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Abstract

Ongoing changes in spaceflight – continuing miniaturization, declining costs of rocket
launches and satellite components, and improved satellite computing and control
capabilities – are advancing Satellite Formation Flying (SFF) as a research and
application area. SFF enables new applications that cannot be realized (or can-
not be realized at a reasonable cost) with conventional single-satellite missions. In
particular, distributed Earth observation applications such as photogrammetry and
tomography or distributed space telescopes require precisely placed and controlled
satellites in orbit.
Several enabling technologies are required for SFF, such as inter-satellite commu-
nication, precise attitude control, and in-orbit maneuverability. However, one of
the most important requirements is a reliable distributed Guidance, Navigation and
Control (GNC) strategy. This work addresses the issue of distributed GNC for SFF
in 3D with a focus on Continuous Low-Thrust (CLT) propulsion satellites (e.g.,
with electric thrusters) and concentrates on circular low Earth orbits. However, the
focus of this work is not only on control theory, but control is considered as part
of the system engineering process of typical small satellite missions. Thus, common
sensor and actuator systems are analyzed to derive their characteristics and their
impacts on formation control. This serves as the basis for the design, implementa-
tion, and evaluation of the following control approaches: First, a Model Predictive
Control (MPC) method with specific adaptations to SFF and its requirements and
constraints; second, a distributed robust controller that combines consensus methods
for distributed system control and H∞ robust control; and finally, a controller that
uses plant inversion for control and combines it with a reference governor to steer
the controller to the target on an optimal trajectory considering several constraints.
The developed controllers are validated and compared based on extensive software
simulations. Realistic 3D formation flight scenarios were taken from the Networked
Pico-Satellite Distributed System Control (NetSat) cubesat formation flight mission.
The three compared methods show different advantages and disadvantages in the
different application scenarios. The distributed robust consensus-based controller
for example lacks the ability to limit the maximum thrust, so it is not suitable for
satellites with CLT. But both the MPC-based approach and the plant inversion-
based controller are suitable for CLT SFF applications, while showing again distinct
advantages and disadvantages in different scenarios.
The scientific contribution of this work may be summarized as the creation of novel
and specific control approaches for the class of CLT SFF applications, which is still
lacking methods withstanding the application in real space missions, as well as the
scientific evaluation and comparison of the developed methods.





Zusammenfassung

Die anhaltenden Veränderungen in der Raumfahrt – die fortschreitende Miniatur-
isierung, die sinkenden Kosten für Raketenstarts und Satellitenkomponenten sowie
die verbesserten Rechen- und Steuerungsmöglichkeiten von Satelliten – fördern den
Satelliten-Formationsflug (SFF) als Forschungs- und Anwendungsgebiet. SFF er-
möglicht neue Anwendungen, die mit herkömmlichen Einzelsatellitenmissionen nicht
(oder nicht mit vertretbarem Aufwand) realisiert werden können. Insbesondere
verteilte Erdbeobachtungsanwendungen wie Photogrammetrie und Tomographie
oder verteilte Weltraumteleskope erfordern präzise positionierte und kontrollierte
Satelliten in der Umlaufbahn.

Für den SFF sind verschiedene Basistechnologien erforderlich, z. B. Kommunika-
tion zwischen den Satelliten, präzise Lageregelung und Manövrierfähigkeit. Eine der
wichtigsten Anforderungen sind jedoch zuverlässige verteilte Leit- und Regelungsver-
fahren (Guidance, Navigation and Control, GNC). Diese Arbeit befasst sich mit dem
Thema der verteilten GNC für SFF in 3D mit dem Schwerpunkt auf Satelliten mit
kontinuierlichem, niedrigen Schub (Continuous Low-Thrust, CLT) z.B. mit elek-
trischen Triebwerken und legt den Fokus hier zusÃ¤tzlich auf niedrige kreisförmige
Erdumlaufbahnen. Der Schwerpunkt dieser Arbeit liegt jedoch nicht nur auf der
Regelungstheorie, vielmehr wird Regelung als Teil des Systementwicklungsprozesses
typischer Kleinsatellitenmissionen betrachtet. So werden gängige Sensor- und Ak-
tuatorsysteme analysiert, um ihre Eigenschaften und ihre Auswirkungen auf die
Formationskontrolle abzuleiten. Dies dient als Grundlage für den Entwurf, die Im-
plementierung und die Bewertung der folgenden Regelungsansätze: Erstens eine
Modellprädiktive Regelung (Model-Predictive Control, MPC) mit spezifischen An-
passungen an die Anforderungen und Beschränkungen des SFFs, zweitens ein ro-
buster Regler, der Konsensmethoden für die Steuerung verteilter Systeme mit ro-
buster H∞-Regelung kombiniert, und schließlich ein kaskadierter Regler, der zur
Steuerung die Regelstrecke invertiert und dessen Referenz von einem Referenzregler
auf einer optimalen Trajektorie unter Berücksichtigung verschiedener Beschränkun-
gen zum Ziel gesteuert wird. Die entwickelten Regler werden auf der Grundlage um-
fangreicher Softwaresimulationen validiert und miteinander verglichen. Realistische
3D-Formationsflug-Szenarien wurden der NetSat-Formationsflug-Mission entnom-
men. Die drei verglichenen Methoden zeigen unterschiedliche Vor- und Nachteile in
den verschiedenen Anwendungsszenarien. Der verteilten robusten konsensbasierten
Regelung fehlt bspw. die Fähigkeit, den maximalen Schub zu begrenzen, sodass sie
nicht für Satelliten mit CLT geeignet ist. Aber sowohl der MPC-basierte Ansatz
als auch der auf der Invertierung der Regelstrecke basierende Ansatz sind für CLT-



Zusammenfassung

SFF-Anwendungen geeignet und weisen wiederum ander Vor- und Nachteile in un-
terschiedlichen Szenarien auf.
Der wissenschaftliche Beitrag dieser Arbeit besteht in der Entwicklung neuartiger
und spezifischer Regelungsansätze für die Klasse der CLT-SFF-Anwendungen, für
die es noch keine Methoden gibt, die der Anwendung in realen Weltraummissio-
nen standhalten, sowie in der wissenschaftlichen Bewertung und dem Vergleich der
entwickelten Methoden.
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Chapter 1

Introduction

1.1 Overview

A paradigm shift in spacecraft engineering emerges from single and large multi-
functional satellites towards cooperating groups of small satellites, forming a con-
stellation, cluster or formation. This will enable innovative approaches in areas like
Earth observation, scientific exploration or telecommunication.

Walker (1984) provided the first mathematical description for placing spacecraft in
different orbits around the Earth. The so called Walker-constellation places multiple
satellites in each orbit, while the different orbital planes are inclined against each
other. By this, an almost global coverage (except of the pole regions) can be obtained
with a minimal number of satellites. Early use of the Walker-constellation was made
by the first global navigation satellite system Global Positioning System (GPS),
which consisted of ten spacecraft in its first phase (Green et al., 1989). Other ap-
plications are satellite-based voice and data transfer around the world, which is
provided by the constellations Iridium (Maine et al., 1995) and Globalstar (Smith,
1996). In contrast to constellations, the satellites in a cluster or formation are closer
together. One of the first mission concepts (including an early controller design)
that makes relevant use of a satellite formation in orbit is a proposed infrared space
interferometer by Sholomitsky (1977). A satellite cluster consists of multiple space-
craft, which are placed in similar orbits, maintaining a bounded relative motion. A
notable mission in this field is European Space Agency (ESA)’s first cornerstone
project Cluster-II, which was finally launched in the year 2000 after a failed start
of Cluster in 1996 (Escoubet et al., 2001). The tetrahedron cluster consists of four
spacecraft with inter-satellite distances between 100 and 2000 km and measures the
magnetic field of the Earth. The use of a cluster in this field of research enables
spatially distributed measurements at the same time, since the magnetic field can
only be measured in-situ. The distinction to a satellite formation lies in the nature
of orbit control. While within a cluster (like within a constellation, only in closer
proximity) every spacecraft is controlled individually to a certain absolute orbit, the
satellites of a formation are controlled relative to each other. Although the whole
formation may be controlled to follow a certain absolute orbit, main focus is directed
to autonomously maintain or reconfigure the relative states between the satellites.
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Satellite Formation Flying (SFF) is an evolving research area that has developed
in the last years from concepts and theoretical considerations to real-world appli-
cations in space. Various attempts have been undertaken to achieve distributed
mission architectures reducing costs, development time, increasing failure safety and
expanding possibilities for further mission concepts. Often the relative motion of
cooperating spacecraft has to be reconfigured while collisions have to be precluded.
Contributing to the improvement of telecommunications and Earth and deep space
observation missions and others, the distribution of satellite systems flying in pro-
ximity using 3D force free formations has yet to prove itself valuable in real world
applications. Since formation flying follows the principle to divide a common task
among several agents, small satellites are especially suitable due to their low costs,
although mainly other formation flying missions have been performed so far. The two
satellites of Gravity Recovery and Climate Experiment (GRACE), a joint mission
by German Aerospace Center (DLR) and National Aeronautics and Space Adminis-
tration (NASA), formed a satellite formation to measure Earth’s gravity field in
2002 (D’Errico, 2013, p. 547ff.). They maintained a relative distance of 220 km in
the same orbit and measured the gravity field of the Earth. However, no relative
position (formation) control has been performed in this mission (Kirschner et al.,
2013). A further noteworthy formation is DLR’s TanDEM-X mission, which ex-
tended the single-satellite TerraSAR-X mission to a two-satellite formation in 2010.
The two satellites maintain a relative distance of 200 m to sub-meter accuracy and
created a digital elevation model of the Earth with unprecedented resolution and
precision. It is a leader-follower formation, where only the second satellite actively
maintains the relative state (Ardaens et al., 2008). The two satellites Mango and
Tango of the Prisma mission launched in 2010 present one of the first examples of
closed-loop controlled formation flying (Alfriend et al., 2010, p. 9, 271f.), (D’Errico,
2013, p. 599ff.). The technology demonstrator mission was the first to use small
satellites for formation flying (D’Amico et al., 2006). Further, the Magnetospheric
Multiscale Mission (MMS) from NASA demonstrated in 2015 satellite formation
flying of four satellites in a force-free tetrahedron formation (Alfriend et al., 2010,
p. 10), (Sharma and Curtis, 2005, Williams et al., 2016). One that stands out is
the CanX-4 & CanX-5 mission performed in 2014 for demonstrating autonomous
acquisition and maintenance of a force-free formation. The mission from University
of Toronto was the first research mission to form a Projected Circular Orbit (PCO)
formation, specifically for two satellites, at about 50 m and100 m semi-major axis.
Further, it was the first CubeSat formation performed in space, namely by using
two 8 unit CubeSats with size of 20 x 20 x 20 cm (Bonin et al., 2015). From the
same team in 2018 the HawkEye 360 Pathfinder mission was launched, consisting of
three microsatellites with a size of 20 x 20 x 44 cm and a mass of 13.4 kg each that
successfully acquired and maintained an Along Track Formation (ATF) formation
with approx. 125 km inter-satellite distance (Sarda et al., 2018).

So far all flown SFF missions have only consisted of maximum three spacecraft, while
performing formations in only two dimensions (except for MMS that flew four space-
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craft using ground-based control in a tetrahedral formation with distances above
10 km). However, the German research institute Zentrum für Telematik e.V. (ZfT)
developed a formation flying mission consisting of four CubeSats that aims at au-
tonomous close range formation flying in three dimensions with relative distances in
the order of 1 km. The Networked Pico-Satellite Distributed System Control (NetSat)
mission is a technology demonstration mission that aims at developing and demon-
strating efficient guidance and control to dynamically evolving formation topologies.
More specifically, force free formations in three dimensions that are defined from geo-
metric configurations like cartwheel or tetrahedron formations. The mission consists
of four identical nano-satellites equipped with 350 µN electric continuous low-thrust
propulsion system, a mass of approximately 3.9 kg and a size of 10 x 10 x 34 cm
(Haber et al., 2020, Schilling et al., 2015). The satellites have been launched on
September 28, 2020 and are currently in the Launch and Early Orbit phase (LEOP)
phase.

Different control strategies for satellite formation control have been proposed includ-
ing proportional derivative control (Robertson et al., 1999), Lyapunov-based control
(Schaub et al., 2000a), Linear Quadratic Regulator (LQR) control (Mathavaraj and
Padhi, 2021) and Adaptive Control (Queiroz et al., 2000). For continuous control
applications with higher planning demands e.g. due to limited resources like power
or propellant, Model Predictive Control (MPC) is of advantage due to its optimality
and capability to plan a distinct time into the future. Further, its ability to consider
both cost functions with flexible weights (e.g. on propellant use) and constraints
is beneficial for constrained real-world systems (Dunbar and Murray, 2002). LQR
has been used e.g. in the CanX-4 & CanX-5 mission (Bonin et al., 2015, Pluym
and Damaren, 2006) or robust control using H∞ synthesis has been employed for
the rendezvous phase of ESA’s Automated Transfer Vehicle (ATV) (Ankersen, 2010).
The different control approaches show advantages and disadvantages for specific
application scenarios. However, there is no suitable solution for scalable distributed
space systems that is also applicable to small satellites only providing continuous
low thrust.

A key element of successful formation flying missions is the ability to accurately
maintain or alter inter-satellite distances. Relative orbit control was first developed
for automated on-orbit rendezvous. Substantial progress in docking maneuvers was
accomplished by Soyuz (Polites, 1999) and the Space Shuttle (Goodman, 2006) ap-
proaching a space station. The mathematical distinction to satellite formations is
the ultimate relative state vector, which evaluates to zero for rendezvous maneuvers.
This terminal approach is similar, but not equal, to formation acquisition, mainte-
nance and reconfiguration maneuvers. As rendezvous is a well-studied field with
more sophisticated analyses compared to satellite formations, some conclusions turn
out to be helpful for formation flying as well. Sengupta (2007) provides an analysis
of rendezvous under the influence of perturbations. In this kind of maneuvers, the
relative non-spherical influence of Earth vanishes in the terminal maneuver phase
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due to (almost) equal state vectors of the spacecraft. Results of relative orbit control
methods used in the early formation mission Prototype Research Instruments and
Space Mission Technology Advancement (Prisma) give insights into real mission data
(D’Amico, 2010, D’Amico et al., 2009a). Although a double impulsive thrust scheme
was used there, one can draw conclusions about the order of magnitude of thrust
needed to perform reconfiguration maneuvers in a real environment. This control
scheme, which initially used the Local-Vertical, Local-Horizontal (LVLH) frame, was
later extended to use state vectors consisting of Relative Orbit Element (ROE) by
D’Amico et al. (2011).

Difficulties of satellite formation flying emerge from the need for very accurate rel-
ative position and velocity measurements. For close-range formations, radar-based
tracking and position estimation for the individual satellites becomes infeasible,
since all spacecraft may return a single echo. This can be overcome with Global
Navigation Satellite System (GNSS) receivers on-board the satellites. Furthermore,
inter-satellite communication has to be provided to exchange relative state vectors,
when the formation should maintain its configuration autonomously. It is espe-
cially challenging to accommodate all this technology in small satellites or even
nano-satellites with an edge length of around 10 cm. Another design goal of small
satellites designated for formation flying is to have the same ballistic coefficient for
all spacecraft, which also requires the need for fuel balancing among the fleet to
match the satellite masses. Otherwise, the satellites are differently influenced by
atmospheric drag and may drift apart.

An important benefit of using formations instead of single large satellites in Earth
observation applications is the increased temporal and spatial resolution, which
distributed spacecraft can provide. This is advantageous for research fields which
require in-situ measurements (e.g. magnetic field measurements) or different viewing
angles at a common target at the same time (e.g. 3D images of the Earth). Beyond
this, single-satellite failures or launch fails of a part of the satellites of the formation
do not result in total mission loss and thus represent a form of redundancy. For
many applications, the concept of graceful degradation can be used. For exam-
ple, a formation resembling a Synthetic Aperture Radar (SAR) or another Earth
observation or telecommunication application suffers from resolution decrease or
bandwidth decrease when single satellites cease to work, but is still operable. These
smaller single satellites can even be replaced at much lower cost, compared to a
usually larger satellite in single-satellite missions. If demanded, a formation could
also be extended in orbit with additional satellites, which increases total resolution
or bandwidth depending on the application. When using many identical satellites,
they may be produced in an assembly line. This could lower expenses compared to
multi-million dollar singleton spacecraft and also speed up the Assembly, Integration
and Test (AIT) process.
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1.2 Motivation

SFF has been discussed for many years in theory, but only within the last 10 years
first efforts have been undertaken to perform SFF missions. Further, only one
CubeSat formation flying mission has been performed so far. However, ongoing
miniaturization and the needs of new scientific and commercial applications are
currently pushing the trend towards smaller satellites and towards formations with
an increasing number of satellites. This process is going to continue in the future,
where we can expect formations of dozens of networked and closed-loop controlled
small satellites. Additionally, many possible applications e.g. in the field of Earth
observation demand high position control accuracy. These developments emphasize
the need for closed-loop distributed control solutions, especially for autonomous
formations with a larger number of satellites within the formation. Further, since
future applications will move into the direction of using many, but highly miniaturized
satellites, there is a special need for solutions that are focused on or at least applicable
to small satellites.

1.3 Problem Statement

The aim of this thesis is to develop a distributed Guidance, Navigation and Con-
trol (GNC) system for SFF in Low Earth Orbit (LEO). In distinction to other
distributed space systems a satellite formation is understood in this work as a set of
two or more spacecraft in orbit that measure and control their relative state (position
and/or orientation) autonomously (without human or ground-based interaction) (see
Chap. 2.2 for a detailed definition).

The distributed GNC system to be developed within this thesis should provide the
theoretical basis for a range of SFF missions that require relative control of multiple
spacecraft in a decentralized way. To enable this, distributed control techniques are
to be applied to space-based relative navigation. Different control methods will be
analyzed with respect to their applicability in this field. Among others, the well-
established H∞ robust control framework which allows for dealing with uncertainties
within the spacecraft and the dynamics model will be studied. Also MPC is con-
sidered, because it shows several advantages like optimality and long-term planning
capability. Further, suitable distributed control approaches will be analyzed and
then combined with the selected regular control method(s).

Developed concepts and algorithms should be evaluated and validated. Thus exten-
sive software simulations with different realistic scenarios are anticipated. Typical
sensor and actuator systems on-board small satellites with their specific characteris-
tics should be considered to guarantee the applicability of the developed methods.
ZfT’s NetSat mission is intended to be the primary source for the scenario defini-
tions and acts as example application (see Chap. 2.3.2 for detailed description). The
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mission consists of four nano-satellites equipped with Continuous Low-Thrust (CLT)
propulsion systems that are going to form a formation. Furthermore, the imple-
mentation within NetSat should be enabled and prepared, which may provide the
opportunity of in-orbit validation in the future.

1.4 Summary of Contributions

Within this thesis, three different formation control methods for continuous low-
thrust satellite formation flying in LEO have been designed, implemented and eval-
uated. The results have been compared with each other with respect to realistic 3D
formation flying scenarios of small satellites, especially CubeSats.
The three controllers are, first, a MPC implementation with specific adaptions
towards the application and its requirements and constraints, second, a distributed
robust controller which has been created within this thesis combining consensus
methods for control of distributed systems and H∞ robust control methodology, and
last, a controller that uses plant inversion for control, and combines it with a reference
governor to steer the controller towards the target on an optimal trajectory taking
various constraints into account.
However, the focus of this thesis is not purely on control theory or flight dynamics,
but control is considered as part of the system engineering process of typical small
satellite missions. Thus, common sensor and actuator systems have been analyzed
to derive their characteristics and their impacts on formation control. This has been
used as basis for the design of the three control approaches, which have been adapted
or all-new developed within this thesis. A comparison has been performed with re-
spect to the given task of continuous low-thrust small satellite formation flying in
three dimensions in LEO, using a specific CubeSat formation flying mission, namely
NetSat, and formation flying scenarios derived from it as example.

This work enables from a control theory point of view formation control of small
satellites and especially CubeSats with continuous low-thrust propulsion systems
in three dimensions in LEO. Thus, the scientific contribution of this work may be
summarized as the creation of novel and specific control approaches for this class of
applications, which is still lacking methods withstanding the application in real-world
space missions, as well as the scientific evaluation and comparison of the created
methods.

1.5 Thesis Outline

This thesis is structured as follows: After this introductory chapter, a literature
review follows in the State of the Art Chapter 2. It covers, among others, satellite
formation flying (Chap. 2.2), nanosatellites and the NetSat mission (Chap. 2.3),
furtheron required essentials (Chap. 2.4, 2.5 and 2.6), and fundamentals in control
theory (Chap. 2.7, 2.8 and 2.9). Next, satellite formation control is addressed in
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Chap. 3 covering MPC-Based Formation Control (Chap. 3.2) followed by Distributed
Robust Consensus-Based Control (Chap. 3.3) and Plant Inversion-Based Lyapunov
Control Combined with a Reference Governor (Chap. 3.4). Chap. 4 presents typical
sensor and actuator systems for SFF (Chap. 4.2 and 4.3), followed by the composition
of an overall sensor and actuator system for SFF (Chap. 4.4) and its impacts on
navigation and control for SFF and especially for the NetSat formation flying mission
(Chap. 4.5). Chap. 5 provides an evaluation of the developed control methods. First,
the simulation framework is described (Chap. 5.2), second the scenario definitions
are given (Chap. 5.3), and third, the results are presented and discussed (Chap. 5.4).
The last section shows the preparation for and outlook to in-orbit testing within
NetSat (Chap. 5.5). Chap. 6 sums up the performed work and gives a conclusion.
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Chapter 2

State of the Art

2.1 Overview

This chapter summarizes the relevant state of the art in the field of distributed
Guidance, Navigation and Control (GNC) for SFF missions and is the basis of the
work presented later.

Control

Navigation

Guidance

Plant

Target trajectory

Control inputs

MeasurementsEstimated stateOptional state feedback

Figure 2.1: Block diagram of a generic GNC structure.

Guidance, Navigation and Control GNC is a branch of engineering that deals
with the design of systems to control the movement of vehicles. Guidance refers to
the definition of the desired path of travel (the "trajectory") from the vehicle’s current
location to a designated target (state), as well as desired changes in velocity, rotation
and acceleration for following that path. Navigation refers to the determination, at
a given time, of the vehicle’s location and velocity (the "state vector") as well as its
attitude (defining its current state). Control refers to the manipulation of the forces,
by way of steering controls, thrusters, etc., needed to track guidance commands while
maintaining vehicle stability (control) (Wikipedia Contributors, 2020a). A general
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GNC system can be illustrated as shown in Fig. 2.1. The following exact definition
has been accepted by several agencies including NASA and ESA:

"Navigation is the process used to find the present and imminent future
position, orbit and orientation of a spacecraft using a series of measure-
ments.

Guidance is the process of defining a path to move a spacecraft from
one point to another or from one orientation to another.

Control is the process to maintain a spacecraft within the prescribed
path and attitude." (CCSDS 500.0-G-3, 2010, p. 2-4)

The following sections present general definitions of SFF, nano-satellite navigation
and control characteristics, coordinate frames, models for relative motion, typical
satellite formation topologies and control theory fundamentals up to distributed and
formation control.
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2.2 Satellite Formation Flying

Arbitrary distributed satellite systems can be divided into Rendezvous and Docking
(RvD), SFF, constellations and swarms. Fig. 2.2 shows these types distinguished
with respect to control accuracy and inter-satellite separation. Even though all of
these areas are of interest, this work focuses on SFF. SFF is at the edge of what is
doable with nano-satellites and with satellites in general in terms of control accuracy
and in terms of autonomy and complexity of the overall system. High requirements
are imposed due to the number of involved satellites and the high relative position
control demands for acquiring and maintaining a formation.
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Inter-Satellite Distance DistantLocal

Swarm

Rendezvous 

& Docking

Formation 

Flying

Constellation

Figure 2.2: Distributed systems in space can be categorized with respect to their inter-
satellite separation and their requirements on control accuracy. (Figure
based on Gill (2011)).

2.2.1 Definition

Before addressing GNC concepts for Satellite Formation Flying, we should first
discuss the question, what exactly can be considered as SFF. Further, a clear dis-
tinction of formations towards other distributed space systems like constellations etc.
is required. There are different definitions, some more open, some more restrictive.
Thus it is not always clear, if a mission forms a formation or rather a constellation
or swarm. This depends on the definition. Here we will discuss two definitions and
justify the definition chosen for this thesis.
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Formation Flying Definition by Kyle T. Alfriend

As proposed by NASA’s Goddard Space Flight Center (GSFC) and stated by Kyle
T. Alfriend, formation flying can be defined as

"The tracking or maintenance of a desired relative separation, orientation
or position between or among spacecraft." (Alfriend et al., 2010, p. 1)

This definition does not explicitly require control. Also missions only performing
relative measurements of position or attitude are included here. Further no common
objective, which is the understanding of a formation from an application point of
view is mentioned here. Thus this definition is quite broadly defined.

Formation Flying Definition by ESA

During the 2nd International Formation Flying Symposium, 2004 in Washington DC,
USA this definition has been agreed upon by official representatives of the follow-
ing agencies: French National Centre for Space Studies (CNES), ESA, Jet Propul-
sion Laboratory (JPL), NASA’s GSFC, Office National d’Etudes et de Recherches
AÃ©rospatiales (ONERA), Canadian Space Agency (CSA), Japan Aerospace Ex-
ploration Agency (JAXA), British National Space Centre (BNSC) (now United
Kingdom Space Agency (UKSA)), Air Force Research Laboratory (AFRL).

• "The mission consists of 2 or more spacecraft.

• The spacecraft states are directly coupled such that changing the
state of one spacecraft affects the state of all other spacecraft. This
includes possible state elements from optical delay lines etc.

• The relative position and velocity between the spacecraft are con-
trolled and possibly at certain parts also the relative attitudes.

• The spacecraft are moving on quasi coplanar orbits or perhaps La-
grange points.

• The spacecraft are in close proximity, which means typically below
a few km separation where the relative motion is in a linear domain.
(though some proposals have rather large distances)

• A plane is defined for the inter spacecraft positions with an arbitrary
orientation in space and with respect to a possible local orbital frame.
Spacecraft do not all have to be in that plane in their nominal
position.

• The GNC requirements are typically high to very high." (Ankersen,
2004)

This definition is more comprehensive, precise and narrow compared to the definition
by Alfriend. Control is explicitly required (according to the second and third bullet
point). However a common objective for a formation is not required.
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Definition Used in this Thesis

Based on the definition of the ESA (Ankersen, 2004), a more concise definition
focusing on the crucial aspects of this definition and including a common objective
is formulated:

A set of two or more spacecraft in space that measure and control their rel-
ative state (position and/or orientation) autonomously (without human
or ground-based interaction) to perform a common goal.

This definition is, because of its brevity, easier to understand and use, while still
covering all important aspects, especially including the common objective within a
formation. Thus this formulation is proposed and preferred within this thesis.

Distinction From Multi-Satellite Systems

To distinguish SFF from other multi-satellite systems in space, few additional defi-
nitions taken from (Alfriend et al., 2010, p. 1) are presented here:

Distributed space system: "An end-to-end system including two or
more space vehicles and a cooperative infrastructure for science measure-
ment, data acquisition, processing, analysis and distribution."

Constellation: "A constellation is a collection of space vehicles that
constitutes the space element of a distributed space system."

Virtual platform: "A virtual platform is a spatially distributed net-
work of individual vehicles collaborating as a single functional unit, and
exhibiting a common system-wide capability to accomplish a shared ob-
jective."

Taking these definitions into account, formations are part of distributed space systems
and also a subset of constellations.

2.2.2 Overview of Formation Flying Missions

Only few formation flying missions (in the sense of the definition of this thesis) have
been performed until present. More are upcoming or planned. A short, though
not comprehensive overview is given here as an introduction. A comprehensive
overview on distributed space missions with an emphasis on formations is given e.g.
by D’Errico (2013).
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Performed Formation Flying Missions

• TerraSAR-X / TanDEM-X: The mission consists of two satellites sharing
the same orbit with a defined relative distance of 200 m. The formation has
been established in 2010 and performs radar measurements to create an altitude
map of the Earth (D’Errico, 2013, p. 387ff.).

• Prisma: The Prisma mission consists of the two satellites Mango and Tango.
The Swedish mission was launched in 2010 and is a technology demonstration
for relative navigation systems like GPS and radio-based ranging as well as
for SFF of two satellites (Alfriend et al., 2010, p. 9, 271f.), (D’Errico, 2013, p.
599ff.).

• ELISA: The french ELectronic Intelligence by SAtellite (ELISA) mission aims
at demonstrating the ability to locate radar equipment from space and to collect
information on the technical characteristics of the observed radar equipment.
It consists of four microsatellites which were launched in late 2011 into a LEO.
The satellites are placed on two orbital planes such that they form two quasi-
isosceles triangles with a base length of 100 km ±15 km. This is achieved by
biweekly correction maneuvers (Delmas et al., 2018).

• GRACE: The joined mission of NASA and DLR aimed at measuring Earth’s
gravitational field with two satellites in an orbit of 500 km altitude and an along-
track separation of 200 km. For inter-satellite ranging an microwave system
was used. However, the relative distance or position was not actively controlled.
The satellites were launched in 2012 and decommissioned in 2017 (D’Errico,
2013, p. 547ff.). The successor mission GRACE Follow-On (GRACE-FO) also
featuring a laser ranging interferometer was launched in 2018 (Kornfeld et al.,
2019).

• CanX-4 & 5: The Canadian mission from University of Toronto’s Space Flight
Laboratory consists of two identical CubeSats of 8U size. It was launched in
2014 and demonstrated relative navigation and for the first time formation
flying of two CubeSats in space (Bonin et al., 2015).

• MMS: The four-satellite mission aims at measuring Earth’s magnetosphere
and demonstrated a tetrahedron formation for the first time in orbit. It reached
a minimum relative distance of about 10 km. The satellites were launched in an
Highly Elliptical Orbit (HEO) by NASA in 2015. The tetrahedron formation
has to be maintained within a defined region during each orbit, so regular
formation maintenance maneuvers have to be performed (Alfriend et al., 2010,
p. 10), (Williams et al., 2016).

• HawkEye 360 Pathfinder: The mission that inherited from CanX-4 & 5 con-
sists of three satellites with a 20 cm × 20 cm × 44 cm form factor with a mass of
13.4 kg. It was launched in late 2018 and successfully acquired and maintained
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an ATF formation with approximately 125 km inter-satellite distance (Sarda
et al., 2018).

Upcoming Formation Flying Missions

• NetSat: The NetSat mission is going to consist of four CubeSats with a size of
3 U. It aims at demonstrating 3D formation flying with CubeSats in a circular
LEO. The mission of ZfT has been launched in late 2020 and is currently in
LEOP. More details are presented in Chap. 2.3.2.

• PROBA-3: The ESA mission PROBA-3 is going to consist of two satellites
forming a close-range formation on elliptical orbits. Its primary mission is solar
coronagraphy which is enabled by precisely aligning the two satellites on a line
with the sun such that one satellite occults the disc of the sun. It has been
delayed and now is scheduled for a launch in 2022 (ESA, 2020). Initially, it was
planned as preparation for the ESA missions XEUS and DARWIN (Alfriend
et al., 2010, p. 9f.).

• CloudCT: The CloudCT mission is a cooperation the Technion Israel Insti-
tute of Technology, the Weizmann Institute of Science and ZfT and aims at
performing tomography of clouds by simultaneous observations of a formation
of 10 CubeSats. It is scheduled for launch in 2022 (Schilling et al., 2019).
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2.3 Pico- and Nanosatellite Navigation and Control

The ongoing miniaturization in electronics, especially the development of smaller
sensors, actuators and processors, higher computational capabilities of embedded
systems and decreasing costs for satellite launches led to a rise of small satellites.
Among them, especially pico- and nanosatellites evolved in recent years and strongly
increased in number. Picosatellites are defined by their weight being in the range
of 0.1 - 1 kg, whereas nanosatellites range from 1 - 10 kg. Tab. 2.1 gives a general
classification of satellites by their mass. Nanosatellites are the smallest satellites
that are currently utilized in commercial applications.

Table 2.1: Classification of satellites with respect to their mass (Gill, 2011).
Class Mass Example
Large satellite > 1000 kg TanDEM-X (Astrium)
Medium-sized satellite 500 - 1000 kg Iridium (Iridium LLC)
Minisatellite 100 - 500 kg GRACE (Astrium)
Microsatellite 10 - 100 kg BIRD (DLR)
Nanosatellite 1 - 10 kg Delfi-C3 (TU Delft)
Picosatellite 0.1 - 1 kg BEESAT (TU Berlin)
Femtosatellite < 0.1 kg RyF3 Ex (Ryerson)

Most of the pico- and nanosatellites follow the CubeSat standard (cf. (California
Polytechnic State University, 2020)) which defines common dimensions and mechani-
cal interfaces. CubeSats share a common size of multiples of 10 cm × 10 cm × 10 cm,
which a so called unit (1U), and are common in sizes of 1U, 3U, 6U, 16U, though
other sizes are also possible. The standardization allows for faster and cheaper
integration into launchers and easier reuse of subsystems.

2.3.1 Navigation and Control Capabilities and Limitations

Due to their limited size and weight, pico- and nanosatellites typically show limita-
tions with respect to their control and navigation capabilities. They appear in many
different ways:

• Electric power: Since less than 60 cm2 per satellite for picosatellites and few
hundred cm2 for nanosatellites are available for solar cells, the total available
electric power is in the order of 1 W for picosatellites and 10 W for nanosatellites.

• Thrusting capability: The limited size and weight allows only for small
thrusters (typically electrical or cold gas) and limited amount of propellant.
Thus the available thrust typically is in the order of µN and the total ∆V is in
the order of few tens of m s−1 for picosatellites and few hundred of m s−1 for
nanosatellites.
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• Navigation sensors: Limited space and power prohibited the use of active
navigation sensors in the past. However, small GNSS receivers as well as
cameras became available recently. Thus position determination in the order
of meters can be reached. However, the sensor accuracy is limited in comparison
to larger satellites (see also Chap. 4.2).

• Communication capability: Due to power limitations and also limited an-
tenna size, the communication range for Inter-Satellite Link (ISL) is limited
as well as the transmission bandwidth.

• Computing capability: Available power and space also limit the applica-
ble computing units. Only micro-controllers and recently low power Field
Programmable Gate Arrays (FPGAs) are feasible.

In the following sections, examples for typical requirements derived from the NetSat
mission are presented.

2.3.2 NetSat - A Four Nanosatellite Formation Flying Mission

From UWE to NetSat

The German research institute Zentrum für Telematik e.V. (ZfT) together with
University of Würzburg are successfully engaging into small satellite development
and operation since 2005 (Schilling et al., 2015). The University of Würzburg
Experimental (UWE) satellite line was kicked off with the UWE-1 satellite, which has
been the first German CubeSat in space (Barza et al., 2006). UWE-1 demonstrated
Internet-based communication in space and tested novel solar cells in LEO conditions
(Schmidt et al., 2007). UWE-2 followed in 2009 with the aim to demonstrate and
verify new attitude determination and control methods as well as orbit determination
using a GPS receiver in orbit (Schmidt et al., 2008).
With UWE-3 a complete redesign of the UWE satellite bus was performed aiming
at high redundancy and robustness within a picosatellite. In addition, it was the
first satellite within the UWE line that demonstrated active attitude control in orbit
(Busch and Schilling, 2012, Busch et al., 2014, Schilling et al., 2015). After its launch
in 2013 UWE-3 remained operational in orbit for more than 6 years demonstrating
its robust design. Fig. 2.3 shows a UWE-3 engineering model.
The newest satellite within the UWE family is UWE-4, which was launched in
December 2018. It is equipped with a low-thrust electrical propulsion system (Nano
Field-Emission Electric Propulsions (NanoFEEPs), (Bock et al., 2014)) and aims at
demonstrating orbit control (Bangert et al., 2016). In 2020 UWE-4 demonstrated
the first successful orbit control of a 1U CubeSat using electric propulsion (Kramer
et al., 2020).
After UWE-4, NetSat follows as the next CubeSat mission. NetSat is a small satellite
formation flying mission performed at ZfT. The formation flying aspects as well
as the development of the satellites was funded by the European Research Council
(ERC) as Advanced Grant, whereas the launch of the satellites was funded by the
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Figure 2.3: UWE-3 CubeSat engineering model with one removed side panel. Re-
dundant electric components and circuits are clearly visible. (Image
courtesy: Busch and Schilling (2013))

Bavarian State Ministry of Economic Affairs, Regional Development and Energy. The
technology demonstration mission aims at enabling 3D formations (e.g. cartwheel or
tetrahedral formations, cf. Chap. 2.6) with CubeSats (Haber et al., 2020, Schilling
et al., 2015). The four identical nanosatellites are 3U CubeSats with a size of about
30 cm × 10 cm × 10 cm and a mass of about 3.9 kg each. NetSat was launched on
September 28, 2020 into a nearly circular LEO at 560 km altitude and as of now is
in LEOP.

Mission Objectives

The main objective of the NetSat mission is to develop control approaches for SFF
using low-thrust electric propulsion and to demonstrate with the help of the devel-
oped control approaches autonomous formation flying with nanosatellites in three
dimensions (cf. Fig. 2.4). This requires relative orbit and position determination
as well as adequate control techniques. The project should demonstrate the abil-
ity to closed-loop control a networked formation within the constraints imposed
by nanosatellites. These constraints are, among others, limited volume and mass,
a predefined mechanical interface, available budget and the limited availability of
miniaturized hardware components. Further, required networked control strategies
and algorithms are developed, implemented and tested. Besides, NetSat will be the
first formation that uses continuous low-thrust (using electric propulsion). Formation
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Figure 2.4: The four NetSat satellites (flight models, back) together with the en-
gineering model (front) on the day of delivery to the launch provider.
(Image courtesy of the author.)

maintenance and reconfiguration maneuvers with different formation types starting
from along-track formation while increasing complexity up to 3D formation types
are planned. Besides the basic string of pearl formation also (projected) circular
formations, different 3D cartwheel formations and tetrahedral formations are of in-
terest. In the meantime the relative distance should decrease from about 100 km
down to about 5 km (maximum distance between two satellites within one orbit). A
detailed mission plan with all planned formations, their duration, relative distances
and order is developed within this work and presented in Chap. 5.5.1. The scenarios
also act as primary reference for this work. The detailed scenario definitions used in
this thesis are presented in Chap. 5.3.

Though no primary scientific or commercial payload is planned, contributions to
the fields of distributed formation control, relative navigation, on-board autonomy,
ISL and miniaturized Attitude and Orbit Control Systems (AOCSs) are expected.
Besides, different application scenarios have been evaluated and will be presented
shortly at the end of this chapter.
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Satellite Characteristics

The four identical NetSat satellites are equipped with magnetorquers, reaction wheels
and thrusters to enable for full attitude and orbit control capability. NetSat follows
the CubeSat standard (California Polytechnic State University, 2020) with an ap-
proximated size of about 34 cm × 10 cm × 10 cm and a mass of about 3.9 kg each.
Each of the four 3U CubeSats features an electric propulsion thruster that allows for
precise position control. Thus, the satellites have full 6 Degrees of Freedom (DoF)
navigation capability. As electric propulsion system an IFM NanoThruster by EN-
PULSION GmbH (see Chap. 4.3.2 for a detailed description) has been selected.
Fig. 2.5 shows the Computer-Aided Design (CAD) model of a NetSat satellite with
the thrust system integrated in the upper part. For attitude determination, sun
sensors, magnetic field sensors and Inertial Measurement Units (IMUs) are inte-
grated on NetSat. Position determination is handled by four GPS receivers per
satellite. As backup solution for position determination, retro-reflectors are placed
on each satellite, but also Two Line Elementss (TLEs) can be provided from ground.
Inter-satellite link is based on omnidirectional Ultra High Frequency (UHF) commu-
nication. Further details on the selected sensor and actuator systems together with
the depending navigation and control requirements are presented in Chap. 4.

(i) NetSat CAD with front panels removed (ii) NetSat CAD fully assembled

Figure 2.5: CAD drawing of the design of the NetSat CubeSats. Thrusters can be
seen in the upper part of the open satellite.
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NetSat was launched on September 28, 2020 on a Soyuz rocket together with 18
other satellites into a nearly circular LEO at 560 km altitude. As typical for most
of the CubeSat missions, NetSat was a piggyback payload to the main payload of
the rocket, namely three Gonetz-M satellites. All four NetSat satellites have been
released on the same orbit. Though, slight deviations in the orbit parameters are
a result of the inaccuracies of the deployment mechanism and orbit perturbations.
The orbit parameters of all four NetSat satellites are given in Tab. 2.2. These orbits
are used as an absolute reference for the simulations within this work.

Table 2.2: NetSat Keplerian elements at 11.11.2020.

Parameter NetSat-1 NetSat-2 NetSat-3 NetSat-4
Semi-major axis 6946.0 km 6946.0 km 6945.8 km 6945.7 km
Eccentricity 0.002 205 0.002 223 0.002 223 0.002 229
Inclination 97.660° 97.661° 97.660° 97.661°
Argument of perigee 89.005° 89.145° 88.103° 87.653°
Right ascension of ascending node −110.64° −110.240° −110.241° −110.238°
True anomaly −89.005° −89.145° −88.103° −87.653°

Possible Applications

Although NetSat being a technology demonstrator mission, there are applications
to which it or a similar mission could be applied.

Earth’s magnetic field measurements benefit from satellite formations (esp. three-
dimensional), since simultaneous measurements at different, precisely measured posi-
tions in LEO allow for determination of geomagnetic gradients, so-called gradiometry
(cf. Fig. 2.6). Thus, conclusions about Earth’s lithospheric field can be drawn. A
mission concept based on a CubeSat formation is presented by Nogueira et al. (2015).
In other regions of Earth’s magnetic field, a 3D satellite formation can be used to
study the micro-physics of magnetic reconnection as it is performed by the MMS
(Alfriend et al., 2010, p. 10), (Sharma and Curtis, 2005, Williams et al., 2016). In
both cases it is important to maintain a 3D formation with a certain accuracy and
to measure the relative positions with very high accuracy.

Another application is photogrammetric ash cloud monitoring (cf. Fig. 2.7). On av-
erage, at least one large volcano eruption occurs per year where volcanic ash reaches
the stratosphere. This can threaten the safety of air traffic even at large distances
from the erupting volcano. Satellite formations can be beneficial by providing high
spatial and temporal resolution. The satellites in a formation (e.g. a group of four)
can observe the same area from slightly different angles, thus being able to compute a
3D model of the observed ash clouds, and therewith provide information on the struc-
ture and dispersion of volcanic ash. This requires of course the ability to measure
and control the (absolute and relative) position of the satellites and the (absolute and
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Figure 2.6: Concept scheme of distributed magnetic field measurements using a Cube-
Sat formation.

relative) orientation with very high accuracy. The use of more than one formation
adds temporal resolution by being able to observe the scene at different points in
time. By using small satellites or CubeSats the number of satellites in a formation
or the number of formations can be increased (and thus the temporal resolution)
by keeping costs low (Nogueira et al., 2016). This is planned to be implemented in
the Telematics Earth Observation Mission (TOM), a mission which is a successor
mission to NetSat performed at ZfT (Schilling et al., 2018) and scheduled for launch
in late 2021.

These are only two exemplary applications among others in which small satellite
formations are especially beneficial. However, small satellite formations are expected
to be applied to a wider range of applications in the future.
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Figure 2.7: Volcanic ash cloud monitoring as planned within the satellite mission
TOM. Multiple CubeSats fly in a formation to observe volcanic ash
clouds from different angles.

2.4 Coordinate Frames

Coordinate frames define the mathematical space in which SFF and the state of
satellites is described. Such coordinate frames can be distinguished by their inherent
setup into two groups, Cartesian and orbital frames. This section will introduce these
frames and the reasoning which one to use in a particular case. Furthermore, each
group is divided into global frames, which describe the absolute state of a satellite
with respect to Earth, and local frames, which describe the relative states between
multiple satellites of a formation.

In this work the time derivative of a vector will be denoted by (˙) and the second
time derivative by (̈ ). Vectors will be denoted by bold lower case letters (v) and
matrices by bold upper case letters (M). A six-field column vector consisting of
concatenated position (r) and velocity (v) vectors of a certain satellite will be called
pv vector:

pv =

(

r

v

)

(2.1)
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2.4.1 Cartesian Frames

Both, an inertial and a local coordinate system are necessary to describe the relative
motion of two or more satellites. The state vector in the inertial system, which
is fixed to the Earth, describes the absolute motion of a satellite with respect to
Earth center. The local frame is fixed to the formation and thus able to describe the
relative distances and velocities between the satellites. With respect to an initial
frame, the local frame itself is moving.

2.4.1.1 Inertial Frame

The inertial frame used throughout this work is the Earth-Centered Inertial (ECI)
coordinate system. It will be denoted with the symbol I . This geocentric frame
is defined through the equatorial plane of the Earth with X̂ pointing to the vernal
equinox, Ẑ being normal to the fundamental plane and pointing to the north pole
and Ŷ completing a positive triad. The state vector of a satellite in this frame is
defined by

x =
(

x y z vx vy vz

)T
=

(

x y z ẋ ẏ ż
)T

(2.2)

with position r = (x y z)T , velocity v = (ẋ ẏ ż)T and distance from the center of
the Earth r = ||r|| =

√
x2 + y2 + z2. The angular momentum of the satellite, which

is normal to the position and the velocity vector, is defined by (Chobotov, 2002):

h = r × ṙ (2.3)

The reference for the ECI frame will be the J2000 (or EME2000) definition. It
corresponds, in accordance with the definition above, to Earth’s mean equatorial
plane at 12:00 Terrestrial Time (TT) on 1st January 2000 (Montenbruck and Gill,
2012).

2.4.1.2 Local Frame

The local frame L of satellite used within this thesis is the so-called Local-Vertical,
Local-Horizontal (LVLH) coordinate frame. It has its origin in the satellite’s center
of mass. It is Cartesian, rectangular and dextral rotating. The fundamental plane
of the frame is defined through the orbital plane of the satellite. There are different
definitions of the directions of the axes. The precise definition of the local frame
L that is used in this work is the LVLH coordinate system as defined by ESA and
the International Space Station (ISS) program (Space Station Control Board, 2008).
Following (Fehse, 2003, p. 31f.), the êz is directed from the spacecraft radially
outward to the center of mass of Earth, êy is normal to the fundamental plane,
negative in the direction of the instantaneous angular momentum vector, and the êx

completes the right-handed coordinate frame and is in the direction of the orbital
velocity vector (see Fig. 2.8). The rotating frame moves with the satellite along its
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orbit. Sometimes it is also referred to as Radial-Tangential-Normal (RTN) frame.

z

x

y

leader

Figure 2.8: The LVLH coordinate frame is centered in a (leader) spacecraft (defini-
tion based on (Fehse, 2003, p. 32)).

When a follower (also called deputy or chaser) satellite is viewed in the leader satel-
lite’s L frame, the frame is called Euler-Hill (EH) frame H (or Hill frame for
brevity). Although the individual L and the H frame of a follower are very similar
in terms of orientation for close formations, this distinction proves to be pretty useful
for later analysis. While the L frame of a follower depicts the true transformation
with respect to the I frame, the satellite’s state in the H frame will always have
small errors induced through using a reference at a slightly different position (e.g.
the position offset between leader and follower). However, all satellites of a forma-
tion share the same H frame, which is essential for relative motion models. By
definition of the EH frame, L =̂H holds for the (virtual) leader and it will always be
located at rH = (0 0 0)T . When mapping between ECI, orbital elements (cf. Chap.
2.4.2) and the EH frame, the EH frame only has a satisfactory level of accuracy for
low-eccentric leader orbits (e << 1) and close formations (relative distances between
the satellites smaller than ∼ 100 km). (A detailed analysis of the accuracy of the
EH frame and the Hill-Clohessy-Wiltshire (HCW) equations as described in Chap.
2.5.3.1) is given in Chap. 2.5.3.3.) Thus, whenever mapping into the EH frame is
applied, the just mentioned constraints are assumed to be fulfilled (Alfriend et al.,
2010).
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An alternative definition of the LVLH coordinate frame by Alfriend et al. (2010) is
presented in A.1.

Virtual Leader

Instead of defining the H in a way that the coordinate frame’s origin is on a satellite
of the formation, also a virtual leader can be defined as origin and the positions of
all satellites in the formation can be given relative to this virtual center.

Transformation Between Earth-Centered Inertial and Euler-Hill Frame

Let r0 be the position vector of the leader satellite and v0 its velocity. The origin
of the H frame viewed in the I frame is therefore at r0. The rotation vector
between the two frames will be denoted by Ω (with Ω̇ being the angular velocity
of H relative to I ). The pv vector of another satellite (called follower spacecraft)
consists of r1 and v1. The 3 × 3 direction cosine matrix C between the H and the
I frame can be computed as follows (Nicholas, 2013)

êL

x =
rI

0

||r0||I
(2.4a)

êL

z =
rI

0
× vI

0

||r0 × v0||I
(2.4b)

êL

y = êL

z × êL

x (2.4c)

C =
[

êL

x êL

z êL

y

]T
(2.5)

Note that the direction cosine matrix C can be used to translate ECI coordinates
to any satellite’s LVLH frame by using its corresponding pv-vector. The position
and velocity difference between the leader and the follower satellite is

pvd =

(

rd

vd

)

=

(

r1 − r0

v1 − v0

)

(2.6)

For the follower’s pv vector in the H frame follows with the theorem of rotating
reference frames

p =







x
y
z





 = rH

d = CrI

d (2.7a)

v = ṗ =







vx

vy

vz





 = vH

d = CvI

d + rH

d × Ω̇ (2.7b)
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The state vector, which only describes the local motion of a follower satellite in the
H frame is therefore

x =

(

p

v

)

=
(

x y z ẋ ẏ ż
)T

(2.8)

However, only the above state vector in combination with the leader’s absolute state
fully describes the absolute orbit of the follower. The back transformation is given
by the rotation to the I frame

rI

d = C−1p (2.9a)

vI

d = C−1
(

v − p × Ω̇

)

(2.9b)

followed by a translation of the vectors by the leader’s state

r1 = r0 + rd (2.10a)

v1 = v0 + vd (2.10b)

With this back transformation, the Keplerian orbit of the follower can be calculated
from the leader’s absolute state in I and the follower’s relative state in H .

Curvilinear Transformation

x

z

Figure 2.9: ECI-to-Hill transformation error induced through orbit curvature (highly
exaggerated).

Vallado and Alfano (2011) suggested a curvilinear transformation between ECI and
EH frame to compensate the transformation error induced through the curvature of
the orbits. Two satellites at different positions in the same circular orbit have an
offset in êz in the H frame. Figure 2.9 shows this Cartesian transformation error
highly exaggerated. But since the two satellites share the same distance from the
center of Earth, the radial component of the EH frame should be zero. To overcome
this error, the transformation is done in a coordinate system which is based on the
equidistant cylindrical system (Weisstein, 2016). A topocentric-horizon system T
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(or South-East-Normal (topocentric-horizon) (SEZ)) is generated for the leader. The
offset to the follower is measured in angle offsets from the center of Earth. Let the
R frame be defined through the rotation of the I frame by C (without translation).
This means, T is a cylindrical representation of R. It follows for the two rotation
angles φ and λ (from leader to follower) in the T frame

rR

1
= CrI

1
(2.11)

φT = arcsin

(

rR
z

||r1||

)

(2.12)

λT = atan2
(

rR

y , rR

x

)

(2.13)

λ̇T

0 =
êyCvI

0

||r0||I
(2.14)

The position of the follower in the EH frame H finally computes to

x = rH

x = ||r1|| − ||r0|| (2.15a)

y = rH

y = ||r0|| λ (2.15b)

z = rH

z = ||r0|| φ (2.15c)

To find the velocity, the angular rates between I and T have to be known. Let P

be the transformation matrix R → T . With

vT

1
= P CvI

1
(2.16)

holds for the follower’s derivatives of the rotation angles in T

φ̇ = − êxvT
1

||r1|| (2.17)

λ̇ =
êyvT

1

||r1|| cos φ
(2.18)

Finally, the curvature-corrected velocity in the EH frame H is

vx = êzvT

1
− êxCvI

0 (2.19a)

vy = ||r0||
(

λ̇ − λ̇T

0

)

(2.19b)

vz = ||r0|| φ̇ (2.19c)
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Although this correction is not significant for close formations, it has a non-negligible
influence for larger distances between the satellites, especially in the phase of initial
formation acquisition. Since the computational effort is comparable to the transfor-
mation in Cartesian coordinates, the curvilinear approach will be used for propagator
and controller implementation when converting between the I and the H frame.
Under strict consideration, using the above transformation routine does result in
another non-Cartesian frame, and not in H . However, the non-Cartesian part is
wrapped in the transformation and the resulting frame may be used fully commen-
surable compared to H , while at the same time having a higher accuracy in the êx,
êy and êz directions.

2.4.2 Orbital Frames

The relative motion model in the Cartesian EH frame lacks the insight of orbital
mechanics from the state vector. This insight, however, can be used beneficially in
controller design through thrusting action at geometrically advantageous locations
in orbit (Schaub et al., 2000b). Therefore, absolute and relative orbital elements are
needed to represent the states of the satellites in an orbital frame.

2.4.2.1 Classical Orbital Element

The Classical Orbital Elements (COEs), also known as the Kepler elements, are a
set of six parameters which describes the absolute motion of an (artificial) satellite
around a central body. Let the state vector in classical orbital elements be

aC =
(

a e i ω Ω M
)T

(2.20)

with semi-major axis a [m], eccentricity e (dimensionless), inclination i [rad], argu-
ment of perigee ω [rad], right ascension of ascending node Ω [rad] and mean anomaly
M [rad] (cf. Fig. 2.10). The transformation between a Cartesian state vector in
the ECI frame and COE can be found in Chobotov (2002). For the unperturbed
motion, all components of the state vector except the mean anomaly remain con-
stant. Depending on the application, it can be useful to transform the independent
variable to the eccentric anomaly E or the true anomaly f . While the mean anomaly
increases linearly with time (with 2π-periodicity), the true anomaly is related to the
real position of the satellite. The transformation between M and f uses the eccentric
anomaly E with the relation

M = E − e sin E (2.21)

This demands an iterative solution when converting from M to E, while the reverse
transformation can be solved directly. The following formula describes the relation
between E and the true anomaly f

cos f =
cos E − e

1 − e cos E
(2.22)
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The relation between f and M and vice versa is obtained by concatenation of Eq. 2.21
and 2.22. Further characteristics of a Keplerian orbit, which are used later, include
the semi-latus rectum p, an eccentricity dependent factor η, the mean motion n and
the Keplerian period of the orbit TO

p = a
(

1 − e2
)

(2.23)

η =
√

1 − e2 (2.24)

n =

√

µ

a3
(2.25)

TO = 2π

√

a3

µ
= 2πn−1 (2.26)

satellite

Orbit

Equatorial Plane 

of the Earth

Ω
ω

i

Vernal Equinox
Υ

f

Figure 2.10: Geometry and definition of characteristic parameters of a Keplerian
orbit (COE).

1st Order Mapping Between Classical Orbital Elements and Euler-Hill Frame

Further, a first order mapping of the COEs has been performed such that the HCW
equations are dependent on the COEs and not on the position and velocity values of
the follower in the EH frame. The equations of motion are given by D’Amico (2010)
to

x ≈ −3

2
∆aϕt + a∆ϕ + a∆Ω cos i + 2a∆e sin f (2.27a)
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y ≈ + a cos (f + ω)∆Ω sin i − a sin (f + ω)∆i
(2.27b)

z ≈ −∆a + a∆e cos f (2.27c)

In the above equations the operator ∆(.) denotes real differences in the orbital
elements, whereas ∂ denotes relative positions of the follower spacecraft in EH frame.
In Eq. 2.27 ϕ denotes the mean argument of latitude and is defined as ϕ = ω + M .
Therefore, ϕ describes the spacecraft’s position on its orbits with respect to its
RAAN (right ascension of the ascending node) on the equatorial plane. Note, that
ϕ increases with time. In these equations we observe oscillating parts (sines and
cosines), constant parts (∆a, a∆ϕ+a∆Ω cos i) and a time dependent part (−3

2
∆aϕ).

For bounded and centered motion these constant and time dependent parts have to
become 0. That is

∆a = 0 (2.28)

∆ϕ + ∆Ω cos i = 0 = ∂λ (2.29)

The expression ∂λ in Eq. 2.29 is called the relative mean longitude and has to be
set to 0 for centered motion.

2.4.2.2 Non-Singular Orbital Elements

The COEs have singularities for circular orbits and for i = {0◦, 90◦}. Since the
nominal NetSat orbit is almost circular, numerical instabilities may occur when
using COE. Furthermore, the orbit may become singular when propagating it under
the influence of perturbations. Therefore, the first singularity (e = 0) is further
investigated. For circular orbits the argument of perigee ω is not defined uniquely.
More precisely, ω becomes an arbitrary angle measured from the ascending node
(the intersection of the orbit with the equatorial plane of Earth). However, the sum
of the argument of perigee and the anomaly stays unique and is called the argument
of latitude θ

θ = ω + f (2.30)

When only describing the position of a satellite in a circular orbit, the argument
of latitude will be used. For more complex calculations (like transforming to/from
Cartesian state vectors), a set of six non-singular elements is needed. In this work
two different element sets will be used, depending on the application. The first set
is called Non-Singular Orbital Element (NOE) with the state vector

aN =
(

a θ i q1 q2 Ω
)T

(2.31)

where q1 = e cos(ω) and q2 = e sin(ω). The NOE set is the simplest transformation
to overcome the COE-singularity at e = 0, since the ambiguous argument of perigee
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ω has been eliminated. Another set used in this work will be the Equinoctial Orbital
Element (EOE) set, based on Walker et al. (1985)

aE =
(

a ex ey ix iy lv
)T

(2.32)

where (ex ey)T is called equinoctial eccentricity vector, (ix iy)T equinoctial inclina-
tion vector and lv true longitude. They do not have any singularities (including cases
stated above) and have a simple transformation from COE. If the initial COE are
non-singular, the transformation is described by

ex = e cos (ω + Ω) (2.33a)

ey = e sin (ω + Ω) (2.33b)

ix = tan (i/2) cos Ω (2.33c)

iy = tan (i/2) sin Ω (2.33d)

lv = f + ω + Ω (2.33e)

Sometimes closely related transformations (e.g. using tan(i) for the inclination
vector) are utilized, but they lead to singularities at polar orbits. The set obtained
from Eq. 2.33 is guaranteed to be non-singular and has the additional advantage
of highly reducing the number of secular terms in its Jacobian matrix, compared to
COE and NOE (Broucke and Cefola, 1972). This makes it ideal to use in numerically
intensive calculations like orbit propagation. However, the NOE set allows a clearer
geometrical insight into the orbit and is thus used for geometric calculations.

2.4.2.3 Differential Orbital Elements

There are two ways to describe the local, or relative, motion of two or more satellites
in an orbital frame – Differential Orbital Elements (DOEs) and Relative Orbit
Elements (ROEs) (see Chap. 2.4.2.4). ROEs comprise an own frame. DOEs are
just the element-wise difference between two satellites’ orbital elements (e.g. the
absolute difference between their states). For any pair of sets of commensurable
orbital elements (COE, NOE, EOE) for the leader (a0) and the follower (a1), they
are defined through

∂a = a1 − a0 (2.34)

Eq. 2.34 has to be used circumspectly. It is very susceptible for numerical errors,
especially in the last field of the vector (the differential anomaly). It is a crucial
point to obey this inherent virtue or to find ways to bypass this drawback.
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2.4.2.4 Relative Orbit Elements

The ROEs comprise the second local state vector in orbital means. They involve more
mathematics than the differential orbital elements, but allow geometrical formation
design. From two sets of mean COEs (semi-major axis a, eccentricity e, inclination
i, argument of the ascending node Ω, argument of the periapsis ω and the mean
anomaly M), the ROEs ∂α are defined as follows (D’Amico, 2010, D’Amico et al.,
2009b):

∂α =





















∂a
∂λ
∂ex

∂ey

∂ix

∂iy





















=





















∂a
∂λ

∂e cos φ
∂e sin φ
∂i cos θ
∂i sin θ





















=





















(a − ac)/ac

ϕ − ϕc + (Ω − Ωc) cos ic

e cos ω − ec cos ω
e sin ω − ec sin ω

i − ic

(Ω − Ωc) sin ic





















(2.35)

with ϕ = ω + M again being the mean argument of latitude. The subscript (.)c

denotes the leader spacecraft, whereas the COEs of the follower spacecraft are given
without subscript. Throughout this thesis ∂(.) denotes a ROE. In order to have a
dimensionless state vector, the relative semi-major axis has been divided by ac. This
reference uses the relative mean longitude ∂λ instead of the relative mean argument
∂ϕ = ϕ − ϕc, which is also a common definition used in various occasions. Using
∂λ is geometrically more intuitive for formation design, but more difficult to handle
when transforming the state vector to the EH frame than ∂ϕ (Maessen and Gill,
2010). Both definitions are used within this thesis at different positions to allow
for better understanding in the according context. The relation between the two
variables is

∂λ = ∂ϕ + (Ω1 − Ω0) cos i0 (2.36)

Neglecting any orbit perturbations only ϕ is time dependent, but not ∂λ. It follows
that the ROE state vector ∂α is constant for a specific formation.

1st Order Mapping Between Relative Orbit Elements and Euler-Hill Frame

A first-order mapping of the ROEs and the EH frame H providing the follower’s
position with respect to the leader satellite as a function of ∂α is given by D’Amico
(2010), D’Amico et al. (2006)

x/ac = ∂λ − 3

2
∂aδϕ + 2∂e sin (ϕ − φ) (2.37a)

y/ac = −∂i sin (ϕ − θ) (2.37b)

z/ac = ∂a + ∂e cos (ϕ − φ) (2.37c)

Eq. 2.37 assumes a small eccentricity of the leader orbit and small relative distances,
e.g. close formations. For stable formations the orbital periods of the satellites have
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to be equal. This implies that the center of the in-plane and out-of-plane curves lies
actually on the êx-, êy plane. The ∂λ quantifies the along-track separation between
the two spacecraft. Furthermore, centered motion of the follower satellites around
the leader or the virtual center is achieved by equal mean longitudes, which imposes
the following constraint on reasonable formations

∂a = 0 (2.38a)

∂λ = 0 which is identical to (2.38b)

∂ϕ = −δΩ cos i0 (2.38c)

For this reason, two of the six relative orbital elements are always fixed for centered
force-free relative motion. The remaining four elements are composed of the eccen-
tricity vector ∂e and the inclination vector ∂i. The formation can be designed by
defining the relative eccentricity and inclination vector in polar coordinates

∂e =

(

∂ex

∂ey

)

= ∂e

(

cos φ
sin φ

)

(2.39a)

∂i =

(

∂ix

∂iy

)

= ∂i

(

cos θ
sin θ

)

(2.39b)

with ∂e and ∂i being the magnitudes and φ and θ the phases. φ relates to the relative
perigee and θ to the relative ascending node, which renders this polar representation
the most useful for geometric formation analysis.

Geometrical Interpretation of the Relative Orbit Elements

The advantage of using ∂α instead of x is given in the possibility of geometrically
understanding the formation with only ∂α being provided.

Fig.2.11 shows the relative motion of the follower around the leader for one orbital
period in the leader’s EH frame, divided into in-plane and out-of-plane motion. The
in-plane motion is the projection of the relative motion into the êx-êy plane of H

(which is by definition the orbital plane of the leader) and the out-of-plane motion
is the projection into the êx-êz plane. This analysis is done by using the first-order
mapping of ∂α into the H frame (Eq. 2.37) in combination with the constraints of
centered force-free formations (Eq. 2.38c), which gives

x = 2ac∂e sin (ϕ − φ) (2.40a)

y = −ac∂i sin (ϕ − θ) (2.40b)

z = −ac∂e cos (ϕ − φ) (2.40c)
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leader leader

followerfollower

-z -z

x
-y

Figure 2.11: Geometric interpretation of ROEs for (nearly) circular orbits. The
projection of the relative motion into the êx-êz plane of the EH frame
(in-plane motion) is shown on the left. The projection into the êy-êz

plane (out-of-plane motion) is shown on the right.

The resulting ellipses for in-plane and out-of-plane motion can be described with
the elements of ∂α and the semi-major axis ac of the leader. The in-plane motion is
always a 2-by-1 ellipse. The semi-major axis is defined by 2ac∂e and the semi-minor
axis by ac∂e, as can be inferred from Eq. 2.40c and 2.40a. Furthermore, the position
on the ellipse is only dependent on the sine and cosine of the difference ϕ − φ. Apart
from that, the out-of-plane motion is described by an oscillating sine-cosine motion
with different phase shifts (Eq. 2.40c and 2.40b), namely ϕ − φ and ϕ − θ, leading to
a tilted ellipse. The maximum extents in radial (êz) and normal (êy) direction are
given by ac∂e and ac∂i, respectively. Offsets in along-track and radial direction are
given by ac∂λ and ac∂a respectively (D’Amico and Montenbruck, 2006). For elliptic
orbits this motion is superimposed by an additional mode of twice the frequency
and amplitude proportional to the eccentricity of the center spacecraft ec (Chernick
and D’Amico, 2016). Assuming the special case of ∂e = ∂i and φ − θ = 0, the
out-of-plane motion is a circle. For a phase shift difference of φ − θ = 90◦, the
out-of-plane motion degrades to a straight line going through the leader’s position
twice per orbit.

While the relative eccentricity ∂e and the relative inclination ∂i define the shape
of the ellipses, the relative perigee φ and the relative ascending node θ define the
positions on the ellipses. The mean argument of latitude ϕ (the only time dependent
parameter in the discussed equations) is a measure of the satellite’s position on its
orbit in the ECI reference frame. If ϕ = φ, the follower satellite is at its maximum
extent underneath the leader satellite, assuming circular reference orbits. For that
reason, the time at which the follower is at a specific position on its bounded motion
around the center is controlled by defining φ. Similar, when ϕ = θ+π/2, the follower
has its maximum relative distance in positive normal direction.
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2.5 Relative Motion

This section describes the relative motion of two or more spacecraft in orbits around
Earth. In general, the relative motion can be computed both, numerically and
analytically. Tab. 2.3 compares these two approaches with their characteristics.
Since computational effort is a key limitation in small satellites, this section focuses
on analytical solutions.

Table 2.3: Methods for computation of relative motion of spacecraft in Earth’s orbit
(based on Gill (2011)).

Method Numerical Computation Analytical Computation

Type

• Numerical propagation
of absolute spacecraft
trajectories

• Analytical model of relative
motion

Typical
applica-
tion

• On-ground orbit plan-
ning

• Mission planning

• On-board implementation

Benefits
• Accuracy

• Generality

• Physical insight

• Lower computation effort
than numerical methods

Examples

• Runge-Kutta

• Differential equation
multi-step method

• Hill-Clohessy-Wiltshire equa-
tions (Clohessy and Wilt-
shire, 1960) as a solution to
Hill’s equations for circular
orbits (Hill, 1878)

• Yamanaka-Ankersen solution
(Yamanaka and Ankersen,
2002) to Tschauner-Hempel
equations for elliptical orbits
(Hempel and Tschauner, 1964,
Tschauner and Hempel, 1964)

First, differential equations in Cartesian coordinates are derived. This includes
the central attraction force described by Newton’s law of universal gravitation and
perturbing forces, which are exerted to the satellites. This is followed by an analysis in
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orbital frames, where the motion is split into mean and osculating terms, partitioned
into absolute mean and relative mean motion. In the second part the differential
equations are used as inputs for (linearized) relative motion models and to find
suitable State-Transition Matrices (STMs). Errors of the most common STMs are
analyzed.

2.5.1 Equations of Motion in Cartesian Frames

Neglecting any perturbing forces and assuming a spherical Earth, the motion of a
satellite in I frame is fully described with the restricted two-body problem (Keple-
rian equation of motion)

r̈ +
µr

r3
= 0 (2.41)

With the relative position
rd = r1 − r0 , (2.42)

the relative equation of motion becomes

r̈d = −µ (r0 + rd)

||r0 + rd||3
+

µ

r3
0

r0 (2.43)

With the help of Eq. 2.7, Alfriend et al. (2010) transform Eq. 2.43 into the following
component-wise differential equation, which describes the relative motion in the EH
frame H

ẍ − 2θ̇0ż − θ̈0z − θ̇2
0y = − µx

[

(r0 − z)2 + y2 + x2
]3/2

(2.44a)

ÿ = − µy
[

(r0 − z)2 + y2 + x2
]3/2

(2.44b)

−z̈ − 2θ̇0ẋ − θ̈0x + θ̇2
0z = − µ (r0 − z)

[

(r0 − z)2 + y2 + x2
]3/2

+
µ

r2
0

(2.44c)

In the above-given equation, θ0 is the êz component of the frame rotation. The
magnitude of θ0 is equal to the magnitude of Ω, since through definition of the
frames holds Ω

H = (0 0 θ0)T . This system of non-linear differential equations has a
single equilibrium at p = (0 0 0)T and infinitely many equilibria for circular leader
orbits. For e0 = 0 every position on the leader’s orbit is a stable point and the two
spacecraft are in a co-orbital motion. Although these equations can be simplified by
changing the independent variable from time t to true anomaly f (Szebehely and
Giacaglia, 1964), there is no analytical solution at hand. However, Eq. 2.44 is the
origin of the linearized models presented later on.
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2.5.1.1 Perturbation Forces

All satellite orbits are perturbed by the Earth’s non-spherical gravity field, solar
radiation pressure, atmospheric drag and the forces exerted by other celestial bodies
and thus deviate from a sole Keplerian shape. Most perturbing forces fi for Earth
orbiting satellites may be divided into short-periodic and long-periodic perturbations,
where the period used for distinction is in the order of magnitude of the orbital period
of the satellite (for LEO e.g. approx. 90 min)

fi (t) = fi,sp (t) + fi,lp (t) (2.45)

The total force seen by a satellite at any time instant is therefore

ftotal (t) = fN (t) +
∑

i

(fi,sp (t) + fi,lp (t)) + fc (t) (2.46)

where fN is the idealized central-body attraction and fc is the total applied control
force. fN is accurately known (Eq. 2.41), as well as the control input fc. The
evolution of the relative state of two satellites is driven by the differential force
between the two satellites, namely

∆f (t) = f1,total (t) − f0,total (t) (2.47)

For the analysis of the relative motion, only the differential perturbing acceleration
due to the Earth’s oblateness is of higher interest. While the differential acceleration
caused by the oblateness of the Earth (J2-term) is of order 10−6 − 10−5 m s−2 (for
formations of up to 100 km separation), all other differential perturbing forces do not
exceed a magnitude of two decimal powers less (D’Amico, 2010). This assumption
is valid for satellites in LEO that share the same or similar ballistic coefficients as
the NetSat formation. Furthermore, the NetSat satellites use continuous low-thrust
propulsion, which means the total propellant mass compared to the whole satellite
mass is negligible (< 1%). Thus, fuel-balancing between the satellites may be ignored,
which facilitates controller design. Considering this, to accurately model the relative
motion to a decent, but practical level, the J2-term of the Earth may be taken into
account, while all other perturbing forces are neglected.
This reduces the unknowns in Eq. 2.47 to ∆fJ2,sp and ∆fJ2,lp. Analysis of the
gravity field influence shows that short-periodic oscillations induced by J2 are very
small for close formations (∆fJ2,sp ≈ 0), while the secular variations on a larger
time scale have a more significant influence on the relative motion. Hence, for a first
approximation, ∆fJ2,sp may be neglected. The two-body problem (see Eq. 2.41)
with a non-spherical gravity model transforms to

r̈ = −∇rV + u , (2.48)

where V is the sum of the Keplerian attraction and the J-terms of the Earth and
∇r is the Nabla operator at current position r. Further perturbation and control
forces are indicated by u. Kaplan (1976) developed an explicit formulation for V ,
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when only the second dynamic form factor of the Earth (J2) is taken into account

V = −µ

r

{

1 − J2R
2
E

2r2

[

3

r2

(

rK̂
)2 − 1

]

}

(2.49)

Here, K̂ is the unit vector along the I frame’s polar axis. An explicit formulation
of the gravitational acceleration in x, y and z of the I frame is derived by Bate et al.
(1971), but there is no straightforward direct transformation into the H frame (like
Eq. 2.44 for the unperturbed model) with gravitational perturbations. Alfriend et al.
(2010) formulated the relative motion states in terms of the angular momentum h0

(see Eq. 2.3) of the leader satellite in the EH frame

x =
δrT (h0 × r0)

||h0 × r0|| (2.50a)

y = −δrT h0

h0

(2.50b)

z = −δrT r0

r0

(2.50c)

The relative velocities can be derived by differentiating Eq. 2.50. To accurately
model a follower’s pv vector in the EH frame with the above equation, the angular
momentum vector of the leader (which is subject to J2 perturbations) has to be
known for all times. This induces an impracticable constraint for controller design,
which again demands the development of relative propagation equations linearized
around the leader satellite’s pv vector.

2.5.2 Equations Motion in Orbital Frames

The preceding section analyzed the influence of perturbations in Cartesian frames.
This can also be done in orbital frames, where motion description can then be split
into mean and osculating terms. For the unperturbed case, considering only the
Newtonian attraction fN , all orbital elements – except those including anomaly –
stay constant over time. The mean anomaly is related linearly to time, while the
other anomaly types are connected via transformation functions (Eq. 2.21 and 2.22).
When perturbing or control forces are considered, all orbital elements change over
time. Let a be the COE state vector of a certain satellite (without loss of generality
also applicable for other orbital frames). The time-dependent, or osculating, orbit
of the satellite may now be described with

aosc (t) = A + an + ∆a (t) (2.51)

where an is the nominal (unperturbed) orbital element state at a certain time instant
t and ∆a (t) the perturbation-induced change. A accommodates the mean Keplerian
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motion, which influences the anomaly

A =
(

0 0 0 0 0 n t
)T

(2.52)

where n is the mean motion. The last part of Eq. 2.51 can be split into short-periodic,
long-periodic and drift effects

∆a (t) = ∆asp (t) + ∆alp (t) + ∆ad (t) (2.53)

In this partition, all oscillating terms must be part of the short- and long-periodic
parts and linear terms must be in the drift part. From that, one can define the
relationship between an osculating and a mean orbit ā

aosc (t) = ā (t) + ∆aosc (t) (2.54)

where

ā (t) = A + an + ∆ad (t) (2.55a)

∆aosc (t) = ∆asp (t) + ∆alp (t) (2.55b)

The nominal orbit an coincides with the mean orbit at t = 0, so ā0 = an. Due to
the fact that the drift part contains only linear terms, Eq. 2.55a can be written as

ā (t) = A + ā0 +
dā

dt
∆t = A + ā0 +





















dā/dt

dē/dt

d̄i/dt

dω̄/dt

dΩ̄/dt

dM̄0/dt





















∆t (2.56)

With this correlation between a mean orbit ā, which is subject to a constant drift,
and an osculating orbit aosc, the effects of perturbation forces on the orbital elements
may be investigated. Using the development above, one can infer that the osculating
orbit describes the real position at a given time instant (which is directly related to
the current pv vector) and the mean orbit describes an averaged position over mul-
tiple orbital periods. The transformation between osculating and mean orbit can be
done numerically or with analytic methods. The computationally intensive numeric
approach is done in orbit propagation tools, like Orbit Extrapolation Kit (Orekit)
(Maisonobe and Parraud, 2016). Any combination of perturbing forces can be used
as input for the averaging process, whereby all oscillating terms can be eliminated
from the mean orbit without the need for explicit equations of the perturbation
influence.

The drawback of this approach is the large computational effort for each single
transformation, whereby the need for analytic models arises for on-board propagators
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and controllers. Since only the J2-perturbation is of greater interest for formation
flying (see Chap. 2.5.1.1), only this force will be investigated in detail. This being
by far the largest perturbing force for LEO satellites, many investigations have been
undertaken, for example by Walter (1967) and Weisman et al. (2014). Most are
based on Brouwer’s transformation, which provides a transformation function solely
based on the orbital elements and independent of time (Brouwer, 1959). Brouwer
normalized the J2 disturbance force (see Eq. 2.49) with ǫ = J2R

2
E and found an

explicit expression for 2.55b with a change of dependent variables from time t to
current mean orbit ā

∆aosc (ā) = −ǫ (∆asp,1 (ā) + ∆asp,2 (ā) + ∆alp (ā)) (2.57)

The short-periodic influence is split into two parts to accommodate all present per-
turbation frequencies. The explicit formulation of the right-hand-side of 2.57 for the
NOE set can be found in App. B. Brouwer found them by using a generating func-
tion, where the orbit is represented in normalized Delaunay variables. The Delaunay
variables are obtained by describing the satellite motion in Hamiltonian mechanics.
The Hamiltonian H is a function of time t, generalized position coordinates q and
conjugate momenta p

H (q, p, t) = pT q̇ − L (q, q̇, t) (2.58)

The conjugate momenta p are derived from the generalized velocity coordinates q̇

with

p =
δL

δq̇
(2.59)

which are defined through Lagrangian mechanics. The Lagrangian of a dynamic
system is described through its kinetic energy K and potential energy U

L (q, q̇, t) = K − U (2.60)

The corresponding relationship between general coordinates and classical orbital
elements are the Delaunay elements

l = M (2.61a)

g = ω (2.61b)

h = Ω (2.61c)

L =
√

µa (2.61d)

G =
√

µa (1 − e2) (2.61e)

H = G cos i (2.61f)
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The first three elements (lower case letters) of the Delaunay elements comprise the
generalised Hamiltonian coordinates and the latter three (upper case letters) the
conjugate momenta

q = (l, g, h)T (2.62a)

p = (L, G, H)T (2.62b)

Since H spans a cotangent space, the time derivatives of the Delaunay elements are

l̇ =
δH

δL
, ġ =

δH

δG
, ḣ =

δH

δH
(2.63a)

L̇ =
δH

δl
, Ġ =

δH

δg
, Ḣ =

δH

δh
(2.63b)

In this representation, the orbit is split into a nominal and a perturbed part

H = H0 + ǫH1 (2.64)

Since G is the orbital momentum and H its polar component, the unperturbed part
H0 (Keplerian motion) is only a function of L

H0 = − µ2

2L2
(2.65)

Thus, all conjugate momenta and g and h are constant in H0. Brouwer’s generating
function for the mean-to-osculation transformation is an explicit formulation of
H1 in terms of the Delaunay elements, which can be transformed to obtain an
explicit formulation for Eq. 2.57. For further information about Hamiltonian orbit
representation, the reader is referred to Hori (1966) and Chang and Marsden (2003).
This energy-based orbit representation also proves useful to mitigate perturbation
influences (see Chap. 2.6.9).

Since the norm of ∆aosc (ā) is very small compared to ā (t), the inverse transforma-
tion can be expressed as

ā (aosc) = aosc − ∆aosc (aosc) (2.66)

To describe the evolution of the mean and osculating orbit of a satellite with time,
additionally the change of the mean orbit dā/dt is needed. Schaub et al. (2000b) state
that the semi-major axis, the eccentricity and the inclination do not suffer from
J2-drift, hence dā/dt = dē/dt = d̄i/dt = 0. The other mean orbital elements are subject
to the following quasi-constant drift rates

dω̄

dt
=

3

4
J2

(

RE

p̄

)2

n̄
(

5 cos2 ī − 1
)

(2.67a)
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dΩ̄

dt
= −3

2
J2

(

RE

p̄

)2

n̄ cos ī (2.67b)

dM̄0

dt
=

3

4
J2

(

RE

p̄

)2

n̄
√

1 − ē2
(

3 cos2 ī − 1
)

(2.67c)

Inserting Eq. 2.57 and 2.67 into Eq. 2.54 gives an explicit formulation for the
transformation between osculating and mean orbital elements and vice versa. An
explicit formulation for Eq. 2.67 with EOE can be found in Gim and Alfriend (2005).

2.5.2.1 Mean Relative Motion

The derivations from the preceding section can also be applied to DOEs. Eq. 2.34
may be used with osculating or mean orbital elements in any orbital frame. With
the differential orbital elements and the reference orbit in osculating elements, a
transformation to mean differential orbital elements would be possible with Eq. 2.66.
For this, the differential orbit has to be transformed to an absolute orbit with Eq.
2.34, then transformed (along with the reference orbit) to a mean orbit and then
transformed back to differential elements. This can be simplified by using a direct
mean-to-osculating transformation in differential elements (Gim and Alfriend, 2003).
The relation is approximated with a Jacobian-like transformation matrix D

δaosc = D δā (2.68)

where D is a 6 × 6 matrix with the partial derivatives of the osculating elements
with respect to the mean elements. Using Eq. 2.57, the following representation of
D with dependency solely on the current mean reference orbit ā(t) can be derived

D (ā) =
δaosc

δā
= I −

(

J2R
2
E

)

(Dsp,1 (ā) + Dsp,2 (ā) + Dlp (ā)) (2.69)

The elements Dsp,1, Dsp,2 and Dlp depend on the reference orbit ā and make use
of the transformation vectors ∆asp,1, ∆asp,2 and ∆alp of the Brouwer transformation
(Eq. 2.57). For orbits with small eccentricities, the terms of D which include
multiplications of e with J2 almost vanish. Alfriend et al. (2010) derived a simplified
version

Ds ≈ D ∀ e ≪ 1 (2.70)

where these terms have been dropped. The elements of this simplified version Ds

for differential NOE can be found in App. C. For the vice versa conversion from
osculating to mean differential elements, D−1 has to be found. Since D is almost
an identity matrix due to the small perturbation coefficient, this can be omitted and
the following relation is valid to a high level of accuracy

δā = −D (aosc) δaosc (2.71)
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2.5.3 Relative Orbit Propagation in Euler-Hill Frame

In the previous section, differential equations of relative motion and mean motion
descriptions have been developed. This section will focus on using these equations as
inputs for (linearized) relative motion models to define corresponding STMs. With
these STMs, the evolution of the relative state can be predicted. These matrices
are also the foundation for controller plant matrices investigated in Chap. 3.2. The
first relative orbit propagation model to be addressed is a simpler solution, where
orbit eccentricity and J2 perturbations are neglected. The following models will
include either of the two, or both, and grow in complexity. Hence they show a higher
congruency with the real relative motion behavior.

2.5.3.1 Hill-Clohessy-Wiltshire Equations

The first STM to be investigated, namely the HCW equations (from Hill, Clohessy
and Wiltshire), is one of the first motion descriptions for relative orbital motion
(Clohessy and Wiltshire, 1960) ever developed. It is a set of Ordinary Differential
Equations (ODEs) obtained by linearizing Eq. 2.44 around the position of the leader
satellite, e.g. the origin of the EH frame H . The eccentricity of the leader’s orbit is
assumed to be (nearly) zero. A Taylor series expansion around the leader including
terms up to the first-order provides the following equations (Montenbruck and Gill,
2012)

ẍ − 2 n ż = dx + ux (2.72a)

ÿ + n2 y = dy + uy (2.72b)

z̈ + 2 n ẋ − 3 n2 z = dz + uz (2.72c)

with n =
√

µ/a3, µ is the Earth’s standard gravitational parameter and a the semi-
major axis of the orbit on which the coordinate frame’s origin is placed. d =
[dx, dy, dz]

T is the vector of environmental perturbations/disturbances and u =
[ux, uy, uz]T the vector of control accelerations (Fehse, 2003, p. 40). One can directly
see that the in-plane motion (êx-êz plane) is coupled, but decoupled from the out-
of-plane motion (êy direction). The Hill’s equations have been solved analytically
by Clohessy and Wiltshire (1960) presenting the following solution

x(t) = + [x0 +
2 ż0

n
] + [

4 ẋ0

n
− 6 z0] sin(n t) − 2 ż0

n
cos(n t)

+ [6 n z0 − 3 ẋ0] t + γx [
4

n2
(1 − cos(n t)) − 3

2
t2] (2.73a)

y(t) = +
ẏ0

n
sin(n t) + y0 cos(n t) +

γy

n2
[1 − cos(n t)] (2.73b)
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z(t) = + [4 z0 − 2 ẋ0

n
] +

ż0

n
sin(n t) + [

2 ẋ0

n
− 3 z0] cos(n t)

+
γz

n2
[1 − cos(n t)] (2.73c)

with the total external accelerations γ = [γx, γy, γz]
T = d + u (Fehse, 2003, p.

40f.). This set of equations is commonly called Hill-Clohessy-Wiltshire equations.
An alternative definition of the HCW equations in the LVLH defined by Alfriend
et al. (2010) is presented in App. A.2.

To obtain a model describing the force-free motion, the perturbing and control
accelerations (d and u) are set to zero, leading to the homogeneous form of the
second-order ODE Eq. 2.72, which can be written in matrix form as

ẋ (t) = A x (t) (2.74)

with the state vector defined as

x (t) =
(

x y z ẋ ẏ ż
)T

(2.75)

The overall non-homogeneous form of the ODE (including external control forces)
or so called state-space representation can be written as

ẋ = A x + B u (2.76)

or in detail

ẋ =





















ẋ(t)
ẏ(t)
ż(t)
ẍ(t)
ÿ(t)
z̈(t)





















=





















0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 2n
0 −n2 0 0 0 0
0 0 3n2 −2n 0 0





















·





















x(t)
y(t)
z(t)
ẋ(t)
ẏ(t)
ż(t)





















+





















0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1





















·







ux(t)
uy(t)
uz(t)





 (2.77)

with total external accelerations or control vector u(t) = [ux, uy, uz]T = F
mc

and F

being the thrust force and mc the satellite mass. B is called influence matrix and
defines the the effect of the thrust on the satellite motion (Fehse, 2003, p. 40f.).

To propagate the satellite motion over a longer duration like an orbit propagator
does, the STM Φ (t, 0), which maps the state at time t0 = 0 to the state at time t,
is needed

x (t) = Φ (t, 0) x (0) (2.78)
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The STM is the matrix form of the extended HCW equations including both position
and velocity. Since Eq. 2.74 is a Linear Time-Invariant (LTI) system, Φ can be
obtained with the matrix exponential of A

Φ (t, 0) = eAt =





















1 0 6(s − nt) 4sn−1 − 3t 0 2n−1(c − 1)
0 −c 0 0 −sn−1 0
0 0 −4 + 3c −2n−1(1 − c) 0 −s/n
0 0 6n(c − 1) 4c − 3 0 −2s
0 ns 0 0 −c 0
0 0 −3ns −2s 0 −c





















(2.79)
with c = cos(nt) and s = sin(nt). This STM is the basis for many developments
of more accurate relative motion models. The HCW solution is only accurate for
(nearly) circular leader orbits and very small formations (up to tens of kilometers, cf.
Chap. 2.5.3.3 for a detailed evaluation), since the neglected differential perturbations
are proportional to the distances between the spacecraft (or the distance between
spacecraft and virtual leader, if chosen). An investigation of Eq. 2.79 shows that
the in-track position x (first row) is subject to drift through the term

α = 6ntz(0) − 3tẋ(0) (2.80)

Only formations where this term vanishes are stable, e.g. α has to be zero in order
to establish a force-free formation. This leads to the initial condition of stable
formations

ẋ(0) = 2nz(0) (2.81)

2.5.3.2 State-Transition Matrices for Eccentric Leader Orbits

The most widespread method of obeying the eccentricity in the relative motion
models is to change the independent variable in Eq. 2.44 from time t to true
anomaly f . This is achieved by inserting Eq. 2.22 and 2.21 into Eq. 2.44 and setting
M = 2π t T −1

O . The whole transformation is stated by Alfriend et al. (2010) and
uses normalized position components x̄i = xir

−1. With a one-dimensional potential
function in H frame

U = − 1
[

(1 + x̄)2 + ȳ2 + z̄2
]0.5 + 1 − x̄ (2.82)

and a pseudo-potential function

W =
1

1 + e0 cos f0

[

0.5
(

x̄2 + ȳ2 − e0z̄
2 cos f0

)

− U
]

(2.83)

the final transformation of 2.44 to anomaly-dependent form using Eq. 2.83 is

x̄′′ − 2z̄′ =
δW

δx̄
(2.84a)
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−ȳ′′ =
δW

δȳ
(2.84b)

z̄′′ + 2x̄′ =
δW

δz̄
(2.84c)

The notation (·)′ denotes the derivative with respect to true anomaly f . It is obtained
by the chain rule

d (·)
dt

= (·)′ ḟ (2.85a)

d2 (·)
dt2

= (·)′′ ḟ 2 + ḟ ḟ ′ (·)′ (2.85b)

Hempel and Tschauner (1964) developed a linearized form of Eq. 2.84, which is
referred to as Tschauner-Hempel (TH) equations in literature. Similar to the HCW
equations, a first order Taylor expansion around the leader orbit leads to the following
differential equations

x̄′′ = 2z̄ (2.86a)

ȳ′′ = −ȳ′ (2.86b)

z̄′′ =
3

k
z̄ − 2x̄ (2.86c)

where k = 1 + e cos(f). As in the HCW equations, the decoupling of in-plane and
out-of-plane motion also holds for the eccentric model. A closed-form solution to
Eq. 2.86 was obtained by Lawden (1963), resulting in a STM for relative motion
which incorporates the eccentricity of the leader orbit and thereby giving a major
improvement compared to the HCW solution. This STM was extended by Carter
(1998), who eliminated a singularity of Lawden’s STM for f = iπ , i ∈ N. Carter’s
STM is therefore a particular solution to Eq. 2.86 and uses a partly-normalized state
vector x = (x̄ x̄′ y ȳ′ z z̄′)T . The closed-form solution is given by

ΦC (f) =





















x̄1 x̄2 x̄3 0 0 0
x̄′

1 x̄′
2 x̄′

3 0 0 0
−2S1 −2S2 −S3 −1 0 0
−2x̄1 −2x̄2 − (2x̄3 + 1) 0 0 0

0 0 0 0 cos f sin f
0 0 0 0 − sin f cos f





















(2.87)

where

K2 =
(

1 − e2
)−5/2

(

1

2
E − 1

4
sin (2E) − e

3
sin3 E

)

(2.88a)
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x̄1 = k sin f (2.88b)

x̄2 = 2ex̄1K2 − cos f

k
(2.88c)

x̄3 = −2k sin fK2 − cos2 f

k
− cos2 f (2.88d)

S1 = − cos f (1 + 0.5e cos f) (2.88e)

S2 = 3ek2K2 − sin f

k
(2.88f)

S3 = −6k2K2 − 2 + k

2k
sin (2f) (2.88g)

Another notable STM in this field is the STM by Yamanaka and Ankersen. The
Yamanaka-Ankersen (YA) STM eliminates Lawden’s singularity for circular orbits
and is very compact (Yamanaka and Ankersen, 2002). Starting from the Lawden
STM, the state vector can also be represented in arc lengths on a spherical triangle in
a projection of the relative motion onto the celestial sphere, which improves accuracy,
as conducted by Jiang et al. (2007). In contrast to the preceding STMs, there are
also analytical solutions to the relative motion in elliptic orbits. They incorporate
complex operations like solving Kepler’s equation or finding derivatives of the leader’s
orbital elements in each time step. For more information on this class of STMs, the
reader is referred to Broucke (2003) and Lee et al. (2007).

2.5.3.3 Error Determination of the Hill-Clohessy-Wiltshire and
Tschauner-Hempel Dynamic Models

This section compares the HCW dynamic model and the TH model with the actual
two body motion to determine the error of the linearized models. Therefore, all three
models are propagated for one orbit (bounded motion provided) and the absolute
error is calculated. This is performed for a wide range of relative spacecraft distances
and eccentricities. Fig. 2.12 i) shows the Root Mean Square (RMS) error for one orbit
period for a small leader orbit eccentricity. One can see that both dynamic models do
not differ a lot. That is due to the fact that for almost zero leader orbit eccentricity
both HCW and TH are identical. For an increased leader orbit eccentricity this
changes as is shown in Fig. 2.12 ii). Here, the leader orbit eccentricity was increased
by a factor of 20 and as HCW assumes (nearly) zero eccentricity, both models error
drift apart. One can see that the error does not change for the TH model.
Also from Fig. 2.12 one can infer that the error of a dynamic model does not remain
constant over one orbit period. However, for the following simulations comparing
different relative distances and eccentricities the maximum error during each orbit
period is always considered.
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(i) ec = 0.00001, δrmax = 67 km (ii) ec = 0.0002, δrmax = 67 km

Figure 2.12: RMS Error of HCW and TH model for two different leader orbit eccen-
tricities as a function of mean anomaly M in [km].

The simulations performed cover relative distances of 0 ≤ δrmax ≤ 110 km and
leader orbit eccentricities of 0 ≤ ec ≤ 0.01. The results are presented in Fig. 2.13.
One can see that the HCW error increases with both leader orbit eccentricity and
maximum relative distance between the spacecraft, which is reasonable as those are
the simplifications made in the HCW model. The TH model on the other hand does
not impose the assumption of a circular reference orbit and therefore the error of
the TH model does not increase with increasing leader orbit eccentricity. Further, it
can be seen that for zero leader orbit eccentricity both the HCW and the TH model
show the same orbit error.

In order to find limits for the application of these models in space missions, one has
to take the sensors and actuators of the spacecraft into account. As example, we
assume that the sensors and actuators on board a spacecraft restrict the maximum
error of the used model to 3 % of the actual distance between the spacecraft. Fig.
2.14 shows the simulated errors presented in Fig. 2.13, but with such a threshold
of 3 % of the relative distance. Fig. 2.14 i) implies that the HCW model could for
a given leader orbit eccentricity only be used above a minimum relative spacecraft
distance. That is due to a systematic error introduced by the leader orbit eccentricity.
If the relative spacecraft distance is increased, the relative error decreases, because at
first the additional error introduced by the distance does not increase as fast as the
relative distance. Therefore, at a certain point the relative error is smaller than 3 %.
This changes quickly and an upper bound can be found for the maximum relative
distance of the spacecraft (see Fig. 2.15).
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(i) HCW error (ii) TH error

Figure 2.13: HCW and TH RMS model errors as a function of leader orbit eccen-
tricity and maximum relative spacecraft distance.

(i) HCW error (ii) TH error

Figure 2.14: HCW and TH RMS model errors as a function of leader orbit eccen-
tricity and maximum relative spacecraft distance with a threshold of
3 % of the relative distance.

As only the maximum error had been taken into account in these considerations, we
have to look more carefully into detail for a given configuration and therefore this
overview cannot be used as granted for any given configuration. Furthermore, there
are different ways of achieving a relative distance, e.g. by just changing the inclination
and keeping the eccentricity constant for both leader and follower spacecraft. By
doing so, no additional eccentricity error would be introduced by increasing the
relative distance between both spacecraft. Here, both δi and δe have been increased
equally. That is why also an additional eccentricity error is introduced for increasing
relative distance.
This computations show that the HCW model can be applied for most spacecraft
formations up to hundred kilometers relative distance assuming small eccentricities.
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Figure 2.15: HCW RMS model error as a function of leader orbit eccentricity and
maximum relative spacecraft distance with an allowed maximum rela-
tive model error of 2 %.

In that case, the HCW model is applicable and the computationally more complex TH
model does not prove superior compared to it. However, with increasing eccentricity
the TH model is to be favored.

2.5.3.4 State-Transition Matrices Incorporating a Non-Spherical Attraction
Model

Many of the eccentricity-obeying STMs from the previous sections were developed un-
der the motivation to find relative motion STMs for terminal rendezvous maneuvers.
With this focus, the J2-effect may obviously be neglected, since there is no differential
perturbation force due to the non-spherical Earth when the spacecraft are (closely)
at the same position. For formations in the size of up to 100 km relative distance,
like the largest planned NetSat or TOM configurations, this simplification leads to
position errors in the propagation process. Notable STMs which incorporate the
J2-effect into the solution of the HCW equation have been developed by Schweighart
and Sedwick (2001) (the so called Schweighart-Sedwick STM), Morgan et al. (2012)
and Djojodihardjo (2014). Since they are extensions to the HCW equations, they
also neglect the eccentricity. Another approach is to use the TH equations as starting
point, like in the so called Yamada STM. Yamada et al. (2012) provided an extended
solution to the TH equations which solely uses osculating orbital elements and thus
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allows an analytical treatment of the STM. This is achieved by splitting the state
into a nominal and an osculating part, which also allows to split the STM into the
nominal TH-like STM and a perturbed STM. The current osculating orbit of the
leader is needed as input to the Yamada STM. This constrains its applicability,
because this information may not be precisely available. A solution, where this infor-
mation is not needed, is the geometric method used in the Gim-Alfriend (GA) STM
(Gim and Alfriend, 2003). The method uses mean orbital elements for the leader’s
reference orbit and was later extended to the use of EOE (Gim and Alfriend, 2005).
The state vector in orbital frame uses the NOE set introduced in Chap. 2.4.2.2. The
Cartesian state vector used in the STM is, in contrast to Chap. 2.4.1, ordered as
follows

x (t) =
(

x ẋ y ẏ z ż
)T

(2.89)

The connection between the DOE and the current state in the Cartesian frame is
described by

x (t) = Σ (t) δa (t) = [A (t) + α B (t)] δa (t) (2.90)

where A contains all terms of the unperturbed case and B all terms affected by J2,
with the leading perturbation coefficient α = 3J2R

2
E. The summation matrix Σ is

obtained through a method developed by Alfriend et al. (2000), where the position
and the velocity of the follower are developed in a Taylor series expansion around
the leader’s state and split into nominal parts and osculating parts affected by J2.
For the inverse transformation from DOE to x, the inverse Σ

−1 is needed. The DOE
set at t is acquired with a STM for the differential elements

δa (t) = φ (t, t0) δa (t0) (2.91)

The matrix φ is difficult to obtain, when a high level of accuracy is to be achieved. All
elements are non-linearly affected by the J2 perturbation and lead to non-negligible
linearization errors. Therefore, the DOEs are converted into mean element space,
allowing to use a mean DOE STM

δā (t) = φ̄ (t, t0) δā (t0) (2.92)

In the differential mean element set, oscillations have been filtered out (see Chap.
2.5.2.1), allowing an easier derivation of the STM. For that, the differential drift
rates for θ, q1, q2 and Ω are calculated, starting from Eq. 2.67. Semi-major axis and
inclination are not affected by this drift, leading to a slim STM for the differential
mean elements. φ̄ (t, t0) is a function of the mean leader orbit and time, which are
known quantities – the mean orbit of the leader can be directly propagated with Eq.
2.67. Since Σ is a function of the (not known) osculating leader orbit, it has to be
adapted to use the mean leader orbit as input. As stated before, A is independent of
the J2 perturbation and therefore not affected by the distinction between osculating
and mean orbit. Only the B-matrix has to be adjusted to mean element input,
leading to

Σ̄ (t) = A (t) + α B̄ (t) (2.93)
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Σ̄ is now a function of mean absolute elements, but still transforms osculating
differential elements into Cartesian space. The state δā (t) must be converted into
differential osculating space, using the partial derivatives matrix of Eq. 2.68. The
transition for differential mean element state at t = t0 to current state in the Cartesian
frame then becomes

x (t) =
[

A (t) + αB̄ (t)
]

D (t) φ̄ (t, t0) δā (t0) (2.94)

The initial state δā (t0) is obtained using the inverse matrices evaluated at t = t0

from the initial Cartesian state

δā (t0) = D−1 (t0)
[

A (t0) + αB̄0 (t)
]−1

x (t0) (2.95)

Combination of Eq. 2.94 and 2.95 leads to the complete GA STM to transition the
state vector in EH frame from t0 to t

ΦGA (t, t0) =
[

A (t) + αB̄ (t)
]

D (t) φ̄ (t, t0) D−1 (t0)
[

A (t0) + αB̄0 (t)
]−1

(2.96)

2.5.4 Relative Orbit Propagation in Classical Orbital Elements

When an orbital state vector is chosen, the thrust influence can be described with
Gauss’s Variational Equations (GVE). In the following form, they describe the
derivative of the COEs with respect to time as a function of the current control
acceleration u (Battin, 1999, p. 489)

ȧC (t) = Ax (t) + B (t) u (t) (2.97)

written in complete form with matrix elements

d

dt
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 (2.98)

Eq. 2.98 is assuming the perturbation-free case, since only the mean anomaly is
subject to change by the mean motion. When thrust influence has to be modeled in
perturbed environments, the state-space equations have to be adapted. This does
not alter the control influence matrix B, thus it comprises a sufficient thrust impact
description for different kinds of state-space equations.
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2.5.5 Relative Orbit Propagation in Relative Orbit Elements

Another possible way of propagating a relative motion is using ROE (cf. Chap.
2.4.2.4). The full state-space model in ROE consists of three control inputs and
seven outputs. The input vector ū = (ux, uy, uz)T comprises the control accelerations
into radial, tangential and normal direction of the EH orbital frame. The output is
formed by the ROE vector ∂ᾱ augmented with the time derivative of the relative
semi-major axis ∂ȧ in order to account for differential drag. The state-space model
is given by

[

∂ ˙̄α
∂ä

]

= Āc

[

∂ᾱ

∂ȧ

]

+

[

B̄c

0
1x3

]

ū (2.99)

The plant matrix Āc = ĀJ2
+ Ādrag + ĀK takes the differential Earth oblateness

effect ĀJ2
, differential drag Ādrag and Keplerian motion ĀK into account (Koenig

et al., 2016). The complete plant matrix for the augmented state is given by

Āc = κ
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2EP − 3
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nc

κ 0 exGFP eyGFP −FS 0 0
7
2eyQ 0 −(4exeyG + C)Q −(1 + 4e2

yG − D)Q 5eyS 0 D−ex

κ

−7
2exQ 0 (1 + 4e2

xG − D)Q (4exeyG − C)Q −5exS 0
C−ey

κ
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2S 0 −4exGS −4eyGS 2T 0 0
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
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







(2.100)

where nc is the mean motion. The parameters of the plant matrix are given by
Koenig et al. (2016) as

γ =
3

4
J2R

2
e

√
µ, ηc =

√

1 − e2
c , κ =

γ

a
7/2
c η4

c

, ex = ec cos ωc, ey = ec sin ωc,

C = sin ωc, D = cos ωc, E = 1 + ηc, F = 4 + 3ηc, G =
1

η2
c

,

P = 3 cos(ic)
2 − 1, Q = 5 cos(ic)

2 − 1, S = sin(2ic), T = sin(ic)
2

To account for differential drag, the density-model-free formulation by Koenig et al.
(2016) is implemented into Āc. It is essential to properly initialize ∂ȧ by in-situ
measurements of ∂ȧdrag by tracking the difference over a few orbits without any
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applied maneuvers during that time. The control input matrix B̄c ∈ R
6x3 is given

by Chernick and D’Amico (2016) as

B̄c =
1

acnc
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
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(2.101)

where fc is the true anomaly.

2.5.5.1 Reduced Model

From the control input matrix B̄c in Eq. 2.101 one can see that changes of the relative
eccentricity vector ∂e and the relative semi-major axis ∂a are most efficiently achieved
by applying tangential thrust only. This suggests controlling the system given by
Eq. 2.99 without radial thrust. Furthermore, the ∆V lower bound for impulsive
maneuvering is yielded using tangential thrust only for in-plane reconfigurations
(Chernick and D’Amico, 2016, Gaias and D’Amico, 2015). On the other hand, ∂λ
can only be controlled directly by radial thrust and therefore waiving radial thrust
would mean the loss of full controllability. In this situation, it is convenient to
use a reduced model and to control ∂λ̇ by leveraging Keplerian dynamics. Such
a reduced model does not contain the mean along-track separation as given by
the relative mean longitude ∂λ so that that the reduced ROE vector is defined as
∂α = (∂a, ∂ex, ∂ey, ∂ix, ∂iy)T. Furthermore, the control input for the reduced model
is defined by the accelerations in along-track and normal direction of the EH frame
u = (ux, uy)T. The reduced model is given by

[

∂α̇

∂ä

]

= Ac

[

∂α

∂ȧ

]

+

[

Bc

0
1x2

]

u (2.102)

The reduced plant matrix is given by

Ac = κ
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(2.103)
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with the same parameters as for Eq. 2.103. Note that Keplerian dynamics have no
influence on ∂α. The reduced control input matrix thus is

Bc =
1

acnc
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(2.104)

De Florio et al. (2014) implement the above-mentioned leveraging of Keplerian dy-
namics by augmenting the state with ∂λ̇ and a proper in-orbit placement of the
impulsive along-track maneuvers. A different method is to change the applied ref-
erence of the relative semi-major axis that will then be followed by a stabilizing
feedback controller to maintain full controllability of the complete ROE set ∂ᾱ.
This approach is presented in Chap. 3.4.
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2.6 Satellite Formation Topologies

A satellite formation consists of one reference (or leader) satellite and multiple
follower satellites. When all satellites need to be treated equally, a virtual leader
satellite can be introduced. Then this virtual leader is located at the geometric
center of the formation. We deliberately use the term topology here instead of
topography, because the subsequent description is about the relative arrangement of
satellites with respect to each other. In this description we do not require any specific
reference or coordinate system and exact relative distances are not of importance
either. All formations that are presented here are so-called force-free formations.
This means that (without taking perturbations into account) they remain stable over
time without the need of applying control forces to maintain them.
There are various formation topologies, some of which are described in this section.
They can be applied to different applications: An Along Track Formation (ATF) or
a Projected Circular Orbit (PCO) can be used as SAR, as optical interferometry or
for on-orbit servicing of other spacecraft, as examined in the CanX-4 & 5 mission
(Bonin et al., 2015) and planned e.g. for the CloudCT mission (Schilling et al., 2019).
Furthermore, a Circular Orbit (CO) or PCO can conduct gravitational and magnetic
filed analysis and ground-moving target indication. Another well-known formation
type is the Cartwheel Formation (CWF), whose application can be the generation
of a Digital Elevation Model (DEM) (e.g. as planned in the TOM mission (Schilling
et al., 2017)) or gravity field determination.
A formation is characterized by its above-mentioned type and its size. The size
parameter is also called baseline and represents the average distance between the
outermost satellites (Tetrahedron Formation (THF), ATF) or the diameter of the
relative ellipses (PCO, PCO and CWF). Focus will be directed to ATF, CO, PCO,
CWF and Tetrahedron Formation (THF) in that order. They describe one-, two- and
three-dimensional configurations, allowing to investigate different levels of relative
orbit complexity. Without loss of generality, all formation types will be described
for four satellites. To design multi-satellite configurations for a different satellite
quantity, the respective spacing parameters can easily be adapted.
In general, the in-plane motion in the EH frame H is decoupled from the out-of-
plane motion. The force-free in-plane motion comprises a 2 by 1 ellipse (cf. Fig.
2.16) while the force-free out-of-plane motion forms a pendulum (cf. Fig. 2.17).
Most of the well-known and in this chapter described formation topologies are a
combination of these motions.

2.6.1 Initial Acquisition Phase

After deployment of the satellites from the launcher, a slight difference in semi-major
axes can occur. In order to ensure a stable formation with bounded motion, i.e.
all orbits having the same period, this mismatch has to be canceled out. Thus,
the satellites need to perform an orbital maneuver in order to acquire the simplest
configuration, namely ATF (see Chap. 2.6.2). This can be divided into first acquiring
the same semi-major axes to counteract the initial drift as fast as possible, followed
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Figure 2.16: In-plane motion of an arbitrary formation

Figure 2.17: Out-of-plane motion of an arbitrary formation

by the acquisition of an ATF. According to Innovative Solutions In Space BV, a
well-known launch provider for nanosatellites, the maximal drift among two satellites
after deployment does not exceed 0.1 m s−1, while the major part of it is in along-track
direction. Therefore, with a very rough estimation of the initial formation behavior
(the initial orbit is assumed to be the nominal NetSat orbit with a ≈ 7000 km and
e ≪ 1), all six ROEs are zero except the difference in mean argument of latitude ∂ϕ,
which can be derived from Eq. 2.37. Assuming a non-controllable initial phase of four
weeks (which has been the case in the preceding UWE-4 mission) which is blocked
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for LEOP and commissioning, the maximum separation in along-track direction (∂φ
or êx in the EH frame H ) at the beginning of the controllable phase is assumed
to be around 360 km with the remaining satellites spaced equally in between. This
coarse estimation roughly reflects a 360 km ATF configuration, which appears to be
the natural starting point of a formation flying mission.

2.6.2 Along-Track Formation

The ATF is the simplest configuration of a formation and is often called String of
Pearls. In this formation, two or more satellites are placed into the same orbit and
separated by a specific distance along the orbit (cf. Fig. 2.18).

Figure 2.18: Along Track Formation

Since the satellites are separated along the same orbital track, only the argument of
latitude a∂ϕ Ó= 0, or equivalently the relative mean longitude ∂λ Ó= 0. For formation
design, it is useful to multiply the ROE vector by a, so all entries of the state vector
share the dimension [m]. This gives a direct insight into inter-satellite distances in
EH frame as presented in Fig. 2.19 and simplifies formation design. Following the
definition of Eq. 2.35, the ATF is described by

a ∂αααk = a
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(2.105)
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where index k denotes the follower satellites from 1 to n. The ROE state vector
for the (arbitrary) leader satellite is the isotropic vector, resulting in ∂ϕ = ∂λ = 0 .
δrmax is the maximum distance between the satellites.

Since all satellites share the same orbit, ideally there is no relative movement between
the satellites. Viewed in an idealized EH frame, the p vector is constant and the v is
zero. As ∂λ/∂ϕ solely impacts the êx coordinate, the êy and êz components of p are
always zero in a perfect ATF configuration. In a real EH frame, however, there will
always be some movement in êy and êz direction. This is due to the linearization
error of the H frame definition (Chap. 2.4.1.2).

Figure 2.19: Along Track Formation

Fig. 2.20 shows the relative trajectories of the satellites in a 5 km ATF configuration
over one orbital period. The formation center was chosen, in contrast to the defi-
nition above, to be in the middle of the two outermost satellites. This reduces the
linearization error by a factor of two. Fig. 2.20i shows the relative in-plane motion,
where the 5 km baseline can be seen in êx direction. The linearization error caused
by the curvature of the orbit occurs mainly radially, while a cross-track movement
is almost non-existent (Fig. 2.20ii). The corresponding state vectors in ROE frame
for the described formation are given in Tab. 2.4. Since (ideally) there is no relative
movement as well as a separation in only one direction, ATF is a 1D formation.
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Figure 2.20: Relative satellite motion of a 5 km ATF configuration.

Table 2.4: State vectors for a 5 km ATF configuration in ROEs. All values are given
in [m].

Satellite 1 2 3 4
∂a 0 0 0 0
∂ϕ −2500 −833 833 2500
∂ex 0 0 0 0
∂ey 0 0 0 0
∂ix 0 0 0 0
∂iy 0 0 0 0

2.6.3 Circular Orbit Formation

The next formation type to investigate is the CO formation, which is formed by a
circular relative orbit of a follower satellite (cf. Fig. 2.21). Such a circular reference
orbit is defined by the relative velocity being constant at every time instance. In
order to yield velocities we take the derivative of Eq. 2.37 and normalize by the
velocity of the leader spacecraft

vx/v = 2δe cos(ϕ − φ) (2.106a)

vy/v = −δi cos(ϕ − θ) (2.106b)

vz/v = −δe sin(ϕ − φ) (2.106c)

The absolute velocity of the follower is given by

vd =
√

v2(δv2
x + δv2

y + δv2
z) (2.107)
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Figure 2.21: Circular Orbit formation

In order to show that vd is constant it is sufficient to analyze only the radicand R

R = δv2
x + δv2

y + δv2
z (2.108)

= 4∂e2 cos2(ϕ − φ) + δi2 cos2(ϕ − θ) + δe2 sin2(ϕ − φ) (2.109)

For this expression to stay constant one has to find a set of δe, δi, φ and θ for which
the derivative of the above becomes zero. The derivative is given by

δR

δϕ
= −8δe2 cos(ϕ − φ) sin(ϕ − φ) − 2δi2 cos(ϕ − θ) sin(ϕ − θ)

+ 2δe2 sin(ϕ − φ) cos(ϕ − φ) (2.110)

This expression can only be solved by rendering the sines and cosines to zero. This
can be achieved by setting φ − θ = 0 or φ − θ = ±90◦. As the solution for φ − θ = 0
will result in negative values for either δe or δi, only the solution for φ − θ = ±90◦

is valid and Eq. 2.110 becomes

δR

δϕ
= −8δe2 cos(ϕ) sin(ϕ) + 2δi2 cos(ϕ) sin(ϕ)
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+ 2δe2 cos(ϕ) sin(ϕ) (2.111)

After dividing by cos(ϕ) sin(ϕ) and setting to zero we find the constraint

0 = −8δe2 + 2δi2 + 2δe2 (2.112)

2δi2 = 6δe2 (2.113)

δi =
√

3 δe (2.114)

Thus, two solutions are found that generate a CO in the co-rotating frame of the
leader’s orbit with φ − θ = ±90◦ and δi =

√
3 δe. In the EH frame the motion of a

follower in such a CO can be expressed as dynamic state vector with the free design
parameter x0

x =

(

arbitrary 0 0 0 x0

√

3

4
ω x0

1

2
ω

)T

(2.115)

An example of a CO formation in EH frame is depicted in Fig. 2.22.

Figure 2.22: Circular Orbit formation
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Figure 2.23: Projected Circular Orbit

2.6.4 Projected Circular Orbit Formation

A Projected Circular Orbit (PCO) formation is formed by a circular motion of follower
satellite(s) around the (virtual) leader, as seen from the Earth (cf. Fig. 2.23). The
follower orbits define a specific ellipse in the EH frame H which transforms into a
circle when projected into the êx-êy plane. The ellipse, on which all followers are
located, is tilted by δi. Thus, a straight line is visible in êy-êz plane, as can be
seen in Fig. 2.24ii. Fig. 2.24i shows the 2-by-1 in-plane ellipse with four equally
spaced followers. The dotted lines depict the instantaneous position vectors of the
satellites. The follower orbits of a PCO are defined by the relative velocities in êy-êz

plane, whose magnitudes are constant at every time instant. The two mathematical
requirements to describe a PCO formation can be inferred from Eq. 2.40 by deploying
Eq. 2.39. We consider the relevant velocities in êx-êy direction

δvx/v = 2δe cos (ϕ − φ) , (2.116a)

δvy/v = −δi cos (ϕ − θ) . (2.116b)

The absolute projected velocity of the follower is given by

vd =
√

v2(δv2
x + δv2

y) (2.117)
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In order to show vd is constant it is sufficient to only analyze the radicand R

R = δv2
x + δv2

y (2.118)

= 4δe2 cos2 (ϕ − φ) + δi2 cos2 (ϕ − θ) (2.119)

For this expression to stay constant one has to find a set of δe, δi, φ and θ for which
the derivative of the above becomes zero. The derivative is given by

δR

δϕ
= −8δe2 cos(ϕ − φ) sin(ϕ − φ)

− 2δi2 cos(ϕ − θ) sin(ϕ − θ) (2.120)

This expression can only be solved by eliminating the sines and cosines. This can
be achieved by setting φ − θ = 0 or φ − θ = ±90◦. As the solution for φ − θ = 0
will result in negative values for either δe or δi, only the solution for φ − θ = ±90◦

is valid and Eq. 2.120 becomes

δR

δϕ
= −8δe2 cos (ϕ) sin (ϕ) + 2δi2 cos (ϕ) sin (ϕ). (2.121)

After dividing by cos (u) sin (u) and setting to zero we find the constraint

0 = −8δe2 + 2δi2 (2.122)

2δi2 = 8δe2 (2.123)

δi = 2 δe (2.124)

Thus, two solutions are found to generate a PCO in the EH frame of the leader’s
orbit with φ − θ = ±90◦ and δi = 2 δe.

The angle offsets between the four follower satellites on the common circumferential
ellipse is ∆φ = 1/2π. The general ROE definition for a PCO formation is therefore

a0∂ak = a
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(2.125)

where index k ∈ {1, 2, 3} denotes the follower satellites, τ is the free variable to
define the size of the PCO formation and γ distributes the satellites equally, while
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Figure 2.24: Relative satellite motion of a 5 km PCO configuration.

γ0 is the second arbitrary design parameter. The relative argument of latitude ∂ϕk

is defined according to Eq. 2.38c to place the formation center (virtual leader) in
the very center of the ellipse. The product a0τ directly corresponds to the formation
baseline.

Figure 2.25: Projected Circular Orbit formation

A PCO formation can also be established with three satellites on an ellipse and a
leader in the focus as depicted in Fig. 2.25. The state vector of this PCO variant
is of the same nature as Eq. 2.125. Only the spacing angle has to be adapted
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to ∆φ = 2/3π and the leader is located at r = (0 0 0)T . In a PCO configuration,
all satellites share a common plane of movement, making PCO a two-dimensional
formation. The exact state vector for the formation depicted in Fig. 2.24 is stated
in Tab. 2.5.

Table 2.5: State vectors for a 5 km PCO configuration in ROEs. All values are given
in [m].

Satellite 1 2 3 4
∂a 0 0 0 0
∂ϕ 349 0 −349 0
∂ex 1291 0 −1291 0
∂ey 0 1291 0 −1291
∂ix 0 −2582 0 2582
∂iy 2582 0 −2582 0

2.6.5 Cartwheel Formation – Moving Plane

90°

90°
90°

90°

Figure 2.26: Cartwheel Formation – Moving Plane

The Cartwheel Formation (CWF) – Moving Plane describes a 3D formation, in which
the follower satellites orbit around a (virtual) leader on differently inclined ellipses
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as depicted in Fig. 2.26. The instantaneous positions of the deputies define a plane,
which is always parallel to the orbit plane. By this, the 3D formation degenerates to
a constantly moving 2D structure, when only the followers are considered. To achieve
this behavior, all followers share the very same absolute inclination i, resulting the
the constraint ϕ−θ = const. The arguments of perigee θ and the mean arguments of
latitude ϕ are equally spaced throughout the orbit. The along-track and cross-track
baselines are coupled and remain in an envelope, thus θ = 1/4π. This implies the
constraint ∂e = ∂i for CWF-MP formations (Peterson et al., 2008). The general
CWF-MP description in ROEs is defined as

a0δak = a












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
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(2.126)

where again the product aτ defines the baseline, γ0 is an arbitrary design parameter
and ∂ϕ was chosen to ensure centered motion. Eq. 2.126 matches the PCO defini-
tion 2.125 in the relative eccentricity vector. The CWF-MP configuration can be
understood as a PCO formation with tilted ellipses. The in-plane motion (Fig. 2.27i)
is exactly the same as in a PCO configuration. This is a direct consequence from the
common eccentricity vector. Beyond this, the out-of-plane motion (Fig. 2.27ii) is
also elliptical for CWF-MP. With four follower satellites, the out-of-plane ellipses are
equal by twos. This arises from a 180° shift per two satellites. The above-mentioned
planes, which are defined by the instantaneous positions, are visualized as the dotted
position lines in Fig. 2.27i and 2.27ii. The perfect alignment of this plane with the
out-of-track plane can also be seen in Fig. 2.26. The explicit state vector for this
configuration is given in Tab. 2.6. As with the latter formation, CWF-MP can also
be built with three circling satellites and a leader in the center. This is depicted in
Fig. 2.28.

Table 2.6: State vectors for a 5 km Cartwheel Formation – Moving Plane configura-
tion in ROEs. All values are given in [m].

Satellite 1 2 3 4
∂a 0 0 0 0
∂ϕ 247 247 247 247
∂ex 1291 0 −1291 0
∂ey 0 1291 0 −1291
∂ix 1826 1826 1826 1826
∂iy 1826 1826 1826 1826
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Figure 2.27: Relative satellite motion of a 5 km Cartwheel Formation – Moving Plane
configuration

Figure 2.28: Cartwheel Formation – Moving Plane configuration with three circling
satellites and one satellite in the center

2.6.6 Cartwheel Formation – 3:1

The Cartwheel Formation – 3:1 is a slight modification to the CWF-MP. It is defined
by three satellites having a periodic motion in one plane, namely the êx-êz plane,
and one satellite having a periodic motion along the êy axis (see Fig. 2.29). The
initial conditions for three satellites in one plane and a single satellite performing
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120°

120°

120°

Figure 2.29: Cartwheel Formation – 3:1

the out-of-plane motion in the EH frame is given in Tab. 2.7. The initial states of
the second and third satellite of the in plane group can easily be calculated with a
force-free time propagation equal to a multiple of 1/3 and 2/3 of the orbital period.

Table 2.7: State vectors for a Cartwheel Formation – 3:1 configuration in the EH
frame. Values are given in [m] and [m/s] respectively. A, B and C are
arbitrary design parameters.

State First in-plane satellite Out-of-plane satellite
x0 A 0
y0 0 B
z0 0 0
ẋ0 0 0
ẏ0 0 C
ż0 0 0

Exemplary state vectors in ROE frame for the described formation is given in Tab.
2.8.
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Table 2.8: State vectors for a 5 km Cartwheel Formation – 3:1 configuration in ROEs.
All values are given in [m].

Satellite 1 2 3 4
∂a 0 0 0 0
∂ϕ 247 247 247 0
∂ex 1291 −646 −1118 0
∂ey 0 1118 646 0
∂ix 0 0 0 2500
∂iy 0 0 0 0

90°

90°
90°

90°

Figure 2.30: Cartwheel Formation – Helix

2.6.7 Cartwheel Formation – Helix

The Cartwheel Formation – Helix is a 2D formation in which all satellites are rotating
around a common reference orbit (see Fig. 2.30). As seen from a point on the
reference orbit (in front of or behind the formation), the satellites form a helix,
which justifies the name (cf. Fig. 2.31).

The satellites are situated in the same plane, which is inclined with respect to the êx-
êy plane. The corresponding state vectors in ROE frame for the described formation
is given in Tab. 2.9.
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Figure 2.31: Cartwheel Formation – Helix as seen from a point in front of the satel-
lites

Table 2.9: State vectors for a 5 km Cartwheel Formation – Helix configuration in
ROEs. All values are given in [m].

Satellite 1 2 3 4
∂a 0 0 0 0
∂ϕ 247 247 247 247
∂ex 1291 0 −1291 0
∂ey 0 1291 0 −1291
∂ix 1826 1826 1826 1826
∂iy 1826 1826 1826 1826

2.6.8 Tetrahedron Formation

The THF is defined by two stationary and two dynamic satellites in a way that,
through their periodic motion, a dynamic tetrahedron is spanned. With a specific
selection of the satellites’ relative orbits, the tetrahedron maintains a constant volume
over time (cf. Fig. 2.32). Two satellites are sharing the same orbit as in an ATF.
The other two satellites are situated on an ellipse with a phase difference of 120°.
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Figure 2.32: Tetrahedron Formation

This formation has been defined by Koptev et al. (2017) and is depicted in Fig. 2.33.
Initial conditions are given below in Fig. 2.10.

Figure 2.33: Tetrahedron Formation (Image courtesy: Koptev et al. (2017))

The formation design parameter A is defined as A = 3
√

3
40

a, with a being the semi-
major axis of the elliptical motion of the first two satellites.
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Table 2.10: State vectors for a Tetrahedron Formation configuration in the EH frame.
Values are given in [m] and [m/s]. A and B are arbitrary design param-
eters.

State First satellite Second satellite Stationary satellites
x0 −2

3
A 2A B

y0

√
3A

√
3A 0

z0
2
√

2
3

A 0 0

ẋ0
4
√

2
3

ωA 0 0

ẏ0 0 2
√

2√
3

ωA 0

ż0
1
3
ωA −ωA 0

2.6.9 J2 Perturbation Mitigation

The ROE state vectors for the described formations were designed taking the con-
straints from Eq. 2.38c into account. When perturbations are not neglected, these
constraints have to be adapted. In this analysis, only the J2-induced effect will be
considered, as the remaining perturbation forces hardly influence formation behavior
(cf. Chap. 2.5.1.1). Satellites in a formation will drift apart, if any of their three angle
rates do not match. The angle rates are the angular velocities in in-track, cross-track
and radial direction. A handy description of the angle rates is inherent in the Delau-
nay elements, i.e. in the Hamiltonian orbit description in Eq. 2.58 and 2.61. In this
representation, the motion is divided into unperturbed and perturbed parts, as Eq.
2.64 denotes (where the perturbation coefficient is now ǫ = −J2). The unperturbed
part H0 is explicitly given by Eq. 2.65 and the perturbed part H1 is given by the
perturbation function from Brouwer’s mean-to-osculating transformation (Brouwer,
1959)

H1 =
µ4R2

E

4L6

(

a

r

)3
[(

3
H2

G2
− 1

)

+ 3

(

1 − H2

G2

)

cos θ

]

(2.127)

Following the deviation in Alfriend et al. (2010), the Hamiltonian H is now trans-
formed to a normalized representation. For that purpose, distance is normalized by
Earth’s radius and time is normalized by the orbital period. Thus, RE and µ are
no longer part of H and the derived conversions can be simplified. The normalized
Hamiltonian H̄ is then inserted into Eq. 2.63 to find the angular rates l̇, ġ and ḣ.
A back-transformation of the explicit formulation of the angular rates to orbital
elements gives

l̇ =
1

a3/2
+ ǫ

(

3

4a7/2η3

)

(

1 − 3 cos2 i
)

(2.128a)

ġ = ǫ

(

3

4a7/2η4

)

(

1 − 5 cos2 i
)

(2.128b)
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ḣ = ǫ

(

3

2a7/2η4

)

cos i (2.128c)

Two satellites will drift apart if and only if their rates are different

δτ = τ1 − τ0 Ó= 0, τ =
{

l̇, ġ, ḣ
}

(2.129)

Ta achieve a stable formation, the satellites must not drift apart, i.e. Eq. 2.129
has to evaluate to zero for all three angular rates. In the following paragraphs, the
consequences of this constraint on formation design are examined. The differential
angular rates are obtained by expanding Eq. 2.128 in a Taylor series around the
leader satellite. From this expansion it can be seen that the differential rates only
depend on conjugate momenta, but not on the initial position or angle differences.
The initial differential conjugate momenta are a function of δa, δη and δi. This gives
three equations with three unknowns, explicitly

δa =
1

2
J2a0

(

RE

a0

)2 3η0 + 4

η5
0

((

1 − 3 cos2 i0

)

δη − η0 sin (2i0) δi
)

(2.130a)

δη =
5η0 sin (2i0)

4 (1 − 5 cos2 i0)
δi (2.130b)

δη = −η0 tan i0

4
δi (2.130c)

Only if all three sub-equations are fulfilled, the formation will not suffer from any
drift due to the J2-factor of the Earth. This well-determined system imposes three
constraints on initial formation design, restricting the shape of the formation. Or,
in other words, restricting the available ROE state vectors derived earlier in this
chapter. The first one constrains δa as a function of δη and δi, the other two are
coupled and both constrain δη and δi. A mismatch in δa causes a drift in the first
Delaunay angle l̇ as can be inferred from Eq. 2.61a, since the mean rotation rate
is a function of the semi-major axis (Eq. 2.25). Considering that all formations
are restricted to a zero-offset in semi-major axis if perturbations are neglected, this
constraint can easily be integrated in formation state vectors. This does not restrict
available types or sizes of formations. Only the first element of the desired ROE
vector has to be replaced with the result from Eq. 2.130a.

The other two constraints are coupled in δη and δi and only their trivial solution

δη = δi = 0 (2.131)

satisfies Eq. 2.129. Fulfilling Eq. 2.131 would only allow String-Of-Pearls formations,
since the relative eccentricity and inclination vectors would have to be zero. Even
regarding a single constraint of the two coupled ones to a high extent limits available
formation shapes, since it determines the eccentricity vector after an inclination vector
is chosen (and vice versa). Consequently, these constraints will not be regarded in
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formation state vector design. Counteracting these differential rates will be part of
the control effort and increase total ∆V consumption during formation maintenance
phases. This effort, anyhow, is small compared to the total J2-mitigation effort
consisting of all three constraints (Eq. 2.130).
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2.7 Control Theory Fundamentals

This section presents the relevant control theory fundamentals that are the basis
of the later on presented control algorithms. Though, a basic knowledge in control
theory is required.

2.7.1 Fundamentals

General State-Space Representation of a Single Linear Time-Invariant System

A linear system, being both time-invariant (LTI) or time-varying (Linear Time-
Varying (LTV)) can be described as a state-space model. Usually it is derived from
differential equations describing the dynamics of the physical system, but it can also
be composed directly or transformed from a transfer function in frequency domain.
Considering only the time-invariant case (LTI), such systems can be represented in
state-space in the form

ẋ(t) = A x(t) + B u(t) (2.132)

y(t) = C x(t) + D u(t) (2.133)

with the state vector x(t), the output vector y(t) and the input or control vector
u(t). A is the state or system matrix, B the input matrix, C the output matrix and
D the feed-through or feed-forward matrix. In LTI the matrices A, B, C, D, which
define the state-space system, are not time-dependent. For further fundamentals
about LTI control systems the reader is referred to Lunze (2014b, p. 72).

Block Diagram Representation of State-Space Systems

A general state space system can be represented as a block diagram. Such a generic
block diagram is shown in Fig. 2.34.

!̇" #1 $

%

! &+

A: state matrix

B: input matrix

C: output matrix

D: feed-through matrix 

x: state

u: control input

y: output

' +(

)

Figure 2.34: Block diagram representation of a general state space system. (Lunze,
2014b, p. 74)
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Transformation Between State-Space Model and Transfer Function

Any state-space model can be transformed into a transfer function G(s) (Skogestad
and Postlethwaite, 2001, p. 116), (Lunze, 2014a, p. 20)

G(s) = CT (sI − A)−1 B + D (2.134)

The inverse transformation from transfer function G(s) to a state-space model
(A, B, C, D) cannot be formulated in a general formula, but is dependent on the
order of the system and the number of inputs and outputs. Different procedures can
be applied to compute this transformation. Depending on the procedure, either the
Observability Canonical Form, Controllability Canonical Form or the Diagonalized
Form of a state-space model can be obtained. (Skogestad and Postlethwaite, 2001,
pp. 119)

2.7.2 Linear Quadratic Regulator

This section introduces the Linear Quadratic Regulator (LQR). The derivation is
based on Lunze (2014a). LQR is an optimal feedback-based control scheme, which
optimizes a gain matrix K in a linear state-feedback control law

u = −Kx (2.135)

with state deviation x = xe − xr being the difference between the current state
estimate and the reference state (desired state). Eq. 2.135 is subject to a state-
space definition like the one stated in Chap. 2.7.1. The control input (i.e. thrust) is
optimized with the use of a quadratic cost function (hence the name of the controller)

J1 =
∫ t1

0

(

xT (t) Qx (t) + uT (t) Ru (t)
)

dt (2.136)

where the symmetric positive definite gain matrices Q and R weight the time-
dependent state deviation and control inputs, respectively. When this cost function
is minimized, the input is optimized over the planning horizon t1. By varying the
ratio between Q and R, one can direct the attention to either one of the vectors
x or u. This means, the chosen matrix ratio represents the trade-off between total
∆V consumption to achieve a target orbit and total time until this orbit is reached.
With the definition above, J1 is dependent on the target time t1. To get a LTI, the
planning horizon for the cost function Eq. 2.136 is shifted to infinity

J =
∫ ∞

0

(

xT (t) Qx (t) + uT (t) Ru (t)
)

dt (2.137)

To get a finite value for the integral, x → 0 for t → ∞ must hold, i.e. the solution
must be feasible under the given constraints. The optimization problem for control
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input and execution time can now be stated as

min
u(t)

= J (x0, u (t)) (2.138)

This dynamic control law can be transformed to a static control law with the LTI
feedback Eq. 2.135

min
K

= J (x0, −Kx (t)) (2.139)

The cost function J is now minimized over the control gain matrix and not the
thrust input. It is static, because the control gain matrix is, in contrast to the thrust
input, constant over time. To find the optimal control gain K, Eq. 2.139 has to be
solved. For this, the time-dependent state deviation x (t) is expressed in terms of
the initial state and its state transition matrix, as defined in Eq. 2.73 and 2.79. The
time-dependent thrust input is expressed in its state contribution with Eq. 2.132
and 2.135, leading to the new cost function

J =
∫ ∞

0

(

xT
0 eAT tQeAtx0 + xT (t) KT RKx (t)

)

dt (2.140)

This can be split and x0 can be extracted from the integral to give the form

J = xT
0 P x0 +

∫ ∞

0
xT (t) KT RKx (t) dt (2.141)

where
P =

∫ ∞

0
eAT tQeAtdt (2.142)

With the calculus of variations, it is shown that P can be implicitly expressed as

AT P + P A = −Q (2.143)

The expression is a Lyapunov equation, which is an important tool for stability
analysis (see Chap. 2.7.3). There exists a positive definite solution P , if Q is
positive definite (as is by definition of Eq. 2.136) and A is asymptotically stable.
Minding the feedback contribution Eq. 2.135 of u in the state space equation gives

Ā = A − BK (2.144)

With this transformation, the cost function can be expressed as

J =
∫ ∞

0
xT (t) Q̄x (t) dt (2.145)

with
Q̄ = Q + KT RK (2.146)

If this is included to the definition of P , one can write the minimization problem as

min
K

J = min
K

xT
0 P x0 (2.147)
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where P is defined through the extended state equations

ĀT P + P Ā = −Q̄ (2.148)

The solution to Eq. 2.147 is found by differentiating J with respect to K and
evaluates to

K = R−1BT P (2.149)

or, back-transformed to input space, the optimal thrust profile is given by

u (t) = −R−1BT P x (t) (2.150)

The inverse of R exists, since it is positive definite. The optimization problem is
now broken down to finding an explicit expression for P . This is found by inserting
Eq. 2.150 into Eq. 2.148, which is known as the Algebraic Riccati Equation (ARE)

AT P + P A − P BR−1BT P + Q = 0 (2.151)

The ARE may be solved numerically or by matrix factorization techniques provided
by e.g. Matlab.

Another way of computing the resulting feedback controller / feedback gain matrix
is to use quadratic programming (Barik et al., 2012).

2.7.3 Lyapunov Stability

Control Lyapunov Functions (CLFs) are Lyapunov functions for controllable systems.
With a valid CLF, a feedback matrix K can iteratively be found. This derivation
is loosely based on Schaub et al. (2000b) and Lunze (2014a). As with LQR control,
model fidelity but also complexity is adjusted with the selection of the state-space
matrix A and the control influence matrix B. CLF-based controller design in the
scope of formation flying is an emerging field. Some related publications are pre-
sented in Chap. 2.9.2.

In general, a state-dependent Lyapunov function proves the stability of an ODE.
The general state space model Eq. 2.132 is a set of ODEs and may be controlled
with a linear feedback gain. The target of CLF-based controller design is to find the
feedback matrix K. The difficult step in creating a CLF-based control law is to find
a CLF which proves stability and minimizes the thrust input. This can sometimes
only be done with brute-force or trial-and-error techniques. The start of this process
is a state-space dependent function which has to be proven to be stable in the sense
of Lyapunov. Therefore, in the first place it is called a Lyapunov candidate function
V and constrained to

V (x) : Rn → R V (0) = 0, V (x) > 0 (2.152)
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The candidate function maps from the state-space to a scalar and has to be positive
definite except at the origin, where it has to evaluate to zero. An equilibrium point
xe of a system is stable in the sense of Lyapunov, if for any neighborhood ǫ there
exists a neighborhood δ around xe, so that ‖x0‖ < δ leads to ‖x (t) ‖ < ǫ. Or, in
other words, it is stable, if any state in the local neighborhood of an equilibrium
stays in the vicinity of it for all times. The more restrictive asymptomatic stability
demands limt→∞ ‖x (t) ‖ = 0. With this definition, a system is asymptotically stable,
if any initial state in the local neighborhood of an equilibrium point reaches this
point at some time. Transferred to control Lyapunov functions, this is the same as
to demand that V must be monotonically decreasing to reach the equilibrium point.
Thus, a candidate function proves stability if and only if

V̇ (x (t) , u (t)) < 0 ∀t (2.153)

The time-derivative of V is in fact a function of the state and the thrust input,
since it influences the state derivative. Adapted to relative position control, this is
illustrated with the linear feedback control law

u = −B−1 (Axe + P x) (2.154)

with a positive definite error influence matrix P , the error input sharing the same
dimension as the state and B being non-singular. Let the candidate Lyapunov
function be

V (x) = 0.5xT x (2.155)

The reference state is assumed to be constant in this case. Taking the derivative
and inserting first the state space equation, then Eq. 2.154 gives

V̇ (x (t) , u (t)) =xT ẋ

=xT (ẋe − ẋr)

=xT (Axe + Bu − 0)

=xT
{

Axe − BB−1 [Axe + P (xe − xr)]
}

= − xT P (xe − xr)

= − xT P x

(2.156)

This solution is strictly negative, since the feedback gain matrix P is positive definite.
Thus, the proposed function Eq. 2.155 proves stability of the control law Eq. 2.154.
This process of proving Lyapunov stability increases in complexity if a variable
reference is chosen.
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2.7.4 Model Predictive Control

Model Predictive Control (MPC) or Receding Horizon Control is an advanced control
method that has been developed since the 1980s. It relies on dynamic models and
allows the current timeslot to be optimized, while keeping future timeslots in account.
This is achieved by optimizing a finite time-horizon, but only implementing the
current timeslot. It has the ability to anticipate future events and can take control
actions accordingly. It allows for large time delays and high-order dynamics. It
predicts the change in the dependent variables of the modeled system that will be
caused by changes in the independent variables. It is based on iterative, finite-horizon
optimization of a plant model. MPC uses an internal dynamic model of the process,
a history of past control moves and an optimization cost function J over the receding
prediction horizon, to calculate the optimum control moves (Wikipedia Contributors,
2020b).

The optimal control input is found according to various system constraints and a
cost function J defined out of different weight functions. The main characteristic
lies in the receding nature of the controller which involves iterative re-planning and
re-optimization of the control input to achieve the lowest cost throughout the moving
horizon window. Following the MPC method the control objectives are fulfilled by
the minimization of a cost function. A quadratic cost function can e.g. be chosen as
(MathWorks, 2020)

J(Ik) =
nu
∑

j=1

p−1
∑

i=0

[
wu

i,j

su
j

(xj(k + i|k) − xj,target(k + i|k))]2 (2.157)

where nu is the number of manipulated variables, p the planning horizon, k the
current control interval, xj and xj,target the associated state value according to the
state space model and the desired target state value for the jth state and wi,j and
sj the associated variable weights and scaling for that state. If terminal weights are
desired, Eq. 2.157 becomes

J(Ik) =
nu
∑

j=1

[
wu

i,p−1

su
j

(xj(k + p − 1|k) − xj,target(k + p − 1|k))]2 (2.158)

Any model mismatches, manipulated input and measured output disturbances that
cause accumulated target deviation over time are thus taken into account in such
iterative manner. Concepts and theory underlying MPC can be traced back as early
as the 1960s mostly in the work of Kalman and the LQR mathematical formulation.
As soon as the needs of industry for optimal control with system constraints, planning
and regular updating were met within feasible computational workloads the use of
MPC started to spread beginning from the control of chemical and petroleum slow
dynamic systems. In the last decades there has been a wide integration of MPC in
industrial applications thanks to the leaps in computational performance of embedded
systems being able to solve demanding quadratic programming problems on-line for
increasingly fast and complex systems (Wang, 2009).
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MPC has also already been applied to space applications e.g. spacecraft rendezvous
(Hartley et al., 2012). Concerning the ability to handle constraints, to precisely
adjust performance to time-varying mission criteria and to tune any parameters
easily after deployment, MPC is distinctively fitting to SFF. In particular for the 3D
formation acquisition task in LEO, which includes periodic motion with frequencies
in the order of hours and limited perturbations, the computational resources and
power consumption of using a variant of MPC are low enough to be selected as
primary control strategy for on-board implementation in small satellites.

2.7.4.1 Quadratic Optimization Problem

Solving the optimal control problem to derive a trajectory that satisfies the final state
and thrust constraints with a minimum cost involves simplifying the cost function to
a quadratic form and turning the problem into a LQR problem. The LQR problem
then has to be solved iteratively within tight sample rates highlighting the need for
an efficient and low throughput Quadratic Programming (QP) algorithm that forms
the main computation load of LQR.
The solution to a MPC control iteration comes down to solving a QP problem.
There are several methods used for solving that problem and although minimizing a
convex quadratic function is something that has been researched since 1955, it has
been a major subject for ongoing research in resource efficient algorithms that can
be implemented in the current low cost microelectronic solutions, achieving energy
and resource efficient control for remote applications. The current most prominent
methods for solving the QP of an MPC controller are: Active Set methods (best for
small and medium sized problems), Interior Point methods (can deal with large scale
problems), Gradient Projection methods, Conjugate Gradient methods, Fast Dual
Gradient Projection methods, Forward-Backwards Newton methods and Augmented
Lagrangian methods.

2.7.4.2 Explicit MPC

What has been first introduced in relevant literature as Dynamic Programming
with constraints and later named Parametric Programming or Multi-parametric
Programming is commonly called Explicit MPC. It is the use of a QP algorithm to
solve all possible discrete states x(k) for a given frame k off-line.
It can deal with every possible discrete control system problem in an iterative way
forming a N + 1 dimensional vector map of associated states and input controls that
point to their derived next state in the minimum cost trajectory that satisfies the cost
function J and the given constraints. (The remaining cost of that trajectory all the
way to the end can also be included as redundant information). An extra dimension
denotes the discrete steps of control and for example in a three dimensional motion
of a spacecraft through time it can denote time increments and their associated
optimal control input for each possible state.
The main issue that occurs implementing Explicit MPC is the required memory
necessary for storing all this information for a N + 1 dimensional control problem.
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For a spacecraft for example the required memory to control its motion in EH frame
within a range of 10 km divided in discrete steps of 1 m distance in each dimension and
a maximum control timeframe of 1000 min with a 1 min control interval is resulting
in 104 ∗ 104 ∗ 104 ∗ 103 = 1015 memory slots (e.g 4 B each leads to approximately
4 TB of required memory)1. Since memory resources are limited in satellite missions,
the explicit implementation of MPC is not considered.

2.7.4.3 Implementation in a Digital Discretized System

The outcome of a single MPC computation is a trajectory plan for the whole planning
horizon. If this interval is extended, the far-time optimality increases at the cost
of computational load. A quite short interval can be used in an on-board real-time
controller. Also, MPC can be used as a closed-loop control system when only the first
command of the plan is implemented and a new plan is generated in every time step.
This section describes the practical implementation in a digital discretized system
and is based on Tillerson et al. (2002) and Breger and How (2005). It also uses the
EH frame state-space definition 2.76. Without loss of generality, this definition can
be replaced with a LTV model like the ones derived in Chap. 2.5.3.2 and 2.5.3.4.

A key parameter of the MPC is the sample period Ts, i.e. the interval for which thrust
commands are generated. These commands can be implemented in the thrust system
with a Zero-Order Hold (ZOH) discretization method (see Chap. 2.9.4), limiting the
maximum sample period. Discretization of the state-space Eq. 2.76 is conducted
with approximate integration, assuming a very small state and thrust change over
one sampling period. The goal of the following equation reshaping process is to find
a form that is suitable for numerical solving in a computational system, starting with
the state space equation of the system. The discretized form of Eq. 2.76 becomes

x (k + 1) ≈ eAkTsx (k) +
∫ Ts

0
eAkτ dτB (k) u (k) (2.159)

In the case of the control being constant over the sampling time, this equation is not
only an approximation though. With the definition of the discrete state transition
matrix Φ (see Chap. 2.5.3.1) and the discrete control influence matrix Gk it can be
expressed as

x (k + 1) = Φx (k) + Gku (k) (2.160)

with x ∈ R
n and u ∈ R

m and

Φ = eAkTs (2.161a)

Gk =
∫ Ts

0
eAkτ dτB (k) (2.161b)

1There are few algorithms and methods that can reduce this memory issue with certain trade-offs
like state Increment Dynamic Programming and Lagrange Multipliers Polynomial Approxima-
tion.
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To let the controller predict all states in the time frame of the planning horizon, x(k)
must be calculable from x(0) for any k. This is done with discrete convolution of
the state and input matrices

x (k) = Φ
(k,k)x (0) +

k−1
∑

i=0

Φ
(k−i−1,k)Giu (i) (2.162)

where the convolution is defined with

Φ
(j,k) =















Φk−1 · · · Φk−j+1Φk−j 2 ≤ j ≤ k

Φk−1 j = 1

I j = 0

(2.163)

Using this definition, the state x(0) is multiplied k times with the STM Φ(0, Ts),
propagating the initial state until t = kTs. The control influence is propagated
depending on the position in the planning horizon. While the first control influence
at t = 0 is propagated k − 1 times, the last control input at the end of the planning
horizon is not at all propagated with the STM. This procedure results in the exact
contribution of each thrusting step to the final state. Eq. 2.162 can be transformed
into the following matrix form

x (k) = A (k) Uk + b (k) (2.164)

where A ∈ R
n×(k+1)m and b ∈ R

n×1. They are given by

A (k) =
[

Φ
(k−1,k)G0 Φ

(k−2,k)G1 · · · Φ
(0,k)Gk−1 0

]

(2.165a)

b (k) = Φ
(k,k)x (0) (2.165b)

The control vector Uk ∈ R
(k+1)m×1 is a concatenation of all thrust input values for

each time step

Uk =
(

u (0)T
u (1)T · · · u (k − 1)T

u (k)T
)T

(2.166)

This dynamic model serves as the basis for the numerical optimization program,
which minimizes the thrust input to achieve an optimal control. The optimization
problem can be stated with the equality constraint to reach the desired target state
as

min
Uk

k
∑

j=0

cj‖u (j) ‖ subject to x(k) = xr(k) (2.167)

where the variables cj weight the thrust input depending on the time instant in the
control horizon. cj can be an all-ones vector for example, the vector can impose less
weight on early thrust actions to motivate a faster target approach.
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When an error box around the target state is used, the equality constraint becomes
an inequality constraint of the form

‖xi (k) − xi,r (k) ‖ ≤ ǫi ǫi ≥ 0 ∀i ∈ {1, n} (2.168)

with error box dimensions ǫi for all state vector components. By enforcing such a
constraint at every (other) time step, a formation maintenance controller can be
designed which does not counteract every minor deviation. The controller just cares
about holding the satellite in the defined error box around the reference state.

2.7.4.4 Definition of Constraints

Additional constraints can be added to the optimization problem Eq. 2.167 to cope
with satellite-inherent properties. When the maximum thrust limit is defined with

umin (i) ≤ u (i) ≤ umax (i) (2.169)

the inequality constraining thrust levels can be written as
[

I

−I

]

Uk ≤
(

Umax
k

Umin
k

)

(2.170)

where Umax
k and Umin

k are appropriately dimensioned vectors of umax (i) and umin (i),
respectively. This enforces the priorly stated scalar equation at all time steps. In
the same manner, actuator rate limits can be enforced with

rmin (i) ≤ u (i + 1) − u (i) ≤ rmax (i) (2.171)

where r is the maximum rate change of a thruster during one time step Ts. Tillerson
et al. (2002) furthermore provide a method to re-formulate the problem Eq. 2.167
as a minimization problem. In the current form, it is impossible to minimize the
input vector Uk, since the individual thrust values may have negative and positive
values. To overcome this, they introduce slack variables for positive and negative
contribution and double the size of the input vector to

Ûk =

(

U+
k

U−
k

)

(2.172)

where
Uk = U+

k − U−
k (2.173)

with the conditions
U+

k ≥ 0, U−
k ≥ 0 (2.174)

The positive and negative parts of the control input are simply concatenated, which
means that the new extended input vector is positive definite. The numerically
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solvable linear minimization problem is finally formulated as

J = min
Ûk

CT Ûk (2.175)

using an extended weighting matrix CT and being subject to the relative orbit
constraint

[

+A (k) −A (k)
−A (k) +A (k)

]

Ûk ≤
(

+xr (k) − b (k) + ǫ

−xr (k) + b (k) + ǫ

)

(2.176)

and the extended maximum thrust constraint
[

+I −I

−I +I

]

Ûk ≤
(

Umax
k

Umin
k

)

(2.177)

In the same manner, the maximum rate constraint can be extended. Any other state
space constraint (for example enforcing Eq. 2.81 in EH frame) can be accommodated
as long as it follows the given form to minimize a matrix inequality subject to the
thrust input vector.

2.7.5 Robust Control

Robust control is a branch of control theory that explicitly deals with uncertainty.
A controller designed for a particular set of parameters is said to be robust, if it
would also work well under a different set of assumptions. Rather than adapting to
variations of measurements, the controller is designed to work assuming that certain
variables will be unknown, but bounded. H∞ loop-shaping is an typical example.
Fig. 2.35 presents a block diagram of a general control configuration in a robust
setup.

P

K

yu

w z

K: controller

P: plant

w: external inputs

z: error

u: control input

y: output

Figure 2.35: General control configuration (Zhou et al., 1996, p. 442)
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A generalized plant including external inputs w, errors z, control inputs u and
outputs y can be represented as a general state-space model with the state x and
its derivation ẋ as internal variables

ẋ = A x + B1 w + B2 u

z = C1 x + D11 w + D12 u (2.178)

y = C2 x + D21 w + D22 u

External inputs w can contain various inputs from a reference signal r to disturbances
d to noise n. The state-space model can be – as every control system expressed in
a state-space representation – transformed into a Transfer Function (TF) (cf. Chap.
2.7.1) (Lunze, 2014a, p. 20), (Zhou et al., 1996, p. 442) using

P (s) = C(sI − A)−1B + D (2.179)

as

P (s) =

w u
( )

z P11(s) P12(s)
y P21(s) P22(s)

(2.180)

With the help of Eq. 2.179, we introduce the notation

P (s) =

x w u








ẋ A B1 B2

z C1 D11 D12

y C2 D21 D22

(2.181)

which implies Eq. 2.179 and translates the state-space representation to a TF (Zhou
et al., 1996, p. 442).

2.7.5.1 H∞ Control Approach

The H∞ control approach considers the H∞ norm of the Closed-Loop Transfer
Function (CLTF)

Tzw = FL(P , K) (2.182)

with FL representing the lower Linear Fractional Transformation (LFT) (Doyle et al.,
1991). It is defined for a given complex matrix M and a given rational matrix ∆L

with

M =

(

M11 M12

M21 M22

)

(2.183)

as
FL(M , ∆L) := M11 + M12∆L (I − M22∆L)−1 M21 (2.184)
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The H∞ control problem can be defined in two ways (Zhou et al., 1996, p. 443):

a) Optimal control problem: Finding a stabilizing controller that minimizes

‖Tzw‖∞ (2.185)

b) Suboptimal control problem: Finding a stabilizing controller that satisfies

‖Tzw‖∞ < γ, γ > 0 (2.186)

The H∞ control problem is solvable, if and only if, the following assumptions apply
(Skogestad and Postlethwaite, 2001, p. 370):

A1. (A, B2) is stabilizable and (C2, A) is detectable,

A2. D12 and D21 have full rank,

A3.

[

A − jωI B2

C1 D12

]

has full column rank for all ω,

A4.

[

A − jωI B1

C2 D21

]

has full rank rank for all ω.
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2.8 Distributed Control

This section presents the fundamentals of the distributed control methods used in
this thesis.

2.8.1 Graph Theory Fundamentals

Interconnection topologies between satellites or agents in a distributed control system
can most adequately be described using graph theory. Thus the relevant terms and
definitions used later on will be introduced.

Graph

A graph (or undirected graph) is an ordered pair G = (V, E), where V is a set of
vertices (or nodes) and E is a set of edges (see Fig. 2.36). Each edge itself is an
unordered pair of vertices. eij = {vi, vj} e.g. describes the edge between the vertices
vi and vj. For an undirected graph eij = eji (Tian, 2012).

1 2 3

4 5

a b

ed

c

Figure 2.36: An undirected graph with its vertices are labeled with numbers and its
edges with letters.

Directed Graph

A directed graph (or digraph) is a graph in which the edges have orientations (see
Fig. 2.37). Thus an edge is an ordered pair of two vertices. eij = (vi, vj) therefore
describes the edge from vertex vi to vertex vj. In general, for directed graphs eij Ó= eji

(Tian, 2012).

Path

A path in a directed graph is an ordered sequence of vertices such that any consecutive
pair within the sequence is an edge of the directed graph. In other words, a path
is a walk through a graph from a vertex via vertices to a vertex along edges. The
length of the path is defined by the number of consecutive edges in the path. Fig.
2.38 visualizes a path within a graph (Tian, 2012).
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1 2 3

4 5

a b

ed

c

Figure 2.37: Directed graph with its vertices are labeled with numbers and its edges
with letters. Edges show arrows to visualize their direction. E.g. a is
the edge from vertex 1 to vertex 2.

1 2 3

4 5

a b

ed

c

Figure 2.38: Directed graph with a path from vertex 4 to vertex 3 highlighted.

Reachability

A vertex vi within a directed graph is said to be reachable from another vertex vj,
if there exists a path from vj to vj. A vertex is globally reachable, if there exists a
path from every other vertex. A graph is said to be connected (strongly connected
in case of directed graphs), if every vertex is globally reachable. Cf. Fig. 2.38 as an
example where vertex 3 is a globally reachable node, since it is reachable from every
other vertex (Tian, 2012).

Neighbor

A vertex vi is said to be a neighbor of vertex vj, if there exists an edge eji = (vj, vi)
from vertex vj to vertex vi. For undirected graphs, if vi is a neighbor of vj then also
vj is a neighbor of vi. E.g. in Fig. 2.38 Node 2 is a neighbor of Node 1, but not the
other way round (Tian, 2012).

Adjacency Matrix

Neighborhood relations within a graph can be expressed in an algebraic way as a
matrix, the so called adjacency matrix Aj = [aij] ∈ R

n×n with

aij =







1 if ∃ eij = (vi, vj) ∈ E

0 otherwise
(2.187)

A graph is undirected, if aij = aji (Tian, 2012).
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Degree Matrix

The degree matrix Dg = [dij] ∈ R
n×n is a diagonal matrix stating the number of

edges connected to each node. It is defined as

dij =







deg(vi) if i = j

0 otherwise
(2.188)

where the degree deg(vi) =
∑

j aij counts the number of outgoing edges of a vertex
vi (Tian, 2012).

Laplacian Matrix

The Laplacian matrix L ∈ R
n×n is a matrix representation of the graph. It combines

adjacency and degree matrix and is defined as

L = Dg − Aj (2.189)

To get a better understanding of its physical meaning we can consider the case that
only relative measurement between the agents along the connected edges is available.
In this case the relative measurement of agent i can be written using L = [lij] as

yi(t) =
∑

j

lij xj(t) (2.190)

or in matrix form
y(t) = L x(t) (2.191)

Thus it can be understood as relative-measurement matrix (Tian, 2012).

2.8.2 Distributed Control Systems

A distributed control system is a control system wherein individual controllers are
distributed throughout a larger system. Thus, it differs from non-distributed systems,
that consist of a single controller at a central location. In a distributed control
system, a set of controllers is connected via a communication network (Çela et al.,
2014, Lunze, 2019). According to Tian (2012) common features of distributed control
systems are distributed interconnections, local control rules, scalability and of course
cooperation among the agents. Since in a distributed control system there is no
central controller, the cooperation among the agents is crucial for the functionality of
the system. Another characteristic is the spatially distributed interconnection of the
agents. Each agent/local controller thus does not only take information about its own
state/output into account, but also considers the information of some other agents.
Since they can be distributed among large distances delays or package loss may
also play a role. Distributed control systems feature a local control rule. Because
there is no centralized supervisor/controller, each agent makes its own decisions
based on its own sensor inputs and the information provided by its neighboring
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agents. An advantage of a local control rule is the high fault-tolerance capability,
since failing of a single or few agents will not stop the complete system from working.
Another reason why a local control rule is beneficial, is scalability. Since a local
control rule uses only local information from the agent itself or from neighboring
agents, it usually does not depend on the size of the whole system and thus allows
for an arbitrary number of agents in the system. Scalability enables the adaption
of the control system towards new applications without changing the underlying
system. Further distributed control systems can be differentiated into homogeneous
and heterogeneous systems depending on the types and characteristics of the agents,
if they are equal or differ (Tian, 2012).

Connection to Graph Theory

In a distributed control system, the network topology or interconnection scheme can
be modeled using directed graphs. Each vertex represents a subsystem or agent. If
there is information flow (i.e. a communication link) from one agent to another,
then there exists an edge with the same direction in the graph. If all communication
links are bidirectional, the topology can be described by an undirected graph.

General State-Space Representation of a Distributed Linear Time-Invariant
System

A distributed LTI control system Σ consisting of N subsystems Σi can be described
as

Σ = (Σ1, Σ2, ..., ΣN)T (2.192)

and a subsystem Σi is defined as

ẋi = Aii xi +
N

∑

iÓ=j

Aij xj + Bii ui +
N

∑

iÓ=j

Bij uj (2.193)

yi = Cii xi +
N

∑

iÓ=j

Cij xj + Dii ui +
N

∑

iÓ=j

Dij uj (2.194)

with the time dependencies of ẋi(t), yi(t), xi(t), xj(t), ui(t), uj(t) being omitted
to improve readability. The terms Aii, Bii, Cii, Dii describe the behavior of the
subsystem Σi itself, whereas the mixed terms Aij, Bij, Cij, Dij describe the influence
of other subsystems Σj on the subsystem Σi. Thus, the coupling terms can be named
as

N
∑

iÓ=j

Aij xj : state coupling
N

∑

iÓ=j

Bij uj : input coupling

N
∑

iÓ=j

Cij xj : output coupling
N

∑

iÓ=j

Dij uj : feed-through coupling
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Communication Delays

If communication delays between the subsystems/agents are of interest, they can be
modeled by replacing t by t − τij in in the state-space representation of a distributed
system (Eq. 2.193 and 2.194), where τij is the communication delay from agent j to
agent i (Tian, 2012). This leads to the following general state-space representation
including delays

ẋi(t) = Aii xi(t) +
N

∑

iÓ=j

Aij xj(t − τij) + Bii ui(t) +
N

∑

iÓ=j

Bij uj(t − τij) (2.195)

yi(t) = Cii xi(t) +
N

∑

iÓ=j

Cij xj(t − τij) + Dii ui(t) +
N

∑

iÓ=j

Dij uj(t − τij) (2.196)

Additionally, in some cases it makes sense to introduce a self-delay τii to match the
communication delays. Thus the local subsystem is also delayed, leading to

ẋi(t) = Aii xi(t − τii) +
∑

... + Bii ui(t − τii) +
∑

... (2.197)

yi(t) = Cii xi(t − τii) +
∑

... + Dii ui(t − τii) +
∑

... (2.198)

Decentralized and Distributed Control

A controller can be used to compute the control input for the distributed system Σ
described in Eq.2.193 and 2.194, e.g. ui(t) = −K xi(t) with a gain matrix K. If
the controller takes only the local state into account meaning

ui(t) = f(xi(t)) (2.199)

it uses a decentralized control approach. If it also takes states of other subsystems
into account meaning

ui(t) = f(xi(t), xj(t), ...) (2.200)

it uses a distributed control approach.

2.8.2.1 Distributed Consensus Approach

There are different types of distributed control systems. A promising way of cooper-
ation in a distributed control system is finding a common agreement or consensus
among the agents (Lunze, 2019, Tian, 2012). The distributed consensus approach
is a method to compute the control input ui(t) of distributed systems Σi in which
only the controllers, but not the plants are coupled. Fig. 2.39 shows an exemplary
block diagram for two coupled controllers with these characteristics. With respect
to the general representation in Eq. 2.193 and 2.194 the matrices Aij, Bij, Cij and
Dij are equal 0 ∀ i Ó= j.
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P1

K1

y1u1

d1 e1

K: controller

P: plant

d: disturbance

e: error

u: control input

y: output

P2

K2

y2u2

d2 e2

Figure 2.39: Two plants P1 and P2 with their controllers K1 and K2. The plants are
not coupled, but the controllers are. y1 influences K2 and y2 influences
K1.

In this case, the control input can then be defined by a consensus protocol (for a
regulator problem) by (Ren and Beard, 2008, p. 26)

ui(t) = K
∑

j

aij (yj(t) − yi(t)) (2.201)

with aij are the elements of the adjacency matrix Aj and K is the gain matrix for a sin-
gle subsystem/agent. With the state-space definition of a single system (A, B, C, 0)
and by linking together the states of the subsystems x = (x1, x2, ..., xN)T to form
the state of the overall system the closed-loop system with consensus protocol can
be written in matrix form as (Tian, 2012, eq. 6.59)

ẋ(t) = (IN ⊗ A − L ⊗ BKC) x(t) (2.202)

where ⊗ denotes the Kronecker product, an operator on two matrices defined as

A ⊗ B =







a11 B . . . a1m B
...

...
an1 B . . . anm B






(2.203)

with the properties

(A ⊗ B) · (C ⊗ D) = (A · C) ⊗ (B · D) (2.204)

A ⊗ (B + C) = A ⊗ B + A ⊗ C (2.205)

A ⊗ B Ó= B ⊗ A (in general) (2.206)
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A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C (2.207)

(αAA ⊗ αBB) = αA αB (A ⊗ B) (2.208)

This control approach enforces the satellites to reduce the relative distances / vectors
along all interconnections.

Reference Tracking

The consensus protocol for regulation problems presented in Eq. 2.201 can be
adapted for reference tracking problems

ui(t) = K
∑

j

aij [rji − (yj(t) − yi(t))] (2.209)

with rji being the reference vector from satellite i to satellite j. Obviously, rij = −rji

and rii = 0. Fig. 2.40 shows an exemplary block diagram of three systems with
controllers coupled via the consensus approach.
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Figure 2.40: Exemplary block diagram of three distributed systems with their con-
trollers coupled via the consensus approach. The interconnection topol-
ogy is shown as a graph in the upper right corner.
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Additionally, Fig. 2.41 presents a schematic explaining the relative references rij,
which act as inputs to distributed controllers as stated in Eq. 2.209.

x

y

z

!⃑"
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Figure 2.41: Schematic drawing of three agents in an arbitrary coordinate system.
Their states are labeled s1, s2 and s3. Relative references are labeled
according to Eq. 2.209 with rji being the reference vector from agent
i to agent j. For readability, the inverse references rij = −rji are
omitted.

To reformulate Eq. 2.209 in matrix form the references rij can be organized in a
matrix. Exemplary it is given below for a system Σ consisting of four subsystems /
agents

R =











0 r12 r13 r14

−r12 0 r23 r24

−r13 −r23 0 r34

−r14 −r24 −r34 0











(2.210)
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R is skew-symmetric and has the same zero-values as the adjacency matrix Aj. Using
R, the closed-loop system of this extended tracking problem can also be written in
matrix form

ẋ(t) =

(IN ⊗ A) x(t) −
{

(L ⊗ BKC) ⊙
[(

16×1 ⊗ xT (t)
)

+ (R ⊗ 16×1)
]}

· 1N ·6×1

(2.211)

or

ẋ(t) =

(IN ⊗ A − L ⊗ BKC) x(t) + [(L ⊗ BKC) ⊙ (R ⊗ 16×1)] · 1N ·6×1 (2.212)

where ⊙ denotes the Hadamard product (or element-wise product) of two matrices,
which is defined for two matrices A and B with equal size (n × m) by

A ⊙ B = (aij · bij) =









a11 · b11 · · · a1m · b1m
...

. . .
...

an1 · bn1 · · · anm · bnm









(2.213)

The aim of formation control is that all agents follow a predefined or given trajectory
while maintaining a particular spacial formation. Thus, the consensus approach is
especially suitable for formation control.

Fixing Coordinate Origin to an Agent

In some cases, e.g. for easier measuring of the states of the involved agents and
easier definition of the coordinate frame origin, it makes sense to fix the coordinate
frame origin to one agent’s position. This means that the state of this agent, called
leader, is always zero. The leader then is passive and no control input should be
applied to him to control the internal structure of the formation. To enable this,
the interconnection graph has to be directed and the adjacency matrix has to be
asymmetric. Connections to the leader are possible, but connections from the leader
are forbidden. This leads to the following condition for the elements of an adjacency
matrix Aj and a fixed, passive leader l.

aij = 0 ⇐⇒ i = l (2.214)
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2.9 Formation Control

Formation control is defined as the methods which allow for acquisition, maintenance
or alteration of the coupled relative state vectors of the satellites in a formation. In
contrast to absolute control of satellites, whose point of reference is usually the center
of the Earth, relative control uses a local point of reference. This point depends on
the chosen control law and thereby on the utilized local coordinate frame. It can be,
among others, the origin of the EH frame H or the absolute COE set of the leader
(e.g. while using DOEs or ROEs). Various research on general relative control has
been conducted so far, but mostly with a focus impulsive control and maneuvers
among two satellites, namely RvD. This work focuses on CLT control of CubeSat
formations, for example the NetSat mission. This section gives an overview and a
classification of different relative control schemes.

2.9.1 General Description of a Formation Flying Controller

An arbitrary control loop of a single satellite within a formation can be described as
shown in Fig. 2.42. As input to the controller and as definition of the target state,
either a formation (for maintenance) or a trajectory (for acquisition or transition)
can act as input.

Target State

Error Value Controller Control Input Satellite

State ChangeFormation Acquisition or Maintenance

Sensor(s)Measured State

Figure 2.42: General description of a control loop of a single satellite within a for-
mation.

2.9.2 Historical Development of Continuous Low-Thrust Control

The slowly emerging field of CLT relative control started with optimization tech-
niques. Early CLT relative control was conducted by posing an optimization problem,
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preferably linearly. Armellin et al. (2004) developed such a controller with linear
optimization for unperturbed dynamics of formations smaller than 1 km. This is the
basis for the Model Predictive Control (MPC) described in Chap. 2.7.4. Another
notable work on CLT is a long-term asteroid rendezvous maneuver described by
Schattel et al. (2016). Despite focusing on the rendezvous, it gives insight to thrust
modeling techniques. The impeding mismatch to the pursued controller design is
the absence of a guiding central gravity field in the vicinity of an asteroid in deep
space. Gao and Li (2010) present a CLT control approach which combines global
optimization with Control Lyapunov Function (CLF) (see Chap. 2.7.3). It is an
off-line control technique and on account of this rather a trajectory planner than a
controller. A further approach in the field of CLT trajectory planning is the in-plane
Geostationary Transfer Orbit (GTO) planner by Konstantinov et al. (2016). The
CLT relative controller by Edlerman and Kronhaus (2016) concentrates on long-
term constraint fulfilling in terms of attitude maneuvers and power budgeting. It is,
however, only suitable to control one element of the ROE state vector, namely the
relative semi-major axis ∂a. An on-line CLT relative controller for elliptic reference
orbits is described by Sherrill (2013). It belongs to the class of Lyapunov controllers
and uses Floquet’s theory to exploit the periodicity of the linear differential equa-
tions representing the relative dynamics. Again, this work focuses on rendezvous
and very close formation configurations. Another type of CLT trajectory planners is
comprised of non-linear multi-objective optimizations. Varga and Perez (2016) uses
a Multi-Objective Evolutionary Algorithm (MOEA) to solve many-revolution low-
thrust maneuvers obeying J2 and eclipse phases. Its underlying problem description
is based on the Q-law by Petropoulos (2005). The Q-law is a complex Lyapunov
controller, whose CLFs are proximity quotients to the target. They are obtained
through analytical models of the maximum rate of change of the differential orbital
elements. To better understand the influence of J2 on controller performance, the
reader is referred to Djojodihardjo (2014). The publication extensively examines
the J2-effect, but is only valid for near-equatorial reference orbits. A conclusion
about the importance of J2 modeling in controller design is drawn in Breger and
How (2007). They state that the ∆V consumption of a J2-including controller used
in a realistic environment is comparable to the consumption of a non-J2-including
controller used in a non-perturbed environment. This means most of the ∆V needed
to mitigate the non-spherical relative effects of the Earth can be avoided by taking
these effects into account during controller design.

A detailed overview of different control strategies for SFF is given in Chap. 2.9.5.

2.9.3 Classification

There are many criteria to classify control strategies. One previously mentioned is
the distinction by thrust model constraints. As position control is conducted with
electric propulsion, it is necessary to have a continuous thrust model. The electric
propulsion system of the NetSat satellites provides a combined thrust in the order of
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magnitude of 1 × 10−4 N. Using impulsive thrust models and control strategies would
lead to significant errors with the ultra-low force provided by electrical propulsion.
Even a very small orbit correction of 0.1 m s−1 takes approximately half an hour.
In this time, the anomaly changes about 110◦ for the given mission specifications,
which is clearly too large. It is important to note that a continuous thrust model is
meant in the sense of long-duration thrusting action. This also includes time-discrete
models where thrust is assumed to be constant over a short period of time.

Figure 2.43: Formation control architectures as defined by Scharf et al. (2004). P:
controller plant, S: satellite.

Scharf et al. (2004) provide a classification of the formation structure into five dif-
ferent architectures. The structures of all types defined in their controller survey is
shown in Fig. 2.43. Without loss of generality, all types are shown with a formation of
four satellites. They are distinguished by the inter-satellite interconnection schemes
(depicted in green) or by controller plant structure (depicted in blue). Multiple-Input
Multiple-Output (MIMO) controllers (cf. Fig. 2.43i) combine all satellites of a for-
mation to a single plant. The state vector of this formation-level controller plant is
the concatenation of the state vectors of all satellites. A leader/follower controller
(Fig. 2.43ii) is a hierarchical structure with one leader and multiple follower(s). This
is the classical approach of relative satellite dynamics, which emerged from RvD
maneuvers. The followers do not have knowledge about the relative states among
themselves. They only control their state in reference to the leader. The leader
can be a randomly defined leader satellite or a virtual formation center without a
spacecraft at the origin. In a controller based on a virtual structure (Fig. 2.43iii), the
formation is treated as a rigid body. The satellites are particles in this body, which
are all connected by dynamic links. Each satellite has its own plant which includes
rigid body motion and dynamics like contraction and expansion descriptions of the
links. The links directly correspond to the relative distances between the spacecraft.
A virtual satellite structure can always be broken down into a leader-follower or
a cyclic controller, depending on the implementation. Like the virtual structure,
also the cyclic method (Fig. 2.43iv) is a non-hierarchical controller. This type can
be understood as a cyclic connection of leader-follower pairs, where each leader is
the follower of another spacecraft. This means that each satellite has exactly one
leader and one follower. Cyclic controllers can be modeled with dependency digraphs
or potential fields. Both cases render stability proofs of feedback controllers very
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complicatedly (or even impossibly), since the feedback function grows in complexity
with the number of spacecraft. The last controller type is the so-called behavioral
plant architecture (Fig. 2.43v). It consists of a hierarchical plant structure. Each
satellite has (multiple) single-state controllers at the lower control level to pursue
a desired satellite state. The higher level is the fleet or formation plant, which pur-
sues high-level goals concerning all spacecraft. The name of this type comes from
the goals of the different plants, which are contrary and sometimes even mutually
exclusive. Thus, the satellites may show competing behaviors and a strategy has
to be found which combines these to achieve the highest-level goal. Depending on
the specific implementation, this control type can be broken down into a structured
combination of MIMO, leader-follower and cyclic controllers.

Due to the two structural breakdowns, the whole classification results in three inde-
pendent structures, namely MIMO, leader-follower and cyclic. Scharf et al. (2004)
conclude that MIMO is preferable in terms of ∆V , because of its guaranteed global
optimality as a direct consequence of the plant synthesis. Drawbacks are a possible
high impact of single-satellite failures and the high amount of needed input infor-
mation and inter-satellite communication. To synthesize the plant, each satellite
must know the relative state to every other spacecraft of the formation. In contrast,
a leader-follower architecture needs less information input. Each follower is only
connected to one leader, reducing the necessary inter-satellite communication. The
reduced inter-satellite communication requirement also increases error robustness.
An error in a follower satellite does not affect any other satellite of the formation.
Even if a leader-follower configuration provides locally optimal solutions, a disadvan-
tage arises when considering formation-level optimality – the combination of multiple
locally optimal solutions does not automatically result in a globally optimal solution.
A cyclic architecture provides a mixture of the advantages and drawbacks of the
two aforementioned strategies. They may perform better in terms of ∆V compared
to leader-follower controllers and furthermore can provide a more balanced distri-
bution of ∆V consumption. However, communication effort is increased due to the
higher amount of inter-satellite connections. As mentioned above, a major downside
of this structure is its lack of sophisticated stability-proving techniques. This is a
very important step of controller design, since global as well as local stability of the
controller has to be guaranteed.

Another scheme is to distinguish into open-loop and closed-loop controllers. Con-
trollers without feedback may be further divided by their execution period. If this
period extends over several orbits, the on-line controller may be viewed in the same
way as an off-line trajectory planner. In other words, a trajectory planner can be
understood as a long-term controller without feedback. Other schemes are based
on (non-)linearity or time invariance. Instances of those can belong to any combi-
nation of the previously mentioned classifications, as long as they are not mutually
exclusive. Furthermore, the goal to be achieved may change the intrinsic behavior
of a controller. The type of the goal can be distinguished by the reference trajec-
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tory. In formation maintenance phases, this reference is constant. During formation
acquisition/reconfiguration maneuvers, which include the initial acquisition phase,
the reference trajectory is time-varying until the desired formation is obtained. This
may be modeled with a single target trajectory or a continuously altering reference,
obtained by a so-called reference governor.

2.9.4 Discretization

In CLT models, as said by the name, the thrust may change continuously. Thus,
the thrust input has to be discretized to an appropriate level of accuracy. Normally,
this is done with a ZOH approach. Fig. 2.44 shows this discretization procedure at
the example function f(t) = sin(t) with a discretization step size of 1. ZOH means
that the level of the very time instant of a discretization step is maintained by the
discretized function until the next discretization step is reached. In the example
figure, the step size is clearly too high to represent the original function at a decent
level. In controller design, the step size has to be adapted to an extent that is small
enough so that only minor changes in thrust input occur during one time step. This
is also applicable to continuous thrust inputs (from non-linear models), which should
be accommodated in the state space equation of a relative orbit propagator.

0 1 2 3 4 5 6 7

time

-1

-0.5

0

0.5

1

v
a
lu

e

continuous

zero-order hold

Figure 2.44: Continuous function f = sin(t) and its discretized counterpart with
Zero-Order Hold assumption with ∆t = 1.
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2.9.5 Overview of Different Control Strategies for Satellite
Formation Flying

Extending Chap. 2.9.2, this section provides an overview of different control strategies
for SFF discussed in literature.

Optimal Bounded Low-Thrust Rendezvous with Fixed Terminal Approach
Direction

Guelman and Aleshin (2001) provide a closed form solution of unbounded low-thrust
propulsion for a given time interval and both initial and final conditions. The non-
linear bounded case is numerically solved by employing Matlab functions. They
divide rendezvous into two stages:

1. Transfer to an intermediate point lying on the desired approach vector. This
intermediate point is usually in close proximity to the target.

2. Fixed terminal approach along a given approach vector for rendezvous.

For the purpose of SFF only the first stage is of interest, since no rendezvous is
foreseen. Bevilacqua (see next section) has used Guelman’s approach and applied
this method on the Sedwick-Schweighart STM (cf. Chap. 2.5.3.4) instead of the
HCW equations to also include the J2 orbit perturbations.

Multiple Spacecraft Rendezvous Maneuvers by Differential Drag and Low
Thrust Engines

Bevilacqua et al. (2010) employ differential drag for in-plane reconfiguration by using
anti-along-track acceleration. In order to do so, they use steerable drag-plates. Those
are not of interest for CLT SFF. But as the anti-along-track acceleration does not
allow for out-of-plane maneuvers they propose a second maneuvering stage where
they suggest low-thrust propulsion as Guelman did (see Chap. 2.9.5). Further they
refine Guelman’s solution by applying it on the Sedwick-Schweighart STM which
includes periodic J2 orbit perturbation (for full orbit periods only).

Optimal Impulsive Closed-Form Control for Spacecraft Formation Flying and
Rendezvous

Riggi and D’Amico (2016) propose to use three impulses for in-plane reconfiguration
and one impulse for out-of-plane reconfiguration, both under the influence of J2

for nearly circular orbits. Further, a solution is found for non-circular orbits by
neglecting J2.
Closed-form solutions in the ROEs are provided. The open question remains, how
to incorporate low-thrust solutions as found e.g. by Guelman (see Chap. 2.9.5) into
this approach. Disregarding of the loss of optimality, possibly thrust periods around
the optimal impulsive thrust locations can be proposed.
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Analytical Mechanics of Space Systems

Schaub and Junkins (2003) developed a controller based on the Lyapunov theory
using mean orbital elements. Using mean orbital elements in the feedback loop
allows to control each orbit element independently of the others. Instead, if feeding
back position and velocity, one always controls all orbit elements at a time. It is
known that orbit elements should be changed at defined locations in order to optimize
fuel-consumption.

This controller includes J2 perturbation and assumes that the error between the
desired and actual state is small. For the purpose of satellite formation maintenance
this assumption also holds true. Feeding back six constraints for a 3-dimensional
control vector is an overdetermined problem. Therefore, Schaub and Junkins (2003)
use a Least Square Method to solve for the thrust vector. Thus, the controller no
longer ensures stability. Furthermore, this controller does not yet include an upper
limit for thrust.

Adaptive Nonlinear Control of Multiple Spacecraft Formation Flying

The approach of de Queiroz et al. (2000) considers the full nonlinear dynamics
describing the relative positioning of multiple satellites for control design. Using
Lyapunov-based control design and stability analysis techniques, they develop a
nonlinear adaptive control law that guarantees global asymptotic convergence of the
spacecraft’ relative position to any sufficiently smooth desired trajectory, despite the
presence of unknown, constant, or slow-varying spacecraft masses, disturbance forces
and gravity forces. In this paper spacecraft actuators are considered to be capable
of providing continuous time control efforts, as opposed to being of impulsive type.
The controller adapts the system’s constant parameter vector θ

θ =
[

mf mfMG
mf

ml

Fd,x Fd,y Fd,z

]

(2.215)

where the subscript f denotes the follower spacecraft and the subscript l the leader
spacecraft. The vector Fd is the total constant disturbance force vector. This constant
disturbance force vector is the major limitation of this controller, because disturbance
forces in LEO are mostly not constant and significantly varying in direction. Apart
from this θ is unknown at the initialization and will be found by the controller. The
feedback quantity is the filtered tracking error r(t) = ė(t) + Λe(t) with the position
tracking error e and the control gain matrix Λ ∈ R

3×3, which is constant, diagonal
and positive-definite. The control law finally is

uf = W θ̂ + Kr (2.216)

Here, W is the regression matrix of known quantities describing the spacecraft’s
motion, and K ∈ R

3×3 is a constant, diagonal, positive-definite control gain matrix.
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The parameter gets updated by the following relationship

˙̂
θ = ΣW T r (2.217)

where Σ ∈ R
6×6 is a constant, diagonal, positive-definite adaption gain matrix. The

paper provides an example and also states the exact values of all gain matrices
included.
In the provided example the simulation ran with an initial θ = 0.5 · θreal. The
controller required about 30 h to find the real parameter vector. In the aforemen-
tioned realistic case of non-constant disturbance forces, it is not clear how fast θ can
converge.

Linear-Quadratic Stationkeeping for the STS Orbiter

Redding et al. (1989) developed a regulator for the Space Shuttle (Space Trans-
portation System (STS)) as continuous closed-loop control for maneuvering during
stationkeeping with other spacecraft to help the on-board crew and to optimize
the process. A threshold for minimum required thrust levels is introduced, beneath
which the actuators won’t fire. Further, also an upper limit is introduced to represent
the maximum available thrust. For fuel optimality usually two maneuvers are per-
formed, but for high precision stationkeeping shorter duty cycles have to run on the
On-Board Computer (OBC). This controller design introduces a minimal time that
has to pass between any two firings. The authors justify this by the fact that fuel
optimal solutions have two maneuvers. But for our purposes of CLT maneuvering
only (infinitesimal) short time periods should be between any maneuvers. Further,
smaller sample times are advantageous in extreme disturbance environments and/or
when tight formations are required. The quadratic cost function is defined as

J =
∞

∑

i+1

[

xT
i Qxi + ∆vT

i R∆vi

]

(2.218)

and the constant gain controller has the form

∆vi = K(xc − xi) (2.219)

which is computed to minimize J . The cost matrices Q and R are found by applying
Bryon’s rule of thumb. Therefore, both cost matrices are diagonal, with elements qii

and rii equal to the inverse square of the nominal deviation of the ith output xnom

and ∆vnom.

Sliding Mode Control for Low-Thrust Earth-Orbiting Spacecraft Formation
Maneuvering

"Sliding mode control has been recognized as one of the key approaches for
complex nonlinear dynamic systems operating under system uncertainties
and disturbances." (Liu et al., 2006)
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Liu et al. (2006) developed a sliding mode control using nonlinear dynamics. Two
tasks are distributed between a leader and a follower satellite. The leader is controlled
independently of the follower and maneuvers itself into a desired absolute orbit. The
follower satellite on the other hand holds relative position and velocity information
available. Its controller keeps the follower in the desired relative geometry with
respect to the leader satellite. The interesting task for our purposes is the second
one, where the follower maintains its desired relative geometry. This approach is
not fuel optimal, but guarantees to be globally stable. Using nonlinear dynamics
improves fuel consumption. But bounded low-thrust is not taken into account. This
sliding mode controller calculates the required thrust with no restrictions according
to the thruster capabilities.

Control of Satellite Formations

"A quadratic cost function is used to estimate the fuel required for ana-
lytical simplicity as well as its applicability for power-limited low-thrust
propulsion." (Vadali et al., 2001)

The controller presented by Vadali et al. (2001) is based on the HCW equations
which are modified to include the effect of J2. They formulate the following extended
HCW equations (given in an alternative definition of the LVLH coordinate frame,
cf. App. A.1 and A.2)

ẍ − 2(n̄0 + ε)ẏ − 3(n̄0 + ε)2x = ux (2.220a)

ÿ + 2(n̄0 + ε)ẋ = uy (2.220b)

z̈ + n̄2
0z = uz + 2An̄0a0 cos α sin θ0 (2.220c)

where ε is the difference between the in-plane and out-of-plane angular rates. Further,

A =
3

2
J2n0

(

Re

a0

)2

sin (i0)
2c2 (2.221)

n̄0 = ω̇0 + Ṁ0 (2.222)

The cost function is

J =
n̄0

4π2

∫ 2π/n̄0

0

∫ 2π

0
(u2

x + u2
y + u2

z)dα(0)dt (2.223)

This controller ensures all spacecraft to experience the same ∆V consumption, while
J2 perturbation is counteracted. An average of 12.3% less fuel consumption than
that required by the “brute force” approach is claimed.
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Long-Term Formation Keeping of Satellite Constellation Using
Linear-Quadratic Controller

Ulybyshev (1998) verified the applicability of LQR control in the scope of formation
maintenance and long-term tangential maneuvers. In the CanX-4 & 5 mission, LQR
control was used for formation keeping as well as formation reconfiguration (Eyer,
2009). They showed that it is favorable to select different gain matrix ratios during
the two maneuver types. Both sources did not use CLT but rather a maximum
thrust level in the order of magnitude of 1 N.

J2-Modified GVE-Based MPC for Formation Flying Spacecraft

Non-low-thrust examination of MPC in relative formation control was conducted by
Breger and How (2005) with promising results. Later on, they extended their model
to use equinoctial orbital elements to remove some singularities (Breger and How,
2007). A terminal-approach (rendezvous) maneuver analysis is given by Hartley et al.
(2012). Both results encourage the use of MPC in formation control, no matter if
using a Cartesian or an orbital state vector.

Conclusion

Several publications on CLT satellite formation control can be found. But yet, there
is no solution capable of providing fuel-optimal reconfigurations, which works in
a distributed manner or takes various constraints (like very low thrust or limited
inter-satellite communication) into account. Some aspects are covered by some pub-
lications, though. Few controllers use models including J2 disturbances to encounter
for perturbations. Rarely differential drag, third body or solar radiation pressure
(and shadowing) are considered. The investigated approaches do not provide de-
tailed information about stability, no stability analysis is shown. In summary, many
aspects are covered in different publications, though no suitable solution covering
all requirements of low-thrust CLT SFF control is present.
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Satellite Formation Control

3.1 Overview

In this thesis, three different control approaches have been developed. They were
designed with a special focus on CLT SFF and corresponding missions like NetSat.
The three approaches use different control concepts, namely MPC-Based Formation
Control, Distributed Robust Consensus-Based Control and Plant Inversion-Based
Lyapunov Control Combined with a Reference Governor. All of them are described
in the following sections. An evaluation of the control approaches follows in Chap. 5.
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3.2 MPC-Based Formation Control

This section gives a detailed view on the specific MPC implementation developed
in this thesis. It is based on the MPC definition in Chap. 2.7.4 and starts with
describing the overall mathematical formulation, followed by the definition of the
constraints and presenting the complete MPC program flow logic.

3.2.0.1 General Implementation

The developed MPC based on Chap. 2.7.4 is formed by the scalar cost function in
Eq. 2.175 with additional imperative constraints. The internal state vector of the
controller is the mean DOE element set

δā =
(

δa δe δi δω δΩ δM
)

(3.1)

This set is used to match the output of the GVE Eq. 2.98, which is used for the
control inputs. The complete controller description is given by

J = min
Ûk

CT Ûk (3.2)

subject to the constraints

AeqÛk = beq (3.3a)

AieqÛk ≤ bieq (3.3b)

where Ûk is the concatenated control input over the planning horizon Eq. 2.172, C is
the weighting matrix, beq and bieq the final state error the controller has to overcome
and Aeqand Aieq matrices that define the constraints the MPC computation is subject
to (cf. Chap. 2.7.4.3).

3.2.0.2 Definition of Constraints

Opposing to the deviation in Chap. 2.7.4, the final relative orbit is enforced with
the equality constraint Eq. 3.3a, whose reasons are stated lateron in this section.
All other restrictions are encapsulated in the inequality constraint Eq. 3.3b. In one
execution step, the MPC not only computes the control input for the current time
step, but for all subsequent steps until the end of the planning horizon tf . This also
includes controller-internal orbit propagation over quite a large time to compute the
matrix elements of the equality constraint. When using Hill dynamics in this time
domain, the deviations grow too large for an effective control plan. Hence, the MPC
uses more exact dynamics in the equations of motion. However, better dynamics
can be used in any controller and thus are not a characteristics of a good controller.
The right hand side of the equality constraint Eq. 3.3a is the final state error beq,
which the controller has to overcome. The computation of beq is independent of
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the control input (i.e. the uncontrolled dynamics) and can be done beforehand the
actual MPC computation. For beq, even the eccentric dynamics derived in Chap.
2.5.3.2 are too inaccurate. The ultimate solution is to use a modified GA STM as
propagator developed by Gim and Alfriend (2003) and extended by Reinthal (2016,
pp. 73). With this propagator, the spacecraft position is propagated until the end
of the planning horizon. The result is then converted to mean DOEs and subtracted
from the desired mean DOE vector at the final time tf

beq = δār,f − ΦMGA (δā0, tf ) (3.4)

where ΦMGA (x, t) gives the state vector x at any time t with the method described.
The left hand side of the equality constraint Aeq equals Eq. 2.165a and is repeated
here for clarification.

Aeq =
[

Φ
(k−1,k)G0 Φ

(k−2,k)G1 · · · Φ
(0,k)Gk−1 0

]

(3.5)

It consists of the concatenated control input matrices convoluted with the discrete
state transitions for the respectively appropriate time frames. The control impact
Gk, defined in Eq. 2.161b is propagated for one time step Ts with the differential
orbit STM

Ak = ΦDOE (0, dt) =





















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

−3ndt
2a

0 0 0 0 1





















(3.6)

If the differential semi-major axis vanishes, the DOE STM degrades to an identity
matrix. If not, δa has an influence on the relative argument of latitude (lower left
matrix element). This STM neglects all perturbing forces on the state vector. It
turned out to be sufficient to use these basic dynamics for Aeq. For the investigated
control input levels in the order of magnitude of 1 × 10−5 m s−2, the influence on the
absolute state is so small that the state transition matrix Eq. 3.6 is accurate enough.
For the matrix Gk, the very same Ak-matrix was used, giving

Gk =
∫ dt

0
eAkτ dτB (k) ≈





















Ts 0 0 0 0 0
0 Ts 0 0 0 0
0 0 Ts 0 0 0
0 0 0 Ts 0 0
0 0 0 0 Ts 0

−3nTs

4a
dt 0 0 0 0 Ts





















B (k) (3.7)

with a ZOH assumption on Ak, a total propagation time dt = tf − t and the GVEs
in Eq. 2.98 for the control influence B(k). The GVEs are dependent on the instan-
taneous osculating orbit. The orbit is obtained by propagating the mean orbital
elements using the mentioned modified GA STM. The result is then converted using
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a Brouwer transformation (Eq. 2.57) to an osculating element set.

The yet not mentioned inequality constraint Eq. 3.3b consists of the maximum
thrust constraint Eq. 2.177 and the rate limit Eq. 2.171.1 The matrix form over the
planning horizon for the rate limits is

[

V

−V

]

Uk ≤
(

Rmax
k

Rmin
k

)

(3.8)

with

V =















−1 0 0 1 0 · · · 0

0 −1 0 0 1
...

...
. . . . . .

0 · · · 1 0 0 −1















(3.9)

Rk is defined analogue to Uk in Eq. 2.170. Both constraints can be combined to
one single inequality

LU ≤ d (3.10)

with

L =











I

−I

V

−V











(3.11)

and

d =











Umax
k

Umin
k

Rmax
k

Rmin
k











(3.12)

The MPC inequality Eq. 3.3b uses the extended input vector Eq. 2.172 to account
for positive and negative input while still posing a minimization problem. This
format is achieved by extending the previously stated matrices appropriately

Aieq =







L −L

−I 0

0 I





 (3.13a)

bieq =







d

0

0





 (3.13b)

With this, the minimization problem formulation Eq. 3.2 is complete and can be
solved by linear programming techniques.

1A specific thrust profile or rate limit that a real-world propulsion system requires or enforces,
can be implemented as time-variant function set.
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3.2.0.3 Complete MPC Program Flow Logic

The whole MPC process is depicted in Fig. 3.1. The control loop starts at the green
input variables and terminates in the blue thrust profile if a solution is found by
the MPCf -block, which solves the constrained minimization problem Eq. 3.2. If
not, the input is adjusted over and over until the process terminates. The diagram
contains two special steps for reconfiguration maneuvers, which are explained later.
The actual model predictive logic is contained in the yellow block MPCf . This is
in fact the process of finding a solution to Eq. 3.2 under the given constraints and
is conducted with Matlab’s linear programming function linprog.

Figure 3.1: Diagram showing the complete MPC logic. Input is depicted in green,
output in blue.

Since there are no error tolerances or a boundary box included for the final state, the
problem is not always feasible. In contrast to the deviation in Chap. 2.7.4 and the
relative orbit MPC analysis by Tillerson et al. (2002), this design step was done on
purpose to reduce the total ∆V consumption. When the terminal orbit constraint
is not feasible and an adjustable error margin is used, the thrusters will operate at
their maximum rates over a large time, which is not desirable. The influence of the
control acceleration rises and falls with the sines and cosines of the true anomaly
and the argument of latitude (see Eq. 2.98). In the times in between with low
control throughput, ∆V is wasted. In contrast to the cited source, the developed
controller varies the input parameters when it hits an unsolvable minimization prob-
lem. In formation maintenance mode, the planning horizon is increased, giving the
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spacecraft more time to counteract any state errors. This should only occur after un-
controlled phases in a given configuration (like in a period foreseen for inter-satellite
communication). If the problem would not be feasible after a controlled phase (i.e.
almost no state error in the beginning), it means that relative perturbation forces
are larger than the maximal control output. In this case, also an extended planning
horizon does not lead to feasible solutions, since the perturbation acceleration in-
creases analogously. For formation acquisition/reconfiguration maneuvers, a scaling
factor for the terminal orbit constraint is used. In one planning period, it is only
compensated for a fraction of the difference between desired orbit and current orbit.
This is necessary for almost any maneuver conducted with CLT, since it takes a very
long time for noticeable orbit changes. When no valid thrust profile is found by the
MPC, this scaling factor is lowered, reducing the orbit difference to overcome during
one planning interval.
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3.3 Distributed Robust Consensus-Based Control

3.3 Distributed Robust Consensus-Based Control

In this section, a combination of distributed control using the consensus approach
introduced in Chap. 2.8 and robust H∞-control inducted in Chap. 2.7.5 is presented.
It mainly comprises contents (namely the mathematical derivation of the generalized
plant description P and Fig. 3.2) developed by the author and published in Scharnagl
et al. (2019). The main objectives of control are reference tracking for acquiring a
given relative formation topology, together with disturbance rejection (e.g. errors
of actuator systems) under the presence of (sensor) noise. In addition, the required
control input should be optimized. Thus a mixed sensitivity approach is chosen,
which is presented in the following section.

3.3.1 Mixed Sensitivity Closed-Loop System with Distributed
Controller Interconnections

Based on the work presented in Chp. 2.8.2.1 and especially in Fig. 2.40 on the
distributed consensus approach, we first compile a block diagram of the closed-loop
system of a single agent i with mixed sensitivity robustness and an arbitrary number
n of interconnections to other agents’ controllers. This is presented in Fig. 3.2.
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y: output
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Figure 3.2: Mixed sensitivity closed-loop system with distributed controller intercon-
nections.

119



Chapter 3 Satellite Formation Control

3.3.2 Obtaining Generalized Plant for Single Agent

From the block diagram in Fig. 3.2 the complete generalized plant for mixed sensitiv-
ity with distributed consensus based reference inputs for agent i with interconnections
to N other agents can be derived

Pi =

d n y1 y2 ... yN r1i r2i ... rNi u
















z1 W1 Ai Gi Wd W1 Ai Wn −W1 a1i ... W1 a1i ... W1 Ai Gi

z2 W2 Gi Wd 0 0 0 0 0 W2 Gi

z3 0 0 0 0 0 0 W3

y Ai Gi Wd Ai Wn −a1i ... a1i ... Ai Gi

(3.14)

with y being the output of agent i, d the disturbance and n the noise. aji is the
weight on the connection from agent j to agent i. In general case aji Ó= aij, though
in practical applications communication between agents is often bidirectional, which
leads to aji = aij. Further, Ai =

∑

j aji and rji is the reference for the relative state
from agent j to agent i. Further Gd = Gi is assumed here.

Computation of the Closed-Loop Transfer Function

The CLTF Tzw of an agent i can be computed by combining the generalized plant
description given in Eq. 3.14 with a controller Ki using a lower LFT. By dividing
the overall matrix into four block matrices Mij Eq. 3.14 can be reformulated to

Pi =

d/n/y/r u
( )

z M11 M12

y M21 M22
(3.15)

The CLTF Tzw can be computed by combining the above matrix and the controller
Ki in a lower LFT

Tzw = FL(Pi, Ki) = M11 + M12Ki (I − M22Ki)
−1 M21 (3.16)
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3.3 Distributed Robust Consensus-Based Control

3.3.4 Application to Satellite Formation Flying

If we now consider spacecraft as agents, we can define the states of the spacecraft as
their position and velocity in EH coordinate frame in a dynamically decoupled way2

in analogy to Eq. 2.8:

xi = (xi, ẋi, yi, ẏi, zi, żi)
T (3.28)

So the state of each satellite contains only local information of the satellite itself.
Since the states of the satellites are not coupled and the satellites are not physically
interconnected3, there is no influence of the state or the control inputs of other
satellites on the satellite itself. Thus Aij = Bij = Cij = Dij = 0 ∀ i Ó= j and we can
reduce the general state-space model in Eq. 2.193 and 2.194 to

ẋi(t) = Ai xi(t) + Bi ui(t)

yi(t) = Ci xi(t) + Di ui(t) (3.29)

Further, we can assume in this example that the matrices Ai and Bi are identical for
all satellites, since they all share the same dynamic model and that D = 0 (assuming
there is no feed-through of control input). This leads to:

ẋi(t) = A xi(t) + B ui(t)

yi(t) = Ci xi(t) (3.30)

The distributed control problem now consists of finding appropriate control inputs
ui(t) = f(ẋi(t), ẋj(t)).

An implementation for a specific SFF scenario with weights and performed H∞
synthesis is presented in Chap. 5.

2The definition of decoupled states feels natural, though it is not unique. One could also define
the state in a coupled manner e.g. by taking the relative vectors between the satellites instead
of the absolute position and velocity in the EH frame. The state of Satellite 1 would then
consist of the relative position and velocity vectors to all other connected satellites. However,
this state definition would not be minimal any more.

3The assumption that the satellites are not physically interconnected and thus Aij = Bij = Cij =
Dij = 0 ∀ i Ó= j is only valid as long as some weaker physical effects are neglected. Examples are
microgravity, the momentum transfer on a satellite caused by the propellant of other satellites
or electric or magnetic repulsion or attraction. Such effects would lead to Aij Ó= 0 or Bij Ó= 0
and are partly nonlinear.
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Chapter 3 Satellite Formation Control

3.4 Plant Inversion-Based Lyapunov Control

Combined with a Reference Governor

This section presents a control approach in ROE that combines plant-inversion as un-
derlying control scheme with proven Lyapunov stability and a sophisticated Reference
Governor (RG). It is especially designed for CLT e.g. using electric propulsion in
SFF. It is based on the joined work by Steindorf, D’Amico and Scharnagl pub-
lished in Steindorf et al. (2017). It comprises parts of this publication, namely the
mathematical derivation of the reduced plant matrix A, control input matrix B and
feedback gain matrix P as well as Fig. 3.4 and 3.5. The two innovative features of
the algorithm are the introduction of a RG that drives the state vector towards the
desired value without over-passing particular constraints, and the Lyapunov based
controller which increases the thrust when approaching fuel optimal locations. In
addition to the joined work of Steindorf et al. (2017), an extension from two satellites
to N satellites and a suiting collision avoidance strategy is developed and presented
in Chap. 3.4.3.

The controller is based on states given in ROE and the reduced model presented in
Chap. 2.5.5, where the control input does not have a component along the radial
direction u = (0, uy, uz)T . This is more efficient in terms of fuel and allows to control
all the ROE vector elements. However, ∂λ needs to be controlled indirectly, through
a change in ∂a, as explained later. For better understanding the reduced ROE state
vector, the plant matrix and the control input matrix are repeated below.

The reduced ROE vector is defined as ∂α = (∂a, ∂ex, ∂ey, ∂ix, ∂ey)T and the overall
state-space model is

[

∂α̇

∂ä

]

= A

[

∂α

∂ȧ

]

+

[

B

01x2

]

u (3.31)

The reduced plant matrix is given by

A = κ





















0 0 0 0 0 1
κ

7
2
eyQ −(4exeyG + C)Q −(1 + 4e2

yG − D) 5eyS 0 D−ex

κ

−7
2
exQ (1 + 4e2

xG − D)Q (4exeyG − C)Q −5exS 0 C−ey

κ

0 0 0 0 0 0
7
2
S −4exGS −4eyGS 2T 0 0
0 0 0 0 0 0





















(3.32)

126



3.4 Plant Inversion-Based Lyapunov Control Combined with a Reference Governor

The reduced control input matrix is

B =
1

aηc

























2
ηc

(1 + ecosf) 0

ηc
(2+ecosf)cos(w+f)+ex

1+ecosf
ney

tan i
sin(w+f)
1+ecosf

η (2+ecosf)sin(w+f)+ey

1+ecosf
− nex

tan i
sin(w+f)
1+ecosf

0 ηc
cos(w+f)
1+ecosf

0 ηc
sin(w+f)
1+ecosf

0 0

























(3.33)

3.4.1 Control Strategy

When performing a maneuver, the aim of the controller is to lead the system to a new
target state. Let us define the current state vector as ∂α and the target/reference
state vector as ∂αr. A classic controller would just drive the system towards the target
reference without considering eventual constraints. There are various constraints a
controller needs to deal with. For instance, thrust constraints arise from limited fuel
availability and possible thruster saturation. Time constraints are dictated by the
type of mission and require the satellites to reach a certain configuration in a limited
number of orbits. In the context of collision avoidance, single or multiple terms of
the state vector, i. e. eccentricity vector, are desirable to be contained between a
certain range, giving rise to wall constraints. The controller proposed in this work
is designed to drive the system towards the target state taking in consideration all
the named constraints. In order to achieve this, the control strategy is executed by
two main elements: the RG and the Lyapunov Controller (LC). The basic idea is
that, instead of moving directly to the target state, the system is driven towards
an intermediate state, called applied reference ∂αa. Every time a control loop is
executed, a new ∂αa is calculated by the RG. The new value of ∂αa is given to the
LC, and the control law aims to stabilize the current state to the ∂αa. The LC does
not know which is the final target reference. It just knows the temporary value of
an intermediate target state, the applied reference.
To better visualize this concept one can consider Fig. 3.3 where a 2D representation
of the problem is given. The problem can be associated with a person ∂α trying to
reach a specific point ∂αr on a plane. Between him and the point there are several
walls (constraints) that do not allow him to execute a straight line trajectory. The
person needs someone able to guide him to the target point without hitting the walls.
The applied reference ∂αa can be associated with a guide for ∂α and is provided
by the RG. At each time interval a new applied reference is calculated by the RG
and represents the next step that the current state should reach or be driven to by
the controller. When ∂α reaches ∂αa, a new value of ∂αa is provided. As a result,
∂α does not know where the target point is, it just follows its guide ∂αa. At the
end of the path, when ∂αa has reached ∂αr, ∂α reaches ∂αr as well, completing
the maneuver.

The following sections give a mathematical and detailed description of this concept.

127



Chapter 3 Satellite Formation Control

Figure 3.3: Differences between classical controller and reference governor

3.4.1.1 Lyapunov Controller

The feedback controller has to stabilize the system at an applied reference ∂αa.
A plant inversion-based control law, which ensures the relative spacecraft state to
asymptotically tend to the applied reference, is given by

u = −B⋆ [A∂α + P ∆∂α] (3.34)

with ∆∂α = ∂α − ∂αa and (.)⋆ denoting the pseudo inverse of a matrix. Let the
system described by Eq. 2.102 be subject to the control law given in Eq. 3.34 with
P being positive definite. A Lyapunov function candidate can e.g. be chosen to

V =
1

2
∆∂αT∆∂α (3.35)
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If the derivative of Eq. 3.35 is negative definite, one can proof that Eq. 3.35 is a
Lyapunov function. The derivative is derived by

V̇ = ∆∂αT∆∂α̇ = ∆∂αT (∂α̇ − ∂α̇a) = ∆∂α (A∂α + B (−B⋆ [A∂α + P ∆∂α]))

= −∆∂αTP ∆∂α (3.36)

which is negative definite as long as P is positive definite. In order to improve fuel
efficiency, the Lyapunov feedback gain matrix P is designed such that it determines
∆V efficient locations to apply control inputs in the following way

P =
1

k

















cos (J)N 0 0 0 0
0 cos (J)N 0 0 0
0 0 cos (J)N 0 0
0 0 0 cos (H)N 0
0 0 0 0 cos (H)N

















(3.37)

where k ∈ R
+ is an arbitrary large scaling scalar. The matrix P regulates the

intensity of the thrust vector as a function of the instantaneous value of the absolute
mean argument of latitude, ϕ = ω + M , of the satellite where the control law is
executed. When the value of ϕ is close to an optimal value ϕ̄ the intensity of the
control output maximizes thanks to the cosine terms in the P matrix. The argument
of the cosines is J = ϕ − ϕ̄ip for the in-plane and H = ϕ − ϕ̄oop for the out-of-plane
case. Fig. 3.4 visualizes this concept. The exponent N ∈ N|N mod 2 = 0 ∧ N ≥ 2
defines to which extent the control inputs are centered around the fuel optimal
locations to control the in-plane (∂a, ∂e) motion at ϕ̄ip and the out-of-plane (∂i)
motion at ϕ̄oop. The optimal locations for near-circular orbits to apply thrust are
given by Chernick and D’Amico (2016)

ϕ̄ip = atan2

(

∆∂ey

∆∂ex

)

(3.38)

ϕ̄oop = atan2

(

∆∂iy

∆∂ix

)

(3.39)

in the case of a dominant variation of the eccentricity vector (∆∂e ≫ ∆∂a), which is
valid for bounded motions. A more complex solution for optimal maneuver locations
in eccentric reference orbits is given by Chernick and D’Amico (2016). For each
specific point in time there is an optimal location ϕ̄ip and ϕ̄oop. Those optimal
locations are constantly updated from the current error between the current and
the applied value of the relative inclination and eccentricity vector. Fuel balancing
between the spacecraft pair is achieved by keeping the spacecraft attitudes constant,
with their thrusters aligned in positive flight and normal orbit direction. If the control
law given in Eq. 3.34 yields a positive control input it is executed by the follower
spacecraft, whereas a negative control input is executed by the leader spacecraft.
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Of course, this approach is only valid for two satellites. An extension to SFF of N
satellites is discussed in Chap. 3.4.3.

Figure 3.4: Control inputs of the form ud · cos N(ϕ − ϕ̄ip) as shaped by the feedback
gain matrix P . Here shown for N = 14 and a random fuel optimal
relative mean latitude ϕ̄ip. The hatched area represents the ∆V that is
applied during one complete orbit period.

3.4.1.2 Controlling the Relative Mean Longitude

The relative mean longitude ∂λ can only be controlled with thrust into the radial
direction of the EH frame. Waiving radial thrust would mean the loss of full con-
trollability. In this case, it is suitable to use a reduced model and control ∂λ̇ by
leveraging Keplerian dynamics. In fact, if there is no radial thrust applied, ∂λ can be
indirectly controlled by leveraging natural (Keplerian) orbit dynamics as suggested
by

∂λ̇ = −3

2
n ∂a (3.40)

The relative semi-major axis ∂a can be changed by applying tangential thrust (see
Eq. 3.33). When a difference in relative semi-major axis is established, it will cause a
drift in the Along-Track direction. Hence, the increase or decrease of ∂λ is a function
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of time and not a matter of thrust any longer. When the relative mean longitude
tracking error ∆∂λ approaches zero, the velocity of ∂λ, ∂λ̇a, should also be zero.
This is obtained by using the function in Fig. 3.5 which outputs the desired value
of ∂λ̇a when a given value of tracking error ∆∂λ rises.

Figure 3.5: Desired drift rate of the relative mean longitude ∂λ.

The function in Fig. 3.5 is centered at the desired reference ∂λa and it is given by

∂λ̇a =







−min
{∣

∣

∣

∆∂λ
τ

∣

∣

∣ , ∂λ̇ref

}

, if ∆∂λ ≥ 0

min
{∣

∣

∣

∆∂λ
τ

∣

∣

∣ , ∂λ̇ref

}

, if ∆∂λ ≤ 0
(3.41)

where τ ∈ R
+ is an arbitrary large scaling factor, which sets the desired drift rate for

a given error. In Eq. 3.41, the first case refers to a positive error (∆∂λ ≥ 0) where
a negative drift is required to minimize it. When a negative error (∆∂λ ≤ 0) is
present, a positive drift rate reduces it. The drift rate is limited by an upper bound
∂λ̇ref and a lower bound −∂λ̇ref . The drift rate ∂λ̇ref for upper bound is given by

∂λ̇ref =
3

2
n |∂aref | (3.42)

In order to derive ∂aref , it is necessary to calculate the effect of tangential thrust
on ∂a. The effect of a continuous tangential burn on the relative semi-major axis is
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given by the control input matrix Bc in Eq. 2.101 by

∆∂atan =
2

anη
(1 + ecos(f))∆υtan (3.43)

where the velocity change ∆υtan is given by

∆υtan =
ud.T

4

4
∏

q=N,N−2,...

q − 1

1
(3.44)

with the desired acceleration ud, orbit period T and a scaling exponent N as specified
in the next section during design of the feedback gain matrix. The desired relative
semi-major axis ∂aref is set to half of ∆∂atan

|∂aref | =
|∆∂atan|

2
(3.45)

Once ∂λ̇a is determined by Eq. 3.41, the desired semi-major axis has to be calculated
applying Eq. 3.40.

∂aa = −2

3

∂λ̇a

nc

(3.46)

When the desired relative semi-major axis ∂aa is applied to the controller as tracking
input, the mean longitude ∂λ is indirectly controlled as well.

3.4.1.3 Tracking the Relative Semi-Major Axis

The in-plane motion of the relative geometry is defined by the relative eccentricity
vector ∂e and the relative semi-major axis ∂a. The control input matrix, given by
the GVE, shows that ∂e and ∂a are coupled such that control efforts to stabilize
either ∂e or ∂a could possibly destabilize the other one. The required direction of a
tangential burn for controlling a given error of the relative eccentricity vector changes
by 180◦ every half an orbit. The required tangential burn for a given relative semi-
major axis error does not change its direction. This conflict of interest is illustrated
in Fig. 3.6.

Taking into account the before-mentioned facts, it is not possible to directly control
∂λ. Consequently, in order to change ∂λ to a desired value, it is necessary to infer a
∂λ̇ through a change in ∂a. However this ∂a cannot be too far from the initial value
because, after ∂λ has reached the desired value, ∂a has to be brought back to its
initial value. Assuming the fact that desired changes in the relative semi-major axis
are much smaller than in the relative eccentricity vector, which is true for bounded
formations, this problem can be solved by defining a limit for the tracking error of
the relative semi-major axis to be

|∆∂amax| =
|∆∂atan|

2
(3.47)
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Figure 3.6: Absolute leader orbit with fuel optimal locations to apply tangential
thrust for in-plane reconfigurations, ϕ = ϕ̄ip and ϕ = ϕ̄ip + π (based on
Steindorf et al. (2017)).

which is half the change of the relative semi-major axis due to one tangential burn.
Therefore, the error of ∂a will always be ∆∂a = ±∆∂atan

2
at the beginning of a

tangential burn and ∆∂a = ∓ |∆∂atan|
2

at the end of a tangential burn. Thus, an
oscillation of ∂a around the desired reference ∂aa is yielded. The maximum tracking
error |∆∂amax| can be enforced by defining the feedback gain matrix P given in Eq.
3.37 such that the error feedback is set to zero, if the maximum error |∆∂amax| (or
following Eq. 3.46 |∂λ̇max

a |) is violated. Thus P is reformulated as

P|∆∂a|≥|∆∂amax| =
1

k

















0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 cos (H)N 0
0 0 0 0 cos (H)N

















. (3.48)

3.4.2 Reference Governor

This section describes the guidance of the applied reference ∂αa, at which the
Lyapunov controller stabilizes the relative state, in order to satisfy the constraints
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imposed on the reconfiguration and to satisfy the complete set of target conditions.
A Reference Governor (RG) is developed that will guide the applied reference ∂αa

through the ROE state-space while ensuring the satisfaction of the constraint set.
The RG uses an attractive potential field that is directed to the desired reference
∂αr and the constraints are realized by repulsive potential functions. Together, both
the repulsive and the attractive fields compose a potential field map φ with gradient
ρ at the current applied reference ∂αa. Thus, the ROE state is guided along this
gradient to the desired reference without violating any constraints. Following the
potential field gradient ρ ensures that the steady state error is minimum without
violating the constraint set. The rate of change |∂α̇a| at which the applied reference
is guided, is controlled by formulating a Lyapunov threshold Γ for the Lyapunov
function given by Eq. 3.35.

The RG receives the 5D state vectors of the reduced model ∂α and the reference
∂αr as input, and computes the applied reference ∂αa in each control loop execution.
The value of ∂αa results from integration of Eq. 3.49 (Nicotra et al., 2016).

∂α̇a = ξ
[

Γ − V
]

· ρ (3.49)

where ξ ∈ R
+ is an arbitrary large scalar. Eq. 3.49 is the central equation of the

RG.

Eq. 3.49 calculates the vector rate of change of ∂αa. The norm of this vector is given
by the scalar ξ(Γ − V ) while the direction is given by the vector ρ. The Lyapunov
threshold Γ determines the maximum allowed tracking error since the Lyapunov
function V = 1

2
∆∂αT∆∂α is a function of the tracking error itself. The Lyapunov

function has an upper limit defined by Γ. Each of the constraints imposed on the
system, such as maximum thrust and minimum maneuver time, impose a constraint
through a specific value Γi. The most restrictive Lyapunov threshold

Γ = min {Γi} (3.50)

is to be enforced by the RG (Nicotra et al., 2015). Fig. 3.7 visualizes this behavior.

Note that the derived Lyapunov thresholds Γi are suited for the specific Lyapunov
function in use and may change, as soon as a different Lyapunov function is used.
All Γi are derived in the following sections. If the Lyapunov value V is smaller than
its threshold Γ, all constraints are satisfied. Thus all constraints are translated into
a single constraint by

V ≤ Γ (3.51)

If the Lyapunov value V gets close to the Lyapunov threshold, the change of the
applied reference tends to zero, because of limV →Γ(Γ − V ) = 0, giving the system
time to converge to the applied reference. When the tracking error ∆∂α is large,
the RG slows down the change of ∂αa, giving the state time to reach the applied
position. When ∂α has almost reached the applied state, the RG changes the applied
state rapidly, and so on until the final target position is reached. If the ROE state
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V(Δ∂α) 

Δ∂α 

Γtime 

Γthrust 

Γ 

Figure 3.7: Lyapunov function V (blue) together with different Lyapunov thresholds
Γi and the overall Lyapunov threshold Γ

is exactly at the applied reference V = 0 the change of the applied reference is
maximized such that ∂αa reaches ∂αr as quickly as possible. The gradient of φ is
given by Nicotra et al. (2015)

ρ = ∇φ (3.52)

The Nabla operator ∇(.) is defined, in such way that it takes the partial derivatives
with respect to the applied reference ∂αa, as

∇ =

(

∂

∂∂a
,

∂

∂∂ex

,
∂

∂∂ey

,
∂

∂∂ix

,
∂

∂∂iy

)

a

The gradient is a conservative function that tends to zero at ∂αa = ∂αr and goes to
infinity at the constraint boundaries. Since the sum of conservative functions is also
conservative. The term ρ gives the direction of the change of ∂αa. By taking into
account separate terms for each defined constraint, ρ can be constructed (Nicotra
et al., 2015). After all potential field gradients are found, the vector field ρ is given
by

ρ = −∇φ̄ −
M
∑

i=1

∇φi (3.53)
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where φ̄ is the global attractive potential field and φi are the repulsive potential
fields of all constraints. M is the number of defined constraints.

The choice of which direction to give to the applied reference is dictated by the
potential field gradient. The applied reference is guided along the negative values of
ρ. As it appears in Eq. 3.53, the overall potential field ρ is the gradient of the sum
of the background term φ̄, pushing the applied reference towards the target, and
several local potentials representing the constraints. The global potential gradient is
defined as a positive vector. With the minus, it becomes negative (attraction). Local
potentials are designed in such a way that, when the applied state gets close to a
constraint, the local potential gradient relative to that specific constraints increases
its value, becomes greater than the φ̄ field and makes ρ positive. As a consequence,
when ∂α enters the area of influence of a specific constraint, the overall field ρ is
positive. Since ∂α naturally moves towards negative gradients, it will be pushed
away from the constraint, leaving the constraint influence area.

3.4.2.1 Potential Field Map

The global attractive potential function is given by (Nicotra et al., 2015)

φ̄ =







‖∂αa − ∂αr‖, if ‖∂αa − ∂αr‖ ≥ η
1
2

‖∂αa−∂αr‖2

η
+ 1

2
η, otherwise

(3.54)

where η is an arbitrary parameter defined below with η ≥ 1 and η ∈ R. The gradient
of the global potential field is given by

∇φ̄ =
∂αa − ∂αr

max{‖∂αa − ∂αr‖, η} (3.55)

which is unitary if ‖∂αa − ∂αr‖ ≥ η and tends to zero for ‖∂αa − ∂αr‖ < η. The
parameter η is defined such that the gradient tends to zero for very small tracking
errors with respect to the desired reference ∂αr. Otherwise the applied reference
∂αa would not converge to the desired reference. From this condition, the behavior
of the applied reference, when it almost reaches the target, is asymptotic in the sense
that ∂αa does approach ∂αr with a lower velocity to avoid oscillations around the
target state.

3.4.2.2 Constraints

Local potentials enter Eq. 3.53 in the summation term. The gradients are calculated
separately and combined in the summation term. Local potentials are defined to
limit the value of components of the state vector and assure collision avoidance.
Each of the states can be limited individually, imposing a wall constraint on the
single element, or coupled with another element with the definition of a circular
no-entry zone. Both those methods are applied only to ∂ex, ∂ey, ∂ix,∂iy. ∂a and ∂λ
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are treated separately because of the passive control of ∂λ through ∂ȧ introduced
previously.

Time Constraint

Mission requirements usually impose time constraints on reconfigurations. The
proposed control strategy allows to calculate the required thrust level in order to
achieve a desired reconfiguration with a given optimal ∆V change. The feedback
gain matrix in Eq. 3.37 defines the shape of the applied control inputs (see Fig. 3.4).
The control inputs are characterized by a cosine shape centered at the fuel-optimal
location with the even and positive exponent N . The ∆V change ∆v2π for one orbit
period of such continuous control accelerations is given by

∆v2π = ud

∫ ϕ=2π

ϕ=0
cos (ϕ)Ndϕ (3.56)

with ud being the desired control acceleration and ϕ the mean argument of latitude.
This integral can be solved using the reduction formula, which is given by

∫

cos (ϕ)Ndϕ =
sin (ϕ) cos (ϕ)N−1

N
+

N − 1

N

∫

cos (ϕ)N−2dϕ (3.57)

Note that N is defined to be an even number. Therefore, the term
1
N

sin (ϕ) cos (ϕ)N−1 with an odd exponent for the cosine can always be expressed in
terms of sin (d · ϕ) with d being an even number. An example for N = 4 is

1

4
sin (ϕ) cos (ϕ)3 =

1

4

[

sin (ϕ) cos (ϕ) · cos (ϕ)2
]

=
1

4

[

1

2
sin (2ϕ) ·

(

1

2
+

1

2
cos (2ϕ)

)]

=
1

16
sin (2ϕ) +

1

16
sin (2ϕ) cos (2ϕ)

=
1

16
sin (2ϕ) +

1

32
sin (4ϕ) (3.58)

For the integration from 0 to 2π Eq. 3.58 becomes zero. Since sin (ϕ) cos (ϕ)N−1 has
only odd exponents as in the previous example, the first summand of Eq. 3.57 is
always zero and can be neglected. Thus, Eq. 3.57 can be rewritten as

∫ 2π

0
cos (ϕ)Ndϕ =

N − 1

N

∫ 2π

0
cos (ϕ)N−2dϕ (3.59)

One can easily see that this reduction formula can be applied sequentially until the
exponent N − 2 is reduced to N − 2 = 2, which is given for N = 4. This product
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sequence is given by

∆v2π = ud

4
∏

q=N,N−2,···

[

q − 1

q

]

·
∫ 2π

0
cos (ϕ)2dϕ which can be rewritten as

∆v2π = ud

4
∏

q=N,N−2,···

[

q − 1

q

]

·
∫ 2π

0

1

2
+

1

2
cos (2ϕ)dϕ substitute x = 2ϕ and

dx

dϕ
= 2

∆v2π = ud

4
∏

q=N,N−2,···

[

q − 1

q

]

·
(

1

2
ϕ

∣

∣

∣

2π

0
+

1

2

∫ 2π

0
cos (x)

dx

2

)

adjust integration boundaries

∆v2π = ud

4
∏

q=N,N−2,···

[

q − 1

q

]

·
(

π +
1

4
sin (x)

∣

∣

∣

4π

0

)

resubstitute x = 2ϕ

∆v2π = ud

4
∏

q=N,N−2,···

[

q − 1

q

]

·
(

π +
1

4
sin (2ϕ)

∣

∣

∣

2π

0

)

simplify

∆v2π = udπ ·
4

∏

q=N,N−2,···

q − 1

q

[(

m

s2
· rad

)/

orbit
]

multiply with
T

2π

∆v2π =
1

2
udT ·

4
∏

q=N,N−2,···

q − 1

q

[(

m

s

)/

orbit
]

(3.60)

where T is the leader’s orbit period. The required optimal total in-plane ∆vopt
ip and

out-of-plane ∆vopt
oop velocity changes are given by

∆vopt
ip = acnc · ‖∆∂e‖

2ηc

see Chernick and D’Amico (2016) (3.61)

∆vopt
oop = acnc

1 − ec

ηc

‖∆∂i‖ (3.62)

Eq. 3.61 requires that ∆∂a
2(1+ec)

is smaller than ‖∆∂e‖
2η2 to be valid. For reconfigurations

from one bounded formation to another bounded formation this restriction is always
satisfied. The applied velocity increment ∆v2π has to be equal to the velocity change
that is required during one orbit period ∆vopt

# orbits

∆vopt

# orbits
=

1

2
udT ·





4
∏

q=N,N−2,···

q − 1

q



 (3.63)
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with the only unknown being ud. Solving for the desired thrust levels into the orbit
normal ud,oop and the orbit tangential direction ud,ip yields

ud,ip =
2∆vopt

ip

T · #orbits

4
∏

q=N,N−2,···

q

q − 1

[

m

s2

]

(3.64)

ud,oop =
2∆vopt

oop

T · #orbits

4
∏

q=N,N−2,···

q

q − 1

[

m

s2

]

(3.65)

Of course, it has to be ensured that the thrusters also need to be capable of producing
the desired control acceleration ud. Furthermore, since the along-track separation is
only indirectly controlled by leveraging Keplerian dynamics the maximum error in
the along-track direction |∆∂λ| has to be smaller than

|∆∂λ| ≤ 3

2
n|∂aa| · #orbits · T (3.66)

Thrust Constraint

For low-thrust propulsion systems it is important that the thrusters are not con-
tinuously operated in saturation. Therefore a thrust constraint is formulated that
ensures that a user defined thrust level is not exceeded by the control law. Note that
the time constraint and the thrust constraint are mutually exclusive. The thrust
constraint is given by

‖F ‖ ≤ Fdesired (3.67)

where Fdesired has to be within the thruster levels, but larger than the relative dynamic
perturbations such that a reconfiguration or formation maintenance is still possible.

Wall Constraint

Next, wall constraints shall be discussed. To be able to express them in one specific
term, a vector c is defined. A specific vector ci defines the ROE vector element i to be
constrained by setting all elements to zero, except of one element which corresponds
to the constrained element which is set to 1. An example for constraining ∂ix is
given by

cix
=

(

0 0 0 1 0
)T

(3.68)

such that cT
ix

∂α = ∂ix. To keep the description generic, ci is the extraction vector
for the i-th element of ∂α. The wall constraint defines an upper/lower limit for a
specific element of ∂α.
Figure 3.8 represents the case where one ∂α component has a lower bound. Let Ci

be the current distance of the element state to its limit di

Ci =
∣

∣

∣cT
i ∂αa − di

∣

∣

∣ (3.69)
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Figure 3.8: Graphical representation of the wall constraint

Let Υi bound the critical zone where the constraint potential is very high and ζi

represent the distance below which the applied state is in the constraint influence
area. When Ci is greater than the influence area limit ζi, the wall local potential is
zero. Conversely, when Ci < ζi, the local gradient is calculated by Eq. 3.70. The
first case of Eq. 3.70 refers to the upper boundary case, the second case to the lower
boundary for the selected element.

∇φi =











Υi2(ζ2
i −C2

i )

(ζ2
i

−Υ2
i
)C2

i

ci : ci∂α 6 di

−Υ2
i (ζ2

i −C2
i )

(ζ2
i

−Υ2
i
)C2

i

ci : ci∂α > di

(3.70)

Circular No-Entry Zone Constraint

Applied vector elements can be constrained using the circular no-entry zone as well.
Here, two elements instead of one are extracted and a condition is imposed on both of
them at the same time. This becomes meaningful when dealing with the inclination
and eccentricity vector. Taking the relative eccentricity vector as an example, the
circular constraint allows the vector to not assume coordinates inside a specific circle
on the ∂ex, ∂ey plane, as shown in Fig. 3.9.

A circular boundary of radius ri ∈ R, centered at xi ∈ R
2 for any combination of

two ROE can be formulated using

‖GT
i ∂α − xi‖ ≥ ri (3.71)

with Gi ∈ N
5x2 and ri > 0. The parameter Gi defines the ROE vector elements to

be constrained, with all elements being zero but two elements which correspond to
the constrained elements being 1. For example, in order to constrain the relative
eccentricity vector ∂e one has to define

G =

(

0 1 0 0 0
0 0 1 0 0

)T

(3.72)
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Figure 3.9: Graphical representation of the circular no-entry zone constraint

such that GT∂α = ∂e. Let Ci again be the current distance of the element state to
its limit ri

Ci =
∥

∥

∥GT
i ∂αa − xi

∥

∥

∥ − ri (3.73)

The local potential field gradient relative to the circular no-entry zone is given by

∇φi =
−τ 2

i (ζ2
i − C2

i )

(ζ2
i − τ 2

i )C2
i

Gi(G
T
i ∂α − xi)

‖Gi∂α − xi)‖
(3.74)

Passive Collision Avoidance

A further local potential field gradient can be added in Eq. 3.53 to guarantee collision
avoidance. The main idea of the presented concept is to increase the Along-Track
separation between leader and follower, when the distance between the two satellites4

projected on the êy-êz plane gets smaller than a certain value. When the êy-êz

safety separation is re-established, the Along-Track separation is again reduced to
the desired value. The principle is the same as the other potentials. A distance term
Cyz is defined (Eq. 3.75). If this distance is less than a safety value ζyz and the

4An extension to N satellites is presented in Chap. 3.4.3.
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along track separation ∂λ is also smaller than a previously defined value, the local
potential gets active (Eq. 3.76).

Cyz = min
{

‖∂e‖ − ε, ‖∂i‖ − ε, ‖∂e.∂i‖ − ε
√

∂e2 + ∂i2 − ε2
}

(3.75)

φyz =







−τ2
yz(ζ2

yz−C2
yz)

(ζ2
yz−τ2

yz)C2
yz

if Cyz 6 ζyz and |∂λ| ≤ 2 · ‖∂e + ε‖
0 otherwise

(3.76)

∇φyz = φyz · (−∇φ̄) (3.77)

From Eq. 3.77, when the minimum distance between the satellites in the êy-êz

plane coincides with the minimum allowed distance ε, the collision avoidance local
potential gradient has a unitary value. This means that in this specific case ρ = 0
and, according to Eq. 3.49, ∂α does not change anymore. In this condition, while
collision avoidance is being re-established, the along-track separation is increased to
avoid actual collision, according to

∂λr = ∂λsafe (3.78)

∂λsafe =



















2 · ‖∂e‖ + ε, if Cyz 6 ζyz and |∂λ| ≤ 2 · ‖∂e + ε‖ and ∂λ > 0

−2 · ‖∂e‖ − ε, if Cyz 6 ζyz and |∂λ| ≤ 2 · ‖∂e + ε‖ and ∂λ > 0

(3.79)

The RG decides, if the state is in the collision avoidance influence region based on
the value of Cyz and its relation to the ζyz constant. The expression of Cyz calculated
through Eq. 3.75 comes from

‖∂e‖ > ε (3.80)

‖∂i‖ > ε (3.81)

‖∂e · ∂i‖ > ε
√

∂e2 + ∂i2 − ε2 (3.82)

Those equations impose three conditions on the magnitudes of the relative inclination
and eccentricity vector and on their scalar product. Those three conditions are the
expression of a single more complex equation given by

∂rmin
yz =

√
2 ‖∂e · ∂i‖

(∂e2 + ∂i2 + ‖∂e + ∂i‖ · ‖∂e − ∂i‖)1/2
(3.83)

∂rmin
yz is the minimum distance between the satellites when the relative motion of

the follower around the leader is bounded (D’Amico, 2010). During one orbit period,
the distance between the two changes. Eq. 3.83 calculates the value of the distance
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at the closest point. Instead of using this constraint, it is possible to put conditions
directly on ∂e, etc. by rewriting the three conditions in Eq. 3.80, 3.81, 3.82 in the
following way

‖∂e‖ − ε > 0 (3.84)

‖∂i‖ − ε > 0 (3.85)

‖∂e · ∂i‖ − ε
√

∂e2 + ∂i2 − ε2 > 0 (3.86)

The difference between ‖∂e‖ and ε, ‖∂i‖ and ε, ‖∂e · ∂i‖ and ε should be greater or
equal than 0 at the same time. However, if the smallest of the three terms is greater
than 0 all three will be as well. This is where Eq. 3.75 comes from.

Figure 3.10: Graphical representation of the collision avoidance constraint

Fig 3.10 presents what was already presented for the wall constraints for the case
of collision avoidance. Cyz = 0 means the state is on the boundary of the collision
zone. Cyz = Υyz is the limit that defines the critical area, while Cyz = ζyz delimits
the collision avoidance influence area.

It should be reminded that the collision avoidance technique described here refers
to the case in which only two satellites are considered and one of theses satellites is
placed in the center of the EH frame. As a consequence, the collision avoidance is
later on re-formulated for N satellites and presented in Chap. 3.4.3.

3.4.2.3 Lyapunov Thresholds

The individual Lyapunov thresholds Γi are calculated independently for each con-
straint and then, the minimum among them is taken and used in Eq. 3.49. In this
section, the different individual thresholds are derived based on the derivations of
the constraints in the previous sections.

Γtime is calculated starting from the control input Eq. 3.34. The component in the
tracking error direction, normalized by the tracking error module, is

ûc = ‖B∗P ρ̂e‖ (3.87)
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where ρ̂e = ∆∂α
‖∆∂α‖ is the current tracking error direction. The value of the desired

control acceleration can be calculated taking the square root of the sum of the squares
of ud,ip and ud,oop as given in Eq. 3.64 and 3.65.

ud =
√

u2
d,ip + u2

d,oop (3.88)

ud represents the needed control input when the maneuver has to be executed in a
given number of orbits, i.e. when there is a time constraint. The ratio between ud

by ûc is the tracking error in ρ̂e direction required to obtain the controller input ud.

‖∆∂αreq‖ =
ud

ûc

(3.89)

According to Eq. 3.35 there is a Lyapunov value corresponding to ∆∂αreq. This
Lyapunov value is defined as the Lyapunov constraint Γtime.

Γtime =
1

2
‖∆∂αreq‖2 =

1

2

(

ud

‖B∗P ρ̂e‖

)2

(3.90)

In Eq. 3.90 the pseudo-inverse of B, B∗, and the feedback gain matrix P are com-
puted at the ∆V -optimal mean arguments of latitude for in-plane reconfigurations
ϕ̄ip and for out-of-plane reconfigurations ϕ̄oop (Steindorf et al., 2017). Thus, P will
just be the identity matrix.

The same reasoning is applied to derive the thrust constraint for the Lyapunov
threshold Γthrust, substituting ud with the ratio of the maximum desired thrust
Fdesired and the spacecraft mass msc.

Γthrust =
1

2

(

Fdesired/msc

‖B∗P ρ̂e‖

)2

(3.91)

It is important to note that the time and thrust constraints cannot be applied
simultaneously. The Lyapunov threshold for the wall constraints can be found by
using the margin of the constraint

Ci = |cT
i ∂αa − di| (3.92)

which is defined in Eq. 3.69. Rewriting the margin Ci in Lyapunov form of Eq. 3.35
yields

Γi =
1

2
C2

i =
1

2
(cT

i ∂αa − di)
2 (3.93)

Similarly, the margin of the circular no-entry-zone is given by

Ci = ‖GT
i ∂αa − xi‖ − ri (3.94)

144



3.4 Plant Inversion-Based Lyapunov Control Combined with a Reference Governor

where Gi, xi and ri are are defined in Eq. 3.71. In analogy to Eq. 3.93, the Lyapunov
threshold for the circular no-entry-zone constraint 3.71 can be formulated by

Γi =
1

2
C2

i =
1

2

(

‖GT
i ∂αa − xi‖ − ri

)2
(3.95)

The Lyapunov threshold for the passive collision avoidance constraint is determined
by first calculating the minimum cross-track separation given by D’Amico (2010) for
near-circular orbits with ∂a = 0

∂rmin
yz =

√
2|∂e · ∂i|

(∂e2 + ∂i2 + ‖∂e + ∂i‖ · ‖∂e − ∂i‖)1/2
(3.96)

The maximum allowable tracking error ∆∂αmax can be determined by performing a
first order Taylor expansion of Eq. 3.96 at the actual relative state ∂α and is given
by

∆∂αmax = ∆∂α





1 − ∂rmin
yz − ε

[

0
∂∂rmin

yz

∂∂ex

∂∂rmin
yz

∂∂ey

∂∂rmin
yz

∂∂ix

∂∂rmin
yz

∂∂iy

]

∂α
· ∆∂αa





 (3.97)

In 3.97 the state vector is considered to be made just of the ∂e and ∂i vector
components because they are the only one influencing the êy-êz plane inter-satellite
distance. The denominator in Eq. 3.97 describes the unit change of ∂rmin

yz for an
increase of the tracking error, while the numerator is the margin of the constraint
(see the defintion of ε in Eq. 3.77). Therefore, the fraction describes how much the
tracking error is allowed to become larger. It is noteworthy that an increase of the
tracking error not always results in a smaller ∂rmin

yz . The fraction nominator indicates
how much the minimum distance ∂rmin

yz is allowed to decrease before reaching the
allowed minimum value ε. The denominator quantifies the decrease of ∂rmin

yz when
the tracking error increases in the current direction, supposed constant. Since this
rate of change is negative (from the previous assumption), the quantity inside the
brackets has the form of 1 + ∆, where ∆ represents how much the tracking error
can still increase before reaching ∂rmin

yz = ε. The entire expression calculates the
maximum allowed tracking error which can be used in Eq. 3.35 to calculate the
Lyapunov threshold relative to collision avoidance.

Γyz =







1
2
∆∂αT

max, for
[

0
∂rmin

yz

∂ex

∂rmin
yz

∂ey

∂rmin
yz

∂ix

∂rmin
yz

∂iy

]

· ∆∂αa < 0

∞, elsewhere
(3.98)

As previously mentioned, for this reasoning to be valid, an increase in tracking error
should lead to a decrease of ∂rmin

yz . If the opposite happens the Lyapunov threshold
relative to collision avoidance is not effective anymore and it should be eliminated.
A way to implement this, is to set it equal to infinity and it will be ignored during
the calculation of the overall Lyapunov threshold. The overall Lyapunov threshold
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is then derived by computing the minimum of all individual Lyapunov thresholds.

Γ = min {Γtime, Γthrust, Γi, Γrn} (3.99)

3.4.3 Extension to N Satellites and Collision Avoidance

A controller for two satellites, leader and follower, flying in formation has been
introduced so far in this chapter. The control action is jointly executed by both
spacecraft as a function of the sign of the resulting control input vector. If the control
law in Eq. 3.34 yields a positive control input it is executed by the follower, while,
if the u vector has a negative sign, it is executed by the leader. It is clear that the
main aim of this controller is maintaining a given relative configuration, neglecting
the absolute orbital elements of both satellites and supposing that the EH frame is
always centered on the leader spacecraft.

However, SFF mission design usually follows another approach. A virtual leader
performs a given reference orbit and, in the general case, the center of the EH frame
does not coincide with a physical satellite. Once established, the formation is consti-
tuted by more than one follower. The N satellites belonging to the formation have
their own controller based on their own ROE vector, describing the relative motion
with respect to the virtual leader. Each satellite ignores the presence of the other
satellites if no communication between them is established. For collision avoidance
purposes the spacecraft should in fact communicate and know the ROE vectors of
all the other satellites of the formation.

That the key difference between the approach discussed previously and the extension
to N satellites formation lies in the impossibility of performing a control action
on the leader. In Chap. 2.5.5 the state propagation matrix A and control input
matrix B have been introduced. The A and B values depend on the absolute orbital
elements of the leader or follower when the control action is executed respectively on
the leader or follower. In the extension to N satellites the control action is always
executed on the follower. For this reason A and B always refer to the follower
satellite where the controller is applied.

Another key difference between the single leader/single follower approach and the
N satellites application is the collision avoidance strategy. In the previous sections
a passive collision avoidance approach has been developed defining a maximum
distance between the follower and the center of the EH frame. Applying the same
concept to a formation of N satellites would not be effective since the satellites would
not be able to come close to the origin of the relative frame, but they could collide
when they are far from it. For this reason, a new collision avoidance strategy has
been developed, however with the need of a functioning inter-satellite communication.
In the following sections two different strategies are presented.
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3.4.3.1 Collision Avoidance

The idea at the base of the first collision avoidance strategy is the introduction of
terms in the potential field of Eq. 3.53 that make the overall potential field positive,
when two satellites get too close to each other: the closer the satellites are, the higher
the overall potential becomes. In case of N satellites, N − 1 potential terms need
to be introduced. Fig. 3.11 shows the specific case of N = 4, when the controlled
satellite is Satellite 1, which sees three more spacecraft. In this situation to the
existing potential field, three more terms need to be added, one for each collision
harm. In Fig. 3.11, since there are three satellites that Satellite 1 can possibly collide
with, there will be three more terms. At the same time, Satellite 2 needs three more
terms as well, to avoid collision with Satellites 1, 3 and 4 and so on.

Figure 3.11: Schematic of communication process between the controlled Satellite 1
and the formation

Eq. 3.100 is the updated potential field gradient expression, where the N −1 collision
avoidance terms appear as ∇φαj.

ρ = −∇φ̄ − ∇φix − ∇φey − ∇φi − ∇φαj
j = 1 : N − 1 (3.100)

Let the i-th satellite of the formation be the one where the control action is executed.
Let j-th satellite be an in-view satellite for which the collision risk needs to be
excluded. Let ∆s∂αj be the norm of the vector difference between the i-th and the
j-th satellites ROEs (Eq. 3.101 and 3.102).
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(3.102)

∆s∂αj = ‖∂αi − ∂αj‖ a (3.103)

The semi-major axis of the leader a is added to make the upcoming definition of a
threshold for collision avoidance clearer. For any type of formation or any relative
configuration, collision surely happens when two spacecraft have the same ROE
vector. In other words, when the sum of the squared difference between each i-th
and j-th ROE approaches zero, the i-th and j-th satellites are colliding. This leads
to the definition of an influence area, inside which there is collision harm, defined by
a given value of ∆s∂αj. Letting this user-input threshold value be Cs, the potential
φαj

is defined by

φαj
=

{

a
∆s∂αj

if ∆s∂αj ≤ Cs

0 if ∆s∂αj > Cs

}

(3.104)

where a is again the leader semi-major axis that makes the potential non-dimensional.
Fig. 3.12 shows that this simple approach leads to the desired behavior. In fact,
when the inter-satellite euclidean distance decreases the potential increases with the
inverse of the distance, acting as a force pushing the satellites far from each other.
When the distance between the j-th and i-th satellites is greater than the threshold
Cs the collision avoidance potential term does not have any influence on the overall
potential.
Inside the influence area delimited by Cs, ∇φαj

should be able to change the overall
potential gradient from negative (attractive) to positive (repulsive). Since the only
negative potential gradient is the global potential field gradient, when ∆s∂αj < Cs,
∇φαj

direction should be opposite to ∇φ̄ with a magnitude of φαj
. This is expressed

by the following Eq. 3.105.

∇φαj
= φαj

·
(

−∇φ̄
)

(3.105)

Calculation of ∇φαj
is done for each of the N − 1 satellites (j Ó= i) and included in

ρ calculation, as seen in Eq. 3.100.

Alternative Approach

The alternative approach performs collision harm detection in the same way discussed
before, i. e. checking if ∆s∂αj is less or equal than Cs. After checking whether the
satellites are inside the collision influence area, the idea is to define the potential
directly as a function of the single ROE differences between the i-th and j-th satellite,
without using the global potential. As an advantage, when the satellites are close to
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Figure 3.12: The potential function for collision avoidance as a function of the dis-
tance between any two satellites

each other, the gradient acts to increase only the specific relative elements that have
close values. In this way, the satellites feel a repulsive force in the same direction in
which they are colliding. The expression of ∇φαj

is shown in Eq. 3.106.
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Comparison

To compare and evaluate the two collision avoidance strategies an ATF maneuver
has been selected. Four satellites are placed on the same orbit at distinct positions
of 200 m, 100 m, 0 m and −100 m distance to the origin of the EH frame. Satellite 1
has to change its position from 200 m to −200 m which would cause him to collide
with the other satellites. Initial and target conditions are given in Tab. 3.1.
Fig. 3.13 shows the trajectories of the four satellites while applying the main collision
avoidance strategy. It can be seen that only the satellites, whose trajectories coincide,
are moving. Satellite 1 increases the spiral size in order to avoid collision with the
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Table 3.1: Initial and target states of the ATF scenario to evaluate the collision
avoidance methods in ROEs in [m].

Initial conditions Target conditions
Satellite 1 2 3 4 1 2 3 4
∂a 0 0 0 0 0 0 0 0
∂ex 0 0 0 0 0 0 0 0
∂ey 0 0 0 0 0 0 0 0
∂ix 0 0 0 0 0 0 0 0
∂iy 0 0 0 0 0 0 0 0
∂u 200 100 0 -100 -200 100 0 -100

other satellites. When it finally arrives at its target location y = −200 m, it does
not manage to stop quickly. It needs to reduce the orbit size slowly, traveling for
100 m further, coming back and moving forward again. This is due to the use of a
very low thrust propulsion system, which requires time for significant orbit changes.

Figure 3.13: Main collision avoidance method performing an ATF scenario with
Cs = 25 m.

Fig. 3.14 shows the trajectories of the four satellites while applying the alternative
collision avoidance strategy. Here, the motion of Satellite 2 becomes more convoluted
and Satellite 3 moves as well. Using this method, a greater ∆V consumption is needed
except for Satellite 4 which does not perform any motion. This can be seen from Tab.
3.2 which presents the ∆V consumption per satellite and in total for both methods.
The analysis and comparison between the two approaches reveal that both methods
accomplish collision avoidance. Although the alternative approach requires a ∆V
consumption for the satellites that are not performing the maneuver as well. As
Method 1 is more fuel-efficient, it has been selected as more suitable for the con-
troller in replacement of the original single follower/single leader collision avoidance
strategy.
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Figure 3.14: Alternative collision avoidance method performing an ATF scenario
with Cs = 25 m.

Table 3.2: ∆V consumption during ATF scenario while performing different collision
avoidance methods (Cs = 25 m) in [m/s].

Satellite ∆V Method 1 ∆V Method 1
1 0.0838 0.0945
2 0.0320 0.0628
3 0 0.0274
4 0 0
Sum 0.1158 0.1847
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Chapter 4

Sensor and Actuator Systems

4.1 Overview

This chapter presents sensor and actuator systems that are essential for SFF, ranging
from navigation sensors, attitude sensors and actuators to propulsion systems, to
analyze, what is required to compose a functioning and comprehensive overall GNC
system for a SFF satellite. For each type, characteristics and limitations are depicted
as well as a typical example is given. In addition, typical filtering or control methods
are explained as well as common verification approaches. The set of sensors and
actuators may vary significantly based on the individual mission goal and duration,
autonomy requirements, the satellites’ size, the selected main orbit, disturbances
present in this orbit, chosen formation topologies and maneuvers, pointing/posi-
tioning accuracy requirements etc. Thus, the examples are based on the NetSat
mission, since it shows many common characteristics and requirements of typical
SFF missions.

4.1.1 Accuracy Requirements

Different SFF missions and applications demand various requirements in terms of
measurement and control accuracy. The scaling laws defined by Gill et al. (2010)
present a guideline for mission planning of such missions. They provide an initial
guess on required accuracies for SFF by contrasting different GNC parameters with
the relative distance / along-track separation. They are presented in Tab. 4.1.
Although they can be a helpful initial guess, the parameters for each individual
mission depend on many more factors and have to be decided on a case-by-case
basis.

4.2 Sensor Systems for Satellite Formation Flying

Sensor systems for SFF span from attitude sensors like sun sensors and magnetome-
ters to navigation sensors like GNSS. Even the ISL has to be considered as a sensor
system, because it (indirectly) provides relative position and velocity measurements.
There are typical performance requirements that apply to all kinds of sensors like the
accuracy i.e. the quality of the orientation measurement with respect to a reference
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Table 4.1: Gill’s scaling laws for mission analysis of GNC parameters in SFF (Gill
et al., 2010).

Parameter Variable/Relation Sample Scenario
Along-track separation d1 10 km
Control window size dcw = d1 · 10−1 1 km
Control accuracy requirement σc = dcw · 10−1 100 m
Navigation accuracy requirement σn = σc · 10−1 10 m

direction for an attitude sensor or the quality of position measurement with respect
to a reference point for a navigation sensor. The range in which a sensor can provide
reliable values is another typical performance requirement. For attitude sensors it
may be the variation width of the angular motion where the accuracy requirements
can still be met or for navigation sensors the variation of velocity measurements
within which the accuracy requirements still hold.

4.2.1 Attitude Sensors

The selection of attitude sensors depends on the mission requirements like accu-
racy (see Chap. 4.1.1), available mass, size, electrical power and thus is highly
mission-dependent. On the other hand, the selection of attitude sensors affects the
performance of the mission and its schedule. For the NetSat mission the selected set
of attitude sensors (detailed in the next sections) allows for attitude determination
with an accuracy of up to 1°, but limits this to two axes during eclipse time due to
the unavailability of sun sensors in this phase. Thus thrust maneuvers have to be
planned in sun time. In the following sections, typical attitude sensors are detailed,
however the sensor selection is limited to those required for typical formation flying
missions like NetSat. Further sensors providing e.g. higher accuracy as required by
some scientific missions are not covered here.

4.2.1.1 Inertial Measurement Units

An Inertial Measurement Unit (IMU) is a device that measures angular velocities
and accelerations that act on it. This is enabled by including gyroscopes and ac-
celerometers on all axes. Nowadays especially on small satellites sensors based
on Micro-Electro-Mechanical Systems (MEMS) are commonly used, due to their
small size and low power consumption. Typical sensors for space applications show
accuracies of 0.01 ° s−1 or better for the gyroscopes and 10 mg or better for the ac-
celerometers (cf. e.g. Bosch Sensortec GmbH (2012)). However, IMUs typically
suffer from sensor drift which leads to an accumulation of their errors over time.
Thus, depending on the chosen IMU sensor orientation or position values computed
from its sensor data are not reliable any more after seconds to minutes and another
sensor (e.g. sun sensor, GNSS) is required for recalibration. Because of that, IMUs
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are commonly used in combination with other sensors to complement orientation or
position measurements especially when other sensors are temporary not available.

In the NetSat mission MEMS-based IMUs are used from the manufacturer Bosch
Sensortec GmbH, namely the BMX055 Digital 9-axis sensor as depicted in Fig. 4.1.
They are placed inside the satellites on the Attitude Determination and Control
System (ADCS) Printed Circuit Board (PCB) and the outer panels for redundancy
reasons. They provide an accuracy of 0.004 ° s−1 for the gyroscopes and 0.98 mg
for the accelerometers. Within the ADCS of NetSat sensor values are filtered with
the help of a Kalman filter and used for attitude propagation, which is a common
approach for space missions.

Figure 4.1: Inertial Measurement Unit BMX055 from Bosch Sensortec GmbH used
e.g. in the NetSat mission. (Image courtesy: (Bosch Sensortec GmbH,
2012))

IMUs can be tested by providing an external controlled rotation rate and an external
controlled acceleration. This can be provided e.g. by dynamic test facilities (so-called
turn tables). Such a facility is situated in Würzburg, Germany at the S4 - Smart
Small Satellite Systems GmbH and is depicted in Fig. 4.2. This facility is able to
provide highly accurate rotation rates with an accuracy of 0.0001 ° s−1 (S4 - Smart
Small Satellite Systems GmbH, 2019). Thus the angular velocities and accelerations
provided by an IMU can be verified. Further, such facilities are used to calibrate
IMUs before launch.

IMUs are a very common and useful type of attitude sensor and are part of almost
every satellite due to their small size and low power consumption and their ability
to bridge gaps in measurements of absolute sensors like sun sensors during eclipse or
GNSS during outages. However, the usage of IMUs alone is not reasonable because
their errors accumulate significantly over time.
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Figure 4.2: Dynamic test facilities (turn tables) at S4 - Smart Small Satellite Systems
GmbH, Würzburg providing high accuracy pointing and rotation to test
attitude sensors. (Image courtesy: S4 - Smart Small Satellite Systems
GmbH)

4.2.1.2 Magnetometer

The next attitude sensor type of interest are magnetometers, which measure magnetic
fields or more precisely magnetic flux. Common sensors provide measurements
already in three dimensions, so a magnetic flux vector þB is provided. Typical sensors
provide accuracies of 1 µT or better (cf. e.g. NewSpace Systems (2020) or Bosch
Sensortec GmbH (2012)).

In space applications the surrounding magnetic field of the Earth is of interest. With
the knowledge of the (rough) position of the satellite and a model of Earth’s magnetic
field, the satellite’s orientation can be computed. However, the orientation can only
be determined in two axes. The orientation along the axis parallel to the Earth’s
magnetic field lines cannot be computed, since it cannot be derived from the magnetic
field / flux vector (only the direction of the vector can be measured, not the rotation
around this vector). In addition, the real measured Earth’s magnetic field may
be different to the model stored on-board the satellite due model uncertainties or
time-varying disturbances. Further, because Earth’s magnetic field changes quickly
around the poles, the accuracy of the orientation determination around the poles
decreases. Here additional sensors like IMUs are especially helpful. Magnetometers
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can also be disturbed by electric or electronic components on-board the satellite
itself, since the generated currents create magnetic fields. Thus a superposition of
Earth’s magnetic field and the satellite-dependent disturbance fields is measured.
Thus it is highly recommended to separate magnetometers from the strong currents
on-board the satellites. This may be achieved by placing the sensors on the outer
panels. Some satellites with extremely high accuracy requirements also implement
booms where the magnetometers are placed on (e.g. the ESA SWARM mission).
Magnetometers are part of almost every mission because of their low costs, robustness,
small size and low power consumption. E.g. in NetSat the combined sensor BMX055
Digital 9-axis sensor (Bosch Sensortec GmbH, 2012) is placed on all panels and on
the ADCS PCB for redundancy reasons and provides three-axis magnetic field / flux
measurements with an accuracy of 0.3 µT with a size of 3 mm × 4.5 mm × 0.95 mm.
The magnetic flux measurements are fed into a Kalman filter with which the satellite’s
orientation can be determined (in two axes) with an accuracy below 5°.
Magnetometers require a precisely controlled external magnetic field to be tested and
calibrated. Usually a set of three Helmholtz-coils (on in each spatial direction) is used
for this purpose. Thus, the Earth’s magnetic field on ground (measured with another
already calibrated magnetometer) can be compensated and a precomputed magnetic
field vector as it would be expected on a certain position in orbit can be applied.
A typical test facility is the three-axis Magnetic Coil Facility at ESA’s European
Space Research and Technology Centre (ESTEC) shown in Fig. 4.3. However, any
calibration is preferably repeated in orbit.

Figure 4.3: Three-axis Magnetic Coil Facility at ESA’s ESTEC in Noordwijk, the
Netherlands consisting of three perpendicularly placed Helmholtz coils.
(Image courtesy: ESA)

Magnetometers are among the most common attitude sensors due to their small size,
low power demands and low costs. They can provide reliable, though not highly
accurate attitude determination in two axes. Usually they are combined with other
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sensors which can bridge gaps during outages (e.g. over the poles) and sensors which
can provide the orientation along the third axis (e.g. sun sensors, star senors).

4.2.1.3 Sun Sensors

Sun sensors are a type of sensor that determines the sun angle relative to the sensor,
in detail determines the vector from the sensor towards the sun. There are different
types of sensors ranging from quadrant photo diodes to camera systems, depending
on accuracy requirements. Sun sensors are placed on almost every Earth orbiting
satellite and commonly multiple sensors are installed per satellite to be able to track
the sun continuously. Typical sun sensors for small satellites provide accuracies in
the order of 1° or better (cf. e.g. Solar MEMS Technologies (2016)). However, sun
sensors cannot work during eclipse phases where the sun is not visible. In LEO
orbits this phase is approximately 30 min per orbit period of approximately 90 min.
In addition, sun sensors may not be able to determine a sun vector, if the satellite is
rotating too fast. So depending on the selected sun sensor and the tumbling rate of
the satellite, first a detumbling (e.g. using magnetometers and magnetorquers) has
to be performed. (This also applies to other vision-based attitude sensors like Earth
or star sensor.)

In NetSat a specific miniature camera with adapted software and optics is used as
sun sensor (cf. Fig. 4.4). The sensor developed by OptaSensor GmbH features
a resolution of 250 pixel × 250 pixel within a volume of 1.0 mm × 1.0 mm × 1.7 mm
and a nominal power consumption of less than 4.2 mW. In NetSat a specific lens with
a field of view of 90° is used so that the sun can be tracked continuously, if one sensor
is placed on each side of a CubeSat. Sun estimation and sun vector computation is
performed with a self-developed algorithm (Chmiela, 2018).

To test and calibrate a sun sensor both a sun simulator generating sun-like light with
the correct spectrum and comparable intensity as the sun and dynamic test facilities
(turn tables) as depicted in Fig. 4.2 are required. With such a facility the sensor
(or the complete satellite including the sensor) can be oriented in a well-defined way
with respect to the simulated sun, so that the sun sensor can be calibrated and
its performance can be validated. Fig. 4.5 shows such a calibration setup whereas
Fig. 4.6 shows a calibration matrix with the measured accuracies for the different
pixels of the camera / sun sensor. If the sensor is calibrated properly, an accuracy
of approximately 0.1° can be reached (Chmiela, 2018).

Sun sensors are another common and useful attitude sensor. Within the last years
miniaturization led to smaller and smaller sensors so that they can be easily inte-
grated into any satellite, especially CubeSats. Sun sensors can provide three axis
attitude information with accuracies of at least 1°. Their main drawback is their
unavailability during eclipse times. Within these time frames other attitude sensors
like magnetometers and IMUs are required to bridge the gap or a lower accuracy
has to be accepted.
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Figure 4.4: NetSat sensor bar located at the lower end of each 3U panel. It
holds a GNSS antenna, a retro-reflector as well as the adapted minia-
ture camera used as sun sensor (highlighted in red) with a size of
1.0 mm × 1.0 mm × 1.7 mm. (Image courtesy of the author.)

4.2.2 Navigation Sensors

Navigation sensors are required to determine the relative and absolute positions and
velocities of satellites within a formation. (As a minimum, the absolute position
of one leader satellite together with the relative positions of the other satellites
of the formation with respect to this leader satellite are required.) SFF imposes
high demands on navigation sensor systems. Although high accuracy is desirable,
also other characteristics like size, weight, complexity or cost need to be taken into
account especially for small satellite missions. Hence, to select suitable sensors for
SFF missions, a Design Option Tree (DOT) is presented in Fig. 4.7. The most
inexpensive and uncomplicated approach is the use of TLEs, but it is also the most
inaccurate one. Thus it is not recommended and not suitable for most of the formation
flying applications. The accuracy achievable with this approach is about 30 - 100 m
in radial and cross-track direction and better than 500 m in along-track direction
(Gill, 2011, Kirschner et al., 2001). In addition, this accuracy decays over time and
TLEs usually are updated only on a daily base as a maximum. Absolute navigation
sensors like GPS or other GNSS sensors provide higher accuracies up to few meters
within a size that is suitable for small satellites. More accuracy can be achieved
by relative navigation sensors like cameras, which provide, depending on the range
sub-centimeter accuracy, but occupy – depending on the optics – significantly more
space. An intermediate solution is the use of radio-frequency based ranging, which
typically provides less accuracy than optical systems, but on the other hand can be
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Figure 4.5: Calibration and verification setup for a sun sensor using a dynamic test
facility (turn tables) and a sun simulator. The 3U CubeSat with the sun
sensor is placed on the turn table on the left hand side, which can perform
highly precise orientations, and is illuminated by the sun simulator on
the right hand side. (Image courtesy: S4 - Smart Small Satellite Systems
GmbH)

used for larger relative distances and requires less pointing accuracy of the sensor
itself towards the targeted other satellite. In addition, this sensor may be combined
with the ISL communication system and thus saving volume, mass and power within
the satellite.
Among these presented different sensor options only few are of special interest to
SFF by providing sufficiently high accuracy over a significantly large range of inter-
satellite distance. These are mainly GNSS sensors as well as radio-based ranging
systems. Thus, these are detailed in the following sections.

4.2.2.1 GNSS Sensors

Global Navigation Satellite System (GNSS) sensors are the most common sensor
type among relative navigation sensors. Especially on small satellites where other
larger navigation sensors are infeasible, GNSS sensors are often the only option.
They use reference signals by a GNSS satellite constellation like the American GPS,
the Russian GLONASS, the European Galileo or the Chinese BeiDou network to
determine its position and velocity. Several satellites of the used GNSS constellation
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Figure 4.6: Results of sun sensor / camera calibration showing the calibrated and
verified accuracies for the different pixels of the sensor (Chmiela, 2018).

have to be within the field of view of the sensor. (At least four to get an unambiguous
position in three dimensions.) This is feasible in LEOs, as long as no shading e.g.
by the satellite itself or misalignment of the GNSS antenna with respect to the
GNSS constellation occurs, since the GNSS constellations are located above LEO
satellites in Medium Earth Orbits (MEOs). Small satellites and CubeSats with
higher accuracy requirements usually implement a GNSS receiver with an attached
antenna, however for redundancy reasons also multiple receivers/antennas may be
incorporated. The sensors typically provide a state vector (position and velocity)
measurement at least every second with an accuracy of 40 m for position and 1 m s−1

for velocity or better. In addition, a time signal based on the GNSS reference signal
is provided with typical accuracies better than 100 ns (cf. e.g. NovAtel Inc. (2020)).
Besides the mentioned shading and antenna misalignment which can lead to unsteady
measurements, if not enough satellites of the GNSS constellation are in the field of
view of the GNSS antenna, one major disadvantage is the required start-up time
of the sensor. Depending on the duration of inactivity the start-up phase may last
from 1 min to 12 min, because a list of orbit parameters of the GNSS constellation
satellites, which is part of the GNSS signal itself, has to be received.

In NetSat four redundant GNSS receiver/antenna pairs are incorporated, one set on
each of the four 3U side panels. So no pointing of the antennas towards the GNSS
constellation is necessary and at least two receivers can receive multiple GNSS signals

161



Chapter 4 Sensor and Actuator Systems

Sensor Selection 

Design Option Tree

No Sensor

External  

Measurements

Relative Two Line 

Elements

Sensor

Absolute Navigation 

Sensor

GPS

Ground-based Tracking

Relative Navigation 

Sensor

Radio-frequency (RF)

Optical

Figure 4.7: Design Option Tree (DOT) for formation flying sensor selection. Yellow
boxes indicate sensor hardware, whereas gray boxes indicate sensor types
(Gill, 2011).

continuously. Thus, redundancy is implemented. As GNSS sensor a GNSS200 by
Hyperion Technologies B.V. is chosen (cf. Fig. 4.8). It has been selected because
of its small size of 20 mm × 15 mm × 3 mm and low power consumption of less than
150 mW at peak. This allows for the described highly redundant setup. The sensor
provides an accuracy of better than 8 m in postion (Hyperion Technologies B.V.,
2019).

Position determination based on a GNSS sensor can be improved by filtering. In
NetSat e.g. a Kalman filter is implemented which improves the accuracy of the
determination to below 5 m in position and below 0.1 m s−1 in velocity (Kunzi, 2018).
GNSS receivers can be tested in multiple ways. A sensor can be placed just under
open sky and reception as well as accuracy can be verified. However, typical envi-
ronmental conditions as well as velocities as encountered in LEO are not in place
(e.g. typical satellite velocity in LEO is about 7.5 km s−1. There are specific GNSS
simulators (e.g. the GNSS hardware simulator at DLR Institute of Communications
and Navigation in Oberpfaffenhofen, Germany as depicted in Fig. 4.9) which can
generate GNSS signals as if the receiver would be in a specific predefined orbit. Thus
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Figure 4.8: GNSS receiver for small satellites by Hyperion Technologies B.V., Delft,
Netherlands providing accurate position and velocity measurements in
space within a size of 20 mm × 15 mm × 3 mm. (Image courtesy: Hyper-
ion Technologies B.V.)

realistic signals can be simulated and GNSS receivers can be evaluated properly.
However, as such a simulator is directly connected to the GNSS receiver, realistic
testing of the antenna is not possible. The described open sky test is more suitable
for antenna evaluation. There are also specific anechoic chambers to evaluate various
types of antennas.

Figure 4.9: GNSS hardware simulator at DLR Institute of Communications and
Navigation in Oberpfaffenhofen, Germany. (Image courtesy: DLR)
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GNSS sensors are one of the most common navigation sensors in space and espe-
cially in small satellites mostly the only sensor implemented. They provide high
accuracy position and velocity measurements with high frequency and can be nearly
continuously active. They are relatively small and show very low power requirements.
Thus, for most of the small satellite applications with position/velocity requirements
(including SFF) GNSS sensors are the most suitable choice. To gain best results,
the use of a filter (e.g. Kalman filter) is highly recommended. If accuracies below
1 m are required, different sensors have to be considered. Also extensions to GNSS
like Differential GPS can be considered, if accuracy requirements concern only the
relative position/velocity between satellites.

4.2.2.2 Radio-Based Ranging

In contrast to GNSS-based navigation, radio-based ranging (or inter-satellite ranging)
is a method to determine relative distances between satellites. Radio signals are
transmitted from one satellite to another. The time of flight of the radio signal
is measured and with it the relative distance between sender and receiver can be
computed. No absolute position with respect to Earth and also no three-dimensional
state vector can be obtained, though. On the other hand, radio-based ranging can
provide relative distances with very high accuracies in the order of 10 cm (cf. e.g.
Tang et al. (2018)). The accuracy correlates with the time of flight measurement, so
highly accurate clocks/oscillators on-board the satellites are required. In addition,
active transmitters and receivers have to be implemented on the involved satellites.
One specific approach is the so-called Two-Way Ranging where both receivers and
transmitters are integrated on each satellite and the ranging is performed in a way
that the transmitted signal from one satellite is received by a second satellite and
directly sent back to the first satellite. So two measurements are performed in parallel
and errors induced by offsets between the clocks on the two satellites (which is one
main error source) are compensated. Other main error sources are temperature,
solar influence and Doppler shift among the satellites. The last one can be reduced
by partial correlation, whereas influence of temperature and sun can be reduced by
avoiding orientations where the antennas are facing sun or earth (Alawieh et al.,
2016).
Radio-based ranging has been used in few space missions so far, e.g. the Chinese
BeiDou constellation where it is included to improve the accuracy of the GNSS mea-
surement by gaining more accurate knowledge of the satellites’ positions (combined
with ground-based ranging as absolute reference). The satellites of the latest gener-
ation are equipped with Ka-band phased array antennas capable of beam forming.
Radio-based ranging has been evaluated showing accuracies of approximately 10 cm
(Tang et al., 2018).
For CubeSats radio-based ranging has been studied within the GAMALINK project1

(Alawieh et al., 2016). However to the knowledge of the author, radio-based ranging
has not been used on CubeSats so far, nor are market-ready products available.

1http://gamalink.tekever.com/
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Radio-based ranging is a new method that can theoretically provide high precision
relative distance measurements among satellites. Up to now, this technology is not
ready for small satellites, especially CubeSats, but shows potential for application
in the near future as miniaturization advances.

4.2.3 Inter-Satellite Link

The Inter-Satellite Link (ISL) is included as sensor system for SFF here as well,
because it indirectly provides navigation information that is required for SFF. An
ISL is any direct communication link between satellites. Since in most SFF missions,
especially in small satellite missions, the satellites are equipped with GNSS sensors for
position/velocity determination, ISL is required to exchange such position/velocity
information, so that the satellites are able to compute relative state vectors. These
are required for e.g. forming the EH frame or computing ROEs and to perform
formation control. Because of that, ISL is a crucial technology for SFF as long as
there are no relative state measurements available. ISLs are commonly based on radio
communication e.g. in UHF or S-band, but also optical links are possible. No matter
which medium is used, ISLs are always limited in range (e.g. in the order of 100 km for
UHF) and thus limit the possible formation baseline. However, thrusting capabilities
to maintain such formation baselines are commonly more limiting. In addition,
ISLs need to guarantee a regular position/velocity state exchange with at least the
frequency that is demanded by the mission and formation control requirements (e.g.
once per orbit for looser formations up to once per second for close range high
precision formations). Of course, both range of the ISL as well as communication
frequency are limited by the available power on-board the satellite.
In NetSat an UHF transceiver with omnidirectional antenna (cf. Fig. 4.10) is
implemented in each satellite and used as ISL. As transceiver a NanoCom AX100
from GOMSPACE A/S, Aalborg, Denmark is used (GomSpace A/S, 2019) wheras
the omnidirectional redundant crossed dipole antenna is an in-house development.
In first in-orbit experiments in NetSat the ISL proved its functionality and exceeded
all expectations by being capable of bridging distances of up to 1000 km, whereas
only distances of up to 100 km were foreseen.
ISLs are no sensor systems for SFF in the classical sense, but are a critical technology
for navigation in SFF, because relative position/velocity states can typically only be
generated with the help of ISLs.

4.3 Actuator Systems for Satellite Formation Flying

Actuator systems for SFF span from attitude actuators like reaction wheels and
magnetorquers to propulsion systems like impulsive or CLT thrusters. There are
typical performance requirements that apply to all kinds of actuators like the accuracy
i.e. the quality of the achieved attitude or position compared to the commanded
state. Another typical performance requirement is the range in which the actuator
can perform it’s actions (and in which the accuracy requirements are met). In
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Figure 4.10: A NetSat satellite with deployed redundant crossed dipole antennas in
UHF band. (Image courtesy: Zentrum für Telematik e.V.)

addition, there are few performance requirements that apply to attitude actuators
or propulsion systems only and which are mentioned there.

4.3.1 Attitude Actuators

The selection of appropriate attitude actuators depends on the mission requirements
like accuracy (see Chap. 4.1.1), available mass, size, electrical power as well as the
mission goal and thus is highly mission-dependent. On the other hand, the selection
of attitude actuators affects the performance of the mission and its schedule. For
the NetSat mission e.g. the selected set of attitude actuators (detailed in the next
sections) allows for attitude control with an accuracy of up to 1°, but limits this
to two axes during eclipse time due to the unavailability of sun sensors in this
phase. This is critical, since SFF in 3D is envisaged within the mission. Thus
thrust maneuvers have to be planned in sun time. Further, since there is only one
thruster on-board of most small satellites, the attitude actuators within the Attitude
Control System (ACS) are required to change the satellite’s direction during thrust
maneuvers. E.g. for an arbitrary change of attitude between two different thrust
vectors on a NetSat satellite up to 135 s are needed (Savran, 2020, p. 43).
In the following sections, typical attitude sensors are introduced in detail. Thrusters
can also be used for attitude control, though this is only feasible for larger satellites
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which are able to hold multiple thrusters in multiple directions and thus are not
included here.

4.3.1.1 Magnetorquer

A magnetorquer is an electromagnet that is activated within Earth’s magnetic field.
Thus, a torque is created to rotate the electromagnet with its electric field lines
antiparallel to Earth’s magnetic field lines (similar to a magnetic compass). The
torque generated by the magnetic moment þµ of an electromagnet is defined as

þTmag = þµ × þBEarth (4.1)

where þBEarth is the external magnetic field of Earth at that point. Since þa×þb = 0 ⇐⇒
þa ‖ þb, only torques perpendicular to þBEarth can be generated. Thus, detumbling and
spin stabilization, but no three-axis stabilized control is possible. The rotation along
Earth’s magnetic field lines remains arbitrary. In three-axis stabilized satellites, e.g.
as required for SFF missions, magnetorquers are commonly combined with other
attitude actuators like reaction wheels or momentum exchange devices in general.
However, they are no single solution either, because their stored momentum needs
to be unloaded (so-called desaturation) from time to time. This can be handled
by magnetorquers. In satellites, also small satellites and CubeSats, commonly a
set of three magnetorquers are implemented (perpendicular to each other). There
are two typical designs of magnetorquers, either as air coil or as rod with magnetic
core. Rods can provide higher torques than air coils, but on the other hand create a
residual dipole moment which may affect the satellite’s attitude stability, when no
attitude control is active.

For CubeSats e.g. magnetorquer of both types are available providing magnetic
moments of 0.1 A m2 or higher at nominal power consumptions of 1 W or lower with
masses below 100 g. Rods typically show residual dipole moments of 1 mA m2 (cf. e.g.
CubeSpace (2016) and ISIS - Innovative Solutions In Space B.V. (2013)). In NetSat
a set of in-house developed magnetic air coils is used with a magnetic moment of
0.06 A m2 at a nominal power consumption of 300 mW and a mass of 25 g (cf. Fig.
4.11). The magnetic coils are placed on the inner side of each 3U side panel and at
the inner side of the z-panel (below the UHF antenna). So they are redundant along
two axes.

To verify magnetorquers and magnetorquer-based attitude control an external con-
trolled magnetic field needs to be provided, preferably in three dimensions. This can
be realized with the help of a set of Helmholtz coils as described in Chap. 4.2.1.2
like e.g. the ESA three-axis Magnetic Coil Facility shown in Fig. 4.3. In addition,
an air bearing platform is necessary to allow the tested satellite/system to perform
rotations. Sophisticated testbeds combine Helmholtz coils with an air bearing table
such that magnetic attitude control can be tested on ground. One example is the
ADCS Test Facility at the Hawaii Space Flight Laboratory, Honolulu, U.S.A. shown
in Fig. 4.12.
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Figure 4.11: Inner side of the NetSat 3U side panel holding the magnetorquer. (Im-
age courtesy of the author.)

Magnetorquers are a common type of attitude actuators and part of many satellite
missions, especially also small satellites. They can be used for detumbling and
stabilization (around two axes). For three axis attitude control magnetorquers are
commonly combined with other acutators like reaction wheels.

4.3.1.2 Reaction Wheels

Reaction wheels are typical momentum exchange devices and most common among
small satellites, because other types are mostly too large and heavy for small satellites.
Reaction wheels are electric motors placed on-board a satellite with a fixed spin axis.
If the motor is activated, a torque is generated and the rotor in the motor starts
turning. Because of conservation of angular momentum, the inverse torque that acts
on the rotor acts on the satellite body and thus the satellite starts spinning in the
opposite direction of the rotor. By placing three reaction wheels perpendicular to
each other within a satellite, the satellite can be controlled or stabilized in three
axes. Besides, since reaction wheels are commonly controllable with high accuracy,
they are suitable for fine-pointing as well as slew maneuvers. On the other hand,
reaction wheels can cause – due to imbalances in the electrical motor – noise and
vibrations within the satellite. In addition, as every momentum exchange device,
reaction wheels need another attitude actuator (e.g. magnetorquer) to unload (or
desaturate) their stored momentum from time to time. Typical reaction wheels
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Figure 4.12: ADCS Test Facility at the Hawaii Space Flight Laboratory, Honolulu,
U.S.A consisting of three perpendicularly arranged Helmholtz coils and
an air bearing where the satellite/system under evaluation is placed on.
(Image courtesy: Hawaii Space Flight Laboratory)

(especially for CubeSats) are capable for rotation speeds of 5000 min−1 or higher and
are available in various sizes and torques, e.g. in the order of 2 mN m at 200 mW
power consumption and 100 g mass (cf. e.g. CubeSpace (2020)).

In the NetSat mission six cyber reaction wheels, a joined development of WITTEN-
STEIN cyber motor GmbH and Zentrum für Telematik e.V., are integrated in each
satellite, two of them in each spatial direction for redundancy reasons. Fig. 4.13
shows the assembly and placement of the reaction wheels on a PCB in NetSat.
The reaction wheels can be driven with up to 20 000 min−1 rotational speed and
provide a torque of 0.1 mN m at 300 mW power consumption within a volume of
20 mm × 20 mm × 20 mm and 30 g mass (WITTENSTEIN cyber motor GmbH, 2020).
For desaturation magnetorquers are used within NetSat.

To verify attitude control with reaction wheels an air bearing setup as described
in Chap. 4.3.1.1 (see Fig. 4.12 for an example) and which is also required for
magnetorquer evaluation can be used. Thus, attitude control based on reaction
wheels can be performed and the satellite can rotate (nearly) freely on the air bearing.
If combined with Helmholtz coils, the combination of reaction wheels, magnetorquers,
magnetometers and IMUs can also be tested.

Reaction wheels are highly precise actuators and are especially suitable for CubeSats
due to their availability in small sizes and with low power consumption. They
are integrated in missions, where precise three axis attitude control is necessary,
e.g. for Earth observation or SFF. As every momentum exchange device, reaction
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Figure 4.13: Set of six cyber reaction wheels from WITTENSTEIN cyber motor
GmbH used within the NetSat mission. (Image courtesy: Zentrum für
Telematik e.V.)

wheels need other attitude actuators (like magnetometers) for momentum unloading
(desaturation). They are commonly implemented together with them.

4.3.2 Propulsion Systems

Propulsion systems are – besides attitude actuators – the main actuator system for
satellites. Especially for SFF missions like NetSat they are essential, since they allow
for changing the satellite’s position in space. There are different types of propulsion
systems. For small satellites the availability is limited, still various models of different
types are on the market (cf. Yost and Weston (2020, pp. 47ff.)). Most of the thrusters
available for small satellites can be categorized into two types, though. Either they fall
under the category of impulsive thrust systems or Continuous Low-Thrust systems.
Both show advantages and disadvantages which will be detailed in the according
sections. The choice mainly depends on the mission’s requirements. One of the
most critical requirements is the intended mission life time, which typically ranges
from one to three years after LEOP for small satellites. Some commercial missions
though require up to five years. The life time of a SFF mission depends on the
required propellant within the propulsion systems of the satellites or more precisely
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on the total ∆V the propulsion systems can provide. From the mission life time,
the planned formation topologies (cf. Chap. 2.6) and formation baselines arises the
required total ∆V for the mission. Another requirement is the position accuracy
that is demanded while maintaining a target formation. This may be in the order
of few hundred meters, but in specific applications it may go down to few meters or
even centimeters. Based on these requirements the most suitable propulsion system
can be selected.

4.3.2.1 Impulsive Thrust Systems

Impulsive thrust systems are defined as propulsion systems that can provide high
thrusts in short time and thus can perform impulsive orbit or formation maneu-
vers. Among those, most common are chemical thrusters, which generate thrust by
emitting a gas or a mixture of gases. In small satellite missions there is typically
one thruster integrated per satellite, if orbit or formation maneuvering capability is
required. Impulsive thrusters are commonly easy to operate i.e. usually do not re-
quire a heat-up phase or other long-lasting preparation and show low power demands.
However, they are commonly less precise in the thrust that they can provide (i.e.
the minimal thrust bit that can be generated is typically significantly higher than
for CLT systems). In addition, the total ∆V that can be provided by an impulsive
thrust system is typically lower than for CLT systems. On the other hand, the
maximum thrust that can be generated is about three orders of magnitude higher.
So in contrast to CLT systems impulsive thrust systems are stronger and easier to
operate, but on the other hand less precise and less prolonged. Typical impulsive
thrusters for small satellites and especially CubeSats can provide a maximum thrust
in the order of 100 mN to 1000 mN with a power consumption in the order of 10 W
(Yost and Weston, 2020, p. 59ff.).
In NetSat no impulsive thrust system is used, however for the TOM mission the
CubeDrive chemical thruster of Dawn Aerospace Ltd., Delft, Netherlands (depicted
in Fig. 4.14) is designated. It uses Nitrous oxide (N2O) and Propene (C3H6) as
propellants and can provide up to 1000 mN thrust (at 30 °C) and a total ∆V of
about 100 m s−1 for a typical 3U CubeSat. The minimum impulse bit, which can
be generated, is 35 mN s, whereas typical power consumption during firing is 12.5 W
(Dawn Aerospace Ltd., 2020).
Impulsive thrust systems show several advantages regarding control. Since there is
no significant preparation or heat-up time necessary, control algorithms do not need
to take long-term planning into account (e.g. as MPC would be capable of) and
thus less complex methods may be used. In addition, they are capable of performing
comparably high thrusts, so no strict constraints have to be implemented within the
controller which further eases its implementation. Considering the control approaches
presented in Chap. 3, e.g. MPC-Based Formation Control is covering the needs of a
CLT propulsion system, but may not be required for an impulsive system (though still
showing benefits). On the other hand, Distributed Robust Consensus-Based Control
is not capable of maintaining hard constrains or providing long-term planning, but
may be perfectly suitable for impulsive thrust systems.
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Figure 4.14: CubeDrive chemical propulsion system to be used in TOM. (Image
courtesy: Dawn Aerospace Ltd.)

Testing of propulsion systems for satellites on ground is complicated in most cases,
because most of the thrusters can only be operated properly in a vacuum environ-
ment. In addition, a thrust gauge is required to measure the generated thrust. The
combination of both setups is very sophisticated and only few test facilities exist,
e.g. at manufacturers. One facility is located at DLR Institute of Aerodynamics and
Flow Technology in Göttingen, Germany (cf. Fig. 4.15). However testing procedures
are complicated and the usage is costly, so testing at satellite integrators is mainly
limited to the electrical interface of the thruster or its characteristics in vacuum
without verification of the thrust characteristics.

In summary, impulsive thrust systems are one of the most common propulsion
systems for small satellites, especially CubeSats, and show several advantages like
ease of use and full maneuverability with high thrusts. In addition, impulsive systems
allow for less complex control algorithms and thus simplify the development process.
On the other hand, the available total ∆V is limited in comparison to CLT systems
and thus mission with high requirements on life time or formation baselines may not
be feasible.
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Figure 4.15: Thrust measurement device with mounted thruster at DLR Institute
of Aerodynamics and Flow Technology. (Image courtesy: DLR)

4.3.2.2 CLT Systems

Continuous Low-Thrust (CLT) systems are characterized by their ability to generate
thrust with a low amplitude over long durations (e.g. minutes or hours instead
of seconds). However, this feature may be judged as a disadvantage, since most
CLT systems are only capable of providing low thrust (i.e. in the order of mN)
in contrast to other propulsion systems which are able to generate thrust with
two to three orders of magnitude higher (e.g. chemical propulsion systems). The
most common CLT systems in small satellites and CubeSats are electric propulsion
systems like Field-Emission Electric Propulsions (FEEPs), which use an electric
field to accelerate charged ions that are extracted from a heated liquidized metal
like Gallium or Indium. Typically one thruster is placed per satellite, however as
shown in the UWE-4 mission also multiple miniaturized thrusters (NanoFEEPs
by Morpheus Space GmbH, Dresden, Germany) can be integrated (Kramer et al.,
2020). Thus, thrust pointing or even attitude control is feasible. However, the
available propellant mass in such a setup may be reduced and thus the total ∆V
is limited. Electric propulsion systems usually require a heat-up phase to liquidize
the propellant (e.g. in the order of 10 min to 30 min), so that maneuvers have to
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be planned in advance. This has to be taken into account by the controller or an
overlaying scheduler has to be implemented to cover the required planning. On the
other hand, electric propulsion systems are capable of high specific impulses and thus
can provide high amounts of total ∆V , e.g. up to 1000 m s−1 for a typical 3U CubeSat
depending on the chosen thrust. (The ∆V efficiency is indirectly proportional to
the thrust magnitude.) In addition, since very low thrust is generated (typically in
the order of 50 µN to 500 µN), CLT systems can operate very precise maneuvers like
high precision station-keeping in a formation. However, for larger orbit or formation
changes a significant amount of time is required (e.g. in the order of weeks, cf. Chap.
5 where multiple formation flying scenarios are simulated). In addition, as thrust is
generated by accelerating charged particles with the help of a high-voltage electric
field, electric propulsion features significant power demands in the order of 10 W to
100 W during firing for typical CubeSat systems (Yost and Weston, 2020, p. 64ff.).

In NetSat a FEEP thruster, namely the IFM NANO Thruster by ENPULSION
GmbH, Wiener Neustadt, Austria as depicted in Fig. 4.16 is implemented. It uses
Indium as propellant and can provide up to 350 µN of thrust. If a thrust of 150 µN on
average is used instead, a total ∆V of about 400 m s−1 can be reached for a typical 3U
CubeSat. To operate the thruster, up to 40 W of power are required (ENPULSION
GmbH, 2018).

Figure 4.16: IFM NanoThruster electric propulsion system to be used in NetSat.
(Image courtesy: ENPULSION GmbH)
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CLT systems for small satellites and CubeSats commonly require significant prepa-
ration or heat-up time before being able to fire as well as significant power to be
available (i.e. batteries to be fully charged), so long-term planning is necessary to
start the preparation in advance to the planned operation. This has to be taken
into account in the controller (as possible within e.g. a MPC) or a superordinated
planner has to be implemented. Further, since only very low thrusts are possible,
the controller has to be able to enforce hard constraints on the maximum thrust.
The low thrusts lead also to long maneuver times (e.g. for typical formation flying
scenarios in the order of several days or weeks as described in Chap. 5). Thus,
optimal control methods are of particular advantage, because the limited thrust can
be applied in an optimal way and further delays are avoided. On the other hand,
CLT systems are capable of converging with very high accuracy to the target state,
because of their ability to provide very small thrust bits and thus are especially suit-
able for high-precision control. CLT systems impose a lot of requirements on control
and thus require sophisticated control approaches like the MPC-Based Formation
Control presented in Chap. 3.2. Simpler control approaches may not be able to cover
all requirements.
Testing CLT systems has the same requirements and implications as testing other
thrust systems as described in Chap. 4.3.2.1. In addition, typical electric propulsion
systems show even higher demands towards the vacuum environment, typically
requiring a density of 1 × 10−5 mbar or lower. Such test facilities that allow electric
thrusters to be fired or even their force to be measured, are rare and their usage
is expensive. So testing at satellite integrators’ facilities is limited to the electrical
interface of the thruster.
In contrast to impulsive thrusters, CLT systems like electric propulsion systems are
using fuel highly efficiently, thus providing very high amounts of total ∆V with a
limited propellant mass. On the other hand, they are only capable of providing
low magnitudes of thrust which may allow for high precision maneuvering, but on
the other hand causes larger orbit/formation changes to last long durations. In
addition, their complexity in operation (i.e. heat-up phase) and their high demands
on available power require long-term planning and cause controllers to be more
complex. Their main advantages are for missions which require long life times or
large formation baselines, where a very high amount of ∆V is essential.

4.4 Forming an Overall System

To form a functioning and comprehensive overall system for SFF, several sensor
and actuators are required. For SFF applications in general, 3-axis attitude deter-
mination is necessary, which requires appropriate sensor systems. Magnetometers
alone are not sufficient, since they only provide attitude determination in two axes
(perpendicular to the Earth’s magnetic field lines). IMUs provide 3-axis attitude
measurements in principle, but they do not suffice alone, since their accuracy de-
creases significantly over time (in the order of minutes). Sun sensors can provide
3-axis attitude, but are not functioning during eclipse. Usually a combination of
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these sensors is selected to provide 3-axis attitude determination in small satellite
missions with a good trade-off of costs, mass, volume, power consumption and accu-
racy. If neither financial nor volume/mass/power budgets are limited, star sensors
are a superior solution, since they can provide attitude information continuously
and with high accuracy (significantly better than 1° depending on chosen model). In
addition, attitude control in three axes is required. Magnetorquer can only provide
attitude control in two axes (perpendicular to the Earth’s magnetic field lines). The
rotation around the magnetic field lines remains uncontrolled. Reaction wheels can
be added to complement this to achieve 3-axis attitude control. On the other hand,
reaction wheels alone cannot serve to provide 3-axis attitude control, since they
need another attitude actuator (e.g. magnetorquer or thruster for larger satellites)
to desaturate them. Usually a combination of magnetorquer and reaction wheels
is optimal for small satellites. Depending on the position accuracy requirements
and planned formation baseline, different navigation sensors can be chosen. For
most small satellite applications GNSS sensors are a suitable choice because of their
small size, high accuracy and the fact that they can be used for almost arbitrary
formation baselines. If formation flying in 3D is desired (as it is e.g. in the NetSat
mission), active propulsion systems are mandatory. Both impulsive/chemical as well
as CLT/electric thrusters show advantages and are fitting most of the small satellite
formation flying missions. The particular mission requirements decide which system
to prefer.
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Figure 4.17: Interconnection scheme of sensors, actuators and software modules on-
board a SFF mission as designed for the NetSat mission.

Thus, a typical overall system for small satellite formation flying in 3D may consist of
magnetometers, IMUs, sun sensors and GNSS on the sensing side and magnetorquers,
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reaction wheels and a propulsion system on the acting side. This is the chosen setup
for the NetSat satellites. Fig. 4.17 presents a way how the individual sensors,
actuators and internal software modules on-board a formation flying mission like
NetSat interact.

4.5 Impacts on Navigation and Control for Satellite

Formation Flying

In this chapter, a set of sensors and actuators has been defined that is required for
a functioning and comprehensive overall system for SFF mission. The presented
examples based on the NetSat mission (and typical sensor and actuator systems
in general) show characteristics and limitations, which impact on the navigation
and control capabilities of a SFF mission. Thus, they should act as a basis for any
realistic simulation of satellite formation control. Since NetSat is chosen as primary
application scenario within this work, requirements are defined on the NetSat mission
and its sensor and actuator systems. The following devices are implemented:

• The satellites are equipped with an IFM NANO Thruster that is intended to be
driven at maximum 350 µN. To achieve a good trade-off between thrust, energy
and available ∆V a thrust level of 150 µN is preferred. With a given satellite
mass of 3.9 kg, a maximum acceleration of 3.85 × 10−5 m s−2 is achieved.

• With the above given maximum thrust, the total ∆V per satellite is in the
order of 400 m s−1. This is a trade-off between maximum thrust and total
available ∆V .

• Since there is only one thruster on-board each NetSat satellite, a minimum
time to change the thrust direction is required. For an arbitrary change of
attitude between two different thrust vectors up to 135 s are needed (Savran,
2020, p. 43). This rotation can be performed by the ACS.

• The state exchange of the satellites within the formation depends on the ISL.
Thus, the state exchange is limited to – in the worst case – once per orbit, even
if regular exchanges once per minute are foreseen.

• Attitude determination can be performed with an accuracy of up to 1° and is
limited to two axes during eclipse time due to the unavailability of sun sensors
in this phase. Thus, thrust maneuvers have to be planned in sun time.

• Relative distance (understood as minimum distance between two satellites
within a whole orbit time) should not be below 1 km for collision safety and
should not exceed 100 km to be within the range of the ISL.
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Chapter 5

Evaluation

5.1 Overview

In this chapter, the developed control methods are evaluated. First, the Orekit-based
Formation Simulation Framework (FSF) is introduced, which has been developed at
ZfT and also partly within this work. It is used later on to perform the simulations
to evaluate the controllers. Then, the underlying scenarios based on the NetSat
mission as example are presented. Next, the software simulations that have been per-
formed using these scenarios are described and interpreted with respect to controller
performance of the developed control methods. Last, the preparation steps that have
been performed for in-orbit testing within the NetSat mission are outlined.
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5.2 Simulation Framework

To simulate the satellite dynamics and control in general as well as to evaluate the
developed controllers in particular, a comprehensive software framework, namely
the Formation Simulation Framework (FSF) has been developed. It features (per-
turbed) orbit propagation, formation state vector design, formation-level trajectory
planning, propagator and controller evaluation, performance benchmarking and an
extensible debug interface. The framework, which is written in Java, features a fully
configurable satellite model and extends the well-known open-source framework Or-
bit Extrapolation Kit (Orekit)1 for propagating the dynamic states of the satellites.
Orekit is a software simulation framework for satellite orbit propagation. It consists
of different dynamic models and orbit propagators including a high precision orbit
propagator. Further, it contains an elaborate satellite model as well as environment
models. Thus Orekit was chosen as base for a comprehensive satellite formation
simulation framework, which is required to evaluate the developed controller. While
Orekit is a suitable base for the developed FSF, it had to be adapted for formation
simulation, since it is designed only for single satellite simulations. This affects the
function principle of the orbit propagation within the framework. (Some efforts have
been made towards SFF in recent updates, but are still limited in functionality.) In
addition, the environment model has to be configured and a more extensive satellite
model has to be included to encounter for CubeSats and according characteristics
like CLT electric propulsion as to be used in the considered applications like e.g. the
NetSat mission. The first section in this chapter introduces the main workflow of
the simulation software, whereas the following sections go into further detail about
the satellite model and the orbit propagator.

5.2.1 Overview

The FSF software uses configuration files in CSV-format (Comma-Separated Val-
ues (CSV)). From these configuration files, dynamic databases are created at pro-
gram start-up, one for the satellite model and one for the orbital dynamics simulation.
The satellite model database stores initial information about all active subsystems
and is also used to exchange up-to-date data between the subsystems during orbit
propagation. When a whole formation is propagated, each satellite has its own
database. This means, every spacecraft is treated individually and inter-satellite
communication and data exchange may be modeled at different levels of complexity,
independently of the current satellite configuration. After initialization, the orbits
of all satellites are instantiated simultaneously with Orekit (OREKIT, 2016).

Fig. 5.1 depicts the whole execution process of the developed FSF software. During
the propagation process, the different satellite subsystems execute their procedures
at their respective frequencies, e.g. the power system can be simulated with lower
frequency than the ACS. This part is illuminated in detail in Chap. 5.2.3. Every

1https://www.orekit.org/
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Figure 5.1: Data flow and execution process of the FSF software framework. Input
data (form the configuration databases) is depicted in green, output in
blue.

piece of information in the satellite databases and the current relative and absolute
orbits may be viewed in live-updated Matlab plots. The data exchange with
Matlab is realized over a network connection (based on User Datagram Proto-
col (UDP)), giving the possibility to plot the results on a remote machine. The
software includes multiple on-board propagators and controllers of different levels
of complexity. Beyond this, it provides implementations and conversion procedures
for all frames mentioned in Chap. 2.4, perturbation models and a formation-level
trajectory planner for all kinds of maneuvers. It features convenient formation design
not only in ROEs (as used in this chapter later on), but also in various absolute and
relative coordinate frames.

5.2.2 Satellite Model

The satellite model was developed with a focus on reconfigurability, while, at the
same time, the computation speed of the subsystem procedures was considered to
achieve a reasonable orbit propagation time. Furthermore, it was developed to
provide the NetSat team with a model which can be used at all phases of mission
design, independently of the focus of this work.
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5.2.2.1 Subsystem Structure

The satellite model consists of the bare satellite structure and the subsystems. The
sole purpose of the structure is to update the database with the current spacecraft
state (like on-board time, orbit, mass, pv vector) after each propagation step and
to call the procedures (so called handle-step() methods) of all active and waiting
subsystems. A subsystem is meant to be waiting when its last procedure call is
longer ago than its execution interval (measured in on-board time). A subsystem in
the sense of this software model does not have to be a classical satellite subsystem,
but may also be a very simple procedure which has to be executed at certain time
intervals (e.g. as simple as printing debug information to the console when the
satellite enters eclipse). Subsystems are created via the CSV-configuration by adding
a defining structure to the table. This definition features a name, which will also be
the Java class name of the subsystem, which is generated from the configuration file.
The definition also includes an active flag (to easily switch off some functionality,
if needed), the execution interval, a verbose flag (indicating if the subsystem is
allowed to print to the console) and a unique execution position. Thus, if multiple
subsystems are in waiting mode at the same time instant, the order of execution may
be controlled. For example, the Attitude and Orbit Determination System (AODS)
has to be executed before the formation controller, because it relies on up-to-date
orbit information. Since all this information is part of the database, it may be
altered during execution, e.g. activating a battery loading procedure only during
non-eclipse phases or enabling housekeeping data storage only during times without
ground station contact. A broad overview of the most important subsystems stated
in their order of execution is given in the following list. If multiple alternatives for a
specific function are stated, this may be configured through the database.

1. Attitude and Orbit Determination System (AODS)
It retrieves ("senses") the current orbit and attitude from the propagator. This
may be the exact values from the propagator (Orekit) or an extended version
with an error model. The error model can be applied on absolute or relative
state vectors. This can be used to evaluate on-board propagator sensitivity to
input state deviations. In a later implementation, the direct Orekit input can
be substituted with attitude and position sensor models.

2. Mission Handler (MH)
It works as the major planning instance and updates the control target at
configured times to different types of formations. Thereby, the whole course of
a mission (like the NetSat mission) may be simulated with a single propagation
run. The mission handler can react to database events like the termination of
a formation change maneuver. Once triggered, it can update the new control
target, change the active controller implementation or send a status update to
the other satellites of the formation.

3. On-Board Propagator
It propagates the relative state with reference to the (virtual) leader of the
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formation. The implementation features various on-board propagators with
increasing level of accuracy.

4. Formation Controller
It generates control commands for the thrust system to reach a certain relative
orbit. The implementation features multiple control methods for different cases
like formation maintenance and formation acquisition maneuvers. The control
approaches developed in Chap. 3 have been implemented here.

5. Thrust System
It takes the control input from the controller and applies it to the thrusters,
which results in a contribution to the physics of the dynamic model of the
propagator. It takes thruster capabilities, power consumption and mass loss
into account. It can be set to test mode to allow and forward any input to the
physical propagation model (e.g. ignoring physical limitations of the thruster).
In normal mode the input is capped at the maximum rate of the thrusters. Also
the maximum turning rate of the satellite is obeyed, since thrusters in CubeSats
are commonly only directed into one direction. This prevents an instantaneous
change of the thrust vector. The thrust model includes accurate mass-loss and
power consumption calculations based on the applied acceleration.

6. Inter-Satellite Link (ISL)
It communicates with the other satellites in the formation and updates the
relative state. Depending on the configuration, this can be a perfect real-time
link (meaning the satellites know at all times the true relative positions and
velocities of each other) or a link which updates information from time to time.
The default state-exchange frequency is set to one time per orbit, but can be
changed arbitrarily.

7. Power Control and Distribution Unit (PCDU)
It loads the battery in sunshine phases, computes the estimated power con-
sumption of the on-board computer and the power consumption of the active
subsystems. It has to be the last subsystem to be executed to account for
all current changes in the power consumption. The subsystem can also raise
warnings on low battery levels and deactivate high consumers, which are not
critical for short periods of time, like the thrust system.

Further important subsystems like housekeeping or ground station communication
are not part of this work, because focus was set to autonomous formation control.
This is only marginally impacted by the two systems stated above. If needed, they
may easily be integrated in the future due to the expandable nature of the overall
model.

5.2.2.2 Data Handling

Internal satellite data is handled and processed by a dynamic database, generated
from specially formatted CSV files containing all relevant parameters. This database
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is structured into tables (one for each subsystem) and contains all parameters which
need to have a configurable value at start-up or which impact multiple subsystems.
Thereby this database is the designated way for subsystems to exchange or forward
data between each other. This renders a subsystem’s implementation totally inde-
pendent of other parts of the satellite, resulting in a modular model. All parameters
are stamped with the time of their last update and may be locked to prevent further
value changes. A single parameter can be a simple atomic value like a floating point
number, an array of atomic values or a complex datatype like an orbit definition.
If needed, further datatypes may be added by defining parse- and copy-methods
for the type. The implementation also features event-driven interaction, i.e. the
database calls an event handler in a subsystem if a certain parameter is changed.
The database is directly connected to the debug interface to visualize real-time data
dumps (see Chap. 5.2.4).

5.2.3 Orbit Propagation

The iterative orbit propagator handles all satellites equally (e.g. does not distin-
guish between leader and follower spacecraft) and propagates their absolute orbits
simultaneously for each time step. It is based on the open-source orbital dynamics
framework Orekit, which is a pure Java library and only depends on the Hipparchus
mathematics library (Hipparchus, 2016).

5.2.3.1 Orbit Extrapolation Kit Interface

Orbit Extrapolation Kit (Orekit) provides packages for date and time handling,
frame transformations, ODE integration, attitude handling and perturbation force
models. However, it does not support multiple satellites2 or relative state descriptions.
The developed formation propagator is the basis of the dynamics of the FSF which
sets up on Orekit, but has also access to the underlying mathematics library. The
schematics of this connection are depicted in Fig. 5.2.
Developed extensions include multi-satellite support, configuration via CSV files,
thrust force models and the interface to the previously mentioned satellite model.
The instantaneous state of each spacecraft is, among others, defined by its osculating
pv vector and its mass. The dynamics of the state are represented by ODEs obeying
gravitation, perturbation forces and inertial satellite forces like thrust. To propagate
the state, these equations (with their initial values comprised by the spacecraft
states) are converted to match the format of the mathematical Hipparchus library.
Fig. 5.3 depicts the propagation process in detail. The bold gray arrows contain
the current environmental settings and all satellite state vectors and follow the main
execution loop. After each time step, the mapper brings this accumulated state
vector into an ODE-friendly format. Within Hipparchus, the states are integrated
using a numerical integrator and then back-transformed to spaceflight dynamics to
give insight into the spacecraft states at the next timestep. After the simulation time

2This feature has been added in recent updates, but is still too limited for our needs.
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Figure 5.2: FSF-propagator (Flight dynamics application) and Orekit interaction
(Image courtesy: https://www.orekit.org/).

has been increased, environment events (e.g. eclipse entering) and satellite-internal
events are handled. Then, all waiting subsystems are executed in their respective
order. Before the next propagation step begins, relevant data is sent to the debug
interface.

Figure 5.3: Propagation process in detail. The start is depicted in green, the end in
blue.
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5.2.3.2 Frame and Date Handling

The satellite states are integrated (e.g. propagated) in absolute osculating pv coordi-
nates. The utilized state vector is therefore equal to Eq. 2.2. For the ECI frame, the
J2000 (or EME2000) reference was chosen since this is prevalent in orbital dynamics
and already implemented in Orekit (see Chap. 2.4.1). The J2000 frame is defined
in reference to Terrestrial Time (TT). Since other timescales are also important for
various data input sources or desired output formats, conversion functions from TT
to International Atomic Time (Temps Atomique International) (TAI) and Universal
Time Coordinated (UTC) are exposed to the framework user. TAI is very impor-
tant since it is the most accurate and regular timescale available and also used as
a reference for the GPS time with a constant offset to GPS reference time of 19 s.
TT is also defined via a constant offset to TAI.

TT = TAI + 32.184 s (5.1)

UTC has 86400 SI-seconds per day and is synchronized with TAI. To accommodate
the slowing of the Earth’s rotation, leap seconds are introduced at irregular intervals
to keep the difference to TAI below 0.9 s (Montenbruck and Gill, 2012). Whenever
a state vector is utilized in the framework, the reference frame and the timescale
has to be provided, and both are checked against their counterparts when combining
different state vectors. This ensures compatibility and exchangeability of state
vectors over all parts of the FSF software. In addition to the absolute Orekit-inherent
frame J2000, the software includes conversion methods between absolute and relative
pv vectors (Eq. 2.15 and 2.19), Keplerian to equinoctial and non-singular orbital
elements (Eq. 2.33 and 2.31), any set of absolute orbital elements to DOEs (Eq.
2.34) and ROEs (Eq. 2.35). Whenever absolute orbital elements are used, they
are internally represented as EOE to overcome singularities at small eccentricities
(see Chap. 2.4.2.2). Furthermore, relative Cartesian and orbital frames may be
converted with Eq. 2.35. All orbital frames (both absolute and relative) may be
provided in osculating or mean elements, depending on the current application or
required input/output formats. The conversion is done with Eq. 2.57 and 2.66,
respectively for absolute and relative conversions. Explicit formulations in terms of
mean orbital elements can be found in App. B and App. C.

5.2.3.3 Integrator Evaluation

Hipparchus offers a vast variety of different ODE integrators, from a simple Euler
integrator to a complex sixth-order Runge-Kutta (RK) integrator. The integrators
differ in runtime and accuracy. To evaluate the best-suited integrator, multiple
implementations with different integration step sizes were tested.
Fig. 5.4 shows the results in terms of accuracy and runtime on a log-log-scale
for all tested integrators. For the accuracy (position deviation after four orbits),
the result of the most accurate integrator with the smallest step size is used as a
reference position (or truth model). The test set-up was one satellite in a LEO orbit,
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Figure 5.4: Propagator benchmark for different integrators and integration step sizes.
Setup: one satellite propagated for four orbital periods on an Intel i5
machine. Computation time (runtime) on the primary ordinate, abso-
lute accuracy (deviation of the final position obtained by most accurate
integrator with smallest possible step size) on the secondary ordinate.

propagated for four Keplerian periods on an Intel i5 machine. During propagation,
Earth oblateness and atmospheric drag was taken into account, while the satellite
exerted no thrust. One can observe a positive exponential relationship between step
size and accuracy as well as a negative exponential relationship between step size
and runtime. Furthermore, to achieve an accuracy below one meter (which is the
order of the desired position accuracy of the relative orbit determination system, see
Tab. 4.1), Euler and Midpoint integrator disqualify even for the lowest step sizes. To
analyze the suitability, however, the relative accuracy between satellites is of much
higher interest than the absolute accuracy. Therefore, the exact same benchmark
was conducted again with a formation of four satellites in a 5 km PCO orbit, this
time with relative position deviation (with respect to the formation center) on the
secondary axis of ordinates (Fig. 5.5).
Each data-point was obtained by five individual runs to achieve higher accuracy
in terms of runtime. Error bars for the runtime and the position deviation are ne-
glected in the plot in favor of higher readability. However, the dependency between
integrator step size and runtime shows up more clearly compared to Fig. 5.4. As
before, the two best integrators in terms of runtime do not have sufficient accuracy.
Up to a step size of 60 s, all other integrators result in a deviation below one meter.
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Figure 5.5: Propagator benchmark for different integrators and integration step sizes.
Setup: four satellites propagated for four orbital periods on an Intel i5
machine. Computation time (runtime) on the primary ordinate, relative
accuracy (accumulated deviation of the final position of the formation
centre obtained by most accurate integrator with smallest possible step
size) on the secondary ordinate.

A further decrease in step size (down to 13 s) does not lead to higher accuracy, while
at the same time computation time rises. The sixth-order RK integrator (Luther
integrator) has a 50% higher runtime compared to the three remaining integrators,
which are almost identical in runtime (Three-Eight’s integrator, Gill integrator, Clas-
sical fourth-order RK integrator). Out of these, the Classical RK integrator slightly
outperforms the other two in terms of deviations. This leads to the decision to
use the fourth-order RK integrator with a step size of 60 s during orbit propagation
in the software framework. The step size is also the shortest possible interval of
consecutive executions of a subsystem’s step handler method. If shorter periods are
required for a certain subsystem, the integrator step size may be adapted at the cost
of a higher runtime. Thus, the stated 60 s define only the upper bound of the usable
step size value.
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5.2.3.4 Included Forces

The ODEs to propagate a satellite’s state are composed of a superposition of all
forces that act on the satellite

ftotal =
∑

(fK + fp + fs) (5.2)

where fK is the Keplerian attraction force (Eq. 2.41), fp are perturbing forces and
fs is the sum of all satellite-internal forces. In the current implementation, fs only
consists of the instantaneous output force of the thrusters. This could be extended to
also incorporate reaction wheel forces, if they are not aligned with the main inertia
axes of the satellite.
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Figure 5.6: Drag force on a CubeSat in LEO computed with the Orekit framework
using the JB2000 drag model.

According to Chap. 2.5.1.1, of all perturbing forces only the non-spherical character
of the Earth has a major influence on relative formation dynamics in LEOs above
500 km. This is modeled with the Holmes-Featherstone attraction model using the
modified forward row method, whose implementation is part of the Orekit frame-
work (Holmes and Featherstone, 2002). The spherical harmonics of the Earth are
modeled up to degree and order of ten, which is a reasonable compromise between
accuracy and runtime. Higher degrees are not useful for the implemented integrator
configuration, since the added correction terms are below the integrator accuracy.
To get a higher fidelity, also the very low impact of atmospheric drag was included.
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Even though Chap. 2.5.1.1 showed the possibility to neglect this perturbation force,
atmospheric drag gains influence in lower altitudes. Fig. 5.6 shows the computed
drag force as a function of the orbit altitude using the JB2000 model. By including
a drag model, the propagator can also be used to simulate the final phase of the
NetSat mission, where a low-altitude graveyard orbit or a possible re-entry is sought.
Fig. 5.7 shows simulations of orbit lifetime as a function of the initial orbit altitude
and compares the Harris-Priester and the JB2000 model. The Orekit inherent im-
plementation of the modified Harris-Priester atmosphere model was chosen, since it
combines high computation speed with relatively high accuracy. It uses solar activity
dependent altitude-versus-density tables (Montenbruck and Gill, 2012).
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Figure 5.7: Duration of passive deorbiting of a CubeSat computed with the Orekit
framework using and comparing the JB2000 and Harris-Priester drag
model.

The influence of the non-spherical shape of the Earth on the relative position of
two satellites is shown in Fig. 5.8. The two images depict the relative position of a
satellite over the time of half a day. The satellite is in a 5 km PCO orbit around a
virtual center. The absolute orbit is the nominal NetSat orbit (T = 95.5 min). This
leads to slightly more than seven revolutions in twelve hours. Image (I) shows this
period in all three components of the EH frame position vector. In image (II), the
satellites were propagated in the same manner, except that the J-terms of the Earth
were taken into account. The period of the position components stays unchanged,
but one can clearly see a vertical shift of the êy component over time. After half a
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day, the difference in comparison to the unperturbed propagation is as high as 350 m,
or 7% of the baseline. This makes it obvious that this effect may not be neglected
for the on-board propagator. Fig. 5.9 shows a 3D representation of the perturbed
trajectory over time. The J-terms-influence continuously perturbs the orbit and
shifts it in the negative êy direction, while the other two components stay nearly
uninfluenced. This result is in accordance with the theoretical background of Chap.
2.5.1.1. When the differential atmospheric drag is also included in the propagation
process, the final state vector hardly differs from the result above. The difference
after half a day is below 10 m, around 0.2% of the baseline. The velocity part of
the state vector is altered by less than 5 × 10−4 m s−1 over twelve hours. Although
this force will not be part of the on-board propagator, this small influence will be
included in the absolute Orekit propagation process to gain the highest possible
accuracy.
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Figure 5.8: Relative position in EH frame of a 5 km PCO formation (one satellite
around virtual center) for twelve hours.

5.2.4 Debug Interface

The debug interface is realized as a UDP client, which writes real-time data dumps
to the network interface, packed into an extensible protocol. The data dumps are
solely represented by floating point arrays for all datatypes (e.g. a one-field array
for an atomic double value and a six-field array for an orbit definition, consisting
of the six Keplerian parameters). Any combination of parameters from the satellite
databases may be marked as debug output by setting a flag in the database. The
tri-state-flag may be any of no debug output, debug output grouped by parameter,
or debug output grouped by satellites. When the propagator is initialized, it sends
a network message with the names of all parameters to be debugged during the
propagation process. Then, after each time step, all parameters are sent as an array
of floating point numbers in the order of their previously sent names.
Furthermore, any information may be sent over the debug interface when a message
type is defined for the desired data (as has been done for the database dump). This
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Figure 5.9: 5 km PCO orbit propagated for one day.

also allows to watch simulation metrics which are not part of the satellite model.
Since single messages may be larger than the maximum size of a UDP package, a
message abstraction layer has been included. Data is sent packed into a message
protocol, as defined by Tab. 5.1. Each message is split automatically by the client
into multiple network packages, when it is larger than the maximum UDP package
size.

Table 5.1: Network message protocol (all parameters except payload are integers).
Parameter Size [byte] Description

ID 4 unique identifier (auto-incrementing)

TYPE 4 message type

TSIZE 4 total payload size of message

NPKG 2 number of packages in this message

PID 2 identifier of the current package

DSIZE 4 data (payload) size in this package

OFFSET 4 offset of this package’s data in message

PAYLOAD DSIZE (part of) actual message data

The debug server waits until he receives all packages of a certain message, only then
it is processed. The server forwards received messages to a message processor, which
displays the content of the messages. Two different processors are implemented. The
first one is a simple text-based processor, which displays all received values to the
console and can also save the data to CSV-formatted text files on request.
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The second one is a graphical processor, which displays all data in Matlab graphs.
When it receives data from the satellite databases, data streams from all satellites
are combined and visualized, ordered by parameter or satellite (depending on the
flag). Fig. 5.10 denotes the relationship between ordering style and output, which
results in different grouping of the atomic values. Depending on the situation or
simulation task, any combination of these two may prove to be useful. Plotting
routines for other message types have to be added separately. At the moment, there
are also routines to visualize absolute and relative orbits in 3D space and thrust
profiles.
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Figure 5.10: Two different methods to group atomic debug values – the left-hand
side illustrates grouping by satellites, the right-hand-side grouping by
parameter. Each color represents the database of one satellite.
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5.3 Scenario Definitions

Within the NetSat mission, which acts as an example mission for this work, a
sequence of several formations is planned to be executed. A detailed mission plan
listing all designated formations has been created and is presented in Chap. 5.5.1.
However, for detailed evaluation of the methods developed, two specific formations
are selected, namely the Cartwheel Formation – 3:1 as introduced in Chap. 2.6.6
and the Tetrahedron Formation as presented in Chap. 2.6.8. They have been
chosen because of the fact, that they are 3D formations and thus more complex
and challenging than the other scenarios in the mission plan, like ATF or PCO.
All scenarios and simulations have been based on the same reference orbit. This
reference orbit uses the planned and actual orbits of the NetSat satellites presented in
Tab. 2.2 as baseline and adapts it slightly for better applicability and understanding.
The COEs of the reference orbit are presented in Tab. 5.2.

Table 5.2: Reference orbit in COEs for all simulations (based on NetSat orbits.)
Parameter Value
Semi-major axis 6950.0 km
Eccentricity 0.01
Inclination 97.660°
Argument of perigee 0°
Right ascension of ascending node 0°
True anomaly 0°

The Distributed Robust Consensus-Based Control approach presented in Chap. 3.3
cannot be performed with NetSat-like satellites and scenarios due to the lack of
a thrust constraint in its implementation. Thus, for this control approach a sce-
nario based on ESA’s Darwin study, namely a spaceborne distributed telescope, is
considered and presented later on.

5.3.1 Cartwheel Formation – 3:1

The Cartwheel Formation – 3:1 is a specific form of a Helix formation, which is
defined by three satellites having a periodic motion in the orbit plane, namely the
êx-êz plane, and one satellite having a periodic motion along the êy axis. It is
described in detail in Chap. 2.6.6. Both the acquisition phase starting form an ATF
and the maintenance phase are considered for controller evaluation. The initial and
target states for three satellites in the orbit plane and a single satellite performing
the out-of-plane motion are given in ROE in Tab. 5.3.

5.3.2 Tetrahedron Formation

The Tetrahedron Formation is defined by two stationary and two dynamic satellites
in a tilted ellipse in way that, through their periodic motion, a dynamic tetrahedron
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Table 5.3: CWF – 3:1 initial and target state
Initial State [m] Target State [m]

ROE Sat 1 Sat 2 Sat 3 Sat 4 Sat 1 Sat 2 Sat 3 Sat 4
∂a 0 0 0 0 0 0 0 0
∂ex 0 0 0 0 2500 -1250 -1250 0
∂ey 0 0 0 0 0 2165 -2165 0
∂ix 0 0 0 0 0 0 0 2500
∂iy 0 0 0 0 0 0 0 0
∂u 5000 1666 -1666 -5000 0 0 0 0

of constant volume is formed between the four satellites continuously throughout the
orbit. It has been defined by Koptev et al. (2017) and is described in Chap. 2.6.8
in detail. Both the acquisition phase starting form an ATF and the maintenance
phase are considered for controller evaluation. The initial and target states for the
two stationary satellites and the two periodically moving satellites are given in ROE
in Tab. 5.4.

Table 5.4: THF initial and target state
Initial State [m] Target State [m]

ROE Sat 1 Sat 2 Sat 3 Sat 4 Sat 1 Sat 2 Sat 3 Sat 4
∂a 0 0 0 0 0 0 0 0
∂ex 0 0 0 0 0 1250 0 0
∂ey 0 0 0 0 0 0 1250 0
∂ix 0 0 0 0 0 2500 -2500 0
∂iy 0 0 0 0 0 2500 2500 0
∂u 5000 1666 -1666 -5000 5000 0.99 0.99 -5000

5.3.3 Spaceborne Distributed Telescope

In this scenario, five satellites form a spaceborne distributed telescope. Four satellites
are situated in an equilateral square in the êx-êy plane representing the mirrors of a
telescope. One satellite is located above the center of the square shifted towards −êx

direction representing the sensor of the telescope. This scenario is loosely based on
ESA’s Darwin study that aimed at detecting Earth-like planets orbiting nearby stars
by collecting infrared light with several satellites placed at the Lagrange point L2
and combining it in one satellite using interferometry (cf. Figure 5.11). In contrast
to Darwin, we place the satellites in a LEO to make use of Hill’s equations. The
position, where such a spaceborne telescope would be placed, depends mainly on
the scientific aim of the observation (which is out of scope of this work). However, a
LEO is of higher interest for other SFF missions and thus preferred as example. The
formation will be under the influence of orbit dynamics which will lead to a decay
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of the formation topology. Thus, continuous control is required for maintaining it.

Figure 5.11: Artificial drawing of ESA’s Darwin mission study. (Image: ESA/-
Darwin, 2002, http://www.esa.int/spaceinimages/Images/2002/

11/Darwin_will_combine_light_from_four_or_five_telescopes_

and_send_it_down_to_Earth)

As target reference a static (in EH frame fixed and not moving) pentahedral formation
as required for a spaceborne telescope is used. It shows a 10×10 m base in the êx-êy

plane and the tip is located at −10 m along êz axis. This target formation is not
force-free, which means that orbit dynamics (cf. Eq. 2.72) are acting on the satellites
and degrading the formation topology. Thus, after acquiring this formation, the
controllers remain active for maintaining it. The satellites start from initial positions
on v-bar (−20, −10, 0, 10, 20 m), which are – in contrast to the target formation –
force-free. So the initial formation would not degrade due to orbit dynamics and
active control is required to move the satellites away from it.

5.3.4 Controller-Specific Parameters

In the following sections, controller-specific parameters that have been used in the
performed simulations are presented. In general, all simulations ran in the FSF in
Java which includes Orekit that has been introduced in Chap. 5.2. In addition,
MathWorks Matlab Version 2020a and the according toolboxes were deployed
in the controller implementation of the MPC-Based Formation Control and the
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Distributed Robust Consensus-Based Control. For all simulations a simulation time
step of 60 s is chosen.

5.3.4.1 MPC-Based Formation Control

The controller has been implemented in MathWorks Matlab (Version 2018b)
together with the MPC and Optimization Toolboxes and connected to FSF and
Orekit.
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Figure 5.12: Position deviation over simulation time for different planning horizons
(5 km CWF).

The two most important design parameters of the MPC algorithm are the planning
horizon and the control interval (sometimes also referred to as control horizon).
The planning horizon is the amount of time over which MPC optimizes the thrust
profile. Since MPC generates globally optimal solutions over the planning horizon, a
longer horizon should lower the long-term ∆V consumption. In the implementation
described in Chap. 3.2.0.1, the orbit is only enforced at the end of the planning
horizon, leading to larger position errors in between, when the horizon is extended
as can be seen in Fig. 5.12. It shows the maximal position deviation from the
target reference for different planning horizons between 7 min and 97.5 min, where
the latter corresponds to one orbital period. Below 60 min, the deviation does
not fall significantly for shorter intervals. The five-meter-level between full orbital
periods, which is shared by all intervals below 60 min, is a result from the deviation
of the relative orbit propagator ΦMGA (δā0, tf ), which receives a position update in
worst case only once per orbit. This is the minimum inter-satellite communication
requirement within the NetSat mission (cf. Chap. 4.5) and also representative
for other similar CubeSat missions. In other words, there is no need to lower the
planning horizon below 60 min in terms of orbit deviation, since it does not lead to
a gain in accuracy.
As stated before, the planning horizon also influences the total ∆V consumption,
which is depicted in Fig. 5.13. The longer the horizon, the better the solution
becomes. Below half an orbital period (around 50 min), the per-orbit ∆V rate rises
rapidly. In the range of these short planning horizons, very small high-frequency
position oscillations are counteracted, which consumes a lot of ∆V . For longer
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Figure 5.13: Per-orbit ∆V over MPC planning horizon (5 km CWF).

planning horizons, these oscillations are smoothed out and ∆V is saved. The figure
also reveals that there is only a very small gain in optimality for much longer planning
horizons. Combining the result of the two observations in terms of position deviation
and ∆V consumption, a planning interval of around half the orbital period – 50 min
– seems to be the best choice. This choice also allows a per-orbit long-term planning
between maintenance and reconfiguration maneuvers, since the end of one orbit
period always coincides with the end of a planning horizon.
The MPC performance also depends on the interval at which new thrust profiles are
generated (control interval, see beginning of Chap. 2.7.4). If this interval is shorter
than the planning horizon, the last part of the generated thrust profile is dismissed
and replaced with the beginning of the newly generated profile of the next MPC
execution. The influence of the control interval on ∆V consumption is shown in
Fig. 5.14 for the three planning horizons 30 min, 60 min and 97.5 min. Each line
ends at a planning interval which coincides with the planning horizon. If the control
interval is larger, there would be uncontrolled times between the end of the planning
horizon and a new control interval. Although the data points seem to be arbitrarily
distributed at first sight, one can draw a rough conclusion from the figure. All three
curves have in common that they reveal the lowest ∆V consumption for a very short
control interval (from seconds up to a few minutes) and for a control interval equal
to the planning horizon. Since it seems unlikely that the on-board computer can
solve the MPC optimization at a high frequency, the planning intervals below one
minute are dismissed. This leads to the conclusion that the optimal choice for the
control interval is the length of the planning horizon.
For formation acquisition/reconfiguration maneuvers, a scaling factor for the terminal
orbit constraint (target position of the satellite) is used. Thus, in one planning period,
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Figure 5.14: Per orbit ∆V over MPC control interval for different planning horizons
(5 km CWF).

it is only compensated for a fraction of the difference between the desired orbit and
the current orbit. This is necessary for almost any maneuver conducted with CLT,
since it takes a very long time for noticeable orbit changes. The scaling factor is
dynamically adapted. The MPC starts with a scaling factor of c = 1 (no scaling at
all) and tries to find a valid thrust profile to bring the satellite to the target state. If
no valid thrust profile is found by the MPC, this scaling factor is lowered, reducing
the orbit difference to overcome during one planning interval. This step is iterated
until a valid thrust profile is found. The scaling factor depends on the thrust system
used on-board the satellites, the orbit, the formation type and the formation baseline.
Based on these factors a initial scaling factor c < 1 (e.g. c = 0.1) can be chosen to
reduce the computational effort (especially in on-board implementation).

5.3.4.2 Distributed Robust Consensus-Based Control

The controller has been implemented in MathWorks Matlab (Version 2020a) to-
gether with the Robust Control Toolbox. The Hill’s equations (Eq. 2.77) are used
as the propagation model for the simulations performed. Although, they are limited
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in accuracy for specific applications (e.g. large scale formations, eccentric orbits)
and do not include orbit perturbations (like J2 effect or atmospheric drag), they
are suitable and sufficient for the considered scenario, since it is a very close range
scenario (below 50 m) and the main focus is on the distributed control part.

The H∞ controller synthesis performed depends highly on the setup chosen (number
of satellites, interconnection scheme, input and output weights) and thus is presented
here together with the required parameters.
To present a realistic robust control example, we further assume disturbances acting
on the satellite. We assume a Gaussian distributed force acting on the satellite with
a magnitude of 50 µN (standard normal distribution). This force represents thruster
uncertainties of a typical electric propulsion system.

Network Topology

Further, we do not assume global knowledge in the sense that each spacecraft has a
communication link and state exchange with every other spacecraft, but only with
its neighbors. This is especially true for communication links that are limited in
power and thus in range (like in CubeSats).

5

1

4

3

2

Figure 5.15: Interconnection graph of five satellites in a spaceborne telescope exam-
ple. Interconnections between satellites are assumed to be bidirectional.

The network topology of this scenario is visualized in Fig. 5.15. Since every vertex
of the interconnection graph/agent except of Number (5) is only connected to all but
one other vertex/agent, the graph is not fully interconnected or complete. Based on
the graph, the degree matrix D, which states the number of interconnections of the
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subsystems/agents, and the adjacency matrix Aj, whose non-zero elements represent
the interconnections, can be composed. (Definitions are given in Chap. 2.8.)

D =

















3 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 4

















(5.3)

Aj =

















0 1 0 1 1
1 0 1 0 1
0 1 0 1 1
1 0 1 0 1
1 1 1 1 0

















(5.4)

From D and Aj the Laplacian matrix can be computed to

L = D − Aj =

















3 −1 0 −1 −1
−1 3 −1 0 −1

0 −1 3 −1 −1
−1 0 −1 3 −1
−1 −1 −1 −1 4

















(5.5)

Input and Output Weights

As we can see from the previous section and Eq. 3.30 the control problem can
be formulated as a distributed state-space system. Thus, a Distributed Robust
Consensus-Based Control approach as derived in Chap. 3.3.2 can be applied. Eq.
3.19 presents the CLTF of an individual agent in a distributed control scenario and
is applied in the presented scenario3. The control system is modeled in Matlab

including the aforementioned disturbance inputs d on all satellites, which represent
thruster uncertainties of a typical electric propulsion system for small satellites with
a maximum thrust force in the order of few 100 µN. We define the input weight for
disturbance as a static scaling gain

Wd = 50 · 10−6 · I3 (5.6)

3Note that this approach does not control the position of the center of the formation. It only
controls the relative vectors within the formation. Due to disturbances, the center of the
formation might move with time, but the shape of the formation will be kept constant. Further,
since relative vectors are defined with respect to a basis of a vector space, namely the axes of
the EH coordinate frame, the orientation of the formation is fixed with respect to these axes.
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and the input weight for the reference value also as a static gain

Wr = I6 (5.7)

with Ik being identity matrices of size k × k. The output weights are defined as
first-order weighting function with specified static gain, crossover frequency, and
high-frequency gain. Their TFs are defined as

W1 =





















1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0





















· 60.2 s + 0.802

s + 0.0802
(5.8)

W2 =





















1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0





















· 10 s + 13.27

s + 16.58
(5.9)

W3 =







1 0 0
0 1 0
0 0 1





 · s + 0.1

s + 10
(5.10)

Controller Synthesis

The robust control problem is defined either by finding a stabilizing controller that
minimizes the H∞ norm of the CLTF with external inputs (disturbance d, references
r) and output error signals (z1, z2 and z3) Tzw or (as the suboptimal control problem
that can be solved numerically, cf. Chap. 2.7.5.1 and Eq. 2.186) as establishing a
stabilizing controller with

‖Tzw‖∞ < γ, γ > 0

In addition to that, we impose constraints on the structure of the controller in
question in order to limit its complexity. As a reasonable compromise between
performance and complexity, we require the controller to be a state-space system
with 6 states, 6 inputs and 3 outputs. Thus it’s state-space representation has the
following form.

Ac =









a11 · · · a16
...

. . .
...

a61 · · · a66









Bc =









b11 · · · b16
...

. . .
...

b61 · · · b66








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Cc =









a11 · · · a16
...

. . .
...

a31 · · · a36









Dc =









a11 · · · a16
...

. . .
...

a31 · · · a36









(5.11)

The H∞ synthesis was performed in Matlab. Its hinfstruct() function successfully
finds a stabilizing controller for all satellites and achieves closed-loop H∞ norm values
of γ = 0.679 for Satellites 1 to 4 and γ = 0.641 for Satellite 5 after 305 iterations.
For Satellite 1 to 4 the stabilizing controller is computed to

Ac =



















−0.347 −1.382 0.882 0.889 0.841 −0.173
0.262 −1.505 −0.644 −0.813 0.073 −0.090

−0.710 −0.258 −0.731 −0.673 −0.678 1.062
0.207 0.957 −0.102 −1.703 0.740 0.189

−0.138 0.606 0.329 0.226 0.018 0.235
1.481 −0.038 −0.962 −0.225 −0.459 −1.700



















(5.12)

Bc =



















−0.753 −0.398 −0.494 −0.246 0.608 0.171
−0.057 0.070 −0.706 0.050 0.249 −0.114

0.228 −0.271 −0.709 −0.571 0.154 −0.258
−0.169 0.212 0.329 0.230 −0.416 −0.166

0.293 0.344 0.799 0.367 0.406 −0.060
−0.063 −0.290 −0.336 −0.143 −0.745 0.392



















(5.13)

Cc =







0.198 −0.396 0.492 0.202 0.695 −0.477
0.123 −0.184 −1.057 −1.942 −0.107 0.469
0.265 1.011 −0.315 −0.669 −0.112 −0.075






(5.14)

Dc =







−0.496 0.106 −0.163 0.050 −0.184 0.135
0.167 0.115 −0.458 −0.052 −0.162 −0.293
0.113 0.027 0.229 −0.003 −0.509 −0.013






. (5.15)

The computed controllers for Satellites 1 to 4 are identical, because their positions
and connections within the network topology (as shown in Fig. 5.15) are symmetric.
Satellite 5 differs and thus the H∞ synthesis leads to a different controller:

Ac =



















−0.903 −1.186 −0.761 0.483 0.195 −0.041
−0.981 −0.334 0.910 0.396 −0.539 −0.130
−0.937 −0.042 0.215 −0.273 −1.667 −0.087

0.204 0.137 −0.172 0.109 0.029 −0.081
0.856 0.426 −0.123 −0.115 2.840 0.302

−1.612 −0.540 1.686 0.581 −2.489 −0.350



















(5.16)
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Bc =



















−0.903 −1.186 −0.761 0.483 0.196 −0.041
−0.981 −0.334 0.910 0.396 −0.539 −0.130
−0.937 −0.042 0.215 −0.273 −1.667 −0.087

0.204 0.137 −0.172 0.109 0.029 −0.081
0.858 0.426 −0.123 −0.115 2.840 0.302

−1.612 −0.540 1.686 0.581 −2.489 −0.351



















(5.17)

Cc =







0.295 −0.606 −0.184 −0.504 0.219 0.207
−0.419 0.540 −0.191 −1.692 0.404 −0.241

0.457 1.008 0.203 0.523 −0.201 −0.413






(5.18)

Dc =







−0.461 −0.048 0.201 0.091 −0.364 −0.076
−0.055 −0.175 −0.597 0.040 −0.259 −0.067

0.285 0.260 0.168 −0.084 −0.439 −0.040






. (5.19)

With these controllers, the given example can be simulated with its results presented
later on in Chap. 5.4.3.

5.3.4.3 Plant Inversion-Based Lyapunov Control Combined with a Reference
Governor

This controller has been implemented completely in the FSF without involving Mat-

lab. The controller’s parameters used in the simulations, which were introduced in
Chap. 3.4, were set to the values shown in Tab. 5.5.

Table 5.5: Controller parameters for the Plant Inversion-Based Lyapunov Control
Combined with a Reference Governor presented in Chap. 3.4.

Parameter Value Description
N 4 Defines the shape of the thrust around the

optimal thrust locations, used in P matrix
k 200 Control gain, used in P matrix
ξ 1 · 1010 Influences the velocity of the applied reference
τ 1 · 104 Inversely proportional to the ∂λ control gain
Cs 25 Influence zone for collision avoidance in meters
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5.4 Simulation Results

With the controller parameters and the simulation scenarios defined in Chap. 5.3, the
three control approaches developed in Chap. 3 can now be simulated. This section
is structured in three main subsections covering the three simulation scenarios CWF
– 3:1, THF and spaceborne telescope. Within each of those subsections the different
controllers are simulated, relevant graphs are presented and discussed and for each
scenario a summary of the results is given.

5.4.1 Cartwheel Formation – 3:1

The CWF – 3:1 formation scenario covers two phases, namely the acquisition and
maintenance phase. Both are simulated and presented subsequently with a summary
afterwards.

5.4.1.1 Acquisition Phase

The initial states from which the satellites start the maneuver of the CWF – 3:1
acquisition phase as well as the target states are defined in Tab. 5.3 and repeated
here for better readability.

CWF – 3:1 initial and target state
Initial State [m] Target State [m]

ROE Sat 1 Sat 2 Sat 3 Sat 4 Sat 1 Sat 2 Sat 3 Sat 4
∂a 0 0 0 0 0 0 0 0
∂ex 0 0 0 0 2500 -1250 -1250 0
∂ey 0 0 0 0 0 2165 -2165 0
∂ix 0 0 0 0 0 0 0 2500
∂iy 0 0 0 0 0 0 0 0
∂u 5000 1666 -1666 -5000 0 0 0 0

MPC-Based Formation Control

Fig. 5.16 and 5.17 show the motion of the four satellites during this acquisition ma-
neuver in the EH frame. The control is computed using the MPC-Based Formation
Control (cf. Chap. 3.2) to acquire the CWF – 3:1 formation. The motion from the
starting points on êx axis towards the ellipse forming the CWF – 3:1 formation is
formed by multiple spirals, which can clearly be seen from Fig. 5.17. This is the case,
because the thrusters of the satellites are limited and the maneuver takes several
days – roughly 15 days for this scenario – to be performed.
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Figure 5.16: êx-êy motion of the four satellites in EH frame using MPC-Based For-
mation Control to acquire the CWF – 3:1.
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Figure 5.17: êx-êz motion of the four satellites in EH frame using MPC-Based For-
mation Control to acquire the CWF – 3:1.
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Fig. 5.18 shows the relative error between the starting points and the target points
in ROEs over time for the four simulated satellites. The relative errors of all satellites
converge to zero, thus the target formation is reached. The time required for reaching
the target state varies between the four satellites from about 180 to about 290 orbits,
which roughly corresponds to 12 to 20 days. The difference in the convergence time
depends on the different initial conditions and the fact that one satellite (Satellite
4) has a different role and thus also a different target state which requires less time
to be acquired.

Figure 5.18: Relative error of the four satellites in ROEs over time using MPC-Based
Formation Control to acquire the CWF – 3:1.
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Fig. 5.19 shows the thrust activity and distribution of the four satellites in EH frame
over time. One can clearly see that Satellite 4, which performs the out-of-plane
motion, has a strong thrust contribution along the êy axis, whereas the other three
satellites are mainly active in the êx-êz plane. One can further see that the thrust
profiles are limited to the maximum thrust that has been specified in the MPC
configuration (and which corresponds to realistic values for CubeSats, cf. Chap.
4.5). Further, one can see that the thrust phases (the "spikes" in the figures, which
are actually phases of several minutes duration) are distributed at thrust-optimal
positions as computed by the MPC.
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Figure 5.19: Thrust profile of the four satellites in EH frame over time using MPC-
Based Formation Control to acquire the CWF – 3:1.
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Plant Inversion-Based Lyapunov Control Combined with a Reference
Governor

Fig. 5.20 and 5.21 show the motion of the four satellites during this acquisition ma-
neuver in the EH frame. The control is computed using the Plant Inversion-Based
Lyapunov Control Combined with a Reference Governor (cf. Chap. 3.4) to acquire
the CWF – 3:1 formation. The motion from the starting points on êx axis towards
the ellipse forming the CWF – 3:1 formation is formed by multiple spirals, which
can clearly be seen from Fig. 5.17. This is the case, because the thrusters of the
satellites are limited and the maneuver takes several days – roughly 3 days for this
scenario – to be performed. The motion of Satellites 1 to 3 seems very structured and
straight forward. Only Satellite 4, which performs the out-of-plane motion shows
some detours to reach the target. This may lead to the conclusion that this controller
is stronger in in-plane-motion than in out-of-plane motion.
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Figure 5.20: êx-êy motion of the four satellites in EH frame using Plant Inversion-
Based Lyapunov Control Combined with a Reference Governor to ac-
quire the CWF – 3:1.
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Figure 5.21: êx-êz motion of the four satellites in EH frame using Plant Inversion-
Based Lyapunov Control Combined with a Reference Governor to ac-
quire the CWF – 3:1.
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Fig. 5.22 shows the relative error between the starting points and the target points
in ROEs over time for the four simulated satellites. The relative errors of all satellites
converge to zero, thus the target formation is reached. The time required for reaching
the target state varies between the four satellites from about 30 to about 60 orbits,
which roughly corresponds to 2 to 4 days. The difference in the convergence time
depends on the different initial conditions and the fact that one satellite (Satellite
4) has a different role and thus also a different target state which requires less time
to be acquired.

Figure 5.22: Relative error of the four satellites in ROEs over time using Plant
Inversion-Based Lyapunov Control Combined with a Reference Gover-
nor to acquire the CWF – 3:1.
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Fig. 5.23 shows the thrust activity and distribution of the four satellites in EH frame
over time. Using this control approach, thrust is only applied in the êx-êy plane
no matter, if an in-plane or out-of-plane motion is aimed. However, this approach
requires much more ∆V for out-of-plane motions than if all three axes would be
used for controlling. On the other hand, this approach reduces the required attitude
control maneuvers to be performed by the satellites. One can clearly distinguish
between the first phase, where the target positions are reached and the latter part
where only maintenance is performed. Control in êx is mainly active during the first
phase, whereas control in êy direction is continuously required to counteract the
influence of perturbations. One can further see that the thrust profiles are limited
to the maximum thrust that has been specified in the controller configuration (and
which corresponds to realistic values for CubeSats, cf. Chap. 4.5).
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Figure 5.23: Thrust profile of the four satellites in EH frame over time using Plant
Inversion-Based Lyapunov Control Combined with a Reference Gover-
nor to acquire the CWF – 3:1.

212



5.4 Simulation Results

Summary

All simulated controllers drive the satellites to the target formation. So all controllers
show convergence. To further compare the control approaches, in addition to the
presented graphs in the previous sections, the required total ∆V for this Cartwheel
Formation – 3:1 acquisition maneuver has been computed. The ∆V values for the
four satellites for both control approaches are listed in Tab. 5.6. One can clearly
see that the Plant Inversion-Based Lyapunov Control Combined with a Reference
Governor requires significantly more ∆V for each individual satellite as well as for
all satellites together, compared to the MPC-Based Formation Control. Especially
Satellite 4, which performs the out-of-plane motion requires nearly double the amount
of ∆V . This highlights the lower efficiency of the control approach for out-of-plane
motions.

Table 5.6: Total ∆V consumption in [m/s] for CWF – 3:1 acquisition maneuver for
the different control approaches.

Satellite MPC ROE
1 3.27 4.57
2 2.56 3.82
3 2.60 3.77
4 5.91 10.34

In addition to the ∆V consumption, the time until the target state is reached plays
a significant role, too. The MPC-Based Formation Control requires up to 290 or-
bits, whereas Plant Inversion-Based Lyapunov Control Combined with a Reference
Governor only requires up to 60 orbits. This is nearly five times faster. On the
other hand, it requires between 1.4 and 1.7 times more ∆V . In addition, it should
be mentioned that the MPC-Based controller causes much more computational load
than the Lyapunov controller, which is a purely analytical solution.

In summary, both control approaches are suitable for this scenario and can consider
the CubeSat-dependent requirements. The choice among them may depend on three
factors: the time the target should be reached, the available ∆V and the available
computational resources on the satellite.
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5.4.1.2 Maintenance Phase

In the maintenance phase of the the CWF – 3:1, the initial and target states for
each satellite are identical. They are given in Tab. 5.3.

MPC-Based Formation Control

Fig. 5.24 shows the motion of the four satellites during this maintenance maneuver
in the EH frame. The control is computed using the MPC-Based Formation Control
(cf. Chap. 3.2) to maintain the CWF – 3:1 formation. It is simulated for 14 days
or 210 orbits. From Fig. 5.24 one can clearly see that there is only slight deviation
from the target state, which means that the controller performs the maintenance
task well.

Figure 5.24: Motion of the four satellites in EH frame using MPC-Based Formation
Control to maintain the CWF – 3:1 in 3D.
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5.4 Simulation Results

Fig. 5.25 shows the relative error during the maintenance maneuver in ROEs over
time for the four simulated satellites. The relative errors of all satellites remain close
to zero, thus the target formation is maintained. However, minor deviations arise
from time to time, especially in the ∂λ component (which corresponds to the êx

axis). However, these deviations of up to 200 m are comparably small with respect
to the formation baseline (cf. Tab. 5.3) and are compensated quickly.
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Figure 5.25: Relative error of the four satellites in ROEs over time using MPC-Based
Formation Control to maintain the CWF – 3:1.
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Fig. 5.26 shows the thrust activity and distribution of the four satellites in EH frame
over time. One can clearly see that Satellite 4, which performs the out-of-plane
motion, has a strong thrust contribution along the êy axis, whereas the other three
satellites are mainly active in the êx-êz plane. One can further see that the thrust
profiles are limited to the maximum thrust that has been specified in the MPC
configuration (and which corresponds to realistic values for CubeSats, cf. Chap. 4.5).
Furthermore, one can see that the thrust phases (the "spikes" in the figures, which
are actually phases of several minutes duration) are distributed at thrust-optimal
positions as computed by the MPC.
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Figure 5.26: Thrust profile of the four satellites in EH frame over time using MPC-
Based Formation Control to maintain the CWF – 3:1.
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Plant Inversion-Based Lyapunov Control Combined with a Reference
Governor

Fig. 5.27 shows the motion of the four satellites during this maintenance maneuver
in the EH frame. The control is computed using the Plant Inversion-Based Lyapunov
Control Combined with a Reference Governor (cf. Chap. 3.4) to maintain the CWF
– 3:1 formation. It is simulated for 14 days or 210 orbits. From Fig. 5.24 one can
clearly see that there is almost no deviation from the target state, which means that
the controller performs the maintenance task remarkably well.

Figure 5.27: Motion of the four satellites in EH frame using Plant Inversion-Based
Lyapunov Control Combined with a Reference Governor to maintain
the CWF – 3:1 in 3D.
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Fig. 5.28 shows the relative error during the maintenance maneuver in ROEs over
time for the four simulated satellites. The relative errors of all satellites remain
close to zero, thus the target formation is maintained. All deviations that arise from
orbit perturbations are compensated, such that the error remains below 20 m for all
satellites for the whole duration of 14 days.
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Figure 5.28: Relative error of the four satellites in ROEs over time using Plant
Inversion-Based Lyapunov Control Combined with a Reference Gover-
nor to maintain the CWF – 3:1.
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Fig. 5.29 shows the thrust activity and distribution of the four satellites in EH frame
over time. Using this control approach, thrust is only applied in the êx-êy plane
no matter, if an in-plane or out-of-plane motion is aimed. However, this approach
requires much more ∆V for out-of-plane motions than if all three axes would be
used for controlling. On the other hand, this approach reduces the required attitude
control maneuvers to be performed by the satellites. One can clearly see that during
this maintenance phase, control is mainly required in êy direction and is almost
continuously active to counteract the influence of perturbations. One can further see
that the thrust profiles are limited to the maximum thrust that has been specified in
the controller configuration (and which corresponds to realistic values for CubeSats,
cf. Chap. 4.5).
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Figure 5.29: Thrust profile of the four satellites in EH frame over time using Plant
Inversion-Based Lyapunov Control Combined with a Reference Gover-
nor to maintain the CWF – 3:1.
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Summary

All simulated controllers maintain the satellites at the target formation. To further
compare the control approaches, in addition to the presented graphs in the previous
sections, the required total ∆V for this Cartwheel Formation – 3:1 maintenance
maneuver has been computed. The ∆V values for the four satellites for both control
approaches are listed in Tab. 5.7. The ∆V consumption of the compared control
approaches differs slightly between the individual satellites, but remains within the
same range. The overall ∆V consumption of the Plant Inversion-Based Lyapunov
Control Combined with a Reference Governor is slightly higher than with the MPC-
Based Formation Control approach. The differences however are not severe.

Table 5.7: Total ∆V consumption in [m/s] for CWF – 3:1 maintenance maneuver
for the different control approaches.

Satellite MPC ROE
1 2.07 2.45
2 2.27 1.93
3 2.03 1.81
4 4.55 6.66

In addition to the ∆V consumption, the maximum tolerable relative error, plays a
significant role, too. The relative error rises in some cases up to 200 m by using the
MPC-Based Formation Control, whereas by using the Plant Inversion-Based Lya-
punov Control Combined with a Reference Governor it only reaches up to 20 m. This
is one whole order of magnitude difference. In addition, it should be mentioned that
the MPC-Based controller causes much more computational load than the Lyapunov
controller, which is a purely analytical solution.

In summary, both control approaches are suitable for this scenario and can fulfill
the CubeSat-dependent requirements. The Plant Inversion-Based Lyapunov Control
Combined with a Reference Governor performs better, because the maximum relative
error is significantly lower and the requirements on computational resources on the
satellite are much weaker.
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5.4.2 Tetrahedron Formation

The THF scenario covers two phases, namely the acquisition and maintenance phase.
Both are simulated and presented subsequently with a summary afterwards.

5.4.2.1 Acquisition Phase

The initial states from which the satellites start the maneuver of the THF acquisition
phase as well as the target states are defined in Tab. 5.4 and repeated here for better
readability.

THF initial and target state
Initial State [m] Target State [m]

ROE Sat 1 Sat 2 Sat 3 Sat 4 Sat 1 Sat 2 Sat 3 Sat 4
∂a 0 0 0 0 0 0 0 0
∂ex 0 0 0 0 0 1250 0 0
∂ey 0 0 0 0 0 0 1250 0
∂ix 0 0 0 0 0 2500 -2500 0
∂iy 0 0 0 0 0 2500 2500 0
∂u 5000 1666 -1666 -5000 5000 0.99 0.99 -5000

MPC-Based Formation Control

Fig. 5.30 and 5.31 show the motion of the four satellites during this acquisition ma-
neuver in the EH frame. The control is computed using the MPC-Based Formation
Control (cf. Chap. 3.2) to acquire the THF. The motion from the starting points
on êx axis towards the ellipse forming the THF consists of multiple spirals, which
can clearly be seen from Fig. 5.31. This is the case, because the thrusters of the
satellites are limited and the maneuver takes several days – roughly 25 days for this
scenario – to be performed.
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Figure 5.30: êx-êy motion of the four satellites in EH frame using MPC-Based For-
mation Control to acquire the THF.
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Figure 5.31: êx-êz motion of the four satellites in EH frame using MPC-Based For-
mation Control to acquire the THF.
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Fig. 5.32 shows the relative error between starting points and target points in ROEs
over time for the four simulated satellites. The relative errors of all satellites converge
to zero, thus the target formation is reached. The time required for reaching the
target state varies between the four satellites from about 300 to about 400 orbits,
which roughly corresponds to 18 to 27 days. The difference in the convergence time
depends on the different initial conditions and the fact that two satellites (Satellite
2 and 3) have a different role and thus also a different target state which requires
more time to be acquired.

Figure 5.32: Relative error of the four satellites in ROEs over time using MPC-Based
Formation Control to acquire the THF.
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Fig. 5.33 shows the thrust activity and distribution of the four satellites in EH
frame over time. One can clearly see that the Satellites 2 and 3, which perform the
out-of-plane motion, have a strong thrust contribution along the êy axis, whereas the
other two satellites are mainly active in the êx-êz plane. In addition, the Satellites 2
and 3 require much more thrust to acquire the desired formation than the Satellites 1
and 4, which is also due to the more complex motion (including out-of-plane motion)
that these two satellites have to perform. In addition, a clear symmetry of Satellite 1
and 4 and Satellite 2 and 3 is visible in the thrust profile, which reflects the structure
of the THF. One can further see that the thrust profiles are limited to the maximum
thrust that has been specified in the MPC configuration (and which corresponds to
realistic values for CubeSats, cf. Chap. 4.5). Further, one can see that the thrust
phases (the "spikes" in the figures, which are actually phases of several minutes
duration) are distributed at thrust-optimal positions as computed by the MPC.
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Figure 5.33: Thrust profile of the four satellites in EH frame over time using MPC-
Based Formation Control to acquire the THF.
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Plant Inversion-Based Lyapunov Control Combined with a Reference
Governor

Fig. 5.34 and 5.35 show the motion of the four satellites during this acquisition ma-
neuver in the EH frame. The control is computed using the Plant Inversion-Based
Lyapunov Control Combined with a Reference Governor (cf. Chap. 3.4) to acquire
the THF formation. The motion from the starting points on êx axis towards the
ellipse forming the THF formation is formed by multiple spirals, which can clearly
be seen in Fig. 5.35. This is the case, because the thrusters of the satellites are
limited and the maneuver takes several days – roughly 3 days for this scenario – to
be performed.
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Figure 5.34: êx-êy motion of the four satellites in EH frame using Plant Inversion-
Based Lyapunov Control Combined with a Reference Governor to ac-
quire the THF.
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Figure 5.35: êx-êz motion of the four satellites in EH frame using Plant Inversion-
Based Lyapunov Control Combined with a Reference Governor to ac-
quire the THF.

226



5.4 Simulation Results

Fig. 5.36 shows the relative error between the starting points and the target points
in ROEs over time for the four simulated satellites. The relative errors of all satellites
converge to zero, thus the target formation is reached. The time required for the four
satellites to reach the target state varies from about 20 to about 50 orbits, which
roughly corresponds to 2 to 3 days. The difference in the convergence time depends
on the different initial conditions and the fact that two satellites (Satellite 2 and 3)
have a different role and thus also a different target state which requires more time
to be acquired.

Figure 5.36: Relative error of the four satellites in ROEs over time using Plant
Inversion-Based Lyapunov Control Combined with a Reference Gover-
nor to acquire the THF.
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Fig. 5.37 shows the thrust activity and distribution of the four satellites in EH
frame over time. Using this control approach, thrust is only applied in the êx-êy

plane no matter, if an in-plane or out-of-plane motion is aimed at. However, this
approach requires much more ∆V for out-of-plane motions than if all three axes were
used for controlling. On the other hand, this approach reduces the required attitude
control maneuvers to be performed by the satellites. One can clearly see that the
Satellites 2 and 3 require much more thrust to acquire the desired formation than
the Satellites 1 and 4. After reaching the target state, the required thrust of those
two satellites is much higher. Again, the symmetry of the formation with respect
to these satellites can be recognized in the thrust profile. One can further see that
the thrust profiles are limited to the maximum thrust that has been specified in the
controller configuration and that corresponds to realistic values for CubeSats (cf.
Chap. 4.5).
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Figure 5.37: Thrust profile of the four satellites in EH frame over time using Plant
Inversion-Based Lyapunov Control Combined with a Reference Gover-
nor to acquire the THF.
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Summary

All simulated controllers drive the satellites to the target formation. So all controllers
show convergence. To further compare the control approaches, in addition to the
presented graphs in the previous sections, the required total ∆V for this Tetrahedron
Formation acquisition maneuver has been computed. The ∆V values of the four
satellites for both control approaches are listed in Tab. 5.8. One can clearly see that
the Plant Inversion-Based Lyapunov Control Combined with a Reference Governor
requires significantly more ∆V for Satellite 2 and 3, but significantly less for Satellite
1 and 4. For all satellites together, the ∆V consumption is nearly double, compared
to the MPC-Based Formation Control. This highlights the lower efficiency of the
Plant-Inversion-Based control approach for out-of-plane motions.

Table 5.8: Total ∆V consumption in [m/s] for THF acquisition maneuver for the
different control approaches.

Satellite MPC ROE
1 1.80 0.84
2 7.19 15.36
3 9.15 16.78
4 1.54 0.98

In addition to the ∆V consumption, the time until the target state is reached plays
a significant role, too. The MPC-Based Formation Control requires up to 400 or-
bits, whereas Plant Inversion-Based Lyapunov Control Combined with a Reference
Governor only requires up to 50 orbits. This is nearly eight times faster. On the
other hand, it requires about 1.8 times more ∆V in total. In addition, it should
be mentioned that the MPC-Based controller causes much more computational load
than the Lyapunov controller, which is a purely analytical solution.

In summary, both control approaches are suitable for this scenario and can meet the
CubeSat-dependent requirements. The choice among them may depend on three
factors: the time the target should be reached, the available ∆V and the available
computational resources on the satellite.
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5.4.2.2 Maintenance Phase

In the maintenance phase of the the THF, the initial and target states for each
satellite are identical. They are given in Tab. 5.4.

MPC-Based Formation Control

Fig. 5.38 shows the motion of the four satellites during this maintenance maneuver
in the EH frame. The control is computed using the MPC-Based Formation Control
(cf. Chap. 3.2) to maintain the THF formation. It is simulated for 14 days or 210
orbits. From Fig. 5.38 one can clearly see that there is only slight deviation from the
target state, which means that the controller performs the maintenance task well.

Figure 5.38: Motion of the four satellites in EH frame using MPC-Based Formation
Control to maintain the THF in 3D.
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Fig. 5.39 shows the relative error during the maintenance maneuver in ROEs over
time for the four simulated satellites. The relative errors of all satellites remain close
to zero, thus the target formation is maintained. However, minor deviations arise
from time to time, especially in the ∂λ component (which corresponds to the êx

axis). However, these deviations of up to 200 m are comparably small with respect
to the formation baseline (cf. Tab. 5.3) and can be compensated quickly.
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Figure 5.39: Relative error of the four satellites in ROEs over time using MPC-Based
Formation Control to maintain the THF.
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Fig. 5.40 shows the thrust activity and distribution of the four satellites in EH
frame over time. One can clearly see that the Satellites 2 and 3, which perform the
out-of-plane motion, have a strong thrust contribution along the êy axis, whereas
the other three satellites are mainly active in the êx-êz plane. These two satellites
also require much more thrust to maintain the desired formation than the Satellites
1 and 4. This is due to their out-of-plane part and the greater baseline of their
target formation state. Further, the symmetry of the formation with respect to
these satellites is also clearly visible in the thrust profile. In addition, one can see
that the thrust profiles are limited to the maximum thrust that has been specified
in the MPC configuration (and which corresponds to realistic values for CubeSats,
cf. Chap. 4.5). Further, one can see that the thrust phases (the "spikes" in the
figures, which are actually phases of several minutes duration) are distributed at
thrust-optimal positions as computed by the MPC.
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Figure 5.40: Thrust profile of the four satellites in EH frame over time using MPC-
Based Formation Control to maintain the THF.
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Plant Inversion-Based Lyapunov Control Combined with a Reference
Governor

Fig. 5.41 shows the motion of the four satellites during this maintenance maneuver
in the EH frame. The control is computed using the Plant Inversion-Based Lyapunov
Control Combined with a Reference Governor (cf. Chap. 3.4) to maintain the THF.
It is simulated for 14 days or 210 orbits. From Fig. 5.41 one can clearly see that
there is almost no deviation from the target state, which means that the controller
performs the maintenance task remarkably well.

Figure 5.41: Motion of the four satellites in EH frame using Plant Inversion-Based
Lyapunov Control Combined with a Reference Governor to maintain
the THF in 3D.
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Fig. 5.42 shows the relative error during the maintenance maneuver in ROEs over
time for the four simulated satellites. The relative errors of all satellites remain close
to zero, thus the target formation is maintained. All deviations that arise from orbit
perturbations are compensated, so that the error remains below 40 m for all satellites
for the whole duration of 14 days.
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Figure 5.42: Relative error of the four satellites in ROEs over time using Plant
Inversion-Based Lyapunov Control Combined with a Reference Gover-
nor to maintain the THF.
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Fig. 5.43 shows the thrust activity and distribution of the four satellites in EH
frame over time. Using this control approach, thrust is only applied in the êx-êy

plane no matter, if an in-plane or out-of-plane motion is aimed at. However, this
approach requires much more ∆V for out-of-plane motions than if all three axes
were used for controlling. On the other hand, this approach reduces the required
attitude control maneuvers to be performed by the satellites. One can clearly see
that during this maintenance phase, control is mainly required in êy direction and is
almost continuously active to counteract the influence of perturbations. In addition,
the Satellites 2 and 3 require much more thrust to maintain the desired formation
than the Satellites 1 and 4. This is due to their out-of-plane part and the greater
baseline of their target formation state. One can further see that the thrust profiles
are limited to the maximum thrust that has been specified in the controller configu-
ration (and which corresponds to realistic values for CubeSats, cf. Chap. 4.5).
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Figure 5.43: Thrust profile of the four satellites in EH frame over time using Plant
Inversion-Based Lyapunov Control Combined with a Reference Gover-
nor to maintain the THF.
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Summary

All simulated controllers maintain the satellites at the target formation. To further
compare the control approaches, in addition to the presented graphs in the previous
sections, the required total ∆V for this Tetrahedron Formation maintenance ma-
neuver has been computed. The ∆V values for the four satellites for both control
approaches are listed in Tab. 5.9. One can clearly see that the Plant Inversion-Based
Lyapunov Control Combined with a Reference Governor requires significantly more
∆V for Satellite 2 and 3, but significantly less for Satellite 1 and 4. For all satellites
together, the ∆V consumption is about 30 % higher, compared to the MPC-Based
Formation Control. This highlights the lower efficiency of the Plant-Inversion-Based
Lyapunov Control approach for out-of-plane motions.

Table 5.9: Total ∆V consumption in [m/s] for THF maintenance maneuver for the
different control approaches.

Satellite MPC ROE
1 1.08 0.25
2 4.43 6.89
3 4.70 6.68
4 1.08 0.81

In addition to the ∆V consumption also the maximum tolerable relative error, plays
a significant role. The relative error rises in some cases up to 200 m by using the
MPC-Based Formation Control, whereas by using the Plant Inversion-Based Lya-
punov Control Combined with a Reference Governor it only reaches up to 40 m. This
is only one fifth. In addition, it should be mentioned that the MPC-Based Forma-
tion Controller causes much more computational load than the Lyapunov controller,
which is a purely analytical solution.

In summary, both control approaches are suitable for this scenario and can meet the
CubeSat-dependent requirements. The choice among them may depend on three
factors: the maximum tolerable relative error, the available ∆V and the available
computational resources on the satellite.
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5.4.3 Spaceborne Distributed Telescope

Since the Distributed Robust Consensus-Based Control (cf. Chap. 3.3) cannot
take thrust constrains into account – in contrast to the other two presented control
approaches – it doesn’t make sense to compare it directly with them. However, its
advantage is to counteract disturbances (due to its robust nature) and to maintain
a relative formation with high precision. Thus, a different scenario was chosen
to demonstrate this control approach. These simulation results are part of the
publication of Scharnagl et al. (2019).
This target formation is not force-free, which means that orbit dynamics are acting on
the satellites and degrading the formation topology over time. Thus, after acquiring
this formation, the controllers remain active not only for counteracting disturbances,
but also for maintaining the formation. So we do not distinguish between acquisition
and maintenance phase. The satellites start from an ATF with different spacing on
the êx axis (v-bar). As target reference a static (in EH frame fixed and not moving)
pentahedral formation as required for a spaceborne telescope is used. It shows a
10 × 10 m base in the êx-êy plane and the tip is located at −10 m along êz axis.

Figure 5.44: 3D plot of the trajectories of the five satellites subject to the presented
consensus-based controller starting on v-bar (−20, −10, 0, 10, 20 m).

Fig. 5.44 to 5.47 show the trajectories of the satellites from the given starting points
to the pentahedral target formation, both as 3D view and the different 2D views.
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Figure 5.45: êx-êy motion of the trajectories of the five satellites subject to the pre-
sented consensus-based controller starting on v-bar (−20, −10, 0, 10, 20
m).
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Figure 5.46: êx-êz motion of the trajectories of the five satellites subject to the pre-
sented consensus-based controller starting on v-bar (−20, −10, 0, 10, 20
m).
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Figure 5.47: êy-êz motion of the trajectories of the five satellites subject to the pre-
sented consensus-based controller starting on v-bar (−20, −10, 0, 10, 20
m).

From Fig. 5.44 to 5.47 one can clearly see the convergence of the satellites’ positions
from their starting points towards the desired target formation. During this transfer
the controller counteracts both, the orbit dynamics given by the Hill’s equations (Eq.
2.72) and the induced disturbances (thruster perturbations). There are no motions
around the target points visible, which would be caused by any disturbances, which
shows that the controller performs quite well with regards to disturbance rejection.
Further, one can see that the last part of the the trajectories of all satellites are
identical. Thus, the controller first tried to acquire the target formation and after
reaching it, the formation drifted while remaining perfectly in shape. This is why the
controller tries to acquire/maintain the relative formation, not the absolute positions.
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Fig. 5.48 shows the control accelerations and the disturbance acting on Satellite 1
over the simulation time.
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Figure 5.48: Accelerations acting on Satellite 1 during simulation time, namely dis-
turbance and control acceleration.

As one can clearly see, most of the control acceleration is applied during the first
seconds of the maneuver, which is mainly applied for changing the satellites’ position
and converging to the target states. The acquisition phase happens so quickly, since
there is no limitation on the maximum allowed thrust. After that, the controllers
remain active to force the satellites to stay on their target positions. The controllers
are counteracting disturbances and – since the formations are not force-free – also
orbit dynamics, which would cause a degradation of the formation within minutes.
However, this formation maintenance requires much less control acceleration than
the initial acquisition of the formation.
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5.5 Preparation for In-Orbit Testing within the

NetSat Mission

The developed control approaches should be – if they are applicable – implemented in
the NetSat mission. The four NetSat satellites have been launched on September 28,
2020 into a LEO (Tab. 2.2 presents the NetSat orbit parameters) and are currently
in commissioning phase. (See Chap. 2.3.2 for details on the NetSat mission.)

The on-board software of NetSat, namely on the AOCS, has been prepared to in-
clude different controllers. Thus a generic controller interface has been created and
implemented. Fig. 5.49 shows the concept and the interconnections of this controller
interface. It receives state measurements (position and velocity) from the navigation
system (GNSS, TLEs or retro-reflector tracking), but can also be fed with simulated
data from the Orekit-based FSF. The controller interface can be implemented both
by orbit controllers as well by closed-loop formation controllers like the ones pre-
sented in this work.

Controller Interface

Orbit Controller
Closed-loop 

Formation Controller

Navigation 

Subsystem
Orekit Framework

State 

Measurement

Testing 

Interface

Figure 5.49: The embedded controller interface with its inheritors orbit and forma-
tion controller and its connections to the navigation subsystem and the
Orekit framework for testing purposes.

A formation controller following the developed controller interface receives several
inputs and needs to provide a specific output. As visualized in Fig. 5.50, it obtains the
current time (from the navigation subsystem from the GPS receiver), the remaining
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propellant mass of the thrust system, the current position and velocity of the satellite
as well as the current (propagated) positions and velocities of the other satellites in
the formation as received via the ISL and propagated by the navigation subsystem.
Thus, the formation controller has to compute a control input / thrust vector and
provide it as a 3D vector in the LVLH coordinate frame. It can also provide a
sequence of thrust vectors for a longer period in time.

Formation Controller

Remaining propellant 

mass

Thrust vector in LVLH 

(for one time step
or as sequence)

Current position 

and velocity of this 
satellite

Current time

Current position 

and velocity of 1st

other satellite

…

Figure 5.50: Embedded formation controller interface with its inputs and output.

At the current point in time, a MPC-Based Formation Controller (cf. Chap. 3.2)
has been implemented on NetSat and is waiting for its use in the mission, which
would also show its applicability in a real-world scenario. The Distributed Robust
Consensus-Based Control (cf. Chap. 3.3) is currently not foreseen to be implemented
on NetSat, since in its present state, it cannot take constraints like limited thrust
into account. However, an extension has already been started and may end in an
embedded implementation as well. The Plant Inversion-Based Lyapunov Control
Combined with a Reference Governor (cf. Chap. 3.4), which is comparably suitable
for this type of missions (CLT SFF) is currently under preparation for on-board
implementation and may be added via software update, if the embedded implemen-
tation and succeeding software tests on ground are successful.

As soon as the commissioning phase of the NetSat mission is finished successfully
and all main subsystems like navigation, AOCS, ISL and thrust system are fully
operational, the formation flying scenarios can be performed using the implemented
MPC-Based Formation Controller.
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5.5.1 NetSat Mission Plan

Using the developed FSF and the MPC-Based Formation Control approach, a com-
plete mission plan for the NetSat mission is proposed. The detailed plan is given in
Tab. 5.10. The plan comprises 9 months and is divided into 19 phases.

Table 5.10: Proposed mission plan for the NetSat mission.

Phase Dimension Action Type Duration
[Days]

1 - Initial uncontrolled drifting Drift 30

2 - Initial drift compensation Drift compensation 10

3 - Orbit assimilation Drift compensation 20

4 1 ATF – 10 km Acquisition 20

5 1 ATF – 10 km Drift 14

6 1 ATF – 10 km Maintenance 14

7 2 CWF – 3:1 – in plane – 5 km Acquisition 10

8 2 CWF – 3:1 – in plane – 5 km Drift 14

9 2 CWF – 3:1 – in plane – 5 km Maintenance 14

10 3 CWF – 3:1 – out of plane – 5 km Acquisition 4

11 3 CWF – 3:1 – out of plane – 5 km Drift 14

12 3 CWF – 3:1 – out of plane – 5 km Maintenance 14

13 1 ATF – 10 km Acquisition 20

14 1 ATF – 10 km Maintenance 14

15 3 THF – 5 km Acquisition 14

15 3 THF – 5 km Acquisition 14

16 3 THF – 5 km Drift 14

17 3 THF – 5 km Maintenance 14

18 1 ATF – 10 km Acquisition 20

19 1 ATF – 10 km Maintenance 14

End of mission 272

For each formation, the acquisition phase with the time required for it, uncontrolled
drift for two weeks and formation maintenance for another two weeks are simulated.
The mission plan starts with a phase of uncontrolled drift for 30 days, which repre-
sents the commissioning phase of the satellites. Then, initial drift compensation is
performed to achieve identical orbit periods (semi-major axis) of all satellites. After
that, the orbit assimilation follows, where all COEs except of the true anomaly are
driven to be equal. Next, the first formation, namely an ATF is planned, where the
satellites will be distributed equally within an interval of 10 km on the same orbit.
Afterwards, the first two-dimensional formation, the CWF – 3:1 in-plane part, with
a baseline of 5 km is performed. It follows the out-of-plane part of the the CWF – 3:1
formation, completing it. After this first three-dimensional formation, the satellites
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go back to the 10 km ATF, which acts as an intermediate hold point for analyzing
satellite data and preparing the next formation scenario. The second 3D formation
is the THF which follows with a baseline of 5 km. After successfully performing the
THF, the satellites again go back to the 10 km ATF and remain there for any further
tasks.

With the proposed plan, all objectives in terms of formation configuration of the
NetSat mission are met. The plan includes one-, two- and three-dimensional phases,
each with enough time to conduct detailed analysis of the controller performance,
formation topologies and the satellite systems in general.
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Chapter 6

Conclusions

To conclude this thesis, first a summary of the scientific contribution is given and
the advantages and drawbacks of the developed control methods are summarized.
Special focus is set towards the application within Continuous Low-Thrust Satellite
Formation Flying missions, especially the novel and unique CubeSat mission NetSat.
Finally, different suggestions how to continue with the outcome of this work are
presented as future work.

6.1 Summary

Within this thesis, three different formation control approaches have been designed,
implemented and evaluated for the new application of Continuous Low-Thrust Satel-
lite Formation Flying of CubeSats. Thus, its scientific contribution can be understood
as the novel development of control approaches for this specific class of application
scenarios, which is still lacking methods withstanding the application in real-world
space missions, as well as the scientific evaluation and comparison of the developed
methods.

ZfT’s NetSat mission acted as the primary application scenario. Based on it, different
sensor and actuator systems have been analyzed with respect to their characteristics
and its impact on navigation and control. Thus, a realistic set of requirements and
constraints for the control algorithms within this work could be defined and realistic
simulations that guarantee the applicability to real-world missions were enabled.
First, a MPC-Based Formation Control approach has been developed. Second, a
Distributed Robust Consensus-Based Control approach has been designed and last,
a Plant Inversion-Based Lyapunov Control Combined with a Reference Governor
has been created. The three control approaches have been evaluated in different
scenarios e.g. a Cartwheel Formation – 3:1 and a Tetrahedron Formation, both split
into acquisition and maintenance phase.

All three control approaches differ in their characteristics, weaknesses and strengths:

The MPC-Based Formation Control guarantees optimality and has the ability to
take hard and soft constraints into account, like maximum thrust, control time win-
dows or maximum acceleration rates. Furthermore, in the simulated scenarios it

245



Chapter 6 Conclusions

shows the lowest overall ∆V consumption. On the other hand, the time to reach the
target state was comparably long in the simulated scenarios. However, this might
be improved by fine-tuning the controller parameters. Apart from that, this control
approach requires significant computation effort, because it needs to solve a numeric
convex optimization problem at least once per orbit. Thus, it is limited to satellites
with significant computing power beyond standard microcontrollers.

The Distributed Robust Consensus-Based Control provides robustness with respect
to sensor noise and disturbances and is distributed using the consensus approach,
which renders it unique among all considered methods. It requires significant compu-
tational effort, but only once, when the H∞ synthesis is performed. The execution
of the synthesized controller itself is not computationally complex any more and can
be performed on regular microcontrollers available on CubeSats. However, the main
drawback of this approach is that the modeling of exact constraints like maximum
allowed thrust is not easily and precisely achievable in frequency domain, which is
required for H∞ synthesis.

The Plant Inversion-Based Lyapunov Control Combined with a Reference Governor
uses the Relative Orbit Elements as coordinate frame, which allows clear understand-
ing of the relative trajectories and time-independent design of force-free formations.
The implementation of a Reference Governor allows for long-term optimization and
implementation of various constraints. Stability is provided by applying Lyapunov
theory. The controller limits itself to perform orbit maneuvers only in two directions
which on the one hand increases ∆V consumption, but on the other hand reduces
the necessary attitude corrections to perform thrust maneuvers significantly. The
controller acts with comparably high precision, especially during maintenance ma-
neuvers and is comparably fast in acquisition maneuvers. On the other hand, the ∆V
consumption is comparably high. The controller needs to solve an Algebraic Riccati
Equation every time step, which requires some computation power e.g. provided by
stronger microcontrollers.

In summary, both the MPC-Based Formation Control and the Plant Inversion-Based
Lyapunov Control Combined with a Reference Governor are suitable for Continuous
Low-Thrust Satellite Formation Flying applications like e.g. the novel and unique
CubeSat 3D Formation Flying mission NetSat, of course showing different advantages
and disadvantages. Distributed Robust Consensus-Based Control however lacks the
ability of limiting the maximum thrust level and thus is not applicable to satellites
using Continuous Low-Thrust.

246



6.2 Suggestions for Future Work

6.2 Suggestions for Future Work

There are different areas to continue the work performed in this thesis. The most
promising topics for further investigation and future work are as follows:

As formation control requires the pointing of the satellites’ propulsion systems into
specific directions at specific points in time, precise attitude control is of particular
importance. The attitude control system has to be able to perform the mission-
dependent thrust pointing behavior, which imposes various requirements and con-
straints on the selected controller. Thus, the development of an attitude controller
specifically suiting for CubeSat formation flying missions (like NetSat) is of major
importance and may be studied as future work.

One additional future step is the evaluation of the MPC-Based Formation Control in
a real space mission, especially a Continuous Low-Thrust Satellite Formation Flying
scenario. The implementation of an embedded version of it has already been finished.
An in-orbit demonstration is planned within the 3D formation flying mission NetSat.

Furthermore, the Plant Inversion-Based Lyapunov Control Combined with a Refer-
ence Governor may be implemented and evaluated in a real space scenario as well.
Its embedded implementation has already been started. It could be deployed e.g.
in one of the upcoming Satellite Formation Flying missions of ZfT. Then, a direct
comparison of the two control approaches would be possible.

Besides, the Distributed Robust Consensus-Based Control lacks the ability to take
constraints (e.g. thrust constraint) into account. Thus, it is, in its current state,
not feasible for application in Continuous Low-Thrust Satellite Formation Flying,
because of the strong limitations of thrust systems for small satellites and especially
CubeSats. Adding constraints to this approach would strongly move it towards
real-world applications.

In addition, the MPC-Based Formation Control requires a significant amount of
memory and computing power, which is not easily available on embedded systems in
small satellites. Thus, an improvement towards performance e.g. using an explicit
MPC formulation or a distributed computation approach among multiple subsystems
would be beneficial to reduce computational effort and computation time on the
satellites.
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Appendix A

Alternative Definitions

This appendix presents alternative definitions that have not been used in this thesis
for the sake of completeness.

A.1 Alternative Definition of Local-Vertical,

Local-Horizontal Coordinate Frame

In addition to the definition of Fehse (2003) used in this thesis, the LVLH can also
defined following (Alfriend et al., 2010, p. 16): The êx is directed from the spacecraft
radially outward, êz is normal to the fundamental plane, positive in the direction of
the instantaneous angular momentum vector, and the êy completes the right-handed
coordinate frame and is in the direction of the orbital velocity vector (see Fig. A.1).

A.2 Alternative Definition of Hill-Clohessy-Wiltshire

Equations

The Hill’s equations defined in the EH frame H following (Alfriend et al., 2010,
p.84 ff.) and presented in the section above are defined as

ẍ − 2 n ẏ − 3 n2 x = dx + ux (A.1)

ÿ + 2 n ẋ = dy + uy (A.2)

z̈ + n2 z = dz + uz (A.3)

with n =
√

µ/a3, µ is the Earth’s standard gravitational parameter and a the semi-

major axis of the orbit of the coordinate frame’s origin. d = [dx, dy, dz]
T is the

vector of environmental perturbations/disturbances and u = [ux, uy, uz]T the vector
of control accelerations. The according form of the analytic solution by Clohessy
and Wiltshire (Clohessy and Wiltshire, 1960) is defined as

x(t) = + [4 x0 +
2 ẏ0

n
] +

ẋ0

n
sin(n t) − [3 x0 +

2 ẏ0

n
] cos(n t)

253



Appendix A Alternative Definitions

x

y

z

leader

Figure A.1: The LVLH coordinate frame is centered in a (leader) spacecraft (defini-
tion based on (Alfriend et al., 2010, p. 16)).

+
γx

n2
[1 − cos(n t)] (A.4)

y(t) = + [y0 − 2 ẋ0

n
] + [6 x0 +

4 ẏ0

n
] sin(n t) +

2 ẋ0

n
cos(n t)

− [6 n x0 + 3 ẏ0] t + γy [
4

n2
(1 − cos(n t)) − 3

2
t2] (A.5)

z(t) = +
ż0

n
sin(n t) + z0 cos(n t) +

γz

n2
[1 − cos(n t)] (A.6)

with the total external accelerations γ = [γx, γy, γz]T = d+u. (Alfriend et al., 2010,
p.84 ff.)
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Brouwer Transformation

This appendix contains the explicit formulation of the mean-to-osculating orbit
transformation stated in Eq. 2.57. The formulation is split into one long-periodic
and two short-periodic parts. All input variables have to be mean orbital values.
The transformation makes use of the following variables

η =
√

1 − e2 (B.1a)

Θ =
1

1 − 5 cos2 i
(B.1b)

ǫ1 =
√

q2
1 + q2

2 (B.1c)

ǫ2 = q1 cos Θ + q2 sin Θ (B.1d)

ǫ3 = q1 sin Θ − q2 cos Θ (B.1e)

The elements of ∆alp (ā) are

alp = 0 (B.2a)

λlp =
q1q2 sin2 i

8a2η2 (1 + η)

(

1 − 10Θ cos2 i
)

+
q1q2

16a2η4

(

3 − 55 cos2 i − 280Θ cos4 i − 400ΘΘ cos6 i
)

(B.2b)

θlp = λlp − sin2 i

16a2η4

(

1 − 10Θ cos2 i
)

[

q1q2

(

3 + 2
η2

1 + η

)

+ 2 (q1 sin Θ + q2 cos Θ) +
ǫ1 sin (2θ)

2

]

(B.2c)

ilp =
sin (2i)

32a2η4

(

1 − 10Θ cos2 i
) (

q2
1 − q2

2

)

(B.2d)
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q1,lp = − q1 sin2 i

16a2η2

(

1 − 10Θ cos2 i
)

− q1q
2
2

16a2η4

(

3 − 55 cos2 i − 280Θ cos4 i − 400ΘΘ cos6 i
)

(B.2e)

q2,lp =
q2 sin2 i

16a2η2

(

1 − 10Θ cos2 i
)

+
q2

1q2

16a2η4

(

3 − 55 cos2 i − 280Θ cos4 i − 400ΘΘ cos6 i
)

(B.2f)

Ωlp =
q1q2 cos i

8a2η4

(

11 + 80Θ cos2 i + 200ΘΘ cos4 i
)

(B.2g)

The elements of ∆asp1 (ā) are

asp1 =
1 − 3 cos2 i

2aη6

(

ǫ3
2 − η3

)

(B.3a)

λsp1 =
ǫ3 (1 − 3 cos2 i)

4a2η4 (1 + η)

[

(1 + ǫ2)
2 + 1 + ǫ2 + η2

]

+
3 (1 − 5 cos2 i)

4a2η4
(θ − λ + ǫ3)

(B.3b)

θsp1 = λsp1 − ǫ3 (1 − 3 cos2 i)

4a2η4 (1 + η)

[

(1 + ǫ2)
2 + η (1 + η)

]

(B.3c)

isp1 = 0 (B.3d)

q1,sp1 =
1 − 3 cos2 i

4a2η4 (1 + η)

[(

ǫ2
2 + η2

)

(q1 + (1 + η) cos Θ)

(1 + ǫ2) [(1 + η) cos Θ + q1 (η − ǫ2)]]

− 3q2 (1 − 5 cos2 i)

4a2η4
(θ − λ + ǫ3)

(B.3e)
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q2,sp1 =
1 − 3 cos2 i

4a2η4 (1 + η)

[(

ǫ2
2 + η2

)

(q2 + (1 + η) sin Θ)

(1 + ǫ2) [(1 + η) sin Θ + q2 (η − ǫ2)]]

+
3q1 (1 − 5 cos2 i)

4a2η4
(θ − λ + ǫ3)

(B.3f)

Ωsp1 =
3 cos i

2a2η4
(θ − λ + ǫ3) (B.3g)

The elements of ∆asp2 (ā) are

asp2 = − 3 sin2 i

2aη6
ǫ3

2 cos (2θ) (B.4a)

λsp2 = − 3ǫ3 sin2 i cos (2θ)

4a2η4 (1 + η)
(1 + ǫ1) (2 + ǫ2) − sin2 i
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Appendix C

Simplified Differential Mean to
Osculation Transformation

This appendix presents the elements of the matrix Ds defined in Eq. 2.70. All
matrix elements which are not stated below are zero. The matrix indices start with
zero. Additional variables that are used are

τ1 = −8a−2 sin2 i
(

1 − 10Θ cos2 i
)

(C.1a)

τ2 =
(

1 − 3 cos2 i
)

(C.1b)

τ3 =
(

1 − 5 cos2 i
)

(C.1c)
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Dlp
1,4 = τ1 cos θ

(C.2a)
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3,3 = 0.5τ1 (C.2b)
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4,4 = −0.5τ1 (C.2c)

Short-periodic (1) part of Ds

Dsp1
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2a
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(C.3a)
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Robotik, Raumfahrtsysteme und Medizin-Robotik.
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