747
AI	1,039	1,223	1,226	1,226	1,093	1,238	1,243	1,262	1,252
Summe1	4,011	4,006	3,999	4,007	4,010	3,996	4,002	3,999	3,999
Mg	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000
Ca	0,004	0,205	0,199	0,208	0,029	0,239	0,230	0,248	0,245
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,003	0,003	0,002	0,001	0,002	0,002	0,002	0,003	0,002
Ва	0,001	0,000	0,000	0,001	0,000	0,000	0,001	0,000	0,000
Na	0,979	0,775	0,824	0,772	0,971	0,768	0,764	0,755	0,755
к	0,002	0,007	0,005	0,006	0,017	0,004	0,006	0,007	0,005
Summe2	0,988	0,990	1,030	0,988	1,021	1,013	1,003	1,014	1,007
Summe 1+2	4,999	4,996	5,029	4,995	5,031	5,009	5,005	5,013	5,007
Albit	99,31	78,55	80,17	78,31	95,45	75,97	76,30	74,74	75,16
Orthokl.	0,22	0,66	0,51	0,59	1,66	0,40	0,65	0,67	0,46
Anorthit	0,39	20,79	19,32	21,05	2,86	23,63	22,99	24,59	24,39
Celsian	0,08	0,00	0,00	0,05	0,03	0,00	0,06	0,00	0,00
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056	IMM056
Plagioklas	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4
	PLAG1-5	PLAG1-6	PLAG1-7	PLAG1-8	PLAG1-9	PLAG1-10	PLAG1-11	PLAG1-12	PLAG1-13
SiO2	62,04	62,54	62,24	61,39	62,66	62,98	62,75	62,60	62,62
AI2O3	23,78	23,52	23,64	24,43	23,50	23,56	23,33	23,65	23,10
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	4,69	4,68	4,46	5,70	4,66	4,54	4,31	4,68	4,49
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,08	0,10	0,00	0,00	0,02	0,00	0,07	0,03	0,00
BaO	0,05	0,00	0,01	0,00	0,00	0,00	0,07	0,00	0,02
Na2O	8,93	8,91	9,40	8,37	8,98	8,98	9,01	9,19	8,95
K2O	0,11	0,08	0,11	0,13	0,10	0,15	0,10	0,06	0,12
Summe	99,67	99,83	99,85	100,02	99,91	100,21	99,64	100,20	99,29
Si	2,758	2,773	2,763	2,724	2,775	2,779	2,785	2,767	2,789
AI	1,246	1,229	1,237	1,278	1,227	1,225	1,221	1,232	1,212
Summe1	4,004	4,002	3,999	4,002	4,002	4,005	4,006	3,999	4,001
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,223	0,222	0,212	0,271	0,221	0,215	0,205	0,222	0,214
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,003	0,004	0,000	0,000	0,001	0,000	0,003	0,001	0,000
Ва	0,001	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000
Na	0,770	0,766	0,809	0,720	0,771	0,769	0,776	0,787	0,772
К	0,006	0,005	0,006	0,007	0,006	0,008	0,005	0,003	0,007
Summe2	1,003	0,997	1,028	0,998	0,999	0,992	0,990	1,013	0,994
Summe 1+2	5,007	4,998	5,027	5,000	5,000	4,996	4,995	5,012	4,995
Albit	76,94	77,13	78,75	72,12	77,31	77,52	78,57	77,78	77,73
Orthokl.	0,65	0,48	0,60	0,71	0,55	0,82	0,56	0,31	0,66
Anorthit	22,33	22,40	20,63	27,17	22,14	21,66	20,75	21,91	21,57
Celsian	0,08	0,00	0,02	0,00	0,00	0,00	0,12	0,00	0,04
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM056								
Plagioklas	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4
	PLAG1-14	PLAG1-15	PLAG1-16	PLAG1-17	PLAG1-18	PLAG1-19	PLAG1-20	PLAG1-21	PLAG1-22
SiO2	63,23	62,18	61,83	62,59	62,91	62,74	62,18	62,51	62,52
AI2O3	23,41	23,71	24,48	23,31	23,29	23,13	24,06	23,20	23,82
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	4,04	4,78	5,60	4,34	4,21	4,23	5,16	4,27	4,74
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,01	0,01	0,01	0,00	0,00	0,04	0,11	0,03	0,03
BaO	0,00	0,00	0,04	0,01	0,00	0,00	0,00	0,00	0,02
Na2O	9,26	8,88	8,18	8,99	9,35	9,12	8,48	9,18	8,82
K2O	0,14	0,14	0,09	0,10	0,09	0,10	0,12	0,09	0,12
Summe	100,08	99,69	100,22	99,34	99,85	99,37	100,10	99,28	100,09
Si	2,791	2,762	2,734	2,785	2,786	2,791	2,751	2,785	2,765
AI	1,218	1,241	1,276	1,222	1,216	1,213	1,255	1,218	1,241
Summe1	4,009	4,003	4,009	4,007	4,002	4,003	4,006	4,002	4,006
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,191	0,228	0,265	0,207	0,200	0,202	0,245	0,204	0,225
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,000	0,001	0,001	0,000	0,000	0,002	0,004	0,001	0,001
Ва	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,792	0,764	0,701	0,775	0,802	0,786	0,727	0,793	0,757
к	0,008	0,008	0,005	0,006	0,005	0,006	0,007	0,005	0,007
Summe2	0,991	1,000	0,972	0,988	1,007	0,995	0,982	1,003	0,990
Summe 1+2	5,000	5,003	4,982	4,995	5,010	4,999	4,988	5,005	4,996
Albit	79,95	76,46	72,17	78,49	79,66	79,13	74,31	79,15	76,52
Orthokl.	0,78	0,77	0,49	0,57	0,50	0,57	0,67	0,51	0,71
Anorthit	19,27	22,78	27,28	20,92	19,84	20,30	25,01	20,34	22,73
Celsian	0,00	0,00	0,06	0,02	0,00	0,00	0,00	0,00	0,04
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM056								
Plagioklas	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4
	PLAG1-23	PLAG1-25	PLAG1-26	PLAG1-27	PLAG1-28	PLAG1-29	PLAG1-30	PLAG1-31	PLAG1-32
SiO2	61,99	62,12	62,59	62,20	62,59	63,52	63,96	64,00	64,36
AI2O3	23,62	23,63	23,60	23,65	23,85	22,79	22,60	22,58	22,73
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	4,72	4,80	4,78	4,91	4,91	3,87	3,27	3,28	3,57
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,03	0,03	0,06	0,08	0,07	0,06	0,02	0,04	0,06
BaO	0,00	0,02	0,01	0,00	0,02	0,00	0,02	0,03	0,00
Na2O	9,05	9,07	8,88	8,83	8,98	9,51	9,60	9,71	9,65
K2O	0,08	0,13	0,15	0,11	0,08	0,09	0,07	0,08	0,11
Summe	99,49	99,79	100,07	99,78	100,50	99,84	99,54	99,71	100,47
Si	2,761	2,760	2,770	2,762	2,760	2,811	2,831	2,830	2,826
AI	1,240	1,237	1,231	1,238	1,240	1,189	1,179	1,176	1,176
Summe1	4,000	3,997	4,001	4,000	3,999	3,999	4,010	4,006	4,002
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,225	0,228	0,227	0,233	0,232	0,184	0,155	0,155	0,168
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,001	0,001	0,002	0,003	0,003	0,002	0,001	0,001	0,002
Ва	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000
Na	0,782	0,781	0,762	0,760	0,768	0,816	0,824	0,832	0,821
К	0,004	0,007	0,008	0,006	0,004	0,005	0,004	0,004	0,006
Summe2	1,012	1,018	0,999	1,002	1,007	1,006	0,984	0,994	0,997
Summe 1+2	5,012	5,016	5,000	5,002	5,006	5,005	4,994	5,000	5,000
Albit	77,31	76,80	76,40	76,01	76,45	81,24	83,80	83,84	82,54
Orthokl.	0,44	0,71	0,83	0,65	0,42	0,48	0,41	0,45	0,59
Anorthit	22,25	22,46	22,75	23,34	23,11	18,28	15,76	15,66	16,87
Celsian	0,00	0,03	0,02	0,00	0,03	0,00	0,03	0,05	0,00
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM056	IMM061							
Plagioklas	10.4	10.4	10.4	10.4	10.4	10.4	10.4	10.4	11.5
	PLAG1-33	PLAG1-34	PLAG1-35	PLAG1-36	PLAG1-37	PLAG1-38	PLAG1-39	PLAG1-40	PLAG1-1
SiO2	64,37	65,03	64,24	62,01	63,60	64,22	63,83	64,21	61,39
AI2O3	22,37	22,11	22,17	23,49	22,86	23,31	22,51	22,41	24,12
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	3,22	2,86	3,05	4,70	3,85	3,82	3,58	3,25	4,99
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,04	0,03	0,02	0,03	0,06	0,03	0,01	0,03	0,09
BaO	0,00	0,00	0,00	0,05	0,01	0,01	0,00	0,00	0,00
Na2O	9,64	9,74	9,98	8,72	9,69	9,23	9,55	9,58	8,83
K2O	0,08	0,09	0,07	0,09	0,10	0,15	0,13	0,09	0,06
Summe	99,71	99,86	99,52	99,08	100,18	100,77	99,61	99,56	99,47
Si	2,843	2,863	2,845	2,769	2,807	2,810	2,827	2,840	2,737
AI	1,164	1,147	1,157	1,236	1,189	1,202	1,175	1,168	1,267
Summe1	4,007	4,010	4,001	4,005	3,996	4,013	4,002	4,008	4,004
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,152	0,135	0,145	0,225	0,182	0,179	0,170	0,154	0,238
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,001	0,001	0,001	0,001	0,002	0,001	0,000	0,001	0,003
Ва	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000
Na	0,825	0,831	0,857	0,755	0,829	0,783	0,820	0,821	0,763
к	0,004	0,005	0,004	0,005	0,006	0,008	0,007	0,005	0,003
Summe2	0,983	0,972	1,006	0,987	1,019	0,972	0,997	0,981	1,008
Summe 1+2	4,990	4,982	5,007	4,993	5,016	4,984	4,999	4,989	5,013
Albit	84,04	85,60	85,22	76,59	81,52	80,69	82,24	83,78	75,95
Orthokl.	0,44	0,51	0,40	0,51	0,56	0,84	0,72	0,52	0,33
Anorthit	15,52	13,89	14,38	22,82	17,90	18,45	17,04	15,70	23,72
Celsian	0,00	0,00	0,00	0,08	0,02	0,02	0,00	0,00	0,00
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM061								
Plagioklas	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5
	PLAG1-2	PIAG1-3	PLAG1-4	PLAG1-5	PLAG1-6	PLAG1-7	PLAG1-8	PLAG1-9	PLAG1-10
SiO2	61,31	61,95	61,84	61,66	61,69	61,79	61,32	61,37	61,30
AI2O3	23,79	23,75	23,77	24,14	24,04	24,12	24,05	23,92	23,88
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	4,93	5,00	4,99	5,07	5,29	5,18	5,25	5,20	5,07
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,05	0,04	0,00	0,04	0,03	0,02	0,05	0,03	0,11
BaO	0,04	0,06	0,01	0,00	0,05	0,05	0,02	0,05	0,01
Na2O	9,08	8,69	8,79	8,43	8,63	8,67	8,78	8,44	8,52
K2O	0,09	0,06	0,07	0,12	0,08	0,07	0,08	0,08	0,06
Summe	99,27	99,54	99,48	99,45	99,80	99,89	99,54	99,09	98,94
Si	2,742	2,757	2,754	2,745	2,742	2,742	2,735	2,745	2,745
AI	1,254	1,246	1,248	1,266	1,259	1,262	1,264	1,261	1,260
Summe1	3,996	4,003	4,002	4,012	4,001	4,004	3,999	4,006	4,006
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,236	0,238	0,238	0,242	0,252	0,246	0,251	0,249	0,243
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,002	0,001	0,000	0,001	0,001	0,001	0,002	0,001	0,004
Ва	0,001	0,001	0,000	0,000	0,001	0,001	0,000	0,001	0,000
Na	0,787	0,750	0,759	0,727	0,743	0,746	0,760	0,732	0,739
к	0,005	0,003	0,004	0,007	0,005	0,004	0,004	0,005	0,003
Summe2	1,031	0,994	1,002	0,977	1,002	0,998	1,017	0,987	0,990
Summe 1+2	5,027	4,997	5,004	4,989	5,003	5,002	5,015	4,993	4,996
Albit	76,50	75,56	75,80	74,54	74,27	74,84	74,83	74,20	74,98
Orthokl.	0,48	0,31	0,39	0,68	0,48	0,39	0,44	0,46	0,34
Anorthit	22,96	24,02	23,78	24,79	25,17	24,68	24,70	25,25	24,65
Celsian	0,06	0,11	0,02	0,00	0,09	0,08	0,03	0,10	0,02
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM061								
Plagioklas	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5
	PLAG1-11	PLAG1-12	PLAG1-13	PLAG1-14	PLAG1-15	PLAG1-16	PLAG1-17	PLAG1-18	PLAG1-19
SiO2	61,31	61,06	62,03	61,52	61,38	61,21	61,69	60,89	61,74
AI2O3	24,45	24,25	24,01	24,07	24,32	23,95	23,93	24,32	23,77
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	5,20	5,35	5,01	5,22	5,40	5,25	5,11	5,27	5,10
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,06	0,06	0,07	0,02	0,06	0,02	0,08	0,01	0,06
BaO	0,00	0,00	0,02	0,06	0,04	0,02	0,08	0,00	0,03
Na2O	8,78	8,50	8,82	8,62	8,43	8,33	8,69	8,49	8,74
K2O	0,06	0,09	0,09	0,11	0,09	0,07	0,07	0,08	0,07
Summe	99,86	99,30	100,04	99,62	99,73	98,86	99,64	99,06	99,50
Si	2,725	2,728	2,749	2,740	2,730	2,743	2,746	2,726	2,751
AI	1,281	1,277	1,254	1,263	1,275	1,265	1,256	1,283	1,248
Summe1	4,005	4,005	4,002	4,003	4,006	4,008	4,002	4,009	3,999
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,248	0,256	0,238	0,249	0,257	0,252	0,243	0,253	0,243
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,002	0,002	0,002	0,001	0,002	0,001	0,003	0,000	0,002
Ва	0,000	0,000	0,000	0,001	0,001	0,000	0,001	0,000	0,001
Na	0,757	0,736	0,758	0,744	0,727	0,724	0,750	0,737	0,755
к	0,003	0,005	0,005	0,006	0,005	0,004	0,004	0,005	0,004
Summe2	1,010	0,999	1,003	1,001	0,993	0,981	1,001	0,994	1,005
Summe 1+2	5,015	5,004	5,006	5,004	4,998	4,989	5,003	5,003	5,004
Albit	75,10	73,83	75,69	74,36	73,44	73,82	75,10	74,12	75,31
Orthokl.	0,33	0,49	0,51	0,64	0,51	0,43	0,37	0,47	0,38
Anorthit	24,57	25,69	23,77	24,89	25,98	25,71	24,39	25,41	24,26
Celsian	0,00	0,00	0,03	0,11	0,07	0,04	0,14	0,00	0,05
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM061								
Plagioklas	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5
	PLAG1-20	PLAG1-21	PLAG1-22	PLAG1-23	PLAG1-24	PLAG1-25	PLAG1-26	PLAG1-27	PLAG1-28
SiO2	61,45	60,71	61,34	61,59	61,51	61,75	61,27	62,42	61,86
AI2O3	24,02	24,15	24,07	24,33	23,99	23,73	23,79	23,82	23,76
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	5,42	5,38	5,39	5,33	5,08	4,87	5,00	4,93	4,89
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,02	0,07	0,03	0,01	0,01	0,00	0,03	0,04	0,07
BaO	0,00	0,06	0,03	0,00	0,06	0,03	0,00	0,00	0,03
Na2O	8,75	8,42	8,33	8,64	8,63	8,69	8,53	8,70	8,70
K2O	0,07	0,09	0,09	0,06	0,08	0,11	0,08	0,10	0,07
Summe	99,72	98,87	99,27	99,95	99,36	99,18	98,68	100,00	99,38
Si	2,735	2,726	2,739	2,732	2,744	2,757	2,749	2,763	2,757
AI	1,260	1,278	1,266	1,272	1,261	1,248	1,258	1,243	1,248
Summe1	3,996	4,004	4,005	4,005	4,006	4,006	4,007	4,005	4,005
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,259	0,259	0,258	0,253	0,243	0,233	0,240	0,234	0,233
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,001	0,002	0,001	0,001	0,000	0,000	0,001	0,001	0,002
Ва	0,000	0,001	0,001	0,000	0,001	0,001	0,000	0,000	0,001
Na	0,755	0,733	0,721	0,743	0,746	0,753	0,742	0,746	0,752
к	0,004	0,005	0,005	0,003	0,004	0,006	0,004	0,006	0,004
Summe2	1,018	1,001	0,986	1,000	0,995	0,992	0,988	0,987	0,992
Summe 1+2	5,014	5,004	4,991	5,005	5,000	4,998	4,995	4,992	4,997
Albit	74,21	73,45	73,27	74,36	75,03	75,84	75,18	75,72	75,97
Orthokl.	0,38	0,50	0,49	0,32	0,44	0,64	0,45	0,58	0,41
Anorthit	25,41	25,94	26,18	25,32	24,43	23,46	24,37	23,70	23,57
Celsian	0,00	0,10	0,06	0,00	0,10	0,06	0,00	0,00	0,05
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM063								
Plagioklas	2.1	2.1	2.1	2.2	2.2	2.3	2.3	2.3	2.3
	Plag1-1	Plag1-2	Plag1-3	Plag1-1	Plag1-2	PLAG1-1	PLAG1-2	PLAG1-3	PLAG1-4
SiO2	62,12	62,26	62,71	61,79	62,42	62,94	62,95	62,59	62,33
AI2O3	23,45	23,90	24,12	24,33	23,95	23,10	23,33	23,12	23,27
MgO	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	4,49	4,43	4,39	4,60	4,49	4,35	4,41	4,65	4,71
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,01	0,07	0,06	0,03	0,08	0,00	0,07	0,06	0,03
BaO	0,00	0,02	0,05	0,12	0,00	0,04	0,00	0,08	0,02
Na2O	8,97	9,28	9,19	9,09	9,05	9,09	9,29	8,68	9,14
K2O	0,09	0,06	0,07	0,11	0,08	0,12	0,12	0,13	0,14
Summe	99,12	100,01	100,60	100,06	100,08	99,63	100,18	99,30	99,64
Si	2,772	2,758	2,760	2,739	2,760	2,793	2,782	2,788	2,773
AI	1,233	1,248	1,251	1,271	1,249	1,208	1,215	1,214	1,220
Summe1	4,005	4,005	4,010	4,010	4,009	4,001	3,997	4,002	3,993
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,215	0,210	0,207	0,218	0,213	0,207	0,209	0,222	0,225
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,000	0,002	0,002	0,001	0,003	0,000	0,003	0,002	0,001
Ва	0,000	0,000	0,001	0,002	0,000	0,001	0,000	0,001	0,000
Na	0,776	0,797	0,784	0,781	0,776	0,782	0,796	0,749	0,788
к	0,005	0,003	0,004	0,006	0,005	0,007	0,007	0,007	0,008
Summe2	0,996	1,013	0,999	1,009	0,997	0,996	1,015	0,982	1,022
Summe 1+2	5,002	5,019	5,009	5,019	5,006	4,997	5,012	4,984	5,015
Albit	77,94	78,84	78,71	77,52	78,12	78,51	78,66	76,48	77,19
Orthokl.	0,49	0,34	0,42	0,60	0,47	0,68	0,69	0,75	0,78
Anorthit	21,57	20,78	20,80	21,67	21,41	20,74	20,65	22,63	22,00
Celsian	0,00	0,04	0,08	0,21	0,00	0,06	0,00	0,14	0,03
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM063	IMM063	IMM063						
Plagioklas	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3
	PLAG1-5	PLAG1-6	PLAG1-7	PLAG1-8	PLAG1-8	PLAG1-9	PLAG1-10	PLAG1-11	PLAG1-12
SiO2	62,73	62,35	62,39	62,61	62,72	62,31	62,72	62,73	62,69
AI2O3	23,10	23,30	23,20	23,38	23,27	23,58	23,60	23,21	23,28
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	4,49	4,52	4,50	4,40	4,54	4,59	4,55	4,56	4,65
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,00	0,01	0,02	0,02	0,02	0,00	0,00	0,07	0,03
BaO	0,00	0,01	0,00	0,00	0,06	0,00	0,01	0,00	0,00
Na2O	8,94	9,16	9,02	9,14	8,93	8,87	9,12	8,86	9,09
K2O	0,14	0,13	0,14	0,16	0,15	0,16	0,11	0,13	0,09
Summe	99,39	99,46	99,28	99,70	99,68	99,51	100,12	99,57	99,83
Si	2,790	2,776	2,781	2,779	2,784	2,771	2,773	2,786	2,780
AI	1,211	1,222	1,219	1,223	1,217	1,236	1,230	1,215	1,217
Summe1	4,001	3,998	4,000	4,002	4,001	4,006	4,003	4,001	3,996
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,214	0,216	0,215	0,209	0,216	0,219	0,216	0,217	0,221
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,000	0,000	0,001	0,001	0,001	0,000	0,000	0,003	0,001
Ва	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000	0,000
Na	0,771	0,790	0,780	0,787	0,769	0,764	0,782	0,763	0,782
К	0,008	0,007	0,008	0,009	0,008	0,009	0,006	0,007	0,005
Summe2	0,993	1,014	1,003	1,005	0,994	0,992	1,004	0,991	1,009
Summe 1+2	4,994	5,012	5,003	5,007	4,996	4,998	5,006	4,992	5,005
Albit	77,68	78,00	77,79	78,29	77,34	77,04	77,87	77,27	77,60
Orthokl.	0,78	0,71	0,77	0,88	0,85	0,93	0,63	0,75	0,50
Anorthit	21,54	21,28	21,44	20,82	21,70	22,02	21,48	21,98	21,90
Celsian	0,00	0,02	0,00	0,00	0,11	0,00	0,02	0,01	0,00
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM063								
Plagioklas	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3
	PLAG1-13	PLAG1-14	PLAG1-15	PLAG1-16	PLAG1-18	PLAG1-19	PLAG1-20	PLAG1-21	PLAG1-22
SiO2	62,37	62,48	62,51	62,81	62,56	62,82	62,74	62,12	61,97
AI2O3	23,35	23,61	23,51	23,30	23,42	23,24	23,01	23,18	23,41
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	4,58	4,62	4,75	4,75	4,64	4,59	4,40	4,62	4,61
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,03	0,14	0,11	0,08	0,04	0,06	0,06	0,08	0,13
BaO	0,01	0,05	0,00	0,00	0,00	0,02	0,04	0,06	0,00
Na2O	9,02	8,90	9,05	8,81	8,80	9,13	9,16	8,92	8,80
K2O	0,13	0,08	0,09	0,12	0,11	0,13	0,12	0,10	0,13
Summe	99,48	99,87	100,01	99,87	99,57	99,99	99,52	99,08	99,06
Si	2,776	2,770	2,769	2,783	2,779	2,782	2,790	2,777	2,770
AI	1,225	1,233	1,227	1,217	1,226	1,213	1,206	1,221	1,233
Summe1	4,000	4,003	3,997	3,999	4,004	3,995	3,996	3,998	4,003
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,218	0,220	0,225	0,225	0,221	0,218	0,210	0,221	0,221
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,001	0,005	0,004	0,003	0,001	0,002	0,002	0,003	0,005
Ва	0,000	0,001	0,000	0,000	0,000	0,000	0,001	0,001	0,000
Na	0,778	0,765	0,777	0,757	0,757	0,784	0,790	0,773	0,763
к	0,007	0,004	0,005	0,007	0,006	0,007	0,007	0,005	0,008
Summe2	1,005	0,995	1,012	0,992	0,986	1,012	1,009	1,004	0,996
Summe 1+2	5,005	4,998	5,008	4,991	4,991	5,007	5,005	5,002	4,999
Albit	77,52	77,30	77,13	76,53	76,91	77,69	78,45	77,26	76,96
Orthokl.	0,73	0,43	0,52	0,67	0,66	0,71	0,65	0,54	0,77
Anorthit	21,73	22,18	22,35	22,79	22,44	21,58	20,83	22,10	22,27
Celsian	0,02	0,08	0,00	0,00	0,00	0,03	0,07	0,10	0,00
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM063								
Plagioklas	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
	PLAG1-1	PLAG1-2	PLAG1-3	PLAG1-4	PLAG1-5	PLAG1-6	PLAG1-7	PLAG2-1	PLAG2-2
SiO2	62,44	62,26	62,67	62,57	62,63	61,78	61,74	62,36	62,63
AI2O3	23,57	23,35	23,15	23,30	23,05	23,70	23,54	23,49	23,56
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	4,12	4,47	4,53	4,53	4,47	4,95	4,85	4,77	4,85
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,20	0,14	0,12	0,00	0,04	0,06	0,08	0,36	0,16
BaO	0,00	0,00	0,02	0,03	0,03	0,00	0,03	0,00	0,01
Na2O	9,17	8,90	9,18	8,89	9,05	8,74	8,93	8,81	8,82
K2O	0,48	0,10	0,11	0,10	0,11	0,05	0,10	0,09	0,09
Summe	99,98	99,23	99,78	99,42	99,38	99,28	99,26	99,89	100,12
Si	2,770	2,776	2,782	2,783	2,788	2,756	2,758	2,767	2,770
AI	1,233	1,227	1,211	1,221	1,210	1,246	1,239	1,229	1,228
Summe1	4,002	4,004	3,994	4,004	3,998	4,002	3,997	3,996	3,999
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,196	0,213	0,216	0,216	0,213	0,237	0,232	0,227	0,230
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,007	0,005	0,004	0,000	0,001	0,002	0,003	0,014	0,006
Ва	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,789	0,770	0,790	0,767	0,781	0,756	0,773	0,758	0,757
К	0,027	0,006	0,006	0,006	0,006	0,003	0,005	0,005	0,005
Summe2	1,019	0,994	1,017	0,989	1,003	0,998	1,014	1,004	0,998
Summe 1+2	5,022	4,998	5,010	4,993	5,001	5,000	5,012	5,000	4,996
Albit	77,97	77,82	78,07	77,56	78,02	75,92	76,44	76,57	76,28
Orthokl.	2,66	0,60	0,61	0,57	0,62	0,31	0,54	0,51	0,50
Anorthit	19,38	21,59	21,30	21,81	21,32	23,77	22,97	22,91	23,20
Celsian	0,00	0,00	0,03	0,05	0,05	0,00	0,04	0,01	0,02
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM063	IMM063	IMM089						
Plagioklas	2.8	2.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8
	PLAG2-3	PLAG2-4	PLAG1-1	PLAG1-2	PLAG1-3	PLAG1-4	PLAG1-6	PLAG1-7	PLAG1-8
SiO2	62,21	63,03	60,90	61,50	60,51	61,54	60,99	62,02	61,11
AI2O3	23,71	23,88	23,92	24,01	23,50	23,94	24,49	23,78	24,52
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	4,85	4,80	4,95	5,42	5,06	5,49	5,55	5,16	5,51
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,14	0,12	0,11	0,15	1,55	0,05	0,00	0,03	0,06
BaO	0,02	0,06	0,02	0,00	0,04	0,00	0,00	0,00	0,00
Na2O	8,82	8,82	9,02	8,55	8,50	8,83	8,52	8,66	8,51
K2O	0,07	0,06	0,09	0,04	0,09	0,06	0,03	0,07	0,08
Summe	99,81	100,76	98,99	99,66	99,26	99,91	99,57	99,72	99,80
Si	2,761	2,768	2,733	2,738	2,726	2,736	2,718	2,755	2,718
AI	1,240	1,236	1,265	1,260	1,248	1,254	1,287	1,245	1,286
Summe1	4,001	4,005	3,998	3,998	3,973	3,991	4,005	4,000	4,004
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,231	0,226	0,238	0,258	0,244	0,262	0,265	0,246	0,263
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,005	0,004	0,004	0,005	0,058	0,002	0,000	0,001	0,002
Ва	0,000	0,001	0,000	0,000	0,001	0,000	0,000	0,000	0,000
Na	0,759	0,751	0,785	0,738	0,742	0,762	0,736	0,746	0,734
К	0,004	0,003	0,005	0,002	0,005	0,003	0,001	0,004	0,004
Summe2	0,999	0,986	1,032	1,004	1,051	1,028	1,003	0,997	1,004
Summe 1+2	5,001	4,990	5,030	5,002	5,024	5,019	5,007	4,997	5,008
Albit	76,36	76,52	76,32	73,88	74,81	74,20	73,43	74,95	73,32
Orthokl.	0,41	0,35	0,49	0,24	0,50	0,32	0,15	0,38	0,44
Anorthit	23,20	23,03	23,16	25,88	24,61	25,48	26,42	24,68	26,24
Celsian	0,03	0,10	0,03	0,00	0,07	0,00	0,00	0,00	0,00
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089	IMM089
Plagioklas	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8
	PLAG1-9	PLAG1-10	PLAG1-11	PLAG1-12	PLAG1-13	PLAG1-14	PLAG1-15	PLAG1-16	PLAG1-17
SiO2	62,07	61,34	60,74	61,07	61,40	62,11	62,07	61,70	61,84
AI2O3	24,14	23,96	24,15	24,10	23,97	23,45	23,82	24,19	23,76
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01
CaO	5,47	5,37	5,44	5,52	5,20	4,74	4,83	5,42	5,18
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,00	0,04	0,00	0,02	0,03	0,00	0,02	0,00	0,00
BaO	0,02	0,00	0,02	0,00	0,00	0,04	0,00	0,00	0,00
Na2O	8,75	8,52	8,42	8,48	8,78	8,98	8,73	8,56	8,79
K2O	0,05	0,04	0,06	0,08	0,06	0,08	0,05	0,07	0,08
Summe	100,49	99,26	98,83	99,27	99,43	99,40	99,51	99,94	99,64
Si	2,740	2,740	2,727	2,730	2,739	2,768	2,760	2,737	2,751
AI	1,256	1,261	1,278	1,270	1,260	1,231	1,248	1,265	1,246
Summe1	3,997	4,001	4,004	4,000	4,000	3,999	4,008	4,002	3,997
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,259	0,257	0,261	0,264	0,248	0,226	0,230	0,258	0,247
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,000	0,001	0,000	0,001	0,001	0,000	0,001	0,000	0,000
Ва	0,000	0,000	0,000	0,000	0,000	0,001	0,000	0,000	0,000
Na	0,749	0,738	0,733	0,735	0,760	0,776	0,752	0,736	0,758
К	0,003	0,002	0,003	0,005	0,003	0,005	0,003	0,004	0,004
Summe2	1,010	0,998	0,998	1,005	1,012	1,008	0,986	0,998	1,010
Summe 1+2	5,007	4,999	5,003	5,005	5,012	5,007	4,994	5,000	5,007
Albit	74,12	74,03	73,43	73,23	75,12	77,00	76,37	73,75	75,11
Orthokl.	0,25	0,20	0,34	0,45	0,32	0,47	0,28	0,41	0,43
Anorthit	25,60	25,77	26,19	26,32	24,56	22,45	23,35	25,83	24,46
Celsian	0,03	0,00	0,04	0,00	0,00	0,08	0,00	0,00	0,01
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM089								
Plagioklas	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8
	PLAG1-18	PLAG1-19	PLAG1-20	PLAG1-21	PLAG1-22	PLAG1-23	PLAG1-24	PLAG1-25	PLAG1-26
SiO2	61,86	60,88	60,81	61,42	61,34	62,89	64,02	61,11	64,17
AI2O3	23,89	24,12	24,04	23,38	24,10	23,26	22,34	24,23	22,16
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	5,30	5,65	5,44	4,54	5,07	4,12	3,33	5,60	3,26
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,01	0,04	0,06	0,09	0,03	0,09	0,09	0,03	0,05
BaO	0,00	0,00	0,01	0,00	0,03	0,04	0,00	0,00	0,04
Na2O	8,62	8,23	8,55	8,95	8,85	9,41	9,64	8,34	9,75
K2O	0,05	0,06	0,08	0,09	0,06	0,08	0,14	0,09	0,11
Summe	99,72	98,98	98,99	98,48	99,48	99,89	99,57	99,40	99,54
Si	2,749	2,728	2,728	2,763	2,736	2,786	2,836	2,728	2,843
AI	1,251	1,274	1,271	1,240	1,267	1,214	1,166	1,275	1,157
Summe1	4,000	4,002	3,999	4,002	4,003	4,001	4,002	4,002	4,000
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,252	0,271	0,262	0,219	0,242	0,196	0,158	0,268	0,155
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,000	0,002	0,002	0,003	0,001	0,003	0,003	0,001	0,002
Ва	0,000	0,000	0,000	0,000	0,001	0,001	0,000	0,000	0,001
Na	0,743	0,715	0,744	0,781	0,765	0,808	0,828	0,722	0,837
К	0,003	0,003	0,005	0,005	0,004	0,005	0,008	0,005	0,006
Summe2	0,998	0,991	1,013	1,008	1,013	1,013	0,997	0,996	1,001
Summe 1+2	4,998	4,994	5,011	5,010	5,015	5,013	4,999	4,998	5,001
Albit	74,45	72,23	73,62	77,72	75,65	80,09	83,32	72,55	83,83
Orthokl.	0,28	0,34	0,46	0,53	0,35	0,46	0,79	0,53	0,61
Anorthit	25,26	27,43	25,89	21,76	23,94	19,39	15,89	26,93	15,49
Celsian	0,00	0,00	0,02	0,00	0,05	0,06	0,00	0,00	0,07
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM089								
Plagioklas	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8	7.8
	PLAG1-17	PLAG1-28	PLAG1-29	PLAG1-30	PLAG1-31	PLAG1-32	PLAG1-33	PLAG1-34	PLAG1-35
SiO2	64,09	63,43	63,27	63,03	62,67	62,06	62,07	61,76	59,85
AI2O3	22,44	22,50	22,66	22,85	22,98	23,76	23,99	24,33	25,43
MgO	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	3,38	3,46	3,63	3,87	4,15	4,89	5,07	5,24	6,67
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,06	0,10	0,02	0,04	0,04	0,00	0,08	0,01	0,15
BaO	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,05
Na2O	9,61	9,75	9,44	9,20	9,22	9,02	8,79	8,73	7,98
K2O	0,09	0,10	0,12	0,12	0,16	0,13	0,09	0,08	0,11
Summe	99,68	99,34	99,14	99,12	99,21	99,87	100,09	100,15	100,22
Si	2,834	2,820	2,816	2,807	2,794	2,755	2,749	2,735	2,664
AI	1,170	1,179	1,189	1,199	1,207	1,243	1,252	1,270	1,334
Summe1	4,004	3,999	4,005	4,006	4,001	3,999	4,001	4,005	3,998
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,160	0,165	0,173	0,185	0,198	0,232	0,241	0,248	0,318
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,002	0,004	0,001	0,001	0,001	0,000	0,003	0,000	0,006
Ва	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001
Na	0,824	0,840	0,814	0,795	0,796	0,777	0,755	0,750	0,688
К	0,005	0,006	0,007	0,007	0,009	0,007	0,005	0,004	0,006
Summe2	0,992	1,015	0,995	0,988	1,005	1,017	1,004	1,003	1,019
Summe 1+2	4,995	5,014	5,000	4,994	5,006	5,015	5,005	5,008	5,016
Albit	83,28	83,13	81,88	80,56	79,34	76,41	75,48	74,78	67,94
Orthokl.	0,52	0,55	0,69	0,70	0,92	0,72	0,48	0,45	0,59
Anorthit	16,19	16,32	17,42	18,73	19,74	22,87	24,04	24,78	31,39
Celsian	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,08
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM089	SM1063	SM1063						
Plagioklas	7.8	7.8	7.8	7.8	7.8	7.8	7.8	3.2	3.2
	PLAG1-36	PLAG1-37	PLAG1-38	PLAG1-39	PLAG1-40	PLAG1-41	PLAG1-42	Plag 1-1	Plag 1-2
SiO2	61,17	61,06	60,28	60,18	62,07	62,07	62,05	63,68	63,18
AI2O3	24,23	24,34	24,80	25,21	23,99	23,63	23,60	23,63	23,57
MgO	0,00	0,00	0,00	0,01	0,00	0,01	0,00	0,00	0,00
CaO	5,27	5,73	6,14	6,53	4,99	4,98	5,11	4,26	4,13
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,14	0,00	0,11	0,04	0,08	0,02	0,00	0,03	0,01
BaO	0,00	0,02	0,00	0,00	0,00	0,02	0,01	0,00	0,05
Na2O	8,63	8,33	8,25	7,88	8,72	9,12	8,83	9,11	9,10
K2O	0,10	0,13	0,09	0,09	0,06	0,07	0,06	0,17	0,18
Summe	99,52	99,63	99,66	99,94	99,90	99,90	99,66	100,88	100,23
Si	2,729	2,722	2,692	2,680	2,752	2,756	2,759	2,789	2,786
AI	1,274	1,279	1,305	1,323	1,253	1,237	1,237	1,220	1,225
Summe1	4,002	4,001	3,998	4,003	4,005	3,993	3,996	4,009	4,011
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,252	0,274	0,294	0,312	0,237	0,237	0,243	0,200	0,195
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,005	0,000	0,004	0,001	0,003	0,001	0,000	0,001	0,001
Ва	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,001
Na	0,746	0,720	0,714	0,680	0,749	0,785	0,761	0,774	0,778
к	0,006	0,008	0,005	0,005	0,003	0,004	0,004	0,009	0,010
Summe2	1,008	1,002	1,017	0,999	0,993	1,027	1,008	0,984	0,985
Summe 1+2	5,010	5,002	5,015	5,002	4,998	5,020	5,004	4,993	4,996
Albit	74,36	71,87	70,52	68,22	75,72	76,49	75,49	78,72	79,06
Orthokl.	0,56	0,76	0,49	0,53	0,31	0,37	0,36	0,94	1,02
Anorthit	25,09	27,33	28,99	31,25	23,97	23,11	24,14	20,34	19,83
Celsian	0,00	0,04	0,00	0,00	0,00	0,03	0,01	0,00	0,09
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	SM1063	SM1063	SM1063	SM1063	SM68	SM68	SM68	SM68	SM68
Plagioklas	3.4	3.4	3.5	3.5	4.1	4.1	4.1	4.1	4.1
	Plag 1-1	Plag 1-2	Plag 1-1	Plag 1-2	PLAG1-3	PLAG1-4	PLAG1-5	PLAG1-6	PLAG1-7
SiO2	60,59	62,99	61,84	63,67	62,58	62,22	61,70	62,75	62,52
AI2O3	25,20	23,35	24,38	23,28	23,29	23,52	23,85	23,49	23,55
MgO	0,00	0,00	0,00	0,01	0,00	0,00	0,00	0,00	0,00
CaO	5,79	4,36	5,16	3,87	4,44	4,60	4,87	4,84	4,73
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,08	0,07	0,04	0,02	0,10	0,07	0,06	0,09	0,06
BaO	0,00	0,06	0,00	0,01	0,00	0,00	0,00	0,07	0,07
Na2O	8,17	9,27	8,80	9,09	9,14	9,12	8,76	8,80	8,95
K2O	0,11	0,08	0,14	0,12	0,11	0,12	0,14	0,12	0,11
Summe	99,94	100,18	100,36	100,07	99,65	99,64	99,38	100,15	99,99
Si	2,693	2,783	2,734	2,806	2,780	2,767	2,751	2,775	2,770
AI	1,320	1,216	1,270	1,209	1,219	1,232	1,253	1,224	1,230
Summe1	4,013	3,999	4,004	4,014	3,999	3,999	4,005	3,999	4,000
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,276	0,207	0,244	0,183	0,211	0,219	0,232	0,229	0,224
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,003	0,003	0,001	0,001	0,004	0,002	0,002	0,003	0,002
Ва	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,001	0,001
Na	0,704	0,794	0,754	0,777	0,787	0,787	0,758	0,755	0,769
к	0,006	0,004	0,008	0,007	0,006	0,007	0,008	0,007	0,006
Summe2	0,989	1,009	1,008	0,967	1,008	1,015	1,000	0,995	1,003
Summe 1+2	5,002	5,008	5,012	4,982	5,007	5,014	5,005	4,994	5,003
Albit	71,39	78,93	74,91	80,36	78,38	77,69	75,93	76,09	76,83
Orthokl.	0,63	0,43	0,80	0,72	0,60	0,67	0,77	0,70	0,63
Anorthit	27,98	20,53	24,29	18,91	21,03	21,64	23,30	23,09	22,43
Celsian	0,00	0,11	0,00	0,01	0,00	0,00	0,00	0,12	0,12
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Plagioklas	4.1	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2
	PLAG1-8	PLAG1-1	PLAG1-2	PLAG1-3	PLAG1-4	PLAG1-5	PLAG1-6	PLAG1-7	PLAG1-8
SiO2	63,13	63,39	63,34	63,07	62,66	62,55	62,72	61,97	61,51
AI2O3	23,34	23,02	23,37	23,31	23,16	23,49	23,34	23,84	24,04
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	4,52	4,16	4,45	4,32	4,42	4,88	4,69	5,22	5,48
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,08	0,08	0,03	0,00	0,06	0,24	0,05	0,03	0,00
BaO	0,00	0,00	0,00	0,07	0,00	0,00	0,05	0,00	0,00
Na2O	8,94	9,27	8,99	8,99	9,12	8,70	9,07	8,84	8,47
K2O	0,09	0,11	0,15	0,12	0,09	0,07	0,10	0,12	0,10
Summe	100,10	100,03	100,32	99,87	99,52	99,94	100,02	100,01	99,61
Si	2,788	2,801	2,790	2,791	2,785	2,772	2,778	2,749	2,739
AI	1,215	1,199	1,213	1,216	1,214	1,227	1,218	1,246	1,262
Summe1	4,003	4,000	4,004	4,006	3,999	3,998	3,996	3,995	4,000
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,214	0,197	0,210	0,205	0,211	0,232	0,222	0,248	0,262
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,003	0,003	0,001	0,000	0,002	0,009	0,002	0,001	0,000
Ва	0,000	0,000	0,000	0,001	0,000	0,000	0,001	0,000	0,000
Na	0,766	0,794	0,768	0,772	0,786	0,748	0,779	0,760	0,731
К	0,005	0,006	0,009	0,007	0,005	0,004	0,005	0,007	0,006
Summe2	0,987	1,000	0,987	0,984	1,004	0,992	1,009	1,016	0,998
Summe 1+2	4,990	5,000	4,991	4,991	5,003	4,991	5,005	5,011	4,999
Albit	77 81	79 64	77 84	78.39	78 46	76.02	77 33	74 88	73 21
Orthoki	0.49	0.62	0.88	0,70	0.53	0.42	0.53	0.66	0.59
Anorthit	0, 4 0 21 71	19 74	21.28	20.79	21.01	23.56	22.06	24 46	26.20
Celsian	0.00	0.00	0.00	0.12	0.00	0.00	0.08	0.00	0.00
Summe	100,00	100,00	100,00	100.00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Plagioklas	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2
	PLAG1-9	PLAG1-10	PLAG1-11	PLAG1-12	PLAG1-13	PLAG1-14	PLAG1-14	PLAG1-16	PLAG1-17
SiO2	61,12	61,04	60,89	60,66	60,51	60,85	60,82	62,88	62,94
AI2O3	24,30	24,60	24,37	24,69	24,56	23,98	24,72	23,34	23,26
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	5,67	5,83	6,17	6,08	6,50	5,58	6,21	4,47	4,37
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,05	0,10	0,09	0,09	0,07	0,07	0,12	0,03	0,09
BaO	0,07	0,07	0,06	0,00	0,03	0,00	0,00	0,00	0,03
Na2O	8,35	8,37	7,95	8,04	8,06	8,41	8,00	9,22	9,33
K2O	0,11	0,06	0,08	0,08	0,11	0,09	0,09	0,13	0,11
Summe	99,66	100,06	99,60	99,65	99,83	98,97	99,96	100,06	100,13
Si	2,724	2,712	2,716	2,705	2,699	2,730	2,704	2,782	2,784
AI	1,276	1,288	1,282	1,298	1,291	1,268	1,296	1,217	1,213
Summe1	4,000	4,000	3,998	4,002	3,990	3,997	4,000	3,998	3,996
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,271	0,278	0,295	0,291	0,310	0,268	0,296	0,212	0,207
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,002	0,004	0,003	0,003	0,003	0,003	0,004	0,001	0,003
Ва	0,001	0,001	0,001	0,000	0,001	0,000	0,000	0,000	0,001
Na	0,721	0,721	0,687	0,695	0,697	0,732	0,690	0,791	0,800
к	0,006	0,003	0,005	0,005	0,006	0,005	0,005	0,007	0,006
Summe2	1,001	1,007	0,991	0,994	1,017	1,008	0,995	1,011	1,017
Summe 1+2	5,001	5,006	4,989	4,996	5,007	5,005	4,995	5,009	5,013
Albit	72,17	71,86	69,58	70,21	68,71	72,83	69,62	78,31	78,93
Orthokl.	0,60	0,34	0,46	0,47	0,62	0,49	0,52	0,72	0,59
Anorthit	27,12	27,68	29,85	29,33	30,62	26,68	29,86	20,97	20,42
Celsian	0,12	0,12	0,11	0,00	0,05	0,00	0,00	0,00	0,06
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	SM68								
Plagioklas	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2
	PLAG1-18	PLAG1-19	PLAG1-20	PLAG1-21	PLAG1-21	PLAG1-22	PLAG1-23	PLAG1-24	PLAG1-25
SiO2	62,35	63,39	62,74	62,75	62,25	61,90	61,90	61,65	61,90
AI2O3	23,36	23,40	23,36	23,57	23,34	24,00	24,35	24,05	24,51
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	4,60	4,65	4,77	4,89	4,87	5,50	5,52	5,51	5,56
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,06	0,11	0,06	0,06	0,14	0,10	0,14	0,00	0,01
BaO	0,00	0,00	0,01	0,02	0,00	0,00	0,00	0,01	0,00
Na2O	9,15	9,06	9,00	9,17	8,78	8,52	8,58	8,49	8,45
K2O	0,12	0,12	0,10	0,08	0,07	0,09	0,06	0,12	0,08
Summe	99,64	100,72	100,04	100,54	99,45	100,09	100,55	99,82	100,51
Si	2,772	2,785	2,777	2,767	2,772	2,743	2,732	2,740	2,731
AI	1,224	1,212	1,219	1,225	1,225	1,253	1,267	1,260	1,275
Summe1	3,996	3,997	3,996	3,992	3,997	3,997	3,999	3,999	4,005
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,219	0,219	0,226	0,231	0,233	0,261	0,261	0,262	0,263
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,002	0,004	0,002	0,002	0,005	0,004	0,005	0,000	0,000
Ва	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,789	0,771	0,772	0,784	0,758	0,732	0,734	0,732	0,722
к	0,007	0,007	0,006	0,004	0,004	0,005	0,003	0,007	0,005
Summe2	1,017	1,001	1,007	1,022	1,000	1,002	1,004	1,001	0,990
Summe 1+2	5,014	4,998	5,002	5,014	4,996	4,998	5,003	5,000	4,995
Albit	77 74	77 36	76.01	76 80	76 21	73 37	73 54	73 11	72.08
Orthok	0.67	0.70	70,91	0,09	0.20	0.49	0.34	0.67	0.45
Anorthit	21 50	21.04	22 51	22 65	23 20	0,40	0,34	26.20	26 56
Coleian	21,09	21,94	22,01	22,00	20,09	20,10	20,12	20,20	20,00
Summo	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas
Probe	SM68								
Plagioklas	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2
	PLAG1-26	PLAG1-27	PLAG1-28	PLAG1-29	PLAG1-30	PLAG1-31	PLAG1-32	PLAG1-33	PLAG1-34
SiO2	62,09	61,40	61,90	61,41	61,40	61,26	61,13	60,65	60,80
AI2O3	24,31	24,02	24,32	24,13	24,59	24,67	24,77	24,80	24,96
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	5,60	5,52	5,53	5,69	5,87	5,94	5,91	6,18	6,28
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,03	0,04	0,02	0,05	0,06	0,09	0,04	0,05	0,08
BaO	0,02	0,10	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Na2O	8,43	8,50	8,50	8,71	8,22	8,39	8,15	8,17	8,21
K2O	0,07	0,09	0,12	0,10	0,10	0,09	0,07	0,09	0,10
Summe	100,55	99,66	100,40	100,10	100,23	100,44	100,06	99,93	100,44
-									
Si	2,738	2,736	2,735	2,727	2,719	2,711	2,711	2,699	2,694
AI	1,264	1,261	1,267	1,263	1,283	1,287	1,295	1,300	1,303
Summe1	4,002	3,997	4,002	3,990	4,003	3,998	4,007	4,000	3,997
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,265	0,264	0,262	0,271	0,279	0,282	0,281	0,295	0,298
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,001	0,001	0,001	0,002	0,002	0,003	0,001	0,002	0,003
Ва	0,000	0,002	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,721	0,734	0,728	0,750	0,706	0,720	0,701	0,705	0,705
К	0,004	0,005	0,007	0,006	0,005	0,005	0,004	0,005	0,005
Summe2	0,991	1,006	0,997	1,029	0,992	1,010	0,987	1,006	1,012
Summe 1+2	4,992	5,003	4,999	5,019	4,995	5,008	4,993	5,006	5,010
Albit	72.81	73.08	73.03	73.07	71.30	71.53	71,11	70.16	69.91
Orthoki	0.41	0.50	0.68	0.55	0.55	0.48	0.38	0.51	0.54
Anorthit	26.73	26.25	26.28	26.38	28.15	27,99	28.51	29.33	29.55
Celsian	0.04	0.17	0.00	0.00	0.00	0.00	0.00	0.00	0.01
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Plagioklas	4.2	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
	PLAG1-35	PLAG1-A							
SiO2	60,79	62,20	62,35	62,45	62,95	62,72	62,40	62,40	62,39
AI2O3	24,75	23,64	23,59	23,49	23,63	23,80	23,67	23,78	23,69
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	6,37	4,85	4,95	5,06	4,92	4,92	4,95	5,00	5,04
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,07	0,11	0,12	0,13	0,11	0,08	0,07	0,07	0,07
BaO	0,00	0,02	0,04	0,00	0,00	0,00	0,02	0,02	0,00
Na2O	7,94	8,92	9,19	8,95	8,81	8,76	8,89	8,84	8,78
K2O	0,09	0,09	0,08	0,08	0,07	0,12	0,12	0,08	0,07
Summe	100,00	99,83	100,32	100,15	100,49	100,39	100,12	100,20	100,04
Si	2,702	2,762	2,759	2,765	2,773	2,766	2,762	2,760	2,762
AI	1,296	1,237	1,230	1,226	1,227	1,237	1,235	1,239	1,236
Summe1	3,999	3,998	3,989	3,991	4,000	4,003	3,997	3,999	3,999
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,303	0,231	0,235	0,240	0,232	0,233	0,235	0,237	0,239
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,003	0,004	0,004	0,005	0,004	0,003	0,003	0,003	0,003
Ва	0,000	0,000	0,001	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,684	0,768	0,789	0,768	0,752	0,749	0,763	0,758	0,754
к	0,005	0,005	0,004	0,004	0,004	0,007	0,007	0,005	0,004
Summe2	0,995	1,008	1,033	1,017	0,992	0,991	1,008	1,003	1,000
Summe 1+2	4,994	5,007	5,022	5,008	4,992	4,993	5,005	5,002	4,998
Albit	68,93	76,52	76,67	75,84	76,14	75,79	75,95	75,81	75,62
Orthokl.	0,49	0,48	0,42	0,44	0,39	0,67	0,66	0,46	0,40
Anorthit	30,58	22,97	22,84	23,72	23,47	23,54	23,36	23,69	23,98
Celsian	0,00	0,03	0,07	0,00	0,00	0,00	0,03	0,04	0,00
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Plagioklas	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
	PLAG1-A	PLAG1-A	PLAG1-A	PLAG1-A	PLAG1-A	PLAG1-A	PLAG1-A	PLAG1-A	PLAG1-B
SiO2	62 14	62 63	62.00	62 35	62.26	62 77	62.80	63 60	62.83
A12O3	22,14	22,05	22,00	22,00	22.20	22,17	22,00	22,77	22,00
MaO	25,50	23,70	23,70	23,07	23,04	25,05	23,24	23,77	23,32
lingo CaO	0,00 5.07	5,00	5.03	4,00	5.03	0,00	4 71	0,00	4.67
MnO	5,07	5,00	5,03	4,90	5,03	4,74	4,71	4,03	4,07
FoO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
PeO BaO	0,09	0,00	0,00	0,12	0,00	0,12	0,04	0,00	0,00
Na2O	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
K2O	0,03	9,00	0,90	0,01	0,04	9,00	9,30	9,13	0,97
N20 Summo	100.20	100.59	0,09	100.12	100.19	100 55	100.20	101.29	100.12
Summe	100,20	100,56	99,04	100,12	100,10	100,55	100,20	101,20	100,13
Si	2,750	2,760	2,753	2,758	2,755	2,765	2,778	2,778	2,776
AI	1,250	1,234	1,245	1,245	1,244	1,237	1,212	1,224	1,225
Summe1	4,000	3,995	3,998	4,003	3,999	4,002	3,990	4,002	4,001
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Са	0,240	0,239	0,239	0,232	0,239	0,224	0,223	0,217	0,221
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,003	0,002	0,002	0,005	0,002	0,005	0,002	0,000	0,002
Ва	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,757	0,769	0,766	0,756	0,759	0,768	0,797	0,775	0,768
к	0,005	0,004	0,005	0,004	0,007	0,006	0,006	0,007	0,005
Summe2	1,006	1,015	1,012	0,997	1,007	1,002	1,028	0,999	0,996
Summe 1+2	5,006	5,009	5,010	4,999	5,006	5,004	5,018	5,001	4,998
Albit	75 52	75 99	75 84	76 17	75 54	77 02	77 67	77 61	77 28
Orthoki	0.51	0.39	0.48	0.44	0.71	0.56	0.58	0.70	0.47
Anorthit	23.07	23.62	23 68	23 30	23 75	22 42	21 75	21 70	22.25
Colsian	20,97	20,02	20,00	23,39	20,70	<u>ح</u> ح, 4 2 ۵ ۵۵	0.00	0.00	0.00
Summo	100.00		100.00	100.00	100.00	100.00	100.00	100.00	100.00
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Plagioklas	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
	PLAG1-B	PLAG1-B	PLAG1-B	PLAG1-B	PLAG1-B	PLAG1-B	PLAG1-B	PLAG1-B	PLAG1-B
SiO2	62,89	63,13	62,83	63,25	63,15	63,32	63,38	63,36	63,62
AI2O3	23,38	23,23	23,24	23,33	23,26	23,32	23,39	23,22	23,35
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0,00	0,00
CaO	4,47	4,44	4,51	4,37	4,43	4,53	4,25	4,38	4,38
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,07	0,06	0,01	0,07	0,06	0,08	0,08	0,09	0,05
BaO	0,00	0,00	0,00	0,00	0,02	0,00	0,00	0,02	0,00
Na2O	9,09	9,11	8,99	9,06	9,12	9,28	9,14	9,26	9,15
K2O	0,11	0,10	0,13	0,11	0,11	0,10	0,09	0,09	0,09
Summe	100,01	100,07	99,72	100,19	100,15	100,63	100,34	100,42	100,65
Si	2,782	2,790	2,787	2,790	2,789	2,785	2,791	2,791	2,794
AI	1,219	1,210	1,215	1,213	1,211	1,209	1,214	1,206	1,208
Summe1	4,001	4,000	4,001	4,003	4,000	3,995	4,005	3,997	4,002
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,212	0,210	0,214	0,207	0,210	0,213	0,201	0,207	0,206
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,003	0,002	0,001	0,002	0,002	0,003	0,003	0,003	0,002
Ва	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,780	0,780	0,773	0,775	0,781	0,792	0,781	0,791	0,779
к	0,006	0,006	0,007	0,006	0,006	0,006	0,005	0,005	0,005
Summe2	1,000	0,999	0,995	0,990	0,999	1,014	0,990	1,007	0,992
Summe 1+2	5,002	4,998	4,996	4,994	4,999	5,009	4,995	5,004	4,994
Alhit	78 14	78 32	77 71	78 45	78 35	78 31	79 13	78 87	78 65
Orthoki	0.64	0.57	0.74	0,0 0,63	0.60	0.57	0.53	0.48	0.53
Anorthit	21 22	21 12	21 55	20 92	21.01	21 12	20 34	20.62	20.83
Celsian	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.03	0.00
Summe	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
e anni io	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe Plagioklas	SM68 4.5 PLAG1-B							
SiO2	63,33	62,91	63,46	63,44	63,17	63,25	62,66	63,05
AI2O3	23,36	23,49	23,42	23,53	23,12	23,21	23,46	23,58
MgO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
CaO	4,41	4,49	4,09	4,24	4,24	4,47	4,53	4,53
MnO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
FeO	0,07	0,07	0,06	0,06	0,05	0,01	0,06	0,08
BaO	0,00	0,04	0,01	0,09	0,06	0,01	0,02	0,00
Na2O	9,20	9,17	9,25	9,23	9,05	9,11	9,14	9,33
K2O	0,10	0,12	0,11	0,13	0,13	0,09	0,11	0,08
Summe	100,48	100,27	100,39	100,72	99,82	100,14	99,97	100,64
Si	2,788	2,778	2,793	2,786	2,797	2,792	2,775	2,775
AI	1,212	1,222	1,215	1,218	1,207	1,208	1,225	1,223
Summe1	4,000	4,000	4,007	4,004	4,004	4,000	4,000	3,997
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,208	0,212	0,193	0,199	0,201	0,211	0,215	0,213
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe	0,003	0,002	0,002	0,002	0,002	0,000	0,002	0,003
Ва	0,000	0,001	0,000	0,002	0,001	0,000	0,000	0,000
Na	0,786	0,785	0,789	0,786	0,777	0,779	0,785	0,796
к	0,006	0,006	0,006	0,007	0,007	0,005	0,006	0,004
Summe2	1,002	1,007	0,990	0,997	0,988	0,996	1,008	1,017
Summe 1+2	5,002	5,007	4,998	5,001	4,992	4,996	5,008	5,014
Albit	78,63	78,16	79,85	79,05	78,76	78,29	78,02	78,51
Orthokl.	0,57	0,65	0,62	0,75	0,75	0,48	0,61	0,43
Anorthit	20,80	21,13	19,50	20,04	20,38	21,22	21,34	21,06
Celsian	0,00	0,06	0,02	0,15	0,11	0,01	0,03	0,00
Summe	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00

Fortsetzung Tab. H.6: Mikrosondenanalysen von Plagioklas

Probe	IMM021	IMM021	IMM021	IMM021	IMM021	IMM021	IMM056	IMM056	IMM056
Ilmenit/	8.3	8.3	8.3	8.6	8.6	8.6	10.2	10.2	10.6
Hämatit	ILM2	ILM	ILM	ILM2-1	ILM3-1	ILM3-3	ILM1-1	ILM2-1	ILM2-1
SiO2	0,03	0,01	0,00	0,53	0,01	0,04	0,00	0,04	0,00
TiO2	15,63	16,01	34,87	0,14	11,91	24,88	16,50	12,08	21,27
AI2O3	0,07	0,11	0,16	0,45	0,14	0,13	0,12	0,15	0,15
Cr2O3	0,13	0,06	0,03	0,02	0,08	0,04	0,09	0,13	0,11
Fe2O3	71,66	71,35	34,43	98,90	78,26	52,67	69,29	77,34	58,74
MaO	0.17	0.07	0.30	0.00	0.03	0.11	0.11	0.06	0.06
MnO	0.40	0.28	1.07	0.00	0.34	1.30	0.48	0.33	0.13
FeO	13.45	14.10	29.87	0.46	10.44	20.96	14.29	10.59	19.05
Summe	101.54	101.99	100.73	100.51	101.22	100.13	100.85	100.71	99.51
	-						·	·	
Kationenbere	chnung auf	6 Sauerstoff	e						
Si	0,002	0,001	0,000	0,028	0,001	0,002	0,000	0,002	0,000
Ti	0,605	0,617	1,334	0,006	0,465	0,968	0,643	0,473	0,836
AI	0,004	0,006	0,009	0,028	0,009	0,008	0,007	0,009	0,009
Cr	0,005	0,002	0,001	0,001	0,003	0,001	0,004	0,005	0,004
Fe3+	2,776	2,753	1,318	3,913	3,054	2,050	2,701	3,032	2,310
Mg	0,013	0,005	0,023	0,000	0,003	0,009	0,008	0,004	0,005
Mn	0,018	0,012	0,046	0,000	0,015	0,057	0,021	0,015	0,006
Fe	0.579	0.604	1.271	0.020	0.453	0.906	0.619	0.461	0.832
Summe	4,001	4,001	4,002	3,996	4,002	4,001	4,002	4,002	4,002
	1	,	,	- /	,	,))	,
Hämatit	69,79	69,05	33,20	99,35	76,61	51,49	67,80	76,16	57,98
Ilmenit	29,11	30,32	64,04	1,02	22,72	45,54	31,07	23,17	41,78
Pyrophanit	0,68	0,34	1,65	0,00	0,31	1,60	0,62	0,32	0,10
Summe	99,57	99,71	98,89	100,37	99,64	98,63	99,50	99,65	99,86
Probe	IMM056	IMM056	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061	IMM061
Probe Ilmenit/	IMM056 10.6	IMM056 10.6	IMM061 11.1	IMM061 11.3	IMM061 11.3	IMM061 11.3	IMM061 11.3	IMM061 11.4	IMM061 11.4
Probe Ilmenit/	IMM056 10.6 ILM3-	IMM056 10.6	IMM061 11.1	IMM061 11.3	IMM061 11.3	IMM061 11.3	IMM061 11.3	IMM061 11.4	IMM061 11.4
Probe Ilmenit/ Hämatit	IMM056 10.6 ILM3- 1GRE	IMM056 10.6 ILM3-3	IMM061 11.1 ERZ1-5	IMM061 11.3 ILM1-1	IMM061 11.3 ILM1-2	IMM061 11.3 ILM1-3	IMM061 11.3 ILM1-4	IMM061 11.4 ILM1-1	IMM061 11.4 ILM1-2
Probe Ilmenit/ Hämatit	IMM056 10.6 ILM3- 1GRE	IMM056 10.6 ILM3-3	IMM061 11.1 ERZ1-5	IMM061 11.3 ILM1-1	IMM061 11.3 ILM1-2	IMM061 11.3 ILM1-3	IMM061 11.3 ILM1-4	IMM061 11.4 ILM1-1	IMM061 11.4 ILM1-2
Probe Ilmenit/ Hämatit SiO2	IMM056 10.6 ILM3- 1GRE 0,00 19.22	IMM056 10.6 ILM3-3 0,08 11.64	IMM061 11.1 ERZ1-5 0,02	IMM061 11.3 ILM1-1 0,01 13.46	IMM061 11.3 ILM1-2 0,06 21.28	IMM061 11.3 ILM1-3 0,06 15 29	IMM061 11.3 ILM1-4 0,01 17.13	IMM061 11.4 ILM1-1 0,76 0.14	IMM061 11.4 ILM1-2 0,33 0.07
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11	IMM056 10.6 ILM3-3 0,08 11,64	IMM061 11.1 ERZ1-5 0,02 0,04 0.21	IMM061 11.3 ILM1-1 0,01 13,46 0.08	IMM061 11.3 ILM1-2 0,06 21,28 0,12	IMM061 11.3 ILM1-3 0,06 15,29 0,19	IMM061 11.3 ILM1-4 0,01 17,13 0.16	IMM061 11.4 ILM1-1 0,76 0,14 0.45	IMM061 11.4 ILM1-2 0,33 0,07 0,29
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11	IMM056 10.6 ILM3-3 0,08 11,64 0,10 0,12	IMM061 11.1 ERZ1-5 0,02 0,04 0,21	IMM061 11.3 ILM1-1 0,01 13,46 0,08	IMM061 11.3 ILM1-2 0,06 21,28 0,12 0,12	IMM061 11.3 ILM1-3 0,06 15,29 0,19 0,18	IMM061 11.3 ILM1-4 0,01 17,13 0,16 0,32	IMM061 11.4 ILM1-1 0,76 0,14 0,45 0,11	IMM061 11.4 ILM1-2 0,33 0,07 0,29 0.05
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Ec2O3	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11 0,11 62,67	IMM056 10.6 ILM3-3 0,08 11,64 0,10 0,12 77 04	IMM061 11.1 ERZ1-5 0,02 0,04 0,21 0,00 00 22	IMM061 11.3 ILM1-1 0,01 13,46 0,08 0,18 74 60	IMM061 11.3 ILM1-2 0,06 21,28 0,12 0,12 50,72	IMM061 11.3 ILM1-3 0,06 15,29 0,19 0,18 72.04	IMM061 11.3 ILM1-4 0,01 17,13 0,16 0,32 66 45	IMM061 11.4 ILM1-1 0,76 0,14 0,45 0,11	IMM061 11.4 ILM1-2 0,33 0,07 0,29 0,05
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MaQ	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11 0,11 62,67 0,00	IMM056 10.6 ILM3-3 0,08 11,64 0,10 0,12 77,94	IMM061 11.1 ERZ1-5 0,02 0,04 0,21 0,00 99,23 0,06	IMM061 11.3 ILM1-1 0,01 13,46 0,08 0,18 74,60 0,01	IMM061 11.3 ILM1-2 0,06 21,28 0,12 0,12 59,72 0,02	IMM061 11.3 ILM1-3 0,06 15,29 0,19 0,18 72,04	IMM061 11.3 ILM1-4 0,01 17,13 0,16 0,32 66,45 0,00	IMM061 11.4 ILM1-1 0,76 0,14 0,45 0,11 98,24 0,10	IMM061 11.4 ILM1-2 0,33 0,07 0,29 0,05 99,26 0,00
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11 0,11 62,67 0,00 0,91	IMM056 10.6 ILM3-3 0,08 11,64 0,10 0,12 77,94 0,00	IMM061 11.1 ERZ1-5 0,02 0,04 0,21 0,00 99,23 0,06 0,00	IMM061 11.3 ILM1-1 0,01 13,46 0,08 0,18 74,60 0,01 0,17	IMM061 11.3 ILM1-2 0,06 21,28 0,12 0,12 59,72 0,02 0,53	IMM061 11.3 ILM1-3 0,06 15,29 0,19 0,18 72,04 0,05 0,25	IMM061 11.3 ILM1-4 0,01 17,13 0,16 0,32 66,45 0,00 0,25	IMM061 11.4 ILM1-1 0,76 0,14 0,45 0,11 98,24 0,10 0,00	IMM061 11.4 ILM1-2 0,33 0,07 0,29 0,05 99,26 0,00
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO EeO	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11 0,11 62,67 0,00 0,91 16,48	IMM056 10.6 ILM3-3 0,08 11,64 0,10 0,12 77,94 0,00 0,54 10.04	IMM061 11.1 ERZ1-5 0,02 0,04 0,21 0,00 99,23 0,06 0,00 0,07	IMM061 11.3 ILM1-1 0,01 13,46 0,08 0,18 74,60 0,01 0,17 12,06	IMM061 11.3 ILM1-2 0,06 21,28 0,12 0,12 59,72 0,02 0,53 18,71	IMM061 11.3 ILM1-3 0,06 15,29 0,19 0,18 72,04 0,05 0,25 13,62	IMM061 11.3 ILM1-4 0,01 17,13 0,16 0,32 66,45 0,00 0,25 15,42	IMM061 11.4 ILM1-1 0,76 0,14 0,45 0,11 98,24 0,10 0,00 0,32	IMM061 11.4 ILM1-2 0,33 0,07 0,29 0,05 99,26 0,00 0,07 0,23
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11 0,11 62,67 0,00 0,91 16,48 99,52	IMM056 10.6 ILM3-3 0,08 11,64 0,10 0,12 77,94 0,00 0,54 10,04	IMM061 11.1 ERZ1-5 0,02 0,04 0,21 0,00 99,23 0,06 0,00 0,07 99,63	IMM061 11.3 ILM1-1 0,01 13,46 0,08 0,18 74,60 0,01 0,17 12,06 100,56	IMM061 11.3 ILM1-2 0,06 21,28 0,12 0,12 59,72 0,02 0,53 18,71 100 56	IMM061 11.3 ILM1-3 0,06 15,29 0,19 0,18 72,04 0,05 0,25 13,62 101 68	IMM061 11.3 ILM1-4 0,01 17,13 0,16 0,32 66,45 0,00 0,25 15,42 99,73	IMM061 11.4 ILM1-1 0,76 0,14 0,45 0,11 98,24 0,10 0,00 0,32 100,12	IMM061 11.4 ILM1-2 0,33 0,07 0,29 0,05 99,26 0,00 0,07 0,23 100 29
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11 0,11 62,67 0,00 0,91 16,48 99,52	IMM056 10.6 ILM3-3 0,08 11,64 0,10 0,12 77,94 0,00 0,54 10,04 100,45	IMM061 11.1 ERZ1-5 0,02 0,04 0,21 0,00 99,23 0,06 0,00 0,07 99,63	IMM061 11.3 ILM1-1 0,01 13,46 0,08 0,18 74,60 0,01 0,17 12,06 100,56	IMM061 11.3 ILM1-2 0,06 21,28 0,12 0,12 59,72 0,02 0,53 18,71 100,56	IMM061 11.3 ILM1-3 0,06 15,29 0,19 0,18 72,04 0,05 0,25 13,62 101,68	IMM061 11.3 ILM1-4 0,01 17,13 0,16 0,32 66,45 0,00 0,25 15,42 99,73	IMM061 11.4 ILM1-1 0,76 0,14 0,45 0,11 98,24 0,10 0,00 0,32 100,12	IMM061 11.4 ILM1-2 0,33 0,07 0,29 0,05 99,26 0,00 0,07 0,23 100,29
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11 0,11 62,67 0,00 0,91 16,48 99,52	IMM056 10.6 ILM3-3 0,08 11,64 0,10 0,12 77,94 0,00 0,54 10,04 100,45 6 Sauerstoff	IMM061 11.1 ERZ1-5 0,02 0,04 0,21 0,00 99,23 0,06 0,00 0,07 99,63	IMM061 11.3 ILM1-1 0,01 13,46 0,08 0,18 74,60 0,01 0,17 12,06 100,56	IMM061 11.3 ILM1-2 0,06 21,28 0,12 0,12 59,72 0,02 0,53 18,71 100,56	IMM061 11.3 ILM1-3 0,06 15,29 0,19 0,18 72,04 0,05 0,25 13,62 101,68	IMM061 11.3 ILM1-4 0,01 17,13 0,16 0,32 66,45 0,00 0,25 15,42 99,73	IMM061 11.4 ILM1-1 0,76 0,14 0,45 0,11 98,24 0,10 0,00 0,32 100,12	IMM061 11.4 ILM1-2 0,33 0,07 0,29 0,05 99,26 0,00 0,07 0,23 100,29
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11 0,11 62,67 0,00 0,91 16,48 99,52 cchnung auf 0,000	IMM056 10.6 ILM3-3 0,08 11,64 0,10 0,12 77,94 0,00 0,54 10,04 100,45 6 Sauerstoff 0,004	IMM061 11.1 ERZ1-5 0,02 0,04 0,21 0,00 99,23 0,06 0,00 0,07 99,63 e 0,001	IMM061 11.3 ILM1-1 0,01 13,46 0,08 0,18 74,60 0,01 0,17 12,06 100,56	IMM061 11.3 ILM1-2 0,06 21,28 0,12 0,12 0,12 59,72 0,02 0,53 18,71 100,56	IMM061 11.3 ILM1-3 0,06 15,29 0,19 0,18 72,04 0,05 0,25 13,62 101,68 0,003	IMM061 11.3 ILM1-4 0,01 17,13 0,16 0,32 66,45 0,00 0,25 15,42 99,73	IMM061 11.4 ILM1-1 0,76 0,14 0,45 0,11 98,24 0,10 0,00 0,32 100,12	IMM061 11.4 ILM1-2 0,33 0,07 0,29 0,05 99,26 0,00 0,07 0,23 100,29 0,017
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11 0,11 62,67 0,00 0,91 16,48 99,52 cchnung auf 0,000 0,757	IMM056 10.6 ILM3-3 0,08 11,64 0,10 0,12 77,94 0,00 0,54 10,04 100,45 6 Sauerstoff 0,004 0,457	IMM061 11.1 ERZ1-5 0,02 0,04 0,21 0,00 99,23 0,06 0,00 0,07 99,63 e 0,001 0,002	IMM061 11.3 ILM1-1 0,01 13,46 0,08 0,18 74,60 0,01 0,17 12,06 100,56 0,001 0,528	IMM061 11.3 ILM1-2 0,06 21,28 0,12 0,12 0,12 59,72 0,02 0,53 18,71 100,56 0,003 0,828	IMM061 11.3 ILM1-3 0,06 15,29 0,19 0,18 72,04 0,05 0,25 13,62 101,68 0,003 0,592	IMM061 11.3 ILM1-4 0,01 17,13 0,16 0,32 66,45 0,00 0,25 15,42 99,73 0,001 0,675	IMM061 11.4 ILM1-1 0,76 0,14 0,45 0,11 98,24 0,10 0,00 0,32 100,12	IMM061 11.4 ILM1-2 0,33 0,07 0,29 0,05 99,26 0,00 0,07 0,23 100,29 0,017 0,003
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11 0,11 62,67 0,00 0,91 16,48 99,52 cchnung auf 0,000 0,757 0,007	IMM056 10.6 ILM3-3 0,08 11,64 0,10 0,12 77,94 0,00 0,54 10,04 100,45 6 Sauerstoff 0,004 0,457 0,006	IMM061 11.1 ERZ1-5 0,02 0,04 0,21 0,00 99,23 0,06 0,00 0,07 99,63 e 0,001 0,002 0,013	IMM061 11.3 ILM1-1 0,01 13,46 0,08 0,18 74,60 0,01 0,17 12,06 100,56 0,001 0,528 0,005	IMM061 11.3 ILM1-2 0,06 21,28 0,12 0,12 59,72 0,02 0,53 18,71 100,56 0,003 0,828 0,007	IMM061 11.3 ILM1-3 0,06 15,29 0,19 0,18 72,04 0,05 0,25 13,62 101,68 0,003 0,592 0,011	IMM061 11.3 ILM1-4 0,01 17,13 0,16 0,32 66,45 0,00 0,25 15,42 99,73 0,001 0,675 0,010	IMM061 11.4 ILM1-1 0,76 0,14 0,45 0,11 98,24 0,10 0,00 0,32 100,12 0,040 0,006 0,028	IMM061 11.4 ILM1-2 0,33 0,07 0,29 0,05 99,26 0,00 0,07 0,23 100,29 0,017 0,003 0,018
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11 0,11 62,67 0,00 0,91 16,48 99,52 schnung auf 0,000 0,757 0,007 0,004	IMM056 10.6 ILM3-3 0,08 11,64 0,10 0,12 77,94 0,00 0,54 10,04 100,45 6 Sauerstoff 0,004 0,457 0,006 0,005	IMM061 11.1 ERZ1-5 0,02 0,04 0,21 0,00 99,23 0,06 0,00 0,07 99,63 e 0,001 0,002 0,013 0,000	IMM061 11.3 ILM1-1 0,01 13,46 0,08 0,18 74,60 0,01 0,17 12,06 100,56 0,001 0,528 0,005 0,007	IMM061 11.3 ILM1-2 0,06 21,28 0,12 0,12 59,72 0,02 0,53 18,71 100,56 0,003 0,828 0,007 0,005	IMM061 11.3 ILM1-3 0,06 15,29 0,19 0,18 72,04 0,05 0,25 13,62 101,68 0,003 0,592 0,011 0,007	IMM061 11.3 ILM1-4 0,01 17,13 0,16 0,32 66,45 0,00 0,25 15,42 99,73 0,001 0,675 0,010 0,013	IMM061 11.4 ILM1-1 0,76 0,14 0,45 0,11 98,24 0,10 0,00 0,32 100,12 0,040 0,006 0,028 0,005	IMM061 11.4 ILM1-2 0,33 0,07 0,29 0,05 99,26 0,00 0,07 0,23 100,29 0,017 0,003 0,018 0,002
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11 0,11 62,67 0,00 0,91 16,48 99,52 echnung auf 0,000 0,757 0,007 0,004 2,470	IMM056 10.6 ILM3-3 0,08 11,64 0,10 0,12 77,94 0,00 0,54 10,04 100,45 6 Sauerstoff 0,004 0,457 0,006 0,005 3,066	IMM061 11.1 ERZ1-5 0,02 0,04 0,21 0,00 99,23 0,06 0,00 0,07 99,63 e 0,001 0,002 0,013 0,000 3,978	IMM061 11.3 ILM1-1 0,01 13,46 0,08 0,18 74,60 0,01 0,17 12,06 100,56 0,001 0,528 0,005 0,007 2,927	IMM061 11.3 ILM1-2 0,06 21,28 0,12 0,12 59,72 0,02 0,53 18,71 100,56 0,003 0,828 0,007 0,005 2,324	IMM061 11.3 ILM1-3 0,06 15,29 0,19 0,18 72,04 0,05 0,25 13,62 101,68 0,003 0,592 0,011 0,007 2,788	IMM061 11.3 ILM1-4 0,01 17,13 0,16 0,32 66,45 0,00 0,25 15,42 99,73 0,001 0,675 0,010 0,013 2,619	IMM061 11.4 ILM1-1 0,76 0,14 0,45 0,11 98,24 0,10 0,00 0,32 100,12 0,040 0,006 0,028 0,005 3,892	IMM061 11.4 ILM1-2 0,33 0,07 0,29 0,05 99,26 0,00 0,07 0,23 100,29 0,017 0,003 0,017 0,003 0,018 0,002 3,945
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11 0,11 62,67 0,00 0,91 16,48 99,52 echnung auf 0,000 0,757 0,007 0,004 2,470 0,000	IMM056 10.6 ILM3-3 0,08 11,64 0,10 0,12 77,94 0,00 0,54 10,04 100,45 6 Sauerstoff 0,004 0,457 0,006 0,005 3,066 0,000	IMM061 11.1 ERZ1-5 0,02 0,04 0,21 0,00 99,23 0,06 0,00 0,07 99,63 e 0,001 0,002 0,013 0,000 3,978 0,005	IMM061 11.3 ILM1-1 0,01 13,46 0,08 0,18 74,60 0,01 0,17 12,06 100,56 0,001 0,528 0,005 0,007 2,927 0,001	IMM061 11.3 ILM1-2 0,06 21,28 0,12 0,12 59,72 0,02 0,53 18,71 100,56 0,003 0,828 0,007 0,005 2,324 0,002	IMM061 11.3 ILM1-3 0,06 15,29 0,19 0,18 72,04 0,05 0,25 13,62 101,68 0,003 0,592 0,011 0,007 2,788 0,004	IMM061 11.3 ILM1-4 0,01 17,13 0,16 0,32 66,45 0,00 0,25 15,42 99,73 0,001 0,675 0,010 0,013 2,619 0,000	IMM061 11.4 ILM1-1 0,76 0,14 0,45 0,11 98,24 0,10 0,00 0,32 100,12 0,040 0,006 0,028 0,005 3,892 0,008	IMM061 11.4 ILM1-2 0,33 0,07 0,29 0,05 99,26 0,00 0,07 0,23 100,29 0,017 0,003 0,017 0,003 0,018 0,002 3,945 0,000
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg Mn	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11 0,11 62,67 0,00 0,91 16,48 99,52 cchnung auf 0,000 0,757 0,007 0,004 2,470 0,000 0,041	IMM056 10.6 ILM3-3 0,08 11,64 0,10 0,12 77,94 0,00 0,54 10,04 100,45 6 Sauerstoff 0,004 0,457 0,006 0,005 3,066 0,000 0,024	IMM061 11.1 ERZ1-5 0,02 0,04 0,21 0,00 99,23 0,06 0,00 0,07 99,63 e 0,001 0,002 0,013 0,000 3,978 0,005 0,000	IMM061 11.3 ILM1-1 0,01 13,46 0,08 0,18 74,60 0,01 0,17 12,06 100,56 0,001 0,528 0,005 0,007 2,927 0,001 0,007	IMM061 11.3 ILM1-2 0,06 21,28 0,12 0,12 59,72 0,02 0,53 18,71 100,56 0,003 0,828 0,007 0,005 2,324 0,002 0,023	IMM061 11.3 ILM1-3 0,06 15,29 0,19 0,18 72,04 0,05 0,25 13,62 101,68 0,003 0,592 0,011 0,007 2,788 0,004 0,011	IMM061 11.3 ILM1-4 0,01 17,13 0,16 0,32 66,45 0,00 0,25 15,42 99,73 0,001 0,675 0,010 0,013 2,619 0,000 0,011	IMM061 11.4 ILM1-1 0,76 0,14 0,45 0,11 98,24 0,10 0,00 0,32 100,12 0,040 0,006 0,028 0,005 3,892 0,008 0,000	IMM061 11.4 ILM1-2 0,33 0,07 0,29 0,05 99,26 0,00 0,07 0,23 100,29 0,017 0,003 0,018 0,002 3,945 0,000 0,003
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg Mn Fe	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11 0,11 62,67 0,00 0,91 16,48 99,52 chnung auf 0,000 0,757 0,007 0,004 2,470 0,000 0,041 0,722	IMM056 10.6 ILM3-3 0,08 11,64 0,10 0,12 77,94 0,00 0,54 10,04 100,45 6 Sauerstoff 0,004 0,457 0,006 0,005 3,066 0,000 0,024 0,439	IMM061 11.1 ERZ1-5 0,02 0,04 0,21 0,00 99,23 0,06 0,00 0,07 99,63 e 0,001 0,002 0,013 0,000 3,978 0,005 0,000 0,003	IMM061 11.3 ILM1-1 0,01 13,46 0,08 0,18 74,60 0,01 0,17 12,06 100,56 0,001 0,528 0,005 0,007 2,927 0,001 0,007 0,526	IMM061 11.3 ILM1-2 0,06 21,28 0,12 0,12 59,72 0,02 0,53 18,71 100,56 0,003 0,828 0,007 0,005 2,324 0,002 0,023 0,809	IMM061 11.3 ILM1-3 0,06 15,29 0,19 0,18 72,04 0,05 0,25 13,62 101,68 0,003 0,592 0,011 0,007 2,788 0,004 0,011 0,586	IMM061 11.3 ILM1-4 0,01 17,13 0,16 0,32 66,45 0,00 0,25 15,42 99,73 0,001 0,675 0,010 0,013 2,619 0,000 0,011 0,675	IMM061 11.4 ILM1-1 0,76 0,14 0,45 0,11 98,24 0,10 0,00 0,32 100,12 0,040 0,006 0,028 0,005 3,892 0,008 0,000 0,014	IMM061 11.4 ILM1-2 0,33 0,07 0,29 0,05 99,26 0,00 0,07 0,23 100,29 0,017 0,003 0,017 0,003 0,018 0,002 3,945 0,000 0,003 0,010
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg Mn Fe Summe	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11 0,11 62,67 0,00 0,91 16,48 99,52 cchnung auf 0,000 0,757 0,007 0,004 2,470 0,000 0,041 0,722 4,002	IMM056 10.6 ILM3-3 0,08 11,64 0,10 0,12 77,94 0,00 0,54 10,04 100,45 6 Sauerstoff 0,004 0,457 0,006 0,005 3,066 0,000 0,024 0,439 4,000	IMM061 11.1 ERZ1-5 0,02 0,04 0,21 0,00 99,23 0,06 0,00 0,07 99,63 e 0,001 0,002 0,013 0,000 3,978 0,005 0,000 0,003 4,002	IMM061 11.3 ILM1-1 0,01 13,46 0,08 0,18 74,60 0,01 0,17 12,06 100,56 0,001 0,528 0,005 0,007 2,927 0,001 0,007 0,526 4,002	IMM061 11.3 ILM1-2 0,06 21,28 0,12 0,12 59,72 0,02 0,53 18,71 100,56 0,003 0,828 0,007 0,005 2,324 0,002 0,023 0,809 4,001	IMM061 11.3 ILM1-3 0,06 15,29 0,19 0,18 72,04 0,05 0,25 13,62 101,68 0,003 0,592 0,011 0,007 2,788 0,004 0,011 0,586 4,002	IMM061 11.3 ILM1-4 0,01 17,13 0,16 0,32 66,45 0,00 0,25 15,42 99,73 0,001 0,675 0,010 0,013 2,619 0,000 0,011 0,675 4,004	IMM061 11.4 ILM1-1 0,76 0,14 0,45 0,11 98,24 0,10 0,00 0,32 100,12 0,040 0,006 0,028 0,005 3,892 0,008 0,000 0,014 3,992	IMM061 11.4 ILM1-2 0,33 0,07 0,29 0,05 99,26 0,00 0,07 0,23 100,29 0,017 0,003 0,017 0,003 0,018 0,002 3,945 0,000 0,003 0,010 3,998
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg Mn Fe Summe	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11 0,11 62,67 0,00 0,91 16,48 99,52 cchnung auf 0,000 0,757 0,007 0,004 2,470 0,000 0,041 0,722 4,002	IMM056 10.6 ILM3-3 0,08 11,64 0,10 0,12 77,94 0,00 0,54 10,04 100,45 6 Sauerstoff 0,004 0,457 0,006 0,005 3,066 0,000 0,024 0,439 4,000	IMM061 11.1 ERZ1-5 0,02 0,04 0,21 0,00 99,23 0,06 0,00 0,07 99,63 e 0,001 0,002 0,013 0,000 3,978 0,005 0,000 0,003 4,002	IMM061 11.3 ILM1-1 0,01 13,46 0,08 0,18 74,60 0,01 0,17 12,06 100,56 0,001 0,528 0,005 0,007 2,927 0,001 0,007 0,526 4,002	IMM061 11.3 ILM1-2 0,06 21,28 0,12 0,12 59,72 0,02 0,53 18,71 100,56 0,003 0,828 0,007 0,005 2,324 0,002 0,023 0,809 4,001	IMM061 11.3 ILM1-3 0,06 15,29 0,19 0,18 72,04 0,05 0,25 13,62 101,68 0,003 0,592 0,011 0,007 2,788 0,004 0,011 0,586 4,002	IMM061 11.3 ILM1-4 0,01 17,13 0,16 0,32 66,45 0,00 0,25 15,42 99,73 0,001 0,675 0,010 0,013 2,619 0,000 0,011 0,675 4,004	IMM061 11.4 ILM1-1 0,76 0,14 0,45 0,11 98,24 0,10 0,000 0,32 100,12 0,040 0,006 0,028 0,005 3,892 0,008 0,000 0,014 3,992	IMM061 11.4 ILM1-2 0,33 0,07 0,29 0,05 99,26 0,00 0,07 0,23 100,29 0,017 0,003 0,018 0,002 3,945 0,000 0,003 0,010 3,998
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg Mn Fe Summe Hämatit	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11 0,11 62,67 0,00 0,91 16,48 99,52 cchnung auf 0,000 0,757 0,007 0,004 2,470 0,000 0,041 0,722 4,002 61,91	IMM056 10.6 ILM3-3 0,08 11,64 0,10 0,12 77,94 0,00 0,54 10,04 100,45 6 Sauerstoff 0,004 0,457 0,006 0,005 3,066 0,000 0,024 0,439 4,000 76,91	IMM061 11.1 ERZ1-5 0,02 0,04 0,21 0,00 99,23 0,06 0,00 0,07 99,63 e 0,001 0,002 0,013 0,000 3,978 0,005 0,000 0,003 4,002 99,88	IMM061 11.3 ILM1-1 0,01 13,46 0,08 0,18 74,60 0,01 0,17 12,06 100,56 0,001 0,528 0,005 0,007 2,927 0,001 0,007 0,526 4,002 73,40	IMM061 11.3 ILM1-2 0,06 21,28 0,12 0,12 59,72 0,02 0,53 18,71 100,56 0,003 0,828 0,007 0,005 2,324 0,002 0,003 0,809 4,001 58,33	IMM061 11.3 ILM1-3 0,06 15,29 0,19 0,18 72,04 0,05 0,25 13,62 101,68 0,003 0,592 0,011 0,007 2,788 0,004 0,011 0,586 4,002 70,12	IMM061 11.3 ILM1-4 0,01 17,13 0,16 0,32 66,45 0,00 0,25 15,42 99,73 0,001 0,675 0,010 0,013 2,619 0,000 0,011 0,675 4,004 65,80	IMM061 11.4 ILM1-1 0,76 0,14 0,45 0,11 98,24 0,10 0,00 0,32 100,12 0,040 0,006 0,028 0,005 3,892 0,008 0,000 0,014 3,992 99,50	IMM061 11.4 ILM1-2 0,33 0,07 0,29 0,05 99,26 0,00 0,07 0,23 100,29 0,017 0,003 0,017 0,003 0,018 0,002 3,945 0,000 0,003 0,010 3,998 99,60
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg Mn Fe Summe Hämatit Ilmenit	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11 0,11 62,67 0,00 0,91 16,48 99,52 cchnung auf 0,000 0,757 0,007 0,004 2,470 0,000 0,041 0,722 4,002 61,91 36,19	IMM056 10.6 ILM3-3 0,08 11,64 0,10 0,12 77,94 0,00 0,54 10,04 100,45 6 Sauerstoff 0,004 0,457 0,006 0,005 3,066 0,000 0,024 0,439 4,000 76,91 22,03	IMM061 11.1 ERZ1-5 0,02 0,04 0,21 0,00 99,23 0,06 0,00 0,07 99,63 e 0,001 0,002 0,013 0,000 3,978 0,005 0,000 0,003 4,002 99,88 0,17	IMM061 11.3 ILM1-1 0,01 13,46 0,08 0,18 74,60 0,01 0,17 12,06 100,56 0,001 0,528 0,005 0,007 2,927 0,001 0,007 0,526 4,002 73,40 26,37	IMM061 11.3 ILM1-2 0,06 21,28 0,12 0,12 59,72 0,02 0,53 18,71 100,56 0,003 0,828 0,007 0,005 2,324 0,002 0,023 0,809 4,001 58,33 40,61	IMM061 11.3 ILM1-3 0,06 15,29 0,19 0,18 72,04 0,05 0,25 13,62 101,68 0,003 0,592 0,011 0,007 2,788 0,004 0,011 0,586 4,002 70,12 29,47	IMM061 11.3 ILM1-4 0,01 17,13 0,16 0,32 66,45 0,00 0,25 15,42 99,73 0,001 0,675 0,010 0,013 2,619 0,000 0,011 0,675 4,004 65,80 33,93	IMM061 11.4 ILM1-1 0,76 0,14 0,45 0,11 98,24 0,10 0,00 0,32 100,12 0,040 0,006 0,028 0,006 0,028 0,005 3,892 0,008 0,000 0,014 3,992 99,50 0,71	IMM061 11.4 ILM1-2 0,33 0,07 0,29 0,05 99,26 0,00 0,07 0,23 100,29 0,017 0,003 0,017 0,003 0,018 0,002 3,945 0,000 0,003 0,010 3,998 99,60 0,51
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg Mn Fe Summe Hämatit Ilmenit Pyrophanit	IMM056 10.6 ILM3- 1GRE 0,00 19,22 0,11 0,11 62,67 0,00 0,91 16,48 99,52 cchnung auf 0,000 0,757 0,007 0,004 2,470 0,000 0,041 0,722 4,002 61,91 36,19 0,92	IMM056 10.6 ILM3-3 0,08 11,64 0,10 0,12 77,94 0,00 0,54 10,04 100,45 6 Sauerstoff 0,004 0,457 0,006 0,005 3,066 0,000 0,024 0,439 4,000 76,91 22,03 0,49	IMM061 11.1 ERZ1-5 0,02 0,04 0,21 0,00 99,23 0,06 0,00 0,07 99,63 e 0,001 0,002 0,013 0,000 3,978 0,005 0,000 0,003 4,002 99,88 0,17 0,00	IMM061 11.3 ILM1-1 0,01 13,46 0,08 0,18 74,60 0,01 0,17 12,06 100,56 0,001 0,528 0,005 0,007 2,927 0,001 0,007 0,526 4,002 73,40 26,37 0,06	IMM061 11.3 ILM1-2 0,06 21,28 0,12 0,12 59,72 0,02 0,53 18,71 100,56 0,003 0,828 0,007 0,005 2,324 0,002 0,023 0,809 4,001 58,33 40,61 0,50	IMM061 11.3 ILM1-3 0,06 15,29 0,19 0,18 72,04 0,05 0,25 13,62 101,68 0,003 0,592 0,011 0,007 2,788 0,004 0,011 0,586 4,002 70,12 29,47 0,15	IMM061 11.3 ILM1-4 0,01 17,13 0,16 0,32 66,45 0,00 0,25 15,42 99,73 0,001 0,675 0,010 0,013 2,619 0,000 0,011 0,675 4,004 65,80 33,93 0,00	IMM061 11.4 ILM1-1 0,76 0,14 0,45 0,11 98,24 0,10 0,00 0,32 100,12 0,040 0,006 0,028 0,006 0,028 0,005 3,892 0,008 0,000 0,014 3,992 99,50 0,71 0,00	IMM061 11.4 ILM1-2 0,33 0,07 0,29 0,05 99,26 0,00 0,07 0,23 100,29 0,017 0,003 0,017 0,003 0,018 0,002 3,945 0,000 0,003 0,010 3,998 99,60 0,51 0,00

Tab. H.7: Mikrosondenanalysen von Ilmenit/Härnatit

Probe	IMM061	IMM061	IMM061	IMM061	IMM061	IMM063	IMM063	IMM063	IMM063
llmenit/	11.4	11.4	11.5	11.5	11.5	2.8	2.8	2.8	2.8
Hämatit	ILM2-1	ILM2-2	ILM1-1	ILM1-2	ILM1-3	ILM1-1	ILM1-2	ILM1-3	ILM1-4
SiO2	0,00	0,00	0,00	0,01	0,06	0,00	0,00	0,01	0,00
TiO2	0,10	0,03	15,91	14,91	20,40	15,37	14,12	16,95	18,63
AI2O3	0,11	0,07	0,16	0,13	0,08	0,16	0,13	0,06	0,10
Cr2O3	0,01	0,04	0,10	0,13	0,13	0,15	0,15	0,16	0,12
Fe2O3	100,46	99,66	70,61	72,88	60,89	70,81	73,48	68,83	64,05
MgO	0,00	0,07	0,11	0,10	0,03	0,05	0,00	0,15	0,05
MnO	0,00	0,04	0,16	0,13	0,12	0,16	0,04	0,24	0,10
FeO	0,17	0,00	14,12	13,24	18,28	13,76	12,81	14,84	16,69
Summe	100,86	99,91	101,15	101,53	100,00	100,46	100,72	101,24	99,73
Kationenhere	chnung auf	6 Sauerstoff	<u>م</u>						
Si		0.000		0.000	0.003	0.000	0.000	0.001	0.000
ы ті	0,000	0,000	0,000	0,000	0,005	0,000	0,000	0,001	0,000
	0,004	0,001	0,010	0,578	0,799	0,002	0,552	0,037	0,733
	0,007	0,004	0,010	0,008	0,005	0,010	0,008	0,003	0,006
Cr Co2	0,000	0,002	0,004	0,005	0,005	0,006	0,006	0,006	0,005
гез+	3,982	3,988	2,745	2,827	2,385	2,775	2,877	2,671	2,520
Ng	0,000	0,006	0,008	0,008	0,003	0,004	0,000	0,011	0,004
Mn -	0,000	0,002	0,007	0,006	0,005	0,007	0,002	0,011	0,004
Fe	0,008	0,000	0,610	0,571	0,796	0,599	0,557	0,640	0,730
Summe	4,001	4,002	4,002	4,002	4,001	4,003	4,002	4,001	4,002
Hämatit	99,71	99,92	68,97	71,01	59,86	69,66	72,13	67,13	63,21
Ilmenit	0,38	0,00	30,65	28,67	39,93	30,10	27,95	32,17	36,62
Pyrophanit	0,00	0,04	0,22	0,19	0,08	0,07	0,00	0,44	0,07
Summe	100,09	99,96	99,84	99,86	99,87	99,83	100,08	99,74	99,90
Probe	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063	IMM063
Probe Ilmenit/	IMM063 2.8	IMM063 2.8	IMM063 2.8	IMM063 2.8	IMM063 2.8	IMM063 2.8	IMM063 2.8	IMM063 2.8	IMM063 2.8
Probe Ilmenit/ Hämatit	IMM063 2.8 ILM1-5	IMM063 2.8 ILM1-6	IMM063 2.8 ILM2-1	IMM063 2.8 ILM2-2	IMM063 2.8 ILM2-3	IMM063 2.8 ILM2-4	IMM063 2.8 ILM2-5	IMM063 2.8 ILM2-6	IMM063 2.8 ILM2-7
Probe Ilmenit/ Hämatit	IMM063 2.8 ILM1-5	IMM063 2.8 ILM1-6	IMM063 2.8 ILM2-1	IMM063 2.8 ILM2-2	IMM063 2.8 ILM2-3	IMM063 2.8 ILM2-4	IMM063 2.8 ILM2-5	IMM063 2.8 ILM2-6	IMM063 2.8 ILM2-7
Probe Ilmenit/ Hämatit SiO2	IMM063 2.8 ILM1-5 0,01	IMM063 2.8 ILM1-6 0,04	IMM063 2.8 ILM2-1 0,03	IMM063 2.8 ILM2-2 0,06	IMM063 2.8 ILM2-3 0,00	IMM063 2.8 ILM2-4 0,06	IMM063 2.8 ILM2-5 0,00	IMM063 2.8 ILM2-6 0,00	IMM063 2.8 ILM2-7 0,05
Probe Ilmenit/ Hämatit SiO2 TiO2	IMM063 2.8 ILM1-5 0,01 17,27	IMM063 2.8 ILM1-6 0,04 15,53	IMM063 2.8 ILM2-1 0,03 14,81	IMM063 2.8 ILM2-2 0,06 19,77	IMM063 2.8 ILM2-3 0,00 16,71	IMM063 2.8 ILM2-4 0,06 16,15	IMM063 2.8 ILM2-5 0,00 18,30	IMM063 2.8 ILM2-6 0,00 15,91	IMM063 2.8 ILM2-7 0,05 14,10
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3	IMM063 2.8 ILM1-5 0,01 17,27 0,17	IMM063 2.8 ILM1-6 0,04 15,53 0,11	IMM063 2.8 ILM2-1 0,03 14,81 0,17	IMM063 2.8 ILM2-2 0,06 19,77 0,09	IMM063 2.8 ILM2-3 0,00 16,71 0,22	IMM063 2.8 ILM2-4 0,06 16,15 0,19	IMM063 2.8 ILM2-5 0,00 18,30 0,31	IMM063 2.8 ILM2-6 0,00 15,91 0,15	IMM063 2.8 ILM2-7 0,05 14,10 0,13
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3	IMM063 2.8 ILM1-5 0,01 17,27 0,17 0,14	IMM063 2.8 ILM1-6 0,04 15,53 0,11 0,15	IMM063 2.8 ILM2-1 0,03 14,81 0,17 0,16	IMM063 2.8 ILM2-2 0,06 19,77 0,09 0,14	IMM063 2.8 ILM2-3 0,00 16,71 0,22 0,17	IMM063 2.8 ILM2-4 0,06 16,15 0,19 0,17	IMM063 2.8 ILM2-5 0,00 18,30 0,31 0,07	IMM063 2.8 ILM2-6 0,00 15,91 0,15 0,08	IMM063 2.8 ILM2-7 0,05 14,10 0,13 0,17
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3	IMM063 2.8 ILM1-5 0,01 17,27 0,17 0,14 67,03	IMM063 2.8 ILM1-6 0,04 15,53 0,11 0,15 70,14	IMM063 2.8 ILM2-1 0,03 14,81 0,17 0,16 71,55	IMM063 2.8 ILM2-2 0,06 19,77 0,09 0,14 60,44	IMM063 2.8 ILM2-3 0,00 16,71 0,22 0,17 68,14	IMM063 2.8 ILM2-4 0,06 16,15 0,19 0,17 69,50	IMM063 2.8 ILM2-5 0,00 18,30 0,31 0,07 64,90	IMM063 2.8 ILM2-6 0,00 15,91 0,15 0,08 70,19	IMM063 2.8 ILM2-7 0,05 14,10 0,13 0,17 73,10
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO	IMM063 2.8 ILM1-5 0,01 17,27 0,17 0,14 67,03 0,00	IMM063 2.8 ILM1-6 0,04 15,53 0,11 0,15 70,14 0,02	IMM063 2.8 ILM2-1 0,03 14,81 0,17 0,16 71,55 0,05	IMM063 2.8 ILM2-2 0,06 19,77 0,09 0,14 60,44 0,10	IMM063 2.8 ILM2-3 0,00 16,71 0,22 0,17 68,14 0,08	IMM063 2.8 ILM2-4 0,06 16,15 0,19 0,17 69,50 0,12	IMM063 2.8 ILM2-5 0,00 18,30 0,31 0,07 64,90 0,07	IMM063 2.8 ILM2-6 0,00 15,91 0,15 0,08 70,19 0,03	IMM063 2.8 ILM2-7 0,05 14,10 0,13 0,17 73,10 0,00
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO	IMM063 2.8 ILM1-5 0,01 17,27 0,17 0,14 67,03 0,00 0,07	IMM063 2.8 ILM1-6 0,04 15,53 0,11 0,15 70,14 0,02 0,05	IMM063 2.8 ILM2-1 0,03 14,81 0,17 0,16 71,55 0,05 0,07	IMM063 2.8 ILM2-2 0,06 19,77 0,09 0,14 60,44 0,10 0,24	IMM063 2.8 ILM2-3 0,00 16,71 0,22 0,17 68,14 0,08 0,08	IMM063 2.8 ILM2-4 0,06 16,15 0,19 0,17 69,50 0,12 0,09	IMM063 2.8 ILM2-5 0,00 18,30 0,31 0,07 64,90 0,07 0,14	IMM063 2.8 ILM2-6 0,00 15,91 0,15 0,08 70,19 0,03 0,12	IMM063 2.8 ILM2-7 0,05 14,10 0,13 0,17 73,10 0,00 0,02
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO	IMM063 2.8 ILM1-5 0,01 17,27 0,17 0,14 67,03 0,00 0,07 15,65	IMM063 2.8 ILM1-6 0,04 15,53 0,11 0,15 70,14 0,02 0,05 14,03	IMM063 2.8 ILM2-1 0,03 14,81 0,17 0,16 71,55 0,05 0,07 13,35	IMM063 2.8 ILM2-2 0,06 19,77 0,09 0,14 60,44 0,10 0,24 17,50	IMM063 2.8 ILM2-3 0,00 16,71 0,22 0,17 68,14 0,08 0,08 15,04	IMM063 2.8 ILM2-4 0,06 16,15 0,19 0,17 69,50 0,12 0,09 14,43	IMM063 2.8 ILM2-5 0,00 18,30 0,31 0,07 64,90 0,07 0,14 16,45	IMM063 2.8 ILM2-6 0,00 15,91 0,15 0,08 70,19 0,03 0,12 14,27	IMM063 2.8 ILM2-7 0,05 14,10 0,13 0,17 73,10 0,00 0,02 12,84
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe	IMM063 2.8 ILM1-5 0,01 17,27 0,17 0,14 67,03 0,00 0,07 15,65 100,34	IMM063 2.8 ILM1-6 0,04 15,53 0,11 0,15 70,14 0,02 0,05 14,03 100,06	IMM063 2.8 ILM2-1 0,03 14,81 0,17 0,16 71,55 0,05 0,07 13,35 100,19	IMM063 2.8 ILM2-2 0,06 19,77 0,09 0,14 60,44 0,10 0,24 17,50 98,33	IMM063 2.8 ILM2-3 0,00 16,71 0,22 0,17 68,14 0,08 0,08 15,04 100,44	IMM063 2.8 ILM2-4 0,06 16,15 0,19 0,17 69,50 0,12 0,09 14,43 100,72	IMM063 2.8 ILM2-5 0,00 18,30 0,31 0,07 64,90 0,07 0,14 16,45 100,24	IMM063 2.8 ILM2-6 0,00 15,91 0,15 0,08 70,19 0,03 0,12 14,27 100,75	IMM063 2.8 ILM2-7 0,05 14,10 0,13 0,17 73,10 0,00 0,02 12,84 100,41
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere	IMM063 2.8 ILM1-5 0,01 17,27 0,17 0,14 67,03 0,00 0,07 15,65 100,34	IMM063 2.8 ILM1-6 0,04 15,53 0,11 0,15 70,14 0,02 0,05 14,03 100,06 6 Sauerstoff	IMM063 2.8 ILM2-1 0,03 14,81 0,17 0,16 71,55 0,05 0,07 13,35 100,19 e	IMM063 2.8 ILM2-2 0,06 19,77 0,09 0,14 60,44 0,10 0,24 17,50 98,33	IMM063 2.8 ILM2-3 0,00 16,71 0,22 0,17 68,14 0,08 0,08 15,04 100,44	IMM063 2.8 ILM2-4 0,06 16,15 0,19 0,17 69,50 0,12 0,09 14,43 100,72	IMM063 2.8 ILM2-5 0,00 18,30 0,31 0,07 64,90 0,07 0,14 16,45 100,24	IMM063 2.8 ILM2-6 0,00 15,91 0,15 0,08 70,19 0,03 0,12 14,27 100,75	IMM063 2.8 ILM2-7 0,05 14,10 0,13 0,17 73,10 0,00 0,02 12,84 100,41
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si	IMM063 2.8 ILM1-5 0,01 17,27 0,17 0,14 67,03 0,00 0,07 15,65 100,34 echnung auf 0,001	IMM063 2.8 ILM1-6 0,04 15,53 0,11 0,15 70,14 0,02 0,05 14,03 100,06 6 Sauerstoff 0,002	IMM063 2.8 ILM2-1 0,03 14,81 0,17 0,16 71,55 0,05 0,07 13,35 100,19 e 0,001	IMM063 2.8 ILM2-2 0,06 19,77 0,09 0,14 60,44 0,10 0,24 17,50 98,33	IMM063 2.8 ILM2-3 0,00 16,71 0,22 0,17 68,14 0,08 0,08 15,04 100,44	IMM063 2.8 ILM2-4 0,06 16,15 0,19 0,17 69,50 0,12 0,09 14,43 100,72	IMM063 2.8 ILM2-5 0,00 18,30 0,31 0,07 64,90 0,07 0,14 16,45 100,24	IMM063 2.8 ILM2-6 0,00 15,91 0,15 0,08 70,19 0,03 0,12 14,27 100,75	IMM063 2.8 ILM2-7 0,05 14,10 0,13 0,17 73,10 0,00 0,02 12,84 100,41
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti	IMM063 2.8 ILM1-5 0,01 17,27 0,17 0,14 67,03 0,00 0,07 15,65 100,34 echnung auf 0,001 0,676	IMM063 2.8 ILM1-6 0,04 15,53 0,11 0,15 70,14 0,02 0,05 14,03 100,06 6 Sauerstoff 0,002 0,611	IMM063 2.8 ILM2-1 0,03 14,81 0,17 0,16 71,55 0,05 0,07 13,35 100,19 e 0,001 0,582	IMM063 2.8 ILM2-2 0,06 19,77 0,09 0,14 60,44 0,10 0,24 17,50 98,33 0,003 0,787	IMM063 2.8 ILM2-3 0,00 16,71 0,22 0,17 68,14 0,08 0,08 15,04 100,44	IMM063 2.8 ILM2-4 0,06 16,15 0,19 0,17 69,50 0,12 0,09 14,43 100,72 0,003 0,630	IMM063 2.8 ILM2-5 0,00 18,30 0,31 0,07 64,90 0,07 0,14 16,45 100,24 0,000 0,716	IMM063 2.8 ILM2-6 0,00 15,91 0,15 0,08 70,19 0,03 0,12 14,27 100,75 0,000 0,621	IMM063 2.8 ILM2-7 0,05 14,10 0,13 0,17 73,10 0,00 0,02 12,84 100,41 0,002 0,553
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al	IMM063 2.8 ILM1-5 0,01 17,27 0,17 0,14 67,03 0,00 0,07 15,65 100,34 echnung auf 0,001 0,676 0,010	IMM063 2.8 ILM1-6 0,04 15,53 0,11 0,15 70,14 0,02 0,05 14,03 100,06 6 Sauerstoff 0,002 0,611 0,007	IMM063 2.8 ILM2-1 0,03 14,81 0,17 0,16 71,55 0,05 0,07 13,35 100,19 e 0,001 0,582 0,010	IMM063 2.8 ILM2-2 0,06 19,77 0,09 0,14 60,44 0,10 0,24 17,50 98,33 0,003 0,787 0,006	IMM063 2.8 ILM2-3 0,00 16,71 0,22 0,17 68,14 0,08 0,08 15,04 100,44 0,000 0,653 0,013	IMM063 2.8 ILM2-4 0,06 16,15 0,19 0,17 69,50 0,12 0,09 14,43 100,72 0,003 0,630 0,012	IMM063 2.8 ILM2-5 0,00 18,30 0,31 0,07 64,90 0,07 0,14 16,45 100,24 0,000 0,716 0,019	IMM063 2.8 ILM2-6 0,00 15,91 0,15 0,08 70,19 0,03 0,12 14,27 100,75 0,000 0,621 0,009	IMM063 2.8 ILM2-7 0,05 14,10 0,13 0,17 73,10 0,00 0,02 12,84 100,41 0,002 0,553 0,008
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr	IMM063 2.8 ILM1-5 0,01 17,27 0,17 0,14 67,03 0,00 0,07 15,65 100,34 echnung auf 0,001 0,676 0,010 0,006	IMM063 2.8 ILM1-6 0,04 15,53 0,11 0,15 70,14 0,02 0,05 14,03 100,06 6 Sauerstoff 0,002 0,611 0,007 0,006	IMM063 2.8 ILM2-1 0,03 14,81 0,17 0,16 71,55 0,05 0,07 13,35 100,19 e 0,001 0,582 0,010 0,006	IMM063 2.8 ILM2-2 0,06 19,77 0,09 0,14 60,44 0,10 0,24 17,50 98,33 0,003 0,787 0,006 0,006	IMM063 2.8 ILM2-3 0,00 16,71 0,22 0,17 68,14 0,08 0,08 15,04 100,44 0,000 0,653 0,013 0,007	IMM063 2.8 ILM2-4 0,06 16,15 0,19 0,17 69,50 0,12 0,09 14,43 100,72 0,003 0,630 0,012 0,007	IMM063 2.8 ILM2-5 0,00 18,30 0,31 0,07 64,90 0,07 0,14 16,45 100,24 0,000 0,716 0,019 0,003	IMM063 2.8 ILM2-6 0,00 15,91 0,15 0,08 70,19 0,03 0,12 14,27 100,75 0,000 0,621 0,009 0,003	IMM063 2.8 ILM2-7 0,05 14,10 0,13 0,17 73,10 0,00 0,02 12,84 100,41 0,002 0,553 0,008 0,007
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+	IMM063 2.8 ILM1-5 0,01 17,27 0,17 0,14 67,03 0,00 0,07 15,65 100,34 echnung auf 0,001 0,676 0,010 0,006 2,625	IMM063 2.8 ILM1-6 0,04 15,53 0,11 0,15 70,14 0,02 0,05 14,03 100,06 6 Sauerstoff 0,002 0,611 0,007 0,006 2,759	IMM063 2.8 ILM2-1 0,03 14,81 0,17 0,16 71,55 0,05 0,07 13,35 100,19 e 0,001 0,582 0,010 0,006 2,812	IMM063 2.8 ILM2-2 0,06 19,77 0,09 0,14 60,44 0,10 0,24 17,50 98,33 0,003 0,787 0,006 0,006 2,407	IMM063 2.8 ILM2-3 0,00 16,71 0,22 0,17 68,14 0,08 0,08 15,04 100,44 0,000 0,653 0,013 0,007 2,666	IMM063 2.8 ILM2-4 0,06 16,15 0,19 0,17 69,50 0,12 0,09 14,43 100,72 0,003 0,630 0,012 0,007 2,711	IMM063 2.8 ILM2-5 0,00 18,30 0,31 0,07 64,90 0,07 0,14 16,45 100,24 0,000 0,716 0,019 0,003 2,539	IMM063 2.8 ILM2-6 0,00 15,91 0,15 0,08 70,19 0,03 0,12 14,27 100,75 0,000 0,621 0,009 0,003 2,741	IMM063 2.8 ILM2-7 0,05 14,10 0,13 0,17 73,10 0,00 0,02 12,84 100,41 0,002 0,553 0,008 0,007 2,870
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg	IMM063 2.8 ILM1-5 0,01 17,27 0,17 0,14 67,03 0,00 0,07 15,65 100,34 echnung auf 0,001 0,676 0,010 0,006 2,625 0,000	IMM063 2.8 ILM1-6 0,04 15,53 0,11 0,15 70,14 0,02 0,05 14,03 100,06 6 Sauerstoff 0,002 0,611 0,007 0,006 2,759 0,001	IMM063 2.8 ILM2-1 0,03 14,81 0,17 0,16 71,55 0,05 0,07 13,35 100,19 e 0,001 0,582 0,010 0,006 2,812 0,004	IMM063 2.8 ILM2-2 0,06 19,77 0,09 0,14 60,44 0,10 0,24 17,50 98,33 0,003 0,787 0,006 0,006 2,407 0,008	IMM063 2.8 ILM2-3 0,00 16,71 0,22 0,17 68,14 0,08 0,08 15,04 100,44 0,000 0,653 0,013 0,007 2,666 0,006	IMM063 2.8 ILM2-4 0,06 16,15 0,19 0,17 69,50 0,12 0,09 14,43 100,72 0,003 0,630 0,012 0,007 2,711 0,009	IMM063 2.8 ILM2-5 0,00 18,30 0,31 0,07 64,90 0,07 0,14 16,45 100,24 0,000 0,716 0,019 0,003 2,539 0,006	IMM063 2.8 ILM2-6 0,00 15,91 0,15 0,08 70,19 0,03 0,12 14,27 100,75 0,000 0,621 0,009 0,003 2,741 0,003	IMM063 2.8 ILM2-7 0,05 14,10 0,13 0,17 73,10 0,00 0,02 12,84 100,41 0,002 0,553 0,008 0,007 2,870 0,000
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg Mn	IMM063 2.8 ILM1-5 0,01 17,27 0,17 0,14 67,03 0,00 0,07 15,65 100,34 echnung auf 0,001 0,676 0,010 0,006 2,625 0,000 0,003	IMM063 2.8 ILM1-6 0,04 15,53 0,11 0,15 70,14 0,02 0,05 14,03 100,06 6 Sauerstoff 0,002 0,611 0,007 0,006 2,759 0,001 0,002	IMM063 2.8 ILM2-1 0,03 14,81 0,17 0,16 71,55 0,05 0,07 13,35 100,19 e 0,001 0,582 0,010 0,006 2,812 0,004 0,003	IMM063 2.8 ILM2-2 0,06 19,77 0,09 0,14 60,44 0,10 0,24 17,50 98,33 0,003 0,787 0,006 0,006 2,407 0,008 0,011	IMM063 2.8 ILM2-3 0,00 16,71 0,22 0,17 68,14 0,08 0,08 15,04 100,44 0,000 0,653 0,013 0,007 2,666 0,006 0,003	IMM063 2.8 ILM2-4 0,06 16,15 0,19 0,17 69,50 0,12 0,09 14,43 100,72 0,003 0,630 0,012 0,007 2,711 0,009 0,004	IMM063 2.8 ILM2-5 0,00 18,30 0,31 0,07 64,90 0,07 0,14 16,45 100,24 0,000 0,716 0,019 0,003 2,539 0,006 0,006	IMM063 2.8 ILM2-6 0,00 15,91 0,15 0,08 70,19 0,03 0,12 14,27 100,75 0,000 0,621 0,009 0,003 2,741 0,003 0,005	IMM063 2.8 ILM2-7 0,05 14,10 0,13 0,17 73,10 0,00 0,02 12,84 100,41 0,002 0,553 0,008 0,007 2,870 0,000 0,001
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg Mn Fe	IMM063 2.8 ILM1-5 0,01 17,27 0,17 0,14 67,03 0,00 0,07 15,65 100,34 echnung auf 0,001 0,676 0,010 0,006 2,625 0,000 0,003 0,681	IMM063 2.8 ILM1-6 0,04 15,53 0,11 0,15 70,14 0,02 0,05 14,03 100,06 6 Sauerstoff 0,002 0,611 0,007 0,006 2,759 0,001 0,002 0,613	IMM063 2.8 ILM2-1 0,03 14,81 0,17 0,16 71,55 0,05 0,07 13,35 100,19 e 0,001 0,582 0,010 0,006 2,812 0,004 0,003 0,583	IMM063 2.8 ILM2-2 0,06 19,77 0,09 0,14 60,44 0,10 0,24 17,50 98,33 0,003 0,787 0,006 0,006 2,407 0,008 0,011 0,774	IMM063 2.8 ILM2-3 0,00 16,71 0,22 0,17 68,14 0,08 0,08 15,04 100,44 0,000 0,653 0,013 0,007 2,666 0,006 0,003 0,654	IMM063 2.8 ILM2-4 0,06 16,15 0,19 0,17 69,50 0,12 0,09 14,43 100,72 0,003 0,630 0,012 0,007 2,711 0,009 0,004 0,626	IMM063 2.8 ILM2-5 0,00 18,30 0,31 0,07 64,90 0,07 0,14 16,45 100,24 0,000 0,716 0,019 0,003 2,539 0,006 0,006 0,006 0,715	IMM063 2.8 ILM2-6 0,00 15,91 0,15 0,08 70,19 0,03 0,12 14,27 100,75 0,000 0,621 0,009 0,003 2,741 0,003 0,005 0,619	IMM063 2.8 ILM2-7 0,05 14,10 0,13 0,17 73,10 0,00 0,02 12,84 100,41 0,002 0,553 0,008 0,007 2,870 0,000 0,001 0,560
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg Mn Fe Summe	IMM063 2.8 ILM1-5 0,01 17,27 0,17 0,14 67,03 0,00 0,07 15,65 100,34 echnung auf 0,001 0,676 0,010 0,006 2,625 0,000 0,003 0,681 4,002	IMM063 2.8 ILM1-6 0,04 15,53 0,11 0,15 70,14 0,02 0,05 14,03 100,06 6 Sauerstoff 0,002 0,611 0,007 0,006 2,759 0,001 0,002 0,613 4,001	IMM063 2.8 ILM2-1 0,03 14,81 0,17 0,16 71,55 0,05 0,07 13,35 100,19 e 0,001 0,582 0,010 0,006 2,812 0,004 0,003 0,583 4,002	IMM063 2.8 ILM2-2 0,06 19,77 0,09 0,14 60,44 0,10 0,24 17,50 98,33 0,003 0,787 0,006 0,006 2,407 0,008 0,011 0,774 4,001	IMM063 2.8 ILM2-3 0,00 16,71 0,22 0,17 68,14 0,08 0,08 15,04 100,44 0,000 0,653 0,013 0,007 2,666 0,006 0,003 0,654 4,003	IMM063 2.8 ILM2-4 0,06 16,15 0,19 0,17 69,50 0,12 0,09 14,43 100,72 0,003 0,630 0,012 0,007 2,711 0,009 0,004 0,626 4,002	IMM063 2.8 ILM2-5 0,00 18,30 0,31 0,07 64,90 0,07 0,14 16,45 100,24 0,000 0,716 0,019 0,003 2,539 0,006 0,006 0,715 4,004	IMM063 2.8 ILM2-6 0,00 15,91 0,15 0,08 70,19 0,03 0,12 14,27 100,75 0,000 0,621 0,009 0,003 2,741 0,003 0,005 0,619 4,002	IMM063 2.8 ILM2-7 0,05 14,10 0,13 0,17 73,10 0,00 0,02 12,84 100,41 0,002 0,553 0,008 0,007 2,870 0,000 0,001 0,560 4,002
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg Mn Fe Summe Hämatit	IMM063 2.8 ILM1-5 0,01 17,27 0,17 0,14 67,03 0,00 0,07 15,65 100,34 echnung auf 0,001 0,676 0,010 0,006 2,625 0,000 0,003 0,681 4,002 65.87	IMM063 2.8 ILM1-6 0,04 15,53 0,11 0,15 70,14 0,02 0,05 14,03 100,06 6 Sauerstoffo 0,002 0,611 0,007 0,006 2,759 0,001 0,002 0,613 4,001	IMM063 2.8 ILM2-1 0,03 14,81 0,17 0,16 71,55 0,05 0,07 13,35 100,19 e 0,001 0,582 0,010 0,006 2,812 0,004 0,003 0,583 4,002 70,65	IMM063 2.8 ILM2-2 0,06 19,77 0,09 0,14 60,44 0,10 0,24 17,50 98,33 0,003 0,787 0,006 0,006 2,407 0,008 0,011 0,774 4,001	IMM063 2.8 ILM2-3 0,00 16,71 0,22 0,17 68,14 0,08 0,08 15,04 100,44 0,000 0,653 0,013 0,007 2,666 0,006 0,003 0,654 4,003	IMM063 2.8 ILM2-4 0,06 16,15 0,19 0,17 69,50 0,12 0,09 14,43 100,72 0,003 0,630 0,012 0,007 2,711 0,009 0,004 0,626 4,002 68,28	IMM063 2.8 ILM2-5 0,00 18,30 0,31 0,07 64,90 0,07 0,14 16,45 100,24 0,000 0,716 0,019 0,003 2,539 0,006 0,006 0,715 4,004	IMM063 2.8 ILM2-6 0,00 15,91 0,15 0,08 70,19 0,03 0,12 14,27 100,75 0,000 0,621 0,009 0,003 2,741 0,003 2,741 0,003 0,005 0,619 4,002	IMM063 2.8 ILM2-7 0,05 14,10 0,13 0,17 73,10 0,00 0,02 12,84 100,41 0,002 0,553 0,008 0,007 2,870 0,000 0,001 0,560 4,002
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg Mn Fe Summe Hämatit Ilmenit	IMM063 2.8 ILM1-5 0,01 17,27 0,17 0,14 67,03 0,00 0,07 15,65 100,34 echnung auf 0,001 0,676 0,010 0,006 2,625 0,000 0,003 0,681 4,002 65,87 34 17	IMM063 2.8 ILM1-6 0,04 15,53 0,11 0,15 70,14 0,02 0,05 14,03 100,06 6 Sauerstoffe 0,002 0,611 0,007 0,006 2,759 0,001 0,002 0,613 4,001 69,24 30,77	IMM063 2.8 ILM2-1 0,03 14,81 0,17 0,16 71,55 0,05 0,07 13,35 100,19 e 0,001 0,582 0,010 0,006 2,812 0,004 0,003 0,583 4,002 70,65 29,31	IMM063 2.8 ILM2-2 0,06 19,77 0,09 0,14 60,44 0,10 0,24 17,50 98,33 0,003 0,787 0,006 0,006 2,407 0,008 0,011 0,774 4,001 60,49 38 93	IMM063 2.8 ILM2-3 0,00 16,71 0,22 0,17 68,14 0,08 0,08 15,04 100,44 0,000 0,653 0,013 0,007 2,666 0,006 0,003 0,654 4,003 67,03 32,89	IMM063 2.8 ILM2-4 0,06 16,15 0,19 0,17 69,50 0,12 0,09 14,43 100,72 0,003 0,630 0,012 0,007 2,711 0,009 0,004 0,626 4,002 68,28 31,51	IMM063 2.8 ILM2-5 0,00 18,30 0,31 0,07 64,90 0,07 0,14 16,45 100,24 0,000 0,716 0,019 0,003 2,539 0,006 0,006 0,715 4,004 63,86 35,97	IMM063 2.8 ILM2-6 0,00 15,91 0,15 0,08 70,19 0,03 0,12 14,27 100,75 0,000 0,621 0,009 0,003 2,741 0,003 2,741 0,003 0,005 0,619 4,002 68,76 31,07	IMM063 2.8 ILM2-7 0,05 14,10 0,13 0,17 73,10 0,00 0,02 12,84 100,41 0,002 0,553 0,008 0,007 2,870 0,000 0,001 0,560 4,002 72,03 28,11
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg Mn Fe Summe Hämatit Ilmenit Pyrophanit	IMM063 2.8 ILM1-5 0,01 17,27 0,17 0,14 67,03 0,00 0,07 15,65 100,34 echnung auf 0,001 0,676 0,010 0,006 2,625 0,000 0,003 0,681 4,002 65,87 34,17 0,00	IMM063 2.8 ILM1-6 0,04 15,53 0,11 0,15 70,14 0,02 0,05 14,03 100,06 6 Sauerstoffe 0,002 0,611 0,007 0,006 2,759 0,001 0,002 0,613 4,001 69,24 30,77 0,00	IMM063 2.8 ILM2-1 0,03 14,81 0,17 0,16 71,55 0,05 0,07 13,35 100,19 e 0,001 0,582 0,010 0,006 2,812 0,004 0,003 0,583 4,002 70,65 29,31 0,00	IMM063 2.8 ILM2-2 0,06 19,77 0,09 0,14 60,44 0,10 0,24 17,50 98,33 0,003 0,787 0,006 0,006 2,407 0,008 0,001 0,0774 4,001 60,49 38,93 0,33	IMM063 2.8 ILM2-3 0,00 16,71 0,22 0,17 68,14 0,08 0,08 15,04 100,44 0,000 0,653 0,013 0,007 2,666 0,006 0,003 0,654 4,003 67,03 32,89 0,00	IMM063 2.8 ILM2-4 0,06 16,15 0,19 0,17 69,50 0,12 0,09 14,43 100,72 0,003 0,630 0,012 0,007 2,711 0,009 0,004 0,626 4,002 68,28 31,51 0,11	IMM063 2.8 ILM2-5 0,00 18,30 0,31 0,07 64,90 0,07 0,14 16,45 100,24 0,000 0,716 0,019 0,003 2,539 0,006 0,0715 4,004 63,86 35,97 0,02	IMM063 2.8 ILM2-6 0,00 15,91 0,15 0,08 70,19 0,03 0,12 14,27 100,75 0,000 0,621 0,009 0,003 2,741 0,003 0,005 0,619 4,002 68,76 31,07 0,05	IMM063 2.8 ILM2-7 0,05 14,10 0,13 0,17 73,10 0,00 0,02 12,84 100,41 0,002 0,553 0,008 0,007 2,870 0,000 0,001 0,560 4,002 72,03 28,11 0,00
Probe Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg Mn Fe Summe Hämatit Ilmenit Pyrophanit Summe	IMM063 2.8 ILM1-5 0,01 17,27 0,17 0,14 67,03 0,00 0,07 15,65 100,34 echnung auf 0,001 0,676 0,010 0,006 2,625 0,000 0,003 0,681 4,002 65,87 34,17 0,00 100.04	IMM063 2.8 ILM1-6 0,04 15,53 0,11 0,15 70,14 0,02 0,05 14,03 100,06 6 Sauerstoff 0,002 0,611 0,007 0,006 2,759 0,001 0,002 0,613 4,001 69,24 30,77 0,00 100,01	IMM063 2.8 ILM2-1 0,03 14,81 0,17 0,16 71,55 0,05 0,07 13,35 100,19 e 0,001 0,582 0,010 0,006 2,812 0,004 0,003 0,583 4,002 70,65 29,31 0,00 99,96	IMM063 2.8 ILM2-2 0,06 19,77 0,09 0,14 60,44 0,10 0,24 17,50 98,33 0,003 0,787 0,006 0,006 2,407 0,008 0,001 0,074 4,001 60,49 38,93 0,33 99,75	IMM063 2.8 ILM2-3 0,00 16,71 0,22 0,17 68,14 0,08 0,08 15,04 100,44 0,000 0,653 0,013 0,007 2,666 0,006 0,003 0,654 4,003 67,03 32,89 0,00 99,93	IMM063 2.8 ILM2-4 0,06 16,15 0,19 0,17 69,50 0,12 0,09 14,43 100,72 0,003 0,630 0,012 0,007 2,711 0,009 0,004 0,626 4,002 68,28 31,51 0,11 99,90	IMM063 2.8 ILM2-5 0,00 18,30 0,31 0,07 64,90 0,07 0,14 16,45 100,24 0,000 0,716 0,019 0,003 2,539 0,006 0,006 0,715 4,004 63,86 35,97 0,02 99,86	IMM063 2.8 ILM2-6 0,00 15,91 0,15 0,08 70,19 0,03 0,12 14,27 100,75 0,000 0,621 0,009 0,003 2,741 0,003 2,741 0,003 0,005 0,619 4,002 68,76 31,07 0,05 90,88	IMM063 2.8 ILM2-7 0,05 14,10 0,13 0,17 73,10 0,00 0,02 12,84 100,41 0,002 0,553 0,008 0,007 2,870 0,000 0,001 0,560 4,002 72,03 28,11 0,00

Fortsetzung Tab. H.7: Mikrosondenanalysen von Ilmenit/Härnatit

Brobo	1111062	1111062	1111062						SM69
llmonit/	1111111003	1111111003	1111110000	7.9	7.9	7.9	7.9	7.9	31000 / 1
minemu	2.0	2.0	2.0	7.8 II M1-	7.0 II M1-	7.0	7.0	7.0	4.1
Hämatit	ILM2-8	ILM2-9	ILM2-11	1GRE	2GRE	ILM2-1	ILM1-2	ILM2-3	ILM1-3
SiO2	0,01	0,00	0,03	0,10	3,20	0,05	0,00	0,01	0,00
TiO2	13,72	20,29	18,70	14,43	13,45	17,18	17,56	14,96	13,62
AI2O3	0.13	0.16	0.09	0.15	1.39	0.16	0.09	0.12	0.16
Cr2O3	0.12	0.10	0.15	0.05	0.04	0.07	0.01	0.06	0.18
Fe2O3	74.27	60,69	65.15	72.55	69.51	66.77	66.18	71.38	74.59
ΜαΟ	0.05	0.09	0.04	0.12	0.30	0.00	0.07	0.08	0.10
MnO	0.17	0.18	0.17	0.33	0.56	0,63	0.45	0.17	0.13
FeO	12.23	18.07	16 71	12 57	11 99	14.96	15 28	13.26	12 14
Summe	100.69	99.59	101.03	100.29	100.45	99.82	99.64	100.01	100.92
••••••	,	00,00	,	,	,	00,01	00,01	,	
Kationenbere	chnung auf	6 Sauerstoff	e						
Si	0,001	0,000	0,001	0,005	0,162	0,003	0,000	0,000	0,000
Ті	0,537	0,798	0,726	0,566	0,512	0,676	0,692	0,589	0,532
AI	0,008	0,010	0,006	0,009	0,083	0,010	0,006	0,007	0,010
Cr	0,005	0,004	0,006	0,002	0,002	0,003	0,000	0,002	0,008
Fe3+	2,908	2,386	2,531	2,846	2,647	2,628	2,608	2,810	2,914
Ма	0.004	0.007	0.003	0.009	0.023	0.000	0.006	0.006	0.007
Mn	0,007	0,008	0,007	0.014	0.024	0.028	0,020	0,007	0,006
Fe	0.532	0 790	0 721	0 548	0,507	0,654	0,669	0 580	0.527
Summe	4 002	4 002	4 001	4 000	3,960	4 001	4 001	4 001	4 003
Gamme	4,002	4,002	4,001	4,000	0,000	4,001	4,001	4,001	4,000
Hämatit	72,99	59,94	63,50	71,61	71,73	65,93	65,39	70,50	73,24
Ilmenit	26,70	39,67	36,20	27,57	27,49	32,84	33,55	29,10	26,50
Pyrophanit	0,13	0,21	0,12	0,47	0,15	0,57	0,59	0,22	0,12
Summe	99,82	99,81	99,82	99,65	99,37	99,33	99,52	99,82	99,86
Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Ilmenit/	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
Hämatit	ILM1-4	ILM2-1	ILM2-2	ILM2-3	ILM3-1	ILM3-2	ILM3-3	ILM3-4	ILM3-5
SiO2	0.00	0.01	0.01	0.00	0.01	0.02	0.00	0.00	0.01
TiO2	14.20	15 51	12.50	18.20	13.50	15 12	12 21	15 22	14.42
1102	0.41	0.07	0.20	0.10	0.10	0.11	0.12	0.00	0.15
AI203	0,41	0,07	0,20	0,19	0,10	0,11	0,13	0,09	0,13
C1203	0,19	71.02	0,15	0,15	0,11	71.00	0,06	0,13	0,13
Fe2O3	73,28	71,03	76,18	63,17	74,75	71,02	74,96	72,33	72,92
MgO	0,00	0,05	0,07	0,04	0,07	0,09	0,08	0,05	0,07
MnO	0,02	0,12	0,06	0,08	0,21	0,19	0,26	0,32	0,24
FeO	13,13	13,87	11,36	16,50	11,93	13,40	11,70	13,51	12,76
Summe	101,23	100,84	100,61	98,41	100,67	100,06	100,52	101,77	100,70
Kationenbere	chnung auf	6 Sauerstoff	e						
Si	0,000	0,000	0,000	0,000	0,001	0,001	0,000	0,000	0,001
Ті	0.552	0.605	0.494	0.729	0.529	0.595	0.522	0.593	0.564
AI	0.025	0.004	0.012	0.012	0.006	0.007	0.008	0.006	0.009
Cr	0.008	0 007	0.006	0,006	0 004	0.005	0.003	0,006	0.005
Fe3+	2 852	2 774	2 988	2 510	2 028	2 70 <i>1</i>	2 9/1	2 700	2 853
Ma	2,002 0,000	0.004	2,000 0.005	2,010 0 002	2,020 0.005	0.007	0.006	0.004	2,000 0 00e
Mn	0,000	0,004	0,000	0,003	0,000	0,007	0,000	0,004	0,000
Eo	0,001	0,000	0,005	0,004	0,009	0,000	0,011	0,014	0,011
ге Summe	0,568 4.005	0,602 4.002	0,495 4.003	4.003	0,520 4.001	4.002	4.002	4.002	0,555 4.002
	,	,	,	,	,	,	,	,	,
Hämatit	71,78	69,58	75,09	63,24	73,47	70,15	73,81	70,21	71,64
Ilmenit	28,59	30,20	24,88	36,73	26,07	29,41	25,60	29,15	27,87
Pyrophanit	0,00	0,09	0,00	0,00	0,24	0,24	0,31	0,31	0,24
Summe	100.37	99.87	99.96	99.97	99.78	99.80	99.73	99.67	99.75

Fortsetzung Tab. H.7: Mikrosondenanalysen von Ilmenit/Härnatit

Probe	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68	SM68
Ilmenit/	4.1	4.1	4.1	4.1	4.2	4.2	4.2	4.2	4.2
Hämatit	ILM3-6	ILM4-1GRE	ILM4-1GRE	ILM4-3GRE	ILM1-1	ILM1-2	ILM1-4	ILM1-5	ILM1-6
SiO2	0,06	0,00	0,00	0,04	0,05	0,03	0,04	0,00	0,06
TiO2	17,30	21,02	13,67	15,59	16,62	16,21	42,59	14,77	23,37
AI2O3	0,12	0,18	0,11	0,14	0,11	0,18	0,06	0,17	0,09
Cr2O3	0,08	0,04	0,06	0,04	0,09	0,19	0,09	0,21	0,23
Fe2O3	67,90	59,60	74,63	69,68	68,34	69,04	20,19	71,95	54,97
MgO	0,05	0,19	0,09	0,13	0,04	0,06	0,32	0,05	0,05
MnO	0,18	0,41	0.37	0,43	0,17	0,30	0,91	0,11	0.09
FeO	15,40	18,30	11,87	13,47	14,83	14,38	36,89	13,30	21,01
Summe	101,09	99,73	100,79	99,52	100,23	100,40	101,08	100,54	99,87
Kationenbere	chnung au	f 6 Sauersto	ffe						
Si	0,003	0,000	0,000	0,002	0,002	0,002	0,002	0,000	0,003
Ті	0,672	0,824	0,535	0,616	0,651	0,634	1,612	0,578	0,913
AI	0,007	0,011	0,007	0,009	0,007	0,011	0,003	0,010	0,006
Cr	0,003	0,002	0,002	0,002	0,004	0,008	0,003	0,008	0,009
Fe3+	2,638	2,336	2,919	2,752	2,680	2,704	0,764	2,819	2,149
Mg	0,004	0,015	0,007	0,010	0,003	0,005	0,024	0,003	0,004
Mn	0,008	0,018	0,016	0,019	0,007	0,013	0,039	0,005	0,004
Fe	0,665	0,797	0,516	0,591	0,646	0,626	1,552	0,579	0,913
Summe	4,001	4,002	4,001	4,001	4,001	4,003	4,000	4,003	4,001
Hamatit	66,24	58,77	73,24	69,19	67,25	67,98	19,26	70,80	54,01
limenit Domenit	33,39	40,11	25,89	29,72	32,43	31,48	78,25	29,10	45,89
Pyrophanit	0,18	0,69	0,48	0,63	0,14	0,23	1,54	0,00	0,01
Summe	99,61	99,00	99,61	99,04	99,6Z	99,00	99,06	99,90	99,90
Probe	SM68								
11000	00000								
Ilmenit/	4.2								
llmenit/ Hämatit	4.2 ILM1-7								
llmenit/ Hämatit	4.2 ILM1-7								
llmenit/ Hämatit SiO2	4.2 ILM1-7 0,03								
Ilmenit/ Hämatit SiO2 TiO2	4.2 ILM1-7 0,03 15,85								
limenit/ Hämatit SiO2 TiO2 Al2O3	4.2 ILM1-7 0,03 15,85 0,18								
limenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3	4.2 ILM1-7 0,03 15,85 0,18 0,19								
limenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3	4.2 ILM1-7 0,03 15,85 0,18 0,19 68,67								
limenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO	4.2 ILM1-7 0,03 15,85 0,18 0,19 68,67 0,08								
limenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO	4.2 ILM1-7 0,03 15,85 0,18 0,19 68,67 0,08 0,31								
limenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO	4.2 ILM1-7 0,03 15,85 0,18 0,19 68,67 0,08 0,31 14,02								
limenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe	4.2 ILM1-7 0,03 15,85 0,18 0,19 68,67 0,08 0,31 14,02 99,34								
Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe	4.2 ILM1-7 0,03 15,85 0,18 0,19 68,67 0,08 0,31 14,02 99,34	f 6 Sourceste	"0						
Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si	4.2 ILM1-7 0,03 15,85 0,18 0,19 68,67 0,08 0,31 14,02 99,34 chnung au	f 6 Sauersto	ffe						
Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti	4.2 ILM1-7 0,03 15,85 0,18 0,19 68,67 0,08 0,31 14,02 99,34 chnung au 0,001 0,627	f 6 Sauersto	ffe						
Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al	4.2 ILM1-7 0,03 15,85 0,18 0,19 68,67 0,08 0,31 14,02 99,34 chnung au 0,001 0,627 0,011	f 6 Sauersto	ffe						
Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr	4.2 ILM1-7 0,03 15,85 0,18 0,19 68,67 0,08 0,31 14,02 99,34 chnung au 0,001 0,627 0,011	f 6 Sauersto	ffe						
Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3t	4.2 ILM1-7 0,03 15,85 0,18 0,19 68,67 0,08 0,31 14,02 99,34 chnung au 0,001 0,627 0,011 0,008 2,719	f 6 Sauersto	ffe						
Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg	4.2 ILM1-7 0,03 15,85 0,18 0,19 68,67 0,08 0,31 14,02 99,34 chnung au 0,001 0,627 0,011 0,008 2,718 0,007	f 6 Sauersto	ffe						
Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg Mn	4.2 ILM1-7 0,03 15,85 0,18 0,19 68,67 0,08 0,31 14,02 99,34 chnung au 0,001 0,627 0,011 0,008 2,718 0,007	f 6 Sauersto	ffe						
Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg Mn Ee	4.2 ILM1-7 0,03 15,85 0,18 0,19 68,67 0,08 0,31 14,02 99,34 chnung au 0,001 0,627 0,011 0,008 2,718 0,007 0,014	f 6 Sauersto	ffe						
Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg Mn Fe Summe	4.2 ILM1-7 0,03 15,85 0,18 0,19 68,67 0,08 0,31 14,02 99,34 chnung au 0,001 0,627 0,011 0,008 2,718 0,007 0,014 0,616	f 6 Sauersto	ffe						
Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg Mn Fe Summe	4.2 ILM1-7 0,03 15,85 0,18 0,19 68,67 0,08 0,31 14,02 99,34 chnung au 0,001 0,627 0,011 0,008 2,718 0,007 0,014 0,616 4,003	f 6 Sauersto	ffe						
Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg Mn Fe Summe Hämatit	4.2 ILM1-7 0,03 15,85 0,18 0,19 68,67 0,08 0,31 14,02 99,34 chnung au 0,001 0,627 0,011 0,008 2,718 0,007 0,014 0,616 4,003 68,37	f 6 Sauersto	ffe						
Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg Mn Fe Summe Hämatit Ilmenit	4.2 ILM1-7 0,03 15,85 0,18 0,19 68,67 0,08 0,31 14,02 99,34 chnung au 0,001 0,627 0,011 0,008 2,718 0,007 0,014 0,616 4,003 68,37 31,02	f 6 Sauersto	ffe						
Ilmenit/ Hämatit SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO FeO Summe Kationenbere Si Ti Al Cr Fe3+ Mg Mn Fe Summe Hämatit Ilmenit Pyrophanit	4.2 ILM1-7 0,03 15,85 0,18 0,19 68,67 0,08 0,31 14,02 99,34 chnung au 0,001 0,627 0,011 0,008 2,718 0,007 0,014 0,616 4,003 68,37 31,02 0,28	f 6 Sauersto	ffe						

Fortsetzung Tab. H.7: Mikrosondenanalysen von Ilmenit/Härnatit

Tab. H.8: Geochemische Analysen

Probe Lithostratigr	. Formation	IMM 004 Mömbris	IMM 013 Mömbris	IMM 021 Mömbris	IMM 029 Mömbris	IMM 039 Mömbris	IMM 041 Mömbris	IMM 044 Mömbris	IMM 051 Mömbris
SiO ₂	Gew(%)	62,00	62,42	54,79	61,72	56,84	55,42	57,17	52,37
TiO₂	Gew(%)	0,93	0,88	1,01	0,84	1,04	1,03	0,93	1,04
Al ₂ O ₃	Gew(%)	17,59	17,64	21,01	18,43	19,91	21,70	19,86	23,06
Fe ₂ O ₃	Gew(%)	5,08	4,56	5,79	2,29	4,12	3,82	4,19	6.59
FeO	Gew(%)	3,30	1,75	3,41	4,27	3,82	3,32	3,84	2,93
MnO	Gew(%)	0,20	0,14	0,23	0,13	0,19	0,15	0,16	0,16
MgO	Gew(%)	2,27	2,03	2,84	2,39	2,68	2,74	3,04	2,87
CaO	Gew(%)	1,13	1,10	1,08	0,91	2,12	0,81	1,07	0,99
Na₂O	Gew(%)	1,63	2,47	2,32	1,94	2,50	2,66	2,34	2,60
K₂O	Gew(%)	2,99	3,62	3,69	3,43	3,58	4,07	3,89	3,75
P ₂ O ₅	Gew(%)	0,14	0,13	0,16	0,09	0,26	0,11	0,08	0,07
S	Gew(%)	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02
GV	Gew(%)	1,74	2,67	2,42	2,31	1,65	3,14	2,23	2,42
Summe		99,00	99,41	98,75	98,75	98,71	98,97	98,80	98,85
Sc	ppm	18	10	24	17	21	25	15	17
v	ppm	125	96	126	119	147	125	125	151
Cr	ppm	177	43	169	87	108	69	86	109
Co	ppm	15	55	20	57	12	49	64	79
Ni	ppm	34	26	40	30	19	29	47	51
Zn	ppm	110	81	164	89	145	110	77	324
Ga	ppm	24	21	31	21	26	36	25	34
Rb	ppm	114	115	143	123	124	145	163	158
Sr	ppm	94	151	158	72	184	134	148	163
Y -	ppm	40	44	37	26	38	45	27	43
Zr	ppm	192	256	218	184	239	277	183	197
ND	ppm	15	12	14	14	13	21	14	20
	ppm	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Sn	ppm	< 15	< 10 770	< 15	< 10	<pre>CI > CI ></pre>	< 10	< 10	< 13 595
Da Ph	ppm	477	17	491 21	049 22	30	17	16	20
Th	ppm	19	7	12	22	1/	17	10	20
U	ppm	< 5	< 5	< 5	< 5	< 5	< 5	< 5	- 5
XFe		0,45	0,33	0,40	0,50	0,44	0,40	0,41	0,36

Probe		IMM 056	IMM 061	IMM 063	IMM 075 (B)	IMM 076	IMM 082	IMM 085	IMM 088
Lithostratigr	. Formation	Mömbris	Mömbris	Mömbris	Mömbris	Mömbris	Mömbris	Mömbris	Mömbris
SiO ₂	Gew(%)	59,49	47,15	60,00	62,06	62,53	70,45	60,04	60,97
TiO ₂	Gew(%)	0,85	0,98	0,83	0,89	0,94	0,47	0,89	0,91
Al ₂ O ₃	Gew(%)	18,90	26,85	18,07	15,74	17,47	15,11	19,13	18,54
Fe ₂ O ₃	Gew(%)	5,84	5,94	4,97	3,37	3,03	2,86	4,56	4,38
FeO	Gew(%)	2,43	4,61	3,29	6,56	4,47	1,52	3,48	3,16
MnO	Gew(%)	0,20	0,23	0,35	0,26	0,11	0,07	0,18	0,11
MgO	Gew(%)	2,76	3,19	3,09	2,86	2,45	0,43	2,32	2,20
CaO	Gew(%)	1,19	1,47	0,77	1,53	1,53	1,68	1,27	1,74
Na₂O	Gew(%)	2,38	3,01	1,66	1,85	2,74	3,85	2,22	2,95
K₂O	Gew(%)	3,14	3,79	3,76	2,59	2,18	1,44	3,11	2,28
P ₂ O ₅	Gew(%)	0,13	0,03	0,11	0,12	0,09	0,12	0,11	0,13
S	Gew(%)	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02
GV	Gew(%)	1,92	1,68	2,27	1,20	1,39	1,08	1,64	1,37
Summe		99,23	98,93	99,17	99,03	98,93	99,08	98,95	98,74
Sc	ppm	19	23	18	17	13	11	22	15
V	ppm	125	153	116	141	104	34	123	113
Cr	ppm	188	176	96	92	82	134	95	86
Co	ppm	15	27	98	96	66	< 10	76	47
Ni	ppm	45	50	40	42	36	< 5	33	36
Zn	ppm	126	231	95	105	111	10	127	211
Ga	ppm	38	43	24	19	21	10	21	26
Rb	ppm	125	154	165	137	110	38	124	117
Sr	ppm	127	195	130	110	202	219	168	200
Y	ppm	36	43	38	43	21	47	38	31
Zr	ppm	169	230	145	233	213	508	185	205
Nb	ppm	16	18	17	13	15	10	17	15
Мо	ppm	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Sn	ppm	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15
Ba	ppm	471	636	535	357	255	344	504	320
Pb	ppm	24	33	26	9	22	18	20	19
Th	ppm	10	17	10	6	7	15	12	12
U	ppm	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
XFe		0,33	0,45	0,37	0,56	0,51	0,66	0,46	0,45

Probe		IMM 089	IMM 102	SM 68	SM 1063	IMG 025	IMG 027	IMG 031	IMG 038
Lithostratig	. Formation	Mömbris	Mömbris	Mömbris	Mömbris	Geiselbach	Geiselbach	Geiselbach	Geiselbach
SiO2	Gew(%)	57,33	66,83	60,90	52,50	80,44	73,37	95,54	94,42
TiO ₂	Gew(%)	0,97	0,93	0,90	0,96	0,62	0,79	0,15	0,14
Al ₂ O ₃	Gew(%)	20,70	16,82	18,76	22,57	10,16	12,95	1,89	2,17
Fe ₂ O ₃	Gew(%)	5,35	3,60	5,93	3,36	1,90	2,65	0,59	0,37
FeO	Gew(%)	3,35	2,21	2,88	4,21	0,63	1,99	0,24	0,22
MnO	Gew(%)	0,17	0,05	0,28	0,10	0,01	0,02	< 0,01	< 0,01
MgO	Gew(%)	2,61	2,15	2,93	2,95	0,52	1,02	0,03	0,05
CaO	Gew(%)	1,44	1,79	0,89	2,67	0,09	0,14	0,03	0,02
Na₂O	Gew(%)	2,47	2,02	1,72	4,56	0,23	0,29	0,03	0,07
K₂O	Gew(%)	2,99	1,49	2,58	2,89	2,51	2,89	0,39	0,58
P ₂ O ₅	Gew(%)	0,12	0,18	0,11	0,13	0,05	0,09	0,03	< 0,01
S	Gew(%)	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02
GV	Gew(%)	1,57	0,91	1,33	1,92	2,18	2,71	0,59	0,52
Summe		99,07	98,98	99,21	98,82	99,34	98,91	99,51	98,56
Sc	ppm	21	18	16	< 10	< 10	< 10	< 10	< 10
v	ppm	126	106	114	125	55	80	17	20
Cr	ppm	106	45	172	261	63	166	65	27
Co	ppm	84	123	29	26	98	11	233	288
Ni	ppm	35	23	49	46	10	30	< 5	< 5
Zn	ppm	170	135	264	179	19	43	< 5	< 5
Ga	ppm	39	28	30	27	11	19	< 5	< 5
Rb	ppm	119	60	130	114	118	146	16	16
Sr	ppm	162	195	121	296	38	44	13	15
Y	ppm	34	28	33	36	19	25	16	12
Zr	ppm	188	343	164	363	318	311	129	171
Nb	ppm	17	21	18	15	8	13	< 5	< 5
Мо	ppm	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Sn	ppm	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15
Ва	ppm	499	236	328	521	347	391	73	201
Pb	ppm	19	15	16	22	9	15	7	< 5
Th	ppm	10	14	10	13	< 5	13	< 5	< 5
U	ppm	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
XFe		0,42	0,37	0,36	0,44	0,40	0,52	0,82	0,71

Probe		IMG 043	IMG 046	IMG 047	IMA 004	IMA 013	IMA 016	IMA 017	IMA 021
Lithostratigr	. Formation	Geiselbach	Geiselbach	Geiselbach	Alzenau	Alzenau	Alzenau	Alzenau	Alzenau
SiO ₂	Gew(%)	82,50	92,95	71,32	74,70	70,70	71,86	66,66	60,25
TiO ₂	Gew(%)	0,56	0,37	1,02	0,05	0,68	0,55	0,60	0,71
Al ₂ O ₃	Gew(%)	8,92	3,61	16,21	13,63	13,31	13,20	14,88	17,13
Fe ₂ O ₃	Gew(%)	1,88	0,39	2,78	0,38	3,11	2,29	4,35	2,32
FeO	Gew(%)	0,89	0,15	0,37	0,35	1,45	1,45	0,65	4,58
MnO	Gew(%)	0,02	< 0,01	< 0,01	0,04	0,03	0,06	0,06	0,13
MgO	Gew(%)	0,45	0,08	0,33	0,13	1,81	1,31	2,08	2,59
CaO	Gew(%)	0,16	0,02	0,07	1,03	1,49	0,91	1,40	1,53
Na₂O	Gew(%)	0,42	0,07	0,95	3,06	2,67	3,33	2,89	3,80
K₂O	Gew(%)	1,81	0,88	3,59	5,46	1,99	2,07	2,18	3,57
P₂O₅	Gew(%)	0,08	< 0,01	0,03	0,02	0,07	0,05	0,17	0,32
S	Gew(%)	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02
GV	Gew(%)	1,56	0,71	2,92	0,59	2,26	1,85	3,6	1,74
Summe		99,25	99,23	99,59	99,44	99,57	98,93	99,52	98,67
Sc	ppm	13	< 10	< 10	< 10	13	< 10	< 10	16
v	ppm	52	30	100	14	97	65	98	128
Cr	ppm	175	36	89	< 10	74	45	71	41
Co	ppm	< 10	157	121	139	59	126	87	46
Ni	ppm	15	< 5	10	< 5	9	7	20	9
Zn	ppm	24	< 5	< 5	< 5	58	55	60	110
Ga	ppm	9	< 5	18	8	20	15	13	30
Rb	ppm	77	34	125	126	74	65	77	167
Sr	ppm	51	19	105	209	109	104	164	570
Y -	ppm	21	25	40	22	26	26	23	34
Zr	ppm	278	453	295	68	211	168	155	323
ND	ppm	9	< 5	15	< 5	9	10	6	12
	ppm	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Sn	ppm	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15
Da Dh	ppm	207	100	535	1130	406	230	434	1530
F.J Th	ppm	۱ <i>۲</i> ۲	< 0	10	00 14	۱ <i>۲</i>	10	19	20
	ppm	< 0	< 0	/ ~ 5	14	0 ~ 5	/ / F	0	30 - F
0	Phili	< 0	< 0	< 0	< 0	< 0	< 0	< 0	< 0
XFe		0,53	0,51	0,39	0,60	0,31	0,38	0,15	0,50

Probe Lithostratigr	. Formation	IMA 023 Alzenau	IMA 024 Alzenau	IME 010 Elterhof	IME 023 Elterhof	IME 029 Elterhof	IME 036 Elterhof	IME 039 Elterhof	IME 046 Elterhof
SiO ₂	Gew(%)	61,10	54,29	62,29	72,07	77,48	83,26	86,93	77,89
TiO₂	Gew(%)	0,82	1,24	1,05	0,38	0,09	0,51	0,33	0,51
Al ₂ O ₃	Gew(%)	16,38	18,17	16,31	14,16	12,01	6,73	6,60	9,26
Fe ₂ O ₃	Gew(%)	4,07	3,85	1,63	1,53	0,36	2,33	0,70	1,82
FeO	Gew(%)	3,91	6,27	4,36	1,43	0,24	1,28	0,74	2,00
MnO	Gew(%)	0,11	0,13	0,09	0,06	< 0,01	0,05	0,01	0,05
MgO	Gew(%)	2,35	4,23	2,91	1,47	0,21	1,25	0,45	1,36
CaO	Gew(%)	0,91	1,04	0,94	1,54	0,49	0,17	0,35	0,20
Na₂O	Gew(%)	3,47	2,80	1,97	3,58	3,10	0,94	0,89	1,51
K₂O	Gew(%)	3,16	5,05	5,37	2,22	4,07	1,25	1,23	2,74
P_2O_5	Gew(%)	0,14	0,06	0,06	0,10	0,06	0,07	0,06	0,06
S	Gew(%)	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02
GV	Gew(%)	2,39	2,43	1,73	1,18	0,79	1,62	1,11	1,33
Summe		98,81	99,56	98,71	99,72	98,90	99,46	99,40	98,73
Sc	maa	21	23	19	< 10	< 10	11	< 10	< 10
V	ppm	137	201	127	48	16	47	32	82
Cr	ppm	49	136	182	18	< 10	87	59	189
Co	ppm	71	50	15	56	152	166	109	10
Ni	ppm	16	40	42	7	< 5	16	< 5	25
Zn	ppm	127	147	119	43	20	10	< 5	50
Ga	ppm	26	23	18	19	11	8	8	10
Rb	ppm	113	247	143	84	61	68	41	82
Sr	ppm	275	70	171	152	134	19	30	99
Y	ppm	29	41	30	23	17	29	24	20
Zr	ppm	162	212	239	147	77	342	261	294
Nb	ppm	10	12	12	12	< 5	8	< 5	7
Мо	ppm	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
Sn	ppm	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15
Ba	ppm	774	562	1744	507	1660	188	225	1985
20 Th	ppm	27	8	32	13	16	< 5	< 5	14
in u	ppm	< 5	8	28	13	8	< 5	< 5	6
U	hhiii	< 5	< 5	< 5	< 5	< 5	< 5	8	< 5
XFe		0,48	0,45	0,46	0,35	0,39	0,36	0,48	0,45