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Piotr Woźnicki 1 , Fabian Christopher Laqua 1 , Katharina Messmer 2, Wolfgang Gerhard Kunz 3 ,
Christian Stief 2, Dominik Nörenberg 4, Andrea Schreier 5, Jan Wójcik 6 , Johannes Ruebenthaler 3 ,
Michael Ingrisch 3, Jens Ricke 3, Alexander Buchner 2 , Gerald Bastian Schulz 2 and Eva Gresser 3,*

1 Department of Diagnostic and Interventional Radiology, University Hospital Würzburg,
Würzburg-Oberdürrbacher Str. 6, 97080 Würzburg, Germany

2 Department of Urology, University Hospital, LMU Munich, Munich-Marchioninistr. 15,
81377 Munich, Germany

3 Department of Radiology, University Hospital, LMU Munich, Munich-Marchioninistr. 15,
81377 Munich, Germany

4 Department of Radiology and Nuclear Medicine, University Medical Center Mannheim,
Mannheim-Theodor-Kutzer-Ufer 1–3, 68167 Mannheim, Germany

5 Department of Otolaryngology, University Hospital, LMU Munich, Munich-Marchioninistr. 15,
81377 Munich, Germany

6 Faculty of Medicine, Medical University of Warsaw, Żwirki i Wigury 61, 02091 Warsaw, Poland
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Simple Summary: Accurate prognostic assessment of bladder cancer patients is essential for risk
stratification, individualized therapeutic decision-making and follow-up management. In this study, the
potential of quantitative features from preoperative CT images (radiomics features) to predict overall
survival in patients treated with radical cystectomy was investigated. Both bladder tumors and pelvic
lymph nodes as well as their immediate surroundings were segmented and analyzed. Regression
models based on radiomics and clinical parameters were developed and compared. The combination of
radiomics features from all regions with clinical parameters achieved the best results with a mean area
under the ROC curve of 0.785 integrated over 1 to 7 years after radical cystectomy. Furthermore, the
combined model stratified patients into high- and low-risk groups with significantly different outcomes.
Therefore, the prognostic information from preoperative CT images could aid in the early stratification of
patients with bladder cancer even before RC is conducted and could complement the well-established
clinical factors.

Abstract: (1) Background: To evaluate radiomics features as well as a combined model with clinical
parameters for predicting overall survival in patients with bladder cancer (BCa). (2) Methods: This
retrospective study included 301 BCa patients who received radical cystectomy (RC) and pelvic lym-
phadenectomy. Radiomics features were extracted from the regions of the primary tumor and pelvic
lymph nodes as well as the peritumoral regions in preoperative CT scans. Cross-validation was per-
formed in the training cohort, and a Cox regression model with an elastic net penalty was trained using
radiomics features and clinical parameters. The models were evaluated with the time-dependent area
under the ROC curve (AUC), Brier score and calibration curves. (3) Results: The median follow-up time
was 56 months (95% CI: 48–74 months). In the follow-up period from 1 to 7 years after RC, radiomics
models achieved comparable predictive performance to validated clinical parameters with an integrated
AUC of 0.771 (95% CI: 0.657–0.869) compared to an integrated AUC of 0.761 (95% CI: 0.617–0.874) for the
prediction of overall survival (p = 0.98). A combined clinical and radiomics model stratified patients into
high-risk and low-risk groups with significantly different overall survival (p < 0.001). (4) Conclusions:
Radiomics features based on preoperative CT scans have prognostic value in predicting overall survival
before RC. Therefore, radiomics may guide early clinical decision-making.
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1. Introduction

Bladder cancer (BCa) is the most common malignancy of the urinary tract. About one
out of 100 men and one out of 400 women will be diagnosed with BCa in the course of
their lives [1,2]. Radical cystectomy (RC) with bilateral pelvic lymph node dissection is the
reference standard for patients with localized muscle-invasive tumors in curative intent.
BCa is a heterogeneous disease with the majority of patients presenting with superficial
non-muscle invasive tumors with a 5-year survival rate of over 90%, although recurrence
rates are high. Survival rates drop drastically as the tumor invades different layers of the
bladder to less than 10% for distant disease spread [3–7]. However, patients within the same
tumor stages show substantial individual variability in survival outcomes. Risk factors
such as age at RC, pT- and pN-status as well as lymphovascular invasion and positive
surgical margins are associated with a bad outcome prognosis [7–11]. Despite the increasing
understanding of the underlying pathophysiology of BCa and the use of (neo)adjuvant
treatment strategies, mortality rates remain high and the oncological outcomes following
RC have not significantly improved over the last few decades [10]. It has also been shown
that the disease-specific mortality is highest during the initial years of follow-up after
RC and decreases for survivors over time. Better estimates of survival probabilities early
after RC or even in advance of treatments may lead to optimized patient monitoring [12].
The development of models that can accurately determine overall survival—especially
within the first years of follow-up after RC—might support oncologists in devising proper
treatment and follow-up strategies for the individual patient [13,14]. Radiomics, which uses
a large number of quantitative parameters extracted from imaging data to predict clinically
significant diagnostic or prognostic variables, might be a promising field in this context [15].
This study evaluates radiomics-based models to predict overall survival in patients with
BCa after RC based on preoperative CT imaging. It also evaluates an approach combining
these imaging features with well-established clinical risk factors.

2. Materials and Methods
2.1. Study Design and Cohort

From 1345 consecutive patients screened in our database, a total of 301 patients with
urothelial or squamous BC who received RC in our hospital with pelvic lymphadenectomy
between February 2004 and March 2021 were included in the study. Patients underwent
complete preoperative CT of the pelvis in a venous contrast phase within 3 months be-
fore the operation. Additionally, complete postoperative histopathological reports for
the primary tumor and lymph nodes were extracted from our database. The exclusion
criteria were (I) primary tumor other than urothelial or squamous cell BCa, (II) previous
systemic treatment for BCa (neoadjuvant chemo- or radiotherapy), (III) secondary malig-
nancies, (IV) incomplete CT imaging within 3 months of RC or incomplete pathological
reports, (V) impossible or insufficient primary tumor segmentation or (VI) loss to follow-up
(Figure 1). All patients were treated with curative intent. Clinical and histopathological
parameters including age, sex, pT- and pN-stages, lymphovascular invasion of the primary
tumor, and positive surgical margin at RC were extracted from medical records. All patients
in the study cohort were followed up after three months, twelve months and then annually
by postal surveys, as follow-up examinations were partly performed in our institution but
also in urological outpatient clinics. This retrospective single-center study was approved by
the local ethics committee (Ethikkommission bei der LMU München, protocol code 18-459,
2 August 2018).

2.2. Segmentation and Radiomics Feature Extraction

CT scans were acquired from various scanners using differing protocols, at ours or
external institutions (Supplementary Table S1). Segmentations of the primary bladder tu-
mors as well as all peri-iliac, obturator, and perivesical LNs on both sides were performed
manually on axial CT images in the portal venous phase using the open-source Medical
Imaging Interaction Toolkit (MITK, version 2018.04.2, DKFZ, Heidelberg, Germany). The
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segmentations were subsequently reviewed and corrected, if necessary, by a second reader
with extensive experience in urogenital imaging. Both readers were blinded to the clini-
copathological information. In the following, the segmentations including the area of the
region of interest (bladder tumor or lymph node) are referred to as intratumoral masks. Per-
itumoral masks, comprising the area within a 6 mm margin around the intratumoral masks,
were automatically created from manual segmentation using morphological operations
from the SimpleITK library. First-order and shape features (n = 33) were extracted from all
segmentations of the primary bladder tumor as well as from the largest segmented lymph
node from the intra and peritumoral masks (132 features in total). For feature extraction,
our in-house framework, so-called AutoRadiomics, was used [16], (Supplementary File S1).
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2.3. Model Development

The patient cohort was split into a training (80%) and a test (20%) cohort. A Cox
proportional hazard model with an elastic net penalty was used, as implemented in the
scikit-survival library [17]. Two parameters, L1 ratio and alpha, were optimized using
grid search in the training cohort in the setting of a 5-fold cross-validation (Supplementary
Table S2). The selected features in the final models can be found in Supplementary Table S3.
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The Brier score, integrated over 1 to 7 years after surgery, was used as a metric for parameter
optimization. The Brier score, which is equivalent to the mean squared error applied to
probabilities, was selected to guarantee good calibration of the model’s predictions. The
study design is demonstrated in Figure 2.
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2.4. Combining Radiomics and Clinical Parameters

As a reference, a model using only the clinical parameters, including age, sex, pT-
and pN-status, the presence of residual tumor in the surgical margins, and the pres-
ence of lymphovascular invasion by the primary tumor, was trained. Moreover, several
radiomics-based models and a combined model of radiomics features and the named
clinical parameters were evaluated.

2.5. Evaluation Metrics

The area under the receiver operating curve (AUC) and the Brier score, both integrated
over the time period from 1 to 7 years after surgery, were used as the primary scoring
metrics. The AUC for survival data quantifies how well a model can distinguish subjects
who experience an event before a given time point from those who do not. The Brier score
evaluates the accuracy of probabilistic predictions. The lower the Brier score, the better the
predictions are calibrated. An integrated metric (AUC and Brier score) refers to the mean
metric value over a time range. Additionally, Harrell’s concordance index (C-index) was
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reported. The C-index corresponds to the proportion of all comparable pairs in which the
predictions and outcomes are concordant.

The median risk score in the training cohort was used as the threshold to dichotomize
patients into low-risk and high-risk groups, which were compared using Kaplan-Meier
analysis. The calibration of the combined model was assessed by plotting the predicted
survival probability against the observed survival rates at 1-year, 3-year and 5-year time
points. The period from 1 to 7 years after surgery was defined a priori based on the median
follow-up time and clinical experience to capture the variability in outcomes.

2.6. Statistical Analysis

Differences in the clinicopathological variables between training and test cohorts were
compared using Welch’s t-test, Chi-square test for independence, or Fisher test, wherever
appropriate. Confidence intervals of 95% (95% CI) were calculated with the bootstrap
technique, using 1000 resamples (with replacement) of predicted probabilities to determine
the CI. A log-rank test was used to compare high-risk and low-risk groups. P-values for
integrated AUC and Brier scores were calculated using the distribution of differences from
bootstrapping with 1000 resamples. A p-value < 0.05 was considered the threshold for
statistical significance. All statistical analyses were implemented in the programming
language Python (version 3.10, Python Software Foundation, Wilmington, DE, US). The
code used for our analysis will be shared after publication.

3. Results
3.1. Patient Characteristics

Of the 1354 patients screened, 301 were included in the final study cohort. A total of
240 patients were randomized into the training cohort and 61 into the test cohort. In total,
1178 lymph nodes were segmented in the training and 296 in the test cohort. The detailed
clinical patient characteristics of the training and test cohorts are presented in Table 1.
No statistically significant differences were found between the training and test cohorts
regarding age, sex, pT- and pN-stages, tumor volume, surgical margins, lymphovascular
invasion, the time between preoperative CT and RC, as well as the time to recurrence. In
the analyzed cohort, the median follow-up time was 73 months (95% CI: 56–85 months)
and the median survival of the overall cohort was 56 months (95% CI: 48–74 months).

3.2. Survival Prediction

The primary results, including integrated AUC and Brier, as well as C-index, are pre-
sented in Table 2. The combined model of clinical characteristics and radiomic features from
intratumoral and peritumoral regions yielded the best performance in terms of an integrated
AUC of 0.785 (95% CI: 0.648–0.891) with an integrated Brier score of 0.175 (0.129–0.224)
and a C-index of 0.740 (0.609–0.81). The clinical reference model achieved an integrated
AUC of 0.761 (95% CI: 0.617–0.874) in the test cohort with an integrated Brier score of
0.185 (0.144–0.232) and a C-index of 0.722 (0.609–0.823). When the radiomic features from
peritumoral regions segmentations of the primary tumor and LN segmentations were
additionally included, the model achieved an integrated AUC of 0.771 (0.657–0.869) with
an integrated Brier score of 0.202 (0.163–0.243) and a C-index of 0.737 (0.644–0.836). The
time-dependent AUC over the time range from 1 to 7 years after RC is presented in Figure 3
for the clinical and radiomics models. Table 3 further distills the accuracy of survival
predictions at discrete time points of 1, 2, 3, 5, and 7 years after RC. The Kaplan–Meier
analysis of the test cohort, stratified into high- and low-risk groups by the combined
clinical and radiomics model, is presented in Figure 4. The combined model was able
to dichotomize the cohort according to the risk score with significantly different overall
survival (p < 0.001). The comparative Kaplan–Meier analysis for the radiomics-based model
and the clinical model, as well as a model based on the TNM classifications, is shown in
Supplementary Figure S1.
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Table 1. Clinical characteristics of the study cohort.

Parameter Training Set (n = 240) Test Set (n = 61) p-Value

Sex: 0.088
Male 168 (70%) 50 (82%)
Female 72 (30%) 11 (18%)

Age 69 ± 10 69 ± 11 0.980
T stage: 0.698

pT ≤ 1 35 (15%) 9 (15%)
pT2 80 (33%) 20 (33%)
pT3 90 (38%) 22 (36%)
pT4 34 (14%) 9 (15%)
pTx 1 (0%) 1 (1%)

N stage: 0.244
pN0 177 (74%) 50 (82%)
pN1/pN2 63 (26%) 11 (18%)

Tumor volume (mL) 10.6 [4.6–24.1] 11.7 [5.5–27.4] 0.649
Resection status
(surgical margins): 0.338

R0 207 (86%) 49 (80%)
R1/R2 33 (14%) 12 (20%)

Lymphovascular invasion present 71 (30%) 12 (20%) 0.260
Time between CT and
surgery (days) 17 [4–35] 17 [3–35] 0.891

Time to recurrence (months) 8 (7–11) 16 (4–33) 0.5
Postopertive complications
(Clavien-Dindo) 0.84

low-grade (0–2) 198 52
high-grade (3–5) 42 9
Deaths 141 29 0.06
cancer-specific 98 (70%) 14 (48%)
other cause 38 (36%) 14 (48%)
unclear/unknown cause 5 (4%) 1 (4%)

Data reported as mean ± std, or median [IQR], or median (95% CI).

Table 2. Results of the analysis (95% confidence intervals in brackets).

Model AUC (1–7 y) p–Val * Brier (1–7 y) p–Val * C–Index

Clinical model 0.761
(0.617–0.874) ref. 0.185

(0.144–0.232) ref. 0.722
(0.609–0.823)

Radiomics features:
intra

(BCa + LN)
0.706

(0.552–0.837) 0.90 0.221
(0.179–0.263) 0.50 0.676

(0.549–0.791)
intra + peri

(BCa)
0.731

(0.626–0.828) 1.0 0.210
(0.169–0.253) 0.50 0.731

(0.626–0.828)
intra + peri
(BCa + LN)

0.771
(0.657–0.869) 0.98 0.202

(0.163–0.243) 0.53 0.737
(0.644–0.822)

Combined model 0.785
(0.648–0.891) 0.69 0.175

(0.129–0.224) 1.0 0.740
(0.632–0.836)

AUC—integrated area under the ROC curve, Brier—integrated Brier score, C-index—concordance index, y—year.
* Calculated using the distribution of differences from bootstrapping with 1000 resamples.

3.3. Prediction Calibration and Interpretability

Figure 5 presents the calibration curve for the combined model at 1-, 3- and 5-year
time points (A), as well as the most important features (B). It can be seen that the predicted
probabilities closely correspond to the true survival proportions. Already verified clinical
risk parameters such as high pT status ≥3, pN status, and positive surgical margins (R1 sta-
tus) as well as age were of high relevance. Moreover, several radiomic first-order and shape
features, including the median voxel intensity within the primary tumor (Median) and the
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volume of the primary tumor (VoxelVolume), as well as intra and peritumoral features from
the lymph node masks (Energy and Variance), were among the most predictive features.
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Table 3. Results of the analysis in terms of AUC and Brier score, measured at 1, 2, 3, 5 and 7 years
after surgery.

Model AUC (1 y) AUC (2 y) AUC (3 y) AUC (5 y) AUC (7 y)

Clinical
model

0.819
(0.647–0.960)

0.692
(0.482–0.885)

0.713
(0.545–0.875)

0.779
(0.622–0.921)

0.798
(0.638–0.924)

Radiomics
features:

intra
(BCa + LN)

0.758
(0.604–0.897)

0.712
(0.512–0.925)

0.784
(0.627–0.925)

0.802
(0.642–0.928)

0.820
(0.665–0.945)

intra + peri
(BCa)

0.758
(0.545–0.921)

0.672
(0.456–0.859)

0.706
(0.524–0.864)

0.680
(0.493–0.843)

0.711
(0.517–0.876)

intra + peri
(BCa + LN)

0.787
(0.650–0.900)

0.722
(0.544–0.869)

0.821
(0.672–0.944)

0.771
(0.601–0.916)

0.825
(0.676–0.950)

Combined
model

0.845
(0.688–0.968)

0.769
(0.588–0.918)

0.790
(0.632–0.915)

0.749
(0.571–0.907)

0.803
(0.639–0.907)

Model Brier (1 y) Brier (2 y) Brier (3 y) Brier (5 y) Brier (7 y)

Clinical
model

0.105
(0.067–0.144)

0.172
(0.120–0.229)

0.202
(0.145–0.266)

0.195
(0.131–0.269)

0.210
(0.136–0.296)

Radiomics
features:

intra
(BCa + LN)

0.130
(0.068–0.178)

0.195
(0.153–0.242)

0.214
(0.166–0.267)

0.214
(0.160–0.275)

0.252
(0.167–0.358)

intra + peri
(BCa)

0.137
(0.087–0.192)

0.198
(0.151–0.253)

0.228
(0.181–0.286)

0.230
(0.176–0.284)

0.264
(0.184–0.363

intra + peri
(BCa + LN)

0.121
(0.082–0.166)

0.186
(0.148–0.250)

0.201
(0.158–0.250)

0.213
(0.161–0.272)

0.243
(0.162–0.344)

Combined
model

0.098
(0.051–0.156)

0.160
(0.105–0.226)

0.174
(0.116–0.245)

0.197
(0.130–0.275)

0.205
(0.123–0.294)

AUC—area under the curve, y—year.
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 Brier (1 y) Brier (2 y) Brier (3 y) Brier (5 y) Brier (7 y) 

Clinical model 
0.105  

(0.067–0.144) 
0.172  

(0.120–0.229) 
0.202  

(0.145–0.266) 
0.195  

(0.131–0.269) 
0.210  

(0.136–0.296) 
Radiomics fea-

tures: 
     

    intra  
    (BCa + LN) 

0.130  
(0.068–0.178) 

0.195  
(0.153–0.242) 

0.214  
(0.166–0.267) 

0.214  
(0.160–0.275) 

0.252  
(0.167–0.358) 

    intra + peri  
    (BCa) 

0.137  
(0.087–0.192) 

0.198  
(0.151–0.253) 

0.228  
(0.181–0.286) 

0.230  
(0.176–0.284) 

0.264  
(0.184–0.363 

    intra + peri  
    (BCa + LN) 

0.121  
(0.082–0.166) 

0.186  
(0.148–0.250) 

0.201  
(0.158–0.250) 

0.213  
(0.161–0.272) 

0.243  
(0.162–0.344) 

Combined model 0.098  
(0.051–0.156) 

0.160  
(0.105–0.226) 

0.174  
(0.116–0.245) 

0.197  
(0.130–0.275) 

0.205  
(0.123–0.294) 

AUC—area under the curve, y—year. 

 
Figure 4. Kaplan–Meyer analysis for the combined model dichotomized into high- and low-risk
groups according to the median predicted risk score from the training dataset, evaluated in the
test dataset. The log-rank test was used to compare risk groups. The number of subjects at risk is
provided below the graph.
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Figure 5. (A) Calibration curves for the combined model of predicted survival probability versus
true survival proportion for the test dataset at 1, 3 and 5 years. The closer to the diagonal the curves
are, the better the calibration. (B) The 10 features with the highest coefficient for the combined model
correspond to its most important features; R1 = positive surgical margins (positive resection status);
intra = imaging features extracted from intratumoral segmentations; peri = imaging features extracted
from peritumoral segmentations; pt = primary tumor; ln = lymph node.

4. Discussion

This study evaluates clinical and radiomic features from preoperative CT scans for
the prediction of the overall survival of patients with bladder cancer following radical
cystectomy with curative intent. A radiomics model based on intra- and peritumoral
segmentations of the primary tumor and lymph nodes reached a similar prediction perfor-
mance with an AUC of 0.771 (0.657–0.869) to the validated clinical parameters with an AUC
of 0.761 (0.617–0.874), integrated over the time range of 1–7 years of follow-up after RC.
Combining clinical parameters and radiomic features yielded the best performance in terms
of an integrated AUC of 0.785 (0.648–0.891). Patients could be stratified into high-risk and
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low-risk groups with significantly different outcomes. Additionally, the overall survival of
patients for the annual follow-ups in the first to seventh years after RC was evaluated, with
an AUC ranging from 0.722 to 0.825 for the radiomics model versus an AUC ranging from
0.692 to 0.819 for the clinical model. In this study, the use of radiomics parameters for the
overall survival prognosis in patients with BCa after RC achieved substantial performance,
comparable to models based on validated clinical risk factors. In contrast to parameters of
the clinical model, which are mostly accessible after RC, imaging features for radiomics
survival prognosis can be collected non-invasively before operative treatment has been
conducted. Our results suggest that radiomics might have a relevant additive value in the
outcome prediction of BCa patients.

Despite modern advancements in surgical techniques and post-operative treatment
options, outcomes of BCa patients after RC remain poor, with 5-year overall survival rates
of around 60% [11,18]. This is reflected in our study, with a median survival of 56 months
within the study cohort. Clinical decision-making regarding the follow-up scheme and post-
operative adjuvant treatment regimen markedly depends on the TNM staging, not taking
into account other risk factors that might play an important role in outcome prognosis
after RC. Therefore, further models facilitating outcome prediction are of high importance.
Several clinical parameters have been identified as important prognostic factors, including
age, pN-status, pT-status, tumor grade, lymphovascular invasion and positive surgical
margins [7,19]. In recent years, an increasing number of machine learning models and
clinical nomograms have been evaluated for the prediction of disease-specific and overall
survival in BCa patients, mostly based on clinical and epidemiologic data from medical
reports. Reported AUCs for prediction of 5-year survival ranged up to 0.81 [20–22]. One
study used information from medical records combined with features extracted from whole-
slide immunofluorescence images to identify high-risk and low-risk groups in terms of
5-year prognosis with an AUC of 0.89 from combined models [23].

CT imaging has a fundamental role in the diagnosis, staging, treatment guidance,
and response monitoring in BCa [3]. As imaging-based features can be easily obtained
non-invasively at low costs, radiomics has been increasingly evaluated for initial detec-
tion, grading, and local as well as nodal staging of BCa patients [24–30], for recurrence
assessment [31–33] and for the response evaluation to neoadjuvant preoperative as well as
adjuvant treatments in recent years [34–40]. However, to our knowledge, no imaging-based
machine-learning models have been investigated for outcome prediction of BCa patients
before RC. Our study evaluates a radiomics approach to assess overall survival within
the first years of follow-up after RC. Moreover, an automated peritumoral segmentation
to include the information from the tumor margin and the surrounding soft tissues was
applied. The inclusion of the peritumoral segmentations had a positive predictive impact
on the models’ performances. The interest in the role of the tumor microenvironment in
the pathogenesis of BCa is rising [41]. Peritumoral segmentations might therefore cap-
ture important additional information from the surrounding stroma and were among the
most relevant features chosen for the model’s calibrations. The approach of peritumoral
radiomics feature extraction has already been positively evaluated for outcome assessment
in other tumor entities such as glioblastoma [42], hepatocellular carcinoma [43,44] and lung
cancer [45].

Currently, adjuvant therapy schemes are substantially changing as the field of im-
munotherapy is emerging for BCa patients after RC. Using immunotherapy for adjuvant
therapy in muscle-invasive BCa has demonstrated promising results and has recently
reached approval, thereby also addressing poor responders to conventional chemotherapy
as well as patients that could not be considered for conventional chemotherapy [46]. There-
fore, a better understanding of outcomes for individual patients is of increasing importance
to propose a risk-based strategy in surveillance and postoperative treatment options. In
this context, imaging-based radiomics approaches might help guide optimal treatment
options for patients after RC.
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Limitations

The retrospective design of the study, the limited sample size and the use of multiple
scanners for CT scan acquisition are the main limitations of this study. In addition, the
algorithms developed in the present study have not been validated externally. In order
to successfully apply these models in the clinical setting, future studies need to verify the
generalizability of the imaging features and standardized parameters. Moreover, the effect
of neoadjuvant treatment on overall survival cannot be assessed in this study due to the
exclusion of this patient subgroup. Additionally, the effect of adjuvant chemotherapy after
RC was not evaluated in this study. Results of a meta-analysis testing for the prognostic
value of adjuvant chemotherapy indicated no effect on survival prognosis and no level-1
evidence has yet demonstrated a significant survival benefit to BCa patients after RC [7,47].

5. Conclusions

Radiomics may support the survival stratification of BCa patients non-invasively before
RC and could be assessed to guide therapeutic decision-making and follow-up management.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14184449/s1, Table S1: CT acquisition parameters and
scanner models (median and min-max range in parentheses); Table S2: Parameters of the final Cox
regression models; Table S3: All features selected for the models with their corresponding coefficients;
Figure S1: Comparative Kaplan-Meier analysis for (A) the radiomics-based model, (B) the clinical
model and (C) the model based on TNM classification; File S1: Feature extraction parameters.
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